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SUMMARY 

Structural fatigue is considered as the interaction 

between the processes of cumulative damage and crack pro- 

pagation. 	A general fatigue problem is defined in which 

the scatter arises from the variability .of initial fai-

lures and equations are found for the growth of average 

crack lengths and the moments of their probability dis-

tribution. 

In order to set up the crack-damage equations the 

Bastenaire theory of damage was used which makes direct 

use of the initial life distribution. 	Some aspects of 

this were generalised and the effect of endurance limits 

was considered in the light of the two-distribution theory 

of Swanson. 

Crack propagation is described in terms of fracture 

mechanics and a new non-dimensional presentation is used 

which explains most of the effect of mean loads. 	This 

also allows some uniformity in the discussion of brittle 

fracture and fatigue cracking and an extension for ran-

dom loads is suggested which allows for the additional 

rates observed by Paris. 

The crack-damage equations are essentially a system 

of differential equations and there is a discussion of 

some features of their solutions. 	After this the appli- 

cation of matrix force methods is considered as an illus- 

tration of the general theory. 	This is essentially a 

finite element extension of fracture mechanics, in which 

a moving element replaces the crack tips familiar in 

continua. 	The stress intensity thus calculated is then 

usable to predict rates of crack growth for the general 

fatigue problem. 
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Notation 

This will be described as it arises. 	However some 

of the more common symbols are listed below. 	It is 

impossible to avoid clashes overall but an attempt has 

been made to avoid them in any one chapter and to show 

some uniformity among quantities of the same physical 

nature which in different contexts may appear as vectors, 

general scalars or subscripted quantities. 

Functional Notation 

As far as possible this is based on the physical 

nature of the function. 	Thus F(x) and F(y) are not the 

same function with different arguments but two generally 

different distributions of x and y respectively. 	If we 

want the same function with different arguments it is 

often written as 

F(x) or F
x
(x) or F (v) for example. 

x - 

This is also true for the matrix functions such 

as 	A ( a ,F ) which represents a set of damage rates each 

of which, in general, depends on all the elements of a 

and F . 

Matrix Notation 

Ir 	Unit matrix, r-th order 

0 	Matrix of zeros 

B 	Usually a rectangular matrix but often a vector. 

X 	Usually a column vector. 

Fi 	Diagonal matrix with elements F.. 
-L 	

K
t 

K 	Inverse of the transposed matrix 	. 	These 

indices are not commutative in the addition laws. 

[ X.] 	The matrix consisting of the columns X.. 



ix 

Partitioned matrix. 

N-th order column vector with unit elements. 

Matrix with elements x. 
j 
 in i-th row and j-th column. 

Column vector with elements x.. 

Column vector with submatrices X.. 

Statistical Notation 

Pr(A) Probability of the event A. 

Pr(A1B)Probability of A given B, a conditional probability. 

The vertical stroke always implies a condition and 

is used in other contexts as below. 

F(x) 	Probability distribution or distribution function of 

x defined as Pr(N'<x). 	Also called the cumulative 

distribution or merely distribution. 

F(xln) Conditional distribution of x given n. 

f(x) 	Probability density (density or distribution) of x. 

= dF(x)/dx if F(x) is differentiable, 

= Pr(Obtaining x) for discrete events. 

6M(xEl 	Tc.p(x)dF(x) Expectation of T(x). 	This is some- 

times called an average and the integral itself is 

the Lebesgue-Stieltje type. 

dF(x) Element in Stieltje integral = f(x)clx for the 

differentiable parts of F(x). 	An analogous usage 

is the shear force formula. 

Shear force =fdw(x) where 

= Load density, including concentrated loads. 

M(t) 	= fexp(xt)dF(x) Moment generating function of x. 

cl(t) 	= fexp(ixi)dF(x) Characteristic function of x. 

(Fourier transform). 

4J(t) 	= log M(t) Cumulant generating function of x. 

All the arguments here have vector equivalents. 	In the 

generating functions xt is replaced by the scalar product Xtt. 

r-th moment r
dF(x). 



x 

U ' 1 	
Mean 

0 	2 
0`= 4r)-1 	

Variance or second cumulant = r(x-u)dF(x) 

0.. 	Covariance or one of the second order multi-lj 
variate cumulants. 

x:f(x) 	x has the density function (is distributed as) f( • 

Ii 	Estimate of K. 

Common Notation 

a, a= a(nIt) = [a1 , ... , - aN  1 

A,A(F,S), A(D,S),A(F,$),A(F,a) 
-1 	 I A ,A1 	Covariance matrices 

,AL=. [ A= [TA-t  Non-singular transformation Ch.II. 

a 	Initial crack length. 
0 

Non-zero crack lengths. 

a,b 	Sides of panel. 

b 	Stress response matrix for structure. 

b 	Means of two-sided exponential distribution. 

BS= 0 	Crack conditions. 

B = 10-  Load transformation matrix. 

o,
B  

bl 	Statically determinate and self-equilibrating 

systems. 

,bc,b1m, b
1c 	

Submatrices of b etc. corresponding to 
modifications or cutouts. 

C 	Corrosion damage 

c(S) 	Rate of corrosion. 

Co, C1 	Corresponding to bo' t)1 with transformed loads. 

c a 
	

Minimum crack rate. 

D t
fb b1 

 

D, D Damage or damage vector. 

Crack lengths. 

Damage rates or rate vectors. 



e 	 Error vector. 

Upper endurance limit or Young's modulus. 

e= 	... 11, n-th order. 

f 	Element flexibility matrix. 

F F = F. 	Canonical damage ( s ). 

Canonical damage rates. 

f(aln), a=ao 
Initial density of crack lengths. 

F 
c 

= P (Corrosion failureln cycles). 

Fd = P (Fatigue failureln cycles). 

FE(n) 	
Empirical, stepped, distribution function. 

Relevant canonical damages. 

Initial density of crack rate. 

f A 	Change of element flexibilities. 

f())=r/p Boundary of plastic zone. 

I 
vr 
 =P

r 	
(final f. in 

(TV-1,  TV 	' 
)1Repair time TI ) 

g, 	Element flexibility and alteration for trans-

formed loads. 

G = E/2 (14-v) Shear modulus. 

Energy release rate or driving force. 

Critical driving force for plane strain fracture. 

‘s, 	Driving forces based on alternating and mean 
a 

 

loads respectively. 

H 	Generalised initial strains. 

H ,H 	Submatrices of H corresponding to (transformed) c-
, 
 m 

cutouts and modifications. 

h(n)=P 
r(Failurf 	e at nJNo previous failure) Risk or hazard. 

k = T.(n-ii')/La Reduced time, Chapter IV, Sec.6.3. 

Stress intensity factor, eq. (3.5). 

xi 

II(n)= 	h(t )dt 

h
s 	

o
Hazard for static failure (no fatigue cracks). 

H(F,S) 	Hazard in reliability form of damage. 



xii 

Ili, K= [if) 	Crack rate Cactors , Chapter IV. 

K ,K 	Uncoupled coefficient of modification matrix. 
11 	c - 
K , K (= K

t 
),R 	Submatrices of modification matrix (6.13). 

c 	cm 	roc to 

KT' KTi. 	Theoretical stress concentration factors. 

Area of moving element. 

Number of simulated tests, Chapter IV. 

rtl 	Component of constant crack rate. 

M 	Interpolation matrix. 

M, 1‘1 	Moving element and its size. 

General MGF of T(x). 

MT(-a)=MT(m,n) (Generally a / average crack length). 

m,n 	Parameters of transition beta distribution 

(5.4). 

Number of cycles of applied load. 

TAT 	Number of cracks in structure, Chapter IV. 

of 
	

Average number of cycles for crack tip to 

cross a given maximum plastic zone. 

N(S) 	Average S-N curve (log-lives). 
9 

N(1,0-) 	Normally distributed, mean u, variance C-. 

P = E /2110-  Nominal plastic zone based on maximum load. 

P Maximum load in corrosion example. 

P Panel with altered flexibility. 

P 	Arbitrary set of generalised stresses. 

PN = [ PNi- 7 Set of natural loads. 

Pa := Eg
a/271- q Plastic region based on alternating load. 

0 
PM = Egm/2mq Plastic region based on mean load. 

Pf 
n
f 
_1 

fractile of f(pa), (3.33). 

p(S) = r(Eventual failurelconstant load S). 

P(s) 	Generating function. 

P , P
r (Initial crac during (Tv-1'

T)). 



Q(s) 	Generating function. 

r 	Subscript referring to r-th initial failure,at 

a particular place, among m simulated tests. 

R 	Vector of external loads. 

Average initial crack rate. 

R
o 	

Random initial crack rate. 

R(aln)-7.R(a) = (Ri(aln)l General crack rates, Chapter IV. 

R(aln)= FiTi(aln)) = R(a)dF(aln) Average crack rates. 

Sample variance. 

S Fatigue load on simple specimen. 

S, T 	Generalised stresses. 

S 	Submatrix of S for finite contributions to 
a 

interpolation MS . 

s.(S) 	Secondary damage parameters, (1.42). 

S 	Submatrix of load in modified members. nt 

t 	Thickness. 

t,t = (ti} Initial failure times in cycles. 

t. 	r-th initial failure for crack i out of m ir 
simulated tests. 

T(Ro),T(x) Transition curves from distribution functions. 

Tv 	Time of v-th inspection (To=0). 

u = (x-4 )/O 	Standardised variate. 

u, U 	Transformed variable in MGFs o r CGFs. 

U Virtual work or sometimes strain energy. 

U
12
.w , etc. Strain energies of triangular sectors. 

U , U 	Typical integrals for flexibility, Chapter VI, a 
Sec.3. 1. 

u,v 	Displacements. 

✓, 	Generalised strains 

W , W(a,:1 ),W(x), W 
	

Work function or resistance to crack 

extension. 



Y = g /g m a 
• -c, 

0 

g 	 (x) 

= 

Crack extension. 

Random vectors 

Tip position and crack direction. 

Number of bays along each side of panel structure. 

Parameters and estimates in general linear 

regression. 

Mean load parameter. 

Difference between principal strains. 

Angular argument for M
T
(-a), Chapter V. 

Strain energy of standardised moving element. 

Vector of mean value. 

Poisson's ratio. 

Non-dimensional panel co-ordinates (11,11'11<l) 

Load dependence of damage parameter, (1.42). 

Coarseness, used as a load measure. 

Arbitrary set of deformation modes. 

xjv 

no 	Average grain size. 

r )1 Natural modes of deformation. 

G- 	Variance. 

X 	Standard generalised stresses on moving element. 

=Ecr.1=ncs. 
J 	ij .] Covariance matrix of crack lengths. 

-  

• "" 	Sequence of residual stress systems. 

Stress pattern in moving element. 

N 
[0"

Ni(r)] 	Stress patterns for natural loads. 

,Ey 	Covariance matrices. x  
C  , Gyp_, xy 	Stress components. xx  
CY 	Yield stress. 
y 

T = t/p Relative thickness, (3.28) 

[I.] =A t 



99 	Flexibility of element dxdy. 

Crack direction. 

11J(') 

Frequency. 

XV 

= {itvilvc = {Iviw2tv3 ) Equations (7.4), (7.7). 



INTRODUCTION 

The efficient use of structural material and the 

higher stresses thereby entailed have made fatigue a 

paramount concern in the design of aircraft. 

Nowadays fatigue resistance is ensured first at the 

stage of static stress analysis and secondly by full or 

large scale testing. 	The latter is extremely expensive 

but, like the corresponding tests to static failure, large 

scale fatigue tests are likely to stay. 

The first process is essentially a comparison between 

stresses in the structure and those of a simpler specimen, 

similar in such respect as material and stress concentra- 

tion factor, whose behaviour is already known. 	From 

this viewpoint cumulative damage theories (here abbrevia-

ted as "damage") are simply a means of making this com-

parison in similar circumstances. 

Because the stresses are those of the undisturbed 

structure this approach at best can only predict initial 

failures although it has also been applied to final 

collapse. 	In actual fact there are three main stages 

in any fatigue failure, namely: 

(a) Damage, where molecular changes occur but the 

material is still coherent in the engineering sense. 

(b) Crack growth which begins at initial fracture. 

For our purposes this may continue indefinitely or at 

least until the structure falls apart. 	In .pract ice 

this stage is interrupted by (c). 

(c) Static fracture, in which the applied load 

exceeds the current ultimate strength which is obviously 

reduced by previous cracking. 

1 



All these processes are 

case (b) will affect (a) and 

rates are considered it will 

damage affects the rate.  

random and in any particular 

(c). 	When average crack 

be shown that in addition, 

2 

The final failure (c) is most prominently displayed 

bythe fail-safe philosophy where the designer's aim is 

to minimise the probability of static failure over short 

periods of time by reducing growth rates and repairing 

those cracks which become too long. 

As implied by fail-safe theory, final failure is 

closely connected with the conditional probability of 

failure during a fatigue cycle, given that there is no 

previous failure. 	In the literature on reliability this 

probability is often termed the hazard or risk and by a 

standard argument it leads directly to the fatigue life 

distribution for the complete structure so that stage (c) 

is most directly related to the accepted sense of fatigue 

failure. 

It is now time to define the general fatigue problem 

in the sense of this thesis and this will also clarify 

the meaning of its solution. 

We first suppose that we have absolute knowledge, of 

a simple specimen (whose existence is doubtful), which 

has been distilled into laws of damage and of crack pro- 

pagation. 	Since this data concerns random variables we 

assume precision in the statistical sense that all pro-

bability distributions have been perfectly estimated. 

Having set up laws for simple specimens we next 

imagine a structure with a fixed number of possible crack 

sites (possibly infinite for the moment). 	Then the 

general fatigue problem will be solved when the probabil-

ity distributions of all crack lengths and initial fai-

lure times are known as functions or functionals depending 



on the number of cycles. 	When these are known it is 

possible to apply a theory of strength for the crack dis-

tribution at any stage and calculate the hazard in (c), 

thereby obtaining the life distribution. 	Thus the basic 

problem is to predict the interaction of cracking and 

damage over a number of cycles. 

To set up the general problem we finally need to re-

late conditions on various parts of the structure to those 

of simple specimens as indeed one relates static stresses 

to the yield point of an ordinary tensile specimen. 

This is obviously some kind of structural analysis and, 

within the definition, a complete solution of the general 

fatigue problem need not bear any relation to reality 
when the associated stressing is inappropriate. 

On the other hand "stress analysis" refers here to 

any means of transforming external loads into stresses 

whether good or bad. 	It includes topics such as vibra- 
tion analysis, gust response or the response to random 

noise. 	Included equally is the use of average stress 

or the continual use of stresses from the virgin structure. 

The second method is the basis of much present prac-

tice so that when there are several cracks one cannot 

guess at the interaction with the damage. 	The first pro- 

cedure has the merit that progressive changes are allowed 

for and we could distinguish such cases as true fatigue 

problems. 

As the following example shows this degree of gen-

erality is still enough to encompass problems quite un- 

related to structural fatigue. 	Suppose we have a capa- 

citor in some electric circuit subject to random voltages. 

Before it fails completely its performance may deteriorate 

affecting the applied voltages by way of the circuit. 

3 



Then if the period before deterioration is regarded as a 

pre-crack or damage stage and the amount of deterioration 

treated as a crack length the problem is exactly analogous 

to the general fatigue problem. 

	

We now summarise the contents of each chapter. 	In 

Chapter 1 some aspects of damage are discussed and there 

is a brief description of Bastenaire's theory of damages. 

This seems to be the most comprehensive and satisfying 

and also the least known of current theories. 	It leads 

quite simply to differential equations for probability 

distributions which later combine neatly with those for 

crack growth. 	Multidimensional damage is mentioned and 

as an example a rough theory of corrosion fatigue is 

presented. 

In Chapter II various aspects of reliability theory 

are discussed. 	They are mostly well known and we refer 

to their applications in fatigue. 	As we stated, this is 

most relevant to hazards, final failure and the overall 

life distribution. 

Chapter III discusses crack propagation from the 

viewpoint of fracture mechanics, a study pioneered by 

Paris. 	A new non-dimensional presentation of test 

results is suggested and there is a parallel resume of 

standard Griffith-Irwin fracture theory also in a non- 

dimensional form. 	Based on this representation there 

is also a tentative theory of crack growth under random 

loads but several shortcomings become evident in present-

day experimental results on crack growth. 

In Chapter IV we finally treat the crack-damage 

equations which describe the general fatigue problem 

with a finite number of cracks and with Bastenaire damage. 

The problem is first approached as one involving Monte- 

4 



Carlo or model sampling. 	This leads to an important 

theorem that initial lives are independent. 	After this 

we develop differential equations for average crack lengths 

and the moment generating function of random crack lengths 

(in effect the Laplace transform of the joint length dis- 

tribution). 	For n cracks and r-dimensional damage it 

transpires that (1+r)2n  differential equations can be 

found whose solutions are effectively that of the general 

fatigue problem. 	Chapter V describes a numerical solu- 

tion of the differential equations with approximate evalua-

tion of the expectation integrals which form the forcing 

functions. 

The final chapters are related to structural aspects. 

In general the progress of a crack is regarded as an 

imposition of zero load conditions together with changes 

of flexibility. 	This is equivalent to a cutout in a 

transformed set of loads. 	The main interest lies in the 

calculation of flexibility changes and the cutout condi-

tions and also in an efficient organisation of cutout 

computations. 	There is also some discussion of changes 

in self-equilibrating systems appropriate to cutouts. 

A new procedure for computing modifications has been 

developed which is based on standard triangularisation 

methods. 	To simulate cracks it is necessary to have a 

sufficiently refined idealisation. 	We have considered 

a rectangular sheet stringer grid in which the skin ele-

ments have nine generalised stresses which may be roughly 

described as two loads on each corner and an overall 

shear. 

To find the flexibility changes associated with small 

crack extensions the concept of a moving element has been 

introduced. 	This is a finite element analogue of the 

crack tip and within it one assumes the stress pattern to 

be appropriate to a crack rather than the idealisation 

5 



used elsewhere. 	Using standardised data which has been 

calculated it is possible by numerical integration to 

find the modified flexibilities of elements near the 

crack, using interpolated stresses. 	These can then be 

used in the standard modification technique. 

The chapters may be divided into four groups the 

first of which, Chapters I, IV and V, is concerned with 

cumulative damage theory and its application in the crack- 

damage equations. 	Chapters II and III are each self-

contained and the last three chapters VI, VII and VIII 

concern the structural and computational aspects above. 

Equations arc freshly numbered in each chapter and for 

referring to those elsewhere the chapter number is pre-

fi:.:ed to the equation number, e.g. Eq. (2.20). 

6 



Chapter I 

DAMAGE THEORY 

The term damage is used here to describe any fatigue 

process not causing the immediate growth of a crack in the 

engineering sense of material becoming incapable of trans- 

mitting stress. 	The transition from damage to the cracked 

state we define as initial failure and the essential task 

of damage theory is to predict the probability distribu-

tion of initial lives for a given distribution of applied 

stress at the point in question. 	Although cracks else-

where may influence the stresses and we later consider the 

7 

probability of a local 

be acting on uncracked material. 

definition of damage. 	It will be 

well known damage theories satisfy 

they ignore statistical aspects. 

crack, these stresses are taken to 

This follows from our 

noted that none of the 

this definition since 

There There is an extension 

of Miner damage which remedies this lack but the approach 

differs from that here and whether the result is a true 

damage is not certain. 

1.1 	Bastenaire Damage - Equivalence 

The type of damage above is the one we use throughout 

generally abbreviated to "damage". 	It is a general 

abstract form of damage evolved by Dastenaire1 from an 

examination of the meaning to' be attributed to the state-

ment that two pieces of material are equally damaged. 

In this chapter the theory will be briefly sketched to-

gether with some consequences and generalisations. 

We start with the axiom that v cycles of some con- 
0 

stant reference stress S
o, or in Dastenaire's notation 

(S(11)V
1  ) 
	(so0). 
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This means that if both tests are continued further 

at another, possibly different, constant load the residual 

life to initial failure has the same probability distri- 

bution in each case. 	In his paper Bastenaire does not 

specify either initial or final failure but initial failure 

is consistent with our approach here. 

If the state of the material changes continuously 

with the programmes then it is possible for two or more 

programmes to be equivalent to (Sovo) i.e., 

	

(S1(n)V1) 	CS 0  v 0 ) 

	

(S2(n)v2) 	(S 
0 
 v 
0
) . 

For convenience we suppose throughout that number of load 

cycles are continuous quantities. 

If S
1
(n) = S1 and the load in question is constant 

it is possible to speak of a reverse equivalence not 

implied above. 	In particular the reciprocal equivalence 

	

(s 
o 

 v 
o

) 	(s
1v1) 

implies the following requirements for residual lives 

N1 - v1 and No - vo and their distribution:: functions 
F(N1 -v1) and F(No  - vo), 

(s1V1) 	F(N o  -v  o  ) 	, 	(S oV ) 	F(N
1
-v1) 	(1) 

We shall say that there exists a damage if the rela-

tive values of a single quantity, the damage, are enough 

to determine whether the average residual life of one 

spevimen is less than that of another. 	Since only rela- 

tive values are important various measures of damage re- 

main equivalent under any monotone transformation. 	We 
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also suppose that damage is differentiable. 

Suppose we have a damage D and consider the equivalent 

constant loads above. 	Then trivially 

(S 0 v  0 ) = F(N o  -v o) 

and by equivalence 

(S1v1 ) = F(N o  -V o) 	. 

Because D exists 

(s0  v0  ) = F(N1-v1) 

so 	that D = (S o  v  o  ) = (S1V 1) or (S1v1) = (S o  v o) for SErS3. 

This reasoning also applies to programmes since 

either (S o  v  o  ) or (S1V1) are equivalent to a set of pro- 

grammes. 	To show this one can start with an arbitrary 

programme (S(n)v) and adjust it until the damage for a 

set number of cycles coincides with D. 	This is possible 

because all quantities are continous. 	The existence of 

damage thus implies the existence of a set of programmes 

completely equivalent to one another. 

Conversely if a set of programmes contains complete 

equivalence then they are all equivalent to some particu-

lar constant load test, (S 
ov.) say, except that different 

numbers of applied loads in these programmes will alter 

No-Vi  the mean residual life at So. 

If it is assumed that residual life is always reduced 

by further testing at any load then 1/(N o-v.) is monotone 

increasing with n and therefore a damage so that in this 

case a set of equivalent programmes implies the existence of 

damage and conversely.(The inversion is simply so that damage 



will increase with time and is not strictly necessary.) 

No mention has yet been made of all possible loads 

or programmes so that it is possible to visualise a set 

of loads or programmes to which a damage is applicable 

while there is another set where it is not. 

The well known relief due to high loads is such a 

case where one-parameter damage is invalidated by yielding. 

On a macroscopic scale damage will seem reduced (from 

favourable residual stresses) with respect to low loads 

but not with respect to high so that the damage of the 

material cannot be transferred as the programme alters. 

This situation is easily corrected by allowing for resi-

dual stresses and it is also true that all known improve-

ments of this kind can be explained by stress relief. 

If programmes are also allowed to produce an indirectly 

estimated residual stress as well as effect the damage 

then the number pf possibilities can be considerably 

increased and indeed such a theory may cover all possible 

cases. 	However such a residual stress is a second para-

meter so that by definition no stress relief is allowable 

through one dimensional damage except by accurate stress 

analysis. 

2.0 	Growth of Damage 

By definition the damage D summarises the whole past 

history of a specimen. 	Therefore its rate of increase 

depends on only D and the current stress, i.e., 

dD r k(D,S)dn B(D,S)dS (2) 
• • • 

The second term here is the effect of the rate of load 

change in the programme and may also be regarded as a 

predictor of loads in the immediate future. 	Since only 

the past can affect D this term must vanish leaving 

10 



dD 
= A(D,S) 

When averaged this will later become one of the crack- 

damage equations. 	It generalises an equation of Torbe's 2 

which, in contrast to the above, he used for "historical" 

damage. 

2.1 Effect of Load Order 

Because different loading histories can lead to the 

same damage, D also includes some load sequence effects. 

As an example consider the two sequences 

(S9v2)(S
1
V
1) 

	A 	(= defined as T!) 

and 
	

(Sovo) + (S
11

) 

differing only in order. 	Now let 

(s11) = (son1) 

(s,v2) = (son,) 

so that 

A 	= 	(Son1) + (S9V2) 
	

• • • 
	 (10 

(Son2) + (S1
v
1
) . 

To be definite put n
1 
< no  and make the reference stress 

S
o 

= So. 	On substituting for So  

A 	= 	(S2  n1 +n2 
) 

B = 	(S .11 ) 0 (s1v1) . 

There is no reason why A and 13 should be equal and this 

become:; most obvious if 	- n in lAhich 

• • • (3) 

11 

do 



and 

= % _/ iG 11. 11,-) 	
) 

2 	1 , 

A = (S2n1  + no) 

(S,V9) 	(S1V 1) 

 

1.2 

 

/ A 000 	(5) 

 

0." Relation to Life Distribution 

The existence of reciprocal and transverse equiva-

lence h:ls been shown to imply a monotonically increasing 

damage D. 	For any programme S(n) we also have, by 

definition, 

Prob (Failure before n cycles Ifor given programme S(n)) = 

= F(nIS(n)) where 0 < F < 1, 0< 	< co. 

Thus F and D are corresponding damages. 	For many 

purposes the arbitrary damage is best taken as the life 

distribution and this life distribution is sufficient to 

evaluate the effect of one dimensional damage for any 

prograthme. 

This simple outcome is complicated by the existence 

of endurance limits. 	For use later we remark that 

Swanson3  has shown that near the endurance limit the life 

distribution is bimodal and well approximated by the form 

f(n) = p fi(n) + (1-p) f2(n) 	... 	(6) 

where 

Pr ("short" life). 

If there is a true endurance limit 

n dF ( n ) 
	

(JO 

0 



and 1-p becomes the probability that the specimen never 

fails. 	This is indicated by some unpublished test re- 

sults of Mann4  on steel. 	If damage is transformed to 

life distribution then (3) becomes 

dF = f(n) = A(F,S(n)) = (1-F).H(F,S(n)) ... (7) dn 

say,where the last formula will be called the reliability 

form and H the hazard. 	If the damage is F it will be 

called canonical. 	For a restricted range of stress {S3 

the canonical damage becomes 

do 
dll = f(nI(S1) 

and if S : f(S) then the expected canonical damage is 

f(nlF) = f(nIS,F)dF(S) 	... (9) 

which agrees with dF/dn as a standard result in probability 

theory. 	In a later section complications related to the 

equivalence of damage rate and density will be considered. 

2.3 Miner5-1'almgren
6 
Damage 

Before proceeding further the theory above will be 

illustrated by the two cases of so-called linear damage 

and the theory to be used later. 	To be definite let unit 

damage occur when n reaches the mean life (constant load). 

In this formulation it is possible that D > 1 and this 

change from the normal theory reflects the inconsistency 

of most damage theories when statistical questions arise. 

In the figure 

dD/dn = 1/n(S) 

which is constant. 

13 



n2 	ni  

Let the loads S : f(S). 	Then at any time n 

dD 	' dD 1 
dF(S) do 	do 

dF(S)  
N(S) - do 

say 

which is equivalent to the usual result. 

Having found D the distribution of initial failures 

is immediate. 	e choose the life distribution for any 

particular constant load S
1
, F

1 
in the figure say. 	For 

this load then 

F
1 	

= F
1
(D

1
) 	 • • 0 

and if D(n) is the solution in (10) then the corresponding 

value of the life distribution function is 

F 	F(n) 	F
1(D(n)) 
	

• • • 
	 (12) 

For Miner. damage D =ndo  so that if the programme has 

passed through 
D1/do 

cycles the damage will be D
1 
and the 

life distribution as in (11). 	Since they are linear 

the damage curves shown must be affine and therefore any 

associated damages are also affine. 	The converse propo- 

sition that any affine damages must be Miner-Palmgren 

• • • 
	 (10) 



damage was first established by B.F. Langer.? 	In parti- 

cular the standard deviation of the lives at any load 
must be proportional to the mean and by (10) this holds 

for random loads also so that all life distributions are 

similar except for a change of scale. 	This is obviously 

too restrictive for practical use. 

2.4 Damage for log-normal Lives 

The inherent restriction of Miner-Palmgren damage 

arises from the limited use made of the S-N information. 

If we use all the constant-load information in the form 

of canonical damage then a perfect one-parameter theory 

will follow. 	Any divergence from reality must then arise 

from the neglect of other damage parameters. 	For Miner 

damage mean lives were sufficient; below we use the 

variance also and approximate the canonical damage as 

log-normal distribution thereby following a long tradition 

in the treatment of fatigue results. 

Let 

x : N(1.,0'2) indicate that x is normally distri- 
buted with mean µ and variance 	Equivalently, 

15 

f(x) = n(µ,0"::') = 

 

1 
1 (x-I1)2  

20- • .. 	(13) 

  

    

riTTE-73 

and if 	Ll = (x-'µ)/0 we can define 

cp(u) 	 f(u), F(u) 	`I' (u) = 1 

 

U 
/ 2 

e " 	dx. 
_00 \17271E.  

• • • 

	

(13A) 

Since F(n) = F(u) = ci)(u) 

u is a suitable measure of damage. 



At any stress S 

(N-N(s))/a(s) 	 (i4) 

and 	N = log u. 

By the usual transformation formula 

f(n1S) 
du 
do 

 

 

exp (-uci(S) 	N(S)) 

and when thiS is averaged over the load density f(S) 

1 
r 	-uu(S) 

f(n) 	= c^(u) ! c 	 dF(S) 
J C(S)n(S) o 

and since F(n) = t(u) this is in the form (3) (here 

independent of S). 	In practice cracks elsewhere may 

affect the local stresses and F(S) will depend on n. 

This change will be slow enough to allow F(S) to be re-

placed by a short term distribution F(SIn) say. 

Now consider the moments of the initial life distri- 

bution f(n) (=dD/dn). 	The r-th moment is 

co 

nr dF(n) 

1 -u0(S) 
0  r 	dF(S}  

uQ  I1 	(u) 	. dn 
Jo a(S) n(S) 

If f(S) is independent of n as the notation implies we 

can change the order of integration. 	If we also change 

the variable n to u then by (14) 

1 

e
r N(S)dF(S) 	exp{r u6(S)}d(u). 

16 



1 

er N(S)dF(S) r 	r u a(s) -1112  du e 

The second integral is now obtainable by completing the 

square in the exponent whereupon the factor left after a 

linear change of variable is 

exp (41r2  0.2 (s)) 

and 	1 

41- 	= 	exP(r N(S) 	41'2  a2(s)) dF(S) 
0 

The integrand here is the r-th moment of the constant 

load life at S which suggests that the distribution itself 

may also be a similar averaging over the S-n data. 	Let 

us form the characteristic function 

r m
n
(t) 	eint 

 dF(n) 

which by the same procedure becomes 

1 	cc,  
r 	r 

exprit.eu0(S)+N(S)1  m(u)du dF(S) 

o 00 
(15) 

representing the expectation over F(S) of the character-

istic functions of the constant load life distributions 

which are here log-normal. 	The random load life distri- 

bution can now be found as a Fourier inversion integral 

and when this is commuted with the outside integral in 

(15) we know that the overall density is in fact an aver- 

age as envisaged. 	This is only true if the stress dis-

tribution is constant over the life or in other words the 

local stresses are not affected by cracks elsewhere. 

Now suppose that cracks have affected the stress by 

a factor k(n) and let Fo(S) be the initial stress distri-

bution so that 

17 
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As in (15) then 
1 

dn 	T(u) r du J 	do 
dD 

1 
r 

0 

dF(Sin) 
S const 

dFo(S/k) 

k(n) 
T(u) do 

F(S1n) = Fo
(S/k(n)). 

18 

which again has the form (3) since u )1.) and within a 

scale factor lc 	S. 	This is still a d.Insity and the 

corresponding moments are 

n
k(n)
r(u) 	e_ua(s) 

4r do 
c(S)No(S) 

dFo(S/k(n)) 

03 1 
r 

j 

 r exp -1u2  +ru(S)+rN(S)  dF0(S/K)du 
o 1717k(exp(nU(S)+N(S))) 

after the integrand is expanded. 	Substituting the ini-

tial stresses, 
co 	k 
f, 	r 

4r 	
. J dt(u)1 expfru0(kS)+rN(kS)1dF o(S)du _m 	o 

If the contribution of high stresses to the inside inte- 

gral is small the upper limit may be taken as a constant 

and we can change the order of integration. 	The integral 

over life then bcomes 

r e  rucy(kS)+rn(k 	d(u) S) 	 r 
e
ru-a(S)+ -IST(S).e

r(u(0-75)+(N-7) 
= !  

expfrN(S)+-1 26:3 (S)).imean value of rr (u(0-c04-(N-N))dul 

by the moan value theorem. 	The second factor reverts to 
co 

r expr_irucx(ks)+N(ks)i-rDz(s);sy(s)ildn 	. . (18) 
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on changing the variable back to n. 

If the mean value of this integral is set to unity 

for r=1,2 then this fixes C(5) and N(S) as functions of 

S. 	We have thus defined a fictitious S-n curve for which 

(16) remains true when r=1,2 but not for higher values. 

This is similar to the fictitious S-n curve introduced by 

Freudenthal8  to allow for "stress interaction". 	Since 

Freudenthal's damage is related to final failure the 

physical basis of the effect here is similar except that 

in his case there is a self-interaction because of the 

local crack. 	As a method of computation, the form of 

(18) would indicate that it is best avoided in favour of 

(17) where a 4-point Gaussian formula should give good 

results quickly. 

2.5 Effect of Endurance Limits 

If we draw contours of canonical damage (constant 

load) on an S-n diagram these define equal probabilities 

of prior failure and we have a surface F(NIS) on the S-n 

plane. 	This has zero height along n=0 and in general 

is asymptotically 1 as n 

In the diagram cross sections at two loads are shown, 

appropriate to the simple programme on the left. 	Since 

damage is effectively F(n) the path followed by the 

material during the programme is that shown, with damage 

transference along the contours, and the total number of 

cycles is the sum of segments such as a and b. 	This 

geometric interpretation of (3) is easily generalised 

to any programme or type of one-parameter damage and in 

particular (9) may be interpreted as the averaging of 

slopes along contours such as AD in the figure. 

When some of the loads are below the endurance limit 

there is a finite probability of infinite life which may 
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m(u)e 
0 

-u a(s) 0 

dF(S)dn c(S)n(S) 
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be simulated by having 

F(nIS < E) 	p(S) < 1 	as n 	co. 

For Miner damage the damage rate 1/n(S) becomes zero if 

S < E but (6) indicates that for "short" lives 

f(nIS < E) > 0, or for all lives p(S)f(nIS < E) > 0, 

so that damage can be done by programme loads below the 

endurance limit. 	This is not related to the development 

of cracks begun by higher loads for we have spoken only 

of initial failure. 	For a stress distribution indepen-

dent of n we now investigate the effect of endurance limits 

on the log-normal damage of the previous section. 

In (G) the second term becomes zero and since the 

distribution of u now becomes p(S)T(u), m(u) itsef is 

no longer a damage. 	If E is the lower endurance limit 

(15) becomes 

f(n) = 

1 	-u (S) 

	 dF(S) T(u
0
) 
a(S)n(S) 

where uo depends on S in such a way that 

p(S)p(u0) = m(u), 

representing constant damage. 	This condition reduces to 

uo u2 	2 In p(S) 

and we also know that 

(N-N(s))/o(s), 

N(S), C(S) referring to short lives if S > E. 	After 

these expressions are substituted into (15) as modified 

the r-th moment becomes 

exp rfU(S)-Vu2-21n p(S)+N(S)} 

1 

'r 	o. 
E 



1 	 -u a(S) 
00 

rp(u )e r 
exp rfuo(s)+N(s)-Fu-u(1(S)) 	° 

E o 	o 	o a(S)n(S) 
do dF(S) 

where n(S) = exp(N(S)). 	Changing the variable to uo  pro- 

duces 
1 co ruo 	 o0(S) rN(S)+r+1 a(S)u-u r 	r 

r = 	c:Auo)0 	.e 	(uo/u)duodF(S) 
'-co 

.. 	(19) 

From the mean value theorem, the inside integral can be 

written 

= 	ru o a(S) 	ti0(S).exp 177T6(S)ru(S)-uo  
e 	

(S)] 
rN(S)r rl(u )e 	du. 

1 03 	
o 	o ' ] 	 1J117(S) - 2 In p(S) _ 	 o 

where uo(S) is the typical value. 	The factor may now be 

interpreted as exp (rN(S)) where N(S) is another ficti-

tious S-n curve differing for each moment. 

When p(S)=1 uo  is obviously zero and in other cases 

one may increase uo  until p(-170) = p(S)/d2n. 	In this case 

the rate of damage increase for the approximating problem, 

using uo  or N but ignoring infinite lives, is roughly the 

same as in the original problem. 	From these approxima- 

tions 

uo 	-2 in p(S) 

and 
	0 

and the fictitious S-n curve bceoms 

3(S) 	N(S) - L.1-1  u(s) /-2 in p(S) - in 2 

(21) 

in terms of log lives. 

This example illustrates the predominant effect in 

Bastenaire theory of the higher damage 	Damage 



occurred below the endurance limit because, although the 

mean life was infinite together with the overall variance, 
the first mode (in (6)) produced a finite probability 
density, i.e. a finite damage rate. 	Because damage is 

retained during a programme dormant periods at particular 

loads tend to be bypassed. 	Thus the two (constant load) 

damages below have the same effect in a programme because 

the horizontal section CD will be passed as soon as any 

different load is applied and only the sections OC, DB 

contribute to the damage. 

Equivalent 
damage 1  

f unction/  

Cycles 	 0 	Cycles 

3.0 Correlation Effects 

It has been shown9  that the correlation between the 

possible fatigue lives of the same specimen at different 

loads may have a marked effect on the variance of lives 

under random load. 	This conclusion arises from an ex-
tension of Miner damage in a direction foreign to Basten-

aire theory and the approximate effect was `that standard 

deviation was proportional to correlation. 

23 
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For Bastenaire theory let us divide the specimens 

into groups K with probabilities dF(K) (see Figure) within 

which the conditional life distributions are independent 

(we assume this to be possible) with densities 

f(n IF,S,K) 

so that 	f(n ISF ) = f( n IF,s,K)dF(K) 
	

• • • 
	(22) 

Taking expectations over S we find the conditional damage 

rate 

f(nIF,K) 	,if(n IS,N,F)dF(S) 

which itself has the expectation 

f(n1F) 
r 
;f(nIF,K,)dF(K) 

all of which is entirely consistent with the laws of pro- 

baility. 	The unconditional damage must therefore be 

identified with the marginal distribution of all specimens. 

Any reduction in the variance under random loads must 

therefore be attributed to further parameters. 

4.0 Corrosion Fatigue 

From the obvious generalisation of (3) it is possible 

to set up multidimensional damage by making the life dis- 

tribution a function of the damage vector. 	For a less 

abstract approach we first consider a hypothetical case 

of corrosion fatigue in which fatigue and corrosion form 

two components of the damage vector. 

Let D denote Miner damage and by C denote a fraction 
or material corroded so that if the nominal applied stress 

S : f(S) the stress for the purposes of Miner damage is 

6 = s/(1-C). 

Suppose further that 



dC/dt = c(0) 	c(S/(1-C)) 

and in the usual manner 

dD/dn 
r f(a)du 

= 	N(o) 

Let zi be the frequency of loading so that in unit time 

kw say is spent at high load and the remainder at normal. 

A more refined time-integration procedure is not suited 

to this rudimentary investigation. 

Thus 

dC/dt 	kwE(c(6)) + co(1-kw), say, 

where E is the expectation. 	Now 

f(o) 	(1-C)f (0.1-c) 

and the two damage equations become 
1 

dD/dn = (1-C)  J. fs(S)da/N(a) 

1-C 

C f(s)ds  
N(S/i-C) 
0 

25 
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	(23) 

1-C 

dC/dN 	k 	f(S)dS.c(S/1-C) 1-1 co 

 

We have tacitly assumed that the upper limit 

S = 1-C 

is not exceeded or that its effect is negligible. In 

this case the second equation can be solved numerically 

and the result substituted into the first (by using a 
fixed upper limit). 	The equations themselves are simply 

a two-dimensional form of (3) but from the formulation 
here the mode of failure is necessarily by fatigue if we 

11:-:e the ljfe distribution based on the Miner damage of Sec. ]•1 



However if this is done then the two equations above are 

merely a way of calculating a single damage and as we 

have seen one can, in principle, eliminate all damages 

but the one of interest. 	We conclude that true multi- 

dimensional damage must produce life distributions depend-

ing on all the parameters and in many cases there are 

several possible modes of failure (e.g. corrosion in the 

case above) which must be considered in the initial fai- 

lure distribution. 	This will be considered when we 

return to corrosion fatigue. 

5.0 Two Parameter Damage 

The direct generalisation of (3) takes the form 

dD/dn. = 	A( D ,S) 	(24) 

where the notation indicates that each component of A 

depends on all the components of D. 

It has been postulated by Bastenaire1  that D de-

fines an equivalent state based on a vector with 

(n) 
	

r ( D ) . 	 . 	(25) 

In this system the equivalence 

( s v) 	= 	(g(N) vo) 

defines a class of programme functions g(n) which contain 

S, V, vo  as parameters, presumably in a continuous and 

differentiable manner. 	More generally if 

(g(n)v1) 
	

(h(n) vo) 

then g(n) is a functional of Ii(n) with parameters vl, v2. 

The damage increment along a programme is then (24) 

generalising (3). 	If required, the load S may also be 

extended to include the mean load as well. 

26 
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If the other measures of the damage are obvious, 

e.g. corrosion or creep it may be possible to modify the 

one-parameter equations in a physically reasonable way 

to account for further effects. 	This has been done 

already for corrosion fatigue and we return to this 

example for further development. 

5.1 Generalised Corrosion Fatigue 

We now suppose that the stresses effective in fatigue 

and in corrosion are different so that for example the 

first is mostly affected by alternating loads, or range 

pairs for random loads, while the second is probably a 

function of maximum loads. 	For the processes generally 

occuring it is likely 	that even the frequencies of the 

two loads would be different. 	Suppose that 

S : F(S) 

relates to fatigue damage while for corrosion 

P : F(P) 

The first of these is set in discrete time while the 

latter loads are continuous in time. 	To relate the two 

let the average frequency of fatigue loads be 7. 

Then the rate of corrosion is on the average 

dc/dt 	 c(P/777)dF(P) 

1 dC 
— - dN ... 	(26) 

where the upper limit corresponds to the assumption that 

(initial) corrosion failure occurs when 

1 > 1 - C. 

Now let us use the canonical damage r,,,Fd 
	as the 
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second parameter where Fc , Fd  are the partial distributions 

of either fatigue or corrosion failure. 	In the absence 

of corrosion suppose that Fd is the solution of the equa-

tion for pure damage 

H(S,Fd )(1-Fd) 	... (27) 

in the reliability form. 	When corrosion is present the 

stresses increase to 

G = S/(1-C) 

This expression is rather crude in order to simplify the 

illustration. 	However C, like D previously, belongs to 

a class of equivalent damages related by monotonic trans-

formations so that it is more general than appears at 

first sight. 	When the mode of failure is uncertain the 

factor (1-F
d) in (27), excluding prior fatigue failures, 

must now exclude all types of failure and accordingly it 

must become (1-F). 

If we also take the expectation over S then (27) 

becomes 

dFd 
do 

1-C 

dF
d/dn = (1-F)S ll(S/1-C, F )dF(S) (28) 

o 
 

l-C 

(1-F)! 

r 

 U(S/1-C, F-Fc)dF(S) 

For corrosion failure 	
1 

dFc/dn = (1-F)r 	dF(P) = (1-F)H say 

• • • (29) 

where once more the factor outside excludes both kinds 

of failure. 	In (26) the only corrosion of interest is 

that occurring on unfailed specimens so that the proper 

equation to use is 
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dC/dn = (1-F) 
	c(P/i-C)dF(P) 	 ... (26A) 

Adding (48) and (29), 

A-C 
dF/dn = (1-F){ H(S/1-C,Fd )dF(S)-1- 	dF(P)3 	(30) 

0 	 1-C 

The equations (26), (27) and (30) may now be solved for 

C, F and Fd. 	In (29) the variables are separable from F 

and if we put F(0) . 0 we find 

r 
1 - exp ( 
	

1) 

and by subsequent substtution into (28) 
1 

Fd 	
1 - exp (-! ( 3)- 	exp(-rf 1) 	dF(P)dn 

o `1-C 

Treating the modified form of (27) similarly, (factor 

(1-F)), 1-C 
, 

C 	
r 

uJ 	exp 	
r( 

J)  r c(P/1-C)dF(P)dn. 
o `o 

... (31) 

These are the formal solutions hut only in the sense that 

the differential equations have been replaced by irans- 

cendental ones. 	In practice numerical solution of the 

original equations is probably the simplest course. 

To allow for small rates of corrosion let us expand 

II in (26A), (29) and (30) as a Taylor series in F. 

Then 

11(s/1-c,F-Fc) = Tr -F F -1-1-F 2H 	- c F 	c FF 
r 

and 	1-F = e 
	

c do exp(-.TidF(S)dniTc . HFdF(S)dn - ••• 

whence by (33) 
-ill do 

dFc/dn = Hc e 	c 	exp(- IldF(S)dni-Fe urdF(S)dn 

• • • 
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The corrosion C is still given by (31) with the appropriate 

modifications to f F. 

5.2 Canonical Form of Multidimensional Damage 

For simple damage the canonical form was found to be 

equivalent to the life distribution function F(n) for the 
programme in question. 	In symbols 

dD/dn = A(D,S) and f(n) = Fn(D) say. 

In the more general case let us put F(n) in the form 

Fr (n) 	= Fo(n)G1  (n)G (n) 	G (n) 	• • 
	(32) 

where Fo(n) is the canonical form of the one parameter 

approximation so that 

0 < F(n) S i. 0 

Now consider the two-dimensional case where the properties 

of probability distribution functions assure that 

- 0 < F
1 

< Fo
1 
 . 

Let F (n) 	 ) be the r-dimensional damage in the canoni- r 	r 
cal form 

Fr  (n)= Pr  (Failure has occurred before nIr parameters). 

Obviously as a distribution 

0 < Fr  < 1 

and if successive damage parameters are deleterious 

F > F r+1 	r 

or 

1. r 

The two inequalities together are 
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Fr < Fr+1 < 1, 

or on dividing 

1 < G
r+1 

< Fr-1.  

Now consider the meaning of the expression 

-1 (33 = 	 ) r+1 Gr+1 

-1 
i.e. Pr  (failureir parameters) = Pr (failure)r+1)G 

r+1 

Since F < Gr+1  < 1 it may be interpreted as a (Bayesion) 

probability that the (r+1)-th parameter is not needed to 

describe the damage. 	It will also be noted that 

Gr+1 
> G r  

which agrees with the plausible idea that, as more damage 

parameters are introduced, the need for others will de- 

crease. 

As we have noted it often happens that two or more 

mechanisms acting together will partially cancel each 

other such as stress relief caused by creep.
10 
	This 

contrasts with the case above which we can distinguish 

as pure damage. 	Because all cases of improvement 

(except coaxing) can be ascribed to stress relief it is 

possible that in the strict sense pure damage is the only 

kind. 

5.3 Variance under Programme Loading 

When considering simple damage (correlation effects) 

it was decided that the reduction in the variance of lives 

observed by several investigators11 associated with 

random loading was caused by an additional component of 
damage. 



For increasing orders of pure damage above, the pro-
bability of prior failure and the subjective probability 

that the number of parameters (i.e. the order of damage) 

is sufficient both increase uniformly over the life n as 

the order r increases. 

If the logarithmic variance e of life depends only 

on the programme S(n) and not on the order of damage r 

and if also the log-life is normally distributed N(;A,0"2) 

the the inequality 

F 1 > Fr 
 

r + 

is equivalent to 

0 < n < 

r +1 

and the whole question reduces to a general linear re-
gression problem. 

With these restrictions the treatment of r-dimensional 
damage becomes more manageable. 	In addition, since all 

the information now concerns the mean u, testing and 

analysis can be made much more efficient. 	Finally there 

is now no need (in this case) for the restriction (34) 
which confines us to pure damage. 

The success of this approxim;,te theory depends on the 
measurement or prediction of a-  which itself involves 

some of the damage components. 	It has been surmised 

that the reduction in variance is associated with corre-

lation between the constant load lives of the same speci-

men, i.e. a specimen "strong"at one load will also be 

strong at another. 	This explanation will be retained 

but we now imagine that the random loading S(n), S:F(S) 

will average the minimum variances of each load in the 

programme. 

3 
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One of the essential effects of correlation is the 

reduction of variation in conditional distributions as 

compared with the joint distribution. 	For the bivariate 

distribution in the sketch for example the conditional 

standard deviations 0
1
, a

2 
are obviously smaller than 
12 

their marginal counterparts. 

If this figure is appropriate to the two load programme 

f(S) = p 
	

f(S9) = 1 - p 

then the simplest case of our theory for the random load 

variance will give 

Var(n under random load) = p 0 	(1-p) a 	(35) 

Strictly speaking (35) is meaningless unless 01  and Co  

are independent of the load or variate which has been 

fixed. 	This is a characteristic of the multivariate• 

normal distribution and we now generalise (35) to programmes 

whose loads are associated with lives (or log lives) follow-

ing the k-fold normal density 
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f( x ) 	= (2n) 
	

A 1 2.  exp(-:1(X -tA(X - E)) 

where A-1 is the matrix of covariances. 	Nou let us fix 

all variates except xl  say and suppose that the remain-

x1 have the covariance matrix A1
1  which 

must be a submatrix of A • 	The conditional density 

is 

f( x1  j x 1 	f( x )/f( x ) 

which is also normal with the exponent 

- ) t A (X - V-1( x i- gl)t[0 0 - 
O Al_ 

x1 	E 1) 

where Al is not a submatrix of A. 	The inverse of the 
element 	A - r0 Ali then supplies the conditional var- 

iance and this can be done for each variate in turn. 
Removing the factor A this becomes 

A ( I - A-1  ro A ij 

A( I - 	A11 
b' 	0 

b A
-1 A 
1 _ 

A ni 0  • •- 	OJ 

a11 say. =  
- The reduced variance is therefore a
11

1 
 

for the Ic loads is to invert the diagonal matrix formed 

from the diagonal of the inverted covariance matrix. 
The logarithmic variance of life is then 

Ic 

i=1 

where the notation emphasises the discreteness of the 

programme f(S). 	For continuous distributions this method 

ing variates 

so that the rule 

-1 a.- f(S.) 11 	3_ 
... (36) 



obviously fails but it is possible that there is an equi­

valent one based on the theory of Fredholm integral equa­

tions. 

Because this reduction of variance is still uncertain 

and has never been properly verified even for the one­

dimensional t4eory described here there is no point in 

discussing its physical nature. 

5.4 Log-normal Damage with Several Parameters 

BeLore leaving this chapter let us extend the log­

normal model described above to a stage amenable to sta­

tistical analysis. 

Suppose we have several recognisable and observable 

damage parameters as w'ell as the fatigue lif'e nnd the 

constant logarithmic variance. Then in order to avoid 

confounding we need at least as many distinct programmes 

as there are parameters and preferably severnl more for 

practical results. 

Let there be N progranunes P. say, each producing a 
~ 

logari thmic life n. : N( 11. , ( 2
) by our assumpt ions. For 

~ 1 

each of these (which need not all be different) 've also 

observe or calculate the set of parameters x.. If we 
. 1 

also assume that the mean lives depend linearly on X then 

for all programmes 

x~ =: y+e 

where y =: n ~ no' the change in life caused by the 

extra parameters, 

x = [ X . J, the parameters ~or all progrnmmes, 
~ 

nnd e, is [l vector o£ errors. This is the goncrnl linear 
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1 :'J .. ]':f . 13 d t f ~ lypO·ClCSJ.S ~n nnn .ys~s a Vnr~ance an he ef.:ects ,,, can 

ho fitt(">'ii to tllis "model by ndnim"i";-;:;in~ tll(' error sum or 
-', ; 1 \ ,'!' 



t 
e e = 

lv-i th respect to 

= 

(rtxt - yt)(X[l 

~. The solution 

with the error sum of squares 

= 
t 

Y Y 

- y ) 

is 

. . . ()8) 

Further details may be :found in Kempthorne 13 or any other 

statistical text but the essential point here is its 

applicability_ With good experimental design simple 

standardised analyses can be substituted for ()8) and (39). 

It is also important to remember that the "linearity" 
..... 

r ofer s to the role of f3 in (37) and a non-linear relat ion 

between life and the damage parameters is perfectly 

feasible, if further parameters are introduced. For 

example if 

y = a + bx + cx2 + e 

then fa b cJ is the vector f3 of' (37). 

(40) 

In practice it is likely thctt the presence of higher 

damages will be noticed only by the effect on the life 

artd there will be no obvious effects to measure.· In such 

cases we will show that arbitrary functions of the loud 

may be chosen as damage parameters to any degree of approxi­

mation. This is obviously no substitute for physical in­

sight which would be reflected in the present framework 

by a need for very few parameters combined with a truly 

minimal error variance. 

\ve again postUlate the parameters x l"hich arc now un­

known but we no,\v- suppose that they can be written ill the 

:form 
,. 

x .- = ! ;. (S) dF . ( S) 
In · 1 J 

(41) 



where Fj(S) describes the j-th programme and ~i(S) is n 

constant load relation for the parameter in question. 

The problem previously described by (37), (38) nnd (39) 

now includes the estimation of the ~'s. To get uny 

further it is necessary to restrict J to forms (not 

necessarily polynomial) like (I:t:O) which depend on a cer-

tnin number 6f' parameters. Thus 

/;i(S) + ••• + a. s (S) 
J..m III 

and without loss of generality the sl(S) can be taken as 

linearly independent. Substituting in (41) 

r 
x.. == J![aJ..0ls1(S) + ••• a. s (S)]dF.(S) 
Jl J..m m J 

= 

where == 

t 

+ ••• + ao S . 
1m ll1J 

Sj di' say, 

r 
J Sl (S) dF . ( s ) 
. ( J 

the expectation of sl(S) in the j-th programme and a know'n 

quantity in the present context. 
t 

so thnt 

y + e 

== [ S.J[aiJ 
J 

== 5 a , say, 

== S
t ,­an 

In (37) then 

A ~ ~ 

with f3 of order m. Except that a f3 has replaced f3, 
this is exactly the same problem as (37) ~ut t~e solution 

there supplies only as a w"1l01e. No further equn-
~ 

t iOllS to :find a can be found. For the error sum of' 

:::5quares is no\\ 

== ( ~t at 5 yt ) ( 5 tar - y) 
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and if the variation of this with respect to a aLone is 

considered we find that 

+ -; 0 2 (d a ) 
A 

lvhich is automatically zero for the given solution a Jl 
The form (42) is therefore no better than (11:1) in which 

the l;i may be arbitrary. In (11; 1) hOly-ever the efIec t of 

using further ~ts can be assessed by an analysis of 

variance. 

6.0 Final Note on Applicability 

Because it seems more fundamental physical damage in 

th~ sense of' this chapter has been taken to describe pro­

cesses before initi(ll failure which is here the sudden 

appearance 6f a crack. However this is ambiguous and for 

different purposes the initial crack length can be made 

roughly equal to the grain size, as we argue later, or 

lengths such as the distance from the edge to the opposite side 

of a rivet hole which could be used for aircraft structures. 

Similarly the loads which form the programmes can 

also be generalised. In a fatigue context two such possi-

bilities are programmes of the stress intensities defined 

j.n fracture mechanics and programmes of different rrus 

values of random noise loading for which Kirkby14 has 

produced S-n curves. He suggests that Miner damage cal-

culations based on such data are more accurate. That 

the results are only partly better may be due more to 

the inherent limitations of Miner damage than to the use 

of rms loads and it is possible that a one parnmeter 

Bastenaire damage may suitthis case ond not that of con­

stant load S-n curves. 
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Chapter II 

FINAL FAILURE, 

HAZARDS AND RELIABILITY 

1n the first chaper it was stated that the life dis­

tribution to ultimate failure lvUS a subsidiary problem 

lv-hich could be solved separately after the general fatigue 

problem, whose solution described the random growth of 

cracks, tuking cumulative damnge into account. The 

method of doing this belongs to the theory of reliability 

and the relevant analysis will be developed below. 

1.0 Failure Rnte and Hazards 

Suppose we have a structure whose ultimate strength 

changes lvith time (or cycles) in a knOlm manner. This 

is subjected to a series of loads (the same ones tIlat in­

directly reduce the strength by starting fatigue cracks) 

lvhich may exceed this strength. In this way the struc-

'ture will fuil and the probability of this event is 

Pr(failure on n-th cycle)=Pr(no previous failure)X 

where S = n-th load n 

Pr (SN > U In. p. :f) ••• ( 1 ) 
I n 

U = strength at n-th cycle. n 

Now the left hand member is merely the probability density 

fen) of cycles to ultimate failure so that (1) may be 

abbreviated as 

fen) = [1 - F(n)] hen) 

lvhere lIen) = PreS > U I no previous failure) 
n n 

is commonly called the hazard rate or hazard. Ii' we 

allow cycles to be continuous variables then (2) becomes 

the separable equation 



4:0 

d(log[l-F(n)} ) = -hen) (3) 

,~ith the solution 

F(n) = 1 - exp (-H(n) ) F(O) = 0, . . . 
,,,"here n 

H(n) = J h{t)dt 
0 

the total hazard. The corresponding density is 

fen) = h(n) ~xp(-H(n» . . . 
and if hen) is a constant, as it is in many applications,1 5 

the life distribution is exponential. For aircraft such 

a case would be ultimate failure by gust loading in the 

absence of' weakening from fatigue. If there are tW"O in­

dependent modes of' failure then (2) becomes 

so that independent hazards, as independent probabilities, 

ar e add i t i v e • 

$inc~ F(n) and hen) or H(n) are equivalent one need 

only find hen) which depends solely on the current size 

of all cracks, which is known from the solution of 

the general fatigue problem. 

If a : F( a In) is ran~om together with the applied 

loads S : F(S) then from the definition 

hen) = Pr(Applied load> Ultimate 
r 

= J dF ( a 'n) dF (S) 

qj~(a) < s 

where u( a ) is the ultimate strength as 

npi' ) 

. . . 

a f'unction 
the various crack lengths. For a constant loading 

dF(S) = O(S - s ), 
0 

nnd this becomes 

of 

S=S 
0 
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hen) :: Jr dF( a In) 
'8 

... (6 ) 

o 

2.0 Effect of Inspection and Repairs 

A structure which is periodically inspected and re­

paired will last longer than a neglected one. This has 

been considered by von SydOW16 who considered a single 

crack which if necessary was repaired at preset inspection 

times T • 
V 

We outline the analysis below, adding another 

term to include static failure in the absence of fatig~e 

cracks. 

Let F(t) denote the life distribution obtained by 

<-3) or (4) if the crack begins at n=O. In any interval 

(T
v

_
1

' Tv) a crack may start at time t, say, and if these 

starting times have the density f(t) then 

Pr(First ftitigue failure during (Tv_1 ,Tv » :: 

Tv 

:: r F (T -t) dF (t) 
J T v 0 

v-1 

where F (t) is' the distribution of initial £ailures. o 
This includes only those failures in the interval (t,Tv ) 

and not any static failures during (T 1,t). Let this v-
possibility be denoted by A and its absence by A while 

B, B refer to the fatigue failure when the structure is 

intact at time t. There are then four possibilities in 

the combination of these events andusing the same symbols 

their probabilities are as follows 

AD = C (Tw'o failures in succession) 
-h

s
(t-T

v
_

1
) 

AD = .. 1 - e (Static failure lvith hazard h ) 
-h (t -T ) s 

An :: e S V-1 r(T -t) 
'J 



= 
-h (t-T ) 

e s v-1 (1-F(T » 
\)-t 

To include static failure we replace the integrand in (7) 

by AB+AB obtaining 
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•• (8) 

Failures in any interval are mutually exclusive and 

these probabilities can be added to obtain the chance of 

failure any time before 

ponding to F(t) is use~ 
k 

F (T
1

)-
o { 

\)=1 

When the hazard H(t) corres­

sum takes the form 

T 
V-1 

e 
-h (t-T ) -R(T -t) 

s V-1 e V dF (t) 
o 

where the second term is the impr6vement effected by the 

inspections •. Part of this improvement is illusory however 

because t (t) refers to the material present at the begin-
'0 

hirtg and not to the possibility of cracks developing in 

the material used in repairs. If the failures arising 

from repairs are also considered then the situation is 

similar to that obtaining in statistical renewal theory. 

This extension will now be treated by the theory of re­

current events. 17 

Let us first regard a failure during (T
v

_
1

, Tv) as a 

discrete event at time Tv with il concentruted probability, 

still called a density, for convenience. Consider a 

structure which has failed at T\) and which was last re­

paired at T. Then if the origin is moved to T ,(8) 
r r 

still supplies the probability for this condition which 



can be ,.;r itt en 

f = [F (T -T )-F (T -T)]-vr 0 V r 0 V-1 v 
Tv 

-h (t-T ) -H(T -t) 

- f s v-1 v e e dF (t-T ) o r 
T 

V-1 

= f - g\lr' say. ovr v 

The probability qv of catastrophic failure at Tv is there-

fore v-1 
.r \ f 

qv = ~vo + L Pr Vr (11) 
r=1 

,.;-her e 

fvo = Probe of final failure from first crack. 

I) f' = r VI" " 11 11 " from crack repaired at 

time T .• 
r 

For equal intervals it is convenient to define the gener­

ating function 

1 + 

co 

\"'"' 

A (s) = 
0 

V=1 

v=l 

f 
Vo 

V 
s 

v 
s 

,.;-hich are retained temporarily for all cases. 
co \)-1 
--, "\' 

Q (s )":'1 A (s) ) r \)-r 
== + P s fvrs 0 r 

v==l r=l 

and if we change the order of summation 

From (11) 



co co 
\'I \' v-r A (s) + .) Pr 

sr f s 
0 r. .. .....,,;. .'- Vr Q(s)-l ::: 

r=l \):::r + 1 

OQ co 

= Ao(S) 
\' r ~ V-r 

+ / Pr 
s ) 

fvr s 

r=l v-r::1 

co 

A (s) r 
:: ! + Pr 

S Ar (s) 
0 

r:::1 
co 
\' t ,,'"he.r.e A (s) 

\ 

f ::: ; s t+r r r 
t=1 

may be regarded as a retarded generating function. If 

the Tv are evenly spaced then 

A (s) 
r 

::: A (s) 
o 

and then 

::: 1 + A (s)p(s) (12) 
o 

,~here P (' s) is the generating function of minor cracks, 
'CO 
.-, 

::: 
\ V 

1 + ) Pvs L. 
\):::1 

We now return to Pv which is the probability of a minor 

crack in the intervals (T
v

_
1

, Tv). This is an event 

similar to final failure and the previous analysis is 

largely repeated. Corresponding to (8) we have the event 

Pr(Minor first crack during (T l' T » 
V- v 

= fdF(t) Pr(No failure < t).Pr(No failure >t) 
.J 0 
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Thus 

for 

Pv 

'vi th 
Ctl 

r-, 

I.~ 

v=l 

::: 

TV -h (t-T ) 
r 'e S V-l[1_F(T_t)]dF (t) 

J T 0 

v-1 

Tv 
r 
I e 
" T 

v-1 

-h (t~T ) -H(T -t) 
s V-1 \J e dF (t) 

o 

first occurrences and us in ( 11 ) 

v-1 
\' 

= gvo + L. Pr gv-t 0 

r=1 

the generDt~ng t:unction 
co V-1 
\"' \' r 

Pv 
s = G (s) + ) J p' S gv-r v 0 L L r 

V=1 r==1 

co co 
\' r 

== G (s) + Pr s gv-r 0 

r=l \)-r::.: 1 
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••• (14) 

(c f (10.» 

• •• (15 ) 

0 

v-1" 
s 

0 

after changing the order of' summation. 

in the form 

This can be written 

P{s)-l ::: G (s) + 
o 

co 

\' r 
/ Pr s G (s) 

LJ r 
• •• (16) 

r=l 

resembling (12) w"here G (s) is -another ret arded generating 
r 

function. If the inspection intervals are constant 

G (s) = G (s) r 0 

and 

Substituting into (13) 

'Q(S) = (l+A (s) - G (s»/(l-G (5» 
0 0 0 

• •• (17) 



and A "(s) - G (8) 
o 0 = 

1 

Now" A (s) and P (s) can be found from (10) and (14) 
o 0 

and in this case res) and Q(s) can be expanded to give 

the repair and' failure rates. 

With unequal intervals the generating function method 

can be used by considering fixed values of. s but it is 

better to find Pv and q recursively from (15) and then 
V 

For continuous lives we have obta~ned essentially the 

life distri~ution at Tl ••• Tv. To obtain the density 

of failures suppose that the last inspection interval is 

infinitesimal so that, wit~ n=T , (11) becomes 
V 

;:: f (n)dn+ 
o 

v-l 

where T < t' < n. v-l 

\"'I 

-h (t'-T ) -H(n-t') 
s v-l () Pee f n-T r 0 r 

To the first order 

;:: f (n) + 
o 

/ p f (n-T ) 
L-1 r 0 r 

(18) 

For a linearly decreasing strength and log normally distri­

buted initial failures various results calculated from (9) 

c an be- fourid in ref. 16. 

The hazard H(rt) on ~hi~h (9). and all other results 

are based is thnt found through (5) by a fatigue analysis, . 
however crude the approximations used. 

When there are several cracks the initial failure here 

can be approximated as the first one (a least value dis­

tribution) , or the second or a similar event. The essen­

tial simplicit~ of having only one crack is that, once 

started, its grow-th is roughly deterministic. 
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2.1 Several Initial Failures 

\vi th several possible types of crack it is most c on­

venient to consider the average size, including those not 

yet begun, and let this be zero at n=O. All hazards are 

then based on the origin and the first failure probability 

(7) becomes simply 

= F(T )-F(T 1) v \) ... 
-H(T .) -H(T) 

\)-1 V = e - e 

and (9) reduces to F(T). Similarly (10) is now 

f = F(T -T ) - F(T -T). Vr v r V-1 r 

Now consider the probability of a minor crack appearing 

for the first time at T • v It will be shown later that 

the initial life distributions of a set of cracks are 

independent and therefore 

1 - F (t) = 
o 

is the probability that no appreciable cracks have appeared 

by t cycles, F (t) playing the same role as before. Thus 
o 

g is still given by (14), using the failure distribution . vr . 
from (19). This is still tantamount to assuming that a 

repaired structure is completely restored when a crack is 

discovered 'vhereas the Wl.cracked parts are left, sti.ll 

containing a certuin amount of fatigue dnmage. 

The problem can be circumvented by solving the craek­

damage equations (Chapter IV) in a piecew"ise fashion \vith 

the added boundary conditions that all cracks return to 

zeTo lengths at each inspection. For parts not needing 

repair the damages are retained, becoming zero for those 

repaired. Overall then it is necessary to average the 

canonical damage at each inspection, a process similar to 



thnt ,\hove but rather more complex because of the inter­

action bet~een the differential equations and the boundary 

conditions which depend on cln earlier pnrt of their 

solution. 

3.0 Hazards Irom Several CrC1cl~s 

The hazard H(n) on which the failure distribution 

depends is related to a complete structure but it is plain 

that nn nnalysis broken into independent sections i~ more 

efficient. This is possible if the different crocks nre 

sufficiently separated to allow independent strnctur,d-

nnulyses. I r t his iss 0 the rei sst i 11 n s tat i s tic ;d_ 

interaction betw"een the different areas of IniJur0. \\"hich 

we shall investigate below. 

Let the external londs be R lv-hich is il vector of' mng­

nitudcs applied to a sct of cxternnl land systems b
o 

in equilibrium (in accordance with the matrix methods or 

Any lineDr combination of these systems is 

also in equilibrium so that if A is of' full rank the londs 

b A -1 
arc also a 

o 
suitnblc basis and the applied loads nre 

:::: b A- 1 .AR 
o 

TIl'us [lny linenr trnnsformation of b is equivalent to it 
o 

\"hon H is correspondingly al t ered. \ve no\\ sUJ)IJosc that 
) 

the elements of R, but not those of b , i\rc random var­
o 

i[lblos~gcnerDlly correlated with each other.,and having 

the covarinnce matrix r
R

- For the new vector 

K:::: A~lR 

the cQvuriunce matrix is 

,.. A -1 . 
. :1-.S 

speaking 
annlysis 
criticnl 

chosen to agree 1,,-ith the next section. Strictly 
the order of K can exceed that of R and the 
can be extended but one expects one crncl< to be 
ror ench load vector. 
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Eh  = e (KKt ) 	6-( A-IRRt A-t )  . A-1 ER  A-t 	(20) 

It is obviously convenient if III 	is diagonal and without 

loss of generality the variances (on the diagonal) can be 

unity so that 

1-t 
 A A 	 ... (21) 

This is quite general since I R  can always be diagonalised 

by another preliminary transformation. 	Let us now con- 

sider A-1, remembering (3A). 	By definition 

-1 
A A = I 
	

(22) 

= [tti][Ai] say, 

and for 	2, 	N 

Z A 
1 j 

which is a restatement of (22). 	Considered as a vector 

t-  is perpendicular to the subspace spanned by A. , j=2,... 1 
.,N, 	and if this is also the case for Al 

A171 1 
within a constant factor. 	By the same reasoning 

A T. 	0 1 j 
from (22) and hence 

-C
1
.C.
j 	

0, j = 2, ..., N. 

From (21) is now follows that K
1 
is not correlated with 

K,, 	KN and if the loads are normally distributed this 

also implies independence. 	We shall show below that this 

is also true in the important case of exponential distri-

butions. 
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3.1 ENponential Distributions 

These are a close approximation to the load distri- 

butions experienced by aircraft structures and therefore 

warrant closer consideration. 	The range of application 

of any distribution can also be extended by transformations 

such as logarithmic loads etc. 

For normal distributions it is well known that the 
-1 covariance matrix (21) and the means 	

= A /AR 
completely define the new variates. 	We now try to find 

a similar generalisation of the exponential distribution 

f(x) = ae-ax  F(x) = 1 e-ax  

The simplest generalisation is the product of several 

such factors, 

f( X ) w a1 
... a

N exp(-a
t
x), 	x. > 0, ... (23) 

representing independent variates. 	Now suppose that 

X = Ay where A is constant. 	The Jacobian of the 

transformation is 

= 	IAI 
ay 

so that the density of y is 

f( y) =f( x )(lax /ay I 

A a1  ... aNe atA 
	 ... (24) 

Iff
N represents a row matrix of ones and a is 

changed to a diagonal matrix then it can be seen that this 

belongs to the set of densities 

f( y) = 	lA f e
e N  Ay ... (25) 

IAlexPf-Y Ea. 1 i  i1 	ai2...-yN 	aiN) 

ax 



We know that the components of x are independent. 	Let us 

consider their correlations and those of y. 	The moment 

generating function of X is 
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M X( t) = 

r 

0 

N 

1=1 

xt t dF( X ) 

••• 

co 

0 

a. 1 
a. -t. 1 

•• • (26) 

—( a— t )tx dx 0.0 a1 	aN 

The logarithm of M X ( t ) is the cumulant generating function 

X
( t ) and since covariances are second cumulants and 

(25) is a product all correlations are zero. 	After a 

change of variable the corresponding MGF of y becomes 

(from (24)) 

rt 
M 	( 	)= 	t V 

e 	- c1F( X ) 

r" • • • 
0 

N 
	 a. 1 

a.-u. 
=1 

 

tt A -1)x  
aN  e 	dx 

0.0 	(27) 

where U = [1.1.] = A -1:t . 	The cumulant generating func-

tion is therefore 

t ) 

N 

= 	' log 

1=1 

(1— 
u. 
1, ) -1- constant 
a. 

and the correlations depend on which elements of t are 

involved in those of u or equivalently, on the relation 

between y and X . 	Expanding, 
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N 
c- 	u. 	U. 

0( 1 
ai 

i=1 

+ • • • 
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and the covariance cov(yi,yj) is represented by the corres- 

ponding terms in 
N 
r 
(u/a)2  = u a 

-2 

i:=4 1  

t 
t 	

A -1 ra j -2 -t A t 

or in other words the covariance matrix is 

-1 r 	-2 	-t 
= A 	1 aj 	A ... 	(28) 

If A consists of diagonal submatrices then (28) may be 

correspondingly split and after retracing our steps we 

find that (27) also splits into a number of factors which 

thus represent independent vectors. 

Therefore, remembering (10), it has been shown that 

zero correlation is necessary and sufficient for the corres- 

ponding variates to be independent. 	Equation (28) corres- 

ponds to (24), which is convenient here, but its form shows 

that the covariance matrix corresponding to the form (25) 

is 

A
-1 

A
-t 

• 	 ... 	(29) 

In (20) now, K
1 
represents the stress intensity (on which 

the rate of crack growth depends), the components of R 

can be made uncorrelated and therefore independent and 

finally 

K 	= 	A
-1 

 R 
	

EZ" 
	

A 
-1

• 

If also the other column vectors of A -1 are orthogonal to 

2 then by (29) 

Var(Intensity) = 

In our derivation of the moment generating function reference 
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to the limits of y was avoided by integrating over X . 

Apart from simplicity this was forced upon us by ignorance 
of the values of these limits. 	For the independent dis-

tr ibut ion here, which by (25) is still exponential, we 

have the variance above and the mean value eN zi  corres- 
ponding to (25) or to y = A-ix . 	Since the distribution 

is exponential we might expect that 

= 

which is clearly not so. 	The difference arises from a 
change in the range of the variate which for i is (0,02). 

If the minimum of x, say, becomes b the variance is not 
altered but the mean becomes 

p 	L 

in which case 

(4-b) 	or b = u-c5 (+ve roots). 

In this instance the formulae can be written 

= et 	- 1t—CI 

and by taking the relevant factor from (25) 

f( 

	

	 ab -alt 
K1
) = ae .e 

Alwhere a = e
t 

A 	= Sum of elements in 1st (say) column 
of A and b is given above with 

t 
e2 	= Sum of elements in corresponding 

ROW of A -1. 	If Kc is the stress intensity crftical for 
fracture then from (31) the probability of fracture is 

Pr(K1  K)  

expf-a(Kc-b)1. 	... (32) 

When K1 is normally distributed this hazard has of course 

the form 



H = 1 - ~ (u) (32A) 

lv-here 

u = (K - IJT/o ) / aIr and <l> (u) is the normal 
c .L~1 :\.1 

integral. 

3.2 Two Sided Exponential Distribution 

The gust loading o£ aircraft usually occurs in either 

sense and to a first approximation the practical distribu­

tion is that shown, each part of the curve being exponential. 

The multivariate distribution will be npproached as 

before, starting with independent variates X which are 

transformed to y = A- 1x. We then consider the charnct­

cristic functions of X and y using t, u as the parameters 

of' ('1). For the single variate x the characteristic 

function is 

cp (t) 
x 

TWO SIDED 

EXPONENTIAL 

DISTRIBUTION 

b ~ 

= la{e-ab J ex(it+a)dx + e ab feX(it-a) dx} 
-~ ~b 

. . . (33) 

ob -ax 
e e 

f( x) 

o b x 
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which reduces,.to 

cp (t) 
x = it/b/ ( 2 t2) ae a + , 

or as n moment generating function (it~t) 

N (t) 
x = 

bt '" ae /(aC;;_t 2 ). 

The cumulant generating function is therefore 

'i' (t) 
x = log a + bt-log(a-t) - log (a+t) 

= 
- ~ 1 4 1 G 

log a +bt+(t/n)~ +2(t/a) + J(t/a) + ••• 

and if' x, D, band t generalise to x, a t b , t the 

e.G.F. of' X is merely the sum of such expressions with these 

parameters. 

If' we define 

X 3 '(x-b)sgn(x-b) 
s 

and X 'as the corresponding vector then the joint den-
s 

sity of X is 

f ( X ) =' -3-1 a I exp (- e ~ a x s ) , (35) 

a being diagonal with eN defined as before. 

In the same way as before 

J .. f e 
_to 

or, on changing the variable, 
co J J t A -1 My< t ) = •• e t XdF(x ) ( X = Ay ) 

_co 

= Nx ( u ) say (36 ) 

,~here U = A -t t . 



From (3 /1) therefore 

as in (28). 

r ~ 
y 

, t -2 -1 -2 -t 
2 U au=> 2A a A 

This covariance matrix is the same as that 
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for the 'one-sided exponential density Dnd therefore the 

sume argument as before sho'\V's that zero correlation implies 

independence and vice-versn. 

\-vhere 

Thus 

NOli, consider the joint dens! ty 

f( y ) = exp(- t 
X s) eN a 

Xs :;:: r sgn (X b )J (x - b) 

:;:: r agn( x b )J (Ay- b) 

;:::; r sgn(Ay- b )J CAy - b) . . . (37) 

2 f ( y ):;:: A . a I e xp {- e ~ ( A Y - b) ,r s gn ( A Y - b )J) 

:;:: I a A I exp (- eta A ( Y - A -1 b ) fsgnACy _ A- 1b)J } 

I A I e xp {- e ~ A (y - fy) r s gn a - 1 A ( Y - ,fAy ~ } 

if aA~A. 

So far the manipulations of the sign matrix fsgn ( )J have 

been purely formal. In the last formula one manipulates 
-1 + a A (y - A ) and chooses elements of -1 according to the 

y 
sign of each ro\v. As standard deviations, the elements of' 

a- 1 are, essentially positive however and a- 1 is there-

:fore immnterial to the value of the sign matrix. Thus the 

general two-sided exponential disriibution has the form 

:(' ( y) :.:; JI A I e xp (- e ~ A (y - b) r s gn A (y - b ) J } 
• •• C 38 ) 
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At failure, the stress ~ntensities should be high compared 

with b so that the sign matrix should be the unit matrix. 

For one crack, the hazard is then half that of (15), using 

the same definitions and notation. 

3.21 Several Cracks 

If there are several cracks the event o~ no failure (F') 

has the form 

:: 

N 
\' '\ F. 
L, l. 

i=l 

N 

(F. = failure at crack i) 
l. 

'" 1 - n Fi (1 -. All possibilities). 

i:::1. 

This formulae also applies to the probabilities if the Fi 

are independent events and there is then a formal resem­

blance to the distribution of the least of N variates. 

Where there is correlation the product represents the joint 

probability 
= r 

J ... 
K . 

r 
.J dF ( K ) 

Cl. 

of no failures anywhere, where 

critical stress intensities. 

K = {K .} are the relevant c Cl. 

For practical purposes the 

sign matrix has positive elements and the one-sided and 

two-sided distributions are both equivalent to (25) apart 

from a factor of a half. Substituting (38) into (39), 

with these provisions, 

F :: -1 I A f J ... J 
K . 

t 
- eN A (y - b) 

e dy 
Cl. 

N 
N ~ '\"' 

nr -(y.-b.), a .. 
-21.1 A I ). l. . --...! ]. J • .J,. e l.= 1 

1=a Kci 
:: 
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Y N N 
N N 

t{IAI TI(j~1aji)} 
'\' 

= ~exp{-(K .-b.l \ a .. } 
C~ ~ J~ 

i=1 j=1 

N 
\""' -e A (K - b ) ~{I A YTI a ji} 

) N c (4o) = e 
1'-
j=1 

A similar result holds for the one-sided distribution nnd 

if the sign mntrix is important a term similar to this 

must occur nevertheless in F together 'vith other terms 

. corresponding t~ regions bounded by the discontinuities 

of f'( y). Because of its relative practical unimportance 

the morc general case '\vill not be investigated. 



Chapter III 

CRACK PROPAGATION AND FAILURE 

1.0' Introduction 

In this chapter lve present a unified review of crack 

propagation and failure with the emphasis on thin sheets. 

Attention is confined to Grj.ffith-Irwin theory of static 

failure and the related approach of Puris or Liu19 to 

crack propagation. The most import~nt new results arise 

from a non-dimensional present'ation of fatigue crack data. 

This leads to a treatment for random loads and we have 

als6considered (for 7075-T6 and 2024-T3) a wider runge 

of conditions than Paris allowing a better inclusion of 

menU load and some discussion of work hardening e£fects. 

In an approximate fashion there is also some discussion of 

the plastic stress system. 

. We have already identified microcracking or Forsyth's 

Stage I with the older co'ncept of cumulative damage and 

~his chapter is entirely concerned with visible or Stage 

II cracks where the (main) direction of propagation is 

perpendicular to the principal stress. The transition 
21 depends on stress (or actually stress intensity) and the 

presence of corrosion and there is also evidence, added 

to here, that grain boundaries are important. The basic 
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20 

difference bet\veen the tlvO stages is that microcrac.k pro .... 

pugation continually exposes fresh material whereas "damage" 

implies the continual fatiguing of the same small part of 

the structure. 

2.0 Elastic Stresses 

Inglis22 presented the first treatment of elliptical 
holes in 1913, and obtained the no,v standard formulae 
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1 + 2b/a 1 + J21/r . . . 
where a, b are the semi-axes and r the minimum radius oi' 

curvature. The analysis proceeded by the use of con-

Eocal elliptical coordinates. 

For shhrp cracks the next major step was the presen­

tation of a semi-inverse complex variable method by 

westergaard 23 which formed a basis for much o£ Irwin's24 

work later. 

If the crack coincides with the x-axis and 

,,,,,here , = x + iy 

then in lvester gaard' s method 

a == R( z) + y j (z' ) 
y 

a 
X 

== "tQ.( z) - yj(ZI) 

1:_ == -yR,( z f ) 
xy 

I-nplane stress 

. r ~ 

Eu = ( 1-\1 ) ~.J zd c - (1 +vy cY (z) 

For an infinite row of eq~al collinear cracks 

(4) 

o = stress at infinity 

2a == crack length 

and W = width of strips which contain ench crack. 



2.1 Tip Stresses and Intensities 

There are three basic 24 stress fields nour the tip 

of a crack corresponding to two edge dislocations nnd a 

scr e'lV. Except w·here noted the discussion is related to 

cr~cks opening under pressure or the effect of stress 

perpendicular to the crack. 

~'fI-----

tOY 
-JDt~ /T?:xy 

K i) ( . 9 sin 0y :: --- cos l+s~n "2 
J2IT.1' 

2 

cr K e· 
(1-sin e sin - cos 2' x 

J2Ttr 2 

't" 
K e sin e l.§. ::: - cos 2' cos 

xy 
J27tr 

f") 2 '-' 

C5 :: v(cr +0 ) 
Z X Y 

Plane strain 

::: 0 PIune stress 

In such cases when r 

is small, the tip 

stresses always take 

the form 

JO} 
2 

~} cr -2 ox 

w"here K ::: Ji ka ::: 1Tt.k , depending on the stross and geo­

metry, is called the stress Intensity Factor. 

The square root singularity applies to all types of 

elastic cracks, and we will present some evidence that it 

holds for plastic systems also. 

, 
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Now consider any crack mnde in a previously stressed body. 

(Fig. 2). 

if 

+ H=H1 
u -u c 

FIG.2. 

Because the crack opens, negative work will be done by 

th~ previously internal stresses along the crack edge and 

the total strain energy is reduced. Moreover, the reduc­

tion is equal to the strain energy Cor the crack under 

pressure (see Fig.2). This energy U powers the crack 
c 

grow·th in static failure and in fatigue and it appears 

thnt on a unit thickness basis 

au 
c 

a;-
l(2/E 

(1_v 2 )K3 /E 

Plane stress 

Plane strain 
. . 

where i- is the crack driving force of :fixed-grip energy 

release rate. For a crack of length 2a in a infinite 

plate 

and this is the order of magnitude in [lny other system. 

Consider the contours of a stress 0 , say. 
y 

o = 0 lve have fr om (5) and (6) 

tV-hen 

(6 ) 



sO that -# mi\y be regarded as n scale parameter. ,vhen. 

plastic flow occurs this is still true, for i£ the plastic 

region is much smaller than the region where (5) is valid, 

then the truth of (7) when. J is lar ge und uniqueness o£ 

the solution of the elasto-plastic problem lead to the 

tentative conclusion that (7) becomes 

6) 

The manner in which this breaks dOlffi and the strict 

conditions of its validity do not concern us here, although 

they £orm an unsolved problem requiring investigation. 

2.2 Special Cnses 

To form a reference the driving forces for some 

common Cases have been sho,vn in Fig.). The cases of 

elliptical and circular cracks apply to small fatigue 

cracks in heavy sections provided the edge is not too close 

to the other bOWldaries. 

As an example, Irwin has stated that the formula for 

a semi-elliptical cra~k in a plate is reasonable if the 

crack is less than half-way through the thickness. From 

the actual behaviour of fatigue crack52~ stress concentra­

tions and the growth of static cracks, it seems that the 

nearness of other boundaries accentuates the driving force. 

3.0 General Solutions 

When the shear stresses ~ ,~ on the x,y plane 
_ . 2GX798 yz 

vanish, it can be shown that ' -- problems in three-

dimensional elasticity may be reduced to dependence on 

one harmonic function ('I'\e Snoddon26 has sho'vn that the 
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. ... 'I' ..• . Width W ~ "C"'Sin (ltaIW) (~:~) 
(a) 

p 

. (b)' 

. ' 

...--' 2a'·-.. 

X =sinrtalW 
,;' =sin lttl,W 

2 
Uniform Pr~s.sure ,'-§,':Ttaa-

or ,~= cr2~ tan TtalW ' 

, I Accurate R~sul ts' Srawl~y ~tal. NASA T~-D 2395 
, NASA TN-O 2396 

.1- == ri,~~~1+(~2 [2 +12 arcosh ~J ! 
Un'iform,;Pr~ssur~a- ' ' 

. . J = ltacr2~1-(~y [6 arcosh ~ -1J f 
.." - , 

whQre k ."1-a 2/b
2

andE(kJ,.K(kJnre complete d\iptlc 

integr~lsof the first, lirid" second kind.. ' 

".Erdogan4th U.S., Nat. Cong.· App. Mech.1962. ' 

Bnrenblnh Ad. inApp.Mech.EAcndemlc"962 • 

Uniform Pr~ssur~ a-
, , 

, . 

El~aJ(.= 3'77bcrYJt2-0'212(~/r. '. 
~='E(1~b'la2r,'··" , 

•.•..•. ~£1t/2J1-(1 ~l>'la2)SI~2er t de' 

i., • 

··F"lG .. 3 ·,·sOME:., CRACK EXTENSION FORCES· 
~ ; '? ! - :;.~ •. ~~ . '; : .. 

" ' 
" : .. 



stresses near an elliptic crack under uniform pressure in 

an infinite isotropic medium, can be described in terms 

of the gravitational potential of a uniform elliptical 

disk. Since the boundary shape is not used, the analogy 

hold~ for any crack or set-of cracks. 

It is probable that it can be extended to non-uniform 

pressures on cracks in prismatic elements such as aircraft 

spar booms. In this most general case the density of our 

disk would be proportional to stress or pressure and we 
oeo require ~ = 0 on the surface of our prismatic boom.u 

If the crack is in the x-y plane of an ~nfinite medium, 

then cr + cr = cr and in thin sheets the stresscr may xx yy zz xx 
l~ad to buckling. 

As the potential problem can be' solved by Green f s 

~unctions, it also seems possible that this approach may 

be usable to find stress intensities directly using numeri­

cai meth6ds in the most general case. From the case of 

t~e elliptic crack, it appears27 that the maximum'inten­

sity occurs on the straightest part of' the crack boundary, 

if the pressure is uniform. 

3.1 ~~o-Dimensional Case 

~n this case ~ complex variable procedure is appro-

priate. We have already mentioned that of Westergaard, 

but here lv·ill. will choose a particular case ,of the general 
. 28 

theory. . From Green and Zerna, i:f 't = 0 w"hen y = 0 then 

G (u + i u ) = 1f. Q( z ) - '(z)+ ( z-z) Q' ( z ) x y 

cr + 0' = 4 [ 0' ( z ) + Q' (Z") ) xx yy 

cr (J + 2i't" xx' - yy xy = 4 (z-z) Cnei) 

xy 

... (8) 



ror plone strain 

or (J-V)/(1+V) in plane stress. 

It \ViII be noticed that the last tlV-O equations give 

vectors defining the Nohr circle for stress. These equa-

tions rCl[lte to infinite sheets and iif we have a single 

crack a < t < b loaded by a pressl.u'e p (t) (zero stress at 

inf'ini ty) then 

b 
-1 n p (t ),/iIT:rT I(Z) 

I 

Q :: I dt 
l!TCl ,,!ilT0 t-~ 

a 

lv-here 

H( z) ::: (z-a)(b-z) 

3.2 Lyell-SDnders' Method 

Dy considor ing the " .... ork done by boundnry tr .1C t ions 

during crnck extcnsjon (o;,/oa)d Q defined by some Pil.l"'iJ-

29 meter 0, LyelJ-Sanders has obtained tho driving lorce 

in the 1'01.'111 o:f a line integral. 

::: " rI. -~c.T['[z 
E 

B 

+ r (w' Q' + wrr Q )dz} 
J A a. a. 

in the genoral two dimensional cose described by two COl11-

plcx potentials Q(z), w(z). 

a .1 

az ' Q a 

In this expression 

etc. 

and the integral is independent of the pat11 AD surrrounding 

the; crack tip(s). When the crack is strnight 

w(z) :::: o. 



3.3 Experimental Methods 

As f is a derivative of strain energy, it follows 

that it is obtainable from a series of experimental flex­

ibility measurements w'ith cracks of differing lengths. 

Let the total load on any specimen (of unit thickness) be 

P and let x be the corresponding extension. Then 

X ::: FP and 

where F is the flexibility. 

au 
aD. 

or in non-dimensional terms 

::: 
.1_ d (EF ) 
2 d (a/\v) .., 

p .... 

U 1 p2 ::: 7 F 

Thus, 

where n ::: crack length rind W is a fixed dimension or the 

specimen. 

Accurate results can be obtained in this way, provided 

one tal~es extreme care 1'1'i th the measurement s3
0 

using the 

same specimen continually with the crack approximated by 

keyhole slots. These reduce the stress concentration so 

that, after shakedown, there is no plastic Claw. From 

the form of the singularity, it £'ollo,\,,"s that the end raaius 

of the keyhole does not greatly affect the stiffness if it 

is referred to a crack reduced by half the end radius from 

its actual total length. If we assume that the keyhole 

slot approximates an ellipse, then this effective crack 

length is measured from the focus and confocal ellipses 

form a natural set of coordinate lines'for crack probloms22 ,26. 

Generally, the stresses approximate a state of plnne 

stress. 31 



4.0 Other ~fudes of Fracture 

So far we have only ·considered crucks under stresses 
. 211 

perpendicular to their suxfaces. Irw~n has also des-

cribed t"\""O other modes of fracture lvhich correspond to 

edge and screw dislocations. In these cases, the sur-

faces slide against each other but do not separate. 

4.1 Edge Sliding 

...l cry 

y, V ~Dt-.. t7'"X 

,,-... _----
/.-- C:

xy 

x,u 

This system is produced by :forces such as that sho"\,,"n, 

or by crack surfaces under shear in the same direction. 

Near the crack tip 

-K 
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a x 
2 sin e 

2' [2 + cos 8:: 39 } (12) 2" cos "2 

:::; 

a :::; 
z 

yl2r 

1\.2 e 
sin cos 

J2r 2 

K2 e 
-2\J - sin -
~ 2 y..:.r 

or zero for plane stress. 

'C 
1\2 e {l-:: - cos xy 
J2r 2 

8 1! cos 
2 2 

for plane strain 

In addition 

sin e sin ~G} 

u :::; 

Kg,,/2r 
sin a [2(1-\)+ cos 2 ~} 2G "2' .... 



v ::: cos; t1 -

and "C' yz' 1:" xz' w ::: ·0. 

Finnlly, the driving force is 

1\.1") 
2 Ej2/TC ( 1_\)2 ) :for ::: 

:;.., 

::: Ef2/rr :for 

~.2 Screw Sliding 

given 

plane 

plane 

. 2 
- 81n 

by 

strain 

stress 

G9 

(14) 

In this case the crnck races slide in a direction 

parallel to the edge o£ the crack. 

This is a special case 

o:f St.Vennnt torsion SO 

that by th(' !-'nudheap or 

f 1 )11:. t . roo' nnn ogy 1 lS 

also the only case with 

a c omplet (~ elastoplast ic 

solution. 35 

In the purely elvstic case, using the previous notation, 

-I\. 
0 

"C' ::: --2 sin 
2 xz ,j2r 

K3 e 
1:" ::: cos 

2 yz 
.)2r 

The lvarping and driving forces are given by 

Gw K J2r sin 
8 

::: 
3 2 

(15a) 

and G
3 

::: 7tK
3

2 /2G. 



At any point, the maximum shear stress is K3/~j2r and these 

follow trajectories defined by-

dy 
dn 

_ cot G 
2 
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Recently G.e. Sih79 has presented general complex varinble 

methods for this type of crack including a relation between 

intensity and the residue of the potentinl function near 

the tip, similar to Lyell-Sanders' result. 

4.3 E£f'ects of Other Modes 

Nany of' the particular cases described in Section 

2.2, hnve obvious analogies when the plates are in bending. 

l~illiams36 ,37 has described some of these cases nnd ppints 

out that if tho effects of shear are allowed for, ~he 

stress field near the crack corresponds to the openi~g 

mode. 

I!o,v-evor, ill this case the calculated stresses are illl­

likely to be abhieved because on the compressively stressed 

side, the crack will close and the edge will act as the 

£ulcrum of a lever tending to further increase! on the 

tension side. 

CRACKING OF PLATES 



In practice38 the edge AB also becomes inclined to 

the surface as one might expect. 

We will not mention plates again but similar compli-

cations arise \vith sheets in pure tension. In static 

fracture and fatigue, the plane of the crack faces often 

rotates until it makes an angle of approximately 450 with 

the sheet surface. 

We have also seen that there are compressive stresses 

along the crack face equal to the local pressure (or its 

equivalent) and these often cause buckling when the sheets 

are thin. 
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This buckling tends to increase the driving force and, 

in these cases, the crack face is usually inclined to the 

surface so that a screlv sliding component is added also. 

In fatigue problems, buckling39 seems to have little 

effect (probably because of the lower stresses) but there 

is evidence 21 that the crack front is curved, "tunnelling" 

ahead in the centre of a sheet. 

4.4 Additivity of Driving Forces 

The intensity K is proportional to stress so that 

intensities corresponding to the same mode of failure are 

additive. The driving force is then obtained from the 

square of this total. 

Let us consider elastic cases lvhere different modes 

of failure operate together, for example lvher c the tract ions 

on a crack surface are inclined. These tractions may be 

resolved into components associated with the opening, edge 

and screw-sliding modes, and to this extent the stress 

problem is easily solyed. It can be sholV"n that the strain 

energies of the three modes associated with a crack are 

simply additive. 



First consider screw sliding* and the other two 

modes. The cross-product terms in the strain energy 

integral are zero. The opening and edge sliding modes 

give rise to systems which are respectively symmetric 

and antisymmetric about the crack and the integral of 

cross-product terms again vanishes. Since the strain 

energies are additive, the driving forces or any other 

derivatives are also additive. 
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5.0 Effect of Non-Linearities and Local Geometric Changes. 

Inside a small circle of radius r enclosing the 

crack tip, the total strain energy 

U 
r = 

ro 2 

0( __ ° ) 
E 

( 16) 

so that the orthogonality relations are little affected 

by small amounts of plastic flow or locul departures from 

the straight crack front perpendicular to the surface. 

This argument is essentially that of. Irwi~q but ilS it 

seems vaguely unconvincing, \"le shall use a similar one 

more capable of rigorous development. 

Consider separately the circular region mounting the 

crack tip and the remainder of the structure ,~hich is 

supposed clastic. In general, the tip region contains 

both elastic and plastic parts. For simplicity suppose 

that the (self-equilibrating) tractions across the mutual 

*For thin sheets, the particular system shown seems in­
appropriate, being related to a crack a~ong the z-axis of 
an infinite medium. 



boundary of' A and B cun be summarised as two equal and 

opposite forces ClS shown. Suppose that the actual stress 

system is achieved by having the material behClving elas-

t ically until the maximum load is reached, and then 0110\.;­

ing the stresses in A to decrease to their correct values. 

In the purely elastic case the strain energy is 

U == (Unit thickness) 

= say, 

where U is the energy of region B when tho circular part 
o 

y is not loaded. 

From the previous results 

= 
a 2 

to[-~ r r dr de} 
E .J (;;)2 

rO' 2 

. . . 
o = o (-E-) , Go = stress on crack face, 

and we can therefore assume that 

p = 

= 

O(ro ) 
o 

N01v consider F B. Here again r is .the only dimension of 

interest, and it fo110\.;s from dimensional considerat ions 

that 
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F -1 (18a ) = O(rE) 
B 

or Un == O(rO' a/E) 
0 

and U ::: U + 0(1"0' 2/E ) 
0 0 



When A becomes plastic the work U
AE 

becomes 

= 0(1"0' 2 IE) 
o 

From (18) and (18a) however, it cun be seen that 

at most tho unloading of A cannot affect the totul ,~ork 

done by a term greater than O(ra a/E) which proves that 
a 

small amounts of plastic f'low do not greatly affect the 

stress distribution. 

Local changes in geometry can be simulated by local 

self-equilibrating stress systems and by st. Vanant's 

principle these arc also unimportant. 

5.1 Cracks in Cylinders 

As in the Cilse of buc1(ling, the bowing at the edges 

0:[ crn·cks in pressurisect cylinders invalj_dates our ussumed 

stress systems causing a severe reduction in strength. 

F t t · f t f . d l' d I~ 1 '* 1 lor s a ~c -rae ure 0 pressur~ze cy ~n ers, ~Uln 

sugge st ed the empir ic 01 formula 

(J I ( 1 + 9 ( 2 a IH ) ) 
u 

,~here 20 crack length 

n = radius of cylinder 

and On.' au are the nominal (hoop) stresses at faiJ.ure in 

the cylinder and all infinite flat sheet containing the 

same crack. The factor 9 is that suggested by Williams~2. 
Eq. (19) suggests as a driving force on cylinders 

== 

but it must be remembered that it only applies to static 

fuilurc of unstiffened cylinders. For stif:fcnod shells 
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For recent rlOrk on this subject see 

E.S. Folic.s ,,!. finite line craok in a pressurised spherioal shell" 

International Journal of Fraoture Meohanios .1 1965 



or fatiguf', it is probably too severe but cxpe1'imentnl 

chccl~t:i <:\1'0 needed .. 

C.O Plastic stress Systems 

Except ing the speciC:ll Cit.<:;C of tor::;ion trcilted by 

Ilult3':>, th(~re arc no closed solutions t:\lld hork in this 

:field is eithc:r photo-elastic or numerical. 

failure, f'racture OCCUI'S along the slip systems radiating 

at ~h5° :from tho crack tips so that one expects p<"lrtly 

75 

plC:l~tic sheots to bch<:\ve :-;illlil.:u<l.y. This (~J.J.cct is ::-;howll. 

:in plnno :-:::trc:~ill by the numeric(~l result s or '~illi'Hll~.;3G 
'H1.d by the 1'0 suIt S 0:[ Holfc nnd Hunscl.l:3 from photo-elast ic 

coatings. From the latter is secms likely thnt the maxi-

mum sheitr str,lin (<.IlH] hence the other stl'nills) havc the 

Form 

l' ( lj ) /:r (20) 

Dnd 've will tnke these results as a tcntl1tivc .:-;tl1ntL:.lrd. 

In pli.1ll.G str':lin conditions, the slip fiold is 

I 0 ll:11: 
LlPPllrcntly 15 to the sheet surf'lcc. According to Dugdale 

. 115 or L1U the plastic regions have the form sho\~n in Fig. 

7, \v-here it is possible that 7(a) is a case bet\vecn plane 

st:ees,s and plune .strt'lin. 

If' the tellsile yield stress is a then (7) supplies 
y 

an t1pprOXim{ition to the ,\~idth of the plastic region. For 

convenience, \Ve now define the plustic length p as 

p ;::: 

:for plUllO stress und plt'lne strain nlike. 

ll:~ 
If' the ~lises yield criterion is applied to the 

c lLlst ie str esse s (5) theu in lJOIDr COOl' d inat est he nomine'll 

pI C::\ s t i. c z 0 n e 11 C\ s the b 0 un dar y 
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p(8) == 
E{ 2 e[( )2 . 2 G} cos J 2 1-2v +)81n 2 

2nO' 2 
y 

where the plano stress case is obtained by putting v = o. 
In plane stress then, (21) and' (22) agree. No\v let us 

consider the true width of the plastic region. 

UeJ 

111____ 2Q~IIIB 
~cr 

F i 9 • 6. Dugdale's Approximation 

The form 01 plastic region sho'\vn in Fig. B(b) led 

Dugdale to conjecture that the stresses in such u cuse 

could be approximated by an clastic crack in a loaded . 
sheet with each end of the crack loaded by a tensile 

stress a • 
y 

The length AB in Fig. 6,wus then obtained 

from the further condition that the stress at the tip 

( D) \va s f ini t e • Thus, AD was regarded as the plastic 

width for a crack ending at A. For an infinite sheet, 

the only case considered, Dugdale found that 

2u 8in2 (no/IH) ) 
AD ==" y 

1-2sin2 (rcO/110 ) 
y 

in excellent agreement with experiment. 

For small stresses, this becomes, in our notntion, 
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= 2.46p. 

The same case for sheets of finite width has been treated 

by Bilby, Cottrell and Swindon 47 in terms o£ dislocation 

theory. 

For plane strain consider the results of Rolfe and 

:r.lunse'1:.3 obtuined f'rom mild steel. Although the net 

stresses were very close to yield, the behaviour of the 

plastic regions closely paralleled that of the stress 

intensity and in the conditions appropriute to their Fig.9. 

p ::: 0.1078" 

From the figure one can obtain the admittedly approximate 

plastic width of 0.065" based on the Tresca yield cri-

terion. This is the narrowest part of the yielded zone 

in the line of the crack. Thus, in plane strain it seems 

that 

True plastic width ~ 
0.065 
0.1078 p 

:: o.6p 

or roughly 3.75 times the value indicated by (22). 

It is therefore almost certain tba~ p has the correct 

order of' magnitude especially in the plane strain case 

which is more important in fatigue. The definition is 

justified by the simplicity of (21) and the arguments of 

Section 2.1. 

6.1 Work Done During Extension 

It is convenient to anticipate here and consider the 

work done in plastic Clow as a plastic zone moves across 

a plate. The results of Rolfe and Nunse can be put in 

the form 



where E ::: maximum shear strain 
s 

S ::: yield shear str win 
y 

and :('(8)::: rip along the experimentnl yield contour 

(see Table I). 

8 

0 
15 
30 
45 
60 
75 
90 

105 
120 
135 
150 
165 
180 

The plastic strain is now 

c p 
::: c - S s y 

rip 

.60 
1.00 
3.0G 
4.23 
3.58 
2·35 TABLE 
1.7[J: 
1.21 

.89 

.69 

.11:6 

.23 
0 

E (Jpf'(O)/r - 1) 
Y 

I 

and we assume <:l linear ,v-ork hardening, leading to the 

shea~ stress 

.1... (0 + E C; ) 
2 Y t P 

with the plastic work element 

-1 (0 + E E ) de 
y t p p 

Now consider the strain at a point A in Fig. 7 as the 

crack extends by an amount An. 
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, 
I 

o 

Fig. 7. Moving Plastic Region 

If the crack and the flo,,,, field are held st at ional'Y, this 

is equivalent to moving A to At and to the first order 

the new position is 

( A e e + ~a s;n8) r - wacos ~ .&. r 

and the corresponding change in plastic strain is 

To obtain the work corresponding to the extension 60 this 

is multiplied by the stress and integrated. lV-hen Ie f 

~ 1t/3 it ",-ill be seen from the figure that A' A is t an­

gential to the contours of maximum strain, so that 

lei> 1t/3 corresponds to the region of' elastic unloading. 

The radial limits of' integration correspond to the onset 

of' yield 

r ::: pf(8) 
y 

and the maximum strain E for ''''hich 
u 

E 
r = ( -L ):3 pf ( e ) 

u Eu 

(The lower limit is needed :for convergence.) 
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Integrating over 

"\\Tork reduces to 

(r , r ) we find the total rate of plastic 
u y 

6\41 = 
2 S 

p6a S [(E -E )(1- -Y)+E 
y Y t E t 

u 
rel3 

X J [cos ef(e) + sin 
-re13 

s 
log Sll} 

Y 

ef' (e) }d8 • •• (23A) 

The indefinjte integral reduces to f(S)sine and if we 

substitute for p and S (23A) takes the more convenient 
y 

form 
E e: 

L1\v = 0.493 L1a[(1-Et/E)(1-sy/su)+ Et In SU} 
y 

The parameters here can be estimated from the true frac­

ture stress 0 r (for E t ) and the true ductility (for Eu) 

D = In Ao/Af 

where Ao' Af are the initial and final cross-section 

areas of a specimen. In a paper on low cycle fatigue, 
~1 48. 11 ~anson glves the fo owing values 

D O'f C1 y 

2024-T3 0.402 103 k.s.i. 51 k.s.i. 

7075-TG 0.327 121 7 lJ: 

leading to the results 

6\41 O. l.l:9 3 6 a 
(1.027) for (2024-T3 = (1.017) (7075-TG 

These are respectively 3% and 9% largor than values 

obtained by using parameters from a simple tensile test. 

If this procedure is repeat£d using elastic octahedral 
I~ (, 

shear strains and stresses corresponding to linear work 

hardening we find the smaller values 



(0.210) 
(0.072) for 

{plane stress 
(plane strain 

In Griffi th-Irw·in theory it 'viII be seen "later that 

~W - 6 a so that these equations reflect the errors of. 

the analysis and assumptions. 
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In contradiction to these results (and to fracture 

theory) Paris has based an explanation of his fourth power 

law49 on the assumption that 6W here is proportional to 

the area of the plastic zone, i. e. to j 2. 

From Fig.7 it can be seen that the plastic problem 

of a moving'crack has a close resemblance to steady flow 

or die penetration problems except for the sign of the 

hydrostntic pressure. 

6.2 Correction toJ 

If the case of Section 5.0 is considered aga~n it, 

will be seen that pl~stic yielding of the crack tips will 

allow the crack to open further or, in other words, the 

external forces do more work. If this additional work 

is available as elastic energy upon unloading, we may 

select an increased driving force. 

This correction has been estimated by Irwin50 by 

assuming that the crack behaves as if the length were 

2{a+p). The yielding is thereby assumed to displace 

the stress field at the tip through a distance p. Since 

this correction successfully correlates50 critical fc 
values in fracture tests, we must conclude that it is 

reasonable. It is only appreciable when cracks are very 

short. In these cases plane strain plastic flow is more 

likely and we have also seen that p is then most realistic. 



For fatigue the correction is unimportant, and we will 

henceforth ignore the correction except possibly for 

static failure of heavy sections. 

7.0 Griffith-Irwin Theory 

The earliest work on fracture mechanics was by 

Griffith51 who postulated·that 

lv constant., ••• 

for brittle solids at incipient failure. By definition 

Jda is the elastic energy made available by an extension 

da, hence the term driving-force. The right hand side 
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is a.dissipation term which is constant for brittle mater­

ials. Eq.(24) is a special case of the more genera152 

w·here 

• • • 

J:I (a,0'2) = energy available per unit crack· 

extension 

E(e) 

W(a,t,6 •• ) 

dT 

= thermodynamic free energy 

= rate of mechanical dissipation 

= increase of kinetic energy. 

In (24) j is obtained from the solution of problems in 

elasticity with infinitesimal strains and displacements. 

It is implicit that energy is dissipated at a point 

rroutside" the materi a1. More .generally the driving force, 

although elastic, comes from systems where the simple 

solutions have been invalidated by large amounts of pre­

vious plastic Clow. This is actually the case when the 

above correction for! is needed. 

In practical cases there is at least an order of 

magnitude difference between the scale of the plastic region 



Dnd the elastic stress systems of Section 2.0. It is 

therefore quite possible thnt the right hand side of 

(24) requires plane stress conditions while on the left 

hand side, plane strain is appropriate. This reflects 

the fact that we are approximating a basically three­

dimensional problem. For edge notched specimens of 

cross-sect ion 2-~-" x ~ .. II, Sral\'"ley30 et ale found that plane 

stress gav~ excellent agreement between theoretical and 

experimental measurements of f.. 
For the ductile materials of interest, the worle 

function W is not constant 5J • We describe special cDses 

later and also propose that (24) applies to fatigue frnc-

ture. It is often wrongly supposed that this is a con-

dition for instability. The source of this notion is 

the fact that extension and instability are simultaneous 

",·hen 'v is constant. Defore proceeding let us extend* 

(2 l.l:) to apply to variable \\'"ork functions. 

860 

(1 -8)~a 

¢~W 

Fig. 8. Propagation with Variable 'vork Function 

*This generalised form was mentioned by Irwin in a letter, 
but I have not seen any other discussion. 



In Fig. 8 consider an extension I::. a and suppose that 

during the extension \';(a) follows one of: the polygonal 

paths 5ho,,,n. In Fig. 8(a) for example, the load is 

allowed to increase to the new value before extension is 

allo,,,ed. 

In (a), (b) and (c) then 

Dissipation = W6a + O(6a6W) 

while the available energies are 

(a) (1-+6W)~a 

(b) -j.lla 

and ( c ) <1 + If> ( 1- e ) 6,~ ) I::. a 

intermediate between (a) and (b). 

order 

Thus, to the first 

f. ( a ,(2
) = \v ( a , 0 2 

) 

and if J' Ware known functions one has an implicit 

relation 

a = 

(24.1\) 

There is obv iously an upper bound to \v (a, 0 2
) nnd 

,,,i th suf:ficient load! > \., and failure is rapid. The 

start of this instability is marked 3) by 

(26') 

Eqs. (24A) and (26) can be solved Lor a and a i. e. the 

ultimate strength and tho corresponding crack length, 

When W is constant, there is no extension. before insta­

bility and (24) gives O(a ). 
o 

7.1 static Fracture 

Thee-ssential features of the static fracture of 

sheet s have been clarified by Trw'in and his colleagues50 • 
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As the load increases, there is usually n period of slo\~ 

growth governed by (24A) until instability occurs, followed 

by rnpid frncture. During the slow cracking, tho sizes 

oE the plastic zone and the shear lips increase and the 

additional plasticity accounts for the increased work 

function. Ii' fractUre is suff'icient ly delayed, \v reaches 

a maximum \vhen the shear lips meet. There is also a 

corresponding minimum, the plane strain toughness, denoted 

by J I by Irwin lvhich is appropriate to very thick plates 

or scmi-elliptic cracks in heavy sections. 

NO\\T' consider the effec t of shee t thicklle s s 011 the 

driving Eorce at failure. In sect ion 6. 1, \\'c huve seen 

that the \ .. ~ork function is proportional to p. III this 

respect the argument there applies to plane stress <.\lso 

and \\"e assume 1urther that ill n plato 

\-J oc. average w'idth of plastic zone. 

Using the results of Section 6.0, let us assume that tho 

plastic zone of Fig.9 has the cross-section shown where 

the 1.86p is also the width of the shear lip. In accord-

ance with observation, we also assume that the 1ino AD 

in Fig. 9 makes an angle arctan 0.2, to the surlace of 

the sheet. 

If we aI-so remember that \V is defined as \,Tork per 

unit width and postulate that a zone \.~idth of 0.6p implies 

\v ::: 

then some elementary calculations lead to tho stepwise 

formulae ABC in Fig. 10. 



TYPICAL PLASTIC 
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Now let D, E and F be the centre~ of three cracks 

of di:f:ferent length while DB, BAD and FA represent their 

reduced driving forces at :failuro. If the half crack is 

larger than OE then from (24A) and (26) failure occurs 

(point D) after some slow growth and against a large 

resistance 2.55~I. On the other hand, if the half 

crack is shorter than DE there is no slow growth and fai-

lure occurs under plane strain conditions. 

D = 1.GIt thero is a stepwise transition. 

At E lvhen 

These effects 

cnn also be achieved by having a constant crack length 

and increasing the thickness lvhich is the way Irwin fir st 

discovered the effect experimentally. In practice, of 

course, OADe is a smooth curve (parabolic according to 

Kraft and SUllivan53 ) and the transition is rapid rather 

than instantaneous. 

7.2 :r-.1ul tiply Cracked Structures 

Although most of the cracks discussed so far have 

two tips, their symmetry has obviated the nee~ cif detail-

ed treatment of their interactions. In very many cases 

also different cracks are SO far apart that their stress 

systems arc independent. 

When the extension of one crack affects the stress 

sy~tem of another, it is not clear how to generalise 

(24A) and (26) sinco it is possible to imagine several 

modes of extension corresponding to the Same overall de­

crease in elastic energy. More generally, a single 

crack fron~ which is curved is n similar problem lv-ith 

modes corresponding to varying speeds of advance on 

different parts of the crack front. 

These problems have been discussed by the author, 
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but as the result are uncertain, lve will assume all cracks 
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to be independent. For a typical crack u
i 

thon (24A) 

becomes 

where 

a ::: fa. ) , (J ::: fa.} 
J J 

and (26 ) becomes 

aii all[ i 
(27A) Oa. = an::-

J. 1 

failure being determined according to the crack f'irst 

satisfy~ng (27A). 

8.0 Fatigue Cracks 

Fatigue cracking like fracture depends on local 

c6nditions which we have seen to be defined by ! or K. 
119 5h This view was first advanced by Paris ' who has also 

sho,.;n that the rate of growth per cycle does not introduce 

further complications. The physical processes in crack 

t I h b d . d b F t h 2 1. and S I " 2 5 d grow 1 ave cen J.scusse y torsy Cl1Jve an 

it is generally agreed that, apart from inhomogeneities 

and cases °bol."dering ~n static failure, the crack extends 

by a sensibly constant amount ill each cycle which depends49 

on j, and other variable s. 

In sheet materials it has sometimes21 been noticed 

that the crack front "tunnels" ahead in the centre until 

the sides catch up by stntic fracture_
o 

be regarded as a steady process. 

8.1 Non-Dimensional Varinbles 

This cnn also 

The multiplicity of possible e:ffects suggests the 

use of non-dimensional presentation. The basic parameters 
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can be divided into four clnsses,' namely: 

Geometric 

dx 
= 

dn 
crack rate (extension per cycle) 

t == thicloless 

y' K or p (based on maximum load). These sUlmnarise the 

combined effects of load and the £orm of 

structure and crack (p E Ej/2nOy
2

) 

Po = average grain size 

Ii Ii -1'1 ' -, 2 ' • • - other metallographic distances 

Stress 

E,v 

0y == Yield stress (Here we use 0.2% prooE) 

cr == Ultimate stress u 1 I = Critical ,~ork :functj.on for plune strain 

Fntigue 

Nean lond: Characterised by 

Y1- = ~leal1 Load/Alternating Load 

or ~lnximum Load/Ninimum Load 

Cycle ratio L: n/n etc. 

S-N curve and statistical lond parameters 

Time nnd Temper atUJ. ... C 

including Erequency. 

For a fixed material and conditions these variables 

reduce to 

dx 
dll ' 

t () 

o 



Dnd g /g where g llnd g ure the driving :forces ,-;chich 
ill a m a 

correspond to the mean and alternuting loads. This 

choice is not unique but we shall anticipate the experi­

mental r esul t s. 

LOAD 
t 

CYCLES 

Definition of Effective Nean unrl Alternnting Louds 

At this stage '1]"0 recall that the importunt parameter 

in fatigue is the alternating rather thun the menn load. 

\V'hen the minimum stress is compressive and the crack 

closes, it has also been f01..Uld that the crack rute depends 
r.r: r:G 

essentially on the tensile~J,~ part of' the fatigue cycle. 

Accordingly g and g are based on the loads A and M as a m 
sholm in· the sketch, and lve use the non-dimensional var-

iables 

::: 

::: 

~a' 
211:0' 2 (dx/dn) 

y 
Eg 

a 

1 dx (1 + ./Yy):3 , pdn 

t/p Helat ive thiclule ss 

P ::: 0o/p Coarseness 

and finally 

y ::: 0' /00 for mcnn loads. 
bIll °a 
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For large stresses; IiI may also be importan,t if 

the crack growth has a component o~ static failure. 

8.2 Experimental Results 

Three sets of results have been analysed in terms 

of the quantities just defined. The first two sets are 

compendiums of results for 202Q-T3 and 7075-T6 by NcEvily 

& Illg, Weibull and Boeing Aircraft, which have been 

assembled by Anderson57 and Donaldson. These have the 

advantage that stress intensities are already calculated, 

the results having been used in Paris's thesis. A short 
58 test series of lvloag has also been analysed to investi-

gate the effect of prior work hardening. 

For the stronger aluminium alloys, Figs. -11, 12, 13, 
I. -1 and 1'1: show log 2!a' vs log p which is essentially the 

correlation used by Paris49. However, by basing ~ I on 
a 

alternating load and the coarseness p on maximum load, 

the additional effect of mean load is almost completely 

accounted for. Both graphs are stepped but elsewhere 

the slope is about -1, corresponding to Paris's fourth 

Where the curves are flat 

dx 
dii ex; ga 

the similarity rule of Liu~6. 

8.21 Discussion 

Apart from details to be discussed below, the prac­

tical information here is no more than Paris has shown. 

How'ever, the avoidance o'f' high powers of stress "means 

that the presentation is more accurate and has more fun-

damental significance. Even with non-dimens~onal pre-
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From Donaldson and Anderson (Cranfield Symposium 1961) 
including results of Mc Evily and \ltg, liu, Martin and 
Sinclair, Wei bull. , 
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sentation, it is obvious that different materials must 

be treated separately. Since p includes the grain size, 

a rarely measured material constant, it can be objected 

that the concept of coarseness is artificial and indeed 

we have been forced to use log p-1 as an abs~issa which 

is equivalent, of course,- to f. or K. 

It will be noticed however, that the flat parts of 

Figs. 11, 12 or 13 do include or lie near the point p = J 

(grain size 0.010" - 0.002"). If crack growth is a 

physical process then non-dimensional presentation should 

be possible. Furthermore, the excellent correlation 

obtained here suggests that the appropriate variables 

have been used. Thus, "the formation of suitable non-

dimensional variables requires nn extraneous length. 

Any material constant is adequate but the evidence of 

the flat part indicntes grain size. Forsyth21 has sug­

gested that the transition from Stage I to stage II 

cracking is associated with the penetration of a grain 

boundary by the initial crack. 

The fourth power law of Paris agrees in a vague 

way \'lith the present results but his supporting argument 

relates the work function to the area o~ plastic region 

(viewed at right angles to the sheet). We have seen 

in Section 6.1 that this contradicts Griffith ~Ir\lJin 

theory and experimental results. 

8.3 
t 

The Role of Grain Boundnries 

We now make some tentative suggestions regarding 

the effect of grain size on crack growth. 

Consider the sloping parts of the curves in Figs. 

11, 12 and 13. IE for convenience the slope is taken 
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as -1 then 

dx 
dii' = . . . 

where E is assumed constant but the yield stress 0 can 
y 

vary. It is reasonable to presume that a increases 
y 

for fine-grained materials and if 

o > A'p -1/4 
yo' 

a rather mild dependence, this is' achieved, but dx/dn 

also decreases with p • o 

Now let 

dx 
dii = 

on the sloping parts of' the curve and consider the be­

haviour of the actual plast ic zone as p (i. e. J) increases. 

As p - Po the grain boundary will often be loaded and 

will tend to hold the crack tips together so that, until 

J is su~ficient to break the boundary, the actual plastic 

zone width will be approximately constant. 

If the actual width is assumed to control ~' then 
a 

the flat part of the curves is explained. This view 

will be supported by the theory (Section 9.4) concerning 

random loads. 

8.4 statistical Analysis of Results 
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The data of Anderson and Paris is SUfficiently varied 

to allow a guess at the effects of mean load. frequency 

and relative thickness. These ef£ects and the sm6oth­

ness and repeatability of individual results CUll be obtain~ 

ed by the help of an analysis of variance or regression 



analysis ",vhich must be attacked piecemeal o,,,ing to the 

complexity of the overall pattern. 

It is plaIllled to perform' tlvO separate analyses on 

the flat parts and l"here the gro'vth rate increases again. 

Preliminary results indicate that although the crack 

propagation is fairly smooth for a particular case, 

different specimens or structures which are nominally 

identical have significant ly different ,log ~~ - log p-1 

curves "''lith the associated component of standard error 

0.1773 (log 1.1), 20 d.f.). 

8.5 Work Hardening 
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The results ~~ vs. 'tG' of tests done by No ag58 are sho\vn 

in Fig. 15. The thickness 'vas a constant 1/8" and 

dif'ferent mean loads have been obtained by interpolation. 

The relative rate ~, is little af:Cected by worl..:: harden­
"='a 

ing (c.:C. l/I.l: 11, JII and fully hardened materials) but an 

increase in mean load decreases it. 

At the high stresses used,the size of plastic zone 

is no doubt very sensitive to maximum stress and this 

increases the ''lark function thus reducing the growth 

rate. 

When 'tG > 1.5, ~~ seems more constant possibly be­

cause of an approach to plane strain conditions. 

9.0 Crack Growth under Random Loads 

As in all random load questions one must first set 

up a consistent definition of a load cycle. In room 

temperature fatigue the effects of time such as frequency, 

rest periods and the wave form of the loading, are rela­

tively unimportant but some variable is still required 

to mark the sequence of events. This is obviously the 
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number of peaks and troughs lvhich, for consistency,. 

should equal the number of cycleSe 

This question call be evaded by n theory based 011 

the properties of small specimens under rUlldom load~5 
Since "random load" implies e.g. an in:finite choice o:f 

pOlver spectru, any analysis would invove either intcr-

polation or :further testing. The first would probably 

roquire the concept of a cycle while the second would 

destroy the practical justification :for any theory. 

In particular, the undoubtedly necessary technique oJ. 

spectral analysis should be regarded, aike ncroelnstic 

analysis, as n type of stress calculation supplying 

input data for fatigue work. 

F th It f J 55 d P "61"t ld trom e resu s 0 ones anar1S 1" wou 
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seem-that the best definition 01 a cycle is the load 

change (such as AD or CD in the sketch) between successive 

cycles. 

Restricting ourselves. to the tensile part of' the 

cycle (Section 8.1) each load change can be defined by 

a mean and alternating load or some equivaients. 

lvhen speal\:ing o:f a cycle one imagines D. full wave 

returning to the same position. The present case 8ho'\\7"s 

that this restriction is unnecessary and indeed a load 

rise such as CD need never have a corresponding fall. 

If there is one it would probably occur when Lhe crack 
has extended .so that the two halves of' such n wnvc would 
be unrelated physic.-:d.ly. 



HO''lever, it is fl useful convention to de:Cine these 

load changes (AB or CD in the sketch) as half cycles. 

9.1 Some Feasible Residual Stresses 
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The title indicates that a loading 0 -J - 0 has 

occurred ab initio and that the strains have been assumed 

at first to rise and fall like those of' the elastic system. 

If the elastic stresses at any stage are now modified 

by disallowing those exceeding a the equiLibrium con-
y 

ditions (and others) or zero load ~nd moment along the 

crack axis after unloading will be violated. This has 

been corrected by adding an arbitrary set of stresses 

and the ~otal forms the required feasible system. 

The aim of this procedure is to obtain an order of 

magnitude estimate of the amount of reversed yielding, 

which will be used as supporting evidence elsewhere. 

As a preliminary check, let us compare this approxi­

mation with the numerical results of Stimson and Eaton62 

who treated the edge notched plate of Fig. 16 (a). 

3'0 

5 t imson-Ea ton 

2-0 ~ f\ 
-....... ~ _ .... 

cr A /. 
r oct . 

pproxlmatlon 

',0 

Fig. lG(a)'. Check of Approximation 



By integrating their stresses we find the overage gross 

area stress 

0. 1.1:3 't" t oc 

By trial and error the stress system 

o = .. ' min f A/~/x , 1.8 't' t } oc 
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was fitted to give the same total load and it can be seen 

that the agreement is g~od for such a crude approximation. 

\ve now return to the original example and for con­

venience assume that the stresses corresponding to maximum 

load are 

° (x) o = 

where the first term refers to yielding. 

If reversed yielding is ignored then the correspond­

ing stresses after unloading arc 

= o (x) -o 
-~. 

x - min 

'which violates equilibrium conditions. These lllay be 

corrected in the rarige 0 < x < 1 by assuming thot the 

actual stresses arc 

The coefficients of the polynomial are determined by 

equilibrium and by tangency at x=l. The results indi-

cate that reversed yielding occur s at x = 0.0211:2 and the 

finol system 03(X) in Fig. 16 (b) is that obtained by 

reducing 02(x) (x > 0.037) by the ratio of the yielded 

system (x < 0.037) to ,rO.037d 
J °2 x. 

o 

The region of reversed yield is extremely narrow and 

0:(' the same order as the crack growth in each cycle. 13y 

Griffith-Irwin theory, we show later that they are equal. 



'·0 

0' 

oy 

0 
0·2 

I 

x/p 0.6 0·8 

I I -1·0 0·0242 

Fig. 16 (b). Form o£ Residual Stress System 

9.2 Effect of Load Sequence 

At considerable risk, let us extend the previous 

section to the load sequence 

by for ming 

= min [1, 

When a :: :: 3.22) 

0/1: (0.0242)' :: 1. 

-1-The figure a may be interpreted os n rough guide to 

the magnitude of pre loading necessary to inhibit sub-

sequent crack growth at lower loads. 

exceeding 

(3.22)21:: 10.3 j 

Thus, if' a load 

is introduced into -a sequence of loads f. then crack 

gro\\-rth should decrease. 

This conflicts with the experimental results of 

Hardrath63 who measured the delay of crack propagation 

in 2024-T3 after the constant loads of a sequence were 

suddenly reduced to a lower constant lood (two step 
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1.0 
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test) .. IIo,·tever, the estimates above arc claimed to be 

orders of magnitude only and Clre not used in f'urther 

analysis. 

On the other 'hand, IIardrath's result cannot repre-

sent a typical s~tuation. This is easily ShOlV-ll by COll-

sidering a typical numerical case from his datu. 

Let there be n structure landed by a random sequence 

of the tlV-O stresses '1:0 h:.s .. i. and 37 k .. s .. j. ,v-here it is 

clnimed that a preload o-f 1.1:0 k. s. i. delays grolv-th at 

37 k.s.i. by 100 cycles. Let us use the probabilities 

PI' (l1:0 1(8i) :::;: p o < P < 1 

Pl" (37 ksi) = q. ::: 1 - P 

and' dx 

1/10 dll. 
::: H say. 

There are three relevant possibilities for each load 

nnmely: ' 
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37 and more than 100 previous loads of 37; step 0.768R 

37 and loss than 100 previous loads of 37; no growth 

/10 k. s. i. ; growth R. 

Assuming Bernouilli trials and the fourth power law, these 

lead to the expected rate 

e(dx/dn) 

Hith the minimulU O.05H when p ::: 0.05. 

This def'ies common sense Llud, more l"'igorously, can-

t d · t tI dId . t -r P ,61 I' I ra lC' S . Ie r.:\n am on expel" J.mell . S oJ.. ar 1S 1,'i l1c 1 

\\'ould predict 

<f(dx/dn) > n(0.768q + p). 

'rhe preload stresses in these experiments <.:lre al'\7"ays 

grcn.ter than 30 k. s • .i.. which imples extensive yiolding 



(a
y 
~ 51 k.s.i.) when driving forces are also considered. 

9.3 Form of Preload Delay 

Since the load J is a scale factor, linear when! is 

small enough, it is apparent that the effect of a 'preload 

such as those described, depends on the ratio 

(P~eload/Following Load) = r, say. 

From the previous section it seems P9ssible thax unless 
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r > 10, the occurrence of large driving forces (abbreviated 

to "preload" here) has little effect on subsequent crac1~ 

grol'vth ~ 

In contrast to Hardrath's result, when growth stopped 

completely, Cractographic measurements on Vampire64 spar 

booms indicate~ that for a short period (~ 100 cycles) 

the subsequent rate ,~as roughly half that corresponding 

to the load. There was a corresponding increase when 

the subsequent loads exceeded the preload. 

If the crack tip is a. singularity l~hen plaE!tic flow 

occurs, then the latter behaviour is more likely although 

there is no obvious cause for the increased rate. 

9.4 A Fourth Power Nadel of Random GrOlv-tp 

Barnard's results64 indicate the possibility that a 

series of random "preload" effects may cancel. This 

is the actual behaviour observed by Jones55 and Paris61 

except that when the average driving forces were below 

those of the f~at parts ot Figs, 11, 12 and 1), the rates 

observed by Paris.were about ten times greater than those 

predicted by simple addition. 
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Ob/ in3/2) 
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dn 
Fig. 17. Paris's Results for Random LOad 

In his e~periments which employed random noise, 

Paris defined load cycles in terms of zero crossings. 

For a wide band noise lrhich he sometimes uses, the 

number of zero crossings is considerably less than the 

number of' load changes and this accounts for part of 

the discrepancy. 

To accoUllt 1:'or the remainder, let us write Paris's 

fourth pOlVer law
l19 

in the form 

1 dx 
p dil 

a 
= • •• (30) 

E.£, I 21t 0' 2 
Ta y 

p ::; Efl2TCO'y2 the plastic length. 

If p is similarly defined in terms of mean stress 
m 

P = Pa + 2JPaPm + Pm 

row, let p be a random variable 

p : f(p) 

with mean p, and variance V. 

Then, in a purely additive case (30) becomes 
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<e E Expectation) 

•• (31) 

To explain a growth more rapid than this, assume that 

p in (30) is determined by the (average) maximum load 

during the time that such a plastic region takes to pass 

the relevant crack tip position. This generalisation 

is in the same spirit as our presentation of constant 

load results. When the average growth is rapid, the 

maximum will be chosen from fewer members so that it will 

not great ly differ i'rom p in (31). If the locally maxi-

mum plastic length is P
f 

then the nu~ber of cycles to 

cross it is clearly 

= 

Thus, (31) is replaced by 

• •• (.3.3) 

where P
f 

is the n
f

- 1-th fractile of f(p). 

A know·ledge of f(p) will now al10'-; the solution of 

(32) arid (33) as transcendental equations for ef(dx/dn) and 

Pf· If n
f 

is large, P a and P
f 

will be statistically 

independent and (33) becomes 

= 

= 

d -a l 

l;f 
dn ,say, ( 311:) 

from (32) 
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i.e. = 

and by comparison l'lith (31) the rate increases by a factor 

of approximately PflP. 

9.5 Generillisation 

When the flat part is approached, the actual plastic 

region tends to be constant by our hypothes~s o£ Section 

8.3. TInts, the use o:f P
f 

(i.e. of maximum drivi~g force) 

should not increase the rate. Above the flat part the 

rAte ~s such that the expected increase is small. This 

explains\'lhy Paris's results (Fig. 17) start to diverge 

nt the· beginning of the flat pDrt. 

L~t us generalise (30) in the form 

1 - dx 
un = 

where G = O( 1) is a slowly vrn'ying function. 

As above, this immediately generalises to 

p e (dx) 
0-£ dn = 

with Pf still given by (32). 

is small then, as before, 

When the relative rate 

dn = (36 ) 

nnd 

which can be solved ror Ilr or Pc \vhell r(p) j~ knoKn. 
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9.6 Behaviour of lvork Function 

Apart from environmental conditions the ''lork function 

lv for static failure depends on the exten~ion from t~e 

original crack length. As constant load fatigue cracking 

is a steady process, it is a reasonable hypothesis that 

W depends on the distance from the current crack tip. 

I 

I 
Fig. 

~,w 
8 

Y 
0. 

Fig. 18(b) 

J. max ' 

°1 
Jmax 

.81 

~a 

Ext'ension 

8
2 

x 

8
3 

Work done 
by reversed 

yiE'lding. 

Form of \v For Fatigue Cracks 

In Fig. 18(a) let 0, 01' 02' 03 be successive crack 

tip pos~tions, while OA, 01Al etc., represent W at the 

start of each cycle "\'lhen the load is zero. At any stage 

of loading 

which is also the case atJ • 
? max 

intermediate loads in the cycle 

(Here.j. represent saIl 

0-.£ -0). Eq. (37) ?max 
defines the cr'ack length at any stage of loading so that 



,~ < ~ • 
l'max 

It also follows that AO
i 

etc. nre vertical. The plastic 

work corr~sponding to each point on OAO
i

A
1 

••• is done 

over 'a much longer region* than the crack extension so 

that as a first guess one may suppose that the total work 

done for each element of cruck growth is a constant and 

this total ""ork rate must be 1 . 
?max 

During each crack extension, the \\"01"1\ done ho, .• ever 

is the a.ren 0lA1.02 leaving areus such as 01.AA1- The 

ttl 

only possibility is that work represented by the shaded 

area is done by the reversed plastic flow from the previous 

cycle, ,·.-hich implies that the crack extension in each 

cycle is less than the width of the region of reversed 

yielding. 

The force causing reversed yielding cannot be related 

to crack extension since none occurs. It may therefore 

modify W over ~ distance O(p) from the crack tip. 

However, from (37) and ()8) this effect must be zero 

at the points A, A
1

, A2 so that 

Crack Extension = Width of reversed yield. 

'\Then t he minimum load J . :> ° the figur e 18 (b) appl ie s tT mJ.n 
but the argument is not rtffected. As I. is less thun if max 
the critical static driving force Ic we may note in pass-

ing that repeated loading is in a sense a more efficient 

way or sepL~rnting materials than static fracture. 

1'he'idea of an effectively periodic work function 

such ~s that in Fig.18 has also beeu suggested by 

cotterel1
82 

but in his case W is the app~opriute section 

of the static function so that fatigue fracture is taken 

as an incomplete static :failure. This approach does 

* li'rolllScct ion 6. 1 or merely the :fact that ']:, ~-.;,; 10-:2 -+'10- '1. 
~il 
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not seem to make any allowance for the work done by rever~e 

yielding. 

9.7 Very Small Driving Forces 

According to Griffith's original theory 

\v ::: 2T 

where 1 = surface tension of material, 

and this refers to purely brittle fracture '\1"here the only 

lasting disturbance is the separation of two atomic planes. 

For met n1 s there is always a Ii tt Ie plast ic fl01.,r6 5 even 

in true cleavage. 

The corresponding W is a' lower bound albeit very 

s111all so that ill Section 9.6, Fig. 23(b) i·s always the 

appropriate one. This lower bound implies the existence 
GG of non-propagating cracks as discussed by Frost and 

COffinG7 . 

21 Forsyth has suggested that non-propagating crncks 

have returlled to the slower Stage I type of growth, along 

planes of maximum shear, 'i"hich \i"e regard as cumulat ive 



damage. Obviously as·~~ decreases, the number of' sig­

nificant stress cycles suffered by a particular element 
-1 

of mater ia1 i. e. 0 (l;~t ) can cause significant cumulat ive 

damage \~hich may hasten crack grow'th in comparison to 

the four th pO\\Ter 1 a ''I ,.; Fig~. 11, 12 and 13 show evidence 

of such all effect, indicated by a departure :from the 

fourth power law at 10\'1 rates. 

9.8 Possible Form of W 
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DeFore describing some possible experiments, \\TO shnll 

remark on the form of W in the light of' the rourth power 

law ond others, nnd of the discussion o:f residual stress 
J 

in Sections 9.1 and 9.2. 

Let us redraw Fig. 18(b) regarding p and p us alter­
n 

nating and maximum lond. 

fWlction is 

If the corresponding work 

W = E'{ /2n: cr 2 
P Y 

the new :figure will be non-dimensional. 

P 1----__._---_ ---.t..--
4( p- + - rpp) 

~----~~--~--------~ __ ~a+~ ~~~a 

1 dx 
4dn 

1--.........-.----1. p 
2 

The fourth power la,,, has the form 

1 
P a 

dx 
di1 = AL 

D 
o 



or in terms of the figure 

The effect of halving p has been illustrated (pIp = 
a 

constant) and there is obviously no geometric similarity. 

In the flat parts, however, geometric similarity is pre­

served. 

We now consider the form of W qualitatively. There 

is a residual compressive stress to be overcome and then 
01 according to Forsyth~ about 

w 

A--
~-----------------x 

9.9 Some Possible Experiments 

half the crack extension is 

brittle ending with ductile 

fracture. This is consistent 

with the sketch, where A, B 

and C represent these three 

stages. 

Although there are quite good empirical correlations, 

the detailed knowledge of crack growth under random loads' 

is very mengre. It is quite possible that the happy 

results of Jones or~aris and their extensions of Sections 

9.q and 9.5 are purely fortuitous results of the probabil­

ity distributions of the loads ,f(p), f(Pa). In any case the 
random load applications of Griffith-Irwin theory are unclear. 

It is alsO plain that the interactions of individual 

load cycles must be studied and that tw'o steps or programme 

tests are not representative. Because of the regularity 

of macroscopic cracking, this type of testing is ~also 

extremely wasteful. From previous considerations, if 

2;' 'is on the flat part of Figs. 16, 17 or 18 or, above 
a 

then, when the loading is changed, the new regime will 



become established after an extension of order p. This 

\ViII normally be less than 0.01 in. and accurate rate 

measurements require a base length
68 

0.05 - 0.2 in. 
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Thus, a single conventional specimen allows s~veral 

diffe~ent cases to be studied without variations arising 

from different specimens. In statistical parlance each 

specimen is a "block" and a test series a randomised block 

design. 

A possible procedure would be to apply all six per­

mutations of four loads in geometric progression as sho\\'~. 

The regular arrangement allows fractographic study and 

accurate growth measurements over short distances. 



Chapter IV 

THE CRACK DA!-:IAGE EQUATIPNS 

Hav~ng established general frameworks for the des­

cription of damage and crack growth separately it is now 

time to consider them together. The damages of interest 

are of course in places ,~here cracks begin "and these are 

assumed to be known. It follows, as one might expect, 

that single cracks are a trivial case and the main emp,ha­

sis is on the interactions between several cracks and 

the corresponding damages. However the s~ngle crack is 

a useful introduction to the more complex cases. 

With some restrictions, we shall eventually establish 

differential equations for the non-trivial case, ',,"hieh 

is the general fatigue problem mentioned earlier, but 

because 01 this generality the treatment is rather ab-

stract. This is no disadvantage because the functions 

used will always involve full scale stress analyses which 

can only allow an abstract representation in formulae if 

the structures are at all realistic. In a later chapter 

the applications of the matrix force method will be con­

sidered as a particular case of the theory here. 

Ill. the follo\ving it is supposed that there are N 

possible cracks of lengths a
1

, ••• ai' aN(a) and that 

these begin at the times tt' ••• ti' •• tN = t. It 

is convenient to assume for the moment that 

••• < t. < 
~ 

w"hich is always possible for a given sequence or mode 

of failure by renumbering or permuting suffices. As 

these cracks progress the structure becomes weaker and 

at any stage one Can estimate the hazard by comparing 

116 
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the strength with the applied loads us in Chapter II or 

by other means. For any particulnr t, if the crack 

grol'1th is deterministic, _ the life distribution 

:r ( l~ I 1 ) := 11 ( 11 It) e xp [-II (n f t )} 

can thus be :found. The actuul life distribution is 

therefore 

:C(n) 
r 

= ,: f (n It) dF ( t ), 

tnking the expectation over all possible sets 01 initial 

failures t. There remains the problem of :finding I( t ). 

For any particular crack l!oKever this is simply the 

derivative of its canonical damage (one-dimensional here). 

This in turn is given by the damage equation 

== A(F.,S.) 
1 1 

where the local stress S. depends on all the crack 
1 

lengths a and the distribution of the applied loaJa F(R). 

This is usually consta;lt but there is no reason why it 

cannot change with time or cycles.* 

equations are considered below. 

Only the autonomous 

We are interested in the relatively slow growth of 

crncks over hundreds or thousands of cycles so that the 

applied loads may be adequately represented by their 

moments or cumulants. If these are constant then for 

all cracks the damages (2) can be ''11''i tten in the form 

dF 
di1 A( F , a ) (3) 

where the right hand side implies that all the stresses 

*For our purposes these words are equivalent. 
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Dnd the stress intensities are calculated for the set 

of crack lengths a (including zeros) and then substituted 

into the dam()ge equations (2). Together with tho random-

ness of the loads this is the essent~Dl practical difficulty 

whose 'consideration is postponed till later. The e:Cfects 

of stress concentration factors, which essentinlly increase 

the damage rate, can be directly included in (2) and with-

out fLu'ther ado this is assumed to be dOllO. In a form 

analogous to (2) the grow'th rate of each crack cnn be 

lvTitton 

'"hich has the 1110re abstract form 

= R( a ) 

analogous to (2). 

1.0 Direct Solution 

At any stage suppose that r cracks have begun at 

time t (of order r) and' h[lvC reached the lengths a at , r 
n cycles so thnt the complete crack length vector is' 

a = f a 0 1 SQy. . t' During this r-th stage the governing 

equations are 

and 

da 
r 

Rr ({arO}) 

where the subscript s indicate the number of ro~levDnt 

components and the N-r also refers to positions where 

( 5 ) 

cracks have not yet begun. When another crack, say a , 
r+1 

starts then (5) is replaced by 



= Rr +1 ( a ) 

dF
N

_
I"

_
1 

dn AN-I" -1 ( F , a ), a = {a r + 1 0 N-r -1} et c., 

which are the sumo as (5) except that there is one more 

equation o~ crack growth and Ol1e less for damage. 

For (5;\) the initial conditions at n;;:;t say, are 
r 

f F Ii' } - N-r-l r = F N-r' 

and :for nny given sot o~ initial failures all such cqua-

tions can be solved; 'vi thout extreme diff'icul ty on a 

computer. 

crack a. is 
~ 

If the stress S. at the beginning of the 
~ 

suitably defined the solutions for damago 

may also be formally extended over the full range of' 

life considered and this forms the basis o:f our second 

method. A damage not in this extension lv-ill be knO\V11 

as active. 

2.0 The Initial Crack 

At the start Dny rate of crack growth is roughly 

exponential since the stress intensity is approximately 

pJ'oportional to the crack length. 

Mnthematically this means that the initial crack 

existing immediately aftor time t. must have finite 
1 

length in order to propagate further. This expresses 

our previous contention that, below n certain length, 

the grolvth of a crack follo\vs dif:ferent lalvs if' indeed 

such cracks can exist in the engineering sense. From 

the viewpoint of both metal physics and engineering the 
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growth of cracks smaller than some critical length is 

best regarded as a process of cumulative damage to be 

described by damage equations. 
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It is now generally accepted that most of the scatter 

in £atigue life arises in the crack initiation described 

by the damage e~uations. More precisely, Schijve has 

found that the gro,v-th of extremely small cracks is much 

more erratic. His viewpoint agrees with ours if these 

small cracks are regarded as damage per see For con-

sistency it is then most plausible to suppose that all 

initial cracks have the same length a and that ~mmediate­
o 

ly bef'ore this the crack length is zero or in more prac-

tical terms it is too small to effect th~ stress pattern. 

From physical considerations a must be related to 
o 

the scale of inhomog~neity in the material. As a maxi-

mum this is represented by the average grain diameter. 

It has been shown by,Forsyth that the change from 

"stage IfI< damage in our . case) to "stage II" or craclr pro­

pagation proper is often associated with the crack pene­

trating the first or possibly second or third grain 

boundaries. Thus it seems reasonable to make a roughly 
o 

equal to the grain diameter. 
,. : ' .. , .. ~ ... ~, 

There is another less fundamental argument l",hich 

leads to the same model with rather different values for 

a. It applies most aptly to aircraft structures and 
o 

so will be discussed in terms of that case. For these 

it can be argued .that, compared to the complete structure, 

the first otder of inhomogeneity is represented by the 

sizes of,rivet holes, edge distances, rivet spacings etc. 

which are therefore of the order of a. Because the 
o 

dnmnge equations must now include some true crack propa-

gation they are likely to be either more complex or less 

accurate. If multiparametric damages a~e avoided this 
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usage is intermediate between our previous postulate and 

the present dhy usa~e where in effect the damage equations 

must account for.damag~ and cracking together. On the 

other hund the stress analysis is greatly simpli~ied 

presaging its complete disappearance when damnge is made 

to rc~cr to final failurc. 

Doth o~ these approaches should be equivalent .if the 

c(luntions arc·correspondingly adjusted and the ultimate 

choice depends on experience and cxperiment. The smaller 

il can be il1~erred by noting the crack length ·ut lvhich 
a 

the constunt amplitude growth la\\'"s of Chaptcr III break 

do·\>.'n although a random lond theory Kould be better i~ 

it were av~ilable. 

3.0 The Role of Damago Equations 

For phys:ical reasons· the accumulation of daUlnge in 

any position cannot directly depend on the damages attained 

e1so,,,·11e1"e, (l.nd the only possible coupling arises through 

the existence of cracks ,·thich are more lilcely in certain 

regions. 

COllE:;ideJ:" a particular 

. a cl'D.ek Hot yet be gUll) • 

for a crock a 
o 

(i.e. 

D(~pellding on the remuinder of 

the structure ,F takes several forms such as the t"hrO ill 

the sketch. 

,·Or-------------------------------------------

F 

n, t 



Then F corresponds to the same event, llamely prior 
o 
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i'i"lilure, because it is n dnmnge also, but i1 damngc corres-

ponding to dii'i'erent initial lives to and t
1

-

As the fatigue process develops and the (physical) damage 

Functions increase then lor each increment of damage the 

system in ef"'f'ect perf'orms a Dernouilli trial in order to 

make the decision "Kill the crack start no-\\"'"?". At any 

such time suppose that the canonical damage is F and o 
the increment 6F. Then, using the statistical properties 

or canonical damage, 

PI' (Initial Lililure in the interval (F ,F + ,~F) 
o 0 

::: PI' (No previous failure) .Pr (Failure No previous failure) 

+Pr (previous " ) .Pr ( " Previous " 
::: (1 - Ii' ). [L\P / (l-F )} + F .0 

000 

::: bit'. (6 ) 

Thj.s is true for all increments so that this process of' 

continuous experimentation l..Ulti1 a single success occurs 

is equivalent to the choice of a single variilt6 rl'om the 

unirorm distribut ion over (0,1.). 

No\\' in (G) "we have not used any 1.'01<1 t ion between F and 

11 and 'it :[0110'.,"s thutthe distribution of' F is independent 

or the initial. :li:fe distribution which develops in the 

solutj.on 0:[ the damage equations. 

3.1 ~Ionte-Carl0 Solution 

As the name ~mp1ies this is a mathematical analogue 

0:[ the physical fatigue process. In the result above 

we have sho"\\'TI that the starting times of the vector t need 

not be the outcome of the continuous experimentil.tion 

implied by the damage equations. rfhe N canonical damages 

) 



I 

1:23 

F Cilll be illitinlly inclep(~lldellt ~elcctj_(HlS {'rOEI Ll. 

0:[ the ph-,yrsicaJ damage::::. Simili.lrly, m~ selections Cilll 

s i lUul ate the j.ni t i <.1.1 f' ail ur c S 0 l' m s true t l U' p .-:-: • 

:CrOlll (:;) to (:31\) itnd the other chilnges ,\l'e tholl made \dlCn 

Siuce thc~ Cl'ClC]\ grovrth is deterministic (IllY outcome 

is completely dc:fincd by, ,lud the complete soJ:u.t ion requires, 

tho joint dcnsit·y 1'( t ). By nPPl'oprii.\te rOllul1lber:ill~,~ let 

u::; :-::uppose th,lt ("tIlY sct or initial :Cnilurcs hi.js thn C01.1-

j )()llcut s 

t t. 
). 

in order or magnitude. hTe also suppose tll(~t at each 

initial :failure the solution of' (5) and (]./\) etc. give 

the damage densities 

dF. __ .1 

du r ( t " It.. 1) 
J J - . 

say, 

in general, the density 101' t. depends 011 the 
J 

exist :i.llg cracl\..s, start ing at t" 1· J - . 
Thon, 1.'0.1' our l' (lll-

clomly chosen point in t-space, the joint uensity' is 

N 

r( t) ~ n t'(tjl t j _
1

) 

j=l 

t :: O. 
o 

This simulation with mN selections will ~ivc 

lil v.:d.ues oJ' ~(t). From another V:lC\,TPOillt the fat igue 

p:t"ocess can nlso be reg,lrc1ed as u mapping or trt.lnsf'orm~l-

tion o~ the equally likely points F in the ~pacc of C£1.l1-

ouical clnlllilgc into the initinl :fitilul.'e: vector's t. In 

the :0Ionte-C(u~lo method F is directly ol)tailled l,y the pre­

liminnry selection nnd the overnll dOll . .:;,;it.y r( n ) :i..~ 



1'( n ) ::: J l' ( nIt ) dF ( t ) 

which can be approximated by 

f( n ) ::: 
-1 

In 
r 

N 

/ f( n I 
i~l 

(8) 

where ill is the number of active solution~ of the damage 
r 

equations available at the time of interest. In t-
space the grouping of the results gives a check of f( t ) 
which should agree (within the appropriate scatter) with 

(8). If the Nonte-Carlo approach is used the approxima-

tion to (1) can be further improved by importnnce sampling 

and possibly by analytical values where f( t ) is small. 

flotly'lhese procedures are vastly more efficient using the 

independence proved bela" .... 

!r.o Independence of Initial Failure Times 

'l'hrough. equat ions (5) and (5A) ,~e have forlllulat.ed 

a trans:formation :from the uni:form damuges F, reached at 

each initial failure, into the starting times t iUld this 

transformation is continuous and differentiable. 

Suppose that f ( t ) is known. Then F is simply 

the vector of marginal distribution functions, or, 
co t. ~ 

r' r J. f' 
F. ::: ! :r( t )dt 

1 ~j t.' 

0 0 -0 

and 6F./at. ::: :r(t.), 
1 J 1 

if i::: j, ::: 0 if i I j, 

w~~re f(t i ) is the marginnl density. A:rt er our t r <:nlS-

formation 

f ( F) ::: lat /aF /f( t ) (10) 

and the Jacobian here is 



at /oF 

by (9 A) . No,v-

::: 

o < F. < 1 
1 

Qnd it is 01 course uniformly distributed. 

125 

In addition 

the physical damages are independent and hence the canonical 

damages have the joint density 

1 (li') ::: 1 

N 

= ~(t)/ n~(ti) 
i::: 1 

on substituting our Jacobian. From (9) onwQrds the same 

argument can be used for any subspace ~ 01 t ,v-henc e 

1(~) ::: 

Since ~ is arbitrary and includes t 

must be independent. 

the dif'ferent t. 
J. 

This generalises the "lv-ell known probability trnlls-

10rmation. In "fords, 'we have show'n that if" the tr<llls:form-
"L 

ation to nw.rginnl distribution functions producos Q uni­

:form joint density of these in the hypercube 0 < F. < 1 
J.. 

. then the original variates Clre independent (and of CO'lu'se 

the F.). 
1. 

For dependent variates the corollary :follot\~s thnt 

a transformation to marginal distributions CiUlllot lead 

.to a unif'orm joint density. A simple example is tho t,,-o;.. 

dimensional case 

:r(x,y) ::: 2(x - 2xy + y) o < x, y <~ t, ••• ( 11 ) 



\ ' 

with the marginal distributions 

F (y) = y o < F < 1, 

i.e. f(x), fey) = 1. 

Here (11) is also the dependent distrib~tion of marginal 

density integrals. 
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Although they are independent it must not be supposed 

that the component densities are the same as one would 

obtain if fewer than N cracks were considered, i.e. if 

the problem were different. (In most similar applica-

tions of probability theory such a presumption would hold 

but independence never implies it.) It will transpire 

that the dependence of different crack growths arises, 

not by the sequence of failures, "but through the differ­

ences in any particular crack caused by the presence or 

absence of the others. These effect s determine' the 

damage densities but leave them independent. 

4.1 Improvement of Monto-Carlo Method 

The independence of the initial failures can be 

used to improve the Monte-Carlo method already outlined. 

Suppose there are m simulations arising from mN initial 

:f ail ur est . = t ( r = 1 , m) • lr r 

From the simul~tions the active solutions A (F, a) 
r 

of the damage equations in (5), (5A) provide estimates as 

in (8) for each cracl~ and m <m, a function of the number 
r 

of cycles and the particular crack, is the number of 

simulations lqith active solutions of the damage equations. 

For crack i let ~.(n) denote the distribution estimated 
1. 

from (8) at n cycles. 
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From the results we also have the stepped empirical 

distribution 

FE(n) = L.L<n <r!/ (m + 1) 
l.r 

••• (12) 

which also estimates F(t.). 
1. 

in the figure. 

'rhese two estimates are show'n 

l' Qt----------------------

F. 
I 

Av~ragE' of availa b l ~ 
'" sol uti 0 n s, Fj ( n ) 

slop~s 

Empirical ~stimatE? F (n) 
E 

from numb~r of initial 
failur ~s 

Cycles to initial failure n 

'" As n increases the results available for F.(n) decrease 
1 

to zero as n passes til' ti2 etc. Thus although it is 

less satisfactory the information conveyed by FE becomes 

more important as n increases. For practical purposes 

however the shorter lives have most interest. The right 

hand side of (12) represents the expectations of the 

standardised order statistics of which the r-th has var-

iance 

0
2 

(F (r » :: 
r m-r+l 

m+2 (13) 

As in the figure, the best continuous estimate of F(t.) 
1 
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based on (12) is the dushed po~ygon shown. This is the 

appropriate estimate to pool with the average of the 
,.., 

solutions F.(n) but it is not available outside the inter-
1 

val (t l' l' t. ). 1m \vi thin any sub-interval (t. "t. 1) 
J.1" 1. r + 

we have F 1' •• " r+ 
whose mean F.(n) 

1 

F say, 
m 

(m-r) solutions of (5), (5A) 

has some sampling variance which can 

be approximated by the constant 

S2 I( m-r ), say. 
r 

If the two estimators are independent then it follows th~t 

the coniliined m~nimum variance estimator in the interval 

(t. ,t. 1) can be approximated by 
1.1" 1. r + 

m 

Fti(n) = 

S2 
r 1 

'""(-m---r- ) m+ 1 r + 
n-t. lr 

t. - -to 
1 r + 1 1.r 

+ (r +l ) (m-r +} ) If . (n) 
(m+l)2 (m+2) (m-r}:-.J 1 

J=r+ 

(r +~- ) (m-r +1 ) 
(m+1)2 (m+2) 

+ 

S 3 
r 
m+r 

,.,here the r in (13) has been arbitrarily moved <t'o the 

midpoint (r +t) • 

4.2 An Identity 

(14) 

It is instructive to consider the continuous analogue 

of (14) as m ~ 00. Although the t. are independent the 
. 1 

sample distributions thereof will differ according to the 

~-vectors chosen in (5) and (SA). It is then convenient 

to denote these us 
F.(nl t), 

J. 

whose active part is defined for n < t .• 
J. 

In the continuous case the average F. (n) becomes 
J. 
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F. (n) 
~ 

= J. · · r F. (n It) dF ( t ) / Pr (t. > n) 
J ~ 1 

the equality follow'ing from the In, .... of large numbers. 

The integral corresponds to the denominator and the formu-

la can be l'lr i tten 

F.(n).(l-F.(n» 
1 1 

= J r · · · JFi(nl t )dF 1 •• dF. 
.J 

t .>n t .>0 
).. J 

co ::: J J F i (n It) dF i (n) dF ( to) , 
t n 
a 

~ 
' •• dF

N 

using the independence of tand integrnting over the 

extrnneous t. (j f. i). 
J 

If' we write 

/j F.(n) = F.(n) - F (nl t) 
~ J.. 

then this identity also takes the form 
co 

I r 6F. (n)dF( t ) 
..; l. = ~-( 1-F. (n»)2 

.. J.. 

to t.=n 
]. 

5.0 The Development of Cracks 

In the sections following we shall consider the growth 

of fatigue cracks as well as damage. At the start the 

Nonte-Carlo standpoint \\"ill be adopted but it ,viII become 

apparent that this can be discarded in favour of a set of 

explicit equations analogous to (5) and (5A). 

It would be possible to display our final equations 

(35), (36) here and explain their significance quite simply 

but it is hoped that a more leisurely exposition "rill pro-
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vide a more motivated der~vation and indicate their rela­

tionto the Monte-Carlo method. 

Consider the size distribution at n cycles of a o 
certain crack beginning at t. lV'hile this develop.s lqe 

suppose that the N-l other c,racks grow deterministically 

in sonie typical f'ashio'n. It is convenient if these 

"'~jack'ground cracks" allbegirt~ at n=O and then gro'\'J' c6n-

tinuously • This can be approximated by using the average 

. o:f: the Monte-Carlo solutions (equations (5), (5A» for 

the crack lengths 

where 

n. (n) 
~ 

:: 

m 
-1 \' 

m L aij(n) 

j=l 

i= 1, ••• , N, 

aij(n) = 0 if n < t ij and these zero cracks have 

been included in the averaging. If da .. /dn jumps from 
~J ' 

o to R say at n=t .. then in the average this discontinuity 
1J 

decreases to Rim which cannot be guaranteed if only non-

zero cracks were included in the average (for example 

at til the jump would not alter). In the limi,t th,e 

growth rate is continuous and we assume that it is also 

differentiable. The background cracks in (15) then 

become the expectations 

ai (n) :: S · · · J a i (n It) dF ( t ) 
o 

where we have adopted the notation of conditional pro­

bability. After changing the variable to a this becomes 

in vector form 

eo 

a(n) = I ... J a (nl t ) dF( a In) 
o 

with the derivative 



r. 

= J R ( a ) . dF C. a In) . . . 
a 

using (lJ:). If R was linear in a then one could drop 

the integral sign and write 

R( a ) 

but consideration of Paris' fourth power law or the non­

dimensional results of Chapter III will show that this 

line.arity is unlikely; especially when the stress inten­

sity is increased by finite width effects. 

5.1 One Crack Illustration 

It was found in Section 4.0 th~ the initial failures 

t. were independent because of the one-one transformation 
1 

from F to t. In (17) we have already extended this 

concept to regard the set of crack lengths a(n\ t ) at n 

cycles given t as a transformation of t However if' 

any component of t is greater than' n then it cannot 

affect these cracks and the transformation is therefore 

not unique unless all component s of a exceed zero. 
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(If the Stieltje integrals above are also based on Lebesgue 

measure the steps ,there are allowable.) If necessary 

uniqueness can be ensured by supposing that before initial 

failure a crack grows continuously up to the initial 

length previously discussed. 

Let us approach the general case by considering the 

simple one-crack system (cf. (5» 

dF h, 0 < 
-1 

.dil = < n h 

da Ka, F(O) 0, a (t ) 
dn = ::: = a 

0 
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,~here initial lives are uniformly distributed over (O,h- 1 ) 

and, onc.e begun, the crack grow's exponentially. 

initial life t 

a 
, K(n-t) = a e o 

For an 

(18) 

representing at transformation t -I a '\~ith the parameter n. 

Using the rule for changing probability densities 

:f(a) = f'(t)I*1 
h/Ka eK(n-t) 

o 
::: 

h/Ka < a < Kn 
::: a o a o 

e, 

Obviously if t > n then {t > nJ ... fa ::: o} and the density 

f(a) relates only to (a > OJ, integrating to hn. 

Now consider the mean eraclc length given by 
Kn ae 

a = J af(a)da + 0.(1-hn) 
a o 

a (e Kn -1) = 
0 

lv-hence 

di 
Ka + ha (19) dn ::: . . . a 

with the init ial condition :1(0) = o. 

Thus the ol".iginal homogeneous equat ion descr ibing the 

growth of~an initially finite crack now has a forcing 

term ha while ~ is initially zero. 
a 

case using the distribution 

tf(t) 

whence Pr(a=O) ::: 1 - F (n) t 
F (n) - . F ( t) for t = n. 



Using (18) again, 

for 

In 

f ( a ) = f ( t ) /Ka 

finite 

addition 

cracks and 

t -1 log(a/a ). = n - K 
0 

n 

a :; J adF(a) 

t=o 

n 
r 

:; I af(t)dt. 
.. l 

o 

Differentiating.and remembering that aCt) = a o ' 

:; 

n 

KJ af'(t )dt + aoft (n) = Ka+aof t (n), 
o 

gener alising '( 19 ) • 

\Ve noW" come to . .-the general rate 

da 
dn =. R(a) , aCt) 

. .. (20) 

for which (20) still holds. The average rate is noW' 

n 

= r R(a)dF(t)+a ft(n) = 
J 0 

o 
J R(a)dF(aln)+uoft(n), 

a o 

and unless R is linear in u this is the simplest form. 

As an approximation let the rate be 

K ( a +m ) + R ( a ) 

where K,m can be chosen to minimise R(a) in some sense. 

Then 
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Then 

a + m 

where 

I(u) = 

= 

= (a
o 

n 

It 

I 
a 

a 
o 

) K(n-t) (» + m .e exp(I a 

a(n) 
R(a)dn r R(a)S dn da = 1 da a+rn J a(t) a+m 

(since a(t) = 

(22) 

a ) 
o 

a function of crack length only. The correction term 

in the solution is also obtainable by variation of para­

meters with the extra term R(a) and the result can be 

iterated. The expected length is 

n 

a = J u(nlt)£(t)dt 
o 

n 

-mFt(n)+(uo+m) J eK(n-t)+I(a) dF(t) 
o 

from (22). 

The derivative here is 

n 

= aoft(n)+(ao+m>J tK+ :~:)}eK(n-t)+I(a) dF(t) 
o 

n 
r 

= ! [ K ( u + m ) + R ( a ) ] d F ( t ) + a f't (n) , :fr 0 m (22)' " 
~ 0 o -

n 

= Ka + oo(Ft(n) + f RdF(t) + aoIt(n) 
o 

0;) 

= Ka + mKFt{n)+JR(a)dF(a/n) + aoft(n) , ••• (23) 
o 



as one would expect. Each term here represents an 

i~portant case and in the followipg it is convenient to 

combined them as above. 

5.2 Severa1 C~acks 

For several cracks a c {a
i

· •.• aN} the rate above 

generalises to 

+ R( a ) 
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.\v-here K is a constant square matrix while a, m ,R are 

colunm vectors. By definition each average length is 

-;.(n) = 
~ I··· t.=o 

r a . (n It) dF ( t ) . .' ~ 

J 

co n c::> 

::: J. · · r ... r a. (n I . t ) dF ( t 1) ~.. dF ( t N ) 
o ~ .:::0 ~. 0 l. 

Differentiating, 

+ J .•. 
o 

~ 

s inc ea. (n t t )::: a when t. > n. 
~ ~ 

co 

do. 
~ 'drl dF ( t ) 

. . . r 0 f. (n) n d F ( t .1 ) , (a . (nit . = n ) = a ). 
,J 0 0 1. J If. J. 1. 1.. 0 

The restricted range 0 < ti < nallows for the fact 

that a
1
. = 0 and da./dn = 0 if t. > n; i.e. if the crack 

1. 1. 

has not bEtgun at the time considered. 

Using (24) carefully with a == a (n f t ), K- r k . } , 
1. 

.. : 



= 

00 n 00 

I··· J ... J t ki (a + m)+Ri ( a) }dF( t ) +aofi(n) 
000 

n 

+ k.m 
~ f···f···J 

000 

+ a f. (n) o l. 

dF ( t ) + 

= k i a + kim Fi (n) + J ... f·· · J Ri ( a ) dF ( a In) + 
000 

+ a f.(n). o 1. 

For all cracks together this can be written (a (0) = 0 ) 

= + R ( a In) + a r f . (n)J eN' o 1. 

where the distributions and densities have been arranged 
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as diagonal matrices. The general rate term arises from 

eo n eo 

= J ... J · · '. J R ( a) dF ( t ) 
000 

and since da./dn for example is zero if n > t. together 
~ l. 

with the length itself all the limits of integration may 

be extended to infinity so that the average rate includes 

unstarted cracks just as a does.; 

If we put 

y = Ta 

where 
l' 
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then the' homogeneous equation 

::: KY Y(O) ::: I 

has the solution69 

1 A.n d.r 
T - r e l. J T ~.L yen) ::: exp (n K ) .. . . 

so that w~th the initial values ~(O) = 0 the solution is 

Ya(O) ::: 0 

For the particular solution let 

a::: Vu (variation of parameters) 

which leads to 
n 

u(n) ::: J y- 1 (t){r F i (t)JKm' + 'R( a It)+aoffi(t)JeN}dt 
o 

Multiplying by yen) (=enK ), from (26), 

n n 

a(n) = J e(n-t)K { } dt ::: J y(n-t){ Jdt ••• (27A) 
o 0 

In (27) the first term can be integrated by parts 
n n 

n 

J t K' 1r -1 J tK e - F i d t = [- K - F iJ] 0 + K e - r f i J d t 
o 0 

so that the linear part of (27) becomes 

n n 

- K- 1
rF i (n~Km + KJ e -tKrfiJdtKm +BoJ e -tKrfiJ dte

N o 0 

which can be ,i,.te~ated with (27A) in non-linear cases 

(cf. equation (22». The integrals in (27) have the fOTm 
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of partial mom~nt generating functions of f( t ) with the 

-transformed variables Kt • 
in the numerical solution. 

Similar integrals occur later 

5.3 }lament generating Function for Several Cracks 

The tral1s:formed variables in the moment generating 

function are denoted by u so that at time n the NGF is 

}1(n.,u.) = J 'r 
• • • .J 
o 0 

exp [ uta (n It) }dF ( t ) 

which includes concentrated probabilities of having no 

cracks. 

The derivative of H(n, U ) divides naturally into 

dN = dn 

co co t 
u a (n It) r · .. J' ~ e d F ( t ) 

J dn' o 0 

+ Terms associated with increase dn of each 

effective upper limit. 

Th~ latter are related to changes in the discontiritiities 
t 

01 exp (u a) as a crack begins. Let the equat ions 

u == fu.u.}, 
1 1 

t == f t .t.}, 
1 1 

a == fa.a.} 
1.. 1 

define the new notation ',here which, if convenient, may 

be associated with a renumbering of the elements. Now, 

most generally, 

where lll=t1 ••• , nN=tN are the planes of discontinuity 

in the region of integration and n is still the parameter 

in the integranu. 



Then 

• •• + 
aN 

+ -on 

and in our case u 1 = n 2 = •.• = uN = n. We can now 

investigate oM/on. and equation. (28) is rewritten as 
~ 

M(n, U ) = 

co n = 
J ... i ... i 

o t': =0 ... 0 
~ 

r= J= rOQ 
+ J •• • • j 
_ 0 n 0 

and to the first order 

J:.1(n+dn, u ) - ~I(n, u) = 

t exp ( U . a . +a. a . ) dF (t . ) dF ( t.) 
~ ~ ~ ~ . ~ ~ 

t exp ( u. a) dF ( t . ) dF ( t.;) 
l. .1. .... 

f. (n)dn 
1. · · · J e xp { U ~ a (n It)} d F ( t i ) 

sirtce a. = 0 if t~ > n. 
1. 1. 

- . 

A compnr.isou of integrals here '\"ith (28) sho'\"s that 
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they are MGFs of a reduced system obtained by the suppres­

sion of the crack a.. There are N such fatigue problems, 
1 

one for each crack~ which are denoted by M.(n, u.). With 
~ 1. 

this notation we have shown that 

oM 
en. 

1. 
= ( u.o 

e ]. 0 - . . . 
Because the crack has been suppressed Mi(n, u

i
) cannot 

depend on t. and the result does not depend on the in-
.• . 1. 

dependence of the t.'s. 
J 



Finally 

dM 
Tn = 

= 

N 
:--> 

(e U.a 
~ 0 

;-

- 1 ) f . (n) M. (n, u.) + 
~ ~ ~ 

i=l 

+ f.:. J~n exp ( uta (n, t » dF ( t ) 
o 

~ ( u. a 
I e ~ 0 
<-..l 

- 1 ) f . (n) ~1. (n, u.) 
~ ~ ~ 

0') da 
+ J ... ]u1dn

1 
+ ••• + 

o 
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(30) 

Now if t.>n then as before da./dn=O so that a typical com-
~ ~ 

ponent of the integral is 

,..0') rni" ~cc da. t 
• • • ! • • ." u . d n~ • e xp (u a) d F ( t 1 ) • • • d F ( t i) ••• d F ( t N ) 

'.' 0 t ': = 0 .. : 0 ~ 
. ~ 

t 
k . ( a + m) +R. ( a ) }. e u adF ( t ). ••• (31) 

). ~ 

CX) n. 0') 

= J ... J.~.J t 
u. ( k. (a + m ) e u a dF ( t ) 

J. ). + 
000 

again using the equivalence of' probabilities in the spaces 

of t or a(n). 

The limits corresponding to k.a can be made infinite 
~ 

and if the matrix product is expanded and integrated then 

the result can be again abbreviated to the form 



t u. k .oN/O u sny. 
~ J.. 

The second term, in k.rn , decomposes into two integrals 
l.. 

r(X) rCl:) rCQ t a 
J • • • J • • • J ki rn e U dF ( t ) 

o n. 0 
J. 

with the total value 

M - (a - F.(n».M.(n, u.). 
~ l.. J. 

Finally the mean value theorem is used to simplify the 

general rate ·term by removing the factor 

R. ( a ) IF . (n) • 
~ ]. 

This leaves the same integral as the second term. 

these quantities are substituted into (30) 

dM 
ern 

+ 

N N 
\""' U . a \' ON 
) (e ~ o-l)f.(n)M.(n, U.) +) u k -
~ J. l.. J. ~ i· i aut 

i=l i= 1 

N 

I 
i:::1 

. . . 

When 

Froin this equation it should be possible to derive (25) 
i 
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which supplies the mean rates. For this reason the nota-

tions for the average general rate terms are the same. 

To justify ourselves (25) will be derived from (32). 

Thus 
N 

u 

aM 
k. a--t 

]. u U 

+ [ k. m +R. ( a f n ) IF . (n) ] {M- ( 1-F , (n) ) • M. (n, Ul..' )} + 
J. 3.. . 3.. l.. l.. ••• 
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and" if U = 0 for i"= 1, ." •• , Nthe results can be 

grouped as in (25). 

must be the same as 

Therefore in (25) the term R (,a In) 

['it. (; a In)} in (32). 
~ 

If' we put 

N :: e'l' 
\}J. 

l.. :: e 

then if' (32) is divided by M 

N 'l'.-'lt N 
~l.. ~ 

;. (eu i a o-l)f.(n).e +,) u. 
l.. l.. 

:: 

i= 1 i= 1 

• •• (33) 

N 
\' 

+ ,) 
'l' . - \}I 

u. ( k. m + R. ( a In) IF . (n) ) • ( 1- ( 1-F . (n) ) • e l.. , 
l.. ~ ~ ~ ~ 

i=l 

.•• (34) 

a differential equation for the growth of the cumulant 

generating function. As above, this depends on the 

CGF's of the reduced problems which depend in turn on 

still simpler problems. For a complete solution one 
N 

thus requires 2 CGF' s, beginning \vi th those for one 

crack only. 

6.0 Complete Equations 

On expanding the equations (32) or (3 1.1;) it lvill be 

found that the higher moments or cumulants are determined 

recursively by first order differential equations which 

involve also the reduced systems from ~1. (n, U.), i = 1, ••• , 
~ l.. 

N. The average cracks for the N+l systems, through the 

moments which Drust all exist as solutions of the extra 

differential equations, determine f( a In). 
In (25) one can now SUbstitute for f.(n) and F.(n) 

l.. J.. 

from the damage equations (3). Because these now depend 



on a random crack length the right hand side of (3) needs 

to be averaged over f( a In). After these changes have 

been made the cracl{. growth and damage equations become 

~~ = K a + r F i (n)J K m + R ( a In) 

dF 
do 

+ a o J ... 
o 

r A ( F t a ) dF ( a In) 
.J 

= 
r> co 

.J · • • J A ( F ,a) dF ( a In) 
o 

(35) 

corresponding to (5) and (SA) and the F. (n) are of course 
J. 

component s of F. As in (25) the general rate term is 

R( a In)= 
to J · · · J R ( a ) dF ( a In) (35A) 
o 

and in all these equations the length distribution f( a In) 

depends on the solution through (32) or (34) as described 

above. Even the linear rate case here is quite formid-. 

able and since this is not the practical situation and 

we later concern ourselves with matrix force methods we 

,have elected to treat (35) as a system of differential 

equations, using predictor-corrector methods. 

This requires a simultaneous knowledge of f( a In) so 

that the moment equations must be integrated at the same 

time. Although nIl moments (or an inversion integral) 

are required to find the distribution, if a suitable approx-

imution is used only a felv need to be calculated. lvith 

a computer a complete solution lvould be fensible if the 

rate function lvere sufficiently simple. For the general 

structure unfortunately R ( a) is the outcome of some type 

of structural analysis and, although one is prepared to 

repeat it for the iterations required by a predictor­

corrector method, the large number of points in the expect-



ation integrals almost preclude the computation from present 

day computer s. HOlVever it is possible to "remember" the 

results of prior structural analyses and use these instead. 

This lvill be discussed further in the chapter on numerical 

solutions. 

6. 1 Gener a1 and 1-'lul t ipar ametr ic Damage 

The canonical damage in (35) may -be replaced by any 

equivalent Bastenaire damage 0 and indeed there is no 

reason _why this cannot be multidimensional., in lvhich case 

A , 0 would be matrices wi th say rN element s. It is 

al''lays true that there are physically independent damage 

vectors however and it follows that the proof that initial 

lives are statistically independent still holds. For 

the complete set of cracks the basic equations (35) general­

ise to 

da 
Tn = 

F := 

dO 
dn = 

K a + F. (n) K m 
~ 

+ R( a In) 

co 

+a r ... r A ( F , a ) dF ( a In) 
0.; J 

o 

F (0) 

r ~ r 
J • • • J A ( 0 , a ) dF ( a r n) , 

o 

where the central equation is merely auxiliary. 

(36 ) 

If the 

Monte-Carlo method is used (5) and (5A) may be similarly 

generalised. 

In (35) or (36) each component of damage is meaning-

:ful only i:f the cl."ucl( in question has not started. Each 

element o~ 0 (or A ) thus has the more particular :form 

D. = 
J. 

A (D . ,Krr ' a ) 
~ . 

J. 

(37) 



where K
T

. is the stress concentration f'actor. 
J.. 

6.2 Nature of Cracks 

So far all cracks have been described exclusively by 

their lengths but in general the crack path is also un­

known and equally erratic. On the whole the average 

direction is that of the lesser principal stress (in sheet 

structures) and this may be found as part of the stress 

analysis. 

From Chapter III it is most natural that (5), (SA), 

(35) or (36) should always be framed in terms of total 

lengths. I~ the average crack follows the principal 

stress then R ( a ) relates to cracks in ~ixed positions 

and the crack damage equations still have meaning. 

/ 
--------1-,,"" ......... , B 

" ..... , ............ , 

A 

To generalise further consider the crack in the sketch. 

Let AOB be the locus of tip positions if a = a(n). Then 

the standard deviation of the tip wandering a 1 can be 

regarded as another crack length. This need not be in­

cluded in ()6) however as it probably ha~ the simple form 

g (x, y , 'V ) da 
dn ()8) 

where (x,y,*) are the tip position and orientation. In 

(36) then a1 etc. as a function of a need not be speci-
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fie ally included and if the averaging also includes the 

distribution of a
1 

then the result is suitably general­

ised. The density f(a
1

) is severely restricted with just 

one parameter (a normal distribution seems the obvious 

choice) and if desired other artificial crack lengths may 
\ 

be introduced but the practical improvement effected 

thereby is likely to be negligible. 

In a similar fashion the primary notion of crack 

length can be extended to any geometric magnitude. For 

example an elliptical crack in a solid member can be 

characterised by its semi-axes and possibly the orienta-

tion. In aircraft structures it may often be possible 

to treat the failure of a succession of rivets as the 

continuous progress of a single crack, which cannot l'{ander. 

If this is done a and possibly other parts of (36 ) may 
0 

require· alteration but there is ·11.0 essential difference. 

There is also a need (in the theory) for crack pro-

pagation of a more general nature. In a practical 

structure for example the main failure may be just one 

or two cracks in ess~nce but these will branch, sometimes 

stop at rivet holes ~r be delayed while SUbsidiary cracks 

gro,\o; in booms or stringers. Some of these small scale 

problems may possibly be idealised and analysed as simple 

fatigue problems and the results incorporated in more 

general crack growth laws. The most marl(ed changos 

,'{ith such generalisations are likely to occur in the 

higher cumulant s (Sec t ion 7.0). 

6.3 Initial Densities of Crack Lengths 

.At n cycles there is a finite probability 1-F (n) 
t 

say that a crack has not started. The density must there-

fore have the generul form shOl\"'"n w·ith a concentrilted pro­

bability at the origin. 



ME'an a 

f(a\n) 1-F(n) 

/t 

a o Crack lE'ngth a 

The form of f(aln) must be known in order to solve (35) 

or ()6) and ·,v-e try to approximate it numerically using 

the mean and variance. For any realism however the 

initinl density must also be included and for this renson 

it is considered here. To the first order if 6a is a 

small increment of growth 

:f .6. a o = Pr(a < a < a + ~a). o 0 

Crack 
lE'ngth Typical small crack 

n - k l:J.a I R n 

a + I:J. a o 

As· shown, cracks in this neighbourhood can arise at any 

time between 0 and n cycles. 

described by 

Let a typical time be 

where 

R = Average rnte of initial propagation 

= ~ ... r R ( a) dF ( a, In, a ' = a ) 
.j ,I ~ ~ 0 

o 

which is most closely related to the reduced problem. 



In practice the small crack length a has little 
o 

effect on the reduced problems and in these it is con-

venient to give the suppressed cracks a length of a 
o 

and thus make ~ more easily obtainable. If a(n-t) re-

presents the crack grollTth from t cycles and ,~e substitute 

for t from above 
n 

r = J
o 

f(t)Prla(n-t) < a o +6al.dt ... (/1:0 ) 

Now a(n-t) is a function of the starting time t and the 

propagation time n-t and if both of these are written in 

terms of 

le' = k6 a /ii 

then the crack length can be expanded as a two-dimensional 

Naclaurill series. 

a{n-t) 

·where R is random. o 

= 

In this way we find 

+ R k' o 

Similarly. 

i'(t) = fen) - (n-t)f'(n) + 0(n-t)2 

and 

so thnt 

= 

= I 5f f(a n) - k' an + O(k,)2 

Pr[R k'-O(k,)2 < ~a) = Pr(n(n-t)<a +6 a ) 
o 0 

R/k 

r dF (R ) = 
.; 0 

o 

R/k(1+0(Ll a » r dF (Ro) 
°R/k 

Because dF(R ) is a density the second integral is bounded 
o 

and approaches zero with h:. Thus for all values of' 



k the probability above is 

rR/k 
I dF(R) + O(6n) 

.J 0 
o 

and hence from (40),after some reduction, 

n R/k 

f
0

6 0 = I [fen) -[f(n)-f(t)]}{f dF(Ro )+O(6 a )}dt 
o 0 

u R/k 

= ~a J {f(n>-[f(n)-f(t)]}[! dF(Ro)+O(~a)} dk 
Roo 

lvhere U = uR/fl u • In the limit as 6a~O 

f o 

provided 

co R/k 
fen) r r dF(R )dk 

R .) 0 u 0 0 

Q;) R/k 
r r J [f(n)-f(t)] J dF(Ro)dk 
o 0 

vanishes. In terms of k this is 

U(E) H/k 

I = f [f (0) -f (k~a) ] 'r dF (n ) dk + S 
'0 R J o 0 

and if' fen) is bounded the integral converges with (l1:1) 

uniformly in ~n. Thus 

U(e) R/k 

I :::: r - r J [ :f ( a ) - f ( k6 aiR)] I d F (R ) d i{ + S 
o ~o 0 

where D(s) docs not depend on 6 0 • It then follows that 

I ~ 0 as 0, 

so that (41) is true i£ the integral there exists and if 

c(t) is bounded in the closed intcrvnl (O,n). 
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Returning to (/.1:1) it \· ... ill be seen that its convergence 

depends critically on the behaviour of f(ri ) near the 
o 

origin. If the local stress (in the absence of a crack) 

is approximately linearly dependent on the other crack 

lengths and these have distributions similar to that show11 

above the local stress intensity should also have this 

distribution and be proportionDl to 6 0 • Accordingly 
o 

R lvould also have a similar distribution lvith a finite 
o 

density f F(n) nenr the origin. 
r 

f F(n)r---~~ ___ 
r 

Probability 
d~nsity 

Initial ratp Ro 

Let us now anticipate the next chapter and write the rate 

distribution a~ 

F(R ) 
o 

~1' R 
r 0 = 1 + F(n)e (T(R )-1) o 

\vherc T. (Ro) is also a distr ibution func tion wi th t'otlgent ial 

contact near the origin. 

rate, 

f' 
o 

Substituting in (41), with caa as the minimum growth 
o 

= i'(n)F(n) 

R 

= f(n)F(n) t 
H 

R 
a ca 
o 

if 1. cu a is slllDIJ. By a change of' varit.lble and part ial 
r 0 

integr.d:.i.oll the f'lr~t illlegl'al takes the i'orm 



a 
ca o 

e 

a -f eEl 
r 0 

lv-hose absolute value must exceed the other integral since 

T(R ) < 1. 
a 

Therefore an upper bound for f is a 

,The second integral must also exceed 

_£ ena 

( an r 0 a T ea )--a' e -Rf Ei(f cn ) a ca r r a 
o 

" ••• (42) 
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but the factor in practice lV-auld be extremely small. For 

n more usable estimnte T(u) (U=R!k) ,v-ill be taken as the 

distr ibution relat ing to a triangular density, the 'answer 

being referred to its mean and variance. 

the second integral is 

In terms 0f u 

Q;) 

r -£ u 
R 

r T(u)du/u2 c . ; 0 . ca 
0 

a. and we assume that the integrand is zero at Ca. The 
a 

integrations resemble those above and if the range of 

T(u) is (a,b) then we can arrange the intermediate results 

in the :for III 

H -f u -f ~ 
-1 r' 2 r 8(1 -+u)e -cosh (*f (b- II »-4(b-u)e r ~ r ~ , 

-f b 
.sinh(f (b-u»+2a(2-a/b)e r +4(b-a+,,2:f )Ei(f ~) r ' ~ r l' 

- 4(2+f a)[a Ei(f a)+b Ei(f b)]-2U(b-a)f Ei(f b)jl 
r r r r r I 

No\v- the 
('1:3 ) 

u = (a+b)/2 and the variance is mean 

== 



This is not very good for computation and the simplest 

alternative is the upper bound (1.1:2) \~hich is unCOl1serva-

tive since it favours sho~t cracks. However the form 

of f and of f does suggest that the form of F(R ) 
o 0 max 0 

is relatively unimportant except for the minimum gro,~th 

rate which seems to be a :function o:f local stress and 

the material. 

7.0 Variance and Covariance 
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As well as having intrinsic interest these are impor­

tant in the numerical method to be suggested in the next 

chapter. Their derivation is straigh~forward and illus-

trates the general procedure for all higher cumulal1.ts or 

moments. 

For re:ference purposes ,,,,e show a tnble of the general 

first and second derivatives of ()4) with respect to the 

u, 's. 
]. 

When these are made zero we obtain the differential 

equations 

= a 2 £,(n)-2a f.(n)n. + 2 k. 0". 
o J 0 J J J oJ 

+ 2 [ k ' m + R. ( a In) IF . (n) ] • ( 1-F , (n) ) a . 
J J J J J 

and 

+ k· c:r1 + kk cr. J 0 { oJ 

+ [ k . m +R . ( a In) IF . (n) ] .. ( 1-F . (n) ) (a
k

-a
1 

I . ) 
J J J J <: J 

+ [ k k m + Rk ( a In) IF k ( n) ] • ( 1-F k ( n) ) ( a j - a j I k ) 



lv-here 

a j I k = Length 0 f cr ack j (aver age) \\Then cr ack k is 

suppressed, 

cr. =' J"-th colunm of' covarinnce matrix r , 
-J 

. C1ud as before k" is the j-th rOlV- 01 K. 
J 

If the small term in [\2 is ignored and we define 
o 

eli Ii::: 0 these t\V-O formulae can be combined. One can 

no,\~ 0 bt u in a single e qua t ion for the c ov ar i anc e I1W t r ix • 

In the :first place we take j and k as rOlV' and column 

indices. lYe then rearrLll1ge (/1:4) so that matrices ''lith 

subscript j always appear first. After this the equa-

tion f'or a cotunm and then for [tIl of ~ becomes appnr-

ant. lYe obtain 

::: -0 A o c f.(n)+Kr+ rK t 
J.. 

t 
+( I - r F j (n)J ) [ K m +fFjl(n) J R( a 111.) ] Ac 

-I- A c ( m t K t +R (a In) r F -: 1 ( n ) J ] ( I - r Ii' . (11.) J ) 
J .J 

(lt5) 
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where Ac is u square matrix with elements (a .-a. 11)' i. e. 
J J I ~ 

each coluum is the solution of a subsidiary system. 

For the general rate (44) Hnd (45) both indicate a 

.simple (luadrature and the purely linea.i' case is be:3t 

solved in this way. 

the e qUil t ion 

::: + 

in t er JUS of a wher e 

da 
dn := K a. 

Indirectly we can thus investigate 



d\V 
In = 

a d\V 
au. dn 

J 

:.i.,;' , 

TABLE II. 

DERIVATIVES OF CUNULANT GENERATING FUNCTION 

N N N 
'\" U.il \V.-\V \' a\V I \V.-\V 
) (e 1 0 _ 1 ) f . (n) e 1 + 1 u. k. --t + U . ( k. m+ R. (a In) IF . (n) ) • [ 1- ( 1-F . (n) ) e 1 ] 

i....J 1 ''-- J.l~ 11 1 1 1 
. 1 . 1 uU. 1 1= 1= 1= 

N 
u . a W . -w \' . u. a { oW· O\V} = Cl e J 0 f. (n) e J + L· (e 1 0 - 1 ) f . (n) ~. - -~-

ljIi-1jI N a2 1j1 +k.Q.!L + 
\ u k. t j t 

e + L i 1 au. ou au o J 1 u U . uU. 
J J i= 1 i=l J 

{ 
\V,-W } 

+ k j m ·'Ii j (a In) IF / n) } • {1- (1-F j (n) ) e J 

N 
\' {_ } { ow· OW} \V·-W 

-) u. km+R.(aln)/F.(n) • (i-F.(n» ~--::\- e 1 
,-' 1 ill 1 uU . uU . 

J J i=l 

~ 

Vl 
..;:-



a2 

au :3 
j 

TABLE II. (Continued) 

dW u.a \Jl.-\Jl[ {O\Jl }] = e J 0 f.(n)e J a 2+2a ~ _ ~ 
dn J 0 a au . au . 

N J J 

\" uiao \Jli- W [02 Wi (j2W {O\Jl. 
+ L (e -l)f. (ll)e + __ 1 
. ~ ~u 2 ~u 2 au. 
1= 1 v j v j J 

2 -~}J+ au. 
J 

2 k. 02YJ + 
J au. au 

J 

N 

+ '\ u. k. L 1. 1 

3 w.-W{OW. OW} 
2.:JL - 2 [ k .m+ R . (a In) IF . (n) ] ( 1-F j (n) ) e J a u~ - au. 

0 2 
U . () ut J J J J J 

i=1 J 

N t~2 \' W·-lV u \Jl. 

L u. r k .m+R. (a In) IF . (n) ] ( l-F . (n) ) e J __ 1 
1- 1 1 11 ~ 2 

. 1 uu. 
1= J 

aa tV 
2 Ou . 

J 

OWi otV 
+ 1 aU

j 
- au

j
! 2] 

~ 

\Jl 
\J1 



02 

aU. aUk 
J 

TABLE II (Continued) 

d tV u . a' 0 tV j - tV { a tV jaw } 
- = a e J f. (n)e -- - --
dn 0 J aUk aUk 

ukao tVk-W{aWk otV} 
+ a e f (n)e --- - ---o k au. au. 

, J J 
N 

~ uiao tVi-W~2W. 
+ L (e -l)f

i
(n)e 1 au.aUk 

a2 tV 
Ou. aUk 

J l
' a tV . 0 W t 1 a W . a tV l ] 

+ iJU; - iJU
j I· iJU: - iJu

I, I i=l J -

N 

+ 
a2 tV 0

2 \V 
kl t + k. 

~ au j a u J aUk a u 

\' 
+ ) 

L 
i=1 

u. k. 
1 1 

a3 \V 
t au. aU

I 
0 U 

J ~ 

_ I \Vj-W - I Wk-W 
-[ k.m+ R. (a n)/F. (n) ] (1-F. (n»e -[k 1 _m+R

1 
(a n)/Fk(n) ] (1-F

1 
(n»e 

J J J J ~ ( ( 

N 

I [ - I· \Vi -\Vx - u. k.m+R.(a n)/F.(n)](1-F.(n»e 
. 1 1 1 1 1 

i=1 

02\J) 

au.aU
k J 1 

aWi 
+ au. 

J 

ow ( 1 OWi 
- au j \. aUk 

OijJ tJ 
- aUI~ \ 

,... 
\Jl 
(j\ 



157 

The generalised cracks suggested in Section 6.2 

'\\"ould generally lead to extra terms in (44) or (45) which 

would depend on crack position and orientation like 

g(x,y,$) in (38). There are likely to be similar addi­

tions for every cumulant. 

8.0 Estimation of Initial Failures and Initial Crack 

Lengths 

In this thesis the basic data are assumed to be all 

the S-N data relating to initial failure, the initial 

crack length a and finally a minimum rate ca U
, dependent o 0 

on stress distribution and material. 

In practice S-N data refers to the complete failure 

of simple specimens and the measured lives comprise a 

nucleation or dalllage time and a time of crack growth. 
\ 

However the effect of st~ess concentrations should allow 

a quantitative estimate of initial failure data and the 

initial crack length. 

Consider plain and notched sheet specimens and for 

simplicity let us make the conflicting assumptions that 

their maximum widths are the same and also. that the 

average distances travelled by a crack until failure at 

a given nominal stress S are equal. 

Let the true S-N data be approximated as 

f(N) = n(~ .. ds), 0 2 (s» 

where 

N = log n 

and n( ) is the normal density function. If the notch 

radius is of larger order than the grain diameter then 

for true S-N data 
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= 

thes~ being practical and theoretical stress concentration 

factors. For final failure 

< 

and we hypothesise that this alleviation arises because 

notched and plain specimens have the same residual life 

once a crack has started. Suppose the average crack 

propagation period is a definite function n (S) of the 
c 

nominal stress. Allowing for the logarithmic variance, 

the mean life LS then roughly 

J .. 0'2 (K 8) 
2 T-

e lllc = 

for a notched specimen compared with 

e n = e~ (S) + n (S) 
c 

for plain specimens and the variances can be estimated 

from the test results. The left hand sides are there-

fore knolvll, iteratively at least, and we can find the 

difference between the two lives. For several levels of 

nominal stress it is then possible to build up an estimate 

of ~(S), using these life differences and the assumption 

that it isa smooth monotonically decreasing function of 

S. At the same time this will provide an estimate of 

n (S) but both n (8) and exp(u(S» thus estimated will c c . 

be unknown to the extent o~ a constant. This constant 

can be bounded however by the knowledge that both these 

functions are essentially positive for all stresses. 

Once a first estimate of n (5) ~ (S) has been 
lc ' 1 

made the logarithmic variances 02(S) can be recalculated 

with respect to the mean ~l(S) and the process then 
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repeated. In designing a test series the requirements 

of fairly constant stress at the notch root, smnll numbers 

of specimens above yield and small stress increments all 

indicate moderate or 10'" values of KT • A compromise is 

necessary ho,,,cver because KT-Kf is small for 1o,,, I~ values. 

It is also convenient if the stresses are in geometric 

progression with a ratio (K
T

)l/m where m is an integer. 

In this way the same damaging stress KTS can be reached 

either by a notch effect KT(S) or in a plain specimen at 

a higher stress 1.(KTS). Ford and Lewis70 have also 

suggested that this is convenient for fitting curves to 

~ (5) • Fur ther improvement s should al so follo\" by using 

two or more KT values. 

This is a general descriptio~ of the analysis needed 

to estimate ~(S), 02 (5) and n (5). Assuming we have n (5) 
c c 

let us now consider a and the minimum rate caa.. Ii' 
o~o 

measurements of crack gro,,,th are made then these quantities 

are relatively straightforward, providing the tester has 

the patience to wait for cracks at the lower stress levels. 

If this is not d6ne it is usually possible to estimate 

crack lengths at final failure and ~f growth rates can be 

integrated from 1010wn data or from Paris' lin", as in 

Chapter III, then il. can be estimated from n (S). If it 
o c 

is assumed independent of stress such calculations should 

also provide information about the minimum rate (strictly 

speaking for constant stress only). For more realism 5 

here can represent the scale parameter of a random process, 

as done by Kirkbye 14 



Chapter V 

NUMERICAL SOLUTION 

From the nature of the data alone it is plain that 

most practical solutions of (4.35) will be numerical. 

In essence these equations, with the reduced problems, 

constitute 2N{N+1) first order differential equations, 

becohling (r +1) (N+l) N for the r-dimensional damage' of' 

Calculation of the right hand sides involves 

simultaneous quadratt~e of sufficient moments of a, the 

construction of f( a In) therefrom and then its use in 

the expectation integrals. The random variables here 

:involve the stress analysis of the structure (for random 

loads) and "\vhen one considers the number of point eval­

uations needed for a multidimensional expectation it can 

be seen that efficient stressing and economy of analysis 

are essential. 
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For this reason and the possibility of error checks 

the author favours predictor-correc~or methods for the 

actual integration of the equations together with a finite 

difference starting method. 71 There are several well 

kno"\vn methods and this aspect is not discussed any further. 

For the stress analysis it is best to use procedures 

which can incorporate simple modification techniques to 

modify the results of an overall primary stressing. 

The matrix force and displacement methods are of this 

type and there is a possibility that the two-dimensional 

complex variable methods also allow such an extension. 

In the later chapters we will investigate the use of a 

force method for reinforced flat sheet structures 

which are roughly rectangular. With the present pro-

gress of stress intensity results it is also possible 

that the theory will become applicable to thin-walled 



beams and tubes. 

Among the predictions in the integration of the 

di£fercntial equations will be included the form of the 

cr nct: length densi ty, oxpre ssed in the f'orm of' ~ui t d ble 

However in the expectation integrals simple 

functioni11 f'orms 'v-ill be :fitted to the dillnnge and craclt 

rates f'ound by previous integration steps. For the 

PI' eBeut it seems th'lt the expec t nt ions must ignorc corr e­

Intions between dif'ferent cracks until suitilblc multi-

Val'il'ltc densities nre developed. 
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In the following sections 've first de!:::icribe an empiri­

cal f'o~m of f(a. In) and the fitting of appropriate pnra-
J. 

meters. Its use in the expectations will then be des-

cribed using Gauss-Laguerre integration rule!:::ie 

the fitting of functions to the known damage and crack 

rates is discussed. 

1.0 A Cli\sS 01 Empirical Distributions 

In this section we describe a way of approximating 

the crack length distributions F(n. In). It is based 
l 

on the decomposition shown in the figure or by eauation 

Briefly the truncated exponential distribution 

AD is chosen to satisfy the probability conditions at 

the origin and then the transition curve D is drLllVn 

in such a \.,ray that the f'inal. distribution AC has the 

required moments. The transition is obtained as shown 

by adding a term based on some standard distribution 

funct~on T(x) (x is the random variable here while 

n is a constant) preferably with tangential contact at 

the origin 
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Algebraically* 

::: 1 -[- r(n)e-ax (T(x)-1) 

"'tv-here 

T(O),T'(O) = 0, T(~) = 1 and for future reference 

rex) = e-ax F(n) T'(x) + a(l-T(x». . . . 
The initial value of' this density is the CIUilntj ty f dis­

o 
cussed in Section 6.3 of tho previous chapter. It is 

i\lso convenient to define here 

= r xt 
e dT(x) 

.j 
o 

the NGr of the distribution function T(x). Depending 

on the context this will be written as the function of 

a number of different arguments. 

~O'f consider the NGF of f (x) 

since zero length cannot cOlltribut(~ to any 1l10~nents. 

Integrating by parts this becomes 

* strj.ctly spenking, the crack length belongs to the 
set [O;(ao,~)} but since a o is small with little physical 
effect elselV'here in the structure it is convenient to use 
the range (0,=) and assign the initial density to lengths 
nearly zero. ' 



= 
aF(n) 
il-t 

- F(n)t J e(t-a)x(T(x)_l)dx 
o 

tF(n) 
a-t 

;" e ( t - a) x dT ( x ) 

° 
F(n){ (} = a - t ~L t-a) a-t -'1' 

Expanding this about t:O, 

F(n) = --;- f 1 - ~1.r ( -a ) } 

and 

~F(n) f ( } = ~-2- .1 - ~~(-a) - n}~ -a) . 
n 

whence 

If we now postulate a two parameter form ror T(x) these 

equations determine them. Here there are t'\vo possible 

approaches. In the 1'i1" st a specific form of ~~ (t) is 

knOW1:1 and (3) is duly s,olved. Otherw'ise l\1rrCt) may be 

oxpanded in terms of' its moments. This olfers possi-

bilities for an itert(tive solution sO that even when the 

rirst method is evailable the second may be preferable. 

In (2) or (3) -1 . a 1S a scale parameter (as the mean 

of' the exponential density exp(-ax)/a) Gnd to ensure a 

sort of similarity it will also be used as a scale pora-

meter in T(x). The ~-distribution over (O,~) will be 

chosen as a reasonable transition function, with the 

density 

err 
dx = r(m+n) 

r(rn)r(n) 

m m-l 
a x 

(1+ax)1l1+n 
(4) 



and the moments 

-1" m(m+1) (m+r-1) 
< (/J:A) I-1r = a (n-1) (n-r ) r n 

In addition 

2 -2 m(m+n-1) -1 m 
0 - a J..L = a n-1 (n-1.)2(n-2) 

and there is a mode at x = (m-1)/a(n+1). 

As a Lapace transl0rm ~~(-a) must exist :for any 

transition fUllction ulthough the sories expansion based 

011 (4A) diverges. It has also been found that the 

moments of log-normal and logistic forms become iu:Cillitc. 

After n change of 

r.1.r ( -a ) 
e = D(m,n) 

= r.1.r (m, n) 

since a is i~naterial. 

a N' 
T 

Lind that 

= 

variable, using ( IJ: ) , 

co 

Ii -u -(n+1) (1_u- 1 )m-1 du e u 

say, 

It can also be shown that 

= (l11+n)}~ (m, n) - n}~r (m, n+ 1 ) 

\~hon In = 1 've have 

co co 

r -u -(n+1) "1 r'l r e -u -11. 
.du} c! e u du = e u .J 11 '. J. - ~J 

t 1 
(G ) 

by partial integration. With the recurrence relation 



above this leads to a termint1ting and asymptotic series. 

In terms of ~~ this is 

1 = 1 - -- H-(1,n-1)") 
n-1 'r 

n :2 2. 

Through (5) and (6) all integral va].ues nrc deriv.:\ble 

11" 0111 

r 
e i 

I 
,J :l 

-u 
e U- 1 du = 

lGG 

f'rom the tables of Jahnke-Emde. It can also be seen that 

') 

lim '1 ( ) . m n = constant m,n-+cg ·~T ' 

c:uld when 111 or n = 0 l-IT is zero as one c nn ver i:fy by 

direct sUbstitution. If' we substitute ~~ = 1 into (7) 

we find the asymptotic formula 

and successive substitution shows that 

1 
1. ",' ---+ 

n-1 
- ... X' -]' 

.,. (-) (n-1) 

(8 ) 

= 1 - l/n n > :2. 

From (5) 

For tho purposes of' induction suppose that 

r.I
T 

(111+ 1,11) '" l-~\ ( 1 ,n) - m/ (11+ 1.) • 

Then in (5) again 
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(1;U+1)M..r(1,n) - m/(t1+1) - n m/(ft+l) - m/(n+2) 

i.e. 

}~ (m+2 ,n) }L (1) m r-L + .2!.....} .~ , n - 'ii'+I . m + 1 n + 2 

. . . 
By plotting numerical results it was found thilt the 

C ont our s of 1,,1.r (m, n) tend t o,,,"ar d a set of str night line s 

radiating from the neighbourhood of (O,O.!!). This <.'tgrees 

with the as~~totic formulae (8) and (9) but suggests 

that the parameter 

~ = artan (n+O.4/m) 

is more descriptive than (m,n). 

the best fitting parabola is 

Empirically (for m,~10) 

~ = 0.23 0 921 + 1.641 871 NT - 0.)02 007 }~2 

(10) 

.which is n/2 if MT = 1. The contours of !-iT are shown 

in Fig. 20 and Fig. 21 shows some of the curve~ fitted 

by this parabola. 

With this approximation it is now possible to solve 

(,3) for the parameters m and n using simple trigonometry. 

Rearranging and remembering that 

aH±(m,n) = }I.r ( m + 1 , n ) 

equations (,3) become 

}~(m,n) = 1 - aiJ./F(n) 

2 
M ( ) aU f 1 _ atl _ aO' } 
IT m+l,n = F(n) 2 2~ 
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FIG. 20 VALUES OF Mr (m,n) 

(Parameters of, empirical crack length distribution) 
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(Jo' "., c an be found by (10). It finally £ollows that 
.1. 

II :..: III t .. ll1 t~ - O. h • 
o 

This seems to be the simplest method of £i t t in.~ r (x In) , 

the length distribution. I~wever it is only suitable 

for independent distributions, making no allownnce for 

the correlntions appearing from the solutions or the 

An approximate 1l.11owllnc 0 for 

these is considered below. Ii'r 0 m Ii' i g • 2 1 is c ... u~ it.1 ~ 0 be 

seen that (10) is very inaccurate when NT < 0.:2. 

2.1 Su~nnrising Rates nnd Damages 

Bef'ore discussing the expectation illtcgr.d.s ill more 

detail we consider the :fitting o:f rormulae to the kno,,,~n 

reltes and damages to give algebraic J'orm to R ( a) and 

A ( a ,F ) • 

J70 

SUJ)POSC tllL1t III stops 0:[ the ovel'.:O\ll :i.lltegl'.xtioll have 

b(.~ (Hl C 0l11p1 et cd. At the crack lellgth~ corl'(~."";J)()ndin:~ 

to cl"lch or these ,'Vo kno,,' the rates R ( a) by ll1C!;~n:-) or 

·Khntevcl' structuri.tl analysis is employed. 

·\\-ith tho cl'<'lck suppressed sy.stem~, 1\"ilJ. <:.l.uu ~(N·t·J) ·values 

o:r R. ( a) sot 11 n t t 11 ere l,-r i 11 be mN ( N + 1) d it t it a 1. tog 0 the r • 
]. . 

\\'0 now lot the rate (or dnmage) depond qund.l'<.;tically 

on the crQcl~ lengths with zero length implying .:-:01'0 l'l.lte. 

For cl'ilck i 

::: 

lv-here 

1 
L dilOljk+ °ijk 
1 
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i = 1, •• , N 

j = 0, 

(0 

. . . , 
- No 

N, the index of the suppressed crack, 

suppression) 

k = 1 , ... , m, the replication or step number, 

n~jk = c~nck length 

r ijk = calculated rate, 

= error in fitted formula. 

The crack rate r
ijk 

may also be interpreted as n damge 

rate and it may be an improvement to use logarithmic 

crack leniths a, '1. For the damage rate, a transforma-
~J <: 

tion to probits may also be helpful. In practice these 

questions can be decided after a preliminary solution of 

the problem. 

From (13) one can now fit 2N2 constants which 

imples that m ~ 2. 

of squares is 

E = 
ijk 

Using least squares, the error sum 

2 e
ijk 

and proceeding directly 

= 

= 

-2 ') 01 'k(r. 'k- c "lu l " -d "lUI 'ku , 'k) 
W J lJ 1 +J~ 1 J lJ 
jk 

or 
~2 ~ aljkaijk(rijk-cilOljk-dilaljkaijk) 

jk 

i,l = 1, ... , 
Setting their right members at zero, these equations may 

be nrranged in the pairs 



j 1-;: 

j 1~ 

, ;] 

d 1 °1 J <: 

~ r", 

L aij]~aijk 
jk 

\I 
"J 2 

°ljkaijk 
j 1\ 

with simple solutions. 

= 
jk 

jk 

a l o 1 r o °1 J (. J-J \: 

alolno °11'0 01 Ji. ~J~ .l.Ji 

Dur ing ~1 comput at ion it is easy 

j -:'fJ 
"( -

to add nc,\' tCl'lll-S to the f'ive independent sums forming the 

coufricients Dnd the right hond side. 

In the sumllli.ltions 01 (ill) all the (L:\t,~ l'ijk has hCCll 

given i.lJl cqucll importance. However SillC(~ the li.,r,sof t 

contribution to the expectDtion comes :fi"'om cr'.-ick lenp:ths 

nCi.lr the lllc;nl~ it would be preferable to give more "h-cight 

to the corresponding result~. Another reason ~or this 

is that the range of the expectiltion integrul is (0,00) 

\,-herU[1S the data only go as far as the curl'ent f;olution 

or (3]) or (3G). U~ing moment methods, the cspectiltion 

must thercJ'orc involve an extrapolution unless the entire 

problem is repeated, in \\'hich case the most recent illf'ormn­

tion could be used in tho :first part of the l'ilUgC ,lull the 

extrapolation would be replaced by dittu :from the prc·vious 

run. 

To aid the choice of n ,voight :function let U~ try 

to approximate the expectntion 

G(x) = 
r 
'g(x)dF(x) 

.J 

.1X + b ~ g (x) 

Khich has the errol' 

o (x) ::: g (x) - ax - b. 

For u pcr~ect approximation 



fe(x)dF(X) o. 

If we f'it a, b by minimizing the error 

r ~ 

E ::: ; e k; (x) dF ( x) 
.J 

'\\ e riud the. normal equnt ions 

r 
·x dF(x) 

r 
ixclF(x) 

.J 
[1 

b 

,.. 
::: ! xg (x ) dIt' (.,,~ ) 

l g ( x) ell" (x: ) 

annlogous to (J l1 ) • The coe~~icient mntrix consi.sts of 

'J ,J 

mo 1":.10 n t san cl i t \'i i 11 1J e f 0 un d t h n t (15) is l\ 1 so :3 i:~ tis fie d • 

Thus the density rex) is hern the ideal Keight Function. 

This argumont can be extended to any Jine<:ll' l'cgreSS-LOll 

·hith the st.~me l'(~sult and the practical implication is 

thnt c(lunt ions such as (1 1l:) should have weight s similar 

to the joint deu;:;ity which in this context is o:f course 

unl-:nown. 

On Ll computer it is most economic in (:1.11:) to .storc 

ouLy the cOllllllete sums and add to these ns tho solution 

pl'ogresses. At each. st<_lge f( a In) and therefore' the 

ideal '\,-eight fUllctions change and with only thc!:;5c sums 

in storage it becomes impo!:;5sible to always, if ever, hi)Ve 

(Ill ideal \,;eighting. The only usable weight is in rctct 

a :fullction of tn, the step number, Clnu since one expects 

the joint dtJllsity to increase on the \~~holc ns the mcnn 

is ilpPl'oQchcd the most obvious height is 

\'.' (Ill) = 111 

. O. 
or possibly a hlgher pO'ivcr m • The sums ill ,111:) then 

take the :form 



2.2 Expectation Integrals 

The approximation (13) is well suited to the form 

of solution envisaged because it transpires that the 

detailed form o.f f( In) ~s irrelevant. If the rates 

and damages are known explicity in terms of crack length 
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and more accurate estimates are desired then the joint 

density and the associated integration formulae are briefly 

discussed in Appendix A. These formulae are also re­

quired if the approximation (13) is used for logarithmic 

or other transformed crack lengths. 

Without the subscript k the expectation:of (13) is 

Jr .. dF ( 
~J 

In) = 

= 

. . . 
requiring means and also covariances of systems with 

suppressed cracks. In turn the latter require the· 

( 16) 

~olution of lower systems with two suppressed cracks and 
N so on until there are 2 systems~ To the approximation 

he~e we can avoid this proliferation by putting 

or more accurately 

. . . 
which includes a rough correction for scale. 



Chapter VI 

~lATRIX FORCE ~lETHOS 

The preceding chapters on the statisticnl aspects 

nre quite general, being applicnble to any sy~tell1 \,hose 

decay can Le described in two stages. The remainder 
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,..,-ill be devoted to illustrating the theory by l_t par ticular 

type of' example. In the £ollowing the general use of 

mntrix Eoree methods is described and in Chapter VII ,.,-e 

consider rectangulnr reini'orced panels. However SOllIe 

of the methods used have a wider applicability which will 

be mentioned as the occasion arises. 

The progress of' a crack in a structure litlly oe regard­

ed as "ij process in which various lands in the ~tl'l..H.:turi\l 

elements become zero,or more brie:fly,u cutout IJrocess. 

For u. general crack these loads nrc not the oLvious one~; 

nrising :from the idealisation of the structure but other 

intcrmediute londs which we assume to be lin(~nr tr<lns-

formutions of them. For the originlll idealisation the 

loads 
" 75 

arc 

5 = + .... 
:::: bR 

5 = Coluum vector of' gener'llised ,:-.;tresses or 

internal loads. 

bo :::: Nntrix \<7hose colunuls represent loads sta­

tically equivulent to some exterlllll Loree 

system. 

b
1 

:::: }latrix o~ self-equilibri'lting interni,l 

force systems 

R = Colunm vector of magnitudes of external 

systems. 



x :: Column vector of magnitudes of internal 

systems~or redundants. 

The deflections of each element are noW" given by 

v :: f 5 + H 

f being a square :flexibility matrix while H is i1 column 
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of initial strains. Since b
1 

is a set of self-equilibra-

ting systems 

b~v;: 0 

by the theorem of' vir~ual worI\:. If ( 2) and· ( 1) ar e now· 

substituted into this and the resultant equation solved 

:for X then 

X 
-1 b t f b R M D- 1 b t H :: - D 1 0 1 

.. 

so that by ( 1 ) 

5 ( b 0 -b D- 1 b t f b ) R -
-1 btH ::: 1 D 1 1 0 1 

where 

D 
t 

::: b1 f b1 

1.0 General Nodification Nethod 

Using the standard initial strain technique 75 we con­

sider the simultaneous treatment of cutouts and modifica­

tions. Mathemat~cally we try to find initial strains 

to make the submatrix Sm of 5 zero while the remaining 

stresses are appropriate to an internal flexibility 

;: f + 

Assume that initial strains are only needed in the affected 

elements and let H, H be the subvectors where the 
111 c 

subscripts m and c refer to modifications and cutouts 



respectively. From (4) after suitable partitioning 

S = b R - b D- 1 

[ b~cb~mJ [::J 1 

. 
Now 

V = f 5 + H 

and in the fully modified structure 

v' = f' 5' 

= f'5 

since 5' = S by hypothesis. Equating V and V 1 

over the rows appropriate to H we find that m 

= 

From the cutout condition 5 = 0 we similarly find 
c 

• •• (6) 

and these t\\"o equations may be combined as 

• •• (7) 

= 
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Now consider the effect of changing the flexibilities 

in some members where the loads are to be made zero by 

the cutout method. If this is done b ,b etc. above 
c tl1 

will have some elements in common and the number of equa­

tions represented by (5) and (6) will be excessive. 

In addition the extra equations will be inconsistent. 

Thus the cutout conditions (6) must be allowed to dominate 

and if necessary exclude any of the loads in the modif'ied 



members. If some trivial equations are added for the un­

affected members than (7) can also take the form 

o ::: . {bR - b 1 D-l[b~c b~mJ [ H c ]} 

. Hm 

(8) 

o I 

f~ 

which is useful when considering the transformed loads of 

the next section. 

1.1 Use of Transformed Loads 

We now view a crack as the generalised cutout process 

85-" 0 and to treat. ,it one· can repeat the analysis based 

on (1) with the corresponding transformed loads 

T ::: coR + c1 X 

where T ~tc. are defined by (1) in the alternative form 

. [:: 1 
;:: + 

amounting to a prcfactor 

say 

The load vectors T and S must be of the same order 

and as above we suppDse~ the elements of 5 are rearranged 

to obtain this convenient partitioning. The rows ofB 

(or 8*) mu~t also be linearly independent and preferably 

well-conditioned. This is discussed in Section 2.1 of 

Chapter VII. It is also possible to approach linear de­

pendence between rows of 8 and the unit elements elsewhere. 
\ ' 

and this is discussed below. 

The de:flections are still 

v ::: fS+H 
-I 

~f B~. T ./ H 
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and after the transformation 

W = S:tv 

-t 
f B.:- 1 T 8* H = 8 * + 

= gT + H* • 

Equation (8) now becomes ( D not changing) 

t t 
0 = 0 {cR- cp-1[ c 1e c1mJ [He-]} • •• ( 9 ) 

0 I Hm* 

Hm* 9 

where H * = 8;tH etc. and 
m 

rO 96 oj = -t ~ 8* 0 fil 0 JS;l 

corresponding to the transformation. 

are of the same order and that H here has the same 

order as 5, unlike fHc*Hm*}. 

The transformed cutout equation is next interpreted 

in terms of the original load system. Equation (9) is 

first premultiplied by 

rearranged as t rI B I ], and since the left o m 

hand side must then contain H (by returning to the 
m 

original structure) 

With this change the r~ght hand side becomes 

o 
o 

Hm* 

= 0 \ I 

o 
fi.\ 

rHe -1} 
lHm*J 

• •• (10) 



The equations not involvilng f6 may 

form 1 t t 

[~l = ~!!P8bR - Bb 1 0- [b 1
8 

be abstracted 
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in the 

and these have a rank equal to the number of independent 

load conditions, are consistent, and reduce to the formula 

B { b R - b 0- 1 
[ b ~ B t b~m ] [H c * J} = 0 

H (11) 
m 

generalising the case of simple pure cutouts. The 

second term in (10) now vanishes and (10) and (11) com­

bine in the Eorm 

• •• (12) 

which is directly obtainable from (8) by substitution of 

transformed quantitie~ as one would expect. 

This expedient how"ever gives no information about 

the independence of the various equations. In practical 

s"itu'ations, \\Then ~leltlents of £'1 exi"bil-ity corresponding 
. . 

to certain loads are altered, many of the same loads 

enter the crack condi tions BS= 0 • 

. Now f~ and 96 conform with one another and~~ith 

bm etc. which in turn conform with a set of loads not 

altered by the transformation B*. 
by the partitioning. 

This is indicated above 

In practice f6 will be found for all loads. We 

must then delete all rows and columns corresponding to 

those loads which we regard as transformed in order to 

obtain valid modifications. There is a choice about 

which loads to retain and the same cracking problem can 

be Cormulated by many different sets of equivalent equa­

tions. 



This is·a subject on which further work would be 

useful. To obtain a well conditioned transformation 

however it is plausible that loads not corresponding to 

the flexibi~ity changes should be altered as little as 
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possible by the transformation. 

the cut boom shown below. 

As an example consider 

The original loads here are Pi' P2 and the transformed 

load is(3P i + Pal. If we consider the alternative load 

systems 

[P 1 J = 

[: J I ::J 3P 1 +P2 

or 

[:: 1 +pJ 
= 

[3 :] [ ::] 
it can be seen that the lutter is better conditioned. 

In the limit as the cut approaches Pi the transformation 

becomes singular and this is the reason why the choice 

of load delet ions does not present it self for sintp'le 'cut­

outs. 

From the type of behaviour described above it is 

plausible to extract the rule of thumb; 

"If there is a choice replace the loads '''hich act 

nearest to the crack by the loads acting at the crack. n 

Finnlli'(12) may be rearranged in the standard form 



18.2 

where 5 ,5 and H (H *) refer to b, b 1 etc. while H * m m m c 
ref~rs to the transformed· system, although this has no 

practical consequence. The brackets [ ] will always 

denote a matrix of this type called a modification matrix. 

From the modified stresses 

-1 t 
C 1 0 C 1 H * 

of' the transformed system premultiplication sholvs that 

The deflections are 

w = 
= 

i.c. 

t 
b J-

1m 

The internal work is t 
b* V * 

and recall that 

t 0, b* f b = 1 

t 
BJ}[ 

and if ,~e 

• •• (14) 

] - -\ [B b b m J R -

substitute :for b* 

by the theorem of virtual work, the modified flexibility 

will be displayed as 

F* = F + [ b t B t b t J[ 
m 

(where F = btf b ) while 

= b - b
1 

0 - 1 [ b it t t ] [ B bim 

• •• (15) 

••• (151\) 



2.0 Inverse of Modi:fication Natrix 

When f 6 is small the two inversions implied.by[ ]-1 

will be extremely inaccur'ate unless a more direct method 

can be found. One such method is described here based 

on the partitioning between cutouts and modifications. 

The, main importance of this procedure is as a bacl{g.r,o..und 

to the proof of a more efficient method in the next 

section. 

To establish our notation write the modification 

matrix of (13) in the form 

[
0 1 + [K c 

r- 1 K 
6 nlC 

[ ] = 
K 1 CUt 

K 
m 

where the bold type has been eschewed to give a milder 

appearance to the steps below. 

inverse 

From the partitioned 

where 
':"1 

K * = K - KKK e . e em m me and K = K - K K- 1K • 
m* m mc e em 

It is now' convenient to introduce the -t notation for 

the inverse pf a. transpose. 

identity 

We also make use of the 

= 
= 

Thus 

[ ] = 

A- 1 (I+A- 1 )-1 

(I+A)-l. 

-K-1K K-1£_1] c em m* b. 

I + 1(-1r- 1 
m>r· t::. 
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and upon inverting and cancelling part of the upper right 

hand section 

[ 

= 

K K (I+fAK *) K * c cm u m c -1 -1 1 [ -1 

-1 -1-1 
(1+f A K *) fA K * -K K K * 

u mum m me e 

= [f I - K- 1K ( )-1K-1K r }K-
1 

e em m me e* 

-1 -1 
-( ) fAK *K K K * 

u m m me e 

K~'~~m( ( ) -1_ 1 )K~!] 

( )-1 f6 

= [K-
1

{K -K ( )-lK -1K . }K-
1 

K-
1

K K-
1

[ ( )-t.-1J] e e em m me e* e em m* . 

_( )-l fA {K -K K- 1K K- 1K }K-! ()-lf6 
u me me e em m me e 

-1 -1 ( ( ) -1£'6 -. (.) f K K I) 6 mc c 

When this is substituted above the off-diagonal submatriees 

become transposes while tbe leading one reduces to 

From the identity the second term here can be written 

(ignoring some prefaetors) as 



= ( 

The whole submatrix is therefore 

-1 
which does not -require K *_ 

e 

Finally we have the exact result 

[ = [K-
1

+K-
1
K f ( )-tK K-

1 
. c e em 6 me e 

_ ( ) -if K K- 1 
~ me e 

which may be factorised if desired. 

1.85 

_K-
1

K f ( ):-tl e em 6 

-1 
(I+f:'~KmJ f{). 

~ •• (20). 

When the chnnge in 

flexibility is sufficiently small this becomes 

[ = [K-1+K-1K f K K-1 
e c em /1 me e 

-1 -fAK K u·mc e 

-1 1 -K K f/\ c cm Ll 

f/). 

• •• (20A) 

and of course Kern = Bb1 0 -1 b im etc. The inversion of' 

(20) cun be achieved 'vi th u knol .... ledge of K- 1 K K- 1 and 
-1 e' me c 

(I+f~Km*) • 



2.1 Solution by Elimination 

It is well ImolV'll that the refined variants of 

Gaussian elimination known as the Chio, Choleski,76 

Crout 77 or Doolittle78 methods are equivalent to factor­

ising the coefficient in the equation 

Ax = Y 

as A = LU 

where L, U are lower and upper triangular matrices. 

The intermediate stage in the solution of (21) is 

Ux = -1 L y, with L in storage, which is 

followed by the back solution 

-1 -1 x = U L y. 

Now apply Crout's method to the partitioned matrix K 

and suppose that-the elimination procedure has just 

passed the rOlvS and coluJlU1s of the cutout coef:ficient s 

K • 
c Then at th~s stage we have achieved the following 

factorisation 

K 1 cm 

K m 
[ 
L 1 [U L -11\. 1 c c c crn 

K U- 1 L U 
mc c * * 

(K ==L U ) 
c c e 

Here L and U are obvious. 
e c In addi tion lve must have 

L (L- 1K ) + O.U* = K 
e c cm em 

(K U- 1 )U + L* .0 == K mc c c mc 

which establishes the off-diagonal factors. 

I( U-1L-1I\.~ L U 
+ * *= mc c c cm 

K m 

Finally 
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or 

L*U* = K - K K- 1K 
m mc c cm 

... (24) 

= K m'" 

from the previous definition. Apart from this restric­

tion L* and U* are arbitrary. At the stage envisaged 

in the computation '\~e have faetorised Kc and found the 

off-diagonal factors. From (23A) it can also be seen 

that the process of finding K * is exactly the same as m 
ordinary elimination except that the subtracted scalar 

products only contain terms numbering up to the order of' 

K. Pictorially, 
c 

New element 

Having an algorithm for Km,*" ,~e cOan now outline the 

essential steps in the solution of a combined cutout 

and modification problem. In practice only one or at 

most two arrays are necessary, or in a computer the same 

storage space can be used, for the entire problem. To 

start with there is (13) in the form 

[

L U 
c c 

K 
me 

After proceeding with the usual elimination aB far as 

Km we have the three arrays 

~ U rc 0 L-
1
K " L- 1B S 

c 
T ~ C em 

~::~ 1·1 ,-----K-m----.:.!----S-m--
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Acting as in (24) the ~oupling between cutouts and modi­

fication can be removed and we then have 

L- 1K L- 1B S c em c 
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~ 
(25) c . . . 

K·. -1 K S K K- 1U S U 
m* -mc c m mc c 

Confining odrselve~ to the lower corner only we can now 

form the correct ~quation for the modification strains 

(I+fK *)H = f (5 - K K- 1 B S). m' m m mc c 
• •• (26) 

This is still 'part of, the array (or in the same storage 

block) and the elimination can proceed as before except 

that the oper,ations ar'e no\v confined to the element s of 

(26). When the whole elimination is completed then (22) 

has been'c\ompletely factorised and the back solution can 

procee~'without any special provisions. 

2.2 Discussion 

As the crack progresses in a fatigue problem there 

is a continuous change in the flexibility and an occasion-

al cutout as various members are severed. At each crack 

step the array (25) becomes larger and in order not to 

waste previous computations it is desirable that the 

loads associated with the current flexibility changes 

should corr~spqnd to elements near the lower right hand 

corner especially since the type of change involved alters 

a large number of elements. When another cutout occurs 

there is no way of avoiding a recalculation of the lower 

corner but its effect can still be confined to this part 

by suitable ordering of elements in the array. 



In themselves the modified loads found by calcula­

tions such ~s,these have no interest and one needs only 

those requir~d for estimating stress intensitIes. 

Since these are on the whole the loads corresponding to 

the currently changing flexibilities the economies above 

will also tend to reduce the time or labour 01 the buck 

solutions. 

However it is obvious that as the solution of the 

crack-damage equations progresses the amount of struc­

tural analysis for each crack step will increase. It 

iS'reasonable to expect this because, the cutout techni­

que represents an alteration of' all undisturbed structure 

and as the cracks extend this disturbance increases also. 
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For this reason it may be worth considering updating the 

"undisturbed" structure at some interval to be determined. 

If' this were done (and only an elegant means is worth­

while) the size of the structurnl problem would decrease 

with each step because of the decrease in redulldnncy. 

3.0 The Representation of Cracking 

To solve a f'atigue problem one stnrts to integrate 

(/J:.35) or (ll.3G) and at each crack step the chunge in 

flexibility f'll is added to the previous changes foJ_low·ed 

by a check for the complete failure o:f <lny member, ",·hlch 

must be indicated by another row in the set 01 load con-

ditions In the programming it was found that nu-

merical methods lvere best :for this purpose and the gen-

eral principles are set out below. By n change of' word-

ing much of the discussion can be mnde applicable to the 

elements in displacement type analyses. 

Ap~rt from an overall constant the geometry of' a 

given type of element determines its flexibility. Con­

versely if the type is defined closely enough this 
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flexibility represents the geometry. It follows that 

the number of independent elements in a flexibility matrix 

must at least equ~l the number of parameters defining its 

geometry. As on example consider t~e general flexibility 

= a 

for one-dimensional elements. This can represent uniform 

beams, booms or torsional members and if the leading ele­

ment is unity there remain two independent elements. 

Symmetry is implied by (, the equali ty of diagonal element s 

'while the t reflects the uniformity of properties along 

the length since a linear variation of load is almost 

implicit. If a boom is now weakene'd' by a cracl( whose 

effect is approximated as a ,concentrated flexibility f i 

then it is easily shown thrit the flexibility becomes 

f' = o + f [ (1_0.):3 

0,(1-0.) 

0.(1-0.) l .. (27) 

( i-a) 2 

where the crack divides 'the boom in the ratio 0,:(1-0.). 

Convers~ly, if we have such a flexibility then the form 

. (27) can be used to solve for £/AE, f' and 0,. If only 

two elements of f~ are taken to be taken to be independent 

then we can find -fAE/£, anon-dimensional crack length, 

and Cl which indicates its position. In the 'next chapter 

we consider cracks in rectangular skin panels. When 

,these are partially cracked their non-dimensional des-

cription requires four parameters, for example, 

Aspect ratio ; Tip positiqn (2 coordinates.) ; Orientation. 

Th~s if n is the order"of the flexibility 

tn(n+1) - 1 > 4 
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or n > 2.7. This may be realised by a shear panel w'hich 

is also allowed to carry t~o uniform direct stresses. 

By making one principal stress zero this system can 

also represent a completely cracked panel. However the 

uniform stresses would not allow the crack position to be 

localised so that this representation becomes no better 

than a simple cuto~t. In effect the flexibility' has 

become singular sO.that the number of independent elements 

decreases to 'such an extent that the geometry cannot be 

fully described. A complete crack in,a panel can be 

localised by a 5-th order flexibility, which allows linear 

variations in the direct stresses. In Chapter VII we 

derive 9-th order and 13-th order flexibilities from which 

those of lower order can be derived. 

A uniformly stressed triangle has three natural modes 

of deformation and the corresponding stiffness matrix can 

describe a partial crack. As above however a complete 

crack cannot be localised in a uniform stress field for 

which six natural modes are required. 

3.1 The Vse of Moving Elements 

Consider the section shown of an idealised structure 

with a crack which 'first extends from panel 5 in Fig. 22 

(a) to A and then to B ill the next step. It is plausible 

that the growth to A be represented by changing the flex­

ibility (or stiffness) of panel Ja as well as that of 5 

and any other panels. The failure of 5 is then. described 

by imposing various conditions on its local stresses. 

When the crack tip reaches B nothing is changed 

except that we now expect the effect of the tip singular­

ity to be felt in the neighbouring panels. If the flex­

ibility of Ja is suitably altered this will occur but not 

to its fullest extent because, until they are reached by 
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the crack, the panels la, 2a and 4a are essentially differ­

ent from 3a. Another objection is that the nature of a 

stress pattern will change rather too suddenly when the 

crack enters a panel. 

These difficulties can be partially overcome as in 

Fig. 22(b) by supposing the flexibilities of la, 2a and 

4a to derive from the strain energies of a fictitious 

moving element M, containing the tip, and from the remain­

ing parts lb etc~ of the actual elements. The stress 

pattern in M is appropriate to a crack tip while the 

stresses in lb etc. belong to ordinary idealised systems. 

When a crack moves a short distance, as in Fig. 23 (a) 

the change in flexibility is given by the integral of 

strain energy over the shaded areas, namely 

the subscripts referring to the different types of panel. 

Before it is overlapped by M the ~lexibility of a 

panel P is undisturbed. Consider the remaining effect 
, -

afterM has passed. At the start and finish -P and M 

do not overlap and the first and last flexihilities 

cannot depend on M. Thus we need only consider the 

idealised stres~ systems whose energy ~s represented by 

Ua· The complete effect of a passage such as that shown 

in Fig. 23 (b).may be represented as 

U* = ) f r 
r v A.P 

l. 

,.. 

J J dU 
B.P a 

l. 

l~here the regions of integr-ation A.P, B.P are those common 
]. 1-

to P and to the particular region of type A or B in Fig. 

23 ( a ) • 
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NOlV consider a small element dP which must successive­

ly be outside, inside and again outside of M. If it is 

first covered by M. then it must make a negative contri-
~ . 

bution in the integral over B.P and this is the only 
~ 

negative contribution. Similarly, if Mj leaves dP(j>i) 

there is a corresponding positive contribution from A.P 
J 

and this also occurs once only. 

Thus dP makes no contribution to U*. This is true 

also if M never crosses it and if it is crossed more than 

once the sequence above ~s merely reperited. By consider-

ing all parts of P it is now obvious that U* = 0 so that 

the final flexibility is the same as the original. (Not 

all of it can be used however for new cutout cond~tions 

will appear for which some of the corresponding loads 

must be deleted.) The proof here applies also to stiff­

nesses and elements of any shape. 

The loads on M do not belong to 5 or 8 5 but"-must 

be obtained from them by interpolation. In a computa-

tionthe intrinsic f'lexihility of' M is a know'n quantity 

not greatly affected by its translation. Thus the con­

tribution of'dU to the flexibility with respect to -5 
m 

arises from the change in this interpolation and only the 

idealised stress systems need to be considered for direct 

integration. This will become clearer with the detailed 

analysis below. 

For rectangular panels the optimum positioning and 

intrinsic flexibility of M are treated in Chapter VII. 

3.2 Fitting Generalised stresses to Arbitrary stress 

Systems 

The loa~s acting on M can be approximated by MS 
a 

\V'here M is an interpol£; tionmatrix and 5 a. submatrix 
a 



(a) .. 1a . 2a (b) . 

5 -5 

4a 

F'IG~ 22 MOVING ELEMENT .. 

(a) 

. AiP 

(b) 

FIG. 23 ~LEXIB'ILITY INTEGRALS WITH 
MOVIN'G . ELE.MENT 

. Mn.· 
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of 5 contoining those loads likely to be needed in the 

interpolation. "Generally, the interpolated forces cannot 

be in complete equilibrium with the internal str~sses 

0- (r) assumed for N ( r ::: radius vector). HO"w"ever in the 
m 

idealised elements ther~ will be a set of stress patterns 

CT'Ni (r ) for each natural load and these '\vill have corres­

ponding modes of deformatJ..on fNi ( r ) such th'at 

or with equilibrium 

6, , 
lJ 

J
' t 
CTNi ( -s ) P Nj ( S ) dS =. 0ij' '\vhere 

s = boundary position,. 

dS = e,lement of' boundary. 

These syste~s can be postulated for M also in which we 

now suppose that 

) a.erN,(S) 
L ). ]. 

i 

For a good fit we now postulate that the virtual work 

done by each side 0:(',(28) over an arbitrary displacement 

u( S ) is the same. Sine.e there is internal equilibrium 

this can be expressed as 

F' \I'J j 0" t ( 5) u CS) d S = La, 
s m is]. 

t 
~N', i ( S) u ( S ) d S 

integrating around the boundary. Since it is arbitrary 

each natural mode can be substituted for U( 5 ). Using 

the orthogonality enjoyed by these it is found that-

a i =. J cr!( S ) fI'{i (S)dS / Jo-ji (5) fT!!i ( S ) dS •• (30) 



where the denominator is retained in order to indicate 

the formal resemblance to Fourier coefficients. Owing 

to the finiteness of the approximation,equality. in (29) 

is restricted to the linear combinations 

u( s ) = 

of the natural modes. The virtual work is then 

L a i b i J s erN.i ( s ) fN; i ( S) d S 

i· 

'3.3 Nodi:fied Flexibilities 

We can now calculate the modified flexibilities. 

It is assumed that the size and relative position of 

M have been determined and ,,,,e also assume that we know 

the values of strain energy and the forces corresponding 

to M 5 for a standard element of type M wi th a fixed a . 
level of c:r ( r·). These forces are fitted by (30) and m 
in our case the standard element ·is a rectangle of unit 

area and unit thickness under the plane stress system 

corresponding to a stress intensity of 

In the sta~dard element s, for 'which aspect -ratio and 

crack orientation are variables, let 

I 

= Strain energy (by integration of o-t (r )dJC- ( r» 
m7 m 

= .Standard system of generalised forces, fitted 

beforehand by (30). 

= Flexibility of element dxdy. 

For the uncracked structure the flexibility is given by 
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= 

= 

= say. 

When M ~s removed, the reduced integral 

defines 

r O"t cp q-- dV 
J V-N a a 

f - f and the contribution 
m 

a flexibility from Urn where 

U 
m = 

K2 . 
2rt !J. tt , 

fro is replaced by 

obtainable from dimensional considerations, where 

t = sheet thickness 

K~ = energy release rate, still to be related 

to 5 , 
a 

and £2 = area of M. 

Now the forces on Mare 

w'hich must be related to the interpolated f'orces MS. 
a 
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This is done by fitting K through the least squares model 

= 

~ being an error vector. 

A 

K = 

and substituting into (31), 

2n:U = 
111 

t 
J:.1inising ~ E', 

. . . 

• •• (33) 



The form of this shows that 

::: ~ rr t /n:t ( r t r ) 2 

may be regarded as the intrinsic flexibility of the 

fictitious moving element. Its rank of one could be 

expected from the fact that (for a given geometry) K 

uniquel~ determines the stress i.n M. The independence 

from £ follows basically from having a fixed stress in­

tensity in the standard element. 

t Equation (33) also shows that M fMM is the con-

tribution of M to the complete flexibility which can be 

lvri tten 

== f - f + m 
t 

M f~1 M (34 ) 

In application f is found by numerical integration and 
m 

there is also a progranune :for using (30) to find the 

standard forces in the normalised form 

t and another to form r M from the values thus obtained, 

after the loads for the modified st'l:'uctUl:"e have been 

found. 

In Chapter II we discussed the probability distri­

bution of K and of local stresses. Now the forces 5 
a 

used in (32) come from an equation such as (15A) and 
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if, we suppose that the numerical values there are related 

to unit magnitude of the corresponding external load 

system R. (belonging to R ) then we have ~. factor of 
. J. 

proportionality between K and R.. If there are several 
1 

systems a.nd R is not a scalar one Call ill this way find 

the required element s of A -1 in (2.20). 

The same argument applies to the local stresses 

responsible for damage but here there are no general rela-



tions such as (32) although a linear form will appear 

fo~each specifi~ case. 

Before leaving this chapter it is worth noting that 

the method described of modifying flexibilities need not 

be ~onfined to fatigue cracks and can be generalised. 

Suppose a structure has a small discontinuity where 
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the stress pattern differs from that else,~here and con­

sists of. a superposition of basic patterns with the vector 

of magnitudes·K and the intrinsic flexibility fIe 

Then r becomes rectangular and (32) becomes 

K = 

while 

f ~1 = 

with the rank of fl. 

If a displacement method were contemplated the 

theory for the modified stiffnesses ""ould be exactly 

analogous to these two sectionse The roles of forces 

and displacements would be interchanged75 so that r 
would represent the modes of a standard element and M 
would interpolate between modes. Values of U and the 

optimisations of Chapter VII apply to both methods. 
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Chapter VII 

CRACKS IN RECTANGULAR PANELS 

To demonstrate the feasibility of the direct analysis 

of crack growth a FORTRAN IV.progranune has been' 'devised 

for flat rectangular reinforced sheet structures. The 

basic ;elements here are booms and shear panels which in 

our case require to carry direct stress also. Below we 

consider suitable generalised stresses and the correspond­

ing flexibility for whole and cracked rectangular panels. 

We also discuss self-equilibrating systems and the load 

conditions to simulate a complete crack. 

1. Generalised stresses 

For the boom we have used the normal model with two 

different loads at each end and a constant shear flow to 

maintain equilibrium. In the panels how-ever there are 

~ostly nine natural forces giving rise to membrane 

stresses. 

These consist of the corner systems shown together 

l,,",ith a uniform shear flow. For more refinement it is 

also possible to add the quadratic modes below and obtain 

a thirteenth order system. This would allow the stress 

to increase on both sides of a crack whereas a linear 

representation in a cracked element means that a tension 

on one end is matched by a compression on the other. 

This is not true in practice but the smaller set has been 

chosen because of limitations in computer storage. 

-2 

l -'1 
I b 

cc 

Pur~ . 
b 8 shE'a,r 

1_ ~ 
1 

(al L- a -J -2a 
(b) ( c ) 



To find general formulae for overall flexibility and to 

calculate changes in flexibiliti we require the internal 

stresses corresponding t~ these land systems. These 

can be found by assuming linear or quadratic gecay of 

the direci stresses and considering the equilibrium at 

a general cross section. For the quadratic systems the 

differential equations of equilibrium are also needed. 
J 
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The results are shown below in terms of the non-dimensional 
+ coordinates ~, ~ where the panel edges are ~ = - 1 and 

+ 
~ = -1. These stresses also satisfy the equations of 

compatibility ·so that they are exact. 
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TABLE III 

NATURAL LOADS AND DEFO~~TIONS 

(a) Pure Shear 

1:' xy = 1 

(a+b)u 1 11( 1+J~2 ) ::: 1j; 

(a+b)v ::: t 1;(1+3Tl
2

) 

(b) Corner Load 

a ::: ta(1+~)(1+311) 
xx 

a ::: 0 yy 

1:' ::: ~b(311-1)('rl+1) xy 

4ab ~-( 1+11) f3l;2 ~:~ 11:~ 
13-2 } u ::: + +1+13"' -

j., _1_ 
-2 1+~ r.3~2 +1+413 }+1-2; 

Llab v ::: - J ( 1- 112 ) 
2(1+13) 

\\T"here S· ::: b/a. 

( c) Quadratic System 

1'( 2 2 t5 ::: q 1+~) (1-311 ) xx 

(j ::: ~ P2(1_112)2 
yy 

1:' ::: --}f3 11 ( 1 + Z;) ( 1-112 ) xy 

1.6bu ::: (1+~)(1-3112+3(1-~» 

v ::: 0 
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Mirror images of the systems (b) and (c) are obtainable 

by putting ~_ -~ or ~_-~ or both. Similarly rotations 

may be effected by interchanging a ,~, a and u with a t . . . xx yy 
'1\, b and v respectively. .,TheE!!e variations lead to eight 

forms of (b) and four o:f (c), making up the total number 

of systems. 

The natural modes were determined by the follol\Ting 

standard method. They were first taken to be linear 

combinations of the four types of mode typified by those 

below (1,1). 
-1 1 

LJ 
3 

[!] ~ L1J2 
Algebraically 

Ap ( P given p , PN square) ... 
and the problem becomes that of :finding A • 

the virtual work evaluated on the' boundary 

Consider 

u= Jpp! dS 
s 

where P, P * are arbitrary forces and displacements which 

are respectively in equilibrium and compatible. 

these are expressible as 

However 

PN = set of natural loads) 

and 
= 9 t A -1 PN 

so that 

= t r t t-t C j PN P dS A • A g. 



A-tg In this expression may be rega~ded as the factor 

needed to obtain P* from PN 4 

arbitrary 

Since C and 9 are 

= 

~nd by definition the right hand side is diagonal. On 

the left this can be ensured by making 

= 

1.1 Flexibility 

Because of the various sy~netries the 9 x 9 flexi­

bility matrix has elements falling into 10 categories 

and taking 14 separate values. For the 5 x 5 and 13 x 

13 flexibilities the corresponding numbers are 5(8) and 

15(22). The load systems for each of th~ ten categories 

. are' shown in Fig. 2l!. The calculation of euch element 

of the flexibility is a tedious but simple task. It 

was shortened in the present instance by the use of a 

programme devised for checking the routine used to inte­

grate the changes in flexibility caused by cracking. 

Three elements were calculated in detail from which it 

was apparent that every elem~nt consisted of terms in 

aJb/JEt and abJ/)OGt or similar ones with a and b 

exchanged. lvhen 

zero elements for 

quantities. The 

in Table IV. Ii' 

order 

6 8 

Jr-:-l 4 

1U2 
5 7 

the programme was working all 

a unit square 'vere fitted with 

results for non-zero elements 

the natural loads 

and B = [1/3 
1/6 

are arranged 

1/6] e = 

1/3 , 

the non-

these 

are shown 

in the 

[ 1 -1] 
-1 1 
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odddd 
FIG. 24 TYPICAL FLEXIBILITY ELEMENTS 

TAULE IV 

NINTH ORDER FLEXIBILITY ELEMENTS 

Natural Loads 

I f 
I Y 

'{ Y 
J Y 
o 

Pure Shear 

Element of Flexibility 

2 aJb 2 ab J 
3~ - 15 ~ 

1 aJb 1 ab J 
- J ~ - 30 Gt 

- v 
2b 2 

a 
Et 

ab 
Gt 
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then the complete flexibility takes the form 

u 3b 4B -2B' * 
I 

abJ l1: 0 8' 
* I + 

Et I 1.1: -2B 11:D I '" 30Gt I 0 40 1 

I *1 4 I I 
---- - -- -+ - --- - -t- - - -1-

I 
ab3 * * 413 -2BI a 3b 1 11: e el 
Et I 11: * 

I -2B flE, JOGt I 11: 
1 e Ii 8 1 

* ---- --1-- - ---- ---T-- -I-
I 

1- ,0 ab/Gt I 

"\\-rhere the qsterisks denote Poisson's ratio elements of 

-~ a 2 b 2 /Et and these ~ x 4 submatrices nre Eilled out 

'vi tIl zeros. 

2.1 Crack Conditions 

It 
(3) 

Let O'N(~'l1) be the 9 x 3 matrix of the stresses listed 

in Table III whiie~(9xl) refers to the magnitudes of the 

natural loads. Then the stresses across axes inclined 

at an angle ~ are 

, t 1 t 
2~ 2:~ 2,1, o-(~,Tj,V) ::; 2" PN O'"'N 1+cos 1-cos -sin y 

1-cos 2~ l+cos 2(; sin 2* 
-2sin 2y 2 sin 2y' 2 cos 2\jJ 

::; -~- P~ erN tP(~)t say, . . . (4) 

If we now have a crack at (~,Tj), inclined at $ then two 

of the total stresses on the left must vanish and after 

the coordinates (2;,11) and ~f are substituted tlVO colul1Uls of 

equation can be interpreted as conditions on PNand 

ident ified lV"i th rows of B. Since 0'" consist s of cont in­

uous functions (~, Tj) must lie .on each of t,vo curves along 

one of which the tangential shear vanishes while the other 

is a locus of zero transverse stress. These lvill be 



called .shear cracks and stress cracks and for a crack 

in the accepted sense they must coincide. 

Suppose that the crack is defined by 
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(5). , 

which also implies 

Along the crack we can SUbstitute (5), (5A) into (4) and 

when the result is expanded as a series in ~ the matrix 

of natural stresses becomes 

~ = <To + ~ 0"1 + ~2 (j'2 + ••• . . . . (6) 

where the notation indicates that the direction has been 

included. Each of these terms contributes two res-

trictions on .P
N

, arising l.ike those at a single point. 

For a straight crack * is constant and (6) contains 

just three terms so that six conditions can-define the' 

cracl{ exactl.y. If quadratic systems are included the 

degree of (6 ) rises to Ii, requiring 8 conditions. If 

(5) is quadratic and woe use quadratic systems the degree 

of (6) is at least 8 so that even',_ the thirteenth order 

systems cannot.exactly represent curved cracks. 

For Bt~aight cracks theco~fficients in (6) can be 

lound by finite difference techniques using stresses 

evaluated at each edge and at the centre. This is 

a~~~ard however and in the programme we have chosen to 

use a maximum of six conditions. These are der~ved by 

a direct use of (4) which is evaluated at solution points 

of the crack-damage equations. Two of the points are 

near the edges and the ~hird near the centre. If the 

crack is short compared w·ith the panel width then only 

two ~oints or four conditions are used as there is a 

possibility that conditions derived from nenrby points 



will resemble one another and lead to problems of ill-

conditioning. At each point chosen the conditions are 

t 
tfJc(~'il)O"N(l;'il) PN = o 

tVc being the relevant ro,\vs of tV· This collocation 

method can be used for curved cracks as well and ensures 

that the shear cracks and stress cracks are tangentia~ 

at two or three points lv-hich in practical -terms makes 

them fairly close along the whole length. . Since they 

caU be exactly simulated all possible conditions for 

straight cracks must be equivalent and therefore the 

collocation method becomes exact. 

2.2 Cut Corners and Averaged Conditions 

It is possible that a crack following a diagonal 

course will have entered three panels during an integra­

tion step, cutting the corner of an intermediate panel. 

In the abs~nce of other information the intermediate 

crack must 'be a~~umed to be a straight line, requiring 

six conditions. 

However the contributions of some natural loads 

to the stresses originally across the crack may be small 

and the three collocation points unavoidably close, 

leading to ill-conditioning. Accordingly only three 

conditions are specified' for these cases, nullifying 

the total loads transmitted in each direction and the 

total-moment .. 

From (4) the average normal and shenr stresses 

across the crack are 
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l;2 

cos 0/ 
[:;] (j~ PN 

d,-
<1;2-l;1) cos W 

~1 

while the moment depends linearly on 

2;2 
,~ t 
J tV2CJN PN ~d 
~1 

The three corresponding rows of a are 

af ::: 
1 t 

CJ N d~ 

~ being the position of the resultant load. 
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The term 

in l; is equivalent to the first row ho>vever and may there­

fore be ignored. 

With the assumed straight crack the integrnnds here 

are respectively quadratic and cubic and exact integrals 

are obtainable by the 3/8 rule for numerical integration. 

When this applied 

e1 1 4J2 cr~1 +3 4J2 crt I +3 tP2 crt I ::: 15 + 

lPJ 
~1 tVJ 

N ~2 
4J3 

N ~3 

--~<V2 -iqJ2 1~2 
b 

+ lP2 cr ~ I ~4 . . . (8) 
4lJ 

ttV2 

where 2;i == ~ 1 +(i-l) ( 2; lfl;l)/J· 
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The deleted loads , replaced by st P
N

, are here th.e two 

systems on the relevant ciorner and one other. As the 

panel is likely to remain effective in shear for small 

cuts the best third deletion is probably one of the loads 

on an adjacent corner. 

2.3 Choice of Deleted Loads 

In (7) each column of ~c ~~ represents the normal 

and shear stress at (~,~) arising from unit value of the 

relevant generalised load in the absence of a crack. 

Following the principle suggested in Chapter VI we delete 

from PN and 5 those loads corresponding to the largest 

elements of 41c CT~. In our formulation of the natural 

loads unit corner loads are proportional to the adjacent 

sides and unit shear is constant or non-dimensional. 

Thus for physical consistency "largest" must be inter­

preted in relation to the maximum value in the paneloI 

unit natural stress. 

The panel remains fully effective for carrying load 

(for our purpose here) until completely crossed by the 

crack at which time the co'nditions are found and the 

corresponding loads deleted. In the programme, as 

suggested above, each panel leads to three, four or six 

conditions and the last indicates that a crack joins 

two opposite sides. In these circumstances the panel 

is unlikely to bear a large amount of pure shear and 

this load is therefore included among the deletions. 

3.0 Self-Equilibrating Systems 

These fall into five different classes~for rein­

forced structures,which are shown in the next figure. 

To derive them we begin by finding the order of redundancy. 
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Consider the fully reinforced structure of Fig.32 

with booms around the edge and between all panels. Then 

No. of booms = n(~+1)+~(a+1) 

No. panels =-0.13 

No. joints = (0.+1) (S +1)', including external joint s. 

Thus 

Total no. of forces = 2(a(~+1)+p(a+1» + 9ap 

For each boom there is one longitudinal equation of equi­

librium and two transverse which may also be regarded as 

conditions between adjacent panels. With the two con­

ditions for each joint 

No. conditions = J(a(~+1)+p(a+1»-2(a+1)(p+1). 

Having natural loads the panels are automatically in equi­

librium and when overall equilibrium is allowed for 

Redundancy r = 5(a-1)(p-1)+2(a+I3-2) 

= 5 (Internal joints)+(External joints 

not on corner s ) 

When there is no reinforcement this becomes 

r = 3(Internal joints) 

The smallest redundant reinforced structure has 

two bays and an appropriate system is shown in Fig.~5(a). 

When there are four bays in a square there are eight 

such systems and it is also possible to form the standard 

cover redundancy based on pure shear.in the panels. This 

completes the total and for reinforced structures these 

two types are sufficient. 

The second type. of redundancy in unreinforced struc­

tures must also involve pure shear but in this case there 

are no booms to "mop up" the shear :flows which must 

therefore be reacted by corner loads. When this is done 



the system of Fig. 25(e) is obtained, analogous to the 

standard cover system. 
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It is now possible to find the order of redundancy 

for any structure of' this tYP,e by counting self-equi­

librating systems at each joint. It was found expedient 

to use the pure shear system of Fig. 25(e) for all degrees 

of reinforcement in order to have a uniform procedure. 

4.0 Natural. loads for Moving Element 

In Chapter VI it was s~own that the effect of a 

crack tip on the overal.l ~lexibility could be accounted 

for by a knowledge of the strain energy and natural 

forces on a standardised moving element M within which 

the stress pattern is appropriate to a crack tip. We 

now consider M more closely, beginning with its specifi­

cation. 

4.1 Form of' M 

The form of }1 is arbitrary but if it is to best 

serve its.pUrpose of allowing separate considerations 

of the crack tip there are several plausible conditions 

to be met. 

The first is that M ~hould cover the region where 

the id~alisedtype of stress system becomes inadequate. 

In turn this implies that M should be roughly the same 

size as the pan~ls containing it. We have also chosen 

to make it the same shape and of such a nature that it 

is possible for M to coincide l'li th one of the ordinary 

panels. If the orientation of M is kept the same also 

this simplifi~s the interpolation matrix. For triangu­

lar elements these considerations become more difficult. 

For rectangular elements we are thus led to the 

moving element wh~ch is rectangular and cun contain a 
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crack in any direction, (Fig. (26). The standard element 

has unit area and to optimise the tip position it is moved 

about the asymptotic stress field of \vestergaard (K=2n), 

until the' strain energy is a maximum (~ oC Ch. VI Sec.3.3). 

4.2 Strain Energy of Cracked Panel 

The>.notation used is shown in Fig. 26 (a) and as the 

figures imply it is convenient to rotate the panel rather 

than the crack. We find the strain energy in each of 

the triangles subtended by the sides 12, 23, etc. 

From the asymptotic stress field (Chapter III) 

(J 
Ny 

C5 Nx 

'tN 

= 

= 

= 

K 

J2rcr 

K 

J2rcr 
K -

J2rcr 

{ c os ~ + -lsin 8 sin (~ e - 2 ~ ) } 

{cos 
e 30 2~ )} 1 . a - -2-s~n Sill (-
2 2 

1 . e 38 
2's~n cos (--2y) 

2 
(9) 

Putting ~ = e we obtain the polar stresses and from these 

the element of strain energy appears ns 

1(2 
E dU = 4rc dr d8[(1+cos 8)(3-cos 8)-(1+cos 8)2} • 

Now rotate the axes and put 

e = cp + ~. 

After this lv-e expand the energy integrals in terms of 

sin y and cos ~ and integrate over each triangular region 

Thus 

::: 

CP2 h I sinr;> + . 

S J ( · · · ) dr do 
r:D 0 

1 
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REDUNDANT SYSTEMS FOR PANELS. 
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CP2 
h K2 I + { } dcp = 'ill" • •• (10) 

(sin cp I 
CP1 

after substituting for the energy and integrating. The 

only other type of integral is similar with the factor 

l/lcos cpl. 
The only unusual integrals arising from (10) or the 

other integrals are 
(l dco r dcp 

Ico~ cpl and J Isin cpl 

l\Thich through the sUbstitution t = tan~cp prove to be 

s(cp) log t an -~-cp and c(cp) log (1+ tan-~~) 
( 1 +t an 2"CP) respectively, 

'\\There s (cp) = Isin cpt/sin cp 

and c(cp) = Isin cpl/cos cp. 

The energy of each type of triangle turns out to 

be typified by 

tan -}ep2 

tan "itCP ... 1 

for these beside the crack, and 

.[5-3V-(1+V)cos 2~J 



K2 w 
W+U41 = c(~) 2n+ 

+(l-\)sin:¥ log 

cos 

cos 

cp. 
1 

+ ( 1- \J ) cos * (r,p - CPt ) 1 . 1: 

~ ~-( 1 +\) cos 2$ (sinC:Pl - sincP4) 

- t(l+V)sin 2*(cos~1 -cos~4) I I 
for the triangles cut by the crack or by its extension. 

The total strain energy is therefore 
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(13) 

This· procedure extends to any type of PO·J.ygon if ~ is 

approp~iately varied for the triangles subtended by each 

side. For triangles h etc. are replaced by the homo-
+ 

geneous triangular coordinates of the tip position. 

4.3 Computation o~ Generalised Stresses 

Unfortunately, lqhen the normal and tangential stresses 

represented by (9) are substituted into the scalar pro-
__ 1_ 

puct of (4.)0) the presence of factors (sin cp) 2 or 
_-1. 

(cos ~) 2 excludes the possibility of a closed form for 

r . 

It is therefore necessary to integrate numerically \ 

and over each side a four point Gauss-Legendre 72 formula 

is used. Unlike the strain energy ~, found in the pro-

gramme by an empirical formula , I is calculated afresh 

for 'each crack step by a special subroutine. This in-

corporates the integration formula whose coefficients 

are premultiplied by values of the various natural modes. 

(Actually, before integration these modes are first de-



composed into various symmetric and antisymmetric compo­

nents and reassembled after\vards.) 

The components of r depend on the optimum tip posi­

tion whose computation is now described. 

4.q Optimum Tip Position 

Superficially the problem here is to maximise (13) 

with respect to hand w with 
+ + 

h = b - h 
+ 

and = a - \v 
+ 

but a straightforward application to (11) and (12) soon 

becomes intractable. 
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In Fig. 26 (b) we have considered directly the effect 

of small rigid body movements parallel to one side, de­

noted by dh in the figure. Now let 

h -+ 
+ 

h + dh 
+ 

and h -+ h - dh 

in (13). In the figure the angles determinirlg U
12 

etc. 

are the same and therefore the new region of integration 

is represented by the lightly hatched triangles and by 

the two original triangles corresponding to wand w • 
+ 

Compared with the shifted panel this region is excessive 

by the (signed) sum of the fo~r heavily hatched triangles. 

But this area is of second order in dh so that from (1~), 

to the first order, 

au 
oh = 

for rigid body movements. A similar equation holds for 

wand the maximum is given by 

= 
= • •• (14) 



(a) Notatiofl 

(b) Variation 
of strain 
energy. 

3~O 

3 

Asp~ct Ratio 

alb tan 4'0 

FIG.26 GEOMETRY OF MOVING ELEMENT 
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lv-hile Umax = aU 12 + bU23 • 

The unknowns here are CP1' ••• , C04 and the other equa­

tions required define the aspect ratio and express the 

fact that the panel is rectangular. The equations (14) 

were solved numerically by a FORTRAN IV programme lv-hose 

flow diagram is shown ~n Fig. 27. The algorithm used was 

essentially Newton's method in two dimensions but the 

gradients were replaced:byfinite differences calculated 

from a grid of fixed siie, placed" at the current estimate. 

At each iteration the angles ~. for the three points are 
J. 

recalculated, maintaining the aspect ratio and right-

angled corners (Appendix B). 

F~g.26(b) is easily generalised and for a k-sided 

polygon (14) becomes 
k 
\' sin 
) 

i=l 
Ui i+1 

cos 
= 0 (k+1 = 1 ) 

where * .. 1 is the angle between the crack and side ]. 1+ . 

(i"li+1). 

4.4:1 Results 

For eleven aspect ratios (or 21 if the inverses are 

counted) the loci of optimum tip positions have been 

plotted in Fig.28. For reasonable panels these resemble 

ellipses slightly f'lattened at the "corners". 

In the notation of Fig. 30, if they are parametrically 

represented as 

~ - J = a cos e 

1l - j. = b sin e 2 

then" ~ ~ e . . . 
The axes depend on the aspect ratio expressed in the 
form 

(15) 
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PANELS OF 
UNIT AREA 

ASPECT RATIO 1-0 

q, =Tt/2 

: tV=O 
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0-592 

ASPECT RATIO 0-174· 

tV= 0 

0-207 

q,=0 

.0-247 

0-350 
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0-497 

FIG.28 LOCI OF OPTIMUM TIP POSITIONS 
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FIG.30 GEOMETRY OF OPTIMUM TIP POSITION AND 

CALCULATION OF FLATTENING 
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1'0 



x = log tau 1'''' 't"o 

and empirical formulae for a and bare 

a == 0.5 - p(x) 

b = 0.5 - P(~x) 

p(x) = 0.189 953· + 0.028 583 X -0.023 

-0.001 491x3 + 0.002 391 4 x. 

For the flattening, let us suppose that it 

a reduction of the semi-axes; 

a - a F(e), b - b F(e) 

407 2 x 

arises by 

where F(e) has a period n/2. From the construction 

show"n in the figure we have the approximate result 

F(e) = 0.96 + O.O~ cos 49. 

To summarise, the locus of optimum positions for the 

standardised panel can be approximated as 

~ - t = (0.96 + 0.04 cos 4~).(t - p(-x»sin $, 

P(x) being given by .(16). The negative sign in the 

.( 16 ) 

first equation agrees with a standard crack extending 

in the direction of positive ~. For a square panel 

and the four nearest aspect ratios the average corres­

ponding.to (0.96 - 0.04) is actually 0.9228. 

1.1:.5 Naximum strain Ener$ies 

The' values of ~ corresponding to the optimum posi­

tions above have been plotted in Fig. 31 in terms of 

aspect ratio for crack angles of 0,20 and 40 degrees 
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which are enough to allow estimates for the whole range 

o~ practical values. 

o a 
For cracks parallel to one side (~ = 0 or 90 ) the 

empirical form is 

where 

(x = log tan cp ) o 

Q(x) = 3.993 ~07 + 0.317 543 x - 0.291 603 x 2 

. - 0.033 219 x 3 + 0.013 965 x4 • •• (18) 

but for other crack angles the accuracy of a polynomial 

form of this degree cannot be maintained. If ~ is 

assumed to vary sinusoidally with ~ then within the 

range -1.75 < x ~ 1.75 the resultant expression 

~ = Q(x) cos 2 * + Q(-x) sin21~ 

is accurate· within 4%. By Paris' fourth power law the 

error in crack rate would be about twice this if (19) 

were used. 

The kink in the curve for ~ = 20
0 

is probably 

associated with the corneroi' the panel crossing the 

region of high 'strain energy radiating from the crack 

tip, along ,~hich yielding first occurs. Olv-ing to 

problems of convergence reliable values could not be 

found for this region and the curve is shown dotted. 

By cross plotting Fig. 31 with numerical aid two 

correction terms were found for (19) lv-hieh reduce the 

error beyond 0.02. 

+ 0.106 809 

to be added to (19). 

These terms are 

• :3 
81n 
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Chapter VIII 

INTERPOLATION AND PROGRAHME STRATEGY 

So far we have described the general two-stage 

fatigue problem and outlined one application to rein­

forced structures by means of matrix force methods. 
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In applications there remains a large amount of detailed 

description of crack movements and the calculation of 

the interpolation matrix. In addition there are the 

standard operations involved in the primary' stressing, 

integration of the crack damage equations and the calcu­

lation of crack rates, damage rates and the modified 

loads. This has been programmed in"FORTRAN IV for the 

IBN 7090 at Imperial College and some of the methods 

particular to our type of force analysis have been des­

cribed in general terms. The relevant sections are 

asterisk~d and may be omitted without loss of continuity. 

It was found convenient to use two overall systems 

of coordinates and two local systems. 'The ci~erall sys­

tems and the structure are sho,m in Fig. 32. The nor­

malaxes (x,y) are used for follo'~ing cracks, finding 

boo·m lengths etc. in floating pOint numbers while the 

second set, called latti'oe coordinates, are essentially 

a two-way listing of each joint, beginning ,,,ith (1,1). 

The loads are listed in cells of 13, each in the standard 

order 

2 x-boom 

loads 
\ 9 panel loads in, standnrd order . 2 y-booml 

, loads ~ 

As shown each cell is related to lattice 'coordinates 

(ix, iy) which are integral or fixed point numbers. 
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1.0 Nain Pr 0 gr anune 

Fig. 33 shows flow diagrams for the main operations 

in solving a fatigue problem for our rectangular structure. 

"I'l~ the small diagram the block CORRECT, normally relating 

to evaluation of a function, no,,, contains instructions to 

modify the loads and the s"tructure, calcuiate average 

rates and damages and then to use these for the ~o~rection 

in the routin~ for the differential equation. The pre-

dictions are made in the normal manner by finite difference 

methods but for a crack a two-dimensional method is needed. 

2.·1 General Crack Step 

The immediate output of the crack-damage equations 

is an increment of crack length without direct indication 

of the new tip position ,.,hich is now considered. In the 

course of computation one stores values of a,x,y at 

each step and each of these can be individually predicted. 

In the correction \ve must now make sure that a or (x,y) 

remain consistent while the cracIc follows the principal 

stress trajectory. (We follow the results of Cox 

and Field 80 and assume that a crack fo1lo\vs one of 

the trajectories present before its extension.) 

Suppose that small segments of the crack path are 

parabolic and consider the locus of a fixed ~en.gth £ of 

the curve 

dy/dx ~ 2ax = 2y/x. 

It can be shown that 

2 

= 4y [u + ~. sinh 2u] (sinh u = 2y/x) 

when a is eliminated. When P is fixed this is an implicit 

form of the required locus which can be further reduced to 

the form 
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£ = .1.x ( u + cosh u) • 
2 sinh u 

In terms of t = sinh u this can be expanded as 

i = x( 1 1 t 2 . T l1: 30 t G . . . ) ( 1 ) + b + --t + 7(64) + 20 

Now t i~also the gradient which can be estimated from the 

pr~ncipal stress trajectories at the current and p~evious 

tip positions. If l is kno\vn then x cun be found from 

(1), y = txt, and the trajectory at the improved tip 

position (x,y) then furnishes t for another iteration. 

In~ractice if (x,y) is also predicted convergence is 

rapid. 

2.2 *Quadrature \vith Nixed Quantities 

·In the calculation of covariance the derivatives 

are not stored. From the correction stage of the 

. differential equation routine how'ever ,ve do obtain a 

derivative y! say. 
. J.. 

\Ve must now integrate y' over the interval «i-1)h,ih) 

to find y., h being the size of the equal intervals of 
J.. 

time or cycles. Choosing more conven£ent subscripts, 

suppose we are given y-l'Yo and yi and assume that 

y = ax2 + bx + c 

y' = 2ax + b. 

From the two values and the derivative one obtains the 

equations 

= 

leading to 

[

y -1 -Yo] 
hy' 

1 



::: 1 [-y + 4y + 2hy tJ 3 -1 0 1 

when the solution is substituted into (2). The same 

procedure can be used to find a four point formula 

expressible in the form 

3.1 Interpolation of Loads 
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The interpolation routines were made applicable to 

any structure which could be regarded as a set 01 quadri­

lateral panels through the use of lattice coordinates. 

In these non-dimensional terms the moving element is also 

a unit square contained in four surrounding panels as 

in. Fig. 32. In local lattice coordinates let these 

squares lie between the limits 

-1 <~, 11'::' 1. 

In one dimension if the load S(~) varies quadratically 

then 

s (~) ::: 

lv-here 

::: 

s o 

-5 -1 

() 

in an obvious notation. In matrix form this expression 

may be regarded as a scalar product 

(4) 

"\v-here 
t/J 

::: f1 -2 1, } 

D. ::: { -1 0 1 } 
A~ 

::: [0 2 0 } 



The vector of differences . .in (4:) is a part icular case of 

the interpolation matrix M described previously and 

with appropriate zeros it can be expanded to formally 

conform with the complete load matrix s. 
I t d . . 81 . th S (1: ) f· t n wo 1menS10ns ,W1 ~,n , one can 1rs 

interpolate with respect to ~ ~or n= -1,0 and 1 in suc­

cession. These three values can then be interpolated 

with respect to n. Now suppose the loads 5(-1,-1) •• , 

5(1,1) to be arranged on a 3x3 grid, as they appear in 

the structure. Then the corresponding elements in the 
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row of the interpolation matrix can be arranged in a 

similar way (like the stencils used in relaxation methods) 

and when this is done for the two-,qay interpolation above 

it will be found that the grid elements have the form, 

o t 
+fl~ +fl) , 

forming the non-zero element s for one ro,v of M. The 

proof follow-s :CVOnt a comparison of the t\vo-way inter­

polation with (~), regard~ng the interpolation matrix 

there as a 3xl grid. 

The generalised stresses are conceivably discontin­

uous and the interpolation of (4) is actually over four 

stresses such as 

for which the dif:ference matrices are expanded to 

fl2 = { 1 -1 -1 1} 

fl = {-1 0 0 1 } 

flO = [ 0 1 1. o} 



again used as in (5). This equation is used for each 

load corr~sponding to an element of r (Chapter VI) the 

standard loads on the moving element. The problem of 

2J) 

choosing the interpolation points (~,~) is now considered. 

).2 Imbedding of Noving Element 

We have previously stated that a moving element M 

which can coincide with actual panels is advantageous. 

Consider the four panels containing M. For a given 

crack orientation ~, each of them contains u', ;point which 

would be the optimu.m tip position if M 'vere the panel· 

in question. The four points define a qu.adrilateral, 

called the allowable tip region, and it can be seen that 

if the tip is outside ADCD (Fig. 34) then M is partially 

outside the four panels shown or in other ,vords (i ,i ) 
x Y 

is not the appropriate centre" 

We now set up non-dimensional coordinates for the 

position of P within ABCD. 

~ = ~CDP/(6CDP + ~PAB) 
l.;Jo 

~ = ~cpn/(6cpn+ 6PDA) 
o 

Briefly 

and 0' < C;o ' 110 < ·1. We note that the area of a typical 

triangle is 

~CPB = x 
C xp x D 

YC yP YB (6 ) 

1 1 1 

with C, P and B in anticlocklvise order. 

perpendiculars from P to BC and AD then from the definition 

~o = 

CB = 





235 

and it follows from geometric similarity that ~o ~ constant 

defines a straight line through the intersection of AD and 

BC. A similar result holds for ~ • 
o 

3.21 Local Lattice Coordinates 

\vith the origin at O,M is between the lattice bounds 

-1 < ~, ~ < 1 and in this system it is also a unit square. 

It is helpful to begin with the one-dimensional analogue 

sho,m below' 

A 

r---_MM·-~"I I for tip position P 

Optimum tip position for OD 
./ 

P 0 B 
Crack tip S 

o Cent ral load 

o 
Sl 

where CO and OD replace the four panels and AB is the 

allowable region containing the tip P, now constrained 'to 

CD. Three successive positions of M are shown, as Z;o 

increases from ° to 1. In the local lattice coordinates, 

if 1;0 = ° then 

{M : -1 <~<O }, a's shown, ''''hile if' ~o ~ 1 fM: 0 < l; < 1} 

so that for the intermediate values of ~o it is natural 

to place M between ~ = ~o-1 and ~=~o or in the present 

notation fM: ~o-1 <~ ,< l;o}. These are then the two 

values of' ~ to be used ~n (4) if' such an interpolation 

,,,,ere required. The actual size of M may here be taken 

as 

a rinear interpolation similar to (3) or (4). From a 

knowledge of M* and the optimum tip position it is now 

possible to place the actual moving element in correct 

relation to the "tip" P and the tlvO "panels" CO, ODe 
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This procedure carries over to t,'lO (and three) dimen­

sions with little change. The corners of M then have 

the local lattice coordinates 

(r: ,11 ), ():' - 1 ,TJ ), ():' - 1 ,II - 1), and ()1 ,'Il - 1 ) , 
~o 0 ~o 0 ~o 0 ~o 0 

in the standard order, and these values are used in (5) 

for vertical and horizontal corner loads. The interpola­

tion (7) has a two-dimensional form similar to (5) and 

it is applied to pure shear forces and the fitted widths, 

heights arid slopes of the four panels. 

3.22 Edges 

Suppose that some of the four panels are on the ~dge 

of the structure and the crack tip is betw'een the allow'­

able region and this edge, at \"'hich lve suppose the crack 

to start. In our. one-dimensional analogue this corres-

ponds to a crack tip in CA. Since the crack iBsmaller 

now, M is also reduced in scale and it is possible to 

use a different approach altogether and treat the crack 

as an edge crack with the stress intensity 

How'ever to be consistent let us retain the moving element 

but now make CA the allowable region for edge cracks. 

As the t~p moves from C to A, M grows from zero to CO 

and we may take 

where now 

~o = CP1/CA ( < 1 for edge cracks). 

In lattice ,coordinates 

[M: -1 < ; < ~o -1) • •• (8) 

adjoining the internal interval 



[M : • •• (9) 

If the crack starts from D the allow'able region is BD 

and 

~o = BP
2

/DD (>0 for right hand edge cracks), 
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and the positive direction of ~ is retained. In addition· 

M* = (1- ~o ) OD 

and '0 < ~ < 1}, • •• (10) 

adjoining the ~nternal interval. One can now situate 

the actual moving element, just as above. In two dimen­

sions the lattice corners are obtainable by appropriate 

combinations of extreme values of ; and ~ from any of the 

regions (8), (9) or (10). The eight cases thus obtain­

able allo,~ for N touching any side or containing any 

of the four corners of the structure. The interpolations 

and placement of M proceed exactly as before • 

. 3. 23 * Note 

The allowable regions and hence (~,~) depend on the 

angle between the crack and the general direction of the 

surrounding panels and this may change as it extends. 

In the programme the allowable region is set up ·as soon 

as the se~ of surrounding panels changes and it is re-

tained until a new set is needed. The errOr thus 

occasioned is of the same order as that involved in the 

linear approximation to M •• 

4.1 ~Changes of Flexibility 

These involve a second system of' local coordinates 

in which each of the surrounding panels in the region 

-1 ~ ~, ~ ~ 1, these coordinates being those used in the 
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natural stress systems of Chapter VII. Equation (6) is 

again used. ~n their calculation where (xp,yp) now refers 

to a corner of M and an actual panel replaces the allow­

able region. 

The regions of integration in Fig. 23 (Chapter VII) 

are generally split into four by the boundaries of the 

surrounding panels but each of these can be regarded as 

Q figure of same type and this specification also covers 

e.~ l'} 0-

110 + ~o+ ~1+ 11
1

_ 

r f' r r 
I + ; + I 

'- .J .., ~ 

ill+ 1;0- i;o+ 111+ 

11· o-

'l1
1

_ 

the exceptional cases when the 

crack is near the edge. Let us 

redraw Fig. 23 (a) with the limits 

of integration shown. It can 

then be verified that ~±th. tbe, 

appropriate integrand the four 

integrals 

~o- ~1- 111+ 
r r (' 

I + 

Z;o+ ~o- 'l1
1

_ 

cover A and B with the correct allowance for sign. If 

the eight limits are now written in two sets in the orders 

~o- 'l11+ ~n+ 11 1 _ 'and 'l10+ ~1+ 110 _ ~1-

then the group of cyclic permutations of each of these 

has four members, corresponding to ench integral, and a 

particular limit always corresponds to the same element 

of the appropriate group member. 

In the subroutine for flexibility changes this per­

mutation is effected by renaming these variables and in 

the loop for these four integrals the first essential 

instructions are 
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A :;; ~ "0- (There are similar instructions 

~o- :;; ~ for the second set of limits) '11+ 

111+ 

Z;o + 

'11
1

_ 

:;; 

:;; 

:;; 

l;o+ 

'11
1

_ 

A = Previous value of ~ • 
~o-

Thus this loo,p is ,essentially subscripted according to 

these permutations. This renaming procedure is also 

useful for computing natural stresses or for geometric 

operations along each axis. In all applications it is 

p~ssible to discern a group operation. 

4.2* Computer storage of Matrices 

t To save space the matrices f, b
1

, b
1 

f b
1 

and the 

modification matrix were placed in smaller, effectively 

rectangular, blocks in the core storage of the computer. 

This ordinary economy was ef:fected by eliminating those 

elements most obviously zero and by not duplicating the 

elements of symmetric matrices. The figure indicates 

theiransformation from the mathematical form of our 

matiices to their effective shapes in core storage. 

Each panel has 9 load systems and there is also room for 

,:4. boom loads. In the b1 matrix, as shown, only eight 

rows are needed and the columns correspondi.ng to the 

redundants are listed in the order of the joints. 

For each system wi'th pure shear five columns' ar'e needed 

and therefore the. column number i exceeds .the correspond-
q 

ing column ip of ~. 

Without comple~ housekeeping the efficient storage 

of triangular ar..r~ys is not possible. The flexibility 

was therefore stored in the 10x5cells shown. After the 



primary stress analysis these w'ere cleared and used :for 

the changes in flexibility. 

241 

The matrix b~ f b 1 is also symmetric but in this case 

advantage was taken of its banded form ~nd the upper 

diagonals 'Were started as columns. It is not difficult 

to use standard elimination techniques on this form and 

adjoin i.t to the various right-hand sides. Further­

more, the Crout auxiliary matrix may be stored in the 

same locations as elimination proceeds and the back solu­

tion may be similarly treated. For a banded matrix this 

is the most economical 'vay to store the inver se. 

The band width is obviously an important parameter. 

We show below that this is 

= 5a + 6 

for fully reinf'orced structures while if there are·· no 

booms 

other cases lying b~tween these extremes but favouring 

the first. 

4.3 ~ Matrix Operations 

In rectangular structures 

1 < i < U+1 x- and 1 < i < 13+1 
Y 

and this knowledge enabled an alphabetical listing, 

j = (i -l)(a+l) + i , 
Pyx 

of' each cell. 

with 

The loads lvere numbered in a similar manner 

= (i -1)(13a+2)+lJ(i -l)+Number of load in cell. y . x 

regardless of their actu~l existence. Flexibilities 

were similarly numbered and the disposition of reitiforc'ement 



was decided by data knowll as Jpanel, depending on jp, 

which determined l?o,q many booms passed through a joint 

and their directions. 

In the programme the primary analysis was begun by 

listing and finding the redundnnts, in order of increasing 

j. This was done by a double loop (DO statements) 
p 

in i and i in which the redundant was numbered i and 
x y p 

the corresponding column subscript in storage i was 
q 

also found (see above). These 'vere not stored and in 

any operations with b
1 

the logic of the double loop was 

repeated, possibly with skipping rules to save time. 

Now consider the band width nb mentioned above. 

For finite interaction between different redundants the 

greatest difference in jp must correspond to points such 

as A and B shown here. This spans a+l other joints 

each of which (say) can correspond to five redundants. 

Thus the difference in i or the band width 
p 

is roughly 5(a+l) and more detailed count-

ing leads to the result given. The band 

width for unreinforced and partially rein­

forced struc tures fol10\vs in the same way. 

t Because of the large order of f,b
1
fb

1 
was calculated 

in the :form 

where the subscripts indicate that only flexibilities from 

cell j are used, with a corresponding reduction in the 
p 

size of' ro,v-into-column product s. In forming fb
1 

and si-

milar quantities coupling considerations arise, similar 

to those in the sketch for nb~ If products from disjoint 

cells are not computed the time taken by these routines 

is reduced by about 90%. The criterion in the case 

01 fb 1 is that the distance (in lattice co-



ordinates) between the centre C oE the panel concerned 

,~ith f and D, say, lv-here the redundant is located, exceeds 

1/",'2. In in t e g er s, if (i ,i ) is th e ceIl arid (j ,j ) 
x y x y 

reEer s to the redundant, then for no contribut ion to fht 
a 

+1) > 2 

illustrating the useEulness of the lattice coordinates. 

Whenever· possible, decisions in the progr<lrnme ,~ere based 

on the values of integral functions to avoid equivocation 

caused by rounding off errors. 

In tIle virtual storage for each cell of f a single 

loop for a scalar product or the display o~ clements 

defines a path like one of those shown below. 

I 
I 
I 
IA 
I 
I 
I , 

Thus in the programme such loops appenr as t,v-o or three 

successive loops \v-ithin ,v-hich the basic subscripts are 

calculated. The same logic is used for stor ing f 6.. 

also but in this case the double entries associated with 

points such as A must be avoided. 
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CONCLUSIONS 

We have described a general method for the solution 

o~ problems in structural fatigue. This incorporates the 

now generally accepted view that fatigue proceeds essen­

tially in two stages, here called .damage and crack growth. 

The damage or microcrack stage, which may be defined in 

a way appropriate to the structure, is ended by initial 

f.ailure whose probability distribution in the most general 

case is available fr~m Bastenaire damage theory. Since 

the method fundamentally belongs to probability theory 

the assumptions about crack growth can be quite arbitrary 

but ~or practical application we have chosen to elaborate 

the fracture mechanics approach of Paris. 

The improvement over previous methods is that one may 

consider the stress redistribution caused by one or several 

cracks and their interaction with damage or initial failure. 

In addition, the direction of cra~king may also be made 

an· unkno'\vn and one obtains in principle the complete pro­

bability distribution of initial failure times and of 

all crack lengths at any given time. There is also an 

importnnt theorem that the distributions of initial failure 

times are independent, [\ result stemming from the inde­

pendence of the physical processes at each damage site. 

The distribution of lives to final failure follows ~rom 

a~ essentially separate reliability analysis based on the 

solutions of the crack-damage equations, preferably with 

a Griffith-Irwin criterion for final static fracture. 

In order to create a more pract ical theory it \vas 

found necessary to apply Bastennire damage theory to 

the log-no~mally distributed fntigue lives assumed in 

practice and the effect of endurance limits was also con­

sidered. This lead to a reasonably simple damage law 



which made complete use of the usual datu obtained for con­

structing S-N curves. Noreover, although this is an 

exact statistical theory for normal lives and one-parameter 

damage, no other information about the material is re­

quired. For those cases requiring more ,than one damage 

measure 've have examined some statistical aspects of the 

analysis of programme test results and proposed a tenta­

tive theory of corrosion fatigue to illustrate a way in 

which other damage parameters may be identified and 

included. 

For use in the crack-damage equations the crack pro­

pagation results were presented in a non-dimensional form 

based on the fracture mechanics viewpoint. By a,proper 

choice of parameters it was found possible to correlate 

the effects of mean load on the crack rate. This is an 

advance and the same parameter s also allow the fourth pO'ver 

law of Paris to be written in a more suggestive physical 

form where the crack rate is proportional to both the 

maximum size of the plastic zone and the driving force 

based on alternating load. A tentative theory for random 

load cracking has also been advanced on this basis. 

However, the ne,v presentation has emphasised the 

fact that the fourth power law does not account for all 

the effects present in fatigue cracking. In particular 

there is a range of stress intensities over which the 

crack rate changes less rapidly and, since this range corres­

ponds to maximum plastic regions within the interval 0.006 

to 0.02 inches, it is suggested that the effect may be 

related to the grain size of the material. 

To make the general theory applicable to reinforced 

structures we have also discussed the representation of 

cracks in an idealised structure. In terms of the matrix 

force method which we use (and for displacement methods 



also) this turns out to be a combined cutout and modifi­

cation problem amenable to well known methods once the 

required data are available. How-ever to solve the equa-

tions £01" initial strains a modi£ied Crout method is 

described which is based on the partitioning between 

cutouts and modifications. This avoid the necessity of 

inverting the changes in the element :flexibility ma·trix. 

The' new method is also :fully efficient in terms of com­

puter storage and time and allows the same cutouts to be 

considered with different flexibility changes by a minimum 

amount of reworking. 

This leaves the problem of actually specifying the 

crack conditions and the changes in flexibility. Basic-

ally, the first has been done by performing the analysis 

in terms of a transformed set of generalised stresses 

which o:f course include the loads to be nullified by 

crack growth. There may be a danger here of obtaining 

ill-conditioned truns:formations which needs further in-

vestigation. The changes in flexibility are obtained 

bY' supposing some of the idealised stress systems in the 

structure to be partially replaced by the asymptotic stress 

field appropriate to a crack tip. It is convenient 

to imagine the lritter as the stress system in a moving 

element. This is then a finite element extension o:f 

fracture mechanics and the actual stress intensity is 

e as ily obtainable in terms of the surroundihg loads. 

The method in fact cun be applied to any type of discre­

pancy in otherwise standard idealised stress systems. 

Future lvork 

At a basic level the crack-damage equations here do 

not allow for intrinsic randomness in crack propagation 

itsel£. We have suggested additional terms in the equa-



tions for higher cumulnnts but their nature needs elucida­

tion. The method is likely to be most useful for analysing 

small seg~ents of a structure and n test programme could 

be supplemented by studying sets of cracks in idealised 

structures (in a fatigue sense). 

We have said that the orientation of a crack can be 

included.as an unknown in the crack-damage equations but 

this supposes that the phenomenological behaviour is known· 

in this respect. Changes in the principal stress tra­

jectories here expose a large gap in knowl~dge however. 

The use of moving elements would also need to be generalised 

if such changes occur. 

The matrix procedures outlined here can be extended 

to include other idealisations and displacement· methods~ 

Among the latter, triangular elements should be useful, 

because these idealisations will tend to be such that 

crack growth, in terms of elements crossed, is i'airly 

constant. 

Finnlly, experiments such as those suggested in 

Chapter III Scc.9.9 arc re<luired, ·supported by statistical 

analysis and thorough metallurgical examination. It may 

also be worthwhile to devise an experimental check of the 

strong possibility (Ch.III Sec.9.6) that increments of 

crack growth are the same as regions of reversed yielding 

at the tip. 
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Appendix A 

JOINT DENSITY f(aln) AND Nu~mRICAL EXPECTATIONS 

The advantage of' the moment formulae for calculating 

expectations in Chapter V is their di'rect relation to the 

basic solution of (4.35) or (4.36) and (4.45), in parti-

cular their independence of the initial density. However 

it may be useful to indicate the procedure with numerical 

integration formulae. 

First consider the joint density function. Starting 

with a bivariate distribution F(xty) say let us assume 

that the conditional densities have the same functional 

form as the marginal densities f(~), t(y), typified by 

(5.1A) and that m, n are also constant. For all condi­

tional distributions F(xfy) the probability of having no 

crack must be constant since the initial failures are' 

independent. Sincem,n and now F are constant any x 
correlation must be effected by a variation aCyl of the 

initial density. As the shape parameters m,n are con­

stant and aCyl is a scale parameter in T(a(y)x) and in 

the exponential t~rm of F(xly) we have geometric simi­

larity' in any part of f(x y) relating to x > O. Therefore 

u (x I y) oc 1/ a (y) • 

To agree with the marginal distribution :rex) it is also 

necessary that 

f \.l (x IY) dF (y ) = F II /a x,..... x x 

= F \.l JdF(y)/a(y) x x 

and for the initial densities 



Ja(Y)dF(Y) = a x · . . 
r where ~ = IxdT(x), the mean of the standard transition x. J 

distribution. 

moment 

In addition there is the known second 

!J.xy = 

· ... 
If we c~n now find a form of aCyl satisfying (At) then" 

particular cases can then be chosen to satisfy (A2). 

Here it is convenient to redefine T(x) as 

F(xly) == (l-F )+ F T(a(y)x) x x · . . 
the first term being the constant probability of zero 

length while the second combines the initial density and 

transition components. 

then be combined as 

The two equations in (At) can 

J 

which from (A3) becomes 

requcingto 

+ F 2 
Y 

a (0) l 
a ( 2;1 a ) r dT ( ~) 

y 

= 1 

::: t 

(A4) 

If a( ) is constant we have the trivial case of indepen-

dence .. Ignoring this let 



a = a y 

A(~) = a(~)/a(O). 

To satisfy both the equations (Ai) A(~) needs at least 

two parameters and we put 

= 1 + a~ + ~~2 

and for moderate correlations 

When this is substituted and the integrals are evaluated 

(A4) becomes 

(1-Fy )2 + Fy (1-Fy )[2 + u2~2TJ+Fy2[1-(UWT+~~2T)2 + 

+ a2{~+1)~2T + u3uTJ 

= 1 

where 

~T = m/(n-1) ; ~2T = m(m+l)/(n-l)(n-2) 

•.• (A5) 

are the moments of T(~). This may be solved as a quad-

ratic equation in S, in terms of a which remains as a 

disposable parameter to give the appropriate correlation 

in (A2). 

Integration Formulae 

We now consider some essentially Gaussian integration 

formulae 72 • These are the most efficient particularly 

in higher dimensions73 although we do not discuss fully 

effective formulae for higher spaces. 

A typical one-dimensional integral is 
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E J 
o 

-ax e 

using (5.1A) and assuming that R(O) = 0. 

dT(ax) 
dx = 1 

m m-l a x 

and with a change of variable 

In our case 

E = F(n) J e-uCT'(u) - T(u)+l) R(u/a) du 
o 

There is also the standard substitution 

v = u/(l+u) 

(A6 ) 

which reduces the range of (A7) to (0,1) and changes T!(u) 

to the standard density 

dT 
dV 

w"hile E becomes 
1 

1 
B(m,nJ 

m-l( )n-1 v i-v 

E = F(n)J e-v /( 1-v) fT' (v)- T(v)-l} R( (~ ) )dv 
o (1_v)2 n-v 

(AB) 

This is probably the best form for computation since the 

same GaUSS-Legendre subroutine can be used for the main 

integral here and also for the incomplete B-function 

T ( v) and B ( m , n) • It must also be remembered that the 

Gauss-Laguerre formula appropriate to (A7) is most 
-u accurate when the integrand, apart from e ,is largest 

in the neighbourhood of u=l whereas we hope that it is 

largest near the mean m/(n-1). 

The Gauss-Legendre form of (AB) is, with the inte­

grand abbreviated, 



E = F(n) 

k 

\H.G(v.) L J J 
j=l 

72' where the H.{k) and v (k) are tabtilated.m This is 
J j 
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exact for any polynomial integrand up to the degree 2k-l. 

It has been shown by Hammer and wymore 74 that Cartesian 

products of summations such as that here are exact for 

polynomials in the appropriate number of variables with 

the highest term 

Other multidimensional formulae are described in the last 

reference which contains other recent references also. 

These remarks also hold for Gauss-Leguerre and other 

formulae for weighted integrands. 
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Appendix B 

CALCULATION OF SUBTENDED ANGLES AT CRACK TIP 
B~ ___________ ~A 

c o 
We take the origin at the centre of the panel which 

we now suppose to be vertical. Using vectors in complex 

form we first derive relations between the dif£erent 

angles. Let A, B, C, D be points in the complex plane, 

with the origin P, represented by 

itpA 
r

A 
::: a e 

b 
ir.pn 

etc. r B 
:: e 

Then the two diagonals are 

CA ::: 

BD ::: 

and these are complex conjugates. 

of the width BA one also obtains 

::: 

By equating two forms 

Separation of real and imaginary parts leads to the 

equations 



cos 

sin ~ - sin CPB 
'A 

cOS C'.pB - cos 

sin 

For a nontrivial solution 

CPc 

CPc sin ep 
D 

a 

b 

c 

d 

:.: o 

::: 

lv-hich ensures that a vertical rectangle can exist with 

corners on the four rays through A, B, C and D. In 

this case 

a ::: sin COB cos ct>c sin ~D 

b :.: sin CPA cos Cf'C sin ('{.)n 

c :.: sin ~p A cos CPn sin C()n 

d :.: sin ~A cos <:Pn sin Ci>C , 

apart from a scale factor, and the aspect ratio reduces 

to 

tnn CO ::: o 

sin ~A sin(~B-~C) 

cos ~C sin(~B-~A) 

In the maximisation it is most convenient to solve for 
iO 

the angles ~A' ~B etc. when P is placed at Re with 

respect to the centre O. From the figure 

:.: etc. 

with due regard for sign. Making OA unit length, let 

us find 0A. 've know that 

o 
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and by the sine rule 

R/sin 0A = PA/sin(~A - e) • 

The most convenient :form of the solution is 

tan + 
= l-R cos «(IJ)A -9) , 

. taking positive roots for A, B and negative for C and D. 
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