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ABSTRACT

In Chapters II - IV we give a brief survey of the
guantum field theory necessary here. Particular attention
is given to the Haag~Ruelle Collision theory. The theory
develcped in Chapters II - IV is applied to a particular
model of almost local field theory. In fact, we set up
an approximation scheme by requiring that the theory is
relativistically equivalent to the presumably correct
loecal field theory. Then, an almost. ldcal Fleld
possesses the Haag expansiona

In Chapter V we demonstrate the possibility of
imposing the condition of almost locality on a L-point
matrix element, This is done in order to obtain certain
restrictions on the functions F appearing in the Haag
expansion of an almost local field. Disregarding possible
end-point singularities we have been able to show that in a
certain finite energy region the functions (p2 - mz)F
satlisfy equations similar to "physical unitarity"., Assuming
that the F-functions appearing in the Haag expansion
possess analytic properties, we have been able to find a
model (Chapter VI) which explicitly shows how the end~point
singularity can be cancelled by the threshold behaviour if
the energy region is restricted to the elastic region.

The whole of.Chapter VII is spent in showing how the



bound state problem may be incorporated into the spilrit
of almost local field theory., The problem is analysed in
the case of AB elastic scattering where B represents a
two~particle bound state of A »

The last Chapter, or conclusion, indicates the

difficulties which are met when the 6-point function is

examined,
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I. GENERAL INTRODUCTION

It is the ideal of particle physics to arrive at a
unified description of all kinds »f particles and all
possible interactions. The attempts to understand the
strongly interacting rarticles and their couplings
represent another partial approach in this directicn.

Obviously all information we have about particles
has been derived directly from experiment and using the
languagse of particles, This so-called particle concept
is characterized by giving the mass m, energy momentan
four vector p with p2 = mg, spin 8 and internal
guantumn numbers q. It became clear, when the list of
particles and resonances swelled up as the energy
available had been increased, that there nmust be some-
thing more fundamental than the observed particles,

Thus, in the current theoretical discussion of elementary
particle physics, quantum field theory is the most
sophisticated concept presently available, It is in terms
of fields that we attempt to construct the basic theory.
Then, there is a hope that by starting from a few fields
we may, at least qualitatively, calculate the existence of
various kinds of particles and the variety of their
dynamical properties, 8o far, no fully satisfactory and

simple theoretical model is known, from which the existence



Y

of particles, that is, their mass spin values and other
experimental properties can be accurately evaluated.

There are various approaches to field theory, each of
which has advantages in certain situations, Their common
purposc is the desire to exploit to as full an extent as
possible the mathematical consequences of a few physical
principles.

We may distinguish three main divisions.

a) Lagrangian field theory(l). The theory deals with
a certain function called Lagrangian density I which
is specified as a furction of "bare® fields ¢ and
their gradients, The parameterswhich ave involved
are "bare" masses and coupling coastants., This
formalism leads to a definite equation of motions
which is then solved by perturbation methods or
spme modification thereof, OFf course, it is not
always possible to find exact mathematical solutions
to the complicated equations one writes down in
this way. The S~matriz is calculated by the method
of Feynman diagrams(z).
b) A secornd approach is that of Lehman,
Symanzik and Zimmermann (LSZ)(B), Wightman(u),
Ha&g4Ruelle(5) and others, This approach is

adopted here and is treated in most details,
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(6)
(7)

or now extensively called analytic S-matrix theory °

c) The third approach is that of dispersion theory

By imposing directly relativity, unitarity and other
symmetries together with analyticity to the S-matrix
one hopes to have a complecte theory which is able
to describe ail the properties of elementary particles,
A good feature of the dispersion theory approach
is that one works with quantities that are obser-
vables or nearly so, It should also be emphasized
that the analytic S-matrix theory considers the
analytic properties of S-matrix elements on_ the

masg shell in all their variables,

In none of the above-mentioned kinds of field theory
have we any assurance that sojutions of the equations
actually exist or describe nature accurately, To make
progress with field theory at present requires setting
up phenomenologically based models or approximation schemes
thal reflect the general properties of the underlying funda-
rienta. theory,

It is the aim of this thesis to obtain a reasonable
approximation to a local field theory, and still have a
complete dynamical theory with at least a partial particle
interpretation., The way to achieve it is to consider an
almost local field(a) having the Haag expansion(9) in terms

of free fields which are complete,
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The Haag expansion introduces an infinite set of
gencralized F_ Tunctions (potentials), then, the
condition that the field B(x) is almost local requires
certain mathematical res*trictions on Fone For finite
energy it is possible to smear B(x) with such a test
function that only a tinite number of an's occur in the
haag expansion for B(x), Thus, the idea of the approxi-
mation is to approximate the almost local field B(x)
by a finite number of an. The S-matrix and the partial
particle interpretation is given by the Haag-Ruelle
collision theory(5). Since we deal only with finite energy,
iv must be possible to modify the theory at any stage so
that the physical interpretation can be extended to higher
energies, The most gencral set of an's with the "almost
local" cor.ditions is supposed to provide a parametrization
of high energy physics, In this thesis we mainly consider
the four-point truncated Wightman functions(5), for the
"almost local" condition is best understood in terms of them,
The energy domain is extended to the threshold for the

2+ 1 particle production. We find as a consequence of
this (see Chapter V) that a certain function T, = (p2-m2)F21
rclated to & 2-—5 2 scattering ampilitude, when restricted
to the mass shell, satisfies an equation similar to the

physical unitarity up to the n + 1 particle production.

The solution to such a unitary eguation possess several
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(10) on the positive real energy axis

isolated singularities
knoom as physical threshold singularities. It is then shown
on the model how the two-particle threshold branch point

can bz canzelled with an end-point singularity when the
analysig of Chapter V, is applied in the elastic region.

The derived formalism allows incorporation of bound states
as well, To show this, we consider the bound state problem
in Chapter VII in the case of two-particle bound state.

The whole problem is then analysed on AB elastic scatter-
ing where B 1s a bound state of A,

The conclusion summarizes the obtained results,
pointing out the difficult points in the theory. It also
containe a brief sketch about the higher approximation, i.e.
the 6-point fun~tion which is supposed to be connected
with the Z-particle scattering region and therefore perhaps
with the 3-particle unitarity as well,

For the convenlience of ithe reader and the sake of czom-
pleteness, we give at the beginning (Chapters II-IV) a
necszssary review of the theory, especially the Haag~-Ruelle
scattering theory, which will be used here, The review
given here is by nc means complete and is therefore supplled
with a number of references to which the interested reader

may refer,
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IT. AXTOMS 1IN QUANTUM FIELD THECRY AWD WICGHTHMAN THINCTTONG

a Introduction
(a) In

In this chepter we give a brief review of certain
important features of relativistic field theoriles necessary
here, This survey is aot intended to be complete in any
way. The starting point i1s the definition of the axiomatic
approach to the guantum field theory contained in studying
the consequences of a set of a few fundamental postulates
on the theory. These postulates are stated in terms of a
condition oa operators called fields in a Hilbert space,

(ll) and statements con-

(11)9

Some of them, as Lorentz covariance
cerning the structure of the energy momentum spectrum
are adopted by practically all authors. Apart from this the
requirement that such a theory is also physically reasonahle
brings a iumber of other necessary properties of the fields.
(depending upon the treated model), Among these, one which
we cconsider as a very important requirement, is the
egymptotice condition"CiS)o This condition, of course,
impoges Turther mathematical restrictions on the rield
cverators, but the necessity for having it is to make a
particle interpretation possible at all, as will be seen
later,

For gimplicity, we treat the case of a single neuvtral
scalar field interacting with itself., A1l of the investi-

gations which have been carried out make the following
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geneval assumption about the theorye

(b) Axiloms In Quantum Fleld Theory

I. The usual postulates of gquantum mechanics are valid,
isesy the states of the systems are represented by the vectors
of a (separable) Hilbert space{kﬂ with positive definite
metric(lz). The "field operator" is introduced in the follow-
ing waye for every point x of space-time there exists a
bilinear form A(x) in the Hilbert space, such that for any
two vectors 1§f ,fi}e D (D is a dense domain in ¢ )

( \}f, A(x) (@ ) is a finite number which, of course,

depends linearly on <§§ s antilinearly on 1}; + BFurther-
more, one requlres that D 1is a linear set coataining vacuun
llf o° It was also recognized that the components of fields
are in general more singular than ordinary functions in their
derendence on a space~tlme point. This suggests that only
smeared fields<5’ll) could yield to well-deflined operators,
However, examples show that even after smearing, the fields
are still unbounded operators which are not deflned on every
vector in a natural way. In spite of this difficulty one
defines the smearing as & requirement that if g(x) is any
real function of space~time, which belongs to class :fj(13>,

loea, which is avbitrarily often differentiable and vanishes

faster than any power for large {{xi , then

A}é = {:A(x)ﬁ(x)d“x (IT.1)

\J
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is an (unbounded) self-adjoint operator defined on a dense
linear subset D of Hilbert spaceﬁii o In this case we
shall say that the theory is specified by a Hilbert space and
a linear and weakly continuous mapping(IZ) 2(x) s Aé from
a suitable test~function space into the set of closed linear

operators in ﬁﬁ;,

Although the functions of class;ﬁ; are very well
behaved there are several known field theoretic modelgmég
which the functions are not good enough to make Aé an
operator. In such a model one has to restrict oneself to
test functions @(x) whose Fourier transform differs from
zero only in a finite region of momentum space. As smeared
fields can still have an arbitrarily large expectation value
in a suitably chosen state (i.es., if Ay is an unbounded
operator) we are obliged to make some assumptions about the
domain of vectors in which the smeared fields are definable.
We say that an operator Aﬁ 18 defined on D(ﬁ =v§1) such

that A, D C D and such that for I/, e D,

7

("‘E"a A;,g (:) )e {:7 .
IT. The theory is invariant under inhomogeneous Lorentz

transformation(IS). This says that the relativistic trans-

formation law of the states is given by a continuous unitary

representation of the inhomogeneous SL{C, 2)s

{8, A}~ Ula, A\ ) (11.2)

-

so that 43 is invariant under unitary operators U(a, /\ )o
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The unitary irreducible representations of the translation

2
group, i.e., gﬂa; ].} —~» U(a, 1) can bc written in the form(l )
U(a, 1) = exp(iPuau) (I1.3)

as it is a four-parauster abelian group whose unitary
irreducible representations are all one~dimensional. pH
are of course, infinitesimal generators of the group and are
unbounded hermitian operators interpreted as the energy
momentum operators of the theory. The specification of the
irreducible representations of the group can be given in
terms of the eigenvalues of the so—called Casimir operators<l6>;
(scalars of the group)e One such Casimir operator is
definitely P> = DM P, So that an irreducible representa-
tion can thus be partially spacifiied by giving the eigenvalue
of this operator. For physical states we restrict this
eigenvalue to be non-~negative and interpret it as a square

of the mass.

Furthermore, the sign of p_ (the eigenvalue of the
operator P_) may also be specified, since it camnmot be
reversed by the operations of the groub. Thus a partial
labelling which we require is given by
2

Hp =

" = m“> 0} Py > O (TI.L)

This condition is Imown as a gpectral conditian(B )e

Physically it is clear that we have selected only those

states corresponding to a given mass and non-negative energy.
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The wave function is thus defined on the hyperboloid
2 (17)

P = mzo This byperboloid is called an orhite.

IIT. There exists a unique (strictly speaking, up to a
coastant phase faztor) invariant vacuum state {9‘0,

characterized by

(II.5)

Iv, The ireowsfufrzation rule for the field is defined by

Ua, /N iy Ua,A) = bia ny 4 (11.6)
where

({asAYB)(x) = BNz - a)) (I1.7)
and

U(a,\)D €D (II.8)

The other usual requirements on the theory as for example:

Completenesss the Hilbert space is irreducible with respect

to the algebra generated by the set of operators, l.c., 1t
dozs not contain any invariant subspace.

Causalitys This is also kmown as a condition that the
theory is local, 1.€., that a field observable at a point x
commutes with a field observable at =x', 1if the distance
between x and x' 1is space~like and the

asymptotic conditions the condition that the field obser-

vables A(x), contain particle observables and also that

the usual formulation of S-matrix theory is possible, It is
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also a requlrement that a field theory has an interpretation
in terms of asymptotic observables corresponding to particles

of deflnite mass and charge,

wlll be treated separately later. The reason is that they
could be relaxed or even replaced with a less strong con-
dition. For example, the question whether physical particles
and thelr interactlons can be described only in terms of
local operators is answered with no, since one can quite
well formulate the theory using so-called almost local field
operators (Haag~Ruelle collision theory)(5). The asymptotic
condltion = @ can also be translated into the asymptotic
conditions for large spacial separations(5), 1f the effective
interaction between the particles is at least of short
range, This leads to a very important cluster decomposition
property of the S-matrix., On the other hand, the complete-
ness, although a good physical requirement which implies that
the S-matrix is unltary, 1s rather a difficult one to handle
or satisfy in practice.

So far there are only, in general, two different methods
of reducing the above stated conditions on field.operators
to a set of functions. One of them 1s initiated by
Lehmanr, Symanzik and Zimmermann (LSZ)(3) and the other by
Wightman(u).

The former considers the vacuum expectation values of
elther time ordered or retarded products of fleld operators

giving rise to the set of T -~ or r-functions respectively,
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whereas the latter considers the vacuum expectation values
of simple products giving rise to the set of Wighitman
Functions. From the practical (and also physical) point of
view the LSZ method is very useful as it includes the
asymptotic condition ~nd extremely helpful reduction
formulae which gives tie possibility of studying the
analytic properties of the S-matrix elements, together with
the system of equations for % - and r- expressing
essentially the unitarity of S, On the other hand, from
the purely axiomatic point of view and for mathematical
rigour the Wightman method seems to be more adaptable and
also has a few important applications to problems of a
general nature,

We shall follow the method of Wightman and first
discuss briefly the Wightman functions<u9®a

(¢) Wigh*man functions, Let us consider the following

vacuum expectation value of the product of field operators
W (X enex, ) = (@O\A(xl) A(Xz)e..“ A(xn)\}‘o) (I1.9)
together with the eguivalent ones where the operators are

smeared out and Aé DCUL

VV (Jé X ese X 'fl; ) = (‘:-‘[. ¥ A LBl I A— 1“.‘}; 1 A\

where

(B) @ euo @F) (g wee 7)) = Fy(xy) euo B(x,) (TLI1)
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is considered as an element of o with (X'n as
e Y A /

oV

a space of n~tanle Minkowski vectors (xl cen Xn)e Since
i~

L
lf%égn is dense in / n ? the W's may be uniquely extended
) W
to distributions in Qf/n by Schwartz's nuclear—theorem<19).

Accoriing to the pro,w.rties ng} Aﬁ ti))e‘fﬁz for

\%f,ét}e D we conclude that W, e:fi; ic€e, W functions

are temperzddistributions. Now, as we have a rigorous
methematical definition of W's, the study of their properties
can be done in an unambiguous, precise fashion. We shall not
go into this study any further as it may be found elsewhere,

Briefly, we can only say that the properties of the
Wightman functions equivalent to the aforementioned postulates
are the positive-demidefiniteness, the hermicity, the
relativistic coverlance, the locality and the spectral
condition, -

For example the spzactral conditions imply that the
Wightman functions are boundary values of analytic functions
in complex coordinate space, and the locality says that
some of these analytic functions are identical. The rela-
tivistlc covariance, of course, enlarges the domain of
analyticlty due to the theorem of Bargman, Hall and
Wightman( 2®° Except for positive definiteness the other
broperties of Wightman functions are known as linear pro-

perties, since they connhect only a finite rumber of the

Wightman funetionss.
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IIT. CLUSTER DECOMPOSITION AND TRUNCATED VACUUM
EXPECTATION VALUE

The cluster decomposition properties, or sometimes
called the connectedness structure, of the S-matrix
elements are general.y considered true in all scattering
theories whether or not there‘éxists a local, or non-
lccal quantum field theory. Such a property is usually
postulated. However, it seems that the S-matrix decom-—
position properties are in some way related to the approxi-
mate locality or "short range'" of particle interactions.
This approximate locality could be made by stating the
observed fact that experiments sufficiently senarated in
space or time are mutually independent, That is to say,
the outcome of a scattering or production process between
massive particles is asymptotically independent of the
presence of other particles. Of course, these asymptotic
properties for t — % o are a consequence of the vanish-
ing of the effective interaction between two subsystems as
thelr separation becomes infinite, A way to translate the
asymnptotic properties for large separation at finite times
into asymptotic properties for large t has been developed
and described by Haaé%S)The physical idea hehind this

assumption is the following. Consider the simple case

. . ()
where Xq oeo *, are concentrated in a finite reglon‘;cg
Y

and Xp+lgcoo X, to a finite regionl%jb. Let the distance

N
betweanig;; andtﬁgb tend to infinity., We introduce s



(partial) physical interpretation of the field quantity A(x)
by saying that the change, caused by A(x), on the state on
which it operaties is concentrated near the point x, so that
A(zy) eso A(xpfgfo cannot be distinguished from the vacuum
eéxrept "near the regionfzgg"o The same conclusion follows
for the product A(Xp+1) voo A(xnﬁgfo which is different
from the vacuum only "near the region<zg%", In other words,
A(Xl) oo A(XPTQPB is the state which is experimentally
localized ing%;g, while A(xp+l) see A(xn)\§fo is the
state experimentally localized indﬁgb. Therefore as the
distance betweenézgg and Sg?b tends to infinity, the

vacuum expectation value tends to

(rgs A(x)) eee Al M) —> (U, a(xy) eoe A= NIL)-
(111.1)

(@gb, Az, g) eee A= NFL)

Reprating this kind of ueuristic argument we arrive at
cluster decomposition properties, This kind of cluster
decomposition can be proved mathematically rigorously from
the conventional postulates of relativistic quantum field
theory. The difficulties which could come from the high
energy bechaviour are expected not to be essential in the
behaviour at large distances, The rigorous proof of the
cluster decomposition is based on the fact that D is a

(21)

n
Garding domain for the infinitesimal generators of the

Lorentz group, or in other words, since D 1is a G8rding

domain
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(qp: U(a,l)\i{) converges to (qppupb)(kyzsﬁéf) (I1I.2)
as 'a ! - oa Using this fact one can prove that

-

n
tan Wh+m(xl"°°xn’ yl + a,w.»,ym + a)
- W (Zyeee xn)wm(yIDOGym) — 0 (II1.3)

as a —» o
and the convergence is in the range of distributions(l9),

In order to get a neat statement of the required
cluster decomposition property it is helpful. to introduce
the notion of the truncated part of a vacuum expectation
value. Before giving the definition of the truncation itself,
let us recall that according to the spectral condition the
support of a distribution ﬁ;‘ (ioese, the Fourier transform
of Wn which exists since Wh is a tempered distribution)
is contained in a forward cone

{ P Dy + cev + D;2 VT Ui Cl for i = l,ooo,n,ig_pi = 0 }
(III.4)
where Vﬁ = (p!peV+, p2> m2) and the bar on V means
the closure,

(ITT.4) includes also the contribution from vacuum

intermediate states so that at py *+ + Dy = 0
(22)

Wo(Pi5 eeo Py) = WDy eow D) WDy, eos P) (IIT.5)

We shall, however, in what follows use the stronger
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requirement that there exists a positive lowest mass m 1in
the theory. If we consider now the vacuum expectation wvalue
itself, then the occurrence of the vacuum intermediate
states as in (III.5) will hide the existence of the positive
smallest mass m of the theory. To remedy this situetion
we subtract the contribution due to the vacuum intermediate
states from the Wightman functions in a symmetric and
systematic way, with respect to the permutation of the n
field operators. Thus, one defines "truncated" vacuun

expectation value by induction

W(Xl) = WT(Xl)
W(x1x2) = WT(xle) + WT(Xl)WT(X2)
W(x1x2x3) = WT(x1x2x3) + WT(xl)WT(XExS)

+ WT(XIXQ)WT(XB) + WT(X2)WT(X1X3)
+ WT(XI)WT(X2)WT(X3)

and so on., In general we have

)oao

W(Xl pon Jﬁn) = WT(X aoo:x:n) +ZA__: ‘N(Xi—]i Qoo) as W(Xj

o 192

The sum », is taken over all possible partitions A of the
A
indices 1, seepy m in distinct classes 1jips eee

jljzosno; eso » and the order of operators inside

WT( + . ¢ «) 1is the same as that on the left hand sidee.
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With the above definition of truncation Haag has assumed

that if all Xy had the same time components x.o, then

i
as the diameter 4 of the three—dimensional set of points
X; tends to infinity Wp(%X; eas X;) tends to zero faster
than any power of & , The first rigorous proof of this
so—called space-like asymptotic condition was given by
Ruelle, 5)

It is interesting to mention that the truncated part
calculated in perturbation theory is Jjust the sum of all
connecled diagrams. Therefore in analogy with the per-
turbation theory we can say that the cluster decomposition
properties are stated ases the truncated parts go to zero
as their arguments separate.

At the end of this chapter we can briefly mention that
the truncated functions have the same properties as those
of the Wightman functions, except for the smaller support
in momentum space. We have also seen (although without
proof) that truncated functions have a better propertyvthan

the Wightman function, at an infinite separation of their

argumentsa
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IV, ALMOST LOCAL FIELDS AND HAAG-RUELLE COLLISION THEORY.

(a) Introduction

In the previous chapter it has been mentioned that the
cluster decomposition properties may be related to the
approximate locality dne to the assumption of short range
effective interaction, which leads to the space-like
asymptotic properties of the S-matrix, It is important to
sce the significance of the cluster decomposition properties
for the theory of collisions. Although the collision theory
has been developed by Haag on the basis of a spacial
asymptotic condition, the work by Ruelile has put Haag's
arguments on a rigorous mathematical foundation. It is
well known that if a field theory is to be useful it must
have a well-defined physical interpretation in terms of
asymptotic scattering states. In other words, the general
concept of collision theory is based on the relatiouship
between an initial asymptotic donfiguration of particles
and the corresponding final asymptotic édonfiguratione.

To talk about the asymptotic configuration of the
particles one has to define the notion of localized states,
ises a criterion which tells whether a state(i? is at time
t localized in a region V or not. If one considers two
states, one localized in V1 and another one in Vé at time

ty, then the third state vhich one may hope to find to
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deseribe simultaneously the situation in V1 and V2 need
not be very well defined if Vi and Vé are close to-
gethers But, asymptotically when Vi and V2 are far
apart from each other the third state will have unam-—
biguous physical mesning., (For example, this state is
simply the direct product of the states localized in Vi
and V2)o

Since such an asymptotic product has a physical sig-—
nificance, it should only enter into the final formulae.
One has also to remember that if the localigation volumes
of (i}l ard 53)2 s says are far apart then the interaction
between the two subsystems is assumed to be negligible and
the asymptotic product between i&)l and(i?z is a well
defined finite wvector in Hilbert*space° The 1limit in which
such an asymptotic product is taken will depend upon the
explicit assumption made about the vanishing of tke inter-~
action for large distances,

In a field theory the basic quantities which describe
the physical situation are the set A(x) (one quantity
A for every point x in space-time)., As A(x) cannot be
a proper observable (i,e. an operator in the Hilbert space)
both i1'or physical and mathematical reasons one introduces
the regularized or smeared field(5 )p
ag(E) = d(y=x) AGx) = UGx,1) | aA(y) Alv) U(x1)7

" (%3

with £ s %",
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Then one can investligate the time dependence of
(n2:, Aé(t)(i?) on the basis of the dispersion of a wave—
packet, whereﬁéj’ and Ci) are asymptotic statess
From the physical point of view one requires that
particles behave as frec ones at time + —> I @ and that
the free particle states are described by the field
operators A°%(x), which satisfy the free field equation

of motion

(5 + n2)a%%(x) = o (T¥.2)

We use the symbol ex which consistently replaces out or

in. Defining a quantity

\ ex
2% (g32) = 14T F - BEE e))dx (173)
v e} e}

one can easily see that it is independent of t as it is
a scalar product of two solutions of the Klein--Gordon

equation,

Aout

The operators Ain(f) and (f) and their

adjoints are of course defined on "in" and Yout!" states

H
which span two subspaces of Hilbert space ihl in and

(}4 out respectively, There is no assurance that
L

t:iin = &:jout’ unless we require that TCP theorem holds,

| R

Of course, this does not mean that ifﬁ;%in = gyp then

ﬁ:{in = 4:4 ¢ In fact, examples show that the asymptotic

states need not be complete at all., If we talk about the
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S-matrix which connects "out" states with "in'" ones, then

the S~operator is only a unitary mapping of:tﬁ out onto

{i}[in, but is generally undefined on these vectors of

|
which are not in(L4

out®
The condition thot A®*(t) approximates «  A(t)
at t -— =+ @, weritten symbolically as
Lim(a(x) - a9t 3(x) — 0 (TV.L)
x — oo

o)
is known as the "asymptotic condition". in the theory, where

the meaning of the passage to the limit is not yet clarified.
If this limit somehow exists, we shall say that the particles
behave as free ones at t —> = co and that this behaviour
may be described by the operators ‘Aout,in(x). The idea

of introducing the asymptotic condition is first of all the
requirements which relate the mathematical object A(x)

with the quantities of physical interest, as for example
cross—sections by collision processes and, of course, the
rossible particle interpretation of the theory. On the

other hand, the particle interpretation without the asymptotic
condition is possible 1f one starts from certain assumptions
about the behaviour of vacuum expectation values where all
times are equal and the space distances large, In this
direction recently .. Ruelle(fs) has succeeded in proving
these assumptions provided that there i1s no particle with
vanishing rest-mass in the theory. ¥We are now left with

mainly. two problems?
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one, to calculate the S-matrix (or scattering amplitude)
from the knowledge of Aex(x) and the second, the existence
proof of the limit in (IV.L4) under, of course, a sultable
asgumption for the interaction,

So far there exists two main approaches to the asymptotic
condition in "axiomatis quantum field theory". One is due
to Lehmanii, Symanzik and Zim:mermann(-(LSZ)(3 ) in which they
pecstulate the convergence of field matrix elements to
matrix elements of free fields., Expressed mathematically
the LSZ-asymptciic condition requires that

w7 AB)D) — (dr, 2% (5,2) Q) (1V.6)

exists for all W@f ,(j> in the domain of the operators.
The limit is zZero if m is not one of the masses of the
stable particle described by the taeory. We notice that
only the matrilx element of A(t3f) between two fixed states
are assumed to converge whereas the vectors A(t;f)ib need
not approach any iimit as t —» id), Using mathematical
language we say that only "weak convergence“(3 ) is
required, l.ce only weak limits of A(t3f) exist for
t— X o,

The other approach to the asymptotic condition is due

to Haag(5 ), Haag!s main idea is that it is possible to

construct asymptotic "in'" and "out" states as a strong limit

(1imit in the norm) in Jdilbert space, if a certain "space
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like asymptotic" condition holdse

Of course, we are already familiar with the definition
and required properties of the "space like asymptotic
condition" which was introduced in Chapter III. Haamg's
programme, as was mentioned earlier, was carried through .
the rigorous mathematical framework of the Wightman axioms
by Ruelle § 5)0 He has introduced, in addition to the
standard Wightman axioms, a new postulate =~ completeness
of the asymptotic states and spectral conditions connected
to this. Again, for the sake of completeness we shall
only briefly recall this, now usually gquoted as the
Haag—~Ruelle collision theory, in the form in which it Will

be used here.

(b) Almost Locali Fields

Consider a quantized field A(x) satisfying the axioms

(I - IV) of Chapter I, plus locality, i.eo

Tax), a@ ] =0 1 x-y)2< o (1V.7)

As we are dealing with the theory of a neutral scalar field
with cyelic vacuum the prysical spectrum must be additivee.
The thevren getually sayss if p; and p, are in the
spectruom, then Py + Po is also in tiie spectrum, The proof
due to Wightmag igea Consider two open domains VvV, and V,
of Py and Po respectively., Then by choosing ficld
operators B(1>(X) and B(Q)(x) satisfying
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u(a,1) 3 (x) 10a,2) = 3 )(x 4 ) (1V.8)
and test functions ﬁj with supports in Vy and V,
we require that
(l)q rooA : (2) TC T
Bﬁl {po # O and 362 \&; L% O (LV.9)

The energyv-momentum spectra of these vectors is, of course;

in V1 and V2 respectively as

1t

o]

va,)zglhy, = 3, o (17.10)

where (ﬁa,l}é)(x) = ﬁj(x -a) e

To get the required B's we consider tne closed subspace
¢# Tiofftﬁ s Where Ti(:vi and all the vectors whose

. a = . AT . . .
spectra lie in Ti s Since M%Q)ls cyclic there exist

vectors of the form
5 (3) L

j . T

nz—: 189:05 hn (Jclooo }in) A(Xl) oo A(:x;.n)d Xl aood)ﬂn’\._i;o

(IV.11)

whicn are not orthogonal to &:!T, The coefficient functions
hn(xl°" Xn) have a compact supﬁ%nt in the time coordinates

and - .. vanish faster than any power ofﬂg?i\\ when any of the

L

Xy gets large,

Naturally we define our B(j) to be
N

B(J)(x) = Z:]‘_ Qooog h(j) (X"Xn,ooay X"Xn)
n= ~
A(X 90009A(Xn) dxlycawd X, @
(Tv.12)



and they definitely satisfy (IV.8), Now, the vectors

o .
B@f/ U{z,1) 32) s (IV.1l3)
Py 0

have their support in V1 + Vé by the same argument as

before.
The norm of this vector is

(1) (2) v, 7 (2) (1) *
| Bél Uya,1) Béz i i t €3 2, U(a, 1) By 5

B;ES}_) U(a,1) B(z) ) (T¥.ik)

Now, as a — ® 1in a space-like direction the above norm

converges to

(2)%5(2 ) , 5(1)*5(1)
( IO?B ﬁ B ‘fX‘L ﬁl B ﬁl IO ) (IV°15)

as a consequence of cluster decomposition properties.

This completes the proof since the norm cannot be zero
for all a as 1t would require that either BéilQﬁ) = 0
or B(gf) = O,

We shall now pay special attention to the fields which
cn be written as a polynomial BN(X) in the basic field
operators, l.c€ay in the following form

N

BN(X) = E;&g duxl.oaduxn hn(X“Xl,aoo,X“Xn)A(Xl)aooA(Xn)

(IV.16)
such that Bﬁ%fé is not orthogonal toCLA () o If m is
an eigenvalue of the mass operator M = i D S m dE(p)

then there ezists a projection operator Pm such that
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2z
) Geme

Pm¢:{ =<hj o ;i(N) whefe(ﬁq (N)'s are

N*
irreducible representations of the Lorentz group.

After regularizing A's, (IV.1l6) becomes

N
B =3 .
]§X> E;i g duxlan.duxi hi(x—xl,.oapx—xi),
Adl(x:]‘)yoao, Aﬂ{i(xi> [ (IV°17)
Thus, the field BN(X) = U(x,l)BN U“l(x,l)

has support in the momentum space restricted to a neighbour-
hood of{‘pl p2 = mz:} » There is, however, one additlional
difficulty connected with the Lorentz invariance of B'a,
that is to say the Lorentz invariance is hard to establish
for them.

In future we will drop the index N and write only
B It is also easy to prove thrat if<§? D and f atﬁ?;
then .

{ B(8,%) £@)a’x O (1v.18)

exlsts, and is continuocus in £ and Cooin te In what
follows we shall need to know a bit more about the sdlution

ot the KG equation.

The smooth positive frequency solutions of the KG

equation with mass um, ("7 + m2)f = 0 are of the Torm
o ~ A
rx) = (072 82rP)e(p, ) P F (Bl (1va19)
L (25
where g(p) ¢ )% « This follows from the fact that

e(x) = (2n) 2 e (0e%) Fipyalty (T7.197)
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is a solution of (I{+ m2)f = 0 provided
(02 - 0) T @E) = o (TV.19")

Then it is easy to check that the following f(p) satisfies

(TV.19")

) = 8(p%n?) [6(p)e,(B) + e(-p%)e_(B)] (1v.19")
where

8(p°) = +1 ir p°> o0

0 if p°< 0 .

Il

Thus, if £ 1s a smooth solution of the KG equation then

ffor every ¢

(e
£(tS %)e jh (IV.20)
i.6o lim h‘x‘g;lf(n)(x) = O exists for all £, m .
iV x)y+00

There is also a very important theorem giving the asymptotic
behaviour of the smooth solutions of the KG equation., We
shall only quote it without tl.e pvoof( 5 )o

It sayss if £ 1s a smooth solution of the KG
equation, then

e (\,{9
l. For all t+ we have f(t, X)GJ3 o
2+ There exigt constants A and B independent of t
such that

(a) max 16172 £(s, B) < 4
* (Iv.21)
() gf(t,'i?) Px B (1 + 18132
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Let us now consider the vacuum expectetion value of the

preduct of basic rield operatcors A(x)
X J

(s — 0, . . ¢
.anr(ﬁ,g) = { \{O.;/'X.f)/i.\»ouw Adn'\;{::.o) (IVQ?.Q)

1 ~ —_ 4 X o ’

where ,é_pl,,“,@,dn uflm

by using Schwartz nucleon theorem and define the
guantity

W(a,8)=W(asyeeea,4)= lpdb“

: il .

xlmcod Xn ﬁ(xloooxn)w<xl+alynoaXnTan)
(17 23)

Let = be the element (permute:ion) of the symmetric group

on n objects such that %(Lesson) = (ijeseei ), s0 that

1)
i __( b, b 7
W (a’ﬁ) = .d quocoqd éné(xlyaooxn)w (Xi +ai ,0anXi +ai )
» 1 1 n n
(IV.2l)
In general we take a; to be pure space-like: ay = (O,“})

and the diameter d(a) of the set { gl,ooo,EQ} is then

given by

2
a = da(a) = maxll &, - a5l (TV.25)

1,3
The translatlion invariance of A(x) leads to the translation

invariance of W(a,£), that is

—

WEyseses B3 #) = W@iseeey ap g5 £) (1v.26)
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a; = ay - ai+1. Furthermore, since £ 8:7Zn and
W(x + a) 1is a sempered distribution W(ii,ﬁ) is at least
in COO and is polynomially bounded,

Let us denote the truncated vacuum expectation wvalues
(TVEV's) corresponding to (IV.23) and (IV.24) by WT(a, 2)
and W%(agﬁ) respectively.

Consider the partition of gi's into two disjoint sets,
and then define the partifiions of (l.een) into two subsets
X and X' such that X U X' = (l,ese, n), XNX' = &
X = (ig5000y 1.)5 X' = (il,ee., i!y), m+m' =n,

and both sets are in natural order. The distance between

Eiex ad Epdpge i 00) = min 1E - Fll .
’
Now, 1f
I(yoeoyn) = (l,ees,t) identity permutation
T(lyeeesn) = (igses0,i_; ij’_,...,ir;l,) (1v.27)

then for any integer N

1im &(Wh(a 5 £) ~ Wh(E 5 £) = o (IV.28)
d—>co

- 4T the configuration of the a, remains the same,

i
ia€ey 16X and ileX's, We shall omit the detailed proof,_

'\9
of (IV.28) as it is quite long and can be found elsewhere.

3
J

We should eiso mention that here W — W% is a tempered
distribution, and @£ decreases faster than any power,

The following inequality holds

| wy(E ) - wiE, £)]<cy (IV.29)
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for any XN, where ON depends on the specific partition.
Thus, it is possible quite generally to show (and also
to prove) that, W(a, £) etf?; and }dtN i(a; 4)—> 0 as
d—= © , at least when Ei's are separated into two clusters
whose space-like sepniration distance becomes increasingly
larger as d-— ™o,
The field operators Aﬁ(x) in the above procedure can

be replaced by an arbitrary polynomial Bﬁ(x) in the field

operators A(x). Then, it follows that

- = = W A
(\}{_)’ Bﬁl(tl -Xl)oooo Bén(tny :X:D.)XLJO)T £ \72
K(1v.30)

e

ardy
Ee = Fp T Fy 41

is for fixed tlyo.o, t a temperad distribution of rapid .

T
decrease at oo In the wvariables E£ = zk - §£+1

kK = l,e00s N=le We will eall such a fixed Bﬁ(xl)

)ﬂ

according to Faag's definition, "almost local"(8

In other words we say that the field is called "almost local
if the truncated functions decrease faster than any power
or’ the distance between the points with increasing separa-
tlon 1n spacelike direetions, snd they do not increase for

large separstions in time-_ ké dilirections,

The "almost locality" may also be seen from the equations
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1alNH\:B(ax), B(0)] @U —> 0 (Iv.31)

as |a|—» 0 for all I if x2<: 0 and &j e D.
1

Since,

WT(leoo-y Xn) = WT( Els---, gl’l—l) =

(YorBts Ep)eve B(S, X N (1v.32)

is a distribution strongly decrearing at Infinity, i.e.,

1ima® (I, B(t, X)) ... B(%, 0L = 0 (1v.33)
d- @ + } T

it can be represented as a finite sum of derivatives of

(19)_

continuous functions

"y

w(g) =5 D¥w (&)
where . (1IV.3L)
|7, (83} K o ,
(1 + g

Furthermcre (IV.33) together with (IV.34) imply that
the folloving integral

{

)(’\%‘TC’ B(ta ’il) e B(t, -}?n)u;![o)T dsxz"..’ djxn (IV.35)

-h
is a constant and independent of Xy -
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Since translation invariance holds for B(t, %) and‘\%/o

is translation invariant, we have

(\Is,» B(t, xl)...B(t, xnmrfo); (ﬁijo,B(O, xl)...B(O, xn)\yo)T“'

It therefore follcws +hat

N

- - - -3 - 3 3
’\g(ﬂf(o’ B( t, xl)...B(t, xn)\{/o)m fl(t,xl)...fn(t,xn)d X -0+ 07x )

g iri m;x ,fi(t, ;i)} glfl(t, Sc‘l)} d3xl .

S(xyo, B(0,%,) ... B(O, Ec‘n)\}ﬂ;y)T &z, oud dixn

L

n
é; j;g Ay t—3/2(n—1) Al(l + ‘tl)j/Q . const.
f; const. t—j/2(n—2) . (IV.36)

(¢) Haag's Theorem on Strong Convergence

In ordsy to proceed with the actual construetion of the
asymptotic states and the §-matrix, it is desirable that for
an irreducible representation contained in U(a,/\) of mass m,
there =xists an almost local field such that B(xj(%g lies
in the s8subspace of thatl irreducible representation. That is
to say, we require that the one-particle state of mass m

and spin O 1is generated by the application of B(x) to the
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vacuum, This reguirement is known as the "solution of the
one~body problem.," 1In a physically reasonable theory this
should follow from spectral properties connected with the
statlility condition and selection rules,

In general, we do not know how to "solve the one~body
problem.” To solve it means actually to construct and find
the almost local field B(x) such that B(x)\%; is a
one particle state,

It is clear that under some circumstances it can always
be done. For example, 1f the discrete mass state in question
is isolated in the mass spectrum, then the required B(x)
czuld be an appropriate polynomial in the basic local fields
A(x). Therefore we shall assume the discrete mass state is
isolated in the mass spectrum, so that one can "solve the

one-body problem" exactly, Now define

2 1 g3 ; 38003 ~1p(x-¥)
- & x-y)Ts »3(0.3)B(0, 7\ g P\ X=Y
p(p) Bmi \ (x y)(LLjU (0.x)B( sy)\,_fo)T
(IV.37)
with N 1
w — (p2 + m2)2

by

so that O@?L, Bgo,§) B(@,;}!%%)T can be written
s, 20500, P,

= (207 [ @p(20)" p(Dex [ 0(x - D] (2v.38)
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Let fi(t, ';?i) be the smooth solutions of the XKG

equation, then

g (Jrpr B0t 3) B(t, T1Y)  £2(% %) £,(8,5)x ¥y =

(2x) QS ap( 20,.) o (3) S AP(ED) (1 (4,F)a’x &y .
(IV.39)

Consider the integral

Seip(x’y) fl(t, x) f2(t9 3?) d3X d3y =

t
5 o s o O'y A/ 5 a N
(2r)2 (aa® ag® &7Me+@7) ¥ (0°, 5) T (0%, B)

(IV.Lo)
Since
1% D = 8(a® - 0 [e(a”el(D) + e(-a”el(D] .
oxr

??’i(qo, D = 2@ { 8( g°- oI D) + 5(° + o N (q)] (IV.41)

we have a term in (IV.40) which is completely independent of

time., It is of the following form

Z——ig%—g— \ g7(-p) g5(®) + & (-p) gz(P)‘\ (IV.42)
b}

and will only remain when the limit t— L o is taken.
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Finally, we are left with

g(\}’oy B(1,%) B(+,91) £,(63) £,(t,¥) ox oy —
(Iv.L42)

> SdBP o(p) [&5(-) g3(B) + &7(-B) &}(®) )

as t—> 2 ».

The representation of the inhomogeneocus Lorentz group
for a theory of a free field of mass m and spin O can be
reduced to the direct integral of the irreducible repre-
sentations labelled by Em, O} « The corresponding Hilbert

space can be written as a direct sum

@
H- O, (373

where HO 1s a one-dimensional subspace corresponding to
o 'the identity representation and is taken to be pro-
portional to the vacuunm,

ftﬂ 1 is the (separable) Hilbert space of functions

square integrable with measure

au(p) = e(p) %(pz - mz)dup, and consists of one-particle
states corresponding to the irreducible representationi}n9 010
Furthermore, as we have already indicated, suppose that
the spectrum of P2 in d;li is disjoint from mz, so that

f— . .
%‘41 is given by



.-llz_.

| Ctb)l :.—_{g(}_;); gﬂ]g(5>\2<® 5 w2=52+m2}

P
2mp
(IV.Lk)
with a scalar product
(g5 &8,) = ( —2 g.(p) g,(p) (IV.L5)
J Zmp

The one-particle projeetion operator

B, = E({ P p2 = m?, p’ > 0 ) has, of course, the
property that
B, 4 = aly . (Iv.46)
Now consider
B(t, fi) = SB(t’ %) fi(t, X) Sx (Tv.47)
wich
(s B(t,fi)uljo) = 0 (IV.48)
and
B, B(t, fi)\};O =  B(%, fi)ljffo (1IV.49)

where f(t,?) is the smooth positive frequency solution
of the KG equation (i.e., g (p) = o).

The equality (IV.L9) says that B(t, fi)ﬁyb' is a
one~particle state., We shall prove that the one-particle
state (IV.49) is time inaependent, To sec this we take

(IV.47) and rewrite it as
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B( t, fi)\JJo

g d3x fi(t’;) U(x,1) B(C)léfo

(IV.50)

( & x fi(t,i) U(x,1) By B(ONLS

J Pe
Trhe unitary representation U(x,1) of the translation

group is represented by the continuous integral

U(x, 1) = S ei(qx) dAE(q) (Iv.51)

with a unique projection valued measure £(q) whose support
is in the forward cone (i.e., v; ={ p| p2 > 0, poj; 0% ).
It is the consequence of Stone's theorem for the representa-
tion of Abelian groups by nnitary operators. If, however,
we had restricted ourselves to the states in Hilbert space,
orthogonal to the vacuum leo, then E(g) would have had
its support in Vm ={ D | p2>/ m2, p° > 0'}.

Thus we have

. s 440 qO
- (2w)§ dB( q) E%; e(detta wQ)ElB(O)\%Q

(IV.52)

and it is time indspendent, since E(q)El has its support
: 2 2 | o - 1
in {a| ¢ =n% ¢y 0 } thus giving q° = 0y = (3Pem2)Z,

Furthermore, B(xﬂ%{o satisfies the KG equation
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(0 +m) BN = (0 +m)u(x,1)E, 3000,

= (7 +1n2)§ dE(p)ei(pX> ElB(O)\}ﬁg

|
o

= @n(p) (2%-n)eH P u (N

(IV.53)

for the same reason as before,
The properties of B's 1listed abcove ecnable us to
nrove. the existence of strong convergence in(kj s as

t — I o for the following vectors

(t) = B(t,5)eeuB(t,5, )] ()
(IV.54)
In other words 1lim (in p (t) exists in the norm
t>+ o 1°°*"n

and is written () °**/1® | thus defining asymptotic
i f iy
1000 n

states. It follows from the definition of <;)f £ (t)
K looo

that
ilii) () = 1lim ~2;~{<rf‘ p (E+/A%) "é@f e (8)]
dt e floaof - \t - £ 1°.o n 100 n -
NANt- 0

(IV.50)
exists, and the limit is taken in the norm, Then, one

i
. d(;? t
estimates H floeofn( ) { by expanding it into a sum of

dt
products of TVEV's,

Pirst we notice that



D _ aB(t, T.)
.(.1..——(-,-)-*‘ L = > 1 B(ty f1)909 o o P B(t’ l'l/d!
dat 5 dt
(IVe55)
gives
2
—_ dB(t,f. )
‘kd 20 = S (P(tyF Juos ————=.B(t, £, )N/, By(t,7;)
at i,3 at )
(6,2, (IV.56)
sos == .. B(t, £ N/ ,)
at +

The TVEV' expansion of (IV.56) has the following hehaviour

a) Terms with one—point functions vahisih?

(Wor B, 00D = 0, (U, # B(t,20N) = 0.

b) ©Purely quadratic terms ia B wvanish because it has

the form
(oaa 'd%' B(t,f)’k}fo), and, as we have shown B(x)\gfo

satisfies the XG equation.

e« ¢) Terms that only contain truncated two poiny functions
including (\lj B(t sy B(u,f )\J) and
(\_[fo’ B*(4, i) B (t f )U ) vanlsh because f is
the positive fregquency solution of the KG equation.

1) Terms that contain a truncated function of order

ny L, or two cubic terms in B, vanish as
1$17°  at least, (see (IV.36)).

Hence,

I d@(t)

at

H { corst. ltg—B/Q 9 (IV.57)

+
at worst as t—> -~
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Then,

D (ey) -t 2>;sg ;;dg‘i; [ < eomsta (Ve 21e 0 )
ty

and this can be made arbitrarily small for sufficiently large

t, and t,. So the iimit exists. In fact, (IV.58) shows that

(i) (tm) is z Cauchy sequence with respect to the norm in
Hilbert space. Therefore there always exists a 1limit-
vector (Hilbert space is coumplete), which we denoile by
(f)out,in according to whether t —+ ® or - ®.

T

We should also mention that

lin H© (t)xlz—,’é—;» 0 (Iv.59)
>3 o

since the TVEV expansion of (IV.59) contains the following

products

E:: T 3 * : n T % %*

) 0L B3 (e, )B(t,fjl)\lfo>T (Byr B7(t,15) BEE,T; ..)U }T
(IV.60)

* 2
ree (U (5,) B(8,25 P,

The sum runs over all possible permutations of
jl°0° jny ile€o ﬂ(1°°°n) = (j19s9:jn)°
Now, as f's are positive frequency solutions of the

KG equation, and fB(t,fi)]*.: B(t,£; ) 1it follows that
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0 * =
(LPO: B (b:fi ) B(tyfjﬁ)\:r[’lo)T

. % - -~ 3% - =y % 3‘
= g (qyo, B (t, x) B(t,yf@fé)T £y (t,x)fjg(t,y)d xd”y

—s (&% o) & Ble; (B) (1V.60)
1 JIZ

b

as t—:»iao
has & time independent part which remains after limit
t —> % © is taken. The relation (IVe60) can be still

more simplified by noting that

B@j)\'{_ﬁ: U(x,1) B(o)‘\]T_IO = U(X,I)EIB(O)\T—‘/O

is a one-rarticle state;, satisfying the KG eqration. Then

for the repvesentation of U(x,1l) we havec

- 5 - 1
(U(5)3) = ) 235 1© = 32+ nd)"
(TV.61)
whoere
By BOOW, ~  £®) (1v.62)
Thus,
(., 26,00 = L £ 2ENe 23 (3)
‘Hfo’ X 24 ng - J Qmp € B ‘d/tpid
' (IV.63)
and one eagily finds that
] 2 — -
p(p) = -(@-EL); r ¥(p) 25(p) (TV.64)
2w

By redefining g; and &4 in (IV.60) in the following way
£
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o Lua 20
g;(P) = 5= 15(2) g,()
P (IV.65)
£ ®) = 5 55(0) gy ()
4 D
we obtain
3
T [y - v d *
(WrgsB¥(t, 7] >B<t,sz>0go>T~+g—-22wp F3) 5 @)
as t — L 0. (IV.66)
d\)(t) H
When we were estimating H one of the important
requirement was (\}’o’ B(t,f)ﬂ;fo) = 0, This is a con-

sequence of the assumption that the "one-body problem" can

be solved exactly, i.e. By B(O)'LTJO = B(O)U;g « Let us
iy RN

now consider this problem from a slightly different point

of view. Consider

bx) = (2m)2 ge“i(qx) Yds Y (v.6r)

and
B = S B(x) glx)ax . (1V.68)
Then
B;éqjo = gdux £ix) U(x,1) B(OF{J’O
= (en)?(Fw) ante) m(00y,
= (2x)2 % (®) B(o)LTJ_JC“) (IV.69)
whewe

A = SE@) a8 (p) (1V.70)
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(IV.70) follows from the fact, that the translation

operator P Las spectral resolution of the form

p o= ( »anp) (Tv.71)

d

Now if at the same tine

~ 2 27
supp 4 (O supp P = {'p1 T =m }» (1IV.72)

then
Ep ByUf = Bﬁg\]i_fo for all £ (LVa.77)

Pinally, we shall only mention a few important properties of

i

gutil? without giving a detailed proof of them, as they
1 10 [ n
can easlily be worked out,.
- .
a) (:);Pj’l? is independent of the Lorentz frame used
o 1000 n

to defaine 1t
T) @ gut’lg is independent of the choice of B(t,f)s
-LCOO n
In other words, the collision states are unique.
Suppose we choose two different sets of B's, say B

and B, such that the twu one-particle states
- ”~ T - -
B(t, £\, and B(t,r )/, udall,

are equal, and B and B are almost local with

respect to each other (i.e, BOUTsID _ 3 0ut,1n>

then,

1imwll€is(t,f) - %(t,f):] @fl”"fn(t> = o (IV.78)

Lt~
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To see this we expand (IV.78) in TVEV's and let t—o,
The only remaining terms are purely quadratic and all

contain a facton

for B, B both give a one-particle state with the same
amplitude.
out,in
c) fl"”fn depends only on Tyesef s Whose

support is on the mass shell and on these in a

symmetrical way, that is

-+

- t __§
t_3§maﬁ(j> Leeer (P Qs oo.fin(t)\\-»o;‘

1y

(IV.80)

If we now want to introduce an S-matrix, we have to ensure

that
dziin _ E‘%:40111: (IV.81)
with 00
out,in _ (E){Pj out,in and
(tj n=0" ' 1

(IV.82)

1

4:} out,in O out,in \
floeefnf
where I {_ }’ denotes the closed linear hull of the

vectors f out,in }
e .

D feenf)

One way to do this is to postulate 42{ln = ¢:i.
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Then o ™ = ¢} = 4 Ut py TCP invariances

The postulate é:%lﬂ = ¢y , called "the completeness
of asymptotic states" pose new and difficult problems
although immediately implies that S is a unitary operator
on d:4 o The asymptotic completeness, too, enables us to

prove that Bout,lr

is completely determined by BY%B.

If we have .[in =Q3]Out only (which is true by
requiring TCP) then the § operator is a unitary mapping
of d:jout onto ¢:{in, but is undefined on those vectors

of (?4 which are not in :tj out
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Vo UNITARITY AS A CONDITION FOR ALMOST LOCALITY.

(a) Introduction

The basic concept 1n any elementary particle theory
is that of a free :trticle. This so-called stable
prarticle concept is usually characterized by giving the
mas3 of the particle, four vector k with k? = m2,
spin a and internal guantum numbers, @, Say.

All these quantities, except mass, are the results
of the symmetry of space-time or of the particle. Thus,

k and s follow from relativistic invariance, the
quantum rumbers o from the invariance properties in the
internal space of the particle. Furthermore, having
several pcrticles one makes ihe wave packets out of these
states so that in the limit where the wave packets are not
overlapping (assuming the forces between particles are of a
finite range, that 1s to say, we exclude massless particles
from the theory) they can be observed independently. Then,
one Aistinguishes two sets of wave packets - those which
ere coming together and subsequently interact, and thcse
which are going out signifying that the interaction is
supposed to have already taken place and the wave packets
are receding., The elements of the S-matrix are then the
amplitudes for finding in the "in" - gtate defined by the

incoming beam the various "out" components which are
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defined by the detecting telescope. Thus, the S-matrix

is a funection of the properties of a number of incoming
and a number of outgoing particles. FPhysically, it is
defined in such a way that the absolute sguare of one

of its elements gives the transition probability from an
initial to a final sitate.’ "One important property of the
S-matrix which we have only indirectly mentioned before
comes from the requirement that the sum of the probabilities
Tor all the final and iniltial states must be exactly equal
to one (probability conservation requirement). This leads
to the mritarity of the S-matrix. However, we have already
seen that one way of ensuring it 1s {o require that both
the final and the initial states form a coumplete ortho-
normal set of states, It is then hoped that all experi-
mentally observable gquantities can be calculated from
matrix elements of S, All that we have said so far is
more or less the exverimental requirement on the S-matrix.
Any physically reasonable quantum field theory usually
tries to incorporate the above-mentioned experimental
Tfacts, The difficulties which are then met could be
overcome hy introducing slightly relaxed axioms. For
exampie, ags we have alweady noticed, the space~like
asymptotic condition is quite closely connected with
almost locnlity, and is simply understood and interpreted

as the cluster decomposiivion rroperties of the S~matrixe
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Experimentally, we know that a given collection of par-~
ticles,. esach. initially out of range of the force of all
the others, may interact in two or more distinct groups
sc that the corresponding S-matrix elements split up
into the sum of terms.

Sinceﬁthe particle interpretation is still possible,
even if the theory is not strictly local (due to Haag
and Ruelle), we assume from now on that our fields are
almost local in the sense of the definition given in
Chapter IVbhe.

Furtbermore, the unitarity of the S-~matrix may be
assured by requiring asymphtotic completenesss .Another
immediate consequence of asymptotic completeness is that
the relativistic transformation law U(a, A) of an
asymptotically complete theory is unitary equivalent
to that: of the theory of free fields., Therefore it is
naturally expected to require that a representation
U(a, A ) of the Poincare group is wnitary - equivalent
to the ropresentation Uo(a,f\) in a theory of free
varticlesy, instead of asymptotic completeness. Of course,
a theory relativistically equivalent to the free fields
desc.,lbing the same particles might not be, by any reason,
asymptotically complete, even if it has a collision theory.
The unitary equivalence between U(a,/\) and U (a,/N)

implies that the field has s Haag expansionK 9) in terms
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of a free field, which is complete.

As a result of the equivalecnce between U(a,/\) and
Uo(a,/\) we expect to obtain certain relations very
similar to physical unitarity.

Before procceding further, let us for the sake or
completeless, list the usual requirement on the theory we
will be vsing here for spin-zero particles with mass m.

A("h’
A)  TFor each test function #(x) B;TL

By = ¢ B(X)ﬁ(x)dux is an (unbounded) operator
3
in a Hilbert space f , defined on vectors in

pC Jiand B 4 DCD.

B) B(x) transforms

T(as A IB(x) Ula, M) = B(Ax +a)
and the spectrum of tne energy-momentum operator
PM 1s assuimed to lie in the forward light cone.
c) B(x) is an "a'most local" field.

D) A non-degenerate one-pacticle state, 1.€.,, 2

discrete mass state in question is isolated in
the mass spectrum.

E) A representation U(a,/\) of the Poincare group
s unitary equivalent to the representation

Uo(a.,”\) in a theory of free particles.
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b) Haag expansion.

The theory satisfying axions A) - E) has a
particle interpretation given by the Haag-Ruelle collision
theory. The first step in the Haag-Ruelle collision
theory of "strong ccnvergence" in Hilbert space is the
construction of almost local fields B(x). The concept
is best understood in terms of the truncated functions,
as we have already seen in Chapter IVce

Then from the property (IV.30)

e

[
¥

. = IN) sim=X%x =%
(“?O, Bﬂ)/(t,.'x.l)ooo B,én(tn }CII)TO)T e/ 3 = Xk Xk'l'l
(Vel)

it Tfollows that the Fourier transform of (V.1l) as a
distribution in:f?g is an infinitely differentiable
function (€ ) which inereases no Taster than a poly—
nomial at oo, The set of all C® functions with all

derivatives bounded by polynomials at o is usually

dennted by OM’ That is to say

(p) for given m there exists k.~ such that

e/ (1 +uxn2)k'm/2 is bounded,

Thus, we have an alternative definition for almost

locality which states that By(t, %) is almost local if
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Wg(tlj_p.l;aaoa tnﬁ) € OM(E:L""’ 51.1) (V‘B)

where 5(3)(> ﬁi)o  w§ is the Fourier transform of (V.1) in

51,..., Eﬁ, and ﬁ’:.ﬁi(@ﬁ.».(@?ﬁho

An interesting question which arises is to ask what
restrictions on the field give the condition for almost
locality for 2 particular model chosen to ensure that the
S-mavrix (which follows from the Haag~Ruelle theory) is
different from unity. The first work along this line has
been done by Streater(26)e

The starting point is the Haag expansion of an almost

local field B(x) given by

m I
B(x) = B(x) + (2%)"2',\-_; ﬁ‘%{;‘ Frn (23 @)ewp i(Fp; -3"a5)

o n - R
1A )y 770 (gg)atay a¥(@))ees a*(E))
a(al)no.e- a(an) (V.L}-)

whers

R = PR

00 10 = ¥

ol':O

(Ve5)
Fon(P? @) & P (0l,eee, 5 a)

|

3t

)

L

3°(x) = (2m) | ahp T (0) { " Bremp 1. (o)) + a(B)oxp-1(px)

I

Afm) = 8% - nf) = (2wp)-18(p° - wp)

1
O (52 + m? é

il

o

In (V.4) a*(P) and a(3) are the creation and annihilation
operators respectively for free spinless boson particles

satisfying the following commutation relations:
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@), @) = 2, 506 - 3
la(@), 2" (®)] = 20, (» - a) (v.6)

[a(@), a@)] = [a*®), oG]

1l
O
e

The field Bo(x) is a given free field. It contains two
parts, Bi(x) end B°(x), corresponding to the creetion
and annihilation operators respectively. This notion
enables ‘1s to write

B°(x) = BY(x) + B2(x)
with an obvious identification.

One could have started the expansion (V.4) either with
Bin(x) or Bout(x) according to which of them is assumed
to exist. Then, our theory would be asymptotically complete,
at least for either t-—> -0 or t —> 400 » In a local
theory the completeness of B(x) for t-— =-c0say,
implies the compléteness of B(x) for t-— +co by the PCT
theorem. Although Bin(x) and BOUt(X) are also free
fields, they are a priori not in any way related to B°(x),
The Haag erpansion introduced here for an almost local
field B(x) starting out with B°(x) does not involve any
loss of generality since we assume that B(x) can create
the one particle state with one application to the vacuum,.
We sce that Haag expansio. (V.4) supplies us with an
infinite set of, in gene;él, unknown generalized functions

an which determine an interpolating almost locél field

B{x)e In local field cheory these functions may be related
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to S-matrix elementse.

Furthermore, it is clear from the expansion (V.L)
that only mass shell values (pi2 = m2, q? = m2) of
F__'s enter into the definition of the field B(x). Off

mn
the mass shell these functions can be chosen in arbitrary
manner. In other woris, if B(x) is given, the functions
Fn (p 3 g) are not uniquely determined, Apart from that

it is possible to have many different fields giving rise to
the same S-matrix, as a reflection of the arbitrariness
which exists in the extrapolation of th off the mass
shell, It is important to mention that in a complete local
field theory an‘s have analyticity properties which come
from locality, spectrum and Lorentz invariance, Since our
theory is not local, the equivalent analyticity properties
of an are not known. The property that might be used
hers is »7 invapiance of B(x) under arbitrary inhomogeneous

Lorentz transformation (property B) (Chapter Va). This

implies that
an(plgooa, pm: ql,..o, qn) = an(/\pl’oooy /\pm;/\quoe/\qn)‘
(Vo7)

To prove (7.7) one assume: that the functions an(p; a)
are sufficiently well behaved so that they have Fourier

transforms$ an(xg y) defined by



—61—

A

m n
an(Xl, no.,ij; ylyaoa,yn) = (Q’K)—Z(m-l-n)gﬂdupi ﬁd'“.qj

J

m n
Fon (PyseeesPyiagsecesay)exp 1020y = 5 agv;)

(Vo7)

Then, expansion for B(x) may be put in the following form

A
B(X) = BO(X) + (z'x)—zg '—m'z:'Lﬁ'r an(x_xlpc.a,X—xm;x—ylgcoo,x-yn) .
v

]%duxi T%a”yj BY (% )e o oBo(x, )BO (37 ) oo e BO(y, )
(V.8)
that is suitable for the examination of the Lorentz
invariance of F_ (p,qa).

We shall consider only models with a finite number of
terms in the Haag expansion., This can be avhieved by
smearing the £isld B(x) with an appropriate test function
wiiose Fourier transform is zero outside a certain region /N
ir: the momentum space.

Let éﬁf be a small region in the momentum space

L
including mass shell p2 = m? (Fig. 1), and 1et\]p?éﬁf) be
the space of test funections f etfi with supp %'Cjﬁf,

p2=m2 1 n




0

~ 9, .
Then we consider for any f sjfu(lﬁf) the well-defined

operator
B(ts £) = % a*x B(x)7(x,t) (Ve9)
where |
o )
flx,t) = (2x)” ?{\ up f(p)el(p —wp)t e~ PX  (v,10)

Defining the Fourier transform of B(x) to be

al

B(x) = (2r)72 \ oP* B(p)a'p (Vo11)

the relation (Vo9) may be written in the following form

as well
B(t; £) = §5<p> Flp)et (P00 gy (V.12)
It is clear from (Vo) that B(t,f)”‘[ﬁijo 18 a one-
particle state(j>§ = t%:>5‘tﬂtm with a wave function
"%(5) = %Kwp, ?) ¢/30 To see this we apply the
vecunm\}fo to (V.12) and by using the expansion (V.Lh)

we arrive at

B(%? f)u = ‘ dipet (P7=0p)t F(p) Bo(p)\L (Vo13)

A1l other terms are equal to zero since the support
Fa¥s
of f(p) is s.ncsntrated arcuni. the mass—-shell p2 = m2

(Figs 1) By this we mean that the smaller the support

of ¥, the more correct the equation (V,13) ise In V.13)
~ + + e -1 € o+
() = A@) ' @) = (20, (20 - w))at(E)

go that it follows
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3.~
° T = D) - g—-p- > e
B(e3e0ls, = ot (BN, = g o fo,B)Pg (Vo)
with
+ Tr A
a (p)\xfo = l 5 .

We should also point out that any other function IF', say,
with smaller suppor: which coincides with f'in the neighbour-
hood (or ever. only on) the mass-shell will give rise to the
same state (Vo.1ll4). Thus although B(x) has to be almost
local for all ?, we get u consistent scattering theory

provided only that B(x) is almost local for a segquence

~
=

of f coinciding on the mass-shell and with smaller and
smaller supports, i.e. for the germ of ‘;(Qp, D). The
advantage gained by choosing tihe g's with small support
is that their product of the fields have then nearly the
same maximum energy as the corresvonding asymptotic state,
ard only a finite number of terms enter in the product, of
coarse, if energy is finite,

Using (Vo13) one can construct asymptctic states,
Haag and Ruelle (Chapter IV) have shown that for

—~

&
25 EJ‘(ZSf ) and B(x) almost local
i

1im Tr‘l{ B(tﬁfi)\']f_jo (V.15)

t—=t o i=1
exists in “he strong sense, i.e., in the norm. Now we
realise that the requirement that B(x) is almost local
will depend heavily upon the chosen functions ano It
is the purpose of this chapter to find out what these
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conditions on F_  are to make the.field B(x) almost
local.

Since we are dealing with the asymptotic limits of
the wype (V.15) thus defining an "in" and "out" state, we
must choose an’s so that the "in" and "out" states
differ., For otherwi.e, the S-matrix will turn aqut to be
unity. To illustrate this statement we recall that by
usinz test functions f{p) which are zero outside a
small neighbourhood.ﬁBf of the mass hyperboloid p° = n°
we can have many different fields giving rise to the same
S-matrix. According to the general theory( 5) (chapter IVe,
equation (IV.78)),a creation operator B(t,f) leads to the

same S-matrix as a creation operator B(t,f) if

1in !l BC,2) = B(5,2)] @flmf ()1t = o (1V.78)
t—fw -

~

where B and B are almost local with respect to each
other, znd the two one-particle states B(t,f)\%@ and
B(t,f)\:[fjo are equals. Then, it follows that (IV.78) holds

provided that the féllowing norm of the state
[ “ ‘9 f
[B(x) - B(x)} B(x1)ee.B(x, L (v.16)

is rapidly decreasing in space-like directions.

We can also express .t in a different way by saying
that the Fourier transform of (V.l5) is co-differentiable
(C) as a function of the spacial P. Since ocur B(x)

is given as an infinite series in terms of the free fields
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B°(x) we can assure the Fourier transform of (V.16) to be
c® by choosing an’s to be C® themselves. However, this
would lead to S =1, In order to get scattering we must
choose an‘s with "singulawrities" which cancel in the trun-
catel function but not in the matrix element (V.16), or

similar ones,.

¢) Unitarity.

Consider an almost local field with the expansion

(Volt) and choose test functions %i ekfh(fif ) and
-~ hd l

%é 8;#;(Z$*f ) such that the largest momentum component
2
of the state
C@#ﬁéﬁ) = B@;fﬁBﬁ;fﬁqyo (V.17)

is less than the threshold for n+l particle production.

We assume that domains ﬁk and )\ X
pil —»f2 contain the mass

1
shell, i.e.,
/ ) T ®
Do) Ta £ 8 (V.18)
where
=+ . 2
V. ={pip,>0, p°=m®} (V.19)

and the bar on V; means the closure of V; o We shall also

congider the domains A\ to be mutually disjoint

A
£y 2r,

Aflﬂtxfz = £ (v.20)
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Since B(t; 1 )} I is the one-particle state (by
assumption) the only terms in the expansion of B(t) g)
that will contribute tofi;flf (t) have no more than one
arnihilation operator in them.

For that reason B(t; f) may be considered to have

the following form

n--1
B(t; £) = BO(t3 £) + T B, (t; £) (Ve21)
a=1
where
-2
. 2 . +
B (t; ) = %3%%7y \ Fop1(Precepyqs a) &) (q)atq
CL+:] ( ) CL+1
+
3 - t
(2 )d'p, exp rl 2 %p,” “q szk—q) ]
~ O+L
£ mma) 8By )eee 2¥(By,0)2(@) (Vo22)

The other ignored terms in the expansion of B(t) f) will
) ~
nct effectively contribute to a state (;? (t)o
f1f2.
We now construct the following L—point truncated

function
Wyltysaee, t)) =,(\%5, B?tl;f;3 B?tZng)B(tj;fB)B(tu}fu)\95>;
= W(tl,ae.,th)~W(tlt3)W(t2tu)—w(tltu)w(t2t3)
(V.23)
(27)

Substituting (Ve.21) into (V.23) we arrive at the equation
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Wybgevaty) = 01008 (b ) B (558, ) B0 (b5 B0 (2, W)

+ Cg?b,Bo(tlfl)*Bo(tzfz)*Bl(thB)Bo(tufu)\}g)
n—-1 " %
+ 3;&(\§B,B°(tlfl) B, (t555) Ba(thB)Bo(tuﬁu)ﬁpg)
(Ve2l)

Before goring further, let us define the Fourier transform

of the truncated functlon

* %
sty eeezy) = (JtpsB(m) Blap) BB N,) - (V-25)
which we write as
~8( L s(W) N (orenin)
WT(X:L“”X)_L) = (27{) §§ a Pi (p1+p2 - pB—.p)—l-)WT p1.°°pll.

expifi(plxl + Po¥y = Pr¥z - puxui}
(Ve26)
The B(x) is an almecst local Field (by the assumption C) so
that the truncated function (V.26) in x-space 1s strongly
d=zcreasing when the distance between the pnints with in-
creasing separation in space-like direction is large., Then
“the Fourisr transform WE<plf°"pu) of (V,26) is of the form

'B(A)(E“p)WT(Plo;.pu)4With WT being C%° and at most of a
rolynomial increase_in..fz,..., Eﬁ,. when integrated over

0 : A ‘ ' ) '
pz,oo.,pz with the test function from }fjl¢.

Therefore it follows that (v.26) becomes
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(QHO,B(tlfl)*B(tsz)*B(thB)B(tufu)i%g)T =

(o3 % % )
B ;:g a Py expi}(gpl 1 * wp2t2 - QPB 3~ wpu hj}

5(3)(51 + B, - 53 - §L) Wip(t1 Dy s 00es tuﬁu) (V.27)

e ~ = b ap0 §(p24pS = 22 - p2) H(p )g%P )
‘NT(tlypl’ousg tuph_) -':S ig i 1 2 - 3 . 1 2

F(p5)E(p)) exp [~1(0Jty + Doty = PIts ~ Bity,))

o ,VV’T(Plsy.eyPu_) (V°28)

is then the required ¢® function which behaves at worst
like a polynomial at . Ia (V.28) 51'8 always satisfy
the condition Ei + 32 = 55 b ﬁﬁo that comes from (V.27).
As it was already pointed out, in order to avoid
S = 1, we ought to assume certain singularities for Fa‘s
in the neighbourhood of the mass shell, These singularities
must be not only of such a kind that S # 1 Dbut also such
that the C%° condition for (7.28) holds. In other words,
they hrave somehow to céncel themselves in (V.28). The
condition that the assumed singularities for Fa's should
cancel in (V.28) will supply us with a certain relation
which should be satisfied between F&'s in order to preserve
the C°° property of (V.28) in Eé,,.a,fg, for fixed times.
What kird of singularities shall we assume for Fa's to
make S # 1 ? Everrbody will agree that the above question
is completely open and there is no simple way of deciding

which chosen singularity for FCL is the best one.
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As is well known from perturbation theory and local
field theory with B°(x) = B™®(x), the F_'s have the
retarded singuliarity E(po + 18)2 - wgi!-l « Perhaps we
would not make a mistake to assume for F als
8_singu1arities of the type 8(p2 - m2) or even more

principle value singularities like P 21 5

P --m
In ~he local field theory the sbove mentioned

singularities are expected to be contained in the wvacuum

(28

expectation value of the products of local field operators
Recently, Hepp(29) has proved that also in the
framework of the Haag-Ruelle collision theory l~particle
singularities exist in the physical vegion of any con-
nected scattering amplitude, They occur with the causal

2 4 ie)_l in +the dominant term and have

propagator (p2 -m
a resldue, which factors into the product of two connected
amplitudes for subprocesses, Furthermore the remainder
of the amplitude is infinitely often differentiable in the
critical variable, Using the graphical language our grs

will represent only the connected irreducible graphs.

It is clear that FE’S contain the whole complications of

dynamics which B(x) has. Since we expect that Fa is

related to the (a+2)-leg scattering function with (a+l)-legs

on the mass shell and one off, a suitable (p2 - m2) factor

when applied to FOL and then restricted to the mass shell

will turn (p2 - mQ)Fa;to the connected part of the S—matrix

for the process involving a+2 particles,

)
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Thus, we assume the following retarded singularities

as possible ones for Fa's

‘.f O . 2 - ) » [ ]
1_‘.P + 18) - P2 - mZ,Fa(pl,t'oo, PQSQ) = Tcx,(pl"'"’pa,’ Q)
(Ve29)
wher:
<
b = 2 Dp:. -4
j=1 %

With this choice of singularities for F, (Vo28) has the

following form
S — -— .. -
WT(tlpl""" t)_I_P]_'_) = (Wl.*.WQ.FWB)(tlpl’ 0'°,t)_|_p)_|_)

¥* - % e -
Wl( °°°) = fl (wlﬁpl)fz (“U‘l+w3+wuyp2)f3(w39p5)fu_(wu;: )

. expii-w,ty = (~0y togtw) Jtpwgt oty by |
( 8(01(.03(.0)_'. )‘-lT:(PB ;I‘)_I_;Pl ) E(wB"'wu-wl—iE ) 2_“)2]-1
(Va31)

W2(nr.o) = fﬁwl’-ﬁl)fZ*(w2’-§2)f3(w1+w2-w)-l-’153)f)-l.(w)-l-’5)-l-)
eexpiL—wltl w2t2+(wl+w2—wu)t3+wutu]
(8w1w2wu.)"lT2(pl,p2:ph) ,Y(w1+w2—wu+ie)2- ﬂ—l

W3 coe) = fl(wl’pl)fh<“h’pu> expi| —wq by +(w ~ u)t3+wu I |

(L‘“’l“’u)-lg A(pQ)IQ(pzspg)f (pp+0y ,'p?)expl(t ~t, )pzdpo
L(pQ -ie)*- wg}[(P2+w1 - wu+1a)2 - oz } 2

(Ve32)
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with
o n=1 L’- Ll' G,+]_- + A (u) a{:*-l
Alpy) = % gd Qqeeediag,y  TT O&(gy) M (pp#pp = £ 43)
a=1 i=1l
* L}
° Ta,+1(q1’°°°’qa+l’pl) Ta+1(q1’°.°’qa.+l’pll-)
(Ve33)
and w. = .
i = p;

Let us consider the integral over pg in WB. Simple
examination shows that the contovr of pg integration is
pinched with two coincident zeros of the denominator which

are

1
(@]

o) .
Py f oWy = Wy = w, + 1ie

when wq + Wy = w3 + @), and 1limit e-—> 0 1s performed.

Ir we essume the integrand in W3(3£§ be an analytic function
tlien the well-known pinch ahalysis can be applied. This
analysis consists essentially in replacing the pinched
pg—integration contour by the two contours. One of them
encircles one of the singularities and another is taken

away from the pinch, so that it is regular there. If the
integrand is not analytic in pg, but is differentiable

we can use the standard function analysis instead of the
pinch analysis (Appendix I). There is also another diffi-

culty which may occur when the end points of pg integration

coincide with different threshold branch points of A(pg)o
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The end points of pg integration depend upon the size
and position of the domainsfﬁzf and lbf, in the momentum
space as 1is seen from the form gf Wj. Lgt us for the
monent forget end point singularities and consider which
condition should hold in order to cancel a pole arising from
the pinch.,.

It is now quite easy to see the following eguation

should hold

* .
Ty (P3sP)3P1) = To(PysPp5m)) =

n . a Q
2ni a!t:_:?; gdhql...d)'"qa E1&+(qi)5(u)(pl+p2 - ?;-l qi)

3%
e Ty (@gpe0q s P1)T (ags0es5a,5 7)) (Ve3L)

for p; + Py = Pz + P and o = if we want

to cancel the pole singularity coming from the pinch of the
pg integration contour in W3' Solutions to this equation
may have several branch points corresponding to the different
thresholds for the production of two, three,c.. ctce
particles, It is !nown and it has been proved(lo) that
from the analyticity and unitarity hypothases for a general
transition amplitude, it ' llows the conclusion that the
general transition amplitude has no singularities on the
positive real energy axis other than isolated singularities
at physical thresholds. Now we realise the role that end

point singularities of the integral over pZ may play here,
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They must in fact cancel with the threshold branch points
which can appear according to the position of the domains

VAN in the momentum space. This is because at the branch

high
poin%s the functions in question are usually hot
differentiable in the momentum space ﬁi. To show this
cancellation expliciily one must find particular models for
Ta's or at least their analytic behaviour near each
threshold singularity. In the next Chapter we shall show
that it 1is really possible to find such a model, ut least
in the elastic region, i.e., below three particle production.
One model has already been found by Streate:c’*(zé9 but it
seems too restrictive as it eliminates both threshold and
end-point singularities,.

However, this model does show that one can have a form of
"macroscopic causality", namely, almost loecality, in a theory
whose S~matrix is not the boundary value of an analytic

function. One gets more physical médels by assuming that

A(pg) has analytic properties, and this is done in the next

chapter,
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VI. MODEL

The method and the result of the previous Chapter
will be applied here only in the elastic region (below
the three-particle production). The aim is to find a
relative’y simple model which will explicitly show how _.
end point singularities in W3 may be cancelled with the
threshold behaviour in Wy and ng Having this in mind we
restrict the total energy of the state to be below the

three—~particle threshold, In other words, if

plsfxf and p2853f the following ineguality holds
1 2
2 2
(py + 2,)° < 9m (VI.1)

This restriction reduces the rumber of terms in A(pg)

to one, which is

o ¢ + + |
A-(pz) = S du.Q.ldLl‘QQ _/__\_ (q'l)A (Q2>%(u)(p1+p2—ql-q2)
», (VI.2)
OTQ' (ql’ Ao PI)TQ(qla QQ; Ph_)
In order to put (IV.2) in a more transparent form
we shall work in a particular Lorentz frame (since T's
are Lorentz invariant functions) where
ﬁi -+ Eé = 53 + 5# = QO fter simple and straight

forward manipulation we obtain (VI.2) in the form
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| (pg+wg )2 - ym27

0 J DAl e m, - -,
alpy) = Bd di T5(ar=a501 ) T5(Qs=a5P )] 2 5
2 S(Pg + wl) P2 1772 L a :
(VI.3)
where A = (1/4) {(pg+wi)2 - umgj and pi - pi = p2 ,

where the remaining integral is over angular variables only.
It is clear from (VI,3) that A(pg) has a branch point at
®g+w1)2 = umzo Using restriction (VI.1l), we find easily
that the lower limit of pg integration in W; is m,
since pg > 05 pg +wy - @y » O and m{ w; < 2m
Therefore, there is a possibility<26) that the lower end
point cf. pg inteégration coincides with the branch point
of (VI.3) when w = m. According to the well~kno%%d%re—
scription for dealing with end point singularities we
should assume that we are far enough away from the pinch
so that o + w, # Oy + 000 In that case the integrand
in JB hags two poles at pg = W, and pg = w% + W, = Wy

Let us now take T2 to have a square root branch point.

We can exhibit this property completely by writing
2 , 21
. .  (wg405)" ~ L .
To(PysP557y) = algyppimy )i i a(p1,pp57),)

VIeh
(pi = m° is always assumed ) ( :

where d and a have no bre:ch point at (wy + w2)2 = 4m® and

are furthermore C® in the considered elastic region.
Taking the residue of the pole at pg = Wy, 84y, Wwe

find that the conditioan for cancelling threshold square root

branch point is
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2

I ~ - e B -
a(pyppimy) = (W4)\ @ 217, (T,-3503 ) T5(2,-352) | g0

(IV.5)
at the threshold,
Thus, the unitarity relation end the model (VI.h)

with (VI.5) are enough to show that T, may be interprsted

2
as the usual sgcatteriig amplitude at least in the elastic
regione.

Finally, we should also mention that this model has
been invented and used before by Oehme(ZJ) although for

completely different reasons,
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VII. THE BOUND STATE PROBLEM

a) Introduction

In the conventional formulation ef quantum field
theory each of the "elementary" wparticles is described
by a basic field operator vhereas the composite particles
appear as the stable bcund states of the system. The
distinction between what to call elementary and what
composite particles has not yet been cleared up. For
example, considering strong interactions only, it has

32)

recenily been suggeste that perhars there are no
*elementary® particles; all Laryons and mesons being
bound states of one another, It is also very well known
that most ol the so-called elermentary particles are
unstable or composite ones. In practice it would be
almost impossible to find directly from experiment whether
or not a given particle was elemcntary. Thus, the definition
of a composlite particle usually depends on the formalism or
on the model used to describe it. On the other hand, however,
we must be aware that there is no generally satisfactory
theory for treating the scattering of composite systems.
The reasons secems to be in the complexity of the many-
particle system in dynamics.

For the description of composite particles in field

theory it is important to define a field B corresponding
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to a composite particle which satisfies the required
asymptotic condition, in thc sense that B" and 8°0°,
which are the limits of B when t—> + o, do exist.

In the local field theory the treatment of the bound
(34) .

state problem has becn carried out by Zimmermann

the spirit of the LS%' 3)

formalism, Zimmermann's result
may be briefly stated, that the bound state can be des-
cribed by a local and invariant field operator, and the
S-matrix derived using the ILSZ reduction technigue.
According to a rather similar situation in almost
local field theory, where the LSZ weak asymptotic con-
dition is replaced by the Haag strong asymplotic con-
dition, there is no reason not to believe that 1t is also
possible to derive the same resvlts here as Zimmermann has
found in the local field theory.

The advantage which our model gains is that there are
no difficulties with reduction formlae, since the Haag

expansion, in terms of free fields, for an almost local field

has been assumed to exist.

b) The Buund State Problem

We consider a model :'ere an almost local field A(x)
describes just two kinds of particles, an elcmentary one
of mass m, and a composite one of mass Mg s both of spin

zero. Note that A(x) 1is the same almost local Ffield
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which has been denoted by B(x) in previous chapters. Belng
more precise we assume the existence of a stable two particle
bound state with mass mB which satisfies the following

inequality
7
my L My £ 2m, (VIT.1)

The so-ca.led fundamental almost local field A(x) belongs

to the mass m This means that

AI

il

A(h)I{,!; gd”x n(x) A(x)\}fo =®A (vii.2)

is "A" one-particle state with h Dbeing a test function
with finite support in the momentum space which, of course

contains mass shell p2 = m, . Purther, we require that

amh) an®p = BN, =0p 5 n=n'@nf (vir.3)

is a "B" one-particle state, The inequality(VII.1) and the
condition (VII.2) tell us that the test function n?  must
have its support in an unphysical region ir the momentum

space, l.e., below the mass shell pZ = mﬁ (rig. 2) if
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we want to satisfy (VIi.3). The problem which we wish to
analyse in the spirit of the almost local field theory is

the AB scattering, The vectors that we are interested in

are
B(n)A(B )0y, = |Ba)
- (viz.h)
A(h)B(n Ny, = |4B}

The above problem cannot be considered in its full generality

as we have not yet derived the condition that the 6-point
function W(xl,...,x6) is almost local in a three particle
scattering region.

Therefore we shall discuss only the elastic region.
For that reason it is required that domains‘fgh} Zkﬂ?,lﬁhg’
outside which the corresponding test functions vanish in

momentum space, satisfy the following relations

a) Oyps OHyT andfy g are mutually disjoint (as in Fig. 2)

b) [5h and [shg conttain part of the mass shell p2 = mi

but [__\hf does not (Fig. 2).

c) mi  (pg+ pg)2 4 hmi

2 2
a)  (py + Pp+p)"  9m
where

Dg eﬂhf , pg &:Ahg and Py S’Ah .
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e) It is always possible to find a vector Pe ef!hf and
a vector P, © [}gh such that

b, + pg)2 = mg

According to the Hasu-Ruelle collision theory if A(t;hl)

and B(t;hz) are almost local fields which create corres-

ponding one~particle states from vacuum‘ﬁp; then

11 (a(t;ny)B(t5n,) - B(£50)A060 )0 || >0 as t—o
(VII.5)

where A(t;hl) = ig\A(X)*S;hl(X)dBX and similarly B(t;hz).
Thus, the relation (VII.5) shows that there are in fact only
three essentially different Wightman functions <(B%A*AB‘>,
(’A*B*BA) and ¢ A%B%AB> in our problem. Their truncated
functions will fall off rapidly at large space like distances.

Consider the fundnmental field A(x) satisfying (VII.3),
Then the Haag expansion for A(x) must be slightly modified
by introducing creation and annihilation operators for the
F-state, Having this in mind and the domain restrictions
82)...€) we may consider A(x) to have the following
expansion

L
Alx) = 2%(x) + zl A (x) (VII.6)
1=

where
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3

w00 = (2074 2oy 50 ) M PR P 1T 15, ),
,a+(51)a+(-52)a(53)
(x) = (21)72( v(p,3p,) e (P1P2IXA (5 )Y A¥(p,) dp a”
Agtx) = L=em Svpl’Pze =B P/ oy P/ T Py
BH(5,)a(B,)
. +
Ay(x) = (2ﬂ)_28M(pl’Pg?p3)el(p1+p2"p3)x5A(pl)AE(Pz)
50, dp,atp (5007 (5,)0(T5)
wy(x) = (2rT 20 gmyumn, e (P12 BB R 1oy
Tli[ *(p,)d"p, bH (3 )a*(3,)a(3,)a(F,)
$ oAt Pr/ @ ByP APy /8 ARy IR IALE),
(VII.7)
with Ay () = e(p) &0 4 mlp)) ana A (x) oquals the

free field introduced in Chapter V.b., In (VII.7) b’ and b
are respectively creation and annihilation operators for the

B-state, with the following commutation relations
" e 4o, - B N - -
o, 2(D]= 28 325 -

'@, v"@)] = o

_ (Vv1I.8)
[p(P), o(P")]

B _ =02 2% .
where 0y = (p© + mB). .

As before we have lgnored the terms in the Haag expansion
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that do not contribute to |AB) er \ BAY . By comparing
the terms in the above expression for A(x) with corres-
ponding ones in the local field theory we arrive at the
conclusion that T = (p2 - mi)T may be regarded as the
Aa —> AA  scattering amplitude and similarly 'ﬁ’ as B— 2A
decay amplitude (or simply the vertex fuuction). M as
AB — AB satttering amplitude and @ as AB—> 3L pro-
duction anplitude. The validity of this conclusion is not
yet beyond doubt in the case of & for the same reason as
before in the three-particle region. In our case G will
be derined only in the unphysical regione.

Before going into final considerations of the almost
locality conditiorn, let us estimate whiclh of the functions
Ty V, M and G will contribute to ABI%% and BAX%% vectors.
It 1s then quite easy to check that the following terms are
only relsvant ones in the expansion of A aﬁd B, for the
vectors |ABY and | BAS ¢ a*, (a*b™) in the expansion
for A and b+, (b+a+a in the expansion for B. The

corresponding coefficients are

£,(0) = (2r) n(p) for a’
Fp(p1055p5) = (2m)? ".(p) M(pp,5p5) for (a™d7D)
rpe) = (2m)%( a*a n%(a) n€(p-a)AH(p-a) V(pjp-a) for v*

(VII.9)
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+
and Fp vwhich is the coefficient of (b ata) as a rather

complicated function of V, T and G 1is given in the

Appendix IT. Now we can impose the conditicn that the corres-—
ponding lL-point matrix elements are almost local by using
the same procecdure as in Chapter Vi. Consider the following
functions

~1(pTt 4Dty =Pp 5Py, )

V\fgj:[ )(t]_;l. s o0y tui\u) :g a(l)(pg_*_pg_p%)_pﬁ)e

(T o) o)
% WT( )(plyoea,ph‘)dpl,ono,dpu

(VII.10)

which must be C® as a function of the gspatial 5; wnere

I =42,b,c} corresponds to

wéa)(...)

i

3 k'3
WT(B A  AB)

ng)(o..) = WT(Af*B"*BA)

=
o
¢}
—
—~
-
[
-
~—
1l

b
WT(A B " AB)

In order to avoid S =1 we again choose the retarded

singularities as possihle ones for F and R

A B 1eCes
o . 2 o ~ . o
(o +ie) -wﬁz}FA(plpzypB) = Fu(p1P,5P3)
VII.12)
[KPO+1P)2 _ng]F : I - 5 ) (
] )_‘_ ~ )_‘_ B Plpzﬂ“-: - B p1p2’p3

where pu = Dy + P, - pB.

Proceeding as before (Chapter VI) we find that the

following relations



~85-
* A = ”~
~ ~ I
2xig duqduqf FA(qq!;pl) FA(qq';Pu)élz<Q)C£(q')g(u)(Q+Q'-P1—p2)
(VII.132)
W paip,) Ta(6l B)) = £o(@B,By) Fy(pypyips) =
BTy PzsPp/) T5lW), D), g (07,01) Fg(pipyipg) =

2mi g dtqaty! ’Eg?qq’ ;pQ)FB\qa' 2505 (a) A4 (a! (k) (a+q'~py-P,)

(VITI.13b)
~F A = * B =~ ™~
Fp(p),sP33P,5) fA(w33p3) ~ fp(wysby) Fy(Dps0y3p),) =

oni( atoaltq' T F (q,q o )F (asasm), )N (q)/"+(q )g(u)(qﬁq '~py-Dy)
2 L/=38
(VII.13c)

~— - — - B
when P1+Py = p§+pl_L and w1+wé = w§+wB must hold 1if we

want (IV.1Ll) to be C°° as u function of the spatial ﬁi‘
The relations (VII.i3) are only the condition for can-
celling pole like singularities., The end point singularities
which are also present here may be treated as before.

There is, however, one more interesting question which
we wculd like to touch upon here. For example, cne may
naturally ask what is tle reason for taking singularities

for F, and F, in the form (VII.12).

A B
In th= case of FA this 1s a pure analogy with local
field theory where FA has retarded singularity. We may,

of cuurse, assume some other more complicated singularities
as principal value, for example. The problem which then

remalins 1s to prove that 8 # 1 and the condition for
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almost locality is satisfied as well,

In the case of F it seems at first glance that

B
there is no such simple analogy with local fleld theory.

R is given In terms of V, Tand G so that it is quilte

B
hard to find a mrodel which will produce the desired

singularity in PF However, a satisfactory explanation

B.
could be drawn from the Zimmeimann result in local fileld

thecry which says that the bound state car be described by
a local and invariant field operator. If this is so then

P would have the mentioned retarded singularities in the

B
local field theory. Thus, there should exist a model con-
necting (roughly speaking) V, T and G which would be
able to produce the desired singularity. |

The simplest one which can be consiructed is the

following factorization for G

V(05405503 )M(D, Py 55405 )
2

G(P19P5P3,Pu)“’ 5+ regular terms

;) (VITo1k)

0, O 2_ ==
(pztpg+ie) - (p3+Ps

where pqip, = PP +Pge
then oy using the formulae in the Appendix”f[l'B we. f£ind without
difficulty that
~ ~
£, (p3)Fp(01sPo505) ~  wp(p) )F, (Pp-py5D),) (VII.15)
With (4.15) the relations (L4o13) are trivially satisfied

and reduce to a single ons for FA only, l.€s, to (VIIal3a).
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r~

Since F,~ M the equation (VII.13a) is the requirement
that ‘M satisfied elastic unitarity in the elastic region.
Thus we have indirectly established that in fact ﬁ' may be
considered as a scattering amplitude for AB —— AB elastic
scattering, which has certain analytic properties,

Finally, we ma; say that one could also consider the
bound stiite composed of more than two elementary particles
described by a field A(x)., In that case the field B(x)
describing the bound state will be a certain polynonial in

the basic field A(x). The treatment presented here is

easlly avplied to these cases as well.
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VIII. CONCLUSION

So far all serious attempts to describe elementary
particle phenomena in mathematical terms, by using different
approaches to field theory for the purpose of interpreting
any sxperimental result in high energy physics, have been
rather limiteds, We cannot deny that some of the approaches
to field theory have advantages in certain situations, but
none of them is able to describe nature with enough
accuracys. The reason is that the full dynamical problem
is pracztically impossible to solve at present, Thus, any
model whichh one could probsably imagine must of necessity be
extremely complicated. It will require well defined
equations with a unique solution, which can be computed by
reliable approximation methods, and that by such calculations
we can predict cxperimental resultse.

Ever. regardless of the ultimate form of the theory, we
know that we have to deal with an infinite set of functions
which are interrelated, This set of functions may be, for
instance, the S~matrix elements of all possible scattering
and creation processes, or it may be the set of "Green's
Functions" of a field theory, or it may be something else,
Since there are very few :oblems which can now be solved
completely eilther analytically or numerically, the conse-
quences are that whenever someone suggests a specifiec

dynamical scheme in high energy physies, it is extremely hard
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to find out what the scheme predicts,

It is perhaps worthwhile to stress that even although
the fileld theoretical approach to elementary particles is
not the best one, the advantages gained by choosing it are
relatea to the possibility of setting up approximation
schemes. These approximations may be regarded as taking
account of all contributions involving up to some n-—
rarvicles In intermediate states. In graphical language
the approximation assumes that the connected graphs with
Tew external lines dominate in a particular energy region.
The usual requirements 1in an approximation scheme to the
strong Interactions are, of course, physical reasonableness
and numerical solubility. It is possible to argue that the
above-mentioned complications may be connected with the
locality condition, asymptotic completeness and so on. Thus,
some physicists believe that to £ind a theory of the
perticles we must violate some of the postulates of field
theory. If we dropped the locality condition, we could
construct any number of quantized fields with any spin we
like, by using the well-known Haag expansion of a field in
terms of a free-field, Such a "“theory" is again fully
determined only if we knctv an infinite set of so-called
generalized potentials, an, containing all the com-
plication of dynamics. Of course, we expect that Fon Bare
such that it is possiblie to define the geattering of

incoming states to outgoing states. For the exact an's
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in a local gquantum field theory, there are formulae which
give the an’s in terms of the multiple retarded commutator
functions, But, as we have seen, a much weaker condition
also allows us to define an S-matrix, and this is that the
field shall be "almost local™ in the sense of Haag. Our
programme was to writz down the conditlion on the functions
Fon which ensure that the field be almost local., These
conditions have been written in terms of the Wightman
functions for the field B(x). (Chapter VI). Then the
"connected part'" (truncated part) of the Wightman functions,
being th: nmany particle correlation function, should decrease
in space-like directions according to the Way the potential
does, l.e. exponentially, Thus, examining successively the
connected parts of 2,3,4,.0. point functions we obtaln the
necessary conditions on an which make the field B(x)
almcst lcecal up to certain order in the Haag expansion.

At each stage we have nnt got, precisely, an almost
local field, but it is possible to make it if an satisfy
certain relations. It is also interesting to notice that
at each stage for a finite energy, only a finite number of
functions Fn enter; so that we have a feaslible approxi-
matioa schemes

There 1s still the question to what extent an almost

local field is a good approximatinon to the local one. It

1s possible to look upon it in aueh 'a way as to ensure that
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the theory is relativistically equivalent to the presumably
correct local field theory. Unfortunately, the exact
relationships of these two descriptions (of Wightman field
and Haag almost local fleld) have not yet been fully exploreds

Coming back to our programme, of setting up an
approximation scheme for an almost local fleld having Haag
expansion, we conslder the almost locality condition beyond
the elastic region for L-point matrix element, but still for
finite energy., It is found that almost locality conditions
reguire an’s to satisfy an equation similar to "physical"®
unitaritye. The different threshold branch points are
supposed to appear in a final solution of that unitarity
equation. They probably could be cancelled with the end—
point singularity If the functions involved are analytic.
Tnis 1s explicltly shown here (Chapter VI). if the energy
1ls mestricted to the elastic region only. If the functions
i1 questlons are not analytie, then a model which removes
both threshold and end-point singularities seems to be
necessary in order to satisfy the conditlon for almost
locality and have 3 # 1.

Th> bound state problem, which 1s very involved in
elementary particle physi.s, may also be considsred in
almost local fileld theory. The approach can go along the
same lines as in local field theory. Here we suppose that
the B particle may be wegarded as composed of two A

particles. Then, the AB scattering in the clastic region
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is treated exacetly in the same way as the case of AA
elastic scattering. The generalization to a B particle
composed of several A partliecles is straightforward. The
difficulties which may appear are connected with the 3~
particle scattering region. This region 1s fairly important
because of the relationship which it has with the 3-particle
relativistic theory.

The problem that remains is to find the condition that
the 6-point function W(xj,sessXg) 1is almost local at least
when the test functions are chosen to have support below
the L-particle threshold in momentum space. The new festure
wiich will appear then is that the defined asymptotic (in
and out) 3-particle states need not span the corresponding
Hilbert space. This is because the irreducible representa-
tions of the Polncare group enter with infinite multiplicity
in this energy region.

The proof that the 6-point function W(Xl’°‘°ix6) is
possible to make almost loecal, in a sense that

7~

\\y’

(Jp By (b9 5% Joees Bg{(t6’§6)‘%’o)1' o / B o= ReR,
for fixed tl,..., ﬁ6,
has not yet been complete ... Thus, the question whether or
not in our approximatlon scheme the three particle states

exist as a strong limit, 1s still open, When we say in

our approximation scheme we mean that the supports of the
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test functions are chosen such that the energy momentum
spectra of the vectors Bﬁl Bﬁz Bﬁé{%; are below the
threshold for the L~particle production process, i.e.,
(Pl + Dy + p3)2<: 16m2. The finite number of terms which
then come into the Haag expansion for B(x) 1is three, 1,e.
at , le(a+a+a) a1l Fsp (ataataa).

The corresponding truncated function will contain
twenty four topologically different terms in the sense that
we count F and F-:e as two different functions., Assuning

retarded singularities for le and F32 it seens at

ol
present very difficult to prove that the condition %El Wy
1s € requires only that (p2 ~ m2)F32 satisfies

3-particle unitarity. There is, however, the problem of
determining whether the higher order conditions (or approxi-
mations) reflect back .on the lowsr order ones we have
already solved, or whether any solution, say, of the /l-point
function, is a possible solution of the coupled L and 6-
point funetions. This problem is, as we have seen, closely

connected with the composite particle models,
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APPENDIX T

Consider the function
X2
W(a,b;xl,xz) = g f(x){ﬁx-a+is)(x—b~isi]_l ax (I.1)
*1
whers f(x) is a continuous scalar function in the closed

interval (xl,x2) defined on the real axls. Here we counsider
only the cuse where beth a and b are points in the inter-
val (xl, x2). If the derivative f!(x) exists at every
point interior to the interval (xl, X,) Wwe can split the
function W( ses) into two parts. One part will have a pole
at a =71 (when limlt e-—0 is taken) and the other will

be regular there, and moreover ¢
When o #Db we can write
[(x—a+ie)(x—b—ie)}—l = (a~b—218)"1{ﬁx-a+is)_l- (X—b—ie)~l}
(1.2)
Using the following ildentity
(x=b-16)"r = (x-a-1e)2T1 = (a=b)(x-b-te)1]  (1.3)

we have (I.1l) in the form

X
W( eew ) = (a=b)7t }gf £(x) [ (z-a+ie)™ - (x-a-ie) " Jax +
1

o2 v
i £(x) {(X-;-is)(x&b—iei]_l dx (Tolt)
1L

In the neighbourliond of a~ b (I.4) hecomes
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X2
W( ees )~vomi(a-b) ™t £(a) + §  £(x)(x-a-ic)Pax =
X
. X2 .
27::(a-b)“1 f(a) + P g f(x)(x—a)"2 dx + inf'(a)
X
1

(I.5)
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APPENDIX TT

Consider B(x3h) defined by the relation

B(xh) = U(x,1)B(R)U (x,1) = A(xshT)a(xsh®) (TI1.1)

By teking the Fourie. transform of (II,1) we obtain

B(zth) = (Zﬂ)"z g eipXB(Xgh) atx =

»!

-0 N~
(2%) 2(\ A(a;hf)'X(p-a;hg) atte (I1.2)

where EK.;,) is the PFourier transrorm of A(e.5e)e We now
take the expansion for A(x) given in Chapter VII and
rewrite the indicated product Ak, (II.2) in the form of
usual Wick product thus obtaining the coefficient FB

of (bta™a) to be

FB(PlyP2;P3) = (FV k FVT + FG + FGT>(p1’p2;p3) (IIoB>
where
Fy(eee) = =(2%)0% (p-p, )& (2, )V (v 305

Byp(ees) = (2m)2( &} 17 (a)n8 (0-0)v (2 521 -0)

oA (p1=a)T(p1-a,y505)

11

Fy(ee) = (21)° S a*an® (o )0E (p-a) A} (p-0)6 (0, Dy 300, D)

1

Fan(eoe) = (1/2)(21)2 g a*an (a)n8{p-a)e (py ,pp3a,a" I (@) (a?)

. 8(L’)(:pl+:pz—q~q‘-cm) T(qsq’§p3)duqdhq’
(IT.4)

The four vectors Py and p are connected by the relation
P=P1+P2"‘P39
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