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SUMMARY

Structural fatigue is considered as the interaction
between the processes of cumulative damage and cra?k pro-
pagation. A general fatigue problem is defined in which
the scatter arises from the Variabilitygéf initial fai-
lures and equations are found for the growth of average
crack lengths and the moments of their probability dis-

tribution.

In order to set up the crack-damage equations the
Bastenaire theory of damage was used which makes direct
use of the inditial life distribution. Some aspects of
this were generalised and the effect of endurance limits
was considered in the light of the two-~distribution theory

of Swanson.

Crack propagation is described in terms of fracture
mechanics and a new non-dimensional presentation is used
which explains most of the effect of mean loads. This
also allows some uniformity in the discussion of brittle
fracture and fatigue cracking and an extension for ran-
dom loads is suggested which allows for the additional

rates observed by Paris.

The cragk*damgge equations are essentially a system
of differential equations and there is a discussion of
some features of their solutions. After this the appli-
cation of matrix force methods is considered as an illus-
tration of the general theory. This is essentially a
finite element extension of fracture mechanics, in which
a moving element replaces the crack tips familiar in
continua, The stress intensity thus calculated is then
usable to predict rates of crack growth for the general

fatigue problem.
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Notation

This will be described as it arises. Ilowever some
of the more common symbols are listed below. It is
impossible to avoid clashes overall but an attempt has
been niade to avoid them in any one chapter and to show
sone uniformity among guantities of the same physical
nature which in different contexts may appear as vectors,

general scalars or subscripted quantities.

Functional Notation

As Lfar ag possible this i1is based on the physical
nature of the functiom. Thus F(x) and I'(y) are not the
same function with different arguments but two gencrally
different distributions of x and y respectively. I we
wantt the same function with differemnt arguments it is

often written as
F(x) or Fx(X) or Fx(y) for example.

This is also true for the matrix functions such
as A(a,F) which represents a set of damage rates cach
of which, in general, depends on all the elements of a

and F .

Matrix Notation

Ir Unit matrix, r-th order

0] Matrix of zeros

B Usually a rectangular matrix but often a vector.
X Usually & column vector.

Fi Diagonual matrix with elements Fi.

Knt Inverse of the transposed matrix K’. These

indices arc¢ 1ot commutative in the addition laws.

[Xi] The matrix consisting of the columns xi.



ix

(BC] Partitioned matrix.

eN N-th ordecr column vector with unit elements.

[xj,] Matrix with clements Xij in i-th row and j-th column.
{xii Column vector with eleméuts xi.

{Xi} Colummn vector with submatrices Xi.

Statistical Notation

Pr(A) Probability of the event A.

Pr(A!B)Probability of A given B, a conditional probability.
The vertical stroke always implies a condition and
is used in other contexts as below.

F(x) Probability distribution or distribution function of
x defined as Pr(x'<x). Also called the cumulative
distribution or wmercly distribution.

F(x|n) Conditional distribution of x given n.

fx) Probability density (density or distribution) of x.
= df (x)/dx if F(x) is differentiable,
= Pr(Obtaining x) lfor discrete events.

Elem(x)] = Fw(x)dF(x) Expectation of m(x). This is some-
times called an average and the integral itseclf is
the Lebesgue-Sticltje type.

dF (x) Element in Stieltje integral = {(x)dx for the
differentiable parts of F(x). An analogous usage
is the shcar force formula.

Shear force :de(X) wherco
dWv(x) = Load density, including coucentrated loads.

M(t)

i

jbxp(xt)dF(x) Moment generating function of x.

A (t) = jéxp(imt)dF(x) Characteristic function of x.
(Fourier transform).

w(t) = log M(t) Cumulant generating function of x.

All the arguments here have vector cquivalents. In the

generating functions xt is replaced by the scalar product xtt.

r\
L r—th moment = jxrdF(x) .



SRR Mean
2_ 0,0 r 2
o = H,-U Variance or second cumulant = | (x-u)“dF(x)
Ojj Covariance or one of the second order multi-
variate cumulants.
x:f(x) x has the density function (is distributed as) £(x).
R Estimate of K.

Common Notation

a,a = a(nlt) = {al, .., aN} Crack lengths.
A A(r,s), A(D,S) ,A(F,S)A(F,a) Damage rates or rate vectors.

-1

-1 .
A ,A1 Covariance matrices
. -t . . .
A = [Aj] = [T;] Non-singular transformation Ch.II.

a Initial crack length.

O
N Non-zero crack lengths.
a,b Sides of panecl.
b Stress response matrix for structurec.
b Means of two-sided exponential distribution.
BS=0 Crack conditions.
B, = {I0O] Load transformation matrix.
B
q),b] Statically determinate and self-cquilibrating

systoems.

, ,b ,b Submatrices of b etc. corresponding to
il C 1m 1c

modifications or cutouts.

C Corrosion damage

c(S) Rate of corrosion.

CO,C1 Corresponding to bo,bl‘with transformed loads.
ol

ca Minimum crack ratea
4t

D =b,fb,

D,D Damage or damage vector.



e Error vector.

E Upper endurance limit or Young's modulus.
eNz{l. c.. 11}, n-th order.
f Element flexibility matrix.
F,F = P Canonical damage(s=).
[fij Canonical damage rates.
5 = (ain), a=a_ Initial density of crack lengths.
r. =r, (Corrosion failure|n cycles).
F, =P, (Fatigue failureln cycles).
FE(n) Empirical, stepped, distribution [unction.
FN—r Relevant canonical damages.
fr Initioal density of crack rate.
fﬂ Change of element flexibilities.
£(7)=r/p Boundary of plastic zonec.
f,p =P, (Linal f. in (Tv_i,TV)IRepair time Tr)
g.9, Element flexibility and alteration for trans-

formed loads.
= E/2(1+v) Shear modulus.
Energy release rate or driving force.

Critical driving force for plane strain (racture.

NS N O

, £ Driving forces based on alternating and mean

loads respectively.

H Generatised initial strains.

Submatrices of H corresponding to (transformed)
cutouts and modifications.

h(n):Pr(Failure at n|No previous failure) Risk or hazard.
(n)= fn h(t)dt

h “Hazard for static failure (no fatigue cracks).
I(r,s) Hazard in reliability form of damage.

k = R(n-n')/ba Reduced time, Chapter IV, Sec.G.3.

K Stress intensity factor, eq. (3.5).
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L, K= {ki} Crack rate factors, Chapter IV.

Kh-”Kc’* Uncoupled coefficient of modification malrix.

L Kcm(= R:ilc)’ﬁm Submatrices of modification matrix (6.13).

K’l" K’Fi Theorctical stress concentration factors.

9

27 Arca of moving element.

n1 Number of simulated tests, Chapter IV.

m Componcent of constant crack rate.

M Interpolation matrix.

M, M, Moving element and its size.

M, General MGF of T(x).

NT(—-a):}ll\(m,n) (Generally a £ average crack length).

n, 1 Parameters of transition beta distribution
(5.4).

n Number of cycles of applied load.

N Number of c¢racks in structure, Chapter L1V.

n. Average number of cycles for crack tip to

cross a given maximum plastic zonc.

N(S) Average S-N curve (log-lives).

%) e
N{u,o™) Normally distributed, mean 1, variance o~ .

2]
P o= B /‘_’TCO;: Nominal plastic zone based on maximum load.
P Maximum load in corrosion example.
IR Panel with altered flexibility.
P Arbitrary set of generalised stresses.
= 1 5 s e

PN EPNi‘ :ot of natural loads.
P, = Eg'l/ZnOy Plastic region based on alternating load.
1S o f')
P, = Egm/QTCO)‘; Plastic region based on mecan load.
Do 111"'l -ti. fractile of f(P.l)v (3.33).
p(s) = Rr(Eventual i‘ailur'olconstan't load S).
P(s) Genecrating function.

— ) i 3 A ) - oy ! R ) 4 4%}
b, = lr (Initial crach during ([‘\)_1, 1\)) ).
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Q(s) Generating function.

r Subscript referring to r—-th initial failure,at

a particular place, among m simulated tests.

R Vector of extermnal loads.
R Average initial crack rate.

R Random initial crack rate.

o
R(a‘n):R(a) = {Ri(a‘n)} General crack rates, Chapter IV.

R(aln)= {Ei(a’n)} = JR(a)dF(aln) Average crack rates.
2 . .

& Sample variance.

S I'atigue load on simple specimen.

S, T Generalised stresses.

%} Submatrix of S for finite contributions to

interpolation MS“.

Si(S) Secondary damage parameters, (1.42).

- Submatrix ot load in modified members.

t Thickness.

t,t = {ti} Initial failure times in cycles.

til r-th initial failure for crack 1 out of m

simulated tests.

T(RO),T(X) Transition curves from distribution functions.

T, Time of V-th inspection (TO:O).

u = (x-u)/c Standardised variate.

u, u Transformed variable in MGIrs or CGlI's.

[§) Virtual work or sometimes strain encrgy.

Ulq.wL etc. Strain energies of triangular sectors.

Uq, Um Typical integrals for flexibility, Chapter VI,
Sec.3.1.

U,V Displacements.

v, Generalised strains

W, Wla,?),wix), Wp Work function or resistance to crack

cxtension.
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X Crack extension.

X,y Random vectors

(x,y,.) Tip position and crack direction.

a,s Number of bays along each side of pancl structure,

Parameters and estimates in general linear

W
T w

regression.

gm/gj Mean load parameter.

M
1
]

Difference between principal straing,.

<D

Angular argument for MT(-n), Chapter V.
Strain energy of standardised moving element.

Vector of mean value.

<E T

Poisson's ratio.

E = £(x)

£, Non-dimensional panel co-~ordinates (lg’,lnlil).
gi(S) Load dependence of damage parameter, (1./42).
b= pO/Q Coarseness, used as a load measure.

P Arbitrary set of deformation modes.

n Average grain size,.

PN:‘FNir)} Natural modes of deformation.

2 .
] Variance.

2 Standard gemeralised stresses on moving clcment.
)} =[Oij]:EOij] Covariance matrix of crack lengths.
Oyr «oen 04 Sequence of residual stress systems.
o, Stress pattern in moving element.
o&=[0&i(r)] Stress patterns for natural loads.
Zx’zv Covariance matrices.
O ot vy’ Txy Stress components.
Oy Yield stress.
To = t/p Relative thickness, (3.28)

[T.] =A""
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*
W)

IFlexibility of element dxdy.
Crack direction.

Wl = TYWWLT Equations (7.4), (7.7).
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INTRODUCTION

The efficient use of structural material and the
higher stresses thereby entailed have made fatigue a

paramount concern in the design of aircraft.

Nowadays fatigue resistance is ensured first at the
stage of static stress analysis and secondly by full or
large scale testing. The latter is extremely expensive
but, like the corresponding tests to static failure, large

scale fatigue tests are likely to stay.

The first process is essentially a comparison between
stresses in the structure and fhbse of a simpler specimen,
similar in such respect as material and stress concentra-
tion factor, whose behaviour is already known. From
this viewpoint cumulative damage theories (here abbrevia-
ted as "damage'") are simply a means of making this com-

parison in similar circumstances.

Because the stresses are those of the undisturbed
structure this approach at best can only predict initial
failures although it has also been applied to final
collapse. In actual fact there are three main stages

in any fatigue failure, namely:

(a) Damage, where molecular changes occur but the

material is still coherent in the engineering sense.

(b) Crack growth which begins at initial fracture.
For our purposes this may continue indefinitely or at
least until the structure falls apart. In .practice

this stage is interrupted by (c).

(¢c) Static fracture, in which the applied load
exceeds the current ultimate strength which is obviously

reduced by previous cracking.



All these processes are random and in any particular
case (b) will affect (a) and (c). When average crack
rates are considered it will be shown that in addition,

damage affects the rate.

The final failure (c) is mostfprominently displayed
by the fail-safe philosophy where the designer's aim is
to minimise the probability of static failure over short
periods of time by reducing growth rates and repairing

those cracks which become too long.

As implied by fail-safe theory, final failure is
closely connected with the conditional probability of
failure during a fatigue cycle, given that there is no
previous failure. In the literature on reliability this
probability is often termed the hazard or risk and by a
standard argument it leads directly to the fatigue life
distribution for the complete structure so that stage (c)
is most direcily related to the accepted sense of fatigue

failure.

It is now time to define the genmeral fatigue problem
in the sense of this thesis and this will also clarify

the meaning of its solution.

We first suppose that we have absolute knowledge, of
a simple specimen (whose existence is doubtful), which
has been distilled into laws of damage and of crack pro-
pagation. Since this data concerns random variables we
assume precision in the statistical sense that all pro-

bability distributions have been perfectly estimated.

Having set up laws for simple specimens we next
imagine a structure with a fixed number of possible crack
sites (possibly infinite for the moment). Then the
general fatigue problem will be solved when the probabil-
ity distributions of all crack lengths and initial fai-

lure times are known as functioms or functionals depending



on the number of cycles. When these are known it is
possible to apply a theory of strength for the crack dis-
tribution at any stage and calculate the hazard in (c¢),
thereby obtaining the life distribution. Thus the basic
problem is to predict the interaction of cracking and

damage over a number of cycles.

To set up the general problem we finally mneed to re-~
late conditions on various parts of the structure to those
of simple specimens as indeed one relates static stresses
to the yield point of an ordinary tensile specimen.

This is obviously some kind of structﬁral analysis and,
within the'definition, a complete solution of the general
fatigue problem need not bear any relation to reality

when the associated stressing is inappropriate.

On the other hand '"stress analysis'" refers here to
any means of transforming external loads into stresses
whether good or bad. It includes topics such as vibra-
tion analysis, gust response or the respomse to random
noise. Included equally is the use of average stress

or the continual use of stresses from the virgin structure.

The second method is the basis of much present prac-
tiée so that when there are several cracks one cannot
guess at the interaction with the damage. The first pro-
cedure has the merit that progressive changes are allowed
for and we could distinguish such cases as true fatigue

problems.

As the following example shows this degree of gen-
erality is still enough to encompass problems guite un-
related to structural fatigue. Suppbse we have a capa-
citor in some electric circuit subject to random voltages.
Before it fails completely its performance may deteriorate

affecting the applied voltages by way of the circuit.



Then if the period before deterioration is regarded as a
pre-crack or damagé stage and the amount of deterioration
treated as a crack length the problem is exactly analogous

to the general fatigue problem.

We now summarise the contents of each chapter. In
Chapter 1 some aspects of damage are discussed and there
is a brief description of Bastenaire's theory of damages.
This seems to be the most comprehensive and satisfying
and also the least known of current theories. It leads
quite simply to differential equations for probability
distributions which later combine neatly with those for
crack growth. Multidimensional damage is mentioned and
as an. example a rough theory of corrosion fatigue is

presented.

In Chapter II various aspects of reliability theory
are discussed. They are mostly well known and we refer
to their applications in fatigue. As we stated, this is
most relevant to hazards, final failure and the overall

life distribution.

Chapter III discusses crack propagation from the
viewpoint of fracture mechanics, a study pioneered by
Paris. A new non-dimensional presentation of test
results is suggested and there is a parallel resume of
standard Griffith~Irwin fracture theory also in a non-
dimensional form. Based on this representation there
is also a tentative theory of crack growth under random
loads but several shortcomings become evident in present-

day experimental results on crack growth.

In Chapter IV we finally treat the crack-damage
equations which describe the general fatigue problem
with a finite number of cracks and with Bastenaire damage.

The problem is first approached as one involving Monte-



Carlo or model sampling. This leads to an important
theorem that initial lives are independent. After this
we develop differential equations for average crack lengths
and the moment generating function of random crack lengths
(in effect the Laplace transform of the joint length dis-
tribution).  For n cracks and r-dimensional damage it
transpires that (1+r) 2™ differential equations can be
found whose solutions are effectively that of the general
fatigue problem. Chapter V describes a numerical solu-
tion of the differential equations with approximate evalua-
tion of the expectation integrals which form the forcing
functions.

The final chapters are related to structural aspects.,
In general the progress of a crack is regarded as an
imposition of zero load conditions together with changes
of flexibility. This is equivalent to a cutout in a
transformed set of loads. The main interest lies in the
calculation of flexibility changes and the cutout condi-
tions and also in an efficient organisation of cutout
computations. There is also some discussion of changes
in self-equilibrating systems appropriate to cutouts.

A new procedure for computing modifications has been
developed which is based on standard triangularisation
methods. To simulate cracks it is necessary to have a
sufficiently refined idealisation. We have considered
a rectangular sheet stringer grid in which the skin ele-
ments have nine generalised stresses which may be roughly
described as two loads on each corner and an overall

shear.

To find the flexibility changes associated with small
crack extensions the concept of a moving element has been
introduced. This is a finite element analogue of the
crack tip and within it one assumes the siress pattern to

be appropriate to a crack rather than the idealisation



used elsewhere. Using standardised data which has becn
calculated it is possible by numerical integration to
find the modified flexibilities of elements near the
crack, using interpolated stresses. These can then be

used in the standard modification techniquec.

The chapters may be divided into four groups the
first of which, Chapters I, IV and V, is concerned with
cumulative damage theory and its application in the crack-
damage equations. Chapters II and IIY are each self-
contained and the last three chapters VI, VII and VIII
concern the structural and computational aspects above.
Equations are freshly numbered in each chapter and for
referring to those elsewhere the chapter number is pre-

fixed to the equation number, e.g. Eq. (2.20).

6



Chapter I

DAMAGE THEORY

The term damage is used here to describe any fLatigue
process not causing the immediate growth of a crack in the
engineering sensc of material becoming incapable of trans-
mitting stress. The transition from damage to the cracked
state we define as initial failure and the essential task
of damage thoeory is to predict the probability distribu-
tion of initinl lives for a given distribution oi applied
stress at the point in question. Although cracks clse-
whnerce may influence the stresses and wo later consider the
probability of a local crack, these stresses arce taken to
be acting on uncracked material. This follows from our
definition of damage. It will be noted that none of the
well known damage theories satisfy this definition since
they idignore statistical aspects. There is an cextension
of Miner damage which remedies this lack but the approach
differs from that here and whethor the result is a truc

damage is not certain.

1.1 Bastenaire Damage -~ Bquivalence

The type of damage above is the one we use throughout,
generally abbreviated to “"damage®. It is a general
abséract form of damage evolved by Iiastelmire1 from an
examination of the meaning to be attributed to the state-
ment that two pieces of material are equally damaged.

In this chapter the theory will be briefly skcetched to-
gether with some conscqguences and generalisations.

We start with the axiom that v, cycles of some con-

stant refercnce stress So’ or in DBastenaire's notation

(5(11)\)_,) -+ (S()\J())_

|



This means that if both tests are continued further
at another, possibly different, constant load the residual
life to initial failure has the same probability distri-
bution in each case. In his paper Bastenaire does not
specify either initial or final failure but initial failure

'is consistent with our approach here.

If the state of the material changes continuously
with the programmes then it is possible for two or more

programmes to be equivalent to (Sovo) ice.,
(Sl(n)vl) - (Sovo)
(Sz(n)vz) - (Sovo) .

For convenience we suppose throughout that number of load

cycles are continuous quantities.

If 5,(n) = 8, and the load in question is constant
it is possible to speak of a reverse equivalence not

implied above. In particular the reciprocal equivalence
Vv -
(8,%,) * (Slvl)

implies the following requirements for residual lives
N, - v, and N - V_ and their distribution.: functions
P(N1 —Vl) and F(No - Vo),

(Slv1)=é F(No~vo) . (sovo) =?F(N1—v1) .o (1)

We shall say that there exists a damage if the rela-
tive values of a single quantity, the damage, are enough
to determine whether the average residual life of one
spegimen is less than that of another. Since only rela-
tive values are important various measures of damage re-

main equivalent under any monotone transformation. We



also suppose that damage is differentiable.

Suppose we have a damage D and consider the equivalent

constant loads above. Then trivially

(Sovo) F(No—vo)

.

and by equivalence

1

(S1v1) F(No-vo) .

Because D exists

]

(Sovo) F(N1"V1)

so that D = (S v ) = (s,v,) or (8,v, ) = (S v ) for sefs}.
This reasoning also applies to programmes since

either (Sovo) or (Sivl) are equivalent to a set of pro-
gramnes. To show this one can start with an arbitrary
programme ($(n)v) and adjust it until the damage for a
set number of cycles coincides with D. This is possible
becéuse all quantities are continous. The existence of
damage thus implies the existence of a set of programmes

completely equivalent to one another.

Conversely if a set of programmes contains complete
equivalence then they are all equivalent to some particu~
lar constant load test, (Sovi) say, except that different
numbers of applied loads in these programmes will alter

N -V, the mean residual life at S .
o i o

If it is assumed that residual life is always reduced
by further testing at any load then 1/(No-vi) is monotone
increasing with n and therefore a damage so that in this

case a set of equivalent programmes implies the existence of

damage and conversely.(The inversion is simply so that damage
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will increase with time and is not strictly necessary.)

No mention has yet been made of all possible loads
or programmes so that it is possible to visualise a set
of loads or programmes to which a damage is applicable

while there is another set where it is not.

The well known relief due to high loads is such a
case where one-parameter damage is invalidated by yielding.
On a macroscopic scale damage will seem reduced (from
favourabie residual stresses) with respect to low loads
but not with respect to high so that the damage of the
material cannot be transferred as the programme alters.
This situation is easily corrected by allowing for resi-
dual stresses and it is also true that all known improve-
ments of this kind can be explained by stress relief.

If programmes are also allowed to produce an indirectly
estimated residual stress as well as effect the damage
then the number pf possibilities can be considerably
increased and indeed such a theory may cover all possible
cCasese. HHowever such a residual stress is a second para-
meter so that by definition no stress relief is allowable
through one dimensional damage except by accurate stress

analysis.

2.0 Growth of Damage

By definition the damage D summarises the whole past
history of a specimen. Therefore its rate of increase

depends on only D and the current stress, i.e.,
ap - A(D,S)dn & B(D,S)ds (2)

The second term here is the effect of the rate of load
change in the programme and may also be regarded as a
predictor of loads in the immediate future. Since only

the past can affect D this term must vanish leaving
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dD

Tl A(D,S) .o (3)

When averaged this will later become one of the crack-
damage equations. It generalises an equation of Torbe's2
which, in contrast to the above, he used for "historical®

damage.

2.1 Lffecct of Load Order

Because different loading histories can lead to the
same damage, D also includes some load sequence effects.

As an example consider the two sequences

(s,v,) + (5,v,) = A (= defined as =)
and (szvz) + (slvl) = B
differing only in order. Now let
(slvl) = (Sonl)
(szvz) = (Son2)
so that
A = (Sonl) + (sgvz) oo (%)
B =

(Son2) + (Slvl) .

To be definite put u

5 =8

o) a°*

1 < 1, and make the reference stress

On substituting for So

A = (82 n1+n2)

I

B (Sgugj - (Slvl) .

There is mo reason why A and B should be cqual and this

becomes most obvious if T 11J in which chasoe



n, = V2 # n,
and A = (S,,n1 + n,)
B = (52v2) + (Slvl)
# A v e (5)
2.2 Relation to Life Distribution

The existence of reciprocal and transverse cquiva-
lence has been shown to imply a monotonically dncrceasing
damage D. For ony programmc S(n) we also have, by

definition,

Prob (Failure before n cycles |for given programme S(n)) =
= F(n|s(n)) where O < F < 1, 0< u ~ =,

Thus I' and D are corresponding damages. For many
purposes the arbitrary damage is best talkken as the life
distribution and this life distribution is sufficient to
evaluate the cffect of one dimensional damage for any

progratme.

This simple outcome is complicated by the existence
of endurance limits. For use later we remark that
3 g .
Swanson” has shown that near the endurance limit the life

distribution is bimodal and well approximated by the form
£(n) = p fl(n) + (1-p) fz(n) eas  (6)

where

p = Pr ("short" life).

ITf there is a true endurance limit

<

-
“(n) - n sz(n) o

O
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and 1-p becomes the probability that the specimen never
fails. This is indicated by some unpublished test re-
sults of Manng on steel. If damage is transformed to

life distribution then (3) becomes

rrt f(n) = A(F,S(n)) = (1-F).H(F,S(n})) ... (7)

say,where the last formula will be called the reliability
form and H the hazard. If the damage is F it will be
called canonical. FFor a restricted range of stress {S}

the canonical damage becomes

an :
‘a"r"i' - f(nI{S}) LN I (8)
and if S : £(S) then the expected canonical damage is
f(nlF) = f£(n|s,F)dr(s) eee  (9)

which agrees with dF/dn as a standard result in probability
theory. In a later section complications related to the

equivalence of damage vate and density will be considerecd.

. 5 6
2.3 Miner”-lalmgren Damage

Before proceeding further the theory above will be
illustrated by the two cases of so-called linear damage
and the theory to be used later. To be definite let unit
damage occur when n reaches the mean lifé (constant load).
In this formulation it is possible that D > 1 and this
change from the normal theory reflects the inconsistency
of most damage theories when statistical questions arise.

In the figure
dD/dn = 1/n(Ss)

which is constant.
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/
F O
— < ,/’- F]
o
—_—t —
! | |
| |
nz n1
L.et the loads S £(s). Then at any time n
b T AR b gp(s)
dn dn
S
_ T dAF(s) _ .
= 5 W = dO say .o (10)

which is equivalent to the usual result.

flaving found D the distribution of initial failures

is immediate. We choose the life distribution for any
particular constant load 51, F1 in the figure say. For
this load then

F, = F (D)) ces (11)

and if D(n) is the solution in (10) then the corrvesponding

value of the life distribution functition is

I = F(n) = Fl(D(n)) .ee (12)

For Miner damage D :ndO s0 that if the programme has
passed through Di/do cycles the damage will be D1 and the
life distribution as in (11). Since they are linear
the damage curves shown must be affine and therefore any
associated damages are also affine. The converse propo-

sition that any affine damages nmust be Miner-Palmgren
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damage was Lirst established by B.T. Langer.7 In parti-

cular the standard deviation of the lives at any load
must be proportional to the mean and by (10) this holds
for random loads also so that all life distributions are
similar cxcept for a change of scale. This is obviliously

too restrictive for practical use.

2.1 Damage for log-normal lLives

The dinhcrent restriction of Miner-Palmgren damage
arises from the limited use made of the S-N information.
If we usc all the constant-load information in the form
of canonical damage then a perfect one-parameter theory
will follow. Any divergence from reality must then arise
from thce mneglect of other damage parameters. I'or Minecr
damage mean lives were sufficient; below we use the
variance also and approximate the canonical damage as
log-mormal distribution thereby following a long tradition

in the trecatment ol fatiguce results.

Let
N N(u,dz) indicate thut x is normally distri-
buted with mecan g and variance g . Equivalently,
- 1' (x-11)"
- ag~
Llx) = n(u,s”) = 1 e =0 ‘e (13)
J2TTT
and if w = (x-u)/0 we can define
u
. . 1 ~ N
ow(u) = £(u), F(u) =9 (u) = i e =7 dx.
Joi -
ce. (13A)
Since F(n) = F{u) = ¢(u)

u is a suilltable measure of damage.



At any stress S

(N-N(s))/c(s) (14)

1!

u
and N = log un.

By the usual transformation formula

f(nls)

du
@(u)' EH l

= G(g) exp {-uo(s) - N(s)} ,
and when this is averaged over the load density £(S)
1

o(S)n(s) dr(s)

£{n)

l
a
for

®(u) this is in the form (3) (here

1l

and since F(n)
independent of S). In practice cracks elsewherc may
affect the local stresses and F(S) will depend on .
This change will be slow enough to allow F(S) to be re-

placed by a short term distribution F(S|n) say.

Now consider the moments of the initial life distri-

bution r{n) (=dp/dn). The r-th moment is

-]
, = nt dr (n)
g
® 1
_ “ nr afu) r c_uO(S)dF(S) dn
BT M - Y 6 Il

If £(38) is indcpendent of n as the notation implies we
can change the order of integratiorn. If we also change

the variable n to u then by (1k)

1 [=<]

W, = f et N(S)dF(S) ) exp{r ug(s)}ar(u).
‘o ®
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1 ©
_ j o N(S)dF(S) .r u o(s) e—%ua du
o tow J 2T

The second integral is now obtainable by completing the
square in the exponent whereupon the factor left after a

linear change of variable is

exp (#r? o%(8))
and 1

M = j expf{r N(S) + 4r? g®(s)} dF(s) vee (16)
o

The integrand here is the r-th moment of the constant
load life at S which suggests that the distribution itself
may also be a similar averaging over the S-n data. Let

us form the characteristic function

==}

r‘ .
mn(t) = | o 1Nt dF(n)

c

which by the same procedure becomes

1 -~}
{‘ uo’(S)+N(S)} p(uldu dAF(S) (15)

expfit.e

[

Yo Y
representing the expectation over F(S) of the character-
istic functions of the constant load life distributions
which are here log-normal. The random load life distri-
bution can now be found as a Fourier inversion integral
and when this is commuted with the outside integral in
(15) we know that the overall density is in fact an aver-
age as envisaged. This is only true if the stress dis-
tribution is constant over the life or in other words the

local stresses are not affected by cracks elsewhere.

Now suppose that cracks have affected the stress by
a factor k(n) and let FO(S) be the initial stress distri-

bution so0 that
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i

F(S|n) F_(8/x(n)).

As in (15) then

1
.
L- ) | gg} arF (s |n)
“o S const
1 . i
= m(u) r du' dI'o(S/h)
k JO dn S kin)

which again has the form (3) since u @ D and within a
scale factor k & S. This is still a duonsity and the

corresponding moments are

o0
+ - S)
Fonte(u) " e uo(
_ . i
Ur iw —ﬁTHT— dn J 513 NO S dFO(S/c(n))
o 1
r _1.2 :
- ' exp -su” +ru(S)+rN(S) aF (S/K)du
o' o ./otk(exp(ug(sS)+N(S)))
after the integrand is expanded. Substituting the ini-
tial stresses,
o Ic
r r
u = ¢ delu) expiruo(ks)+rN(ks)1dF _(S)du
I 1@ 40 o]

... (17)

If the contribution of high stresses to the inside inte-
gral is small the upper limit may be taken as a constant
and we can change the order of integration. The integral
over life then bcomes

reruo(kS)+rn(kS)

f
J

as(u) = [oFUO(S)HN(S) r(u(0-T) (5T gy

-4 leinasie] (‘ - -
= expfrRN(8)+:r?5?(s) }. fmean value of ¢’ (u(c-G)+(N-N)jdu}

by the mean value theorem. The second factor reverts to
@«

? exp{r=1Tuo(ks)+N(kS)]-r[ug(s)+N(s)]ldn ce.  (18)
‘o
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on changing the variable back to n.

If the mean value of this integral is set to unity
for r=1,2 then this fixes 0(S8) and N(S) as functions of
S. We have thus defined a fictitious S-n curve for which
(16) remains true when r=1,2 but not for higher values.
This is similar to the fictitious S-n curve introduced by
Freudentha18 to allow for "stress interaction". Since
Freudenthal's damage is related to final failure the
physical basis of the effect here i1s similar except that
in his case there is a self-interaction because of the
local crack. As a method of computation, the form of
(18) would indicate that it is best avoided in favour of
(17) where a h-point Gaussian formula should give good

results quickly.

2.5 Dffect of Endurance Limits

If we draw contours of canonical damage (constant
load) on an S-n diagram these define cqual probabilities
of prior failure and we have a surface F(N|S) on the S-n
plane. This has zero height along n=0 and in general

is asymptotically 1 as n — =.

In the diagram cross sections at two loads are shown,
appropriate to the simple programme on the left. Since
damage is effectively F(n) the path followed by the
material during the programme is that shown, with damage
troansference along the contours, and the total number of
cycles is the sum of segments such as a and b. This
gecometric interpretation of (3) is easily generalised
to any programme Or type of one-parametcr damage and in
particular (9) may be interpreted as the averaging of

slopes along contours such as AD in the figure.

When some of the loads are below the endurance limit

there is a finite probability of infinite life which may



FIG.1 DAMAGE BELOW ENDURANCE LIMIT



be simulatced by having

F(n|s < E) = p(8) <1 as n — =.

For Miner damage the damage rate 1/n{(S) becomes zero if

S < E but (6) indicates that for "short" lives

f(n|s < E) > 0, or for all lives p(s)f(n|s < E) > 0,

so that damage can be done by programme loads below the
endurance limit. This is not related to the development
of cracks begun by higher loads for we have spoken only

of initial failure. For a stress distribution indepen-
dent of n we now investigate the effect of endurance limits

on the log-normal damage of the previous section.

In (6) the second term becomes zero and since the

distribution of u now becomes p{(S)z(u), mw(u) itse’f is

no longer a damage. It £ is the lower endurance limit
(15) becomes
1 -u (s)
£n) = | () =S dF (s)
JE "o’ g(S)n(s)

whiere u, depends on S in such a way that

p(S)@(uo) = m(u),
representing constant damage. This condition reduces to
uoz = u’ + 2 1n p(s)

and we also know that
u = (N-N(S8))/o(s),

N(S), o(S) referring to short lives if S > E. After
these expressions are substituted into (15) as modified

the r-th moment becones
o 1 —uoo(s)
rop . w(uo)e

Lo = 0 exp rio(Shu®-21n p(s)+N(S

. o'p 0 Veg P ($)} —5r57m0E)

dF (S)dn




[we}
[\e}

{ -uoU(S)
- ,m(uo)e
= 3 N ~ :) di
'E”:o exp r{qu(S)+N(S)ru uod(b), =(57a(s) dn dF(S)
where n(S) = exp(N(S)). Changing the variable to u_ pro-
duces
1 o — R
Pop ruoU(S) rN(S)+r+1 G(S)u—uO
M. = | | w(uo)o .c (uo/u)duodF(S)
B -0
(19)
From the mean value theorem, the inside integral can be
written
@ rqu(S) E;(S).exp r+10(S)fu(S)—uo(S)]
erN(S)r w(uo)e du_. —
o \/u;(S) - 2 1n p(S)
where EQ(S) is the typical value. The factor may now be

interpreted as exp (rN(S)) where N(S) is another ficti-

tious S-n curve differing for each moment.

When p(S)=1 Eg is obviously zero and in other cases
one may increase u_ until w(ﬁo) = p(s)/jz—. In this case
the rate of damage increase for the approximating problem,
using u, or N but ignoring infinite lives, is roughly the
same as in the original problem. From these approxima-
tiong

u’ a~ -2 1n p(S)
and u ~ 0
and the fictitious S-n curve bceceoms

N(s) =~ N(s) - X2 o(s) /ST TA B(ST - 1n 2

v

in terms of log lives.

This example illustrates the predominant effect in

Bastenaire theory of the higher damage riates. Damage



occurred below the endurance limit because, although the
mean life was infinite together with the overall variance,
the first mode (in (6)) produced a finite probability
density, i.¢. a finite damage rate. Because damage 1s
retained during a programme dormant periods at particular
loads tend to be bypassed. Thus the two (constant load)
damages below have the same effect in a programme because
the horivontal section CD will be passed as soon as any
different load is applied and only the sections QC, DD

contribute to the damage.

Equivalent
dama / °
ge Z

function/ /
v 4

c/ D y/4

/ /
/ 4

0 Cycles 0 Cycles

3.0 Corrclation Effects

It has been shown9 that the correlation between the
possible fatigue lives of the same specimen at different
loads may have a marked effect on the variance of lives
under random load. This conclusion arises from an ex-
tension of Miner damage in a direction forcign to Basten-
aire theory and the approximate effect was “that standard

deviation was proportional to correlation.
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For Bastenaire theory let us divide the specimens
into groups K with probabilities dFF(K) (see Figure) within
which the conditional life distributions are independent

(we assume this to be possible) with densitics

f(n |F,s,K)

so that f{n|sSF) = f£(n |F,s$,K)dF(K) cee (22)

Taking expectations over S we find the conditional dumage

rate

f(n|F,8) = J‘f(n |s,K,F)dF(s)

which itself has the expectation
r - .
r(n|F) = J;f(nll«“,h,)dp‘(h)

all of which is entirely consistent with the laws of pro-
baility. The unconditional damage must therefore be
identified with the marginal distribution of all specimens.
Any reduction in the variance under random loads must

therefore be attributed to further parameters.

4.0 Corrosion Fatigue

From the obvious generalisation of (3) it is possible
to set up multidimensional damage by making the life dis-
tribution a function of the damage vector. F'or a less
abstract approach we first consider a hypothetical case
of corrosion fatigue in which fatigue and corvrosion form

two components of the domage vector.

Let D denote Miner damage and by € denote a fraction
off material corroded so that if the nominal applied siress
is S : £(8) the stress for the purposes of Miner damage is

o = s/(1-C).

Suppose further that
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1

dc/dt c{g) + c(s/(1-C))

i

and in the usual manner

f £(g)do
dD/dn = ) —%5:57—

Let 7 be the frequency of loading so that in unit time
ki say is spent at high load and the remainder at normal.
A more refined time-integration procedure is not suited

to this rudimentary investigation.

Thus
dC/dt = kwE(c(g)) + co(l—kw), say,
where E is the expectation. Now
(o) = (1—C)fs(o.1—c)

and the two damage equations become
1

(1-0)|  £_(s)ao/N(0) cee (23

o

dD/dn

1-C

F £(s)ds
. N(S/1-C)

o
1-C

k | £(8)dS.c(s/1-C) +
‘o

dc/aN 1t

t

We have tacitly assumed that the upper limit
S = 1=C

is not exceeded or that its effect is negligible. In
this case the second equation can be solved numerically
and the result substituted into the first (by using a
fixed upper limit). The equations themselves are simply
a two-dimensional form of (3) but from the formulation

here the mode of failure is necessarily by Tatigue if we

usce the Life distribution based on the Mincr damage of Scc. 141



Ilowever if this is done then the two equations above are
merely a way of calculating a single damage and as we

have seen one can, in principle, eliminate all damages

but the one of interest. We conclude that truc multi-
dimensional damage must produce life distributions depend-
ing on all the parameters and in many cases there are
several possible modes of failure (e¢.g. corrosion in the
case above) which must be considered in the initial fai-
lure distribution. This will be considerecd when we

return to corrosion fatigue.

5.0 Two Parametecr Damage

The direct generalisation of (3) takes the form
dD /dn = A(D,S) ee. (2h)

where the notation indicates that ceach component of A

depends on all the components of D.

It has been postulated by Bastenairel that D de-

fines an cquivalent state based on a vector with

f(n) [‘n(D). ee. (25)

In this system the equivalence

(s v) = (gN) v)

defines a class of programme functions g(n) which contain

S, v, Vo as parameters, presumably in a cantinuous and

differentiable manner. More generally it
(g(n)ul) =  (h{(n) vz)
then ¢g(n) is a functional of h(n) with parameters Vi Ve

The damage increment along a programme is then (24)
genceralising (3). If required, the load S may also be

cextended to include the mean load as well.
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EL the other mecasures of the damage arc obvious,
c.g. corrosion or creep it may be possible to modify the
onc-paraneter equations in a physically reasonable way
to account for further coffeccts. This has been donc
already for corrosion fatigue and we return to this

exaniple for further development.

5.1 Generalised Corrosion Fatigue

We now suppose that the stresses effective in fatigue
and in corrosion are different so that for example the
first is mostly affected by alternating loads, or range
pairs for random loads, while the second is probably a
function of maximum loads. For the processes generally
occuring it i: likely that even the frequencies of the

two loads would be dilferent. Supposec that
S : F(s)

relates to fatigue damage while for corrosion
P : F(P)

The first of these is set in discrete time while the
latter loads are continuous in time. To relate the two

let the average frequency of fitigue loads be .

Then the rate of corrosion is on the average

{i
de/dt = 1 c(P/T-CYdF(P)
1 dc
= oW cee (26)

where the upper limit corresponds to the assumption that

(initial) corrosion failure occurs when
1) > 1 - C -

Now letl us use the canonical damage F:Fd+F as the
C
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second parameter where Fc, Fd are the partial distributions
of either fatigue or corrosion failurec. In the absence
of corrosion suppose that Fd is the solution of the equa-

tion for pure damage

dFd
I = H(S,Fd)(l—Fd) ' ree (27)
in the reliability form. When corrosion is present the

stresses increase to
o= 8/(1-C)

This e¢xpression is rather crude in order to simplify the
illustration. However C, like D previously, belongs to
a class of equivalent damages related by monotonic trans-
formations so that it is more general than appears at
first sight. When the mode of failure is uncertain the
factor (1—Fd) in (27), excluding prior fatigue failures,
must now exclude all types of failure and accordingly it

must become (1-F).

If we also take the expectation over S then (27)

becomes 1-C
aF /au = (1-F)j H(S/1-C, F)dF(S) ... (28)
(o]
1-C
f
= (1-F){ 1(s/1-C, F-F_)dF(s)
“o
For corrosion failure 1
dfF _/dn = (1—F)f dF(P) = (1~F)I_ say
Y1-C ¢

.o (29)

where once more the factor outside excludes both kinds
of failure. In (26) the only corrosion of interest is
that occurring on unfailed specimens so that the proper

equation to use is



1-C
dC/dn = (1-T) ? c(P/1-C)ar(y) ... (26A)

L5

o]

Adding (28) and (29),
1-C

ar/dn = (1-F){ M(S/1-C,F )P (s)+ C o ar(p)} .. (30)
‘0 "1-C

The equations (26), (27) and (30) may now be solved for
C, I' and Fd. In (29) the variables are separable from F

and if we put F(0) = 0 we find
‘1
n
F = 1 -exp (- 1)
Yo

and by subsequent substitution into (28)
n i
P - r
F, = 1 - exp (- f - exp(-1f 1) dF (P)dn
- "o ! "1-C

Treating the modified form of (27) similarly, (factor

(1-F)), n 1-C

C = f exp(-;{ })f c(P/1-C)dF(P)dn. eee (31)

o o
Thiese are the formal solutions but only in the sense that
the differential equations have been replaced by irans-
cendental oneces. In practice numerical solution of the

original equations is probably the simplest course.

To allow for small rates of corrosion let us expand

II in (26A), (29) and (30) as a Taylor series in F_.

Then
— 4 — =--—i 1 .:1,.1 2 — P
u(s/1-¢c,F FC) I FCFF+_PC Hon .
”'b
- M dn - -
and  1-F = ¢ exp{~- HdF(S)dn+FC‘ HFdF(S)dn - ee.l

whence by (33)
~§IICdn

dFC/dn = HC e exp{~ ﬁdF(S)dn+FC..ﬂde(S)dn )
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The corrvosion C is still given by (31) with the appropriate

moditications to { J.

5.2 Canonical Form of Multidimensional Damage

For simple damage the canonical form was found to be
equivalent to the life distribution function F(n) for the

programme in qguestion. In sywbols

dD/dn = A(D,S) and ¥in) = Fn(D) saYy .

In the more general case let us put F(n) in the form
F.(n) = Fo(n)Gi(n)Gg(n) ces Gr(n) e (32)
where Fn(n) 1s the canonical form of the one parameter
approximation so that
0 < F_ (n) < 1.
(9]

Now consider the two~dimensional case where the propertics

of probability distribution functions assure that

o < F, < 1 ',
1 o}
Let F (n) (=F ) be the r~dimensional damage in the canoni-
cal form
Fr(n) = Pr(Failure has occurrcd before nlr parameters).

Obviously as a distribution

and if successive damage parameters are deleterious

or

The two inequalities together are



Now consider the meaning of the expression

- -1
P = lr+1 Gr+1 T (33)
iec. P (failure{r parameters) = P (:t‘ailurelr+1)Cl-1 .
T r r+1l
Since Fr < 0;11 < 1 it may be interpreted as a (Bayesion)

probability that the (r+1)-th parameter is not needed to

describe the damage. It will also be noted that

Gr+1 > Clr

which agrees with the plausible idea that, as more damage
parameter s are inilroduced, the nced for others will de~
creasc.

As we have noted it often happens that two or more
mechanisms acting together will partially cancel cach
othrer such as stress relief caused by creep.10 This
contrasts with the case above which we can distinguish
as pure damage. Because all cases of improvement
(except coaxing) can be ascribed to stress relief it is
possible that in the strict sense pure damage is the only

kind.

5.3 Variance under Programme Loading

When considering simple damage (correlation effects)
it was decideg that the reduction in the variance of live
observed by several investigators11 associated with
random loading was caused by an additional component of

danlage.
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For increasing orders of purc damage above,the pro-
bability of prior failure and the subjective probability
that the numbér of parameters (i.e. the order of damage)
is sufficient both increase uniformly over the life n as

the order r increases.

If the logarithmic variance G*° of life depends only
on the programme S{n) and not on the order of damage 1
and if also the log-life is normally distributed N(u,c®)

the the inequality

I’ > 0 < n<« o
r+1 r

is ecquivalent to

8! <

Tr+1

;

T

and the whole guestion reduces to a general linear re-

gression problen.

With these restrictions the treatment of r-dimensional
damage becomes morc manageable. In addition, since all
the information now concerns the mean u, testing and
analysis can be made much more efficient. Finally therc
is now no nced (in this case) for the restriction (34)

which confines us to pure damage.

The success of this approxim.te thcory depends on the

measuremen! or prediction of ¢° which itself involves

some of the damage componcnts. It has been surmised

that the reduction in Variance is associated with corre~
lation between the constant load lives of the same speci-
men, i.e. a specimen "strong'"at one load will also be
strong at another. This explanation will be retained
but we now imagine that the random loading S(n), S:F(S)
will average the minimum variances of each load in the

PIrogy anme .
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Onc of the ecssential effects of correlation is the
reduction of variation in conditional distributions as
compared with the jdint distribution. For the bivariate
distribution in the sketch for example the conditional
standard deviations 01, d, are obviously smaller than

— Is

their marginal counterparts.

F

If this figure is appropriate to the two load programme

f(s1.) = P r f(Sz) = 1 - p

then the simplest case of our theory for the random load

variance will give

Var(n under random load) = p Oi + (1-p) Gg .. (35)
Strictly speaking (35) is meaningless unless g, and o,
are independent of the load or variate which has been
fixed. This is a Characteristic of the multivariate -
normal distribution and we now generalise (35) to programmes
whose loads are associated with lives (or log lives) follow-

ing the k~fold normal density
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1. 1
-1 -k . t
t{x) = (2m)"% | A |77 exp(-L(x - g) A(X - g))
wheroe A—l is the matrix of covariances. Now let us fix

all variates except x, say and suppose that the remain-

1

ing variates X4 have the covariance matrix Azl which
mast be a submatrix ol A—l. The conditional density
is

x| x)) = £(x /0 x )

which is also normal with the cxponent

t t
—i(x - §) A(x-g)—;}( X,- &y) [O O}( Xi- &y)

0 Ay
wher ¢ A1 is not a submatrix of A. The inverse of the
elcement A - fO AiJ then supplies the conditional var-

iatice and this can be done for each variate in turn.

Removing the factor A this becomes

ACI- Ao a)

ACIl - A11 b 0

il

I

Alto... 0
Q44 Saye
a1;1 so that the rule
for the k loads isto invert the diagonal matrix formed

The reduced variance is therefore

from the diagonal of the inverted covariance matrix.

The logarithmic variance of life 1s then
k
DS |

) a

)oag. fs)) cen (36)
1=1
where the notation emphasises the discreteness of the

programue (S). For continuous distributions this mcothod
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obviously fails but it is possible that there is an equi-
valent one based on the theory of Fredholm integral equa-

tions.

Because this reduction of variance is still uncertain
and has never been properly verified even for the one-
dimensional theory described here there is mo point in

discussing its physical nature.

5.4 Log-normal Damage with Several Parameters

Before leaving this chapter let us extend the log-
normal model described above to a stage amenable to sta-

tistical analysis.

Suppose we have several recognisable and observable
damage parameters as well as the fatigue life and the
constant logarithmic variance. Then in order to avoid
confounding we need at least as many distinct programmes
as there are parameters and preferably several more for

practical results.

Let there be N programmes Pi say, each producing a -
logarithmic life n, : N(ni,oz) by our assumptions. I'or
each of these (which need not all be different) we also
observe or calculate the set of parameters x.. If we
also assume that the mean lives depend linearly on x then

for all programmes

XP: y +e cee (37)

where Yy = n = n,» the change in life caused by the

extra parameters,

X = [ Xi], the parameters for all programmes,
and e is a vector of errors. This is the general linear
hypothesis in analysis of variance13 and the effects [3 can
be fitted to this model by minimising the crror sum of

~ e
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efe = (pTxToyErixp - y)
with respect to [3. The solution is
A= (x®x)7'xy ce. (38)
with the error sum of squares
ete = vy - yEX.F . eee (39)

Further details may be found in Kempthorne13 or any other
statistical text but the essential point here isg its
applicability. With good experimental design simple
standardised analyses can be substituted for (38) and (39).
It is also important to remember that the "lincarity"
refers to the role of ﬁ in (37) and a non-linear relation
between life and the damage parameters is perfectly
feasible, if further parameters are introduced. For
example if A

Yy = a + bx + ¢cx® + e e.. (LO)

then fa b ¢} is the vector [ of (37).

r

In practice it is likely that the presence of higher
damages will be noticed only by the effect on the 1life
~and there will be no obvious effects to measure.. In such
cases we will show that arbitrary functions of the load
may be chosen as damage parameters to any degree of approxi-
mation. This is obviously no substitute for physical in-
sight which would be refiected in the present framework
by a need for very few parameters combined with a truly

minimal error variance.

We again postulate the parameters X which are now un-
known but we now suppose that they can be written in the

fTorm

Xin = By (8)ar.(s) cee (41)



37

where Fj(S) describes the j-th programme and gi(S) is a
constant load relation for the parameter in question.
The problem previously described by (37), (38) and (39)
now includes the estimation of the f's. To get any
further it is necessary to restrict E to forms (not
necessarily polynomial) like (40) which depend on a cer-

tain number of parameters. Thus

gi(S) = a.1s1(S) + vee + a. s (8)Y ... (k2)

1 im m

and without loss of gemnerality the Sy (S) can be taken as

linearly independent. Substltutlng in (41)

[\
X4 = J{- s, (s) + ... aimsm(S)]dFJ.(S)
= a..S.. + e + a. S .
i174ij im mj
t
= SJ. a;» say,
‘s, (S)dF. (S)
where Skj = Jsk S dFj S ,

the expectation of sk(S) in the j-th programme and a known

quantity in the present context. In (37) then
t
- [ 5.)la,]
= Sa ., say,
so that
t ~
yte = Sap cee (43)

with ﬁ of order m. Except that aﬁ has replaced /[;,
this is exactly the same problem as (37) but the solution
there supplies only a ﬁ as a whole. No further equa-
tlons to find & can be found. For the error sum of

sguares is now

ele = ([3't ats - yt)(Stap - y)
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and if the variation of this with respect to & alone is

considered we find that
ate®e) = afds -yt aap + <0°(da)

which is automatically zero for the given solution a ﬁ .
The form (42) is therefore no better than (41) in which
the g, may be arbitrary. In (41) however the effect of
using further E's can be assessed by an analysis of

variance.

6.0 TFinal Note on Applicability

Because it secems more fundamental physical damage in
the sense of this chapter has been taken to describe pro-
cesses before initial failure which is heére the sudden
appearance of a crack. However this is ambiguous and for
different purposes the initial crack length can be made
roughly equal to the grain size, as we argue later, or
lengths such as the distance from the edge to the opposite side

of a rivet hole which could be used for aircraft structures.

Similarly the loads which form the programmes can
also be generalised. In a fatigue context two such possi-
bilities are programmes of the stress intensities defined
in fracture mechanics and programmes of different rms
values of random noise loading for which Kirkl>y1l£ has
produced S-n curves. He suggests that Miner damage cal-
culations based on such data are more accurate. That
the results are only partly better may be due more to
the inherent limitations of Miner damage than to the use
of rms loads and it is possible that a one parameter
Bastenaire damage may suitthis case and not that of con-

stant load S-n curves.
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Chapter II

FINAL FAILURE,

HAZARDS AND RELIABILITY

In the first chaper it was stated that the life dis-
tribution to ultimate failure was a subsidiary problem
which could bhe solved separately after the general fatigue
problem, whose solution described the random growth of
cracks, taking cumulative damage into account. The
method of doing this belongs to the theory of reliability

and the relevant analysis will be developed below.

1.0 Failure Rate and Hazards

Suppose we have a structure whose ultimate strength
changes with time (or cycles) in a known manner. This
is subjected to a series of loads (the same ones that in-
directly reduce the strength by starting fatigue cracks)
which may exceed this strength. In this way the struc-

ture will fail and the probability of this event is

Pr(failure on n-th cycle)=Pr(no previous failure )X

Pr(SN > Unln.p.f) cee (1)
where S
n

U
n

n-th load

I

strength at n-th cycle.

I

Now the left hand member is merely the probability density
f(n) of cycles to ultimate failure so that (1) may be

abbreviated as
r(n) = [1 - F(n)] h(n) e (2)

where 1I(n)

it

Pr(Sn > Unl no previous failure)
is commonly called the hazard rate or hazard. If we

allow cycles to be continuous variables then (2) becomes
the separable equation



d(log{1-F(n)}) = ~h(n) .o (3)

with the solution

F(n) = 1 - exp(-H(n)) , F(0) =0, ... (34)
where n
H(n) = | n(t)dat
o
the total hazard. The corresponding density is
f(n) = h(n) exp(-H(n)) “se (4)

and if h(n) is a constant, as it is in many applications,
the life distribution is exponential. For aircraft such
a case would be ultimate failure by gust loading in the

absence of weakening from fatigue. If there are two in-

dependent modes of failure then (2) becomes

f(n) = [1-F(n)](h1(n)+h2(n))

so that independent hazards, as independent probabilities,

are additive.

Since F(n) and h(n) or H(n) are equivalent one need
only find h(n) which depends solely on the current size
of all cracks, which is known from the solution of

the general fatigue problem.

If @ : F(a |n) is random together with the applied
loads S : F(S) then from the definition

h(n) = Pr(Applied load > Ultimate | npf )
= [ ar(a|n)ar(s) | cee (5)
gl{al) < s

where U( @) is the ultimate strength as a function of

the various crack lengths. For a constant loading S=S
o
ar(s) = 0&(s - S,)

and this becomes

4o

15
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h(n) = | aF(a |n) | cee ()

2.0 Effect of Inspection and Repairs

A structure which is periodically inspected and re-
paired will last longer than a neglected one. This has
been considered‘by von Sydow16 who considered a single
- crack which if'necessary was repaired at preset inspection
timés“Tv; . We outline the analysis below, adding another
term to include static failure in the absence of fatigue

cracks.
Let F(t) denote the life distribution obtained by
(3) or (&) if the crack begins at n=0. In any interval

(Tvui’
starting times have the density f(t) then

Tv) a crack may start at time t, say, and if these

Pr(First fatigue failure during (T yT . )) =
. T vV=1""V
v

Tv—l

whére Fé(t) is the distribution of initial failures.

This includes only those failures in the interval (t’Tv)
and not any static failures during‘(Tv_l,t). Let this
possibility be denoted by A and its absence by A while

B, B refer to the fatigue failure when the structure is
intact at time t. There are then four possibilities in
the combination of these events andusing the same symbols
their probabilities afe as follows

C (Two failures in succession)

_ ~-h_(t-T )

AB =.1 -~ e ° v-1 (Static failure with hazard h )
_ -h_(t-T ) ' s
AB = e F(Tv—t)

ADB

)
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-h (t-T )

AB = e V1 (a-F(r,_))

t
To include static failure we replace the integrand in (7)

by AB+AB obtaining

Pr(Any first failure in (Tv—1‘Tv))=

Ty

L e

v-1

-h_(t-T,_.)
{1-F(1,_ ) }1aF () .. (8)

Failures in any interval are mutually exclusive and

these probabilities can be added to obtain the chance of

failure any time'before Tv. When the hazard H(t) corres-
ponding to F(t) is used this sum takes the form
k T
= Yoo-n_(t-T,_ ) -H(T,-t)
¥ = - ) 0
F(Tk) F_(T,) ;o] e "t e ar _(t)
v=1 T\)_1

.. (9)

where the second term is the improvement effected by the
inspections. ~ Part of this improvement is illusory however
bécause Fo(t) refers to the material present at the begin-
ning and not to the possibility of cracks developing in
the material used in repairs. If the failures arising
from repairs are also considered then the situation is
similar to that obtaining in statistical remewal theory.
This extension will now be treated by the theory of re-

17

current events.

Let us first regard a failure during (T Tv) as a

)
discrete event at time TV with a concentrateg ;robability,
still called a demnsity for convenience. Consider a
structure which has failed at T,, and which was last re-
paired at T_. Then if the origin is moved to Trig)

still supplies the probability for this condition which
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can be written

f\)x‘

[FO(TV-Tr)-FO(Tv_l-TV)] -

-h (t-T ) =H(T -t)
- f e S v=1' 4 VodF (6-T.) ... (10)

= f - g say.

vr'’

The probability dy of catastrophic failure at Tv‘is there-~

fore V-1
B \
y = fVO L prfvr ees  (11)
‘ r=1
where
fvb = Prob. of final failure from first crack.
= 1" 1" " 1 21
perr from crack repaired at

time T .
¥

For equal intervals it is convenient to define the gener-~

ating function

[--]
Q{s) = 1 + L, a,, sV
v=1
‘@
DR Vv
AO(S) = ;,'fvo s
V=1
which are retained temporarily for all cases. From (11)
[+4] V-1
- yooN v-r
Qls)=1 = A (s) + Ll ops £,,5
V=1 r=1

and if we change the order of summation



. -] ©
T r Ver
- = 1 )
Q(s)-1 Agls) + 0 2 p, s f,. s
r=1 V=r+1
=] 2]
N r V-1
= A (s) + 7 P, S £,. S
' r=1 v-r=1
@
= A (s) + B p s A_(s)
o] _— r Ir
r=1
-]
< t
where Ar(s) = v ft+r £S5
t=1
may be regarded as a retarded generating function. If
the Tv are evenly spaced then
Ar(s) = Ao(s)
and then
Q(s) = 1+ A (s)P(s) .. (12)

where P(s) is the generating function of minor cracks,

P(s) = 1 + p,s cee  (13)

We now return to p,, which is the probability of a minor

crack in the intervals (T Tv)' This is an event

v=-1"'
similar to final failure and the previous analysis is

largely repeated. Corresponding to (8) we have the event

Pr(Minor first crack during (Tv-l' Tv))

]

= IdFo(t) Pr(No failure < t).Pr(No failure >t)

Ll
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rTv' ~h_(t-T, )
= | e ° [1-F(T-t)]dF _(t) ce. (14)
To-1
Thus T,
. ~h_(t-T,, ,) -H(T -t)
8vo = e ° e ar _(t)  (ef (10))
W T
v-1

for first occurrences and as in (11)
v-1 '

Py T 8y * [ Pp &yTF ... (15)

r=1

with the generating function

@ ®  v-]
o 4 (_’ \T‘ Y
K ) = 7 : L
= PySy Go(S) * Za L Py 8 V-1r O
v=1 v=1 r=1
==} ©
- = S V-1
= GO(S) + ] Pr s g'—-—-\)__r o S
r=1 Vers=1
after changing the order of summation. This can be written
in the form
@
s r
P(s)-1 = Go(s) + ) Pp s Gr(s) eee (16)
r=1 '

resembling (12) where G (s) is another retarded generating

function. If the inspection intervals are constant
G.(s) = G (s)

and ,
P(s) = 1/(1-G_(8)).

Substituting into (13)

Q(s) = (1+A (s) - G (s))/(1-G_(s)) e.. (17)
.0 o o]
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[-<}
v r

.and Ao(s) - Go(s) = ) (fovo~2gV0)s
A ' : oVC

Now A (s) and P_(s) can be found from (10) and (14)
and in this case P(s) and Q(s) can be expanded to give

the répair and failure rates.

With unequal intervals the generating function method
can be used by considering fixed values of. s but it is
better to find py and q,, recursively from (15) and then
(11).

For continuous lives we have obtained essentially the
life distribution at T1 cve Tv. To obtain the density
of failures suppose that the last inspection interval is

infinitesimal so that, with n=T , (11) becomes

v-1
- -h _(¢'-T,_,) -H(n-t')
- f(n)dn = fo(n)dn+ ) Pe e fo(n—Tr)
' , r=1
where Tv—1 < t' < n. To the first order
' Y (n-T ) . 8)
f(n) = fo(n) + J p. £, (n-T ) . ce. (1

For a linearly decreasing strength and log normally distri-
buted initial failures various results calculated from (9)

can be found in ref. 16.

The hazard H(a) on which (9) and all other results
are based is thatafound through (5) by a fatigue analysis,

however crude the approximations used.

When there are several cracks the initial failure here
can be approximated as the first one (a least value dis-
tribution), or the second or a similar event. The essen-
tial simplicity of having only one crack is that, once

started, its growth is roughly deterministic.
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2.1 Several Initial Failures

With several possible types of crack it is most con-
venient to consider the average size, including those not
vet begun, and let this be zero at n=0. All hazards are
then based on the origin and the first failure probability

(7) becomes simply

1

Pr(f.f.C(T,_,,T,)) = F(T )-F(T )

1
-H(T, ) -H(T)
= € - e

1

and (9) reduces to F(T). Similarly (10) is now

f,p = F(Tv-Tr) - F(Tv_l-Tr).
Now consider the probability of a minor crack appearing
for the first time at Tv' It will be shown later that
the initial life distributions of a set of cracks are

independent and therefore
1 -F (t) = (1~ Fl(t)) eer (1 - F (t)) .. (19)

is the probability that no appreciable cracks have appeafed
by t cycles, Fo(t) playing the same role as before. Thus
g, is still given by (14), using the failure distribution
from (19). This is still tantamount to assuming that a
repaired structure is completely restored when a crack is
discovered Whefeas the uncracked parts are left, still

containing a certain amoumt of fatigue damage.

The problem can be circumvented by solving the crack-
damage equations (Chapter IV) in a piecewise fashion with
the added boundary conditions that all cracks return to
zero lengths at each inspection. For parts not needing
repair the damages are retained, becoming zero for those
repaired. Overall then it is necessary to average the

canonical damage at each inspection, a process similar to
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that above but rather more complex because of the inter-
action between the differential equations and the. boundary
conditions which depend on an earlier part of their

solution.

3.0 Illazards from Several Cracks

The hazard H(n) on which the failurc distribution
depends is related to a complete structure but it is plain
that an analysis broken into independent sections is more
efficient. This is possible if the different cracks are
sufficiently separated to allow independent structural
. analyses. If this is so there is still a statistical
interaction between the different areas of failure which

we shall investigate below.

et the external loads be R which is a vector of mag-
nitudes applied to a set of external load systcens bO
in cquilibrium (in accordance with the matrix methods of
anulysis). Any linear combination of these systems is
also in equilibrium so that if A isof full rank the loads

boA-ﬁLCWe also a suitable basig and the applied loads are

bR = b A . AR

o [0}

Thus any linear transformation of bo is equivalent to it
when R is correspondingly altered. We mnow supposc that
the elements of R,)but not those of bo’ arc randoin var-
iablesygencrally correlated with each other.and having

the covariance matrix ZR' For the new vector
=1

K = A R

the covariance matrix is

* A 1 is chosen to agree with the next section. Strictly
spcecaking the order of K can exceed that of R and the
analysis can be extended but one expects one crack to be
critical for cach load vector.
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z

K =

EKKLy = EAIRR A-t) o Al 5 ATt .. (20)

It is obviously convenient if ZR is diagonal and without
loss of generality the variances (on the diagonal) can be

unity so that

_ A IpE cee (21)

K =

z

This is qguite general since L R can always be diagonalised

by another preliminary transformation. Let us now con-
sider A-l, remembering (3A). By definition
A A = | oo (22)

[TIILAT say,

and for J = 2, ..., N

i

tlAj - o

which is a restatement of (22). Considered as a vector
z; is perpendicular to the subspace spanned by Aj s J=2,e0a
.o N, and if this is also the case for A1

Ay =0 %
within a constant factor. By the same reasoning

t -
Alfj = 0

from (22) and hence

i
T 7. = 0, j =2, «e., N.
13

From (21) is now follows that K1 is not correlated with

Kz, . ey KN and if the loads are mormally distributed this
also implies independence. We shall show below that this
is also true in the important case of exponential distri-

butions.



3.1 DBExponential Distributions

These are a close approximation to the load distri-
butions experiemced by aircraft structures and thereforec
warrant closer consideration. The range of application
of any distribution can also be extended by transformatious
such as logarithmic loads etc.

For normal distributions it is well known that the
covariance matrix (21) and the mcaus /MK‘ = A—I/uR
completely define the new variates. We now try to find
a similar generalisation of the exponential distribution

f(x) = ae—ax, F(x) = 1 - e 2%,

The simplest generalisation is the product of several

such factors,

t
= < s - X . > s o e 2
£(x ) a, ay exp(-ax), x, o, (23)
representing independent variates. Now suppose that
x = Ay where A is constant. The Jacobian of the
transformation is
L. Al
dy
so that the density of y 1is
£ly) = f£(x)|dax /a3y |
t
= . . —aAy o/
had Adl e 8 o dNe - o @ (‘4}:)

t
If eN represents a row matrix of ones and A& is

changed to a diagonal matrix then it can be seen that this
belongs to the set of densi%ies

ey Ay

£(y) Al e ..o (25)

i

fl

I A leXP{~Y1 iailwyg

e
o
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We know that the components of x are independent. Let us
consider their corrclations and those of y. The moment

generating function of x is

t
[\
M (t) = "o XY ar(x)
9 f~]
_r e ~(a-t)%
= ! eee B, ea e dx
; B | N
Q Q
N
%3
= n
- 2 cen(26)
a1 1

The logarithm of M, (t ) is the cumulant generating function
Wx( t ) and since covariances are second cumulants and

(25) is a product all correlations are zero. After a

change of variable the corresponding MGF of y becomes

(from (24))

t
n
My ()= [ e P Yar(x)
=] -
. s ~(af- tf AThx
= J‘ LRI 'Ell . QN e dx
o o
N
] ’ 93
= . 2
Qi-—ui * s 0 (&—07)
i=1
where u = [ui] = A_tt . The cumulant generating func-
tion is therefore
N
™ U.i
y (t) = « log (1- —) + comnstant
y - &4
1=

and the correlations depend on which elements of ¢ are
involved in those of U or equivalently, on the relation

between y and X . Expanding,



N
A u,

\i‘y( t) = ; {E—— + 2(:—) + eee }
i=1  * +

and the covariance cov(yi,yj) is represented by the corres-

ponding terwms in
N
AN t -2
» (u./a)? = u a u

L i’ 7d

1=1

1l

t - -2 -t
£ AT [a 7% AT
or in other words the covariance matrix is

= A7? "2 a7t cee (28
z, AT alt AT (28)

If A consists of diagonal submatrices then (28) may be
correspondingly split and after retracing our steps we
find that (27) also splits into a number of factors which

thus represent independent vectors.

Therefore, remembering (10), it has been shown that
zero correlation is neceséary and sufficient for the corres-
ponding variates to be independent. Equation (28) corres-
ponds to (24), which is convenient here, but its form shows
that the covariance matrix corresponding to the form (25)
is '

1, ~t

Zy = A~ A ¢ o o0 (29)

In (20) now, K1

the rate of crack growth depends), the components of R

represents the stress intensity (on which

can be made uncorrelated and therefore independent and
finally

-1

-1 A .

K = A "R ’ ['Ui]

1

1

If also the other colummn vectors of A - are orthogonal to

’l:‘1 then by (29)

t
Var (Intensity) = ’Cl’l’ 1

In our derivation of the moment generating function reference



to the lLimits of ¥y was avoided by integrating over X .
Apart {rom simplicity this was forced upon us by ignorance
of the values of these limits. For the independent dis-
tribution here, which by (25) is still expomential, we
. t

have the varirance nbove and the mecan value eN‘Zi corres-
-1

X

ponding to (25) or to y = A . Since the distribution

is exponential we might cxpect that
& o= o
which is clearly not so. The dif{ference arises from a
change in the range of the variate which for Xy is (0,®).
If the winimum of x, say, becomes b the variance is not

altered but the mean becomes
S
in which case

b

o} (u—b)z or b = u-g (+ve roots).

4]

In this instance the formulac can bhe written

t [t — .
b = e 'C'l VT, T, ee. (30)

and by taking the relevant factor from (25)

- Lb bl 3 \ ’
f(hl) = ae?.o ‘hl eee  (31)
t .
where a = @ A1 = Sum of clements in 1st (say) columm
of A and b is given above with
t
eza = Sum of eclcuments in corresponding
ROW of A—i. If K, is the stress intensity critical for

fracturc then from (31) the probability of fracturc is

1

11 Pr(x, > K )
i [¢

i

expf-a(lic~b)}. eee (32)

When K1 is normally distributed this hazard has of course

the form



1 -9 (u) ' .o (32A)

e
]

where

u = (K -~ My )/0K and ¢ (u) is the normal

c
integral. 1 1

3.2 Two Sided Exponential Distribution

The gust loading of aircraft usually occurs in either
sense and to a first approximation the practical distribu-

tion is that shown, each part of the curve being exponential.

The multivariate distribution will be approached as
before, starting with independent variates X which are
transformed to y = Anlx. We then consider the charact-

- eristic functions of x and y using t,u as the parameters

of . For the single variate x the characteristic
function is
b ™
. s R
o (t) = lafe ab [ eh(1t+a)dx + o8P 5eh(lt a) ax}
x J d
- b
eee  (33)
TWO SIDED .
EXPONENTIAL
DISTRIBUTION

f(x)

,/””/////
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which reduces . to

o () = actt/P/(a?4t?),

or as a moment generating function (it—t)
M _(t) = ae”t/(a%-t2),

The cumulant generating function is therefore

?X(t) = log a + bt-log(a-t) - log (a+t)

1l

log a +bt+(t/a)® +~;}(1:/a)lf + %&t/a)G + eee

LI (34)
~and if x, a, b and t generalise tox, a , b ,t the
C.G.F. of X is merely the sum of such expressions with these

parameters.
If we define
x, = (x-b)sgn{x-b)

and xs ‘as the corresponding vector then the joint den-

sity of X is

‘ t
£(x) = %] alexp(- eNaxs), oo (35)
a being diagonal with ey defined as before.
In the same way as before
o

t
M (1) = Lf e Y Yar(x)

o

or, on changing the variable,

@ t, -1
M (t) f..fet A Xar( x ) (x
-0

y

it
tl

Ay )

il

Mx (u) say .o (36)

AV .

where

c
i



From (3%4) therefore

‘ t -2 -1 -2, -t
Zyé: 2u a u = 2A a A
as in (28). This covariance matrix is the same as that

for the one-sided exponential density and therefore the
same argument as before shows that zero correlation implies

independence and vice~versa.

Now consider the joint density

£(y) = exp (- e;fya xg)
where xg = [sen(x - b)] (x -b)
= [sgn(x - b)] (Ay- b)
= [sgn(Ay- b)] (Ay- b) ves (37)
Thus
2t(y ) = | A.a |exp{- e&a(Ay - b) [segn(Ay _b)}

i

| a A lexp{-etaal(y. A7 b) [senAly_ A 'b) )
| A lexp{- e;;A(y,-/Ly) [sgn a~ta y —/uy)_l }
if aA- A .

So far the manipulations of the sign matrix [égn ( {J have
been purely formal. In the last formula one manipulates
a"lwA(y —‘ﬂy) and chooses elements of =1 according to the
sign of each row. As standard deviations, the elements of
a“1 are essentially positive however and a'-1 is there-
fore immaterial to the value of the sign matrix. Thus the

general two-sided exponential disriibution has the form

£(y) = %|Alexp{- e Ay - b) [senAly -b)]}
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At failure, the stress intensities should be high compared
with b so that the sign matrix should be the unit matrix.
For one crack, the hazard is then half that of (15), using

the same definitions and notation.

3.21 Several Cracks

If there are several cracks the event of no failure (F)

has the form

T = F. (F., = failure at crack i)

= All possibilities).

it
[y

1
co]

(%N

7~~~
[y

]

i=1

This formulae also applies to the probabilities if the F,
are independent events and there is then a formal resem-
blance to the distribution of the least of N variates.

Where there is correlation the product represents the joint

probability
' e ® P
e dr( K ) ces (39)
K . -
ci
of no failures anywhere, where KC = {Kci} are the relevant
critical stress intensities. For practical purposes the

sign matrix has positive elements and the one-sided and
two-sided distributions are both equivalent to (25) apart
from a factor of a half. Substituting (38) into (39),

with these provisions,

(]

o t
F = %- PR - eN A(y - b)
“‘A ! JK . J e dy
ci

=z

]

N = . ( b.) S
~(y.-b.)  a,.
= %l al I_ lr e otz M dy;

i=a’'Kej
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v N N N
= g—{l A |l TT( Laji)} . -‘_]-exp{—(lici-bi) N aji}
i=1 j=1 i=1 , j=1
N N
= #lal 11 Y aji}- Jen AR b) cee (40)
i=1  j=1

A similar result holds for the one-sided distribution and
if the sign matrix is important a term similar to this
must occur neﬁertheless in F together with other terms
. corresponding to regions bounded by the discontinuities
of £'(y ). Because of its relative practical unimportance

the more general case will not be investigated.



Chapter IIT

CRACK PROPAGATION AND FAILURE

1.0 Introduction

In this chapter we present a unified review of crack
propagation and failure with the emphasis on thin sheets.
Attention is confined to Griffith-Irwin theory of static
failure and the related approach of Paris or Liu19 to
crack propagation. The most important new results arise -
from a non-dimensional presentation of fatigue crack data.
This leads to a treatment for random loads and we have
also considered (for 7075-T6 and 2024-T3) a wider range
of conditions than Paris allowing a better inclusion of
mean load and some discussion of work hardening effects.
In an approximate fashion there is also some discussion of
the plastic stress system.

- We have already identified mlcrocracklng or Forsyth' 520

Stage I with the older concept of cumulative damage and

this chapter is entlrely concerned with visible or Stage

II cracks where the (main) direction of propagation is
perpendicular to the principal stress. The transition
depends21 on stress (or actually stress intensity) and the
presence of corrosion and there is also evidence, added

to here, that grain boundaries are impoxtant. The basié
difference between'the two stages is that microcrack pro-
pagation continually exposes fresh material whereas "damage!
implies the continual fatiguing of the same small part of

the structure.

2.0 Elastic Stresses

Ingli522 presented the first treatment of elliptical
holes in 1913, and obtained the now standard formulae
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KT = 1 + 2b/a = 1 +A/2£;r > 0 0 (1)
where a, b are the semi-axes and r the minimum radius of

curvature. The analysis proceeded by the use of con-

focal elliptical coordinates.

For sharp cracks the next major step was the presen-

tation of a semi-inverse complex variable method by

24

Westergaard23 which formed a basis for much of Irwin's

work later.

If the crack coincides with the x-axis and

z = z(() where ( = x + iy

then in Westergaard's method

Gy = R(z) + y¢¢(z') cee (2)
o =R(z) - y£(z')
Tey © -y R(z")

In plane stress

Bu= (1=W)R[ 2aC - (1+vy £(2) e (3)

Ev

1

2J{§ zd( - (1+V)y A(z)

For an infinite row of equal collinear cracks

~L
2(¢) = ofp - Sinma/iy™ TS
sin“wl/W
where O = stress at infinity
2a = crack length
and W = width of strips which contain each crack.
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2.1 Tip Stresses and Intensities

There are three basiczq stress fields near the tip
of a crack corresponding to two edge dislocations and a
screw. Except where mnoted the discussion is related to
cracks opening under pressure or the effect of stress

perpendicular to the crack.

$ %
. In such cases when r
r
4—] r—»x is small, the tip
*I‘Z}y stresses always take
the form
— e
ce. (53)
K 5

. 9 . 2]
cos = {1+sin = sin =<—

Y JEr 2 2

X 8- . 0
g, = cos —-{1—51n - sin ;—} - 0
X 2T5r 2 2 P4 oxX
K 9 ] 36
xy = cCOoSs .é- sin —2— cOs -é--
27r
= , h] i
g, = v(dx+0y) Plane strain

i
o

Plane stress

where K = /7T kq = Jﬁ]g , depending on the stress and geo-

metry, is called the Stress Intensity Factor.

The.square root singularity applies to all types of
elastic cracks, and we will present some evidence that it

holds for plastic systems also.



62

Now consider any crack made in a previously stressed body.

(Fig. 2).

U )

I
_—

U +U

& 4

FIG.2.

Because the crack opens, negative work will be done by

the previously internal stresses along the crack edge and

the total strain energy is reduced. Moreover, the reduc-

tion is equal to the strain energy for the crack under
pressure (see Fig.2). This energy U_ powers the crack
growth in static failure and in fatigue and it appears

that on a unit thickness basis

% - K= /E Plane stress

= LY

(1-v®)X®/E Plane strain

where;ﬂ is the crack driving force of fixed-grip energy
release rate. For a crack of length 2a in a infinite

plate
% = Taco” /E
and this is the order of magnitude in any other system.

Consider the contours of a stress dy, say. When
0 = 0 we have from (5) and (6)

(6)
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rooo= Eﬁ/Znoy e (7)

so that;ﬁ may be regarded as a scale parameter. When
plastic flow occurs this is still true, for if the plastic
region is much smaller than thé region where (5) is valid,
then the truth of (7) when;ﬁ is large and uniqueness of
the solution of the elasto-plastic problem lead to the

tentative conclusion that (7) becomes

I‘y = %.i‘(oy) PR (7(\)

The manner in which this breaks down and the strict
conditions of its wvalidity do not concern us here, although

they form an unsolved problem requiring investigation.

2.2 Special Cases

To form a reference the driving forces for some
common cases have been shown in Fig.3. The cases of
clliptical and circular cracks apply to small fatigue
cracks in heavy sections provided the edge is not too close

to the other boundaries.

As an example, Irwin has stated that the formula for
a semi-elliptical crack in a plate is reasonable if the
crack is less than half-way thréugh the thickness. From
the actual behaviour of fatigue crackszé stress concentra-
tions and the growth of static cracks, it seems that the

nearness of other boundaries accentuates the driving force.

3.0 QGeneral Solutions

When the shear stresses T , T
265728 Y?
' 77 problems in threec-

on the x,y plane
vanish, it can be shown that
dimensional elasticity may be reduced to dependence on

one harmonic function sm. Sneddon26 has shown that the



EE ;”Infmlte Plate ﬁ Tl'.aE <a+t> at end +d

T Wid W P A+T
- ,‘W' th ﬁ EW'sin (na/w) ( )

‘.*‘W.her_e_.f 7\ sinT!:a/W
ST 1: s:nTtt/W

Unnform Pressure ﬁ Tl'.GO‘
or ﬁ =0 Wtanrl:a/W‘

| :",“(b'). I o ;Umform Pressureo-

w],f”““"% ol et

| g];,lDf,T: Near ends »; o’ b E(k)/(k)-a)f»
R T R L)

L ‘ 2b l Far ends 1} TtbO‘ ['ﬁ I%'\’&({IZ\')] o

where k \J 1- a'/b and E(k) K(k) are  complete ellnptlcv
' integrals of the first. and second klnd
" Erdogan 4th U.S. Nat Cong App. Mech 1962
o Bnrenbmit Ad. in App Mcchm Academic 1962,

1 | 20 - J’;”"Unnform Pressure 0‘ ’

E;ma-x--ys 77b0‘/ 3@ 02,2(1 )

Q.-.- E(1 b/a )

e / §1 (1-b/a )s/n eg 2de

; o

6k

+

' Accurate Results Srawley et al NASA TN-D 2395 -
: SR O " NASA TN- 02396 '
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stresses near an elliptic crack under uniform pressure in
an infinite isotropic medium, can be described in terms
of the gravitational potential of a uniform elliptical
disk. Since the boundary shape is not used, the analogy

holds for any crack or set  of cracks.

It is probable that it can be extended to non-uniform
pressures on cracks in prismatic elements such as aircraft
spar booms. In this most general case the dénsity of our
disk would be proportional to stress of pressure and we

Iy

require o 0 on the surface of our prismatic boots .

0x
If the crack is in the x-y plane of an infinite medium,
“then © + O = O and in thin sheets the stress o may
: XX ; A XX

Yy ZZ
lead to buckling.

~ As thevpoteﬁtial problem can be‘solved by Green's
functions, it also seems possible that this approach may
be usable to find stress intensities directly using numeri-
cal methods in the most general case. From the case of

27

the elliptic crack, it appears that the maximum inten-
vsityvdccurs'on the straightest part of the crack boundary,

if the pressure is uniform.

3.1 Two-Dimensional Case

In this case a complex variable procedure is appro-
priate.-' We have already mentioned that of Westergaard,
but here will will choose a particular case .of the general

theory. " From Green and Zerna28, if Txy = 0 when y = O then
G(ux+iuy)= nAz)- Az)+(z~2z) Q' (z) ees  (8)

UXX'+ Oyy= LiQ(z)+e (z))

OXX‘— ny_+,21Txy = 4 (z-z)Qn(z)

where
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o= 3-lv for plane strain
or (3=-v)/(1+v) in plane stress.

It will be mnoticed that the last two eguations give
vectors defining the Mohr circle for stress. These equa-
tions relate to infinite sheets and if we have a single
crack a < t < b loaded by a pressure p(t) (zero stress at

infinity) then

: b
Q‘(']J) = -——-—:—%—--———-—- : 1)(t)ﬁ.i:%}r)‘t dL o s (9)
L i \/RZ ~) “a -
where
R(z) = (z~a)(b-2z)

3.2 Lycll-Sanders' Method

By considering the worlk done by boundary tractions
during crack extension (9-/00)d% defined by some para-
o]
metexr o, Lyel].-—Sanders"9 has obtained the driving force

in the form of a line integral.

B
O 2 p—
— = - — y ‘2' Q ® o o O
Ja E"f{[‘ e da (10)
B
. iy ! " 13 v
F JA(MG QYo+ ow Qa)dé}

in the gencral two dimensional case described by two com-

plex potentials 2(z), w(=z). In this expression
g > .
SR - v B = 0
0z ol 3 etc.

and the integral is independent of the path AB surrrounding

the, crack tip(s). When the crack is straight

w(z) = 0.
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3.3 Experimental Methods

As;ﬁ,is a derivative of stfain energy, it follows
that it is obtainable from a series of experimental flex-
ibility measurements with cracks of differing lengths.

Let the total load on any specimen (of unit thickness) be

P and let x be the corresponding extension. Then
x = FP and U = FP°
where F is the flexibility. Thus,
«; = oU = 1p® ar
0a ¢ da

or in non-dimensional terms

ewg 4 d(EF)
p2 d(a/W) °*

where a = crack length and W is a fixed dimension of the
specimen.

Accurate results can be obtained in this way, provided

30

one takes extreme care with the measurements using the
same specimen continually with the crack approximated by
keyhole slots. These reduce the stress concentration so
that, after shakedown, there is no plastic flow. F'rom

the form of the singularity, it follows that the end radius
of the keyhole does not greatly affect the stiffmness if it
is referred to a crack reduced by half the end radius from
its actual total length. If we assume that the keyhole
slot approximates an ellipse, then this effective crack
length is measured from the focus and confocal ellipses
form a natural set of coordinate lines for crack problem522’26.
Generally, the stresses approximate a state of plane

stress.
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L.,0 Other Modes of Fracture

So far we have only .considered cracks under stresses
perpendicular to their surfaces. Irwin24 has also des-
cribed two other modes of fracture which correspond to
edgé and screw dislocations. In these cases, the sur-

faces slide against each other but do not separate.

4.1 ©Edge Sliding
b
y.v Jl:lf-’ “x
r.” T Txy

= e

This system is produced by forces such as that shown,
or by crack surfaces under shear in the same direction.

Near the crack tip

~-K :
L 2 . C) 0= 39 o
o, = sin 3 {2 + cos 5 cos 3 } cee  (12)
v 2r
K
2 : 30
o] = sin 5 cos 3 cos 5—
Kz 5
o, = -2V sin = for plane strain

“ V2xr 2

or zero for plane stress. In addition
K A
TYY 2 =2 cos g-{l— sin 6 sin %i .o (13)
- fzr = ~
' K. ./2r ;
u = *7;;——-sin = {2(1-v)+ cos?® g}
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-1{2\/{: R,
v = cos'g {l - - sin 2}
J2G
and T s T , w = 0.

Yz Xz

Finally, the driving force is given by

i

K22 E;é/n(l—vg) for plane strain

i}

E}h/n for plane stress LY

,2 Screw Sliding

In this case thecrack faces slide in a direction

parallel to the edge of the crack.

y This is a special case
\‘\.\ X of St.Venant torsion so
> that by the sandheap or
r4

L
roof analogy31 it is

also the only case with

d

a completo elastoplastic

35

solution.

In the purely elastic case, using the previous notation,

-K
8}
TX? = "“"—3' Sirl "%‘ .o (15)
’ J2ar = '
K
- _ 3 cos 2
; 2
ya A/ 2r
The warping and driving forces are given by
. .8
Gw = K, J/2r sin 5 ... (15a)

and G, = TK.?/2G.
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At any point, the maximum shear stress is KB/J2r and these

follow trajectories defined by-

dy _ ﬁ
dn cot 3

Recently G.C. Sih79 has presented general complex variable
methods for this type of crack including a relation between
intensity and the residue of the potential function near

the tip, similar to Lyell-Sanders' result.

4.3 Effects of Other Modes

Many of the particular cases described in Section
2.2, have obvious analogies when the plates are in bending.

36,37

Williams has described some of these cases and points
out that if the effects of shear are allowed for, the
stress field near the crack corresponds to the opening

mode.

Ilowever, in this case the calculated stresses are un--
likely to be achieved because on the compressively stressed
side, the crack will close and the edge will act as the

fulcrum of a lever tending to further increaseé{ on the

tension side.

approx.

CRACKING OF PLATES
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38

In practice the edge AB also bocomes inclined to

the surface as one might expect.

We will not mention plates again but similar compli-
cations arise with sheets in pufe tension. In static
fracture and fatigue, the plane of the crack faces often
rotates until it makes an angle of approximately 450 with

the sheet surface.

We have also seen that there are compressive stresses
along the crack face equal to the local pressure (or its
equivalent) and these often cause buckling when the sheets

are thin.

This buckling tends to increase the driving force and,
in these cases, the crack face is usually inclined to the
surface so that a screw sliding component is added also.

39

In fatigue problems, buckling seems to have little
effect (probably because of the lower stresses) but there
is evidence21 that the crack front is curved, "tunnelling"

ahead in the centre of a sheet.

b.4 Additivity of Driving Forces

The intensity K is proportional to stress so that
intensities corresponding to the same mode of failure are
additive. The driving force is then obtained from the

square of this total.

Let us consider elastic cases where different modes
,of failure operate tqgether, for example wherc the tractions
on a crack surface are inclined. These tractions may be
resolved into components associated with the opening, edge
and screw-sliding modes, and to this extent the stress
problem is easily solved. It can be shown that the strain
energies of the three modes associated with a crack are

simply additive.



First consider screw sliding* and the other two
modes. The cross-product terms in the strain energy
integral are gzero. The opening and edge sliding modes
give rise to systems which are respectively symmetric
and antisymmetric about the crack and the integral of
cross~-product terms again vanishes. Since the strain
energies are additive, the driving forces or any other

derivatives are also additive.

5.0 Effect of Non~Linearities and Local Geometric Changes.

Inside a small circle of radius r enclosing the
crack tip, the total strain energy

rg °

° .o (16)

U, = o( %
so that the orthogonality relations are 1little affected
by small amounts of plastic flow or local departures from
the straight crack front perpendicular to the surface.
This ar gument is essentially that of.Irwi§4 but as it
seems vaguely unconvincing, we shall use a similar one

more capable of rigorous development.

Consider separately the circular region mounting the
crack tip and the remainder of the structure which is
supposed elastic. In general, the tip region contains
both elastic and plastic parts. For simplicity suppose

that the (self-equilibrating) tractions across the mutual
pe
0
A\ O\
P
* ) B
=)

*For thin sheets, the particular system shown seems in-
appropriate, being related to a crack along the z-axis of
an infinite medium, ’
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boundary of A and B can be summarised as two equal and
opposite forces as shown. Suppose that the actual stress
system is achieved by having the material behaving elas-
tically until the maximum load is reached, and then allow-
ing the stresses in A to decrease to their correct values.
In the purely elastic case the strain energy is

= AP P? .+ 1p_p2 ; ick
U = U, + 3F,P° + IF,P (Unit thickness)

= U, + U, Unp say , . (17)

where U0 is the energy of region B when the circular part

Y is not loaded.

From the previous results

R dfrdrgde} cee (18)
(Jr)
rGOB
=  Of T ), o, = Stress om crack face,

and we can therefore assume that

P = O(I‘Go)
_ -1
F, = O(rE) .
Now comnsider FB. Here again r is the only dimension of

interest, and it follows from dimensional considerations

that

Fp = o(rm)“1 eee (18a)
- d 2 )
or UB = 0(100 /E)
" - - 2
and U = UO + O(rdo /E)
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When A becomes plastic the work UAE becomes

= 4 = 2 D
U, = ,o(PrB) 0(ro ~/E)
From (18) and (18a) however, it can be scen that
at most the unloading of A cannot affect the total work
done by a term greater than O(rOOE/E) which proves that
small amounts of plastic flow do not greatly affect the

stress distribution.

Localbchanges in geometry can be simulated by local
self-cquilibrating stress systems and by St. Venant's

principle these are also unimportant.

5.1 Cracks in Cylinders

As in the case of buckling, the bowing at the edges
of cracks in pressurised cylinders invalidates our assumed

stress systems causing a severe reduction in strength.

41

For static fracture of pressurized cylinders, Kuhn

suggested the empirical formula

I = ou/(1+9(2a/n)) cen (19)
where 2a = crack length

R = radius of cylinder
and GI’ Ou are the nominal (hoop) stresses at failure in

the cylinder and an infinite flat sheet containing the
same crack. The factor 9 is that suggested by Williams&z.

Eq. (19) suggests as a driving force on cylinders

ﬁn = (14 18a/R)7 4

but it must be remembered that it only applies to static

failure of unstiffened cylinders. For stiffened shells



For recent work on this subject see
E.3, Folias "A finite line crack in a pressurised spherical shell"

International Journal of Fracture Mechanics l 1965



or fatigue, it is probably too scverce but experimental

checks are neceded.
6.0 Plastic Stress Systems

Lxcepting the special case of torsiomn trecated by
Hultaj, there arce no closed solutions and work in this
fiecld is either photo-elastic or numerical. In ductile
failure, fracture occurs along the slip systems radiating
at 245° from the crack tips so that one expects partly
plastic sheets to behave similarly. This effect is shown
in plane strain by the numerical results of willinmsz

113

and by the results of Rolfe and Munse from photo-eclastic
coatings. From the lattcer is secms likely that the maxi-
mum shear strain (and hence the other strains) have the

{form

I

€, = B, £t(u)/Jr “ee (20)

and we will take these results as a tentative standard.

In plane strain conditions, the slip field is

o . 4
apparently 457 to the shcet surface. According to Dugdale1
.45 : .
of Liu ° the plastic regions have the form shown in Fig.

7, where it is possible that 7(a) is a case between plane
stress and planc strain.

IL the tensile yield stress is Gy then (7) supplics
an approximation to the width of the plastic region. [For

convenience, we now define the plastic length p as

) = ! 21‘ @) & o o » 2
1 E}/ o, (21)
for plane stress and plane strain alike.
i,
If thie Mises yield criterion is applied" to the

clastic stresses (5) then in polar coordinates the nominal

plastic zone has the boundary

ly
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p(8)

i

o2ng ?
y

——Eﬁ; cose-%{(1—2v)2+3sing'%}

where the plane stress case is obtained by putting v =

In plane stress then, (21) and (22) agree. Now let us

consider the true width of the plastic region.

/ e

B\
|-
l——
>
-——
————
@

Fig. 6. Dugdale's Approximation

The form of plastic region shown in Fig. 5(b) led

Dugdale to conjecture that the stresses

in such a case

could be approximated by an elastic crack in a loaded

sheet with each end of the crack loaded

by a temnsile

" stress Uy. The length AB in Fig. 6,was then obtained

from the further condition that the stress at the tip

(B) was finite. Thus, AB was regarded
width for a crack ending at A. For an
the only case considered, Dugdale found

2a sin®(no/4c )
AB = == Y

1*2sin2(nc/40y)

in excellent agreement with experiment.

as the plastic
infinite sheet,
that

For small stresses, this becomes, in our notation,

cee (22)

0.

77
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fl

1 - 2
AB g Eﬁ/cy .o (23)

2.46p .

i

The same case for sheets of finite width has been treated
by Bilby, Cottrell and Swindon b7 in terms of dislocation
theory. h

For plane strain consider the results of Rolfe and
Munse £3 obtained from mild steel. Although the net
stresses were very close to yield, the behaviour of the
plastic regions closely paralleled that of the stress

intensity and in the conditions appropriate to their Fig.9.
p = 0.1078n

From the figure one can obtain the admittedly approximate

plastic width of 0.065" based on the Tresca yield cri-

terion. This is the narrowest part of the yielded zone
in the line of the crack. Thus, in plane strain it seems
that

0.065

True plastic width = 0.107 P
= O.6p
or roughly 3.75 times the value indicated by (22).

It is therefore almost certain that p has the correct
order of magnitude especially in the plane strain case
- which is more important in fatigue. The definition is
justified by the simplicity of (21) and the arguments of
Section 2.1.

6.1 Work Done During Extension

It is convenient to anticipate here and consider the
work dome in plastic flow as a plastic zone moves across

a plate. The results of Rolfe and Munse can be put in
the form



®
]

s

where e =
s

c =
y

and £(8) =

e Jpr(8)/r
y
maximum shear strain

yield shear strain

r/p along the experimental yield contour.

(see Table I).

0 r/p
0 .60
15 1.00
30 3.06
45 4.23
60 3.58
75 2.35 TABLE I
90 1.74
105 1.21
120 . .89
135 .69
150 46
165 .23
180 0

The plastic strain is now

& o=
13

- € = ey(pr(8)7r - 1)

s y

and we assume a linear work hardening, leading to the

shear stress

T =

with the plastic

Now consider the

crack extends by

work element

E € )de
P P

strain at a point A in Fig. 7 as the

an amount Aa.



Aasin 6
r

0]

Fig. 7. Moving Plastic Region

If the crack and the flow field are held stationary, this
is equivalent to moving A to A' and to the first order

the new position is
Aa .
(r - dacosB, 8 + - sin8)

and the corresponding change in plastic strain is
1 % .~-3/2 . :
gAasyp r fcosO/T(0) + sinbf'(8)//f(0)]}

To obtain the work corresponding to the extension lAa this
is multiplied by the stress and integrated. When |6]

~ /3 it will be seen from the figure that A'A is tan-
gential to the contours of maximum strain, so that

Iel > n/3 correéponds to the region of elastic unloading.
The radial limits of integration correspond to the onset

of yield

= f
ry pf(8)

and the maximum strain su for which

e
- AT
r, = (Eu) p £(8)

(The lower limit is needed for convergence.)
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Integrating over (ru. ry) we find the total rate of plastic

work reduces to

e e
- 2¢(g - - L) 4T U
AW = pla ay{(Ey Et)(l z )+1:t log — ]
u y
n/3

X f {cos 8f(8) + sin 6f'(8) }d9 ceo (23A)
-n/3

The indefinite integral reduces to {(5)sin® and if we
substitute for p and Sy (23A) takes the more convenient

form
V Et 8u
Aw = 0.493 Aa{(l-Et/E)(l—Ey/Su)+ T 1n E_}
y
The ﬁarameters here can be estimated from the true frac-
ture stress Of(for St) and the true ductility (for Eu)

D = 1n AO/Af

where AO, A_ are the initial and final cross-section

f
areas of a specimen. In a paper on low cycle fatigue,
Manson gives the following values
D df Oy
2024-T3 0.402 103 k.s.i. 51 k.s.1i.
7075-T6 0.327 121 7h

leading to the results

(1.027)
Aa (1.017)

(2024~-T3

AW = 0.493 (7075-T6

for
These are respectively 3% and 9% largcr than values
obtained by using parameters from a simple tensile test.
If this procedure is repeated using elastic octahedral
. h6
shear strains ' and stresses corresponding to linear work

hardening we find the smaller values
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Aa (0.210) (plane stress

A
VoA (0.072) for (plane strain

In Griffith-Irwin theory it will be seen later that
AW = Lla so that these equations reflect the errors of.

the analysis and assumptions.

In contradiction to these results (and to fracture
theory) Paris has based an explanation of his fourth power

49

law on the assumption that AW here is proportional to

the area of the plastic zone, i.e. toﬁ,z.

From Fig.7 it can be seen that the plastic problem
of a moving\crack has a close resemblance to steady flow
or die penetration problems except for the sign of the

hydrostntic pressure.

6.2 Correction to ﬁ,

If the case of Section 5.0 is considered again it.
will be seen that plastic yielding of the crack tips will
allow the crack to open further or, in other words, the
external forces do more work. If this additional work
is available as elastic energy upon unloading, we may

select an increased driving force.

This correction has been estimated by Irwinso by
assuming that the crack behaves as if the length were
2(a+p). The yielding is thereby assumed to displace
the stress field at the tip through a distance p. Since
50 L

critical ﬁc

values in fracture tests, we must conclude that it is

this correction successfully correlates

reasonable, It is only appreciable when cracks are very
short. In these cases plane strain plastic flow is more

likely and we have also seen that p is then most realistic.
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For fatigue the correction is unimportant, and we will
henceforth ignore the correction except possibly for

static failure of heavy sections.

7.0 Griffith-Irwin Theory

Thé earliest work on fracture mechanics was by
Griffith’ ! who postulated that

f(adpg) = W, W constant., cos (24)

for brittle solids at incipient failure. By definition
Egda is the elastic energy made available by an extension
da, hence the term driving force. The right hand side

is a dissipation term which is constant for brittle mater-

ials. Eq. (24) is a special case of the moregeneral52
A (a,0°)+E(8) = W(a,t,8 ...) + 4T ee.  (25)

where K (ag?)

i

energy available per unit crack

extension
E(8) = thermodynamic free energy
w(a,t,08..) .= rate of mechanical dissipation
dT = increase of kinetic energy.

In (24):; is obtained from the solution of problems in
elasticity with infinitesimal strains and displacements.

It is implicit that energy is dissipated at a point
"outside!” the material. More generally the driving force,
although elastic, comes from systems where the simple
solutions have been invalidated by large amounts of pre-
vious plastic flow., This is actually the case when the
above correction for.;.is needed,

In practical cases there is at least an order of

hagnitude difference between the scale of the plastic region
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and the elastic stress systems of Section 2.0. It is
therefore quite possible that the right hand side of
(24) requires plance stress conditions while on the left
hand side, plane strain is appropriate. This reflects
the fact that we are approximating a basically three-
dimensional problem. For edge notched specimens of

30

cross~-section 24" x ", Srawley et al. found that plane
stress gave excellent agroeement between theoretical and

experimental measurements ofj .

Fdr the ductile materials of interest, the work
function W is not constantEB. We describe special cases
later and also propose that (24) applies to fatigue frac-
ture. It is often wrongly supposed that this is a con-
dition for instability. The source of this notion is
the fact that extension and instability are simultaneous
when W is constant. Before proceeding let us extend*

(24) to apply to variable work functions.

;£.+ AW

—3-

(1- ¢)AW‘
(1-8)Aa

Aa f» ¢ AW
#
6 Aa

Fig. 8. Propagation with Variable Work Function

A w(a)

I

*This generalised form was mentioned by Irwin in a letter,
but I have not seen any other discussion.
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In Fig. 8 consider an extension 8a and suppose that
during the extension W(a) follows one of the polygonal
paths shown. In Fig. 8(a) for example, the load is
allowed to increase to the new value before extension is

allowed. !
In (a), (b) and {(c) then
Dissipation = WAa + 0(Aalw)
while the available energies are

(a) (£+AW)Aa

(b) #4ba
and (c) 4+ v(1-8)0W)4a
intermediate between (a) and (b). Thus, to fhe first
order ‘

4(a,0®) = W(a,0”) ee. (2h4A)

and if;f, W are known functions one has an implicit

relation
a = a(O’g)-

There is obviously an upper bound to W(a,c°) and
with sufficient load£> W and failure is rapid.  The
start of this instability is marked33 by

L7 (26)

da da e

Eqs. (24A) and (26) can be solved for ¢ and a i.e. the
ultimate strength and the corresponding crack length,
When W is constant, there is no extension. before insta-

bility and (24) gives g(a ).

‘7-1 Static Fracture

Theessential features of the static fracture of

50

sheets have been clarified by Irwin and his colleagues” .



86

As the load increases, there is usually a period of slow
growth governed by (24A) until instability occurs, followed
by rapid fracture. During the slow cracking, the sizes

of the plastic zone and the shear lips increase and the
additional plasticity accounts for the increased work
function. If fracture is sufficiently delayed, W reaches
a maximum when the shear lips meet, There is also a
corresponding minimum, the plane strain toughness, denoted
by I by Irwin which is appropriate to very thick plates

or semi-elliptic cracks in heavy sections.

Now consider the effect of sheet thickuness on the
driving force at failure. In section 6.1, we have scen
that the work function is proportional to p. In this
respect the argument there applies to planec stfess also

and we assume further that in a plate
W o& average width of plastic zone.

Using the results of Section 6.0, let us asswme that the
plastic zone of Fig.9 has the cross-section shown where
the 1.86p is also the width of the shear lip. In accord-
ance‘with observation, we also assume that the linc AB

in Fig. 9 makes ah angle arctan 0.2, to the surface of

the sheet.

If we also remember that W is defined as work per

unit width and postulate that a zone width of 0.6p implies

w:j

then some elementary calculations lead to the stepwise

formulae ABC in Fig. 10.



_SHEAR LPS  O7

TYPICAL PLASTIC
ZONE

49 |

0-2x 1-86p

| 1., 2-46p I-(—I :

0-6p—>

&\\\\\\

—

FIG.9 GROWTH OF PLASTIC ZONE

‘161 F o 25 x/t
FIG 10 APROXIMATE FORM OF WORK FUNCTlON
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"Now let D, E and I' be the centres of three cracks
of different length while DB, EAB and FA represent their
reduced driving forces at failure. If the half crack is
larger than OE then from (24A) and (26) failure occurs
(point B) after some slow growth and against a large
resistance 2.55:%1. On the other hand, if the half
crack is shorter than OE there is no slow growth and fai-
lure occurs under plane strain conditions. At E when
a = 1.01t therc is a stepwise transition. These effects
can also bhe achieved by having a constant crack length
and increasing the thickness which is the way Irwin first
discovered the effect experimentally. In practice, of
course, OABC is a smooth curve (parabolic according to
Kraft and SullivanSB) and the transition is rapid rather

than instantaneous.

7.2 Multiply Cracked Structures

Although most of the cracks discussed so far have
twao tips, their symmetry has obviated the need of detail-
ed treatment of their interactions. In very many cases
aléo different cracks are so far apart that their sitress

systems are independent.

When the extension of one crack affects the stress
“system of another, it is not clear how to generalise
(24A) and (26) since it is possible to imagine several
modes of extension corresponding to the same overall de-
crease in elastic energy. More generally, a single
crack front which is curved is a similar problem with
modes corresponding to varying speeds of advance on

different parts of the crack front.

These problems have been discussed by the author,

but as the result are uncertain, we will assume all cracks
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to be independent. For a typical crack a; then (28:A)
becones

f.(a, o = Wix/t;) cee (27)
where

a = {C\.}, o-‘ = {Gj} '

and (26) becomes

0 i awi ( )
= o e 0 27A
oa, 5ai

failure being determined according to the crack first

satisfying (27A).

8.0 Tatigue Cracks

Fatigue cracking like fracture depends on local
conditions which we have seen to be defined by f_or K.

b9 ,54

This view was first advanced by Plaris who has also
shown that the rate of growth per cycle does not introduce

furfher complications. The physical pfocesses in crack

5

r)
growth have been discussed by Forsyth21 and Schijve™” and
it dis generally agreed that, apart from inhomogencities
and cases bordering on static failure, the crack extends
i ko

by a sensibly constant amount in each cycle which depends

on.ﬁ,and other variables.

In sheet materials it has sometimeszi been noticed
that the crack front "tunnels" ahead in the centre until
the sides catch up by static fracture. This can also

be regarded as a steady proéess.

8.1 Non-Dimensional Variables

The multiplicity of possible effects suggests the

use of non-dimensional presentation. The basic parameters
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can be divided into four classes, namely:

Geometric

%ﬁ = crack rate (extension per cycle)
t = thickness
ﬁ, K or p (based on maximum load). These summarise the
combined effects of load and the form of
structure and grack (p = Ej?ZnGyz)
Po = average grain size
Pyr1Pgree= other metallographic distances
~Stress
E,v
¢y = Yield stress (Here we use 0.2% proof)
G =

“ Ultimate stress

f}:

I'atigue

Critical work function for planc strain

Mean load: Characterised by

Y%' = Mean Load/Alternating Load

or Maximum Load/Minimum Load
Damage: Cycle ratio £ n/n etc.
S-N curve and statistical load parameters

Time and Temperaturc

including frequency.
For a fixed material and conditions these variables
reduce to

P = L /27co'y“, -, t 0

-



and gm/ga where €n and ga are the driving forces which
correspond to the mean and alternating loads. This
choice is not unique but we shall anticipate the experi-

~mental results.

LOAD

ST
s U U

Definition of LEffective Mean and Alternating Loads

) At this stage we recall that the important parameter
in fatigue is the alternating rather than the mean load.
When the minimum stréss is compressive and the crack
closes, it has also been found that the crack rate depends
essentially on the tensiless’56 part of the fatigue cycle.
Accordingly g, and g are based on the loads A and M as

shown in. the sketch, and we use the non-~dimensional var-

iables
d ang ?(dx/dn)
._E_“. = T Y. / (28)
dn ga - Eg T =
a
1 dx o
= T dn (1 + J?) ' ¥ below,
T = t/p Relative thickness
n = 0,/p Coarseness

and f[inally

Y = gm/ga for mean loads.

91



For large stresses% /;I may also be important if

the crack growth has a component of static failure.

8.2 Experimental Results

Three sets of results have been analysed in terms
of the quantities just defined. The first two sets are
compendiums of results for 2024-T3 and 7075-T6 by McEvily
& Illg, Weibull and Boeing Aircraft, which have been
57

assembled by Anderson and Donaldson. These have the

advantage that stress intensities are already calculated,
the results having been used in Paris's thesis. A short
test series of Moag58 has also been analysed to investi-

gate the effect of prior work hardening.

For the stronger aluminium alloys, Figs. 11, 12, 13
and 14 show log ga' Vs llogs)[)m1 which is essentially the
correlation used by Paris “. However, by basing Ea' on
alternating load and the coarseness p on maximum load,
the additional effect of mean load is almost completely
‘accounted for. Both graphs are stepped but elsewhere

the slope is about -1, corresponding to Paris's fourth

power law. Where the curves are flat
dx
dn ga
46

the similarity rule of Liu .

8.21 Discussion

Apart from details to be discussed below, the prac-
tical information here is no more than Paris has shown.
However, the avoidance of high powers of stress'meahs
that the presentation is more accurate and has more fun-

damental significance. - Even with non-dimensional pre-



93

G E0A "

Sinclair, Weibull

From Donaldson and Anderson (Cranfield Symposium 1961)

including results of Mc Evily and illg, Liy, Martin and

LOW. MEAN LOADS
gm/9a < 15

17< gm/ga<2-2

HIGH MEAN LOADS

36<gm/gs < 55
Gm /Qa > 250

Thickness between 0:102 - 0-020 inches.

Decimal numbers for gm/ga
L 12

Whote numbers for test
frequency in C.PM

st 763

1800

Dese 1 {{lecnse (Novscsse D

Ceese lijsvasseNle

m,.. =

, ’ "’q‘k
w*
-30 5 —
10 - e i
X | \
-log p (p Plastlc reglon in mches)

| FIG 11 GROWTH RATES FOR 2024—T3




S1INS3Y 40 NOSIMVAWOD 2L 9lId

—&—1llg and McEvily NASA TN D-52 1959,
— Frost DTD 687A E Cranfield
—.—Harpur DTD 687 Symposium 1961

o Raithby and Bebb ARC CP 655 1963.

Donaldson and Anderson (Fig13) 1961.
7075-T6 '

—o— Rooke et al RAE Tech. Rpt 6402_571964.

et

~log p (p=plastic region in inches)

- log g_ga
- T dn
_200_
~A
\\
Rookeet al \ ‘ ‘
DTD 5070 ?\\ |
\ ~a
-3-0 —
0 10 20 30 40

H6



LOW MEAN LOADS
. ) (Donaldson & Anderson Cranfield
HARPUR (Cranfield Symposium 1961) Symposium 1961)
DTD 687 : ’
APPE McEvily & llig Decimal numbers for Gm/ga
i NACA TN 4394 o
| September 1958 Whole numbers for test frequency
. in C.RM. "
; APPENDICES S.T.UV.
i Boeing Tests omenene V22mmeeneeem 120 memeen -
: -1-:0
‘ HIGH MEAN LOADS
l°g gq Qm /g. 9-12 LY T ISR Y Y YT ALY Y Y .3
9m /g, >12 eSSBS I OS®O
-2-0
10 40
!
: .
|
; i T
—_— —2 30— S — — e O -
j | ! } |
f : i
i 5
L»v I . - — e —_— ‘b

56



96

1-0 ’
2024_-'-36 Fracture e
. /?;/DTD 646 B
Y& T7075-T6
o——\ \—{| & i—F
V| b
1\ ?i % \ Cheverton
' \ (Bristol (BAC)1959)

log d§,

dn

Rooke et al.
DTD 5070A

\
/ RR
7200
_30
0

FIG. 14

10
| log p~/

30

CRACK GROWTH FOR HIGH STRESSES



97

sentation, it is obvious that different materials must
be treated separately. Since p includes the grain size,
a rarely measured material constant, it can be objected
that the concept of coarseness is artificial and indeed
we have been forced to use log p"1 as an abscissa which

is equivalent, of coursc, to;f or K.

It will be noticed however, that the flat parts of
Figs. 11, 12 or 13 do include or lie near the point p = 1
(grain size 0.010" - 0.002"). If crack growth is a
physical process then non-dimensional presentation should
be possible. Furthermore, the excellont correlation
obtained here suggests that the appropriate variables
have been used. Thus, the formation of suitable non-
dimensional variablesrequires an extraneous length.

Any material constant is adequate but the evidence of

the flat part indicates grain size. Forsyth21

has sug-
gested that the transition from Stage I to Stage II
cracking is associated with the penetration of a grain

boundary by the initial crack.

The fourth power law of Paris agrees in a vague
way with the present results but his supporting argument
relates the work function to the area of plastic region
(viewed at right angles to the sheet). We have seen
in Section 6.1 that this contradicts Griffith~Irwin

theory and experimental results.

8.3 The Role of Grain Boundaries
We now make some tentative suggestions regarding
the effect of grain size on crack growth.

Considexr the sloping parts of the curves‘in Figs.

11, 12 and 13. If for convenience the slope is taken
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as -1 then

g

dx a

@™ C AToE e (29
p_G.
oYy

where E is assumed constant but the yield stress Oy can
vary. It is reasonable to presume that Gy increases

for fine-grained materials and if

-1/h
> '

Gy A po s

a rather mild dependence, this is achieved, but dx/dn

also decreases with po.

Now let

on the sloping parts of the curve and considexr the be-
haviour of the actual plastic zoneasp(i.e.}) incrcases.
As p ~ Py the grain boundary will often be loaded and
will tend to hold the crack tips together so that,until
‘ﬁ is sufficient to break the boundary, the actual plastic

zone width will be approximately constant.

If the actual width is assumed to control Eé then
the flat part of the curves is explained. This view
will be supported by the theory (Section 9.4) concerning

raqdom loads.

8.4 sStatistical Analysis of Results

The data of Anderson and Paris is sufficiqntly varied
to allow a guess at the effects of mean load, frequency
and relative thickness. These effects and the smooth-
ness and repeatability of individual results can be obtain~

ed by the help of an analysis of variance or regression
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analysis which must be attacked piecemeal owing to the

complexity of the overall pattern.

It is planned to perform two separate analyses on
the flat parts and where the growth rate increases again.
Preliminary results indicate that although the crack
propagation is fairly smocoth for a particular case,
different specimens or structures which are nominally
iden#ical have significantly different .log gé - log p-1
curves with the associated component of standard error

0.1773 (log 1.5, 20 d.f.).

8.5 Work Hardening

58

The results gé VSe. TG of tests done by Moég are shown
in Fig. 15. The thickness was a constant 1/8" and
different mean loads have been obtained by interpolation.
The relative rate aé is little affected by work harden-

ing (c.f. 1/h 1, #I and fully hardened materials) but an

increase in mean load decreases it.

At the high stresses used,the size of plastic zone
is no doubt very sensitive to maximum stress and this
increases the work function thus reducing the growth

rate.

When TG > 1.5, Eé seems more constant possibly be-

cause of an approach to plane strain conditions.

9.0 Crack Growth under Random Loads

As in all random load questions one must first set
up a consistent definition of a load cycle. In room
temperature fatigue the effects of time such as frequency,
rest periods and the wave form of the loading, are rela-
tively unimportant but some variable is still required

to mark the sequence of events. This is obﬁiously the
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number of peaks and troughs which, for consistency,

should equal the number of cycles.

This question can be evaded by a theory based on
the properties of small specimens under random load%5
Since "random load!" implies e.g. an infinite choice of
power spectra, any analysis would invove either inter-
polation or further testing. The first would probably
reqgquirce the concept of a cycle while the second would
destroy the practical justification for any theory.

In particular, the undoubtedly necessary technigue of
spectral analysis should be regarded, itike acroelastic
analysis, as a type of stress calculation supplying

input data for fatigue work.

55

From the results of Jones and Paris61 it would

scem that the best definition of a cycle is the load
change (such as ADB or CD in the sketch) between successive
cyclés.

D

Restricting oursel?es to the tensile part of the
cycle (Section 8.1) each load change can be defined by

a mean and alternating load or some equivalents.

When speaking of a cycle one imagines a full wave
returning to the same position. The present case shows
that this restiriction is unnecessary and indeed a load
rise such as CD need never have a corresponding fall.

If there is one it would probably occur when the crack
has extended so that the two halves gf such a wave would
be unrelated physically.
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However, it is a useful convention to define these

load changes (AB or CD in the sketch) as half cycles.

9.1 Some Feasible Residual Stresses

The title indicates that a loading O -ji - 0 has
occurred ab initio and that the strains have been assumed

at first to rise and fall like those of the elastic system.

If the elastic stresses at any ;tage are now modified
by disallowing those exceeding Oy the equilkibrium con-
ditions (and others) or zero load and moment along the
crack axis after unloadiﬂg will be wviolated. This has

been corrected by adding an arbitrary set of siresses

and the total forms the required feasible system.

The aim of this procedure is to obtain an order of
magnitude estimate of the amount of reversed yielding,

which will be used as supporting evidence elsewhere.

As a preliminary check, let us compare this approxi-
62

mation with the numerical results of Stimson and Eaton

who treated the edge notched plate of Fig. 16 (a).

30

Stimson-Eaton

e
el G A

-

/

Approximation

q

ct.

1-0

— —

Fig. 16(a). Check of Approximation
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By‘integrating their stresses we find the average gross
arca stress

!
0.43 Toct

By trial and error the stress system

}

was fitted to give the same total load and it can be seen

G = "min fA/'«/;(-, 108 TOC'L‘

that the agreement is good for such a crude approximation.

We now return to the original example and for con-
venience assume that the stresses corresponding to maximum

load are
L
go(x) = min {1, x 2}
where the first term refers to yielding.

If reversed yielding is ignored then the correspond-

. ing stresses after unloading are

| 1 1
01(X) = do(x) - x ¢ - min {0, 1-x 2}

which violates equilibrium conditions. These may be
corrected in the range 0 < x < 1 by assuming that the

actual stresses are

~% 3

Oz(g) = 1 - x + (ax +bx2;cx+d).

The coefficients of the polynomial are determined by
eguilibrium and by tangency at x=1. The results indi-
cate that reversed yielding occurs at x = 0.0243 and the
final system Oa(x) in Fig. 16 (b) is that obtained by
‘reducing Oz(x) (x > 0.037) by the ratio of the yielded

system (x < 0.037) to 0.037
, J 02 dx.
o

The region of reversed yield is extremely narrow and

of the same order as the crack growth in each cycle. By
Griffith-Irwin theory, we show later that they are equal.
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0:0242

-1.0

Fig. 16 (b). Torm of Residual. Stress System

9.2 LEffect of Load Sequence

At considerable risk, let us extend the previous

section to the load sequence

O“g’"o"gi

by forming

64(x) = min {1, ax 2 + 03x}'
When a = 0.3112 (am1 = 3.22)
o, (0.02k2) = 1.

The figure a~1 may be interpreted as a rough guide to
‘the magnitude of preloading necessary to inhibit sub-
scequent crack growth at lower loads. Thus, if a load

exceeding

(3.22)2/§ = 10.3 ﬁ

is introduced into ‘a sequence of loadsjf then crack

ecrowth should decrease.

This conflicts with the experimental results of

63

ITardrath who measured the delay of crack propagation
in 2024-T3 after the constant loads of a sequence were

suddenly reduced to a lower constant load (two step
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test). llowever, the estimates above are claimed to be
orders of magnitude only and are not used in further

analysis.

On the other hand, Hardrath's result cannot repre-
sent a typical situation. This is easily shown by con-

sidering a typical numerical case from his data.

Let there be a structure loaded by a random scquence
of the two stresses 0 k.s.i. and 37 k.s.i. where it is
claimed that a preload of 40 k.s.i. delays growth at

37 k.s.i. by 100 cycles. Let us use the probabilities

Pr (40 ksi) P 0< p < 1

i

i

Pr(37 ksi) q = 1 -p
dx

3o R say.

and’
Lo

There arce thrce relevant possibilities for each load

_namely:;_
37 and more than 100 previous loads of 37; step 0.768R
37 and less than 100 previous loads of 37; no growth
4O k.s.i.; growth R.
Assuming Bernouilli trials and the fourth power law, these
lead to the expected rate
€(dx/dn) = R(O.768q101 + p)
with the minimum 0.05R when p = 0.05.

This defies common sense and, more rigorously, con-
tradicts the random load experiments of Paris61 which

~would predict
é%dx/dn) > R(0.768q + p).

The preload stresses in these experiments are always

greater than 30 k.s.i. which imples extensive yielding
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(Oy ~ 51 Kes.i.) when driving forces are also considered.

9.3 Form of Preload Delay

Since the loadf is a scale factor, linear whené is
small enough, it is apparent that the effect of a preload

such as those described, depends on the ratio
(Preload/Following Load) = r, say.

From the previous section it seems possible that unless
r > 10, the occurrence of-large driving forces (abbreﬁiated
to "preload" here) has little effect on subsequent crack
'gr0wth; |

In contrast to Hardrath's result, when growth stopped
completely, fractographic measurements on Vampire spar
booms indicated that for a short period (~ 100 cycles)
the subsequent rate was roughly half that corresponding
to the load. There was a corresponding increase when

the subsequent loads exceeded the preload.

If the crack tip is a singularity when plastic flow
occurs, then the latter behaviour is more likely although

there is no obvious cause for the increased rate.

9.4 A Fourth Power Model of Random Growth

Barnard's results64 indicate theprSsibility that a
series of random "preload" effects may cancel. This

55

is the actual behaviour observed by Jones and Paris
except that when the average driving forces were below
those of the flat parts of Figs, 11, 12 and 13, the rates
observed by Paris were about ten times greater than those

predicted by simple addition.
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Fig. 17. Paris's Results for Random Load

In his expefiments which employed random noise,
Paris defined load cycles in terms of zero crossings.
For a wide band noise which he sometimes uses, the
number of zero crossings is considerably less than the
‘number of load changes and this accounts for part of

the discrepancy.

To account for the remainder, let us write Paris's

!
fourth power law19 in the form
1 dx p
- -~ = A— e v 0 (30)
Pa dn po
where .
= 2 “
Pa v Eﬁb/ ndy
p = g;/zncyg the plastic length.

If P is Similarly defined in terms of mean stress

P =P+ 2/p P +P

a m m
Now, let p be a random variable
p: f£(p)
with mean E.and variance‘V.

Then, in a purely additive case (30) becomes
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PP
§0§§) = Ag(p 2) (€ = Expectation)
: o
J 1 /2
~ T S(pa2 + 2p ° pa3v + papm) .. (31)
o]

To explain a growth more rapid than this, assume that

p in (30) is determined by the (average) maximum load
during the time that such a plastic region takes to paés
the relevant crack tip position. This generalisation

is in the same spirit as our presentation of constant
load results. When the average growth is rapid, the
maximum will be chosen from fewer members so that it will
not greatly differ from p in (31). If the locally maxi-
mum plastic length is Pe then the number of cycles to

cross it is clearly
P /é" (_(Bc_) = n say ‘ (32)
£75f “dn £’ e
Thus, (31) is replaced by
dx .
Doé} (EH)F = Aé%papf) ee. (33)
r

A knowledge of f(p) will now allow the solution of

where p.. is the n -th fractile of f(p).

(32) and (33) as transcendental equations for E}(dx/dn) and

Pee Ir n. is large, P, and Pe will be statistically

independent and (33) becomes

' ﬁ}(dx/dn) d@%
= § !
_ﬂ_ET;_T_ = EE- s say, «ee (31)
[3
A,
Pt
= nf—l pf/éxpa) from (32)
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i.e. n, = po/AéYpa) eee  (34A)

and by comparison with (31) the rate increases by a factor

of approximately pf/;.

9.5 Generalisation

When the flat part is approached, the actuai plastic
region tends to be constant by our hypothesis of Section
8.3. Thus, the use of pf(i.e. of maximum driv;?g force)
should not increase the rate. Above the flat part the
rate is such that the expected increase is small. This
explainswhy Paris's results (Fig. 17) start to diverge

at the beginning of the flat part.

Let us generalise (30) in the form

1 dx P P
Lodx | 4B gl
Pa dn °o Po

where G = 0(1) is a slowly varying function.

As above, this immediately generalises to

w ds | Pg
€55 = Aé"{papfe(p—o-)} .e.  (35)

with Pe still given by (32). When the relative rate

is small then, as before,

dé’ ..
£ _ A (D1
and n. = po/Aéﬂpa)G(pf/po) .o (36A)

which can be solved for n,. or Py when (p) is known.

r
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9.6 Behaviour of Work Function

Apart from environmental condifions the work function
W for static failure depends on the extension from the
original crack length. As constant load fatigue cracking
‘is a stcady process, it is a reasonable hypothesis that

W depends on the distance from the current crack tip.

%max

4w W _
\
/ | Work done
— 'Aao 5 5 by reversed
rig. 18(a) 0 1 . 2 3 yielding.
%max
/
N
W ‘
4w
B ﬁmin B‘ Bz 83
Aa

Fig. 18(b) Extension x

FForm of W I'or Fatigue Cracks

In Fig. 18(a) let O, 01, 02, O3 be successive crack
tip positions, while OA, 01A1 etc., represent W at the
start of cach cycle when the load is zero. At any stage

of loading
ﬁ, = W e e o (37) »

which is also the case at} Hﬂn%aﬁ represents all

max"
intermediate loads in the cycle O-}max~0). Eq. (37)

defines the criack length at any stage of loading so that
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w o< %max' ‘ ces (38)

It also follows that AO1 etc. are vertical. The plastic

work correspounding to each point on 0A01A .o is domne

. 1°
over a much longer region* than the crack extension so
that as a first guess one may suppose that the total work
done for each element of crack growth is a constant and

this total work rate must be; .
max

During each crack extension, the work done however
ié the area 01A102 leaving areas such as 01AA1. The
only possibility is that work represented by the shaded
area is done by the reversed plastic flow from the previous
cycle which implies that‘the crack extension in each
cycle is less than the width of the region of reversed

yielding.

The force causing rcversed yielding cannot be related
to crack extension since none occurs. It may therefore
modify W over a distance O(p) from the crack tip.

However, from (37) and (38) this effect must be zero

A_ so that

at the points A, Agr Ay

Crack Extension = Width of reversed yield.

When the minimum load ;zlnin > 0 the figure 18(b) applies
but the argument is not gffected. Asfnum:is less than
the critical static driving force‘ﬁc we may note in pass-
ing that repeated loading is in a sense a more efficient

way ol separating materials than static fracture.

The "idea of an c¢ffectively periodic work function
such as that in Fig.18 has also been suggested by
Cottere1182 but in his case W is the gppropriate section
of the static function so that fatigue fracture is taken

as an incomplete static failure. . This approach does

* From Scction 6.1 or merely the fact that E! o~ 1072 =101
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not seem to make any allowance for the work done by reverse

yvielding.

9.7 Very Small Driving Forces

According to Griffith's original theory
W = 27

where T = surface tension of material,

and this refers to purely brittle fracture where the only

lasting disturbance is the separation of two atomic planes.
o

For metals there is always a little plastic flow6) cven

in true cleavage.

The corresponding W is a lower bound albeit very

small so that in Section 9.6, Fig. 23(b) is always the

appropriate one. - This lower bound implies the existence
of non~propagating cracks as discussed by FrOSt66 and

. 67 .
Coffin .

Forsyth21 has suggested that non-propagating cracks
have returned to the slower Stage I type of growth, along

planes of maximum shear, which we regard as cumulative
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damage; Obviously as~§é decreases, the number of sig-
nificant stress cycles suffered by a particular element
of material i.e. o(gg)'l can cause significant cumulative
damage which may hasten crack growth in comparison to

the fourth power law. I'igs. 11, 12 and 13 show evidence
.of such an effect, indicated by a departure from the

fourth power law at low rates.

9.8 DPossible Form of W

Before describing some possible experiments, we shall
remark on the form of W in the light of the fourth power
%aw and others, and of the discussion of residual stress
in Sections 9.1 and 9.2.

Let us redraw Fig. 18(b) regarding p, and p as alter-
nating and maximum load. If the corresponding work

function is

W = EW/21c °
p / v

the new figure will be non-dimensional.

P 1
: 4(p ++/PP,

N

Wp 1 1 P
2
. dx ]
dn 1dx | L
4dn

The fourth power law has the form

1 dx A B
P dn D
a o
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or in terms of the figure

tan 6 = A Yoo (1%¢p7pa)/p

o

The effect of halving p has been illustrated (p/pa =
constant) and there is obviously no geometric similarity.
In the flat parts, however, geometric similarity is pre-

served.

We now consider the form of W qualitatively. There
is a residual compressive stress to be overcome and then
according to Forsyth21about
half the crack extension is
brittle ending with ductile
fracture. This is consistent
with the sketch, where A, B

and C represent these three

stages.

9.9 Some Possible Experiments

Although there are quite good empirical correlations,
the detailed knowledge of crack growth under random loads:
is very meagre. It is quite possible that the happy
results of Jones or -Paris and their extensions of Sections
9.4 and 9.5 are purely fortuitous results of the probabil-
ity distributions of the loads f(p), f(pa)- In any case the
random load applications of Griffith-Irwin theory are unclear.

It is also plain that the interactions of individual
load cycles must be studied and that two steps or programme
tests are not representative. Because of the regularity
of macroscopic cracking, this type of testing is ‘also
extremely wasteful. From previous considerations, if
gé\is on the flat part of Figs. 16, 17 or 18 or above

then, when the loading is changed, the new regime will
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become established after an extension of order p. This
will normally be less than 0.01 in. and accurate rate

68

measurements require a base length 0.05 - 0.2 in.

Thus, a single conventional specimen allows several
different cases to be studied without variations arising
from different specimens. In statistical parlance each
specimen is a "block" and a test series a randomised block

design.

A possible procedure would be to apply all six per-
mutations of four loads in geometric progression as shown.
The regular arrangement allows fractographic study and

accurate growth measurements over short distances.
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Chapter 1v

THE CRACK DAMAGE EQUATIONS

Having established general frameworks for the des-
cription of damage and crack growth separately it is now
time to considef them together. The damages of interest
are of course in places where cracks begin and these are
assumed to be known. It follows, as one might exbect,
that single cracks are a trivial casc and the main empha-
sis is on the interactions befween several cracks and
the corresponding damages.  However the single crack is

a useful introduction to the more complex cases.

With some restrictions, we shall eventually establish
differential equations for the non-trivial case, which
is the general fatigue problem mentioned earlier, but
because of this generality the treatment is rather ab-
stract. This is no disadvantage because the functions
used will always involve full scale stress analyses which
can only allow an abstract representation in formulae if
the structures are at all realistic. In a later chapter
the applications of the matrix force method will be con-

sidered as a particular case of the theory here.

In the following it is supposed that there are N
1, . o0 ai, LR aN(a) and that

1, « e ti, .e tN = t . It

is convenient to assume for the moment that

possible cracks of lengths a

these begin at the times t

t1< e o <ti< o a0 <tN

which is always possible for a given sequence or mode
of failure by renumbering or permuting suffices. As
these cracks progress the structure becomes weaker and

at any stage one can estimate the hazard by comparing
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the strength with the applied loads as in Chapier II or
by other means. Tor any particular t, if the crack

growth is deterministic, the life distribution
i‘(ﬁl t) = hin|t) exp {-Naf )}

can thus be found. The actual life distribution is

therefore

¢ = ol tar(t), oo (1)

s

taking the expectation over all possible sets of initial

failures t . There remains the problem of finding £(t ).

For any particular crack however this is simply the
derivative of its canonical damage (one-dimensional here).

This in turn is given by the damage equation

dFi

T = A(F;,s;) .. (2)
where the local stress Si depends on all the crack
lengths @ and the distribution of the applied loads F(R ).
This is usually constapt but there is no rcason why it
cannot change with time or cycles.* Only the autonomous

equations are considered below.

We are interested in the relatively slow growth of
cracks over hundreds or thousands of cycles so that the
applied loads may be adequately represented by their
moments or cumulants. If these are constant then for

all cracks the damages (2) can be written in the form

aF |
= = A(F,a) ... (3)

where the right hand side implies that all the stresses

*For our purposes these words are equivalent.
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and the stress intensities are calculated for the set

of crack lengths & (including =zeros) and then substituted
into the damage eqguations (2). Together with the random-
ness of the loads this is the essential practical difficulty
whose - -consideration is postponed till later. The eflffects
of stress concentration factors, which essentially iﬁcrease
the damage rate, can be directly included in (2) and with-
out further ado this is assumed to be done. In a form
analogous to (2) the growth rate of each crack can be
written .

da.
dnl = Ri(E}i[F( R),al, ©,)

which has the more abstract form

da
dn

= R(a) N

analogous to (2).

1.0 Direcct Solution

At any stage suppose that r cracks have begun at
time t (of order r) and have reached the lengths ar at
n cycles so that the complete crack length vector is’
a-= {ax, 0 } say. During this r-th stage the governing

equations are

da_

an = R, ({a_ .0} cee (5)
bﬁnd Efﬁiﬁ = A ({ F 0} ), F = { 1
¢ dn T AN-r 'l Pn-pPde @)y Py m iF g e Tty

L%

where the subscripts indicate the number of relevant
components and the N-r also refers to positions where

cracks have not yet begun. When another crack, say a ,

r+1
starts then (5) is replaced by
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dar+1
an = Rr+1(a ) e.. (5A)
dF _
N-r-1 _
dn - AN_r_1(F »al), a= { ar+4.ON_r_1} etc.,

which are the same as (5) except that there is one more
equation of crack growth and one less for damage.
For (5A) the initial conditions at n=t_ say, are
= 0, a.= ar(tr) i.e. a

2]

vt r+l- { a, 00} say,

f FNFr—l Fr} = FNFr’

and for any given set of initial failures all such equa-
tions can be solved; without extreme difficulty on a
computer. If the stress Si at the beginning of the
crack a; is suitably defined the solutions for damage
may also be formally extended over the full range of
life comnsidered and this forms the basis of our second
method. A damage not in this extension will be known

as active.

2.0 The Initial Crack

At the start any rate of crack growth is roughly
exponential since the stress intensity is approximately

proportional to the crack length.

Mathematically this means that the initial crack
existing immediatelykafter time ti must have finite
length in order to propagate further. This expresses
our previous contention that, below a certain length,
the growth of a crack follows different laws if indeecd
such cracks can exist in the engineering sensec. From

the viewpoint of both metal physics and engineering the
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growth of cracks smaller than some critical length is
best regarded as a process of cumulative damage to be

described by damage equations.

It is now generally accepted that most of the scatter
in fatigue life arises in the crack initiation described
by the damage equations. More precisely, Schijve has
found that the growth of extremely small cracks is much
more erratic. His viewpoint agrees with ours if these
small cracks are regarded as damage per se. For comn-
sistency it is then most plausible to suppose that all
initial cracks have the same length a_ and that immediate-
.1y before this the crack length is zero or in more prac-

tical terms it is too small to effect the stress pattern.

IF'rom physical considerations ag mast be related to
the scale of inhomoggneity in the material. As a maxi-
mum this is represeﬁ%ed by the averagewérain diameter.

It has been shown by:Forsyth that the change from

ﬁstage I"(damage in our case) to "stage II" or crack pro-
ﬁagation proper is often associated with the crack pene-
trating the first or possibly second or third grain
bOundaries. Thus it seems reasonable to make ag roughly

equal to the grain diameterf

Therc is another less fundamental argument which
léads to the same model with rather different values for
éo' It applies most aptly to aircraft structures and
so will be discussed in terms of that case. . For these
it can be argued<that,'compéred to the complete structure,
the first order of inhomogeneity is represented by the
sizes ofvribet holes, edge distances, rivet spacings ectc.
which are therefore of the order of a, - Because the
damage equations must now include some true crack propa-

gation they are likely to be either more complex or less

accurate. If multiparametric damages are avoided this
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usage is'intermediate between our previous postulate and
the present day usage Where>in effect the damage equations
must account for[damagé and crééking together. On the
other hand the étress analysis is gréatly simplified
presaging its complete disappearance when damage is made

to refer to final failurc.

Both of these approaches should be equivalent if the
equations arc‘correspondingly‘adjusted and the ultimate
chioice depends on experience and experiment . The smaller
a, can be inferred by noting the crack length at which
the constant amplitude growth laws of Chapter III’Prcak
down although a rahdom load theory would be botte£ if

it were available.

3.0 The Role of Damage Equations

F'or physical reasons the accﬁmulation of damage in
any position cannot directly depend on the damages attained
- elsewhere, and the only possible coupling arises through
the existence of cracks which are more likely in certain

regions.
Cousider a particular damage F for a crack ag (i.e.
a crack not yet begun). Depending on the remainder of

the structure, I' takes several forms such as the two in

the sketch.

1-0

Cycles n.t



Then FO corresponds to the same event, namely prior
failurce, because it is a damage also, but a damage correcs-—

ponding to different initial lives to and tl.

As the fatigue process develops and the (physical) damage
functions increase then for each increment of damage the
system in effect performs a DBernouilli trial in order to
make the decision "Will the crack start now?'". At any
such time suppose that the canonical damage is FO and
the increément AF. | Then, using the statistical properties

off canonical damage,
Pr (Initial failure in the interval (FO,FO + AF) )

Pr(No previous failure).Pr(Failure | No previous failure)

I

+Pr (previous " ).Pr( v | Previous " )

il

(1 - I"o).{AF/(l—FO)} + F_.0
= Al“. ) LI Y (6)

This is true for all increments so that this process of
continuous experimentation until a single success occurs
is eguivalent to the choice of a single variate from the

uniform distribution over (0,1).

Now in (6) we have not used any relation betwecen I and
n and it follows that the distribution of F is'independcnt
of the initial life distribution which develops in the

solution of the damage equations.

3.1 Monte-Carlo Solution

As the name implies this is a mathematical analogue
of the physical fatigue process. In the result above
we have shown that the starting times of the vector t neced
not be the outcome of the continuous experimentation

implied by the damage equations. The N canonical damages
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F can be initially N independent seclections froin a
wtiform distribution, the independeunice arising from thaot

of’ the physical damages. Similarly, mN seclcctions can
sinlate the initial fadllurcs of m structures. The change
L1 om (5) to (5A) and the other changes are then made when

P, veaches its predetermined valuc.
Sanit|

Since the crack growth is deterministic any outcome
i Complotc].y defined by, and the complete solution reqguires,
the joint deunsity £(t ). DBy appropriate renumbering let
us suppose that any set of initial failurces has the coni-

ponents

- f -3
t -— ‘ti . e o ti . o -LN)

in order of magnitude. We also suppose that at each
initial failure the solution of (5) and (3A) etc. give

the damage densities

dF‘]
= = i(tjl t;j—l) say,

where, in general, the density for t;j depends on the

existing cracks, starting at tj-—l' Then, {for our ran-

donly chosen point in t-space, the joint density is
N

r¢t) = £t t. ) (7)

I l Jl j-17 7 '
j=1

to = 0. This simulation with mN selections will give

n values of £(t). From another viewpoint the fatigue

process can also be regarded as a mapping or transforma-

tion of the equally likely points F in the spacce of can-
onical damage into the initial failurce vectors t - in
the Monte~Carlo method F  ds dircctly obtained by the pre-

Liminary sclection nnd the overall density £{n) is



£(n) = [rCnlt)ar(t)

which can be approximated by

1

Sk

£(n) = £(n| t) eer  (8)

i=1

where m, is the number of active solutions of the damage
equations available at the time of interest. In t-.
space the grouping of the results gives a check of f(t )
‘which should agree (within the appropriate scatter) with
(8). If the Monte-Carlo approach is used the approxima-
tion to (1) can be further improved by importance sampling
and possibly by analytical values where f£( t ) is‘small.
Both “these procedures are vastly more efficient using the

independence proved below.

4.0 Independence of Initial TFailure Times

Through. equations (5) and (5A) we have formulated
a transformation from the unifTorm damages F, reached at
each initial failure, into the starting times t and this

transformation is continuous and differentiable.

Suppose that f£(t ) is Lknown. Then F is simply

the vector of marginal distribution functions, or,

] t . @
( ey
r. o= e el £( t )dt .o (9)
o ‘o ~o
and ,al-“i/atj = f(ti), if i = j, = 0 if 1 # j,
wheére £(t,) is the marginal density. After our trans-
formation
f(F) = |at /aF |r(t) co. (10)

and the Jacobian here is



ot /oF

) ] -1
et (e, -.. £t) ]}

by (9A). Now

0 < F, <1
i

and it is of course uniformly distributed. In addition
the physical damages are independent and hence the canonical

damages have the joint demsity

T(F) = 1
N
= i‘(t)/l If(ti)
i=1
on substituting our Jacobian. From (9) onwards the samec

argument can be used for any subspaceﬁef of t whence

rityg) = ]—[ £(t,).

tiELJ

Since { is arbitrary and includes t the differecnt tj

nust be independent.

This generalises the well known probability tirans-
formation. In words, we hgve shown that if the transform-
ation to marginal distribution functions produces a uni-
Tform joint density of these in the hypercube 0O < Fi < 1
then the original variates are independent (and of course

the F.).
€L

- For dependent variates the corollary follows that
a transformation to marginal distributions cannot lead
.to a uniform joint density. A simple example is the two=

dimensional. casec

f(x,y) = 2(x - 2xy +vy) , O < x,y < 1, ...(11)
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v

with the marginal distributions
F(x) = =x , F(y) = y , O<F <1,
i.e. £(x), f(y) = 1.

Here (11) is also the dependent distribution of marginal

density integrals.

Although they are independent it must not be supposed
that the component densities are the same as one would
obtain if fewer than N cracks were considered, i.e. if
the problem were different. (In most similar applica-
tions of probability theory such a presumption would hold
but independence never implies it.) It will transpire
that the dependence of different crack growths arises,
not by the sequence of failures, but through the differ-

“ences in any pa;ticular crack caused by the presence or
absence of the others. These effects determine the

damage densities but leave them independent.

4.1 Improvement of Monte~Carlo Method

The independence of the initial failures can be
used to improve the Monte-Carlo method already outlined.
Suppose there are m simulations arising from mN initial

failures ti.= t. (r=1,m).

From the simulations the active solutions Ar(F’ a)
of the damage equations in (5), (5A) provide estimates as
in (8) for each crack and m_  <m, a function of the number
of cycles and the particular crack, is the number of
simulations with active solutions of the damage equations.
For crack i let ﬁi(n) denote the distribution estimated

from (8) at n cycles.
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From the results we also have the stepped empirical

distribution

AN o
F.(n) = ) t. (m o+ 1) ees (12)
E t = ir
. <n
ir
which also estimates F(ti). These two estimates are shown
in the figure.
1:0
-T
r'd
Ry
. 7
. AN
Average of available 2 Discontinuous slopes

-0

solutions , ?i(n) ,"/> at t.
\, } ir

rd

/
/

- Empirical estimate F(n)
S from number of initial
| failures

/

Cycles to initial failure n

o

~
As n increases the results available for Fi(n) decrease

L t;, etc. Thus although it is
less satisfactory the information conveyed by FE becomes

to zero as n passes ti

more important as n increases. For practical purposes
however the shorter lives have most interest. The right
hand side of (12) represents the expectaéions of the
standardised order statistics of which the r-th has var-
iance

r m-r+1 (13)

2 -—
o] (F(r)) = Y —

As in the figure, the best continuous estimate of F(ti)
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based on (12) is the dashed polygon showﬁ. This is the
appropriate estimate to pool with the average of the
solutions ﬁi(n) but it is not available outside the inter-~
val (tii’ tim). Within any sub-interval (tir"ti r+1)

we have Fr+1"" Fm say, (m-r) solutions of (5), (5A)
whose mean Fi(n) has some sampling variance which can

be approximated by the constant

si/(m~r), say.

If the two estimators are independent then it follows that
the combined minimum variance estimator in the interval

(t.

1r’.ti r+1) can be approximated by

2 m
S n-t
3 1 ir (r+%) (m-r+%) E
r + + - F.(n)
Fo(n) = (m-r) m+1 ti =1 *tir (m+1)2 (ms2) (m-r )= I
tl n - J;r-{-:[
(r+%) (m-r+%) . S.”
2 m+r
ea)” ) | e (1h)

where the r in (13) has been arbitrarily moved to the

midpoint (r+%).

4.2 An Identity

It is instructive to consider the continuous analogue
of (14) as m = o . Although the t. are independent the
sample distributions thereof will differ according to the

t-vectors chosen in (5) and (5A). It is then convenient
to denote these as
Fi(n, t),

whose active part'is defined for n < ti.

In the continuous case the average Fi(n) becomes
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Pon) = [.o.]F ] tarcy )//Pr (t, > n)

the equality following from the law of large numbers.
The integral corresponds to the denominator and the formu-

la can be written'

1]

f f... fFi(nIt JaF | ..dF, -..dFy
t.>n t.>0
i j

P.(n).(1-F_(n))

it

f InFi(nl t )dr, (n)dr(t ),
t

Q

ty = Tt eat, oty gaeentyl

using the independence of t and integrating over the

extraneous tj (j # 1).

If we write
Ar.(n) = F,(n)-F (n] t)
then this identity also takes the form

[ I arjaoarcty = 2G1-r ()2 .

to 1:i=n

5.0 The Development of Cracks

In the sections following we shall consider the gr;wth
of fatigue cracks as well as damage. At the start the
Monte-Carlo standpoint will be adopted. but it will become
apparent that this can be discarded in favour of a set of

explicit equations analogous to (5) and (5A).

It would be possible to display our final equations
(35), (36) here and explain their significance quite simply

but it is hoped that a more leisurely exposition will pro-
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- vide a more motivated derivation and indicate their rela-

tion to the Monte-Carlo method.

Consider the size'distributibn at n, cycles of a
certain crack beginning at t. While this develops we
suppose that the N-1 other cracks grow deterministically
in some typical fashion. It is convenient if these
"background cracks" all begin at n=0 and then grow coén-
tinuously. This can be approximated by using the average
“of the Monte~Carlo solutions (equations (5), (5A)) for
the crack lengths

_ 1T ,
ai(n) = m lfaij(n) , di=1, <., N, ee.  (15)
J=1
where
aij(n) = 0 if‘n < tij and these zero cracks have
been included in the averaging. Ir daij/dn jumpsrfrom
0O to R say at n=t then in the average this discontinuity

decreases to R/m ;gich cannot be guaranteed if only non-
zero cracks were included in the average (fbr example
.at.t11 the jump would not alter). In the limit the
growth rate is continuous and we assume that it is also
differentiable.  The background cracks in (15) then

 become the expectations

«®

5, (n) = f;..fai(nlt)dxv(t) ee. (16)

- where we have adopted the notation of conditional pro-
bability. After changing the variable to & this becomes
in vector form

-]

@ = [...] amlt) arcafn)
o]

with the derivative
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92 - |R(a) drCaln) cee (1)
using (4). If R was linear in a then one could drop

the integral sigh and write

l

R(

'd1m
) m{
n

but consideration of Paris' fourth power law or the non-
dimensional results of Chapter III will show that this
linearity is unlikely,; especially when the stress inten-

sity is increased by finite width effects.

51 One Crack Illustration

It was found in Section 4.0 tha the initial failures
ti were independent because of the one-one transformation
from F to t. In (17) we have already extended this
concept to regard the set of crack lengths a(n|t ) at n
cycles given t as a transformation of t . However if
any component of t is greater than n then it cannot
affect these cracks and the transformation is therefore
not unique unless all components of a exceed zero...

(If the Stieltje integrals above are also based on Lebesgue
‘measure the steps there are allowable.) If nécessary
ﬁniqueness can be ensured by supposing that before initial
failure a crack grows continuously up to the initial

length previously discussed.

Let us approach the general case by considering the

simple one-crack system (cf. (5))

..g.g_ = h, o<n<n?t ,
da -
— = Ka, F(O) = 0, a(t) = a ’

dn o
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where initial lives are uniformly distributed over (O,h—l)
and,vonce begun, the crack grows exponentially. For an
initial life t '

a = aefm-t) cee (18)

representing at transformation t ™ a with the parameter n.

Using the rule for changing probability densities

f£(a)

dt
f(t)‘ag

K(n-t)
e

i

h/Ka0

]

', B Kn
h/Ka ’ ao<a<aoe- -

Obviously if t > n then {t > n} = {a = 0} and the density
£(a) relates only to {a > 0}, integrating to hn.

Now consider the mean crack length given by

Kn
ae
a = f af(a)da + 0.(1-hn)
a,
1
- o(eKn"‘i)
~ whence
da —
= = Ka + haj _ eee (19)
with the initial condition a(0) = O.

Thus the original homogeneous equation describing the
growth of an initially finite crack now has a forcing
term hao while a is initially =zero. We now repeat the

case using the distribution
t : £(t)

whence Pr(a=0) = 1 - F,(n) 5 F (n) = F(t) for t = n.
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Using (18) again,
| £(a) = £(t)/Ka

for finite cracks and

t = n - k! log(a/ao).
In addition a
a = f adF (a)
t=0
r
= | af(t)dt. «ee (20)
‘Yo
Differentiating and remembering that a(t) = a_,

n

an = Kjo af(t)dt + aoft(n) = Ka+aoft(n), a(0) = 0,
generalising (19).

We now come to:the general rate

da

i R(a) , a(t) = a
for which (20) still holds. The average rate is now
— n | ®
g‘f‘i = JroR(a)dF(tHaoft(n) = IaR(a)dF(aln)+aoft(n),
o
~a(o0) = o, .. (21)

and unless R is linear in a this is the simplest form.

As an'approximation let the rate be
K(a+m) + R(a)

where K,m can be chosen to minimise R(a) in some sense.
Then -



_Then ‘
.a + m = (ao + m)oeli(n-t)exp(:[(a)) " ees (22)
where n ~a(n) ,
I(a) = R(a)dn _ R(a)s dn .
" a+m Ja(t) a+m da
a .
~ R(a)da . ‘ _
= Ja arm) [E(arm) TR (a7 ] (since a(t) = ao)
o .
a function of crack length only. The correction term

in the solution is also obtainable by variation of para-
meters with the extra term R(a) and the result can be

iterated. The expected length is

n
a = fa(nlt)f(t)dt
o
n
= —mFt(n)+(ao+m)‘f eK(n—t)+I(a) dr (t)
o
from (22).

The derivative here is

n
da . ot (m)ela ) [ {xe Blady Kmot)2Ia) gpeyy
) o
'n
= j [K(a+m)+R(a)]dF(t)+aoft(n), from (22),
O » .
n

1l

S r
Ka + mKFt(n) + JORdF(t) + aoft(n)

x®

1

Ka + mKFt(nnjoR(a)dF(aln) +a f,(n) , ... (23)

134
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as one would expect.  Each term here represents an
dimportant case and in the followihg it is convenient to

’combined them as above.

5.2 Several Cracks
For several cracks a = {ai“..-'aN} the rate above
generalises to

da
dn

K(a+m) + R(a) eee. (24)

where K is a constant square matrix while a, m ,R are

columm vectors. By definition each average length is
- :
2, (n) = [t.:. [a,(n] thar(t)
J

) n ©

I P
= SIS a; (]t JaP(t ) v.. aF(ty)
o .=0 "o

since ai(nlt )=0 when t, > n.

‘Differentiating,
—— [<-] n -]
da, da.
R S SN i e
dn —_ .)...J'..u; dn dr(t )
o o o ,
0 =]
r
P I ) | Tarce), (a, (nlt.=n)=a ).
o v, 071 LA J ; i o

. The restricted range 0 < ti < n allows for the fact
that a, = 0 and da;/dn = O if ¢, > n, i.e. if the crack

has not begun at the time considered.

Using (24) carefully with a= a@|[t), K= [k ],
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— @© n x

.
Jojojg k,(a+m)+r; (a)}dr(t) +a £, (n)

L'-
1

n.

[Fo ]tk tarm, (a)larca )
‘0 (o} o : .

]
[0}

b n
+ kinlf;..fé;.f aF(t) +

+ aofi(n)

= k8 + k;mF (n)s U,F;..j;..foni(a Jar(a |n) +

+ aofi(n).
For all cracks together this can be written (2(0) = 0)

i?f = Ka + rFi(n)_lK + R(a|n) + ag [fi(n)JeNa

where the distributions and densities have been arranged

as diagonal matrices. The general rate term arises from
o ® n )
=S |
dn = 4 e e .‘.J R(a)dF(t)
o o o

and since dai/dn for example is zero if n > ti together
with the length itself all the limits of integration may
be extended to infinity so that the average rate includes

unstarted cracks just as a does:

If we put

where



137

v -1 :
K = 10 [a]T
then the homogeneous equation

a KY ) Yy(0) =1

dn
‘ 69

has the solution
A.n ' ,

Y(n) = T 1(e 1_JT dgf exp (nK) oo (26)

'so that with the initial values a(0) = O the solution is

Y3(0) = 0 .

For the particular solution let

a = VYu (variation of parameters)

which leads to
1

u) = [y TR (0 ]km + RCa [t)va [, (£)]eylat
(o]

ces  (27)
Multiplying by Y(n) (=enK ), from (26),
n n
a(n) = f o (n-t)K {1 at = f yin-t){ ldt ... (27a)
(o] (o]

In (27) the first term can be integrated by parts
n ,

n
-t K - -1 n -1 ~tK L
Ioe Fi dt = [- K rFiJJO + K joe rfiJ dt

so that the linear part of (27) becomes

n n

- K"1rFi(nUKn\+-Kf -tKrfintKn1+aoj e'tKrfiJ dtey
o

e
o
which can be . iterated with (27A) in non-linear cases

(cf. equation (22)). The integrals in (27) have the form
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of partial moment generating functions of f£(t ) with the
‘“transformed variables Kt . Similar integrals occur later

in the numerical solution.

5.3 Moment generating Function for Several Cracks

The transformed variables in the moment generating

function are denoted by u so that at time n the MGF is

M{n,u.) = Jf exp{ u® a(n| t)lar(t) see  (28)
: - o o

- which includes concentrated probabilities of having no

cracks.

The derivative of M(n, y ) divides mnaturally into

=7 Cam| 1)
: u ain
aM d ‘
oo ... Jo—_dne ar(t )

+ Terms associated with increase dn of each
effective upper limit.

The latter are related to changes in the discontihﬁities

of exp( ui;a ) as a crack begins. Let the equations
u = {uiui}, t = fti’ci},
a= fa;a;l

define the new notation "here which, if conveunient, may
be associated with a renumbering of the elements. Now,

most generally,

eee , 1 n)

11720 N’

where n1=t1 3 eeay nNth are the planes of discontinuity
in the region of integration and n is still the parameter

in the integrand.
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Then
aM _ oM 9y oaw 9% P Sl
dn Eﬁl dn 552 dn on, dn on
and in our case n1 = nz = ees = nN = Ne We can now

investigate dM/3n; and equation. (28) is rewritten as

@ n *

r r ’
M(n, u) = I ceeieast  expl Uz_aifaiai)dF(ti)dF( ti)

o t.=0 "o
i

@ ® © -

=y ..{ ..I exp ( ui_a) dF(ti)dF( ti)
.o n o)

and to the first order

M(n+dn, u) - M(n,u) =

(n)an | [ ¢ Hio )
fi n)dn {... ...} exp! u; a(n|t e }ar ( t,

- £;(n)dn f... ...J exp { ui a(n| t)} ar( t;)

since a. = 0 if t. > n.
i i

A compafison of integrals here with (28) shows that
they are MGFs of a reduced system obtained 5y the suppres~
sion of the crack a, . There are N such fatigue problems,
one for each crack, which are denoted by Mi(n, ui). With

this notation we have shown that

=

oM u.a '

on (e"i% - 1) fi(n)Mi(n, ui) . . X (29)
Because the crack has been suppressed Mi(n, ui) cannot
~depend on ti and the result does not depend on the in-

dependence of the tj's.
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Finally

(e i%o —-1)f (n)M (n, u; ) +
1

|

LI I

i

. j j-g-ﬁ- exp( ut a(n, t ))ar(t)
(o] : : ’ .
= Z (eiPo -1)fi(n)Mi(n, ui)

. da
f ﬂuidn cee U )exp(u a)dF(t )..dl‘(t ).

... (30)

Now 4if ti>n then as before .dai/dn::O so that a typical com-

ponent of the integral is

~® R p® dai t -
W 93 .exp( u a)dF(tl)...,dF(ti) ...dF(tN)

B " | t
= ‘...ﬁl}.J« ui{ ki(a+ m)+Ri(a)}.e u adF( t). ... (31)
o]

o] 0‘_
® n, ;
r 1
= oo ek taemie Y R arct) s
o (o] o)
-3 « ) k | t
e u-a
J“J~(;.J~0 w,R;(a).e dr( a |n)

again using the equivalence of probabilities in the spaces
of t or aln).
The limits corresponding to k a can be made infinite

and if the matrlx product is expanded and integrated then

the result can be again abbreviated to the form
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_ t
u, kiaM/a U saye
The second term, in ki"“ decomposes into two integrals
© ) @ o © © t

food] ua

ki me ar( t )

with the total value

M- (a - Fi(n)).Mi(n, ui).

Finally the mean value theorem is used to simplify the

general rate ‘term by removing the factor -

R;(a)/F,;(n).
This leaves the same integral as the second term. When

these quantities are substituted into (30)

N N
dM T, %i% N oM
i }. (e —1)fi(n)Mi(n, ui) + ) u; ky ;—%
i=1 i=1 u
' N R, (a’n)
s ) u kg g™+ ) DGRy (M ()
i=1

' eee (32)

From this equation it should be possible to derive (25)
whicﬁ supplies the mean rates. For this reason the nota-
tions for the average general rate terms are the same.

To justify ourselves (25) will be derived from (32).

Thus ' '

N
d . dM, _ u.a N 3°M_ oM
dui(dn) = aoe 1 0 fl(n)Ml+ l, uj kj W + ki a g %

u

+[ kym +‘R‘i( a|n)/F, (n)1{M-(1-F (n)).M (n,u;)} + ...
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and if U = O for i = 1, +.., N the results can be
grouped as in (25). Therefore in (25) the term R (.a |n)
must be the same as {ﬁi(La ln)} in (32).

If we put
V.
M = eY and Mi(n, ui) = e T oo (33)
then if (32) is divided by M
%2 = 7 (e%i%o-1)f.(n).e + ) u. k. RS
n L . (e 1 1 aut
i=1 i=1
N
, o« ’ _ v, -V
+ ) ug kym +R, (2 hm)/Fi(n)).(i—(lfFi(n)).e ,
i=1
' c.. (34)

a differential equation for the growth of the cumulant
generafing function. As above, this depends on the
CGF's of the reduced problems which depend in turn on
still simpler problems. For a complete solution one
thus requires ZN CGF's, beginning with those for one

crack only.

6.0 Complete Equations

On expanding the equations (32) or (34) it will be
found that fhe higher moments or cumulants are determined
recursively bf first order differential equations which
involve also the reduced sysfems from Mi(n, ui), L= 1,000,
N. The average cracks for the N+1 systems, through the
~moments which must all exist as solutions of the extra

differential equations, determine f( g In).

In (25) one can now substitute for fi(n) and Fi(n)

from the damage equations (3). Because these now depend
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on a random crack length the right hand side of (3) needs
to be averaged over f£(a |n). After these changes have

been made the crack growth and damage equations become

L - KT+ [Fm)Kkm +RCa[n)

[--]

vay [..- [ACF,a)ar(a|n)
[0}

1

dF L ACE L ajarcaln) (35)
-d"-;l- \j". Iy ' n 3 e o0 35
o

corresponding to (5) and (5A) and the Fi(n) are of course

components of F . As in (25) the general rate term is
==}
R(a |n)= J‘-..J‘R(a)dF(aln) ... (351)
‘ o

and in all these equations the length distribution f( alrﬂ
depends on the solution through (32) or (34) as described
above. Even the linear rate case here is quite formid-.
able and since this is not the practical situation and

we later concern ourselves with matrix force methods we
have elected to treat (35) as a system of differential

equations, using predictor-~corrector methods.

This requires a simultaneous knowledge of f£( aln) 50
that the moment equations must be integrated at the same
time. Although'all moments (or an inversion integral)
are required to find the distribution, if a suitable approx-
imation is used only a few need to be calculated. With
a computer a completc solution would be feasible if the
rate function were sufficiently simple. For the general
structure unfortunately R (a) is the outcome of some type
of structural analysis and, although one is prepared to
repeat it for the iterations required by a predictor-

corrector method, the large number of points in the expect-
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ation integrals almost preclude the computation from present
day computers. However it is possible to "remember" the
results of prior structural analyses and use these instead.
This will be discussed further in the chapter on numerical

solutions.

6.1 General and Multiparametric Damage

The canonical damage in (35) may be replaced by any
equivalent Bastenaire damage D and indeed there is no
reason why this cannot be muiltidimensional, in which case

A , D would be matrices with say rN elements. It is
always true that there are physically independent damage
vectors however and it follows that the proof that initial
‘lives are statistically independent still holds. IFor

the complete set of cracks the basic equations (35) gencral-

ise to
da _ . B
i Ka + I‘i(n)Km + R(Caln)
o0
ra, f.(.).f A(F,a)dF(a |n)
F = F (D)
dD T
a j.;.J A(D,a)dF(a |n), eee (36)
where the central equation is merely auxiliary. If the

Monte-Carlo method is used (5) and (5A) may be similarly

generalised.

In (35) or (36) ecach component of damage is meaning-
ful only if the crack in gquestion has not started. Each

element of D (or A ) thus has the more particular form

D, = A(D,, a) “es (37)

I(rr 1
i
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where KT' is the stress concentration factor.
i

6.2 Nature of Cracks

So far all cracks have been described exclusively by
their lengths but in general thé crack path is also un-
known and equally erratic. On the whole the average
direétion is that of the lesser principal stress (in sheet
structures) and this may be found as part of the stress

analysis.

From Chapter III it is most natural that (5), (5A),
(35) or (36) should always be framed in terms of total
lengths. IL the average crack follows the principal
stress then R(a) relates to cracks in Tixed positions

and the crack damage equations still have meaning.

To gemeralise further consider the crack in the sketch.
Let AOB be the locus of tip positions if a = a(n). Then
the standard deviation of the>tip wandering a; can be
regarded as another crack length. This need not be in-

cluded in (36) however as it probably has the simple form

da .
1 _ 4 da
g = glx,y,¥ ) n ... (38)
-where (x,y,{) are the tip position and orientation. In

(36) then a; etc. as a function of a need not be speci-
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fically included and if the averaging also includes the
distribution of ay then the result is suitably general-
ised. The density f(al) is severely restricted with just
one parameter (a normal distribution seems the obvious
choice) and\if desired other artificial crack lengths may
be introduced but the practical improvement effected

thereby is likely to be negligible.

In a similar féshion the primary notion of crack
length can be extended to any geometric magnitude. For
example an elliptical crack in a solid member can be
characterised by its semi-axes and possibly the orienta-
tion. In aircraft structures it may often be possible
to treat the failure of a succession of rivets as the
continuous progress of a single crack, which cannot wander.
If this is done a_ and possibly other parts of (36) may

require alteration but there is no essential difference.

There is also a need (in the theory) for crack pro-
pagation of a more general nature. In a practical
structure for example the main failure may be just one
or two cracks in essence but these will branch, sometimes
stop at rivet holes or be delayed while subsidiary cracks
grow in booms or stringers. Some of these small scale
problems may pOSsibly be idealised and analysed as simple
fatigue problems and the results incorporated in morec
general crack growth laws. The most marked changes
with such generalisations are likely to occur in the

higher cumulants (Section 7.0).

6.3 Imitial Densities of Craclk Lengths

At n cycles there is a finite probability 1—Ft(n)
say that a crack has not started. The density must there-
fore hgve the general form shown with a concentrated pro-

bability at the origin.
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Mean a

2, Crack length a
The form of f(a|n) must be known in order to solve (35)
or (36) and we try to approximate it numerically using
the mean and variance.  For any'realism however the
initial density must also be ‘included and for this reason
it is considered here. To the first order if la is a

"small increment of growth
fla = Pr(la < a< a_ + ha).
o o o
l¥i-—ﬂ
R
Crack
length | Typical small crack

a, I

n-kAa/R n

As-. shown, cracks in this neighbourhood can arise at any
time between 0 and n cycles. Let a typical time be

described by

m - I(Aa/ﬁ
where
R = Average rate of initial propagation
= *
fo 0
= J-;-J R(a) ar( ailn,ai=a0) .o (39)

which is most closely related to the reduced problem.
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In practice the small crack length a, has little
effect on the reduced problems and in these it is con-
venient to give the suppressed cracks a length of ag
and thus make R more easily obtainable. If a(n-t) re~
presents the crack growth from t cycles and we substitute

for t from above
n

P
‘fOAa = | £(t)Pria(n-t) < ao+Aa).dt e se.. (ho0)
[o]

Now a(n-t) is a function of the starting time t and the
propagation time n-t and if both of these are written in
terms of

k' = kba/R

then the crack length can be expanded as a two-dimensional

Maclaurin series. In this way we find
- = v 1)=2
a(n-t) a, + Rk o(k')

where RO is random. Similarly"

£(t) = f(n) - (n=t)f'(n) + O(n-t)?

and of
r(alt) = faln) - k' 3= * 0(k)?

so that

PT{ROK'~0(k')2 < hal}l = Pr(a(n—t)<ao+aa)

1

R, .
szuo < E(1+O(Aa))}

R/ R/k(1+0(Aa))
= [arr) = ar (R,)
uo (o] .ﬁ/k

Because dF(RO) is a density the second integral is bounded

and approaches zero with k. Thus for all values of
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k the probability above is

R/
dF(Rd) + 0(lda)

and hence from (40),after some reduction,

n E/k .
£ 6a = [ [£) -[£()-£(£)1}] ar(r)+0(da)lat
“o o
U ﬁyk
ér-f {£(n)-Lem)-£(£)]}{ dr(r )+0(4a)} dk
R "o
where U = nR/da. In the limit as 4a=0
e R/k
ro= @ [T 4pr yax cee (R1)
o] .Ii. -.louo O
provided
® R/k
[f(n)-f(t)] dF(Ro)dk

o] o]

In terms of k this is
R/k
Az -
K —2)] | dF(R_)dk + g
N o
R o}

vanishes.
u(e)
[ rro)-s¢

o

I =

and if f(n) is bounded the integral converges with (41)

uniformly in Aa. Thus
U(e) R/k
I = | [£(0)-f(kba/R)] [ ar(r )ak + &
o “o °

vhere U(g) does not depend on / It then follows that

L4

I - o0 as Aa = 0,

so that (41) is true if the integral there exists and if

£(t) is bounded in the closed interval (0.n)
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Returning to (41) it will be seen that its convergence
depends critically on the behaviour of f(RO) necar the
origin. If the local stress (in the absence of a crack)
is approximately linearly dependent on the other crack
lengths and these have distributions similar to that shown
above the local stress intensity should also have this
distribution and be proportional to Aao. Accordingly
RO would also have a similar distribution with a finite

density frF(n) near the origin.

f(R)), Mean R

frF(n)
Probability F(n) e frRe
density o
Minimum rate, ca_

Initial rate Ro

Let us now anticipate the next chapter and write the rate
distribution as
<1 R

rr o

F(RO) = 1 + IF(n)e (T(Ro)-l)

where T(Ro) is also a distribution function with tangential

contact near the origin.

Substituting in (41), with cag as the minimum growth

rate, _ a
' R/ca0 _ 5
. n _f R/l{+f ca
. £(n)F{(n —
io = —i—zfi—l-f e ¥ o O[T(R/k-caa)-1] +1}dk
o o
R o]
-ﬁ/cag . ]-'{-/cag
f{n)F(n) R -f.R/k f-feR —
= — { T " f e T / dk + . e frR/k T(R/k)dk}
. (o} ¥ 0
:R, ca
o
N a . .
if fpcao is small. By a change of variable and partial

integration the first integral takes the form



o
— -f ca
(o4 R r o] — . o
~I(frca°) = - — G e + Rfr.El(frcao)
, cag

whose absolute value must exceed the other integral since
T(Ro) < 1. Therefore an upper bound for f_ is

Ty max™ f(n)F(n)/Cag . oeee (B2)

~The second integral must also exceed

- ca

a R r o T . a
T(cao)caa ~Rf El(frcao)
o
but the factor in practice would be extremely small. IF'or

a more usable estimate T(u) (U=R/k) will be taken as the
distribution relating to a triangular density, the answer
being referred to ifs mean and variance. In terms of u
the second integral is

_ r —fru
R ! e 7 T(u)du/u®

and we assume that the integrand is zero at cag. The
intcgrations resemble those above and if the range of
T(u) is (a,b) then we can arrange the intermediate results

in the form

R -1 "fr‘Ll —TM
~ | [8(r "+ude T .cosh®(If_(b-u))-k(b-u)e ¥ -
(b-a)l~ *
- b
-sinh (£ (b-u))+2a(2-a/ble r +4(b~a+u2fr)Ei(fru)
- 4(2+f a)la Bi(f_ a)+b Ei(f b)]-2u(b-a)f Ei(f b))f
X T r T r !
cee (43)
Now the mean 1 = (a+b)/2 and the variance is

o~ (b-u)?/6 ... (43A)

i



This is not very good for computation and the simplest
alternative is the upper bound (42) which is unconserva-
tive since it favours short cracks. = IHowever the form
of £ and of f does suggest that the form of F(R )
o o max o
is relatively unimportant except for the minimum growth
rate which scems to be a function of local stress and

the material.

7.0 Variance and Covariance

As well as having intrinsic interest these aré impoxr -
tant in the numerical method to be suggested in the next
chapter. Their derivation is straightforward and illus-
trates the general procedure for all higher cumulants or

moments.

For reference purposes we show a table of the general

first and second derivatives of (3%4) with respect to the

ui's. When these are made zero we obtain the differential
equations
2* .. = a® f.(n)-2a £.(n)a. + 2 k. o.
dn "jJ o J o J J J T
+ 2l k;m+ R, (a|n)/F.(n)].(1-F.(n))a,
, J J J J J
and
6. =af.(m)a .~a) + ( a £ (n)@,[. ~a.)
dn “jk o j k|ji "% o'k ilx “j

+ kJ o':k+ kk a.:.J

¢ [k m+r,(a lh)/Fj(n)].(1-Fj(n))(ak-—a )

klj

)

+ [ kkm +Rk( a ln)/Fk(n)J'(1°Fk(n))(aj—aj'k

ce. (44)



where
Ak = Length of crack j (average) when crack k is
suppressed,
o = j-th column of covariance matrix ¥ s

°J
~and as before kj is the j-th row of K.

If the small term in az is ignored and we define
ajli = 0 these two formulae can be combined. One can
now obtain a single equation for the covariance matrix.
In the first place we take j and k as row and column
indices. We then rearrange (44) so that matrices with
subscript j always appear first. After this the equa-
tion for a column and then for all of Z becomes appar-

ent. We obtain

; t
%12? = -ag fi(n)Ac —ag Ac fi(n)+K£+ zK*

t
«(1- [P @0 km +[F; )| Rea )] A,

Al m® K RCa [ ) 1a-[r o ])

.. (45)

where A, is a square matrix with elements (ajgajlk)’ i.e.
each column is the solution of a subsidiary system.

For the general rate (44) and (45) both indicate a
simple quadrature and the purely lincar caseé is best
golved in this way. Indirectly we can thus investigatc

the equation

dz: t
T = Kt + £K

in terms of a where

da
dn - Ka.



TABLE IT

DERIVATIVES OF CUMULANT GENERATING FUNCTION

T ua Y-y s v
ay Y i‘o i v ¥ v = i
o= LTt nn et ) uky 2y ) uy CkmeR, (@ln)/F, (1)) . [1-(1-F, (n))e * ]
i=1 i=1 i=1 ‘
N Y.~y N
u.a Y=y <+ - u.a ay. i 2
Q——-—-——(M..ae‘]Of.(n)e'J +L(e1°-1)f.(n){——i—aw} e +\7u.k aw_+k oy +
gu,., dn J i ou. = Qu FAPEE T ) du.d t Jd 3
J i=1 J J i=1 iU u
— i [U—[u
+ {kgm 4R @la)/r )} {1-(1-7 (m))e }
J J J i
N
y _ oy, Wi - v
-/ ui{ kim +Ri(a|n)/Fi(n) } - (1-TF;(n)) {’a—ﬁi - %l_‘li__} e *
i=1 : J J

761



TABLE II (Continued)

2 | u.e;t Y. -y alu,
0 ¥ _ 3J0o f . (n)e Y l} 2+2a0 {E_i - %ﬂ }]
du.® dn J o Uy Uy
g. u.a W -w 0%y, R dy. aw ) 2
+ /, (e T %-1)r, (n)e L - +{ 1 CW i, g W
1 au au 2 611 au. a a k¥
i=1 j J J uJ. u
3 -yoy oy
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i=1 0%u ou’ %3 %

Y.-y o y. oy,
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TABLE II (Continued)

2 u.a -y oy, oy u, a Yy~ 0y oy
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J k i=1 Jj ok
_ Y.~y - ‘ Wk"\U

-[ kjm+ Rj(aln)/FJ.(n)](i—Fj(n))e J -[kkmerk(aln)/Fk(n)](1-—Fk(n))e

N
=Y u, Tkme®, (@]n) /P, (n)T(1-F, (n))e * X
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i=1
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The generalised cracks suggested in Section 6.2
would generally lead to extra terms in (44) or (45) which
would depend on crack position and orientation like
g(x,y,¥) in (38). There are likely to be similar addi-

tions for every cumulant.

8.0 Estimation of Initial Failures and Initial Crack

Lengths

In this thesis the basic data are assumed to be all
the S5-N data relating to initial failure, the initial
crack length ag and finally a minimum rate cag, dependent

on stress distribution and material.

In practice S-N data refers to the complete failure
of simple specimens and the measured lives comprise a *
nucleation or damage time and a time of crack growth.
However the effect of stress concentrations should‘allow
a quantitative estimate of initial failure data and the

initial crack length.

Consider plain and notched sheet specimens and for
simplicity let us make the conflicting assumptions that
their maximum widths are the same and also, that the
average distances travelled by a crack until failure at

a given nominal stress S are equal.
Let the true S-N data be approximated as

£(N) = n(u(s), o6°(s))

where
N = logn

and n( ) is the normal density function. If the notch
radius is of larger order than the grain diameter then
for true S-N data
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Kf = hT,

thesé being practical and theoretical stress concentration

factors. For final failure

K < K

£ T

and we hypothesise that this alleviation arises because
notched and plain specimens have the same residual life
once a crack has started. Suppose the average crack
propagation period is a definite function nC(S) of the
nominal stress. Allowing for the logarithmic variance,

the mean life is then roughly

152 (X _S) n(K..S)
e2 T ;] = e ™ (s)
< C

for a notched specimen compared with

0% (s)_

e n = eu(S)

+ nC(S)

for plain specimens and the variances can be estimated
from the test results. The left hand sides are there-
fore known, iteratively at least, and we can find the
difference between the two lives. For several levels of
nominal stress it is then possible to build up an estimate
of (8), using these life differences and the assumption
thap it isa smooth monotonically decreasing function of
S. At the same time this will provide an estimate of
nc(s)‘but both nc(s) and exp(u(S)) thus estimated will

be unknown to the extent of a constant. This constant
can be bounded however by the knowledge that both these

functions are essentially positive for all stresses.

Once a first estimate of nlC(S), ui(S) has been

made the logarithmic variances 0 (S) can be recalculated

with respect to the mean “1(5) and the process then



repeated. In designing a test series the requirements
of fairly constant stress at the notch root, small numbers
.of specimens above yield and small stress increments all
indicate moderate or low values of K.,. A compromise is

T

necessary however because K is small for low KT values.

™%
It is also convenient if the stresses are in geometric
progression with a ratio (KT)l/m where m is an integer.
In this way the same damaging stress KTS can be reached
either by a notch effect KT(S) or in a plain specimen at
a higher stress 1.(KTS). Ford and Lewis70 have also
suggested that this is convenient for fitting curves to
u(s). Further improvements should also follow by using

two or more KT values. )

This is a general description of the analysis mneeded
to estimate p(s), o°(s) and nc(S). Assuming we have nC(S)
let us now consider ag and the minimum rate cag. i
measurements of crack growth are made then these quantities
are relatively straightforward, providing the tester has
the patience to wait for cracks at the lower stress levels.
If this is not done it is usually possible to estimate
crack lengths at final failure and if growth rates can be
integrated from known data or from Paris' law, as in
~ Chapter III, then a_ can be estimated from nC(S).. If it
is assumed independent of stress such calculations should
élso provide information about the minimum rate (strictly
épeaking for constant stress only). For more realism S
here can represent the scale parameter of a random process,

14

as dome by Kirkby.
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Chapter V

NUMERICAL SOLUTION

From the nature of the dataalome it is plain that
most practical solutions of (4.35) will be numerical.
In essence these equations, with the reduced problems,
constitute 2N(N+1) first order differential equations,
becoming (r+1)(N+1)N for the r-dimensional damage of
(4.36). Calculation of the right hand sides involves
simultaneous quadrature of sufficient moments of &, the
construction of £( @ |n) therefrom and then its use in
.the expectation integrals. The random variables here
involve the stress anélysis of the structure (for random
loads) and when one considers théAnumber of point eval-
uations needed for a multidimensional expectation it can
be seen that efficient stressing and economy of analysis

are essential.

For this reason and the possibility of error checks
the author favours predictor-corrector methods for +the
actual integration of the equations together with a finite

71

difference starting method. There are several well

known methods and this aspect is not discussed any further.

. For the stress analysis it is best to use procedures
which can incorporate simple modification techniques to
modify the results of an overall primary stressing.

The matrix force and displacement methods are of this
type and there is a possibility that the two-dimensional
complexrvariable methods also allow such an extension.
In the later chapters we will investigate the use of a
force method for reinforced flat sheet structures

which are roughly rectangular. With the present pro-

gress of stress intensity results it is also possible

that the theory will become applicable to thin-walled
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beans and tubes.

Among the predictions in the integration of the
differential equations will be included the form of the
crack length density, expressed in the form of suitable
parameters. Ilowever in the expectation integrals simple
functional forms will be fitted to the damage and crack
rates foﬁnd by previous integration steps. FFor the
present it seems that the expectations must dignore corre-~
lations between different cracks until suitable multi-

variate densities are developed.

In the following sections we first describe an empiri-
cal form of f(ailn) and the fitting of appropriate para-
meters. Its use in the expectations will then be des-
cribed using Gauss-Laguerre integration rules. Finally
the fitting of functions to the known damage and crack

rates is discussed.

1.0 A Class of Empirical Distributions

In this section we describe a way of approximating
the craclk length distributions F(a,|n). It is based
on the decomposition shown in the figure or by ecuation
(1). Briefly the truncated exponential distribution
AD is chosen to satisfy the probability conditions at
the origin and then the transition curve D is drawn
in such a way that the final distribution AC has the
required moments. The transition is obtained as shown
by adding a term based on some standard distribution
function T(x) (x is the random variable here while
a is a constant) preferably with tangential contact at

the origin
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Algebraically™

F(x) = 1 -~ F(n) + F(n)(1-e %) + 1(n) T(x)e™™

8}

TEE ((x)-1)

i

1 + IP(n)e
where
T(0),T'(0) = 0, T(®) = 1 and for future reference

£(x) = e T rn) T'(x) + a(1-1(x)). e
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(1)

(1A)

The initial value of this density is the quantity T, dis-

cussed in Section 6.3 of the previous chapter. It is

also convenient to define here

[=~]

M = f Xt ar(x)

“o

the MG of the distribution function T(x). Depending
on the context this will be written as the function of

a nunmber of different arguments.

Now consider the MGF of f(x)

oo

f tx

M(t) e f{x)dx

H

[0

tx

d(F(x)-1)

It

IE

since zero length cannot contribute to any moments.

Integrating by parts this becomes

*  Strictly speaking, the crack length belongs to the
set {0;(ap,»)} but since a, is small with little physi

cal

effect elsewhere in the structure it is convenient to use

the range (0, ®) and assign the 1n1t1a] density to leng
nearly zero.

ths



164

M(t) = F(n) - F(n)t f e(t"a)x(T(x)—wdx
V o
. <]
aF (n) tF(n) 7 (t-a)x ]
= Ta-t T a-t ﬁoe dT (x)
= 252){a -t MT(t—a)} | ‘ ee. (2)
Expanding this about t=0,
' _ F(n) .
! = —= {1 - WT(~Q)} ce. (3)
and
= 2B rg o (ca) - adg(-a) ]
* (\
whence

& = .F_%lr1_m;;(—a)-zaz~%<-a>+(1-F<n))(1-MT(-a))2}

If we now postulate a two parameter form for T(x) these
egquations determine them. Here there are two possible
approaches. In the first a specific form of MT(t) is
known and (3) is duly solved. Otherwise MT(t) may be
expanded in terms of its moments. This offers possi-
bilities for an iterative solution so that even when the

first method is available the second may be preferable.

In (2) or (3) a~1 is a scale pérameter (as the mean
of the exponential density exp(-ax)/a) and to ensure a
sort of similarity it will also be used as a scale para-
meter in T(x). The B-distribution over (0,%®) will be

chosen as a reasonable transition function, with the

density
alr  _ r'(m+n) a1 . (&)
ax = TmTm

( 1+ax)m+n



and the moments

-r m(m+1) ... (m+r-1)

= cl < ® e o l
My a T n-1) ... (1-1) r n (4A)
In addition
2 -2 m{m+n-1) -1 m
G = a ) M= a n—l
(n-1)% (n-2)
and there is a mode at x = (m-1)/a(n+1).

1.1 Behaviour of MT(—-a)

As a Lapace transform MT(~a) must exist for any
transition function although the series expansion based
on (4A) diverges. It has also been found that the

moments of log-normal and logistic forms Dbecome infinite.

After a change of variable, using (&),

u u—(n+1) ( _u—l)m—l

e —
MT(ﬁa) = Bim,ni fi e

1 du
= MT(m,n) say,
since a is immaterial. It can also be shown that
aMi = MT(m+1,n)
and that
mMT(m+1,n) = (m+n)MT(m,n) - nM, (m,n+1) . ... (5)
P
When m = 1 we have
[ee] [+-]
r - —(n+ : - -1
el e ™ u (n+1) du = % {1—{ e e " u n.du} cee (6)
L% 'l [? 1

by partial integration. With the recurrence relation

N
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above this leads to a terminating and asymptotic series.

In terms of WM this 1is

cee (7)

v
1\

1
MT(l,n) = 1 - MT(1,n-1), n

n-1 -~

Through (5) and (6) all integral values are derivable

from

[eo]
P - — .
¢ i e Tulau = 0.59 347 361
s
from the tables of Jahnke-Emde. It can also be seen that
NT(j,n) -1 as m 7”@
1im M (m,n) = constant
m,n>e TPt - sha
and when m or n = O MT is wero as one can verify by
direcct substitution. If we substitute My = 1 into (7)

we find the asymptotic formula
Mp(1,n) ~1 - 1/(n-1)
and successive substitution shows that
1 1

M (1,n) ~ 1 - —— + - e+ () (-7
LI n-1 (n-1)%2

= 1 - 1/n n = 2.
From (5)
M’P(z’ﬁ) ~ MT('.l,n) - 1/(n+1).
FFor the purposes of induction suppose that

I‘IT(m-rl,n) ~1\IT(1 ,n) - m/(n+1).

Then in (5) again
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(mﬁ1)MT(m+2,n) = (m+n+1)MT(m+1,n) - nMT(m+1,n+1)

(m+1)MT(1,n) - m/(h+1) - n m/(Aa+1) - m/(n+2)

ile€a
pmr2n) = piem) - o ik« o2
~ MT(l,n) - (m+1)/(n+1) . eee  (9)

By plotting numerical results it was found that the

" contours of MT(m,n) tend toward a set of straight lines
radiating from the neighbourhood of (070.4). This agrees
with the asymptotic formulae (8) and (9) but suggests

that the parameter

9 = artan (n+0.L4/m)

is more descriptive than (m,n). Empirically (for m,na10)

the best fitting parabola is
9 = 0.230 921 + 1.641 871 M, - 0.302 007 M2
eee  (10)

which is ©/2 if MT = 1. The contours of MT are shown
in Fig. 20 and Fig. 21 shows some of the curves fitted

by this parabola.

With this approximation it is now possible to solve
(3) for the parameters m and n using simple trigonometry.

Rearranging and remembering that

aM%(m,n) = MT(mfl,n)

equations (3) become

MT(m,n) = 1 - au/F(n)
, ce.  (11)

2
= ad - adk _ ag
MT(m+1,n) - T(n) {1 2 24
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FIG. 20 VALUES OF My (m,n)

(Parameters of- empirical crack length distribution)
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where the right members are known so that two angles

9.+ 9, can be found by (10). It finally follows that

o

m

H

tan 9 /(tan g - tan §,) ce. (12)

n o= omoten g - O..

This seems to bhe the simplest method of fitting f(xh’l),
the length distribution. Illowever it is only suitable
for independent distributions, making no allowance for
the corrclations appearing from the solutions of the
crack-danmage cquations. An approximate allowance for
these is considered below. From Fig. 21 is can also be

seen that (10) is very inaccurate when MT < 0.2,

2.1 Summarising Rates and Damages

Before discussing the expectation integrals in more
detail we consider the fitting of formulae to the known
rates and damages to give algebraic form to R(&) and

ACa,F).

Suppose that m steps of the overall integration have
been completed. At the crack lengths corresponding
to cach of’ these we know the rates R(a) by means of
whatever structural analysis is employed. Lach stoep,
with the crack suppressed systems, will add N(N+1) values

of Ri( a) so that there will be mN(N+1) data altogether.

We now let the rate (or damage) depend quadratically
on the crack lengths with zero length implying scro iatc.
For crack i

%5185k T gk L Yi181 Kt Cige e
1 1

1t

(13)

rijk

wherec
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i = 1, .., N

j=0, «e., N, the index of the suppressed crack,

(0O = No suppression)
k=1, .., m, the replication or step number,
aijk = crack length
r.. = calculated rate,
ijk
e.., = error in fitted formula.
ijk

oy et

The crack rate r may also be interpreted as a damge

rate and it may ;gkan improvement to use logarithmic
crack lengths 5 5k For the damage rate a transforma-
tion to probits may also be helpful. In practice these
questions can be decided after a preliminary solution of

the problem.

From (13) one can now fit 2N° constants which

imples that m > 2. Using least squares, the error sum

of squares is

sy

;eR
lm le
ijk

and proceeding directly

OE/dc iy = =2 E:aljk(rijk—cilaljk—dilaljkaijk)
Jk
-
OE/0d; = =2 ) g gay g (ry 518 195107 510 i)

jk
H ia]."—"l’ s ey N,

Setting their right members at =zero, these equations may

be arranged in the pairs



r . i ‘:‘ ) 1T - r — ]
L1k Lo%gkige | ar | T L f1kTigk
ik Jk Jle
_ _ ’. cee (14)
: a® . a ; a” . a® d Pa a v
i 1k ijk <~ "1ljk ijk il — lgkiaghighk
Jjk Jk NI
- 4L J L -
with simple solutions. During o computation it is ecasy

to add new terms to the five independent sums forming the

cocefficients and the right hand side.

In the summations of (14) all the data rijk has been
given an egual importance. ITowever since the largest
contribution to the expectation comes from crack lengths
near the means it would be preferable to give more wbight
to the corresponding results. Another rcason for this
is that the range of the expectation integral is (0,*)
whercas the data only go as far as the current solution
of (33) or (30). Using moment nmetlthods, the expectation
must therefore involve an extrapolation unless the entire
problem is repeated, in which case the most rccent informa-
tion could be used in the first part of the range and the
extrapolation would be replaced by data from the previous

rual.

To aid the choice of a weight function let us try

to approximate the expectation

1}

G(x) = e(x)ar(x)

by averaging

~

o+ b oA g(x)
which has the error
e{x) = g(x) - ax - b.

For a perfect approximation



.ro(x)dF(x) = 0. e (15)

If we Tit a, b by minimizing the error

r. la .
o= e (x)di(x)

(7

we f£ind the normal ecquations

] SN r i i i [ r |
P AT (X)) cNaF (x) a =] ixg(x)ar(~x)
i [ <
" P
N odF(x) 1 b rg{x)dr(x)

analogous to (14). The coefficient matrix consiste of
nonmients and it will be found that (15) is also satisfied.
Thus the density £(x) is here the ideal weight function.
This argument can be exteunded to any lincar regression
with the same result and the practical dmplication is
that cquations such as (14) should have weights similar
to the joint deusity which in this context is of course

unknown.

On a computer it is most economic in (14) to store
only the complete sums and add to these as the solution
Progressecs. At cach stage f(a In) and thercforc the
ideal weight functions change and with only these sums
in storage it becomes impossible to always, if ever, have
an ideal weighting. The only usable weight is in fact
a function of m, the step number, and since one expects
the joint density to increase on the whole as the mean

is approached the most obvious weight is
w{m) = m

or possibly a higher power m . The sums in (14 then

take the form
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2.2 Expectation Integrals

The approximation (13) is well suited to the form
of solution envisaged because it transpires that the
detailed form of £( |n) is irrelevant. If the rates
and damages are known explicity in terms of crack length
and more accurate estimates are desired then the joint
density and the associated integration formulae are briefly
discussed in Appendix A. These formulae are also re-
quired if the approximation (13) is used for logarithmic

or other transformed crack lengths.

Without the subscript k the expectation ‘of (13) is

1t

frij aF(  |n) I{Z 31915 94 zdilalj}dl«‘(, ain)
1

1

1]

Z{cilallj+ dil(ailj'ailj+oil'j)}’
l .

ees (16)

requiring means and also covariances of systems with
suppressed cracks. In turn the latter require the:
ﬁolution of lower systems with two suppressed cracks and
so on until there are 2N systems. To the approximation

here we can avoid this proliferation by putting
%i1]; & %1
or more accurately

Gil'jv ) Gil(ailj alij)/gial’ > oe (17)

which includes a rough correction for scale.
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Chapter VI

MATRIX FORCE METHOS

The preceding chapters on the statistical aspects
arc quite general, being applicable to any system whose
decay can be described in two stages. The remainder
will be devoted to illustrating the theory by a particular
type of example. In the following the genecral use of
matrix force methods is described and in Chapter VII we
consider rectangular reinforced panels. I[lowever sone
of the methods used have a wider applicability which will

be mentioned as the occasion arises.

The progress of a crack in a structurc niay be regard-
cd as a process in which various loads in the structural
cletiecnts become zero,or more briefly,a cutout process.

For a gencr&l crack these loads are not the obvious ones
arising from the idealisation of the structure but other

intermediate loads which we assume to be lincar trans-

formations of them. For the original idealisation the
loads afe75
'S = bR + b,X
o
1 cee (1)
= bR
where S = Columm vector of generalised stresses or
~internal loads.
b = Matrix whose columms rcprescent loads sta-

tically equivalent to some cxternal force
systeni.
b1 = Matrix of self-equilibrating internal

force systems

R = Columm vector of magnitudes of external

systeius.
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X = Columm vector of magnitudes of internal

systems.or redundants.

The deflections of each element are now given by

v = S + H ces (2)

f being a square flexibility matrix while H is a column
of initial strains. Since b1 is a set of self-equilibra-

ting systems
t

by the theorem of virtual work. If (2) and (1) are now
substituted into this and the resultant equation solved
for X then

-1t -1
X =-D  "by;fb,R- Db

A\

H .o (3)

=k

so that by (1)

-1 .t
S = (b, -bD"b.fbIR-

where

t
D = b fb,

1.0 General Modification Method

75

Using the standard initial strain technigue we con-
sider the simultaneous treatment of cutouts and modifica-
tions. Mathematically we try to find initial strains
to make the submatrix Sp of S =zero while the remaining

stresses are appropriate to an internal flexibility

'

' = £+ [Of] .

Assume that initial strains are only needed in the affected

elements and let Hm, Hc be the subvectors where the

subscripts m and ¢ refer to modifications and cutouts
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respectively. From (4) after suitable partitioning

S

bR - by D" [ by bi I[H,
Hm -

Now

fS + H

<
1]

and in the fully modified structure
vt = fl S'
= f'S
since  S§' = § by hypothesis. Equating VvV and V'

over the rows appropriate to Hm we find that

-1 t
H, = fA{me-bhnD [b1cbmﬂ H, } oo (5)
Hm
From the cutout condition SC = o'we similarly find
-1 t t
bCR - blCD [blcblmJ{Hch} = 0 o e e (6)

and these two equations may be combined as

[I[O fgl_l +{blc b:lm}D“1 [ b:_clc bgm]:Bch Hm} =b R

m

eeo (7)

Now consider the effect of changing the flexibilities
in some members where the loads are to be made zero by

the cutout method. If this is done bc, b etc. above

will have some elements in common and the 2umber of equa-~
tions represented by (5) and (6) will be excessive.

In addition the extra equations will be inconsistent.

Thus the cutout conditions (6) must be allowed to dominate

and if necessary exclude any of the loads in the modified
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members. If some trivial equations are added for the un-

affected members thanb(7) can also take the form

[0)=]0 ]fR- b0 IbL b I H, \ e (8)
o| | I . Ho
LA
L.Hm - - fA -

which is useful when considering the transfofmed loads of

the next section.
1.1 Use of Transformed Loads

We now view a crack as the generalised cutout process
BS— 0 and to treat it one can repeat the analysis based

on (1) with the corresponding transformed loads
T = ¢cR + ;X
‘where T etc. are defined by (1) in the alternative form

S = b_,IR + | b

o] 00

X

1o
BS Bb, Bb,

amounting to a prefactor

[I 0} = B,
L B say

The load vectors T and S must be of the same order
and as above we suppose’ the elements of S are rearranged
to obtain this convenient partitioning. The rows of B
(or B,) must also be linearly independent and preferably
well-conditioned. This is discussed in Section 2.1 of
Chapter VII. It is also possible to approach linear de-
pendence between rows of B and the unit elements elsewhere.
and this is discussed below.

The deflections are still

v = fS+H
“48,'T + H
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and after the transformation

-t

w = B.'v
= ¥ ¢ 8t + B.H
= gT -+ H*.

Equation (8) now becomes ( D not changing)

0 1=[0 {cR-co“it SN ) } eee (9)
1 1c im c
I H_.
m* 9
where H_, = YH  etc. and
o gs0] = B:¥[o f, 0]t

corresponding to the transformation. Note that fA, g,
are of the same order and that H here has the same

order as S, unlike {Hc*Hm*}'

The transformed cutout equation is next interpreted
in terms of the original load system. Equation (9) is

first premultiplied by

t

B, , rearranged as FIO B Im], and since the left

hand side must then contain Hm (by returning to the

original structure)

Hm* = Hm(,.
With this change the right hand side becomes
~ t . G T - %
0 |=]0 i1 +B B}{bR b0 "[ey. ¢ [Hex }
0 0 H

Hn* fA * o @ (10)
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The equations not involving fA may be abstracted in the

rm . + _ -1 [ t t t
0] - Bo{BbR - Bb4D [byB  buml [Hes }

t
o| |s. | Hm

and these have a rank equal to the number of independent
load conditions, are consistent, and reduce to the formula
\ =1 tot t '
B{bR = b D Tb 8" by,] Hell = 0
' H ... (1)

m
generalising the case of simple pure cutouts. The
second term in (10) now vanishes and (10) and (11) com-

bine in the form
- - -1 t ot  t
o |=[BS Bby|D [b;B" b, I[H
-1 .
fA  Hp Sm bim | Hy,o
which is directly obtainable from (8) by substitution of

c*

cee (12)

transformed quantities as one would expect.

This expedient however gives no information about
the independence of the various equations. In practical
,sifubtions;’when elements of flexibility corresponding
to certain loads are altered, many of the same loads

enter the crack conditions BS= 0 .

. Now f, and g, conform with one another and-with
by, etc. which in turn conform with a set of loads not
altered by the transformation Bx. This is indicated above

by the partitioning.

In practice f, will be found for all loads; We
‘must then delete all rows and columns corresponding to
those loads which we regard as transformed in order to
obtain valid modifications. There is a choice about
which loads ¥o retain and the same cracking problem can
be formulated by many different sets of equivalent equa-

tions.
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This is a subject on which further work would be
useful. To obtain a well conditioned transformation
however it is plausible»that loads not corresponding to
the flexibility changes should be altered as little as
possible by the transformation. As an example consider

the cut boom shown below.

. I r—a,e/z.——-l A

1<_j ’ "ﬁ'>2

The original loads here are Pl’ P, and the transformed

2

load is(3P1 + Pg)’ If we consider the alternative load
systems

- _ _ - _

Pl = 1 P1

_3P1+P2_ _3 1_ i Pz_
or P2 = [ 1 P1

| 3P 7P5 | |3 1] P2

it can be seen that the lutter is better conditioned.

In the limit as the cut approaches P1 the transformation
becomes . singular and this is the reason why the choice
of load deletions does not present itself for simple cut-

outs.

From the type of behaviour described above it is

plausible to extract the rule of thumb;

"If there is a choice replace the loadswhich act

nearest to the crack by the loads acting at the crack."

Finally (12) may be rearranged in the standard form
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0 | +«[Bb]D"'Cb,BDb, 1] [H.] = [BS
-1 eeo (13)
fa bym Hol Sm >

where S _, S and H (H ,) refer to b, b, etc. while H_,
“refers to the transformed. system, although this has no’
practical consequence. The brackets [ I will always

denote a matrix of this type called a modification matrix.

From the modified stresses

C -1t

of the transformed system premultiplication shows that

S« = bR - b1

p'rbiB® bt 10 17'(Bb b IR
= b,R say.

The deflections are

gT* + H*
S, + 1B H.

w

S

Vi
leCoa
. ees (14)
-1 Lt ot t,. -1, »
“fbR-(fb,p (b8 b 1 - [1 BJ)L I Bb b IR
The internal work is bf V. and if we substitute for b,

~and recall that

t |
bifb , = O,

by the theorem of virtual work, the modified flexibility
will be displayed as

F«

Lt ot ot -1 ¢
=F+[b"B b [ 17" {Bb b} ee. (15)
(where F = btf b ) while
be =

-1 -
b - b, Db} g* pf I I-'{Bbb,]

ee. (152)
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2.0 Inverse of Modification Matrix

When f, is small the two inversions implied by [[ ﬂ—l
will be extremely inaccurate unless @ more direct method
can be found. One such method is described here based
on the partitioning between cutouts and modifications.
The main importance of this procedure is as a background
to the proof of a more efficient method in the next
section.

To establish our notation write the modification

matrix of (13) in the form

[ H;=- 0 + [k K
C cim

£t K K

mc m

‘where the bqld type has been eschewed to give a milder

appearance to the steps below. From the partitioned
inverse
k-1 . K1 x~lx x°1
C C cm m
s e K1
m mc c m
where K , = K - K K '  and K ,= K - K K 'x .
. C m m mc c cm

& cm m mc

It is now comvenient to introduce the -t notation for

the inverse of a transpose. We also make use of the
identify
ATHrea) A = aTY(zea" )
= (z+a)"1,

Thus

A

i

k=1 -1p-1
I -KJ'K_ K-if}

0 I + K-lrr1
m* A4



184

and upon inverting and cancelling part of the upper right

hand section

: -1 I -1, -1 -1 -1 -1
H ] =T K K, (T+fpK ) K_« K, K, K.
. -1 =1 -1 -1
0 (I+£pK _«) TLpK -K KK K«
[ -1 -1.,-1 -1 -1 -1 -1
= {I-Kc K ) Km.Kmb}Kc* Kcvﬁmg( ) IR,
. -1 -1 -1
| - fAKm*Km ch c* ) a
[ -1 -1 -1 -1 -1 1 -t
=| X_ {Kc—Kcm( ) UK KmC}KC* K Kchm*{( ) ‘—I}
-1 -1 -1 -1 1
- ~ K1 K f
L () fA{ch chKc Kcm m {mc}Ic*' ) A
[ —1 -1 -t -1, -1 ]
= (KK -K K K -K [C) 7 -TIK, K, K
- 1 —
Kcchme* [ )7 t-1]
-1, . -1 -1
b»( ) TEAK K T(T) () "f, |
1

Now (I+Km*fA)(I+Km*fA)

()t o1

i

]

I and this also takes the form

-1
—Km*fA( )

When this is substituted above the off-diagonal submatrices

become transposes while the leading one reduces to

—1 . -1
K" {T + K K L C)7K K

-1
mcKc*}'

From the identity the second term here can be written

(ignoring some prefactors) as
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1.-1 1 -1 ~1
) K K K.« (Km*+fA) Km chhc
RPTE  R -1_-1 -1
= (Km*(1+hm*fA)) K K K. X
-t -1 -1 ~1
= ()7 (I-k K 'K K IK K.
-t -1 -1
= ()7 K K (K -K me ch)Kc*
=t =1
= ( ) K K& .
The whole submatrix is therefore
-1 . -1 -1 ~1
K.~ + K, KcmfA(I+Km*f ) Koo Ko
which does not reguire K;i.
Finally we have the exact result
-1 -1 -1 -t -1 -1 -t
ﬂ B = | K T+K ] Kcmfa( ) K Ko K Kcmfa( )
-1 -1 -1
= () 7K Ko (I+£A1(m) f
.. (20)
which may be factorised if desired. When the change in
flexibility is sufficiently small this becomes
-1 _ -1 -1 -1 ,
H H = | K +KC K mE 0K Ko -K_"K_ £ ... (204)
~f,K K1 .
Ame e A

— -1 .
and of course kcm = Ble bgm etc. The inversion of

(20) can be achieved with a knowledge: of K;l, Km K~1 and
- cc
(I+£,K )71,
m
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2.1 Solution by Elimination

It is well known that the refined variants of
Gaussian elimination known as the Chio, Choleski,76
'Cfouﬁ7? or Dbblittle78 methods are equivalent to factor-

ising the coefficient in the equation

Ax = y o e (21)

as . A = LU

where L, U are lower and upper triangular matrices.

The intermediate stage in the solution of (21) is
Ux = L_iy, with L in storage, which is

followed by the back solution

x o= U-1L~1y.

Now apply Croﬁt's method to the partitioned matrix K
and suppose that -the elimination procedure has just
passed the rows and colummns of the cutout coefficients
KC. Then at this stage we have achieved the following

factorisation

1

K L = L, U, LK (hc:LCUC)
K K k vty U (22)
mc m ' mc ¢ * * *er
Here LC and UC are obvious. In addition we must have
-1
LC(LC Kcm) +0.U, = K ... (23)
RE ; )
(K. U )U_ + L,.0 = K
mC C C mc
which establishes the off-diagonal factors. Finally
x vtk s LU= K ... (23A)
m

mc c C cm
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or :
"‘ —1 LI I (2!&)
L, U, = Km chKc Kcm |
= K,m*
from the previous definition. Apart from this restric-
tion L, and U, are arbitrary. At the stage envisaged

in the computation we haye factqrised Kc and found the
off-diagonal factors. From (23A) it can also be seen
that the process‘of finding Km* is'exactly the same as
ordinary elimination except that the subtracted scalar
~products’only contain terms numbering up to the order of

X . Pictorially,

~.| |

New element = 0ld - [*]M

Having an algorithm for Km*’ we can now outline the
essential steps in the solution of a combined cutout
“and modification problem. In practice only one or at
most two arrays are necessary, or in a computer the same

storage space can be used, for the entire problen. To

start with there is (13) in the form

After proceeding with the usual elimination as far as

Kn we have the three arrays

U L™k
C cm

m .
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Acting as in (24) the ‘coupling between cutouts and modi-

fication can be removed and we then have

LT 'K | L7'B s
c tem |
|
I L ) (25)
-1 ] -
.yt K, | s - K K l'Bs
| Tmc ¢ m ! m mc ¢ 1 -

Confining ourselves to the lower corner only we can now
g y

form the correct equation for the modification strains

(L+fK_DIH = £ (S_ - chKgi B S). ce. (26)
This is still ‘part of the array (or in the same storage
block) and the elimination can proceed as before except
that the operations are now confined to the elements of
(26). = When the whole elimination is completed then (22)
has been completely factorised and the back solution can

‘proceed, without any special provisions.

2.2 Discussion

As the crack progresses in a fatigue problem there
is a continuous change in the flexibility and an occasion-
al cutout as various members are severed. At each crack
step the array (25) becomes larger and in order not to
waste:previous’computations it is desirable that the
loads associated with the current flexibility changes
should correéspond to elements near the lower right hand
corner especially since the type of change involved alters
a large number of elements. When another cutout occurs
there is‘no,way‘of avoiding a recalculation of the lower
corner but its effect can still be confined to this part

by suitable ordering of elements in the array.
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In themselves the modified loads found by calcula-
tions such :@as. these havé no interest and one needs only
those requiréd for estimating stress intensities.

Since these are on the whole the loads corresponding to
the currently changing flexibilities the cconomies above
will also tend to reduce the time or labour of the back

solutions.

However it is obvious that as the solution of the
crack-damage equations progresses the amount of struc-
tural analysis for each crack step will increase. It
is reasonable to expect this because, the cutout techni-
que represents an alteration of an undisturbed structure
and as the cracks extend this disturbance increases also.
For this reason it may be worth considering updating the
"undisturbed" structure at some interval to bhe determined.
If this were done (and only an elegant mcans is worth-
while) the size of the structural problem would decrease

with each step because of the decrease in redundancy.

3.0 The Representation of Cracking

To solve a fatigue problem one starts to integrate
(&.35) or (4.36) and at each crack step the change in
flexibility fA is added to the previous changes followed
by a check for the complete fajlure of any member, which
must be indicated by another row in the set of load con-
ditions . In the programming it was found that nu-
merical methods were best for this purpose and the gen-
eral principles are set out below. By a change of word-
ing much of the discussion can be made applicable to the

elements in displacement type analyses.

Apart from an overall constant the geomeiry of a
given type of element determines its flexibility. Con-

versely if the type is defined closely enough this
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flexibility represents the geometry. It follows that
the number of independent elements in a flexibility matrix
must at least equal the number of parameters defining its

geometry. As an example consider the general flexibility
a = a 1 3
% 1

for one-dimensional elements. This can represent uniform
beams, booms or torsional members and if the leading ele-
ment is unity'there remain two . independent elements.
Symmetry is implied byithe equality of diagonal elements
"while the % reflects the uniformity of properties along
the length since a linear variation of load is almost
implicit. =~ If a boom is now weakened by a crack whose
effect is“approximated as a concentrated flexibility f
then it is easily shown that the flexibility becomes

£

t= w3 §| + £ w0 eta) ] .. e

1 , _ _q)2
3 a(1-a) (1-a)

o

where the crack divides ‘the boom in the ratio a: (1-a).
Conversely, if we have such a flexibility then the form
(27) can be used to solve for £/AE, f and a. If only
two elements of }6 are taken to be taken to be independent
then we can find fAE/ /£, a non-dimensional crack length,
and o whichjindicatés its position. In the next chapter
- we consider cracks in rectangular skin panels. When
these are partially cracked their non-dimensional des-

cription requires four parameters, for example,
Aspect ratio ; Tip position (2 coordinates): Orientation.
Thus if n is the order of the flexibility

%n(nfl) - 1> 4

—
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 or n > 2.7. This may be realised by a shear panel which

is also allowed to carry two uniform direct stresses.

By making one principal stress zero this system can
also represent a completely cracked panel. However the
uniform stresses would not allow the crack position to be
localised so that this representation becomes no better
than a simple cutout. In effect the flexibility has
become singular so . that the number of independent elements
decreases to 'such an extent that the geometry cannot be
- fully described. A complete crack in a panel can be
‘localised by a 5-th order flexibility, which allows linear
variations in the direct stresses. In Chapter VII we
derive 9-~th order and 13-th order flexibilities from which

thése of lower order can be derived.

A uniformly stressed triangle has three natural modes
of deformation and the corresponding stiffness matrix can
describe a partial crack. As above however a complete
crack cannot be localised in a uniform stress field for

which six natural modes are required.

3.1 The ¥Use of Moving Elements

V Cohsidér the section Shown of an idealised structure
with a crack which first extends from panel 5 in Fig. 22
(a) to A and'then to B in the next step. It is plausible
that the growth to A be represented by changing the flex~
ibility (or stiffmness) of panel 3a as well as that of 5
and any other panels. The failure of 5 is then described

by imposing various conditions on its local stresses.

When the crack tip reaches B nothing is changed
exceptthat we now expect the effect of the tip singular-
ity to be felt in the neighbouring panels. If the flex-
ibility of 3a is suitably altered this will occur but not

to its fullest extent because, until they are reached by
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the crack, the panels 1a, 2a and 4a are essentially differ-
ent from 3a. Another objection is that the nature of a
stress pattern will change rather too suddenly when the

crack enters a panel.

These difficulties can be partially overcome as in
Fig. 22(b) by supposing the flexibilities of 1a, 2a and
La to derive from the strain energies of a fictitious
moving element M, containing the tip, and from the remain-
ing parts 1b etc. of the actual elements; The stress
pattern in M is appropriate to a crack tip while the
stresses in 1b etc. belong to ordinary idealised systems.
When a crack moves a short distance, as in Fig. 23 (a)
the change in flexibility is given by the integral of

strain energy over the shaded areas, namely

{IB—fA}(dUm-dUa) + JC(dUm2~8Um1)

the subscripts referring to the different types of panel.

Before it is oveflapped by M the flexibility of a
panel P is undisturbed. Consider the remaining effect
after M has passed. At the start and finish P and M
do not overlap and the first and last flexibilities
cannot depend on M. Thus we need only consider the
idealised stress systems whose energy is represented by
Ua. The complete effect of a passage such as that shown
in Fig. 23 (b) may be represented as

r p
U* = ? fr - } au
£, JBiP a ce. (28)

where the regions of integration AiP, BiP are those common

to P and to the particular region of type A or B in Fig.
23 (a).
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Now consider a small element dP which must successive-
ly be outside, inside and again outside of M. If it is
first covered by Mi then it must make a negétive contri-
bution in the integral over B, P and this is the only
negative contribution. Similarly, if Mj leaves dP(j>i)
there is a corresponding positive contribution from AjP

and this also occurs once only.

. Thus dP makes no contribution to U*. This is true
also if M never crosses it and if it is crossed more than
once the sequence above is mefely repeated. By consider-
ing all parts of P it is now obvious that U* = O so that
the final flexibility is the same as the original.  (Not
all of it can be used however for new cutout conditions
will appear for which some of the corresponding loads
must be deleted.) The proof here applies also to stiff-

nesses and elements of any shape.

The loads on M do not belong to S or BS but-must
be obtained from them by interpolation. In a compufa~
tion the intrinsic flexibility of M is a known quantity
not greatly affected by its translation. Thus the con-
tribution of'dUm to the flexibility with respect to S
arises from the change in this interpolation and only the
idealised stress systems need to be considered for direct

integration. This will become clearer with the detailed

analysis below.
For rectangular panels the optimum positioning and

intrinsic flexibility of M are treated in Chapter VII.

3.2 Fitting Generalised Stresses to Arbitrary Stress
Systems

The loads acting on M can be approximated by hASa

where M is an interpolation matrix and S a submatrix
a
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" of S containing those loads likely to be needed in the
interpolation. 'Generally, the interpolated forces cannot
be in complete equilibrium with the internal stresses
oh(r) assumed for M (r = radius vector). However in the
idealised elements there‘will be a set of stress patterns
Nl(r ) for each natural load and these will have corres-

,pondlng modes of deformatlon/DN (r ) such that
fo—t av = &
NiPNj = %5
or with equilibrium

-
jO’Ni('S )Ion( $) ds =- 6ij’ where

s boundary position,

das element of boundary.

These systems can be postulated for M also in which we
now suppose that

- (S) ~ ) a0

Ni(s) ... (29)

i

For a good fit we now postulate that the virtual work
done by each side of (28) over an arbitrary displacement
u( s) is the same. Since there is internal equilibrium

this can be_éxpressed as
rox ; S t
J m(s)q(s)as:&jai oy.i(8) uls) as
S , . s
integrating around the boundary. Since it is arbitrary

each natural mode can be substituted for u(s). Using

-the‘orthogonality enjoyed by these it is found that

) £, N .
a, = (fo—m( ‘s)IDNi(S)dS/ ja-lfﬁ(s),aNi( S) ds .. (30)
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where the denominator is'retained in order to indicate
the formal resemblance to Fourier coefficients. Owing
to the flnlteness of the approx1mat10n equality. in (29)

1s restrlcted to the llnear comblnatlons

”(5)‘ E:b PNI

of the natural modes. The virtual work is then
7 o , |
Laiby js Ni(S) Pygsls) a5

3.3 Modified Flexibilities

' We can now calculate the modified flexibilities.
It is assumed that the sizé and relative position of
M have been determined and we also assume that we know
the values of strain energy and the forces corresponding
to MS_ for a standard element of type M with a fixed
‘level of or (r.). These forces are fitted by (30) and
in our case the standard element is a rectangle of unit
area énd unit thickness under the plane stress syétem

,correSponding to a stress intensity of
K® = 2m.

In the standard elements, for which aspect-ratio and

crack orientation are variables, let
. . . t . ‘
Ih = t -
p = Strain energy (by integration O.f O‘m(r)_fo;rl(r))

T = Standard system of generalised forces, fitted
_beforehand by (30).
'¢ = Flexibility of element dxdy.

For the uncracked structure the flexibility is given by
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2U = S’r

[

S'fS,

I

52 fvof‘(r)?%(r) dv  say.

When M is removed, the reduced integral

t
[y @ av

=

defines f - fm.and the contribution fm is replaced by

a flexibility from Um where

Um = T M

obtainable from dimensional considerations, where

t.'= sheet thickness

K? = energy release rate, still to be related
to S ,
a

and #° = area of M.

Now the forces on M are

tK/Z I

which must be related to the interpolated forces MSa.
. This is done by fitting K through the least squares model

Ttk/Z = MS_ + e,

a
e being an error vector. Minising ete,
) . . R ,
K = Z-MSa/h/?Z b .o (32)

and substituting into (31),

. ) -t
amu, = siMPREEZ . Ms

n a ‘ - s (33)
t(Z 2)°
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The form of this shows that

fy = wzzt/mi(zts)?

may be regarded as the intrinsic flexibility of the
fictitious movingvelement. Its rank of one could be
expected from the fact that (for a given geometry) K
uniquely determines the stress in M, The independence
from £ folléws basically from having a fixed stress in-

tensity in the standard element.

Equation (33) also shows that Mt f}ﬂd is the con-
tribution of M to the complete flexibility which can be

written

t
In application fm is found by numerical integration and
there is also a programme for using (30) to find the

standard forces in the normalised form

t
2/ Iz
. and another to form th from the values thus obtained,

after the loads for the modified structure have been

found.

In Chapter II we discussed the probability distri-
bution of K and of local stresses. Now the forces S,
used in (32) come from an equation such as (15A) and
if. we suppose that the numerical values there are related
to unit magnitude of the corresponding external load
sjstem R; (belonging to R ) then we have a factor of
proportionality between K and Ri’ If there are several
systems and R is not a scalar ome can in this way find

the required elements of A~1 in (2.20).

The same argument applies to the local stresses

responsible for damage but here there are no general rela-



199

tions such as (32) although a linear form will appear

for each specific case.

Before leaving this chapter it is worth noting that
the method described of modifying flexibilities need not
be confined to fatigue cracks and can be generalised.
Suppose é structure has a small discontinuity where
the stress pattern differs from that elsewhere and con-
sists of a superposition of basic patterns with the vector
of magnitudes'K and the intrinsic flexibility fI.
Then 2 becomes rectangular and (32) becomes

K

(gts ) lyty s,

while

s(xfsy i (st s”

I

fM
with the Tank of fI.

If a displacement method were contemplated the
theory for the modified stiffnesses would be exactly
analogous to these two sections. The.roles of forces
75 <o that 2

would represent the modes of a standard element and M

and displacements would be interchanged

would interpolate between modes. Values of u and the

-optimisations of Chapter VII apply to both methods.
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Chapter VII

CRACKS IN RECTANGULAR PANELS

; To demonstrate the feasibility of the éirect analysis
of crack growth a FORTRAN IV programme has been devised
for flat rectangular réinforced sheet structures. The
basic elements here are booms and shear panels which in
‘our case requiré tq carry direct stress also. Below we
consider suitable generélised stresses and the correspond-
ing flexibility for whole and cracked vrectangular panels.
We also discuss self-equilibrating systems and the load

conditions to simulate a complete crack.

1.  Generalised Stresses

For the boom we have used the normal model with two
different loads at each end and a constant shear flow to
maintain equilibrium. In the panels however there are
mostly nine natural forces giving rise to membrane

stresses.

' These consist of the cérner systems shown together
with a uniform shear flow. For more refinement it is
‘also possible to add the quadratic modes below and obtain
‘a thirteehth order system. This would allow the stress
to increase on both sides of a crack whereas a linear
representation in a cracked element means that a tension
on one end is matched by a compression on the other.

" This is not true in practice but the smaller set has been

chosen because of limitations in computer storage.

4a -2
Pure b 8 systems} 19 4 syste
shear : systems . Y ms
-2a
(a) b oo a -

() )
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To find general formulae for overall flekibility and to
calculate changes in flexibility we require the intermal
stresses corresponding to these load systems. These
can be found by assuming linear or quadratic decay of
the direct stresses and considering the equilibrium at

a general cross section. For the quadratic systems the
differential equations of equilibrium are also needed.
TheJresults are shown below in terms of the non-dimensional
coordinates g, M where the panel edges are = 1 and
n = ii. These stresses also satisfy the equations of
~compatibility so that they are exact.

TO;y
y)vin - —_—
# 4—1 r—g’“‘
> —~—
x,u,g Ty l




TABLE III

NATURAL LOADS AND DEFORMATIONS

(a) Pure Shear

T
Xy
(a+b)lu

(a+b)v

(b) Corner Load
o

XX

0]
yy

T
Xy

Lab u

Lab v

~ where B-

I

1

(c) Quadratic System

OXX

g
yy

T
Xy

1.6bu

n(1+3€%)

e =

E(1+31%)

o= =

2a(1+g) (1+31)
o
£b(31-1) (n+1)

248
1+

CE(1em) 1387 ToF ¢ Lo

1
1+B

3
- 50y (1)

b/a.

a4
-2

%(1+§)2(1-3n2)
7 B2 (1-1*)?
-3Bn(1+E) (1-n7)

(i+5)(1~3n2+3(1-§))

o

{327 +1+4B}+1-F

B-2
1+PB

1l -
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Mirror images of the systems (b) and (c) are obtainable
by putting ¢, - or 7,-7 or both. Similarly rotations
» £+ @ and u with o__,

. X Yy
M, b and v respectively. These variations lead to eight

méy be effected by interchanging.cx

forms of (b) and four of (c), making up the total number

of systems.

The natural modes were determined by the following
standard method. They were first taken to be linear
combinafions of the four types of mode typified by those
below (1,1)

: -1 1 3 - -1

N

Algebraically
Py = Ap (pegiven p, p, square) cee (1)
"and the problem becomes that of finding A . Consider

the virtual work evaluated on the boundary
rb
U=~Jppf das
S

where P, p« are arbitrary forces and displacements which
are respectively in equilibrium and compatible. However

these are expressible as

Ct Px ( Py = set of natural loads)

[

p

and :

. £ t -
9°p  =g" AT py

1

P

so that

a
i

¢ [ py ot as.as

t

t
C PNFJ

i

as A, A~tg .



204

In this expression A-tg may be regarded as the factor

needed to obtain p, from py. Since C and g are
arbitrary -
J ~t At . r t
PNp A* as = N PyPy dS
and by definition the right hand side is diagonal. On

the left this can be ensured by making

> A5 = [ pypas ]! cee (2)
. S .

1.1 Flexibility

Because of the various symmetries the 9 x 9 flexi-
bility matrix has elements falling into 10 categories '
~and taking 14 separate values. For the 5 x 5 and 13 x
'13 flexibilities the corresponding numbers are 5(8) and
15(22). The load systems for each of the ten categories
‘are shown in Fig. 24. The calculation of each element
of the flexibility is a tedious but simple task. It
was shortened in the present instance by the use of a
programme devised for checking the routine used to inte-
grate the changes in flexibility caused by cracking.
Three elements were calculated in detail from which it
was apparent that every elemént consisted of terms in
a7b/3Et and ab>/30Gt or similar ones with a and b
exchanged. When the progfamme was working all the non-

zero elements for a unit square were fitted with these

quantities. ‘The results for non-zero elements are shown
~in Table IV. If the natural loads are arranged in the
order v
6 8 : '
3 4 and B = [1/3 1/6| 8 = | 1 -1
? 1/6 173 |, “1 1
1 2

W
-\’
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FIG. 24 TYPICAL FLEXIBILITY ELEMENTS

NINTH ORDER FLEXIBILITY ELEMENTS

Natural Loads

)4

\
/
-/ /
—

-

Pure Shear

TABLE IV

Element of Flexibility

lm3b+_2__
3Et 15
b 1
Bt 3
22’0 _ 2
3 Et 15
12w 1
3 Et 3
(9]
o deZ
Et
ab
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then the complete flexibility takes the form

[ 2ob [ 4p -am' =, [+[an? T |
Bt 14 | |-2B  apl ‘l 30Gt ©, 0 40 |
e B e B o A e e
ab> I * o 43 -z2B| a>b I | 40 6l
Lt 4 * »,=2B 4D 30Gt ‘4 | 6 49|
1 1L [ |O_J ab/Gt JL 1 | 1- :

~where the asterisks denote Poisson's ratio elements of
-V a®°b®/Et and these & x 4 submatrices are filled out

., with zeros.

2.1 Crack Conditions

(3)

Let UN(Z,H) be the 9 x 3 matrix of the stresses listed

in Table III whileF§(9X1) refers to the magnitudes of the
natural loads. Then the stresses across axes inclined
at an angle | are

1

t
I — Rl -1 W
PN e l4+cos 2% 1-cos 2V sin 2%

]
[SY

o(g,m,¥)
1-cos 2% 1+cos 2% sin 2%

~2sin 2% 2 sin 2% 2 cos 2¥

et

= 1Py Oy PN say, cee (8

[
N,

If we now have a crack at (,m), inclined at ¢ then two

of the total stresses on the left must vanish and after
the coordinates (g,n) and ¥ are substituted two columns of
eQuation éan be interpreted as conditions on PN and
identified with rows of B. Since ( consists of contin-
uous functions (E,ﬂ) mast lie on each of two curves along
one of which the tangential shear vanishes while the other

is a locus of zero transverse stress. These will be
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called shear cracks and stress cracks and for a crack

in the accepted sense they must coincide.
Suppose that the crack is defined by
no= &) , ceee  (5)
which aléo implies
o= (g cev. (5A)

Along the crack we can substitute (5), (5A) into (4) and
when the result is expanded as a series in § the matrix

of natural sfresses becomes
0, = O, +E0y * £? Oy *+ --- ceee  (6)

whére the notation indicates that the direction has been
included. Each of these terms contributes two res-

trictions on P, arising like those at a single point.

For a straight crack | is constant and (6) contains
just three terms so that six conditions can-define the
crack exactly. If guadratic systems are included the
degree of (6) rises to 4, requiring 8 conditions. If
(5) is quadratic and we use quadratic systems the degree
of (6) is at least 8 so that even.the thirteenth order

systems cannot exactly represent curved cracks.

For séraight cracks the coefficients in (6) can be
found by finite difference techniques using stresses
evaluated at each edge and at the centre. This is
awkward however and‘in the programme we have chosen to
use a maximum of six conditions. These are derived by
a direct use of (4) which is evaluated at solution points
of the crack—damagé equations. Two of the points are
near the edges and the third near the centre. If the
crack is short compared with the panel width then only

two points or four conditions are used as there is a

possibility that conditions derived from ncarby points
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will resemble one another and lead to problems of ill-

conditioning. At each point chosen the conditions are
) t N :
g, (2.m) Oglg,m) Py = O v (D)
¢c being.the relevant rows of 4). This collocation

. method can be used for curved cracks as well and ensures
that the shear cracks and stress éracks are tangential
at two or three points which in practical "terms makes
them fairly close along the whole length. °~ Since they
‘can ﬁe exactly simulated all possible conditions for
‘straight cracks must be equivalent and therefore the

collocation method becomes exact.

2.2 Cut Corners and Averaged Conditions

It is possible that a crack following a diagonal
course will have entered three panels during an integra-
fion step, cuttihg the cormner of an intermediate panel.
In the absence of other information thé intermediate

'crack must be aSsumed to be a straight line, requiring
six conditions.

However the contributions of some natural loads
to the stresses originally across the crack may be small
‘and the three collocation points unavoidably close,
leading to ill~conditioning. Accordingly only three
conditions are specified for these cases, nullifying

~the total loads transmitted in each direction and the

total moment,

From (4) the average normal and shear stresses

across the crack are



2
b, |
cos ¥ t dg
o. P
Z g} $;| " N Cos T
&1
while the moment depends linearly on
b2,
| b, 0y Py g0
€1

The three corresponding rows of B are

B = m N
(5 ),

E being the position of the resultant load.
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The term

in E is equivalent to the first row however and may there-

. fore be ignored.

With the assumed straight crack the integrands here

are respectively quadratic and cubic and exact integrals

are obtainable by the 3/8 rule for numerical integration.

When this applied

:
8 = 3 4)270;;}] +3 P2 o{;i

¢s 1|,

B Ed

" - ‘Pz— | 0‘;{
G5
..'%4)2_

where E. = g 1+(i;1)(§ 4E1)/3.

2

52

+3

s |
5

B

.. (8)
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Thé deleted loads, replacéd‘by B'[DN, are here the two
systems on the relevant corner and one other. As the
panel is likely to remain effective in shear for small
cuts the best third deletion is probably one of the loads

on an adjacent corner.

2.3 Choice of Deleted Loads

In (7) each columm of ¢C(T§ represents the normal
and shear stress at (E,7n) arising from unit value of the
relevant generalised load in the absence of a crack.
Following the principle suggested in Chapter Vi we delete
from PN and S those loads corresponding to the largest
elements of ¢¢(T;. In our formulation of the natural
loads unit corner loads are proportional to the adjacent
sides and unit shear is constant or non-dimensional.

Thus for physical consistency "largest" must be inter-
preted in relation to the maximum value in the panel of

unit natural stress.

The panel remains fully effective for carrying load
(for our purpose here) until completely crossed by the
- crack at which time the conditions are found and the
corresponding’loads deleted. In the programme, as
suggested above, each panel leads to three, four or six
conditions and the last indicates that a crack joins
two opposite sides. In these circumstances the panel
is unlikely to bear a large amount of pure shear and

this load 4is therefore included among the deletions.

3.0 Self-Equilibrating Systems

These fall into five different classes,for rein-
forced structures,which are shown in the next figure.

To derive them we begin by finding the order of redundancy.



211
Consider the fully reinforced structure of Fig.32
with booms around the edge and between all panels.  Then

No. of booms a(B+1)+B(a+1)

-

No. panels = aB

(a+1){(B+1), including external joints.

n

No. joints

Thus
Total nmo. of forces = 2(a(B+1)+B(a+1)) + 90B

For each boom there is one longitudinal equation of equi-
librium and two transverse which may also be regarded as
conditions between adjacent panels. With the two con-

ditions for each Jjoint
No. conditions = 3(a(B+1)+B(a+1))-2(a+1)(B+1).

Having natural loads the panels are automatically in equi-

librium and when overall equilibrium is allowed for

Redundancy r 5(a-1)(B-1)+2(0+B8~-2)

[t}

i -

5 (Internal joints)+(External joints

not on cormers)
When there is no reinforcement this becomes
r = 3(Internal joints)

The smallest redundant reinforced structure has
two bays and an appropriate system is shown in Fig.25(a).
When there are four bays in a square there are eight
such systems and it is also possible to form the standard
cover redundancy based on pure shear in the panels. This
- completes the total'andifor reinforced structures these

" two types are sufficient.

The second type of redundancy in unreinforced struc-
tures must also involve pure shecar but in this case there
are no booms to "mop up" the shear flows which must

therefore be reacted by corner loads. When‘this is done
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the system of Fig. 25(e) is obtained, analogous to the

standard cover system.

It is now possible to find the order of redundancy

- for any structure of this type‘by counting self-equi-
'librating systems at’each joint. It was found expedient
to use the pure shear system of Fig. 25(e) for all degrees

of reinforcement in order to have a uniform procedure.

4.0 Natural loads for Moving Element

In Chapter VI it was shown that the effect of a
crack tip on the overall flexibility could be accounted
for by a kﬁowledge of the strain energy and natural
forces bn a standardised mdving element M within which
the stress pattern is appro?riate to a crack tip. - We
now consider M more closely, beginning with its specifi-

cation.

4.1 Form of M

The form of M is arbitrary but if it is to best
serve its purpose of allowing scparate considerations
of the crack tip there are several plausible conditions

to be met.

The first is that M should cover the region where
the idealised type of stress system becomes inadequate.
In turn this implies that M should be roughly the same
size as the panels containing it. We have also chosen
to make it the same shape and of such a nature that it
is poséible for M to coincide with one of the ordinary
panels. If the orientation of M is kept the same also
this simplifies the interpolation matrix. For triangu-

lar elements these considerations become more difficult.

For rectangular elements we are thus led to the

moving element which is rectangular and can contain a
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crack in any direction, (Fig. (26)). The standard element
has unit area and to optimise the tip position it is moved
about the asymptotic stress field of Westergaard (K=2¢):

until the strain energy is a maximum (4 of Ch. VI Sec.3.3).

L.2 Strain Energy of Cracked Panel

The. notation used is shown in Fig. 26 (a) and as the
figures imply it is convenient to rotate the panel rather
than the crack. We find the strain energy in each of

the triangles subtended by the sides 12, 23, etc.

From the asymptotic stress field (Chaptexr III)

Oy = X {cos % + Asin 6 sin (%§-~ 2$)}
Y 2nr
— K ( ,
INx T e {cos g - }sin 8 sin (%i - 2“)}
Ty = K 4sin 6 cos (éﬁ-ZQ) eee (9)
h 5 2
2Tr
Putting ¥ = 6 we obtain the polar stresses and from these

the element of strain energy appears as
I"2
E dU = fﬁ dr d8{(1+cos 8)(3-cos 8)-(1+cos §)7} .

Now rotate the axes and put

8 = cp+li'}.

After this we expand the energy integrals in terms of
sin ® and cos ©® and integrate over each triangular region
Thu i: e

s ©, h+/51np

f(.. . )dr do

c.o10

. I
EU, =
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FIG. 25 REDUNDANT SYSTEMS FOR PANELS.
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Pg
h
Ka J‘ + { }
= Ter—————— dcp LR ] (10)
T Isin ml
?y
after substituting for the energy and integrating. The

only other type of integral is similar with the factor

1/|cos ol.

The only unusual integrals arising from (10) or the

other integrals are

! T de P do
. |cos »| and J'sin 0|

which through the substitution t = tanlo prove to be

(1+ tanlo)
(1+tan 20)

s(p) log tan 3o and c(®) log respectively,

fl

where - s(o) |sin ©|/sin o

and c(p) | sin ®|/cos w.

i

The energy of each type of triangle turms out to

be typified by

v K%h, 1y tan 3o,
hty = ) ot || 1o T fp, - [o7ovm(1rvices 2v]
y sin wz
- i ottt s — i -
+ (1-v)cos ¥ log — (1-v)siny (p,-0,) .

nCP1
~ A(1+v) cos 2{¢(cos Py-cosp, )
+ 2(1+v) sin 2{¢(sin wz—sinwl)ll . ee.  (11)

for these beside.the crack; and
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K2w (1+tando )(1—tan%m4)
WU, = o)t H Liog L
+ 41 on L77° (i-taniy ) (1+tandy,)

[5-3v+(1-v)cos2y]

cos ¢1
+(1-vsiny log ————— +(1-V)cos ¢(¢1—m4)
cos o,

+ 4(1+V)cos 2¢(sinm1 —sinmq)
- %(1+v)sin 2\}f(coscp1 —cos@a) ll ee.  (12)

for the triangles cut by the crack or by its extension.
The total strain energy is therefore

U= +(h U

Uio * h~U34) + (W+H41+ w U, ). eea  (13)

23

This procedure extends to any type of polygon if ¥ is
appropriately varied for the triangles subtended by each
side. For triangles h+ etc. are replaced by the homo-

geneous triangular coordinates of the tip position.

k.3 Computation of Generalised Stresses

Unfortunately, when the normal and tangential stresses
represented by (9) are substituted into the scalar pro-

°1
duct of 24.30) the presence of factors (sin ©®) ¢ or

2]

(cos @) ¢ excludes the possibility of a closed form for

z .

1)

It is therefore necessary to integrate numerically

72

and over each side a four point Gauss-Legendre formula
is used. Unlike the strain energy u, found in the pro-
gramme by an empirical formula , £ is calculated afresh
for 'each crack step by a special subroutine. This in-
corporates the integration formula whose coefficients
are premultiplied by values of the various natural modes.

(Actually, before integration these modes are first de-
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composed into various symmetric and antisymmetric compo-

neats and reassembled afterwards.)

The components of X depend on the optimum tip posi-

tion whose computation is now described.

4.4 Optimum Tip Position

Superficially the problem here is to maximise (13)
with respect to h+ and W, with
h = b -nh and w = a - w
- + - +

but a straightforward application to (11) and (12) soon

becomes intractable.

In Fig. 26 (b) we have considered directly the effect
of small rigid body movements parallel to one side, de-
noted by dh in the figure. Now let

h - h + dh and h - h -~ dh
+ + ( - -

in (13). 1In the figure the angles determining U, etec.
are the same and therefore the new region of integration
is represented by the lightly hatched triangles and by
the two original triangles corresponding to W, and w_.
Compared with the shifted panel this region is excessive
by the (signed) sum of the four heavily hatched triangles.
But this area is of second order in dh so that from (13),

to the first order,

U |
ah - Y12 ~ Usy
for rigid body movements. A similar equation holds for

w and the maximum is given by

Uja = Ugy

U23 = Ul}:l “ oo (14)
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while U = aU

max 10 * PU,

3"
The unknowns here are Pyr e @y and the other equa-
tions required define the aspect ratio and express the-
fact that the panel is rectangular. The equations (14)
were solved numerically by a FORTRAN IV programme whose
flow diagram is shown in Fig. 27. The algorithm used was
essentially Newton's method in two dimensions but the
gradienfs were replaced by finite differences calculated
from a grid of fixed size, placed at the current estimate.
At each iteration the angles 0, for the three points are
recalculated, maintaining the aspect ratio and right-

angled corners (Appendix B).

Fig.26(b) is easily generalised and for a k-sided

polygon (14) becomes

k .
. sSin
A Vi gaq = O (Bt = 1)
. cos
i=1
where Wi j4q is the angle between the crack and side

(i i+1).

4,41 Results

For eleven aspect ratios (or 21 if the inverses are
counted) the loci of optimum tip positions have been
plotted in Fig.28. For reasopable panels these resemble

ellipses slightly flattened at the '"corners'".

In the notation of Fig. 30, if they are parametrically

represented as

£ - % = a cos 6
mM-% =Db sin 6
then V ~ 0 ee. (15)

The axes depend on the aspect ratio expressed in the
form
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x = log tan ®,

and empirical formilae for a and b are

4

a 0.5 - P(x)

b 0.5 - P(~x)

1

where

P(x) = 0.189 953. + 0.028 583 x -0.023 407 x°

~0.001 491x3 + 0.002 391 x% e oo - (16)

For the flattening, let us suppose that it arises by

a reduction of the semi-axes;
a = aPF(B), b~=0>bF(8)

where F(0) has a period w/2. From the construction

shown in the figure we have the approximate result

F(B) = 0796 + 0.04 cos 46.

To summarise, the locus of optimum positions for the

standardised panel can be approximated as

~-(0.96.+ 0.0% cos 4¥).(% - P(x))cos {

it

£ -1
, (17)
(0.96 + 0.0Lk cos &i¥).(3 - P(-x))sin V{,

1

m - %

P(x) being given by (16). The negative sign in the
first equation.agrees with a standard crabkvexténding
in the direction of positive E. For a square panel
and the four nearest aspect ratios the average corres-

ponding to (0.96 - 0.04) is actually 0.9228.

k.5 Maximum Strain Energies

The values of | corresponding to the optimum posi-
tions above have been plotted in Fig. 31 in terms of

aspect ratio for crack angles of 0,20 and 40 degrees

222
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which are enough to allow estimates for the whole range

of practical values.

For cracks parallel to one side (¥ = 0° or 90°) the

empirical form is

W= Q(x)‘ (x = log tan mo)

where _
Q(x) = 3.993 907 + 0.317 543 x - 0.291 603 x°

.- 0.033 219 x3 4 0.013 965 <t ... (18)
but for other crack angles the accuracy of a polynomial
form of this degree cannot be maintained. If u is
assumed to vary sinusoidally with § then within the

range -1.75 S'x < 1.75 the resultant expression
o= Q(x) cosg$ + Q(=-x) sin®y ... (19)

is accurate within 4%. By Paris'! fourth power law the
error in crack rate would be about twice this if (19)
were used.

The kink in the curve for § = 20° is probably
associated with the corner~of the panel crossing the
region of high:strain energy radiating from the crack
tip, along which yielding first occurs. Owing to
problems of convergence reliable values could not be

found for fhis region and the curve is shown dotted.

By cross plotting Fig. 31 with numerical aid two
correction terms were found for (19) which reduce the

error beyond 0.02. These terms are

uy = 0.077 563 sin®2y exp (-1.25816 x°)
+ 0.106 809 sin® 4% exp(-0.97536 x°), .. (19A)

to he added to (19).
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Chapter VIII

INTERPOLATION AND PROGRAMME STRATEGY

So far we have described the general two-stage
fatigue problem and outlined one application to rein-
forced structures by means of matrix force methods.

In applications there remains a large amount of detailed
description of crack movements'and the calculation of
the interpolation matfix. In addition there are the
standard operations involved in the primary~stre$sing,
integration of the crack démage equations and the calcu-
lation of crack rates, damage rates and the modified
loads. This has been programmed in FORTRAN IV for the
IBM 7090 at Imperial College and some of the methods
particular to our type of force analysis have been des-
cribed in general terms. The relevant sections are

asterisked and may be omitted without loss of continuity.

It was found convenient to use two overall s&stems
of coordinates and two local systems. The overall sys-
tems and the structure are shown in Fig. 32. The nor-
mal axes (x,y) are used for following cracks, finding
boom lengths etc. in floating point numbers while the
secbnd‘set, called lattice coordinates, are essentially
a two-way listing of each joint, beginning with (1,1).
The loads are lisfed in cells of 13, each in the standard
order

2 x-~boom \9 panel loads in standard order 2 y~-boom

loads d i loads

As shown each cell is related to lattice coordinates

(ix, iy) which are integral or fixed point numbers.
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1.0 Main Programme

Fig. 33 shows flow.diagrams for the main operations

in solving a fatigue problem for our rectangular structure.
In the small diagram the block CORRECT, normally relating
to evaluation of a function, now contains instructions to
modify the loads and the structure, calculate average

- rates and damages and then to use these for the c¢oyrection
in the routine for the differential equation, The pre-

" dictions are made in the normal manner by finite difference

methods but for a crack a two-dimensional method is needed.

2.1 General Crack Step

The immediate output of the crack-damage equations
is an increment of crack length without direct indication
of the new tipbposition which is now considered. In the
course of computation one stores values of a,x,y at
each step and each of these can be individually predicted.
'In the correction we must now make sure that a or (x,y)
remain consistent while the crack follows the pyincipal
stress trajectory. (We follow the results of Cox
and Fieldgo and assume that a crack follows ohe of

the trajectories present before its extension.)

Suppose that small segments of the crack path are
parabolic and consider the locus of a fixed length { of

the curve

y = a x°; dy/dx = 2ax = 2y/x.

It can be shown that

g = IXE [u + 4 sinh 2u] (sinh u = 2y/x)
when a is eliminated. When £ is fixed this is an implicit

form of the required locus which can be further reduced to
‘the form
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= Ag(mB
L= tx(g + cosh u).
In terms of t = sinh u this can be expanded as

+

ﬂ:x(l +%t2 : -g——t +m‘t ¥ eea) oo (1)

“Now 1 is.also the gradient which can be estimated from the
principal stress trajectories at the current and previous
tip positions. Ir £ is known then x can be found from
(1), v = #xt, and the trajectory at the improved tip
pdsition (x,y) then furnishes t for another iteration.

In practice if (x,y) is also predicted convergence is

rapid.

2.2 rQuadrature with Mixed Quantities

‘In the calculation of covariance the derivatives
are not stored. From the correction stage of the
‘differential equation routine however we do obtain a

derivative yi say.
 We must now integrate y' over the interval ((i-1)h,ih)
to find Yo h being the size of the equal intervals of
time or cycles. Choosing more convenient subscripts,
suppose we are given Y_1Y, and yi and assume that
y = ax® + bx + c
y' = 2ax + b.

From the two values and the derivative one obtains the

-equations
1 1 h%a - Y1 Yo
2 1 hb hy!
leading to

yq = wy(h)



i
= = |- I [
3 [ y_q o+ by o+ 2hy1]

when the solution is substituted into (2). The same
procedure can be used to find a four point formula
expressible in the form

= L

X - 9y, + 18y2‘+ 6hyé].

o

3.1 Interpolation of Loads

The interpolation routines were made applicable to
any structure which could be regarded as a set of quadri-
lateral panels through the use of lattice coordinates.

In these non-dimensional ferms the moving element is also
a unit square contained in four surrounding panels as
in Fig. 32. In local 1attice.coordinates let these

squares lie between the limits
-12g ngt.

In one dimension if the load S(f) varies quadratically
then

= L(A=g?
where A
' A= -
S_1 + 51
A% = -
S__1 280 +S1
in an obvious notation. In matrix form this expression

may be regarded as a scalar product

%(Aagg v Ag + A%)F fs_;8,8,1 ce. (&)

>
k]
1l

f1 -2 1.}
{-10 1}
0 } .

o>
It

o]
A fo 2

i



The vector of differences in (L) is a particular case of
the interpolation matrix M described previously and.
with appropriate zeros it can be expanded to formally

conform with the complete load matrix S .

In two dimension581, with S(g,m), one can first
interpoléte with respect to g for m= -1,0 and 1 in suc-
cession. These three values can then be interpolated
with respect to 7. Now suppose the loads S(-1,-1) ..,
S(1,1) to be arranged on a 3x3 grid, as they appear in
the structure.; Then the corresponding elements in the
row of the interﬁolation matrix can be arranged in a
similar way (like the stencils used in relaxation methods)
~and when this is done for the two-way interpolation above

it will be found that the grid elements have the form,
1 2.2 o, 2.2 o,t
(A" +An + A )CATE +Ag +A)7, ee. (5)

forming the non-zero elements for one row of M. The
proof follows from a comparison of the two-way inter-
polation with (&), regarding the interpolation matrix

there as a 3x1 grid.

The generalised stresses are conceivably discontin-
uous andvthe interpolation of (4) is actually over four

stresses such as

5_1 s-o s-‘-() 51

- Y VY ¥

for which the difference matrices are expanded to

Az {1 -1 -1 1}

i

{-1 o o0 1}

A = {o 1 1 o0},
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again used as in (5). This equation is used for each
load corresponding to an element of Z (Chapter VI) the
standard loads on the moving element. The problem of

choosing the interpolation points (g,n) is now considered.
3.2 Imbedding of Moving Element

We have previously stated that a moving element M
‘which can coincide with actual panels is advantageous.
Consider the four panels containing M. For a given
crack orientation &, each of them contains a.;point which
would be the optimum tip position if M were the panel

in question. The four points define a quadrilateral,
called the allowable tip region, and it can be seen that
if the tip is outside ABCD (Fig. 34) then M is partially
outside the four panels shown or in other words (ix,iy)

is not the appropriate centre.

We now set up non-dimensional coordinates for the

position of P within ABCD. Briefly

ACDP/(ACDP + APAB)

11

%o

11

n AcrB/(ACPB + APDA)

o
and 0 < Eo’ no< 4. We note that the area of a typical

triangle is
ACPB = Xo X, Xp = (xB-xP)(yc—yp)—(xC—xP)(yB-yP),

Ye Yp VB ee. (6)
101 1

with C, P and B in anticlockwise order. Iir pi and p, are

perpendiculars from P to BC and AD then from the definition

Zo

I

P,CB/(p,CB  + P,AD)

CB
CB + AP pz/p1
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ALMOST RECTANGULAR PANELS.
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and it follows from geometric similarity that go = constant
defines a straight line through the intersection of AD and

BC. A similar result holds for No*

3.21 Local Lattice Coordinates
\ .
With the origin at O,M is between the lattice bounds

-1 < E, 1< 1 and in this system it is also a unit square.
it is helpful to begin with the one-dimensional analogue
shown below . M, ‘ |
l+|| ‘M for tiB position P |
| |

| ]/Optimum tip position for 0D '

L

|

e — .
C H A c Pr 0] B % D
S rack tip 50 Central load S1

where CO and OD replace the four panels and AB is the
allowable region containing the tip P, now constrained to
CDh. Three successive positions of M are shown, as go
increases from O to 1. In the local lattice coordinates,

if g = O then
{M : -1<g<0}, as shown, while if E =1 [M : 0 < g < 1}

so that for the intermediate values of E, it is matural
to place M between f = go—l and E=€o or in the present
notation [M: 50-1 <E < Eo}' These are then the two

values of E to be used in (4) if such an interpolation

were required. The actual size of M may here be taken
as

I\i* = (1~€O)CO + £OOD , s oo (7)
a Yinear interpolation similar to (3) or (4). From a

knowledge of M, and the optimim tip position it is now
possible to place the actual moving element in correct

relation to the "tip" P and the two '"'panels" CO, OD.
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This procedure carries over to two (and three) dimen-
sions with little change. The corners of M then have

the local lattice coordinates
(go,no), (§°~1fno), (g, -1,m,-1), and (_,n -1),

in the standard order, and these values are used in (5)
for vertical and horizontal corner loads. The interpola-
tion (7) has a two-dimensional form similar to (5) and

it is applied to pure shear forces and the fltted widths,

helghts and slopes off the four panels.

3.22 Edges

- Suppose  that some of the four panels are on the €dge
of the structure and the crack tip is between the allow-
able~fegioh and this edge, at whici we suppose the crack
to start. In our one-dimensional analogue this corres-
ponds to a crack tip in CA. Since the crack is smaller
now, M is also reduced in scale and it is possible to
use a different approach altogether and treat the crack

‘as an edge crack with the stress intensity
K° = g(4)o/TZ -

However to be consistent let us retain the moving element
but now make CA the allowable region for edge cracks.
As the tip moves from C to A, M grows from zero to CO

and we may take
M, = goCO,

where now

i

g, CPi/CA ( < 1 for edge cracks).
In lattice coordinates

fM: -1 < g < g, -1] ce. (8)

adjoining the internal interval
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If the crack starts from D the allowable region is BD

and
E, = BPz/BD (>0 for right hand edge cracks),

and the positive direction of g is retained. In addition
M, = (1-E_)OD

and M : E, < E < 1}, .o (10)

adjoining the intermnal interval. One can now situate

the actual moving element, just as above. In two dimen-

~sions the lattice corners are obtainable by appropriate
combinations of extreme values of £ and n from any of the
regions (8), (9) or (10). The eight cases thus obtain-
able allow'for M touching any side or containing any

-of the four corners of the structure. The interpolations
and placement of M proceed exactly as before.

.3.23 * Note

p

The allowable regions and hence (g,n) depend on the
angle between the crack and the general direction of the
surrounding panels and this may change as it extends.

In the programme the allowable region is set up as soon
as the set of surrounding panels changes and it is re-
tained until a new set is needed. The error thus
occasioned is of the same order as that involved in the

linear approximation to M,.

4.1 *Changes of Flexibility

These involve a second system of local coordinates
in which each of the surrounding panels in the region

-1 < E, n < 1, these coordinates being those used in the
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natural stress systems of Chapter VII. Equation (6) is
again used in their calculation where (xP,yP) now refers
-to a corner of M and an actual panel replaces the allow-

able region.

The regions of integration in Fig. 23 (Chapter VII)
are generally split into four by the boundaries of the
surrounding panels but each of these can be regarded as
a figure of the same type and this specification also covers

ni# the exceptional cases when the

> N
S C /46// YQ crack is near the edge. Let us
\\\ Moe
+
\ g1- EO‘
'ﬁj//// .. then be verified that with the:
Z

A+ appropriate integrand the four

Y Z
g M integrals
0-
n

o+ ao+ z1+ nl- no— Eo— g1— n1+ ;

. rooor Py P
i + P P+ ;

n1+ Eo- zo+ N4 nl— Eo+ Eo~ ni—

redraw Fig. 23 (a) with the limits

of integration shown. It can

7

&

cover A and B with the correct allowance for sign. It

the eight limits are now written in two sets in the orders

Eo- ﬂ1+ Z;n+ n1-— and no+ E-'1+ no— Z::'1--

then the groﬁp of cyclic permutations of each of these
has four members, corresponding to each integral, and a
particular limit always corresponds to the same element

of the appropriate group member.

In the subroutine for flexibility changes this per-
matation is effected by renaming these variables and in
the loop for these four integrals the first essential

instructions are
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A = &, (There are similar instructions
£ = n for the second set of limits)
o~ 1+ !

M+ = Bos
€o+, = My
M- = A = Previous value of E_ .

Thus this loop is essentially subscripted according to
these permutations. This renaming procedure is also
useful for computing natural stresses or for geometric
operations along each axis. In all applications it is

possible to discern a group operation.
4.2* Computer Storage of Matrices

To save space the matrices f, bl’ bif b1 and the
modification matrix were placed in smaller, effectively
rectangular, blocks in the core storage of the computer.
This ordinary economy was effected by eliminating those
elements most obviously zero and by not duplicating the
elements of symmetric matrices. The figure indicates
the transformation from the mathematical form of our
matrices to their effective shapes in core storage.

Each panel has 9 load systems and there is also room for
Alsbdom loads. In the b1 matrix, as shown, only eight
rows are needed and the colummns corresponding to the
redundants are listed in the order of the joints.

For each system with pure shear five columns ' are needed
and therefore the column number iq exceeds the correspond-

ing colummn lp of bl’

Without complex housekeeping the efficient storage

of triangulaf arrays is not possible. The flexibility

was therefore stored in the 10x5 cells shown. After the
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primary stress analysis these were cleared and used for

the changes in flexibility.

The matrix b f b is also symmetric but in this case
advantage was taken of its banded form and the upper
diagonals were started as columns. It is not difficult
to use standard elimination techniques on this form and
‘adjoin it to the various right-~hand sides. Further-
more, the Crout auxiliary matrix may be stored in,the
same locations as elimination proeeeds and the back solu-
tion may be similarly treated. For a banded matrix this

is the most economical way to store the inverse.

The band width is obviously an important parameter.

We show below that this is
n, = 50 + 6 '

for fully reinforced structures while if there érenno

booms
n, = 3(a + 1),

other cases lying beétween these extremes but favouring

the first.

.3 * Matrix Operations

In rectangular structures

1 < i < 0+1 and 1 < i < B+1

and this knowledge enabled an alphabetical lisfing,

Jp: (1y~1)(a+1) + A,

of each cell. The loads were numbered in a similar manner
with

j = (iy—l)(13d+2)+13(ix—1)+Number of load in cell.
regardless of their actual ex1stence. Flexibilities

were slmilarly numbered and the disposition of reinforcement '
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was decided by data known as Jpanel, depending on jp,
which determined how many booms passed through a joint

and their directions.

In the programme the primary analysis was begun by
listing and finding the redundants, in order of increasing
jp.' This was doné by a double loop (DO statements)
in iX and iy in which the redundant was numbered ip and
the corresponding column subscript in storage iq was
also found (see above). These were not stored and in
any operations with b1 the logic of the double loop was
repeated, possibly with skipping rules to save time.

Now cohsider the band width n, mentioned above.
~For finite interaction between different redundants the
greatest difference in jp'must correspond to points such
as A and B shown here. This spans 0a+1 other joints

ecach of which (say) can correspond to five redundants.

// P Thus the difference in ip or the band width
/é,B ‘1 is roughly 5(a+1) and more detailed count-

\<S§ //j/ ing leads to the result given. The band

C
\\\ \Q§§. D width for unreinforced and partially rein-
ANRN

forced structures follows in the same way.

Begause of the large order of f,b:fbl was calculated

in thekform

where the subscripts indicate that only flexibilities from
cell jp are used, with a corresponding reduction in the
size of row-into-column products. In forming fb1 and si-
milar quantities coupling considerations arise, similar

to those in the sketch for n . If products from disjoint
cells are not computed the time taken by these routines

is reduced by about 90%, The criterion in the case

of fb, is that the distance (in lattice co-
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ordinates) between the centre C of the pdnel concerned

with § and D, say, where the redundant is located, exceeds
IE- A e . . . . . . .

1/ In integers, if (lx’ly) is the cell and (Jx’Jy)

refers to the redundant, then for mno contribution to fbi
(2(i_ -3 + D + (2(i_-j.) +1P> 2
X X Yy Yy e

illustrating the usefulness of the lattice coordinates.
Whenever possible, decisions in the programme were based
on the values of integral functions to avoid equivocation

caused by rounding off errors.

In the virtual storage for ecach cell of f a single
loop for a scalar product or the display of elements

defines a path like one of those shown below.

A

]
[
|
|
l
[
|
A

Thus in the programme such loops appear as two or three
successive loops within which the basic subscripts are
calculated. The same logic is used for storing f,
also but in this case the double entries associated with

points such as A must be avoided.
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CONCLUSIONS

We have described a general method for the solution
of’ problems in structural fatigue. This incorporates the
now generally accepted view that fatigue proceeds essen-
tially in two.stages, here called damage and crack growth.
The damage or’microcrack stage, which may be defined in
a way appropriate to the structure, is ended by initial
failure whose probability distribution in the most general
case 1s available from Bastenaire damage theory. Since
the method fundamentally belongs to probability theory
the aSsumptions about crack growth can be quite arbitrary
but for practical application we have chosen to elaborate
the fracture mechanics approach of Paris.

The improvement over previous methods is that one may
consider the stress redistribution caused by one or several
cracks and their interaction with damage or initial failure.
In addition, the direction of cracking may also be made
an unknown and one obtains in principle the complete pro-
bability distribution of initial failure times and of
all crack lengths at any given time. There is also an
important theorem that the distributions of initial failure
times are independent, a result stemming from the inde-
pendence of the physical processes at each damage site.

The distribution of lives to final failure follows from
~an essentially separate reliability analysis based on the
solutions of the crack-damage equations, preferably with

a Griffith-Irwin criterion for final static fracture.

In order to create a more practical theory it was
found necessary to apply Bastenaire damage theory to
the log-normally distributed fatigue lives assumed in
practice and the effect of endurance limits was also con-

sidered. This lead to a reasonably simple damage law
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which made complete use of the usual data obtained for con-
structing S-N curves. Morcover, although this is an

exact statistical theory for normal lives and one-parameter
damage, no other information about the material is re-
quired. For those cases requiring more than one damage
meésure we have examined some statistical aspects of the
analysis of programme test results and proposed a tenta-
tive theory of corrosion fatigue to illustrate a way in
which other damage parameters may be identified and

included.

For use in the crack-damage equations the crack pro-
pagation results were presented in a non-dimensional form
based on the fracture mechanics viewpoint. By a . proper
choice of parameters it was found possible to correlate
the effects of mean load on the crack rate. This is an
advance and the same parameters also allow the fourth power
law of Paris to be written in a more suggestive physical
form where the crack rate is proportional to both the
maximum size of the plastic zone and the driving force
based on alternating load. A tentative theory for random

load cracking has also been advanced on this basis.

llowever, the new presentation has emphasised the
fact that the fourth power law does not account for all
the effects present in fatigue cracking. In particular
there is a range of stress intensities ovef which the
crack rate changes less rapidly and, since this range corres-
ponds to maximum plastic regions within the interval 0.006
to 0.02 inches, it is suggested that the effect may be

related to the grain size of the material.

To make the general theory applicable to reinforced
structures we have also discussed the representation of
cracks in an idealised structure. In terms of the matrix

force method which we use (and for displacement methods
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also) this turns out to be a combined cutout and modifi-
cation problem amenable to well known methods once the
required data are available. However to solve the equa-
tions for initial strains a modified Crout method is
described which is based<on the partitioning between
cutouts and modifications. This avoid the necessity of
inverting the changes in the element flexibility matrix.
The' new method is also fully efficient in terms of com-
puter storage and time and allows the same cutouts to be
considered with different flexibility changes by a minimum

amount of reworking.

This leaves the problem of actually specifying the
crack conditions and the changes in flexibility. Basic-
ally, the first has been done by performing the analysis
in terms of a transformed set of generalised stresses
which of course include the loads to be nullified by
crack growth. There may be a danger here of obtaining
ill-conditioned transformations which needs further in-
vestigation. The changes in flexibility are obtained
by supposing some of the idealised stress systcems in the
structure to be partially replaced by the asymptotid stress
field appropriate to a crack tip. It is convenient
to imagine the latter as the stress system in a moving
element. This is then a finite element extension of
fracture mechanics and the actual stress intensity is
eas ily obtainable in terms of the surrounding loads.

The method in fact can be applied to any type of discre-

pancy in otherwise standard idealised stress systems.

Future Work

At a basic level the crack-damage equations here do
not allow for intrinsic randomness in crack propagation

itself. We have suggested additional terms in the equa—'
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tions for higher cumulants but their nature needs elucida-
tion. The method is likely to be most useful for analysing
small segments of a structure and a test programme could :
be supplemented by studying sets of cracks in idealised

structures (in a fatigue sense).

We have said that the orientation of é crack can be
included as an unknown in the crack-damage equations but
this supposes that the phenomenological behaviour is knownf
in this respect. Changes in the principal stress tra-
jectories here expose a lérge gap in knowledge however.

The use of moving elements would also need to be generalised

if such changes occur.

The matrix procedures outlined here can be extended
to include other idealisations and displacement methods,
Among the latter, triangular elements should be useful,
because these idealisations will tend to be such that
crack growth, in terms of elements crossed, is fairly

constant.

Finally, experiments such as those suggested in 3
Chapter III Sec.9.9 are required, supported by statistical;
analysis and thorough metallurgical examination. If may -
also be worthwhile to devise an experimental check of the
strong possibility (Ch.III Sec.9.6) that increments of
crack growth are the same as regions of reversed’yielding;'

at the tip.
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Appendix A
JOINT DENSITY f(a|n) AND NUMERICAL EXPECTATIONS

The advantage of the moment formulae for calculating
expectatiohs in Chapter V is their direct relation to the
basic solution of (4.35) or (4.36) and (4.45), in parti-
cular their independence of the initial density. However
it may be useful to indicate the procedure with numerical

integration formulae.

First consider the joint density function. Starting
with a bivariate distribution F(x,y) say let us assume
that the conditional densities have the same functional
form as the marginal densities f(x), f(y), typified by
(5.1A) and that m, n are also constant. For all condi-
tional distributions F(xly) the probability of having no
crack must be constant since the initial failures‘are'
independent. Since m,n and now Fx are constant any
correlation must be effected by a variation al(y) of the
initial density. 'As the shape parameters m,n are con-
stant and a(y) is a scale parameter in T(a(y)x) and in
the exponential term of F(x[y) we have geometric simi-

larity in any part of f(x y) relating to x > O. Therefore
u(le)<m 1/a(y).

To agree with the marginal distribution £(x) it is also

necessary that

it

JH(XIY)dF(y) F /oy

u

quxde(y)/a(y)

and for the initial densities



Jatwrar(y) = a cer (A1)
where p_ = jxdT(x), the mean of the standard transition
distribution. In addition there is the known second
moment

epe
by = ijyf(xly)f(y)dxdy

Jyu(xly)dF(y) eee  (A2)

If we can now find a form of a(y) satisfying (A1) then-
particular cases can then be chosen to satisfy (A2).

Here it is convenient to redefine T(x) as

Fix]y) = (1-F_)+ F_T(a(y)x) eee  (A3)

the first term being the constant probability of zero
length while the second combines the initial density and
transition components. The two equations in (A1) can

then be combined as

{ 'S%%Q} {J‘ a(Y)dF(y)} =1

3
which from (A3) becomes

{-;—I(;%——c + Fyf ig%{i} {(1-—Fy)a(0)+Fyfa(y)dT(ayy)} = 1

reducing'to

alg/a_)
y a(0)
a(0) * a(g/ay) }dT(E)

(1-—Fy)2 + F (1-F ) f{

. I a(ﬂ/ay)
+ ny’ I -5-(—'57;);7 dT(E)dT(T]) = 1 es s (AL)

If a( ) is constant we have the trivial case of indepen-

dence, Ignoring this let
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A(E) = a(g)/a(0).
To satisfy both the equations (A1) A(¥) needs at least
two parameters and we put

A(E) = 1 + af + BE®
and for moderate correlations

-

AN = 1 - 0E + (P-B)ER + ...

When this is substituted and the integrals are evaluated
(AL) becomes

2 " R 2 2ra 2
‘(1-Fy) + Fy(1 Fy)[z + 0 “2T]+Fy L1 (auT+Bu2T) +

2 3
+ a® B+l + @ uT] eee (A5)
= 1
where
Hop =»m/(n-1) i Hgp = m(m+1)/(n-1) (n-2)
are the moments of T(E). This may be solved as a quad-

ratic equation in B, in terms of 0« which remains as a

disposable parameter to give the appropriate correlation
in (A2).

Integration Formulae

We now consider some essentially Gaussian integration
formulae72. These are the most efficient particularly
in higher dimensions73 although we do not discuss fully

effective formulae for higher spaces.

A typical one~dimensional integral is
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E = F(n) I emax dflax) . (p(ax)-1)IR(x)ax
° dx

oo (A6)

using (5.1A) and assuming that R(0O) = O. In our case

dT(ax) _ 1 a1

dx - B{m,n) (i+a

i)m+n
and with a change of variable

B o= Fn) [ e ™T'(w) - T(w)+1) R(u/a) du ... (A7)
[o]

There is also the standard substitution

v = u/(1+u)

which reduces the range of (A7) to (0,1) and changes T'(u)
to the standard density

ar . 1 vm-1(1~v)n-—1
dv = B(m,n)
while E becomes
1
E = F(a)| e W/ (1) gpiyy. T2y p v 4
J‘0 (1-v)*® a{1-v)

eae  (A8)

This is probably the best form for computation since the
same Gauss-Legendre subroutine can be used for the main
integral here and also for the incomplete B-function
T(v) and B{m,n). It must also be remembered that the
Gauss-Laguerre formula appropriate to (A7) is most
accurate when the integrand, apart from e~u,is largest
in the neighbourhood of u=1 whereas we hope that it is

largest near the mean m/(n-1).

The Gauss?Legendre form of (A8) is, with the inte-

grand abbreviated,
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k
E = F(n) EHJG(vj)
Jj=1

72’

where the Hj(k) and v (k) are tabulated.: This is

J
exact for any polynomial integrand up to the degree 2k-~1.

7h

It has been shown by Hammer and Wymore that Cartesian
products of summations such as that here are exact for
polynomials in the appropriate number of variables with

the highest term

2k-1 2k-1
u v

Other multidimensional formulae are described in the last
reference which contains other recent references also.
These remarks also hold for Gauss-~Leguerre and other

formulae for weighted integrands.
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CALCULATION OF SUBTENDED ANGLES AT CRACK TIP

B A
5. SA [?)A
‘ 0 e \P
Sc K fe 6“ )
c D

We take the origin at the centre of the panel which

we now suppose to be vertical.

Using vectors in complex

form we first derive relations between the different

angles. Let A, B, C, D be points in the complex plane,

with the origin P, represented by
i
r = ae A

iep..
rB = b e B etce.

Then the two diagonals are
CA = r, -r
BD = r - rx

and these are complex conjugates.

of the width BA one also obtains

I‘A - rB, = I'D "'I‘C.

By equating two forms

Separation of real and imaginary parts leads to the

equations
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- 1T 1 -
cos ®, cos o, a 6]
sin o, - sin og b

cos Op - cos o, : c
sin ®c sin Pp d

F'or a nontrivial solution
cos ,sin @, cos ®.sin wD—51n P,CO8 Ppsin p.cos oy = 0

which ensures that a vertical rectangle can exist with
corners on the four rays through A, B, C and D. In

-

this case

a = sin ©p cOs 0 sin o

D
b = sin ®, €OS Q. sin ®p
¢ = sin P, COS ©n sin ®p
d = sin %, cos Qp sin ©. ,

‘apart from a scale factor, and the aspect ratio reduces

to
sin o, sln(mB-mC)

tan @, = 53 ®c sin(@B—mA) :

In the maximisation it is most convenient to solve for
the angles Dyr Op etc. when P is placed at Re10 with

respect to the centre O, From the figure

Py = Py F 6A etc.

with due regard for sign. Making OA unit length, let
us find 6A. We know that

PA® = 1 + R® - 2R cos(m,~9)
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and by the sine rule
R/sin 6A = PA/s:Ln(cpA - 8) .

The most convenicnt form of the solution is

) R sin(mA-G)
tan O, = -
A 1-R cos (@A-e)

L]

taking positive roots for A, B and negative for C and D.
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