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ABSTRACT 

Velocity dispersion in short cylinders is shown to be 

similar to that in an infinitely long one for a wide range 

of values of the ratio of the diameter of the cylinder to 

the wavelength, subject to the condition that Young's 

modulus (and possibly Poisson's ratio) of the materials 

of the cylinders investigated are dependent on frequency. 

This similarity holds for both high- and low-loss 

materials. The magnitude of the end-effects in short 

cylinders is critically dependent on the knowledge of the 

variation of Young's modulus and Poisson's ratio with 

frequency. Anisotropy is the most likely cause of 

deviations of the behaviour of cylinders from the exact 

theory of wave propagation. 

The Q values of resonances of cylinders of different 

dimensions but the same frequency are shown to be 

independent of the dimensions of the cylinders, for a range 

of values of the ratio of the radius to the length of the 

cylinder up to 0.1. Variations in the Q values of 

cylinders of nominally the same polymer and at the 'same 

frequency are most likely due to the different thermal 

histories of the specimens. The purity of commercially-

produced blocks of polystyrene is shown to be open to 

doubt, the density of such specimens being likely to be 

4 - 5% lower than that of the pellets from which they 

were made. Pressure experiments on polystyrene in the 

rubber-like state followed by cooling to the glass-like 

state indicate the existence of molecular motion below 

Tg, of an extent not previously demonstrated. 
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CHAPTER 1  

VELOCITY DISPERSION IN CYLINDERS  

(a) Introduction  

Various authors (Abramson (1958); Miklowitz (1960)), 

and particularly Zemaneck (1962) have written substantial 

reviews of the development of the theory of wave propagation 

in elastic cylinders. Following Zemaneck, the word "mode" 

is reserved exclusively for reference to the type of wave 

motion in the propagation of the elastic wave, e.g. the 

torsional mode. When resonances of a rod of finite dimensions 

are referred to, they will be referred to as resonances of a 

particular mode of propagation. 

Pochhammer (1876) first attempted to solve the problem 

of longitudinal wave propagation in an infinite cylinder, 

and Chree (1899) obtained the same equation independently. 

This equation which relates the frequency of the resonances, 

or the phase velocity, to the appropriate elastic modulus 

governing the propagation consists of two terms, one of 

which having been previously obtained by Rayleigh (1877) 

by considering the lateral inertia of the cylinder, the 

other resulting from regarding the cylinder as a rigid body. 

13. 
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The corrective term for the flexural mode was 

obtained by Pochhamner (1876) in accounting for the rotary 

inertia of the cylinder and Timoshenko (1921) obtained 

a second corrective term for the flexural mode by 

taking into consideration the transverse shear stress. 

Bancroft (1941) was the first to calculate phase 

velocity dispersion values as a function of Poisson's 

ratio and the ratio of the diameter of the cylinder to 

the wavelength of the propagation. He was also the first 

to note that the solution of the frequency equation resulted 

in a number of dispersion curves, which are termed "branches". 

Hudson (1943) calculated the phase velocity curve for 

the lowest flexural node from the Pochhammer equation, 

though he o•~-erlooked the existence of higher branches of 

this flexural mode, and Holden (1951) first established 

their existence. Hudson did, however, note the existence 

of higher flexural nodes. 

Bancroft (1941) showed that for wavelengths small 

compared with the diameter of the rod, the phase velocity 

approaches the Rayleigh wave velocity for the first branch 

of the first symmetric mode, and that for higher order 

branches of this mode, the phase velocity approaches the 

velocity of propagation of shear waves. 
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Others (Hughes (1949); Holden (1951); Abramson (1957); 

Kynch (1957)) established the existence of further 

antisymmetric modes, each 	with a number of branches. 

Sittig (1957) showed that an infinite number of symmetric 

and antisymmetric modes exist. Adem (1954) first 

established that the frequency equation has complex roots 

which will be shown later to be necessary in the solution of 

the wave equation when applied to a cylinder of finite 

length. 

More lately, interest has centred on the development 

of the theory for short cylinders, and those made of 

materials which could not be considered as loss-lamss. 

(b) Velocity dispersion in cylinders 

The equation of notion for an isotropic elastic 

cylinder is:- 

(X + 2µ ).7 (V071) — liVxg— 	,2 xu =yp•ci u 

a t2 (1.1) 

elastic 

where X and µ are the Lam4/constants of the material; sOt) App.')  
- 

is the shear modulus), u is the displacement vector, 

t is the time, and p the density of the medium. The full 

analysis of this equation is given in Appendix 2. 



Employing cylindrical co-ordinates r, 0 , z, the 

components of a are given as:- 

u=, = U(r).cos(n0)6exp j(Vs - wt)i 

J( YZ - w t)i 	 (1.2) 

J( 

u 	= 	V(r ) sin.( n . exp 
9 

u z = W(r) cos(ne).exp 

 

where U(r), V(r), W(r) are functions of Bessel functions of 

r of order n and of three independent constants A, B, C, 

and z is direction of propagation. These constants are 

evaluated by applying the boundary conditions that the 

cylindrical surface of the body is free. The resulting 

equation is 71 3 x 3 determinant which is generally known as 

the frequency equation as it relates phase velocity to 

wavelength; this equation is given in full as equation 

(A2.17) in Appendix 2. 

This equation has two sets of solutions represented 

by L(n,m) and F(n,ri), n and n being integers. L(n,m) 

represent the symmetric modes of propagation which include 

the commonly called longitudinal mode. F(n,m) are the 

antisymmetric ones or flexural modes. Thus there exists an 

infinite series of both symmetric and antisymmetric modes 

16. 
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specified by n = 0,1,2,3,4 .... to infinity for the former, 

and n = 1,2,3,4 .... to infinity for the latter. 

For each mode given by n, there exists an infinite 

series of dispersion curves of phase velocity specified in 

	

both L(n,m) and F(n,m) by m = 1,2,3,4 	to infinity, 

and these are called "branches". The first branch of the 

first symmetric mode is thus given by L(0,1) and the first 

branch of the first antisymmetric mode by F(1,1). 

Setting n = 0 in equation (A2_17) yields 

kaJ0(ka) - 2J1(ka) = 0 	(1.3) 

Uriting Q = ( wa/vs) 

Q2  - 2(y a)2i• J0(ha).J1(ka) + 4( ya)2 hakaJ0(ka).J1(ha) 

	

- 2.Q 2shaJ1  (ha). J1  (ka) = 0 
	(1.4) 

Equation (1.3) is the frequency equation for torsional 

waves and determines an infinite set of roots given by 

ka = Y , q being an integer which specifies the mode, see 

Mason (1964, p.134). The sinplest solution is given by 

ka = 0 and represents the lowest order torsional mode in 

which the phase velocity is vs. This phase velocity is 



independent of frequency and is therefore non-dispersive; 

it is given by:- 

18. 

(1.5) 

Equation (1.4) is the frequency equation for the first 

longitudinal mode which is the mode of particular interJst 

here. To solve it requires the application of the boundary 

conditions that the shear and normal stresses T and T rz 	zz 

vanish on the end faces of the rod, i.e. at z = 0 and 1, 

where 1 is the geometric length of the rod. These boundary 

conditions apply exactly only when 1 approaches infinity. 

(c) Velocity dispersion at low frequencies  

For frequencies less than those given by to a = 2.6036 

Zemaneck (1962) has shown that Trz  is zero at th8 centre 

and at the edges of the end-face of the cylinder and is 

generally two orders of magnitude less than T zz  . T zz  is an 

odd function of Y and can therefore be made to vanish at 

the end-face if the incident wave is reflected internally 

with no pressure phase shift. 

The resultant normal stress due to the incident and 

reflected wave assumes the form:- 

Mason (1964) carried a review of Zemaneck's main findings. 
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T zz = A. sin(' z) 
	 (1.6) 

which is the low frequency assumption and results in the 

familiar resonance condition:- 

L = 21/n 	 (1.7) 

where L is the wavelength and n is an integer (see Appendix 

2). 

Assuming that Tzz  and T rz  are zero at the end-faces 

of the rod, equation (1.4) yields the dispersion curve of 

phase velocity as a function of frequency for the first 

symmetric mode, L(0,1). Expanding J0  and J1, the Bessel 

functions, in the power series of ha and ka, and neglecting 

terns in a2 and higher, Love (1944, p.287) has shown that 

the velocity of propagation vl  is given by:- 

vl =
p 

i2 
	 (1.8) 

E being Young's modulus of theilatorial. We shall in future 

refer tc, the velocity given in equation (1.8) as vE  

to differentiate between the two velocities v, and v1 

the latter symbol being used as the solution of equation 

(1.4). Equation (1.8) is the solution which results from 



the simple equation of the elastic cylinder under 

longitudinal excitation:- 

S = Eau 
a z 

(1.8a) 

S 1N`-e--1-n 
where S is the tensile strala, u the displacement in the 

z-direction (along the axis) and E is Young's modulus 

see Koisky (1953, Chapter 3). 

Retaining terms in a2 in equation (1.4) produces a 

second approximation:- 

v1 = E 	 . F 4 (1 — 4/2 a2  2) It  
P , 

L2 

a is Poisson's ratio, given by 	X 	. All the 
777) 

other symbols have been defined before. This second 

approximation was derived by Rayleigh (1877, p.252) 

from considerations of the lateral inertia of the rod. 

Bancroft was the first to calculate the roots of 

equation (1.4). He showed that the variables in this 

equation could be reduced to the three given below:- 

(1.9) 

x = (1 + a ) 

20. 



0(Y) = Y J0(Y) 
7T317 1 

o = 1 - 2a 
(1.10) 1 - a 

By defining two more parameters:- 

P = 21 ( 00x - 1)2  

Q = 21 (2x - 1)*  
L 

equation (1.4) can be written as:- 

(x - 1)2. 0(Pa) - (.00  - 1). 	x - 	= 0 	(1.12) 

From this point, v1 will be written as vn, the 

subscript n being the integer of equation (1.7) and 

specifying the harmonic resonances of the first symmetric 

n = 1 being the fundamental. It is not the "n" of 

the symbol L(n,m), the "n" here having been set to zero to 

obtain equation (1.4). 

The theoretical values of the dispersion of the phase 

velocity vn (given by fn.Lnwhere fn is the frequency of 

21. 
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the harmonics of the cylinder and Ln  is the wavelength 

of the propagation at the appropriate resonance) from 

the "Young's modulus velocity" vE  (i.e. the phase velocity 

of an infinitely long and thin cylinder) are given in the 

Bancroft paper (1941) as a function of d/Ln  (d is the 

diameter of the cylinder) and Poisson's ratio, a. 

For practical purposes, the intervals between the values of 

d/Ln  and a for which vn/vE have been calculated by 

Bancroft are too great and Bradfield (1964) has produced 

tables (interpolated from Bancroft's original table) 

wit'll smaller intervals of a and d/Ln, though the latter's 

maximum value is 0.45. 

The author has used an Elliot 803 computer to extend 

the range of d/Ln values to 1.00 by stages of 0.05 for the 

same range of a as Bradfield's and has tabulated them in 

Appendix 3. 

(d) The "universal point"  

The assumption that Trz  is identically zero everywhere 

isin fact true for only one frequency which is given by:- 

a = 2.6036 .... vs 

or 	y a = 1.841 .... (1.13) 



This frequency, called the "universal point" by 

Hudson who first noted it (1943) is universal in the 

sense that at tb&is value of w a/vs  equation (1.12) is 

independent of Poisson's ratio. The criterion is 

wa 
vs 

1  22. ( Ya ) (1.14) 

where ya is the first non-zero root of .3"1( Ya) = 0, for 

the L(0,1) mode. (See Morse and Feshbach (1953, p.1565)). 

In fact for each branch of the first symmetric node, given 

by L(0,m), there is a universal point, see Mason (1964, p.146 

Equation (1.14) gives as a condition for the universal 

point that vn/vs  = (2)2  when d/L = 0.58606  (from equation 

(1.13)), and hence vs can be deduced from vn and d/Ln values. 

(e) Dis ersion theory at high frequencies  

In order to arrive at the solution of the frequency 

equation in section (b), it was assumed that the shear stress 

on the end faces of the rod were negligibly small (at 

frequencies less than those given by wa = 2.6036), and 

that the normal stress was made to vanish by assiming that 

the incident wave was reflected with no pressure phase 

change. 

23. 
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At higher frequencies than wa = 2.6036, Trz  becomes 
v 

increasingly greater than zero, however, and both 

couponents of stress can be made to vanish only if it is 

assumed that higher branches of the propagating mode are 

so generated at an end face as to cancel out the excess 

strain. This excess is the strain which remains after 

that due to the directly reflected wave only is considered. 

For the L(0,1) node, Zenaneck (1962) has shown that 

these higher branches are the infinite number whose 

propagation constants are complex when the frequency is 

lower than that given byw a = 3.68. For higher frequencies 

than this, these branches include a finite number having 

real and having imaginary propagation constants and an 

infinite ..Lumber having complex propagation constants. 

Therefore below this frequency, the L(0,1) mode is 

the only propagating symmetric mode. At this frequency, 

the first two "complex" modes become propagating, i.e. 

the L(0,2) and L(0,3) modes - see Appendix 2. As the value 

of wa increases, more and more pairs of branches become 
vs 

propagating and thus for frequencies greater than 

wa/vs 
= 3.68, one can no longer refer to a particular 

resonance of a cylinder as belonging to the L(0,m) mode, 
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for more than one propagating branch of the mode is 

making a contribution to the frequency of the resonance. 

Appendix 2 states that above wa = 3.68, an infinite number 
vs 

of pairs of branches have to be considered when calculating 

the frequency of a specific resonance of the cylinder. 

(f) "End effect" and reflection coefficient  

In arriving at an exact solution for the non-infinite 

rod, it was stated in section (d) that one has to consider 

the reflection of the wave at the end face of the rod. The 

derivation in Appendix 2 defines the reflection coefficient 

us having amplitude A and phase 8 such that 

A = (A) •exp (J8  ) 	(1.15) 

In employing the relation Ln  = 21/n to give Ln, the 

wavelength, one is ignoring a possible end effect in equation 

(1.15). Zemaneck allows for this possibility by writing 

equation (1.7) as 

Ln = 21/(n - g) 	(1.16) 

where g is the deviation of n from an integer. In 

calculating Arn, the fox4M Vn  = tn4Lii  is employed, and in 



applying equation (1.16) to this equation for vn, the 

following equation is obtained:- 

vn = (fn + If). 21 	(1.17) 
n 

where Af is the amount by which the ideal resonant 

frequency is reduced on assuming that the actual wavelength 

is given by Ln  = 21/n. 

(g) Effect of internal friction on the frequency equation 

In all that has preceded this section, it has been 

assumed that the material of the cylinder is loss-less. In 

recent years, interest has been shown by many workers in 

the effect cf internal friction in the material on the 

theory of dispersion in cylinders. 

Snowdon (1964) has amended equation (1.9) to account 

for finite but small losses in rods having a diameter to 

length ratio of 1:5. The principal finding of this work 

is that the strain amplitudes of the resonances are less 

than would be predicted for cylinders of the same dimensions 

but entirely loss-less. There is no effect on the values of 

the frequencies of the resonances. 

26. 



Edmonds (1961) has amended the frequency equation 
elastic 

(1.12) by assiming that X * 1  g (the Lane/constants), v1 

and w are each complex to account for energy loss, e.g. 

= At 	j 	where X" is the imaginary component. In 

A-Ipendix 2, a more complete development is given, but in 

retaining only the first order imaginary terms and on 

separating the equation into its real and lurzinary parts, 

the former gives the dispersion equation as before, whereas 

the latter relates the Q factor of the resonances (see 

Appendix 1) toXllig" and to a/vn. This loss effect will be 

referred to in Chapter 5. 

To date, no attempt has been made to calculate the 

second order effect of internal friction on the frequencies 

of the resonances as given by equation (1.12). 	Parfitt 

(1954) introduces a frequency dependent loss factor 6 

into the simple equation for the solution of the elastic 

cylinder under longitudinal excitation (see equation (1.8a)) . 

The effect at resonance is to produce an amplitude of 

vibration at the end of the rod remote from the driving 

force of 

27. 
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U = U •0) 	 )2 
0 0  

	

7Co(1) 	(1 + o 2 ) -1 (C OSh 2 al - cos 2p 1) 

2 

(1.1s) 



where Uo is a constant, Wo  = the ideal angular 

28. 

frequency, w is the angular frequency as measured, a  and 0 

are given by 

2 	2 	8Z  a = 	p . (1 + t)2  - 1 
2E' 	(1 + S) 

(1.19) 

P 
2 1 2 	

2pI 	11 + 	+ 1 
2E' (1 + 82d 

(1.2Q) 

and 	8
E 
 by Em  = E'(1 + j6,). 

In retaining terms in e'E where they make a contribution 

apprcaching 1% or more, Parfitt has shown that 

= n wo  ( 1 
2 

+ g 

6217
,1 (1 + 2p + 1/8 (3 + 2p) b 4513) -1 

- 
(1.21) 

where b = n2n /6 and p is a parameter describing the manner 

in which SE  isa function of w , i.e. 6 is proportional 
12, 

to (w )-P. As can be seen, no term in 8 exists, which 

sup-oorts Edmond's conclusion. 

(h) Review of previous experimental work 

There are three problems that could be examined by 

the experimentalist. 
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1. To find if the measured phase velocity dispersion 

follows the dependence on d/L and a as given by 

the theory. 

2. To find is there are any measurable end-effects in 

short cylinders. 

3. To examine if internal losses of the material of the 

.c•.ylinder produce any deviations from the theory. 

Bancroft (1941) has published data to show that if 

end effects exist at all in short lengths (5 - 15 cm.) 

of 3/8" diameter steel rod, then they are less than 2 parts 

in 5000. The experiment he performed consisted of cutting 

two cylinders, one 15 cm. long and the other 5 cm. long, 

from the same length of drill rod. The fundamental resonant 

frequency of the 5 cm. rod is equivalent in d/L value to 

the third harmonic of the 15 cm. rod, if the end effects 

are ignored. Hence, assuming that lloissen's ratio remains 

constant for the two cylinders, the Gnly effect that could 

produce a change in the calculated phase velocity would be 

the existence of an end effect. To within the accuracy 

quoted above, none was detected. Bancroft did not attempt to 

measure the Poisson's ratio of the material of the rod, 

nor did he refer to the possibility of anisotropy in a rod. 
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Hudson (1943) applied Shear's(1940)data to test the 

validity of the dispersion curves as a function of d/L and 

Poisson's ratio. He f-yund that the data for longitudinal 

wave propagation fitted the dispersion curve for a = 0.38, 

whereas that for the flexural wave fitted the curve for 

0.49. He ascribed this variation in Poisson's ratio 

to anisotropy introduced in the rod when subjected to a hard-

drawing process. Shear's data was taken from silver rods 

of dimensions 25 cm. in length and 0.5 cm. in diameter, so 

that d/21 is of the order of 0.01. 

Spinner et al. (1960, 1962) experimented with a steel 

rod of length 15 cm. and diameter 1.2 cm.; thus d/21 = 0.04. 

They measured the resonant frequencies of the rod in the 

longitudinal mode, shortened the rod and found the frequencies 

once again. Repeating the procedure once more resulted in 

a rod of dimensions given by d/21 = 0.10. They used n.d/21 

to give d/L values, derived vE from the fundamental resonant 

frequency of the longest rod (dispersion is small for these 

values of d/L and is only very slightly dependent on the value 

of a ) and found that a = 0.292 gave the best fit to the 

theoretical curves for values of d/L up to 0.3. Recognising 

that an independent check on the value of Poisson's ratio 

was desirable, they measured the first torsional mode 



resonant frequency and employed the equation:- 

2 
a= z fE 

i 

 
- 1 

fs 

(1.22) 

where fE is the fundamental frequency of Young's modulus 

mode (suitably corrected for dispersion) and fs  is the 

fundamental frequency of the shear mode (which is 

dispersionless). This method produced a value of 0.262 

for Poisson's ratio and the authors ascribed this difference 

to anisotropy in the rod. 

By far the most complete work on velocity dispersion 

in cylinders has been carried out by Zemaneck (1962) and a 

joint paper with Rudnick (1961) reported findings for an 

aluminium a3loy cylinder, well-annealed, 3" in diameter and 

120" in length, giving a value of d/21 = 0.0125. The first 

few resonances in the longitudinal mode are practically 

dispersionless and hence an accurate value of vE  can be 

determined. The wavelength was measured by means of a strain 

detector which traversed the surface of the cylinder in an 

axial direction, and therefore d/L could be determined 

without use of the formula n.d/21, thus avoiding end-effect 

corrections. Equation (1.22) was used to calculate Poisson's 

ratio, and it was found that Rayleigh's approximate 

31. 
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solution (equation (1.9)) fitted the experimental data 

better than the exact solution for d/L values up to 0.16. 

The deviation from the exact theory is only 0.2% at the 

worst, however. 

Zemaneck and Rudnick also show that the dispersion in 

the first flexural node is according to Timoshenko's 

correction as opposed to the exact theory, though again the 

deviations are small. Dispersion in the shear mode was 

found to be less than 0.01% over the range covered. 

Edmonds and Sittig (1957) have reported work carried 

out on an aluminium cylinder 24 cm. long by 4.9 cm. in 

diameter, i.e. d/21 = 0.102. They expressed their results 

in a manner which is more sensitive to deviations from the 

theory, partisularly in the region of the universal point, 

than is obtained from plotting vE/vn  as a function of d/L 

and a , see Figure (1.1). As can be seen, the experimental 

plot Y should lie between plots (a) and (b), if the material 

of the cylinder has a value of Poisson's ratio lying between 

0.3 and 0.4. This experimental plot should pass through 

the universal point (d = 0.58606' Y = 0) as should all L 
theoretical and experimental curves. Figure (1.1) shows 

that neither of these conditions is hold for the experimental 

values obtained by Edmonds and Sittig. 
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FIGURE (1.1). Edmonds' and Sittig's method of display of velocity 

dispersion data. 

v 	— v ) .21.1 	n) 
vs 	v s ,o.3o 

(a) a 	0.40, theoretical values. 

(b) a = 0.30, theoretical values. 

For the experimental pointsf  (vs/vs) is calculated 

from the experimental values of vs  and vs 
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Using an experimental technique as described above, 

they detected the positions of the nodes along the surface of 

the cylinder and showed that, from about the sixth rescnance, 

the positions of nodes began to move in from both ends of 

the rod towards the centre. This effect is at a maximum at 

about the ninth resonance and has disappeared again at the 

eleventh. As the deviation from the theory occurs before 

the sixth resonance, this shifting of the nodal distribution 

cannot be the only explanation of the deviation fron theory, 

and poTsibly anisotropy in the rod may be a contributing cauce. 

(i)  Prcooht investigation of velocity dispersion 

From the previous section, it seems that it is always 

possible to find a value of Poisson's ratio which will 

adequately fit the experimental data of vm/vn  as a function of 

d/L. The doubt still remains whether this value of Poisson's 

ratio can be obtained by other experimental methods, even for 

cylinders which are loss-less and perfectly isotropic. 

Zemaneck has shown that consistent values of Poisson's ratio 

can be obtained for relatively long cylinders using the 

dispersion values and the first longitudinal and first shear 

mode resonances. 



It was felt, therefore, that insufficient data was 

available for short isotropic cylinders and it was decided 

to investigate these. Other techniques of measuring 

Poisson's ratio independently of the velocity dispersion 

measurements were thought to be necessary. 

The velocity dispersion behaviour of cylinders made 

from materials with high internal losses has been 

theoretically investigated, though no experimental data on 

these materials seems to be available, and an investigation 

of the behaviour of cylinders made from such materials was 

thought to be advantageous. 

Three methods of deducing Poisson's ratio are 

available, using 

1. The dispersion data. 

2. The interpolated value of fs and the measured value 

offs,alongwithfE obtainedfromf-for the 

longitudinal mode in equation (1.22). 

3. The shear velocity vs 
and the "true" longitudinal 

velocity v/  (i.e. that governed by 	211 and not 

as modulus) obtained from the propagation of the 

appropriate 5 mc/s pulses through samples of the 

material. This apparatus will not be doscribed, a 

full report having been given by Smith (1965). 

35. 
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CHAPTER 2  

Free Volume Effects in Glass-like Polymers 

(a) Nature of the glass transition 

The parameters which determine whether an amorphous 

polymer behaves as a glass 	are temperature (or 

frequency) and pressure. Above a temperature T , called 

the glass transition temperature, the behaviour of the 

polymer is rubber-like in that the value of its Young's 

modulus is r`d 107 dynes/cm2 whereas below this temperature, 

the polymer is hard and brittle and has a Young's modulus 

of the order of 1010 dynes/cm2. Kovacs (1964) has defined 

glasses as an "important class of materials whose mechanical 

properties P7"r-  comparable to those of crystalline solids 

whilst having a molecular arrangement similar to those of 

liquids". On increasing temperature, the properties of a 

glass change more or less abruptly to those more like a 

rubber and this process is called the glass transition. 

Kauzmann (1948), Davies and Jones (1953), Condon (1954) 

and Saito (1963) have written articles on the nature of the 

glass transition. 

The glass transition is not a phase transitiun in the 

thermodynamic sense (Flory, 1955). In classical 
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thermodynamics (see Zemansky, 1957, Chapter 2, for example), 

there are two kinds of transition, a first order transition 

and a second order transition. The former is characterised 

by a discontinuity in both theemxrr and volume of the 

sample which are given by(aG)and(aG)respectively, where 
CiPI  

T, P are the Gibbs function, temperature and pressure 

respectively; crystallisation and vapourisation are 

particular examples. A second order transition is 

characterised by a continuous change in the entropy and 

volume of 	sample and a discontinuous change in the 

heat capacity, thermal expansion coefficient and 

compressibility of the sample, which depend upon the second 

derivatives of the Gibbs function with respect to T, to P 

and T togeth,...-, and to P respectively; a specific example 

is the order-disorder transition that occurs in some alloys. 

Figure (2.1) due to Zemansky shows how entropy and volume 

change for first and second order transitions. 

Although the glass transition exhibits these second 

order transition features, Flory (ibid.) has shown that 

glasses are not even in a state of metastable equilibrium, 

but tend to approach such a state at an infinitely slow 

rate when the temperature of the sample is lower than T . 

Richards (1936) was one of the first to recognise that 
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FIGURE (2.1) First and second order phase transitions, after 

Zemanslcy (1957). 

Gibbs function can be written as dG 	V.dP - S.dT for an 

infinitesimal reversible process, where V, P, S and T are 

the volume, pressure, entropy and temperature respectively. From 

this definition, it follows that 
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the transition from the rubbery to the glass-like state 

is one of a "freezing in" of disorder of the molecules, 

this state representing a particular form of a supercooled 

liquid, but one in which the entropy remains greater than 

that of the theoretical crystalline form right down to the 

absolute zero of temperature (Simon, 1930, 1931). 

The glass transition appears, therefore, to be 

concerned with the freedom of movement of the polymer 

molecules witilln the bulk of the sample. At temperatures 

below Tg, th4-: molecular segments are localised in potential 

energy wells, whereas above Tg  the notion of the molecules 

tends to approach free rotation about single bonds in the 

polymer chain (Ellerstein, 1964). On increasing the 

temperature tlirough the glass transition molecules relax, 

a process which would lead to viscous flow in a liquid, 

but which i.1t a polypor results in the highly elastic 

deformation characteristic of rubber-like elasticity. 

No review of the glass transition would be complete 

without SODO reference to the effect of molecular weight 

on Tg,. Below values of the number average (n) 

molecular weight, , of about 20,000, the value of T 

for a homologous series is found to increase asymptotically 

with Mn according to the equation Tg  = T gtms - kP/1714/1, 



40. 

where kp  is a constant, and T_ is the value of Tg  as 
1303  

n--) co . Above this value of Mn, the effect of neighbours 

on molecular motion can no longer be described solely in 

terms of local frictional forces, and the visoelastic 

properties reveal an additional coupling to neighbours 

which appears to be localised at a few widely separated 

points along the molecular chain. This effect is known as 

entanglement coupling (Ferry, 1961, page 23). Ellerstein 

(1964) has rer-.Ited on this subject and refers to the various 

theories goving the dependence of Tg  on molecular weight. 

tranoltitan, 

In descrng try.- glass transition, attention will be 

directed to the nobility of the molecule comprising the 

polymer and in turn to the shape, size and flexibility of the 

main backbone chain and its pendant side groups. 

(b) Molecul-- mobility and its effect on Tg  

The principal description of the glass transition 

temperature is that point at which the convolutions of the 

backbone of the polymer noleculiv are largely immobilised. 

Thus the visibelastic properties of the glassy state must 
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result from limited local molecular motion, which is 

usually ascribed to the rearrangements of the side groups 

along the polymer chain (Ferry, 1961, page 306). However, 

steric hindrance and bulkiness of the side groups are often 

difficult to separate from lack of backbone flexibility. As 

Nielsen (1962, Chapter 2) points out, steric hindrance can 

increase the value of TG, as is illustrated by the difference 

in Tg, between that of poly (p-methyl styrene) and of poly 

(o-methyl styv'ene), 101°C and 125°C, respectively. It is 

thought that 	methyl group in the ortho-position of the 

benzene ring restricts the motion of the backbone. 

Increasing bulkiness of the side group also elevates 

the temperature of the glass transition. This is illustrated 

by comparing the values of Tg  for polyethylene, polyprogiene, 

polystyrene once poly-rinyl carbazole in which the side groups 

are, from left to right: 

-CH3 -C> 
benzene rine./  

The values of T for these polymers is, in the same 

sequence, 153°K, 264°K, 373°K, 481°K. 

N 
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However, the glass transition temperature depends on 

the flexibility of the side group, for in the series 

polymethyl acrylate, polyethyl acrylate, polybutyl 

acrylate, Tg  decreases as the side group gets larger. 

Mixtures of polymer with its monomer and other 

plasticisers (Dudek, 1965) and with other polymers 

(Krause, 1965a) results in a lowering of the glass 

transition tbzeratuve Tg, although in some two component 

mixtures of 12-ymers three transitions have been reported, 

one for ea::;:_ :.umponent and one for the mixture (Krause, 

1965a). 

The tacticity of 	polymer molecule also affects 

the glass transiticn eriperature. The value of Tg  for 

isotactic PMM! -000,7.-1,, groups all won one side") is 159°C, 

whereas that for the syndiotactic form (the group 

alternatf.n,.; "from side to side") is 30°C. An equal 

(Krause,mixture of the two forms has a Tg  of 94°C r 	1965b). 

Figure (2,2) shows diagrammatically the difference between 

1sotact-3.,_r.::-ndiotactic and atactic polymers. 

Multiple glass transitions in cellulose -5 acetate 
have been reported by Daane (1964), each one being ascribed 

to a specific rotation of portions of these complex 

molecules. 	The glass transition can therefore be linked 

quite specifically with molecular motion, the motion of the 



ISOTACTIC 
	

SYNDIOTACTIC 
	

ATACTIC 

(random) 

FIGURE (2.2) Diagrammatic representation of stereoregularity in 

polymers. 

FIGURE (2.3) Linear thermal expansion coefficient of poly(tetra-. 
fluoroethylene) as a function of temperature, after 

Araki, (1965). 
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main backbone chain of the polymer being that which is 

"frozen out" as the temperature is reduced to T . Other 
Monaglio (1963) and Wunderlich (1964)have botlgrepo*ted 

transitions have been reported Von a transition in poly-

styrene which is observed at 50°C. This is the 0 -transition, 

so called because it is the next lowest in temperature below 

transitipns 
that of the a-transition (glass). Still lower temperatureFi 

are signified ;_)37-  the appropriate Greek letter taken in 

sequence. The b--transition in polystyrene is ascribed to 

a "freezing 	of the motion of the phenyl group. PMMA 

shows a P-trz.-1;13ition (Heijboer's article in Prins, 1965) 

at 25°C, due to the stopping of the motion of -COOCH
3 

groups around the C-C link, though in most of these secondary 

transitions, there .:1•3 :-Jome evidence for interference by the 

backbone chair 

(e) Observaon of th,:: glass transition 

The investigation of any property of the glass which 

influences or is influenced by molecular mobility will 

demonstra,' 1-h,1 glass ;transition. Boyer and Spencer (1946) 

have reviewed the experimental field, though since this time 

much more data has accrued, particularly in the field of nuclear 

magnetic resonance. The easiest method of observation of the 

glass transition is by noting how the volume of the sample 

changes with temperature within the appropriate range. Other 
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methods include observation of the elastic moduli, 

internal friction and viscosity, such thermodynamic 

functions as thermal conductivity and specific heat, 

nuclear magnetic resonance measurements such as second 

moment and spin-lattice relaxation time of the proton, 

dielectric constant, refractive index measurements and X-ray 

pattern measvrenents, all as a function of temprature or 

pressure. 

(i) 	functions  

Pasquino (1964) hati shown that a change in slope 

of the thermal conduoti-vity of polystyrene exists at a 

temperature which wa-i found by dilatometer studies to be 

the glass tra11.771.tio;-. temperature. Wunderlich (1964) 

has used a ,liforential thermal analysis techniquex  

to show bo,h the a- and the 0-transitions in this polymer. 

In conventional differential thermal analysis, the temperatu: 
of the outer surfaces of blocks of identical shapes, one of 
the substance under investigation and the other of a material 
of knots -,--. .".--larmal properties (the reference block) is raised at 
a cons::. n' rate and the temperature difference between the 
centres 	the two blocks observed. At steady state, the 
difference will be constant, but whenever the temperature 
passes through some point of thermal transition, the extra 
amount of ho at absorbed tends to retard the rate of temperatur 
rise of the specimen under test. Thus a transition point 
presents a pattern of irregularity in the temperature differ-
ence. In Wunderlich's experiments, the specific heat of the 
polymer is approximately equal to the temperature difference 
between the sample and the reference block. Smothers (1958) 
reviews in detail the manifold uses of D.T.A. techniques. 



Allen (1961) has measured Pi' the internal pressure, of 

around Tg. Pi was 

calculated from P. y ALT t„.„) T. 	where ao and K are the 31/ 
coefficients of thermal expansion and isothermal 

compressibility respectively, and U is the internal energy. 

These authors observe a decrease in Pi at Tg  and explain 

the effect in terms of a relative lack of molecular mobility 

in the glassy state. Araki (1965) has shown that a 

discontinuity on the linear thermal expansion coefficient 

versus temperature plot for poly (tetra-fluoroethylene) at 

about 400°K is a glass transition in the amorphous regions 

of this otherwise crystalline polymer, see Figure (2.3). 

(ii) Dielectric constant measurements  

The behaviour of the dielectric constant of poly 

( oxy-methylene) has been investigated by Read (1961) who 

shows that a broad relaxation peak exists at - 85°C, a 

temperature at which the behaviour of dynamic mechanical 

properties also implies a relaxation process. O'Reilly (1962) 

has investigated the effect of pressure on the dielectric 

relaxation in polyvinyl acetate, showing that it occurs at 

higher temperatures when the sample is subjected to pressure. 

(iii> Dynamic mechanical properties  

Possibly the most complete experimental work done in this 

46. 

samples of polyvinyl acetate and PMMA 
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field is that of Wada, Hirose and Asano (1959). They showed 

that the real part of the shear modulus, the bulk modulus, 

and the Young's modulus for polystyrene, PMMA and polyvinyl 

acetate show changes in the dependency on temperature at 

values of T , these being detected by dilatometer 

measurements. The loss tangents in both the shear mode and 

the Young's modulus mode have maxima (the a-transition), at 

some temperature Td  which is sometimes called the dynamic 

glass transition temperature. The value of T is slightly 

lower than that of Td, and is explained by the authors as 

duo to the difference between the onset of mobility and its 

maximum value. Lewis (1963) made an empirical analysis of the 

variation of Td as a function of frequency of measurement 

and Heijboer (Prins, 1964) followed up by estimating that 

there is a 300 increase in Td for each decade rise in 

frequency. 

The application of pressure on samples at temperatures 

above Tg  can bring about the glass transition (Paterson, 

1964; Matsuoka, 1958). Working on polyisobutylene, Singh 

and Nolle (1959) have shown that the glass transition 

temperature as observed in the behaviour of Young's modulus 

is increased b7 0.025°C per atmosphere rise in pressure, 

which value is supported by the work of McKinney (1960). 
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(iv) Nuclear magnetic resonance methods  

Both the spin-]attice relaxation time T1 and the 

2 second moment of the broad line resonance AH ' are 

dependent upon the mobility of the protons in the polymer 

molecule; see Appendix 4 for definitions of these parameters. 

Powles (1956) has shown steps in the graph of second moment 

vs. temperature for PMMA at 150°K and 400°K, but not at 

the 25°C transition as reported by other workers. The 

constant value of the second moment between these two 

temperatures has been calculated as arising from the motion 

of one half of the -CH
3 
groups, either those in the 

-000CH
3 

or those existing independently as side groups, 

but Powles has not been able to differeniate between them. 

The transition at 150°K occurs when one half of the -CH
3 

ceases rotating, which is consistent with the idea that the 

25°C transition is the -000CH
3 
group transition. The 

decrease in second moment and T1  both occur at the 

temperature Td  observed in shear for both polystyrene and PM!'IA 

(Powles, 1962, 1964) and he has observed the different values 

of Tg  for isotactic and syndiotactic PMMA (1963). 

F©r reasons that are not yet apparent, however, 

transitions observed by one method are not always observed 

by another, oneexample of this being given above. Crissman 
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(1965) has detected in polystyrene a transition at 38°K 

(5.6c/s) or 48°K (6kc/s), thus supporting Heijboer's 

value of shift in Td with frequency. He has attributed the 

effect as due to the "wagging" (small amplitude oscillation) 

of the phenyl group. He was unable to observe this transition 

in broad line n.m.r. experiments, however. 

(v) Dilatometer measurements  

The observation of the volume of a sample as a function 

of temperature change over the appropriate range is the 

easiest method of observing the glass transition, and the 

temperature at which the slope of the curve changes is that 

temperature which is usually referred to as the glass 

transition temperature (Kovacs, 1964). Most authors reporting 

on these experiments quote Bekkedahl (1949) for the basis 

of the technique. Kovacs (1964) is the most prolific reporter 

of dilatometer studies. 

(vi) Optical properties  

Boyer and Spencer (1946) quote the findings of McPherson 

and Cummings (1935) which show that a rubber containing 19 per 

cent sulphur shows a change in refractive index at a given 

terr)erature, but point out that this temperature is a lower 

one than that observed for a similar type of relaxation in 

the thermal expansion coefficient noted by others in the same 
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material. It is suggested that the refractive index change 

anticipates that of the thermal expansion transition because 

of the slight change in the polarisability of the electrons 

brought about by decreasing force fields associated with 

neighbouring molecules. As described earlier in this 

section, the onset of the transition as observed will 

depend upon the effect of temperature on the particular aspect 

of the motion of the molecules which is being observed. 

(vii) X-ray diffraction patterns  

Krim and Tobolsky (1951) have obtained X-ray diffraction 

patterns for both polystyrene and PMMA. Being amorphous, these 

materials present very simple patterns consisting of two rings 

which have uniform intensity. The inner ring is associated 

with intermolecular interference in the form of interaction 

between carbon atoms of adjacent rings. The outer ring 

(less.  intense than the inner one) is thought to be associated 

with phenyl-phenyl group interactions of a single polymer 

chain - an intramolecular effect. Krim and Tobolsky have noted 

that the ratio of the intensities of the second (outer) to 

the first ring is constant below 80°C and above 170C, but 

that between these two temperatures, this ratio diminishes 

at a constant rate from the low temperature constant value to 

the high temperature constant value. This effect is most 
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marked for polystyrene, and less marked for PMMA. The 

authors offer the explanation that this is due to increasing 

numbers of intermolecular interactions, as the decrease in 

the ratio described above results from an increase in the 

intensity of the inner ring rather than a decrease in 

intensity of the outer one. Thus the implication is that 

phenyl group interactions are little affected by temperature, 

whilst those of the main chain are governed by the temperature. 

(d) Rate dependence of T  

One of the first facts which become3obvious to the 

experimenter observing the glass transition is tYat the glass 

transition temperature is dependent upon the rate of 

temperature change. Krause (1965a) has obtained values of T g  

for polystyrene as different as 97°C and 89°C for rates of 

temperature change of 1C per minute and of some hours (total 

time one week) respectively, and in pressure experiments, 

,-aterson (1964) has shown that the hysteresis observed in 

the change of Young's modulus at the glass transition is 

dependent upon the rate of pressure application and release. 

Kovacs (1964, page 409) describes this time dependency 

very well. He considers a sample above its glass transition 

reacting to a change in temperature from To  to Tf, 

To > T > Tf
. Above T , the rate of cooling of the sample 
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Is slower than the rate at which the molecular segments 

can adjust thermodynamically to tle new (lower) temperature 

as time increases. At any temperature between To  and 

another temperature Te, T0  > Te 
> T , the state of the 

molecular configuration is defined by the temperature and 

pressure of the environment of the sample. At a time to 

when the temperature Te  is arrived at, the rate of cooling 

of the sample and the rate at which the configuration is 

adjusted to temperature change can be considered to be the 

same. After this point, (Te,te), the molecular configuration 

is no longer in phase with the temperature of the sample. 

At the end of the cooling process when temperature Tf is 

reached, the molecular configuration is not defined by T f 

but by some "fictive" temperature, T% (first used by Tool, 

1931) which lies between Te and Tf. T e is not a measurable 

quantity but serves only the purpose of theoretical 

analysis. 

As can be seen, the fictive temperature will depend 

on the rate of cooling of the sample, and as some 

relationship must exist between T e and the onset of the 

glass transition, T
6 
 must also be rate dependent. Indeed, 

so dependent is the value of Tg  on the rate and direction 

of the temperature change that some authors (e.g. Wunderlich, 
(1964)) prefer to refer to a glass transition range or interval. 



(e) Free volume  

From the description of the rate dependence of the 

molecular configuration, it follows that below the glass 

transition temperature an amorphous polymer will have a 

density which will in part be rate dependent, since the 

molecular configuration arising from a slow cooling through 
that 

Tg  will occupy a smaller volume than • 	resulting from a 

more rapid one. Free volume has been defined in different 

ways as reviewed by Kovacs (1964,page 484) and Haward (1966) 

but the latter has shown that in many cases these are 

equivalent. These definitions consist of twe groups, 

the first being for theoretical purposes and invoking such 

concepts as volume of the molecule at O°K, j e e • the "actual" 

space taken up by the molecule, and the volume resulting 

from inter-molecular action due to van der Waals' forces. 

For experimental purposes, Kovacs defines free volume as 

v - v 	where v is the instantaneous total volume and 

vm  is the total volume after an infinite time. A fractional 

free volume is defined as (v - van  )/v m • 

Saito (1963) has calculated the effect on free volume 

of the rate of cooling through T . For a change in cooling 

rate from 10
-3°

C/sec. (0.36°C/hour) to 10-5°C/sec., the 

change in fractional free volume at temperatures well below 

T would be from 0.022 to 0.020 . 

53. 
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Saito calculated these values from a phenomenological theory 

whose starting point is the equation 

6T = (1/aF). Of + (1 /aF). d.( OF) 	(2.1) d   

where sir = T - To and OF =F-F,To  and Po defining the 
equilibrium state of the glass° It is to be noted that this 

equation can be compared with that governing the behaviour 

of a Voigt solid (spring of elastic constant 1/aF  and dashpot 

of viscosity (t /aF) connected in parallel) subjected to the 

stress (T - To). The retardation time C is defined as 

	

v =t . exp(1/F) 
	

(2.2) 
following Doolittle's (1951) theory of liquid viscosity. 

The temperature dependence of the equilibrium value of 

free volume defines 	according to 

P = fo 	aF  (T a_(T - To) 
	

(2.3) 
whereupon the equation used by Saito to calculate the values 

above is derived as 

dF = 
dF 

— 	r — P  
aF  .R. to  .exp(1/F) 

(2.4) 

where R is the rate of cooling, and the values of 1p and aF  

are set at 10-13 and (4.8) x 10-4m,  cg.0 respectively. sec. 

Saito's theory is only one such theory that attempts to 

produce the observed free volume dependence on temperature, 



most of which are based on some two state concept of 

the transition. Kovacs (1964) has produced much 

experimental data in this field and has reviewed the 

applicability of the theories to this data. 

Kovacs' mode of attack, both experimentally and 

theoretically, is to note and consider the reaction of 

samples to a sudden change in temperature; the samples 

are small so that temperature equilibrium is reached 

very shortly after the temperature change, though the 

volume continues to relax for some time after depending 

upon the temperature jump, the thermal history of the 

sample and the closeness of the equilibrium temperature 

to T . 
g 
One of the experimental facts which any theory must 

account for is the non-linear and asymmetric behaviour 

of the approach to equilibrium of the volume of the sample 

when approaching it by dilatation (a positive temperature 

jump), as opposed to its behaviour on contraction (a 

negative temperature jump). The non-linearity is observed 

in that a change in volume by contraction requires a 

smaller temperature jump than does the same change by 

dilatation. A more difficult effect to express theoretically 

is the "autocatalytic" behaviour in dilatation. Unless 

55. 
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the amplitude of the temperature jump is great enough, 

the relaxation of volume will not be of the same form 

as in contraction. The volume dilatation takes place as 

if a certain amplitude of temperature change is required 

to break up the molecular configuration, after which the 

process of rearrangement can take place. Kovacs (1961b) 

has shown that a simple relaxing solid model (see Appendix 1) 

exhibits this autocatalytic behaviour. 

Kovacs concludes that all the theories are incorrect 

in that they assume that a single relaxation time dependent 

upon temperature controls the approach to equilibrium of 

the volume. Although some success has been achieved by the 

theories, Kovacs concludes that G should be replaced by a 

distribution of such relaxation times, each component of 

which being dependent not only on temperature but also 

on free volume. For polyvinyl acetate, he claims that the 

deviations from theory are best explained by the different 

dependence of each component on some distribution with 

temperature, whereas for glucose, he has had considerable 

success in fitting a narrow rectangular distribution of 

relaxation times (all similarly dependent upon free volume 

and temperature ) to the experimental data. 
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(f) Behaviour of a polymer below its glass transition 

temperature  

It is not the purpose of the present work to investigate 

the behaviour of amorphous materials above their glass 

transition. Many authors (e.g. Aifrey, 1948; Treloar, 

1958; Ferry, 1961) have covered this field, and the 

theoretical work is both detailed and broad and is 

supported by much experimental evidence. 

Below the glass transition, comparatively little 

theoretical work has been done except on the singularities 

in behaviour which are due to relaxation processes, more or 

less well-understood as the onset of motion ok specific 

groups of molecules - thew-, 	y- etc. transitions 

(Ferry, 1961, Chapter 14). For polystyrene, the a- ,13- and 

y- transitions occur at 1000C, 500C and (about) 400K 

and are accounted for by main chain mobility (the glass 

transition), by rotation of the phenyl groups, and by 

"wagging" of the phenyl groups, resnectively. For PMMA, 

they occur at 120°C, 25°C and 150
0K and seem to be due 

o 
to main chain mobility (the glass transition) 

t
v motion of 

the -00CCH
3 
group and to motion of the -CH

3 
group, 

respectively. 

The theories of molecular mobility away from these 
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transition regions (Parfitt, 1956; Turnbull, 1961; 

Ellerstein, 1963) are based on the "hindered rotation" 

concept, and have been used to analyse the phenomenon 

of an internal friction more or less independent of 

frequency at frequencies away from the transitions. This 

frequency independent background level of damping has been 

noted by many authors, a review of whose work appears in 

Parfitt's thesis (1954). More recently Benbow and Wood 

(1958), and Ferry (1961, Chapter 14), have restated the 

fact, the former noting that the level of damping can be 

correlated with the estimated degree of flexibility of 

the molecules involved. 

Parfitt (1954, 1956) has shown that the internal 

friction of samples of polystyrene below T
6 
 is dependent 

in part upon the amount of free volume trapped in the 

sample by different annealing techniques. Melchore and Nark 

(1953) have shown that the heat distortion temperature of 

polymers can be increased by a slower cooling of the samples 

through T . McLoughlin and Tobolsky (1951) working with 

polyvinyl acetate, have shown that a more rapid relaxation 

of stress takes place in those samples which had been 

more rapidly cooled through T . Kovacs, Stratton and Ferry 

(1963) working above T , have shown that types of relaxation 

associated with volume, internal friction and shear 
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modulus changes were equivalent for a sample of polyvinyl 

acetate as it responco1 to an abrupt temperature change. 

(g) Hindered rotation theories of molecular mobility 

Rubber-like elasticity is generally typical of a 

relaxation or retardation process, characterised by a 

relaxation time, % , as described in Appendix 1. Although 

there may be relaxation processes which can be expressed 

in terms of one relaxation time, even the secondary 

transitions which occur in polymers (and which are generally 

ex-Dlained in terms of very specific rotations of particular 

side groups) are fund to be governed by a distribution of 

relaxation times (Ferry, 1961, Chapter 14) and the back-

ground level of damping upon which these transitions can 

be considered to be superimposed can only be explained 

mathematically in terms of relaxation times given by the 

function G(t) where t is time and which generally is finite 

for all values of t. 

The ratio of the complex strain amplitude to the 

complex stress amplitude, called the complex compliance 

and denoted by Jm, has been shown by Alfrey (1948) to be 

such that the loss term, J", is given by 

jtt( w  ) 
co = 

 S
G(t).dt  

1 + (13
2t2 

0 

(2.5) 
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and the main theoretical problem is then to derive the 

distribution G(t) from the structure of the polymer. 

Very little of this kind of analysis has been 

undertaken. Parfitt (1956) has considered a very specific 

rotation of sections of the backbone chain of the polymer. 

The rotation of these segments can be idealised as subject 

to two constraints in the form of potential energy wells, 

the first definer. the free rotation -0T the segment and 

the second describes the hindrance to this free rotation 

.rising from the presence of the other molecules. Parfitt 

arbitrarily defined the former well as being sinusoidal 

and the "hole" potential well as being rectangular. 

Turnbull and Cohen (1961) considered the possibility of the 

first well as being Lennard-Jones in shape and Ellerstein 

(1963) defined both as sinusoidal. 

Only Parfitt has tested the validity of his assmtions 

by applying experimental data to his findings. By a 

suitable choice of theoretical constants, Parfitt is able 

to reproduce from his theory the frequency dependence 

of the damping coefficient that was observed experimentally. 

The increase in damping that this theory gives suggests 

that the fractional free volume in the material at T is 

of the order of O.I. per cent whereas Kovacs quotes a 
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value, obtained experimentally, of about 2.5 per cent. 

However, the amount by which Parfitt could change the 

freo volume in the glassy state using different 

annealing processes was oily 0.15%, annuount rraea.loan than that 

deduced from Saito's theory, see section (2.e). 

(h) Factors affecting damping in glass-like polymers  

The previous section showed that the rate of 

cooling of the polymer through its glass transition 

affects the free volume and hence the damping occurring in 

the material. What might be called "artificial" methods 

of altering the level of damping also exist, for example, 

by cross-linking (produced either chemically or by 

irradiation), or by the addition of plasticisers and, 

possibly, of fillers. The effect of these changes of 

molecular environment of the specimen are considerable at 

temperatures above T , although below this temperature the 

effect is slight, showing principally in the changes in 

the moduli of the material and hardly at all in the damping, 

except in the position and width of the secondary transitions. 

Ferry (1961) reports the effects of these changes, 

particularly above T . Little experimental work has been 

done below T . 
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Char1esby and Hancock (195:') have sho"\vn that 

Yeung r S nodulus increases \:vi th increasill{S cross-linking 

at tC3peratures beloy the glass transition tonperature. 

Rady (1957) has shrHvn that the ~ -transiti(jn peak in the 

damping of polyethy1eno \:vhich has been cross-linked in 

vC1.rying dogrees by irradiation shifts to higher and higher 

frequencies as the irradiation dose (and hence cross-

linking) increases, and tho peak disappears altogether for 

very high dl.... ses;) It is c(,nsiderod that tho ~ -tronsi tiun 

in this pulymer is due to the aoorphous side chains which 

can exhibit Taotion below'!' except when the backbone chains g . 

are highly cross-linked. Rady has SOr.le data (;n the effect of 

cros s-linl-cing un the dar.lping coefficient. Up tu doses ()f 

about 8 units3£, thero seer.lS to be no effect on the clamping. 

Above this do sage, hOlvover, tho clanpine suddenly increase s 

and then diminishes at which stage the material becomes 

very brittle; this 0 ccurs ,v-hen the cross-linking is very 

:£ Rady defines ene unit as being oquivalent to 10
17 slow 

neutrons/co2 1.Jlus tho assl.'ciated fast neutrcns and gacIna 
irradiation for the p01yothylene saoples. These last tllO 
cc~poncnts are considered tG be proDortional to the slow 
neutron flux density. Thus, Raciy defines 

6 21 
1 uni t = (4u - 50) x 10 r()ntgen = (2.2 - :'2-.7) x 10 cV €!JYl 
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high. It should be pointed out that polyethylene is not 

nor ,ally considered to be a glass at these frequencies and 

temperatures and it is only the effect of cross-linking 

that produces these glass-like nroperties for the material. 

The heavily cross-linked, brittle material, produced by 

irradiating with a dosage of 149 units does not exhibit the 

glass transition as normally given by more lightly cross-

linked polyethylene. For this material the characteristic 

change in the specific volume versus temperature plot was 

observed by Rady although no existence of a glass transition 

was observed for the brittle material. 

The addition of plasticisers reduces the "brittleness" 

of the material, and lowers the glass transition temperature. 

Plasticisers can be looked upon as lubricating the motion of 

the molecules and are generally of a much lower molecular 

weight than the polymer to which they are added. The effect 

of such diluents is to depress sharply the value of T , 

linearly at first according to T = T°  - k2w, where w is 

the iweight fraction of the diluent, To is the glass 

transition temperature of the pure polymer, and k2 is a 

constant ranging between 200°C and 500°C for polystyrene, see 

Ferry (1961) and Jenckel (1953). This decrease in Te  is 
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ascribed to the creation by the diluent of more free 

volume in the material, though Yamamoto and Wada (1957) 

have shown that addition of about per cent of water to a 

methamcylate polymer resulted in a shift in the p -transition 

to higher temperatures, implying a "filling up" of the free 

volume by the water. Illers and Jenckel (1958) have 

investigated lightly cross-linked polystyrene swollen with 

diethyl phthalate for which the p -transition shifts to lower 

temperature, whereas the y -transitiun shifts to a higher one, 

as the propo.rtion of the diluent increases. Heijboer (1956) 

has shown that PMMA plasticised with dibutyl phthalate has a 

p-transitiun which has shifted to a temperature lower than 

that of the pure material and that the amplitude of the peak 

has increased by about 50-100 per cent as the plasticiser 

cc.ntent increases, which implies an increase in the number 

of groups participating in the transition signified by this 

peak. 



Table (2.1) shows the effect of these diluents on the 

Positions of the secondary transitions. It is obvious 

that the behaviour of plasticisers is not a simple one. 

TABLE (2.1)  

The effect of diluents on the positions of secondary 

transitions in polystyrene (PS) and polymethyl metha- 

crylate (PNMt) 

DILUENT TRANSITION 	'IT OORTER 
0 

dibutyl phthalate 
in P1414A 

shifts to 
lower 
temperature 

1 
, 

- 	'Heijbuer 
i(1956) 

i% water in 
PMMA 

shifts to 
higher 
temperature 

1 

- 	:Yamamoto 

:(1957) 

diethyl 
-3hthalate in 
cross-linked PS 

shifts to 
lower 
temperature 

shifts to 	i 
higher 	:Illers 
temperaturci(1957) 

Fillers such as woodflour and the various forms of carbon 

have a large effect on the properties of polymers above their 

glass transition, an increase in such nroperties as abrasion 

resistance and in the moduli being the general result. Very 

little seems to be available on the effect of fillers at 

temperatures below T , however. 
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(i) Present investigation 

It has been shown that the free volume of a glass 

is dependent upon the rate of cooling of the sample 

through its glass transition and that increased free 

volume implies increased internal friction. 

Whilst some authors have investigated the effect 

of rate of cooling through Tg  on the free volume and 

damping in the material, there seems to be little 

published data on the combined effect of pressure and 

temperature on the free volume of polymers below their 

glass transition. 

It was decided therefore to investigate this field 

using polystyrene (PS) and polymethyl riethacrylate (PMMA), 

these materials being the most commonly used polymer 

glasses and of a sufficiently low internal friction to 

make for easy investigation by the method employed. 

As described in Chapter 1, some doubt exists as to 

the validity of the values of damping factor as previously 

derived fi-om the Q values of rods in longitudinal mode 

resonance, and so the effect of rod dimensions on the 

damping factor has been investigated. 
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CHAPTER 3  

THE EXPERIMENTAL SYSTEM 

(a) The experimental method  

The method employed to excite the cylinders into the 

longitudinal mode is the electrostatic method of Ide (1935) 

and of Bancroft and Jacobs (1938). Excitation is provided 

by the electrostatic force between one flat face of the 

cylinder (rendered conducting if necessary) and a parallel 

electrode placed a small distance away, when an alternating 

potential is applied between them. The same system is used 

for the measuring of the relative displacement of the 

other end face of the rod, the physical basis of the driving 

principle being used in reverse. The sensitivity of this 

system of excitation and detection has been considered by 

Parfitt (1954) who showed that maximum tensile strains of 

the order of 106 are produced in a material like polystyrene; 

the present system can detect displacements of the order of 

10-8 cm which is equivalent to a smallest detectable strain 

of the order of 109. 
The frequency of the resonances and the 3 db points on 

the resonance curve are measured directly either by a 

Hewlett-Packard frequency counter or a Schomandl frequency 



68. 

synthesiser. The former gives an accuracy of measurement 

of the order of 1 c/s over all ranges, the latter (being 

tunable tu the Droitwich standard) an accuracy approaching 

0.2 c/s. The damping coefficient (or damping factor) 

of the Young's modulus mode, given by 8Ein the equation 

= E'(1 + j E ), see Appendix 1, is obtained directly from 

i measurement of the quality factor, Q 

E = 1/Q 	 (3.1)  

Parfitt (1954) has shown that this definition of damping 

factor is applicable to the simple resonance theory of 

cylinders. A detailed discussion of measuring both eandoT 

is given by Parfitt, and Ednonds (1961) has investigated 

theoretically the more exact relationship between 62  and %.1 
see section (1.g) and Appendix 2. By measuring the Q values 

of the range of detectable harmonics, the frequency dependence 

of 5 can be obtained. The value of Young's modulus is given 

by the dimensions of the cylinder under test and the resonant 

frequencies, from the relationship 

fn.cn
/n = 

  

• 21 (3.2) 

  

where fn is the frequency of the n
th resonance, 1 is the 

length of the rod, P is the density of the material of the 

rod, and en is the correction for velocity dispersion due to 



the finite diameter of the rod. 

(b) Experimental system  

Figure (3.1a) shows a diagrammatic view of the 

experimental system which is more completely reported by 

Parfitt (1954). Figure (3.1b) is a photograph of the 

apparatus. Details of the electronic circuits are given 

in Appendix 5. 

The oscillator whose circuit diagram is shown in 

Figures (A5.la) and (A5.1b) is of a basic RC design but 

incorporates two fractional detuners which are constant 

at all frewlencies. The rectified detected signal is 

displayed on a d.c. milliammeter from which the 3 db 

drop in amplitude of the signal is observed when the 

oscillator frequency is adjusted by one of these fractional 

detuners. The detection amplifier (see Appendix 5) may be 

tuned over the required frequency range whenever background 

noise becomes great. When the tuned amplifier is employed, 

the Q has to be modified according to the relation 

Qt/Q. = 1 	(Qm/qa )2 
	

(3.3) 

whereQt  is the true Q factor of the rod, 

Qm  is its measured Q, and 

Qa is 
 the Q of the tuned circuit of the amplifier. 

This equation only holds when (q./Qa )2 
 
is fairly small, 

which is the case for all materials used in this investigation. 
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FIG.(3.1b) General view of the apparatus. 

FIG.(3.2) The pin support system. 
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A twin beam oscilloscope monitors both the drive and 

the detected potentials and ensures that the peak-to-peak 

value of the drive voltage is constant. Observation of 

these potentials also tells the experimenter when the rod 

is driven into resonance at harmonics of the drive frequency. 

(c) Method of supporting the cylinder under test  

The rod is firmly but lightly clamped in position 

by means of one or two of the support systems shown in 

Figure (3.2). The principle of a variable length for the 

pins, one of which is spring mounted is not original, 

though the particular design shown in Figure (3.2) is new. 

Parfitt (1954) concluded that this system of support has 

least effect on the resonances of the rod under test. He 

has shown experimentally that the values of q of the resonances 

decrease when the rod is tightly clamped at the positions 

of the anti-nodes of the standing wave pattern set up 

in the rod; this can be largely avoided by lightly clamping 

the rod. However, a decrease in Q can arise if the resonance 

anti-nodal positions do not coincide with the Pin supports. 

Generally, more of these "randomly" decreased Q values occur 

if the rod is supported by more than one set of pins, and 

the existence of possible complex couplings was suggested by 

Parfitt. The question of the effect of the supports on the 
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measurements made in the present work will be discussed in 

Chapter 4. 
(d) Method of driving the rod into resonance  

(i) Normal condenser microphone technique. 

For rods made of non-conducting material, the end faces 

of the rod are coated with a conducting material like 

"Aquadag" (a water based suspension of graphite) to which 

electrical contact is made by means of a fine wire attached 

with "Durofix". The separation between the rod end-face and 

the earthed brass plate of the condenser microphone was 

adjustable by use of the control rods shown in Figure (3.3); 
the phos7)hor bronze bellows act not only as vacuum seals but 

also as springs. The control head shown in Figure (3.3) 

was developed by Rady (1957) from rarfitt's original design 

(1954), except for the air inlet pipe whose purpose will be 

described later. Tufnol joints in the control and support 

rods of the chassis and expanded polystyrene baffles placed 

between the control head and the sample under test help to 

maintain temperature stability. Figure (3.4) shows a 

polystyrene specimen in position. 

For materials . which are 	conducting, 	the 

rod is earthed through the pin supports, and the brass plates 
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are now insulated from the chassis and become the high 

potential electrodes of the condenser microphone system. 

An advantage of this method of exciting metal rods into 

resonance is that the only loading on the rod is that 

arising from the pin supports. 

(ii) Excitation of shear mode resonances. 

Cylinders of high Q materials can be excited into 

shear mode resonances by means of a coil which is wound 

on the end of the specimen cylinder as shown in Figure (3.5). 

When placed in a magnetic field as shown, application of a 

polarising voltage and an oscillatory potential of the 

appropriate frequency will exert a torque sufficient to drive 

the cylinder into shear mode resonance. Detection of the 

resonance is by means of a similar coil at the other end of 

the cylinder. 

Electrostrictive technique. 

Figure (3.6) is a photograph of an aluminium rod, r, 

placed in an alternative drive and detection system which 

has been shown by the author (by trial and error) to work 

only for low-loss, low density specimens. In this method 

the specimen is inserted between diaphragms of "Meculon" 

which is a polymer film of thickness 0.001" and coated on 

one side with an aluminium film a few angstroms thick. 



FIGURE (3.5) METHOD OF EXCITATION OF SHEAR MODE RESONANCES 

FIGURE (3.6) ALUMINIUM CYLINDER IN DIAPHRAGM SYSTEM. 
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In Figure (3.6) the rod is kept in the horizontal position 

by driving • it 
	

into each diaphragm. For the vertical 

position of the rod, as is the case in all investigations 

carried out, the rod merely rests on the bottom (drive) 

diaphragm, and the top diaphragm is brought lightly down on 

to the other end. The non-metallised surface of the 

diaphragm is in contact with the ends of the rod. The rod 

is earthed by means of a fine wire and the driving and 

polarising e.m.f.s. are applied between the metallised 

surfaces and the rod. If the rod is non-conducting, its 

end faces are coated with "Aquadag". 

The diaphragm is held by the two li" diameter brass 

rings (a) and these are fastened to supports (c) by nylon 

bolts (b). The supports can slide along the chassis to 

take rods -If various lengths. The method of making the 

diaphragm is as follows. Figure (3.7a) shows the rings (a) 

which together form the support of the diaphragm shown in 

Figure (3.6) senarated prior to making the diaphragm from 

an initial diaphragm as formed between the two 4" diameter 

rings and which is also shown in Figure (3.7). This latter 

diaphragm does not have to be under a particularly great 

tension. Nuts (d) are used to fix the diaphragm support (a) 

to the supports (c) by nylon bolts (b). Figure (3.7b) 

shows how the final diaphragm is made from the initial one. 



FIG.(3.7a) 

FIG.(3.7b) Method of making diaphragms. 
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The first ring which forms this final diaphragm, and 

which cannot be seen, is placed on a platform; the 

diaphragm is placed on top of it and the second ring of 

the diaphragm is placed on top of this. By breathing on 

the "Meculon" the positions of the bolt holes in the ring 

underneath can be clearly seen. The tension in the final 

diaphragm is achieved by pressing down on the outer ring 

as shown. The supports (c) and the two sets of rings which 

form the two diaphragms are all made out of 1/8" brass 

sheet. The supports (c) are readily removable from the 

chassis, leaving it free to receive the components of the 

other excitation system. 

The advantages that this drive system has over the air-

gap method are 

1. No pins are required to support the rod. 

2. The sensitivity of the system is much greater due to 

the smaller and more uniform gap between the condenser plates. 

The disadvantages are 

1. For some reason yet unknown, neither polystyrene nor 

PMMA rods can be excited by this metlod. It is possibly 

due to the relatively low Qs of the resonances of these rods. 

2. Considerable pressure on the diaphragm reduces the 

sensitivity of the system drastically and seems to act as 

6 load viz the ondg of th6 rod; reducingthe frequencies 
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of the resonances. This is observed when the pressure 

is increased by bringing the two diaphragms too close 

together and also when very heavy cylinders are used, e.g. 

brass cylinders. The nrinciple of its operation is 

considered to arise from the electrostrictive nature of the 

polymer film. 

(a) Effect on resonant frequency of loading the rod  

For those rods whose ends have to be coated with 

"Aquadag", it is necessary to correct the r esonant 

frequencies as measured by an amount given by equation (3.4) 

below:- 

	

= 
	 (3.4) 
1 + A 

where wo is the resonant frequency of the unloaded rod. The 

factor A depends on the mode excited. If the rod is 

resonating in the Young's modulus mode, A = m/M, where m is 
one end of 

the mass of the ' ' 	load on/the specimen and M is the 

	

mass of ' 	the cylinder. If the rod is 

excited into shear mode resonance, A = I/Io, where Io is the 

moment of inertia of the rod about its longitudinal axis and 

I is the moment of inertia of the loading masses about the 

sane axis. 

In all calculations concerning resonant frequency, it is 
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to be assumed that correction for any 	loading that 

might exist has been carried out according to equation (3.4). 

(f) The vacuum system 

The chamber containing the rod is evacuated to eliminate 

loading effects due to air at atmospheric pressure; a 

pressure of 2 - 3 mm of mercury is adequate for this task. 

More important, however, is the fact that a reduced pressure 

avoids the occurrence of a resonance of the air between the 

end of the rod and the brass plate. Thisresonance is so 

broad as to, make damping measurements impossible for the first 

3 or 4 resonances. In the case of the diaphragm drive 
system, the loading of the air on the diaphragm is 

sufficiently strong to reduce considerably the sensitivity of 

the system. 

(g) Measurement of damping at elevated temperatures 

For temperatures above room temperature, the vacuum 

chamber is placed in a bath of oil maintained at the 

required temperature. A diagram of such a bath is shown in 

Figure (3.8). An electric motor drives a stirrer which runs 

on a nylon nipple resting in a smooth brass bush at the 

bottom of the tank. The oil (Shell Vitrea Oil, grade 33) is 

heated by a 1 Kwatt elactric heating element which is fed, 

through a rheostat, from the 250 volt A.C. mains supply. 



F IGURE (3.8) CONSTANT TEMPERATURE BATH 
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Control and measurement of the temperature bath system 

are described in following sections. 

Two baths of the type described were made so that 

a sudden increase (or decrease) in the temperature of the 

sample could be achieved by transferring the vacuum chamber 

from one bath to the other. Due to the large thermal inertia 

of the brass vacuum chamber, it was found necessary to speed 

up the rate of change of temperature of the sample by blowing 

air at the required temperature through the chamber. To do 

this, air from the laboratory's compressed air-line was passed 

through a copper tube which was coiled four or five times 

around the inside of the appropriate oil-bath and then led 

into the top of the chamber containing the sample through a 

pipe on the top of the chamber, see Figure (n3). As can be 

seen in Fig-re (3.4) the hot (or cold) air circulates round 

the sample from the bottom and comes out at the top through 

the (for this procedure) unused vacuum line. 

(h) The temperature control system 

The temperature of the oil in the bath is controlled by 

a thermistor (a temperature sensitive resistor), which is 

placed in the oil bath, in the circuit shown in Figure (3.9c). 

To produce the temperature required, resistance box R is set 

at the value of the thermistor at that temperature, the 

temperature/resistance characteristic of the thermistor 
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having been previously determined. 

The reed switch (S), Figure (3.9a), is in circuit with 

the heating coil H and a subsidiary resistance X, as is 

shown in Figure (3.9b). Whilst heating up to the set 

temperature, the switch is open, hence the power relay is open 

and therefore maximum current goes through the heater coil 

H. As soon as the set resistance (temperature) is reached, 

switch S closes thereby bringing the subsidiary resistance 

X into the circuit. With the values of H and X shown in 

Figure (3.9b), the switching of S produces a reduction of 

about one half in the power dissipated by the heating coil. 

By adjusting the rheostat, the system can be made to operate 

with only a small power dissipation in the resistor X, the 

neon lamp being in circuit to show when X is in circuit and 

thus helps to avoid overheating X. 

Figure (3.9c) is the circuit diagram of the bridge 

network which controls the switching of S. This circuit is 

not set for all values of R and has to be set each time a 

different temperature is required. This is done by putting 

another resistance box of equal value to the first in circuit 

in place of the thermistor and by then adjusting the ikohm 

potentiometer P until the reed switch S is just about to 

switch on; the thermistor is then replaced and the heating 

up starts. 
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The bridge circuit which is novel (Figure (3.9c)) was 
of 

designed to cause S to switch for an out of balance/1 deg.0 

which at 90°C, is equivalent to a swing of 10 ohms in 500 ohms 

from the Ib/Vb  characteristic of the thermistor. With a 

- 10 volt operating voltage, a setting of 500 ohms in R 

will give, at balance, a current flow of 0.01 amp through 

the thermistor and through R. At this current, a change in 

the resistance of the thermistor from 500 ohms to 510 ohms 

will produce a change of 100 millivolts in the voltage on 

the base of the first transistor, the OC 42. This change 

in voltage produces a base current of 50 microvolts, which is 

sufficient to cut off the two OC 42 transistors. This action 

causes sufficient current to flow in the lkohm resistor in 

the collector arm of the second OC 42 to switch on the 

next transistor (XA 701). The purpose of transistors XA 701 

and OC 25 is to amplify the current sufficiently to operate 

the reed switch coil. 

Two features are introduced for greater stability of 

the circuit. The 1 amp diode on the emitter of the UC 25 

transistor is in circuit to eliminate the possibility of 

the reed switch being operated by leakage currents through the 

last two transistors; leakage current is also avoided by 

adopting a long-tailed pair arrangement of the two OC 42 

transistors. The 500 ohm variable resistance strapped 
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across the reed switch coil is to introduce a little feedback 

into the system. Without this, "kicks" in the voltages 

throughout the circuit produced by the switching of S can re-

activate the circuit, thus producing a continuous feedback 

from the "on" to the "off" positions. This produces a 

continuous vibration of the reed switch which is obviously 

undesirable. It is the inclusion of the 500 n= 

potentiometer which results in the need fur readjusting the 

circuit (via potentiometer P) every time a new temperature is 

required. 

(i) The temperature measuring system 

The temperature of the sample under test is measured by 

means of a copper/constantan thermocouple which is embedded in 

a piece of perspex of the same lateral dimensions as the test 

rods, i.e. abut -P in diameter. The e.m.f. from the 

thermocouple is amplified by a D.C. amplifier (Pye, 11370) 

and recorded on a 1 milliamp f.s.d. pen recorder (Evershed 

and Vignoles, Murray system) which is "padded" with a 10 k ohm 

resistor. 

The temperature can be measured in two ways. The first 

method is to display the output of the D.C. amplifier directly 

on to the calibrated chart of the pen recorder. However, 

instantaneous measurement of temperature can be achieved by 

the use of the bias device whose circuit diagram is shown in 
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Figure (3.10a). By suitably choosing the value of Ro  and 

by adjusting the potentiometer T, the voltage drop across 

the 5 k ohm 10 turn helical potentiometer can be set (as 

mensured on a commercial bridge) to 5 millivolts. The 

temperature can be read by noting the setting of the 

helical potentiometer which produces a zero reading, either 

on the chart of the pen recorder, or (mu re easily) on the 

meter of the D.C. amplifier when the e.m.f.s' of the bias 

device and the armocouplo are put in opposition across the 

terminals of the D.C. amplifier. 

A further use exists for the bias device. For high 

temperatures (about 100°W, the e.m.f. from the thermocouple 

is of the order of 4 millivolts. The scales of the D.C. 

amplifier are such that insufficient accuracy can be obtained 

in the display of this magnitude of e.m.f. on the pen recorder. 

However, by applying a suitable bias in opposition to the 

thermocouple e.m.f., the most sensitive range of the D.C. 

amplifier/pen recorder system can be used; this range gives 

a full scale deflection of 2°C. The bias device can also 

be used when cooling or heating the sample, for which an 

instantaneous temperature may be required later. By adjusting 

the 'Dias at suitable times throughout the heating or cooling 

process, a continuous record of temperature on the more 

accurate ranges of the D.C. amplifier/pen recorder system 
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can be obtained, 

Figure (3.10b) shows the circuit of the temperature 

measuring system. The cold junction of the thermocouple 

is either water at room temperature or ice, depending on 

the time scale of the experiment in progress. 

When transferring the specimen chamber from one 

temperature bath to the other, the initial temperature of 

the sample is measured by the null method. After transference 

the stability of temperature inside the chamber is observed 

by placing the "cold" junction in the bath in which it is 

contained. Once stability has been observed, the temperature 

can once more be measured by the null method for which the 

"cold" junction is return ed to the ice or room temperature 

water bath. 

The setting of the temperature bath can only be 

achieved to within 2 or 3
oC, but once set, it stabilises to 

within + -VC; tests within the specimen chamber show 

variations of the temperature is no worse than this. However, 

tests along the axis of the chamber suggest that there is 

about a 10C drop in moving from the bottom to the top; 

this is more than the length of the sample by about a factor 

of two. 
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The compression apparatus  

The apparatus used to compress hydrostatically the 

samples is shown diagrammatically in Figure (3.11). It has a 

maximum pressure of 8000 p.s.i., which is achieved by 

compressing water by the pistons from the compression 

chamber into the pressure vessel, which is surrcunded by a 

jacket through which hot water can be pumped. 

Compression of the water in the pressure vessel is 

obtained as follows. Valve B is closed, the pressure vessel 

head is put in place and the pressure vessel topped up with 

water through a bleed valve on the head, which is then 

closed. Valve A is opened and the piston is screwed back, 

drawing water into the compression chamber. Valve A is 

closed and Valve B opened, after which the water in the 

compressio chamber is driven into the pressure vessel by 

means of the piston. This procedure is repeated until the 

pressure required is obtained. 

Because polymers absorb water, it is not advisable to 

place the samples directly in contact with the compression 

fluid, particularly at the high pressures obtained. For 

example, a sample of polystyrene under 5000 p.s.i. for 10 

hours at room temperature absorbed sufficient water to 

increase its cass from 5.743 gm to 5.763 gm and a slight 

increase in the internal friction was noted. 
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Therefor© the samples
rre 

placed in a brass cylinder 

sealed at one end and with a screw across the open end wide 

enough to stop Cie sample coming out. Mercury was then 

poured into the cylinder until the sample was covered2 and 

this container was placed in the compression chamber. Weighing 

and damping measurements at room temperature showed that no 

water (or mercury) was being absorbed. A diagram of—this 

containing cylinder is shown in the pressure vessel of 

Figure (3.11). 



CHAPTER 4 

VELOCITY DISPERSION MEASUREMENTS 

(a) Choice of materials  

In choosing a material from which to test the 

validity of the exact theory, the following conditions 

must be satisfied: 

1. Its density must be very uniform. 

2. It must be readily and accurately formable into the 

required shape. 

3. If metallic, the grain size must on average be less 

than 0.1 mm to avoid inaccuracies brought about by 

the scattering of the 5 me/s pulses. 

4. It must 1-1,,Iv? a low damping coefficient to produce 

high Q resonanz-os in the cylinder for accuracy of 

measurement of the resonances, and so that the 

5 me/s pulses might traverse samples of the material. 

Much time was spent in trying to obtain an aluminium 

alloy sample (8% zinc, 92% aluminium by weight) which 

satisfied these conditions. Conditiona 2 and 4 are 

applicable, but 1 and 3 were very difficult to achieve. 

This alloy was chosen because its crystal structure is 

spatially a relatively uniform one. However, this quality 

95. 
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was found to be completely discounted by the existence 

of air holes in the sample as obtained from the 

manufacturers, who had been asked not to extrude the 

material which would have removed the air hules but at 

the expense of introducing strain into the sample. 

Such strains could have been removed by careful annealing, 

but this process (unless well controlled) would have led 

to a growth in the grain size of the metal. 

With these difficulties in mind, it was decided to 

use an optical quality glass, although this material 

does not satisfy condition 2. The cross-section of the 

rod could be formed accurately by the technique of 

centre-less g.rinding, but slight chipping occurred on 

cutting --aci 	the ends of the rod. The glass 

(Chance-Filkingt;:n) had a quoted refractive index of 

1.523 + 0.0c1. To remove any strains induced in the 

grinding of the rod, it was maintained at 540°C for 

three hours and was then allowed to cool to 200°C over 

5 hours after which it was cooled to room temperature 

overnight in the oven. 

Throughout this chanter, reference will be made to 

samples which are "anisotropic" or "annealed". Little 

attempt has been made to investigate the particular form 
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of the anisotropy, whether due to strains induced 

by machining, due to spatial variations in density or due 

to grain-size variations and orientations. Annealing 

can obviously remove strains, but in the case cf metals 

it can lead to growth of grain-size. In the case of 

glasses (optical glass, persnex and polystyrene) .here 

there is no ordering of the molecules in crystal formations, 

the terms anisotropic and annealed are used in a mutually 

excluding sense; thus annealing removes anisotropy 

arising from internal strains. 

(b) Calculation and display of results  

If the exact theory is valid for short cylinders, a 

constant vale:: c:'f Poisson's ratio should result from the 

velocity dispr.-_-&ion as measured from each resonant 

frequency. 

The dispersion, vE/vn, is given by nfE/fn and the value 

of d/L is gi7en by n.d/21 assuming that no end-effect 

corrections are necessary. The value of fE  is given by the 

value of f1  suitably adjusted for dispersion. The value of 

d/L for this resonance is known, but the value of a to be 

used is not, and three methods of deriving a value of (11 

are available, see Table (4.1). 



n.f1/fn 2. 1 f 

TABLE (4.1)' 

Methods of calculating Poisson's ratio from 

  

dispersion measurements 

   

        

(1) 	(2) 

Method vE/vn  given by: fE derived from: 

 

(3) 
a derived from: 
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Dispersion as 
given in (1) and 
value of d/L 
using tabulaRed 
valueA re-
iteratively. 

fs  derived from 
internolation, and 
fl  used in equation 
(1.22) re-
interatively. 

Dispersion as 
given in (1) and 
value of d/L 
using.stabulaRed 
values; re-
itc,ratively. 

1. 	n.f1/fn 	1 

1A. 	(n+1)-fnin.fn+1 	fn/n 

*TLe tizeoretical values of v_lv as a function of d/L and a n as given by Lopendi= 3 and 	Brad2ield (1964). 
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The first method starts from a calculation of the 

dispersion at the value of d/L given by n.d/21 as 

n.f1/fn' from which an approximate value of a can be 

derived from the theoretical predictions of velocity 

dispersion, which is used tL give the correction to be 

applied to fl  for a better approximation to fE. Used re-

iteratively, method 1 produces a value of a and of f 

for each value of n. 

Alternatively, a value of the fundamental shear mode 

frequency, fs, can be obtained from the value of fn/n at 

the universal point (given by d/L = 0.58606) see section 

(1.d) for details. A value of fs is obtained by means of 

a linear internolation between the eleventh and twelfth 

values of fn/n for a 5" x In cylinder. Use of fs and fl ,  

the latter being a first approximation to fE, in equation 

(1.22) gives a value of a which is then used to correct 

f1 to give a more accurate value of fE, and so on, until 

the final values of f, and a are obtained. This is method 

2. 

Use of n.f1/fn to give the dispersion relies on the 

fundamental resonant frequency to give an accurate value 

of fE. This can be avoided by use of (n+1).fn/nfn+1  to 



give the dispersion, the re-iterative process described 

above being then employed. It will be shown that both 

of these methods of calculating the velocity dispersion 

Produce the same results in terns of the average values 

of 	_, and o . This method is ref erred to as method 1A. 
JJ 

The dimensions of all the specimen rods used were 

known to 0.00,1". For ease of calculation, the ideal 

dimensions of the rods were such that the values of d/L 

resulting from n.d/2l were those of the tables of predicted 

values of dispersion, see Appendix 3 and Bradfield (1964), 

so that a minimum of interpolation was necessary. Thus, a 

rod of length 5.0(A." and diameter 0.50C" gives values of 

d/Ln of n.(0.050). 

The advantage of quoting values of oisscn's ratio 

calculated in the manner described above compared with 

displaying the values of velocity dispersion is 

demonstrated by reference to Figures (4.1) and (4.2). 

Figure (4.1) shows velocity dispersion calculations for a 

glass and a polystyrene cylinder compared with the 

theoretical predictions for two chosen values of Poisson's 

ratio. Figure (4.2) shows the values of l'oisson's ratio 

for three sets of data as calculated from the theoretical 

1 00 . 
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predictions, and (a) is equivalent to the data of the 

given glass cylinder shown in Figure (4.1). 

(c) Glass cylinder measurements 

(i) Results and discussion for the 5" x 	cylinder. 

Figure (4.2) shows the values of loisson's ratio 

computed by method 2 for the glass cylinder of nominal 

dimensions 5" x 1". Three sets of data are given, (a) 

from the resonant frequencies of the rod when excited by 

the diaphragm technique, (b) fror the rod similarly excited 

but with a slightly heavier loading of the top diaphragm 

on the red, (c) from the rod when excited by the condenser 

microphone technique and held centrally by one support 

system. The limits of the vertical lines define the 

extreme values of a obtained from the large number 

of observations of the resonant frequencies, using both 

techniques of excitation. The accuracy with which the 

values of fn/n are determined is of the order of + 1 c/s. 

The specimen cylinder was placed in the chamber for a 

period of about one hour before measurements were taken 

to ensure the attainment of temperature equilibrium, 

following, which 3 or 4 measurements of the resonant 
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frequencies were made. Temperature stability over 

the measurement period was within +1°C which, for a 

coefficient of linear thermal expansion of 10 5/deg.C., 

is equivalent to a possible error in fn/n of about 0.1 c/s 

for values of fn/n of 20 kc/s, which is the case for 

cylinders described in this section. 

%.n error of this magnitude in fn/n produces an 

error of the order of ± 0.00007 in the dispersion. The 

values of the dispersion for d/L = 0.2 at a = C.21 and 

0.22 are 1.00111 and 1.00122 respectively; hence such an 

error in the dispersion is equal to an error of + 0.005 

in the value of Poisson's ratio calculated at d/L = 0.2. 

The accuracy of the exnerimental points in Figure (4.2) 

was improved therefore by taking many different 

measurements of the resonant frequencies, each set of 

rescnant frequencies being used to calculate loissun's 

ratio; the spread of values so obtained is shown as the 

vertical lines in Figure (4.2). 

The values of Poisson's ratio at low d/L values 

shown in Figure (4.2) suggest that some correction 

is necessary to the values of the resonant frequencies 

in order to obtain a constant value of c ; the 
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deviation from a constant value of a at high d/L 

values (i.e. > 0.65) will be dealt with in more detail 

in Chapter 5. The form of the deviation suggests that 

the correction is more important at low frequencies than 

at high. It was therefore decided to calculate a 

correction, to be called an "end-effect" correction, 

and symbolised by Af, from the following equation: 

n.(fi  + hf).c1  = (fn + Af).cn 
	(4.1) 

where en are the corrections due to dispersion for the 

n 	resonance a.  This equation is derived from that for 

phase velocity corrected for end-offect, see equation (1.17). 

Figure (4.3) shows the values of Af as a function of n 

for the three sets of data of Figure (4.2), and the 

values of Poisson's ratio which result from a 

calculation of dispersion from the resonant frequencies 

to which had been added the average value of hf for each 

set of data. The average values of hf, the values 

of f and of fs, are given in Table (4.2). 



..... ... 

..... 
.::•.i 	••.!•:: 

• .. 

:3:.:!•4 

FIG.(4.3) Corrected values of Poisson's ratio and corresponding 
Af values for three sets of experimental observations. 

, 12 : 1
.1

3 	1   16 1111 H 

•; 1 

4' 
AI 

•-• • 0.
I 
 10  I:: ,1 	I 42+7 , ""/L.Li.:01 4_,____  : 

" i 



TABLE (4.2)  

Calculated values of Af, fE  and fs  for 

5" x 1" glass rod  

Data (a) (b) (c) 

(1) Af, 	c/s 4.2 + 1.3 2.4 ± 0.6 4.1 + 0.7 

(2) fE(1), kc/s 20.614 20.612
5 

20.6195  

(3) fE(2), kc/s 20.615 20.615 20.619 

(4) fs(1), kc/s 13.160 13.158 13.160 

(5) fs(2), kc/s 13.167 13.164 13.168 

Notes: 

(2) calculated from f1 and method 2, error is + 1 c/s. 

(3) average of first 9 values resulting from method 1, 
5 c/s. 

(4) result of linear internolation between eleventh and 
twelfth resonances, + 1 c/s. 

(5) result of computer interpolation, using values of 
fn/n un to d/L = 0.60; + 2 c/s. 
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The values of a shown in Figures (4.2) and 

(4.3) have been calculated from method 1. The values 

of fE  resulting from the use of this method are 

given as fE(2) in Table (4.2) and can be seen to agree 

very well with fE(1) which is calculated from f1 by 

method 2. The average value of fm  resulting from 

the first 8 values given by method lA was equal to the 

values of fE shown in Table (4.2), within experimental 

error. Table (4.2) also gives two values of fs; 

fs(1) results from a linoElr interpolation of fn/n 

between the eleventh and twelfth resonances, and 

fs(2) is calculated from an interpolation of fn/n at 

the universal point by means of a curve fitting of 

all of the resonances below d/L = 0.65, which was 

carried out using an Elliot 803 computer. Use of a 

curve-fitting program avoided the problem of deciding 

which value of a to use. 

Valuer of the Poisson's ratio calculated in various 

ways from the data shown in Figure (4.3) are given in 

Table (4.3). 



TABLE (4.3) 

Calculated values of Poisson's ratio for 

glass cylinder 

Data (a) (b) (c) Standard 
deviation 

(1)  0.2252 0.2254 0.2257 ± 0.0.05 

(2)  0.2268 0.2270 0.2275 + o.0005 

(3)  0.2255 0.2259 0.2260 + 0.0co7 

(4)  0.2252 0.2252 0.2258 ± 0.0010 

Notes: 

(1) average of first twelve values of Figure (4.3). 

(2) using fE(1) and fs(1) of Table (4.2). 

(3) using fE(1) and fs(2) of Table (4.2). 

(4) average of first eight values using method 1A. 
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The horizontal lines shown in Figure (4.3) and labelled 

a2, b2  and c2  are the values of a shown in Table (4.3) 

as tow (2). The error in the correction due to dispersion 

applied to fl  to give fE  resulting from this value of 

Poisson's ratio, as compared with the value of Poisson's 

ratio obtained from the computer interpolation is 

insignificant; the corrections at d/L = 0.05 for 

a = 0.2268 and 0.2255 are 1.00032 and 1.001;317, respectively. 

Use of the uncorrected values of fn to give fE  and fs  

only affects the value of the former, as the latter is in 

fact computed from fn/n. The uncorrected value of fE 

for data (a) of Table (4.2) is 20.610 kc/s which with 

fs 
= 13.167 kc/s gives a value of a from equation (1.22) 

of 0.2250 1- 0.0002. 

Figure (4.4) is the data labelled (a) of Figures (4.2) 

and (4.3) shown together with the values of a calculated 

using method 1A, which is shown as plot (d). The lines C1  

and C2  are the values of a calculated from fE  and a 

linearly-interpolated fs2  which were themselves calculated 

from the values of fn being respectively unadjusted and 

adjusted, for the end-effect. 

Some mention should be made of the difference in the 

values of f between those for data (a) and (b) and that 
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for data (c), pee Table (4.2). The diaphragms drive 

method ((a) and (b)) must produce sone load on the 

specimen and this is considered to be the cause of the 

lower values of fE resulting from this method of drive. 

Usingthevalueoff,of data (a) as the "loaded" value, 

and that of (c) as the "unloaded" one, equation (3.4) 

gives a value of 0.006 gm as the mass loading on each end 

which is equivalent to the loading produced by the 

diaphragm. This is about four tines that due to the 

average loading of the wire and "Aquadag" on the ends of 

the rod. The explanation of the reduced values of fE  for 

data (a) and (b) (an effect noted in all observations made 

using this method of excitation, though not necessarily 

by the amLunt shown in Table (4.2)), is further supported 

by the observed decrease in the values of fn when the 

diaphragms were pushed tightly into the ends of the rod. 

A maximum decrease in f1 of the order of 33 c/s was noted 

and substantial distortion of the shape of the resonance 

curve occurred. No equivalent increase in the value of fs 

is noted for data (c), see Table (4.2). 

The values of the end-effect correction as shown 

in Table (4.2) agree within experimental errcr. The 

difference in values of f, for data (a) and (b) is clue 
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mostly to the difference in values of Af for these two 

sets of data. It is shown in Chapter 3 that the effect 

of loading the rod produces a correction which is 

proportional to fn  whereas the end-offect correction seems 

to be Ocnatart far all fn . Therefore the effect of the 

increased load due to the diaphragm of data (b) should 

not affect the value of Af. 

From the results shown in this section, the following 

conclusions can be drawn. 

1. The velocity dispersion in 'he 5" x in glass cylinder 

can be explained in terms of the exact theory urn to values 

of d/L of 0.65, subject to the condition that a constant 

end-effect correction is made to the values of the 

resonant frequencies, this correction being given by 

equation (4.1). 

2. Above d/L = 0.65, the value of the correction 

necessary to produce the sane constant value of a above 

and below d" = 0.65 has to be increased by a factor of 10. 

3. The position of the universal point at d/L = 0.58606  

as predicted by the exact theory is supported by the 

measurements taken from the nun-infinite glass cylinder, in 

the sense that the value of a derived from the theory of 

the universal point is equal to that resulting from the 
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dispersion measurements when the end-effect is taken 

into consideration. 

Four as-lects of velocity dispersion in short 

cylinders still need investigating: 

1. The dependence of the value of Af on rod dimensions, 

see section (4.c.ii). 

2. The dependence of Af on the material of the rod, 

see Chapter 5. 

3. The reproducibility of the value of a by methods 

indepen,:ent of the dispersion measurements, see section 

(4.c.iii). 

4. The effect of anisotropy of the material of the rod 

on the measurement of Poisson's ratio, see section (4.g). 

(ii) Variation of the dimensions of the given cylinder. 

The cylinder was shortened to 21" in length and 

annealed as described in section (4.a). Values of the 

resonant frequencies were Lleasured many times using the 

condenser microphone technique (to avoid any possible 

inaccuracy due to loading to the diaphragm, incurred in 

the diaphragm method) until typical values had been 

obtained. 

The rod was then "ground down" to *" in diameter, 

thus Producing a rod of the same relative dimensions as the 

original one. After annealing, the values of the resonant 
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frequencies were measured a number of times using the 

condenser microphone system. 

Figure (4.5) shows the values of Poisson's ratio 

calculated from the uncorrected values of the resonant 

frequencies of the three rods by method 1. The 

experimental points (a), (b) and (c) are for the rods of 

dimensions 21" x I", 21" x *" and 5" x i" respectively, 

data (c) of this graph being the same as data (c) of 

Figure (4.2). The vertical lines shown in Figure (4.5) 

are the spread of values obtainer' from the calculation of a 

from the many sets of resonant frequencies for rod (c). 

Similar ranges of values of a exist for data (a) and (b), 

but have not been shown in order to avoid confusion. 

Bearing this in mind, it is possible to conclude that 

the value of a calculated in this manner is dependent only 

on the value of d/L at which it was calculated. 

Figure (4.6) shows the data of Figure (4.5) amended 

by the addition of an end-effect correction calculated 

from equation (4.1). The value of this correction is an 

average of the values shown in Figure (4.6), which is 

shown in Table (4.4) which also gives values of vE and vs 

and a derived from the same data. 



FIG.(4.6) Corrected values of Poisson's ratio and corresponding 
Af values for three glass cylinders of different 

dimensions. 
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TABLE (4.4)  

Calculated data for glass rods of different 

dimensions  

Data (a) (b) (C) 

Dimensions 21" x 1" 21" x i" 5ft x  In 

(1) 	Af, 	c/s 12.2 + 1.6 4.3 ± 2.3 4.1 + 0.7 

(2)v E, Kc/s 5238 ± 2 5236 + 2 5237 + 1 

(3) v s, kc/s 3345 ± li 3344 + 11 3345 + 11 

(4)  c(1) 0.2251+00005 0.2249+0.00100.2257+0.0005 

(5)  0(2) 0.2258+0.0006 0.2256+0.00060.2260+C,.0006 

Notes: 

(2) and (3): principal error due to error in length 
measurement 

(4): average of values of Figure (4.6) 

(5): obtained from fE (calculated from fl ) and f (computer-
interpolated at universal point) in equation (1.22). 
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It is seen from Table (4.4) that the values of 

Poisson's ratio calculated from the dispersion data 

obtained from rods of three different dimensions are the 

same, within experimental error. The universal point 

is seen to occur at the same value of d/L as 

given by the exact theory in all three rods, as demonstrated 

by the constant values of vs  and a predicted by this 

theory. The value of vE obtained from the fundamental 
and end-effect 

resonant frequency suitably adjusted for dispersion/ is 

seen to be constant within the eAperimental error. 

The end-effect correction appears to be dependent 

on the value of d/2l for the rod under test although this 

conclusion is only supported by observations on rods 

having two values of this ratio. Chapter 5 deals in 

detail with the end-effect correction, and further comment 

is made there. 

(iii) Poisson's ratio measurements using various other 

teeiniques 

As described in section (1.i), two methods, independent 

of dispersion measurements, are available for obtaining 

Poisson's ratio for the material of the rods. 

The first technique comes from a measurement of the 

fundamental shear mode resonance, which was excited and 



measured in the 5" x 1" rod by a technique described 

in section (3.(1). Four turns of enamelled copper wire 

(S.W.G. 36) wore wound on each end of the rod, as 

shown in Figure (3.5), "Durofixft being used to cement 
the winding in place. The frequency of the resonance 

was measured, after which one turn was removed from 

each end. This procedure was repeated until only one 

turn remained. The mass and dimensions of each turn were 

determined and the appropriate form of equation (3.4) 

was used, giving a fundamental shear mode frequency of 

13.14 ± 0.02 kc/s. The error quoted arises from the 

poorness of the estimation of the loading effect due to 

the difficulty of deciding what effective length of the 

leads of the coils to include and in the estimating of 

the moment of inertia of the winding. 

The second method of obtaining Poisson's ratio is 

the 5 uc/s pulse technique, see Smith (1965). The specimen 

used in this measurement was a cylinder 1", in length and 

about in in diameter (which had been cut from the same 

block of glass which gave the 5" x 	cylinder), and was 

annealed in the same manner as the other rods. This 

technique gives v1  and vs, the former being the velocity 

of longitudinal propagation in an unbounded medium, given 

by i(X + 2R )/.41-  , vs  being the shear velocity. 
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TABLE (4.5)  

Data calculated from 5 mc/s pulse technique 
measurements for glass  

(1) vi(m/s) 	5611.9 ± °.5 

(2) vs(m/s) 	3332.1 + n.5 

(3) density, (gm/cc) 	2.568 + 

(4) plx 1511(dyn,/cm2) 	2.852 + 0.0J2 

(5) X4 x .liC11 (dyn./cm2) 	2.385 + 0.002 
-, 	2. (6) alx 1011  kdyn./ara ) 	7.003 ± 0.002 

(7) vE(m/sec.) 	5222 + 2 

(8) a 	0.2277 + 0.0c:12 

Notes: 

(3) average of measurements taken from the three 
previously described cylinders and the 1" x i" cylinder 

(8) calculated from a = Et- 1 
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TABLE (4,6) 

Calculated values of Poisson's ratio for glass  

(1) 	(2) 	 (3) 	(4) 

	

0,2257 	0.2260 	0.2310 	0.2277 

	

± 0.0005 	+ o.0006 + 0.0035 	+ 0.0012 

Notes: 

(1) average of first twelve values of data (c) of 
Figure (4.3) 

(2) fE and f s(2) for data (c), lable (4.2) 

(3) fE  and directly measured value of fs = 13.14 kc/s 

(4) 5 mc/s pulse method, see Table (4.5) 
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Calculated  values of moduli for glass 

(1) 	(2) 	(3) 	(4) 	(5) 
-11 Etx 10 	7.045 	7.044 	7.039 	7.003 

+ 0.003 ± 0.003 ± 0.003 + 0.002 
=MP 

- gtx 1C1 	2.870 	2.874 	2.872 	2.852 	2.856 
+ 0.002 ± 0.002 + 0.002 + 0.002 + 0.009 

- 11 XI x 10 	2.39 	2.36 	2.36 	2.385 
+ 0.02 	+ 0.02 	4- 0.02 	+ 0.002 

Notes: 

(1) from (c) of Table (4.4), plobtained from vs(2) 

(2) from (a) of Table (4.4), Wobtained from vs(2) 

(3) from (b) of Table (4.4), pr obtained from vs(2) 

(4) data from 5 mc/s pulse method 

(5) result of direct measurement of f s = 13.14 kc/s 

(dyn./c14 

tt 
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Table (4.5) gives the data from the 5 mc/s pulse 

method. Tablo (4.6) give 7.alues of Poisson's ratio 

for all three methods, dispersion, shear mode resonance 

and pulse technique. As can be seen, values (1) and (2) 

obtained from the dispersion measurements, are somewhat 

lower than values (3) and (4) which were derived by the 

two other methods, though the experimental errors nearly 

cover the range of values. Table (4.7) gives the values 

of Young's modulus and the Lame elastic constants 

obtained from measurements on the various samples of 

glass used; X' was calculated from Eland W by the 

relationships shown in Appendix 1. From this table can 

be seen more clearly the agreement between the values of 

RI obtained by the pulse method and the direct measure-

ment of the shear mode frequency, these values being 

quite distinctly lower than the values of W obtained 

from the value of fs given by the universal point theory, 

for all three rods. Although the 5 mc/s pulse method 

value :A' Et  is lower than those values deduced from the 

fundamental resonant frequency of a rod, Poisson's ratio 

is practically unaltered, see Table (4.6). 

(iv) Display of data using method of Edmonds and Sittig 

Having obtained independent values of the shear 
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velocity, it is now possible to display the dispersion 

data in thci marmer of Edmonds and Sittig, see section 

(1.1). Ti.gure (4.7) shows the theoretical curve for 

a = 0.2952, and the experimental points A, B, C, 

which have been derived from data (a) of Figure (4.3). 

Points A are the values for the resonant frequencies to 

which have been added the correction of 4.2 c/s; the 

value of fs used to obtain fn/n.f.s (= vn/vs) is 13.167 kc/s, 

see Table (4.2). Points B are the values for the 

uncorrected resonant frequencies, the first four points 

only having been given as the others are equal to points 

A. It is not surprising that points A fit the theoretical 

curve SC/ well, because fs was interpolated from those 

phase velocity measurements. Points C are the experimental 

points which result from the use of fs = 13.14 kc/s 

which is the value obtained from the direct measurement 

of the fundamental shear node frequency and the uncorrected 

values of fn (data (a)). As can be seen, the use of a 

decreased value of fs is to displace upwards the values 

of the ordinates in Figure (4.7). At d/L = 0, the value 

of the ordinate is 

1
2(1 +a ) - i2(1 + 0.2) 



o 

o 

:1 ' 
i 

-f?6-
, , 

I' 

, , i ' , 

:j~,--, 
',' 

:1:" 
, ", 

, I" Of: _. 



resulto from the definition of Poisson's ratio as 

a = 2(vE/vs)2  - 1 

and the knowledge that vn  = vn  at d/L = 0. Hence the 

ordinate for d/L = 0 in Figure (4.7) is a measure of the 

Poisson's ratio of the material of the rod. The 

extrapolated value of points C at d/L = 0 gives a Poisson's 

ratio of 0.2302 which is the value resulting from 

fs = 13.14 kc/s and fn  = 20.610 kc/s, this latter value 

being that resulting from the un.;orrected value of fl  

for data (a), as indeed it should be. 

Care must be taken in comparing the experimental 

data of figures (4.4) and (4.7), which are derived from 

the same values of the resonant frequencies. For 

d/L > 0.6 in Figure (4.7), the experimental points A do not 

lie between the theoretical curves for 0.2 and 0.2252, 

whereas these same data points do on Figure (4.4). 

This apparen-  contradiction arises from the fact that the 

data of Figure (4.4) depends upon n.fE/fn, whereas that 

of Figure (4.7 ) is a measure of fn/n.fs. In Figure (4.4), 

the value of fE is derived from f1 which is too low by 

an amount equal to the end-effect correction; even on 

adOing this correction to the fn  values above d/L = 0.6, 
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tho disper2ina is too low to give a = 0.2252, and thus it 

L1_ he ex;,,:ined in terms of the fn values being too 

high. Tuo high a value of fn will increase the values of 

fnin.fs as sh.lwn in Figure (4.7). The low d/L value 

deviation from a constant Poisson's ratio shown in both 

graphs arises from the fact that the fn values are low 

due to end-effect, the correction required becoming less 

and less important as n increases. In this case, the 

effect will show up as a decrease in the ordinates of 

both graphs as the reduction in f1 is greater than the 

reduction in f2/2 for Figure (4.4). 

(d) Summary of findings for the glass specimens  

Subject to the conditions concerning end-effect 

referred to in section (4.c.i), it can be said that the 

value of PoissorOs ratio given by the exact theory for 

the short cylinders used, in terms of both the velocity 

dispersion and the universal point, is one that can be 

obtained by measurements independent of the exact theory. 

In fact, there is a slight difference in the values, which 

is not accounted for by experimental error. Nonetheless, 

the closeness of the values of Poisson's ratio has only 

been equalled by Zemaneck's work (1962) on a well-annealed 

aluminium cylinder which had a value of d/21 of 0.0071 



129. 

compared with the value of 0..05 resulting from the 

longest cyf.2.1-tder used in the present investigation. 

The method of Edmonds and Sittig has been shown 

to depend critically on the value of vs  used in the 

calculations. From Figure (1.1), it is possible to 

calculate the value of fs (in the manner described above) 

derived from the universal point; the value obtained is 

6,63 kc/s. However, the authors quote a maasured value of 

fs (derived from the average of the first 17 harmonics) of 

6.462 kc/s. The difference in these two values explains the 

deviation of the experimental curve from the universal 

point in Figure (1.1). Thus, the adherence of the dispersion 

data to the theory at the universal point would give a value 

of a of 0.324, whereas that obtained from the measured 

values of fs  and fE  would be 0.393. The authors concluded 

that the deviation of the experimental data from the 

universal point was due to anisotropy of the material of 

the rod. The question of the effect of anisotropy is 

considered further on in this chapter. 



(e) Polystyrene rod measurements and discussion 

(i) General observations 

In order to minimise the presence of strain 

anisotropy in the rods, a careful annealing process was 

followed. The block of material, from which a rod was to 

be turned was annealed at about 110°C for about one hour, 

after which it was allowed to cool to room temperature 

very slowly (over about ten hours). This temperature is 

above the glass transition temperature, and therefore 

distortion of the shape of the block sometimes occurred. 

A rod was then turned 	slowly from the block, plenty 

of coolant being used in the process. The t•od was then 

annealed once more, the temperature of the oven being 

close to but less than the estimated glass transition 

temperature of 95 C, in order to avoid distortion of the 

shape of the rod. Measurements were made of the resonant 

frequencies of the rod, subsequent annealings 

being sometimes necessary, as determined by a large 

scatter in the values of the resonant frequencies. The 

measurements of resonant frequency were made under the 

same conditions of temperature stability as were anplied 

to those for the glass rods, see section (k.c.i). 
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PIG.(4.8) Poisson's ratio calculated from the velocity dispersion 
in two polystyrene cylinders of different dimensions 
using the exact theory. 



132. 

Figure (4.8) shows the values of Poisson's ratio 

obtained by method 2 for two cylinders of polystyrene, 

(a) a 5" x 1" rod and (b) the same rod shortened to 

21" x 1", a measure of the spread of values observed for 

the 5" rod being shown by the appropriate vertical lines. 

The spread of values of the 21" rod is such that it is 

probably not quite correct to say that Poisson's ratio for 

the two rods is solely a function of d/L, as was the case 

for the glass rods, see Figure (4.5). 

Figure (4.9) incorporates the same data as Figure (4.8) 

with a correction of 12 c/s added to each of the values 

of the resonant frequencies of the 5" rod, and a correction 

of 24 c/s added to each of those of the 21" rod. These 

are the averages of Af obtained from the values shown 

in Figure (4.9), which were derived from equation (4.1). 

The horizontal lines of Figure (4.9) are the values of a 

resulting from fE  and fs(1) for the two rods shown in 

Table (4.8) which shows the values of various constants 

of polystyrene derived from measurements on both rods. 

The principal source of error in the values of fE is 

the error in the value of Af. It is likely that tilt: 
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FIG.(4.9) Corrected values of Poisson's ratio and corresponding 
Af values for two polystyrene cylinders of different 
dimensions. 
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value of tf for the 5" rod is constant, though no 

such statement seems valid for the 21" rod. An 

attempt was made to measure the fundamental shear 

mode frequency in the manner described in section 

(3.d.ii), but the resonance was so broad and shallow, 

and the loading correction so great, that it is only 

possible to say that the value obtained was of the same 

order as that derived from the universal point theory. 

However, values of Young's modulus and the shear modulus 

were obtained from static load.Ing measurements, a 

value of a = 0.32 ± 0.02 resulting. These measurements 

are not very accurate, depending as they do on the 

fourth power of the radius of the rod under test. 



(8) vE  (m/s) 	1862+2 	1863+2  

(9) vs(2)(m/s) 	1140+1 	1140+1 

Notes: 
(3) obtained from liqear interpolation between appropriate 
resonances 

Notes: 
(3) obtained from liqear interpolation between appropriate 
resonances 

(4) computer-interpolated from all resonant frequencies 

(5) average of values of a for d/L< 0.70 

(6) calculated from fu  and fs(1) 

(7) calculated from fu  and fs(2) 

(10)average of values obtained from both rods 

(10) p (gm/.38) 	1.50+0.002 

(11) E'x 1Qo (dyn/a3)3.640+0.005 	3.650+0.006 

(12) µ:x 160"10(dyn/cA1.36+0.02 	1.36+0.02 

(13)X x 10 (dyn/cm3. 2.84+0.5 	2.94+0.5 

(4) computer-interpolated from all resonant frequencies 

(5) average of values of a for d/L< 0.70 

(6) calculated from fu  and fs(1) 

(7) calculated from fu  and fs(2) 

(10)average of values obtained from both rods 

135. 
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Whilst it can be said that the overall behaviour 

of the polystyrene rods is similar to that of the glass 

rods, certain differences do exist. The constant value 

of the correction is applicable for a slightly greater 

range of d/L values for the polystyrene than for the glass 

rods, i.e. 0.70 as opposed to 0.65. Above these values 

of d/L, whilst the resonant frequencies of the glass 

rods seem to be greater than required to give a constant Af, 

those of the polystyrene rods are less. Another difference 

is in the scale of correction required to produce a constant 

Poisson's ratio at low d/L values; Af/fE, for the glass is 

about 1/5000, whereas that for the polystyrene is about 

9/5000. 

Figure (4.10) shows the data of the 5" rod displayed 

in Edmondi' and Sittig's manner, for values of fn/n as 

The deviation from the theoretical curve of 0.335 at 

d/L = 0.6 is due to two effects. Of the 0.0005 deviation, 

0.0002 is due to the fact that the correction of 12 c/s had 

not been added to the resonant frequencies used, and the 

remainder is accounted for by the fact that the value of 

Poisson's ratio at this value of d/L is 0.3356, and not 

0.335. Displacement upwards of the theoretical plot of 

to fn. 
measured and after the addition of the end-effect correction/ 
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7:7 

PIG.(4.10) Velocity dispersion in a 5" x i" polystyrene cylinder 
presented in the manner of Edmonds and Sittig, (1957). 



Figure (4.10) by 0.0003 rives an ordinate value of 

0.0218, which is equal to a Poisson's ratio of 
value 

0.3354, which agrees with/value expected. The 

deviation at the low d/L values is due mostly to the 

lack of the correction, as is shown by the experimental 

points included in Figure (4.10) which have been 

calculated from the resonant frequencies to which the 

correction of 12 c/s had been added. 

The table below shows the values obtained by others 

for some of the constants of 2olystyrene. 

TLBLE (4.9)  

Constants of polystyrene at room temperature  

Observer I Ex1010  

dyn/cm" 
tilx10102 
dyn/cm- a Comments 

(1) Mason (1958) 5.28 1.2 0.41 

(2) Wada (1959) 3.7 1.39 0.33 at 33 and 
66 kc/s 

(3) Wada (1959) NMI 0.33 at 1 mc/s 

(4) Nielsen (1962) 3.4 0.33 

Wada of al. have calculated Poisson's ratio at 33 kc/s 

from -40oC to 80°C and show that it remains constant 

at 0.33 for the whole temperature range. As can be 

seen, Mason's values (quoted from the American Institute 

of rhysics Handb:.ok, McGraw-Hill, 1957) differ from the 

138. 
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others quoted, though no mention is made of the type of 

material used.*  The values obtained from the present 

investigation of velocity dispersion seem to agree well 

with the values of Vada et al. 

It can be concluded that the velocity dispersion in 

the polystyrene cylinders used can be expressed in terms of 

the exact theory for infinite loss-less cylinders subject 

to the condition that at low d/L valueo a suitable and 

more-or-less constant correction is made to the values of 

the resonant frequencies. The very high value of a for 

d/L = 0.1 for the 5" rod is duo to the correction there 

being 9 c/s whereas the average correction (which was used 

in calculating a versus d/L) is 12 c/s. This n = 1 and 2 

value of Af was consistently lower than the average value 

for many sees of readings, and it may be that the use of 

an average value for tf ip erroneous. The high d/L 

values of tf will be referred to in Chapter 5. 

* The value of the Lane elastic constants quote& by Mason in the 
k.I.P. HanEboots (1957 anc 1962) 'are incompatible with the value of 

quotei;, ana as given in Table (4.9). Thus µ = 1.210  X = 3.4 = 1010 

cyn./cm ithich give values of B anti a as 3.28 m 10 ciyn./c1a2  anti 
0.37 resnectively. These values are much nearer those of ±'-Jaffa anti 
of Nielsen, anE also of the present investigation. It is possible 
that the error is a trngrailhical one. 
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(ii) Effect of pin support position on values of 

resonant frequencies 

Figure (4.11) shows the results of an experiment 

carried out to investigate the effect of the position of 

pin supports on the resonant frequencies of a 5"x-P 

polystyrene rod. The rod was supported at five different 

places along its length, specified by the letters (a) to 

(o). The positions were: 

(a) one support at +!' from each end 

(b) one support placed at lt" from each end 

(c) one support placed at 	from each end 

(d) one support placed at 14" from each end 

(e) one support only, and that placed at the centre of the 
rod 

Table (4.10) shows the values of fE and fn for the 

first feu,- resonances used in the calculation of Poisson's 

ratio from the dispersion measurements which are shown in 

Figure (4.11). Figure (4.12) is a full-size diagram of the 

positions of the supports. It is suggested that Figure 

(4.11) shows the increasing of the values of the resonant 

frequencies due to the pin supports being close to the 

end of the cylinder. As the supports are moved nearer 

to the centre of therod, the effect diminishes, disappearing 

entirely when the support is at the centre. It is to be 
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FIG.(4.11) Poisson's ratio calculated from the velocity dispersion 
of a 5" x i" polystyrene cylinder for five liositrions 
of its pin supports. 



TABLE (4.10)  

(kc/s) versus support position for 

4 fE 1 

polystyrene rod 

3 2 

a 7.332 14.624 21.859 28.998 7.337 

b 7.326 14.620 21.855 28.989 7.331 

c 7.325 14.619 21.853 28.989 7.330 

d 7.323 14.619 21.853 28.993 7.328 

e 7.318 14.614 21.851 28.987 7.323 

a 	b c d 

1/: 
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FIGURE (4.12)  

Positions of supports on polystvrene rod, full size  



noted that the increase in resonant frequency decreases 

with increasing value of n. 

Appendix 6 gives a theory of the effect of a 

constraint placed on the ends of a rod, excited into E-

mode resonance; the derivation follows Parfitt's (1954) 

for a centrally placed constraint. This latter theory 

predicts an increase in the values of the frequencies of 

those resonances of even number; no effect should be 

observed on the odd number resonances as the supports are 

then placed at anti-nodes. The effect of an increase in the 

value of the odd number resonances would be to decrease the 

value of the Poisson's ratio for these values, as calculated 

from dispersion, by method 1 or 2, though no such effect is 

noted for the values (e) of Figure (4.11). The theory 

given in I-opendix 6 predicts that the values of all the 

resonant frequencies are increased when a constraint is 

applied at each end, and by an amount which is inversely 

proportional to n2, though the effect demonstrated in 

Figure (4,11) and Table (4.10) is proportional to 1/n, 

rather than to 1/n2. From the values of f1 for data (a) 

143. 

and data (e), 

the stiffness 

dynes/cm2 and 

it is possible to estimate the value of eo, 

constant of the constraint, for E = 3.4 x 10 

n = 1. The value obtained is 4.8 x 10 dynes/cm•. -8 

10 
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Unfortunately, use of the values of the other resonances, 

(a) and (e), in a similar manner gives a value of eo 

which doubles as n increases by unity from n = 1. A 

more serious fault of the theory however, is that the 

effect of a support at each end is less than that of one 

support in the middle (compare equations (A6.6) and (A.6,.11)) 

which seems unlikely, particularly as no effect of a 

central constraint has been detected. Perspex rod 
the 

resonances showed some indication of/effect similar to that 

found in the polystyrene rod, but the Q values of the 

resonances of perspex rods are so low that accurate 

measurement of the resonant frequencies was impossible. 

It is not surprising that a glass rod did not show any 

support effect because the pins of the support system do 

not penetrate the surface of the rod, it being hard and 

brittle. However, an aluminium rod is soft enough for 

steel pins to penetrate its surface, and yet no increase 

in the values of the resonant frequencies were observed. 

Reference to equation (A6.12) offers some explanation. 

The increase in frequency predicted by this theory is 

proportional to (e0/E)2. As the value of E of alrminiun 

is about a factor of 20 greater than that of polystyrene, 

the constraint on an, aluminium rod rust be 20 times 
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greater for a shift in the resonant frequencies equal 

to that observed in the polystyrene rod. The most 

important variable determinants of eo  are the length 

of the pin between cylinder and fastening point and the 

tension of the spring holding the top pin, neither of 

which is capable of increasing the value of eo  by the 

amount required. 

(f) Perspex rod measurements and discussion 

As for the polystyrene cylinders, care had to be taken 

with the annealing process for the perspex cylinders. The 

glass transition temperature of perspex is about 120°C and 

therefore the block from which the cylinders were to be 

turned was heated slowly up to a temperature of 135°C and 

left there for about an hour, after which it was slowly 

cooled to room temperature. After turning the rods from the 

block, they were annealed at temperatures close to but 

below 120°C e.g. 100°C to 110
oC. 

Whilst the problem of annealing the specimen rods was 

great, the main experimental problem was the accurate 

determination of the values of the resonant frequencies. 



The Q values of the glass cylinder resonances were 

cf the order of 5,G00 and those of the polystyrene rods 

30C. However, the Q values of the perspex rods were 

only of the order of 30, which resulted in an 

experimental error in values of fn/n of + 5 c/s for the 

higher n values. 

Notes for Table (4.11) (following) 

by definition 

(3) calculated from uncorrected resonant frequencies 
and a = 0.350 

(4) Af calculated for a = 0.35 ' 

(5) Af calculated for a = 0.30 

(6) calculated from dispersion data derived from 
resonant frequencies corrected by Af = 100 c/s 
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TABLE (4.11)  

Calculated values of a and Af for 5" perspex rod 

(1) 	(2) 	(3) 	(4) 	(5) 	(6) 

n 	d/L fn/n( k q4 ) 	a(1) Af(1)(cM pf(2) a(2) 
(c/4 

1 0.05 8.560 1.00070 0.35e . . 0.300 

2 0.10 8.590 0.9973 - 100 90 0.350  

3 0.15 8.595 0.9970 - 130 115 0.28
5 

4 0.20 8.555 1.0014 (...0.11 130 .95 0.310  

5 0.25 8.535 1.0040 rJ0.14
5 

180 125 0.27
5 

6 0.30 8.440 1.0148 0.230  165 100 0.30
5 

7 0.35 8.380 1.0222 0.23
5  

220 120 0.290 

8 0.40 8.335 1.0278 0.216  320 185 0.26o 

9 0.45 8.115 1.0556 245 0.26
7  

95 0.311  

10 0.50 7.965 1.0759 0.266  285 115 0.296 

11 0.55 7.745 1.1064 0.276  270 80 0.31
3 

12 0.60 7.535 1.1373 0.272  290 115 0.29
3 

13 0.65 7.280 1.1765 265 0.27
5  

95 0.31
3 
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Table (4.11) shows the values of fn/n obtained for a 

5" x 1" perspex rod, hold centrally by one pin support, and 

excited by the condenser microphone technique. It is 

immediately seen that the values of f
n/n for n = 2 and 3 are 

higher than that for n = 1. The cause of this is the very 

high value of the end-effect correction which produces a 

greater effect in the values of the resonant frequencies 

than does the dispersion. Values of the end-effect 

correction have been calculated for two values of Poisson's 

ratio, 0.35, which is the value quoted by the manufacturers 

(I.C.I. Ltd.), and 0.30 which was found by trial and error 

to be the value of a which gave a more or less constant 

value of Af, whose average value was 100 + 15 c/s. 

If constancy of 	is the criterion which determines the 

value of Poisson's ratio, then Table (4.11) shows that this 

value is 0.30. 

Table (4.12) gives values of the constants of perspex 

calculated from the measurements taken from the 5" rod and 

from a rod made from the same block and of dimensions 

2i" x".1"1. It is seen that the values of a resulting from the 



TABLE (4.12)  

Rod length 

Calculated data for perspex 

21_ 2-1" -2— 

(1) AI*, 	c/s 100+15 300+50 

(2) fE, kc/s 8.67+0.02 17.47+C.05 

(3) fs(1), kc/s 5.37+0.01 - 

(4) fs(2), Kc/s 5.30+0.06 10.68+0.05 

(0 a(0) 0.30+0.02 0.315e.c2 

(6) a (1) 0.30+0.01 - 

(7) a(2) 0.34+0.03 0.34+0.03 

(8) vE, m/s 2202+5 2218+5 

(9) vs(2), 	m/s 1346+4 1356+5 

(10)pr 	gii/cc 1.181+0.001 1.1780.001 

(11) Ek1i71°,dyn./cm2 5.80+0.01 5.73+0.01 

(12) ilixic,10,dyn./cm2 2.13+0.01 2.17+0.01 

(13) xixicia°,dyn./cm2  4.7+0.1 4.5+0.1 

Notes: 

(3) obtained by a linear interpolation 

(4) obtained by a computer interpolation 

(5) average of values from column (6) of Table (4.11) and 
equivalent for 21" rod 

(6) calculated from fs(1) and fE 
(7) calculated from fs(2) and fE 
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dispersion data and from the universal point theory 

are about the same, within the largo experimental errors. 

Due to the high damping factor of perspex it was quite 

impossible to measure ;'oisson's ratio by either of the 

two other methods available, though static loading 

experiments gave a value of 0.33 + 0.03. 

The table below shows the values of certain constants 

of Plai:A. obtained by other workers. As for the polystyrene, 

no mention is made of the nature of the material under 

test, and some of the data is offered with no reference to 

the method of measurement. 

TABLE (4.13) 

of PMMA at room temperature 

Comments 

Constants 

Observer 
Efel.10 2  

dyn./cm 
glxr010 2  clyyl./cm 

Poisson's 
ratio 

(1)  

(2)  

- 
at 33 kc/s 

Mason (1958) 
Wada (1959) 

4.0 
6.3 

1.4 
2.2 

0.4 
0.4 

(3)  Nederveen (1962) 6.0 2.2 0.28-0.50 at 10 kc/s 

(4)  Nielsen (1962) 3.7 - 0.33 - 
(5)  I.C.I.Journal - - 0.35 statically 

measured 

(6)  Heyde mann 5.0 - - 50 c/s - 
(1962) 1000 c/s 

flexural mode 
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Koppelmann (1958) has measured E'and/through a 

secondary transition (see section (2.f)) in PMMA at room 

temperature; the position of the transition is at about 

5 c/s. A frequency dependent value of a was obtained, 

7.ith a minimum occurring at about 10 c/s. Nederveen (1962) 

has also investigated the material over the same frequency 

range, but did not find the minimum observed by Koppelmann. 

The following table shows the findings of these two workers. 

TABLE (4.13a)  

Frequency dependence of Poisson's ratio for  

perspex 

10 	101
0 

Frequency c/s 	10-3 10-2 10-1  102 103 

Koppelmann 0.30 0.32 0.31 0.25 0.12 	0.32 

Nederveen 
	

(0.22 - 0.35) - 	0.29 	( 	s.3o - 0.45 ) 
to 0.39 

As can be seen, Nederveen quoted very wide tolerances 

for the possible values of l'oisson's ratio arising from 

inaccuracies in measuring Eland . He did not find the 

minimum in Poisson's ratio observed by Koppelmann and found 

that the range of values quoted in Table (4.13a) for 

the frequencies 10-3 to 10-2 remained constant, to 10-6 c/s. 
Wada showed thataremained constant at 0.4 from 
20°C to 100°C, but that below this temperature it decreased 
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to 0.35 at - 40°C. Wader's measurements"were made at 33 kc/s. 

The problem of a frequency dependent value of Poisson's 

ratio will be considered in Chapter 5. 

As can be seen from Table (4.12), the value of Poisson's 

ratio obtained from fE  and fs(2) agrees reasonably well 

with the value quoted by Nielsen and the I.C.I. value. However, 

it has been shown that only a value of Poisson's ratio of 

0.30 will give a constant end-effect correction. 

Some comment should be made on the difference between 

static and dynamic values of Poisson's ratio. Landau and 

Lifshitz (1959), show that the difference between the 

adiabatic (dynamic) and isothermal (static) values of 

Young's modulus, Ea and E respectively, is given by 

1 	1 
E. 	Ea 

a2.T 
9.0 .p 

(14.2) 

where T is the absolute temperature 

a is the coefficient of linear expansion 

Cp  is the specific heat, and 

p is the density of the material. 

As pi  = pa  it can be shown that 

Ea/Ei  = (1 + a a)/(1 + a i) 	(4.3) 
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where a a  and of are the dynamic and static values of 

Poisson's ratio, respectively. On putting the appropriate 

values of the constants into equation (4.2), equation (4.3) 

shows that for a a  = 0.3500, thevalueofe.would be 

0.3502, too small a difference to account for the range 

of values quoted above in Table (4.13). 

The experimental results obtained for the perspex 

cylinders are unsatisfactory in that the large experimental 

errors involved in the measurement of the dispersion produced 

large errors in the values of :loisson's ratio so derived. 

There appears to be a large variation in the value of 

roissonls ratio observed by workers in the field, the 

most obvious reason for this being the presence of a 

frequency-dependent molecular process in the range of 

frequenc;-  (or temperature) used. It is possible, nevertheless, 

to conclude with reasonable confidence that the data of 

Table (4.11) exhibits the behaviour predicted by the exact 

theory, if a suitable correction is made to f
n, though 

whether for a value of a obtainable by other methods seems 

open to doubt. The value of the work done on the perspex 

cylinders is that the end-effect correction on the resonant 

frequencies is so large that it is easily observed for the 

5" x 	cylinder. Resonances higher than the thirteenth were 

very difficult to measure with any confidence; it is 
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probably safe to say that they are lower than would be given 

by the exact theory after addition of the constant end-

effect, being similar to those of the polystyrene cylinders 

in this respect, and not like those of the glass cylinders. 

The values of Etobtained from the 5" and the 21" 

cylinders are not the same, even when taking account of the 

experimental errors. If the end-effect corrections were not 

added to the values of the fundamental resonant frequency 

used to obtain fE and hence 	
however, the values of E' 

obtained from the 5" and the 21" rod would be 5.60 x 1010  

dynes/cm2 for both. This point will be returned to in 

Chapter 5. 

(g) The effect of material anisotropy on the measurements  

Two aluminium alloy cylinders of dimensions 81" x  .1.11 2 

were cut from different blocks of commercial material which 

had been arinufactured by an extrusion process. Thus the 

material of the cylinders was anisotropic, and no attempt 

was made to correct this. The values of the resonant 

frequencies of the rods were measured, after which they were 

shortened and the new resonance frequend:esdetermined. 

Values of Poisson's ratio calculated by method 2 from 

the uncorrected values of the resonant frequencies for the 
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rods are shown in Figure (4.13). From Figure (4.13) 

it is seen that Rod AA would give a negative value of 

the end-effect correction, whilst Rod B. would give a 

positive value, which is to be expected. 

Figure (4.14) shows the data presented in the manner 

of Edmonds and Sittig, the values of fs  used to obtain 

the experimental points being directly measured, as 

described in section (3.d.ii). The values of vs obtained 

directly and by interpolation at the universal point are 

shown in Table (4.14), with vE obtained from f1 (with no 

adjustment for end-effect); VA° values of Poisson's ratio 

resulting from these values used in equation (1.22) are 

also given. 
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FIG,(4.14) Velocity dispersion in two anisotropic aluminium 
alloy cylinders presented in the manner of Edmonds 
and Sittig, (1957). 
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TABLE (4.14)  

Calculated values of vE, vs and a for rods AA and DA 

AA BA 

(1) m/s, vE' measured 5164+2 5196+2 

(2) vs , m/s, measured 3116+9 3096+9 

(3) a (m) 0.373+0.009 0.408+0.009 

(4) vs, m/s, interpolated 3157+2 3167+2 

(5) a (1) 0.338+0.002 0.346+0.002 

Notes: 

(3) calculated from equation (1.22) and values of (1) and,(2) 

(4) linear interpolation between 
resonances for 5" x 1" rod 

eleventh and twelfth 

(5) calculated from equation (1.22) and values (1) and (4) 



As can be seen, the interpolated and directly 

measured values of vs are quite different, and this is 

assumed to be duo to anisotropy of the material of the 

cylinders, as is the negative end-effect of Rod AA  of 

Figure (4.13). 

In order to investigate the effect of anisotropy on 

the values of EP, µ' and, two further cylinders of aluminium 

alloy were made. The dimensions of these rods were 5" x 1", 

which Imre used for measurements of velocity dispersion and 

1" x 1" which was used for the 5 me/s pulse technique 

measurements. Those cylinders, machined from commercial rod, 

originally of li" in diameter, were cut such that their axes 

wore in the same direction as the axis of the original rod. 

After measurements had been made on both rods, they 

were hcatel to 400°C for two hours and then allowed to cool 

slowly in the oven over a period of eight hours. 

Measurements were then made on both cylinders. Following 

this first heat treatment, the cylinders were once more 

heated to 400°C and then suddenly quenched in water at room 

temperature. The measurement of the various constants of 

the material of the cylinders was again made. Table (4.15) 

shows the values of these constants before any heat 

treatment and after each of the heat treatments described 

159. 



160. 
above. The effect of these heat treatments on grain size 

and direction, as observed on the etched surface of a test 

cylinder of the same material using a low-powered microscope, 

was negligible. 

TABLE (4.15)  

Effect of heat treatment on constants of aluminium 

alloy  

BEFORE 	AFTER 1st 	AFTER 2nd 

rod 5mc/s rod 5mc/s rod 5mc/s 
resonace pulse resonance pulse resonance pulse 

(1) E' 
	7.497 	- 	7.56o 	- 	7.632 	- 

(2) W(2) 
	

2.797 	- 	2.813 	- 	2.835 	- 

(3)111(m) 2.717 2.773 2.775 2.720 2.785 2.74o 

(4) ?'( 2 ) 
	

5.95 	- 	6.20 	- 	6.37 	- 

(5) xi(m) 
	

8.55 	5.914 	7.28 	6.066 	7.94 	6.127 

(6) a (2) 	0.3400 	- 	0.3440 	- 	0.3460 	- 

(7) a (m) 
	C.3795 0.3405 0.3620 0.3450 0.3700 0.3455 

(8) 12% 	- 	5% 	- 	7% 	- 

Notes: Uni4- s of (1) to (5) are 1011 dyn./cm2. No end-effect 
corrections have been added. 

(2) is the computer interpolated value. (3) is the directly 
measured value. (4) is calculated from (1) and (2). (5) is 
calculated from (1) and (3). (6) is calculated from (1) and 
(2). (7) is calculated from (3) and (5). (8) is 

[c(m) - 17(2)] / a(2) 

Errors: (1) + 0.003, (2) + 0.002, (3) Rod, + 0.006; 
5 mc/s ± 0.002, (4) ± 0.02, (5) Rod, + 0.06; 5 mc/s ± 0.002, 
(6) + 0.0015, (7) Rod, + 0.0010; 5 mc7s + 0.0002. 
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Figure (4.15) shows the effect of the heat treatment 

on the dispersion measurements as displayed in the manner of 

Edmonds and Sittig. Plot A is the theoretical plot for a = 0.35, 

plot B for a = 0.30 and plots C, D, E are the experimental 

plots of the dispersion before heat treatment, after the first 

and after the second heat treatments respectively. The values 

of vs used in these last three plots is the value obtained 

by a direct measurement of the fundamental shear mode 

frequency which also gave the values of g'shown as W(m) of 

Table (4.15), for the rod resonance column. 

The first conclusion to be dr-rwn from Figure (4.15) is 

that heat treatment results in the ordinate of this graph 

being either increased or decreased, depending on the effect of 

the heat treatment on the value of vs as measured by the 

fundamental shear mode frequency. The deviation from zero of 

the ordinate at the universal point is therefore seen as 

arising from a difference between the values of vs resulting 

respectively from an interpolation at the universal point and 

from this direct measurement of the fundamental shear mode 

frequency. This difference is observed in the difference 

between the values of ii(m) and W(2), and between a(m) and a(2) 

of Table (4.15). Row (8) of this table shoirs the percentage 

difference between a (m) and a (2), showing that heat treatment 
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affects the deviation from the universal point. Plots C, D 

and E can be made to pass through the universal point, for 

this is what is in effect done on obtaining a value of vs 

from the theory of the universal point. It can therefore be 
this is the cause of 

concluded that/the deviation from the universal point of the 

experimental plot obtained by Edmonds and Sittig (1957) and 

reproduced as Figure (1.1). The deviation from the theoretical 

shape of the plot at high d/L values will be referred to in 

Chapter 5. It is to be remembered that even if the experimental 

plats C, D and E were made to go through the universal point, 

then they would only meet at that point. This is shown by the 

difference in the values of (3(2) before and after the heat 

treatment. This value of Poisson's ratio is the one to which 

the experimental values of dispersion most closely fit; when use 

is made of ti.Le exact theory tables of vE/vn as a function of d/L 

and a , a constant value being obtained as a function of d/L 

only when an appropriate correction is made to the resonant 

frequencies. 

The values of Af obtained both before and after heat 

treatment are negative and exhibit a good deal of scatter. 

However, it was observed that the range of values did not 

change much after the heat treatments. The values of of 

obtained for rod BA 
of Table (4.14) wore positive and showed a 
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reasonable constancy, having an average value of about 

8 c/s for the 5" long cylinder, being therefore about twice 

as big as that for the glass cylinder of the same dimensions‘ 

No firm conclusions on the effect of heat treatment on the 

values of af are possible from the data obtained in these 

experiments, and further comment is reserved until 

Chapter 5. 

TABLE (4.16)  

Comparison of Poisson's ratio for heat-treated rod 

Before After 1st After 2nd Rod BA 

(1) a  (2) 0.340 0.344 0.346 0.353 

(2) a  (m) , 5mVe 0.3405 0.3450 0.3455 0.346 

(3) a (m) , rod 0.3795 0.3620 0.3700 0.408 

Notes: 

(1) obtained from fE and the value of fs resulting from a computer interpolation at the universal point 

(2) resulting from the 5 me/s pulse experiments 

(3) resulting from fE  and the value of fs obtained by a 

Errors: (1) + 0.0015 	(2) + 0.0002 (3) + 0.0010 

direct measurement 
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Table (4.16) shows the values of a(2), and of a(m) 

obtained from the rod in resonance and the 5 nc/s pulse 

measurements taken from Table (4.15). Values of Poisson's 

ratio for the rod BA  of Table (4.14) are also given. It is 

seen that the agreement between (2) and a(m) fcr the 5 mc/s 

pulse experiments is better than the agreement between the 

two values of a(m). Though no such simple conclusion can be 

drawn for the values of 1.0 obtained by the three methods 

described above, see Table (4.15); the corresponding values 

of Xf  seem to bear the same relationship to each other as do 

the values of Poisson's ratio, though this follows from the 

relatively small differences between the values of Wobtained 

by the three methods. Uithout more detailed knowledge of the 

nature of the anisotropies causing the differences in values 

of Poisson's ratio, further comment is not possible. 

Zemaneck and Rudnick (1961) presented data which showed 

that for d/L values up to 0.30, Rayleigh's approximate 

solution of the wave equation gave dispersion values which 

were closer to those determined experimentally than given by 

the exact solution, for a value of the Poisson's ratio of the 

aluminium cylinder obtained from a measurement of the first 

resonances of the E-mode and of the shear mode. 



TABLE (4.17)  

Comparison of exact solution and Rayleigh's  

d/L 

approximate solution for rod AA  

(5) 
a 

(6) 
a 

(1) 
vn/vE  

222.2. 

(2) 
(vn/vE)e  
0.340 

	

(3) 	(4) 

(vn/vE)R  (vn/vE)e  

	

0.349 	0.379 

0.10 0.9970
5  

0.99711 0.99699 0.99642 0.3445 0.3424 

0.15 0.99330  0.99340 0.99324 0.99186 0.3465 0.3421 

0.20 0.98795  0.98800 0.98798 0.98529 0.3493 0.3406 

0.25 0.98080  0.98071 0.98122 0.97654 0.3527 0.3391 

0.30 0.97140  0.97126 0.97295 0.96541 0.3591 0.3392 

0.35 0.95960  0.95933 0.96319 0.95167 0.3657 0.3386 

Notes: 

(1) experimental values, calculated by method 1 

(2) theoretical values fora = 0.340, from exact solution 

(3) theoretical values fora = 0.349, from Rayleigh's solution 

(4) theoretical values fora = 0.379, from exact sclution 

(5) values of a calculated from column (1) and Rayleigh's 
solution 

(6) values of e calculated from column (1) and exact solution, 
see Figure (4.13). 

166. 
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Table (4.17) shows a comparison of the dispersion, vn/vE, 

obtained experimentally from rod AA, with that calculated 

from both the Rayleigh solution and the exact solution for 

three values of Poisson's ratio. As can be seen, whilst 

the experimental values of the dispersion (column (1)) give 

a Poisson's ratio of about 0.34 (column (6)), a value of 0.349 

will give values of dispersion from the Rayleigh solution 

(column (3)) closer to the experimental values than does the 

value of Poisson's ratio of 0.379 obtained from fE and fs 

both obtained experimentally, and the exact solution. The 

values of Poisson's ratio resulting from the use of the 

experimentally-obtained dispersion in Rayleigh's solution 

are given in column (5) and column (6) gives the values of a 

obtained from the same dispersion data used with the exact 

solution. Whilst Table (4.16) does not reproduce the findings 

of Zemaneck and Rudnick (in their investigation, the values 

of a • 	in columns (5) and (6) were the same), it is obvious 

that there can be a closer fit of the experimentally- 

determined dispersion values to Rayleigh's approximate 
a 

solution for some given value of/ than to the exact theory 

for the value of a obtained from fE and fs for cylinders which 

are not isotropic. 
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(h) General discussion of velocity dispersion measurements 

It has been shown that the velocity dispersion as 

measured in short cylinders is as predicted by the exact 

theory, if the resonant frequencies are suitably corrected. 

Up to a certain value of d/L (0.60 for glass, 0.70 for 

polystyrene, and about 0.70 for perspex), this correction 

is constant, and seems to depend on the nature of the 

material. Thus, for rods of dimensions 5" x *fl, the value 

of Af/fE  for glass, polystyrene and perspex are 1/5000, 

9/5000 and 70/5000. More will be said on this subject in 

Chapter 5. The value of Poisson s ratio calculated from the 

value of fs which is obtained from the theory of the universal 

point is the same as the average value resulting from the 

dispersion calculations, subject to the conditions concerning 

end-effect referred to above. 

Within experimental error, it has been shown that 

values of Poisson's ratio obtained independently of the 

dispersion calculations are close to those derived from the 

latter and from the theory of the universal point, for the 

well-annealed glass cylinder. Due to the high internal 

losses of the polystyrene and perspex, the alternative methods 

were insufficiently accurate for measurements to be made. 
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A considerable variation in the quoted values of 

Poisson's ratio for polystyrene and perspex seems to 

exist in the literature, for which no explanation is 

offered. 

The effect of anisotropy of the specimen under test 

on the values of the Lame elastic constants is 

considerable, the precise effect produced depending on 

the nature of the anisotropy. It is concluded that the 

deviation of experimental plots of dispersion shown by 

Edmonds and Sittig is due to the anisotropic nature of the 

cylinder under test, and that tne fitting of Rayleigh's 

approximate solution to the experimental values obtained 

by Zemaneck and Rudnick, rather than to the exact solution, 

may well be due to the same effect, as these latter authors 

pointed ,ut. 

Finally, in reference to the three problems posed 

in section (1.h), it can be said that: 

1. Subject to a suitable and small correction, the phase 

velocity dispersion in short and almost loss-less cylinders 

does follow the dependence on d/L and Poisson's ratio 

as given by the theory. 

2. Rods made from materials having a finito damping 

coefficient seem to obey the exact theory, subject to the 



application of an appropriate correction, as previously 

described. 

The auestion of a possible end-effect is raised in 

Chapter 5. 
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CHAPTER 5  

KaSCUSSIGN OF THE IF CORRECTION TERM  

(a) Summary of experimental findings and their significance  

(0 Dependence of Afify  on damping factor 

It was shown in section (4.h) that the value of 

Af/fE  depended on the material of the rod under test. 

It was decided therefore to investigate the dependence of 

Af/fE  on damping factor, and Figure (5.1) shows this 

dependence for ten similar rods of different materials, 

dimensions 5" x 1". The value of Af will be shown to 

depend critically on the correction for dispersion, cn, 

occurring in equation (4.1) which itself is determined by 

Poisson's ratio. The value of Poisson's ratio is known 

only for glass and polystyrene with any confidence and 

therefore, the values of Af for a = 0.2, 0.3 and 0.4 

were calculated. The damping factor is frequency-dependent 

and therefore a range of values of 6E exists. Thus it is 

seen that the values of Af/fE can occur at any point within 

a rectangle whose dimensions are defined by the frequency 

dependence of SE and by the dependence of LI
.' on a . 
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Quoted values of Poisson's ratio are shown in Table 

(5.1) along with the source and method of calculation. 

The values of Af/fD for these values of a are shown 

in Figure (5.1) at the mean value of OD and the line A 

has been drawn through the values of Af/fE  obtained 

for the glass and polystyrene rods, which, it is felt, 

are known with the most confidence. The range of values 

quoted for the Mn/Cu alloy are taken from the static 

loading measurements of El and p. ror a range of alloys 

which had been differently heat-treated. Figure (5.1) 

must be interpreted with cau'ion because:- 

1. the value of 1f used is derived from the n = 1 

and 2 resonances only, for most of the specimens 

2. the rods are likely to be anisotropic due to 

strain (ebonite, tufnol and the metals), and to 

density variations arising from voids (solder, 

bismuth, thallium) and arising from the nature of the 

material (tufnol is a resin-bonded paper product). 
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FIG.(5.1) Values of Af/fE  vs. damping factor 

and Poisson's 	ratio for ten . 
5" x -)2-1' cylinders. 
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Material 

glass 

bismuth 

Poisson's 
ratio 

0.225 

0.33 

0.335 present investi-
gation 

0.39 present investi-
gation 

0.45 

0.30 

0.32 

o.4 

Schramm 
1962 

present investi-
gation 

present investi-
gation 

American Institute 
of Physics Hand-
book, 1957 

0.35 perspex static 
loading 

I.C.I. Trade 
Journal 
"Mechanical 
Properties of 
Perspex" 

TABLE (5.1)  

Quoted values of Poisson's ratio used in 

Figure (5.1)  

Source  

present investi-
gation 

Rare Metals Hand-
book, Chapman & 
Hall, 1961 

- 0.38 Admiralty 
Illaterials Lab. 
Report A/81(S) 

polystyrene 

Mn/Cu alloy 0.16 

solder 

thallium 

tufnol 

ebonite 

nylon 
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Method  

dispersion 
calculations 

IMO 

dispersion 
calculations 

static 
loading 

universal 
point 
theory 

pulse 
method 

static 
loading 

static 
loading 

WWI 
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Cylinders of teak and of softwood were also 

investigated and found to have large negative values of 

Al for all values of a . It was shown in section (4.g) 

that this phenomenon was likely to be symptomatic of 

anisotropy due la the case of the wooden cylinders to the 

grain. 

(ii) PeDendence pf.4f on rod dimensions 

It was shown experimentally in Chapter 4 that a 

constant value of Af was obtained for a wide range of d/L 

values. However, another finding to be investigated is the 

seeming independence of the Poisson's ratio of the length 

of the cylinder. This was observed for the glass cylinders, 

Figure (4.5), for the aluminium cylinders, Figure (4.13), 

and to a Jesser extent for the polystyrene cylinders, 

Figure (4.8). 

It was decided to investigate the significance of 

this in terms of the different values of Af observed 

experimentally for the rods of different lengths by means 

of an empirical relationship whose basis would be the 

observed independence of a of 1. 

The value of a at d/L = 0.20 for th3 glass cylinders 

is set at 0.2231, see Figure (4.5), and it is assumed that 

the ideal value of vE 
is 5237.4 m/s, see Table (4.4). 

The value of the correction due to dispersion at d/L = 0.20 



and a = 0.2231 is 1.00533, and therefore the following 

equation can be written: 

vE = 1.00533
tx 
- n (5.1) 

where vE and va are the "Young's nodulus" velocity and 

the phase velocity rcsoectively calculated from the 

appropriate resonant frequencies uncorrected for end-

effect. However, the ideal value of vE has been 

defined as 5237.4 m/s and thus 

(5237.4) = (f1  + Af) x 21 x cl  

or 
f1  = (5237.4)/Z1 x c1  - Af 

	(5.2) 

where c1 
is the dispersion correction for the fundamental 

resonance, 1 is the length of the cylinder, Af is the 

effective end correction, and fl  is the observed value 

of the fundamental resonant frequency (uncorrected). 

Equations (5.1) and (5.2) give a value of fn, the 

uncorrected value of the resonant frequency at d/L = 0.20; 

n is defined therefore by the value of 1 and d from the 

relation n.d/2l = 0.20. Hence fn is given by 

fn =nxE (5237.4)/21 x c
l  - Af jx ci/(1000533) 

(5.3) 
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It is now possible to calculate the values of tf 

at d/L = 0.20 for a whole range of rods of different 

dimensions, subject only to the condition that their 

dimensions are such that n.d/21 = 0.20 gives an integral 

value of n. Following the method used in Chapter 4, 

c1 is given by the appropriate value of d/21 and 

a = 0.2250 in order to try to reproduce the behaviour 

of the glass cylinder. 

Four rods of dimensions given below in Table (5.2) 

are defined such that 21/I. will give an integral value of 

n. 

TABLE (5.2)  

Dimensions of four rods 

Name 	Diameter(in.) 	Length (in.) 	d/21 	n 

A 	005 	50 	0.005 	40 

Ei 	0.5 	25 	0.01 	20 

C 	0.5 	12.5 	0.02 	10 

D 	0.5 	5 	 0.05 	4 

Use can now be made of equation (4.1) to calculate 

the effective end correction for each of the four rods 

described above, an illustrative calculaticn for rod D 

of Table (5.2) being shown below. 
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Fromequation (5,2): 

fi  = (5237.4)/t 2 x (2.54) x 5 x (1.00032)] - of 

f1  = (20.6131) - of 	(in kc/s) 

From equation (5.3): 

f4  = 4 x [ (20.6131) - of ] x (1.00032)/(1.00533) 

Equation (4.1) then becomes: 

4 x [ (20.6131) - of + of ] x (1.00032) 

= 	[ (20.6131) - Af] x 4 x (1.00032)/(1.00533) + of 

x (1.00533) 

and therefore: 

(2.9955) x of = 13.9 c/s = K 

of = 4.6 c/s. 

Table (5.3) gives the values of of for the four rods, 

calculated in the manner shown below. 

TABLE (5.31 

End-effect correction asa function of  
dimensions 

Name E(c/s) A f(c/s) K/ A f (21/5d - 1) 

A 14.0 0.36 38.9991 39 

B 13.8 0.73 18.9977 19 

14.0 1.56 8.9963 9 

D 13.9 4.6 2.9955 3 
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The values of Kipf shown in this table are those 

resulting from the calculations as shown above. It 

is obvious from Table (5.3) that an approximate empirical 

relationship between Af and the rod's dimensions can 

thus bo written: 

Af 
(21/5d - 1) 	(5.4) 

where K is some function of the material of the cylinder. 

The dependence of K on6Ecan be obtained by noting that 

Table (5.3) defines K as 3x (the value of Af for the 

5„ x 	rod). Hence Figure (5.2) can be obi:ained from 

the same data which produced Figure (5.1). The line is 

drawn through the two points which are known with 

reasonable confidence(for glass and for polystyrene) and 

seems to give a linear dependence of K on 8E. The 

equation of this dependence is 

K = 600. o  + 12 	(in c/s) 
	

(5.5) 

which with equation (5.4) gives the following empirical 

relationship between Af,5 and the rod dimensions. 

A f = 600s62  + 12 
21/5d -1 

(5.6) 



"X00 	 cis.  300 

FIG.(5.2) Dependence of K on damning factor for ten materials, 
as calculated from data derived from 5" x.4" cylinders. 
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Equation (5.6) is seen to be valid only for rods whose 

dimensions obey the condition that 21/5d < 1. This 

condition is due to the derivation of the theory from the 

consideration of the dependence of a on d/L at 0.20. 

Table (5.4) shows the experimentally determined values 

of Af for perspex, polystyrene and glass rods of different 

dimensions. It is to be noted that for the perspex rods a 

value of a = 0.30 has been used in deriving the values of £f. 

TABLE (5.4), 

Observed values of Lf(c/s) for different rods  

Rod length 83"x1" 	5"x+" 	 "L 21 x" 2 2 	21"xi" 

Glass 	- 4.1+0.7 12.2+1.6 4.3+2.3 

Polystyrene 	- 	12+2 	24+12 	- 

Perspex 95+10 100+15 300+50 	- 

(21/5d - 1) 	5.7 	3 	1 	3 

It is seen that, in terms of the value of Af for the 

5" J.1  X 1" 
 rod, 1f for the 8*" x 1" rod should be 1/5.7 times 

as great, that of the 21" x 1" rod should be three times 

greater and that of the 21" x 4-i" rod should be the same. 

It is not surprising that the experimentally obtained values 

for the glass cylinders obey these rules, as the behaviour 

of the glass cylinders was the basis of the theory. As 



182. 

values 
can be seen, 	Af/for the polystyrene cylinders only just 

agree with the predictions, as is the case for the shortest 

perspex cylinder. However,r  Af for the longest perspex 

cylinder is too high, the predicted value (based on the 

value of the 5" x I" rod) is 53 c/s. 

The data from the other cylinders (see Figure (5.2)) 

cannot be used to check the validity of equation (5.4) 

as the relationship between the values of Af for different 

rod dimensions will hold only for the exact value cf Poisson's 

ratio of the material, which is unknown. Measurement of Af 

values for rods of dimensions 212-" x I" were made for the 

range of materials of Figure (5.2), but are not shown due 

to the large range of values resulting from the use of 

the range of Poisson's ratio from 0.2 to 0.4. For example, 

the values of A f for the glass rod of these dimensions for 

a = 0.2, 0.3 and 0.4 are -58.0, 266.0, and 693.9 c/s 

respectively, compared with -4.3, 34.5 and 87.9 c/s 

respectively for the 5" x I" rod. 

Measurements were made, however, on relatively long 

and thin rods of perspex and polystyrene, their dimensions 

being respectively, 6.629" x 0.192" and 6.416" x 0.236". 

Defining K as three tines the value of Af for the 5" x I" 

rod, the theoretical values of Af for these rods are 23 and 

3.6 c/s respectively. The values obtained experimentally 
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were 40+20 c/s and 7+3 c/s, agreement between theory and 

experiment only being attained by using the extreme values 

of the experimental errors. 

Equation (5.5) implies that an end-effect correction 

exists even for a perfectly loss-less material, which is 

consistent with the description by Zemaneck (1962) 

that the ond-effect is caused by the boundary ccnditioas 

being inapplicable for rods of finite dimensions. Figure 

(5.2) implies that there is also a contribution to end-effect 

due to the intornal friction of the material. The 

implication of equation (5.6) that an infinitely long and 

thin, loss-less cylinder would have an end-effect should not 

be considered too seriously, as this prediction was derived 

from cylinders whose dimensions were anything but infinite. 

Another check on the validity of the empirical theory 

developed in this section is its prediction of the values 

of Poisson's ratio as a function of d/L for very long and 

thin cylinders, an experiment which could not be carried out 

with the apjaratus available. Table (5.5) gives the values 

of vzE/v3t  for glass and polystyrene cylinders of dimensions n 

50" x 1"; the results for an equivalent perspex cylinder 

are not shown as values greater than unity do not occur 

until d/L = 0.18, i.e. the 36th resonance. 
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Table (5.5) shows that at low enough values of d/L, 

values of -crE/vn  less than unity will occur for any 

cylinder and not only for those made of high-loss materials. 

TABLE (5.5)  

Calculated velocity dispersion in cylinders as given 

theory 

POLYSTYRENE 

by empirical 

nd/L 
GLASS 

v  V 
V M11 

a 

2 0.99995 - 

4 0.99997 - 

6 1.00002 0.12-0.15 

8 1.00010 0.16 

10 1.00021 0.185 

12 1.00034 0.195 

14 1.00051 0.204 

16 1.00071 0.21 

v1E/v71 	a 

0.99913 	- 	0.01 

0.99917 	- 	0.02 

0.99921 	0.03 

0.99935 	ORO 
	 0.04 

0.99958 
	0.05 

0.99985 	ONO 
	 0.06 

1.00020 
	0.13 	0.07 

1.00061 
	0.195 0.08 

Figure (5.3) shows the values of a of three cylinders, 

normalised by aT, the "true" Poisson's ratio which has been 

calculated as 0.2257 for the theoretical values and 0.2252 

for the experimental values (those of data (a) of 

Figure (4.2)) for the glass; 0.3352 and 0.3356 for the 

polystyrene, respectively; and for the perspex cylinder, 

twQ theoretical values have been used, 0.30 and 0.31, the 



......... 

Normalised values of Poisson's ratio as given by the 
empirical theory for a 50" x 4" cylinder compared 
with the experimental values obtained from a 5" x 4" 
cylinder, for three materials. 

FIG.(5.3) 
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experimental value employed being 0.30. As can be seen 

from Figure (5.3), there is a reasonable agreement 

between the theoretical and experimental values for the 

5" x -in glass and polystyrene cylinders, except for the 

first experimental points shown which are for the n = 2 

resonance. It is to be noted that this lack of agreement 

for the polystyrene cylinder is shown in Figure (4.12) as 

the very high value of a for d/L = 0.10, the cause of this 

being thy difference between the average value of Af 

and the value at d/L = 0.10, which are 12 and 9 c/s 

respectively. 

Of course, the theory does not attempt to explain 

the high d/L value behaviour of the Poisson's ratio and 

therefore the curves shown in Figure (5.3) should be 

terminat(d at 0.65 for the glass and at 0.70 for the 

perspex and polystyrene cylinders. 

To summarise the value of this empirical theory, it has 

been shown that 

1. It is reasonably successful in predicting the values of 

Af for the shorter cylinders, the experimental value for 

the longest perspex cylinder being too high. 

2. Use of the theory to predict the behaviour of long, thin 

rods of perspex, polystyrene and glass produces curves of 



a versus d/L which reflect the behaviour of short 

cylinders, except at low values of d/L for these latter 

cylinders. 

(b) Comparison with theory 

(i) Dependence on damping factor 

Edmonds (1961) and Parfitt (1954) have both theoretically 

considered the dependence of fn  on the value of the damping 

factor, the former for the exact theory and the latter for 

the simple (dispersionless) theory. Edmonds corrected the 

exact equation (equation (1.4)) for first order effects only, 

and showed that the solution could then be separated into 

real and imaginary parts, the former giving the frequency 

equation as before and the latter giving a relationship 

between Q and SEwhich will be considered in Chapter 6. 
Thus internal friction has no first order effect on the 

values of the resonant frequencies. 

Parfitt obtained equation (1.2D) as the relationship 

between resonant frequency and 6
E
from the simple (dispersion-

less) theory. As can be seen, this equation supports 

Idnendt1  Situ '..s that there are no first order effects. 

However, Parfitt's correction is insufficient in two 

respects. First, it is not large enough, for whilst the 

correction dalculated for polystyrene is of the order of 

187. 



2 x 10-3 for the n = 1 resonance, equation (1.2t) predicts 

a correction of 812/8  which is of the order of 10
6. 

Secondly, the correction is proportional to frequency 

which is not the dependence observed experimentally. 

(There is a slight dependence on n in equation (1.21) 

but this is of the magnitude of 84 and therefore 

negligible as 	= 3 x 10-2  for perspex). 

It is therefore seen that theoretical dependence of fn 

on damping factor is insufficient to explain the 

experimental observations. 

(ii) Dependence on rod dimensions 

Zemaneck (1962) is the only worker to have theoretically 

and experimentally investigated the phenomenon of end-effect, 

and his particular interest was in the prediction of the 

frequency of end-resonance (see Appendix 2) which he did 

with great success, see Figure (5.4). His work however, 

was concerned with the dispersion in a "semi-infinite" 

cylinder of dimensions 120" x 12", and he did not 

investigate the dependence of end-effect on dimensions. 

As pointed out in Appendix 2, the end-effect cannot be 

calculated exactly as it depends upon contributions from 

an infinite number of modes, and therefore Zemaneck 

calculated values df the end-resonance frequency and of 
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end-effect for the first 3, 5, 7 and 9 pairs of modes. The 

frequency of end-resonance was found to depend only slightly 

on the number of modes used in the calculation after the 

first three pairs, and Figure (5.4) shows the experimental 

verification of the position of the 9 mode end-resonance 

frequency. 

However, the values of the end-effect below end-resonance 

were found to be very dependent upon the number of modes 

included in their calculation, but for all numbers of modes 

investigated, w,:re found to be approximately proportional 

to the third power of the frequency. This prediction is 

obviously at variance with the experimental findings reported 

here of an end-effect which is independent of frequency for 

a wide range of values. 

The relationships between 8 , tf and g, which are 

all expressions of end-effect (see equations (1.15), (1.17) 

and (1.18)) are as follows. 

= 00/180°  = 	n. Af 	(5.7) 

(fn Lf) 

Using these to convert the experimentally observed values 

of A f into value of 0 gives Figure (5.5) as the dependence 

of 0 on d/L for the 5" x 	rods of glass, polystyrene and 

perspex. A direct comparison between Figures (5.4) and 
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(5.5) is only possible at the universal point due to the 

different abscissa scales. However, the position of end-

resonance shown in Figure (5.4) is seen to be above that 

of the universal point and occurs at about d/L = 1.0. 

As can be seen from Figure (5.4), Zemaneck's experi-

mental values of 0 exhibit considerable scatter, 

phenomenon attributed in the present work to anisotropy 

of the cylinder. It is to be remembered, however, that 

these values of the end-effect have been obtained 

experimentally by noting the positions of the nodes along 

the length of the cylinder at resonance. 

The maximum value of 0 obtained theoretically by 

Zemaneck for a loss-less cylinder was of the order of 0.050  

which is the value reached just before the end-effect 

diminishes to zero at the universal point. Uhilst this 

is of the order of magnitude of the values of 0 obtained 

experimentally for the glass cylinder, see Figure (5.5), 
there is no agreement between the experimentally observed 

frequency dependence reported here and the theoretically 

predicted dependence of Zemaneck, the latter giving a value 

of tf which is almost zero for the fundamental and 

increasing as the third power of frequency thereafter. In 

the present investigation, the correction Af was defined 

priMarily to expibiri deviatibria from the exact theory at 



: 1 " 1:1 

........ 

.1 	.J.:.: 
tAcNiVerfat 

.1 . _ . 
A i.; 

!arse. 
os 	VciikuteS 

• ..  	

• ........ 

.1 	• 	..... 

0.0(3 

0.06 

'02. 

0 
0.1 	0.2. 	0.3 	0-4 	0-5 	0.6 	0.7 

7777,-17: 

FIG.(5.5) Phase angle of reflection coefficient, 0 , vs. d/L 
obtained from experimental values of f for three 
5" x 4" cylinders. 



the low frequencies for which Zemaneck found little or no 

end-effect. Therefore it is necessary to investigate 

other possible causes of the correction 6f calculated 

in the present investigation. 

(c) 	Frequency dependence of E I, a t and a  

The derivation of a constant value of Poisson's ratio 

in the manner of Chapter 4 implies that Poisson's ratio and 

Young's modulus are independent of frequency. It has been 

seen, however, that the value of Poisson's ratio of perspex 

below 103 c/s is very dependent upon frequency, though the 

precise form of this dependence seems to be in doubt, see 

Table (4.13a). It is obvious, then, that the derivation of 

a constant value of Poisson's ratio from the dispersion 

data need not represent its actual dependence in the 

frequency range considered. A further problem exists in 

that even if Poisson's ratio is independent of frequency, 

then Young's modulus need not be. Thus a frequency 

indppendent Poisson's ratio is the result of the frequency 

dependence of E* and 	being such that a* = E*/21.t* - 1 

is constant. 

Confirmation of the existence of an end-effect can 

only be achieved by comparing the same resonant frequencies 

of two cylinders of the same material but different lengths 
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(to eliminate the possible frequency dependence of n'), and 

with the same value of d/L (to eliminate the effect of a 

possible frequency-dependent Poisson's ratio). The 

fundamental frequency of the 21" x 1" rod and the n = 2 

resonance of the 5" x .1" rod are two such frequencies, both 

having a value of d/L = 0.10. Table (5.6) shows the values 

of these two resonances for the two rods of glass, per3pex 

and polystyrene respectively. 

TABLE (5.6)  

Frequencies 

Dimensions  

glass 

polystyrene 

perspex 

(c/s) for two rods at contstant d/L 0.10) 

(5) (1) 
but different lengths 

(4) (2) 
5" x 4" 24" x 4" (2) 	- 	(1) ELA 91A 

41,469+8 41,458±17 -11+25 -8 -8 

14,623+3 14,627+5 +4+8 -24 -10 

17,200+10 17,170+10 -30+20 -200 -200 

Notes: 

(1) n = 2 resonance for the 5" x 1" rod 

(2) n = 1 resonance for the 21" x 1" rod 

(3) difference between cols. (1) and (2) 

(4) difference that should exist between cols. (1) and (2) 
if the empirical theory of section (5.a.ii) were 
correct. This is the difference between the values of 

f for the two rods as given by the theory, i.e. 
4 - 12 = - 8 c/s 

(5) difference between peasured values of tf for these two 
resonances 
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If there is no end-effect, then the frequencies shown 

in cols. (1) and (2) should be equal and col. (3) should 

be zero. As can be seen, the difference between the two 

frequencies is zero within experimental error (which arises 

principally from the impossibility of measuring the lengths 

of the cylinders better than 1/1000"), except for the 

perspex cylinder. If there is an end-effect as given by 

the empirical relationship of section (5.a.ii), then cols. 

(3) and (4) should be the same. This is true, within 

experimental error, only for the glass cylinders. Col. (5) 

of this table is the difference between the measured values 

of Af for theresonances in question, and the agreement 

between these values and those of col. (3) is no better 

than the agreement between cols. (3) and (4). 

It is to be concluded, therefore, that the correction 

previously termed the "end-effect" is not entirely due to 

such an effect but must also be due in part to the frequency 

dependence of Young's modulus and/or Poisson's ratio. 

Without knowledge of the dependence of either one or the 

other of these on frequency, it is seen that analysis of 

Af is very difficult, though if the frequency dependence 

of E 1  of perspex and polystyrene is as shown in Figure (5.6) 
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then no correction is required to give a constant value 

of a . These values have been obtained from the resonant 

frequencies assuming that a is constant at C.35 and 0.335 

respectively for perspex and polystyrene. A similar graph 

can be plotted for the glass cylinder, but the dependence of 

E' upon frequency is very slight. 

(d) Evidence of a frequency-dependent Young's modulus  

Reference to Figure (Al.lf) shows that an increase in 

the elastic moduli of a material is to be expected on 

increasing the frequency of measurement through a relaxation. 

Evidence of the existence of such processes in perspex and 

polystyrene is given in Chapter 2. Marx and Siverten (lc i.3 

have shown that relaxation processes occur in inorganic 

glasses and Mason (1958), in a review, has shown that they 

are to b. expected in metals, th ough for these last two 

groups of materials not usually at the frequencies occurring 

in the present investigation. Since Af has been shown to 

be at least in part dependent upon the variation of E' 

with frequency, the values of Af must be regarded as some 

measure of this dependence. 

Wegel and Walther (1935) showed that the dependence of 

the damping factor for a variety of materials could be 

expressed as a power law in the follow-1.7z manner: 
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cc fq 
	

(5. 8) 
where q is a constant whose magnitude depends upon the 

particular material and generally of the order of -0.29 

to +0.55. Parfitt (1954) used the same power law to 

describe the frequency dependence of E', i.e. 

Eta fr) 	 (5.9) 

Using this form of the frequency dependence of E', it is 

shown in APpendix 7 that the relationship between p of 

equation (5.9) and Af/fi  is as follows, assuming that no 

contribution from end-effect exists in the values of Af; 

p = 2. Q 1 - log [xi] /log n + (n-1). Af/fil 	(5.10) 

Parfitt (1954) obtained a value of +0.017 for p for 

perspex for the same frequency range as considered in the 

present investigation. In obtaining this value, he had to 

correct t'ie values of fn for velocity dispersion, using a 

value of Poisson's ratio of 0.338- 

For 

relatively long and thin rods, the value of Poisson's ratio 

used is not of great importance as the correction for 

dispersion is small. However, for the 8i" x 	perspex 

cylinder used in the present investigation, the value of p 

depends on the value of Poisson's ratio used in estimating 

this correction. Hence p = +0.020 for a = 0.33, whereas 



Frequency dependence of the real part of the complex 
Young's modulus, E', of perspex and polystyrene 
resulting from the quoted values of Poisson's ratio. 
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p = +0.024 for cr = 0.35. If Poisson's ratio is also 

frequency-dependent a more complicated situation exists. 

Values of p for polystyrene and glass of the order 

of 0.003 and 0.0004 resoectively, are sufficient to give a 

constant value of Poisson's ratio for the 5" x in cylinders 

investigated. Negative values of lXf can only be explained 

in terms of a Young's modulus which decreases with l ocrectsysj 

frequency, see Appendix 7 and equation (5.10), a Phenomenon 

not explained by simple relaxation theory. It is considered 

therefore, that the cause is the anisotropic nature of the 

materials of the cylinders exhibiting these negative values. 

The values of E' for polystyrene in Figure (5.6) agree 

well with Parfitt's values, not only in magnitude but also 

in frequency dependence, in that he observed a constant value 

for E' above 50 kc/s. The density of the sample that he 

used was the same as that of the samples used in the 

present investigation - 1.050 gm/cc. In correcting for 

dispersion, Parfitt used a value of Poisson's ratio of 

0.337, which he obtained from the measurement of the 

fundamental resonances of both the shear and E-modos. 

Figure (5.7) shows the frequency dependence of E' 

for Perspex obtained in the present investigation compared 

with that found by Parfitt (1954). As can be :;en, there 

are two differences, the firbt one being in the frequency 



Comparison of the frequency dependence of E' for 
perspex obtained in the present investigation 
with that obtained by Parfitt (1954). 
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dependence, even when using the same value of Poisson's 

ratio to correct for dispersion that Parfitt used in his 

calculations. However, the value of Poisscn's ratio which 

gives the same value of p for the present investigation 

as obtained by Parfitt is 0.315, which falls within the 

range of possible values of Poisson's ratio quoted, see 

Table (4.13a). The second difference is in the value 

of E' at any given frequency, for even if the same frequency 

dependence is derived for the present investigation as 

Parfitt's, these values are about 2 per cent higher than his. 

The density of the perspex investigated by Parfitt was 

quoted as 1.155 + 0.005 gm/cc, whereas that of the present 

investigation is 1.180 + 0.002 gm/cc. Thus the materials are 

not exactly similar, a point which will be returned to in 

Chapter 6. 

(e) The influence of a frequency-dependent E' upon Af values  

From values of the resonant frequency which obey the 

relationship E'm frl, where p is assumed to have a typical 

value of 0.02, values of of have been calculated for 

different rod lengths. These are given in Table (5.7) 

below, for frequencies which have been chosen to produce 

large values of of in order to emphasise the variations 

calculated. Hence Table (5.7) does not represent the 



behaviour of any particular rod used in the present 

investigation. The frequencies shown are corrected for 

dispersion and the diameters of the rods are therefore of 

no significance. 

TABLE (5.7)  

Effect of BIM f002  on values of 	Af for different rod 

Rod length 

n 

lengths 

n 
5.2 
Af (c/s) n 

gi." ___ 10" 

Frequencies 
c/s 

Af (c/s) Af (c/s) 

9,930  1 - .t. - - - 

20,000 2 140 1 41.1 mw 4MP 

40,270 4 180 2 270 1 - 

6c,64o 6 210 3 32o - - 

81,100 8 24o 4 370 2 560 

101,600 lo 26o 5 400 - - 

204,620 20 320 10 510 5 820 

It is seen that the values of AI* calculated from 

equation (4.1) for the resonant frequencies of a rod of 

given length are not constant, but increase with n, the 

number of the resonance. Further, on halving the rod length, 

the value of AI is soon to double approximately, if a mean 

value for Af is chosen. 
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These results do not agroe with the experimentally 

observed constant values of A f as obtained from equation 

(4.1) for glass and perspex, and with the prediction 

derived from the empirical relationship of section (5.a.ii), 

in which the value of Af is that given by equation (5.4). 

This latter equation predicts a value of Af which also 

depends on the diameter of the rod, a shortening of the 

rod from 5" to 21" resulting in a trebling of the value of Af, 

and not a doubling, as given for a froquency-dependent 

Young's modulus. 

Reference to equation (4.1) shows that the values of Af 

are very dependent on the value of Poisson's ratio used to 

calculate the dispersion correction, on. Table (5.8) 

below, shows this dependence calculated for the n = 1 and 

n = 10 resonances of the 5" x 2" glass rod, which occur at 

values of d/L of 0.05 and 0.50, respectively. 



TABLE (5.8)  

Dependence of tf on value of a used in equation (4.1)  

a 

(2) (3) 

c10 

(4) 

10xf xc1 c/1  

(5) 

f10xc10 c/s 

(6) 

Af 
c/s 

0.220 1.00030 1.05854 206,150 205,774 

0.224 1.00031 1.06003 206,150 20.5,063 -10 

0.225 1.00032 1.06040 206,160 206,135 -3 

0.226 1.00032 1.06077 206,160 206,207 +5 

0.227 1.00032 1.06114 206,160 206,279 +13 

0.230 1.00033 1.06226 206,160 206,497 +38 

Notes: 

(2) vE/vn  at d/L = 0.05 and the value of a as given by 

exact solution 

(3) v,/vn  at d/L = 0.50 and the value of a as given by 
exact solution 

(6) values of Af resulting from use of values (4) and 
(5) in equation (4.1). 
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As can be seen, the difference between the values of 

Af depends primarily in the change in the value of clo  

and very little in the change in cl. Therefore by 

choosing a value of Poisson's ratio higher than the one 

used to calculate the constant values of Af for Figure 

(4.3), resulting values of Af will increase with n 
number as shown below in Table (5.9). 

TABLE (5.9)  

Dependence of A f on a as a function of n for 

successive resonances of the 5" x ;" cylinder 

Resonance 2 	4 6 8 10 12 

a 	= 0.2258 4 	3 4 3 4 3 c/s 

a 	= 0.2270 5 	5 7 10 13 16 c/s 

Notes: values of Af are calculated from the data which 
gave plot (c) of Figure (4.3). 

Hence, there is perhaps some significance in the 

values of Poisson's ratio obtained by the independent methods 

for the glass being higher than those values resulting from 

the dispersion.measurements, see Table (4.6). However, if 

Poisson's ratio is also frequency-dependent, the issue 

becomes much more complicated. 

From Figure (4.9), it can be seen that values of Af 

for the 5" x i" polystyrene rod for tha n = 2 to 5 resonances 
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increase with n, the n = 2 value being consistently lower 

than the value of Al' averaged over the n values. However, 

the increase in Af values of the 21" x 1" polystyrene rod 

is not considered to be experimentally significant, as an 

opposite trend was observed on occasions, the average value 

of Af being still about the same as that quoted. This 

average value is seen to be about twice that of the 

5" x 1" rod, as predicted by Table (5.6). 

It is of interest to see if a frequency-dependent E' 

will give values of Poisson's ratio versus d/L which are 

indepnclent of the length of the cylinder, as experimentally 

observed for the glass and the aluminium cylinders. 

Choosing the n .43, 4 and 2 resonances for 10", 5" and 

21" rods respectively, n.fl/fn  (which is vE/vn  for the 

uncorrected resonances) can bo calculated at the common 

value of d/L = 0.20. The values are 0.9795,  0.9664 and 

0.9931, and are less than unity because of the largeness of 

Of, as explained previously. Nonetheless, it is seen that 

the value of vE/vn for the 21" rod is greater than that of 

the other two, which results in the general conclusion that 

Poisson's ratio at the same value of d/L increases as the 

length of the rod decreases. Reference to Figure (4.5) 

shows that, the values of Poisson's ratio for the 21" x 1" 

glass rod are, if anything, lower than those of the longer rod, 



though within experimental error, they are the same. 

However, it is seen from Figure (4.8) that the values 

of Poisson's ratio for the shorter polystyrene rod are 

greater than those for the longer rod. Thus the 

exnerimental evidence concerning the dependence of 

Poisson's ratio on length of cylinder for the same d/L 

value is contradictory. 

(f) The values of L f at high frequencies  

The sudden increase (for porspex and polystyrene) and 

decrease (for glass) of f for values of d/L in excess 

of 0.65 is unlikely to be due to changes in the frequency 

dependence of Young's modulus. An increase in of is 

equivalent to an increase in E' which would be ascribed to 

a relaxation process, no such processes having been 

reported at these high frequencies (in the vicinity of 

80 kc/s). For the glass cylinders, a negative 1f is 

equivalent to a decrease in E', which is unaccounted for 

by simple relaxation theory. 

However, there are three possible explanations of 

this sudden change in the behaviour of the resonances 

which result from the properties of cylinders in 

longitudinal resonance, which will now be described. 
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(i) Mode conversion 

It has been seen, Appendix 2, that the boundary 

conditions at the end faces of a cylinder of finite length 

are satisfied only by the production of modes different 

from the propagating mode. At low frequencies these modes 

do not propagate along the length of the cylinder, as 

their amplitudes diminish to zero very close to the end-

face. However, above a certain frequency the first pair 

of these modes do begin to propagate. For an aluminium 

alloy, Zemaneck has shown that the onset of propagation of 

the first pair of thede modes is defined by wa/vs  = 3.68. 

Applying this condition to the glass cylinder, the first 

pair of modes would begin to propagate at a frequency of 

about 290 kc/s, i.e. the frequency of the 23rd or 24th 

resonance, and therefore above the limit of detection. In 

any case, as the distinct change in the values of A f 

occurs at about the 14th resonance, it seems that the 

possibility of these high number resonances being other 

than those of the L(0,1) mode is a remote one. 

(ii) Cut-off frequency 

The cut-off frequency is derived from equation (A2.19) 

by letting ( y a) tend to zero, whilst wa/vs  remains finite 

(i.e. the wavelength becomes infinite), and is the freauency 
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beyond which the mode does not propagate. The exact 

theory for a loss-less infinite cylinder predicts no cut-

off for the L(0,1) mode. However, reference to Table (4.11) 

shows that there oust be a frequency for cylinders of low 

Q value resonances, beyond which the resonances begin to 

merge together. For the 5" x 2 perspex cylinder, it is 

estimated that merging occurs at about the 17th resonance. 

Biesterfeldt et al. (1960) have reported on this matter, 

showing that the simple (disnersionless) theory predicts a 

cut-off due to damping in the material at about the 20th 

resonance for SE= 10
-2  (for perspex,&E  = 3 x 10-2), but 

noted that this frequency is considerably higher than that 

observed experimentally. They also showed that the non-

symmetric loading of the cylinder due to the drive and 

detection system contributes to the lowering of the 

experimentally-observed cut-off frequency. 

(iii) End-resonance effect 

From Figure (5.4) it is seen that above the frequency 

of end-reso:iance, the value of 9 is negative for a range of 

values of wa/vs. On the assumption that the correction Af 

has some relation to end-effect, a constant value of a of 

0.225 can be obtained from the n = 14 and higher resonances 

of the 5" x 1" glass cylinder by assuming a negative end-

effect. The value of 9 obtained from tf for this cylinder 
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are of the order of -2.8°, whilst those shown in Figure 

(5.4) above the frequency of end-rescnance are of the 

order of -10°. However, end-resonance occurs in 

Zemaneck's aluminium cylinder at frequencies much higher 

than those given by n = 14 for the glass cylinder, and the 

behaviour of the polystyrene, perspex and aluminium cylinders 

is such that a large positive  value of 0 would be required 

to give a constant value of Poisson's ratio. 

To summarise, the possible explanations are: 

1. A combination of a cut-off frequency lower than 

expected together with the detection of other modes. 

2. An end-resonance frequency lower than expected, 

followed by a large negative value of 0 as given by 

Zemaneck, for the glass, but by a large positive value 

for the perspex, polystyrene and aluminium cylinders. 

Certain similarities of the behaviour of all four 

cylinders should be pointed out. 

1. The deviation at high frequencies from the constant 

value of a. The sudden change in the value of /if is 

independent of the length of the cylinder. 

2. The value of d/L at which this deviation is observed 

is about the same for all four materials, being of the 

order of 0.65. 



'(g) Conclusions  from investigation of velocity dispersion 

in short c7linders  

Without a detailed knowledge of the frequency 

dependence of Young's modulus and Poisson's ratio, it is 

seen that velocity dispersion measured in short cylinders 

cannot be compared with that predicted from the exact 

theory for infinitely long and thin rods, to the accuracy with 

which the values of the resonant frequencies of the short 

rods can be measured. Further, no attempts can be made to 

investigate the possible occurrence of end-effects. 

The following c nclusions can be drawn from the 

present investigations: 

1. For well-annealed short cylinders, the universal point 

occurs at the value of d/L as given by the exact theory, and 

has been .hown to be independent of Poisson's ratio, as 

predicted by the exact theory. 

2. Deviations from the exact tacory relationship of the 

behaviour of long cylinders (Zemaneck and Rudnick) and of 

short cylinders (Edmonds and Sittig) is attributable to 

anisotropy of the material of the cylinders, due either to 

strain or preferred orientation of the crystallites. 

3. Except for some variation attributable to a frequency-

dependent Young's modulus, it is saen that the exact solution 

applies to the velocity disnersion measurements made on the 
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short cylinders investigated for values of d/L up to 

0.65 - 0.70 depending upon the material of the cylinder. 

This is true for both high and low-loss materials. Above 

this value of d/L, a constant Poisson's ratio can only be 

obtained by increasing the value of the correction found 

necessary at lower values of d/L for perspex and 

polystyrene, and by decreasing this value for glass. The 

cause of this change in the value of the correction is 

possibly due to the behaviour of resonant cylinders at high 

d/L values, as discussed in the previous section. 
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CHAPTER 6  

YOUNG'S MODULUS AND DAMPING FACTOR MEASUREMENTS 

(a) Preliminary discussion  

The exact nature of polymer samples investigated 

is rarely stated by authbrs when quoting values of 

constants of the polymer under test. As a result, it 

is perhaps not surprising that differences in the quoted 

values of a given constant exist, an exanple being 

shown in Figure (5,7), where the frequency dependence of E' 

quoted by Parfitt (1954) and that found in the present 

investigation can only be made to agree by assuming 

different values of Poisson's ratio. Another example 

is shown below in Table (6.1), which gives the values of 

damping factor observed by three different authors for, 

nominally the same material. 

TABLE (6.1)  

Damping factor (x 102) of polystyrene 

Tempera-
ture 

at three frequencies 

50 Frequency of mpasurenent kc/s 10 20 

Parfitt (1954) 4.1 3.8 3.6 23°C 

Biesterfeldt et al. (1960) 503 

Present investigation 4.7 4.4 4.3 23°C 



Biesterfoldt et al. do not quote the temperature at 

which their measurements were made. However, if their 

value is to be consistent with the temperature 

dependence found in the present investigation, their 

measurements would have had to have been made at about 

40°C. 

In order to correlate the polymer measurements 

of dEferent observers, it is essential that the method 

of measurement and as exact a characterisation of the 

polymer as possible is stated. This litter requirement 

is difficult to realise, particularly with large specimens. 

Depending on the property to be investigated, one 

specimen can be different from another in the following 

ways: 

1. Sample dimensions 

2. Average molecular weight 

3. Impurity content due to 

(i) Polymerising agent 

(ii) Filler 

(ii4 ) Plasticiser, including water 

4. Annealing history 

The consequences of possible variations in the 

measured properties due to the above items will be 

considered in following sections. 
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(b) Nature of the polymers investigated 

(i) Perspex, polymethyl methacrylate 

Three types of polymethyl methacrylate 
Ii 0113  

PRI C 	- C 
were available: H• GOOCH

3 
1. Ltd. brand "perspex". 	The 

average molecular weight is considered by the manufacturer 

to be "of a few million", the precise value varying from 

batch to batch. The molecular weight distribution was 

described as "wide". 

2. A polymethyl methacrylate (considered by the 

manufacturer, Mill Plastics Ltd., to be of the same 

molecular weight as perspex) containing 10% dibutyl 

phthalate, a plasticiser. 

3. A molecular weight regulated sample of polymethyl 

methacrylate (0.05% lauryl mercaptan was added during 

the polyr.erisation) of an average molecular weight 

much lower than that of perspex. 

In the present investigation the perspex specimens 

are type 1. 

(ii) 	Polystyrene 

Three types of polystyrene were 

available: 

1. 	Shell Chemical_ Co. product of 

average molecular weights 

C 	- 	C 
C6H5  n 
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R , number average = 120,000 

Mw, weight average = 266,000 

Rv, viscosity average 233,000 

The distribution was lognormal. Appendix 8 discusses 

the measurement of average molecular weights and the 

relationships between them. 

2. Monsanto Chemicals product of Mw 	(50,000 to 60,000) 

3. Monsanto Chemicals product of Mw = (55,000 to 65,000) 

Reference to polystyrene in the present investigation implies 

type 1. 

(c) Dependence of measurements on rod dimensions  

(i) Young's modulus 

As described in the previous chapter, the problem is one 

of correction of the resonant frequencies for dispersion, 

which is dependent upon Poisson's ratio. If the rod is 

short and stubby, major differences in the possible frequency 

dependence of E' will result from an inaccurate estimation 

of Poisson's —atio. For long and thin rods, the dispersion 

is small and not so dependent on Poisson's ratio. For 

example, a rod of dimensions 6" x i" will have its tenth 

longitudinal resonance at d/L = 0.2. An inaccuracy of 3% 

in Poisson's ratio produces an error in the corre-tIon for 

dispersion of 0.06% resulting in an error of the order of 

0.1% in E'. 
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(ii) Damping facitik 

It was felt desirable to determine whether rod 

dimensions had any measurable influence on the damping 

factor. Figure (6.1) shows the damping factor of 

polystyrene at 23°C obtained from the measurement of clEof 

the resonances of two rods, originally of dimensions 

7.4" x 0.25" and 5" x 1" but otwacmoi,ely shortened to 

lengths shown in Figure (6.1). As can be seen, there is 

no observable difference in the values obtained at a given 

frequency. The range of values of d/21 for the 5 rods are 

given in Figure (6.1). At a frequency of about 55 kc/s 

the value of d/L for the series of rods of 0.25" diameter 

is 0.19, whereas that for the rods of 1" diameter is 0.40. 

As can be seen even for a doubling in the value of d/L, 

there is no observable difference in the measured value 

of damping' factor at this frequency. 

As described in section (1.g), Edmonds (1961) has 

theoretically investigated the effect of finite internal 

losses on the exact solution of the frequency equation. The 

effect on the resonant frequencies has been discussed in 

the previous chapter and in Appendix 2, the latter also 

containing the theoretical relationship between the Lamb 

elastic constants, Q and the rod dimensions. Edmonds 

investigates the values of X" as obtained by L(0,1) mode 

resonances and by flexural mode resonances(using shear mode 
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resonances to give ilm) which he finds to be different 

when calculated from the experimental data of these two 

modes of Biesterfeldt et al. (1960), see Figures (6.2a) 

and (6.2b) which are taken from Edmonds' paper. Figure 

(6.2c) shows the values of 1/Q for the polystyrene rod when 

in torsional, bending (flexural) and longitudinal (L(0,1)) 

mode resonance as a function of frequency, which were 

obtained by Biesterfeldt et al. 

No measurements of the damping factor in shear mode 

resonance were made in the present investigation. However, 

Parfitt (1954) did measure both QE  and Q for a polystyrene 

rod of square cross-section fro;.. 3 - 50 kc/s. From his 

data it is possible to construct an experimental plot of 

QE.11  " versus wa/vn and this is shown in Figure (6.3) as 

plot (b). Plot (a) is the approximate experimental plot 

transferred from Figure (6.2a). Of course, plot (b) is not 

entirely valid as the data is taken from a square cross-

section rod (the value of one side hes been taken as "d") 

whereas Biesterfeldt et al. worked on a cylindrical rod:  

for which shape Edmonds established the theoretical pre-

dictions. Plot (c) is taken from the experimental data 

of Figure (6.1) for the 5" x -I" rod with values of 2 

calculated from these QE  values, assuming that the same 

frequency dependence exists for Q as foi Q.. As the 
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shear mode resonance frequencies are lower than the E-mode 

resonance frequencies for the same value of n, the plot of 

QE. y" versus tdoArnwill not be linear and of zero slope, 

as would be the case for the same parameter plotted as a 

function of frequency. 

There are two differences between plot (a) and plots 

(b) and (c), of Figure (6.3). First, the latter two do not 

show the peak of plot (a). Now although the frequency ranges 

of plot (a) and plots (b) and (c) are different (300 - 20,000 c/s 

as opposed to 5 - 55 kc/s), neither are sufficiently low 

enough to cover the whole range of the secondary transition 

which could explain the peak, see Figures (6.1) and (6.2c). 

The only explanation of this peak lies in the peak in the 

values of S shown at about 2 kc/s in Figure (6.1c) which is 

as likely to be due to scatter in the experimental 

measurements as to a relaxation process, for such a process 

would then show in the plot of (SE  at about the same 

frequency, see Ferry (1961), page 310. 

The second difference lies in the decrease in ordinate 

values of plot (a) of Figure (6.3) which is not observed in 

plot (c). In part, some of the decrease could be accounted 

for by the frequency dependence of the damping factors, 

as is shown by the comparison of frequencies on plots (a) 

and (c) of Figure (6.3), except that Figure (6.2c) shows 
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a damping factor in both the shear and E-modes to be 

reasonably independent of frequency. Above 13 kc/s on 

this graph, the value of 6E does begin to increase, which 

would account for the decrease in QE.11 " above 13 kc/s 

in plot (a) of Figure (6.3). However, the increase in SE

above 13 kc/s (see Figure (6.2c)) is due to the proximity 

of the cut-off frequency as shown in the Biosterfeldt paper 

(their Figure 4) at about 22 kc/s when the ratio of the 

detected signal at resonance to that at the minimum between 

resonances tends to unity, thus invalidating the use of 1/Q 

as a measure of damping factor. 

For the purposes of the present investigation, it is 

concluded from Figure (6.1) that the range of dimensions of 

rods used have no influence on the value of SE obtained. 

A comparison of the values of SE  as given by Figures (6.1) 

and (6.2c) at the same frequency for the same material - 

"polystyrene" - underlines the problem of characterisation 

of polymers. 

(d) Dependence of measurements on the nature of the specimen 

(i) The occurrence of "bubbles" in polystyrene 

All manufacturers claimed that their products would 

contain only a small amount of polymerising agent, and were 

otherwise free of filler or plasticiser. However, the samples 

of the Shell Chemical polystyrene used, which were cut fr./m 

a block of the material manufactured by Shell, were found to 
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contain some absorbed impurity. Figure (6.4) shows a 

photograph of three samples of polystyrene. Specimen A 

is a portion of a commercial polystyrene rod, B is a 

sample of the Shell Chemical po]ystyrene,and sample C 

is another sample of the Shell Chemical product, but 

manufactured in a manner different from sample B. This 

photograph was taken after the samples had been heated to 

200°C for about one hour, no bubbles or impurities being 

visible in the samples before this heat treatment. 

Specimen A, being commercial rod, was probably formed 

by extrusion of the molten polymer. Specimen B was 

turned from a block which was either case from the molten 

material or formed by the dissolving of the polystyrene 

pellets (of approximate dimensions 3 - 5 mm) in a suitable 

solvent (toluene, perhaps) and subsequent evaporation. 

In the case of specimen B, it was impossible to discover 

which method of manufacture had been used. Specimen C 

was made from the same batch of pellets as sample B, 

except that they were melted under a reduced air pressure 

of about 2 mm Hg. 

The source of the bubbles in A and B is not 

chemical degradation, otherwise bubbles would be observed 

in specimen C. In any case, degradation is considered to 

take place at temperatures above 260°C, which was not 



FIG.(6.4) Three polystyrene samples after 
heat treatment. 



reached in the experiments reported here. A further 

check on this was made in heating samples cut from the 

same block as specimen B to 1200C for about 15 hours. 

Towards the end of this period, very small bubbles were 

seen to have appeared, thus demonstrating that the 

phenomenon could not be explained by degradation. It is 

suggested that the critical temperature is the glass-

transition temperature, above which the viscosity of the 

rubber-like material is low enough to allow the absorbed 

impurity to appear as bubbles. 

The bubbles are due to either 

1. air trapped between the pellets of the material as 

they coalesce on melting and subsequently absorbed as the 

molten polymer is compressed in the extrusion process - 

epecimen A, or 

2. air or absorbed solvent - specimen B. 

The source of the bubbles is not the pellets themselves, as 

was established by heating the pellets up to melting 

temperatures when no bubbles appeared. Bubbles did not 

appear in any of the polymethyl methacrylate samples up to 

temperatures at which they began to degrade. The method of 

manufacture of specimen C suggests that absorbed air can be 

a source of bubbles, but does not indicate whether the 

bubbles in specimen B are due to air or to solvent. 
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(ii) The effect of bubbles on the measured constants 

of polystyrene 

The crude technology available for the manufacture 

of polystyrene in vacuo produced a specimen rod of 

distorted shape. Measurement of the damping factor, of E' 

and of the density of this sample(C) was carried out, 

however, and the values are shown below in Table (6.2) 

along with the values obtained for sample B both before 

and after the heat-treatment which produced the bubbles. 

TABLE (6,2)  

Calculated constants of three kinds of polystyrene 

at 15 kc/s  

227. 

Sample 

density, gm/cc 

Et10-1 0dyn./cm2 

damping factor • 
x 102  

D 	B 	C 	errors 
before 	after 
heating 	heating 

19050 1.010 1.053 +0.001 

3.640  3.350  3.450  +0.005 

4.5 4.7 4.4 +0.2 

1. Density 

As can be seen, there is little significant difference 

between the densities of sample B before heating and sample C 

even though the greater proportion of the source of the 

bubbles seems to have been eliminated (a few small bubbles, 

which cannot be seen in Figure (6.4), do exist in sample C 
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after heating). The density of sample B after heating, 

containing the bubbles, is of course lower than that of 

either samples B before heating and C. Some trouble was 

taken to measure the density of the pellets from which 

samples B and C were made, the former by the manufacturer 

and the latter by the author. The pellets are in the form 

of short cylinders, 0.2 cm in diameter, and 0.4 - 0,8 nm 

in length9  the ends being broken and uneven. The pellets 

were put in a clean beaker and covered in distilled water. 

The beaker was then immersed in the tank of an ultrasonic 

cleaner which not only removed the fine polystyrene dust 

covering the pellets but "ground" the rough ends of the 

pellets. The density of the clean pellets was determined, 

using a specific gravity bottle, a large number of the 
the 

pellets being tipped intVpartially water-filled bottle. 

This method was found to be most unsatisfactory as air 

bubbles were also introduced with the pellets, giving 

values of the density ranging from 1.017 to 1.045 gm/cc, even 

when some of the air bubbles were removed by immersing 

the filled s.g. bottle in the ultrasonic cleaner. 

Finally, it was decided to introduce the pellets one-by-one 

into the s.g. bottle from a beaker which contained distilled 

water. On carefully selecting the pellets so that those 

with major cracks and those few with voids were excluded, 
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• 
a value of 1.097 ± 0.002 gm/cc was obtained. A second 

measurement, using different pellets, confirmed this value. 

As can be seen, this value is Li% - 5% greater than either 

of the two values of density quoted in Table (6.2) for 

samples B before heating and C after heating. 

It appears that some major impurity is introduced 

into samples when they are manufactured from pellets. The 

values of density quoted in Table (6.2) show that a brief 

vacuum treatment of the molten polymer is not sufficient 

to increase the density to that of the pellets, though 

the trend is in the right direction. Without more 

information on the mode of manufacture of the samples, 

and also of the pellets, it is not possible to discuss 

the source of the bubbles further-. It is concluded that 

the quoted constants of commercial samples of polystyrene 

have to be considered with great care. 

2. Young's modulus 

There are real differences between the values of E' 

for the three samples. Without some knowledge of the 

physical states of sample I3 before heating and sample C 

it is not possible to say why E' of the former should be 

greater than for the latter. McKenzie (1950) has 

considered the effect of a uniform distribution of voids 

in a material on the values of tilt elastic constants. He 
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has shown that the change in Young's modulus, 6E, 

observed in the sample with voids and of measured density, p m, 

is given by 

AE 	= - E 1 - p rip i 	. 3 . ( 9 + 5a )(1 - a) 	(6.1) 
2(7 - 5a ) 

where pi  is the density and E is the Young's modulus of the 

(ideal) material without voids respectively. Putting the 

following values into equation (6.1) 

p
ri 
 = 1.010 gm/ccp pi  = 1.050 gm/cc; a = 0.335 

gives a value of AE/E of - 0.076. If the value of E of 

the ideal material is put at the value obtained for sample C, 

Table (6.2), then AE/E for sample B after heating is - 0.029. 

However, using the value of E obtained for sample B before 

heating for this ideal value gives AE/E = - 0.080, which 

implies that the material surrounding the bubbles in sample 

B after heating is more akin to that of sample B before 

heating than to that of sample C. 

3. Damping factor 

The damping factor values shown in Thble (6.2) are 

seen to be the same within experimental error. Ying and 

Truell (1956) have calculated the energy scattered from 

spherical cavities embedded in an isotropic solid medium 

for longitudinal waves and have found that the losses due 

to scattering are small when the wavelength is large compared 



231. 

with the diameter of the -cavities, as in Rayleigh 

scattering. Their formula for scattering cross-section 

(which is the ratio of the total energy scattered per unit 

time to the incident energy per unit area per unit time) is 

16.13 . g . 1 .1;d 
9 	c 	L 

where d is the diameter of the cavities and gc  is some 

function of v1/vs and is of the order of 15 for 

polystyrene; all the other symbols have been used before. 

For d = 0.02 cm and L = 2 cm (the wavelength of the 10th 

resonance), the value of the scattering cross-section is 

107 cm 2 which is clearly negligible. 

The damping in sample C is seen to be no different from 

that in the other two samples. 

(iii) The effect of molecular weight 

Perspex The damping factor of the molecular weight regulated 

sample was found to be the same as that of the ordinary 

perspex, within experimental error. Young's modulus, E', of 

the molecular weight regulated sample was found to be about 

30 lower at all frequencies than that of the ordinary perspex. 

Polystyrene There were no differences between the values 

of either E' or damping factor for the two low molecular 

weight samples. The value of E' for the high mb.Lecular 
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weight sample was about 3% higher at all frequencies 

than that of the low molecular weight samples. The 

damping factor of the high molecular weight sample was about 

the same as that of the low molecular weight sam_plos, within 

experimental error. 

As pointed out in section (2.a), the effect of 

molecular weight on the glass transition temperature is 

negligible for values of Mn  above about 20,000. Benbow and 

Wood (1958) have measured the damping factor of three low 

molecular weight organic glasses and three polymers 

(polyethylene, polystyrene and perspex) and have shown that 

the damping factor of two of the former lies between those 

of the porspex and the polystyrene. Whilst this evidence 

is hardly conclusive, it appears that the effect of 

molecular weight on the properties of polymers, when the 

molecular weight is in excess of a certain value, is 

negligible for polymers below their glass transition 

temperature. 

(iv) The effect cf plasticiser on the properties of perspex 

The sample of PMMA containing 10% dibutyl phthalate had 
higher 

a damping factor which was 34%/at all frequencies than that 

of the pure material, as given by the perspex specimens. 

The value of E' of the plasticised PIMA was abort l lower 

than that of perspex. 
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Parfitt (1954) found that perspex plasticised with 

5% dibutyl phthalate had a damping factor of about the 

same magnitude as the pure material, and E' was about 

4% lbwer than for the unplasticised polymer. Heijboer 

(1956) has investigated the effect of this same plasticiser 

on the secondary transition of perspex, see section (2.h) 

for a description of the effect on the position of the 

maximum. The height of the maximum was found to increase 

with increasing amount of plasticiser, 10% of dibutyl 

phthalate increasing the damning factor by about 16% at 

all frequencies up to 1 kc/s. 

There is little agreement between 

these three quoted effects of dibutyl phthalate on MIA, 

which is perhaps due to differences in the pure material, 

though Heijboer's measurements were made at a lower 

frequency than those of Parfitt and of the present 

investigation. 

(v) The effect of absorbed water on the constants of 

persnex and polystyrene 

The r esonant frequencies and damping factor of a rod 

of perspex and of polystyrene were measured and the rods 

were weighed. After total immersion in water for 10 days, 

the same constants were once more measured. The percentage 

increase in weight of the porspex rod was 0.25% and no 
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increase in weight was noted for the polystyrene rod. 

No detectable changes in Et or damping factor of the 

polystyrene or of the perspex were found. 

The amount of absorbed water to be expected is very 

small. I.C.I. Ltd. quote an increase in weight of 2% for a 

sample of perspex totally immersed for a period of 240 

days. Monsanto Ltd. quote an increase in weight of 0.03% 

for a polystyrene sample similarly treated. 

Yamamoto et al. (1957) have investigated the effect 

of totally immersing a perspex sample for a period of two 

months. The only differences they reported were in the 

shifting of the 	-transition (see section (2.h)) and the 

appearance of a new peak in the damping factor versus 

temperature graph at about 10°C; the frequency of 

observation was 37 kc/s., 

Whilst it apj ars that the amount of absorbed water 

likely to be present in the polymer samples used in the 

present investigation has no effect en the measured constants 

of the samples, they were stored in an air-tight dessicator 

containing silica-gel. 

(vi) The effect of thermal history 

A block of polystyrene was heated slowly to 115°C 

(i.e. just above T ) at which temperature it was maintained 

for about two hours and was then :lowly cooled to room 
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temperature, over a period of eighteen hours. After removal 

from the oven, it was kept at room temperature for a week, 

after which a rod of dimensions 7*" x i" was slowly 

machined from the block, using plenty of coolant. The 

specimen rod was then annealed at 85°C (i.e. just below T ) 

for three hours after which it was allowed to cool to room 

temperature in the oven overnight. After a week, the 

damping factor of the specimen rod was measured as a function 

of frequency, which will be referred to as measurement A. 

The sample was heated in situ to 36°C at which 

temperature it was maintained for two hours, when it was 

considered that temperature equilibrium had been established. 

The vacuum chamber was then removed from the higher-

temperature bath and placed in the bath at room temperature, 

where it was maintained for a week. The damping factor 

of the po2ystyrene rod was again measured, which will be 

referred to as measurement B. This procedure was repeated 

twice, for temperatures of 60°C and 75°C, after each 

heating the vacuum chamber was returned to the room 

temperature bath followed by the measurement of the damping 

factor after a period of some days. These measurements 

are referred to as C and D respectively. Finally, the rod 

was slowly annealed as described above in an attempt to remove 

the effects of the severe heat treatment to which it had been 



subjected, after which the damping factor was once more 

measured - measurement E. 

TABLE (6.3)  

Dependence of measured damping factor (1/Q) of 

Errors 

polystyrene at 9 kc/s on thermal history 

Measurements A B C D E 

(1)  H eated to (deg.C): 85 36 60 75 85 ±1 

(2)  Cooled to (deg.C): 23 23 23 23 23 ±1 

(3)  Equilibrium time 
(hours): 10 1 1 11 10 

(4)  Approximate cooling 
rate (deg.C/hour): 6 13 37 34 6 ••••• 

(5)  Time of measurement 
(hours): 180 48 150 240 80 

(6)  Limiting damping 
factor: (x103) 4.5 4.7 4.9 5.4 4.6 +0.2 

Notes: 

(3) Time of attainment of temperature equilibrium. 

(4) Cooling rate is not linear, which is assumed in this 
calculation. 

(5) Time after which value of damping had reached values 
shown in (6) after attainment of 23 C. 

(6) Value of damping factor obtained after length of time 
shown in (5). 
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Table (6.3) shows the effect of the various heat 

treatments on the measured damping factor at 9 kc/s. The 

damping factor as measured at 23°C was to a certain extent 

dependent upon the time of measurement after thermal 

equilibrium had been achieved. Thus the value of damping 

factor measured immediately after the attainment of 23°C 

following cooling from 60°C was found to relax from 

5.2 x 10-2 to 4.9 x 10-2 after 150 hours, see Table (6.3). 

A similar effect was noted in the measurements that were 

made after cooling from 75°C, thohgh none was observed for 

the sam,Dle when cooled from 36°C. Measurement of the density 

of similarly treated samples of polystyrene showed no change 

in the density, within the experimental error of 1/1000. 

As can be seen from Table (6.3), the measured damping 

factors differ for the same material with varying cooling 

rates and initial elevated temperature, though it is to be 

noted that a final slow annealing of the specimen removes the 

effects of the previous quenching. 

The amount of the relaxation noted in the damping factor 

- for measurement C, 0.3 x 10 2  , is of the order of magnitude 

of the experimental error, though the trend to lower values 

is a consistent one. Such an effect was noted by Parfitt 

(1954), though on a larger scale, for specimens 1.1-.1.ch had 

been cooled from above the glass transition temperature, though 
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he also detected a related decrease in the density of the 

specimen. It is seen from the present investigation, 

therefore, that the attainment of temperature equilibrium 

need not be proof of the completion of the annealing 

process even when cooling the specimen from temperatures 

below T . 

In performing his experiments, Parfitt was careful to 

avoid the possibility of strain occurring in his samples. 

Investigation of samples heat-treated in a manner similar 

to those referred to in Table (6.3) by means of polarised 

light, showed that substantial strain existed in them. 

It is therefore concluded, that the different values of 

damping factor shown in Table (6.3) are due to different 

amounts of strain existing in the specimens. The fact that 

a slight relaxation was noted in the values of damping 

factor of samples cooled from below the glass transition 

temperature implies that free volume might be changed by 

such a process, but by an amount that is very small. 

(vii) Conclusions 

It is seen that the most likely c,wage of differences in 

the quoted values of the damping factor of nominally the 

same polymer is the thermal history of the specimen under 

test. Whilst plasticiser content has some effect on the 

values of damping and of In', and whilst molecular weight 



239. 

differences seem to influence the value of E', it is 

considered that thermal history of the sample is the 

one quality of the polymer which should be referred to in 

characterising the specimen. As a result of this 

conclusion, all specimens used in the present 

investigation were annealed following the procedure 

described at the beginning of section (6.d.vi). 

(e) Temperature and frequency dependence of the  

components of the complex Young's modulus 

(i) Frequency dependence 

Figure (6.5) shows the frequency dependence of the 

real and imaginary components of Young's modulus for 

perspex and polystyrene. The comparison of the values of 

E' of the present investigation with those obtained by 

Parfitt (1954) has been carried out in section (5.d). The 

values of E" obtained by Parfitt for perspex are shown 
do not 

in Figure (6.5), and 	, compare well with those of the 
even for 

present investigation, • 	the lower temperature 

at which P,rfitt's measurements were made (19.5°C).pee Figure 

(6.7) As described in section (6.a), the damping factor 

of polystyrene obtained in the present investigation is 

slightly higher than that obtained by Parfitt. 
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FIG.(6.5) The frequency dependence of the complex Young's 
modulus of polystyrene and perspex. 
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(ii) Temperature dependence 

Figure (6.6) shows the dependence of Ell and E' on 

temperature for perspex. The measurements were taken for 

an increasing and a decreasing temperature (shown by 

arrows 	increasing, 1.":  	'decreasing), to investigate 

possible hysteresis effects referred to in section (6.c.viii). 

As can be seen, no such effect was detected. The 

temperature dependence observed by Parfitt for Young's 

modulus is also shown in Figure (6.6). Whilst the 

dependence of E' seems to be about the same (except for 

a magnitude difference), his values of E" are possibly 

approaching the maximum of the glass transition more 

rapidly than those observed in the present investigation. 

Figure (6.7) shows the temperature dependence of 

Young's modulus for polystyrene. Compared with Parfitt's 

results, it seems that the valve of E" is approaching the 

maximum of the glass transition more rapidly, implying 

either a lower glass transition temperature or a broader 

maximum for the polystyrene used in the present investigation 

compared with that for the polystyrene used by Parfitt. 

No hysteresis effects are noted in the temperature 

dependence of either E' or E" for the present investigation. 
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(f) Th* effect of subjecting the specimens to pressure  

(1) General comments 

The effect of increasing the temperature of a polymer 

is to increase the kinetic energy of the molecules which 

makes for a decreased packing of the molecules and therefore 

a lower density. At the glass transition temperature, the 

motion of the molecules is so large thail segments of the 

backbone chain are in notion and the properties of the 

material are rubber-like. At the melting point, the 

individual molecules, which were pinned together along 

their lengths in the rubber state, break free one from 

another and begin to flow if subjected to a suitable 

pressure gradient. 

An increasing pressure has an opposite effect, in that 

the molecules are forced closer and closer together such 

that a polymer which was previously rubber-like will become 

glass-like at a certain pressure, depending on the 

tenperature of the polymer. Thus, the higher the 

temperature, the greater the pressure required to bring 

about the glass transition from the rubber-like state. 

Matsuoka and Maxwell (1958) have shown that once 

polystyrene, polyethylene and polypropylene are in the 

molten (as distinct from the rubber-like) state.  however, a 

pressure of 30,000 p.s.i. (2,000 atm.) is insufficient to 
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bring about the glass transition. 

Because of the molecular structure of amorphous 

polymers, the attainment of the glass-like state by the 

application of pressure, is also dependent upon the rate of 

pressure increase. Thus, the above authors have shown that 

the glass transition of a high molecular weight polystyrene 

at 120°C occurs at about 10,000 p.s.i. but increases to 

15,000 p.s.i. when the rate of pressure increase is reduced 

to about 1/300 of the former rate. Hence, for a slower 

application of pressure, more time is available for the 

polymer molecules to adjust to this inhibition of their 

motion. Also the final volume change is greater and the less is 

the free volume. Further, as Matsuoka and Maxwell point out, 

"in packing the mdad for injection mdading, if .... the time 

of pressure application is shortened, less material will enter 

the meld per cycle since the melt is less compressible at a 

rapid rate of compression". Thus, the ultimate properties of 

a particular specimen will depend on the method of its 

manufacture. 

These conclusions on the behaviour of polymer samples 

subjected to an increase in temperature and pressure are 

relevant to the present investigation, which is concerned with 

the possible changes in the density and the dampirg factor 

of %spex and polystyrene samples after the application of 
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pressure at given temperatures. Thus, that no changes in 

these constants were noted for the apnlication of 

pressures up to 7,000 p.s.i. followed by a heating of the 

samples to 80°C, is not surprising, as the confining 

pressure would have been sufficient to stop any changes 

in the packing of the molecules resulting from the 

increased temperature. 

Even so, increasing the pressure slowly after the 

temperature had been increased to values less than 80°C 

did not produce changes in the density and damping factor 

of the samples, as measured after the temperature and 

pressure had been decreased (the former slowly, the latter 

rapidly) to normal laboratory values. It is concluded 

that the critical temperature for such experiments is the 

glass transition temperature, which is (90 - 95)°C for 

polystyrene and about 120°C for perspex. 

As the method of heating the pressure apparatus 

was the pumping of hot water through a jacket, experimental 

resuts above T for perspex were therefore unobtainable, 

and the following section describes experiments carried 

out on polystyrene samples. 
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(ii) Measurements on polystyrene 

Two polystyrene rods were annealed at the same time in 

the manner described at the beginning of section (6.d.vi) 

and then placed in the dessicator for a week. They were 

then considered to have reached volume equilibrium 

and their densities were measured using a specific gravity 

bottle. The damping factor of the material of each rod 

was then measured as a function of frequency. lathin 

experimental error, the densities and damping factors of the 

two rods were found to be identical. 

Both rods were placed in the brass cylinder of the 

pressure vessel and covered with mercury, see section (3.j), 

which was then placed in the pressure vessel with the bleed 

valve open. The temperature of the pressure vessel was then 

raised slowly to 98 + 2°C and maintained there for two hours 

after which the bleed valve was closed and the pressure 

raised slowly to 6,000 p.s.i. These temperature and pressure 

conditions were maintained for three hours after which the 

temperature vas slowly reduced (over about two hours) to room 

temperature (23°C) and maintained there overnight (about 12 

hours). The pressure which had been maintained at 6,000 p.s.i. 

throughout these temperature changes, was then suddenly 



released. The densities of the rods were then measured, 

after which one of them was placed in the resonance-

measuring apparatus for damping factor measurements to 

be made over a period of time. The density of the other 

sample was periodically measured using a specific gravity 

bottle. 

Figure (6.8) shows the dependence of volume of one 

rod and the damping factor of the other as a function of 

time after the release of pressure in the pressure vessel. 

(iii) Discussion of results and comparison with the findings 

of other workers 

As can be seen from Figure (6.8), the density and the 

damping factor have both been increased by applying pressure 

when the specimens were above the glass transition 

temperature. That the damping factor should increase with an 

increased density is contrary to the assumption that internal 

friction decreases with decreasing free volume. Section 

(6.d.v.) considered the effect of thermal history on the 

damping of the polymer specimen, where it was concluded that 

internal strains brought about by the heat treatment 

produced the changes in damping factor noted. It is 

concluded therefore, that the increased damping factor noted 

21+8. 
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FIG.(6.8) Variation of volume and damping factor of a polystyrene 
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after the release of pressure is due to strains in the 

sample produced by the temperature/pressure treatment. 

This explanation is consistent with the observed 

relaxation of the values of both damping factor and 

density to the values measured before the treatment. Thus 

the stressed, high density state of the polymer molecules 

relax to a more typical value (as determined by the 

temperature of the specimen, i.e. 230C) on release of 

the pressure, even though the specimen is then below its 

glass transition temperature, below which only minor 

changes in the motion of the molecules are considered 

possible. 

In terms of the free volume, the effect of the heat/ 

pressure treatment of the polystyrene specimens as 

described above is as follows. As the temperature of the 

specimens rises, their free volume slowly increases, 

showing a sudden jump in value to 2.5% of the volume above 

Tg  (Tee Kovacs, 1964). The increasing pressure then 

prod.l.ces a response which may be regarded primarily as the 

collapse of free volume (Ferry, 1961, page 409). If 

pressure were to be released whilst at a temperature 

above T , the free volume would quickly assume its former 
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proportions, whereas maintaining the pressure whilst 

decreasing the temperature of the specimen below its 

glass transition temperature should result in a "freezing-in" 

of the new molecular configuration of higher density. 

Figure (6.8) shows that this new (denser) configuration 

is not fixed, but relaxes back to the state expected of 

a polystyrene sample which had been cooled through the glass 

transition without any confining pressure acting. Any 

possible decrease in the damping factor of the specimen is, 

by this explanation, hidden in the increase in damping 

factor due to the strains set up by the pressurising of the 

s2ecimen. 

Delaying the final release of pressure in the pressure 

vessel for one week after the attainment of room temperature 

by a polystyrene sample similarly treated, produced a 

slightly less rapid decrease in density than that shown in 

Figure (6.8) and to a value which was marginally higher 

than that shown for 50 hours, implying that some small 

relaxation in volume had taken place within the glass-like 

state:  v7lilst under presure. 

Figure (6.8) also shows the change in damping factor 
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with time that Parfitt (1954) produced in a polystyrene 

sample by heat-treatment. He cooled a specimen from 

97°C to 6e'c in three minutes and then more slowly 
cooled the specimen down to room temperature in order to 

avoid the setting up of strains within the specimen. 

The volume change that he produced by this process was 

0.15%, which is seen to be about an order of magnitude less 

than by the present method. He found that the volume 

and damping factor decreased logarithmically with time, 

whereas the increase in volume and decrease in damping 

factor found in the present investigation is seen to be 

faster than this, the relation between the initial volume 

v1 (before temperature/pressure process), the instantaneous 

volume, v, and time being expressed by the relation:- 

(V. - v) m is 
2 

(6.2) 

where s is of the order of -0.71, for the time period up 

to 22 hours after the release of pressure, no detectable 

changes either in volume or damping factor being observed 

after this period. 

Due to the possibility of the polystyrene sample 

containing some impurity, as discussed earlier in this 
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chapter, the high rate of volume relaxation may not be 

significant, for if the impurity acts as a plasticiser, the 

friction between molecules will be substantially 

reduced. However, plasticiser in the form of dibutyl 

phthalate has been shown to increase the damping factor 

of perspex by a large amount, as was noted in section 

(6.d.iv), though no effect on the damping factor of a 

polystyrene specimen from which the prime source of the 

"bubble" impurity had been removed was noted; Table (6.2).  

Further investigation of this volume relaxation effect 

on pure samples of polystyrene is obviously desirable. 

Matsuoka and Maxwell (958) have obtained a value 

of 2.4% for the change in volume produced in a polystyrene 

sample by 6,000 p.s.i. at a temperature of 99°C, which is 

seen to be of the order of magnitude to be expected of the 

volume change produced by the present experiment. However, 
bu,k1( N, v cL . i/t/l 

their value of compF-e-s-s-i-b-i-l-i-ty of polystyrene below the 

glass transition (at 37°c) is of the order of (15 x 1010) 

dyn./cm2, whereas that derived from the values of E' and 

obtained in the present investigation (see Table (4.8)) 

and the Lamb elastic constant relationships (Appendix 1) 

is (3.74 x 1010) dyn./cm2. This latter value is of the 



order of magnitude that Wada's data (1959) would give 

for K from these relationships, see Table (4.9). Using 

the Lame elastic constants X and 11 quoted by Mason 

(1958) gives a value of K of (4.2 x 10
10) dyn./cm2. 

There appears, therefore, to be some doubt about the use 

of the Lame elastic modulus relationships for estimation 

of the compressibility. 

(g) Conclusions from Young's modulus and damping factor  

measurements 

The experiments on polystyrene reported here have 

been carried out on samples which have been shown to 

contain an impurity which produces bubbles in the specimen 

at temperatures above T . Below this temperature, bubbles 

were not observed. Hence some doubt must be associated 

with the values of constants quoted here, though 

experiments on a crude sample of polystyrene made in vacuo 

(which process seemed to remove most of the "bubble" 

impurity) suggested that the density and the damping 

factor a:e little affected by the impurity, though the 

value of E' decreased, see Table (6.2). It has been 

shown that the density of pellets of polystyrene (which 

can be looked upon as the raw material for specimen 
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manufacture) is about 4% higher than specimens formed 

into blocks. 

The dimensions of rods whose resonances give values 

of E have been shown to have no effect on the magnitude 

of the damping factor for values of 4/L from 0.017 to 0.100, 

when compared at a constant frequency. The most likely 

cause of differences in the quoted values of constant., for, 

nominally, the same polymer is considered to be due to the 

different thermal histories of the specimens investigated. 

The effect of 7,000 p.s.i. on the volumes of 

perspex and polystyrene specimens below their glass 

transitions has been shown to be negligible. However, 

when a polystyrene specimen is compressed whilst above 

its glass transition temperature, followed by a cooling 

to room temperature, the resulting change in volume is 

not a permanent one, for the volume of the specimen soon 

relaxes to the value noted before the compression took 

place. Hence, whilst a pressure of 7,000 p.s.i. was 

insufficient to materially affect the volume of the glass-

like polystyrene, the internal pressure produced in the 

specimen by the compression above Tg  was sufficiently 

high at room temperature to change the volume of the 
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specimen by about 2%, and over the relatively short 

length of time of about 20 hours. The magnitude of the 

volume change is to be expected from the work of Matsuoka 

and Maxwell (1958) but the rate of the relaxation is high 

compared with those produced by quenching. The extent 

to which the rate of volume relaxation is dependent on 

the purity of the specimen is unknown. 
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SUGGESTIONS FOR FURTHER WORK 

Velocity dispersion in finito cylinders 

Further experimental work on short cylinders needs 

undertaking to establish the magnitude of the end-effects. 

Before this can be done, however, the frequency dependence 

of Young's modulus and Poisson's ratio must be 

unambiguously determined, preferably by a method other 

than the resonances of cylinders, e.g. a pulse technique. 

One possible mothod of determining the order of magnitude 

of the end-effect is by moans of a cylinder of such 

dimensions that one of its resonances occurs at a value of 

d/L of 0.58606, i.e. the universal point. Comparison of 

the frequency of this resonance, which is not influenced 

by end-effect, with the other resonances may offer some 

estimate of the magnitude of the end-effect. Such an 

experiment will require very small tolerances on the 

dimensions of the cylinder and on the temperature stability 

of the apparatus, even assuming that the density of the 

material is uniform throughout the cylinder. For this 

latter cordition to hold, it is felt that the use of either 

fused quartz or optical quality glass is essential. 

The behaviour of the resonanees of short cylinders at 

high d/L values (i.e.> 0.65) is still unexplained, 

particularly the difference between that of the glass 

cylinders and of the cylinders ride of aluminium and the 
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polymers. Apparatus which will detect the nodal 

distributions along the length of the cylinder and across 

an end-face, in order to determine their mode(s), is 

required as the starting point of any further investigation 

of this region. 

Polymer studies 

The exact nature of the "bubble" impurity in 

polystyrene, and its effect on the measured constants of 

this nolymer, need determining before any further work on 

polystyrene can be undertaken, particularly at temperatures 

above the glass transition. Other polymers should perhaps 

be carefully investigated in order to determine if any 

similar impurities occur. 

The limited pressure experiments on polystyrene have 

indicated the existence of relatively fast relaxations of 

molecules nominally "fixed" in the glass-like state. It is 

suggested that further work on such pressure effects would 

be more conveniently carried out on polyvinyl acetate, an 

amorphous polymer whose glass transition temperature is 

about 30°C. Thus the r equired temperature range of the 

pressure experiments will be much more easily obtained. 

The dependence of the rate and magnitude of volume 

relaxation on pressure and on the temperature at which the 

pressure is applied is considers,: worthy of investigation. 



APPENDIX I 

Brief review of viscoelastic behaviour 

As Ferry (1961) expresses it, the "classical theory of elasticity 

deals with mechanical properties of perfectly elastic solids, for 

which, in accordance with Hookets law, stress is always directly 

proportional to strain but independent of the rate of strain. The 

theory of hydrodynamics deals with properties of perfectly viscous 

liquids for which, following Newton's law, the stress is always 

directly proportional to the rate of strain but independent of the 

strain itself." 

However, these categories are ideedsed and any real solid 

shows deviations from Hookets law under suitably chosen conditions 

and "it is probably safe to say that any real liquid would show 

deviations from Newtonian flow if subjected to sufficiently precise 

measurement,." (Ferry, 1961, page 1). 

A viscoelastic solid is one for which a time dependency of 

the reaction of the solid to some constraint is apparent, and 

therefore its behaviour has to be expressed in terms of both elastic 

and viscous effects. It is assumed that the behaviour of the materials 

considered are linearly dependent on the stress amplitude. 

The simplest way of showing the behaviour of a viscoelastic 

material is in terms of the Burgers spring and dashpot elements. 
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A Hookean solid is a perfectly elastic spring and a Newtonian 

liquid is a perfectly viscous dashpot. A spring and a dashpot 

together in parallel is known as a Voigt solid following this author's 

work (1892) on the behaviour of such a system to an externally applied 

stress. A spring and dashpot in series Ia a Maxwell (1867) liquid. 

Figure (A1.1) shows these models and the appropriate differential 

equations relating stress, S, to strain, E, through the elastic 
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constant of the spring, c, and the viscosity constant, 

models, are given below. 

(a) S = c.c 

(b) S = r. 
dt 

(c) S = c.n + 	11. d:c 
dt 

(d) S + 	dS + 1. dL 
c dt 	dt 

(e)  (1 + c2) S + r . dS = c S + 	&a 
c1 	

cl  dt 2 	dt 

1 for these 

It should be pointed out that the constants c and 	do not 

necessarily represent the behaviour of any identifiable molecule or 

part thereof comprising the material; they serve to express 

mechanical effects observed in materials in bulk. 

Equations similar to those above can be written for any kind of 

stress/strain behaviour, be it mechanical or otherwise, e.g. section 





(2.1)) deals with the temperature dependence of volume of a 

viscoelastic material starting from a Voigt type equation. Nor is 

one limited to the use of the Voigt or the Maxwell modoltw.systems 

of numbers of each type or both types together, either in parallel 

or series, can be put together, though the complexity of the analysis 

of such systems grows with each addition. 

One much used model (Zener, 194.8; Mason, 1958; Kovacs, 1961) 

shown in Figure (A1.1e), is called the simple relaxing solid model. 

Zener has shown that such a model subjected to a sinusoidally varying 

strain demonstrates several mechanical phenomena which are observed 

in solids. On applying a tension to its terminals, it will immediately 

extend by stretohing the spring c1  which will be followed by a further 

slow or "retarded" extension as the piston moves through the dashpot, 

allowing spring c2  to extend. The model thus demonstrates creep. 

Solution of the differential equation for equation (e) above 	by 

setting dS = 0 shows the creep to be exponential with a time constant 
dt 

/b2 which is usually called the retardation time. If the terminals 

are suddenly pulled apart, by a distance e, at first cl  only is 

extended, but o:er a period c2  will yield and the tension in the model 

will decrease, or relax, from the value ci.E to Esci.c2/(01  + 02), the 

time constant in this case being 1/(cl  + c2) = ti . The model thus 

demonstrates stress relaxation and 1 is called the relaxation time. 
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At frequencies low with respect to lA , the elastic behaviour of 

the model is that of the two springs cl  and c2  together in series, 

thus having an elastic constant of 0102/(01  + 02), and at high 

frequencies, -the elastic constant will be ci. At frequencies inbetween, the 

elastic constant undergoes a transition from one value to the other, 

which would be observed experimentally as a transition of the phase 

velocity as shown in Figure (Al.lf), where v is the velocity at 

1 
frequency w and v' = (cl/P)2, p being the density of an equivalent 

material; wm  is given by 1 . [c2/(cl  + c2)]2  

When the simple relaxing model (and indeed any material showing 

internal energy losses) is subjected to a sinusoidally varying 

stress, the strain is neither perfectly in phase with the stress, as for 

a perfectly elastic solid, nor exactly 90°  out of phase, as for a 

perfectly viscous liquid, but somewhere inbetween, dependent upon the 

values of Cl,  02, T) and the value of l/ compared with the frequency 

with which the stress is applied. 

The strain can be resolved into an in-phase and a quadrature 

component, the former being a measure of the stored (recoverable) 

energy, whilst the latter is associated with the irreversible energy 

loss in the material. Hence both strain and stress can be looked 

upon as complex, which results in Young's modulus, for example, being 

complex, as is shown as follows:- 
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El  E' + jE" = El(1 + j6:0) 

where SE  = E"/E' is the damping coefficient or damping factor. 

Similar equations can, of course, be written for the other forms of 

deformation such as bulk and shear. The damping coefficient is 

therefore the irrecoverable part of the energy associated with the 

excitation of the model, and is linked in a real material to molecular 

processes. 

Evaluating b  for the simple relaxing model shows that it has 

a maximum value at w = wm and falls off very rapidly at both high and 

low frequencies, as shown in Figure (Al.lf). Few processes of a 

viscoelastic nature can be expressed in terms of a single value of V 

resulting from the setting up of a simple Burgers type model, and even 

relaxation peaks similar in shape to those of the simple relaxing 
relaxation 

model cannot be explained in this manner. Most experimentally observed / 

processes can only be expressed in terms of a distribution of 

telaxation times, which is equivalent to the setting up of models 

comprising large numbers of elements, as described earlier in this 

section. 

The value of 8 can be determined from the 3 db Q factor of the 

resonance of an isotropic rod, see Mason (1958, page 190) for example. 

For the rod excited into Young's modulus mode resonances, the following 

relationship holds:- 
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1/RE  = 	w2)/wo  = E 
	(A1.2) 

where w1 and ci)2 
 are the frequencies at which the amplitude 

of the resonance has fallen by 3 db on each side of the 

maximum. Similar relationships can be written for rods 

excited into other mode resonances. Parfitt (1954) has 

reviewed the different theoretical forms taken by the damping 

factor and shows some of the relations that exist between 

them. 

Gross (1953) and Ferry (1961) have reviewed the theory 

of viscoelasticity and the latter also quotes experimental 

evidence. 

The Lame elastic constants  

The Lame elastic constants, X and µ (sometimes called 

the Lam6 elastic moduli), referred to in the present work, 

are derived from the following stress/strain relationships 

for a perfectly isotropic medium. Tn and Sn 
are 

rs.spectively the stress and strain in the n-direction. 

T1  = ( X + 2R ).S1  + x(s2  + s3) 	; T4  = R.S4  

T2  = (X + 2R ).S-4., + X(Si  + s3) 	; T5  = 

T3  = 	)8. + 2R ).S3  + X(Si  + S2) 	; T6  = 
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It can be shown (Mason, 1958) that 

(1) shear modulus = 

(2) Young's modulus, E = g .(3 X + 211 )/(X + g) 

(3) Poisson's ratio, 	X /(2 X + 2µ ) = E/2 g - 1 

(4) bulk modulus, K = X + 

and hence a knowledge of two of the above constants will 

allow calculation of all of them. 

In accounting for internal losses in a material, the 

complex notation described earlier is used, when Poisson's 

ratio is shown to be given by 

ax GI j a" = e/2 113".  - 1 

µ' (E' - 2 11 ') + y " (E" - 2µn) 

2( µ'2  + WI2) 

1 

4. j. 	111(17," - 211") - µ"(E' - 2 R I)i 

2( g/2 + 11112)  

Writing 5 = EVE' and 	= 11"/R t , it can be shown that 

0 	= 	(E1/2 µ t -  1) + 6 E(E'/2 1 ). 8E  - 8 ] 
V 	

11 
 

1 + b 
2 

Following Edmonds' finding that first order effects of the 

damping factor on thelesonant frequencies of a cylinder are 

negligible, and that the value of Young's idodulus resulting 



from the resonant frequencies is the real part of the 

complex modulus, equation (1.22) can be written: 

a' = E'/211 ' 	- 1 
O 

Substituting this value of Poisson's ratio into the 

equation above, it is seen that 

a' = a'0 	+ (1 + .5
u 

.1) D) 	o
u
.(  aE — 8a ) 

1 + 8 2 	1 + 8 2  
11 	11  

As 6 ro 6. for polymers, then a' = a ' to a first approximation 

For polystyrene: 	6 = 4.0 x 10-3, and 6 = 4.5 x 10-3  

(Parfitt, 1954) and therefore 	= a' - 2 x 10 6  

For Perspex: 6E  = 3.0 x 10
2 and assuming 6 = 3.5 x 10-2 

and therefore a' = 	- 0 
1.5 x 10-4. 

It is therefore seen that the use of equation (1.22) 

to give tne real part of Poisson's ratio is justified in. 

terms of the accuracy with which values have been quoted. 
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APPENDIX 2  

Theory of velocity dispersion in cylinders  

The equation of motion for an isotropic elastic solid is 

( X + 2p )N7 (N7.1-1) - p 17 Arxa = p a21,71 	(A2.1) 

at2  

Where X and p are the two Lame constants ( R  being the shear modulus), 

U is the displacement vector, t is the time and p the density of the 

medium. In applying this equation to a cylinder, cylindrical coordinates 

are chosen with the z-direction along the axis of the cylinder, which 

is the propagation direction. 	Scalar and vector potentials are defined 

such that 

(P 	= (A2.2) 

= 	x a 

and from (A2.3) it follows that 

(A2.3) 

(A2.4) 

Substituting (A2.2) and (A2.3) into (A2.1) gives 

(x 	+ 211)V tp-p 	x-f 	= 	p 	a2  u (A2.5) 
at
2 
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and taking the gradient of (A2.5) gives 

2 
V9 =  1.2_,Q, 

v2  • at2 
(A2.6) 

where v is the velocity of longitudinal (compressional) waves in 
1 

infinite media. Taking the curl of (A2.5) gives 

2 	2— 
T = 	1 	a T 

vs
2  at

2 
(A2.7) 

where v is the velocity of shear waves in infinite media. Equation 

(A2.7) separates into three components, which are 

269. 

- 	. 

--- 	--(2- r 
1-te 'Fe t  . 

0 	(A2.8) 

= Q 	(A2.9) 

(ittitt) 

rt 

= 0 ... vs  

and combining (A2.8) and (A2.4) yields 

Qz  Tr 4- 	If  4. 1- 	+ 	 al  e. 	 ee 3 -1-1- 	r Fr 	f. 	ri 02ye -2.. 

.r  .a (A2.11) 

Equations (A2.6), (A2.10) and (A2.11) can be solved by the separation 
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of variables, and give 

= AJ (hr) exp [ j (wt - tz+ n )] 

= CJn(kr) exp [ j (wt - yz nO 

111  r  = B tin  (kr) - j 	3 [ Jn(kr)] . exp[ j (wt -yz+ ne)] 
r 	 k2 

(A2.12a) 

where (I) = 2 Tt times the frequency, f. 

y is the propagation constant which equals 2 7t/L, L being the 

wavelength. 

n is an integer starting at zero. 

h2  = (u) /v1)2  - Y2  

2 
k = (4) livs )2  - Y2  

(A2.12b) 

Jn(x) is the Bessel function of the first kind of order n. 

Only that portion of the solution to the differential equation 

which remains finite at r = 0 has been retained. 

From equation (A2.3) the three components of 	are 

j_ 	Lt 
-tr•  

r" 
z  = ue  u19. 

(A2.13) 



Plane wave type solutions are assumed for the three components of 

displacement of the form 

ur = U(r).cos(ne ).exp [j( y z - wt)] 

	

0 	11(r).sin(ne ).exp [j( y z - tot) ] 

	

uz 	W(r).cos(ne ).exp 	y z - tot) 3 

(A2.10 

Substituting (A2.14) and (A2.12) into (A2.13) gives U(r), V(r) and 

W(r), which are unknown, in terms of three constants A, B, C which are 

also unknown. 

U(r) A 	.d [ j  (hr)..]+ B 	. d 	Jn(kr)]+ C . n . J(kr) (co  2/q) dr  n (0.2M dr 	k2 	
n 

V(r) = 	A 	n. Jn(hr) -B 	.n. J(kr) -C.dEJ(kr)] 
(02/17.D 	 k2  dr n  

W(r). j  Ay 	. J..(hr) + j 	B 	J (kr) . 
(w2A.R2) n 	(w2M) n  

(A2.15) 

The constants A, B, C are found by applying the boundary conditions that 

the cylindrical surface is traction-free. 
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x 	-+ 	+ 	11,,‘ ur  
L r 	C 216 	e•z•J Trc  =. 

r1.-- 

( U—k  193 Trt) 	 . -s7e 	„- 
r=cA 

kA 	r 0 =  
eA 

(A.216) 

where T
rr
, 
 TTo , Trz 

are the stress components in the directions given 

and a is the radius of the cross-section of the cylinder. 

Substituting (A2.15) into (A2,,14) and these in turn into (A2.16) leads 

to three homogeneous equations in terms of A, B, C. The only non- 

trivial solutions for these constants are those for which the determinant 

of the coefficients of A, B, C is equal to zero. This determinant is 

A 	A 	A 
11 	12 	13 

A 	A 	A 
21 	22 	23 

A 	A 	A 
31 	32 	33 	 (A2.17) 

where 

A 	= 	[ n2  1 - 02  + ( y a)2  ]Jn(ha) 
11 	2 

12 
=[n2  - 1 - 

(ka)2 ] Jn(ka) 

A13  = 2 (n2  - 1) [ka J11,1  (ka) - n Jn(ka) 	(ka)2  Jn(ka) ] 



A 	= ha Jn..1  (ka) 	(n + 1) Jn  (ka) 
21 

A22 	
ka Jn-1 (ka) 	(n + 1) Jn  (ka) 

A23  = 2n2  + 2n - (ka)2 	Jn(ka) - 2ka Jn_l  (ka) 

A
31 

= ha Jn-1 (ha) - n Jn(ha) 

2 A32. ka Jn_l  (ka) - n Jn(ka) ] - 
, 2t,ya)2  

A
33 
 = n

2 
 Jn (ka) 

= co a 
vs 

The equation formed by expanding (A2.17) is the so-called frequency 

equation which for a given value of n relates the phase velocity to the 

wavelength. Thus if Q and y a are chosen as dimensionless variables, 

(A2.17) is seen to relate these two as a function of Poisson's ratio. 

In terms of these. variables,(ha) and (ka) can be written as 

(ha)2  = a 2.02  - y a)2  

(ka)2  = 
Q  2 	y  a)2 

where a 2 = v2/v2  = 1- 2a 
W 1 	

) 

where a is Poisson's ratio. 
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Equation (A2.17) has two sets of solutions represented by 

L(n,m) and F(n,m), n and m being integers. L(n,m) represent the 

symmetric modes of propagation and F(n,m) the anti-symmetric ones, or 

in more common parlance, the longitudinal and flexural modes. Thus there 

is a family of longitudinal modes of propagation specified by 

n = 0,1,2,3,4,5 0... co . For each one of these modes there is an 

infinite number of dispersion curves specified by m = 1,2,3,4,5 • •.. a) 

and these are called branches. To find the solution for the L(0,1) 

mode, the first symmetric mode, n is set to zero and m is set to 1, in 

equation (A2.17) when the determinant becomes simpler, factoring into two 

equations 

ka Jo(ka) - 2J1(ka) = 0 	 (A2.18) 

	

2  - 2(y a)2] 2  J
o 
(ha) J1  (ka) + 	ye ha ka . Jo  (ka) J1  (ha) 

- 2 0 2  ha J1  (ha) J1  (ka) = 0 	(A2.19)  

Equation (A2.18) is the frequency equation for torsional waves. 

This equation determines an infinite set of roots, given by ka = (ka) q, 
q 

being an integer which specifies the modes, see Mason (1964,page 134); 

ka = 0 is the simplest solution and represents the lowest order torsional 

mode, in which the phase velocity is vs. This chase velocity is independent 

of frequency and hence is non-dispersive, and 

	

s = ( Rip A 	(A2,18a) 

2 7 4 . 
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Equation (A2.19) is the frequency equation for the longitudinal 

modes of propagation, and its solution is not easy for rods of finite 

length due to the difficulty of applying the boundary conditions for 

the ends of the rod. These boundary conditions are that the normal 

and shear stresses Tzz  and Trz 
 vanish at the ends given by z = 0 and z = 1, 

1 being the length of the rod. 

To find T and T , the axial and radial displacements must first 
zz 	rz 

be obtained. Let them be, respectively, 

ur 	U(r) exp[ j (y,  7 w t) ] 	(A2.20) 

us  = W(r) expE j (yz *GO t) 	 (A2.21) 

Note that these are the same as (A2.14) with n = O. Combining (A2.20) 

and (A2.21) with (A2.12) and (A2.13), the solutions for U(r) and W(r) are 

given as 

U(r) 7 - Ah J1(hr) + Cy tylcr) 
	

(A2.22) 

W(r) = j Ay Jo(hr) + j C kJ0(kr) 
	

(A2,23) 

One of the boundary conditions for the traction-free surface is 

Tr 	
..... 	

-- 
-- A M,I,- 	)1t,I 

.4:-- 	C.- 	
= 0 	 (A2424) 

d  

I= CA 

and from this boundary condition, equations (A2.20, 21, 22, 23) give 

AL - 2Y hJ
1 	

+ (ha)]C [ (
y2  ..k2) 3i(ka)] = 0 	(A2.25) 

The ratio A/C depends on the relationship between Q and ya given in 

equation (A2.19). Because there is an infinity of values of ya for any Q 

ya will be assigned a subscript to identify it with a particular root of 

, 



n. 	Ji(kna) [2( y a)2  

2( ya)n 	Ji(hna) 

(42.26) _ g2]  
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(A2.19). Thus we write ya = (ya)n)  and the ratio A/C is given as 

Equation (42.23) can be written as 

W
n 
 (r) W1,1  (r) + Wn,2  (r) = j An Yn 

Jo(hnr) + j On  kn  Jo(knr) 

(A2.27) 

and therefore 

W l  (r) 	An• yn.Jo(hnr) n (42.28) 

n2(r)  

 

Cn.kn.J1(knr) 

Substituting for A/C from (A2.26) gives 

Wni(r) 	Jo(hnr)[ 2( ya)12,  -Q2  ]J1(kna) 

(A2.29) 

n2(r) 	kn  aJ (kn  r) 2hn
aJ1(hna) o  

and comparing (A2.29) with (A2.27), it is seen that the following equations 

hold 

j An  yn  = [2( Ya)121  - 02  ].11  (kna) . K 	(A2.30) 

j Cn kn 2kn.a.hn.a.J1(hna). Ko 	(A2.31) 

where K is a constant. 0 
Substituting (A2.30) and (A2.31) into (A2.27) gives the axial displace-

ment 

Uann(r) exp[ j(y no -tot)] Ko 
	(A2.32) 



zn(r) [ 2( ya): - Q2  ] J
l 
 (k
n 
 a) J (h a.r) + 2kn  ahn 

 a J 
l
(h
n 
 a) J 

o
(k
n 
 a r) 

-g, 
(!2.33) 

and the radial displacements 

U 	= j R
n (r ) exp 	

t) 	Ko 	 (A2.314.) 
rn 

   

E 2( y a)2  - 	(k a) J (h a r)]- 2( ya)2  J 	a) J kk a r 
1 n 	1 n -a  n 1 n 1 n a  n(r) hn

a 

    

(Ya)n 	 (A2.35) 

Equations (A2.32) and (A2034) are therefore the axial and radial displace-

ments ad a function of the radius for the first branch of the first 

symmetric mode. Using (A2.16), (A2.32) and (A2.34), the normal and shear 

stresses are obtained; the normal stress is 

Tamil = jia Hn. ZZn(r) . exp [ j( y a - w t) a n 

H-1 	= ( y a)n  

(A2.36) 

(A2.37) 

Zgri(r) [ 2( y a)n2  -n 2  ][ 2( y a)n2  - 2(1 - a 2) ] 	jo(hna 

+ 14.( y a)2  h a.k a J (h a) J (k a r) 
nn n 1n o n 

(A2.38) 

and the shear stress is 

T ran = 211. RZ n(r) exp [ 	y
n
Z - t) 	Ko 	(A2.39) 

a 

RZn(r) = hna 2(y a)n2 	2][ Ji(kna) Ji(hna r) - Ji(hna) Ji(kna r)] (A2.1+0) 

If y2  =-Iy
2 
 = -y 1, then it can be shown that 

H2 = H1, 
ZZ
2
(r) = ZZ1(r)

, 
RZ(r) = RZ

1
(r) 
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T
zz2 

- T
zzl

, T
rz2 r Trzl 
	(A2.41) 

i.e. the sign of the shear stress Trz  is independent of the sign of Y 

or the direction of propagation, but that the normal stress Tzz  is 

dependent upon the sign of y. This dependence is introduced by the 

function H. 

Zemaneck (1962) has calculated relative values of TrZ 
 and TZZ  for 

Poisson's ratio of 0.3317. Trz 
 is zero at the centre and at the edges, 

and for Q <2.6 T is 2 orders of magnitude less than the normal 
rz 

stress, T. From equation (A2.41), T can be made to vanish, as it is zz   
zz 

an odd function, if the incident wave is reflected with no phase shift. 

The resultant normal stress then assumes the form 

Tzz = A. sin ( yz) 

and this assumption is the low frequency approximation and results in 

the familiar equation relating wavelength to length of the cylinder 

L = 21/n 	 (A2.42) 

The derivation of the frequency equation then continues as from 

section (1.0). 

At high frequencies (see section (1.e)), T is far from zero and 
rz 

both this compcaent and Tzz  can only be made to vanish if it is assumed 

that higher branches of the L(0,m) mode, which are non-propagating below 

frequencies given by we/vs  = 3.68, are generated at the end face so as 

to cancel out the excess strain which results from assuming that only the 
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m = 1 branch of this first symmetric mode is reflected. Zemaneck has 

shown that the frequency defined above is that at which the m = 2 and m = 3 

branches begin to propagate. At higher frequencies, more and more pairs 

of branches begin to propagate, and "it is apparent that the calculation 

of the resonant frequencies of a finite bar would be extremely difficult 

if not impossible" (Zemaneck). Zemaneck's chief use of these newly- 

propagating modes is to calculate the frequency of "end resonance" and 

he shows that using an increasing number of pairs of such modes results 

in a more accurate value of this frequency, as given by experiment. 

The "end-resonance" effect 

The amplitude of these newly-propagating modes dies away rapidly 

with increasing distance from the end-face of the cylinder, such that 

far from the end face only the reflected L(0,1) mode would ordinarily 

be observed. However, this "energy storage" phenomenon would be observed 

in changes of the phase and amplitude of the reflection coefficient of 

the mode concerned. (Mason, 1964, page 146). At certain frequencies, 

this stored energy at the end face of the rod causes large amplitude 

displacements near the end face, and this is the cause of the phenomenon 

of "end-resonance", when the phase angle of the reflection coefficient 

undergoes a sudden change of 360°, and which has been observed by 

Zemaneck (1962) at the value of wah
s 
as given by the theory; Oliver (1957 

first observed the end resonance effect. 
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If the reflection coefficient for the incident mode or the 

amplitude coefficient for the n
th branch which is generated at the end 

face is 

An 
.1AI. exp(j en) 
	

(A2.43) 

then the normal and shear stresses can be expressed in terms of the 

propagating mode and its higher branches, and at the end-face they become 
co 

Tzz (r) 	2: A.T
zzn

(r) = 0 	(A2.44) 
n=0 n  

co 
T (r) 	A .T 	(r) . 0 
rz 	n=0 n rxn 

(A2.45) 

Zemaneck uses the following convention for n; the incident mode is denoted 

by n = 0 and its reflection by n = 1. Far frequencies less than Q. 3.68, 

branches whose propagation constants are imaginary are referred to by n 

values greater than 1. The first pair of these are denoted by n = 2 and 3, 

the second pair by n = 4 and 5, and so on. In any pair, one branch is the 

complex conjugate of the other, and this description is based on the 

concept that a source located at infinity is assumed to excite the L(0,1) 

mode. This motion is reflected with a reflection coefficient Al  on 

reaching the traction-free interface at z = 0. Higher branches are 

generated in sufficient amplitude to cancel the residual stress. In 

trying to satisfy the boundary conditions shown as equations (A2.44) and 

(A2.2+5) above, it is obviously not practical to include an infinite number 

of An values, though Zemaneck has calculated the reflection coefficients 
n 

and phase shifts for the first 9y values in these equations. At the 
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universal point, he has been able to show that the phase shift is 

zero, and that close to.n.= 3.0 , it undergoes a jump of 360°  in 

1Taluelr*hich effect is Irmawn assend-resonance. 

Finite internal losses in the rod  

Section (1.g) refers to the work of Edmonds in accounting for first 

order effects due to finite internal losses in the rod. He shows that 

QE. p" is dependent only upon wa/vE  and upon x"/ R", assuming that these 

parameters are independent of frequency. 

In making the Lame constants, angular frequency and phase 

velocities complex, the propagation constant, y , must remain real so 

that the wavelength is real. This condition dictates that w'/ w" = 

Putting these complex terms into equation (1.12) gives 

(x - 1)2 	(Fa) - (2e q_ 1) [ x - 	(czNa) 	0 	 (A2.48) 

where 2E *2  .p 0  of equation (1.12). 
Edmonds expands this equation by Taylor's theorem and on keeping 

only the first order imaginary terms shows that the real part of the 

resulting equation is equal to equation (1.12,a). 

By further manipulation it is possible to arrive at the following 

equation 

A
o 

X" 	24 " + B 	R?  - Co. W u/W I 	= 0 	(A2.1.9) 
X 	2µ I 
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where A
o 
 , B

o 
 and C

o 
are functions which contain only the real parts of 

the parameters used, one of which is wait?. 	, ignoring any 

end-effect corrections. 

Writing 1/QE  equation (A2.49) can be written as 

QE0  p.  II • C B 	u'  + A (XV 11" 4'  2)] = C 
	

(A2.50) 
x 	+ 2 11 / 

and hence QE. 4" is a function of x"/ 4" and of the three functions 

A09 B0  and Co, which contain the parameter 	taa n 
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APPENDIX 3  

Theoretical values of dispersion in an infinite cylinder  

These values have been interpolated from Bancroft's original 

table (1941). Other tables given by Bradfield (1964) give the 

values of vnivE 
for d/L values less than 0.45. 

The values of vE(vn 
given here are considered to be accurate 

to within + 0.00001; this is the worst deviation that the curve 

fitting computer programme gives for the values of dispersion as 

shown in Bancroft's table. 

The table presents values of din from 0.45 to 1.00, and values 

of Poisson's ratio from 0.15 to 0.40. 
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d 
a 

0.45 0.50 0.55 0.60 0.65 0.70 

0.15 1.02181 1.03337 1.05222 1.08183 1.12251 1,16999 
0.16 1.02435 1.03682 1.05655 1.08649 1.12667 1.17329 
0.17 1.02698 1.04034 1.06089 14 09113 1.13088 1.17672 
0.18 1.02968 1.04390 1.06523 1.09575 1.13513 1.18027 
0.19 1.03245 1.04751 1.06956 1.10036 1.13942 1.18391 
0.20 1.03528 1.05116 1.07389 1.10495 1.14374 1.18763 
0.21 1.03817 1.05484 1.07822 1.10952 1.14807 1.19143 
0.22 1.04111 1.05854 1.08254 1.11408 1.15242 1.19528 
0.23 1.04410 1.06226 1.08685 1.11861 1.15678 1.19919 
0.24 1.04713 1.06600 1.09115 1.12313 1.16111 1.20315 
0.25 1.05020 1.06976 1.09544 1.12764 1.16551 1.20714  
0.26 1.05330 1.07353 1.09971 1.13212 1.16988 1.21116 
0.27 1.05643 1.07731 1.10398 1.13659 1.17425 1.21521 
0.28 1.05959 1.08109 1.10823 1.14104 1.17861 1.21929 
0.29 1.06278 1.08488 1.11248 1.14548 1.18297 1.22339 
0.3C 1.06599 1.08868 1,11671 1.14990 1.18733 1.22750 
0.31 1.06921 1.09248 1.12092 1.15431 1.19168 1.23163 
0.32 1.07246 1.09629 1.12513 1.15870 1.19604 1.23578 
0.33 1.07572 1.10009 1.12932 1.16307 1.20038 1.23994 
0.34 1.07900 1.10390 1.13350 1.16743 1.20473 1.24411 
0.35 1.08229 1.10770 1.13767 1.17177 1.20906 1.24829 
0.36 1.08559 1.11151 1.14183 1.17610 1.21339 1.25247 
0.37 1.08890 1.11531 1.14597 1.18041 1.21771 1.25665 
0.38 1.09222 1.11910 1.15010 1.18470 1.22201 1.26083 
0.39 1.09555 1.12289 1.15421 1.18898 1.22629 1.26501 
0.40 1.09889 1.12666 1.15831 1.19323 1.23054 1.26916 
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d/L 0.75 0.80 0.85 0.90 0.95 1.00 

0.15 1.21939 1.26754. 1.31290 1.354-79 1.39293 1.42739 
0.16 1.22189 1.26946 1.31441 1.35602 1.39398 1.42833 
0.17 1.22457 1.27156 1.31608 1.35739 1.39516 1.42940 
0.18 1.22740 1.27381 1.31790 1.35891 1.39648 1.43059 
0.19 1.23036 1.27620 1.31988 1.36057 1.39793 1.43190 
0.20 1.2334-4- 1.27874 1.32199 1.36236 1.39950 1.43333 
0.21 1.23663 1.28140 1.32423 1.36428 1.40120 1.43487 
0.22 1.23992 1.28418 1.32659 1.36633 1.40301 1.43651 
0.23 1.24330 1.28706 1.32907 1.36849 1.40494 1.43827 
0.24 1.24675 1.29005 1.33165 1.37076 1.40697 1.44012 
0.25 1.25028 1.29313 1.33434 1.37313 1.40910 1.44208 

1.4441 3 0.26 1.25387 1.29629 1.33713 1.37561 1.41134 
1.44627 0.27 1.25752 1.29953 1.34.000 1.3781'8 1.41367 

0.28 1.26122 1.30283 1.34295 1.38083 1.41608 1.44850 
0.29 1.26496 1.30621 1.34598 1.38357 1.41858 1.4.5081 
0.30 1.26875 1.30964 1.34905 1.38639 1.42116 1.45320 
0.31 1.27257 1.31312 1.35224 1.38927 1.42382 1.45566 
0.32 1.27642 1.31665 1.35546 1.39223 1.42654 1,45820 
0.33 1.28030 1.32023 1.35874 1.39524 1.42933 1.46081 
0.34 1.28420 1.32384 1.36207 1.39832 1.43218 1.46348 
0.35 1.28813 1.32749 1.36545 1.40144 1.43509 1.46621 
0.36 1.29208 1.33118 1.36887 1.40462 1.43806 1.46900 
0.37 1.29604 1.33489 1.37233 1.40785 1.44107 1.47184 
0.38 1.30002 1.33863 1.37583 1.41113 1.44414 1.47474 

1.44725 0.39 1.30401 1.34240 1.37936 1.411,x, W,  1.47768 
1.41780 0.40 1.30801 1.34618 1.38293 1.45041 1.48067 
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APPENDIX 14. 

Definitions df spin-lattice relaxation time and second moment  

The resonance observed in nuclear magnetic resonance experiments 

results from the excitation by ReF• photons of nuclei from one 

magnetic spin quantum state to another. The spin-lattice relaxation time, 

is the time constant which controls the return of these excited 

nuclei to their original quantum state, a process which is brought 

about by a coupling between these nuclei and the thermal photons of 

the lattice. The spin-spin relaxation time, T , is the relaxation 
2 

time which controls the return of the excited nuclei to their initial 

states by coupling with the other nuclei. 

The shape of the resonance envelope which can be expressed 

as the function g(H), can be expressed numerically by calculating 

the mth moment of the resonance curve defined by 

- Hor. d(H H0) 6 	g(H).(H  

Iline  g(H).  d(11  - H0) 

The second moment is given by putting m = 2. These moments are a 

measure of the width of the resonance curve which for dipolar broadening 

decreases as motion of the molecular environment of the nuclei 

increases. The broadening of the envelope results from the fact that 

286 



the nuclei see not only the applied magnetic field, but also that 

resulting from the magnetic moments of the nuclei comprising their 

environment. As motion of these nuclei increases, these deviations 

from the applied magnetic field are averaged out and the resonance 

envelope width decreases. 

As the motion of the lattice increases, more thermal phonons 

will become available to bring about the de-excitation process 

described above, which will result in the process occurring more 

quickly. Hence, T
1  will decrease with increasing molecular motion. 

It is therefore obvious that the measurement of these two parameters 

during the progress of a transition like those occurring in the glass-

like state will be a means of observing these transitions. 

Abragam (1961) and Slichter (Frechette, 1958) give more 

detailed definitions of these parameters and their dependence upon 

molecular motion. 
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APPENDIX 5  

Details of electronic circuits  

The oscillator  

Figures (A5.1a) and (A5.lb) show the circuit of this 

oscillator. One of the fractional detuners provides a change in 

frequency of + 14.%, and the other + 0.14%, the former being adequate 

to cover Q measurements at room temperature in perspex and the 

latter in polystyrene. The H.T. supplies of 270 and 350 volts, both 

stabilised, are provided by commercial apparatus. The range of the 

oscillator is from 50 c/s to 350 kc/s. 

The drive amplifier  

Figure (A5.2) shows the circuit. This device also provides the 

200 volts D.C. potential between the end of the rod and the earthed 

plate which together form the condenser microphone which drives the 

rod. The peak-to-peak voltage of the oscillatory potential must not 

exceed one quarter of the D.C. potential, i.e. no more than 50 volts, 

for Parfitt (1954) has shown that above this fraction second harmonic 

distortion car occur° 
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FIG.(A5.1a) Oscillator tuning and increment circuit. 
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FIGURE (A5.2) THE DRIVE AMPLIFIER 



The detection amplifier  

The circuit of this apparatus is shown in Figure (A5.3). The 

D.C. polarising potential applied to the detector condenser microphone 

is also supplied by this circuit, which is essentially a resistance 

coupled amplifier, employing negative feedback to minimise the 

effects of variations of valve properties and to improve the 

linearity of the frequency characteristics. In the untuned range, 

the amplifier has a frequency response which is flat from 2 ko/s to 

14.0 kc/s; its gain is such that a full scale deflection of the meter 

is obtained for a signal of 75 microvolts at the input. The first 

stage of the circuit, the pre-amp. stage, is built into a small 

box (shown by the broken lines in Figure (A5.3)) which is connected 

to the amplifier proper by leads. This arrangement allows the pre-

amp, to be as close as possible to the detecting condenser 

microphone, thus minimising lead capacitance which reduces the 

sensitivity of the detector. 
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Appendix 6  

Effect of a constraint on each end 

of the rod  

Let us consider shear mode propagation; it can 

be shown (Kolsky, 1950) that the wave equation can be 

written as 

G2z . a  2u =p.  a2u 

a x2 a t 2 
(A6.1) 

where Gx is the complex shear modulus and p is the 

density and u is the angular rotation through which 

diametrical planes rotate, and which has a solution 

u(x,t) = U(x) . exp(jw t) 

where w is the angular frequency. Equation (A6.1) can 

therefore be written as 

G(1 + JO ) a 2u + p•w 2U = 0 	(A6.2) 
a x2 

which has a solution 

U(x) = P.exp(- yx) + Q.exp(+yx) 	(A6.3)  

where y = a + jp 

a = co.5/2.( p/G)1 
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f3 	= w ( p /G)42- 
	

(A6.4) 

P and Q are determined from the boundary conditions on 

the rod, that at the driven end, the couple in the 

cylinder which is given by 

C = GAP. a2U 
	 (A6.5) 

3x 2  

must be equal to the driving couple Co.exp(jfiwt), and at 

the free end must be zero. I' is thekmoment of4nrel- 	\Lc 
aft-t-N. 

°X.—a-cross section/abeut the—emls of the rod. 

If 45 tends to zero, then the solution of this 

equation is the familiar one which relates the wavelength 

of propagation at resonance to the length of the rod, as 

shown in equation (1.7) and where the frequency of 

excitation is given by 

wn  = n. w 

If 8 is kept in the solution, then the relationship 

wn = n. wo.(1 +(82/8)(1 + 2p +(1/8)(3 + 2p) b 62  

where b = n2n2/6  and p is given by putting S proportional 

tow p,  is derived, see section (1.i). 

Parfitt (1954) has considered the effect of a central 

constraint on a cylinder excited into shear mod,: resonance, 



and finds that the frequencies of the odd harmonics 

(n = 1 is the fundamental) are unaffected (the 

constraint is always at a node for these resonances) 

whereas for the even number harmonics, the frequency 

is shifted upwards by an amount given by 

w 	= 2n wo + 2S 63
2// 71

2w 
0 0 

(A6.6) 

where So = go1/2Gp , go being the stiffness of the 

constraint. Using Parfitt's method, let us now 

consider such a constraint at each end of the rod. 

The stiffness and the damping 

and A. 	Therefore the couple per 

is g0(1 	)UXx)The  boundary 

1. at x = -1 
2 

g0(1 + j n ).U(-1/2) 	+ G-(1 

2. at x = 1 
2 

go(1 + j o ).U(1/2) 	+ G(1 

of the constraint are go  

unit angle of twist 

conditions are:- 

+ j 8 )r BLU .22 0 

x 

+ j 	aU = C 
a—x 
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These two conditions are sufficient to determine P 

and q of equation (A6.3) and it can be shown that the 

ratio of Uo (defined by Col/GP) to Ul' the complex 

amplitude of oscillation at the free end is given by 

Uo/U1  = lgo/GP .(1 + j ). sinh( y 1).(Z2  - 1)/Z 	(A6.7) 

where Z = GT y (1 + j 5)/g0(1 + j A) 

By putting (52 and A 2  equal to zero, it can further be 

shown that the square of the modulus of this ratio is 

given by:- 

12.(1 - g(2)/G2  P2  02)2. 	(sinh al). cos( p 1).(a - p co  +6p )+ 

x\ cosh( al).sin(p 1).( p + a.c 	6.a ))2  + (sinh( a 1). 

cos( pl). ( p + a.c o  -A.a) - cosh( al). sin( p1). 

a - p.c +613 ))2 
	

(A6.8) 

where eo = S - A 

Let us now assume that 6 and A are equal to zero, when the 

above relationship becomes 

Uo/U1 2 2 2 = pl.(1 - g(2)/G r p ).sin( pi) (A6.9) 

  

Resonance condition is given by differentiating with 

respect to pl and setting to zero the above expression, 

when 
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sin( pi).(1 + e/G2 r2 _2% p ) + pi.cos( pi).(1 - 002/G2 r2 p2)  

= 0 

or when 

tan( pl) = (M - 1)/(M + 1). pi 	(A6.10) 

where M 1=g2p2 r2 2  p 

Writing tan(X) = tan(X - 2nu ) - X - 2nu we have, 

( Si - 2nu ) = pi. (M - 1)/(m + 1) 

But pi =to ubo, by the simple theory, and so 

(w/w0  - 2n).(1 + Nw(W) 0.(N ,31E02  - 

where N = g212/G.2r2 T 

which gives w= nu) .(1 + Nw2 /w2) (A6.11) 

This equation is valid for Young's modulus mode of 

excitation when go  is replaced by eo, the form of N then 

becoming 

N  = 02/0.7t2 

Thus equation (A4.11) can be written 

= n.to o(1 + e2/B2.7;2.n2) 
	

(A6.12) 

This solution suggests that the resonant frequencies 

of a rod so constrained will be increased by an amount 

which is proportional to the square of the ratio of the 

stiffness of the constraint to the Young's modul-As of 



the material of the rod, and inversely proportional 

to the square of the number of the resonance. Although 

equation (A6.11) agrees with(.4.6.6) in the direction of 

the frequency shift, the amount of the shift given by 

the latter is more than that given by the former, as 

go
/G will always be less than one. This prediction is 

contradicted by experimental evidence. 
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Apnendix 7  

The relationship between p and Af, the two  

expressions of a frequency dependence of E'  

Ideally, the resonant frequencies fl  and fn  of a rod, 

after suitable correction for velocity dispersion, are 

given by 

n.f1ifn = 1 
	

(A7.1) 

In fact, only by the use of the correction Af can such an 

equation be written, i.e. 

n. (fl  + A: ) 	= 1 	(A7.2) 

(fn 	Af)  

Assuming that E' oc fP  is the frequency dependence of the 

real part of Young's modulus, it is seen that 

n.fl/fn  = (EI/EA)1  = (fl/fn)13/2 	(A7.3) 

From (A7.2), f1/fn = En + (n 	1). pf/fl] -1  

and n.fl/fn  = n/ [ n + (n - 1). Af/fl  ] 

Substituting these into equation (A7.3) give3 

p = 2. 	1 - log [n] /logE.n. + (n - 1). Af/f1] (A7.4) 

as the relationship between p and A f. 

If A f is negative, then log [n] /log[ n + (n 	1) Af/f jl  
is greater than unity, and p becomes negative. 
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Apondix 8 

Characterisation of polymers  

Linear polymers consist of a distribution of 

molecular weights. Both the shape of this distribution 

envelope and the magnitude of any particular component 

depend upon the particular process which produced the 

polymer. 

A lognormal distribution is one which is described by 

the following equation, see Kendall and Stuart (1953). 

dF(z) = 	A 	exp [- 2 (B Alogz)2] . dz 
1 

(2. n,z)2  

where z = (x - C).D 

and AyBrC and D are constants. 

For comparison, the Gaussian or normal distribution is 

. dF(x) = 	1 	. exp (-- 	x2). dx 
(2, n ) 2  

where dF(x) is the frequency of occurrence of the variable 

x between x and (x + dx). 

Whereas a Gaussian distribution is symmetrical in 

shape about some mean value, the lognormal distribution 

envelope is assymetric having a brief tail on the low "x" 

side of the maximum and a sharp cut-off on the high "x" side, 

the magnitude of the tail and the sharpness of the cut-off 

depending on the constants A,B,C al..d D. 
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Because of this distribution of molecular weights 

of linear polymers, two average molecular weights have been 

defined., 

The number-average molecular weight, Mn  

Mn = 	X.M 	N. i 	M i 

N 

where Xi  = the mole fraction of species i 

Mi  = molecular weight of species i 

Ni  = number of molecules of species i 

It follows that the definition of the number-average 

molecular weight is 

total weight of polymer 

total number of moles of polymer molecule 

2. 	The weight-average molecular weight, Mw  

Mw  = .vt mi  = N.M. 

    

    

NiMi 

In determining the average molecular weight from some 

property of the polymer in solution and its dependence on 

molecular weight, the particular average that is obtained 



will depend upon this dopondence. Hence, let it be 

assumed that a constant of the polymer in solution, P, 

is such that 

a Pi = K.M..c 1 i 

whereKisaconstantande.is the weight concentration 

of the species i of molecular weight Mi. Hence ci = NiMi. 

It follows that 

P = .Ma.c 

and therefore Pip, the particular average molecular weight 

given by the measurement of constant P, is given by 
+•••••••• 
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1/a  

.11MM 	 ..111•41, 

1/a  P 
p 

K 	c 

Substituting ci  = NiMi  into this relationship gives 

•••••••• 

a+1 	1/a  NiMi   

   

NiMi i 

  

    

For light scattering experiments, 

a = 1 R is tho weight-average molecular weight. 

 

For osmotic pressure and freezing point depression experi- 

ments, 

a = - 1  R is the number-average molecular weight. 
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For viscosity experiments, the situation is less well-

defined. If the Staudinger equation holds, then a = 1 

amd the molecular weight obtained is the weight-average 

molocular weight, sometimes referred to as the "Staudinger 

molecular weight". The Staudinger equation does not 

apply over a wide range of concentrations however, and 

a has a value which generally lies between 0.5 and 1.0. 

Therefore, the molecular weight resulting from viscosity 

experiments, and referred to as the viscosity-average 

molecular weight, nv, lies somewhere between the number-

average and the weight-average molecular weights. 

The above analysis of the various average molecular 

weights is taken from "Physical Chemistry of High 

Polymeric Systems" by H. Mark and A.V. Tobolsky, which is 

Part II of the series "High Polymers" by Interscience 

Publ. Inc., New York. 
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