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ABSTRACT

Velosity dispersion in short cylindere is shown to be
similar to that in an infinitely long one for a wide range
of values of the ratio of the diameter of the cylinder to
the wavelength, subject to the condition that Young's
mbdulus (and possibly Poisson's ratio) of the materials
of the cylinders investigated are dependent on frequency.
This similarity holds for both high- and low-loss
materials.,. The magnitude of the end-effects in short
cylinders is critically dependent on the knowledge of the
variation of Young's modulus and Poisson's ratio with
frequency. Anisotropy is the most likely cause of
deviations of the behaviour of cylinders from the exact

theory of wave propagation.

The Q values of resonances of cylinders of different
dimensions but the same frequency are shown to be
independent of the dimensions of the cylinders, for a range
of values of the ratio of the radius to the length of the
cylinder up to O.1l. Variations in the Q values of
cylindors of mominally the same polymer and at the same
frequency are most likely due to the different thermal
histories of the specimens. The purity of commercially-
produced blocks of polystyrene is shown to be open to
doubt, the density of such specimens being likely to be
4 - 5% lower than that of the pellets from which they
were made., Pressure experiments on polystyrene in the
rubber-like state followed by cooling to the glass~like
state indicate the existence of molecular motion below

Tg of an extent not previously demonstrated.
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CHAPTER 1

VELOCITY DISPERSION IN CYLINDERS

(a) Introduction

Various authors (Abramson (1958); Miklowitz (1960)),
and particularly Zemaneck (1962) have written substantial
reviews of the development of the theory of wave propagation
in elastic cylinders. Following Zemaneck, the word "mode"
is reserved exclusively for reference to the type of wave
motion in the propagation of the elastic wave, e.g. the
torsional mode. When resonances of a rod of finite dimensions
are referred to, they will be referred to as resonances of a
particular mode of propagation.

Pochhammer (1876) first attempted to solve the problem
of longitudinal wave propagation in an infinite cylinder,
and Chree (1899) obtained the same equation independently.
This equation which relates the frequency of the resonances,
or the phase velocity, to the appropriate elastic modulus
governing the propagation consists of two terms, one of
which having been previously obtained by Rayleigh (1877)
by considering the lateral inertia of the cylinder, the

other resulting from regarding the cylinder as a rigid body.
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The corrective term for the flexural mode was
obtained by Pochhammer (1876) in accounting for the rotary
inertia of the cylinder and Timoshenko (1921) obtained
a second corrective termn for the flexural mode by
taking into consideration the transverse shear stress,

Bancroft (1941) was the first to calculate phase
velocity dispersion values as a function of Poisson's
ratio and the ratio of the diameter of the cylinder to
the wavelength of the propagation. He was also the first
to note that the solution of the frequency equation resulted
in a number of dispersion curves, which are termed "branches".

Hudson (1943) calculated the phase velocity curve for
the lowest flexural node from the Pochhammer equation,
though he overlooked the existence of higher branches of
this flexural mode, and Holden (1951) first established
their existence. Hudson did, however, note the existence
of higher flexural nodes,

Bancroft (1941) showed that for wavelengths small
comnpared with the diameter of the rod, the phase velocity
approaches the Rayleigh wave velocity for the first branch
of the first symmetric mode, and that for higher order
branches of this mode, the phase velocity approaches the

velocity of propagation of shear waves,
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Others (Hughes (1949); Holden (1951); Abramson (1957);
Kynch (1957)) established the existence of further
antisymmetric modes, each with a number of branches.
Sittig (1957) showed that an infinite number of symmetric
and antisymmetric modes exist. Adem (1954) first
established that the frequency equation has conplex roots
which will be shown later to be necessary in the solution of
the wave equation when applied to a cylinder of finite
length,

More lately, interest has centred on the development
of the theory for short cylinders, and those nmade of

materials which could not be considered as loss-le&ss,.

(b) Velocity dispersion in cylinders

The equation of motion for an isotropic elastic

cylinder is:-

(M + 2p )V (V.u) - V x ¥V xu =y"p.a_f_g
at? (1.1)

elastic
where A and p are the Lamé/coustants of the material, &8& Anp.ls
( B 4is the shear niodulus), ® is the displacenent vector,
t is the time, and p +the density of the medium. The full

analysis of this equation is given in Appendix 2,
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Employing cylindrical co-ordinates r, 6 , z, the

components of u are given as:-

|~
it

- U(r).cos(ne).exp E j(sz —ldt)§

+]
i

V(r).sin(ne).exp g i(vs - wt)g (1.2)

+]
i}

W(r) cos(n8).exp E i(vys -tdt)%

where U(r), V(r), W(r) are functions of Bessel functions of
r of order n and of three independent constants A, B, C,
and z is direction of propagation., These constants are
evaluated by applying the boundary conditions that the
cylindrical surface of the body is free. The resulting
equation is 2 3 x 3 deterninant which is generally known as
the frequency equation as it relates phase velocity to
wavelength; this equation is given in full as equation
(A2.17) in Appendix 2.

This equation has two sets of solutions represented
by L(n,m) and F(n,n), n and m being integers. L(n,m)
represent the synmetric modes of propagation which include
the commonly called longitudinal niode. F(n,m) are the
antisymmetric ones or flexural moudes. Thus there exists an

infinite series of both symmetric and antisyrmetric modes
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specified by n = 0,1,2,3,4 ... tc infinity for the fornmer,
and n = 1,2,3,4 .... to infinity for the latter.

For each rniode given by n, there exists an infinite
series of dispersion curves of phase velocity specified in
both L(n,m) and F(n,m) by m = 1,2,3,4 .... to infinity,
and these are called "branches". The first branch of the
first symmetric mode is thus given by L(0,1) and the first
branch of the first antisymmetric mode by F(1,1),

Setting n = 0 in equation (A2.17) vields

kaJ,(ka) - 2J,(ka) = 0 (1.3)

¥riting Q@ = ( wa/vs)

E 0? - 2(y a)zi 2-Jo(ha)-J1(ka) + b( Ya)% hakaJO(ka)-Jl(ha)
- 2.2 % nat, (na) 7 (ka) = O (1.4)

Equation (1.3) is the frequency equation for torsional
waves and determines an infinite set of roots given by
ka = Yq, q being an integer which specifies the rnicde, see
Mason (1964, p.134). The simplest solution is given by

ka = 0 and represents the lowest order torsional mode in

which the phase velccity is Vg This phase velccity is
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independent of frequency and is therefore non-dispersive;

it is given by:-

vy = ﬁ% (1.8)
B

Equation (1.4) is the frequency equation for the first
longitudinal mode which is the mode of particular interust
here. To solve it requires the application of the boundary
conditions that the shear and normal stresses Trz and Tzz
vanish on the end faces of the rod, i.e. at z = O and 1,

where 1 is the geometric length of the rod. These boundary

conditions apply exactly only when 1 approaches infinity.

(c) Velocity dispersion at low frequencies

For frequencies less than those given by wa = 2.6036
Zemaneck (l962?’has shown that Trz is zero at t;g centre
and at the edges of the end-face of the cylinder and is
generally two orders of magnitude less than Tzz‘ Tzz is an
odd function of Y and can therefore be made to vanish at
the end-face if the incident wave is reflected internally
with no pressure phase shift.

The resultant normal stress due to the incident and

reflected wave assuries the forn:-

* Mason (1964) carries a review of Zemaneck's main findings.
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T,, = A.sin( Y z) (1.6)
which is the low frequency assumption and results in the

farmiliar resonance condition:-

L = 21/n (1.7)

where L is the wavelength and n is an integer (see Appendix
2).

Assuming that Tzz and Trz are zero at the end-faces
of the rod, equation (1.4) yields theo dispersion curve of
phase velocity as a function of frequency for the first

synmetric mode, L(0,1). Expanding Jo and J,, the Bessel

1!
functions, in the power series of ha and ka, and neglecting
terns in a> and higher, Love (1944, p.287) has shown that

the velocity of propagation v, is given by:-

1

}

E being Young's nodulus of thenalcrial, We shall in future

v, = % z (1.8)

o8

refer t¢ the velocity given in equation (1.8) as vp
to differentiate between the two velocities Vo and vy
the latter symbol being used as the solution of equation

(1.4)., EBEquation (1.8) is the solution which results from
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the simple equation of the elastic cylinder under
longitudinal excitation:-

S = Ed (1.82)
0z

shvesns
where S is the tensile strain, u the displacement in the
z-direction (along the axis) and E is Young's modulus -
see Kolsky (1953, Chapter 3).
Retaining terms in a® in equation (1.4) produces a

second approximation:-

Vl = E?f(l _ g2 a2 1(2) (1.9)
L2
@ is Poisson's ratio, given by A . All the

2% +n)

other symbois have been defined before. This second
approximation was derived by Rayleigh (1877, p.252)
from considerations of the lateral inertia of the rod.
Bancroft was the first to calculate the rocts of
equation (1.4). He showed that the variables in this

equation could be reduced to the three given below:-

x=(l+0)é:1§2

E
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(y)

(]
<
o
.
l<
S’

Bg= L1=20
0 1= (1.10)

By defining two more paraneters:-

: L
P = 2_“ ( Box - 1)2
L
L
Q= 2z (2x - 1)® (1.11)

equation (1.4) can be written as:-

i
o

(x - 1)% &(Pa) - &B, - 1) g x - @(Qa)g (1.12)

From this point, Vi will be written as Vo the
subscript n being the integer of equation (1.7) and
specifying the harmonic resonances of the first symmetric
ncde, n = 1 being the fundamental. It is not the "n" of
the symbol L(n,m), the "n" here having been set to zero to
obtain equation (1.4).

The theoretical values of the dispersion of the phase

velocity vn (given by fn.anhere fn is the frequency of
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the harmonics of the cylinder and Ln is the wavelength
of the propagation at the appropriate resonance) from
the "Young's modulus velocity" Vi (i.e. the phase velocity
of an infinitely long and thin cylinder) are given in the
Bancroft paper (1941) as a function of d/Ln (d is the
diameter of the cylinder) and Poisson's ratic, o.
For practical purposes, the intervals between the wvalues of
d/Ln and g for which vn/vE have been calculated by |
Bancroft are too great and Bradfield (1964) has produced
tables {interpolated from Bancroft's original table)
wit’h smaller intervals of ¢ and d/Ln, thcugh the latter's
maximum value is 0.45.

The author has used an Elliot B03 conputer to extend
the range of d/Ln values to 1.00 by stages c¢f 0,05 for the
sane range of 0 as Bradfield's and has tabulated them in

Appendix 3.

(d) The "universal point"

The assunption that Trz is identically zero everywhere

is in fact true for only one frequency which is given by:-

wa
;_ = 2.6036 LI I
5
or Ya = 1-81‘.’1 LRI N ) (1.13)
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This frequency, called the "universal point" by
Hudson who first ncted it (1943) is universal in the
sense that at this value of toa/vs equation (1.12) is

independent of Poisson's ratio. The criterion is

1
=2 . 2%, ( va) (1.14)
s
where +ya is the first non-zero root of Ji( Ya) = 0, for

the L(0,1) mode. (See Morse and Feshbach (1953, p.1565)).

In fact for each branch of the first syrmetric mnode, given

by L(0,r1), there is a universal point, see Mason (1964, p.1hé
Bquation (1.14) gives as a condition for the universal

point that vn/vS = (2)% when d/L = 0.58606 (froen equation

(1.13)), and hence v_ can be deduced from V _ and d/L_ values,

(e¢) Dispersion theory at high frequencies

In order tuv arrive at the solution of the frequency
equation in section (b), it was assumed that the shear stress
on the end faces of the rod were negligibly small (at

freguencies less than those given by wa = 2,6036), and

v
s

that the normal stress was made to vanish by assining that
the incident wave was reflected with no pressure phase

change.
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At higher frequencies than wa = 2.6036, Trz beconmes
increasingly greater than zerc, ;3wever, and both
components of stress can be made to vanish only if it is
assumed that higher branches of thoe prcpagating mode are
so generated at an end face as to cancel out the excess
strain. This excess is the strain which remains after
that due to the directly reflected wave only is considered.

For the L{0,1) mode, Zemaneck (1962) has shown that
these higher branches are the infinite number whose

propagation constants are complex when the frequency is

lower than that given byuwa = 3.68, For higher frequencies

k4
S

than this, these branches include a finite number having

real and having imaginary propagation ccnstants and an

infinite .aumber having complex propagation constants,
Therefore below this frequency, the L{0,1) mode is

the only propagating symmetric mode. At this frcquency,

the first two "corplex" modes become propagating, i.e.

the L{0,2) and L(0,3) modes - see Appendix 2, As the value

of wa increases, nore and more pairs of branches becone

v
S

propagating and thus for frequencics greater than
wa/vs = 3.68, one can no longer refer to a particular

resonance of a cylinder as belonging to the L{0,m) ucde,
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for more than one propagating branch of the mode is
naking a contribution to the frequency of the resonénce.

Appendix 2 states that above wa = 3.68, an infinite number
'v' i

()]

of pairs of branches have t. be considered when calculating

the frequency of a specific resonance of the cylinder.

(£) "BEnd effect" and reflection coefficient

In arriving at an exact solution for the ncn-infinite
rod, it was stated in section (d) that one has to consider
the reflection of the wave at the end face of the rod. The
derivation in Appendix 2 defines the reflcction coefficient

#s heving amplitude A and phase 8 such that

A= (a).exp (j©) (1.15)

In enploying the relation L = 21/n to give L, the
wavelength, one is ignoring a possible end effect in equation
(L.15). Zemaneck allows for this possibility by writing
equaticn (1.7) as

L = 21/(n - g) (1.16)

where g is the deviation of n from an integer. In

n

calculating v_, the fornm v = fn.Lﬁ is éemployed, and in
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applying equation (1.16) to this equation for v s the

following equetion is obtained:-

v = (f_ + Aaf). 21 _ (1.17)
n -

where Af is the anount by which the ideal rescnant

frequency is reduced on assuming that the actual wavelength

is given by L = 21/n.

(g) Bffect of internal friccion on the frequency cquation

In all that has preceded this scection, it has been
assuncd that the material of the cylinder is loss-less. 1In
rccent years, interest has been shown by many workers in
the effect cf internal friction in the material on the
theory of dispersion in cylinders.

Snowdon (1964) has amended equation (1.9) to account
for finite but sriall losses in rods having a diawmeter to
1ength'ratio of 1:5, The principal finding of this:work
is that the strain anplitudes of the resonances are less
than would be predicted for cylinders of the same dimensions
but entirely loss-leess. There is no effect on the values of

the frequencies of the resonances.,
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Edmonds {1961) has amended the frequency equation
elastic

(1.12) by assiming that A ~, p (the Lané/constants), vy
and ® are each complex to account for energy lcss, e.g.

¥ = At 4 j A" where M is the inmaginary component. In
Anpendix 2, a riore complete development is givcen, but in
retaining only the first order imaginary terms and on
separating the equation into its real and incginary parts,
the former gives the dispersion equation as before, whereas
the latter relates the Q factor of the resonances (see
Appendix 1) toA"/p" andw a/v,. This loss effect will be
referred to in Chapter 5.

To date, no attempt has been made to calculate the
second order effect of internal friction on the frequencies
of the rescnances as given by equation (1.12). Parfitt
(1954) introduces a frequency dependent loss factor &
into the simple equation for the solution of the elastic
cylinder under longitudinal excitation (sec oquation (1.8a)) .
The effect at resonance is to produce an amplitude of

vibration at the end of the rod remote from the driving

force of

ohs

2

‘ (1.18)

u =U .0
o 5. I
Tew (1.+-%})2(cosh 2al - cos 28 1)
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i
where UO is a constant, w, = I Eg%a, the ideal angular
1Cp

frequency, w is the angular frequency as measured, ¢ and B

are given by

2 1
6?2 = wh . (1 +%8)T _ 1 (1.19)
U
2E (l + ‘)
2 1
2 _ 2 S_ %
R e (1.20)

and &_by E* = B'(1L + jd_).
B B
In retaining terms in fEEwhere they niake a contribution

apprcaching 1% or nore, Parfitt has shown that

5% 2, -1
w =nw0§ 1+_8;3(1+2p+1/8 (3 + 2p) bdy) (1.21)

where b ='#%?/6 and p is a parameter describing the manner
in which 6Eis a function of w , i.e. O_ is proportional

=
to (w )”P, As can be seen, no term in &_ exists, which

&
sunworts Edmond's conclusion.

(h) Review of previous experimental work

There are three problems that could be oxamined by

the experinentalist.
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1, To find if the measured phase velocity dispersion
follows the dependence on d/L and ¢ as given by
the theory.
2, To find i there are any measurable end-effects in
short cylinders.
3. To exanmine if internal losses of the material of the
.¢ylinder produce any deviations from the theory.
Bancroft (1941) has published data to show that if
end effects exist at all in short lengths (5 - 15 cm.)
of 3/8" diameter steel rod, then they are less than 2 vparts
in 5000. The experinmoent he performed consisted of cutting
twc cylinders, one 15 cm. long and the other 5 cm. long,
from the same length of drill rod. The fundamental rescnant
frequency of the 5 crn. rod is equivalent in d/L value to
the third harmonic of the 15 ecm. rod, if the end effects
are ignored. Hence, assuming that Yoisscn's ratio remains
constant for the two cylinders, the only effcecct that could
produce a change in the calculated phase velccity would be
the existcnce of an end effect, To within the accuracy
quoted above, none was detected. Bancroft did not attempt to
measure the Poisson's ratio of the iiaterial of the rod,

nor did he refer to the possibility «f anisotropy in a rod.
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Hudson (1943) applied Shear's(1940)data to test the
validity of the dispersion curves as a function of d/L and
Poisson's ratio. He found that the data for longitudinal
wave propagation fitted the dispersion curve for ¢ = 0.38,
whereas that for the flexural wave fitted the curve for
¢ = 0.49. He ascribed this variation in Poisson's ratic
tc anisotropy introduced in the rod when subjected to a hard-
drawing process. Shear's data was taken from silver rods
of dimensions 25 cn. in length and 0.5 cm. in diameter, so
that d/21 is of the order of 0.01.

Spinner et al. (1960, 1962) experinented with a steel
rod of length 15 cm. and diameter 1.2 cm.; thus d/21 = 0,04,
They measured the resonant frequencies of the rod in the
longitudinal mode, shortened the rod and found the frequencies
once again. Repecating the procedure oncec nore resulted in
a rod of dinensions given by d/21 = 0.10. They used n.d/21
to give d/L values, derived v

E

frequency of the longest rod (dispersion is small for these

from the fundamental resonant

values of d/L and is only very slightly dependent on the value
of o ) and found that o = 0.292 gave the best fit to the
theoretical curves for values of d/L up to C.3. Recognising
that an independent check on the value of Pcoisscn's ratio

was desirable, they measured the first tcrsicnal mode
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resonant frequency and employed the equation:-

£

¢ =3 Engz -1 (1.22)

where fE'is the fundamental frequency of Young's modulus
mode (suitably corrected for dispersion) and f  is the
fundamental frequency of the shear mode (which is
dispersionless). This method produced a value of 0,262
for Poisson's ratio and the authors ascribed this difference
to anisotropy in the rod.

By far the rmost ccmplete work on velocity dispersion
in cylinders has been carried out by Zemaneck (1962) and a
joint paper with Rudnick (1961) reported findings for an
aluminium alloy cylinder, well-annealed, 3" in diameter and
120" in length, giving a value of d/21 = €.0125. The first
few resonances in the longitudinal node are practically
dispersionless and hence an aczcurate value of v can be
determnined. The wavelength was measured by rieans of a strain
detector which traversed the surface of the cylinder in an
axial direction, and therefore d/L could be determined
without use of the formula n.d/21, thus avoiding end-effect
corrections. Equation (1.22) was used to calculate Poisson's

ratio, and it was found that Rayleigh's apprcximate
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solution (equation (1.9)) fitted the experimental data
better than the exact solution for d/L values up to 0.16.
The deviation from the exact theory is only 0.2% at the
worst, however.

Zenaneck and Rudnick also show that the dispersion in
the first flexural mode is according to Timoshenko's
correction as opposed to the exact theory, though again the
deviations are small. Dispersion in the shear mode was
found to be less than 0.01% over the range covered.

Fdnonds and Sittig (1957) have repcorted work carried
out on an aluminium cylinder 24 cm. long by 4.9 em. in
diameter, i.e. d4/21 = 0.102. They expressed their results
in a manner which is more sensitive to deviations from the
theory, particularly in the region of the universal point,
than is obtained from plotting vE/vn as a function of d4/L
and 0 , see Figure (1.1). As can be seen, the c¢cxperimental
plot Y should lie between plots (a) and (b), if the material
of the cylinder has a value of Poisson's ratioc lying between
C.3 and O.4, This experimental plot should pass through
the universal point (% = 0.58606, Y = 0) as should all
theoretical and experimental curves. PFigure (1.1) shows
that ncither of these conditions is held for the experimental

values obtained by Ediionds and Sittig.
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!

FIGURE (1.1). Edmonds' and Sittig's method of display of velooity

dispersion data.

Y = vn).  - Evng
E‘-’;go e 40.30

(a) o = 0.40, theoretical values.
(b) o = 0.30, theoretical values.

For the experimental points, (Vn/vs)- is calculated

from the experimental values of v, and v_ .
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Using an experimental technique as described above,

fhey detected the positions of the nodes along the surface of
the cylinder and showed that, from about the sixth rescnance,
£he positions of nodes began t¢ rove in from both ends of

the rod towards the centre. This effect is at a maximum at
about the ninth resovnance and has disappeared again at the
eleventh. As the deviation from the theory occurs before

%he sixth resonance, this shifting of the nodal distribution
cannot be the only explanation of the deviation from thecory,

and po<sibly anisotropy in the rod may be a contributing cauce.

(i) _Prooont investigation of velocity dispersion

From the previous scection, it seems that it is always
nossible to f.nd a value of Poisson's ratio which will
adequately fit the experimental data of VE/Vn as a function of
d/L. The doubt still remains whether this value of Poisson's
ratio can be obtained by other experimental methods, even for
cylinders which are loss-less and perfectly isotropic.
Zenaneck has shown that consistent values of Poisson's ratio
can be cbtained for relatively long cylinders using the
dispersion values and the first longitudinal and first shecar

mode resonances.



It was felt, therefore, that insufficient data was
available for short isotropic cylinders and it was decided
to investigate these. (Qther techniques of measuring
Poisson's ratio independently of the velocity dispersion
measurcnients were thought to be necessary.

The velocity dispersion behaviour of cylinders made
from materials with high internal losses has been
theoretically investigated, though no experimontal data on
these materials seens to be available, and an investigation
of the behaviour of cylinders made from such naterials was
thought to be advantageous.

Three methods of deducing Poisson's ratio are
available, using
1. The dispersion data.

2. The interpolated value of fS and the measured value

of fs, along with f_, obtained from fl for the

B
longitudinal mode in equation (1.22).

3. The shear wvelocity vy and the "true" longitudinal
velocity vy (i.e. that governed by A+ 2 and not
% as riodulus) obtained from the propagaticn of the

appropriate 5 mc/s pulses through samples of the

naterial. This apparatus will not be dasscribed, a

full report having been given by Smith (1965).
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CHAPTER 2

Free Volune Effects in Glass-like Polymers

(a) Nature of the glass transition

The paraneters which determine whether an amorphous
polymer behaves as a glass are temperature (or
frequency) and pressure. Above a temperature Tg, called
the glass transition temperature, the behaviour of the
polyner is rubber-like in that the value of its Young's

7

modulus is «~ 10 dynes/cm2 whereas below this temperature,

tho polymer is hard and brittle and has a Young'!s modulus
of the order of 10%° dynes/cmz. Kovacs (1964) has defined
glasses as an "important class of reterials whose mechanical
properties 27~ compavrable to those of crystalline solids
whilst having a molecular arrangement similar to those of
liquids". On increasing temperature, the properties of a
glass change more or less abruptly to those more like a
rubber and this process is called the glass transition,
Kauzmann (1948), Davies and Jones (1953), Condon (1954)

and Saito (1963) have written articles on the nature of the
glass transition,

The glass transition is not a phase transiticn in the

thermodynanic sense (Flory, 1955). In classical
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thermodynamics (see Zemansky, 1957, Chapter 2, for example),
there are two kinds of transition, a fir st order transition
and a second order transition. The former is characterised
by a discontinuity in both theeniroﬁy‘and volume of the
sample which are given by(3@ and(3G) respectively, where
(3T GP)g

G, T, P are the Gibbs function, temperature and pressure
respectively; crystallisation and vapourisation are
particular examples. A second order transition is
characterised by a continuous change in the entropy and
volume of thz sample and a discontinuous change in the
hcat capacity, thermal expansion coefficient and
compressibility of the sample, which depend upon the second
derivatives of the Gibbs function with respect to T, to P
and T togeth=~, and %o P respectively; a specific example
is the order-~disorder transition that occurs in some alloys.
Figure (2.1) due to Zemansky shows how entropy and volume
change for first and second order transitions.

Although the glass transition exhibits these second
order transition features, Flory (ibid.) has shown that

glasses are not even in a state of metastable equilibrium,

but tend to approach such a state at an infinitely siow
rate when the temperature of the sample is lower than Tg'

Richards (1936) was one of the first tu recognise that
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infinitesimal reversible process, where V, P, S and T are
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. aT ' e
P aT P
‘_ Compreseibility, K = - ;,Eav = =1 62G
: : V {oP P .V 3 P2 T



39.

the transition from the rubbery to the glass-like state

is one of a "freezing in" of disorder of the molecules,
this state representing a particular form of a supercooled
liquid, but one in which the entropy remains greater than
that of the theoretical crystalline form right down to the
absolute zero of temperature (Simon, 1930, 1931).

The glass transition appears, therefore, to be
concerned with the freedom of movement of the polymer
molecules wivcizin the bulk of the sample. At temperatures
below Tg’ tr.e molecular segments are localis ed in potential
energy wells, whereas above Tg the motion of the molecules
tends to approach free rotation about single bonds in the

polymer chain (Ellerstein, 1964). On increasing the

a process whach would lead to viscous flow in a liquid,
but which i:iv a polymer results in the highly elastic
deformation characteristic of rubber-like elasticity.
No review of the glass transition would be complete
without some reference to the effect of molecular weight
on T . Below values of the number average (n)
molecular weight, rTfn, of about 20,000, the value of T,
for a homologous series is found to increase asymgtotically

with'ﬁn according to the equation Tg =T o - kp/ﬁn,

23



40.

where kp is a constant, and Tg,m is the value of T as

n-—-) o . Above this value of‘ﬁn, the effect of neighbours
on molecular motion can no longer be described solely in
terms of local frictional forces, and the visoelastic
properties reveal an additional coupling to neighbours

which appears to be locelised at a few widely separated
points along the molecular chain. This effect is known as
entanglement coupling (Ferry, 1961, page 23). Ellerstein
(1964) has ren-rted on this subject and refers to the various

theories gove:imniing the dependence of T on molecular weight.

In descriring the glass transition, attention wi 11l be
directed to *th:e mobility of the molecule comprising the
polymer and in turn to the shape, size and flexibility of the

main backbecne chain and its pendant side groups.

(b) Moleculav riobility and its effect on Tg

The principal description of the glass transition
temperature is that point at which the convolutions of the
backbone of the polymer noleculg: are largely immobilised,

Thus the visbelastic properties of the glassy state must
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result from linited local molecular motion, which is
usually ascribed to the rearrangements of the side groups
along the polymer chain (Ferry, 1961, page 306). However,
steric hindrance and bulkiness of the side groups are often
difficult to separate from lack of backbone flexibility. As
Nielsen (1962, Chapter 2) points out, steric hindrance can
increase the value of Tg, as is illustrated by the difference
in Tg between that of poly (p-methyl styrene) and of poly
(o-methyl styrene), 101°C and 125°C, respectively. It is
thought that uiie methyl group in the ortho-position of the
benzene ring restricts the motion of the backbone.

Increasing bulkiness of the side group also elevates
tho temperature of ithe glass transition. This is illustrated
by comparing the values of Tg for polyethylene, polyproﬁiene,
pelystyrene and polyrinyl carbazole in which the side groups

are, from left to right:

l
- N
-, “CHg, O 3 (j ]O
f pr

benzene ring

The values of '1‘g for these polymers is, in the same

sequence, 153°K, 264°k, 373°k, 481°K.
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However, the glass transition temperature depends on
the flexibility of the side group, for in the series
polymethyl acrylate, polyethyl acrylate, polybutyl
acrylate, Tg decreases as the side group gets larger.

Mixtures of polymer with its monomer and other
plasticisers (Dudek, 1965) and with other polymers
(Krause, 19652) results in a lowering of the glass
transition teungperatuyve Tg, although in some two component
mixtures of y+-iymers three transitions have been reported,
one for eaci :omponent and one for the mixture (Krause,
1965a).

The tacticity oif Lue polymer molecule also affects
the glass transiticn senperature. The value of Tg for
isotactic PMM. (uCOOSI-I3 groups all ¥on one side") is 15900,
whereas that #or the syndiotactic form (the group
alternatiz. "from side to side") is 30°C. An equal
mixture of the two forms has a Tg of 94°C (Krause, 1965b).
Figure (2.2) shows diagrammatically the difference between
dsotactzc; «rndiotactic and atactic polymers,

Multiple glass transitions in cellulose & =5 acetate
have been reported by Daane (1964), each one being ascribed
to a specific rotation of portions of these complex
molecules, The glass transition can therefore be linked

quite specifically with molecular motion, the motion of the
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main backbone chain of the polymer being that which is

"frozen out" as the temperature is reduced to T . Other
Monaglio (1963) and Wunderlich (1964)have bot® repotted

transitions have been reported#bn a transition in poly-

styrene which is observed at SOOC. This is the B -transition,

so called because it is the re xt lowest in temperature below

that of the G -transition (glass). Still lower tempersinpsy "

are signified %y the appropriate Greek letter taken in

sequence, The 8-transition in polystyrene is ascribed to

a "freezing «wu* of the motion of the phenyl group. PMMA

shows a B-truzasition (He:sjboer's article in Prins, 1965)

at 2500, due to the stopring of the motion of -COOCH3

groupB around the C-C iink, though in most of the se secondary

transitions, there i: some evidence for interfercnce by the

backbone chair

(c) Observaticn of the glass transition

The investigation of any property of the glass which
influences or is influenced by molecular mobility will
denonstra.: vk« glass fransition. Boyer and Spencer (19#6)
have reviewed the experimental field, though since this time
much more data has accrued, particularly in the field of nuclear
magnetic resonance. The easiest method of observation of the
glass transition is by noting how the vulume of the sample

changes with temperature within the appropriate range. Other
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methods include observation of the elastic modulii

internal friction and viscosity, such thermodynamic
functions as thermal conductivity and specific heg@,

nuclear magnetic resonance measurements such as ségénd
noment and spin-lattice relaxation time of the proton,
dielectric constant, refractive index measurementg and X-ray
pattern measuvrements, all as a function of temprafﬁre or

pressure,

(i) Thezwr . lynamic functions

Pasquino {1964) har shown that a change in slope
of the thermal conduciivity of polystyrene exists at a
temperature which was found by dilatometer studies to be
the glass trarciiiorn temperature. Wunderlich (196&)
has used a “iiferential thermal analysis techniquex

to show bo%a the a - and the B-transitions in this polymer.

% In conventional differential thermal analysis, the temperatu:
of the ounter surfaces of blocks of identical shapes, one of
the subzsance under investigation and the other of a material
of knowrn ihnermal properties (the reference block) is raised at
a consitazrt wate and the temperature difference between the
centres oi the two blocks observed., At steady state, the
difference will be constant, but whenever the temperature
passes through some point of thermal transition, the extra
amount of heat absorbed tends to retard the rate of temperatur
rise of the specimen undex test. Thus a transition point
presents a pattern of irregularity in the temperature differ-
ence. In Wunderlich's experiments, the specific heat of the
polymer is approximately equal to the temperature difference
between the sample and the reference block. Smothers (1958)
reviews in detail the manifold uses of D.T.A. techniques.
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Allen (1961) has measuredt;i, the internal pressure, of
samples of polyvinyl acetate.and PMMA around Tg' P, was
calculated from Pi - %% -~ %ﬂ% where a, and K are the
coefficients of thermal expansion and iscthermal
compressibility respectively, and U is the internal energy.

These authors observe a decrease in P, at Tg and explain

i
the effect in terms of a relative lack of molecular mobility
in the glassy state. Araki (1965) has shown that a
discontimiity on the linear thermal expansion coefficient
versus temperature plot for poly (tetra—fluoroethylene) at

about 400°K is a glass transition in the amorphous regions

of this otherwise crystalline polymer, see Figure (2.3).

(ii) Dielectric constant measurements

The behaviour of the dielectric constant of poly
( oxy-methylene) has been invegfigated by Read (1961) who
shows that a broéd relaxation peak exists at - 8500, a
temperature at which the behaviour of dynamic mechanical
properties alsc implies a relaxation process. C'Reilly (1962)
has invoétigéfedlfhe‘effeCt of pressure on the dielectric
relaxation in polyvinyl acetate, showing that it occurs at

higher temperatures when the sample is subjected to pressure.

(iii) Dynamic mechanical properties

Possibly the most complete experimental work done in this
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field is that of Wada, Hirose and Asano (1959). They showed
that the real part of the shear nodulus, the bulk modulus,
and the Young's modulus for polystyrene, PMMA and polyvinyl
acetate show changes in the dependency on tempefature at
values of Tg, these being detected by dilatometer
measurements. The loss tangents in both the shear mode and
the Young's modulus mode have maxima (the a¢ -transition), at

some temperature T, which is sometimes called the dynamic

d
glass transition temperature., The value of Tg is slightly
lower than that of Td’ and is explained by the authors as
due to the difference between the onset of mobility and its
maximum value. Lewis (1963) nade an empirical analysis of the
variation of Td as a function of frequency of measurement
and Heijboer (Prins, 1964) followed up by estimating that
there is a 300 increase in Td for each decade rise in
frequency.

The application of pressure on samples at temperatures
above Tg can bring about the glass transition (Paterson,
1964; Matsuoka, 1958). Working on polyisobutylene, Singh
and Nolle (1959) have shown that the glass transition
temperature as observed in the behaviour of Young's modulus

is increased By 0,025”C per atmosphere rise in pressure,

which value is supported by the work of McKinney (1960).
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(iv) Nuclear nmagnetic rescnance methods

Both the spin-~la ttice relaxation time T1 and the

second moment of the broad line resonance AHg,

dependent upon the mobility of the protons in the polymer

are

molecule; see Appendix 4 for definitions of these parameters,
Powles (1956) has shown steps in the graph of second moment
vs. temperature for PMMA at 150°K and 400°K, but not av

the 2500 transition as reported by other worke{s. The
constant value of the second moment between these two
tenmperatures has been calculated as arising from the motion
of one half of the —CH3 groups, either those in the

—COOCH3 or those existing independently as side groups,

but Powles has not been able to differeniate between then,
The transition at 1500K occurs when one half of the —CH3
ceases rotating, which is consistent with the idea that the
2500 transition is the —COOCH3 group transition. The

decrease in second moment and T1 both occur at the
temperature Td observed in shear for both polystyrene and PMMA
(Powles, 1962, 1964) and he has observed the dif ferent values
of Tg for isotactic and syndiotactic PMMA (1963).

For recasons that are not yet apparent, however,

transitions observed by one method are not always observed

by another, oneexample of this being given above. Crissman



(1965) has detected in polystyrene a transition at 38°K
(5.6c/s) or 48°K (6kc/s), thus supporting Heijboer's

value of shift in Td with frequency. He has attributed the
effect as due to the "wagging" (small amplitude oscillation)
of the phenyl group. He was unable to observe this transition

in broad line n.m.r. experiments, however,

(v) Dilatometer measurements

The observation of the volume of a sample as a function
of temperature change over the appropriate range is the
easiest method of observing the glass transition, and the
temperature at which the slope of the curve changes is that
temperature which is usually referred to as the glass
transition temperature (Kovacs, 1964). Most authors reporting
on these experiments quote Bekkedahl (1949) for the basis
of the technique. Kovacs (1964) is the most prolific reporter

of dilatometer studies.

(vi) Optical properties

Boyer and Spencer (1946) quote the findings of McPherson
and Cummings (1935) which show that a rubber containing 19 per
cent sulphur shows a change in refractive index at a given
temnerature, but point out that this temperature is a lower
one than that cbserved for a similar type of relaxation in

the thermal expansion coefficient noted by others in the same



material. It is susgested that the refractive index change
anticipates that of the thermal expansion transition because
of the slight change in the polarisability of the electrons
brought about by decreasing force fields associated with
peighbouring molecules. As described earlier in this

secticn, the onset of the transition as observed will

depend upon the effect of tempe rature on the particular aspect

of the motion of the molecules which is being observed.

(vii) X—ray dif fraction » tterns

Krim and Tobolsky (1951) have obtained X-ray diffraction
patterns for both polystyrene and PMMA. Being amorphocus, these
materials present very simple patterns consisting of two rings
which have uniform intensity. The inner ring is associated
with intermolecular interference in the form of interaction
betwéen carbon atoms of adjacent rings. The outer ring
(1ess intense than the inner one) is thought to be associated
with phenyl-phenyl group interactions of a single polymer
chain - an intramolecular effect. Xrim and Tobolsky have noted
that the ratio of the intensities of the second (outer) to
the first ring is constant below 80°¢c and above 17000, but
that between these two temperatures, this ratio diminishes
at a constant rate from the low temperature constant value to

the high temperature constant value. This effect is most
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marked for polystyrene, and le ss marked for PMMA. The
authors offer the explanation that this is due to increasing
numbers of intermolecular interactions, as the decrease in
the ratio described above results from an increase in the
intensity of the inner ring rather than a decrease in
intensity of the outer one. Thus the implication is that
phenyl group interactions are little affected by temperature,

whilst those of the main chain are governed by the temperature.

(d) Rate dependence of T
=)

Cne of the first facts which becomes obvicus to the
experimenter observing the glass transition is that the glass
transition temperature is dependent upon the rate of
temperature change. Krause (1965a) has obtained values of T
for polystyrene as different as 9700 and 8900 for rates of
tenperature change of 1°c per minute and of some hours (total
time one week) respectively, and in pressure cxperiments,
Taterson (1964) has shown that the hysteresis observed in
the change of Young's modulus at the glass transition is
dependent upon the rate of pressure application and release.

Kovacs (1964, page 409) describes this time dependency
very well., He considers a sample abave its glass transition
reacting to a change in temperature froum To to Tf,

To > Tg > ‘Tf. Above Tg’ the rate of cooling of the sample
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is slower than the rate at which the molecular scgments

can adjust thermodynamically to tle new (1ower) temperature
as time increases. At any temperature between To and
another temperature T;, T0~> Te > Tg, the state of the
moleccular configuration is defined by the tcmperature and
pressure of the environment of the sample. At a time te
when the temperature Te is arrived at, the rate of cooling
of the sample and the rate at which the configuration is
adjusted to temperature change can be considered to be the
same, After this point, (Te,te), the molecular configuration
is no longer in phase with the temperature of the sample.

At the end of the conling process when temperature Tf is
reached, the molecular configuration is not defined by Tf
but by some "fictive" tenmperature, Tie (first used by Tool,
1931) which lies between Te and Tf. Txe is not a measurable
quantity but serves only the purpose of theoretical
analysis.

As can be seen, the fictive temperature will depend
on the rate of cooling of the sample, and as some
relationship must exist between T;e and the onset of the
glass transition, Tg must also be rate dependent. Indeed,
so dependent is the value of Tg on the rate and direction

of the temperature change that some authors (eng. Wunderlich,

(1964)) prefer to refer to a glass transition range or interval.
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(e) Free volume

From the description of the rate dependence of the
molecular configuration, it follows that below the glass
transition temperature an amorphous polymer will have a
density which will in part be rate dependent, since the
molecular configuration arising from a slow cooling through
Tg will occupy a smaller volume than 'th&t resulting from a
more rapid one, Free volume has been defined in dif ferent
ways as reviewed by Kovacs (1964, page 484) and Haward (1966)
but the latter has shown that in many cases these are
equivalent., These definitions consist of twc¢ groups,
the fir st being for theoretical purposes and invoking such
concepts as volume of the molecule at OOK, i.e., the "actual"
space taken up by the molecule, and the volume resulting

from inter-molecular action due to van der Waals' forces,

For experimental purposes, Kovacs defines frcee volume as

Vo= Vg, where v is the instantaneous total volume and
Vo is the total volume after an infinite time, A fractional

free volume is defined as (v - vy )/vg .

Saito (1963) has calculated the effect on free volume
of the rate of cooling through Tg' For a change in ccoling
rate from 1072°C/sec. (0.36°C/hour) to 107°°C/scc., the

change in fractional free volume at temperatures well below

Tg would be from 0.022 to 0.020 . s
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Saito calculated these values from a phenomenological theory

whose starting point is the equation
8T = (L/ap). 6f + (= /ap). de( OF) (2.1)
dt

where §T = T - T_ and OF = F - EO, T, and F_ defining the
equilibrium state of the glass. It is to be noted that this
equation can be compared with that governing the behaviour
of a Voigt solid (spring of elastic constant 1/a.F and dashpot

of viscosity (< /aF) connected in parallel) subjected to the

stress (T - To)‘ The retardation time T is defined as

T =T, - exp(1/F) (2.2)
following Doolittle's (1951) theory of liquid viscosity,
The temperature dependence of the equilibrium value of

free volume defines a.. according to
EY

P = Fo + aF(T - T.) (2.3)
whereupon the equation used by Saito to calculate the values
above is derived as

dF = - _F - F (2.4)

dFr apsR. T .exp(1/F)

where R is the rate of cooling, and the values of Tp and a

P
are set at 10_13

oo, and (4.8) x 10-%ﬁeg.c respectively.
*

Saito's theory is only one such theory that attempts to

produce the observed frece volume dependence on temperature,
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most of which are based on some two state concept of
the transition. Xovacs (1964) has produced much
experimental data in this field and has reviewed the
applicability of the theories to this data,

Kovacs' mode of attack, both experimentally and
theoretically, is to note and consider the reaction of
samples to a sudden change in temperature; the samples
are small so that temperature equilibrium is reached
very shortly after the temperature change, though the
volune continues tu relax for some time after depending
upon the temperature jump, the thermal history of the
sample and the closeness of the equilibrium temperature
to Tg'

Cne of the experimental facts which any theory must
account for is the non-linear and asymnmetric behaviour
of the anproach to equilibrium of the volume of the sample
when approaching it by dilatation (a positive terniperature
jump), as opnosed to its behaviour on contraction (a
negative temperature jump). The non-linearity is observed
in that a change in volume by countraction requires a
smaller temperature jump than does the same change by
dilatation. A more difficult effect to express theoretically

is the "autocatalytic" behaviour in dilatation. Unless
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the amplitude of the temperature jump is great enough,

the relaxation of volume will not be of the same fornm

as in contraction. The volume dilatation takes place as

if 2 certain amplitude of temperature change is required

to break up the molecular configuration, aftcr which the
process of rearrangement can take place. Xovacs (l961b)

has shown that a simple relaxing solid model (see Appendix l)
exhibits this autocatalytic behaviour.

Kovacs concludes that all the theories are incorrect
in that they assunie that a single relaxation time dependent
upon temperature controls the approach to equilibrium of
the vclume. Although some success has been achieved by the
theories, Kuvacs concludes that ¢ should be replaced by a
distribution of such relaxation times, each component of
which being dependent not only on temperature but also
on free volume. Fer vpolyvinyl acetate, he claims that the
deviations from theory are best explained by the different
dependence of each component on scme distribution with
temperature, whereas for glucose, he has had considerable
success in fitting a narrow rectangular distribution of
relaxation times (all similarly dependent upcn free volume

and temperature ) to the experimental data.
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(f) Behaviour of a polymer below its glass transition

tomperature

It is not the purpose of the present work to investigate
the behaviour of amorphous materials above their glass
transition. Many authors (e.g. Alfrey, 1948; Treloar,
19583 Ferry, 1961) have covered this field, and the
theoretical work is both detailed and broad and is
supported by much experimental evidence,

Below the glass transition, conparatively little
theoretical work has been done except on the singularities
in behaviour which are due to relaxation processes, nore or
less well-understood as the onset of motion of specific
groups of molecules - theg—, f- , y= etc. transitions
(Ferry, 1961, Chapter 14). For polystyrene, the a- , p- and
Y- transitions occur at 10000, SOOC and (about) 40°Kk
and are acccunted for by main chain mobility (the glass
transition), by rotation of the phenyl groups, and by
"wagging" of the phenyl groups, resnectively. For PMMA,
they occur at 12000, 2500 and 1500K and seem to be due
to main chain mobility (the glass transitionyt;motion of
the —CO(.‘-CH3 group and to nmotion of the —CH3 group,
respectively.

The theories of molecular mobility away from these
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transition regions (Parfitt, 1956; Turnbull, 1961;
Ellerstein, 1963) arc based on the "hindered rotation"
concept, and have been used to analyse the phenomenon
of an internal friction more or less independent of
frequency at frequencies away from the transitions. This
frequency indepcndent backgrcocund level of damping has been
noted by many authors, a review of whose work appe ars in
Parfitt's thesis (1954). More recently Benbow and Wood
(1958), and Ferry (1961, Chapter 14), have restated the
fact, the former noting that the ievel of damping can be
correlated with the estimated degree of flexibility of
the molecules involved.

Parfitt (1954, 1956) has shown that the internal
fricticn of samples of polystyrene below Tg is dependent
in »nart upon thé amount of free volume trapped in the
sample by different annealing techniques. DMelchore and Mark
(1953) have shown that the heat distortion temperature of
polymers can be increased by a slqwer cuocling of the samples
through Tg' McLoughlin and Tobolsky (1951) working with
polyvinyl acetate, have shown that a more rapid relaxation
of stress takes place in those samples which had been
more ranidly cooled through Tg. Kovacs, Stratton and Ferry
(1963) working above Tg’ have shown that types of relaxation

associated with velume, internal friction and shear
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modulus changes were equivalent for 2 sample of polyvinyl

acetate as it respondd to an abrupt temperature change.

(g) Hindered rotation theories of molecular mobility

Rubber-like elasticity is generally typical of a
relaxation or retardation process, characterised by a
relaxation time, ¥ , as described in Appendix 1. Although
there may be relaxation processes which can be expressed
in terms of one relaxation time, even the seccndary
transitions which occur in polymers (and which are generally
exnlained in terms uf very specific rotations of particular
side groups) are found to be governed by a distribution of
relaxation times (Ferry, 1961, Chapter 14) and the back-
ground ievel of damping upon which these transitions can
be cunsidered to be superimnposed can only be explained
mathenatically in terms of relaxation times given by the
function G(t) where & is time and which generally is finite
for all values of t.

The ratio of the complex strain amplitude to the
complex stress amplitude, called the complex compliance
and denoted by J*, has boen shown by Alfrey (1948) tc be

such that the loss tern, J", is given by

©

Jn(w) = } G(t).dt (2.5)

1+ wot?

O



and the main theoretical problem is then to derive the
distribution G(t) from the structure of the polymer.

Very little of this kind of analysis has bcen
undertaken. Parfitt (1956) has considered a very specific
rotation of sections of the backbone chain of the polymer.
The rotation of these segnents can be idealised as subject
to two constraints in the form of potential energy wells,
the first defincs the free rotation ©f the segment and
the sceccond describes the hindrance to this free rctation
arising from the prescnce of the other moclecules, Parfitt
arbitrarily defined the former well as being sinusoidal
andd the "hole" patential well as being rectangular.
Turnbull and Cohen (1961) considered the possi bility of the
first well as being Lennard-Jones in shape and Ellerstein
(1963) defined both as sinuscidal.

Only Parfitt has tested the validity of his assmptions
by applying experimental data to his findings. By a
suitable choice of thecoretical constants, Parfitt is able
to reproduce from his theory the frequency dependence
of the damping coefficient that was observed experimentally.
The increase in damping that this theory gives suggests
that the fracticnal free volume in the material at Tg is

of the order of 0.4 per cent wherecas Kovacs quotes a
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value, obtained experimentally, of about 2.5 per cent.
However, the amount by which Parfitt cculd change the
frec volume in the glassy state using different

annealing processes wasonly 0,15%, anacurt rrch logs then that

decuced from Saito's theory, see section (2.e).

(h) Factors affecting damnping in glass-like polymers

The previous scction showed that the rate of
cocling of the polymer through its glass transition
affects the frece volume and hence the damping occurring in
the material. What might be called "“artificial" methods
of altering the level of damping also exist, for example,
by cross-linking (produced either chemically or by
irradiation), or by the addition of nlasticisers and,
possibly, of fillers. The effect of these changes of
molecular environment of the specimen are considerable at
temperatures above Tg’ although below this temperature the
effect is slight, showing principally in the changes in
the moduli of the material and hardly at all in the damping,
except in the position and width of thc¢ secondary transitions.
Ferry (1961) reports the effects of these changes,
particularly above Tg. Little experimental wcrk has been

done below Tg'
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Charlesby and Hancock (1953) have shown that
Young's niodulus increases with increasing cross-linking
at tcnperatures below the glass transition tenperature.
Rady (1957) has shown that the B-transition peak in the
damping of polyethylence which has becen cross-linked in
varying degrees by irradiation shifts to higher and higher
freguencies as the irradiation dose (and hence cross-
linking) increases, and the peak disappears altogether for
very high dises., It is cocnsidered that the B -transition
in this polymer is due to the amorphous side chains which
can exhibit niotion below ’1‘g except when the backbone chains
arc highly cross~linked. Rady has some data on the effect of
cross-linking on the damping coefficient. Up tu doses of
about 8 unitsi, therc seems to be no effect on the damping.
Above this dosage, however, the damping suddenly increases
and then diminishes at which stage the material becomes

very brittle; +this occurs when the cross-linking is very

* Rady defines cne unit as being equivalent to 1017 slow
neutrons/cm2 nlus the asscciated fast necutrocns and ganma
irradiation for the pclyethylenc samples. These last two
ccmponents arce considered tou be provortional to the slow
neutron flux density. Thus, Rady defines

1 unit = (40 - 50) x 106 rontgen = (2.2 - 2.7)x 1021cs/gn
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high, It should be pointed out that polyethylene is not
nernally considered to be a glass at these frequencies and
temperatures and it is only the effect of cross-linking
that prcduces these glass-like nroperties for the material.
The heavily cross-linked, brittle material, produced by
irradiating with a dosage of 149 units does not exhibit the
glass transiticn as normally given by more lightly cross-
linked polyethylene., For this rmterial the characteristic
change in the specific volume versus temperature plot was
observad by Rady although no existence of a glass transition
was observed for the brittle material,

The addition of plasticisers reduces the "brittleness"
of the moterial, and lowers the glass transition temperature.
Plasticisers can be lcoked upon as lubricating the motion of
the molccules and are generally of a rmuch lcwer molecular
weight than the polymer to which they are added. The c¢ffect
of such diluents is to depress sharply the value of Tg,
linearly at first according to Tg = T; - kzw, where w is
the weight fracticn of the diluent, Tz is the glass
transition tenmperature of the pure polymer, and k2 is a
constant ranging between 2000C and 50000 fcr polystyrene, see

Ferry (1961) and Jenckel {1953). This decrease in Tg is



64.

ascribed to thé creation by the diluent of more free
volume in the material, though Yamamoto and Wada (1957)
have shown that addition of about %~por cont of water toc a
methzer ylate polymer resulted in a shift in the g -transition
to higher temperatures, implying a "filling up" of the free
volure by the water. Illers and Jenckel (1958) lave
investigated lightly cross-linked polystyrene swollen with
diethyl phthalate for which the B -transitioun shifts to lower
temperature, whereas the Y -transitioun shifts to a higher oune,
as the proporticn of the diluent increases. Heijboer (1956)
has shown that PMMA plasticised with dibutyl phthalate has a
B —transiticn which has shifted to a temperature lower than
that of the pure material and that the amplitude of the peak
has increased by abcut 50-100 per cent as the plasticiser
c.ntent increases, which implics an increase in the number
of groups participating in the transition signified by this

peak,
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Table (2.1) shows the effect of these diluents on the

positions of the secundary transitions.

It is cbvious

that the behaviour of plasticisers is not a simple one.

TABLE (2.1)

The effect of diluents on the positions of secondary

transitivns in pulystyrene (©S) and polymethyl metha-
crylate (PMMA)

DILUENT THANSITION 'RT1"ORTE
B Y
dibutyl phthalate shifts to
in PMMA lower - ‘Heijboer
tenperature i(1956)
!
T
% water in shifts to i
PMMA higher - , Yamamoto
tenperature 1(1957)
i
i
diethyl 1 shifts to shifts to
nhthalate in lower higher iTllers
cross~linked PS tenperature temperaturj(l957)
Fillers such as wuodflour and the varicus forms of carbon

have a large

effect on the properties of polymers above their

class transitioun,

resistance and in the moduli being the gencral result.

an increase in such »roperties as abrasion

Very

little scems to be available on the effect of fillers at

tenperatures below Tg,

however.
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(i) Present investigation

It has becen shown that the free volume of a glass
is dependent upon the rate of cooling of the sample
through its glass transition and that increased free
volume implies increased internal friction.

Whilst some authors have investigated the effect
of rate of cooling through Tg on the free volume and
damping in the material, there seems to be little
published data on the combined effect of pressure and
temperature on the free volume of polymers below their
glass transition.

It was decided therefore to investigate this field
using polystyrene (PS) and polymethyl methacrylate (PMMA),
these materials being the rmost commonly used polymer
glasses and of a sufficiently low internal friction to
make for easy investigation by the method employed,

As deseribed in Chapter 1, some doubt exists as to
the validity of the values of damping factor as previously
derived ®rom the Q values of rods in longitudinal mode
resonance, and so the effect of rod dimensions on the

damping factor has been investigatede.
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CHAPTER

THE EXPERIMENTAL SYSTEM

(a) The experimental method

The method employed to excite the cylinders into the
longitudinal mode is the electrostatic method of Ide (1935)
and of Banecroft apd Jacobs (1938). Excitation is provided
by the electrostatic force between one flat face of the
cylinder (rendered conducting if necessary) and a parallel
electrode placed a small distance away, when an alternating
potential is applied between them. The same system is used
for the measuring of the relative displacement of the
other end face of the rod, the physical basis of the driving
principle being used in reverse. The sensitivity of this
system of excitation and detection has been considered by
Parfitt (195&) who showed that naximum tensile strains of
the order of 10_6 are produced in a material like polystyrene;
the present system can detect displacements of the order of
10"8 cm which is equivalent to a smallest detectable strain
of the order of 1077,

The frequency of the resonances and the 3 db points on
the resonance curve are neasured directly either by a

Hewlett-Packard frequency counter or a Schomandl frequency
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synthesiser, The former gives an accuracy of measurement
of the order of 1 ¢/s over all ranges, the latter (being
tunable t¢ the Droitwich standard) an accuracy approaching
0.2 ¢/s. The damping coefficient (or damping factor)

of the Young's modulus nmode, given by 6Ein the equation

x

ETY = B'(1 + jgg), see Appendix 1, is obtained directly from

a measurement of the quality factor, Q

bp = 1/Q (3.1)

FParfitt (1954) has shown that this definition of damping
factor is applicable to the simple resonance theory of
cylinders. A detailed discussion of measuring both E'andéE
is given by Parfitt, and Edrnionds (1961) has investigated
theoretically the more exact rclationship between ép and %y
sece section (l.g) and Appendix 2. By rnieasuring the Q values
of the range of detectable harmonics, the frequency denendence
of 6E can be obtained., The value of Young'!s modulus is given
by the dimensions of the cylinder under test and the rescnant

frequencies, from the relationship

fn'cn/n = -éli i E .E-:.'g (3.2)

where fn is the frequency of the nth resonance, 1 is the
length of the rod, p 1is the density of the material of the

rcd, and Ch is the correction for velocity dispersion due %o
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the finite diameter of the rod,

(b) Experimental system

Figure (3.la) shows a diagrammatic view of the
experimental system whioh is more completely reported by
Parfitt (1954). Figure (3.1b) is a photograph of the
apparatus. Details of the eloectronic circuits are given
in Apnendix 5.

The oscillator whose circuit diagram is shown in
Figures (A5.1a) and (A5.1b) is of a basic RC design but
incorporates twe fractional detuners which are constant
at all frequencies, The rectified detected signal is
displayed on a d.c., milliammeter from which the 3 db
drop in amplitude of the signal is cbserved when the
oscillator frequency is adjusted by one of these fractional
detuners, The detectiun amplifier (sece Appendix 5) may be
tuned over the required frequency range whenever background
noise beccmes great., When the tuned amplifier is employed,

the Q@ has to be modified according to the relaticn

Q./q, = 1+ (e /q,)2 (3.3)

where Qt is the true Q factor of the rod,

Qm is its measured Q, and

Qa is the Q of the tuned circuit of the amplifier.
This equation only holds when (Qm/Qa)2 is fairly small,

which is the case for all materials used in this investigation.
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A twin beam oscilloscope monitors both the drive and
the detected potentials and ensures that the peak-to-pecak
value of the drive voltage is constant. Observation of
these pnotentials alsoc tells the experimenter when the rod

is driven into resconance at harmonics of the drive frequency.

(c) Method of supporting the cylinder under test

The rod is firmly but lightly clamped in vosition
by means of one or two of the support systems shown in
Figure (3.2). The principle of a variable length for the
pins, one of which is spring nounted is not original,
though the particular design shown in Figure (3.2) is new.,
Parfitt (1954) concluded that this system of support has
least effect on the resonances of the rod under test. He
has shown expcrimentally that the values of Q@ of the resonances
decrease when the rod is tightly clamped at the nositions
of the anti-nodes of the standing wave pattern set up
in the rod; +this can be largely avovided by lightly clamping
the rod., However, a decrease in Q can arise if the resonance
anti-nodal positions do not coincide with the pin supports,
Generally, rore of the se "randomly" decreased Q@ values occur
if the rod is supported by more than one set of pins, and
the existence of possible complex couplings was suggested by

Parfitt. The question of the e¢ffect of the supnports on the
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measurements made in the present work wi 11 be discussed in

Chapter 4,

(d) Method of driving the rod into rescnance

(i) Normal condenser microphone technique.

For rods made of non-conducting material, the end faces
of the rod are coated with a conducting material like
"Aquadag" (a water based suspension of graphite) to which
electrical contact is made by means of a fine wire attached
with "Durofix", The separation between the rod end . -face and
the earthed brass plate of the condenser microphone was
adjustable by use of the control rods shown in Figure (3.3);
the phosnhor bronze bellows act not ounly as vacuum seals but
also as springs. The control head shown in Figure (3.3)
was developed by Rady (1957) from Parfitt's original design
(195&), except for the air inlet pipe whose purpose will be
described later. Tufnol joints in the control and support
rods of the chassis and expanded polystyrene baffles placed
between the control head and the sample under test help to
maintain temperaturc stability. PRigure (3.4) shows a
polystyrene specimen in position.

For materials 'which are conducting, - the

rod is earthed through the pin supports, and the brass plates
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are now insulated from the chassis and become the high
potential ele ctrodes of the condenser microphone system,
An advantage of this method of exciting metal rods into
resonance is that the only loading on the rod is that
arising from the pin supports.
(11) Excitation of shear mode resonances.

Cylinders of high Q materials can be excited into
shear mode resonances by means of a coil which is wound
on the end of the specimen cylinder as shown in Figure (3.5).
When placed in a magnetic field as shown, application of a
polarising voltage and an oscillatory potential of the
appropriate frequency will exert a torque sufficient to drive
the cylinder into shear mode resonance. Detection of the
resonance is by means of a similar coil at the other end of

the cylinder,

(1ii) Electrostrictive technique.

Figure (3.6) is a photograph of an aluminium rod, r,
placed in an alternative drive and detection system which
has been shown by the author (by trial and error) to work
only for low-loss, low density specimens., In this method
the specimen is inserted between diaphragms of "Meculon"
which is a polymer film of thickness 0,001l" and coated on

one side with an aluminium film a few angstroms thick.
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In Figure (3.6) the rod is kept in the horizontal position
by driving = it into each diaphragm. For the vertical
position of the rod, as is the case in all investigations
carried out, the rod merely rests on the bottom (drive)
diaphragm, and the top diaphragm is brought lightly down on
to the other end. The non-metallised surface of the
diaphragm is in contact with the ends of the rod. The rod
is earthed by means of a fine wire and the driving and
polarising e.n.f.s. are applied between the metallised
surfaces and the rod. If the rod is non-conducting, its
end faces are coated with "Aquadag".

The diaphragm is held by the two 13" diameter brass
rings (a) and these are fastened to supports (c) by nylon
bolts (b). The supports can slide along the chassis tc
take rcds »f various lengths. The method of making the
diaphragm is as follaws. Figure (3.7a) shows the rings (a)
which together form the support of the diaphragm shown in
Figure (3.6) sepmarated prior to making the diaphragm fron
an initial diaphragm as formed between the two 4" diameter
rings and which is alsv shown in Figure (3.7). This latter
diaphragn does not have to be under a particularly great
tension. Nuts (d) are wed to fix the diaphragm support (a)
to the supports (c) by nylon bolts (b). Figure (3.7b)

shows how the final diavphragm is made from the initial one.






The first ring which forms this final diaphragm, and
which cannot be seen, is placed on a platform; the
diaphragm is placed on top of it and the second r;ng of
the diaphragn is placed on tep of this. By breaﬁﬁing on
the "Meculon" the nositions of the bolt holes in:t#e ring
uncderneath can be clearly seen. The tension in thé final
diaphragm is achieved by pressing down on the outgr ring
as shown. The supports (c¢) and the two sets of rings which
form the two diaphragms are all made out of 1/8" brass
sheet; The supports (c) are readily remnovable from the
chassis, leaving it free to receive the conponents of the
other excitation system.
The advantages that this drive system has ovér the air-
gap method are
1l. No pins are requir ed to support the rod.
2. The sensitivity of the system is riuch greater due to
the smaller and more uniform gap between the condenser plates.
The disadvantages are
l. Far some reason yet unknown, neither polystyrene nor
PMMA rods can be excited by this metl.od., It is possibly
due to the relatively low Qs of the r esonances of these rods.
2. Considerable pressure on the diaphragm reduces the
sensitivity of the system drastically and seems to act as

& Yoad un fﬁé énds of fhé fo&é reducing the frequencies
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of the resonances., This is observed when the pressure

- is increased by bringing the two diaphragms too close
together and also when very heavy cylinders are used, e.ge.
brass cylinders. The nrinciple of its operation is
considered to arise from the electrostrictive nature of the

polymer film,

(®) Effect on resonant frequency of loading the rod

For those rods whose ends have to be coated with
"Aquadag", it is necessary to correct the r esonant
frequencies as measured by an amount given by equation (3.4)
below: -~

w = W (3.4)

o)
1 + A

where W, is the rescnant frequency of the unloaded rcd. The

factcr A depends on the mode excited., If the rod is

resonating in the Young's modulus mode, A = n/M, where m is
one end of

the mass of the ' '- 1load on/the snecimen and M is the

: mass of ) the cylinder, If the rod is

excited into shear mode resonance, A = I/IO, where I_ is the

moment of inertia of the rod about its longitudinal axis and

I is the moment of inertia of the loading masses about the

sarie axis.

In all calculations concerning resonant frequency, it is
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to be assumed that correction for any loading that

might exist has been carried out according to equation (3.4).

(f) The vacuum system

The chamber containing the rod is evacuated to eliminate
loading effects due to¢ air at atmospheric pressure; a
pressure of 2 - 3 mm of nmercury is adeguate for this task.
More important, however, is the fact that a reduced pressure
avoids the vccurrence of a resonance of the air between the
end of the rod and the brass plate., Thisresonance is so
broad as t0 make damping measurements impossible for the first
3 or U4 resonances. 1In the case of the diaphragm drive
system, the loading of the air on the diaphragm is
sufficiently strung to reduce considerably the sensitivity of

the systemn.

(g) Measurement of damping at elevated temperatures

For temperatures above room temperature, the vacuum
chamber is placed in a bath of o0il maintained at the
required temperature. A diagram of such a bath is shown in
Figure (3.8). An elcctric motor drives a stirrer which runs
on a nylon nipple resting in a sncoth brass bush at the
bottom of the tank. The oil (Shell Vitrea 0il, grade 33) is
heated by a 1 Kwatt ele ctric heating element which is fed,

thrcugh a rheostat, from the 250 volt A.C. mains supply.
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Contrcl and measurement of the temperature bath system
are described in following sections.

Two baths of the type described were made so that
a sudden increase (or decrease) in the temperature of the
sample could be achieved by transferring the vacuum chamber
from one bath to the other, Due to the large thermal inertia
of the brass vacuum chamber, it was found necessary to speed
up the rate of change of temperature of the sample by blowing
air at the required tenmperature through the chamber., To do
this, air from the laboratory's compressed air-line was passed
thrcugh a copper tube which was coiled four or five times
around the inside of the appropriate oil-bath and then led
intc the top of the chamber containing the sample thrcugh a
pipe on the top of the chamber, see Figure (333). As can be
seen in Figure (3.4) the hot (or cold) air circulates round
the sample from the bottom anl comes out at the top through

the (for this procedure) unused vacuwa line.

(h) The temperature control systenm

The temperature of the o0il in the bath is controlled by
a thermistor (a temperature sensitive resistor), which is
placed in the oil bath, in the circuit shown in Figurs (3.9c).
To produce the temperature required, resistance box R is set
at the wvalue of the thernistor at that temperature, the

temperature/resistance characteristic of the thermistor



power
re\a_\j

coil

i 85
,/’;*

reed switch

i2v. D.C.

rheostat

MM\~

(@)

1000

heater coil
, H
e/ X3 neon
40

(b)

resistjance

ém.

OcC 42

%.sz

L ;Ibv.
at0 [l’
. Soo S
' 220
XaTol > .
Ik oc.2s
P .

% bBo -ZY 2 amb. diode

(a)

FIGURE (3,9) (b)

(c)

(C) . . . =E

SWITCHING CIRCUIT FOR POWER RELAY
SWITCHING CIRCUIT FOR HEATER
CIRCUIT OF TEMPERATURE-CONTROL BRIDGE



86.

having been previously determined.

The reced switch (S), Figure (3.9a), is in circuit with
the heating coil H and a subsidiary resistance X, as is
shown in Figure (3.9b). Whilst heating up to the set
tenperature, the switch is open, hence the power relay is open
and therefore maximum current goes through the heater coil
H. As soon as the set resistance (temperature) is reached,
switch S closes thereby bringing the subsidiary resistance
X into the circuit. With the values of H and X shown in
Figure (3.9b), the switching of S produces a reduction of
about one half in the power dissipated by the heating coil.
By adjusting the rheostat, the system can be made to operate
with only a small power dissipation in the resistor X, the
neon lamp being in circuit to show when X is in circuit and
thus helps to avoid uverheating X.

Figure (3.9c) is the circuit diagram of the bridge
network which controls the switching of S. This circuit is
not set for all values of R and has to be set each time a
different temperature is required., This is done by putting
another resistance box of equal value tc the first in circuit
in placc of the thermistor and by then adjusting the lkohm
potentiometer P until the reed switch S is just about to
switch on; the thernistor is then replaced and the heating

up starts.
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The bridge circuit which is novel (Figure (3.9%?) was
o

designed to cause S to switch for an out of balance/% deg.C
which at 90°C, is equivalent to a swing of 10 ohms in 500 ohms
from the X,/V, characteristic of the thermistor. With a
- 10 volt operating voltage, a setting of 500 ohms in R
will give, at balance, a current flow of 0,01 amp through
the thermistor and through R. At this current, a change in
the resistance of the thermistor from 500 ohms to 510 ohnms
will produce a change of 100 millivolts in the voltage on
the base of the first transistor, the 08 42, This change
in voltage produces a base current of 50 microvolts, which is
sufficient to cut off the two 0OC 42 transiétors. This action
causes sufficient current to flow in the lkohm resistor in
the collector arm of the second OC 42 t¢ switch on the
next transistor (XA 701). The purpose of transistors XA 701
and OC 25 is tu amplify the current suff?ciently to uperate
the reed switch coil.

Two featurcs are introduced for greater stability of
the circuit. The %4 amp diode on the emitter of the UC 25
transistor is in circuit to eliminate the possibility of
the reed switch being operated by leakage currents through the
last two transistors; leakage cwrrent is also avoided by
adopting a long-tailed pair arrangement of the two 0C 42

transistors. The 500 ohm variable resistance strapped
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across the rceed switch coil is to introduce a little feedback
into the system. Without this, "Kicks" in the voltages
thrcughout the circuit produced by the switching of S can re-
activate the circuit, thus producing a continuous feedback
from the "on" to the "off" positions; This produces a
continuous vibration of the reed switch which is obviously
undesirable. It is the inclusion of the 500 &
potentiometer which results in the meed for readjusting the
circuit (via potentiometer P) every time a new temperature is

required,

(i) The temperature measuring system

The temperature of the sanple under test is measured by
means of a copper/constantan thermocouple which is embedded in
a piecce of perspex of the same lateral dimensions as the test
rods, i.e. ab>ut 4" in diameter., The e.m.f. from the
thermocouple is amplificd by a D.C. amplifier (Pye, 11370)
and recorded on a 1 milljamp f.s.d. pen recorder (Evershed
and Vignoles, Murray system) which is "padded" with a 10 k ohm
resistor,

The temperature can be measured in two ways. The first
method is tc¢ display the ocutput of the D.C, amplifier directly
on to the calibrated chart of the pen recorder. However,
instantaneous measurement of temperature can be achieved by

the use of the bias device whose circuit diagram is shown in
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PFPigure (3.10a). By suitably choosing the value of RO and
by adjusting the potentiometer T, the vcltage drop across
the 5 k ohm 10 turn helical potenticmeter can be set (as
mesasured on a cormercial bridge) to 5 millivolts. The
temperature can be read by noting the setting of the
helical potentiometer which produces a zero reading, either
on the chart of the pen recorder, or (mure easily) on the
neter of the D.C. amplifier when the e¢.m.f.5° of the bias
device and the é%rmocouplo are put in opposition across the
terminals of the D.C. amplifier.

A further use cxists for the bias device. For high
temperatures (about 100°C), the e.m.f. from the thermocouple
is of the order of 4 millivolts. The scales of the D.C.
amplifier are such that insufficient accuracy can be obtained
in the display of this magnitude of e.nm.f. on the pen recorder.
However, by applying a suitable bias in opposition to the
thermocouple e.m.f., the most sensitive range of the D.C,
amplifier/pen recorder system can be used; this range gives
a full scale deflection of 2°C, The bias device can also
be used when cooling or hecating the sample, for which an
instantaneous temperature may be required later. By adjusting
the »ias at suitable times throughout the heating or cooling
process, a continuous reccord of temperature on the more

accurate ranges of the D.C. annplifier/pen recorder system
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can be obtained,

Figure (3.10b) shows the circuit of the temperature
measuring system. The cold junction of the thermocouple
is either water at ruvom temperature oxr ice, depending on
the time scale of the experiment in progress.

When transferring the specimen chamber from one
temperature bath to the other, the initial temperature of
the sample is mecasured by the null method. After transference
the stability of temperature inside the chamber ié observed
by placing the "cold" junction in the bath in which it is
contained. Once stability has been observed, the temperature
can once more be nmeasured by the null method for which the
"cold" junction is return ed to the ice or room temperature
water bath.

The setting of the temperature bath can only be
achieved to within 2 or BOC, but once set, it stabilises to
within.i.%oc; tests within the specimen chamber show
variations of the temperature is no worse than this. However,
tests along the axis of the chamber suggest that there is
about a %OC drop in noving from the bottom to the topj;
this is more than the length of the sample by about a factor

of two.
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(j) The compression apparatus

The apparatus used to compress hydrostatically the
samples is shown diagrammatically in Figure (3.11). It has a
maximum pressure of 8000 p.s.i., which is achieved by
conmnpressing water by the pistons from the compression
chamber into the pressure vessel, which is surrcunded by a
jacket through which hot water can be pumped.

Compression of the water in the pressure vessel is
obtained as fcllows. Valve B is closed, the pressure vessel
head is put in place and the pressure vessel topped up with
water through a bleed valve on the head, which is then
closed, Valve A is opened and the piston is screwed back,
drawing water into the compression chamber, Valve A is
closed and Valve B opened, after which the water in the
conpressio. chamber is driven into the pressure vessel by
means of the piston., This prucedure is repeated until the
pressure required is obtained.

Because polymers absorb water, it is not advisable to
place the sanples directly in contact with the compression
fluid, particularly at the high pressures cbtained. For
example, a sample of polystyrene under 5000 p.s.%. for 10
hours at room temperature absorbed sufficient water to
increase its rmm ss from 5.743 gm to 5,763 gm and a slight

increase in the internal friction was noted,
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Therefore, the sample;wre placed in a brass cylinder
secaled at one end and with a screw across the open eﬂd wide
envugh to stop the sample coming out. Mercury was thep
poured into the cylinder until the sample was coveredi ahd
this cuntainer was placed in the conpression chamber.v Weighing
and damping measurements at room temperature showed that no
water (or mercury) was being absorbed. A diagram of“?h;s

containing cylinder is shown in the pressure vessel of

Figure (3.11).
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CHAPTER 4

VELOCITY DISPERSION MEASUREMENTS

(a) Choice of materials

In choosing a material from which to test the
validity of the exact theory, the following conditions
must be satisfied:

1. Its density must be very uniformn.

2, It nmust be readily and accurately formable into the
required shavpe.

3. If metallic, the grain size must on average be less
than 0.1 mma to avoid inaccuracies brought about by
the scattering of the 5 nc/s pulses.

L, It pmust have a low danping coefficient tc produce
high Q resconances in the cylinder for accuracy cof
measurenent: of the resonances, and so that the
5 mc/s pulses might traverse samples of the material.

Much time was spent in trying to obtain an aluminium
alloy sample (8% zinc, 92% aluminiun by weight) which
satisfied these conditions. Conditiora 2 and 4 are
applicable, but 1 and 3 were very difficult to achieve.
This alloy was chosen because its crystal structure is

spatially a relatively uniform one. Howcver, this quality
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was found to be completely discounted by the existence

of air holes in the sample as obtained from the
manufacturers, who had been asked not to extrude the
material which would have renoved the air hcules but at
the expense of introducing strain into the sample.

Such strains could have been removed by careful annealing,
but this process (unless well controlled) would have led
tc a growth in the grain size of the netal.

With these difficulties in mind, it was decided to
use an optical quality glass, althcugh this mterial
does not satisfy condition 2., The cross-section of the
rod could be forned accurately by the technique of
centre-less grinding, but slight chipping occurred on
cutting ~nd ~risding the ends ¢f the rad. The glass
(Chance—Pilkington) hnd a quoted refractive index of
1.523 + 0.0ul. To remove any strains induced in the
grinding of the rod, it was maintained at 540°C for
three hours and was then allowed to cool to 200°C over
5 hours after which it was cooled to rocm temperature
overnizht in the oven.

Thrcughout this chanter, reference will be made to
samples which are "anisotropic" or "anncaled". Little

attempt has been made to investigate the particular form
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of the anisotropy, whether due to strains induced

by machining, due to spatial variations in density or due
to grain-~size variations and orientations. Anncaling

can obviously renove strains, but in the case cf metals

it can lead tu growth of grain-size. In the case of
glasses (optical glass, persnex and polystyrcne) vhere
there is no ordering of the molecules in crystal formations,
the terms anisotropic and annealed are used in a matually
excluding sense; thus annealing rerioves anisotropy

arising from internal strains.

(p) Calculation and display of results

If the exact theory is valid for short cylinders, a
constant valu: of Doisson's ratiov should result from the
velocity dispersicn as measured from each rescnant
frequency.

The dispersion, vE/vn, is given by nfE/fn and the value
of &/L is given by n.d/21 assuming that no end-effect
corrections are necessary. The value of fE is given by the

value of f. suitably adjusted for dispersion. The value of

1
d/L for this rescnance is known, but the value of ¢ to be
used is not, and three nethods of deriving a value of ¢

are available, sec Table (4.1).
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liethods of calculating Poissont's ratio
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fron

dispersion neasurenents

(1)

vE/vn given by:

(2)

Method fE derived from:

(3)

6 derived fron:

1. n.fl/fn f

2. n.fl/fn 3

1A. (n+l).fn/n.fn

+1 n

Dispersion as
given in (1) and
value of d/L
using tabula%ed
valueéﬁ re-—-
iteratively.,

fs derived from
internvlation, and
f, used in equation
(1.22) re-
interatively.

Dispersion as
given in (1) and
value of d/L
using*tabulaged
values; re-
itcratively.

*¥The thcoretical values of vT/v as o funchtion of 4/L and ©

es given by fLoppendix S and

% Bracdfield (1964).
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The first method starts from a calculation of the
dispersion at the value of d/L given by n.d/21 as
n.fl/fn, from which an approximate value of ¢ can be
derived from the theoretical nredictions of velocity
dispersion, which is used t.¢ give the correction to be
applied to fl for a better approximation to fE. Used re-
iteratively, method 1 produces a value of ¢ and of fE
for each value of n.

Alternatively, a value of the fundamental shear mode
frequency, f_, can be obtained from the value of fn/n at
the universal point (given by 4&/L = 0.58606) see section
(1.d) for details. A value of fs is obtained by means of
2 linear intcrpolation between the eleventh and twelfth
values of fn/n for a 5" x 4" cylinder. Use of £, and f,,
the latter being a first approximation to fE’ in egquation
(1.22) gives a value of o which is then used to correct
f1 to give a nore accurate value of fE’ and s¢ on, until
the final values of fE and o are obtained. This is method
2.

Use of n.fl/fn to give the dispersion relies on the
fundamental resonant frequency to give an accurate value

of fp. This can be avoided by use of (n+l).fn/nfn+1 to
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give the dispersion, the re-iterative process described
sbove being then enployed. It will be shown that both

of these nmethods of calculating the velocity dispersion
nroduce the same results in terms of the average valucs
of fE and ¢ . This method is refierred to as method 1l4.

The dimensions of all the specimen rods used were
known to C.0C1l", For ease of calculation, the idecal
dimensions of the rods were such that the values of d/L
resulting from n.d/21 were thosc of the tables of predicted
values <f dispersion, see Anpendix 3 and Bradfield (1964),
so that a minimua ¢f interpclation was necessary. Thus, a
rod of length 5.00G" and diameter 0.506(" gives values of
a/L  of n.(0.050).,

The advantage of quoting values of oisscn's ratio
calculated in the nanner described above compared with
displaying the values of velocity dispersicn is
demcnstrated by reference to Figures (4.1) and (4.2).
Figure (4.1) shows velocity dispersion calculations for a
glass and a polystyrene cylinder compared with the
theoretical predictions fur two chosen values of Pcisson's
ratio. Figure {4.2) shows the values of oisson's ratio

for three sets of data as calculated from the theoretical
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predictions, and (a) is equivalent to the data of the

given glass cylinder shown in Figurec (4.1).

{c¢) Glass cylinder measurenents

(1) Results and discussion for the 5" x %" cylinder.

Figure (h.2) shows the values of Voilsson's ratio
computed by method 2 for the glass cylinder of nominal
dimensions 5" x §". Three sets of data are given, (a)
fron the resonant frequencies of the rvd when excited by
the diaphragmn technique, (b) fror the rod similarly excited
but with a slightly heavier lcading of the top diaphragm
on the rcd, (¢) from the rod when oxcited by the condenser
microphone technique and held centrally by one support
systeri. The limits of the vertical lines define the
extreme values of ¢ obtained from the large number
of ohservations of the resonant frequencies, using both
techniques of excitation. The accuracy with which the
values of fn/n are deternmined is of the order of + 1 ¢/s.
The specimen cylinder was placed in the chamber for a
period of about one hcur before measurements were taken

to ensure the attainment of tenporature equilibrium,

following. which 3 or 4 neasurements of the resnnant
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frequencies were mnade. Temperature stability over

the measurement period was within i%°c which, for a
coefficient of linear thermal expansion of 10-5/deg.C.,

is equivalent to a possible error in fn/n of about 0.1 c¢/s
for values of fn/n of 20 ke/s, which is the case for
cylinders described in this section.

An error of this nmagnitude in fn/n produces an
error of the order of + 0.00007 in the dispersion. The
values of the dispersion for 4/L = 0.2 at ¢ = C.21 and
0,22 are 1.00111 and 1.00122 resnectively; hence such an
error in the dispersion is equal to an error of + 0.0C6
in the value of Poisson's ratio calculated at ¢/L = 0.2,
The accuracy of the cxnerimental points in Figure (h.2)
was improved therefore by taking many diffcecrent
measurenments of the resonant frequencies, each set of
resvnant frequencies being used to calculate Foisson's
ratio; +the sproead of values su obtained is shown as the
vertical liaes in Figure (4.2).

The values of loisson's ratioc at low d/L values
shown in Figure (4.2) suggest that some corrcction
is nccessary to the values of the resonant frcquencies

in order to obtain a constant value of ¢ ; the
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deviation from a constant value of ¢ at high d4d/L
values (i.e. > 0.65) will be dealt with in more detail
in Chapter 5. The form of the deviation suggests that
the correction is more important at low frequencies than
at high. It was thorefore decided to calculate a
correction, to be called an "end-effect" correection,

and synbolised by Af, from the following equation:

n.(fl +.Af).c1 = (fn + Af).cn (4.1)

where c  are the corrections due to dispersion for the

n ressnance g, This equation is derived from that for

phase velocity corrcected for end-effect, see equation (1.17).
Figuroe (4.3) shows the values of Af as a function of n

for the three sets of data of Figure (4.2), and the

values of rYoisson's ratio which result from a

caiculation ¢f dispersion from the rescnant frequencies

tc which had been added the average value of Af for each
set of data. The average values of Af, the values

of fy and of f_, are given in Table (4.2).
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TABLE (4.2)

Calculated values of AT, fE and fs for

gn x in o1ass rod

Data (a) (b) (c)
(1) af, c/s .2 + 1.3 2.4 + 0.6 4,1 + 0.7
(2) £z(1), ke/s 20.614 20.6125 20.6195
(3) fE(Z), kec/s 20.615 20.615 20,619
(&) fs(l), ke/s 13.160 13.158 13.160
(5) fs(2), ke/s 13.167 13.164 13.168
Notes:
(2) calculated from f, and method 2, error is + 1 c/s.
(3) average of first 9 values resulting from method 1,
+ 5 ¢/s.

(4) result of linear interpolation between eleventh and
tweifth rescunances, + 1 c/s.

(5) result of computer interpolation, using values of
fn/n up to d/L = 0,60; + 2 c¢/s.
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The values of ¢ shown in PFigures (4.2) and
(%.3) have becn calculated from method 1., The values
of fE resulting from the use of this method are .
given as fE(2) in Table (4.2) and can be sceen to agrce
very well with fE(l) which is calculated from f; by
method 2. The average value of fE resulting fron
the first 8 values given by method 1A was equal tc the
values of f shown in Table (4.2), within experimental
error. Table (4.2) also gives two values of f3
fs(l) results from a linocar intverpolation of fn/n
between the cleventh and twelfth resonances, and
fs(z) is calculated from an interpolation of fn/n at
the universal point by rnieans of a curve fitting of
all of the rescnances below d/L = 0.65, which was
carried out using an Elliot 803 computer, TUse of a
curve~fitting program avoided the problem of deciding
which value of ¢ tc use,

Valuer of the Poisson's ratio calculated in wvarious
ways from the data shown in Figure (4.3) are given in

Table (4.3).



TABLE (4.3)

Data

(1)
(2)
(3)
(4)

Notes:

Calculated values of Poisson's ratio for

0.2252
0.2268
0.2255

0.2252

glass cylinder

(p)

0.2254
0.2270
0.2259

0.2252

(¢)

0.2257
0.2275
0.2260

0.2258

I+

Standard

deviation

+ 0.0005
+ 00,0005

+ 0,0C07

0, 0010

(1) average of first twelve values of Figure (4.3).

(2) using fE(l) and fs(l) of Table (4.2).

(3) using fE(l) and fs(2) of Table (4.2).

(4) average of first eight values using method 1A.

109.
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The horizontal lines shown in Figure (4.3) and labelled

a,; b, and ¢, are the valucs of ¢ shown in Table (4.3)
asvbow (2). The error in the corrcction due to dispersion
applied to fl to give fE resulting from this value of
FPoisson's ratio, as compared with the value of Toissun's
ratio obtained from the computer internclation is
insignificant; the corrections at 4/L = 0.05 for

0 = 0,2268 and 0.2255 are 1,00032 and 1.000317, respectively.

Use of the uncorrected values of fn to give fE and fs
only affects the value of the former, as the latter is in
fact computed from fn/n. The uncorrected value of fn
for data (a) of Table (4.2) is 20.610 kc¢/s which with
£, = 13,167 kc/s gives a value of ¢ from equation (1.22)
of 0.2250 + 0.0002,

Pigure (4.4) is the data labelled (a) of Figures (4.2)
and (4.3) shown together with the values ¢f o calculated
using method 1A, which is shown as plot (d). The lines Cl
and 02 are the values of ¢ calculated from fE and a
linearly-interpulated fs, which werc themselves calculated
from the values of fn being respectively unadjusted and
adjusted, for the end-cffect.

Some nention shcoculd be made of the difference in the

values of f; between those for data (a) and (b) and that
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for data (c), oee Table (4.2). The diaphragn drive
method ((a) ancd (b)) must produce some load on the
specimen and this is considered to be the cause of the

lower values of f_

o resulting from this umethod of drive.

Using the value of £, of data (a) as the "loaded" value,
and that of (c¢) as the "unloaded" one, equation (3.4)
gives a value of ©.006 gn as the mass loading on each end
which is equivalent to the loading prcduced by the
diaphragm. This is about four times that duc to the
zverage loading of the wire and “Agquadag" on the ends of
the rod, The cxnlanaticn of the reduced values of fE for
dato (a) and (b) (an effect noted in all observations made
using this nmethod of excitation, though not necessarily
by +the amcunt shown in Table (4.2)), is further supported
by the observed decrease in the values of fn when the
diaphregms were pushed tightly intc the ends cf the rod.
A maximunm decreasc in f; of the order of 33 ¢/s was noted
and substantial distcrtion of the shape of the rescnance
curve cccurrcd, No equivalent increase in the value of fs
is noted for data (c), sec Table (4.2).

The wvalues of the end-effect correction as shcwn
in Table (4.2) agree within exncrimental err:r. The

difference in values of f, for data (a) and (b) is due
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mostly to the dif ferencce in valucs of Af for these two
sets of data. It is shown in Chapter 3 that the effect
of loading the rod produces a correction which is
proportional to fn whereas the end-effect correction scens
to be écnotart Jor all fn . Therefore the ceffect of the
inereascd load due to the diaphragm of data (b) should
not affect the value of Af.

From the results shown in this section, the following
cunclusions can be drawn.
1. The velocity dispersiovan in *he 5" x %" glass cylincer
can be ex»nlained in terms of the exact thcory up to values
of &/L of 0.65, subjcct to the condition that a constant
end~effoct correction is made to the values of the
resonant frequencies, this corrcection being given by
equation (4.1).
2. Above d/L = 0.65, the value of the correction
necessary tou nroduce the sarne consfant value of ¢ above
and below d/T. = 0.65 has tou be increased by a factor of 10,
3. The position of the universal point at d/L = (::.58606
as predicted by the exact thoory is supported by the
measurements taken from the non-infinite glass cylinder, in
the sense that the valuc of ¢ derived from the theory of

the universal point is equal tu that resulting from the
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dispersion measurenents when the end-effect is taken
into consideration.

Four as»ccts of velocity dispersion in short
cylinders still need investigating:
1. The dependence of the value of Af on rod dimensions,
see section (4.c.dii).
2. The dependence of Af on the ninterial of the rod,
see Chapter 5.
3. The reproducibility of tho value of ¢ by nrcthods
indepcencent of the dispersion ncasurcments, sce section
(L.c.diid).
L, The effect of anisotropy of the material of the rod

on thc measurement of Poisson's ratio, sece section (4.g).

(ii) Variation of the dimensions of the given cylinder.

The cylinder was shortened to 24" in length and
annéaled as described in section (4.a). Values of the
resonant frequencies were .ieasured nany times using the
condenser microuphone technique (to avoid any possible
inaccuracy due tou loading to the diaphragm, incurred in
the diaphragm nmethod) until typical values had been
cbtained,

The rod was then "ground down" to 4" in diameter,
thus producing a rod of the same rclative dimensions as the

original one. After annealing, the values of the rescnant
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frequencies were measurced a number of times using the
condenser niicrophone systemn.

Pigure (4.5) shows the values of Poisson's ratio
calculated from the uncorrected values of the resonant
frequencies of the three rods by method 1. The
experimental points (a), (b) and (c) are for the rods of
dimensions 2%“ x 3v, 2%" x 4" and 5" x %“ respectively,
data (¢) of this graph being the same as data (c) of
Figure (4.2). The vertical lines shown in Figure (4.5)
are the spread of values cobtained from the calculation of ¢
from the many sets of resonant frequencies for rod (c).
Similar ranges of valucs of ¢ exist for data (a) and (b),
but have not been shown in order to avoid confusion.
Bearing this in nind, it is possible to conclude that
the value of ¢ calculated in this manner is dependent only
on the value of d/L at which it was calculatecd,

Figure (4.6) shows the data of Figure (4.5) amended
by the acddition of an end-effect correction calculated
from eguation (4.1). The value of this correction i1is an
average of the values shown in Figure (4.6), which is
shown in Table (4.4) which also gives values of vy and v

and ¢ derived frorn the same data.
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TABLE (4.4)

Calculated data for glass rods of different

dimensions

Data (a) (v) {c)
Dimensions 2L x 4 23" x 4n 5" x &n
(1) Af, ¢/s 12,2 + 1.6 4.3 + 2.3 4.1 &+ 0.7
(2) v, Ke/s 5238 + 2 5236 + 2 5237 + 1
(3) v s ke/s 3345 + 1% 3344 + 1% 3345 & 13
(4) o(1) 0.2251+040005 0.2249+0,0005::,2257+0,0005
(5) o(2) 0.2258+0.00:06 0,2256+0,0006 10,2260+, 0006
Notes:

(2) and (3): principal error due to error in length
measurcmnent

(4): average of values of Figure (4.6)

(5): obtained from f., (calculated from f.) and f (computer—
interpolated at univérsal point) in equa%ion (1.82).
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It is seen from Table (4.4) that the values of
Foisson's ratio calculated from the dispersion data
obtained from rods of three different dimensions are the
same, within experimental error. The universal point
is seen toc occur at the same value of d/L as
given by the exact theory in all three rods, as deuonstrated
by the constant values of Vg and ¢ predicted by this
theory. The value of Vi obtained from the fundamental

and end-effect
rescnant frequency suitably adjusted for dispersion/is
seen to be constant within the eiperimental error.

The end~effect currcection appears to be dependent
on the value of d/21 for the rod under test although this
conclusion is only supnorted by observatiomrs on rods
having two values of this ratio. Chapter 5 deals in
detail with the end-effect correction, and further comment
is made there.

(iii) Poisson's ratio measurements using various cther
techuniques

As described in section (1.i), two methods, independent
of dispersion neasurcrients, are available for obtaining
Poisson's ratio for the material of the rods.,

The first tcchnique comes from a measurement of the

fundamental shear mode resuvnance, which was excited and
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measured in the 5" x 1" rod by a technique described

in scetion (3.d). Four turns of onamelled copper wire
(s.W.G. 36) were wound on each end of the rod, as

shown in Figure (3.5), "Durofix" being used to cenent
the winding in place. The frequency of the resonance
was measured, after which one turn was removed fronm
each end. This rrocedure was repeated until only one
turn remained. The nmass and dimensions of each turn were
determined and the appropriate form of equation (3.4)
was used, giving a fundamental shear nmode frequency of
13.14 4+ 0,02 ke/s. The error quoted arises fron the
poorness of the estimation of the loading effect due to
the difficulty of deciding what effective length of the
leads of the coils to include and in the estimating of
the moment of inertia of the winding.

The second method of obtaining Poisson's ratic is
the 5 ric/s pulse technique, see Snith (1965). The specimen
used in this umeasurocment was a cylinder 1" in length and
about 3" in diameter (which had been cut from the same
block of glass which gave the 5" x %" cylinder), and was
annealed in the same manner as the other rods. This
technique gives vy and Vg the former being the velocity
of longitudinal prcopagation in an unbounded medium, given

by g(k + 2p )/p%é-, v, being the shear velocity.
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TABLE (4.5)

Data calculated from 5 mc/s pulse technique

neasurenents for glass

(1) v, (n/s) 5611.9 + 0.5
(2) v (n/s) 3332.1 & 0.5
(3) density, (gm/cc) 2,568 + 0,081

(4) prx 1511(dyn,/cm2) 2.852 + 0,002
(5) Ax 1511(dyn./cm2) 2,385 + 0,002

(6) Bix 1611(dyn./cn?) 7.003 + 0,002

(7)  vp(n/sec.) 5222 4+ 2
(8) o 01,2277 &+ 0,012
Notes:

(3) average of measurements taken from the threo

previously described cylinders and the 1" x %" cylinder

(8) calculated from 0 = E'- 1
2yt




TABLE (1.6}
Calculated vaiues of Poissun'’s ratio for glass
(1) (2) (3) (4)
00,2257 0.2260 0.2310 02277
+ 0,0005 + 0.,0006 + 0.0035 + 0,0012
Notes:

(1) average of first twelve values of data (c) of
Figure (4.3)

(2) £ and fs(z) for data (c¢), Table (4.2)
(3) fp and directly measured value of f_ = 13.14 kc/s

(4) 5 mc/s pulse method, see Table (4.5)

122,



TABLE (%.7)

Calcuiated values of moduli

for glass

(1)
- —11
Eix 10 7.045
+ 0,003
=11
ptx 1C 2,870
+ 0,002
At x 13 2,39
+ 0,02
Notes:

I+

I+

(2)

7,044
0.CN3

2,874
0.002

2.36
0,02

I+

I+

(3)

7.039
0,003

2.872
0.002

2.36
0,02

I+

I+

(%)
7.003
G.002

2.852
0,002

2.385
0.002

(5)

2.856
+ 0.009

(1) from (c) of Table (4.4), prtobtained from vs(2)

(2) from (a) of Table (4.4), p!obtained fron v (2)

(3) from (b) of Table (4.4), p'obtained fron vs(z)

(4) data from 5 mc/s pulse nethod

(5) result of direct neasurerent of £ =

13.14 kc/s

123.

(dyn./cm%

L]
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Table (4.5) gives the data from the 5 mc/s pulse

method. Tahlc {(4.6) gives values of Poisson's ratio
for alj three meithods, dispersion, shear mode resonance
and puise technique. As can be seen, values (1) and (2)
obtained from the dispersion measurcments, are sonewhat
lower than values (3) and (4) which were derived by the
two cother methods, though the experimental errors nearly
cover the range of values. Table (4.7) gives the values
of Young's modulus and the Lamé elastic constants
obtained from measurements on the various samnples of
glass used; A was calculated from E'and p' by the
relationships shown in Appendix 1., From this table can
be seen more clearly the agreemnent between the values of

y' obtained by the pulse method and the direct measure-
rmment «f tvhe shear node frequency, these values being
quite distinctly lower than the values of @ obtained
from the value of fs given by the universal point theory,
for all three rods. Although the 5 nc/s pulse method
value ¢f B' is lower than those values deduced from the :
fundamental rescnant frequency of a rod, oisson's ratio

is practically unaltered, see Table (4.6).

(iv) Display of data using method of Edmonds and Sittig

Having obtained independent values cf the shear
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velocity, it is now possible to display the dispersion
data in +the marner of Bdmouds and Sittig, see section
(1.4i). #igure {1.7) shows the theoretical curve for

¢ = 02282, and the experimental points A, B, C,

which have been derived from data (a) of Figure (4.3).
Points A are the values for the resonant frequencies to
which have been added the correction of 4.2 c¢/s; the

value of f_ used to obtain fn/n.fs (= vn/vs) is 13.167 kc/s,
see Table (4.2). Points B are the values for the
uncorrected resonant frequencies, the firast four points
only having been given as the others are equal to points

A. It is not surprising that points A fit the theoretical
curve s. well, because fS was interpolatod from these

phase velocity measurements. Points C are the experimental
points which result from the use of f_ = 13.14 kc/s

which is the value obtained from the direct measurement

of the fundamental shear node frequency and the uncorrected
values of f (data (a)). As can be seen, the use of a
decreased value of fs is to displace upwards the values

of the ordinates in Figure (4.7). At 4/L = 0, the value

of the ordinate is

gz(l +a) 3% - §2(1 . 0.2) 3’}
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whiclh: resuits from the definition of Poisscon's ratio as

Y
c = %.'(VE/VS)L, -1

and the knowledge that v_ = v, at d/L = 0. Hence the

B
ordinate for 4/L = O in Figure (h.?) is a measure of the
Poisscn's ratio of the material of the rod. The
extrapulated value of pcints C at d/L = 0 gives a Poisson's
ratioc of 0.2302 which is the value resulting from
£y = 13.1% ke¢/s and fp = 20.610 kec/s, this latter value
being that resulting from the uncorrected value of fl
for data (a), as indeed it should be.

Care nmust be taken in comparing the experimental
data of Figures (4.4) and (4.7), which are derived from
the same values of the resonant frequencies., For
d/L > 0.6 in PFigure (4.7), the experimental points A do not
lie between the theoretical curves for (,2 and 00,2252,
wherecas these samec data points do on Figure (4.4),
This apparen- contradiction arises from the fact that the
déta of Figure (4.4) depends upon n.fE/fn, whereas that
of Pigure (4.7 ) is a reasure of fn/n.fs. In Figure (4.4),
the value of fE is derived from fl which is too low by

an amount equal t¢ the end-effect correction; even on

adding this correction to the f v-lues above d/L = 0.6,
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the disperzicn is too low to give g = 0.2252, and thus it
mush he exvi~ined in terms of the fn values being too
high. Tuvo hiigh a value of fn will increase the values of
fn/n.fS as shiwn in Figure (4.7). The low d/L value
deviation from a constant Poisson's ratio shown in both
grapvhs arises from the fact that the fn values are low
due to end-~-effect, the correction required becoming less
and less ilmportant as n increases. In this case, the
effect will show up as a decrease in the ocrdinates of

both graphs as the reduction in f. 1is greater than the

1
reduction in f2/2 for Figure (4.4).

(¢) Summary of findings for the glass specimens

Subject tc the conditions concerning end-effect
referred to in section (4.c.i), it can be said that the
value of Poisson'!s ratio given by the exact theory for
the short cylinders used, in terms of both the velocity
dispersion and the universal point, is one that can be
obtained by measurements indenendent of the exact theory.
In fact, there is a slight difference in the values, which
is not accounted for by experimental error. Nonetheless,
the closeness of the values of loilsson's ratio has only
been equalled by Zemaneck's work (1962) on a well-annealed

aluminium cylinder which had a value of ¢/21 of 00,0071
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compared with the value of 0,05 resulting from the
longest cy!l.nder used in the present investigation,

The method of Edmonds and Sittig has been shown
to depend critically on the value of v_ used in the
calculations. From Pigure (l.l), it is possible to
calculate the value of f_ (in the manner described above)
derived from the universal point; the value obtained is
6.63 kc/s. However, the authors quote a re asured value of
£ (derived from the average of the first 17 harmonics) of
6,462 kc/s. The difference in these two values explains the
deviation of the experimental curve from the universal
point in Figure (1.1). Thus, the adherence of the dispersion
data to the theory at the universal point would give a value
of o0 of 0.324, whereas that obtained from the measured
values cf fs and fE would be 0.393. The authors concluded
that the deviation of the experimental data from the
universal point was due to anisotropy of the material of
the rod. The question of the effect of anisctroupy is

considered further on in this chapter.
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(e) Polystyrene rod measurenents and discussion

(1) General observations

In order to¢ nmininise the presence of strain
anisctropy in the rods, a careful annealing process was
followed. The block of material, from which a rod was to
be turned was annealed at about 110°¢ for about one hour,
after which it was allowed to couol to room temperature
very slowly (over about ten hours). This temperature is
above the glass transition temperature, and therefore
distortion of the shape of the block sometimes occurred.
A rod was then turned slowly from the block, plenty
of coolant being used in the process. The rod was then
annealed once more, the temperature of the oven being
close to but less than the estimated glass transition
temperatuie of 9500, in order to avoid distortion of the
shape of the rod. Measurements were made ok the resonant
frequencies of the rod, subsequent annealings
being sometimes necessary, as determined by a large
scatter in the values of the resonant frequencies. The
measurenents of resonant frequency were made under the
same conditions of temperature stability as were anplied

to those for the glass rods, sec section (4.c.i).
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Figure (4.8) shows the values of Poisson's ratio
obtained by method 2 for two cylinders of polystyrone,
(2) a 5" x 4" rod and (b) the same rod shortened to
24" x 4", a measure of the spread of values observed for
the 5" rod being shown by the apprcpriate vertical lines.
The spread of values of the 24" rod is such that it is
probably not quite correct to say that Yoisscn's ratio for
the two rods is sclely a function of ¢/L, as was the case
for the glass rods, see Figure (4.5).

Figure (4.9) incorporates the same data as Figurc (4.8)
with a correction of 12 c¢/s added to cach of the values
of the resonant frequencies of the 5" rod, and a correction
of 24 ¢/s added to each of those of the 24" rod. These
are the averages of Af obtained from the values shown
in Figure (4.9), which wore derived from cquation (4.1).
The horizontal lines of Figure (4.9) are the values of ¢
rosulting from f, and fs(l) for the two rods shown in
Table (4.8) which shows the valuos of various constants
of polystyrene derived from neasurenents on both rods.
The principal source of orror in the wvalues of f is

BE
the crror in the value of Af. It is likely that the
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value of Af for the 5" rod is constant, though no

such statement seems valid for the 23" rod. An

attempt was made to measure the fundamental shea?
mnode frequency in the manncr described in section
(3.d.ii}, but the resonance was so broad and shallow,
and +the loading corrcction so great, that it is only
possible to say that the value obtained was of the same
order as that derived from the universal point theory.
However, values of Young's rmodulus and the shear modulus
were obtained from static load’vwg measursements, a

value of ¢ = 0,32 + 0.02 resulting. " These measurements
are not very accurate, depending as they do on the

fourth power of the radius of the rod under test.
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TABLE (4.8)

Calculated data for polystyrene rods

(1) af (c/s)
(2) o (ke/s
(3) fs(l) (ke/s)
(4) fs(2) (kc/s)

(5) (o)
(6) (1)
(7)  o(2)

(8) vy (w/s)
(9) v (2)(n/s)
(10) ¢ (sw/gg)

E"xl"

1242
7.+330+0.002
4.487+0.001
4.48940.002
0.3353+0.0009
0.3354+0,0011
0.3342+0.0011
186242
114041

1.250+0.002

(11) BE'x 1Q' (dyn/c®B3.640+0.005
(12) p'x 16_7 (dyn/crd 1.36+0,02
(13)X x 10 (dyn/cnd2.844+0.5

Notes:

(3) obtained from lincar interpolation between appropriate

resonances

24 xin
24412
14,.669+0,012
8.987+0.002
8,977+0.002
0.3365+0.0025
0.335 +0.003
0.338 +0.003
186312
114041

3.65040.006
1.36+0,02
2,94+0.5

(h) conputer-interpolated from all resonant frequencies

(5) average of values of ¢ for d4/L < 0,70

6) calcula:ed from f, and £ (1)
B <]

(7) calculated from f_

p and fs(2)

(10)average of values obtained from both rods
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Whilst it can be said that the overall behaviour
of the polystyrene rods is similar to that of the glass
rods, certain differcences do exist. The constant value
of the correction is applicable for a slightly groater
range of d/L values for the polystyrene than for the glasé
rods, i.e. 0.70 as opposed to 0.65. Above these values
of d4/L, whilst the resonant frequencies of the glass
rods seem to be greater than required to give a constant Af,
those of the polystyrene rods are less. Another difference
is in the scale of correction regquired to produce a constant
Toisson's ratio at low d/L values; Af/fE for the glass is
about 1/5000, whereas that for the polystyrene is about
9/5000.

Figure (4.10) shows the data of the 5" rod displayed
in Edmonds' and Sittig's manner, for values of fn/n as to 1
measured and after the addition of the end-effect correctiog7
The deviation from the theoretical curve of 0.335 at
d/L = 0.6 is due to two offects. Of the 0,0C05 deviation,
0.0002 is due to the fact that the correction of 12 c¢/s had
not been added to the resonant frequencies used, and the
remainder is accounted for by the fact that the value of
Poisson's ratio at this valuec of d/L is 0,3356, and not

0.335. Displacement upwards of the thecoretical plot of
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Figure (4.10) by 0.0003 ives an ordinate value of
0.0218, which is equal to a Poisson's ratio of

value
0.3354, which agrees with/valuec expected. The
deviation at the low d/L values is due mostly to the
laclk of the correction, as is shown by the experiniental
points included in Figure (4.10) which have been
calculated from the resonant frequencies to which the
correction of 12 ¢/s had becn added.

The table below shows the values obtained by others

for some of the constants of polystyrene,

T4BILE (4.9)
Constants of polystyrene at room temperature
Observer Eilﬁlo ;leUloz o Comments
dyn/cn dyn/em
(1) Mason (1958) 5.28 1.2 0.41 -
(2) Wada (1959) 3.7 1.39 0.33 at 33 and
66 kc/s
(3) wada (1959) - - 0.33 at 1 me/s
(4) Nielsen (1962) 3.4 - 0.33 -

Wada et al. have calculated Foisson's ratio at 33 kc/s
from -40°C to 80°C and show that it remains constant

at 0.33 for the whole tenperature range. As can be
seen, Mason's values (quotod fron the American Institute

of Thysics Handb.ok, McGraw-Hill, 1957) dif fer from the
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others quoted, though no mention is made of the type of
material used.® The values obtained from the present
investigation of velocity dispersion seem to agree well
with the values of Wada et al.

It can be concluded that the velocity dispersion in
the polystyrene cylinders used can be expressed in terms of
the exact theory for infinite loss-less cylinders subject
to the condition that at low d/L ¥aluesa a suitable and
more-or-less constant correction is made to the values of
the reéonant frequencies. The very high value of ¢ for
d/L = 0.1 for the 5" rod is due to the correction there
being 9 c¢/s whereas the average correction (which was used
in calculating ¢ versus d/L) is 12 ¢/s. This n = 1 and 2
value of Af was consistently lower than the average value
for many seuvs of readings, and it may be that the use of
an average value for Af is erroneous. The high d/L

values of Af will be referred to in Chapter 5.

¥ The value of the Lome elastic concltants guoted by linson in the
L.I,P. Fandhoor {1957 and 1962) are incompatible witi the value of 10
a uuoteﬁ, and a8 given in Teble (4.8). Thwop = 1.2., A = 3.4 x 1C
dyn./em™ vhich give values of ® ond o as 3,20 x 10 dyn./mna and
0.37 respectively. These values are much nearer those of Wadae anc
of Hielsen, ond also of tlhe present investigatiorn. IL is possible
that the error is o typcgraphicel one,
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(ii) Effect of pin support position on values of
resonant frequencies

Figure (4.11) shows the results of an experiment
carried out to investigate the effect of the position of
pin supports on the resonant frequencies of a 5"x 3"
polystyrene rod., The rod was supported at five different
places along its length, specified by the letters (a) to
(6). The positions were:

(2a) one support at 4" from each end

(b) one support placed at 14" from each end
{c) one support placed at 134" from each end
(d) one support placed at 13" from each end

(e) one support only, and that placed at the centre of the
rod

Table (4.10) shows the values of fj and f for the
first four resonances used in the calculation of Toisson's
ratio from the dispersion measurecments which are shown in
Figure (4.11). PFigure (4.12) is a full-size diagram of the
positions of the supports. It is suggested that Figure
(4.11) shows the increasing of the values of the resonant
frequencies due to the pin supports being close to the
end of the cylinder. As the supports are moved nearer
to the centre of therod, the effect diminishes, disapvearing

entirely when the support is at the centre, It is to be
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TABLE (4.10)

fn_(kc/s) versus support position for

polvstyrene rod

1 2 3 4 £

a 7.332 14,624 21.859 28.998 7.337
b 7.326 14.620 21.855 28.989 7.331
c 7.325 14.619 21.853 28.989 7.330
d 7.323 14,619 21.853 28.993 7.328
e 7.318 14,614 21.851 23,987 7.323

s
PN
Cppabuny O
-

!\,A o
ﬁ’—————p,
-5:-@-——0
et T*
q——-—-p

PIGURE (4.12)

Positions of supports on polystwrene rod, full size
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noted that the increase in resonant frequency dccrcases
with increasing wvalue of n.

Appendix 6 gives a theory of the effect of a
constraint placed on the ends of a rod, excited into E-
pode rescnance; the derivation follows Parfitt's (1954)
for a centrally placed constraint. This latter theory
predicts an increase in the values of the frequencies of
those resonances of even numbeor; no effect should be
observed on the odd number resonances as the supports are
then placed at anti-nodes., The effect of an increase in the
value of the odd number resonances would be to decrease the
value of the Poisson's ratio for these values, as calculated
from dispersion, by method 1 or 2, though no such effect is
noted for the values (e) of Figure (4,11). The theory
given in #ppendix 6 predicts that the values of all the
resonant frequoncies are increased when a2 constraint is
applied at each end, and by an amount which is inversely
proportional to n2, though the effect demonstrated in
Figure (4.11) and Table (4.10) is proportional to 1/n,
rather than to l/nz. From the values of f, for data (a)

1
and data (e), it is possible to estimate the value of e

tho stiffness constant of the constraint, for E = 3.4 x 10 1035

3.

dynes/cm2 and n = 1, The value obtained is 4.8 x lO.denes/cmg.



144.

Unfortunately, use of the values of the other resonances,
(a) and (e), in a similar manner gives a value of e,
which doubles as n increases by unity from n = 1. A

more serious fault of the theory however, is that the
effect of a support at each end is less than that of one
support in the niddle (compare equations (A6.6) and (A.6.11))
which seems unlikely, particularly as no effect of a
central constraint has been detected. Perspex rod
resonances showed some indication o;?i}fect similar to that
found in the polystyrene rod, but the Q values of the
resonances of perspex rods are so low that accurate
measurement of the resonant frequencies was impossible.

It is ot surprising that a glass rod did not show any
support effect because the pins of the support system do
ﬁot penctrate the surface of the rod, it being hard and
brittle. However, an aluﬁinium rod is soft enough for
steel pins to penetrate its surface, and yet no increase

in the values of the resonant frequencies were observed.
Reference to equation (A6.12) offers some explanation.

The increase in frequency predicted by this theory is
proportional to (eo/E)z. As the value of E of alvminium

is about a factor of 20 greater than that of polystyrene,

the constraint on an, aluminjum rod nust be 20 times
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greater for a shift in the resonant frequencies equal
to that observed in the polystyrene rod. The most
important variable determinants of e, are the length

of the pin between cylinder and fastening point and the
tension of the spring holding the top pin, neither of
which is capable of incrcasing the value of e, by the

amount required.

(f) Perspex rod measurements and discussion

As for the polystyrene cylinders, care had to be taken
with the anncaling process for the perspex cylinders. The
glass transition temperature of perspex is about 120°C and
therefore the block from which the cylinders were to be
turned was heated slowly up to a temperature of 135°C and
left there for about an hour, after which it was slowly
cooled to room temperature. After turning the rods from the
block, they werc Znnealed at temperatures close to but
below 120°C, e.g. 100°C to 110°C.

-¥Whilst the problen: of annealing the specimen rods was
great, the main experimental problem was the accurate

determination of the values of the resonant frequencies.
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The Q@ values of the glass cylinder resonances were

3f the order of 5,000 and those of the polystyrene rods
300, However, the Q values of the perspex rods were
only of the order of 30, which resulted in an
experimental error in values of fn/n of + 5 ¢/s for the

higher n values,

Notes for Table (4.11) (following)

* py definition

(3) calculated from uncorrected resonant frequencies

(4) Af calculated for ¢ = 0.35

(5) Af calculated for o .30

it

(6) calculated from dispersion data derived from
resonant frequencies corrected by Af = 10G c¢/s
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TABLE (4.11)

Calculated values of ¢ and Af for 5" perspex rod

(1) (2) (3) (&)  (5) (6)

n d/L £ /n(kek) vw&h o(1) af(1) (/9 af(2) o(2)
(c/9

"1 0.05 8,560 1.00076* 0.350% - - 0.300%
2 0.,10 8.590 0.9973 - 100 90  0.35,
3 0.15 8.595 0.9970 - i3o0 115 0.285
4  0.20 8.555 1.001% ~r0.11 130 95 0.31,
5 0.25 8.535 1.0040 nJo.ll;5 180 125  0.274
6 0.30 8.440 1.0148 0.23, 165 100 0.305
7 0.35 8.330 1.,0222 0.23 220 120 0,29,
8 o.40 8.335 1.0278 0.21, 320 185 0.26O
9 0.45 8.115 1,0556 0.267 245 95  0.31,
10 0.50 7.965 1.0759 0.266 235 115 0.29.
11 0.55 7.745  1.1064 0.27, 270 80 0.31,
12 0.60 7-535 1.1373 0.27, 290 115 0.293

13 0.65 7.230 1.1765 0.2'75 265 85 0.313
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Table (4.11) shows the values of f /n obtained for a
5" x %" perspex rod, held centrally by one pin support, and
excited by the condenser microvhone technique., It is
immediately scen that the values of fn/n for n = 2 and 3 are
higher than that for n = 1. The cause of this is the very
high value of the end-effect correction which produces a
greater effect in the values of the resonant frequencies
than does the dispersion. Values of the end-effect
cerrection have been calculated for two values of Poisson's
ratio, C.35, which is the value quoted by the manufacturers
(r.c.r. Ltd.), and 0.30 which was found by trial and error
to be the value of ¢ which gave a more or less constant
value of Af, whose average value was 10U + 15 c/s.
If constancy of Af is the criterion which determines the
value of Poisson's ratio, then Table (4.11) shows that this
value is 0.30.

Table (4.12) gives values of the constants of perspex
calculated from the measurcements taken from the 5" rod and
from a rod made from the same block and of dimensions

24" x 4™, It is seen that the values of ¢ resulting from the



TABLE (4.12)

Rod length

(1) Af, c/s

(2) fps ke/s
(3) £,(1), ke/s
(%) fs(z), Ke/s

(5) o (0)
(6) o (1)
(7) o(2)

(8) v, m/s
(9) Vs(z), /s
(10)p, gm/cc

Calculated data for perspex

5"
100+15
8.67+0.02
5.37+0.01
5.30+0.06

0.304+0,02
0.30+0.01
0.3440.03

2202+5
134644

1.18140.001

(11) E:'ch'lo,dyn./cm2 5473+0.01

12) n'x195%°
(12) p

Notes:

(3) obtained by a linear interpolation
(4) obtained by a computer interpolation
(5) average of values from column (6) of Table (4.11) and

,dyn./cm2 2.13+0.01
1. =10 2
(13) 2'x10" " ,dyn./cm

4,7+0.1

equivalent for 23" rod

(6) calculated from fs(l) and fg
(7) calculated from fs(z) and

L

24in

300450
17.47+G.05

10.68+0.05

0,31,.40.C2

5

0.34+C.03

221845
135615

1.17820,001

5.80+0.01
2.1740.01
4.5+0.1

149-
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dispersion data and from the universal point theory
are about the same, within the large cxperimental errors.
Due to the high damping factor of perspex it was quite
impossible to measure "oisson's ratio by either of the
two other methods available, though static loading
experiments gave a value of 0.33 + 0.03. .
The table below shows the values of certain constants
of PMlIA obtained by other workers, As for the polystyrene,
no mention is made of the nature of the material under
test, and some of the data is offered with no reference to

the nmethod of measurement.

TABLE (k.13)

Constants of PPMMA at room temperature

Observer gii?;zmz “é;ﬁ?;zmz Poi::zg's Conments

(1) Mason (1958) 4.0 1.4 O.h -~

(2) Wada (1959) 6.3 2,2 O.h at 33 kc/s

(3) Nederveen (1962) 6.0 2,2 0.28-0.50 at 10 ke¢/s

(4) Nielsen (1962) 3.7 - 0.33 -

(5) X.C.I.Journal - - 0.35 statically

. mecasured

(6) Heyde mann 5.0 - - 50 ¢/s -

(1962) 1000 ¢/s

flexural mode
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'
Koppelmnann (1958) has measured E'and/through a

secondary transition (sce section (2.f)) in PMMA at room
temnperature; the position of the transition is at about

5 ¢/s. A frequency dependent value of ¢ was obtained,
with a minimum occurring at about 10 c¢/s. Nederveen (1962)
has also investigated the material over the same frequency
range, but did not find the minimum observed by Xoppelmann.

The following table shows the findings of these two workers.

TABLE (4.13a)

Frequency dependence of 1’oisson's ratio for

perspex
-3 -2 -1 10° 1 2 3
Frequency c/s 10 10 10 10 10 10
Koppelmann 0,30 0.32 0.31 0.25 0.12 - 0,32
Nederveen (0.22 - 0.35) - 0.29 {( Via30 -~ 0,45 )
to 0.39

As can be seen, Nederveen quoted very wide tolerances
for the possible values of i‘oisson's ratio arising from
inaccuracies in measuring E'and p'. He did not find the
minimum in Poisson's ratio observed by Koppelmann and found
that the range of values quoted in Table (h.lga) for

6

the frequencies 10™2 to 107% remained constant, to 10~
Wada showed that o remained constant at 0.4 from
20°C to 100°C, but that below this temperature it decreased

c/s.
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to 0.35 at - 40°C. Wada's measurements were made at 33 ke/s.
The problen of a frequency dependent value of Poisson's
ratio will be considered in Chapter 5.

As can be seen fron Tabie (4.12), the value of Poisson's
ratio obtained from fE and fs(z) agrees reasonably well
with the value quoted by Nielsen and the I.C.I. value. However,
it has been shown that only a value of Foisson's ratio of
0.30 will give a constant end-effect correction,

Some corment should be made on the difference between
static and dynamic values of Poisson's ratio. Landau and
Lifshitz (1959), show that the difference between the
adiabatic (dynamic) and isothermnal (static) values of

Young's nmodulus, Ea and Ei respectively, is given by

1 . a .T
E. - B = (4.2)

where T is the absolute temperature
a is the coefficicecnt of linear expansion
C_ is the specific heat, and
p is the density of thc material.

As p, = p_ it can be shown that

Ea/Ei = (1 + oa)/(l + oi) (4.3)
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where ¢ and ci are the dynamic and static values of
Yoisscn's ratio, respectively. On putting the appropriate‘
values of the constants into equation (4.2}, cquation (4.3)
shows that for (Ja = 0,350¢, the value of Gi would be
0.3502, too snall a difference to account for the range

of values quoted above in Table (4.13).

The experimental results cbtained for the perspex
cylinders are unsatisfactory in that the larzge ¢ xperimental
errors involved in the measurcment of the dispersion produced
large errors in the values of oisson's ratio so derived.
There appears to be a large variation in the value of
Toisson¥s ratio cbserved by werkers in the field, the
rmnost obvicus reason for this being the presence of a
frequency-dependent rmolecular process in the range of
frequenc:” (or temperature) used. It is possible, nevertheless,
to cocnclude with reasonable confidence that the data of
Table (4.11) exhibits the behaviour predicted by the ecxact
theory, if a suitable correction is made to fn’ thcugh
whether for a value of ¢ obtainable by other methods seems
open toc dcubt. The value of the work done on the perspex
cylinders is that the end-effect correction on the resonant
frequencies is so large that it is easily observed for the
5" x %“ cylinder. Resonances higher than the thirteenth were

very difficult tu measure with any confidence; it is
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probably safe to say that they are lower than wculd be given
by the exact theory after addition of the counstant end-
effect, being similar to those of the polystyrene cylinders
in this respect, and not like those of the glass cylinders.
The values of Etobtained frorm the 5™ and the 24t
cylinders are not the same, even when taking account of the
expnerimental errors., If the end-effect corrections were not
added to the values of the fundamental resonant frequency
used to obtain fE and hence B!, however, the values of E!
obtained from the 5" and the 2%" rod would be 5.60 x 1010

dynes/cm2 for both. This point will be returned to in

Chapter 5.

(g) The effect of material anisotropy on the measurements

Two aluminium alloy cylinders of dimensions 8ir x 30
were cut from different blocks of conmercial material which
had been arnmufactured by an extrusion process. Thus the
material of the cylinders was anisotropic, and no attempt
was mnade to correct this. The values of the rescnant
frequencies of the rods were measured, after which they were
shortened and the new resonance frequend®Sdetermined.

Values of Poisscn's ratioc calculated by method 2 from

the uncorrected values of the rescnant frequencies for the
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rods are shown in Figure (4.13). Fronm Figure (4.13)
it is seen that Rod AA would give a negative value of
the end-effect correction, whilst Rod BA would give a
positive value, which is to be expected.

Figure (4.14) shows the data presented in the manner
of EBdmonds and Sittig, the values of fs used to obtain
the experimental points being directly measured, as
described in section (3.d.ii). The values of vs obtained
directly and by interpolation at the universal point are

shown in Tabie (4.14), with v, obtained from £, (with no

E
adjustment for end-effect); 1le values of Poisson's ratio

resulting from these values used in equation (1.22) are

also given,
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TABLE (4.14)

Calculated values of Vg1 Vg and ¢ for rods AA and BJﬂ

£

Ap Ba
(1) v,, n/s, measured 5164+2 519642
(2) Ve n/s, measured 3116+9 3096+9
(3) ¢ (m) 0.373+0,009 0.408+0.009
(4) Vo n/s, interpolated 3157+2 3167+2
(5) o (1) 0.338+0.002 0.346+0,002

Notes:

(3) calculated from equation (1.22) and values of (1) and (2)
(4) linear interpolation between eleventh and twelfth
resonances for 5" x 4" rod

(5) calculated from equation (1.22) and values (1) and (4)
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As can be seen, the interpolated and directly
measured values of v, are quite different, and this is
assumed to be due to anisotropy of the rmterial of the
cylinders, as is the negative end-effect of Rod AA of
Figure (4.13).

In order to investigate the effect of anisotropy on
the values of E, ptand ¢, two further cylinders of aluminium
alloy were made. The dimensions of these rods were 5" x v,
which wore used for measurements of velocity dispersion and
1" x 1" which was used for the 5 rnc/s pulse technique
measurements., These cylinders, machined from commercial rod,
originally of 1%" in diameter, were cut such that their axes
were in the same direction as the axis of the original rod.

After measurcrients had been made on both rods, they
were hcatel to 400°C for two hours and then allowed to cool
slowly in the oven over a periad of eight hours.,
Measurements werc then made on both cylinders. Following
this first heat treatment, the cylinders were once more
heated to 400°C and then suddenly quenched in water at room
temperature. The nmeasurement of the various constants of
the material of the cylinders was again made., Table (4.15)

shows the values of these constants before any heat

treatment and after each of the heat treatments described
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above., The effect of these heat treatments on grain size
and direction, as observed on the etched surface of a test

cylinder of the same material using a low-powered nicroscope,

was negligible.

TABLE (4.15)

Bffect of heat treatment on constants of alurminium

alloy
BEFORE AFTER 1st AFTER 2nd
rod 5tc/s rod 5mc/s rod 5mc/s

resonace pulse resonance pulse resocnance pulse

(1) = 7.497 - 7.560 - 7.632 -
(2) w'(2) 2.797 - 2.813 - 2.835 -
(3) w'(m) 2.717  2.773  2.775 2.720 2,785  2.740
(&) A'(2)  5.95 - 6.20 - 6.37 -

(5) A'(m)  8.55 5.914  7.28 6.066 7.94 6.127
(6) o (2) 0.3400 - 0.3440 - 0.31460 -
(7) o (m) ¢.3795 0.3405 0.3620 0.3450 0.3700 0.3455
(8) 12% - 5% - 7% -

Notes: Uni*s of (1) to (5) are 101t dyn./cmz. N¢ end-effect
corrections have been added.

(2) is the computer interpolated value. (3) is the directly
measured value. (h) is calculated from (l) and (2). (5) is
calculated from (1) and (3). (6) is calculated from (1) and
(2). (7) is calculated from (3) and (5). (8) is

[o(m) - 6(2)]/ o(2)
Brrors: (1) + 0.003, (2) + 0.002, (3) Rod, + 0.0C6;

5 mc/s + 0.002, (4) + 0,02, (5) Rod, + 0.06; 5 nc/s x 0.002,
(6) + 0.0015, (7) Rod, + 0.0010; 5 mc/s + 0.0G02.
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Figure (4.15) shows the effect of the heat treatment
dn the dispersion measurements as displayed in the manner of
Edmonds and Sittig. Plot A is the theoretical plot for g = 0.35,
plot B for o= 0,30 and plots C, D, E are the experimental
plots of the dispersion before heat treatment, after the first
and after the second heat treatments respectively. The values
of v_ used in these last three plots is the value obtained
by a direct neasurement of the fundamental shear mode
frequency which also gave the values of p'shown as p'(m) of
Table (4.15), for the rod resonance column.

The first conclusion to be drawn from Figure (4.15) is
that heat treatment results in the ordinate of this graph
being either increased or decreased, depending on the effect of
the heat treatment on the value of vy as measured by the
fundamental shear mode frequency. The deviation from zero of
the ordinate at the universal point is therefore seen as
arising from a differcnce between the values of Vg resulting
respectively from an interpolation at the universal point and
from this direct measurement of the fundamental shear mode
frequency. This difference is observed in the difference
between the values of M(m) and p(2), and between g(m) and ¢ (2)
of Table (4.15). Row (8) of this table shows the percentage

difference between o (m) and o (2), showing that heat treatment
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affects the deviation from the universal point. Plots C, D
and E can be made to pass through the universal point, for
this is what is in effect done on cbtaining a value of Vg
from the theory of the universal point. It can therefore be
this is the cause of
concluded that/the deviation from the universal point of the
experimental plot obtained by Ednonds and Sittig (1957) and
reproduced as Figure (1.1). The deviation from the theoretical
shape of the plot at high d/L values will be referred to in
Chapter 5. It is tc¢ be rernembered that even if the experimental
plaots €C, D and E were madec to go through the universal point,
then they would only meet at that point. This is shown by the
difference in the values of ¢ (2) before and after the heat
treatment. This value of Poisson's ratio is the one to which
the experimental values of dispersicn most closely fits when use
is made of ti.e exact theory tables of vE/vn as a function of d/L
and 0 , a constant value being obtained as a function of d/L
only when an appropriate correction is made to the resonant
frequencies,

The values of Af obtained both before and after heat
treatment are negative and exhibit a good deal of scatter.
However, it was observed that the range of values did not
chanze much after the heat treatments., The values of Af

obtained for rod B, of Table (4.14) were positive and showed a
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reasonable constancy, having an average wvalue of about
8 c¢/s for the 5" long cylinder, being therefore about twice
as big as that for the glass cylinder of the same dimensionss
No firm conclusions on the effect of heat treatment on the
values of Af are possible from the data obtained in these
experiments, and further comment is reserved until

Chapter 5.

TABLE (&4.16)

Comparison of Poisson's ratio for heat-treated rod

Before After 1lst After 2nd Rod BA

(1) o (2) 0.340 0.344 0.346 0.353
(2) 0 (n),5mys 0O.3405 0.3450 0.3455 0.346
(3) ¢ (m), rod 0.3795 0.3620 0.3700 0.408
Notes:s .

(1) obtained from f_ and the value of f_ resulting from a
computer interpolation at the universal point

(2) resulting from the 5 mc/s pulse experiments

(3) resulting fron fE and the value of fs obtained by a
direct measurement

BErrors: (1) + 0.0015 (2) =+ 0.0002 (3) + 0.0010
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Table (4.16) shows the values of o(2), and of g(m)
obtained from the rod in resocnance and the 5 nc/s pulse
measurcements taken from Table (4.15). Values of Poisson's
ratio for tho rod B, of Table (4.14) are also given. It is
seen that the agrecment betweeno (2) and 0(m) fcr the 5 nc/s
pulse experiments is better than the agrecment between the
two values of 0(m). Though no such simple conclusion can be
drawn for the values of p' obtained by the thmee methods
described above, see Table (4.15); the corresponding values
of M secem to bcar the same rclationship to each cther as do
the values of Poisscvn's ratio, thougi: this follows from the
relatively small differences between the values of p'obtained
by the three methods. Vithout more detailed knowledge of the
naturc of the anisotropies causing the differences in values
of Poisson's ratio, further comment is not possible,

Zemaneck and Rudnick (1961) presented data which showed
that for d/L values up to 0.30, Rayleigh's approximate
solution of the wave equation gave dispersion values which
were closer to those determined experimentally than given by
the exact sclution, for a value of the Poisson's ratio of the
aluninium cylinder obtained from a measurement of the first

resonances of the E-nmode and of the shear mode,.



TABLE {4.17)

Conmparison of exact scvlution and Ravleigh's

0.30

0.35

Notes:

approximate solution for rod AA

(1)
vn/vE

SXPo
0.99705
0.9933,
0.98795
0.98080
0,971k,
0.9596,

(2)
(v,/vE)o
0.340

0.99711
0.99340
0.98800
0.98071
0,97126
0.95933

(3) (%)
(v, /vglg (v, /vg),
0.349 0.379
0.99699 0,99642
0.99324% 0,99186
0.98798 0.,98529
0,98122 0.97654
0.97295 0.96541
0.96319 0.95167

(

i a

0.3445
0.3465
0.3493
0.3527
0.3591
0.3657

(1) experimental values, calculated by method 1

(2) theoretical values forg
(3) tneorctical values foro

(4) theoretical values foro

0.379,

lch\

0.3424
0.3421
0.3406
0.3391
0.3392
0.3386

0.340, from exact sclution
0.349, from Rayleigh's solution

from exact sclution

(5) values of 0 calculated from column (1) and Rayleigh's
solution

(6) values of ¢ calculated from column (1) and exact solution,

see Figure (4.13).
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Table (h.l?) shows a comparison of the dispersion, vn/v s
obtained experimentally from rod A,, with that calculated
from both the Rayleigh solution and the exact sclution for
three values of Poisson's ratio. As can be seen, whilst

the experimental values of the dispersion (column (1)) give

a Poisson's ratio of about 0.34 (column (6)), a value of 0.349
will give values of dispersion from the Rayleigh solution
(column (3)) closer to the experimental values than does the
value of Toisson's ratio of 0.379 obtained from fE and fs
both obtained experimentally, and the exact solution. The
values of Poilisson's ratio resulting from the use of the
experimentally-obtained dispersion in Rayleigh's solution

are given in colunmn (5) and column (6) gives the values of ©
obtained from the same dispersion data used with the exact
sclution. Whilst Table (4.16) does not reproduce the findings
of Zemaneck and Rudnick (in their investigation, the values

of 0 - " in colurnns (5) and (6) were the same), it is obvious
that there can be a closer fit of the experimentally-
determnined dispersion values to Rayleigh's approximate
solution for some given value oﬁfthan to the exact theory

for the value of ¢ obtained fron fE and fs for cylinders which

are not isotropic.
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(h) General discussion of velocity dispersion measurements

It has been shown that the velocity dispersion as
measured in short cylinders is as predicted by the exact
theory, if the resonant frequencies are suitably corrected.
Up to a certain value of 4/L (0.60 for glass, 0.70 for
polystyrene, and about 0.70 for perspex), this correction
is constant, and seems to depend on the nature of the
material. Thus, for rods of dinensions 5" x %", the wvalue
of Af/fE for glass, polystyrene and perspex are 1/5000,
9/500C and 70/5000. More will be said on this subject in
Chapter 5. The value of Poisson s ratio calculated from the
value of fs which 18 obtained from the theory of the universal
point is the same as the average value resulting from the
dispersion calculations, subject to the conditions concerning
end-effect referred to above.

Within experimental error, it has been shown that
values of Poisson's ratio obtained independently of the
dispersion calculations are close to those derived from the
latter and from the thcory of the universal point, for the
well-annealed glass cylinder. Due tc the high internal
losses of the polystyrene and perspex, the alternative methods

were insufficiently accurate for measurements to be made,
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A considerable variation in the quoted values of
Poisson'!s ratio for polystyrene and perspex seems to
exist in the literature, for which no explanation is
offered,

The effect of anisotropy of the specimen under test
on the values of the Lame elastic constants is
considerable, the precise effect produced depending on
the nature of the anisotropy. It is concluded that the
deviation of experimental plots of dispersion shown by
Bdmonds and Sittig is due to the anisotropic nature of the
cylinder under test, and that tne fitting of Rayleigh's
apprroximate solution to the experimental values obtained
by Zenmaneck ‘and Rudnick, rather than to the exact solution,
may well be due to the same effect as these latter authors
pointed .ut.

Finally, in reference to the three problcecms posed
in section (1.h), it can be said that:

1. Subject to a suitable and small correction, the phasc
velocity dispersion in short and almost loss-less cylinders
does follow the depcndence on d/L and Poisson's ratio

as given by the theory.

2. Reods made from naterials having a finite damping

coefficient seem to obey the exact theory, subject to the
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application of an apprcpriate correction, as previously
described.
The guestion of a possible end-effect is raised in

Chapter 5.
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CHAPTER

»ISCUSSICN OF THE AF CORRECTION TERM

(a) Summary of experinental findings and their significance

i) Dependence of A £f/f_, on damping factor
o E o

Tt was shown in section (4.h) that the value of

Af/fE depended on the material of the rod under test.
It was decided therefore to investigate the dependence of

Af/fE on damping factor, and Figure (5.1) shows this
dependence for ten similar rods of different materials,
dimensions 5" x 3". The value of Af will be shown to
depend critically on the correction for dispersion, C,1
occurring in equation (4.1) which itself is determined by
Poisson's ratio. The value of Poisson's ratio is known
only for glass and polystyrene with any confidence and
therefore, the values of Af for ¢ = 0.2, 0.3 and 0.4
were calculated. The damping factor is frequency-dependent
and therefore a range of values of 6E exists. Thus it is
seen that the values of‘Af/fE can occur at any point within
a rectangle whose dimensions are defined by the frequency

dependence of 6E and by the dependence of Af on 0,
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Quoted values of Poisson's ratio are shown in Table
(5.1) along with the source and method of calculation.
The values of Af/fE for these values of 0 are shown

in Figure (5.1) at the nean value of 6E and the line A
has been drawn through the values of Af/fE obtained
for the glass and polystyrene rods, which, it is felt,
are known with the most confidence. The range of values
quoted for the Mn/Cu alloy are taken from the static
loading measurements of E'and g For a rango of alloys
which had been differently heat-treated. Figure (5.1)
rmust be interpreted with cau”ion because:-~

1. the value of Af used is derived from the n = 1

and 2 resonances only, for most of the specimens

2. the rods are likely toc be anisotropic due to

strain (ebonite, tufnol and the metals), and to

density variations arising from voids (solder,

bismuth, thallium) and arising from the nature of the

material (tufnol is a resin-bonded paper product).



: FIG.(5,1) Values of Af/f, vs. damping factor
; ‘ {2 and Poiscon's ~ ratio for ten
; _ 5" x 4" cylinders.
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TABLE (5.1)

Quoted values of Poisson's ratio used in

Material

glass

bismath

polystyrene

Mn/Cu alloy

solder

thallium

tufnol

cebonite

nylon

perspex

Figure (5.1)

Poisson's
ratio

0.225

0.33

0.335

0.16 — 0.38

0.39

O.45

0030

0.32

O.h4

0.35

Source

present investi-
gation

Rare Metals Hand-~
book, Chapman &
Hall, 1961

present investi-
gation

Adniralty
Taterials Lab,
Report A/81(S)

prescent investi-
gation
Schramm

1962

present investi-
cation

present investi-
gation

Anterican Institute

of ’hysics Hand-
book, 1957

I.C.I. Trade
Journal
"Mechanical
Properties of
Perspex"
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Method

dispersion
calculations

dispersion
calculations

static
loading

universal
point
theory

pulse
nmethod

static
loading

static
loading

static
loading
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Cylinders of teak and of softwood were also

investigated and found to lmve large negati&e values of

Af for all values of ¢ , It was shown in section (4.g)
that this phenomenon was likely to be symptomatic of
anisotropy duc in the case of the wooden cylinders to the
grain,

(ii) Devendence of Af on rod dimensions
It was shown experimentally in Chapter 4 that a

constant value of Af was obtained for a wide range of d/L
values. However, another finding to be investigated is the
seeming independence of the Podisson's ratio of the length
of the cylinder. This was observed for the glass cylinders,
Figure (4.5), for the aluminium cylinders, Figure (4.13),
and to a le sser extent for the polystyrene cylinders,
Figure (4.8).

It was decided to investigate the significance of
this in terms of the different values of Af observed
experimentally for the rods of different lengths by means
of an empirical relationship whose basis would be the
observed independence of ¢ of 1l.

The value of ¢ at d/L = 0,20 for th: glass cylinders
is set at 0.2231, see PFigure (4.5), and it is assumed that
the ideal value of vy is 5257.4 m/s, see Table (4.4).

The value of the correction due tu dispersion at d/L = 0.20
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and ¢ = 0.2231 is 1.00533, and therefore the following

equation can be written:

x X
vE = 1.005337 (5.1)
where v; and v: are the "Young's modulus" velocity and

the phase velocity respectively calculated from the
appropriate rescnant frequencies uncorrected for end-
effect. However, the ideal value of Ve has been

defined as 5237.4 m/s and thus

{5237.4) = (fl + Af) x 21 x cq

or

£, = (5237.4)/21 x c, - OF (5.2)

where ¢ is the dispersion correction for the fundamental

rescnance, 1 is the length of the cylinder, Af is the

effective end correction, and fl is the observed value

of the fundamental resonant frequency (uncorrected).
Equations (5.1) and (5.2) give a value of f , the

uncorrected value of the resonant frequency at d/L = 0,20;

n is defined therefore by the value of 1 and d from the

relation n.d/21 = 0.20. Hence f_ is given by

£ =nx[ (5237.4)/21 x c¢; - Af ]x cl/(l,oosgs)
(5.3)
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It is now possible to calculate the values of Af
at 4/L = 0.20 for a whole range of rods of different
dimensions, subjcect only to the condition that their
dimensions are such that n.d/21 = 0.20 gives an integral
value of n. Following the method used in Chapter 4,

¢, is given by the appropriate value of d/2l and

1
¢ = 00,2250 in order to¢ try to reproduce the behaviour
of the glass cylinder.

Four rods of dimensions given below in Table (5.2)

are defined such that 21/F, will give an integral value of

.

TABLE (5.2)

Dimensions of four rods

Nane Diameter(in.) Length (in.) d/21 n
A 0.5 50 0. 005 ho
B 0.5 25 _ 0.01 20
C 0.5 12.5 0.02 10
D 0.5 5 0.05 b

Use can now be nade of equation (%4.1) to calculate
the effective end correction for cach of the four rods
described above, an illustrative calculaticn for rod D

of Table (5.2) being shown below.
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Fromequation (5.2):

£, = (5237.4)/[ 2 x (2.54) x 5 x (1.00032)] -~ Af

£, = (20.6131) - af (in kc/s)

Foom equation (5.3):
£, = b x [ (20.6131) - af ] x (1.00032)/(1.00533)

Equation (4.1) then becomes:

4 x [ (20.6131) - Af + Af ] x (1.00032)
= é [ (20.6131) - af] x 4 x (1.00032)/(1.00533) + Af%
x (1.00533)
and therefore:
13.9 ¢/s = K
4.6 c/s.

(2.9955) x Af
Af

Table (5.3) gives the values of Af for the four rods,
calculated in the manner shown below,.

TABLE (5.3)

Bnd-effect correction agsa function of
dimensions

Nanme K(c/s) bof(c/s) K/AF (21/54 - 1)
A 14.0 0.36 38.9991 39
B 13.8 0.73 18.9977 19
c 14.0 1.56 8.9963 9
D 13.9 h,6 2.9955 3
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The values of K/Af shown in this table are those
resulting from the calculations as shown above. It

is obvious from Table (5.3) that an approximate empirical
relationship between Af and the rod's dimensions can

thus be written:

Af =

T?-l/sg' - 1) (5.4)
where X is some function of the material of the cylinder,
ihe dependence of X on.éEcan be obtained by noting that
Table (5.3) defines K as 3x (the value of Af for the

5" x 3" rod). Hence Figure (5.2) can be cbiained from
the same data which produced Figure (5.1). The line is
drawn thrcugh the two points which are known with
reascnable confidence(for glass and for polystyrene) and
seems to give a linear dependence of K on ép. The

equation of this dependence is

K = 600, & + 12 (in c/s) (5.5)
which with equation (5.4) gives the following empirical

relationship between Af,é}3 and the rod dimensions,

Af =  600:°E 4 12 (5.6)
21/5d -1
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BEquation (5.6) is seen to be valid only for rods whose

dimensions obey the condition that 21/5d <« 1, This
condition is due to the derivation of the theory from the
consideration of the depcndence of g on d/L at 0,20,

Table (5.4) shows the experimentally determined values
of Af for perspex, polystyrene and glass rods of different
dimensions. It is td be noted that for the perspex rods a

value of ¢ = 0.30 has been used in deriving the values of Af.,

TABLE {5.4)

Observed values of Af(c/s) for different rods

Rod length  8%"xdn  gsoxin 24mxin 2% xdn
Glass - 4,14+0.,7 12,2+1.6 L4.3+2.3
Polystyrene - 12+2 24412 -
Perspex 95+10 100+15 300i50 -
(21/54 - 1) 5.7 3 1 3

It is secn that, in terms of the value ¢cf Af for the
5" x %" rod, Af for the 84" x %"‘rod should be 1/5.7 tines
as great, that of the 234" x I rod‘should be three times
greater and that of the 23" x 4" rod should be the same,
It is not surprising that the experimentally obtained values

for the glass cylinders obey these rules, as the behavicur

of the glass cylinders was the basis of the theory. As
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values
can be seen, Af/for the polystyrene cylinders only just

agree with the prcdictions, as is the case for the shortest
perspex cylinder, However,g Af for the longest perspex
cylinder is too high, the medicted value (based on the
value of the 5" x 4" rod) is 53 c¢/s.

The data from the other cylinders (see Figure (5.2))
cannot be used to check the validity of equation (5.4)
as the relationship between the values of Af for different
rod dimensions will hold only for the exact wvalue c¢f Poisson's
ratio of the nmaterial, which is unknown. Measurement of Af
values for rods of dimensions 23" x 4" were made for the
range of nmaterials of Figure (5.2), but are not shown due
to the large range of values resulting from the use of
the range of Poisson!s ratio from 0.2 to 0.4, For oxample,
the values of A f for the glass rod of these dimensions for
6 = 0.2, 0.3 and 0.4 are -58.0, 266.0, and 693.9 c/s
respectively, compared with -4.3, 34.5 and 87.9 ¢/s
respectively for the 5" x 3" rod.

Measurements were made, however, on relatively long
and thin rods of perspex and volystyrene, their dimensions
being respectively, 6.629" x 0,192" and 6.416" x 0.236",
Defining K as three tines the value of Af for the 5" x 3"
rod, the theoretical values of Af for these rods are 23 and

3.6 ¢/s respectively. The values obtained experimentally
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were hQiZO ¢/s and 743 c/s, agreenent between theory and
experirient only being attained by using the extreme values
of the experimental errors.

Equation (5.5) implies that an end-effect correction
exists even for a perfectly loss-less material,iwhich is
consistent with the description by Zemaneck (1962)
that the oend-effect is caused by the boundary cocnditioas
being inapplicable for rods of finite dimensions. Figure
(5.2) implies that there is also a contribution to end-effect
due to the intcrnal friction of the material, The
implication of equation (5.6) that an infinitely long and
thin, loss-less cylinder would have an end-effect should not
be considered too seriously, as this predictiovn was derived
from cylinders whose dimensions were anything but infinite.

Another check on the validity of the empirical theory
develcped in this section is its prediction of the values
of Poissun's ratio as a function of d/L for very long and
thin cylinders, an experiment which could not be carried out
with the apparatus available. Table (5.5) gives the values
of v;/v: for glass and polystyrene cylinders of dimensions
50" x 4"3 the results for an equivalent perspex cylinder
are not shown as values grcater than unity dc not occur

until 4/L = 0,18, i.e, the 36th resonance,



Table (5.5) shows that at low enough values of d/L,

values of v;/v: less than unity will occur for any
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cylinder and not only for those made of high-~loss materials,

TABLE (5.5)

Calculated velocity dispersion in cylinders as given
by empirical theory
GLASS POLYSTYRENE
’ I/ : VI :
2 0.99995 - 0.99913 -
b 0.99997 - 0,99917 -
6 1.00002 0.12-0.15 0.99921 -
8 1.00010 0.16 0.99935 -
10 1,00021 0.185 0,99958 -
12 1,00034 0.195 0.99985 -
14 1.00051 0.204 1.00020 0.13
16 1,00071 0.21 1.00061 0.195

normalised by

O the

Figure (5.3) shows the

LR # rue "

4a/L

0.01
0.02
0.03
0.0k
0.05
0.06
0,07

0.08

values of o of three cylinders,

Poisson's ratio which has been

calculated as 00,2257 for the theoretical values and 00,2252

for the experimental values (those of data (a) of

Figure (4.2)) for the glass;

polystyrene,

respectively;

0.3352 and 0.3356 for the

two theoretical values have been used, 0,36 and 0,31,

and for the perspex cylinder,

the
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experinental value employed being 0.30. As can be seen
from Figure (5.3), there is a reasonable agrceuent
between the theoretical and experimental values for the
5" x %“ glass and polystyrenc cylinders, except for the
first experimental points shown which are for the n = 2
resonance. It is tov be noted that this lack of agreement
for the polystyrene cylinder is shown in Figurc (h.lZ) as
the very high value of ¢ for d/L = 0.10, the cause of this
being thc dif ference between the average value of Af
and the value at d/L = 0.10, which are 12 and 9 c¢/s
rzspectively,

Uf cuurse, the theory does not attempt to explain
the high d/L value behaviour of the Poisson's ratio and
therefore the curves shown in Figure (5.3) should be
terminatcd at 0.65 for the glass and at 0.70 for the
perspex and polystyrene cylinders.,

To summarise the value of this enmpirical theory, it has
been shown that
1. Tt is rcasonably successful in predicting the values of

Af for the shorter cylinders, the experimental value for

the longest pcerspex cylinder being too high,
2. Use of the theory tou predict the behaviour of long, thin

rods of perspoex, polystyrene and glass produces curves of
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0 versus d/L which reflcct the behaviour of short
cylinders, except at low values of d/L for these latter

cylinders.

(b) Comparison with theory

(1) Dependence on damping factor

Edmonds (1961) and Parfitt (1954) have both theoretically
considered the dependence of fn on the value of the danmping
factor, the former for the c¢xact theory and the latter for
the simple (dispersionless) theory. Edmonds corrécted the
exact equation (equation (1.4)) for first order effects only,
and showed that the solution cculd then be separated into
real and imaginary parts, the former giving the fr?quency
equation as before and the latter giving a relationghip
between Q and 6Ewhich will be considered in Chapte?.G.

Thus internal friction has no first order effect oﬁ the
values of the resonant frequencies.

Parfitt obtained equation (1.20) as the relationship
between rescnant frequency and 6Efrom the simple (dispersion-
less) theory. As can be seen, this cquation supports
Edmexdes? fine ' .¢ that there are no first order effects.
However, Parfitt's correction is insufficient in two
respects. First, it is not large enough, for whilst the

corroction c¢aléulated for polystyrene is of the order of
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3

2 x 10°° for the n = 1 resonance, equation (1.2ft) p edicts

a correction of %%/8 which is of the order of 10_6.
Secondly, the correction is proporticnal to frequency
which is not the dependence observed experimentally.
'(There is a slight dependence on n in equaticn (1.21)
but this is of the nagnitude of %g and therefore
negligible as §g= 3 x 1072 for perspex).

It is therefore scen that theoretical dependence of fn

on damping factor is insufficient to explain the

experimental observations.

(ii) Dependence on rod dimensions

Zemaneck (1962) is the only worker to have theoretically
and experimentally investigated the phenomenon of end-effect,
and his particular interest was in the prediction of the
frequency of end-rescnance (see Appendix 2) which he did
with great success, see Figure (5.&). His work however,
was concerned with the dispersion in a "seni-infinite"
cylinder of dimensions 120" x l%“, and he did not
investigate the dependence of end-effect on dimensions.

As pointed out in Appendix 2, the end-effect cannot be
calculated exactly as it depends upon contributions from
an infinite number of nodes, and therefore Zemaneck

calculzted values of the end-resonance frequency and of



189.

end-effect for the first 3, 5, 7 and 9 pairs of modes. The
frequency of end-resonance was found to depend only slightly
on the number of i1odes used in the calculation after the
first three pairs, and Figure (5.4) shéws the experimental
verification of the position of the 9 uiode end~resonance
frequency.

However, the values of the end-effect below end-resonance
were found tc be very dependent upon the number of modes
included in their calculation, but for all numbers of nodes
investigated, w:re found to be approximately proportional
to the third power of the frequeiicy. This prediction is
obviously at variance with the experimental findings reported
here of an end-effect which is independent of frequency for
a wide range of values.

The rolationships between 8 , Af and g, which are
all expressions of end-effect (see equations (1.15), (1.17)
and (1.18)) are as follows,

g = 0°/180° = n. Af (5.7)
(fn + AT)

Using these to convert the experimentally observed values
of Af into value of ©® gives Figure (5.5) as the dependence
of © on d/L for the 5" x %" rods of glass, polystyrene and

perspex. A direct comparison betwecen Figures (5.4) and
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(5.5) is only possible at the universal point due to the
different abscissa scales. However, the position of end-
resonance shown in Figurc (5.4) is seen to be above that
of the universal point and occurs at about 4/L = 1,0.

As can be scen from Figure (5.4), Zemaneck's ¢Xperi—
mental values of @ exhibit considerable scatter, a
phenonienon attributed in the present work to anisotropy
of the cylinder. It is to be romembered, however, that
these values of the end-effect have been obtained
experimentally by anoting the positions of the nodes along
the length of the cylinder at resonance. |

The maximum value of € obtained theoretically by
Zemaneck for a loss-less cylinder was of the order of 0.05o
which is the value reached just before the end-efféct
diminishes to zero at the universal point. Whilst this
is of the order of mcgnitude of the values of © obtained
experimentally for the glass cylinder, see Figure (5.5),
there is no agreemcent between the experimentally observed
frequency dependence reported here and the thecoretically
predicted dependence of Zemaneck, the latter giving a value
of Af which is almost zero for the fundamental and
increasing as the third power of frequency thereafter. In
the present investigation, the correction Af was defined

primarily to expliin deviations from the exact theory at
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the low frequencies for which Zemaneck found little or no
end~effect. Thorefore it is necessary to investigate
other possible causes of the correction Af calculated

in the present investigation.

(¢) Frequency dependence of !, pt' andg

The derivation of a constant value of Poisson's ratio
in the manner of Chapter 4 implies that Poissont!s ratio and
Young'!s modulus are independent of frequency. It has been
seen, however, that the value of Poisson's ratio of pecrspex
below 103 c/s is very dependent upon frequency, though the
precise form of this dependence seems to be in doubt, see
Table (4.13a). It is obvious, then, that the derivation of
a constant value of Poisson's ratio from the dispersion
data need not represent its actual depondence in the
frequency range considered. A further problem exists in
that even if Poisson's ratio is independent of frequency,
then Young'!s rnodulus need not be. Thus a frequency
‘indppendent Poisson's ratio is the result of the frequency
depondence of E* and p¢ being such that o% = E¥/2p¢ - 1
is constant,

Confirmation of the cxistence of an end-~effect can
only be achieved by comparing the same resonant frequencies

of two cylinders of the same material but different lengths
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(to eliminate the possible frequency dependence of IEQ, and
with the same value of d/L (to eliminate the effect of a
possible frequency-dependent Poisson's ratio). The
funcamental frequency of the 24" x 4" rod and the n = 2

resonance of the 5" x %" rod are two such frequencies, both

having a value of d4d/L

0.10. Table (5.6) shows the values
of these two resonaﬁces for the two rods of glass, perspex

and polystyrene respectively.

TABLE (5.6)

Frequencies (c/s) for two rods at contstant d/L (0.10)
but different lengths

(1) (2) (3) (%) (5)

Dimensions su x Lo 24n x 4w (2) - (1) c/s c/s

glass b1,46948 4i,458+17 -11+25 -8 -8
polystyrene 14,623+3 14,627+5 +h48 -24 -10
perspex 17,200+10  17,170%10  -30+20 -200 -200
Notes:

(1) n = 2 resonance for the 5" x 3" rod

(2) n = 1 resonance for the 24" x " rod

(3) difference between cols., (1) and (2)

(4) difference that should exist between cols. (1) and (2)
if the cmpirical theory of section (5.a.ii) were
correct. This is the difference between the valucs of

Af for the two rods as given by the theory, i.e.
4 - 12 = - 8 ¢/s

(5) difference between re asured values of Af for these two
resonances
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If there is no cnd-effect, then the frequencies shown
in cols. (1) and (2) should be equal and col. (3) should
be zero, AS can be seen, the difference between the two
frequencies is zero within experimental error (which arises
principally from the impossibility of measuring the lengths
of the cylinders better than 1/1000“), except for the
perspex cylinder. If there is an end-effect as given by
the empirical relationship of section (5.a.ii), then cols.
(3) and (4) should be the same., This is true, within

xperimental error, only for the glass cylinders. Col, (5)
of this table is the difference between the measured values
of Af for ther esonances in question, and the agreement
between these values and those of col. (3) is no better
than the agreement botween cols. (3) and (4).

Tt is to be concluded, therefore, that the correction
previously termed the "end-effect" is not entirely due to
such an effect but rmust also be due in vart to the frequency
dependence of Young's modulus and/or ’oisson's ratio.
Without knowledge of the dependence of either one or the
other of these on frequency, it is seen that analysis of

Af is very difficult, though if the frequency dependence

of E' of perspex and polystyrene is as shown in Figure (5.6y,
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then no corroection is required to give a constant value

of o, These values have been obtained from the resonant
frequencies assuming that ¢ 4is constant at C.35 and 0.335
recspectively for perspex and polystyrene. A similar graph
can be pleotted for the glass cylinder, but the dependence of

E!' upon frequency is very slight.,

(d) EBvidence of a frequency-dependent Young's modulus

Reference to Figure (Al.1f) shows that an increase in
the elastic moduli of a material is to be expected on
increasing the frequency of measurement through a relzxation,
Evidence of the existence of such processes in perspex and
polystyrene is given in Chapter 2., Marx and Siverten (lfﬁj)
L.ave shown that relaxation processes occur in inorganic
glasses and Mason (1958), in a review, has shown that they
are to b. expected in metals, th ough for these last twol_
groups of materials not usually at the frequoncies océurriﬁg:
in the present investigation. Since Af has been shown to
be at least in part dependent upon the variation of E'
with frequency, the values of Af nmust be regarded as some
measure of this dependence.,

Wegel and Walther (1935) showed that the depen-idence of
the damping factor for a variety of materials could be

expressed as a power law in the fsllowing manner:
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5 o £9 (5.8)
wherec q is a constant whosc magnitude depends upon the
particular material and generally of the order of -0,29
to +0.55. Parfitt (1954) used the same power law to
describe the frequency dependence of E', i.e,

E' o £P (5.9)
Using this form of the frequency dependence of E', it is
shown in Appendix 7 that the relationship between p of
equation (5°9) and Af/f1 is as follows, assuming that no

contribution from end-effect exists in the values of pAf;

P = 2. E 1 - log[n] /iog[n + (n-1). Af/flj % (5.10)

Parfitt (1954) obtained a value of +0.017 for p for
perspex for the same frequency range as considered in the
precsent investigation. In obtaining this value, he had to
correct the wvalues of fn for velocity dispersion, using a

value of Poisson's ratio of 0.338-

For
relatively long and thin rods, the value of Poisson's ratio
used is not of great importance as the correction for
dispersion is small. However, for the 8%" x %" perspex
cylinder used in the present investigation, the value of p
depends on qhé value of Poisson's ratir used in estimating

this correction, Hence p = +0.020 for g = 0.33, whcreas
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P = +0.024 foro = 0.35. If Yoisson's ratio is also
frequency-~dependent a more complicated situation cxists.
Values of p for polystyrene and glass of the order
of 0.003 and 0.0004 reswectively, are sufficient to give a
constant value of Poisson's ratio for the 5" x 4" cylinders
investigated. Negative values of Af can only be explained
in terms of a Young's modulus which decreases with nxcrtaihtﬂ
frequency, see Appendix 7 and equation (S.KH, a2 phenomenon
not explained by sinmple relaxation theory. It is considered
therefore, that the cause is the anisotropic nature of the
materials of the cylinders exhibiting these negative values.
The values of E' for mnolystyrene in Figure (5.6) agree
well with Parfitt's values, not only in magnitude but also
in frequency devendence, in that he observed a constant wvalue
for E' above 50 kc/s. The density of the samplc that he
used was the same as that of the samples used in the
present investigation ~ 1.050 gm/cc. In correcting for
dispersion, Parfitt used a value of Poisson's ratio of
0.337, which he obtained from the measurement of the
fundzmental rescnances of both the shear and E-modes.
Figure (5.7) shows the frequency dependence of E!
for perspex obtained in the present investigation conpared
with that found by Parfitt (1954). As can be sven, Lhere

arce two differences, the first one being in the frequency



] % 1200,
N g
. . &

for
90

oot |
£0
. jfreo‘ueac_}.

df20=

|

ot
ion

= 035
F;O 024
19)
/‘.
gm—
~

on

\'c\\!cg !’(Sa."
Parfitt (1954).

} t;rcsen!' |

parison of the frequency dependence of
erspex obtained in the present investigat

with that obtained by

Conm
p




201.

denendence, even when using the same value of Poisson's
ratio to correct for dispersion that Parfitt used in his
calculaticns, However, the value of Poisscn's ratio which
gives the same value of p for the present investigation

as obtained by Parfitt is 0.315, which falls within the
range of possible values of Poisson's ratio quoted, see
Table (4.13a). The second difference is in the value

of ' at any given frequency, for even if the same frequency
denendence is derived for the prescnt investigation as
Parfitt's, these values are about 2 per cent higher than his,
The density of the perspex investigated by Parfitt was
quoted as 1.155 + 0.005 gm/cc, whereas that of the present
investigation is 1.180 + 0.002 gr/cc. Thus the materials are
not exactly similar, a point which will be returned to in

Chapter 6.

(e) The influence of a frequency-dependent E! upon Af values

From valuecs of the resonant frequency which obey the
relationship E'x fp, where p is assumed to have a typical
value of 0.02, values of Af have been calculated for
different rod lengths. These are given in Table (5.7)
below, for frequencies which have been chosen to produce
large values of Af in order to emphasise the variations

calculated., Hence Table (5.7) does not represent the



behaviour of any particular rod
investigation. The frequencics

dispersion and the diameters of

nc significance.

TASLE (5.7)

Affect of E'ax f

0.02

on values

used in the present

202.

shown are corrected for

the rods are therefore of

of Af for different rod

Rod lcength

Frequencies
c/s

9,930
20, 000
40,270
6¢,640
81,100

101,600

204,620

0o & F M OB

i0

20

lengths

io"

Af (c/s)

140
180
210
240
260

320

N

3
I
5

10

il_l.

Af (c/s)

270
320
370
Loo

510

560

820

It is seen that thce values of Af calculated from

equation (4.1) for the rcsonant frequencies of a rod of

given length are not constant, but increase with n, the

number of the resonance.

the value of Af is seen to double approximately,

value for Af is chosen,

Further,

on halving the rod length,

a mean
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These results do not agroec with the expoerimentally
cbservecd constant values of A f as obtained from equation
(4.1) for glass and perspex, and with the prediction
derived from the empirical relationship of section (5.a.ii),
in which the value of Af is that given by equation (5.4).
This latter equation predicts a valuc of Af which also
depends on the diamcter of the rod, a shortening of the
rod from 5" to 23" resulting in a trebling of the value of Af,
and not a doubling, as given for a frequency-dependent
Young'!s modulus,

Reference to equation (4.1) shows that the values of Af
arce very dependent on the value of Poisson's ratio used to
calculate the dispersion correction, s . Table (5.8)
below, shows this dependenco calculated for the n = 1 and

L

n = 10 resonances of the 5" x $" glass rod, which occur at

values of d/L of 0.05 and 0,50, respectively,
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Dependcnce of Af on value of g used in equation (4o1)

(1) (2)

o] c1
0,220 1,00030
0.224 1.00031
C.225 1.00032
0.226 1.000u32
0,227 1.00032
0.230 1.00033
Notes:

(2) vE/vn at d/L

exact solution

(3) vE/vn at d/L =

ecxact solution

(6) wvalues of

(3)

®10
1.05854
1.,06003
1.06040
1.06077
1.06114

1.06226

0.05 and the value of ¢

(4)
loiﬁgxc
206,150
206,150
206,160
206,160
206,160

206,160

(5)

£

205,774
204,063
206,135
206,207
206,279
206,497

xc
1g/slo

(6)
AT
c/s
«1t8
-10
-3
+5

+173

+38

as given by

0.50 and the value of 0 as given by

(5) in equation (4.1).

Af resulting from use of values (4) and
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As can be seen, the difference between the values of
Af depends primarily in the change in the value of €10

and very little in the change in c Therefcre by

ll
chooasing a value of Poisson's ratio higher than the one
used to calculate the constant values of A4f for Figure
(4.3), resulting values of Af will increase with n

number as shown below in Table (5.9).

TABLE (5.9)

Dependence of Af on ¢ as a function of n for

successive resonances of the 5" x 4" cvlinder

Re sonance 2 4 6 8 1o 12
o = 0.2258 4 3 4 3 4 3 «¢fs
6 = 0.2270 5 5 7 10 13 16 c/s

Notes: wvalues of Af are calculated from the data which
gave plot (c) of Figure (4.3).

Hence, there is perhaps some significance in tﬁé
values of I'oisson's ratio obtained ty the independeﬁ$ ﬁethods
for the glass being higher than those values resultingvfrom
the dispersion.measurements, see Table (4.5). However, if
Poisson's ratio is also frcquency-dependent, the issue
becomes much nore conplicated.

From Figure (4.9), it can be scen that values of Af

for the 5" x 3" polystyrene rod for the n = 2 to 3 rcsonances
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increase with n, the n = 2 value being ccnsistently lower
than the value of Af averaged over the n values, However,
the increase in Af values of the 2%" x %" pPolystyrene rod
is not ccnsidered to be experimentally significant, as an
opposite trend was observed on occasions, the average value
of Af being still about the same as that quoted. This
average value is seen to be about twice that of the

5" x 4" rod, as predicted by Table (5.6).

It is of interest to see if a frequency-dependent E'
will give values of Poisson's ratio versus d/L which are
indepndent of the length of the cylinder, a2s experimentally
observed for the glass and the aluninium cylinders.,
Chcosing the n =8, F and 2 rescnances for 10", 5" and -
21" rods respectively, n‘fl/fn (which is vE/vn for the
uncerrccted resonances) can bc calculated at the common
value of d[L = 0.20. The values are 0.9795, 0.9664 and
0.9931, and are less than unity because of the largeness of

A f, as explained nreviocusly. Nonetheless, it is seen that
the value of VE/Vn for the 23" rod is greater than that of
the cther two, which results in the general conclusion that
Poisson's ratio at the same value of d/L increases as the
length of the rod decreases. Reference to Figure (4.5)

shows that, the values of Poisson's ratic for *he 23" x 3o

glass rod are, if anything, lower than those of the longer rod,
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though within experimental error, they are the same,
However, it is seen from Figure (4.8) that the values
of Poisson's ratio for the shorter polystyrene rod are
greater than those for the longer rod. Thus the
expnerimental evidence concerning the dependence of
Poisscn's ratio on length of cylinder for the same d/L

value is contradictory.

(f) The values of Af at high frequencies

The sudden increase (for perspex and polystyrene) and
decrease (for glass) of A f for values of d/L in excess
of 0,65 is unlikely to be due tc changes in the frequency
dependence of Young's rmnodulus. An increase in Af is
equivalent to an increase in E' which would be ascribed to
a relaxation process, no such processes having been
reported at these high frequencies (in the vicinity of
80 kc/s). For the glass cylinders, a negative Af is
equivalent to a decrease in BE', which is unacccunted for
by simple relaxation theory.

However, there arc three possible explanations of
this sudden change in the behaviour of the resonances
which result from the properties of cylinders in

longitudinal rescnance, which will now be described.
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(i) ™Mode conversion

It has been seen, Appendix 2, that the boundary
conditions at the end faces of a cylinder of finite length
are satisfied only by the production of modes different
from the propagating nmode. At low frequencies these nodes
do not propagate along the length of the cylinder, as
their amplitudes diminish to zero very close to the end-
face, However, above a certain frequency the first pair
of theso modes do begin to propagate; For an aluminium
alloy, Zcmaneck has shown that the onset of prcpagation of
the first pair of thede modes is defined by ma/vs = 3.6 8,
Applying this condition to the glass cylinder, the first
pair of modes would begin to propagate at a frequency of
about 290 kc/s, i.e. the frecquency of the 23rd or 24th
resonance, and thercfore above the limit of detection. Inmn
any case, as the distinct change in the values of A f
occurs at about the 1lhth resonance, it seccems that the
possibility of these high number rescnances being other
than those of the L(0,1) mode is a renote one.

(ii) Cut-off frequency

The cut-off frequency is derived from equation (A2.19)

by letting ('Ya) tend to zero, whilst ma/vs remains finite

(i.ec. the wavelength becomes infinite), and is the freauency
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beyond which the mode does not propagate. The exact
theory for a loss-less infinite cylinder predicts no cut-
off for the L(0,1) node. However, reference to Table (4.11)
shows that there nmust be a frequency for cylinders of low
Q value resonances, beyond which the resonances begin to
merge together. For the 57" x %" perspex cylinder, it is
estimated that merging occurs at about the 17th resonance.
Biesterfeldt et al. (1960) have repa ted on this matter,
showing that the sinple (dispersionless) theory predicts a
cut-off Que to damping in the material at abcut the 20th
resonance for &,= 10~% (for perspex, o, = 3 x 10'2), but
noted that this frequency is considerably higher than that
observed experimnentally. They also showed that the non-
symmetric loading of the cylinder due to the drive and
detection system contribuses tc¢ the lowering of the
experimentally-observed cut-off frequency.
(iii/ End-resonance effect

From Figure (5.4) it is seen that above the frequency
of end-reso:iance, the value of ® is negative for a range of
values of cna/vs. On the assumption that the correction Af
has some relation to end-effect, a constant value of o of
0.225 can be obtained from the n = 14 and higher resonances
of the 5" x 4" glass cylinder by assuming a negacvive end-

effect. The value of @ obtained from Af for this cylinder
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are of the order of —2.80, whilst those shown in Figure
(5.4) above the frequency of end-rescnance are of the
order of -10°, However, end-resonance occurs in
Zemaneck's aluminium cylinder at frequencies much higher
than those given by n = 14 for the glass cylinder, and the
behaviour of the polystyrene, perspex and aluminium cylinders
is such that a large positive value of €& would be required
to giﬁe a constant value of Poisson's ratio,

To summarise, the possible explanations are:
l. A combination of a cut-off frequency lower than
expcecctad together with the detection of other modes.
2. An end-resonance frequency lower than expected,
followed by a large negative value of @ as given by
Zemaneck, for the glass, but by a large positive value
for the perspex, polystyrene and aluminium cylinders.

Certain similarities of the behaviour of all four
cylinders should be pointed out.
1. The deviation at high frequencies from the constant
value of o. The sudden change in the value of Af is
independent of the length of the cylinder.
2. The value of d/L at which this deviation is observed
is about the same for all four materials, being of the

order of 0.65.
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‘(g) Conclusions from investigation of velocity dispersion

in short cwylinders

Without a detailed knowledge of the frequency
dependence of Young's modulus and l'oisson's ratio, it is
scen that velocity dispersion measured in short cylinders
cannct be compared with that predicted from the exact
theory for infiniteliy long and thin rods, to the accuracy with
which the values of the resonant frequencies of the short
roc¢s can be measured. Further, no attempts can be made to
investigate the possible occarrence of end-—-effects,

The following c¢ nclusions can be drawn from the
present investigations:

1, For well-annealed short cylinders, the universal point
occurs at the value of d/L as given by the exact theory, and
has been .hown to be independent of Poisson's ratio, as
predicted by the exact theory.

2. Deviations from the exact tacory »slationship of the
behaviour of long cylinders (Zemaneck and Rudnick) and of
short cylinders (Edmonds and Sittig) is attributable to
anisctropy of the material of the cylinders, due either to
strain or preferred orientation of the crystallites.

3. Bxcept for some variation attributable to 2 frequency-
dependent Young's modulus, it is seen that the exact solution

applies to the velocity disnersion measurements made on the
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short cylinders investigated for values of d/L up to

0,65 - 0.70 depending uron the material of the cylinder.
This jis true for both high and low-loss materials., Above
this value of &/L, a constant Poisson's ratio can only be
obtained by increasing the v alue of the correction found
necessary at lower values of d/L for perspex and
polystyrene, and by decreasing this value for glass. The
cause of this change in the value of the correction is
possibly due to the behaviour of resonant cylinders at high

d/L values, as discussed in the previous section.
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CHAPTER 6

YOUNG'S MODULUS AND DAMPING FACTOR MEASUREMENTS

(a) Preliminary discussion

The exact nature of polymer samples investigated
is rarely stated by authhrs when quoting values of
constants of the polymer under test. As a result, it
is perhaps not surprising that differences in the quoted
values of a given constant e¢xist, an e xanple being
shown in Figure (597), where the frequency dependence of E!
quoted by Parfitt (1954) and that found in the present
investigation can only be made 10 agree by assuming
different values of Poisson's ratio. Another example
is shown below in Table (6.1), which gives the values of
damping factor observed by three different authors for,

nominally the same material,

TABLE (6.1)

Danmping factor (x 102) of polystyrene

at three frequencies

Frcaquency of re asurenent kc/s 10 20 50 Tempera-
ture
Parfitt (1954) b1 3.8 3.6 23°¢
Biesterfeldt et al. (1960) 5.3 . - -

Present investigation 4,7 hol 4.3 23°C
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Biesterfeldt et al, do not'qﬁo?c the temperature at
which their measurements weféxmade. However, if their
value is to be consistent wifﬁ'the temperature
dependence found in the prcSenf investigation, their
measuremnents would have had to have been made at about
ho°c.

In order to correlate the polymer measurcments
of dif ferent observers, it is essential that the method
of measurement and as exact a characterisation of the
pPolymer as possible is stated. This la tter requir ement
is difficult to realise, particularly with large specimons.
Depending on the property to e investigated, one
specimen can be different from another in the following
ways:
1. Sample dimensions
2. Average molecular weight
3. Impurity content due to

(1) Polymerising agent
(ii) Piller

(ii1) Plasticiser, including water
4, Anncaling history
The consequences of possible variations in the
measured properties due to the above items will be

considered in following scctions.,
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(b) Nature of the polymers investigated

(1) Perspex, polymethyl methacrylate

Three types of polynethyl methacrylate 2 §H3
were available: H éOOCH
1. I.C.I. Ltd. brand "perspex". The | a
average nolecular weight is considered by the manﬁfgcturer
to be "of a few nillion", the precise value varyiné from
batch to batch. The molecular weight distributioh.was
described as "wide".
2, A polymethyl methacrylate (cunsidered by the
manufacturer, Mill Plastics Ltd.,, to be of the same
molecular weight as perspex) coataining 10% dibutyl
phthalate, a plasticiser.
3. A molecular weight regulated sample of polymethyl
methacrylate (0.05% lauryl mercaptan was added during
the polyrierisation) of an average nmolecular weight
rmmch lower than that of perspex.

In the present investigation the perspex specimens
are type 1. |
(1i) Folystyrene

H H

Three types of polystyrene were e - ¢ -
available: H C6H5 n

1. Shell Chemical Co, product of

average molecular weights
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ﬁn, number average = 120,000
ﬁw, weight average = 266,000
ﬁv, viscosity

average = 233,000

The distribution-was lognormal. Appendix 8 discusses
the measurerment of average moleccular weights and the
relationships between themn.

2. Monsanto Chemicals product of ﬁw (50,000 to 60, 000)

H

It

3. Monsanto Chenicals product of ﬁw (55,000 to 65,000)
Reference to polystyrene in the present investigation implies
type 1.

(c) Depehdence of nmeasurenents on rod dimensions
| (i) Young's modulus

As described in the previous chapter, the problem is one
of correction of the resonant frequencies for dispersion,
which is dependent upon Poisson's ratio, If the rod is
short and stubby, major differences in the possible frequency
dependence of E!' will result from an inaccurate estimation
of Poisson's =—-atio, For long and thin rods, the dispersion
is small and not so dependent on I'oisson's ratio. For
example, a rod of dimensions 6" x 3" will have its tenth
1ongitudinal‘resonance at 4/L = 0.2. An inaccuracy of 3%
in Poisson's ratio produces an error in the corre~tion for

dispersion of 0.06% resulting in an error of the order of

0,1% in B!,



217

(ii) Danmping facfﬁf_

It was felt deéirable to determine whether rod
dimensions had any measurable influence on fhe damping
factor., Figure (6.1) shows the damping factor of
polystyrene at 23°C oﬁtained from the measurement of Qpof
the resonances of twoe rods, originally of dimensions
7.4" x 0.25" and 5" x 4" but ouyccocsively shortened to
lengths shown in Figure (6.1). As can be seen, there is
no observable difference in the values obtained at a given
frequency. The range of values of d/21 for the 5 rods are
given in Figure (6.1). At a frequency of about 55 kc¢/s
the value of d/L for the series of rods of 0.,25" diameter
is 0.19, whereas that for the rods of 3" diameter is 0,40.
As can be seen even for a doubling in the value of d4d/L,
there is no observable difference in the necasured value
of damping factor at this frequency.

As described in section (1l.g), Ddnmonds (1961) has
theoretically investigated the effect of finite internal
losses on the exact solution of the frequency equation. The
effect on the resonant frequencies has been discussed in
the previous chapter and in Appendix 2, the latter also
containing the theoretical relationship between the Lamé
elastic constants, Q and the rod dimensions, Edmonds
investigates the values of A" as obtained by L(0,1) mode

resonances and by flexural mode resonances({using shear mode
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FIG.(6,1) Dependence of damping factor of polystyrene on
frequency as given by the Q of resonances of
rods of different dimensions,
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resonances to give u!Q which he finds to be different

when calculated from the experimental data of these two
modes of Biesterfeldt et al. (1960), see Figures (6,2a)

and (6.2b) which are taken from Edmonds! paper., Figure
(6.2c) shows the values of 1/Q for the polystyrene rod when
in torsional, bending (flexural) and longitudinal (L(O0,1))
mode resonance as a function of frequency, which were
obtained by Biesterfeldt et al,

No measurenents of the damping factor in shear mode
resonance were made in the present investigation. However,
Parfitt (1954) did nmeasure both QE and QH for a polystyrene
rod of square cross-section froi. 3 - 50 kc/s. From his
data it is possible to construct an experimental plot of
Qpep " Versus wa/v_  and this is shown in Figure (6.3) as
plot (b). Plot (a) is the approximate experimental plét
transferr>d from Figure (6.2a). Of course, plot (b) is not
entirely valid as the data is taken from a square cross-
section rod (the value of onc side has been taken as nan)
whereas Biesterfeldt et al. worked on a cylindrical rod,
for which shape Bdmonds established the theoretical pre-
dictions, Plot (c) is taken from the experimental data
of Figure (6.1) for the 5" x 3" rod with values of g"
calculated from these QE values, assuming that the same

frequency dependence cxists for Qp as fou QE' As the
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shear mode resonance frequencies are lower than the E-mode
roscnance frequencies for the same value of n, the plot of
QE' p"_versusua/vdwill not be linear and of zero slope,

as would be the case for the same parameter plotted as a
function of frequency.

There are two dif ferences between plot (a) and plots
(b) and (c), of Figure (6.3). First, the latter twv do not
show the peak of plot (a). Now althcugh the frequency ranges
of plot (a) and plots (b) and (c) are different (300 - 20,000 c¢/s
as opposed to 5 - 55 kc/s), neither are sufficiently low
enough to cover the whole range of the secondary transition
which could explain the peak, see Figures (6.1) and (6.2c).
The only explanation of this peak lies in the peak in the
values of 6p shown at about 2 kc/s in Figure (6.1lc) which is
as likely to be due to scatter in the experimental
measurcnents as to a relaxation process, for such a process
would then show in the plot of 6E at about the same
frequency, see Ferry (1961), page 310.

The second difference lies in the decrease in ordinate
values of plot (a) of Figure (6.3) which is not observed in
pPlot (c). In part, sorie of the decrease could be accounted
for by the frequency dependence of the damping factors,
as is shown by the couparison of frequencies on plots fa)

and (c¢) of Figure (6.3), except that Figure (6.2c) shows
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a damping factor in both the shear and E-modes to be
reasonably independent of frequency. Above 13 kc¢/s on

this graph, the value of 6E does begin to increase, which
would account for the decrease in Qpe B " above 13 ke/s

in plot (a) of Figure (6.3). However, the increase in &,
above 13 kc/s (see Figure (6.2¢c)) is due to the proximity
of the cut-off frequency as shown in the Biesterfeldt paper
(their Figure 4) at about 22 ke/s when the ratio of the
detected signal at resonance to that at the minimun between
rescnances tends to unity, thus invalidating the use of 1/Q
as a measure of damping factor.

For the purposes of the present investigation, it is
concluded from Figure (6.1) that the range of dimensions of
rods used have no influence on the value of bE obtained,

A comparison of the wvalues of 6E as given by Figures (6.1)
and (6.2c) at the same frequency for the same material -
"polystyrene" - underlines the problem of characterisation

of polymers.,

(d) Dependence of measurenents on the nature of the specimen

(i) The occurrence of "bubbles" in polystyrene
All manufacturers claimed that their products would
contain only a small amount of polynerising agent, ancd were
otherwise free of filler or plasticiser, However, the sanples
of the Shell Chemical polystyrene usced, which were cut Tfrun

a block of the naterial manufactured by Shell, were found to
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contain some absorbed impurity. Figure (6.4) shows a
photograph of three samples of polystyrene. Specimen A
is a portion of a commercial polystyrene rod, B is a
sanple of the Shell Chenical polystyrene, and. sample C
is another sample of the Shell Chemical product, but
manufactured in a manner different from sample B, This
photocgraph was taken after the samples had been heated to
200°C fsr about one hour, no bubbles or inpurities being
visible in the sanmples before this heat treatment,

Specimen A, being cormercial rod, was probably formed
by extrusion of the molten polymer. Specimen B was
turned from a block which was either casg from the molten
material or formed by the dissolving of the polystyrene
pcllets (of approximate dimensions 3 - 5 mm) in a suitable
solvent (toluene, perhaps) and subsequent evaporation.
In the case of specimen B, it was impossible to discover
which method of manufacture had been used. Specimen C
was made from the same batch of pellets as sample B,
except that they were melted under a reduced air pressure
of about 2 mm Hg.

The source of the bubbles in A and B is not
chemical degradation, otherwise bubbles would be observed
in specimen C. In any case, degradation is considered to

take place at temperatures above 26000, which was not






226,

reached in the experiments reported here, A further
check on this was made in heating samples cut from the
same block as specimen B to 120°C for about 15 hours,
Towards the end of this period, very small bubbles were
seen to have appeared, thus denonstrating that the
phenomenon could not be explained by degradation. It is
suggested that the critical temperature is the glass-
transition tenperature, above which the viscosity of the
rubberilike material is low enough to allow the absorbed
impurity to anpear as bubbles.

The bubbles are due to'oither
1. air trapped between the peilets of the material as
they coalesce on melting and subsequently absorbed as the
molten polymér is compressed in the extrusion process -
epecimen A, or
2, air or absorbed solvent - specimen B,
The source of the bubbles is not the pellets themselves, as
was established by heating the pcllets up to melting
temperatures when no bubbles appeared. Bubbles did not
appear in any of the polymethyl néthacrylate samples up to
temperatures at which they began to degrade. The method of
nanufacture of specimoen C suggests that absorbed air can be
a source of bubbles, but does not indicate whether the

bubbles in specimen B are due to a2ir or to solvent.,
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(ii) The effect of bubbles on the mecasured constants

of polystyrene
The crude tcchnology available for the manufacture
of polystyrene in vacuo produced a specimen rod of
distorted shape. leasurement of the damping factor, of E'
and of the density of this sample(C) was carried out,
however, and the values are shown below in Table (6.2)
along with the values obtained for sample B both before

and after the heat-treatment which produced the bubbles.

mmua(&z)

Calculated constants of threce kinds of polystvrene

at 15 kc/s
Sample B B C errors
before after
heating heating
density, gm/cc 1,050 1.010 1.053 +0.001
Erxlo"lodyn./cm2 3.64, 3.35,4 3.45, +0,005
damping factor - L,5 L.7 L.h +0.2
x 102

l, Density

As can be scen, there is little significant difference
between the densities of sarmple B before heating and sample C
even though the greater proportion of the source of the
tubbles seems to have been eliminated (a few smail bubbles,

which cannot be seen in Figure (6,&), do exist in sample C
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after heating). The density of sample B after heating,
containing the bubbles, is of course lower than that of
either samples B before heating and C. Some trouble was
taken to measure the density of the pelle ts from which
samples B and C were made, the former by the manufacturer
and the latter by the author. The pellets are in the form
of short cylinders, 0,2 cm in dianeter, and 0.4 - 0,8 en
in length, the ends bqing broken and uneven. The pellets
were put in a clean beaker and covered in distilled water,
The beaker was then irmersed in the tank of an ultrasonic
cleaner which not only removed the fine polystyrene dust
vcovering the pellets but "ground" the rough ends of the
rellets. The density of the clean pellets was determined,
using a specific gravity bottle, a large number of the

7
pellets being tipped int;f;artially water—~filled bottle,
This method was found to be most unsatisfactory as air
bubbles were also introduced with the pelliets, giving
values of the density ranging from 1.017 to 1.045 gn/cc, even
when some of the air bubbles were removed by irmorsing
the filled s.g. bottle in the ultrasonic cleaner.
Finally, it was dc¢cided to introduce the pcelle ts one-by-one
into the s.g. bottle from a beaker which contained distilled
water, On carefully selecting the pellets so that those

with major cracks and those few with voids were exciuuded,
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L
a value of 1.097 + 0,002 gn/cc was obtained. A second

measurement, using different pellets, confirmed this value.
As can be seen, this value is 4% - 5% greater than either
of the two values of density quoted in Table (6.2) for
sanples B before heating and C after hecating.

It appears that some major impurity is introduced
into samples when they are manufactured from pellets. The
values of density quoted in Table (6.2) show that a brief
vacuunm treatment of the molten polymer'is not sufficient
to incrcase the density to that of the pellets, though
the trend is in the right direction. Without more
information on the mode of manufacture of the samples;
and also of the pellets, it is not possible to discuss
the source of the bubbles further: It is concluded that
the quoted constants of commercial samples of polystyrene
have to be considered with great care.

2. Young's nodulus

There are real differences between the values of B!
for the three samples, Without some knowledge of the
physical states of sarmple B before heating and sample C
it is not possible to say why E' of the former should be
greater than for the latter. McKenzie (1950) has
considered the effect of a uniform distribution of vcids

in a material on the values of tiww elastic constants. He
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has shown that the change in Young's modulus, AE,
observed in the sanmple with voids and of nmeasured density, P

is given by

AR
E

= -[1-p_ /o] + 3 19+50)§13-0) (6.1)

wherepi is the density and E is the Young's modulus of the
(ideal) material without voids respectively. Futting the
following values into cquation (6.1)

p_ = 1.010 gr/cc;

0 0; = 1.050 grn/ce; o = 0.335

gives a value of AE/E of - 0,076. If the value of E of
the ideal material is put at the value obtained for sample C,
Table (6.2), then AE/E for sariple B after heating is - 0.029.
However, using the value of E obtained for sample B before
hcating for this ideal value gives AE/E = - 0,030, which
implies that the material surrounding the bubbles in sample
B after heating is more akin to that of sample B before
hzating than to that of sample C.
3. Dauping factor

The damping factor values shown in Table (6.2) are
seen to be the same within experimental error. Ying and
Truell (1956) have calculated the encrgy scattered from
spherical cavities embedded in an isotropic solid medium
for longitudinal waves and have found that the Losses due

to scattering are small when the wavelength is largce conpared
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with the diameter of the c¢avities, as in Rayleigh
scattering, Their forrmla for scattering cross-—section
(which is the ratio of the total energy scattered per unit

time to the incident energy per unit area per unit time) is

16-Tt30g « 1 .Tt_d.'§6

9 ¢ L

lwhere d is the diameter of the cavities and 8, is somne
function of vl/vs and is of the order of 15 for
polystyrene; all the other symbols have been used before.
For d = 0.02 cm and L = 2 cm (the wavelength of the 10th
resenance), the value of the scattering cross-section is
10~7 cm™?® which is clearly negligible.

The damping in sample C is seen to be no dif ferent from

that in the other two sanmples.

(iii) The effect of molecular weight

Perspex The damping factor of the molecular weight regulated
sample was found to be the same as that of the ordinary
perspex, within experimental error. Young's modulus, E', of
the molecular wejght regulated sample was found to be about

3% lower at all freguencies than that of the ordinary perspex,.

Polystyrene There were no differences between the values
of ecither E' or damping factor for tho two low molecular

woight samples. The value of E! for the high moiccular
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weight sample was about 3% higher at all frequencies

than that of the low molecular wcight samples. The

damping factor of the high nolecular weight sample was about
the same as that of the low molecular weight samples, within
experimental error.

As pointed out in section (2.a), the offect of
nmolecular weight on the glass transition temperature is
negligible for values of ﬁn above about 20,000. Benbow and
Wood (1958) have mecasured the damping factor of three low
moleccular weight organic glasses and three polymers
(polyethylene, polystyrene and perspex) and have shown that
the damping factor of two of the former lies between those
of the perspex and the polystyrene. Whilst this evidence
is hardly conclusive, it appears that the effect of
molecular weight on the properties of polymers, when the
molecular weight is in excess of a certain value, is
negligible for polymers below their glass transition

temperature.

(iv) The effect cf nlasticiser on the properties of perspex
The sample of PMMA containing 10% dibutyl phthalate had
higher
a damping factor which was 34%/at all frequencies than that
of the pure material, as given by the perspex specimens,

The value of E' of the plasticised PMMA was about 1% lower

than that of perspeXx.
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Parfitt (1954) found that perspex plasticised with
5% dibutyl phthalate had a damping factor of about the
same pagnitude as the pure material, and E' was about
" 4% lower than for the unplasticised polymer. Heijboer
(1956) has investigated the effect of this same plasticiser
on the secondary transition of perspex, see section (2.h)
for a descrivotion of the effect op the position of the
maximum. The height of the naxirmun was found to increase
with increasing amount of plasticiser, 10% of dibutyl
phthalate increasing the damning factor by about 16% at
all frequencies up to 1 kc/s.

There is little agreencnt between
these three quoted effects of dibutyl phthalate on I'MMA,
which is perhaps due to differences in the pure material,
though Heijboer's measurcnents were made at a lower
frequency than those of Parfitt and of the present
investigation.

(v) The effect of absorbed watcr on the constants of
perspnex and polystyrene

The r esonant frequencies and damping factor of a rod
of perspex and of polystyrene were neasured and the rods
were weighed. After total immersion in water for 10 days,
the same constants were once nore measured. The percuntage

increase in weight of the perspex rod was 0.25% and no
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increase in weight was noted for the polystyrene rod.
No detectable changes in E' or damping factor of the
polystyrene or of the perspex were found, |

The ariount of absorbed water to be expected is very
small, I.C,TI. Ltd., quote an increase in weight of 2% for a
sample of perspex totally immersed for a period of 240
days, Monsanto Ltd. quote an increase in weight of 0.03%
for a polystyrene sample similarly treated.

Yanamoto et al. {1957) have investigated the effect
of totally immersing a perspex sanple for a period of two
months. The only differences they reported were in the
shifting of the B -transition (see section (2.h)) and the
appearance of a new peak in the damnping factor versus
tenperature graph at about lOOC; the frequency of
observation was 37 kc¢/s..

Whiist it apmwe ars that the amnount of absorbed water
likely to be present in the polymer samples used in the
present investigation has no effect on the measured constants
of the samples, they were stored in an air-tight dessicator
containing silica-gel.

(vi) The effect of thernal history

A block of polystyrene was heated slowly to llSOC

(i.e. just abovo Tg) at which temperature it was maintained

for about two hours and was then :lowly cooled to room
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temperature, over a period of eighteen hours., After removal
from the oven, it was kept at room tenmperature for a week,
after which a rod of dimensions 74" x 4" was slowly
rmachined from the block, using plenty of coolant. The
specimen rod was then annealed at 8500 (ioe. just below Tg)
for three hours after which it was allowed to cool to room
tenperature in the oven overnight. After a week, the
danping factor of the specimen rod was measured as a function
of frequency, which will be referred to as measuremént A

The sarple was heated in situ to 36°C at which
temperature it was maintaired for two hours, when it was
considered that temperature cquilibrium had been established.
The wvacuum chamber was then removed from the higher-
temperatur»e bath and placed in the bath at room temperature,
where it was maintained for a week. The damping factor
of the polystyrene rod was again measured, which will be
referred to as measurement B. This procedure was repeated
twice, for tenperatures of 60°C and 75°C, after each
heating the vacuuna chamber was returned to the room
temperature bath followed by the mecasurement of the danping
factor after a period of some days. These measurements
are referred to as C and D respectively. Finally, the rod
was slowly annealed as described above in an attempt to remove

the cffects of the severe hcat treatment to which 1t had been
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subjected, after which the danmping factor was once more

nmcasured - neasurenent E.

TABLE (6.3)

Dependence of measured damping factor (1/Q) of
polystyrene at 9 kc/s on therrial history

leasurements A B C D BE BErrors
(1) H eated to (deg.C): 85 36 60 75 85 . +1
(2) Cooled to (deg.C): 23 23 23 23 23 +1
(3) Bquilibrium tims

(hours): 10 1 1 1} 10 -
(4) Approximate cooling

rate (deg.C/hour): 6 13 37 34 6 -
(5) Time of measurement

(hours): 180 48 150 240 80O -
(6) Limiting damping

factors (x107) L.s5 L.7 4,9 5.4 4.6 +0.2

Notes:
(3) Time of attainment of temperature equilibrium.

(4) Cooling rate is not linear, which is assumed in this
calculation.

(5) Time after which value of damping had reached values
shown in (6) after attainment of 23 C,

(6) Value of damping factor obtained after length of time
shown in (5).



237

Table (6.3) shows the effect of the various heat
treatments on the measured damping factor at 9 kc¢/s. The
damping factor as measured at 2300 was to a certain extent
dependent upon the time of measurement after thermal
equilibrium had been achieved. Thus the value of damping
factor measured imriediately after the attainment of 2300
followaing cooling fron 60°C was found to relax from

502 X 10_2

to 4.9 x 10”2 after 150 hours, see Table (6.3).

A similar effect was noted in thebmoasurements that were

nade after cooling fron 7500, tholigh none was observed for
the samwle when cooled from 360C. Measurement of the density
of sirmilarly treated samplecs of polystyrene showed no change
in the density, within the experimental error of 1/1000.

As can be scen from Table (6.3), the measured damping

factors differ for the samne material with varying cooling
rates and initial elevated temperature, though it is to be
noted that a final slow annealing of the specimen removes the
effects of the previous quenching.

The amount of the relaxation noted in the damping factor
for measurement C, 0.3 =x 10-2, is of the order of magnitude
of the experimental error, though the trend to lower values
is 2 consistent one. Such an effecct was noted by Parfitt
(1953), though on a larger scale, for specimens vtich had

been cooled from above the glass transition temperature, though
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he also detected a related decrease in the density of the
specimen. It is seen from the present investigation,
therefore, that the attainment of temperature equilibrium
need not be proof of the completion of the annealing
process even when cooling the specimen from temperatures
below Tg'

In perforning his experiments, Parfitt was careful to
avoid the possibility of strain occurring in his sanples,
Investigation of sanples heat-treated in a wmanner similar
to those referred to in Table (6.3) by means of polarised
light, showed that substantial strain existed in then.

It is therefore concluded, that the different values of
damping factor shown in Table (6.3) are due to dif ferent
amounts of strain existing in the specimens. The fact that
a slight relaxation was noted in the values of damping
factor of samples cooled from below the glass transition
temperature implies that free volume might be changed by

such a process, but by an amount that is very small.

(vii) Conclusions
It is seen that the most likely cause of differences in
the quotced values of the damping factor c¢f nominally the
same polymer is the thermal history of the specimen under
test., Whilst plasticiser content has some effect on the

values of damping and of B', and whilst molecular weight



differences seenm to influence the value of E', it is
considered that thermal history of the sample is the

one quality of the polymer which should be referred to in
characterising the specimen. As a result of this
conclusion, all specimens used in the present
investigation were annealed following the procedure

described at the beginning of section (6.d.vi).

(e) Temperature and frequency dependence of the

éomponents of the complex Young's modulus

(i) Frequency dependence

Figure (6.5) shows the frequency denendence of the
real and imaginary components of Young's modulus for
perspex and polystyrene. The comparison of the values of
E! of the present investigation with those obtained by
Parfitt (1954) has been carried out in section (5.d). The
values of E" obtained by Parfitt for perspex are shown

do not
in Figure (6.5), and SN compare well with those of the
even for

present investigation, - ’ the lower tenperature
at which Parfitt's neasurcments were nade (19.5°C)¢me Figure
(6.7) As described in section (6.a), the danping factor

of polystyrenc obtained in the present investigation is

slightly higher than that obtained by Parfitt.
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(ii) Tewmperature dependence

Figure (6.6) shows the dependonce of E" and E' on
temperature for perspex. The measurerients were taken for
an increasing and a decreasing tenperature (shown by
arrows ~—-} increasing, {?—f-‘decroasing), to investigate
possible hysteresis effects referred to in section (6.c.viii).
As can be seen, no such effect was detected. The
tenperature dependence observed by Parfitt for Young's
modulus is also shown in Figure (6.6). Whilst the
dependence of E' sceeris to be about the same (except for
a magnitude difference), his values of E" are possibly
approaching the rnaximum of the glass transition more
rapidly than those observed in the present investigation,

Figure (6.7) shows the temperature dependence of
Young's modulus for polystyrene. Compared with Parfitt's
results, it seems that the wvalue of E" is approaching the
maxirum of the glass transition more rapidly, implying
either a lower glass transition temperature or a broader
maximun for the polystyrene used in the present investigation
compared with that for the polystyrene used by Parfitt,
No hysteresis effects are noted in the tempsrature

dependence cf either E' or E" for the present investigation.
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(f) Thy offoct of subjecting the specimens to pressure

(i) General comments

The effect of increasing the terniperature of a polymer
is to increase the kinetic energy of the molecules which
makes for a decrecased packing of the molecules and thercfore
a lower density. At the glass transition temperature, the
motion of the molecules is so large tha# segments of the
backbone chain are in motion and the preoperties of the
material are rubber-like, At the melting point, the
individual molecules, which were pinned together along
their lengths in the rubber state, break free one from
another and begin to flow if subjected to a suitable
pressure gradient.

An increasing pressure has an opposite effect, in that
the molecules are forced closer and closer together such
that a polymer which was previously rubber-like will becone
glass-like at a certain pressure, depending on the
teuperature of the polymer. Thus, the higher the
temperature, the greater the pressure required to bring
about the glass transition from the rubber-like state,
Matsuoka and Maxwell (1958) have shown that once
polystyrene, polyethylene and pclypropylene are in the
molten (as distinct from the rubber-like) state however, a

pressure of 30,000 p.s.i. (2,000 atm.) is insufficient to
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bring about the glass transition.

Because of the nolecular structure of amorphous
polymers, the attainment of the glass-like state by the
application of pressure, is also dependent upon the rate of
pressure increase. Thus, the above authors have shown that
fhe glass transition of a high molecular weight polystyrene
ét 120°C occurs at about 10,000 pes.i. but increases to
15,000 p.s.i. when the rate of pressure increase is reduced
to about 1/300 of the former rate. Hence, for a slower
application of pressure, more time is available for the
polymer molecules to adjust tc¢ this inhibition of their
moction, Also the final volume change 1s greater and the less is
the free volume. Further, as Matsuoka and lMaxwell point out,
"in packing the mdld for injection mdlding, if .... the time
of pressure application is shortened, less material will enter
the mdld ner cycle since the melt is less compressible at a
rapid rate of conpression". Thus, the ultimate pruperties of
a particular specimen will depend on the mecthod of its
nmanufacture.

These ccnclusions on the behaviour of polymer samples
subjected to an increase in temperature and pressurc are
relevant to the present investigation, which is concerned with
the possible changes in the density and the dampirg factor

of ﬁ%spex and polystyrene sanples after the application of
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pressure at given tenperatures. Thus, that nc changes in
these constants were noted for the apnlication of

pressures up to 7,000 p.s.i. followed by a heating of the

samples to 80°C, is not surprising, as the ccnfining
pressure would have been sufficient t¢ stop any changes
in the packing of the molecules resulting from the
increased temperaturec.

BEven so, increasing the pressure slowly after the
tenmperature had been increased to values less than 8o°c
did not produce changes in the density and damping factor
of the samples, as neasured after the temperature and
pressure had been decreased (the forner slowly, the latter
rapidly) to normal laboratory values, It is concluded
that the critical tenperature for such experiments is the
glass transition temperature, which is (96 - 95)°C for
polysctyrene and about 120°C for persnpex.,

As the method of heating the pressure apparatus
was the pumping of hot water through a jacket, experimental
results above Tg for perspex were therefore unobtainable,
and tho following section describes experiments carried

out on polystyrene samples.
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(ii) Measurements on polystyrene

Two polystyrene rods were anncaled at the same time in
the manner described at the beginning of section (6.d.vi)
and then piaced in the dessicator for a week, They were
then considered to have reached volume equilibrium
and their densities were measured using a specific gravity
bottle. The damping factor of the material of each rod
was then measured as a function of frequehcy. Viithin
experimental error, the densities and damping factors of the
two rods were found to be identical.

Becth rods were placed in the brass cylinder of the
pressure vessel and covered with mercury, see section (3.3),
which was then placed in the pressure vessel with the bleed
valve open. The temperature of the pressure vessel was then
raised slowly to 98 + 2% and maintained there for two hours
after which the bleed valve was closed and the pressure
raised slowly to 6,000 p.s.i., These tenperature and pressure
conditions were nmaintained for three hours after which the
temperzture vas slowly reduced (over about two hours) to room
temperature (230C) and wmaintained there overnight (about 12
hours). The pressure which had been maintained at 6,000 p.s.i.

throughout these temperature changes, was then suddenly
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released. The densitiecs of the rods were then measured,
after which one of them was placed in the resonance-~
measuring apparatus for damping factor measurements to

be made over a period of time. The density of the other
sample was periodically measured using a specific gravity
bottle.

Figure (6.8) shows the dependence of volume of one
rod and the damping factor of the other as a function of
time after the release of pressure in the pressure vessel,
(iii) Discussion of results and comparison with the findings

of other workers '

As can be seen from Figure (6.8), the density and the
damping factor have both been increased by applying pressure
when the specimens were above the glass transition
temperature. That the damping factor should increase with an
increased density is contrary to the assumption that internal
friction decreases with decreasing free volume. Section
(6.d.v:) comnsidered the effect of thermal history on the
damping of the polymer specimen, where it was concluded that
internal strains brought about by the heat treatment
produced the changes in damping factor noted. It is

concluded therefore, that the increased damping factor noted
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after the release of pressure is due to strains in the
sample produced by the temperature/pressure treatment,

This explanation is consistent with the observed
relaxation of the values of both damping factor and
density to the values neasured before the treatment. Thus
the stressed, high density state of the polymer mclecules
relax to a more typical value (as determined by the
temperature of the specimen, i.ec. 2300) on release of
the pressure, even though the specimen is then below i1ts
glass transition temperature, below which only minor
changes in the rmotion of the nmolecules are considered
possible,

In terms of the free volume, the effect of the heat/
pressure treatment of the polystyrene specimens as
described above is as follows, As the temperature of the
specimens rises, their frce volume slowly increases,
showing a sudden jump in value to 2.5% of the volume above
Tg {ree Kovacs, 1964). The increasing pressure then
prodices a response which may be regarded primarily as the
collapse of free volume (Ferry, 1961, page 409), If
pressiire were to be released whilst at a temperature

above Tg, the free volume would quickly assume its former

250,
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proportions, whereas maintaining the pressure whilsg
decreasing the temperature of the specimen below its

glass transition tenmperature should result in a "freezing-in"
of the new molecular configuration of higher density.

Figure (6.8) shows that this new (denser) configuration

is not fixed, but relaxes back to the state expected of

a polystyrene sample which had been cooled through the glass
transition without any confining pressure acting. Any
nossible decrease in the damping factor of the specimen is,
by this explanation, hidden in the increase in damping
factor due to the strains set up by the pressurising of the
sJecimen.

Delaying the final release of pressure in the pressure
vessel for one week after the attainment of room temperature
by a polystyrene sample sinilarly treated, produced a
slightly less rapid decrease in density than that shown in
FPigure (6.8) and to a value which was marginally higher
than that shown for 50 hours, implying that some small
relaxation in volume had taken place within the glass-~like
state, vailst under presscure.

Figure (6.8) also shows the change in damping factor



with time that Parfitt (1954) produced in a polystyrene
sample by heat-treatment. He cooled a specimen from

97°C to 60YC in three minutes and then more slowly

cooled the specimen down to room temperature in order to
avoid the setting up of strains within the specimen,

The volume change that he produced by this process was
0,15%, which is scen to be about an order of magnitude less
than by the present method. He found that the volume

and damping factor dacreased logarithmically with time,
whereas the increase in volume and decrease in damping
factor found in the present investigation is seen to be
faster than this, the relation between the initial volume
vy (before temperature/pressure process), the instantaneocus

volume, v, and time being expressed by the relation:-
(vy - V) « £° (6.2)

where s is of the order of -0.71, for the time period up
to 22 hours after the release of presgsure, no detectable
changes either in volume or damping factor being observed
after this period.

Due to the possibility of the polystyrene sample

containing some impurity, as discussed earlier in this
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chapter, the high rate of volume relaxation may not be

significant, for if the impurity acts as a plasticiser, the

friction between molecules will be substantially

reduced. However, plasticiser in the form of dibutyl

phthalate has been shown to increase the damping factor

of perspex by a large amount, as was noted in section

(6.d.iv), though nro effect on the damping factcr of a

polystyrene specimen from which the prime source of the

"bubble" impurity had been removed was noted, Table (6.2).

Further investigation of this volume relaxation effect

on pure samples of polystyrene is obviously desirable.
Matsuoka and Maxwell (1958) have obtained a value

of 2.“% for the change in volume produced in a polystyrene

sample by 6,000 p.s.i. at a temperature of 99°C, which is

seen to be of the order of magnitude to be expected of the

volume change produced by the present experiment. However,

bu..\k M T (,L'-.«.ﬁ/uk S
their value of compressibidity of polystyrene below the

glass transition (at 3700) is of the order of (15 x 1010)
dyn./cmz, whereas that derived from the values of E' and p'
obtained in the present investigation (see Table (4.8))

and the Lamé elastic constant relationships (Appendix l)

is (3.74 x 1010) dyn./cmz. This latter value is of the
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order of magnitude that Wada's data (1959) would give
for K from these relationships, see Table (h.9). Using
the Lamé elastic constants A and p quoted by Mason
(1958) gives a value of K of (4.2 x 1010) dyn./cmz.
There appears, thercfore, to be some doubt about the use
of the Lamé elastic modulus relationships for estimation

of the compressibility.

(8) Conclusions from Young's modulus and damping factor

noasurenents

The experiments on polystyrene reparted here have
becn carried out on samples which have been shown to
contain an impurity which produces bubbles in the specimen
at temperatures above Tg' Below this temperature, bubbles
were not observed. Hence some doubt rmust be associated
with the values of constants quoted here, though
experiments on a crude sanmple of polystyrene made in vacuo
(which process secmed to remove most of the "bubble"
impurity) suggested that the density and the damping
factor are little affected by the impurity, though the
value of E' decreased, see Table (6.2). It has been
shown that the density of pellets of polystyrene (which

can be looked upon as the raw material for specimen
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manufacture) is about 4% higher than specimens formed
into blocks.

The dimensions of rods whose resonances give values
of 6E have been shown to have no effect on the magnitude
of the damping factor for values of ¢/L from 0.017 to 0.100,
when compared at a constant frequency. The most likely
cause of differences in the quoted values of constant. for,
nominally, thc same polymer is considered to be due to the
different thermal histories of the specimens investigated.

The effect of 7,000 p.s.i. on the volumes of
perspex and polystyrene specimens below their glass
transitions has been shown to be negligible. However,
when a polystyrene specimen is conpressed whilst above
its glass transition temperature, followed by a cooling
to room temperature, the resulting change in volume is
not a permanent one, for the volume of the spécimen soon
relaxes to the value notcd before the conpression took
place, Hence, whilst a pressure of 7,000 p.s.i. was
insufficient to materially affect the volume of the glass-
like polystyrene, the internal pressure produced in the
specimen by the compression above Tg was sufficiently

high at room temperature to change the volume of the



256,

specimen by about 2%, and over the relatively short
length of time of about 20 hours. The magnitude of the
volume change is to be expected from the work of Matsuoka
and Maxwell (1958) but the rate of the relaxation is high
compared with those produced by quenching. The extent

to which the rate of volume relaxation is dependent on

the purity of the speccimen is unknown,
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SUGGESTIONS FOR FURTHER WCRX

Velocity dispersion in finite cylinders

Further experimental work on short cylinders needs
undertaking to establish the magnitude of the end-effects,
Before this can be done, however, the frequency dependence
of Young's modulus and Poisson's ratio must be
unambiguously determined, preferably by a method other
than the resonances of cylinders, e.g. a pulse technique,
One possible re thod of determining the order of magnitude
of the end-effect is by moans of a cylinder of such
dimensions that one of its resonances occurs at a value of
d/L of 0,58606, i.e. the universal point. Comparison of
the frequency of this resonance, which is not influenced
by end-effect, with the other resonances may offer some
estimate of the magnitude of the end-effect. Such an
experiment will require very small tolerances on the
dimensions of the cylinder and on the temperature stability
of the apparatus, even assuning that the density of the
material is uniform throughout the cylinder. For this
latter cordition to hold, it is felt that the use of either
fused quartz or optical quality glass is essential,

The behaviour of the resonances of short cylinders at
high d/L values (i.e.> 0.65) is still unexplained,

' particularly the difference between that of the glass

cylinders and of the cylinders made of aluminium and the



polymers. Apparatus which will detect the nodal
distributions along the length of the cylinder and across
an end-face, in order to determine their mode(s), is
requir ed as the starting point of any further investigation

of this region.
Polymer studies

The exact nature of the "bubble!" impurity in
polystyrene, and its effect on the measured constants of
this polymer, need determining before any further work on
polystyrene can be undertaken, particularly at temperatures
above the gla ss transition. Other polymers should perhaps
be carefully investigated in order to determine if any
similar impurities occur.

The linmited pressure experiments on polystyrene have
indicated the existence of relatively fast relaxations of
molecules nominally "fixed" in the glass-like state, It is
suggested that further work on such pressure effects would
be more conveniently carried out on polyvinyl acetate, an
amorphous wpolymer whose glass transition temperature is
about 30°C. Thus the r equired tenmperature range of the
pressure experiments will be much nore easily obtained.

The dependence of the rate and magnitude of volume
rclaxation on pressure and on the temnperature at which the

pressure is applied 1s considere. worthy of investigation.
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Brief review of viscoelastic behaviour

As Forry (1961) expresses it, the "classical theory of elasticity
deals with mechanical properties of perfectly elastic solids, for
which, in accordance with Hooke'!s law, stress is always directly
proportional to strain but independent of the rate.of strain. The
theory of hydrodynamics deals with properties of perfectly viscous
liquids for which, following Newton's law, the stress is always
directly proportional to the rate of strain but independent of the
strain itself,"

However, these categories are idea’ised and any real solid
shows deviations from Hooke'!s law under suitably chosen conditions
and "it is probably safe to say that any real liquid would show
deviations from Newtonian flow if subjected to sufficiently precise
measurement.." (Ferry, 1961, page 1).

A viscoelastic solid is one for which a time dependency of
the reaction of the solid to some constraint is apparent, and
therefore its behaviour has to be expressed in terms of both elastic
and viscous effects, It is assumed that the behaviowr of the materials
considered are linearly d=pendent on the stress amplitude.

The.simplest way of showing the behaviour of a viscoelastic

material is in terms of the Burgers spring and dashpot elements.



260,

A Hookean solid is a perfectly elastic spring and a Newtonian

liquid is a perfectly viscous dashpot. A spring and a dashpot
together in parallel is known as a Voigt solid following this author's
work (1892) on the behaviour of such a system to an externally applied
stress. A spring and dashpot in series if a Maxwell (1867) liquid.
Figure (Al.l) shows these models and the appropriate differential
equations relating stress, S, to strain, €, through the elastic
constant of the spring, ¢, and the viscosity constant, 7 , for these

models, are given below,

() S= n. d&
dt
(c) S =c. + 7, dse
t
(a) S+1n .45+ n.de
¢ dt dt
(e) (L+ec,) S+ n «dS=c. 5+ n Ge
= c. dat 2 d¢
1 1l

It should be pointed out that the constants ¢ and n do not
necessarily represent the behaviour of any identifiable molecule or
part thereof comprising the material; they serveé to express
mechanical effects observed in materials in bulk,

Equations similar to those above can be written for any kind of

stress/strain behaviour, be it mechanical or otherwise, e.g. section
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(2+2) deals with the temperature dependence of volume of a
viscoelastic material starting from a Voigt type equation. Nor is
one limited to the use of the Voigt or the Maxwell modclédj..systems
of numbers of each type or both types together, either in parallel
or series, can be put together, though the complexity of the analysis
of such systems grows with each addition.

One much used model (Zener, 1948; Mason, 1958; Kovacs, 1961)
shown in Figure (Al.le), is called the simple relaxing solid model.
Zener has shown that such a model subjected to a sinusoidally varying
strain demonstrates several mechanical phenomena which are observed
in solids. On applying a tension to its terminals, it will immediately
extend by stretohing the spring ¢y which will be followed by a further
slow or "retarded" extension as tﬁe piston moves through the dashpot,
allowing spring c2 to extend. The model thus demonstrates creep.
Solution of the differential equation for equation (e) above by
getting d5 = O shows the creep to be exponential with a time constant
n /02, gﬁich is usually called the retardation time. If the terminals
are suddenly pulled apart, by a distance g, at first 1 only is
extended, but orer a period Cy will yield and the tension in the model
will decrease, or relax, from the value cj.e to s.ol.oz/(c1 + 02), the
time congtant in this case being 'q/(c1 + 02) = 1 + The model thus

demonstrates stress relaxation and 1t is called the relaxation time,



At frequencies low with respect to 1/& , the elastic behaviour of

the model is that of the two springs cq and c, together in series,

thus having an elastic constant of ¢ c,/(c; + c,), and at high

frequencies, te elastic constant will be Cye At frequencies inbetween, the
elastic constant undergoes a transition from one value to the other,

which would be observed experimentally as a transition of the phase
velocity as shown in Figure (Al.1f), where v is the velocity at

frequency @ and v! = (cl/b)%; p being the density of an equivalent

material; w_ is given by:% o Lep/(eq + cz)]%

When the simple relaxing model (and indeed any material showing
internal energy losses) is subjected to a sinusoidally varying
gtress, the strain is neither perfectly in phase with the stress, as for
a perfectly elastic solid, nor exactly 90° out of phase, as for a
perfectly viscous liquid, but somewhere inbetween, dependent upon the
values of ¢, ¢5, 7 and the value of 1/% compared with the frequency
with which the stress is applied.

The strain can be resolved into an in-phase and a quadrature
component, the former being a measure of the stored (recoverable)
energy, whilst the latter is associated with the irreversible energy
loss in the material. Hence both strain and stress can be looked
upon as complex, which results in Young's modulus, for example, being

complex, as is shown as follows:-
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Si/eﬁ= E! = B! + jE" = E'(l + JGE)

where &, = E"/E' is the damping coefficient or damping factor.
Similar equations can, of course, be written for the other forms of
deformation such as bulk and shear. The damping coefficient is
therefore the irrecoverable part of the energy associated with the
excitation of the model, and is linked in a real material to molecular
processes,

Evaluating § for the simple relaxing model shows that it has
a maximum value at w = W and falls off very rapidly at both high and
low frequencies, as shown in Figure (Al.1f). Few processes of a
viscoelastic nature can be expressed in terms of a single value of 7
resulting from the setting up of a simple Burgers type model, and even
relaxation peaks similar in shape to those of the simple relaxing

relaxation

model cannot be explained in this manmner. Most experimentally observed /
processes can only be expressed in terms of a distribution of
relaxation times, which is equivalent to the setting up of models
comprising large numbers of elements, as described earlier in this
section.

The value of & can be determined from the 3 db Q factor of the
resonance of an isotropic rod, see Mason (1958, page 190) for example.
For the rod excited into Young's modulus mode resonances, the following

relationship holds:-



1/Qp = (wy - wy)/u, = &g (Al.2)

where w andm2 are the frequencies at which the amplitude

1
of the rescnance has fallen by 3 db on each side of the
maximan., Similar relationships can be written for rods
excited into other mode resonances. Parfitt (1954) has
reviewed the different theoretical forms taken by the damping
factor and shows some of the relations that exist between
them,

Gross (1953) and Ferry (1961) have reviewed the theory

of viscoelasticity and the latter also quotes experimental

evidence.

The Lamé elastic constants

The Lamé elastic constants, A and p (scmetimes called
the Lamé elastic moduli), referred to in the present work,
are derived from the following stress/strain relationships
for =z. perfectly isotrepic mediun. Tn and Sn are

rospectively the stress and strain in the n-direction.

T

1 (A + 2p ).5; + A(s, + SB) 7 T = RS,

T

2 = (& +2p).5, r(s; + SB) 5 Ty = B.Sg

=
i

3 (n + 2p ),s3 + >\(sl + sz) i T = BRS¢
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It can be shown (Mason, 1958) that
(1) shear modulus = B
(2) Young's modulus, E = p.(32+ 2p )/(r + p)
(3) Poisscn's ratio, = r/(2r +2p) = E/2p -1
(4) bulk modulus, X = A + %p
and hence a knowledge of two of the above constants will
allow calculation of all of then.
In accounting for internal losses in a material, the
complex notation described earlier is used, when Ioisson's

ratio is shown %to be given by

o* = o & jao" = E§/2 p§ - 1
= P-'(E'-zp-')*' P-" (E“-Zp.")
2( p'? 4 w?)
W — N 4 — 1
s g, fur(@ - 2pn) - (B 2 p )%
2( ' 2 "'P'“z)
Writing 65, = Ev"/E' and bp = p"/p ', it can be shown that
r - 1 v Bt 1)y 5§ =
o (B"/2 1) + 6p[( /2 p'). 85 421]
2
1+ §

Following Edmonds' finding that first order effects of the
damping factor on the resonant frequencies of & cylinder are

negligible, and that the value of Young's izodulus resvlting
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from the resonant frequencies is the real part of the

complex modulus, equation (1.22) can be written:

t _ Int 1 -
ol =EB'/2p 1
Substituting this value of Poisson's ratio into the
equation above, it is seen that

| R 1 -
¢ = o (1 + 5, ) E) . 6u.( g 6u)

1+ & 2 1 4+ 3 2
Q Q

As ﬂlﬁu 6E for polymers, then Ué = g' to a first approximation

For polystyrene: b = L.o x 10-3, and 6p== h,s5 x 1073
(Parfitt, 1954) and therefore = ol -2x 10‘6

For perspex: &y = 3.0 x 10™2 and assuming ﬂl= 3.5 x 10”2
and therefore ¢' = ¢! - 1.5 x 10-h.

(¢}

It is therefore seen that the use of equation (1.22)
to give tue real part of Poisson's ratio is justified i:n

terms of the accuracy with which values have bsen quoted.



268,

APPENDIX 2

Theory of velocity dispersion in cylinders

The equation of motion for an isotropic elastic solid is

(A +20 )V (To0) -pV xVxn = p_f_f} (A2.1)

at2

vhere A and p are the two Lame constants ( p being the shear modulus),
1 is the displacement vector, t is the time and p the density of the
medium. In applying this equation to a cylinder, cylindrical coordinates
are chosen with the z-direction along the axis of the cylinder, which

is the propagation direction. Scalar and vector potentials are defined

such that

¢ =V.u (42.2)

7 = Vxi (42.3)
and from (A2.3) it follows that
V.o =0 (A2.4)
Substituting (A2.2) and (A2.3) into (A2.1) gives

(» +2u)V p-p V¥ = o S5 (A2.5)

31’.2
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and taking the gradient of (A2.5) gives

_\_'72(p -1 939_ (A2.6)
v% ) 32

where v is the velocity of longitudinal (compressional) waves in
1 ,
infinite media. Taking the curl of (42.5) gives

2% (£2.7)

2
vy =

3%

1
2
Vg at

where v is the velocity of shear waves in imfinite media. Equation
8

(A2.7) separates into three components, which are

VoW - Yo _gr._.a‘h— -1 = 0© (A2.8)

& Ve =Q (42.9)

L b3 '
A -},;; Bék_{a = O (42,70
aend combining (A2.8) and (A2.4) yields
b\{"’ +3\’¥r+ }l +L1 3 N L Ny,
avr 7 r* aa >z y;?- -
- . (A2.11)
T3

Equations (A2.6), (A2.10) and (A2,11) can be solved by the separation
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of variables, and give

]

AT (hr) exp [j (wt =yz+no)]

2

v
n

o= 0 (kr) exp[ 3 (wt - vz + 00 )]

v,.=387J (a)-J L 3 [ Jn(kr)] .expl 5 (Wt =Yz +n0)]
i k2 or (A2.12a)
where 8 = 2 1 times the frequency, f.
Y is the propagation constant which equals 2 'n/ L, L being the
wavelength.

n is an integer starting at zero.

= (u /v))? - 1°

o g
N
I

'
I

= (w /vs)2 -y (A2.12b)

Jn(x) ig the Bessel function of the first kind of order n,
Only that portion of the solution to the differential equation
which remains finite at r = O has been retained.

From equation (A2.3) the three components of ¥ are

'\h__ = L A_lf_} -_ 5“8

3¢ 3=z

Y, = QW — e
Y, = 3% y Vg _ dYc
S TR A Y

(A2,13)



Plane wave type solutions are assumed for the thres components of

displacement of the form

u, = Ulr).cos(ne .iexp [j{yz - wt)]
= ¥(r).ein(ne ).exp [j(y2z - wt) ]
u, = (r).cos(n® J.exp [j{yz - wt) ]

(Az.lé.)

Substituting (A2.14) and (A2.12) into (42.13) gives U(r), V(r) and
W(r), which are unknown, in terms of three constants A, B, C which are

also unknown.

U(r) = 2 ,d[ 7 (hr)]+ B Al T (ker)]+C.n o I (kr
(mz/v%) ar P )]+@-_2-/T§ Er[ alier)] K2 n(r)

V(r) = __A n. J, (hr) - _B en.J (kr)-C.4dT Jn(kr)]

b 2/ Vi?) (wz/vg) r k2 dr
W(r)= 3 Ay . I (ax)+§ _B 3 (k) X° (A2.15)
(w2/vg?) (w2 /y2) Y

The constants A, B, C are found by applying the boundary conditions that

the cylindrical surface is traction-free.

71«



= ""r+5“f'+ | d\g +éUz + M éur
TV?‘ =0 = >\[ Xt C A0 >z f
(=
{1 3w 3 (‘_ﬁ_ﬁ
71}3\ =T =pMT g;'( + ‘-Egr- (';{:1
=a

- _ MAe S U
\‘“E\ =0=r {: N 55(55

(A.216)
where T , T , T are the stress components in the directions given
rr’ 1@ rz
and a is the radius of the cross-section of the cylinder.
Substituting (A2.15) into (A2,14) and these in turn into (A2.16) leads
to three homogeneous equations in terms of A, B, C. The only non-
trivial solutions for these constants are those for which the determinant

of the coefficients of A, B, C is equal to zero. This determinant is

A A A
11 12 13
A A A
21 22 23
A A A
31 32 33 (42.17)
where _
2 2 2
A = [n"-1- 9%+ (ya) ]Jn(ha.)
11 2
2 2
'%12 = [n2"-1- (k)] J (ka)
2
Ay = 2 (n® - 1) [ke I (k) - nJ (ka) - (k&) 7 (ka) ]
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ha J 5 (ka) - (n+1) 3, (ka)

1l

21

A
22

Aza

31

32

33

The

= ka Jn;l (ka) - (n +1) I (ka)
= [:2n2 +2n - (ka)2 ] I, (ka) - 2ka T,y (ka)
= ha Jn;l (ha) ; n Jn(ha)
» ,
= E 2 - 13 e [ka J,; (ka) - n Jn(ka) ]
2(Ya)2

= n° I (ka)
= Wa

V‘s

equation formed by expanding (42.,17) is the so-called frequency

equation which for a given value of n relates the phase velocity to the

wavelength., Thus if @ and Y a are chosen as dimensionless variables,

(a2,

17) is seen to relate these two as a function of Poisson's ratio.

In terms of these variables, (ha) and (ka) can be written as

(ha)2 a? ..Q2 - (v a)2

(ka)? = 2% - (ya)?

2 272
where a =vs/v1= 1l - 20

2(1-0)

where 0 1is Poisson's ratio.
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Equation (AZ.l?) has two sets of solutions represented by
L(n,m) and F(n,m), n and m being integers. L(n,m) represent the
symmetric modes of propagation and F(n,m) the anti-symmetric ones, or
in more common parlance, the longitudinal and flexural modes. Thus there
is a family of longitudinal modes of propagation specified by
n = 0,1,2,3,4,5 oese @ . For each one of these modes there is an
infinite number of dispersion curves specified by m = 1,2,3,4,5 seee® ,
and these are called branches. To find the solution for the L(0,1)
mode, the first symmetric mode, n is set to zero and m is set to 1, in
equation (A2,17) when the determinant becomes simpler, factoring into two
equations
ka Jo(ka) - 2J1(ka) =0 _ (A2,18)
[2?2 - 2y a)2] 2 Jo (ha) Jq (ka) + &4( Yg)z ha ka . J_ (ka) J; (ba)
-2Q 2ha 3 (ha) 3; (ka) =0 (A2,19)

Equa’ion (A2.18) is the frequency equation for torsional waves,
This equation determines an infinite set of roots, given by ka = (ka)q, q
being an integer which specifies the modes, see Mason (1964 .page 134);
ka = O is the simplest solution and represents the lowest order torsional
mode, in which the phase velocity is Vge This vhase ~velocity is independent
of frequency and hence is non-dispersive, and

vy = ( w/o )%' (A2,18a)



Equation (A2.19) is the frequency equation for the longitudinal
modes of propagation, and its solution is not easy for rods of finite
length due to the difficulty of applying the boundary conditions for
the ends of the rod. These boundary conditions are that the normal
and shear stresses Tzz and Trz vanish at the ends given by z = 0 and 2 = 1,
1 being the length of the rod.

- To find Tzz and Trz’ the axial and radial displacements must first
be obtained. Let them be, respectively,
u, = U(r) exp[ § (yz -w t) ] (42,20)

=) expl § (ya -w 1) ] (42.21)

Note that these are the same as (A2.14) with n = 0. Combining (42.20)

u

and (A2.21) with (42.12) and (42.13), “he solutions for U(r) and W(r) are
given as
U(r)
w(r)

One of the boundary conditions for the traction-free surface is

- An 3y (br) + CY Jq (ir) (A2,22)

Il

jAY Jo(hr) +3C kJo(lcr) (A2.23)

—

-T‘..z_\ = fA['E’_‘r_!f — 5“'{] = 0 (A2.24)

U= 2= E;F‘
and from this boundary condition, equations (A2.20, 21, 22, 23) give
4l - 2vn3 (ha)] + o [ (2 -1®) 3. (ka)] =0 (A2.25)
The ratio A/C depends on the relationship between @ and yva given in
equation (A2.19). Because there is an infinity of values of Ya for any @ ,

ya will be assigned a subscript to identify it with a particular root of
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(A2.19). Thus we write Ya = ( Ya)n) and the ratio 4/C is given as

(8 - a0 201’ -0 (12.26)

2( Ya)n hoa Jl(hna)

Equation (A2.23) can be written as

Wﬁ(r) = Wh’l(r) + Wn,z(r) =3A Y Jo(hnr) +3Cy kn Jo(kh;)

(22.27)
and therefore
Whl(r) ; bpe Yn.Jo(hnr) (12.28)
th(r) Cn.kn.Jl(knr)
Substituting for 4/C from (42.26) gives
oG I () aCye)l -22 JryGee)
(42.29)

W o(r) knaJo(knr) ZhnaJl(hna)

and comparing (A2.29) with (42.27), it is seen that the following equations
hold

3a, v, =2 Ya)i - 9215 (xp2) . K (42.30)

jc,k = 2kn.a.hn.a.J1(hna). K (22.31)
where KB is a cvonstant,

Substituting (A2.30) and (A2.31) into (A2.27) gives the axial displace-
ment

U;n = Zn(r) expl iy L wt)] Ko (A2.32)
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Zn(r) =[ 2( ya) - @ ] Jl(kna) Jo(hna.._g) + 2k aha Jl(hna) Jo(kna -2-[)
(42.33)

and the radial displacements

U =jR(r) e[ (v 8- wt)] K (A2.34)
rn ' n n

2 2 ' 2 |
R = 2 - Q@ JIJ. (k J. (h -2
)= magla(ya) - a7l (gp) 3) (ha2)]- 2(ve) 3, (h a) g (i & 1)
(Ya), (42.35)
Equations (A2,32) and (A2,34) are therefore the axial and radial displace-
ments adg a function of the radius for the first branch of the first

symmetric mode. Using (A2.16), (A2.32) and (A2.34), the normal and shear

stresses are obtained; the normal stress is
Toon =_j_§ H . ZZn(r) . exp [ j( Y @ - wt)] ¥ (A2.36)
S = (ye), (A2.37)
2 (x) =L2(ya)? ~a? TL2(ya)? - 2201 -a?)13,0p8) 3, (o o)

+ 1 Ya)i h sk a Jy(ha) J (ke x) (12.38)
a

and the shear stress is

?ra;-rgg. RZn(r) exp L (Y 2 - wt) 1 &, | (42.39)
_ 2 2
RZn(r) = hna[z(y a)n ol [ Jl(kna) Jl(hna. E) - Jl(hna.) Jl(kna. T:)] (A2,40)
Ir YZ = - |Y2| = -Yl, then it can be shown that
E, = H, ZZz(r) = ZZl(r), RZZ(r) = Rzl(r)
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? =-T ,T =0T (A2.41)

i,e. the sign of the shear stress Trz is independent of the sign of Y
or the direction of propagation, but that the normal stress T,, is
dependent upon the sign of Y. This dependence is introduced by the
function H.

Zemaneck (1962) has calculated relative values of T and T, for
Poisson's ratio of 0.3317. Trz is zero at the centre and at the edges,
and for Q <2.6 Trz is 2 orders of magnitude less than the normal
stress, T . From equation (A2.01), Tzz can be made to vanish, as it is
an odd function, if the incident wave is reflected with no phase shift.
The resultant normal stress then assumes the form

Ty, = fesin ( Yz)
and this assumption is the low frequency approximation and results in
the familiar equation relating wavelength to length of the cylinder
L = 21/n (A2.42)

The derivation of the frequency equation then continues as from
section (l.c).

At high frequencies (see section (1.0)), Trz is far from zero and
both this compcaent and Tzz can only be made to vanish if it is assumed
that higher branches of the L(O,m) mode, which are non-propagating below
frequencies given by wa/vs = 3.68, are generated at the end face so as

to cancel out the excess strain which results from assuming that only the



m = 1 branch of this first symmetric mode is reflected. Zemaneck has
shown that the frequency defined above is that at which the m =2 and m =
branches begin to propagate. At higher frequencies, more and more pairs
of branches begin to propagate, and "it is apparent that the Ealculation
of the resonant frequencies of a finite bar would be extremely difficult
if not impossible" (Zemoneck). Zemaneck's chief use of these newly-
vropagating modes is to calculate the frequency of "end resonance" and

he shows that using an increasing number of pairs of such modes results
in a more accurate value of this frequency, as given by experiment.

The "end-resonance" effect

The amplitude of these newly-propagating modes dies away rapidly
with increasing distance from the end-face of the cylinder, such that
far from the end face only the reflected L{0,1) mode would ordinarily
be observed. However, this "energy storage" vphenomenon would be observed
in changes of the phase and amplitude of the reflection coefficient of
the mode concerned. (Mason, 196k, page 146). At certain frequencies,
this stored energy at the end-face of the rod causes large amplitude
displacements near the end face, and this is the cause of the phenomenon
of "end-resonance", when the phase angle of the reflection coefficient

undergoes a sudden change of 3600, and which has been observed by

279.

3

Zemaneck (1962) at the value of loa/bs as given by the theory; Oliver (1957

first observed the end resonance effect.
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If the reflection coefficient for the incident mode or the
amplitude coefficient for the nth branch which is generated at the end
face is

An = | Anl . exp(J @n) (A2.43)

then the normal and shesr stresses can be expressed in terms of the

propagating mode and its higher branches, and at the end-face they become

Tzz(r)= n%) An.'l‘zzn(r) =0 (A2.44)
Trz(r)= ngo An.'l‘rxn(r) =0 (A2.45)

Zemaneck uses the following convention for n; the incident mode is denoted
by n = 0 and its reflection by n = 1. Foir frequencies less than Q= 3.68,
branches whose propagation constants are imaginary are referred to by n
values greater than 1. The first pair of these are denoted by n = 2 and 3,
the second pair by n = 4 and 5, and so on. In any pair, one branch is the
comnlex conjngate of the other, and this description is based on the
concept that a source located at infinity is assumed to excite the L(0,1)
mode. This motion is reflected with a reflection coefficient A1 on
reaching the traction-free interface at z = 0. Higher branches are
generated in sufficient amplitude to cancel the residusl stress. In
trying to satisfy the boundary conditions shown as equations (A2.44) and
(A2.45) above, it is obviously not practical to include an infinite number
of An values, though Zemaneck has calculated the reflection coefficients

n
and phase shifts for the first 97 values in these equations. At the
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P ae = R - .
. - - a N -~

univgrsal point, he has been able to show that the phase shift is

-

zero, and that clouc to{h.= 3,0 , it undergoes a jump of 360° in

- walueyMwhich effeet is Imowun os “Yend-rcsonance’’,

Rt ) . ) ’ . 3

Finite internal losses in the rod

Section (l.g) refers to the work of Edmonds in accounting for first
order effects due to finite internal losses in the rod. He shows that
Qge W" is dependent only upon wa/bE and upon A"/ p", assuming that these
parameters are independent of frequency.

In making the Lame constants, angular frequency and phase
§elocities complex, the propagation constant, y , must remain real so
that the wavelength is real. This condition dictates that '/ u" = vi/v{.
Putting these complex terms into equation (1.12) gives
(x* - 1)%0 (F%a) - (2e%-1) [ =* - o(&F)] =0 (42.48)
where 2¢ %2 =8 o of equation (1.12).

Edmonds expands this equation by Taylor's theorem and on keeping
only the first order imaginary terms shows that the real part of the
resulting equation is equal to egquation (1.12a).

By further manipulation it is possible to arrive at the following

equation

A ATyt oy B W/ p - C.e"/u' = 0 (A2,49)
A+ 2pt



282,

where Ao, Bo and Co are functions which contain only the real parts of
the parameters used, one of which is wq/%l e .. o ignoring any

end-effect corrections.

Writing 1/c;zE = w"/w ', equation (A2.49) can be written as

QE" AL .[Bo/ p! o+ AO ()\"/ p" +.2)] = CO (A2-50)
Al o+ 2!

and hence Qp. p" is a function of k"/ p" and of the three functions

Ay B, and C, which contain the parameter wa A

n



APPENDIX 3

Theoretical values of dispersion in an infinite cylinder

These values have been interpolated from Bancroft's origina.l
table (1941). Other tables given by Bradfield (1964) give the
values of vn/vE for d/L values less than 0.45.

The values of vE/vn given here are considered to be accurate
to within + 0,00001; +this is the worst deviation that the curve
fitting computer programme gives for the values of dispersion as
shown in Bancroft's table.

The table presents values of d/"' from 0.45 to 1.00, and values

of Poisson's ratio from 0.15 to 0.40.
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0.45 0.50 0,55 0.60 0.65 0.70
1.02181  1.03337  1.05222  1,08183  1.12251 . 1,16999
1.02435  1.03682  1.05655  1.08649  1.12667 1.17329
1.02698  1.04034  I1.06089  Lo09113  1.13088 1.17672
1.02968  1.04390  1.06523  1,09575  1.13513. 1,18027
1.03245  1.04751  1,06956  1.10036  1.13942  1,18391
1.03528  1.05116  1.07389  1.10495  1.14374 1.18763
1.03817  1.05484  1.07822  1,10952  1.14807 1.19143
1.04111  1.05854  1.08254  1,11408  1,15242 1.19528
1.045410  1.06226  1.,08685  1.11861  1,15678 1.19919
1.04713  1.06600  1,091i5  1,12313  1.16115 1.20315
1.05020  1.,06976  1.09544  1.12764L  1.16558 1.2071k
1.05330  1,07353 1.09971  1.13212  1,16988 1.,21116
1.05643  1.07?731  1.10398  1.13659  1.17425 1.21521
1.05959  1.08109  1.10823  1.14104  1.17861 1.21929
1.06278  1,08488  1.112,8  1.14548  1.18297 1.22339
1.06599 1.08868 1.11671 1.14990 1.18733  1.22750
1.06921  1.09248  1.12092  1.15431  1.19168 1.23163
1.07246  1.09629  1.12513  1.15870  1.19604 1.23578
1.07572  1.10009  1.12932  1.16307  1.20038 1.23994
1.07900  1,10390  1.13350  1.16743  1.20473  1.24411
1.08229  1,10770  1,13767  1.17177  1.20906  1.24829
1.08559  1.11151  1.,14183  1.17610  1.21339 1.25247
1.08890  1.11531  1.14597  1.18041  1.21771  1.25665
1.09222  1.11910  1.15010  1.18470  1.22201 ' 1.26083
1.09555  1.12289  1.154,21  1.18898  1.22629 1.26501
1.09889  1.12666  1.15831  1.19323  1.23054 1.26916

N
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1.21939 1.26754  1.31290 1.35479 1.39293 1.42739
1.22189  1.26946  1.31441  1.35602  1.39398 1.42833
1.22457  1.27156  1.31608  1.35739  1.39516 1.42940
1.22740  1.27381  1.31790  1.35891  1.39648 1.43059
1.23036  1.27620  1.31988  1.36057  1.39793 1.43190
1.23344  1.2787h  1.32199  1.36236  1.39950 1.43333
1.23663  1.28140  1.32423  1.36428  1.40120 1.43487
1.23992  1.28418  1.32659  1.36633  1..40301 1.43651
1.24330  1.28706  1.32907  1.36849  1.LOL9L 1.43827
1.24675  1.29005  1.33165  1.37076  1.40697 1.44012
1.25028  1.29313  1.3343%  1.37313  1.40910 1.44208
1.25387 1.29629 1.33713 1.37561 1.4113% 1.44413
1.25752  1.29953  1.3L000  1.37818  1.41367 1.44627
1.26122  1.30283  1.34295  1.38083  1.41608 1.44850
1.26496  1.30621  1,34598  1.38357  1.41858 1.45081
1.26875  1.30964  1.34905  1.38639  1.42116 1.45320
1.27257  1.31312  1.35224  1.38927  1.42382 1.45566
1.27642  1.31665  1.35546  1.39223  1.42654 1,45820
1.28030 1.32023  1.35874  1.39524  1.42933 1.46081
1.28420  1.32384  1.36207  1.39832  1.43218 1.46348
1.28813  1.32749  1.36545  1.4014%  1.43509 1.46621
1.29208  1,33118  1.36887  1.40462  1.43806 1.46900
1.29604  1.33489  1.37233  1.40785  1.44107 1.4718)
1.30002  1,33863  1.37583  1.41113  l.AMh 14747
1.30401  1.34240  1.37936  L.L1MA4L 1.L44725 1.47768
1.30801  1.34618  1.38293  1.41780  1.45041 1.48067
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APPENDIX L

Definitions of spin-lattice relaxation time and second moment

The resonance observed in nuclear megnetic resonance experiments
results from the excitation by R.F. photons of nuclei from one

magnetic spin quantum state to another. The spin-lattice relaxation time,

;b is the time constant which controls the return of these excited
nuclei to their original quantum state, a process which is brought
about by a coupling between these nuclei and the thermal photons of
the lattice. The spin-spin relaxation time, TZ’ is the relaxation
time which controls the return of the excited nuclei to their initial
states by coupling with the other nuclei,

The shape of the resonance envelope which can be expressed
as the function g{H), can be expressed numerically by calculating

the mth moment of the resonance curve defined by

Aaﬁ = §qyyne 8().(E - B, a(& - H)

$1sne g(®)e a(E - H)

The second moment is given by putting m = 2. These moments are a

measure of the width of the resonance curve which for dipolar broadening
decreases as motion of +he molecular environment of the nuclei

increases. The broadening of the envelope results from the fact that



the nuclei see not only the applied magnetic field, but also that
resulting from the magnetic moments of the nuclei comprising their
environment. As motion of these nuclei increases, these deviations
from the applied magnetic field are averaged out and the resogg#ce>
envelope width decreases. |

Ag the motion of the lattice increases, more thermal phonons
will become available to bring about the de-excitation procesé
described above, which will result in the process occurring more
quickly. Hence, T1 will decrease with increasing molecular motion.
It is therefore obvious that the measurement of these two para@eters
during the progress of a transition like those occurring in the glass-
like state will be a means of observing these transitions.

Abragam (1961) and Slichter (Frechette, 1958) give more
detailed definitions of these parameters and their dependence upon

molecular motion.

287.
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APPENDIX 5

Details of electronic circuits

The oscillator

Figures (A5.1a) and (A5.1b) show the circuit of this
oscillator. One of the fractional detuners provides a change in
frequency of + L%, and the other + 0.4%, the former being adequate
to cover Q measurements at room temperature in perspex and the
latter in polystyrene. The H.T. supplies of 270 and 350 volts, both
stabilised, are provided by commercial apparatus. The range of the

oscillator is from 50 c¢/s to 350 ke/s.

The drive amplifier

Figure (A5.2) shows the circuit. This device also provides the
200 volts D.C., potential between the end of the rod and the earthed
plate which together form the condenser microphone which drives the
rod. The peak-to-peak voltage of the oscillatory potential must not
exceed one quarter of the D.C. potential, i.e. no more than 50 volts,
for Parfitt (195&) has shown that above this fraction second harmonic

distortion car occur,
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The detection amplifier

The circuit of this apparatus is shown in Figure (A5.3). The
D.C. polarising potential applied to the detector condenser microphone
is also supplied by this circuit, which is essentially a resistance
coupled amplifier, employing negative feedback to minimise the
effects of variations of valve properties and to improve the
linearity of the frequency characteristics. In the untuned range,
the amplifier has a frequency response which is flat from 2 kc/s to
140 kc/s; its gair is such that a full sczle deflection of the meter
is obtained for a signal of 75 microvolis at the input. The first
stage of the circuit, the pre-amp. stage, is built into a small
box (shown by the broken lines in Figure (A5.3)) which is connected
to the amplifier proper by leads. This arrangement allows the pre-
amp. to be as close as possible to the detecting condenser
microphone, thus minimising lead capacitance which reduces the

sensitivity of the detector.

292,
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Appendix 6

Effect of a constraint on each end
of the rod

Let us consider shear mode propagation; it can
be shown (Kolsky, 1950) that the wave equation can be

written as

G, gzu =0+ 3%u (a6.1)
ax2 at2

where G; is the complex shear modulus and ¢ 4is the
density and u is the angular ro:sation through which

diametrical »lanes rotate, and which has a solution
u(x,t) = U(x) . exp(ju t)

where ® is the angular frequency. Equation (A6.1) can

therefore be written as

G(1 + 38) 3%u + 0w = o (a6.2)
dx
which has a solution
U(x) = P.exp(- vYx) + Q.exn(+ Y x) (46.3)

where Y

a+ jB
w.6/2.( p/G)%

=]
It
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5= w.(p/0)? (46.4)

P and Q are determined from the boundary conditions on
the rod, that at the driven end, the counle in the
cylinder which is given by

c = G*r. % (A6.5)

ax2

must be equal to the driving couple Co.exp(jﬁmt), and at
PRETON-N
the free end rust be zero. I' is theLmoment of inewtia- ke
AN
of—a cross sectionAabeu%—%he-axis of the rod.
If & tends to zero, then the solution of this
equation is the familiar one which relates the wavelongth
of propagation at resonance to the length of thc rod, as

shown in equation (1.7) and where the frequency of

excitation is given by

If & 4is kept in the solution, then the rceclaticnship

W _ = n. wo.(l +(62/8)(1 +2p +(1/8)(3 + 2p) b 6?))"1

n
2 2 .
wherzh = n°n"“/6 and p is given by putting & pronortional
tow P, is derived, sce soection (1.i).

Parfitt (1954) has considered the effect of a central

constraint on a cylinder excited into shear mod~ resonance,



296,

and finds that the frequencies of the odd harmonics
(n = 1 is the fundamental) are unaffected (the

constraint is always at a node for these resonances)
whereas for the even number harmonics, the frequency

is shifted upwards by an amount given by

2 2
W, o=2nuv_ + zsou)o/1tu) (A6.6)

where S = gol/zGP » 8, being the stiffness of the
constraint. Using Parfitt's method, let us now

consider such a constraint at each end of the rod.

x =-1/2 X = +1/2

The stiffness and the damping of the constraint are 8,
and 4 , Therefore the couple per unit angle of twist

is go(l 1+ jd Ygx The boundary conditions are:-

lc at X = -i
2
g,(1 + 3b).u(-1/2) + 6(1 + §3)ral=0
X
2. atx:_];
2
g, (1 + Ja ).U(1/2) +6(1 +38)r3y =C

Q/
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These two conditions are sufficient to determine P
and Q of equation (A6.3) and it can be shown that the

ratio of Uo (defined by Col/Gl" ) tuo U the conmplex

l,

anplitude of ovscillation at the free end is given by
U /U, = 1gO/G1" (1 + jA). sinh(y 1).(z2 -1)/z (46.7)

where Z = GI'y (1 + j 6)/g0(1 + 3 A)
By putting é? and A2 equal to zero, it can further be
shown that the square of the modulus of this ratio is
given by:-
12.(1 - gi/G2 r2 ﬁz)z. E (sinh al1). cos(pl).(a -8 £, +#p )+
cosh( al).sin(B 1).(B +aee - A.a))z + (sinh( al)e.
cos( g1). ( g + aee ~-Ma ) - cosh( al). sin( g1).

(@ - B.e+AB ))2 } (A6.8)

where £, = 6 - A
I.et us now assume that § and A are equal to zero, when the

above relationship becunes

u_/u, = pl.(1 - gi/Gsz 82).sin( 1) (46.9)

Resonance condition is given by differentiating with
respect to Bl and setting to zero the above expression,

when
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sin( p1).(1 + gi/G2 r? Bz) +pl.cos( p1).(1 - gi/GzI12 Bz)
= 0

or when

tan(gl) = (M - 1)/(M + 1). g1 (A6.10)
whore M ;_gi{Ggrzpz
Writing tan(X) = tan(X - 2nt ) - X ~ 2nn  we have,

(g1 -2nn ) =pg1.(M - 1)/(1 + 1)
But Bl =uw nﬁno, by the simple theory, and so
(0/w_ - 2n).(1 + Nmi/mz)qo/mo,(N %/m2 - 1)

where N = g-1°/6°r? {2
which gives w = nmc.(l + Nmi /wz) (A6.11)

This equation is valid for Young's riodulus mode of
excitation when 8, is replaced by e, the form of N then
becoming

N = 02/E20ﬂ2
o
Thus equation (A6.11) can be written

2 2)

This solution suggests that the resonant frequencies
of a rod so cunstrained will be increased by an amount
which is pronortional to the square of the ratio of the

stiffness of the constraint to the Young's modulas of
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the naterial of the rod, and inversely proportional

to the square of the number of the resonance. Although
equation (A6.11) agrees with(a6.6) in the direction of
the frequency shift, the amount of the shift given by
the latter is more than that given by the former, as
go/G will always be less than one. This prediction is

contradicted by experimental evidence,
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Appendix 7

Tho rclationship between p and Af, the two

expressions of a frequency dependence of E!

Ideally, the resonant frequencies fl and fn of a rod,
after suitable correction for velocity dispersion, are
given by

n.fl/fn = 1 (A7.1)

In fact, only by the use of the correction Af can such an
equation be written, i.e.

n.(f;, + A7) -1 (a7.2)

(fn + AF)

Assunming that E' « £fP is the frequency dependence of the
real part of Young's modulus, it is scen that
i
= 1 2 p/2
n.f,/f = (B}/B!)% = (£,/F)) (a7.3)
-1
From (A7.2), fl/fn = [n+ (n- 1). Af/flj
and
n.fl/fn = n/ [ n+ (n-1). Af/fl ]
Suhstituting these into equation (A7.3) gives
P = z.é 1 - log [n] /log[ . n+ (n - 1). Af/fljg (A7.4)
as the relationship between p and Af,
If Af is negative, then log [n] /log[ n + (n - 1) Af/fﬂ

is grecater than unity, and p becomes negative,
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Characterisation of polymers

Linear polynrners consist of a distribution of
molacular weights. Both the shape of this distribution
cnvelope and the magnitude of any particular component
depend upon the particular process which produccd the
polymer.

A lognormal distribution is one which is described by
the following equation, see Kendall and Stuart (1958).

drF(z) = A . exp [- 1 (B + Alogz)2] . dz
(2. ©.2)2
where z = (x - C).D
and AyBy,C and D are constants.
For comparison, the Gaussian or normal distribution is
dr(x) = 1 . exp (- % xz). dx
- I
(2, n)2
where dF(x) is the frequency of occurrence of the variable
x between x and (x + dx).

Whereas a Gaussian distribution is syrmmetrical in
shape about some mean value, the lognormal distribution
envelope is assynetric having a brief tail on the low "x"
side of the maximum and a sharp cut-off on the high "x" side,
the magnitude of the tail and the sharpness of the cut-off

depending on the constants A,B;C and D,



Because of this distribution of molecular weights
of linear polymers, two average nolccular weights have been
defined.

1., The number-average molecular weight, Mn

B = Z_ximi = Z N M,
i 1
Z Ny

i

where Xi the nmole fraction of species i

Mi = molecular weight of spccies i
Ni = number of molecules of species 1

It follows that the definition of the number-average

nclecular weight is

total weight of polymer

total number of moles of polymer molecule

2. The weight-average molecular weight, ﬁw

- _ 2
H,= ) wM, = N M

i i
Zi N My

In determining the average molecular weight from some
prceperty of the polymer in solution and i+ts dependcnce on

mclecular weight, the particular average that is obtaincd
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will depend upon this dependence. Hence, let it be
assumed that a coenstant of the polymer in solution, P,

is such that

where K is a constant and cy is the weight cconcentration

of the species i of molecular weight Mi' Hence c, = NiM

i i®

It follows thav
< S k.2
P = : Pi = K’Mi'ci
i i
and therefore ﬁp, the particular average riclecular weight

given by the nmeasurement of constant P, is given by

S

- p 1/a ) ELCiMa 1/a
P~ — - li i
K ;: cy %;cl

Substituting c, = NiMi into this relationship gives

Zi N Ma+1 1/a

MP = 1 ii
zE:NiMl
i

For light scattering experiments,

a = 1 ﬁp is tho weight-average nolecular weight,
For osmotic pressure and freezing point depression cxperi-

ments,

a = -1 ﬁp is the number-average molecular weight.



For viscosity experiments, the situation is less well-

defined. If <she Staudinger cquation holds, then a =1

and “he meclecular wecight obtained is the weight-average

moiccular weight, scuaotinmes referred to as the "Staudinger

nmolccular weight", The Staudinger equation does not
apply over a wide range of concentrations however, and

a has a value which generally lies between 0.5 and 1,0,
Therefore, the molecular weight resulting from viscosity
experiments, and referred to as the viscosity—average
riolecular weight, ﬁv’ lies sonewhere between the number-
average and the weight-average moclecular weights.,

The above analysis of the various average molecular
weights is taken from "Physical Chemistry of High
Polymeric Systems" by H. Mark mnd A.V. Tobolsky, which is
Part II of the series "High Polymers" by Interscience

Publ, Inc., New York.
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