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ABSTRACT 

A study on a single cable, and on plane and three- 

dimensional prestressed funicular suspension systems, is described 

in this thesis. 

The problem of a single cable with a uniformly distributed dead 

weight and an applied point load has been studied and good 

agreement is obtained between theoretical and experimental values. 

The problem of interaction of two cables in a plane system has 

been studied by using two theoretical methods: 

(i) The influence coefficient method, 	and 

(ii) A more general method. 

Generalised computer programmes were written for both the methods 

of solution to solve problems on the plane system (symmetrical about 

the Y-axis) under any kind of loading. The values obtained by using 

the influence coefficient method showed reasonable agreement in 

smaller ranges of applied load. The agreement shown by the more 

general method was good for all ranges of loading tried. 

The applicability of the general method to determine the 

initial geometry of three-dimensional systems and solving them under 

applied loading, has been illustrated by applying it to a three-cable 

structure. A generalised computer programme has also been written 

for the solution of the three-cable system. 
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1. 

INTRODUCTION 

GENERAL 

A single cable is one of the most efficient tension-carrying 

structures, and is one, which is free of bending and buckling stresses. 

This capacity of the single cable has been utilised for hundreds of 

years in the form of both unstiffened and stiffened suspension bridges. 

In the very early days natural cables were used until cables made out 

of steel were used in a suspension bridge in Tibet in about 1630. 

Recently suspension bridges of spans up to 4200 feet have been 

constructed. 

The idea of using cables as elements in a roofing system (perhaps 

first inspired by the suspension bridge), however, is comparatively 

very recent. Roof systems conmistirkg partly or fully of cables as the 

supporting structure can be termed as "Suspension Roof Systems". This 

thesis concerns itself mainly with the study of these systems. 

CHARACTERISTICS AND ADVANTAGES 

All suspension systems use a single cable as their basic element 

and so the properties of a single cable under load are essentially 

applicable to suspension systems. 

(1) In a cable the whole section is uniformly stressed, besides, in 

cables of small dip to span ratio tension is almost constant throughout 

the span and thus the material used is utilised to nearly 100 per cent 

efficiency. For this reason a cable has much larger average strain 

as compared to a member in flexure for the same maximum stress. 
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(2) Cables have no bendino stiffness and can carry loads only 

through a change in the funicular shape. 

(3) For reasons given in (1) and (2) above, a cable is a very flexible 

structure, and hence the need to stiffen cable stre,7.turea, 

(4) The stiffness of a cable increases with the tension to which it 

is subjected and therefore the relationship between loads and 

deflections is non-linear. This property of a cable to get stiffer 

with loads, though statically advantageous, makes theoretical analysis 

complicated. 

(5) A suspension system can be so designed that most parts of the 

structure carry pure tension. Since cables can carry tension with 

great efficiency, - quite a light and economic structure may result, 

especially if high tensile steels are used. This affects further 

economy in foundations. 

(6) The ease with which suspension roofs can be constructed and 

their attractive appearance make them a useful proposition both 

to the architect and the structural engineer. Suspension roofs are more 

advantageously used to cover large areas. 

CLASSIFICLTION 

Suspension roof systems can be broadly placed into two 

categories: 

(a) Singly-curved roofs, 

(b) Doubly-curved roofs. 

The singly-curved roof will consist mainly of a series of 

cables placed parallel to each other, supported at their ends and 

firmly anchored. The covering material is carried by the cables 

and may also perform the function of imparting stiffness to the 

cables. The sketch in Figure 1(a) represents a typical roof of this 

type. If necessary the cables can be prestressed and stiffened. 

For example, each one of the cables in the structure in Figure 1(a) 

can be prestressed by another cable of reverse curvature in any one 

x Page 5 
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of the ways shown in Figures 1(bMc) or (Os 

K 

The photograph in Figure 2(a) and (b) shows a wire model of a 

doubly-curved suspension roof system. The model was made in order 

to get a general idea of the problems involved with such systems and 

their behaviour. 

The chief elements in the structure are: 

(1) The load-carrying cables, which are sagging, 

(2) Reverse-curvature prestressing cables, 

(3) Arches, which support the carrying-cables at the boundary and 

are the only part of the structure not in pure tension, 

(4) Cables at the boundary to support the prestressing cables, 

(5) Anchorages. 

Several structural variations are possible in the way the boundary 

supports may be provided. In certain cases supports and anchorages 

may be merged. Carrying and prestressing cables, -can if necessary be 

replaced by one of the units shown in Figures 1(b)+(e) or (d), depending 

upon the requirements in a particular structure. In cases where the 

cable network has sufficient stiffness due to prestress, it is not 

necessary for the covering material to provide any gravity stiffness and 

a thin layer of the material is adequate enough to cover the network. 

PROBLEM AND THE PURPOSE OF INVESTIGTION 

During the past two to three decades some structures of the types 

described have been constructed, but any real attempts towards a study 

of their behaviour have been recorded only during the last few years. 

In the literature published so far, there does not appear any proven 

method for analysis of suspension systems. The work contained in this 

thesis is an attempt in that direction. 

It will be clear from the study of the examples given that in order 

to understand the behaviour of suspension systems it is necessary to make 

x Pa9(2 6 



4. 

a fundamental study of: 

(a) A single cable 

(b) Two or more cables internctina with each other. 

With this requirement in view, the work listed below, was 

carried out. 

(1) Experimental study of three single wires of different span, size 

and geometry, under load. 

(2) Experimental study of the interaction between two single cables of 

opposite curvature prestressed by means of vertical, uniformly spaced 

members, was done on a wire model of the type of structure shown in 

Figure 1(b). 

(3) Theoretical study of 1 and 2. 

The above study is limited to plane-structures under vertical 

in-plane loading. 

(4) Theoretical study of a three-dimensional structure consisting of 

three cables interacting with each other through uniformly spaced 

prestressing members. 

The work is presented in the following order: 

Chapter 1 : 	Theory 

Chapter 2 : 	Experiments 

Chapter 3 : 	Discussion on results 

Chapter 4 : 	Conclusions 
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FIGURE 2a 	MODEL OF DOUBLY CUFVED ROOF SUSPENSION SYSTEM 

FIGURE 2b 	END ELEVATION OF THE MODEL SHON ABOVE 



CHAPTER I 

THEORY  

1.01 Review of existing theoretical work  

This section deals with a brief survey of the existing theo-

retical work on plane and three-dimensional cable structures. The 

work on plane-systems is mainly limited to the treatment of a single 

cable and is described in Section 1.02. The term "single cable" is 

here applied to a cable hanging under its own weight, the distributed 

load from the hangers, and an applied point load. The weight is 

considered uniformly distributed across the span. 

The work on three-dimensional structures falls into two main 

categories: 

(i) Determination of their geometry under initial pre-

stressing forces, and 

(ii) Solution of a structure of known shape under applied 

loads, 

and is described in Sections 1.04 and 1.05 respectively. 

Some of the work reviewed here has been used later, with 

necessary modifications, to solve the problems being studied in this 

chapter. 

1.02 The single cable 

Treatment of a single cable under applied loads, as given by 

Pugsley(1), is described in the following paragraphs. The cable is 

assumed to hang initially in a continuous arc, which is parabolic in 

shape. Behaviour of the cable under three types of vertical applied 

7. 
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loading has been considered. 

(i) Single 

span, 

(ii) A short uniformly 

in the span, and 

(iii) A short uniformly 

of the span. 

distributed load placed centrally 

distributed load placed at one end 

concentrated load applied anywhere along the 

The cable subjected to a single concentrated load is shown in 

Figure 3. The cable is simply supported at A and B which are 

at the same level. The lowest point on the curve, C, is taken as 

the origin. It is assumed that the weight of the cable is w/unit 

length of span and uniform throughout. 

The cable hangs in a parabolic arc whose equation is 

y 
w:: 
2 
 

2H 
(1) 

where 
	

H = wL
2 

is the horizontal component of cable 
8d 

tension. 

Let a point load P (P/wL is small) be applied at point Q 

as a result of which the horizontal component of tension changes to, 

say, H + h. The new arc AQI can be described by the equation 

wx,2 

Y1 — 	 

	

2(H+h) 
	 (2) 

where x
1 

and y
I 

refer to a new origin CI, the lowest point on 

AC'. Since the cable is discontinuous at Q1 , another expression 

like (2) will be required to express the geometry of QIB. The • 

x9e 9 
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11-7/UNIT LENGTH OF iSPAN = INITIAL WEIGHT OF THE CABLE 

FIG. 3• 	LOAD P APPLIED .TO A 511\1LE CABLE 



arc AQI would, if continued, carry on through the points Q" , B'. 

Here Q" is such that w times this projected length is equal to 

P. The arc Q"B/ will then be identical in form with the arc QIB. 

Now, from considerations of static equilibrium, VA ' 
V
B ' 

x
o 

and yo  are evaluated as 

V
A 

V
B 

xo 

Yo 

= 

= 

= 

= 

1 	1 
2 wL + P( — - 0 

2 

1 	1 
-i 2 wL + P( 	+ r) 

P 
( -7, - 	r) 

w 	
1  
z 

wL
2

P - 201 

J 

2 

(3a)  

(3b)  

(4a)  

(4b)  d 
- 8(H + h) 	

1  1 + —wi,  (1 

yo is measured positive upwards from C 

The geometry of arcs AQ' and QIB can now be expressed with 

the help of the property of arc Q'Q" and equations (2) to (4). 

Taking C as origin the expressions for v are 

12  
LAT 

'90  ' , 2(11 +h) 	X — 
	r) 
L 2. 

fey 	- ti2 <x.<rL 

+ 	 204 +hi 	
x + 79,7-4 + 

r) 
 I 

for 	< lc< L/2_ 
The only unknown is h . 

(5a)  

(5b)  

The force h is now evaluated by equating the change in length 

of the cable due to deformation to the extension of the cable due to 

increase in tension, i.e., 
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Extension of the cable due to increase in tension = 

length of the deformed cable AQ'B - length of the cable ACB . 

Let v be the deflection, measured positive upwards. Length 1 

of the arc 	ACB 	is given by, 

"F 1-74a 
1 	. dl  )2.  dx (6) f 	

viz/  
-Yi 

Putting 	(y + v) for 	y and expanding in Taylor series, we 

have 

Al = 

+ 
tdUltdirN 

dx JJ  cbc  
(a...9211h (7) 

- Liz 
if higher order terms in v 	 are neglected. 

Assuming the cable to be inextensible and ignoring the term 

(9i1)2  in comparison to unity , we have `d* 

+LA 

f
tc0 

/
V du. ) ax  

\dx dx/ 
-142. 

From the use of the equations 

neglecting (--
h )2 
 in comparison to 

_ 3 P 
— 2 ;77; (1 - 4r2) 

(1) 
crild 

and (5) in equation (8) and 

we have 

(9) 

Knowing h , the deflected shape can be determined from 

x I + 
The effect of neglecting these factors can be seen from a more 

accurate analysis in section 1.11. 

= 0 (8 ) 



equation (5) 

The horizontal movements can be evaluated by the consideration 

that the change in length of the cable between the support A and 

any point x due to deformation v is the horizontal movement at 

x because the cable is considered inextensible (it also means, 

indirectly, that the .cable is very flat). This change in length is 

given by 

x.x 

Al - 
J 1dx/ldx 

(d.1)(cly
/  
) dx  

Measuring ti , the horizontal deflection, positive in the 

direction of x , we have 

f d4 = - 	d 
dx v  

x=-142. 

The value of horizontal deflection ILAQ 	at load point Q 

is obtained by using expression (5a) or (5b) in equation (117- as 

Q = 	8.4a 12- I+1.511  (1- 4r7-) 

The above analysis is only recommended for use in cables of 

small dip to span ratio and for values of P small as compared to 

wL . 

Values of maximum deflections under short uniformly distributed 

loads for a single cable-have also been worked out by Pugsley
(1). 

Similar results have been obtained before by Johnson, Bryan and 

Turmeaure
(6) 

and Steinman
(11) 

Expressions for horizontal movement anywhere under a point load at 
Q are given in section 1.11. 

12. 

P 	- 16r 4 ) 

(10) 

(12) 
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A numerical method for the determination of the deflected shape 

of a suspended cable subject to gradually applied, concentrated or 

uniformly distributed loads, is given by W. T. O1 Brien and A. J. 

Francis
(13)

. The method consists in setting up equations of static 

equilibrium and solving them for geometric compatibility requirements 

by successive approximation. The effect of chance in temperature, 

slip at the anchorage or movement at the support can be included. 

The paper deals with two classes of problems. 

1. Rolling loads, which include moving loads and static loads whose final 

horizontal position along the cable, Q1  in Figure 3,is specified, 

and the original position of application along the cable, Q in 

Figure 3, is unknown. 

2. Fixed loads, which is the usual problem of loads with known position 

of application. 

The basic approach to both problems is the same and differs 

only in the method of applying successive corrections to the initially 

assumed displacements. 

The cable is divided into a number of segments depending on the 

loading. Two conditions must be satisfied at each node point, 

(a) cable segments and load points must be in equilibrium, 

(b) deformations and elastic extensions of the cable segments must be 

compatible with the overall deformations and elastic extensions of 

the cable. 

Formulae and equations are set down to satisfy these requirement 

and solved by a process of iteration. Expressions for assuming 

initial values and correction terms are given. The method shows good 

convergence. 



1.03 Influence coefficient method for solving suspension bridge 

problems  

It is of some relevance here to state Pugsley's(1), (4) 

"Influence coefficient" approach to solve suspension bridge problems. 

Using the method of analysing a cable under an applied point load, its 

behaviour can be completely expressed in the form of tables of 

flexibility coefficients. These coefficients correspond to the 

effects of a small unit load placedsuccessively at various points 

along the cable span. Table 1 shows one of the 4 tables required 

(2 tables for vertical and horizontal movements under vertical load 

and 2 tables for vertical and horizontal movements under horizontal 

load). The cable is divided into segments by a number cf equally 

spaced stations. 

Loaded 
Station 
No. 

Deflection at Station No 

1 2 3 j - 

1 v
11 

v
12 

v
13 	_ _ 	_ 

2 v
21 

v
22 v23 	_ _ _ 

3 
1 , 

i vij  

v.. = the deflection at station j due to unit load placed at ij 
station i . 

14. 



Importance is, however, given only to vertical deflections 

under vertical loads, thus reducing the work to the preparation of 

one table only. A similar table can be prepared for the stiffening 

girder. Let the corresponding notation for stiffening girder 

deflections be V.. . 
1] 

Now, suppose a load P is placed on the girder at station 2 

and causes changes in hanger tensions T
1 , 

T
2 , 

etc. The cable 

deflection at station 1 is given as 

C1  = T1v + T2v + 00040 
11 	2 12 	 (13) 

Similarly, the girder deflection at station 1 is given as 

G
1 

= T
1
V
11 

+ (T
2 
- 
P)V12 

+ 	(14) 

For continuity of deflections at station 1 

G
I 	

C
1 
= m

1
T
1 	 (15) 

where a1 = extensibility of the hanger at station 1. 

Equations such as (15) can now be written for all the stations 

and solved simultaneously to give the values of T1  , T2  , etc. 

Once these forces are known, cable and girder deflections are 

calculable from equations (13) and (14) respectively. Girder moments 

and shears and cable forces can also be readily evaluated. 

The approach is essentially based on the assumption that the 

principle of superposition is applicable. The assumption is stated to 

be justifiable for small applied loads. 

15. 
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1.04 Determination of the geometry of a suspension-structure under  

initial prestressing forces  

Siev and Eidelman
(8) 

give a method of determining the shape of a 

cable structure bounded by a non-planar boundary of known geometry. 

The cables are assumed to be suspended in an orthogonal family of 

parallel vertical planes. The dead weight, if considered, is taken to 

be concentrated at the nodes. The only unknowns in such a problem 

are the vertical ordinates. Equations of equilibrium of vertical forces 

are written for each node and solved simultaneously to give the 

unknown ordinates. The initial force in each wire is assumed to be 

known at any point along its length. The equations are of the form, 

H
m 
(Z

m;n + 1 m;n + 
Z
m;n - 1) + 

H
n 
(Z

m 	
- 2 

1;n 	
+ Z

m - 1;n
) 	0 Z

m;n 
(16) 

where H
m 

and H
n 

are the horizontal components of forces in cables 

intersecting at the node (m;n), numbers n and m being counted 

along X and Y axes respectively, and Z
m;n 

is the ordinate at 

the same point. Simultaneous solution of these equations will give 

the shape of the network. 

Equation (16) may be written as 

W 	( 1Z-  ) 	 I 112E  
.111 	Fr) 11  4. 	14  rk 	n 

If the cables are closely spaced the finite difference expressions 

may be replaced by continuous functions and equation (17) becomes 

lz a2z 	0 	 (18) y oxa 	x 3  y_ 

0 
	

(17) 



17. 

where H = horizontal component of tension in x-direction per unit 

width of strip and H
x 

= horizontal component of tension in y-

direction per unit width of strip. 

Since the equations (17) and (18) are homogenous the shape of 

the surface depends only on the ratio of H
x 

and H 	and the surface 
y 

will be hyperbolic. 

It will be observed that the method is limited on application to 

roofs of very flat shapes only, on account of the assumption that 

cables lie in vertical parallel planes. The method is, in a way, 

limited to finding the geometry for hyperbolic or near hyperbolic 

shapes only. 

A more general method is given by Eras and Elze(10) for 

determining the initial geometry. It is assumed that the forces in 

the different members of the structure under the initial prestress 

conditions arc knownx. Equations of force-compatibility are now set 

up at each node for a suitably assumed geometry. Consider a node k 

linked to i through members k i (see Figure 4a). Initial 

force in the member is F
i 

and its length is 1/
i 
. Let the co-

ordinates of the nodes k and i be (xk  , yk  , z1 ) and 

(x. j Yi  • 	z.) respectively. For the equlibrium of node k the 

following equations must be satisfied: 

• As shown later in Section 1.33, the initial forces may not 
necessarily be known and have to be assumed too. 

+ Page IS 
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F IG.4a:GENERAL NODE '1(2 IN A STRUCTURE LINKED TO NODES  
•c?` 

LOADED STRUCTURE -- 

FIG.4b : LOADS XK,Y1„Zys.  APPLIED AT 



or 	F. 

1 	( A X-1 + Alit ) 

FL  
4 (A91. +Avg ) 

( +Alai) 
4 

19. 

FL  
, (xi-3c1‘) = 0 	 (19a) 

L 	IL 

IL 
(9L Vk) 	= 0 	 (19b) 

i. 

FL 

IL ( 	— z iL ) 0 	 (19c) 

The values of the assumed coordinates may be such that 

equations (19a - c) are not satisfied. Corrections u1, vt and wt 

are therefore applied to x 	y and z respectively in order to 

obtain equilibrium and equations (19a - c) become 

= 0 (20a)  

= 0 (20b)  

_ 
= 0 (20c)   

= 0 (21a)  

= o (21b)  

= o (21c)  

where 	A Xj, = xi, - xp„, , a. 	=LLì -L4 , • • • etc • 



and 

Ap+0 ‘  ‘2 21/  (In 	(V) 	0)) 	'a') 2 	 ( 	2 
1 	= 	kAX. + ALL 	+ LAN + &IT 	+ kAz + aw (23a) 

20. 

Solutions of equations (21a - c) for all the nodes simultaneously 

gives the value of the correction terms. Change in the values of x , 

y and z alters the value of It too, and the process of correcting 

the values may have to go through several cycles of iteration before 

the desired accuracy is obtained in the results. 

The following equations are derived for the v-th cycle of 

iteration for x-direction only and suffix i has been dropped for 

simplification. 

In the v-th cycle of iteration 

X
0+1) 	

X(V) 
+ ti

t CV) 	
(22) 

From equation (23a) we have 

(V) 	'On 2 	
-V2 

—7(7--)+15 f (AX. + 	+(AN())) 	'CD) 2 	WI 

1 	
+ Alf ) +(Az • + Aur,  Mt} 	 

(23b) 

and on expanding it and neglecting higher order terms, we have 

= 
	, 

11(141) 	'04 - +V t 
I 	

+,:iNCP)A-U 
a cv)+ AZD)6111")) (24) 



23.. 

Using the value of 	1q1,40  in equation (21a) and on rearranging 

terms, we obtain 

Fo 
 	1 415 	

AV) 	AXCV) 
" 

x(V)Atia. (1)4. A130).14,11;0)) 4. a zona  o»)  — 	(y) 2 ( 
 

 

Fo  a x.")  I,  (iv (25a) 

Equations in y- and z-directions (25b) and (25c) can be derived 

similarly. Equations (25a - c) have to be set up for all the nodes 

and solved simultaneously for a sufficient number of cycles to give 

the desired accuracy. 
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1.05 Solution of a prestressed suspension structure with known  

initial geometry under applied loading  

Eras and Elze(9), 
(10)

have suggested two methods of treating 

this problem. The first method is approximate and is described in 

detail in reference (9) (and briefly mentioned in reference (10)). 

The method considered only vertical loading to structures whose shape 

is defined by surfaces of negative Gaussian curvature. It is 

assumed that 

(i) The dip to span ratio is small, 

(ii) Cables lie in a family of parallel vertical planes 

cutting each other orthogonally; the first condition 

is necessary for this, 

(iii) Only vertical deflections occur and cables remain in 

parallel vertical planes after loading, 

(iv) Deflections are very much smaller than the dip, and 

(v) Cables are supported by unyielding boundaries. 

The deflected shape of the structure is assumed in terms of 

trigonometric or hyperbolic functions, depending on the loading 

pattern. The basic equations are set up by equating the stretch of 

cables due to change in tension to the change in length due to 

deformations (this is based on the assumed deflected shape). From 

these equations the loading pattern is computed. If there is a fair 

agreement between the actual and computed loading pattern, the 

assumed deflected shape is accepted; if not, another assumed shape 

is tried. 

The method is simple in application but limited to very simple 

cases of loading, where the deflected shape will be easy to assume. 

The other limitations in the method arc underlined by the assumptions 

themselves. 
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A much more general method is also given by Eras and Elze(10) 

("exact method" in reference(10)). The method consists of setting 

up equations of force-compatibility and solving them by a process of 

successive iteration to obtain the deformations. 

Consider a node k linked through members k - i to nodes i 

(Figure 4b).' 	Initial length of the member k - i is loi  and the 

initialforceinitisFo..The coordinates of the nodes k and i 

are (xk  , yk  , zk) and (xi  , yi 	z.) respectively. Let loads 

X
k 	

Yk  and Zk  be applied at node k , causing deflections 

uk  , ui  , vk  , v
i 

and wk  , w. along X , Y and Z axes 

respectively at nodes k and i . The change in force in the member 

k - i is tiFoi  and its length changes to li  . 

The equation of equilibrium in the X-direction only has been 

derived, the derivation in Y- and Z-direction being similar. 

The equation of equilibrium at k is 

FoL  + Foi.  
	 (axL+Au.i,) = XK 	 (26) 

‘ I/2. 
1 	(Ax + ANL2  + 	

2. ) 
	 (270 

and 2 	 2 , 
f(AXL + AU,t) + (ANL+Aui.) + t.Az+AUlt)i 1

1/2 
(27b) 

where 	A xL = 	Xk 

and 	A LLj = 	- U.K 	and so on. 
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e, 	, = 	AX.aU. + AN. air + az .aur ) 
lo 

Say 

and 	ez  = -7(AIL Alta + aur 2) 
to 

(28a)  

(28b)  

24. 

The suffix i has been dropped in the following equations for 

simplification. 

Substituting values from equations (27a), (28a) and (28b) in 

equation (27b) we have 

= 	10 ( + zei  + e2) 
	

(29) 

Expanding the expression on the right hand side in equation 

(29) and neglecting terms containing 4th or higher powers of 

deflections, we have 

1 = 	to  (1 + 	2- -i 2.  e,ez L 1 - a e1.1 	a  e 	e3 + • ••- 	-) 

The change in the force in member k - i , AF 

expressed as 

- 10 AF0 	= EA (I  10  ) 	= 	EA (-11-0- 1) 

(30a)  

(30b)  

can be 
0 

(31a) 

1 
Using the value of 1 — from equation (30a) we get 

0  

I AF0  = EA (e1  + 7  e2  - 7e,2 	I - 	ere,. + ? e3 ) (31b) 



25. 

Putting the values of 17  and AFo 
from equations (30b) 

and (31b) respectively in equation (26) we obtain 

Z 	Fo  + EA (e,+4 ez  - 2  e,2 	e, , +1 e,3  )111- (1-e, -lea  
• 2 • 	2 • 

3 	5 	5 5 + 	e,2  + e,e,- 	)1.(ax +au.) 	= Xk 	 (32) 

Equation (32) is now expanded and rearranged so that co-

efficients of terms u , v and w are on the left hand side and 

all other terms are on the right hand side. 

Fo 	EA- 	F0  Au. + 	ax.e 	= Xik  - Kxk 	(33) 
to 	to 

au.e, 
where 	Kxk  = (EA-F0) 	

10  
 el-3e 

 ox+nu
21.(1+fet-lei)11 

2. 10  

It will be noted that terms containing 4th or higher powers 

of u , v and w have been neglected andZL'AX has been taken 

equal to zero (this is a necessary condition for initial equilibrium) 

in deriving equation (33). Two more equations like (33) can be 

similarly derived for Y- and Z-directions. 

Equations like (33) have to be set up at each node in the 

structure and solved simultaneously by successive iterations to give 

the value of deflections at each point. Forces can be computed 

by using equation (31a) or (31b). 



+(d.N1213/2  
kd-x) J 

_Liz 

1.10 Study of a single cable under a concentrated load 

Pugsley's method of analysing a single cable under a concentra-

ted load has already been described in Section 1.02. The method is 

meant for point loads small in comparison to the total weight of 

the cable and various factors have been neglected in evaluating the 

force h . An attempt to get a more accurate solution by including 

the terms neglected and to study the effect of neglecting them 

now follows. This study was thought to be particularly necessary, 

because the single cable behaviour has been used, as described later 

in Section 1.20, to solve a plane prestressed cable system. 

A more accurate value of the change in the cable length as 

compared to the one given in equation (7) is 

+ LA 

Al = 	dx + I 		dx. 

fi 

	(ad1)111/2 	z 	+(al) z 13/z 

- L/2 	 -1/2 

Equating Al to the cable extension, we have, instead of 

equation (8) 

26. 

(34) 

+ L/2 

/ (cctl4c ) (11 )  dx + 
f I t  (IV )2.1112 

+ L/2 

(*) 	dx _ S hL 
AE (35) 

d2  
where SK  is an empirical constant = (1 + 4.8 — ) 

L2  

Details are given in Appendix "A" 
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Using values from equation (1) and (5) in equation (35), we 

obtain instead of equation (9)M  

IFS 	h -S t
)    + 1•15G +I- —I2U2 + G(I2Wr4  -0.7517if -0.6)•h F L 

iv-   + 12 (I -1-561•2 )-iir2  + 24 (I _ Grzy .1.2 - {I + 5147/ + 5 (I + 41•2)17V.  

+ G {0.75 (I +4r2) -2  + I-125 W +0.45} 	= 0 	 (36) 

where , h = 1 + 

= -11  wt 

is the unknown , 

S U - HL AE 
2 F = G = 52 -7: 
L 	• 

The effect of neglecting various factors in equation (36) is 

shown in the following cases: 

Case 1 	If the cable is assumed to be flat,(Z2  can be 

neglected in comparison to unity and also the tension along the cable 

can be assumed to be constant and equal to H . 	This is obtained 

by putting G = 0 and S = 1 in equation (36) and we have 

I2U
,  

FL h + (I - •  
12
FL -

2 	- 	- 2 2 h +12Wr +24W .r - N  1+5L71 +3(1+4r 2 = 0 (37a) 

where Ut = HL 
AE 

Case 2 ' 1 
E 

If the cable is assumed inextensible, i.e. A-- = 0 

  

Details are given in Appendix "A" 
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equation (36) becomes 

(OAS G 	2 + G(12ir4r4- 0.75cV- 	+ 12 (1-1.5Gr2)Citr2  

+ 24 (1-Gra)1.4 21-2  ^ I + 3 if + 3 (1 +4r2) NA) 2  I + G {015 (I+ 4r2)W2  

+ 1.125 W + 0.45} 	= 0 
	

(37b) 

Case 3 	If the second term in the left hand side of equation (35) 

is assumed negligible as in equation (7), we obtain, by putting 
2 
W = 0 in equation (36), 

ti  h3 + 0-15G tl- 	2+ G 02%740-4-0 .75 -0 .6) is FL 

+ 12 (1-1.5Gr2 )1kr2  -(1+34i) +G(1•125* +0.45) =0 	 (37c) 

Case 4 	If all factors neglected in cases 1, 2 and 3 are neglected 

together, we have 

f 
2 

+ 12 if -r2  - (1+ 5g./) 	= 0 
	

(57d) 

Case 5 
	

Pugsley's expression can be obtained from equation (37d) 

as follows: 

— 
Putting I +— h  = h in equation (37d) we have 

k I + h  --j + 12 Wr -(1+3W) 2 	 = 0 

or 	1 +20-) +(—h)2+1zw--1-2-i-3iti 	= 0 H 	H 

or 2(-) = 3W-12*.r2 
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on neglecting (—h
)
2 in comparison to (IT), we get 

h = 	 11 71 (1 + 4r2) 
	

(37e) 

Equation (37e) is identical to equation (9). 

Now equations (5a) and (5b) can be stated in dimensionless 
form as 

= 	(1-442) - 
3 

1 (1-4,02) + 21.71/•(1+ 24) •(i-2-ri 
	

(38a) 

x  
L 

for 	-0•5</3 ‹Y 

and . 	= (t-4A2)--L- 
d 	h 

for 	le <A <0.5 

where A = 

, 1-4A2
) + ZW•k1-2,6) •(I +2r) I (38b) 

Deflection under the load can be obtained by putting AS= r 
in either equation (38a) or (38b). 

Vr = ( 	4-r2).(1 	I +1C4) 
	

(39) 

Expressions for the. horizontal deflection anywhere under a 

point load at r can be obtained from equation (11) and are given 

below, 

for 

A 	at- = -64 24 

< r 

1 
+3A-

3  ) 1 	if 	N , +—• .=•(1 -4,63  /l1-2r) 16 	h  (40a)  L 

-cps < A 

and UA 
L4 

-- I 	( /'-1  +8A 3) 4.— 
4 

- 1-ik 	[-2r2-8r(1+A2)+0+,62)] (40b)  — = 	
L 

for Y < A 0.5 



Figure 5 shows the values of (Ti - 1) obtained from equations 

(36) and (37a - e) for various values of W . Figure 6 shows the 

values of deflections v
r obtained by using the above values of 

h in equation (39). Data used for these calculations is, 

L = 40 in. d = 2.5 in. r = 0 

wL = 25 lb. H = 50 lb. A2 = 91000 lb. (wire diameter = .064 in. 

modulus of elasticity = 28.3 N 106  lb./in.2  ) 

Figure 7 shows the effect of varying the dip to span ratio on 

vr for 

= 0.1 r=0 and H = 50 lb. 

Only cases 1, 2 and 5 are compared with the accurate solution. 

It will be seen from Figures 5 and 6 that for a small value 

of W equal to 0.1 or less, the effect of neglecting the various 

factors is very small, but as the value of W increases,this effect 

increases. Errors in cases 3 and 4 are comparatively much larger 

than in other cases, and the predominating factor seems to be the 

neglecting of W2. If, however, 	2 is also neglected, as in 

case 5, the values come much nearer to the values from the accurate 
.11 solution. Therefore, neglecting either W2  or ( )2 causes serious 

errors, which are compensating if both these terms are neglected 

together. 

Figures 8 and 9 show the values of vertical deflection of a 

cable under a concentrated load applied successively at centre and 

quarter point. The values are for .0164 in. and .064 in. diameter 

wires, with wL equal to 2 lb. and 25 lb. respectively. The rest 

of the data used for these calculations is 

L = 40 in., d = 2.5 in. E = 28.3 x 106 p.s.i. W = 0.1, 0.2 

and 0.3. 

30. 



It will be seen that the value of deflection vz  is non- 

linearly related to the value of load Ti . 	There is not much 

difference in the deflections for the two sizes of wires and the 

values for the thinner wire are comparatively closer to those 

obtained by using Pugsley's expression than for the thicker wire. 

These values have been obtained by using equations (36), (37e), (38a) 

and (33b). 

Figure 10 shows the values of the horizontal deflection of a 

cable under a vertical concentrated load applied successively at 

quarter point and centre point. 	The values have been calculated 

by using equations (9), (40a) and (40b) and the data used is 

d = 2.5 in. L = 40 in. W = 0.1, 0.2, and 0.3 

It will be seen that the relation between the deflection u A. 

and TT is non-linear just as for the vertical deflections. A 

load applied unsymmetrically on the cable (quarter point in this 

case) causes much larger horizontal movements than a central load. 

1.20 The influence coefficient approach as applied to a plane 

prestressed system 

A brief mention of this method as applied to the solution of a 

suspension bridge has been made in Section 1,03, Its application to 

a cable system of the type shown in Figure Ila is illustrated here. 

The plane system could be seen as a suspension bridge without any 

bending stiffness and with the stiffening girder replaced by a pre-

stressing cable of reverse curvature. 

The structure consists of two cables prestressed together by 

means of vertical uniformly spaced hangers, each carrying equal 

tension T with an average value of Iwl per unit length of span. 

x Page 32 
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The cables are anchored at level supports. The shape of each cable 

is parabolic and the structure is symmetrical about the y-axis. 

Hu  and HL  are the horizontal components of tension in the upper 

and lower cable respectively. 

Due to application of vertical loads P1,  P2, etc. it is 

assumed that internal tensile reactions T1,  T2, 
	

T
n 

occur 

in the hangers and the values of Hu  and HL  change by hu  and 

hL  respectively (see Figure 11b). The vertical deflection at any 

hanger k in terms of the applied loads and reactions can be 

written down as 

u
k 

= Ton  + T2u2k  + 	+ Tmumk 	+ Tnunk  + ul
k 	

(41a) 

and 	1
k 	Tlllk + 

T212k 
+ 	+ T 

m
I 	+ 

TnInk 
+ 1,

k 	
(41b) 

where u1  = the upper cable vertical deflection at k due to 

applied loads and reactions, measured positive downwards, 

lk  = the lower cable vertical deflection at k due to 

applied loads and reactions, measured positive upwards, 

ul
k 
= the upper cable deflection at k due to applied loads 

only, measured positive downwards, 

k = the lower cable deflection at k due to applied loads 

only, measured positive upwards, 

u
mk = the upper cable deflection at k due to a unit load 

applied at m , measured positive downwards, 

l
mk = the lower cable deflection at k due to a unit load 

applied at m , measured positive upwards. 



Loads are positive when applied in the direction of positive 

deflections. 

The extension in the hanger at k , 

T
k 
L
k 

m
k — (AE)

h 

where L
k 

= length of the hanger at k 

1  
)h  

and (AE 
	

the hanger extensibility, which is assumed uniform 

throughout. 

For displacement - compatibility at k 

uk  + lk = elc 
	 (42) 

Equation (42) can be written on rearranging terms as 

34. 

t 

2= Tm 	I wk ) 

m=in 

- CC - Of  
ft. 	I R (43) 

n simultaneous equations like (43) can now be set up and 

solved to give the unknowns, T1, T2, etc. Once these values are 

known, deflections of cables can be determined from equations 

(41a) and (41h), and forces h_ and hL can be worked from 

equation (36). 

Setting up equations (41a) and (41h) requires the knowledge of 

deflections of a sinlge cable under concentrated applied loads, so 

that umk 	mk , utk  and llk  may be evaluated. This is 

possible with the help of equations (36), (40a) and (40b). 

It is possible to consider the effect of 



(1) temperature change, and 

(2) slip at the anchorage 

by a suitable modification of equation (35), and the values of 

For a change in temperature of t
o 
, ak  becomes 

T
k 
L
k 

+ ultL
k (AE)

h 

and the right hand side in equation (35) becomes 

2 
S (AEA)

L  	
3 
8 + 	(1 + — 	) c 	
L2 

where w = the coefficient of linear expansion /degree of temper-

ature change. 

For a slip at the anchorage equal to, say, 6, the right hand 

side in equation (35) becomes 

h L  = S 

	

	+ 
(AE)c  

ak remaining unchanged. 

1.21 Basic assumptions in the method 

1. 	The basic assumption that the law of superposition is applicable 

will now be studied. The relation between applied load and deflection 

for a cable is non-linear, because as the magnitude of the applied 

load increases, the cable gets relatively stiffer. The summation of 

the terms T
m umk 

 and 
Tmlmk and the evaluation of terms ulk 

and 

11
k 

(which may or may not involve summation depending upon the 

number of loads applied) is erroneous. The inaccuracy in the term 

35. 

alt 
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T
m urn,will, however, be small if the value of the unit load is 

kept fairly small. It has been found that the value of the unit 

load if taken as 0.01 of wL or less does not affect the results 

(Figure 28). This is reasonable as the relationship between deflec-

tion and loads for the cable does tend to be linear for small loads. 

However, it will not be correct to choose a small value of unit load 

if the actual values of T1, T2, etc. arc going to be far bigger, and 

if, to avoid this error, a larger value of unit load is chosen, 

inaccuracy is inevitably introduced, because larger values are being 

superimposed. In order to evaluate u' 	and 11
'  k 	

summation will 
 

be necessary if several loads arc applied; in such a case errors 

will again be introduced if loads are large. Therefore, the 

assumption, though justifiable if the loads and reactions remain 

small, introduces errors for larger loads. 

2. Horizontal movements have been neglected, assuming thereby, 

that the hangers remain vertical after loading and the force in the 

hangers has, therefore, no horizontal component. The assumption 

is justifiable because, although horizontal movements do occur, they 

are too small to incline the hangers appreciably. 

3. The dead weight of the structure is neglected in comparison 

to the prestressing forces. The assumption may not be quite correct 

for large spans. The necessary modification can be readily made by 

adding the dead weight to the prestress for the upper cable and sub-

tracting it from the prestress for the lower cable. 

4. The structure is incapable of taking compression. This is 

justifiable as the buckling strength of the members is negligible 

in comparison to the tensile strength. 
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1.22 Solution of a plane system by the influence coefficient method 

The following paragraph describes the use of the "influence 

coefficient" method to solve a plane system, shown in Figure lla. 

computer programme has been written to analyse the system for any 

general case of loading. Any of the parameters in the system can be 

varied except for the limitation that the structure should be symmetri-

cal about the centre line of the span and have the two cables iden-

tical in geometry and size. The steps involved in the computation are 

(1) The left had side matrix in equation (43) is set up for a 

chosen value of the unit load. 

(2) The right hand side matrix in equation (43) is set up for any 

number of point loads applied anywhere on the structure. 

For setting up both these matrices equations (36), (38a) and 

(38b) are used. 

(3) On solving the matrices set up in steps (1) and (2) above we 

get the values of the unknowns T1, T2, etc. 

(4) Using equations (36), (38a), (38b), (41a) and (41b) the 

deflected shape and change in main cable forces are computed. 

A flow diagram for the computer programme is given in 

Appendix "B". 

The data used for the numerical problem solved is given below. 

n = 20 L = 40 in. 	a = 2 in. (the first hanger is at a 

distance a/2 from the left support) 	D = 10 in. 

dU  = dL  = 2.5 in. 

T = 1.25 lb. each, total vertical pretension L = 25 lb. 

Unit load = .01 of 	L 

Main wires diameter = .064 in. 
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Hangers wire diameter = .010 in. 

(AE)c  = 91000 lb., (AE)h  = 2225 lb. 

There is no change in temperature. 

The various cases for which the structure is solved are 

enumerated here. 

1. Concentrated applied vertical load equal to 

(a) 2.5 lb. at quarter point on top cable 

(b) 2.5 lb. at hanger no. 10 cn top cable 

(c) 5.0 lb. at quarter point on top cable 

(d) 5.0 lb. applied to the top cable at hanger no. 10. In this 

case T
10 

< - T , which is inadmissible as the hangers cannot take 

compression The solution is obtained by taking T
10 

as a known 

value equal tc - T while setting up and solving equations. 

Various results for 1(a) to 1(d) are given in Figures 12 to 18. 

It may be observed from these results that 

(i) Under a point load on the top cable there is a sharp 

decrease in tension in the hanger just below the load. 

All other hangers show an almost equal increase of 

tension, the average value of this increase is, say, ?\. 

(ii) The value of V increases and the deflections decrease 

non-linearly with the magnitude of applied load. 

(iii) There is comparatively little change in the lower cable 

tension, most of the load being carried by the upper 

cable. 

(iv) Only top cable deflections arc plotted, as there is 

negligible difference between the deflections for the 

two cables. 



(v) 	In all the figures for changes in hanger tension, the 

change per hanger is shown, and not the change per unit 

length of span. 

2. Influence lines for hu  and hL  for a unit load of 2.5 lb. applied 

to the top cable arc given in Figure 19, and influence line for X and values 

of deflection under the lead arc given in Figure 20. The maximum 

value cf X and the deflection occurs near the quarter point. 

3. Concentrated vertical loads at hanger nos. 2, 3, 4, 5, 6, 7, 8 and 9 

equal to 

(a) 0.5 lb. each on the upper cable; 	p = 0.25 lb./in. 

(b) 1.0 lb. each on the upper cable; 	p = 0.50 lb./in. 

(c) 1.5 lb. each on the upper cable; 	p = 0.75 lb./in. 

(d) 0.5 lb. each on the bottom cable; p = 0.25 lb./in. 

(e) 1.0 lb. each on the bottom cable; p = 0.50 lb./in. 

This loading is meant to represent a uniformly distributed 

load p ever part of the left half of the span and the various 

results are given in Figures 21, 22 and 23. 

The non-lincarty of deflections and changes in hanger tension 

with increase in the magnitude of load can be readily observed. Most 

of the load is carried by the upper cable and the lower cable tension 

starts increasing beyond a certain magnitude cf load. The overall 

stiffness of the system thus increases with applied load, just as in 

a single cable. There is small difference in deflections for load on 

the upper or the lower cable. 

4. Effect of reducing the number of hangers from 20 to 9 is shcwn by 

results in Figures 24 and 25. It will be seen that the effect on 

hU 	1
1, and the deflections is negligible. 

39. 
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5. Figures 26 and 27 show the effect of distributing an applied point 

load of 2.5 lb. at quarter point on the upper cable, over a length of 

2 in. (exactly between hanger nos 5 and 6). Similar results are 

obtained if an applied point load of 2.5 lb. at hanger no. 6 is 

distributed over a length of 1 in. either side of the hanger. 

o/ 
6. Effect of neglecting hanger extensibility 1/(AE)h is less than 2/o . 

7. If 1/(AE)c  , the cable extensibility, is neglected, the value of 

the reactions T
1 
 , T

2 ' 
etc. increases manyfold making the results 

valueless. This emphasizes the fact that much care is necessary 

before neglecting any factors while evaluating the value of the 

"influence coefficients". 

8. Effect cf varying the unit load on the values of X and hu  and hi.,  

for a vertical load of 2.5 lb. applied at centre point on the upper 

cable is shown in Figure 28. 

1.23 Some important features in the influence coefficient method 

1. This is a numerical method in which equations of displacement-

compatibility arc set up at each hanger and solved to give the unknown 

hanger forces, from which the structure can be solved completely. 

2. The method requires the cables to be subject to a uniform prestress 

and each cable lies on a continuous parabolic arc. 

3. Expressions for evaluating the "influence coefficients" should be 

as accurate as possible. 

4. Value of the unit load does not affect the results to any appreciable 

degree if taken as .01 cr less, times the total vertical pretension. 

The value of applied loads has to be kept small tc ensure reasonable 

accuracy, because the law of superposition is used to solve a 

structure which is basically non-linear. 
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6. The method is in this case limited to solving the system for vertical 

loads only. 

7. Effect of change in temperature and slip at the anchorage can be 

easily considered. 

8. Loads can be applied anywhere on the cable and not necessarily at 

the nodes. 

9. The method is straightforward from the point of view of computation. 

Coefficients are easily calculable. Use of digital computers has 

to be resorted to because of the number of simultaneous equations (n) 

to be solved and the accuracy required to solve them. 

1.30 Application of a general method of solution to plane and three-

dimensional structures  

The basis of this method ("exact method" by Eras and Elze
(10)
) 

along with the equations in general has been given in Sections 1.04 

and 1.05. The application of the method to the solution of plane 

and three-dimensional structures is now given. 

1.31 Plane system 

The plane system solved here has already been described in 

Section 1.20. The initial geometry of the structure is already known, 

the cables having a parabolic shape and the structure is to be solved 

for applied loads only. 

It is aimed to solve the structure for in-plane vertical or 

horizontal loading only and as such it will have no movements cut of 

the plane. The axes are shown dotted in Figure lla. Therefore, 

4n equations like equation (33) will have tc be set up for n hangers, 

and solved simultaneously to give the values of u and v 
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The solution consists of the following steps. 

1. Set up the matrix for the unknowns u and v from the left hand 

side of equation (33), say "A". 

2. Assume the values of u and v (they are assumed to be zero in this 

case) to evaluate K
Xic and Kyk in equation (33), and knowing 

lc 
and Y 

, set up the right hand side matrix, say "B". 

3. Now, if the unknown matrix is denoted by U, 

A T = B 

or 	U = A-1  B 

This gives the values of u and v . 	It will be noted that the 

"AP matrix will be the same for the same structure, and so the matrix 

inversion has to be done only once. This is very beneficial from 

the point of view of computation, as the multiplication of the 

inverted matrix A71 and B is much less time consuming than the 

inversion itself. 

4. From the values of u(1) and v(1)  thus obtained, evaluate the "B" 
- 

matrix again and multiplying by A 
1 
 get the values OA:

, u(2) 
 and 

v(2) etc. 

The next cycle of iteration can be carried out in two ways, 

5. (a) 	Use the values of u(2)  and v(2)  to compute the next 

value of the "B" matrix, or 

(b) 	Put u(2)  = 0.5 u
(2) 
 + 0.5 u(1)  

and v(2) = 0.5 v
(2) 

+ 0.5 v
(1) 

 

and use the new values of u(2)  and v
(2) 

to evaluate the 

matrix and get the values of u(3)  and v(3)  and so on. Table 2(Pa9e 51) 

shows the more rapid convergence obtained by using the step 5(b). 

42. 
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6. The value of elfo 
can now be evaluated by using equations (31a) or 

(3Ib). 

Steps (5) and (6) can be repeated as many times as necessary 

for the accuracy desired. 

It will be noted that equations are not set up for u and v 

at the support since they are considered as known. The values are, 

however, used in evaluating the "B" matrix. For a rigid support 

these values are zero and a movement at the support can be readily 

considered by assigning the proper values to u and v at the 

support. 

Consideration 

of equations (29),(30a), 

Equation 

1 	= o 

or 	1 	= 

where 	C 

length due to 

of changes in temperature 

(30b), (32) and (33) 

(29) becomes 

10
r + 	+ ez )V2 + cat 

involves the alteration 

as given below. 

(44) 

C.10  = 	the change in 

+ 

(I + zei 	ez ) 	+ Cl 

EA =cot 

EA 

and 

of 	t°  . 

EA+Fo 

rise in temperature 

Equation (30a) becomes 

 

1 	= 	10  • i 0 + 0 +e, +2 e2  -'-2  e,2  - 1  7  e,. e2 +2 4 

and equation (30b) can be written as 

(45a) 
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-2 	 2 = 1 	-1 	L 	 1  - 5  - (i+c)-(e +e 	 e2 2 	 ' 	2 
+-e 	 ,).(1+c) +(e+—e2 - —el  

1 	10 	 2 2  2 I 	I.   

I 	2 	 I 	I 	 -4 
-- 	—2 ez + el3 	-3 	

— ).(1+c) — (e,+—ea  - e,2 2  e;  ea 2 ' e
3)3 - 0 	-++c) 
 

neglecting 4th or higher order terms, we get, 

{ I 	- 
	ez - 	%.1  • c. 2.  + 	, \ (el 

 	I 	 ..1 2- 	I 	I ,5 3  

	 (el + e, ez 
(i+c)Z  

e  + c).5   
(45b) 

 

Using equation (45b) and (31b) in equation (26), and on 

neglecting 4th or higher power terms, we get instead of equation (33) 

Fo 	 E A 	 Fo 	 DLL + 	LIX • e 	- Xi, - Kaa. 
10.0+c) 	1011+0 	10  0+92  (46) 

where 
EA 	

nine,
Fo 	1E A Kx.lk = 	 AU. •e, + 

100 + c) 	10(t+c) 	10 

4X+A U. 
I + 

Fo 	AX +AU  }. 	i I 	
— ' e2 I 	I 

to 	(1+0 2  
k-i• ez   j l  - T el. ez + .  

If we put C = 0 in equation (46), the original equation (33) 

will be obtained. 

The procedure of studying the effect of changes in temperature 

and the support movements as described above, is applicable to three-

dimensional structures as well as plane systems. 

1 	10  +c) 	I + 



1.32 Numerical .examples and results for plane system 

The amount of computation involved in applying the general 

method described in the preceding article to a numerical example 

becomes considerable if the number of nodes n is large. A computer 

programme has been written to solve any case of loading applied to a 

plane structure of general dimensions, symmetrical about the y-axis. 

The programme forms the matrix A (sec.1.31) for a structure and 

evaluates A. The B matrix (sec.1.31) is then formed and 

multiplied by A
71 

to give the deflection values. This can be done 

for any number of cycles as necessary and for any number of loading 

cases without disturbing the values of A-1, so that the evaluation 

of A and A 
1 
 is to be done only once. Values of deflections and 

dna''
o (calculated from step (6) of section 1.31) are printed for each 

cycle of iteration. A flow diagram for the programme is given in 

Appendix B. The numerical examples solved are given below. 

Example 1. This has been solved to show the difference in using 

steps 5(a) and 5(b) for successive iteration in the preceding section. 

Data: n = 5 	L = 30 in. 	a = 5 in. 	d
U 
= d

L 
= 3 in. 	T = 5 lb. 

1 
Applied vertical load = 2.5 lb.

fi
5 of pretension) at hanger 

No. 3 on upper cable. 

It will be seen from Table 2 that results obtained in the 5th 

cycle by using step 5(b) are nearly the same as those obtained in the 

9th cycle by using step 5(a). A study of the values of u and v 

shows a steady and decreasing change in their values if step 5(b) is 

used but the values keep oscillating if step 5(a) is used. It will 

be seen that 5 - 6 cycles will give sufficiently accurate results 

for this magnitude of load. Step 5(b) hrs been used in solving all 

other examples. 
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Example 2. This has been solved to compare the convergence of the 

method for various intensities of load. 

Data: n = 9 L = 40 in. 	dU = dL 
= 2.5 in. 	a = 4 in. 	T = 2.4 lb. 

Load is applied at hanger no. 5 on upper cable. 

x 
Table 3 shows the value of vertical deflection under the load 

and Q F
o value for the top cable segment adjacent to the loaded 

hanger. It will be seen that at the end of six cycles, fair results 

are obtained for up to a load of 7.5 lb. (nearly 0.4 of the total 

pretension). For a load of 12.5 lb. (nearly 0.6 of the total 

pretension) several more cycles will be needed before the final 

results are obtained. For a load equal to the total pretension the 

results show a definite and drastic divergence. 

Example 3 The data used for this example is the same as for the 

structure already solved in section 1.22. The various cases of 

loading solved are enumerated below. 

1. Concentrated vertical load equal to 

(a) 2.5 lb. at quarter point on upper cable 

(b) 5.0 lb. at quarter point on upper cable +  

(c) 2.5 lb. at hanger No. 10 on upper cable 

(d) 5.0 lb. at hanger No. 10 on upper cable 

Deflections and change in forces A F
o 

in various members are 

shown in Figures 12 - 18. CirF0  for the main cables shows a 

It is not possible for the load to be placed at the quarter point 
as in this example the quarter point lies between hangers No.5 
and 6. These results arc therefore obtained by taking a mean of 
results for load applied at hangers No. 5 and 6. 
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variation from segment to segment but since the variation is slight 

a mean value has been taken. 	This has been done for all the other 

cases too, unless otherwise mentioned. 

2. Influence lines for 
hU 	

T. and values of deflection under 

the load for a concentrated load of 2,5 lb. applied on the top cable 

are given in Figures 19 and 20. 

3, Concentrated vertical loads at hangers No. 2, 3, 4, 5, 6, 7, 8 and 9 

equal to 

(a) 0.5 lb. each on upper cable 

(b) 1.0 lb. each on upper cable 

(c) 1.5 lb. each on upper cable 

(d) 0.5 lb. each on lower cable 

(e) 1.0 lb. each on lower cable 

Various results are given in Figures 21, 22 and 23. 

4. Concentrated horizontal load equal to 2.5 lb. applied at hanger No. 10 

on upper cable for which results are shown in Figures 29 and 30. 

5. Concentrated vertical load equal to 

(a) 2.5 lb. applied at centre point on lower cable 

(b) 5.0 lb. applied at centre point on lower cable 

Values of 	D F
o 	

are shown in Figure 31. 	There is an increase 

of tension in all the hangers. 	Values of deflection are not plotted 

as there is no appreciable difference in deflection values whether 

the upper or the lower cable is loaded. 

6.  Concentrated vertical loads at hanger No. 6, 7, 	8, 	9, 	10, 	11, 	12, 13, 

14 and 15 of 1.0 lb. 	each on the upper cable. 

in Figures 32 and 33. 

The results are shown 

7.  For an approximate analysis the hangers may be grouped together to 



reduce the number of equations. Values of A F
o 

for the cables and 

the vertical deflections under a point load of 2.5 lb. at centre 

point on the top cable have been compared if the number of hangers 

is reduced from 20 to 9 to 5. The hanger stiffness is changed 
2 accordingly from AE 	

20 
to 	A2 	

5
0 

to -- AE . Results in Figures 34 

and 35 show the very little effect of the variation. 

8. Effect of varying the hanger stiffness value has also been found to 

. be very small. Comparison was made by using AE = 2225 lb. and 

AE = 8900 lb. in the 5 hanger case in (5) above. The difference in 

forces is under 2% and deflections under 170. 

1.33 Application to a three-dimensional system 

Thic section describes how the method can be applied to a 

structure consisting of three cables prestressed together. The 
A 

structure shown in Figure 36is a special case of a general structure. 

Two of the three cables are sagging, completely similar and placed 

symmetrically in the structure; the third cable is hogging and placed 

below and centrally between the two top cables. The three cables are 

anchored at rigid and level supports and arc prestressed by means of 

several sets of hangers which lie in parallel vertical planes at 

right angles to the x-axis. The horizontal hangers have an initial 

tension T
o each and the inclined hangers have an initial tension 

T
1 

and T
2 each, respectively as shown in Figure 36. The value of 

the horizontal and vertical dip at the centre of each cable is 

specified as C1  , D1  , etc. The initial geometry of the structure 

under the specified boundary conditions is not known and its 

determination will consist of the following steps. 

1. The forces in the cables are not known and have to be assumed (see 

footnote on p. 17 ). The forces can be assumed by considerations of 
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simple statics if the inclination of the hangers is known, for which 

the geometry must be known. In order to establish an approximate 

initial geometry, it is assumed that the horizontal and vertical 

ordinates of each cable lie on parabclii with their dips equal to 

C1  , C2 	C3  and D1  , D2  , D3  respectively. The cable forces 

are then calculable. 

2. For the assumed set of forces equations (25a) and (25b) are set up 

for each point and solved simultaneously to give the correction terms 

vT(1)  and w1(1). 	(Position of hangers along the x-axis is fixed 

and hence the values of x are known in this problem.) 

3. The assumed values cf y and a are now corrected as 

y(2) = y(1) v,(1) 

and 
z(2) z(1) wi(1) 

Steps (2) and (3) are repeated, say v times, until y(v) and 
z (v) are very close to 

y(v-1) 
and z

(v-1)  
respectively. 

4. With this change in the geometry the inclination of the hangers has 

also changed and the forces arc calculated again. 

5. Steps (2) and (3) are repeated again for the new set of forces. 

Steps (4) and (5) are repeated until the forces and ordinates 

obtained from subsequent cycles are close enough. 

The method is rapidly convergent, which can be seen from the 

numerical example given here. 

A computer programme has been written to use the procedure 

described above tc solve numerical examples on a general three-cable 

structure symmetrical about the y-axis. The programme is extended 

further to solve the structure for applied loads. A flow diagram 

for the complete programme is given in Appendix D. 



Example 1. A small number of hangers has been deliverately chosen 

because the initial shape will be farther from parabolic with a 

smaller number than with a larger number of hangers. The data is 

C
o 
= 20 in. 	D = 30 in. 	L = 60 in. 	a = 20 in. 

number of set of hangers n = 2 

C
1 	

C
2 	

2 in. 	C
3 	

0 

D
1 	

D
2 	

D
3 

= 5 in. 

Tc  = 0 	T
1 

= T9 	5 lb. 

Cables AA' and BB' arc symmetrically placed. 

Table 4 shows the values of the forces in the end segment of 

cables AL-' and CC' and y and z ordinates at the first hanger 

section in AA' and CC' , for the subsequent cycles of iteration. 

It will be seen that the cycle of operations shown below will be 

sufficient. 

2 to 3 times 

I 
Step (1) --0- Step (2) 	Step (3) 	Step (4) 	Step (5) 

2 to 3 times 

Note: Step(5) is equivalent to steps (2) and (3). 

The unstretched length of each member can be calculated from 

the knowledge of the structure thus obtained and it can now be 

solved for applied loads. 

The method of solving the three-cable structure for applied 

loads is exactly the same as for the plane-system except for the 

following differences: 
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(0 	Equations have to be set up for deflections u 	v , 

and w for loading along either of the three axes. 

(ii) 	The total number cf equations for n hanger sections 

is 9n. 

Data used for the numerical problem solved is, 

n = 9 	1 = 40 in. 	a = 4 in. 	C = .025 in. 	D = 10 in. 

C
1 
= C

2 
= .01 in. 	C

3 
= 0 

D
1 
= D

2 
= D

3 
= 2,5 in. 

T = 1.20 lb. 

	

EL. for top cables = 45000 lb. 	EA for bottom cable = 90000 lb. 

EZi. for inclined hangers = 2225 lb. EA for horizontal hangers = 0 

Load = 1.25 lb. applied to each of the top cables at the centre point. 

This structure can be approximated to the plane system solved 

in c;:ample 2 (section 1.32). The top cable and each hanger have been 

replaced by two cables and two hangers of half the area respectively. 

The top cables are placed a small distance of .025 in. apart and have 

a small horizontal dip of .01 in. each, thus converting the plane 

system into a three cable one. The two systems are, however, so close 

to each other that the deflections obtained for the same magnitude of 

applied load to the two systems should be comparable. If the A Fo  

values for the two cables and each pair of inclined hangers are added 

these should also be comparable to the A F values for the plane o   

system. Table 5 shows the results for the two structures. The 

values of A F
o 

in one cf the upper cables and each one of the two 
d. 

inclined hangers are doubled instead of summ
e
tIoR, since the system 

is symmetrical— 
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1.34 Some important features of the general method of solution 

Some of the main points of the method are enumerated below: 

1. Equations of force-compatibility are set up at each node and solved 

simultaneously to give the value of displacements. 

2. The structure consists of straight weightless links between the 

nodes. 

3. The computational work involved with this method is considerable. 

The number of equations required for each node are 3 and the 

coefficients are more cumbersome to evaluate. The use of digital 

computers has to be resorted to. The number of equations can be 

cut down, however, for preliminary work by reducing the number of 

hangers. 

4. Loads can be applied at the nodes only. 

5. The effect of the movement of the support can be studied and the 

effect of temperature change can be considered by modifying the 

original equations. 

6. The method is very general and can be applied to plane or three-

dimensional prestressed structures and can give solutions for an 

kind of static loading. 

7. For applied point loads of up to 0.3 times the total pretension, fair 

results can be obtained from 6 cycles of iteration; a load of 0.6 

times the total pretension needs more cycles than 6, but for higher 

loads of say equal to the total pretension the method shows drastic 

divergence. 
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TABLE 2 

Cycle 
No. 

u 	in the 
upper cable 
at hanger 
no. 	2 

ins. 	x 106  

v 	in the 
upper cable 
at hanger 
no. 3 

ins. x 106  

A Fo  in upper 
cable in the 
segment between 

hangers no. 2 and 3 

lbs. 

A F0 	in hanger 
no. 	1 

lbs. 

A Fo 	in hanger 
no. 3 

lbs. 

Step No. 5(a) 5(b) 5(a) 5(b) 5(a) 5(b) 5(a) 5(b) 5(a) 5(b) 

1 4042 4042 59176 59176 - - - - - - 

2 3554 3554 49494 49494 - 6.142822 - .171043 - -1.00553 

3 4217 3925 58145 54303 6.612061 5.369873 .210854 .207634 -.944740 - .951332 

4 3889 3993 53226 55029 ... 5.063721 - .226311 - - .924797 

5 4170 4023 57073 55280 - 4.896729 - .237282 - ... 	.909981 

6 3992 4040 54516 55411 - 4.791748 - .244087 - - .901237 

7 4126 4052 56401 55494 - 4.724854 - .248436 - - .895851 

8 4034 4059 55093 55545 - 4.680420 - .251244 - - .892448 

9 4102 4064 56037 55580 4.825928 4.650635 .252312 .253105 -.891792 - .890312 



TABLE 3  

2.5 lb. 5.0 lb. 
. 

7.5 lb. 12.5 lb. 22.5 lb. 

Cycle 
Now 	' 

vr 

ins. x 106 

A F o 

lb. 

v r 

ins. x 106 

6 Fo  

lb. 

vr 

ins. x 106 

A F o 

lb. 

vr 

ins. x 106 

6 F o 

lb. 

1 68400 136800 - 205200 -- 342000 - 

R
e
s
u
l
t
s
  
f
or
  
t
h
i
s
  
l
oa
d
 

sh
ow
  
a
  
d
ef
i
ni
t
e
  
a
n
d
 
r
a
p
id
 

d
i
v
er
g
en
c
e
.
  

2 62829 6.893 93370 13.126 59905 5.174 -325912 -5.956 

3 6$046 6.130 123714 15.372 196791 29.956 287008 .8.957 

4 65623 5.827 120870 14.537 159196 23.104 319699 64.484 

5 65837 5.675 121725 14.172 170437 25.106 202010 30.816 

6 65936 5.588 122015 13.890 165902 23.172 .273587 62.545 

vr is the upper cable vertical defldction under the load 

F is the change in the upper cable tension between hangers no. 4 and 5 



TABLE 4 

Step and 
cycle no. 

Force in 
AM end 
segment 

lb. 

.. 

Force in 
Cat end 
segment 
lb. 

Y-Ordinate 
in AM 

ins. 

- . 

Z-Ordinate 
in AM 

ins. 

Z-Ordinate 
in CC I 

ins. 
Remarks 

. 

1 19.29549 38.41994 .8.22222 4.44444 25.55556 

2 and 3 
V ro 1 

It If  .8.01246 4.97808 25.02224 

2 and 3 
v = 2 

Is • In ..8.00845 4.98257 25.01852 

2 and 3 
V = 3 

tf III -8.00845 4.98257 25.01852 not 
necessary 

4 19.23273 38.28598 .8.00845 4.98257 25.01852 

5 
V = 1 

I. _ 	t• -8.00025 4.99950 25.00053 

5 t• it 
V = 2 necessary 

-8.00024 4.99950 25.00053 
not 

4 19.23095 38.28219 -8.00024 4.99950 25.00053 

5 
v === 1 

••  , 	If -8.00001 4.99999 25.00001 

5 
v = 2 

ft ft  .8v00001 

a 

4.99999 25.00001 
not 

necessary 



TABLE 5 

THREE CABLE SYSTEM PLANE SYSTEM 

Hanger 

No. 

u 	for one 
of the top 
cables 

ins. x 106 

v 	for one 
of the top 
cables 

ins. x 106 

2 x A F0  for 
one of the 

inclined hangers 

lbs. 

u for 
top cable 

ins x 106 

v 	for 
top cable 

ins x 106 

A Fo 	for 
hangers 

lbs. 

1 3674 .15363 .05967 3825 -16031 .06717 

2 4212 -17047 .06026 4391 -17853 .06778 

3 . 	2879 . 4624 .06032 3010 - 5027 .06785 

4 1017 22144 .05240 1072 22730 .06043 

5 0 63737 -1.08898 0 65936 -1.07619 

6 
t 

-1017 22144 .05240 -1072 22730 .06043 

7 .2879 • 4624'. .06032 -3010 - 5027 .06785 

8 .4212 .17047 .06026 -4391 -17853 .06778 

9  .3674 .15363 .05967 -3825 -16031 .06707 

2 Al/'4, for one of the top cables in the three cable system 	= 5.313682 lb. 

AP°  for the top cable in the plane system 	= 5.454204 lb. 

Ar. for the bottom cable in the three cable system 	2.174884 lb. 

AF42 for the bottom cable in the plane system 	= 2.044376 Lb. 	t.n 
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CHAPTER 2 

EXPEaIMENTS 

2.01 Experiments on single wires 

Experiments on three wires of different dimensions and 

span, suspended between rigid supportc., under their own weight 

(including the initial uniformly distributed superimposed weight 

over the whole span) are described in Sections 2.02 and 2.03. 

All three wires were tested under applied vertical concentrated loads 

placed successively at various points along the span. The 

main purpose of these tests was the verification of theoretical 

values obtained in Chapter 1. 

2.02 Experiment on a wire of .032" diameter 

The wire was suspended between two rigid towers under its 

own weight and the dead weight of the uniformly spaced steel 

blocks fixed to the wire. Details about the wire are given below. 

The wire was drawn from high tensile steel. 

Span, 1 = 33 ft., 	Central-dip, d = 3 ft. 

Spacing of steel blocks 4.5", 

Dead weight of the wire and blocks w = 0,85 lb/ft span, 

Total dead weight 28.15 lb. 

Weight of the hanger used for loading = 0.156 lb. 

The wire was part of a one hundredth full size model of the cables 
and towers of the Forth Road Bridge, set up for a study of its 
vibration characteristics. 
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The span was divided into ten equal segments by means of nine 

equally spaced stations, and both vertical and horizontal deflections 

were measured at each station, for concentrated loads of varying 

magnitude, applied successively at station nos, 1, 2, 3, 4, and 5. 

The value of applied load P (including the weight of the hanger) 

varied from 2.156 lb. to 5.156 lb., with increments of 1 lb., i.e. 

w varied from 0.0765 to 0.1835. 

A typical set of curves for vertical and horizontal deflections 

are given in Figures 37 and 38. 	The figures show values of deflection 

for load applied at station no. 2. Theoretic,71 values of vertical 

deflections for w equal to .0765 and .1835 are also given in Figure 37. 

It will be noted that agreement between theoretical and experimental 

values under the loaded point is good but the differences become 

considerable away from the loaded point. Figure 39 gives the vertical 

and horizontal deflections at the loaded point, for the two extreme 

values of point load. Horizontal deflection to the right and vertical 

deflection downwards is taken as positive. The relation between w 

and the deflections will be seen to be non-linear. It will also 

be observed that the maximum values of deflection under the load occur 

near the quarter points of the span. 

2.03 Experiments on .064" and .0164" diameter wires 

The knowledge of a single cable behaviour has been used in 

obtaining theoretical results for a plane system (see 1.20) 

and it is desired to check these against experimental values. 

It was, therefore, thought necessary to check the single cable 

theory against experimental results obtained from the same size 



of wire (.064" diameter) as used in the experimental model of a plane 
system. Another reason for doing these experiments was that, 

although the values from the tests on the .032" diameter wire showed 

good agreement with the theory under the loaded point the discrepancy 

was rather large away from this point. I. study of the results 

obtained for the .o64” diameter wire led to the experiment on the 
thinner wire. 

The set-up for both the wires is shown in Figure 40. Figure 41 
shows the .064" diameter wire loaded at the quarter point. Both 

wires were set up in the manner described below. 

(i) The wire was clamped at one end on a rigidly fixed support. 

(ii) The other end was stretched over a pulley with a load equal 

to the desired horizontal component of wire tension. 

(iii) Vertical loads were then applied to the wire by means of 

uniformly spaced hangers over the whole span. 

(iv) The wire was then clamped at the pulley end and the pulley 

removed. 

Data for the .064" diameter wire and results 

Span 40". 

Central sag (measured from a horizontal wire stretched between the 

supports) 2.52". 

Spacing of hangers, each carrying 1.25 lb., 2". 

Average uniformly distributed weight w = .625 lb/in. 

Horizontal component of wire tension (computed) = 50 lb. 

Horizontal component of wire tension (measured) = 49.8 lb. 

Measurements were taken at an average temperature = 70
o 

4- 1.5
o 
F. 

60. 

The wire was intercepted by two load cells each 1/2" away from 
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the central hanger. The load cells were calibrated by direct loading 

and then used for measuring forces. (The load cells arc described 

in detail later in Section 2.10. 

1/811  diameter nylon balls were cemented on the wire at each hanger 

position and measurements for vertical and horizontal movements for 

applied loads were taken by sighting these balls through a cathetometer. 

Figure 42 shows the vertical deflections for values of P equal to 

2.54 lb., 5.04 lb., and 7.54 lb., applied vertically at centre and 

quarter points respectively. Figure 44 shows the horizontal deflections 
for the same applied loads . The results for the change in wire 

tension (mean value from the two load cells) are given below. 

- 
w Change in tension for 

load at centre point 
(lbs) 

Change in tension for 
load at quarter point 

(lbs) 

0.1 5.50 7.57 

0.2 11.15 15,00 

0.3 16.94 22.65  

It will be observed in Figure 42 that the experimental deflection 

* 
The horizontal deflections have been calculated by using equations 

40a and 40b which are derived from equations given by Pugsley 
(Section 1.02). 
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curves do not have a sharp discontinuity under the load point but have 

a smooth cusp instead. This is contrary to the results obtained from 

the tests on the .032" diameter wire (seco2.02) and it appears 

that the .064" diameter wire suspended over 40" span has some 

bending stiffness. It was decided to confirm this by testing a 

.0164" wire, whose moment of inertia is approximately 230 times 
smaller than the thicker wire. 

Data for the.0164" diameter wire and results 

Span, L 40". 

Measured central sag 2.48". 

Spacing of hangers, each carrying 0.1 lb., 2". 

Average uniformly distributed weight, w = 0.05 lb/in. 

Total weight of the wire 2 lb. 

Horizontal component of tension (computed) 4 lb. 

The results obtained for applied load P equal to 0.2 lb. and 

0.4 lb. (W = 0.1 and 0.2 respectively) are shown in Figures 43 and 44. 
It will be observed that the curves for experimental vertical 
deflections show a very sharp cusp under the loaded point, unlike a 

smooth cusp for the .064" diameter wire, which can now be justifiably 

attributed to the bending stiffness. 

Correlation between theoretical and experimental results is 

discussed in Chapter 1. 



2.10 Experiments on the model of a plane system 

Sections 2.11, 2.12, 2.13, 2.14 and 2.15 describe the experiments 

carried out on a structural model of a plane prestressed system. The 

main purpose of the experiment was the verification of the theories, 

applied to solve a plane system in Chapter 1, and to et a better 

physical appreciation of the practical problems involved. The 

experiment was just a fundamental study and the model did not represent 

any full scale structure. The model consisted of two main wires, 

anchored firmly at their ends, within a rigid frame, and prestressed 

by means of uniformly spaced vertical wires. The wires used were of 

stainless steel. 

The letters used to mark the photographs (Figures 47, 48, 49, 51 
and 52) are applicable only in the section of the text where the 

particular part of the experimental set-up is described and have no 

connection with the general notation being used in the thesis. 

2.11 A note on the size of the model and the material used 

The choice of the size of the model, wires and the material used 

was governed by the following factors. 

(1) It was required to have rigid supports for the two main wires. 

Whereas massive supports would have been needed for a large size model, 

a welded frame, made out of 3" x 1-1/2" channel sections (welded 

together to form a 3" x 3" box section) was sufficient to provide a 

rigid self-contained support. 

(2) In terms of sheer labour involved it is much easier to deal with 

a small size model than with a bigger one. 

(3) In order to get any real advantages of a bigger model (even 

disregarding some problems created by its size) it was thought that a 

63. 
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50 ft. to 60 ft. long model would be required. It might have been 

possible to get a more accurate model and also better measurements on a 

bigger scale. This size was not easily possible because of limitations 

of space and facilities at the time the experiment was planned. 

(4) It is necessary for this kind of experiment to have reasonable 

temperature control. Considerable difficulty was experienced in obtaining 

proper temperature conditions for the model tested. It was found that 

small changes in temperature and drafts of wind affected the results 

appreciably, until finally the model W2S moved into a small room with 

strict temperature control. Similar control on a bigger size model 

would be extremely difficult. 

(5) Normally roof structures of this kind have a dip to span ratio of 

1/15 to 1/20. Main wires in this model have a dip to span ratio of 1/16 

and their spacing was governed by the method of measurement of forces in 

the hangers. 

(6) It was decided to join the wires at their junctions by means of 

fusion-welding, as it was preferred to mechanical joints from the point 

of view of slip. Also, on this scale mechanical joints would have been 

difficult to make and too big. 

(7) Stainless steel wires were chosen for the model with a particular 

consideration of their welding properties. Although wires of magnetic 

stainless steel would have been preferable from the point of view of 

measuring forces in the hangers, they had. to be rejected because of the 

brittle welded joints obtained from them. 

(8) Once the size of the model was decided upon it governed the size of 

the wires. The smallest possible size of the wires was chosen. The 

.010" diameter wire used for the hangers was about the smallest 

practicable size that could be used. Each hanger was to carry an 

initial tension of 1.25 lb. (stress = 7.12 t.s.i.). The main wire 
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size was .064" diameter, and initial maximum tension in either wire 

was expected to be 51.5 lb. (stress = 7.15 t.s.i.). 

2.12 General description of the model and the procedure used for its 

assembly 

The erection of the model consisted of the steps described in 

this section. 

(1) The frame, made by welding 3" x 3" box sections,a4d having inside 

dimensions 41" x 24", was placed on level supports. The frame had two 

1/4" diameter holes spaced et 10" centres vertically in each of its 

short sides. Four anchor blocks 1-1/2" x 1-1/2" x 1/2" were screwed 

.to the frame, with their anchoring surfaces level with the centre of 

each hole. The frame also had a 2" x 1/2" flat bar fixed to it at 

the top and carried hooks above each hanger position. 

(2) The top wire, with load cells in the right position, was anchored 

at one end and loaded over a pulley at the other to calibrate the load 

cells. (For details see 2.13). 

(3) The wire was then stretched over a template to give it the correct 

profile. The template consisted of 3/8" diameter copper tubes, 

screwed vertical on to a 1" thick wooden board. The tubes were 

uniformly spaced and placed such that a tangent to the outside surface 

of the tubes would be a parabolic curve with a central sag of 2.5". 

In order to provide more welding surface and a more uniform heat 

of fusion small stubs of stainless steel approximately .025" thick 

were welded to the wire at hanger points. 
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(4) The wire was loaded over a pulley with a weight of 50 lb. (the 

desired value of Hu). Hangers were suspended from the hooks in the 

top bar and loaded with 1.25 lb. each; alternate hangers were placed 

on opposite sides of the wire, in order to reduce overall torsion. - 

It was confirmed that the torsion caused had little effect on the 

results. The hangers were welded to the stubs on the main wire and 

the template pulley removed. A check on the load cell readings showed 

negligible change when the wire was clamped and the pulley removed. 

(5) ?ild steel wire of .004" diameter was now coiled round and 

affixed at its ends to the hangers, over a length of about half an 

inch, to make the hanger meonetic locally, so that it could be excited 

magnetically and the force measured acoustically. The mild steel coil was 

so positioned that it would be central in each hanger when the 

structure was fully assembled. The hangers were then calibrated for 

'Frequency of vibration against tension' by direct loading. (For details 

see Section 2.13). 	The hangers were then unloaded. 

(6) Steps (2) and (3) were then repeated for the lower wire and it 

was loaded with 50 lb. over the pulley. An extra set of hangers 

loaded with 1.25 lb. each was now suspended from springs, which were 

fixed to the hooks on top. The hangers were welded to the lower main wire 

on the side opposite to the first set of hangers and slightly away from 

the stubs. The load on the hangers and the template was then removed 

and the wire was just spring loaded. Loads of 1.25 lb. each were 

replaced on the original set of hangers. Figures 45 and 46 show the 

two wires loaded with loads and springs respectively and by means of 

separate sets of hangers. 
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The idea of using springs was that, if the profile of the 

template was slightly wrong, the geometry of the wire would be 

corrected by a readjustment in the large extension of the springs 

(1.5" average extension fcr 34429 lb. load). Measurements showed 
small readjustments, all within .01". 

(7) The original set of hangers; loading the upper wire, were then 

welded to the lower wire springs, loads and extra set of hangers were 

removed. Measurement on load cells still showed only very 	 

changes. 

(8) The pulley end of the lower wire was clamped and the pulley was 

removed. Figure 47 shows the completed model. The numbers on top of 

the frame refer to the hangers. 

We  

It is important to note that if the wires were welded, with the 

thinner wire under tension, it was brolJ.en due to the high heat of fusion. 

Therefore, the wires were first held in position between the tongs of 

the welding tweezer head, the load was removed from the thin wires and 

the fusion was affected. The load was then replaced on the hanger. 

2.13 Methods for measurement  

The choice of suitable devices of measuring forces in the model 

was governed by the following requirements. 

(1) It was important to know the absolute pretension in the structure 

and to keep a record of any v-7riations in it. It was therefore necessary 

that the measuring instrument would not show a drift in reading unless 

the pretension itself changed. 
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(2) The measuring device should not affect the ritiffness properties 

of the elements of the structure. 

The use of thin single wire electrical strain gauges, directly 

cemented to the wire, was first envisaged but rejected due to the 

above-mentioned reasons. 

Optical and mechanical metods of measuring strain in the hangers 

were thought of and rejected for want of too much precision and 

elaboration. The methods of measurement finally decided upon and 

used are described in the following paragraphs. 

Measurement of forces in the main wires (.o64,,  diameter)  

Load cells of the type shown in Figures 48 and 49 were used for 

measuring forces in the main wires. A load cell consisted of the 

following components (see Figure 48). 

(1) Two aluminium trips, 1" x 5/16", marked 'A'. The thinner part of 

the strips is 3/8"1  long and 5/16" x .0145" in cross-section. One 

electrical strain gauge on each strip was cemented longitudinally along 

the axis of the wire on the outside of the strip, marked '0', and one 

strain gauge each was cemented on the inside, marked 'I'. 

(2) Anchoring blocks marked 'B', were cut out of 3/8" diameter 

stainless steel rounds and are 3/16" high. 1/8" diameter pins 

protrude on either side of the block and the pins are hollow and 

threaded. to fit 10 BA screws. The wire 'WI is threaded at its end and 

has two nuts fitted to it (each nut locking the other). The nuts 

bear on block 'B' within a cylindrical hollow space provided in the 

block. The anchor block was so designed that the wire and nuts could 

rotate freely, thus avoiding any kind of fixity. 

x Page G9 
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FIGUZ‘E 48 	i. LOfl)-CELL BEFORE STAIN GLUGES HAVE BEEN 
PUT ON THE ALUMINIUM STRIPS 

FICUE 49 	CLOSE UP Vial OF THE NODEL 
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(3) Small stainless steel flats, 'F', fitted as shown. The 

purpose of these flats was to protect the outside gauges and provide 

a place for scuring the lead wires from the gauges. Figure 49 

shows the load cells after gauges have been cemented and they have 

been placed within the structure. The way the lead wires are 

cemented to the flats 'F' can be seen. 

The four gauges on each load cell formed part of a wheatstone 

bridge circuit in such a way that 

(0 for a direct pull on the load cell, the tensile strain in 

the longitudinal gauges and the compressive strain in the 

transverse gauges all adds up, thus giving increased 

sensitivity to the device 

(ii) for a change in temperature all gauges have the same sign 

of strain which cancels out, thus making the load cell self 

compensating for temperature 

(iii) any strains caused by bending about the horizontal plane 

of symmetry, passing through the wires, would cancel out. 

Each gauge had a gauge length of 1/8" and a gauge factor of 2.14. 

The cross section of the aluminium strips was so designed that the 

gauge will have the same extensibility as the wire. kverage strain 

per pound of load was found to be 30.66 x 10-6, measured on an 

instrument designed for a gauge factor of 2. 

The actual strain = 30.66 x 10-6 x 2 
2.14 

28.65 x 10
-6 

If Poisson's ratio for aluminium is assumed to be 0.3, 

longitudinal strain per gauge = 28.65 	x 10
-6 

2(1+0..3) 

. 11.03 x 10
-6
/1b. 
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Area of the wire is 3220 x 10
-6 

sq. ins. 

'E' for the wire (determined experimentally) is 28.3 x 10
6 p.s.i. 

Strain per pound on the wire = 	1  
3220 x 10-6  x 28.3 x 106  

11.1 x l0
-6 

91000 

On an average the load cell is 0.6% stiffer. 

While calibrating the load cells it was found. that the reading 

in the cell altered appreciably if its orientation was altered with 

respect to the axis of the wire (it is presumed this imposed some 

sort of eccentricity in loading or altered the eccentricity if already 

present). The load-strain relationship, however, did not alter by 

more than 2..3%. In order to avoid errors On this account the load cells 

were calibrated within the model frame. The wire was anchored at one 

end and loaded over a pulley at the other end to calibrate the load 

cells. The orientation of the load cells was also fixed, and in order 

that the absolute reading could be relied upon, was maintained the 

same throughout the experiment as far as possible. 

Four load cells of the type described were placed in each wire 

at 2", 20", 30" and 38" away respectively from the left hand support 

(Figure 47). A typical load-strain otZvo, for load cell number 1 on 

Figure 47, is given in Figure 50. The curve shows very slight 

non-linearity but departure from a straight line is so small that 

the mean values were used for calculating forces from strains. Nean 

values of strain per pound are given here. 

Load cell 1 2 3 4 5 6 7 8 

Strain x 10
6 

30.86 32.05 29.31 27,84 33.28 32.50 30.30 29.15 



The load cells, however, did show a drift in rending with time 

and could not be relied upon to maintain a force-history of the main 

wires. It was justifiably hoped on the basis of previous readings 

that the load-strain relationship could still be relied upon to 

evaluate changes in tension. 

Measurement of forces in the hangers (.010" diameter wire)  

The type of load cells used for the main wires would have been 

difficult to manufacture for the hangers because it would be impractical 

to have load cells of the same extensibility as the hangers. It was 

decided to use the property that the frecuency of vibration of a thin 

wire is a function of its tension. If the bending stiffness of the 

wire is neglected, its frequency of vibration is given by: 

f = 1 . FT- 	 ( 47) 

21 	Fa 

where, 	f = fundamental frequency of natural vibration 

T= tension in the wire 

m = mass per unit length of wire 

and 
	

1 = gauge length, i.e. the distance between the two nodes. 

The principle used here is that the wire hanger forms part of a 

vibrating wire gauge. The wire is plucked by a magnet (connected to en 

oscillator) to initiate the vibrations and the frequency of vibration 

is measured on an oscilloscope. Since the hangers were of non-magnetic 

wire, the wire was made locally magnetic by coiling a .004" diameter 

mild steel wire around it (see 'NCI in Figure 49). 

The gauge is shown in Figures 51 and 52 (the magnet is shown 

disconnected from the oscillator). The instrument was mounted on a 

telescope stand, so that it could be moved from hanger to hanger. 

+ Page 73 	‘,4.• Poye 74 . 
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FIGU;;ZE 51 	THE VIBIti.TEIG TATI1.1E GLUGE 



FIUME 52 	THE VIBTING 	GLUGE 

THE HINGE IS SHOWN HELD BETWEEN BLOCKS C AND D 
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The telescope stand was provided with r:djusting screws for fine 

vertical movement and rotation about the vertical axis to facilitate 

the positioning of the gauge. Major parts of the gauge, marked on 

Figures 51 and 52, are described below. 

(1) Block lAt, which could be moved nearer to or farther away from 

the wire by adjusting the nuts 'N', had the mgnets tilt fixed to it. 

(2) Block 'B' carrying the blocks 'C' and 'D' could be moved along 

its horizontal axis by a differential thread screw head 'Et. 

(3) Block 'C', weighing approximately 1/2  oz., pivots about a pin 

with an eccentricity of anproximately 0.2". Block 'D' is fixed to 

'B' and the flat portion against which the wire rests has a width of 

.05". The roller at the end of Block 'C' just holds the wire against 

the flat in block 'DI. 

The gauge length (the distance between the two nodes produced 

by blocks 'C' and 'B') was measured to be 3-3/4". During the 

development stage of the gauge, wich was extensive, the following 

important points were noted. 

(1) Gauge lengths of 1-1/4", 2", 3" and 3-3/4" were tried. At 

gauge lengths of 1-1/4" and 2" the wire was too stiff to be 

initiated by the pull of the magnet and at 3" the vibrations 

did not last long enough for being able to get a balance on 

the oscilloscope. At 3-3/4" the damping was not quite so 

high and the vibrations lasted a convenient period of time. 

(ii) It was required to have the magnet at a specific distance 

(approximately 1/32") from the wire to get a proper 

Lissajous figure on the oscilloscope screen. 

(iii) It was most important that the conditions at the support be 

repeated precisely in order to got consistent results. The 

points particularly noted with regard to the supports were: 

(a) the flat portion in block 'D' should just touch the wire, 
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so that the wire is not pushed out of its plane; 

(b) the pressure exerted by the roller should be 

kept the minimum possible, otherwise there is a 

tz- Idency to drag the wire, which would affect the 

telsion in the wire; 

(o3• the blocks 'C' should rotate in the same direction 

so that the drr g, if any, is compensating., 

Figure 53 shows a long plate, which is fixed to the frame. A 
number of washers are glued down to the plate and two of the legs 

of the telescope stand are positioned by the washers. Ae position 

of the washers was fixed when the hangers were being calibrated, so that 

it would be possible to repeat the same position of the gauge whenever 

readings ware taken. 

Each hanger was calibrated separately. All hangers fell into 

three slightly different classes (the difference perhaps 

attributable to the slight difference in length of the mild steel coil), 

say A, B and C. The calibration curves are shown on Figure 54. Good 

consistency was obtained in the results. This can be seen from 

Tables 6 and 7, which show how accurately it was possible to measure 

loads and small differences in loads with the help of the calibration 

graphs. 

Taking measurements with4the vibrating wire gauge consisted of 

the following steps. 

The telescope stand was brought into position for the 

particular wire on which measurement was to be made. 

The gauge was adjusted such that blocks 'DI were just 

touching the wire and the magnets were facing the mild 

steel wire coil. 

x Pa9e 82 



77. 

(iii) The blocks 'C' were rotated about the pins to restrain 

the wire at two points. 

(iv) The wire was placed by the magnets to give a. Lissajous 

figure on the oscillator screen and rending was taken 

at resonance. 

(v) The wire was released by rotating, back the block 'C' and 

the structure was then loaded or unloaded and allowed to 

deflect, unobstructed by the gauge. 

(vi) Steps (ii), (iii), (iv) and (v) were repeated to take 

the next readings. 

Measurement of deflections 

Nylon balls 1/8" diameter were cemented to the main wires, at 

each hanger position. Deflections were measured by sighting these 

balls through a cathotometer, rending to 1 x 10-3  in. 

2-.14 Main dimensions of the model and experimental results  

The important details and dimensions of the model are given 

below (see Figure lln for notation). 

n = 20 

L = 39-7/8" (measured between inner faces of the anchor blocks) 

D = 10-1/16" (centre to centre distance of the main wires at 

the anchorage block) 

d
0 
 = dt,  = 2•.510 (obtained by plotting a profile of the wire) 

Average value of a = 2"; the first hanger is at 1" from the left support. 

Average value of T = 1.20 lb. 	There is a scatter of +15%; the 

desired value was 1.25 lb. in each hanger. 	Hanger tensions were 

measured several times during the course of the experiment and the 

average value showed no appreciable change. 

w = 0.600 lb/in. 
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H (measured at the time of assembly) = 47.8 lb. 

HL  (measured at the time of assembly) = 49.0 lb. 

Measurements were taken in a temperature-controlled room at an 

average value of 680 + 10 F. 

Measurements at the supports showed no movement due to applied 

loading. 

The value of the Young's Modulus of elasticity, E, for the wire 

was determined experimentally to be 28.3 x 10
6  p.s.i. 

The method of loading can be seen from Figure 52. Load hangers 

are suspended from wires straddled over the.main wire. 

For both the 'load' and 'no load' condition three sets of readings 

were taken, unless the first two sets agreed very closely. Results 

wore obtained by taking a mean value from the different sets of 

readings. 

The various cases of loading and the results obtained are 

enumerated here. 

(1) Concentrated applied vertical load equal to: 

(a) 2.5 lb. at quarter point on upper wire 

(b) 5.0 lb. at quarter point on upper wire 

(c) 2.5 lb. " hanger no. 10 on upper wire 

(d) 5.0 lb. at hanger no.10 on upper wire 

The results are sho r Ln Figures 12 to 18. 

(2) Concentrated applied vertical loads at hanger nos. 2, 3, 4, 5, 

6, 7, 8 and 9 equal to: 

(a) 0.5 lb. each on upper wire , p = 0,25 lb/in. 

(b) 1.0 lb. each on upper wire p = 0.50 lb/in. 
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(c) 1.5 lb. each on upper wire • p = 0.75 lb/in. 

(d) 0.5 lb. each on lower  wire 9  p = 0.25 lb/in. 

(e) 1.0 lb. each on lower wire 9 p = 0.50 lb/in. 

The loading is meant to represent a uniformly :listributed load, 

'p' per unit length of span, over part of the left half of the span. The 

results are shown in Figures 21, 22 and 23. 

(3) Ccacentrated applied vertical loads et 4", 8", 12", 16", 20", 24", 

32" and 36" from the left support equal to: 

(a) 1.0 lb. each on upper wire 	p = 0.25 lb/in. 

(b) 2.0 lb. ech on upper wire , p = 0.50 lb/in. 

(c) 3.0 lb. each on upper wire , p = 0.75 lb/in. 

The load is meant to represent a uniformly distributed load, p, 

over the central 36" of the span. The results for the change in forces 

are given in Figure 55. 

(4) Influence lines for change in tension in hanger nos. 5 and 16 

(which are symmetrically placed in the structure) are given for applied 

vertical loads of 2.5 lb. and 5 lb. in Figure 56. 

(5) Influence lines for hu, h
1, 

and values of deflection in the upper 

cable under the loaded point for vertical applied loads of 2.5 lb. and 

5.0 lb. are given in Figure 57 and 58. Values of hu  and hL measured 

at centre point load cells only, are given. Measured values from 

other load cells show similar variation end very little difference 

in magnitude from the values given. 

It will be noted from the above results that: 

(i) under an applied point load, there is a sharp decrease in 

tension in the hanger immediately under it and the two 
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hangers adjacent to it have a bigger increase in tension 

than the rest of the hangers; 

(ii) the stiffness of the structure goes on increasing with 

applied load; 

(iii) under a load uniformly distributed over the whole span, 

there is an almost equal sharing of load between the two 

main wires, unlike for any other kind of loading; 

(iv) a maximum value of deflection under load occurs near the 

quarter point. 

The correlation of experimental and theroetical results is 

discussed in Chapter 3. 

2.15 Sources of error and points of difference from an (ideal' model  

(1) The main wires are broken up into several segments by the load cells 

causing some change in their stiffness value. This also gives a certain 

degree of undesirable freedom to the segments to rotate with respect to 

each other, despite the fact that this tendency is resisted at the load 

cells due to the friction between nuts and anchor blocks 1 131  (Figure 47). 

(2) The hangers have unequal pretension, which may have been caused by 

slight rotations at the joints while welding or some other steps of 

assembly. 

(3) The hangers are eccentrically connected to the main wires and 

although alternate hangers are on the opposite side of the wire, this 

would cause a certain amount of torsion. 

(4) There is the possibility of errors being caused by a slight error 

in the positioning of the vibrating wire gauge. 



(5) If there is a certain degree of eccentricity in the loading, 

the wire segments can rotate with respect to each other, causing 

undesirable changes in the hanger tension. Nealiwrements were taken 

for rotations in the wire due to applied loading. The rotations 

were noted to be greatest near the centre point load-cells. 
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TABLE 6 

Load on the wire 
lb. 

t 

Load measured 
lb. 

% error 

r 

0.64 0.655 2.33 

0.84 0.860 2.33 

• 1.04 1.050 0.96 

1.24 1.255 1.21 

1.44 1.440 Nil 

1.64 1.640 Nil 

1.84 1.855 0.80 

2.04 2.040 Nil 

TABLE 7 

Initial load on 
the wire 	(lb) 

Final load on 
the wire (lb) 

Differences in 
the load measured 

(lb) 

% 
Error 

4. 	g 

0.64 0.74 0.103 +3.00 

1.04 1.14 0.099 -1.00 

1.64 1.74 0.104 +4.00 

4 
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CHAPTER 3 

DISCUSSION ON 1ESULTS 

3.01 

The theoretical and experimental results obtained have already 

been given in Chapters 1 and 2 respectively, along with comments about 

the important features of the results. Lost of the experimental results 

are plotted on the same figures as the corresponding theoretical 

results. This Chapter gives a summary of observations from the results 

as well as a discussion on the comparison between the theoretical and 

experimental values. 

3.02 

Results of point loads applied only at the quarter point and 

the centre point (or very near the centre point) of the span are given, 

because the maxima and the minima of the different parameters, 

being studied, occurs when point loads are applied near these points. 

(See Figures 19 and 20.) 

3.10 Single Cable  

The theory used for acing the single cable is for flexible 

cables only and it will be seen from Figures 42 and 43 that the agreement 

between theoretical and experimental values for vertical deflections is 

closer for the .0164" diameter wire than for the .064" wire, which has 

considerably more bending stiffness than the thinner wire. The agreement 

for the .0164" diameter wire is excellent. For small values of W 

there is little difference between the values obtained from Pugmley's 

theory and the more accurate theory but for larger values of W the 

values obtained from the more accurate theory show better correlation. 
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The correction terms included in the more accurate theory, 

which are neglected by Pugsley, are only material at high values of 

applied loads. 

The agreement between experimental and theoretical results for 

horizontal deflections (Figure 4/) is also reasonable, the agreement 

being better for the thinner wire. Theoretical values for horizontal 

deflections have been obtained by using Pugsley's theory, which does not 

consider the size of the wire. 

The theory is extremely simple to use and the required computations 

can be easily done on a desk calculating =chine. 

3.20 The Plane-system 

3.21 General Observations  

(i) The resistance of a single cable to deflections under applied 

loads is mainly due to its Igravitystiffnesst A plane system, on the 

contrary, derives most of its stiffness from its prestress, and has very ,  

little 'gravity stiffness'. Indirectly, however, it con be seen as a 

structure with two single crbles of reverse curvature interacting 

with each other. 	Therefore, there is justification in expecting 

that the plane system will have greater stiffness than a single cable 

(provided lw' is the same for both). It will be seen from the results 

that the ratio of the maximum experimental v‘:rticrl and horizontal 

deflections for a single cable and a plane system is approximately 1.6 

for the same value of w and W. 

(ii) It has been shown that the .064" diameter wires used as the 

main cables in the experimental model, are not completely flexible at 

that scale. Both methods of theoretical solution are only meant for 
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structures with flexible elements and as such the model with the 

.064" diameter wire does not comply entirely with theoretical requirements. 

There are also some differences arising because of The difficulty of 

representing all model conditions in a theoretical treatment. 

(iii) The structure gets increasingly stiffer with applied loads and 

has a basically non-linear behaviour, just like a single cable. It 

will be seen for all cases of loading that the values of deflection, 

X, hu  and hL  vary non-linearly with the magnitude of applied loads. 

(iv) For loads applied to the upper cable, the hangers immediately 

under the load or within their immediate vicinity experience a decrease 

in tension and all other hangers undergo,  an increase in tension. 

If the magnitude of applied loads is increased to an extent such that 

some of the hangers go slack and become inactive, the two cables 

still continue to interact through the rest of the hangers (except 

for a case of uniformly distributed load over the whole span). For 

loads applied to the lower cable all the hangers undergo an increase 

in tension. 

(v) It will be seen for loads applied on either the upper or the 

lower cable that values of hu  are much larger then I hh 1 , which shows 

that the upper cable is the load-carrying cable. 

(vi) Results for the range of loads applied have shown that there 

is negligible difference between the upper and the lower cable vertical 

deflections; also there is negligible difference in vertical 

deflections whether the upper or the lower cable is loaded. Therefore 

only upper cable vertical deflections have been plotted for all 

loading cases. Corresponding points on the two cables move in 

opposite directions horizontally and the deflections are comparable. 

(vii) The ratio between maximum horizontal and vertical deflections 

calculated under a load, P = 2.5 lb. (fi = 0.1) varies from 
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approximately 0.25 for a load near the end to approximately 0.075 

for a load at the centre point. 

The ratio of maximum calculated vertical deflections for a 
NOD 

load P = 2.5 (W 0.1), applied horizontally or vertically at the 

centre point is approximately 0.125. 

3.22 Discussion on the comparison of results  

(i) Figures 12 to 23 show the experimental and theoretical 

results for the plane system, which are being compared here. It 

will be seen. that there is better all-round agreement between 

experimental values and the values from the 'General method', than 

the values from the 'Influence Coefficient' method. The 

experimental results lie between the results from the two theories, 

(ii) Deflections 

The agreement shown i Table 8 is reasonable. It will be 
seen that the errors from the 'Influence coefficient' method go on 

increasing with the values of load whereas they are almost unaffected 

in the case of values obtained from the 'General method'. Figure 23 

shows that for uniformly distributed load, p, negative deflections 

obtained by the 'General method' show much better agreement than 

those obtained by the 'Influence coefficient' method. 

(iii) Values of hu 

Excellent agreement between the theroetical values obtained 

from the 'General method' and the experimental values can be seen Ln 
x 

Table 9. The values of the point load applied at the quarter point 

obtained by the 'Influence coefficient' method are particularly bad 

but the other values show reasonable agreement. Values of h have 

not been tabulated as they are small and unimportant; the values can be 

+ Page 89 	x Page 90 
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seen in Figures 19, 21 and 22. 

Errors given in Tables 8 and 9 are computed on the experimental 
values. 

(iv) Values of change in hanger tension 

It can be seen from Figures 12 and 15 that reasonable agreement 

is obtained by the 'General method' for all values and positions of the 

applied point load. The values from the 'Influence coefficient' method 

are not so close to the experim ntal values, especially for W = 0.2. 

For a uniformly distributed load on the upper cable (see Figure 21) 

values from the 'General method' show fairly good agreement and the 

order of error is unaffected by the variation in p. 

The 'Influence coefficient' values show fair agreement for 

p/w = 0.4 but start to diverge from the experimental values for larger 

values of p. Both methods show good agreement for the lower cable 

carrying load p (see Figure 22). 

3.30 Three-dimensional system 

A suspension system consisting of three cables has been solved 

in Section 1.33. It has been shown that the 'General method' gives 

satisfactory solutions for the initial geometry. A numerical example 

has also been solved for an applied point load. The different parameters 

in the structure are deliberately chosen such that it is very nearly 

the same as a plane-systems 
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Tos 0 ; CEA)hcip 0 

(EA)cu= 90,000 lb. 	
(EA)ci= (EAlcz= 45,000 lb• 
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	 5 II 	

=T2=0.6 lb. 	(EA)h-(EA)h2  = 2225 lb. 

(EA)cet 90,0001b. 	 (EA)t5= 90,000 lb. 

PLANE SYSTEM,  3...CABLE SYSTEM 

CROSS SECTION AT THE CENTRE 

Ta0440 3 *hewn that the results fron the. two solutions ogre* 

within Ono* 2.9001 expected. 



TABLE 8 

Load Applied at 

% Error in values of deflections 

Influence Coefficient 
method 

General method 

W = 0.1 Hanger no.10 - 4.3 + 11.2 

W = 0.2 Hanger no.10 - 11.3 + 13.8 

W . 0.1 Quarter point - 6.5 + 3.9 

W = 0.2 Quarter point - 11.6 + 4.0 

p/w == 0.4) + 3.0 + 5.0 
) 
) Part of the 

p/w = 0.8) left half of + 6.0 + 6.0 
) the span 
) 

p/w = 1.2) + 10.0 + 3.7 
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TABLE 9 

Load Applied at 

% Error in values of hu  
--... 

Influence Coefficient 
method 

General method 

V= 0.1 Hanger no.10 + 14.7 nil 

W= 0.2 Hanger no.10 + 14.4 + 1.5 

Ci= 0.1 Quarter point + 42.5 + 2.1 

W. 0.2 Quarter point + 54.0 + 2.6 

p/w = 0.4 ) - 10.0 nil 
) Part of the 
) left half of 

p/w = 0.8 ) the span on - 7.5 nil 
) upper cable 
) 

P/w = 442 ) - 3.2 nil 	• 

p/w = 0.4 ) Part of the - 11.7 - 3.9 
) left half of 
) the span on 

p/w = 0.8 ) lower cable - 2.0 - 0,7 
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CHAFE; 4 

CCNCLUSIONS 

4.01 Introduction 

Chapters 1, 2 and 3 describe the fundamental study on a single 

cable, which is basically a gravity system, and plane and three 

cable structures, which are basic prestressed funicular suspension 

systems with little or no 'gravity stiffness'. Most suspension 

systems (except the type shown in Figure la) consist of two or more 

cables of reverse curvature, prestressing and thus stiffening each 

other. The study of two cables interacting with each other is, 

therefore, fundamental and the results obtained for the plane system 

are of application to general suspension systems. The study of the 

three-cable system is a step towards a more detailed study of space 

suspension structures. 

All this study has been carried out for structures supported 

by rigid and unyielding supports and at constant temperature. A 

method for considering the effects of support movements, slip at the 

support and temperature changes has, however, also been suggested. 

The main features of the 'influence coefficient' method and the 

'General' method have been discussed in Sections 1.23 and 1.34 

respectively. Observations on the theoretical results on a single 

cable and the plane system are made in Sections 1.10, 1.22 and 1.32. 

The possible sources of error in the experimental work are given in 

Section 2.15, and other important points about the experiments are 

discussed in general in Chapter 2. General observations about the 

behaviour of the plane system are made in Section 3.21, and those on 

the comparison of theoretical and experimental values follow in 

Section 3.22. 



The main conclusions drawn from the above study are given in 

the following sections. 

4.10 Single cable 

An experimental and theoretical study has been made for single 

cables under applied point load. The theory, which is very simple 

in approach, is meant for flexible cables only. Excellent 

agreement has been obtained between the theoretical and experimental 

values. The theory has been used to obtain an approximate solution 

for a plane prestressed Suspension system. 

4.20 Plane-system 

The plane system has been studied in great detail, experimentally 

as well as theoretically. Two methods of theoretical solution have 

been used, and keeping in view that the experimental model could not 

comply entirely with theoretical requirements, the agreement obtained 

is quite reasonable for most cases. 

The 'influence coefficient' method is much simpler to apply 

but it is limited to considering vertical loads and deflections only. 

It gives reasonable results for deflections under applied loads; 

agreement for forces is also reasonable for small applied loads. 

Where a largo discrepancy has occurred between theoretical and 

experimental values of forces, the theoretical values are the 

greater. 	It has been shown that the value of unit load should be 

.01 or less times the value cf wL, in order not to affect the results. 
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It will be seen from the comparison of results in Section 3.22 

that the values from the 'Influence coefficient' method are 

'in reasonable agreement for small values of load, but are in error 

for larger values. This shows that the law of superposition used 

in the method is justifiable for small loads but introduces errors 

for larger values of applied load. 	The method is thought to be 

quite suitable for a preliminary analysis. 

The 'General method' is very simple in principle but involves 

a considerable amount of computation. The agreement obtained with 

this method is very good for both concentrated and uniformly 

distributed applied loading and is hardly affected by the magnitude 

of loads. 

It has been shown for both methods of solution that the 

number of nodes can be cut down, reducing the computation work 

considerably and at little sacrifice of accuracy. 

4.30 Three-dimensional structures  

The applicability of the 'General method' of solution to three- 

dimensional prestressed systems has been shown by using it to solve 

a three-cable structure. The generality of the method makes it 

a very useful tool for the analysis of prestressed suspension systems. 

4.40 Experiments  

The experiment on the plane system presented some difficulties 

in the measurement of forces, particularly as it was desired to 

maintain a force-history of the structure. The load cells used as 

links in the main wires and the vibrating wire gauge for the hangers 

proved to be a satisfactory means of measurement. The vibrating wire 
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gauge Vas Sound satisfactory for maintaining the force-history of the 

model, but the design of the load-cell needs further improvement before 

it is sufficiently dependable in this respect. The load cells and the 

vibrating wire gauge are described in detail in Section 2.13. 

4.50 Computation 

Both the theoretical approaches used to solve the plane system lead 

to the numerical solution of simultaneous equations sufficiently large 

in number to require the use of digital computers. Computer programmes 

were written in IME7:CMY AUTOCODE' and are suitable to be run on the 

'ATLAS' computer using 'compiler EMA'. The programmes are most general 

in nature and a study of Section 1.31 and the flow diagrams in 

Appendix 'B' will show that it will be more economical if a large 

number of cases of loading are solved in the same run of the 

programme. The programmes require as data the geometry and stiffness 

of the structure and the loading. 

A similar programme was written for the solution of the three-

cable system. The programme can determine the geometry of the 

structure for initial force and then solve the structure for applied 

loads. It will be more economical to solve a large number of cases 

of loading in the same run of the programme. 
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Notation 

The symbols and letters used have the following definition, 

unless otherwise mentioned. Cables No. 1, 2, and 3, and hangers 

No. 0, 1 and 2, refer to the three-cable system. Upper and lower 

cable refer to the plane system. 

A 	The area of the cables or the hangers 

E 	Youngts modulus of elasticity 

(AE)h 
	 The value of AE for the hangers 

(AE)ho; hi; h2 
	The value of AE for hangers No. 0; 1; 2 

(AE), 	The value of AE for a cable 

(AE)co 	The value of AE for upper cable; lower cable 

(AE)Ci; C2  C3 	The value of AE for cables No. 1; 2; 3 ;  

96 

w 

p 

P 

T 

T
k 

Fl 

Foi 

A Fo. 
1 

A uniformly distributed vertical dead weight or 
the initial prestress per unit length of span 

The uniformly distributed applied vertical load 
per unit length of span 

An applied vertical point load 

w x span 

The pretension in the hangers of plane system 

The change in hanger tension at node k 

The initial assumed force in a member k i 
member k i is the member joining nodes k and 

K and i being any genetal nodes in a structure 

The pretension in member k i 

The change in force in member k - i 



"k 	
An applied point load at node k along X-axis 

Yk 	
An applied point load at node k along Y-axis 

Z
k 	

An applied point load at node k along Z-axis 

T
o•; 1; 2 	

The pretension in hangers No. 0; 1; 2 

H The horizontal component of the single cable tension 

h The horizontal component of the change in the single 
cable tension 

I; 	=1 + -a 
h 

T 	 The tension in a single cable at any point x 

HU; L 	
The horizontal component of tension in the upper 
cable; lower cable 

hU The horizontal component of change in tension in 
U; L  the upper cable; lower cable 

The vertical reaction at the supports (under 
pretension only) in the upper cable; lower cable 

The average value of the positive values of Tk 

L The span of the structure 

1 	The length of a single cable 

• 1 	The change in cable length 

D The vertical distance between supports 

C
o 

The distance between supports measured along the 
Z-axis 

d The central sag of a single cable 

dU The central sag of the upper cable; lower cable 
U; L  

D1; 2; 3 	
The vertical sag of cables No. 1; 2; 3 
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C
1; 2; 3 

11
i 

lo. 

L
k 

The horizontal sag of cables No. 1; 2; 3 

The assumed length of member k - i 

The length of member k i under pretension 

The length of the hanger k 

98. 

r 	,where x is the distance from the origin of 

the point where the deflection is being calculated 

a 	The spacing of hangers 

n The total number of hangers, or the number of the 
sets of hangers in the three-cable system 

(xk' Yk' 2k)  

(uk' vk' zit)  

The coordinates of a node k 

The movements of the node k along the X, Y 
and Z axes respectively 

assumed values of 
xk' Yk and zk 

respectively 

u The horizontal deflection of the single cable 

✓ The vertical deflection of the single cable 

v
r 	The vertical deflection at the loaded point in the 

single cable 

v.. 	The vertical deflection of a single cable at 13 
station j for a vertical applied load at station i 

V. 	The vertical deflection in a suspension bridge 
stiffening girder at station j for a vertical 
unit load applied at i 

u
mk 	The vertical deflection of the upper cable at 

hanger k for a vertical unit load applied at 
hanger m 

lmk 
	The vertical deflection of the lower cable at 

hanger k for a vertical unit load applied at 
hanger m 

(u k, vlk' zl
k  ) 
	The values of correction applied to the initially 
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2 
	- 2r), 

= 	
2 — (1 	

2r) 

d 

2 

2 
32 =- 

L 

SHL 
AE 

HL 
AE 

Tk Lk 

(AE  k 

at hanger k 

The coefficient of linear expansion / degree 
change in temperature 

change in temperature 

Slip at the support 

EA  
EA 	Fo 

Lk) • t 

upper cable support 

upper cable support 

lower cable support 

lower cable support 

Vertical displacement of the 
at x = - L/2 

Vertical displacement of the 
at x = L/2 

Vertical displacement of the 
at x = - L/2 

Vertical displacement of the 
at x = L/2 



Horizontal displacement of the upper cable support 
at x = - L/2 

Horizontal displacement of the upper cable support 
at x = L/2 

Horizontal displacement of the lower cable support 
at x = - L/2 

Horizontal displacement of the lower cable support 
at x = L/2 
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Appendix A  

Derivation of equation (34) dx  k 	"I 
Length of a small element in 17 	dl 	-r_ 

1 
the cable can be given as 	1 	 dy 

i 	....i._ IT 	1 
V2 

dl. =, fi+n 1 •dx (48a) 

After deflection v has occurred 

the changed length can be 

obtained by replacing y by 

(y + v), as 

7
-
/2 

c1.1' = ft+ (E-41 + 	dx dx dx. (48b) 

The change in length due to deflection v is, from equations 

(48a) and (48b) 

6 (dl)  . 	21112 	1Y2 

dx - dl'-d1 = 	+(a+b) - {I +a2  

Or 	4, (a +b) - 4,(a) 	 (49) 

where a and 	b = (117  
dx 	dx 

4I(0:1+b) 	can be expanded in Taylor's series (15)as 

(a+b) = [0(b)l b.:0.  4-b[-ck(b)k.a.  + 	.17b,cp(b)] b„a  + • 1{ 1 

0 (a) + 447] or (50) 
(l +b)

7 
 2  b 	

+ 
2  (14"b2)3/2] b=0. 

Neglecting higher order terms and substituting this value of 

0 (41+b) in equation (49) we have 
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ii 

(d1) 	a. 	b2 
1  = b• 	+ d x 	i.a2112 	a 	+a2)3/2 

Substituting the original values of a and b and integrating 

to obtain the total change in length, we have 

L/2 

	

	 Liz 
dv 
dx  

d x 	(4)1} 1/2 dx ÷ 2 
( au- ,2 	 
dx) 	I+ fdai2.15/2  

%fix 
dx 	(51) I.  

- L/2  

Equating this change in length to the extension of the cable 

due to increase of cable tension, we can restate equation (35) as 

L./2  

dx
dy  

-L/2  

dv 
L/2  

x- + 2 	k x)  
1 if  dv 12  	5. h L 

11 	(.4_ ‘2.15/2  dx  AE 
-1/2  

 

(52) 

(Note: Evaluation of S is given later in this appendix.) 

Derivation of equation (36) 

Equation (51) can be rewritten as 

L/2 	 Liz 

Al =(y) (1÷X) [ i  - i rx )21.cix +1.  (clf i 1 4 ( c-4) 2  

	

-1-/2 	 -1 /2. 

	

/ 	 f 

	
(53) 

neglecting higher order terms of 4902  

Change in length from x = - L/2 to x = rL , A 1  

Differentiating equation (1) with respect to x and 

substituting the value of H we have 
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c1.1 
dx. 

 

(54) 
L2 

Differentiating equation (5a) with respect to x we get 

dx 
du 	8d[ fx 

TO-2r) 	 (55a) L T, T.  

du" 
dx 2 = 64d

2[ 	x2  x - 	 ‘2 	2x r- 	y 	L • 	- — •W •k1-2r) + 4  AI- 2r) -  hL L 	 ; -2  L 1.-  

I03 

(55b) 

s_E dv 	dv 2 

, 
Substituting values of and 

dx dx 	( dx 
) from 

equations (54), (55a) and (55b) along with the following substitutions 

G = 

F = 

K = 

d
2 

32 172 (inside the integration sign) 

d
2 

32 	(outside the integration sign) 
L4  

(1 - 2r) 

In equation (53) we have 

rl 	 rL 

2 F 	_ G .ac_31.{L. L 
	L 

_ 	
L2  

- 11.dx + F • 0 -3G • 	) • 
2  11 

- 2 	 -L/2, 

2 

;12 	
-2K 	K2) 2x  ti x 1 x2  

L 	KJ + —L2 
• dx 

 

(56) 

  

In spite of having the same value G and F have been separately 
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denoted, because by equating G to zero, it will be seen that the 

denominater term reduces to unity. 

On integrating and rearranging the terms we have 

1 	
2 Ai. 

= 
21 1 j  is_L .x - K .„2  I 3 KG 3 3 GK 4 3 G 	5 

' 	L Tiz 	2 • + 	.x - 	•x 	— 7 "" a 	2L 	+ --1-  'x --- • X  4 	lo 

+77 
I f GK 4 2G 5) _ X3 G 

1r  5 ] 
X.=1-L 

A---r x + - 	x iEs 	6L ioL5  — X = - Lti  
(57) 

Change in length from x-t= rL to x =1.12, A 12  

Differentiating equation (5b) we have 

du 
dx 	

8d. 	 Ix +A t i  21.N  I _ 
L 2 	 L 

Putting M 2 (1 2r) 
we obtain 

du =  8d 1ix 	) 	x1 — L 	L+M  
(58a) 
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and 
[dtr \a. 64d2f 1 	x2 	 2X 1 f X 	X21 

kCiLi 	 +11VIx 
	

k  T: +" 	 -r- 	 I (58b) 

It will be noted that the term W2  enters the expressions through 

dv 2  
(--) 	and hence if the second term in equation (53) is to be excluded, dx 
—2 W 	should be equated to zero. 

dv 	2  
7 Substituting values of 	and (a-) from equations (58a) 

and (58b) in equation (53) we have 



L/2 I L/2 

Al2 = --1--. (X -'-GL7. x3) {± C-cL.- + M) - 2f} dx + F .  (I- 34 .x2). 

rL 

105 

VL 

2m.t +142)
/ 
 _ I 2X 

-( 
x  
7 L2 	-C+) (59) 

On integrating and rearranging terms we have 

2 2F ft 1M2L x 4. t.x2 .4..t.x2 ...  MG xs _1.  MG .x4_ 36 	5% bd2 = 	 ) 
L 112 	 6L 	2L 	4 LZ 	10 

4.  1 MG
x

4 
	 1DV 

LG x ._ 5 	I 	3 G ,„5] _ -- • x. - ---g 

rL 
(60) 

Total change in length Al can now be obtained from equations (57) 
and (60) as 

	

2F 	I 	 I Y2  L2 G tx2_ m2).7.51.3+ _3 .G ., 	4 4 M = 	 - —1--4-kK2-M2).YL --LK+Mtr L --- 

	

L 	 2 	 4 -C2
(1( +Mpe I 1 

2 , 	2  
2 	

(K
2+ m2). _ + • 

(
ic

m 	
L _ Gi K2+ m2 ). 	_ 

h 	8 	 4 	t 	/ 16 	64 160 

2  
2 

I G 	4 4 t 	( 1 	L 441  Li 	L - GL 
h 2L 	

1 -(K+m)r 	ij -"kt)  . 32 	.40 - 24 	160 j 

Putting the following values in equation (61a) we have 

(61a) 

K+M = 	 K-M = -2rCV.  

% - 2  
1(

2
+ M = 0- 5(1+4r2  w I 	K2-M2 = -2rW

2 
 



FL I 	G 	- 
= 	-1") [ kis5 	h2 - 4Gilr4.1-1 + G03-f- 

5
fl  

4 

2 
3 2 ;y r 	r2  + 8 (1-Gr2  ).1,7421"2  + 1(1+ 4 r 	+ 1

3
1 

-G 
 1
1(1÷4r2)if 2  +44.0 +LI] 
4 

The right hand side in equation (52) 

hL 
AE 

(61b) 

HL h s . 
AE H 

10G . 

Or 

or u(h-1) where HL 
U SAE 

(62) 

Equation (52) now becomes, by substitution from equations 

(61b) and (62) 

12U h3 
	121.1112 + k 6 /I2it  4 +05G +1- 	 r -0-750 -0.6) -11 

FL 	 FL 

+ 12 (1 - 1.5 Gr2)-1711 r2  + 24(1 -Gr2).iv.2r2  - 	+3i1 +5(1+4r2)01- 21 

1 - 2  +G•{ 0-75(1+4r2/W +1•125W +0.451 	=0 	 (63) 

and is identical to equation (36). Equations (37a) to (37e) are 

easily derived from equation (36) or (63). Extensibility of the 

cable can be neglected by equating U to zero. 
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Derivation of the value of S 

If it is assumed that 

(i) length of the cable 1 = span L 

(ii) initial tension in the cable = H , throughout its 

length, and 

(iii) increment in cable tension = h ,_throughout its length 

hL 
then the extension of the cable due to h = 

	and S = 1. 
AE 

The above assumptions are justifiable for a small ratio of 

dip to span. A more accurate expression for the extensibility of 

the cable is derived here. The change in cable tension AT for 

an applied load P (see Figure 3) can be evaluated by considerations 

of statics. 

	

,2 	2 1/2- 	WL 	2 	11/2  
A toc  . _1/2  to yo  = [(VA-tax) +(h+H) I -1(--i-- tux) +14 	= Oi l  . 	(64a) 

	

V2 	Vz 
and kit 

(x=rL to L/2) - 
f (VA- P -u4+(h+ H) I - [( 2  wl  —LI/ xf+H2} ..„ Ati (64b) 

The initial length of a small element of the cable dL is 

given by equation (48a) as 

2 V2 	 2 211/2  

— 	
i I + (g) 1 	0 r 	{ 

	

1 + 	 27 
H 

The extension of the cable becomes 

rt. 
2 

( e1 	 ba ri) = 	
• fat-1 	+ ur 2) 1/2  • dx  

-1.12 	

(65a) 

e2  
Cx =rL to L/4 

LA 
2x2 1/2  

-TE  • Ata  • (1+ uj 	• dx 

YL 	H  
(65b) 
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The value of S is evaluated here for r = 0 , in which 

case the equations (65a) and (65b) are identical and the total 

extension becomes 

e . 2e: 	 (66) 

The value of e is obtained by numerically integrating the 

expression in equation (66), and S can be evaluated as 

S e 
hL/AE 

The calculations have been done for a cable of span 100 in. 

and weight 1 lb./in. of span. It wiLl be seen from the following 

values that the value of Ti does not appreciably affect S . 

d/L 

	

0.05 	0.1 	1.012656 

	

0.05 	1.0 	1.013007 

Values of S have been obtained for W = 0.1 for other 

values of d/L and are given below 

d/L 

	

0.05 
	

1.012656 

	

0.10 
	

1.048925 

	

0.20 
	

1.190880 

10 8 . 
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d2 
These values of 'S are very nearly equal to (1 + 4.8 --r, ) 

L4  
and this expression has been adopted for general use to express the 

extensibility of the cable. The empirical constant of 4.8 could have 

been calculated with greater accuracy but it was considered needless 

because the results are not affected even if S is taken as unity 

(see Figures 5 and 6). 
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Appendix B 

The computer programmes written to employ the 'Influence 

coefficient method' and the 'General method' to solve numerical 

problems are described here. The limitations of each programme are 

enumerated and their working is described by means of flow-diagrams. 

The symbols used and not covered by the general notation are defined 

by their use in the flow-diagram or defined separately. 

Programme 1. Influence coefficient method for solving a plane system 

The programme has the following limitations:- 

(i) Structure should be symmetrical about the y-axis and the x-axis 

passing through the centre point between the vertices of the two 

main cables. 

(ii) n 4. 20 
(iii) n x total number of applied loads 4.400 
(iv) At least one load must be applied on each cable, however its 

value can be put equal to zero. 

(v) R4:.50 

(vi) Q*511 

The symbols not included in the general notation and also not 

clearly defined by the flow-diagram are given below:- 

It 	= Number of loading cases 
Al 

N' 	= Number of applied loads in each loading case on the upper cable 

14 	= 	ri 	11 	It 	 It 	It 	If 	 ft 	 ft 	tt 	II 	lower 	II 

H 2  2 

A23 	
(4)t 

W 	= Unit load as proportion of 'IL 

W' 	= Value of unit load in units of wL 

A
22 	

24(0t 
kL 
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Matrix A' =nxnsized left hand side matrix in equation (43) 

Matrix 131  = the right hand side matrix for R loading cases, size n x R 

I 2 3 ----- --R 

Size -nAR. 

Tri 4  - - - - - - 

Programme 2. General method for solving a plane system 

The programme is written to assume the geometry of the main wires, 

correct it if necessary and then solve the structure for applied loading 

or movements at the supports. The structure should be symmetrical 

about the y-axis and n should not be greater than 20. 

Following are the symbols needing separate definationt- 

M = Number of iterative cycles required to correct the initially 

assumed geometry. 

S a Number of iterative cycles required to obtain a solution for 

applied loading. 

Matrix A = Matrix consisting of the coefficients of the unknown matrix 

and is generated from the left hand side of Equation (33). 

Size of the matrix is (4n x 4n). 

MatrixT = 

iruk  .lk 

A  

U1)13er 
cable 

Lower 
Cable 

In 

Matrix U = 
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Matrix B = Right hand side matrix which is also produced from 

equation (33) and its size is (4n x 1) 

Matrix B = B1  + B
2 

where, 

Matrix B1. 

avid 

Matrix Bi= 

Upper 
Cable 

Lower 
Cable 

Upper 
Cable 

Lower 
Cable  

A-. 1,2- • • • • 71 

= I, 2 ----- • • 11 

Output block No.1: 

Prints matrix U in a block by itself with a maximum of L' numbers on 

a line.— 

Output block No.2: 

Prints Q Foi  for the upper cable 

ft 	A Foi ft 	lower " 

A Foi 	" hanger 

The output is in a block by itself with 3 numbers per line 

i = 1, 2, 3 	 n for hangers 

i 	0, 1$  2, 3 	 n for cables 



Programme 3.  Solution of a three-cable system 

The programme either reads in as data the values of xk, y
k z.x  - 

and Fo
i 

or establishes the initial geometry of the structure and 

then finds solutions for applied loads. The structure should be 

symmetrical about the y-axis and the value of n should not exceed 9. 

The following notation needs separate definition:- 

Matrix A = The matrix containing the coefficients of the unknown 

matrix U 

(9n x 9n) 

ti l, 

and is produced 

in size. 

by using equation (33). 	It is 

art,. Cable 1 	(fig .56) 

Y.4 

Matrix U = (UA  Cable 2 	( 	•• ) Stze (971x1) 

Yr. 

li.. h  
u .r .k  Cable 3 C 	) 

1.7  b. 42=1,2,— -• • -• 11. 

Matrix B is the right hand side matrix produced from equation (33). 

It is (9n z 1) in size. 

Matrix B 

where, 

+ 8
2 

Matrix B1 = 

ifa= 1,2 	)1. 

113 . 

)< 4, 
Z,42  
Yli  

Xh 
 

Y h 

• 
X.4.4  
Z h 

 

Cable 1 

  

 

Cable 2 

  

 

Cable 3 
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Matrix Bz = 

Kx.h 
Kzh 
1 941 

kx44 
Kz h 
1$111% 

• • 
K3ch  
Ki 

.1a 

Cable I 

Cable 2 

Cable 3 

t z 	 

Cable I 
urn 

Cable 2 Size (67-1)(1) Matrix S/ = 

Cable 3 

42. = 1, z 	 .n 

Matrix C = Matrix consisting of the coefficient of V is calculated 

from the left hand side of equations (25 b and c). 

Matrix D = Right hand side matrix produced from equations (23 b and c). 

Output block No. 1: 

(i) 	Prints F'
i 
for cables 1, 2 and 3 and prints l'i for cables 1, 

2 and 3 in a block by itself with 6 numbers on each line; 

i = 0, 1, 2 	 

tiy16.  
v 1a 
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(ii) Prints lt for hangers 1, 2 and 3 in a block by itself, with 

3 numbers on each line; i = 1, 2, 	 n. 

(iii) Prints zk  for cables 1, 2 and 3 and prints yk  for cables 1, 2 

and 3 in a block by itself with 6 numbers on each line; 

k = 0, 1, 2 	 (n + 1) 

Output block No. 2 

(i) Prints zk  for cables 1, 2 and 3 and yk  for cables 1, 2 and 3 

in a block by itself with 6 numbers on each line; 

k = 0, 1, 2 	 (n + 1) 

(ii) Prints 1! ( v) 	 1 (V) for cables 1, 2 and 3 and 1 	for hangers 1, 2 

and 3 in a block by itself with 6 numbers on each line except 

when i = 0 and there are only 3 numbers on the line; 

i = 1, 2, 	 n for the hangers; i = 0, 1, 2 	 n for 

the cables. 

Output block No. 3 

Prints A Foi  for cables 1, 2 and 3 and prints A Foi  for hangers 1, 

2 and 3 in a block by itself, with 6 numbers on each line except when 

i = 0 and there are only three numbers on the line; 

i = 1, 2 	 n for the hangers; i = 0, 1, 2 	 n for the cables 



START 

READS 
01, o: 

READS L,1/4AE)c 

(1)11.n :Q)n=i,a/L-,(A)n=n)  
G~U ,GI_,D, (AL)b , A22 , A23, 

R , Mi, NI 

READS IA VALUES OF v7 

	

72 	)3 	,1 	,, I. 
5 =1 74. 
	NI 

S =S+1 

	

NO 	 5 >12,3) 
,YES 

         

READS 

     

                

                

                

                

END 

      

EVALUATES MATRIX A 

AND PUTS A=1000 Ai 

 

        

                

                

                

                

       

EVALUATES MATRIX Bi 

AND PUTS BC- woo B' 

 

                

                

   

PRINTS 0.5 X B COLUMN BY 
COLUMN . EACH COLUMN CjIVES 
THE VALUES OF 10004.1A OR 
1000 X ,C,F, FOR A LOADINq 
CASE , AND 15 OUTPUT IN , 
SEPERATE BLOCKS ,WITH 0 
NUMBERS PER LINES 

 

                

                

    

INVERTS A AND: 
EVALUATES T ., 

= /JIB 

     

                

                

                

NO 

EVALUATES hO/H 

AND liL/H AND 
PRINTS EACH ON. 
A SEPARATE LINE 

PRINTS G 1N THE 
SAME WAY AS 51 

FLOW-DIAGRAM FOR PROGRAMME i  
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START 

READS 	VI,T) ,T13-11  
(AE)c.0  , (AE)CL. 	(AE)1.1 , 	, 

XI  X2/ 	D, 

J , RL , Hu , HL 

ASSUMES 1N171AL 
SHAPE; EVALUATES 4 AND FIL FOR 
CABLES. L=0,1---I1 

READS NEXT PROBLEM 

CORRECTS 71-',E 
M;,0 ONO  INITI ALL." ASSUMED 

YES 

	SOHFA IPTEE RI N,' ,, 0  , 	(GEES C 

'EVALUATE:. Lbi, 
	 FOR HANGER'. AND 

EQUATES "ALTO T 
.i. .., 1,2 -- 	Is 

SETS UP MATRIX A; 

PUTS A ,--•0001 

EVALUATES A-1  

READS NEXT CASE OF 
LOADING , 

Ms-=Mit e  

READS MATRIX 

:000161  ,YU1 Put, 

Yuz,hz,YLi , PLi, 

YL2, gL2 

S`= 

EQUATES l7 AND U 
AT THE SUPPORT TO 

YUI Aut ETC. 

OUTPUT BLOCK 
No: a 

SETS UP MATF. 	By; 

PUTS Ba: -0001 Bzy 

PUTS 5 r- BO-  52 

EVALUATES 13(5)  

6(55., A-L B  

OUTPUT BLOCK 
NO.1 

EVALUATES LL 

AND FROM IT THE 
VALUES OF APoi.. 
FOR ALL MENIBERS1 

NO 	r  S'› 27) 
YES  

FLOW - DIAGPAM FOR PROGRAMME 2. 



ND 
Gisi> R ? 

YES 

5t 5+1 

START  

READS A' 

IBi= I I 

READS 	(11+-2.), 

\AP.o? 

;NO  

=I 	 

ASSUMES ,94, AND 4. 

FOR THE CABLES 

/2.,:t 

EQUATES Ft FOR THE 
HANGERS TO To',"ri 
AND T2 RESPECTIVELY 

EVALUATES LANDF.: 
FOR THE CABLES . 
AND It FOR. HA NGERS 

OUTPUT BLOCK 
NO. I 

1READS MI 

SETS UP MATRICES 
C AND D 

EVALUTE 5 MATRIX 

= CID 

PUTS "Jf -: 9 2-1-1Th  

AND EVALUATES 4W)  

OUTPUT BLOCK 
NO. 2 

11'3 • 
xviii 

ASSUME ( 

Q=1 

READS .0001X8i 

READS R' 

5=I 

EVALUATES A 

f YES 

SETS UP MATRIX 'A AND 

PUTS A =•0001 
A 

READS 5, Z (AE)c 
1;2;5 

(iNE)hii25.5 	L . 

READS. toi FOR 
HANGERS 	AND3 

I, 2 - - Y1 

READS Foz.  FOR CABLES 1,23; 

toL,  7, 	1$ 

I , 2 , 	- - - 

EVALUATES Bz 
PUTS Er B1 +132  

ti 

EVALUATES 0"113  

(V).-A-' 

PRINTS 0 (G'•' WITH 

L NUMSERS ON 
EACH LINE 

it 
ai= d4.1 

NO _(Q, 	> 2.?) 

E YYS  

ASSUME U (q)  

= 0•5'0((s/)+ 0.5 0(°:*  

EVALUATES 
AND 	FoL  FOR THE 
CABLES AND TIIE. 
HANGERS . 

T  
OUTPUT BLOCK 

t•!C . 3 

READS yAFOR CABLES 1,2,3; 

n 4 „ 
= 0,1,2 ---- 

YES 

PRINTS 
ROW BY 

ROW 

R
E
A

D
S
 T

H
E
 N
EX
T
 C
A
S
E
 

YES  
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FIGURES 1, 2, 3 and 4 are on pages 

5, 6, 9 and i8 respectively. 
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FIGURE 36 is on page /9 
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FIGLRE 40 	EXPERIMENTAL SET UP FOR THE .0164" AND .064" DIi.METER WIRES 
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FIGURE 45 	EXPEI-jilENTI:L MODEL OF THE FLNE SYSTEM 

THE PHOTOGRAPH SHOWS THE UPPER viaE DIRECTLY 
LOIJJED AND THE LOWE:Z WIRE SF:,ING-LOADED THROUGH 
A SEPL,ATE SET OF fiNGME: DURING THE ASSEMBLY OF 
THE. IODEL . THE LOWER WIRE IS LOADED OVER A 
PULLEY f.T THE LEFT SUPPORT. 



FIGURE 45 
EXPERIMENTa MODEL OF THE PLANE SYSTEM, 

THE PHOTOGR,,Ph SIMS THE UPPE, WI=1 DT..:,ECTLY LO:DED Ni)A THE LOWa, WI ZE 3P:aNG- 
LOJ_DED THROUGH 	3ET OF H:NGE.:S DURING THE ASSEMBLY OF THE MODEL, THE 
LOVER WIJaE IS LO:ZIED OVEx A PULLEY J..T THE LEFT SUR:ORT 



FIGURZ 47 
	

COMPLETED MODEL OF THE PUNE SYSTEM 



FIGURES 48 and 49 are on page 69. 
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FIGURES 51 and 52 are on pages 73 and 74 

respectively. 



FIGURE 53 THE IODEL OF THE L:NE SYS224 UND'_":t APPLIED LOIDING 
THE MEuSU:ING INSTiIUJIENTS / tE !LSO SEEN IN THE FHOTOGR/IPH. 
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