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ABSTRACT

A study on a2 single cable, and on plane and three~-
dimensional prestressed funicular suspension systems, is described

in this thesis.

The problem of a& single cecble with a uniformly distributed dead
weight and an applied point load has been studied and good

agreement is obtained between theorectical and experimental values,

The problem of interzction of two cables in a plane system has

been studied by using two theoretical methods:

(i) The influence coefficient method, and

(ii) A more general method,

Generalised computer programmes were written for both the methods
of solution to solve problems on the plane system (symmetrical about
the Y-axis) under any kind of loading. The values obtained by using
the influence coefficient method showed reasonable agreement in
smaller ranges of anplied load. The agrecment shown by the more

general method wes good for all recnges of loading tried,

The applicability of the general method to determine the
initial geometry of three-dimensional systems and solving them under
applied loading, has been illustrated by applying it to a three-cable
structure, A generalised computer programme has also been written

for the solution of the three-ccble system,
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INTRODUCTION

GENERAL

A single cable is one of the most efficient tension-carrying
structures, and is one, which is free of bending and buckling stresses,
This capacity of the single cable has been utilised for hundreds of
years in the form of both unstiffened and stiffened suspension bridges,
In the very early days natural cables were used until cables made out
of steel were used in a suspension bridge in Tibet in about 1630,
Recently suspension bridges of spans up to 4200 feet have been

constructead,

The idea of using cables as elements in a roofing system (perhaps
first inspired by the suspension bridge), however, is comparatively
very recent, Roof systems consisting partly or fully of cables as the
supporting structure can be termed as '""Suspension Roof Systems", This

thesis concerns itself mainly with the study of these systems,

CHARACTERISTICS AND ADVANTAGES

All suspension systems use a single cable as their basic element
and so the properties of a single cable under load are essentially
applicable to suspension systems.

(1) In a cable the whole section is uniformly stressed, besides, in
cables of small dip to span ratio tension is almost constant throughout
the span and thus the material used is utilised to nearly 100 per cent
efficiency, For this reason a cable has much larger average strain

as compared to a member in flexure for the same maximum stress,
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(2) Cables have no bending stiffness and can carfy loads only

through a change in the funicular shape,

(3) For reasons given in (1) and (2) esbove, a cable is a very flexible
structure, and hence the need to stiffen cable strrzture..

(4) The stiffness of a cable increases with the tension to which it

is subjected and therefore the relationship between loads and
deflections is non-linear, Tais property of a ceble to get stiffer
with loads, though stetically advantageous, makes theoretical analysis
complicated,

(5) A suspension system can be sc designed that most parts of the
structure carry pure tension., Since cables can carry tension with
great efficiency, quite a light and economic structure mcy result,
especially if high tensile steecls are used, This affects further
econony in foundations,

(6) The ease with which suspensiocn roofs can be constructed and

their attractive appearance make them 2 useful proposition both

to the architect and the structural engineer., Suspension roofs are more

advantageously used to cover large areas.

CLASSIFIC/.TICHN

Suspension roof systems ceon be broadly placed into two
categories:

(2) Singly-curved roofs,
(b) Doubly=-curved roofs,

The singly-curved roof will consist mainly of a2 scries of
cables placed prrallel to ench other, supported at their ends and
firmly anchored, The covering moaterial is carried by the cables
and may also perform the function of imparting stiffness to the
cables, The sketch in Figure l(n)xrepresents a typical roof of this
type, If necessary the cables can be prestressed and stiffened,
For example, each one of the cables in the structure in Figure 1(e)

can be prestressed by snother cable of reverse curveture in any one

VX Page 5



3°

of the ways shown in Figures 1(bX{c) or (d).

The photograph in Figure 2(a) ond (b;‘shows 2 wire model of a
doubly~-curved suspension roof system, The model was mede in order
to get a general idez of the problems involvcd with such systems and
their behaviour,

The chief elements in the structure are:

(1) The load-carrying cables, which are sagging,

(2) Reverse-curvature prestressing cebles,

(3) Arches, which support the carrying-cables at the boundary and
are the only part of the structure not in pure tsnsion,

(4) Cables at the boundary to support the prestressing cables,

(5) Anchorages,

Several structural variations are possible in the way the boundery
supports mey be provided, In certain cases supports znd anchorages
may be merged. Carrying and prestressing cables, "can if necessary be
replaced by one of the units shown in Figures 1(bJ}{e) or (d), depending
upon the requirements in a particular structufe. ' In cases where the
cable network has sufficient stiffness due to prestress, it is not
necessary for the covering material to provide any grevity stiffness and

a thin layer of the nmaterial is adegquate enough to cover the network,

PROBLZIM AND THE PURPOSE CF INVESTIG!TION

During the past two to three decades some structures of the types
described have been constructed, but any real attempts towards a study
of their behaviour have been recorded only during the last few years.
In the litersture published so far, there doces not'appear any proven
method for analysis of suspension systems, The work contained in this

thesis is an attempt in that direction,

It will be clear from the study of the examples given that in order

to understand the behaviour of suspension systems it is necessary tc make

X Page [



a fundamental study of:
(a) A single cable

(b) 7Two or morec cables interacting with esch other,

¥ith this requirement in view, the work listed below, was

carried out,

(1) Experimentcl study of three single wires of different span, size
and geometry, under load,
(2) Experimental study of the interacticn between two single cables of
opposite curveture prestressed by means of verticel, uniformly spaced
menbers, was dcne on 2 wire model of the type of structure shown in
Figure 1(b),
(3) Theoretical study of 1 and 2,

The above study is limited to plane-structures under vertical
in-plane loading,
(4) Theoretical study of a threc-dimensional structure consisting of
three cables interacting with each other through uniformly spaced

prestressing members,

The work is presented in the following order:

Chapter 1 Theory

Chapter 2 Experiments

Chapter 3 : Discussion on results
Chapter &4 Conclusions
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CHAPTER 1

THEORY

1.01 Review of existing theoretical work

This section deals with a brief survey of the existing theo-
retical work on plane and threc-dimensional cable structures. The
work on plane-systems is mainly limited to the treatment of a single
cable and is described in Scction 1.02. The term "single cable" is
here applicd to a cable hanging under its own weight, the distributed
load from the hangers, and an applied point load. The weight is

considered uniformly distributed across the span.

The work on three-dimensional structures falls into two main

categories:

(i) Determination of their geometry under initial pre-
stressing forces, and
(i1) Solution of a structure of known shapc under applied

loads,
and is described in Sections 1.04 and 1.05 respectively.

Some of the work reviewed here has becen used later, with
necessary modifications, to solve the problems being studied in this

chapter.

1.02 The single cable

Treatment of a single cable under appliced loads, as given by

(1)

Pugsley s is described in the following paragraphs. The cable is
assumed to hang initially in a continuous arc, which is parabolic in

shapc. Behaviour of the cable under three types of vertical applied



loading has been considered.

(i) Single concentrated load applied anywhere along the
span,
(ii) A short uniformly distributed load placed centrally
in the span, and
(iii) A short uniformly distributed load placed at one end
of the span.

The cable subjected to a single concentrated load is shown in
Figure 3t The cable is simply supported at A and B which are
at the same level. The lowest point on the curve, C, 1is taken as
the origin. It is assumed that the weight of the cable is w/unit

length of span and uniform throughout.

The cable hangs in a parabolic arc whosc equation is

Wi

y = & (1)
where H = EEZ is the horizontal component of cable
8d

tcension.

Let a point load P (P/wL 1is small) be applied at point Q
as a result of which the horizontal component of tension changes to,

say, H + h. The new arc AQ' can be described by the cquation

.2
W}sl

Y1 T 2(H+h) (2)

where x) and ¥y refer to a new origin G!', the lowest point on
AQ'. Since the cable is discontinuous at Q', another expression

like (2) will be required to express the geometry of Q!B. The

X que 9
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arc AQ' would, if continued, carry on through the points - Q" , B'.
Here Q" 1is such that w times this projected length is equal to

P. The arc Q'"B! will then be identical in form with the arc Q!B.

Now, from considerations of static equilibrium, VA s VB s

Xo and y, are evaluated as

VA = % wL + P( % - r) (3a)
\' =—]4wL+P(l'-+r) (3b)
B 2 2
2
YO = d - ﬁ—m{l +‘§‘1': (1 - 21?)3 2 (4b)
: J

Yo is measured positive upwards from C .

The geometry of arcs AQ!' and Q!B can now be expressed with

the help of the property of arc Q'Q" and cquations (2) to (4).

Taking C as origin the expressions for v are

2
ra
= W S - WX
U =Y, ¢ 2(H +h) { X -wl3 \")} 2H (52)
fer -Yzdxdrl '
f ]2 :
= us ! e(L o WX b
'3 3°+2(H+M ix+w(z+v‘)‘ T (5b)
14 J

for rLex<isy
The only unknown is 'h .
The force h 1is now evaluated by equating the change in length
of the cable due to deformation to the cxtension of the cable due to

increase in tension, i.c.,



11,

Extension of the cable due to increase in tension =
length of the deformed cable AQ!'B -~ length of the cable ACB .

Let v be the deflection, measured positive upwards. Length 1
of the arc ACB is given by, '

T,

I (RE) S

-t

Putting (y + v) for y and expanding in Taylor series, we
have
AN/

@
-1}, [| +(%) } |

. . . ]
if higher order terms in v are neglected.

x (7)

Assuming the cable to be inextensiblel and ignoring the term

(%f)z in comparison to unity+, we have

thz

[z - -
-L2

‘From the use of the equations (12 and (5) in equation (8) and

neglecting (%)2 in comparison to (%) we have

P

- (1 - 4r2) (9)

h
H

Nt

Knowing h , the deflected shape can be determined from

® 3+ The effect of nmeglecting these factors can be seen from a more

accurate analysis in section l.1l.
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equation (5)

The horizontal movements can be evaluated by the consideration
that the change in length of the cable between the support A and
any point x due to deformation v is the horizontal movement at
x because the cable is considered inextensible (it also means,

indirectly, that the :cable is very flat). This change in length is

given by
X=X
w - [ (4)(42) o (10)
==L/2

Measuring 4 , the horizontal deflection, positive in the

direction of x , we have

A=2C
dy
w = —/ 3 dv (11)

x:-L/z
The value of horizontal deflection Y, * at load point Q

is obtained by using expression (5a) or (5b) in equation (I1) as

db _r(-1er)
B oeesE (1-4r)

P,

(12)
The above analysis is only recommended for use in cables of

small dip to span ratio and for values of P small as compared to

whL .

Values of maximum deflections under short uniformly distributed
loads for a single cable.:have also been worked out by Pugsley(l).
Similar results have been obtained before by Johmson, Bryan and

(6) (1L

Turmeaure” ° and Steinman

" Expressions for horizomtal movement anywhere under a point load at
Q are given in section 1l.1ll.



(a)
(b)

13.

A numerical method for the determination of the deflected shape
of a suspended cable subject to gradually applied, concentrated or
uniformly distributed loads, is given by W. T. O!Brien and A. J.
Francis(l3)o The method consists in setting up equations of static
equilibrium and solving them for geometric compatibility requirements
by successive approximation. The effect of change in temperature,

slip at the anchorage or movement at the support can be included.

The paper deals with two classes of problems.

Rolling loads, which include moving loads and static loads whose final

horizontal position along the cable, Q' in Figure 3,1is specified,
and the original position of application along the cable, Q@ in

Figure 3, is unknown.

Fixed loads, which is the usual problem of loads with known position

of application.

The basic approach to both problems 1s the same and differs
only in the method of applying successive corrections to the initially

assumed displaccments.

The cable is divided into a number of segments depending on the

loading. Two conditions must be satisfied at each node point,
cable segments and load points must be in equilibrium,

deformations and eclastic extensions of the cable segments must be
compatible with the overall deformations and elastic cxtensions of

the cable.

Formulac and equations are set down to satisfy these rcquirement
and solved by a process of iteration. Expressions for assuming
initial values and correction terms are given. The method shows good

cenvergence.
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1.03 Influence coefficient method for solving suspension bridge
problems

It is of some relevance here to state Pugsley's

(1), (4)

"Influence coefficient" approach to solve suspension bridge problems.
Using the method of analysing a cable under an applied point load, its
behaviour can be completely expressed in the form of tables of
flexibility coefficients. These coefficients correspond to the
effects of a small unit load placedsuccessively at various points
along the cable span. Table 1 shows one of the 4 tables required

(2 tables for vertical and horizontal movements under vertical load
and 2 tables for vertical and horizontal movements under horizontal
load). The cable is divided into segments by a number cf equally

spaced stations.

Loaded Deflection at Station No.
Station I
No. 1 2 3 [ - j -
) 5
Vi1 V12 V13 1 - - -
2 Va1 V22 Va3 | -] - -
3 ' :
i * ;
1
i
l
1 ]
|
i é v, .,
1 i 1}
|
H
vij = the deflection at station j due to unit load placed at

station 1 .
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Importance is, however, given only to vertical deflections
under vertical loads, thus reducing the work to the preparation of
one table only. A similar table can be prepared for the stiffening
girder. Let the corresponding notation for stiffening girder

deflections be V, . .
1]

Now, suppose a load P is placed on the girder at station 2
and causes changes in hanger tensions T1 s T, , etc. The cable
deflection at station 1 is given as

C1 = Tlvll + Tzvl2 + oeses (13)

Similarly, the girder deflection at station 1 is given as

G = T1V11 + (T2 - 1=.)v12 F oeeoss (14)

For continuity of deflections at station 1
G, - C = arf (15)

where a = extensibility of the hanger at station 1.

Equations such as (15) can now be written for all the stations

and solved simultaneously to give the values of T T2 s etco

1 3
Once these forces are known, cable and girder defleoctions are
calculable from equations (13) and (14) respcctively. Girder moments

and shears and cable forces can also be rcadily evaluated.

The approach is essentially based on the assumption that the
principle of superposition is applicable. The assumption is stated to

be justifiable for small applied loads.
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1.04 Determination of the geomctry of a suspension-structure under

initial prestressing forces

(8)

Siev and Eidelman give a method of determining the shape of a
cable structurc bounded by a non-planar boundary of known gecometry.

The cables are assumed to be suspended in an orthogonal family of
parallel vertical planes. The dead weight, if considered, is taken to
be concentrated at the nodes. The only unknowns in such a problem

are the vertical ordinates. Equations of equilibrium of vertical forces
are written for each node and solved simultancously to give the

unknown ordinates. The initial force in cach wire is assumed to be

known at any point along its length. The equations are of the form,

Hm (zm;n +1 ° 2I"'m;n + Lm;n - 1) *

H Z - 27 + Z = 0 16
n ( m+ I;n “min m - l;n) (16)
where Hm and Hn arce the horizontal components of forces in cables
intersecting at the node (m;n), numbers n and m being counted
along X and Y axes respectively, and Zm.n is the ordinate at
3

the same point. Simultaneous solution of these cquations will give

the shape of the network.

Equation (16) may be written as

2
Al LE
Hm Eiﬁﬂun * HH(AQJMW\

an

i
o

I1f the cables are closely spaced the finite difference expressions

may be replaced by continuous functions and equation (17) becomes

2 2
Zz
S

Hy
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where Hy = horizontal component of tension in x-direction per unit
width of strip and HX = horizontal component of tension in y-

direction per unit width of strip.

Since the equations (17) and (18) are homogenous the shape of
the surface depends only on the ratio of Hx and Hy and the surface

will be hyperbolic.

It will be observed that the method is limited on application to
roofs of very flat shapes only, on account of the assumption that
cables lie in vertical parallel planes. The method is, in a way,
limited to finding the geometry for hyperbelic or near hyperbolic

shapes cnly.

A more gencral method is given by Eras and Elze(lo) for

determining the initial geometry. It is assumed that the forces in
the different members of the structure under the initial prestress
conditions arc known’. Equations of force-compatibility are now set
up at each node for a suitably assumed geomctry. Consider a node k
linked to 1 through members k - i (see Figure 4;)= Initial
force in the member is Fi and its length is 1'.l . Let the co-
ordinates of the nodes k and i be (Xk T A zk) and

(xi s Yo Zi) respectively. For the equlibrium of node k the
following equations must be satisfied:

X . . ¢ s
As shown later in Scction 1.33, the initial forces may not
ncecessarily be known and have to be assumed too.
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F.
— (xi-xy)

1]
o

(19a)

M

—
-

2 L,L(BL-‘-*U = 0 (19b)
L .

F
Z l—: ( iy - zk) = 0 (19c)
L

The values of the assumed coordinates may be such that
I
equations (19a - c¢) are not satisfied.: Corrections u!, v' and w!
are therefore applied to x , y and 2z respectively in order to

obtain equilibrium and equations (19a - c¢) become

F. ‘ ’
> S(xediexcw) = o (202)
L i v
F . ,
2 T(“t U - Y -V) = o (20b)
L
FL ¢ ’ —
_Z —=(zy v wi -2y —wy ) = 0 (20c)
L i
or F. ,
Z —l%(AIL + Au..-’) = o (21a)
L L
F. ) )
2 T(ABL + AV ) = o (21b)
L i
FL '
; T(AI‘L +AWL) = 0 {21c)
L

where AXiy =Xi-Xx » OUQ =uj-uy soo-ete.



20,

Solutions of equations {2la - ¢) for all the nodes simultaneously
gives the value of the correction terms. Change in the values of x‘;
y and =z alters the value of 1' too, and the process of correcting
the values may have to go through several cycles of iteration before

the desired accuracy is obtained in the results.

The following equations are derived for the v-th cycle of
"iteration for x-direction only and suffix i has been dropped for

simplification.

In the veth cycle of iteration

+)) .
o - O, W (22)
and
1+ M, , 12 . 2 @ 2]
1 ={(Ax. +au )+ (ay rav )+ (az s )} (23a)
From equation (23a) we have
V)2 | 17
1':‘(_"wn = {(Axw’»f au™) +(Avw’+Au'w)2+(Azw’+Aur'w))z] """
- (23b)
and on expanding it and neglecting higher order terms, we have
1 _ } 1 (87 BEENY)] ), (V) w, D
T 1""’{| 1,“,,,_(A:c AU+ AY AV T+ Az AW )} (24)
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‘ |
Using the value of Iq;:a in equation (2la) and on rearranging

terms, we obtain

F (&%) |
Z ‘(2’) { Au:un__ 'A(:) = (Ax(wau'wﬂ» A‘J(wAU’(w'PAl(wAW’(v))
1 1

Fo )
2 M) AX (25a)

Equations in y- and z-directions {25b) and (25¢) can be derived
similarly. Equations (25a ~ c) have to be set up for all the nodes
and solved simultaneously for a sufficient number of cycles to give

the desired accuracy.
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1.05 Solution of a prestressed suspension structure with known

initial geometry under applied loading

(9), (10)

Eras and Elze have suggested two methods of treating
this problem. The first method is approximate and is described in
detail in reference (9) (and briefly mentioned in reference (10)).
The method considered only vertical loading to structures whose shape
is defined by surfaces of negative Gaussian curvature. 1t is

assumed that
(i) The dip to span ratio is small,

(ii) Cables lie in a family of parallel vertical planes
cutting each other orthogonally; the first condition

is necessary for this,

(iii)  Only vertical deflections occur and cables remain in

parallel vertical planes after loading,
(iv) ~Deflections are very much smaller than the dip, and
(v) Cables are supported by unyielding boundaries.
Yy

The deflected shape of the structure is assumed in terms of
trigonometric or hyperbolic functions, depending on the loading
pattern. The basic equations are set up by equating the stretch of
cables due to change in tension to the change in length due to
deformations (this is based on the assumed deflected shape). From
these equations the loading pattern is computed. If there is a fair
agreecment between the actual and computed loading pattern, the
assumed deflected shape is accepted; if not, another assumed shape

is tried.

The method is simple in application but limited to very simple
cases of loading, wherc the deflected shape will be easy to assume.
The other limitations in the method are underlined by the assumptions

themselves.
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A much more general method is also given by Eras and Elze(lo)

("exact method" in reference (10)). The method consists of setting
up equations of force-compatibility'aﬁd solving them by a process of

successive iteration to obtain the deformatioms.

Consider a node k linked through members k - i to nodes i
(Figure 4%). Initial leugth of the member k - i is 1oi and the
initial force in it is Foi « The coordinates of the nodes k and i
are (xk s Yy o0 Zk) and (xi T P zi) ‘respectively. Let loads
Xk . Yk and Zk be applied at node k , causing deflectioms
U s U Vs vy and o W along X, Y and Z axes
respectively at nodeg k and i . The change in force in the member

k -1 is AFoi and its length changes to 1i .

The equation of equilibrium in the X-direction only has been

derived, the derivation in Y- and Z~-direction being similar.

The equation of equilibrium at k is

Fo_ + A Foy

Z__OL—O" (AX'.L*AU.'\,) = xk {26)

- 1,

1

1 .

1o, = (ax? + avi? + azd) /2 (27a)
and 2 2 2 V2

Iy = {(Ax'L-rAu-L) + (Avivavy) +(azp+awi) } (27b)
where AXy = X=Xy
and AUi = ug-Uy and so on.

X Page 18
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The suffix i has been dropped in the following equations for

simplification.

Say e, = L;. (ax.au + Ay AV + az.Aw ) (28a)
g -

and e, = 2 (oW +avi+ aw?) (28b)
lo

Substituting values from equations (27a), (28a) and (28b) in
equation (27b) we have

\
1 = 15 (l +2€ + ez) /2 (29)
Expanding the expression on the right hand side in equation

(29) and neglecting terms containing 4th or higher powers of

deflections, we have

3
1 = t°(|+e,+éez—%ef’--'ie..ez el ) (30a)
and -1'-= -'1-0(|—el-lzez+§2-e|2+%e,e,_——s_ze?-o-------) (30b)

The change in the force in member k - i , A Fo can be

expressed as

af, = EA(Ldyy = gad-) (31a)
lo 1o
Using the value of %—' from equation (30a) we get
o
BFo = EA(e,+ 32 -3¢~ See, +1e) (31b)
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Putting the values of -%- and AFO from equations (30b)

and (31b) respectively in equation (26) we obtainm
I 1 2 i | 3 | 1
~Z{Fo +EA(g 43 -z € -6 +35 € )}‘[—l‘—’(l—e,-iez
+%e.z+%e.ez—izef)]-(ax+z\u) = Xk (32)

Equation (32) is now expanded and rearranged so that co-
efficients of terms u, v and w are on the left hand side and

all other terms are on the right hand side.

Fo AU + EA-Fo AXx.e = xk - Kxk (33)
Au.e, sx+Au

+
1o 21o

. 2,0.€8 5
where Kxk = (EA—FD)[ [ e,_—se‘-(la-—e?:-%-e,)]]

It will be noted that terms containing 4th or higher powers
of u, v and w have been neglected andZ%Ax has been taken
equal to zero (this is a necessary condition for initial equilibrium)
in deriving equation (33). Two more equations like (33) can be

similarly derived for Y- and Z-directions.

Equations like (33) have to be set up at each node in the
structure and solved simultaneously by successive iterations to give
the value of deflections at each point. Forces can be computed

by using equation (3la) or (31b).
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1.10 Study of a single cable under a concentrated load

Pugsley's method of analysing a single cable under a comcentra-
ted load has already been described in Section 1.02. The method is
meant for point loads small in comparison to the total weight of
the cable and various factors have been neglected in evaluating the
force h . An attempt to get a more accurate solution by imncluding
the terms neglected and to study the effect of neglecting them
now follows. This study was thought to be particularly necessary,
because the single cable behaviour has been used, as described later

in Section 1.20, to solve a plane prestressed cable system.

A more accurate value of the change in the cable length as

compared to the one given in equation (7) is

+ L/z +L/z

@) L
{()Vz *7 3/2

-L/2 -Vz

dx (34)

Equating Al to the cable extension, we have, instead of

equation (8)

+Ll/2 +L/2 )
A
dx i dx _ ShL

{l PT] )1 e 9% Y 3 wapz Y S Re (35)
()] &)

d=x dx
-L/2 ~L/2
X d2
where § is an empirical constant = (1 -+ 4.8 IE )

* Détails are given in Appendix "A"
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Using values from equation (1) and (5) in equation (35), we

obtain instead of equation ()™

12V A

FL

12V

l2y g ® +(|se+|- )h + 6(12Wr" -075W -0-6)-h

+12(1-156r* ) We? + 24 (-6 )52 - f1asW e 3(ear®)W ?}

+G {O-75(I+4r2)W2+|-l25 W +o-45} =0 (36)
where , h =1 4-%% is the unknown ,
N = 1 = SHL
W= bl ! v AE
d?.
F =6 = 32— ‘
e

The effect of neglecting various factors in equation (36) is

shown in the following cases:

Case 1 If the cable is assumed to be flat, (%i)z can be
neglected in comparison to unity and also the tension along the cable
can be assumed to be constant and equal to H . This is obtained

by putting G =0 and S =1 in equation (36) and we have

v
-3 _ _
All_%—\l_}'h + (l - |2U ) h + |2Wr +24W. rz—{|+5w +5(|+4r2)w2'} =0 (37a)
HL
1 =
where U AE
Case 2 ° 1f the cable is assumed inextensible, i.e. %E =0

¥ Details are given in Appendix "A"™
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equation (36) becomes

’ (0156 + )R + 6 (2Wrt- 0.75W-0-6) R +12 (1-1-56v" ) We?

"

+24 (-6 )i ¥ - {1esw+3(1+a®)WP} + 6 {075 (1rar’)W?

+1125 W +o‘4s} =0 (37b)

Case 3 If the second term in the left hand side of equation (35)

is assumed negligible as in equation (7), we obtain, by putting
ﬁz = 0 in equation (36),

120 -3 12U, = 2 - 4 - <
S h +(os6ri-T)h 4 6(12WrT-075W -0-6)h
+12(1-1-567Y* )Wr? —(143W) +6(1125W +0:45) =0 (37¢)

Case &4 If all factors neglected in cases 1, 2 and 3 are neglected
together, we have

-2 - 2 - ‘

h +R_2wWwr°-(1+3wW) = 0 (37d)
Case 5 Pugsley's expression can be obtained from equation (37d)

as follows:

Putting 1 +~§»=.ﬁ in equation (37d) we have
hy? - 2 -
(1+5) + Wy -(1+3W) =0

2
or | +z(%) +(%—) +12Wr -1-3W = 0

or 2(%) = 3W -12Wr
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2 .
on neglecting ('g-) in comparison to (%), we get

h = éﬁﬁ(l-ﬁ-l&rz)

2 (37e)

‘Equation (37e) is identical to equation (9).

Now equations (5a) and (5b) can be stated in dimemnsionless

form as

Yoo (-ad?) --_;?{(.-M’)+zw-(.+u)-(l-zr)} (38a)
for -05A <Ly where A= iL
and -Eé = (1-4,42)-—% [(n-uz)+zW-(|-z,:).(|+zr)] (38b)
for vy o 05

Deflection under the load can be obtained by putting @=r
in either equation (38a) or (38b).

= (1-av?)(1- '”W) (39)

Expressions for the. horizontal deflection anywhere under a

point load at r can be obtained from equation (1l1) and are given

below,

Y d | 3zh-l 1 W

TA = —64—L—{—2—4-(I+8A )._-i\- +76" Th‘(l 44 )(‘ 2")] (40a)
for -5 A<

Us _ _ead | 3yh=l 1 W 2_ 2 2
and —= = 64'1'[ 72 (1+8s )T 33 [—-Z‘r 8r(i+s )+(4+A)]] (40b)
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Figure 5 shows the values of (h - 1) obtained from equations
(36) and (37a - e) for various values of W . Figure 6 shows the
values of deflections v, obtained by using the above values of

h in equation (39). Data used for these calculations is,
L =40 in. d = 2.5 in. r=20

wL = 25 1b. H = 50 lb. AE = 91000 1b. (wire diameter = .064 in.

modulus of elasticity = 28.3 =z 106 lb./in.2 )

Figure 7 shows the effect of varying the dip to span ratio on

v for

=

W=0.1 r=0 and H= 50 1b.
Only cases 1, 2 and 5 are compared with the accurate solution.

It will be seen from Figures 5 and 6 that for a small value
of W equal to 0.1 or less, the effect of neglecting the various
factors is very small, but as the value of W increases, this effect
increases. Errors in cases 3 and 4 are comparatively much larger
than in other cases, and the predominating factor scems to be the
neglecting of ﬁz, If, however, (%)2 is also neglected, as in
case 5, the values come much ncarer to the values from the accurate
solution. Therefore, neglecting either Wz or %)2 causes serious
errors, which are compensating if both these terms are neglected

together.

Figures 8 and 9 show the values of vertical deflection of a
cable under a concentrated load applied successively at centre and
quarter point. The values are for .0164 in. and .064 in. diameter
wires, with wlL e¢qual to 2 1b. and 25 1b. respectively. The rest

of the data used for thesc calculations is

L =40 in., d=2.51in. E=28.3 x 10° p.s.i. W=0.1, 0.2
and 0.3.



It will be secn that the value of deflection vy is non-
linearly related to the valuc of load W . There is not much
difference in the deflections for the two sizes of wires and the
values for the thinner wirc are comparatively closer to those
obtained by using Pugsley's expression than for the thicker wire.
These values have been obtained by using equations (36), (37c¢), (38a)
and (38b).

Figurc 10 shows the values of the horizontal deflection of a
cable under a vertical concentrated load applied successively at
quarter point and centre point. The values have been calculated

by using cquations (9), (40a) and (40b) and the data used is
d=2.54in. L = 40 in. W = 0.1, 0.2, and 0.3

It will be scen that the relation between the deflection u,,
and W 1is non-linear just as for the vertical deflections. A .
load applied unsymmetrically on the cable (quarter point in this

casec) causes much larger horizontal movements than a central load.

1.20 The influence cocfficient approach as applied to a planec

prestresscd system

A brief mention of this method as applied to the solution of a
suspension bridge has becn made in Section 1.03. 1Its application to
a cable system of the type shown in Figure 11; is illustrated herc.
The plane system could be seen as a suspension bridge without any
bending stiffness and with the stiffening girder replaced by a pre-

stressing cable of reverse curvaturc.

The structure consists of two cables prestressed together by
means of vertical uniformly spaced hangers; each carrying equal

tension T with an average value of !'w'! per unit length of span.
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The cables are anchored at level supports. The shape of each cable
is parabolic and the structure is symmctrical about the y-axis,
HU and HL are the horizontal componcnts of tension in the upper
and lower cable respcctively.

Duc to application of vertical loads Pl’ P2’ gtc., it is

assumed that internal tensile reacticns Tl’ T cooooy Tn occur

2’
in the hangers and the values of HU and HL change by hU and
hL respectively (see Figurce 11b). The vertical deflection at any
hanger k in terms of the applicd loads and reactions can be

written down as

= '
Uy Tlulk + T2u2k + sevee + Tmu REERE + Tnunk + u K (41a)
— 1
and . 1k = Tlllk + T212k + esees + T 1 PIERERE + Tnlnk + 1 K (41b)

where u = the upper cable vertical deflection at k due to

applicd loads and reactions, measured positive downwards,

1k = the lower cable vertical deflection at k due to

applied loads and rcactions, measured positive upwards,

u'P = the upper cable deflection at k due to applied loads
only, mecasurcd positive downwards,
l'k = the lower cable deflection at k duc to applied loads

only, measurcd positive upwards,

u . = the upper coble deflection at k due to a unit load

mic
applied at m , measured positive downwards,

1mk = the lower cable deflection at k due to a unit load

applicd at m , measurcd positive upwards.
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Loads arc positive when applied in the dircction of positive

deflections.

The ecxtension in the hanger at k ,

% = Ziwl;k
“’h
where Lk = length of the hanger at k
and (A§>h the hanger extensibility, which is assumed uniform
throughout.

For displaccment - compatibility at k

w + lk = -q 42)

Equation (42) can be written on rearranging tcrms as

mzt ’ ’

3 T e t Iy % - T (43
mnen

n simultancous equations like (43) can now be sct up and
solved tc give the unknowns, Tl’ T2, ctc. Once these values are
known, dcflections of cables can be determined from equations
(412) and (41lb), and forces hU and hL can be worked from
cquation (36).

Sctting up equaticns (4la) and (41b) requires the knowledge of
deflections of a2 sinlge cable under concentrated applied loads, so
» 1 , ul and l’k may be cvaluated. This is

that U ok K
possible with the help of equations (36), (40a) and (40b).

It is possible to consider the effect of
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(L) temperature change, and
(2) slip at the anchorage
by a suitable modification of equation (35), and the values of o -

. o
For a change in tecmperature of t Ty becomes

T L
k 7k
TKETE + thk

and the right hand side in equation (35) becomces

2
h L 8 d
= § === 4+ WtL (1 + 5 — )
(AE)c 3 L
where @ = the coefficient of linear expansion /degreec of temper-

ature change.

For a slip at the anchorage cqual to, say, €, the right hand

side in cquation (35) becomes

h L

= § > + €
(AE)c
mk remaining unchanged.

1.21 Basic assumptions in the method

The basic assumption that the law of superposition is applicable
will now be studied. The relation between applied load and deflection
for a cable is non-lincar, because as the magnitude of the applied
lcad increases, the cable gets relatively stiffer. The summation of

the terms T and T 1 and the evaluation of terms u! and
m m mk k

u
mk
1'k (which may or may not involvc summation dcpending upon the

number of loads applied) is crroncous. The inaccuracy in the term



Tm Yk

kept fairly small. It has becen found that the value of the unit

will, however, be small if the valuc of the unit load is

load if taken as 0.01 of wL or less does not affect the results

(Figurc 28). This is rcasonablc as the relationship between deflec-
tion and loads for the cable does tend to be lincar for small loads.
However, it will nct be correct to choose a small value of unit load

if the actual values of Tl’ T etc. arc going to be far bigger, and

2,
if, to avoid this crror, a larger valuc of unit load is chosen,

inaccuracy is inevitably introduced, because larger values are being

superimposed. In order to cvaluate u! and l'k , summation will

k
be nccessary if scveral lecads arc applied; in such a case errors

will again be introduced if loads arc large. Therefore, the
assumption, though justifiablc if the loads and rcactions remain

small, introduces crrors for larger loads.

Horizontal movements have been neglected, assuming thercby,
that thc hangers remain vertical after loading and the force in the
hangers has, thercfore, nc horizontal component. The assumption
is justifiable because, although horizental movements do cccur, they

are too small to inclinc the hangers appreciably.

The dcad weight of the structure is ncglected in comparison
to the prestressing forces. The assumption may not be quite correct
for large spans. The necessary modification can be rcadily made by
adding thc dead weight to the prestress for the upper cable and sub-

tracting it from the prestress for the lower cable.

The structurce is incapable of taking compression. This is
justifiablce as the buckling strcength of the members is negligible

in comparison to the tensile strength.
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1.22 Solution of a plane system by the influence coefficient method

The following paragraph describes the use of the "influence
coefficient" method to solve a plane system, shown in Figure lla. A
computer programme has been written to analyse the system for any
general case of loading. Any of the parameters in the system can be
varied except for the limitation that the structure should be symmetri-
cal about the centre line of the span and have the two cables iden-

tical in geometry and size. The steps involved in the computation are

(1) The left had side matrix in equation (43) is set up for a

chosen value of the unit load.

(2) The right hand side matrix in equation (43) is set up for any
number of point loads applied anywhere on the structure.
For setting up both these matrices equations (36), (38a) and
(38b) are used.

(3) On solving the matrices set up in steps (1) and (2) above we

get the values of the unknowns Tl, T2, cte.

(4) Using equations (36), (38a), (38b), (4la) and (41lb) the

deflected shape and change in main cable forces are computed.

A flow diagram for the computer programme is given in

Appendix "'B".
The data used for the numerical problem solved is given below.

n=20 L = 40 in. a = 2 in. (the first hanger is at =2
distance a/2 from the left support) D = 10 in.

dU =4 = 2.5 in.

T = 1.25 1b. each, total vertical pretension L = 25 1b.

Unit load = .0l of L

Main wires diamecter = .064 in.
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Hangers wire diameter = ,010 in.
(AE)c = 91000 1b., (AE)h = 2225 1b.

There is no change in temperature.

The various casces fer which the structure is sclved are

cnumcrated here.

Concentrated applied vertical load equal to

(a) 2.5 1b. at quarter point on tecp cable

(b) 2.5 1b. at hanger nc. 10 cn top cable

(¢) 5.0 1b. at quartcr point on tocp cable

(d) 5.0 1lb. applied tc the top cable at hanger nc. 10. In this
case TlO < - T, which is inadmissible as the hangers cannot take
compression. The scolution is obtaired by taking T as a known

10
value cqual tc -~ T while scetting up and solving equations.

Various results for 1(a) tc 1(d) are given in Figures 12 to 18.
It may be cbscrved from these results that

(1) Under a peint load on the top cable there is a sharxp
decrease in tension in the hanger just below the load.
All other hangers show an almost equal increcasc of

tension, the average value of this increasc is, say, A .

(ii) The value of A increases and the deflections decrease

non-lincarly with the magnitude of applied load.

(iii)  There is comparatively little change in the lower cable
tension, most cf the load being carried by the upper

cable.

(iv)  Only tcp cable deflecticns arc pletted, as there is
negligible difference between the deflections for the

two cables.
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(v) In all the figures for changes in hanger tensicn, the
change per hanger is shown, and not the change per unit

length of span.

Influence lines for hU and hL for a unit locad of 2.5 lb. applicd
to the top cable are given in Figurc 19, and influcnce line for A and values
of deflection under the lecad are given in Figure 20. The maximunm

value ¢f A and the deflection cccurs near the quarter point.

Ccncentrated vertical loads at hanger nes. 2, 3, 4, 5, 6, 7, 8 and 9

aqual to

I

0.25 1b./in.
0.50 1b./in.
0.75 1b./in.
= 0,25 lb./in.
0.50 1b./in.

(a) 0.5 1lb. cach on the upper cable;

(b) 1.0 1b. cach on the upper cable;
(¢) 1.5 1b. cach on the upper cable;
(a) 0.5 1lb. cach on the bottom cable;

=T - I - I - I
I}

I

(e) 1.0 1b. cach on thc bottem cable;

This loading is mecant to represent a uniformly distributed
lcad p over part of the left half of the span and the various

results are given in Figures 21, 22 and 23.

Thc nen~lincarty of deflecticns and changes in hanger tension
with increase in the magnitude of lcad can be readily obscrved. Most
of the load is carried by the upper cable and the lower cable tension
starts increasing beyond a certain magnitude ¢f load. The cverall
stiffness of the system thus increases with applied leoad, just as in
a singlc cable. There is small difference in deflections for load on

the upper or the lower cable.

Effect of reducing the number of hangers from 20 to 9 is shcwn by
results in Figures 24 and 25. It will be scen thdt the ecffect on

hU s hL and the deflections is negligible,
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Figures 26 and 27 show the cffect of distributing an applied point
load of 2.5 1lb. at quarter pcint on the upper cable, over a length of
2 in, (cxactly between hanger ncs 5 and 6). Similar results are
obtained if an applicd pcint lcad of 2.5 1b. at hanger no. 6 is

distributed cover a length of 1 in. cither side of the hanger.
Effcct of necglecting hanger cxtensibility 1/(AE)y, is less than 2% .

1f 1/(AE)c , the cable extensibility, is neglected, the value of
the reactions Tl s T2 » c¢te. increases manyfold meking the results
valueless. This emphasizes the fact that much care is nccessary
before neglecting any factors while evaluating the valuc of the

"influcnce ccefficients'.

Effect cf varying the unit load on the values of A and hU and hL
for a vertical load of 2.5 lb. applied at centre point on the upper

cable is shown in Figurc 28.

1,23 Some important features in the influence cocfficient method

This is a numerical method in which cquations of displaccment-
ccmpatibility arc sct up at cach hanger and solved to give the unknown

hanger forces, from which the structurc can be solved completely.

The methed requixes the cables to be subject to a uniform prestress

and coch cable lies on a continucus parabolic arc.

Expressions for evaluating the "influence cocfficients" should be

as accurate as possible.

Valuc of the unit load does not affecct the results to any appreciable

degrece if taken as .0l cr less, times the total vertical pretension.

The valuc of applied loads has to be kept small tc ensure rcascnable
accuracy, becausc the law of superpositicn is used to solve a

structure which is basically non-lincar.
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The method is in this casc limited to solving the system for vertical

loads cnly.

Effect of change in tempcrature and slip at the ancherage can be

casily considercd.

Loads can be applicd anywherc on the cable and nct nccessarily at

the nodes.

The method is straightforward from the point of view of cemputation.
Cocfficients are casily calculable. Use of digital computers has
tc be resorted to because of the number of simultancous equations (n)

to be sclved and the accuracy required to solve them.

1.30 Application of a gencral method of solution to planc and threc-

dimensional structures

(10))

The basis of this methed (Mexact method" by Eras and Elze
aleng with the cquations in general has becen given in Scctions 1.04
and 1.05. The application of the method to the solution of plane

and three-dimensional structurcs is now given.

1.31 Plane system

The plance system solved herc has already been described in
Sccticn 1.20. The initial gecmetry of the structurc is already known,
the cables having a parabolic shape and the structurc is to be solved

for applicd loads only.

It is aimed to solve the structure for in-planc vertical or
horizontal lcoading only and as such it will have no movements cut of
the plane. The axes are shown dotted in Figure llg, Therefore,
4n equations like equation (33) will have to bec set up for n hangers,

and solved simultancously tc give the values of u and v .
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The sclution consists of the following steps.

Set up the matrix for the unknowns u and v from the left hand

side of equation (33), say "A".

Assume the values of u and v (they are assumed to be zero in this

N

case) to evaluate K.xl and kyk in equation (33), and knowing Xk

and Yk s set up the right hand side matrix, say 'B'.
Now, if the unknown matrix is denoted by U,
AU = B

At B

al
It

or

This gives the values of u and v . It will be noted that the

"A'" matrix will be the same for the same structure, and so the matrix
inversion has to be done only once. This is very beneficial from
the point of view of computation, as the multiplication of the
inverted matrix A-l and B is much less time consuming than the
inversion itself.

(1) (1)

From the values of u and v thus obtained, evaluate the '"B"

matrix again and multiplying by A"1 get the values of u(z) and

v(2> etc.

The next cycle of iteration can be carried out in two ways.

(a) Use the values of u(2> and v(z) to compute the ne:x
value of the "B" matrix, or
(2)
(b) Put u(z) = 0.5 u + 0.5 u(1>
and v(z) = 0.5 v(z) + 0.5 v(l)
n (2) (2> 1R
and use the new values of u and v to evaluate the 'B
matrix and get the values of u(3) and v(3) and so on. Table 2 (page 54)

shows the more rapid convergence obtained by using the step 5(b).
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The value. of AFO can now be evaluated by using equations (31la) or
{31b).

Steps (5) and (6) can be repeated as many times as necessary

for the accuracy desired.

It will be noted that equations are not set up for u and v
at the support since they are considered as knowns. The values are,
however, used in evaluating the '"B"™ wmatrix. For a rigid support
these values are zero and a movement at the support can be readily
considered by assigning the proper values to u and v at the

~ support.

Consideration of changes in temperature involves the alteration
of equations (29),(30a), (30b), (32) and (33) as given below.

Equation (29) becomes

'/2 lo
1= 1,-(r2e+ &) +:_——E~wt
EA
12
or 1 = 1;{(1v2e,+e,)" + C 44)
where C = ——Eé———-un and Clg = the change in
EA+ Fo o

length due to rise in temperature of t° .

Equation (30a) becomes

2 3
1 = lo'{(l*c) +€ ""li ez‘la'el —"z-el'ez"'jiel} (45a)

and equation (30b) can be written as
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% = o{(uc) (e+ ez-—-e, e, € +7 e,)(nc) +(e,+ ez-—e‘

neglecting 4th or higher order terms, we get,

| I 2 i |-
I i e +-—-€ Ler - e+ e
1 10(‘+C) { |+C ( 1 r 2 ) 2 2 )

(et e ey -ef) -t 'e’]  (45b)

C(ee®

Using equation (45b) and (31b) in equation (26), and on

neglecting 4th or higher power terms, we get instead of equation (33)

|
N (1+c)?

Fo EA Fo AX.€
—_— AUl $———— AX @, - == = K - Kxk 46
1,(1+c) lo(1+C) "1 (14€)2 ® (46)
where [
EA Fo EA  AX+Au
Kxx = ————-AU-€, - .AU-€, 4+ . -
Ao T TR r T e T e
o, _AX+AU ) (2 _
T;‘ U+C)z}{(jez";ﬁ & &Lty ei)
| >
e, +¢e,¢€ e + ——
(| C) ( | 1"z l) (I C)Z |]

If we put € =0 in equation (46), the original equation (33)
will be obtained.

The procedure of studying the cffect of changes in temperature
and the support movements as described above, is applicable to three-

dimensional structures as well as plane systems.



1.32 Numerical 2xamples and results for plane system

The amount of computation involved in applying the general
method described in the preceding article to a numerical example
becomes considerable if the number of nodes n is large. A computer
prograrme has been written to solve any case of loading applied to a
plane structure of general dimensions, symmetrical about the y-axis.
The programme forms the matrix A (sec.l.3l) for a structure and
evaluates Aflo The B matrix (sec.l.31l) is then formed and
multiplied by A-1 to give the deflection values. This can be done
for any number of cycles as necessary and for any number of loading
cases without disturbing the values of A-l, so that the cevaluation
of A and A-l is to be done only once. Values of deflections and
AFO (calculated from step (6) of section 1.31) are printed for each
cycle of iteration. A flow diagram for the programme is given in

Appendix B. The numerical examples solved are given below.

Example 1. This has been solved to show the difference in using

steps 5(a) and 5(b) for successive iteration in the preceding section.

Data: n=5 '~ L = 30 in. a=>5in. dU = dL = 3 in. T =5 1b.

Applied vertical load = 2.5 1lb. (QL

G of pretension) at hanger

No. 3 on upper cable.

It will be seen from Table ﬁ(that results obtained in the 5th
cycle by using step 5(b) are nearly the same as those obtained in the
9th cycle by using step 5(a2). A study of the values of u and v
shows a steady and decreasing change in their values if step 5(b) is
used but the values keep oscillating if step 5(a) ic used. It will
be scen that 5 - 6 cycles will give sufficiently accurate results
for this magnitude of load. Step 5(b) hac been used in solving all

other examples.
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Example 2. This has been solved to comparc the convergence of the

method for various intensities of load.

Data: n =29 L = 40 in. dU = dL = 2.5 in. a=4 in. T= 2.4 1b.

Load is applied at hanger no. 5 on upper cable.

Table 3xshows the value of vertical deflection under the load
and A Fo value for the top cable segment adjacent to the loaded
hanger. It will be seen that at the end of six cycles, fair results
are obtained for up to a load of 7.5 lb. (nearly 0.4 of the total
pretension). For a load of 12.5 1lb. (necarly 0.6 of the total
pretension) several more cycles will be nceded before the final
results are obtained. For a load equal to the total pretension the

results show a definite and drastic divergence.

Example 3. The data used for this examplc is the same as for the
structure already solved in section 1.22. The various cases of

loading solved are cnumerated below.

Concentrated vertical load cqual to

(a) 2.5 1b. ot quarter point on upper cable +
(b) 5.0 1b. at quarter point on upper cable
(e) 2.5 1b. at hanger No. 10 on upper cable
(a) 5.0 1b. at hanger No. 10 on upper ceble

Deflections and change in forces A Fo in various members arc

shown in Figurcs 12 - 18. AyFO for the main cables shows a

It is not possible for the load to be placed at the quarter point
as in this cxample the quarter point lies between hangers No.S5
and 6. These results arc thercfore obtained by taking o mean of
results for load applicd at hangers No. 5 2nd 6.
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variation from segment to segment but since the variation is slight
a mean value has been taken. This has becen done for all the other

cascs too, unless otherwisce mentioned.

Influcnce lines for hU 5 LL , A and valucs of deflection under
the load for a concentrated load of 2.5 lb. applied on the top cable

are given in Figures 19 and 20.

Concentrated vertical loads at hangers No. 2, 3, 4, 5, 6, 7, 8 and 9

equal to

(a) 0.5 lb. cach on upper cable
(b) 1.0 lb. each on upper cable
(c) 1.5 1b. cach on upper cable
(d) 0.5 1b. ecach on lower cable
(e) 1.0 1b. each on lower cable

Various results are given in Figures 21, 22 and 23.

Concentrated horizontal load equal to 2.5 lb. applied at henger No. 1O

on upper cable for which results are shown in Figures 29 and 30.
Concentrated vertical load equal to

(a) 2.5 1b. applied at centre point on lower cable

(b) 5.0 lb. applied at centrc point on lower cable

Values of A Fo are shown in Figure 3l. There is an increasc
of tenmsion in all the hangers. Values of deflection are not plotted
as there is no apprecinble difference in deflection valucs whether

the upper or the lower cable is loaded.

Concentrated vertical loads at hanger No. 6, 7, 8, 9, 10, 11, 12, 13,
14 and 15 of 1.0 lb. cach on the upper cable. The results are shown

in Figures 32 and 33.

For an cpproximate eanalysis thc hangers may be grouped together to
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reduce the number of cquations. Values of A FO for the cables and
the vertical deflections under a point load of 2.5 1lb. at centre
point on the top cable hav: been compared if the number of hangers
is reduced from 20 to 9 to 5. The hanger stiffness is changed

20 20

accordingly from AR to = AE to = AE . Results in Figures 34
7

and 35 sheow the very little cffect of the variation.

Effect of varying the hanger stiffness valuc has also been found to

_be very small. Comparison was made by using AR = 2225 1b. and

AE = 8900 1lb. in the 5 hanger case in (5) above. The difference in

forces is under 236 and deflections under 136e

1.33 Application to o threc-dimensional systom

Thic scction describes how the method can be applied to a
structure consisting of three cables prestressed together. The
structurc shown in Figure BE;is a special casc of a general structure.
Two of the threc cables are sagging, completely similar and placed
symmetrically in the structurc; the third cable is hogging and placed
below and centrally between the two top cables. The three cables are
anchored at rigid and level supports and arc prestressed by means of
several scts of hangers which lic in parallel vertical planes at
right angles to the x-axis. The horizontal hangers have an initial
tension T0 cach and the inclined hangers have an initial tension
Tl and T2 cach, respectively as shown in Figurc 36. The value of
the horizontal and vertical dip at the centre of cach cable is
specified as C1 s D1 s cetc. The initial geometry of the structure

under the specified boundary conditions is not known and its

determination will consist of the following steps.

The forces in the cables are not known and have to be assumed (sce

footnote on p. 17 ). The forces can be assumed by considerations of
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simple statics if the inclincotion of the hangers is known, for which
the geometry must be known. In order to cesteblish an approximate
initial gcometry, it ic assumed thot the horizontal and vertical
ordinates of each cable lic on parabolii with their dips equal teo

Cl s 02 y C3 and Dl s D2 s D3 respectively. The cable forces
arce then calculable.

For thc assumed sct of forces cquatioms (25a) end (25b) orc set up
for cach point and solved simultancously to give the correction terms
v'(l) and w'(l), "~ (Position of hangers along the x-axis is fixed

and hence the values of x  are known in this problem.)

The assumed values ¢f "y and 2z are now corrected as

y(2) y(1) i v,(l)
and 2(2) = z(l) + w'(l)
Steps (2) and (3) are repeated, say v times, until y(v) and
z(v) are very close to y(v-l) and z(v'l) respectively.

With this change in the geometry the inclination of the hangers has

alsc changed and the forces are calculated again.
Steps (2) and (3) arc repeated again for the new sct of forces.

Steps (4) and (5) are repcated until the forces and ordinates

obtained from subsequent cycles are clcse cnough.

The method is ropidly convergent, which can be seen from the

numerical example given here.

»

A computer programme has been written to usce the procedure
described above tc sclve numerical examples on a general three-cable
structure symmctrical about the y-axis. The programme is extended
further to solve the structure for applied loads. 4 flow diagram

for the complete programme is given in Appendix B.
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Zxample 1. A small number of hangers has becen deliverately chosen
because the initial shape will be farther from parabolic with a

smaller number than with 2 larger number of hangers. The data is
Co = 20 in, D= 30 in. L = 60 in. a = 20 in.

number of set of hangers n = 2

Cl = 02 = 2 in. C3 = 0
Dl = D2 = D3 = 5 in.
TC = 0 Tl = T2 = 5 lb.

Cables &#A' and BB'  arce symmetrically placed.

Table 4Xshows the values of the ferces in the end segment of
cables 4A' and CC' oand y and 2z ordinates at the first hanger
section in 4A' and CC' , for the subscquent cycles of iteration.
It will be seen that the cycle of operations shown below will be

sufficient.

2 to 3 times

Step (1) — Step (2) — Step (3) —= Step (4) —» Step (5)

i

2 to 3 times

Notc: Step(5) is equivalent to steps (2) and (3).

The unstretched length of cach member con be calculated from
the knowledge of the structurc thus cbtained and it can now be

solved for applied loads.

The methed of solving the three-cable structure for applied
loads is exactly the same as for the plane-system cxcept for the

following differences:

X Page 56



52.

(i) Equations have te be cet up for deflecticns u , v,

and w for loading along either of the three axes.

(ii) The total number of cquations for n  hanger sections

is 9n.
Data used fer the numerical problem solved is, .

n=29 1 = 40 in. a =4 in. C = .025 in. D = 10 in.

C, =C, = .0l in. C, =0

1 2 3
D1 = D2 = D3 = 2.5 in.
T =1.20 1b.
Ei for top cables = 45000 1b. EA for bottom cable = 90000 1b.
Eii for inclined hengers = 2225 1b. EA for horizontsl hangers = 0

Load = 1.25 1lb. applied tc each of the top cables at the centre point.

This structure can be approximated to the plane system solved
in cxample 2 (section 1.32). The top cable and cach hanger have been
replaced by two cables and twe hangers of half the area respectively.
The top cables are placed a small distance of .025 in. apart and have
a small horizontal dip of .0l in. each, thus converting the plane
system into a three cable one. The two systems are, however, so close
to each other that the deflections obtained for the same magnitude of
applied load to the two systems should be comparable. If the A‘Fo
values for the two cables and each pair of inclined hangers are added
these should als: be comparable to the AkFo values for the plane
system. Table 5 shows the results for the two structures. The
values of A;Fo in one of the upper cables and each one of the two
inclined hangers are doubled instead of summ%g;ea, since the system

is symmetrical.
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1.34 Some important features of the general method of solution

Some of the main points of the method are enumerated below:

Equations of force-compatibility are set up at each node and solved

simultaneously to give the value of displacements.

The structure consists of straight weightless links between the

nodes.

The computational work involved with this method is considerable.
The number of equations required for each node are 3 and the

coefficients are more cumbersome to evaluate. The use of digital
computers has to be resorted to. The number of cquations can be
cut down, however, for preliminary work by reducing the number of

hangers.
Loads can be applied at the nodes only.

The effect of the movement of the support can be studied and the
effect of temperaturc change can be considered by modifying the

original equations.

The method is very general and can be applied to plane or three-
dimensional prestressed structures and can give solutions for an

kind of static loading.

53.

For applied point loads of up to 0.3 times the total pretension, fair

results can be obtained from 6 cycles of iteration; a load of 0.6
times the total pretension nceds more cycles than 6, but for higher
loads of say equal to the total pretension the method shows drastic

divergence.



TABLE 2

u in the v in the O Fo in upper
Cycle upper cable | upper cable cable in the O F, in hanger O Fo  in hanger
No. at hanger at hanger segment between no. 1 no. 3
no. 2 no. 3 hangers no. 2 and 3
ins. x 10° ins. x 100 1bs., 1bs. 1bs.
Step No. | 5(a) | 5(b) | 5(a) | 5(b) 5(a) 5(b) 5(a) 5(b) 5(a) 5(b)
1 4042 | 4042 | 59176(59176 - - - - - -
2 3554 | 3554 | 49494|49494 - 6.142822 - 171043 - -1.00553
3 4217 | 3925 | 58145|54303 | 6.612061 | 5.369873 | .210854 | .207634 | -.944740 |- .951332
4 3889 | 3993 | 53226{55029 - 5.063721 - .226311 - - 924797
5 4170 | 4023 | 57073|55280 - 4.,896729 - .237282 - - .909981
6 3992 | 4040 | 5451655411 - 4.791748 - . 244087 - - .901237
7 4126 | 4052 | 56401|55494 - 4.724854 - .« 248436 - - .895851
8 4034 | 4059 | 55093|55545 - 4.680420 - . 251244 - - 892448
9 4102 | 4064 | 56037155580 | 4.825928 | 4.650635 | .252312 | .253105 | ~-.891792 |- .890312

)



TABLE 3

T 2.5 1b. 5.0 1b. 7.5 1b. 12.5 1b. 22.5 1b.
Cycle v, A F, v, OF v, OF Ve FAY Fo
Noo " | yoe. x10% | tb. |ins. x20% | 1b. | ins. x 2% 1b. | ins. x 10% | 1b.
1 68400 . 136800 - 205200 - 342000 - .
2 62829 | 6.893 93370 | 13.126 59905 | 5.174 | 325912 | -5.956 | 3 §
=
3 65046 | 6.130 | 123714 | 15.372 | 196791 | 29.956 | 287008 | =8.957 E §
4 65623 | 5.827 | 120870 | 14.537 | 159196 | 23.104 | 319699 | 64.484 E‘:f ;
5 65837 | 5.675 | 121725 | 14.172 | 170437 | 25.106 | 202010 | 30.816 gg’ §°
6 65936 | 5.588 | - 122015 | 13.890 | 165902 | 23.172 | 273587 | 62.545 $43

r
AF

v_ 4is the upper cable vertical defldction under the load

is the change in the upper cable tension between hangers no. 4 and 5

‘6S



TABLE 4

Force in

Force in

Step and AA' end - £6' end Y'gﬁdfzzfe z-g:diz?te Z-g;dégfte
cycle no. segment segment Remarks
1b. ib. ins. ins. ins.
1 19.29549 38.,41994 «8.,22222 4.54444 25.55556
Z'and 3 " 1"t -8.01246 4, 97808 25.02224
y= 1
2§a:?23 " n -8.00845 4.98257 25.01852
2'and 3 " " -8.00845 4.98257 25.01852 not
v=3 ‘ necessary
4 19.23273 38.28598 «8.00845 4.,98257 25.01852
) i . " " -8.00025 4499950 25.00053
"5 not
5o " " «8.00024 4.99950 25.00053 necessary
4 19.23095 | 38.28219 -8.00024 4,99950 25.00053
3. " .o -8.00001 4.99999 25.00001
y=1
5 not
v o 2 1] 1 1] oawoool 4'99999 25.00001 necessary

*9¢



TABLE 3

THREE CABLE SYSTEM

PLANE SYSTEM

u for one

v for one 2 x AFy for u for v for AF, for
Hanger of the top of the top one of the top cable top cable hangers
cables cables inclined hangers
No. i | 6 6 6
ins, x 10 ins. x 10 1bs. ins x 10 ins x 10 1bs.

1 3674 «15363 .05967 3825 -16031 06717
2 4212 «17047 06026 4391 -17853 .06778
3 2879 - 4624 06032 3010 - 5027 06785
4 1017 22144 05240 1072 22730 .06043
3 0 63737 -1.08898 0 65936 -1.07619
6 -1017 22144 «05240 -1072 22730 .06043
7 -~2879 - 4624 .06032 -3010 - 5027 .06785
8 ~4212 «17047 06026 ~439] -17853 06778
9 3674 15363 .05967 -3825 ~16031 .06707

2AF for one
AF_ for the

o o

top cable in the plane system

of the top cables in the three cable system

OF_ for the bottom cable in the three cable system

AP for the bottom cable in the plane system

"

i

5.313682 1b.

= 5.454204 1b.

[

2.174884 1b.
2.044376 1b.

A



58.

CHAPTER 2

EXPERIMENTS

2,01 Experiments on zingle wires

Experiments on three wires of different dimensions and
span, suspended between rigid supports, under their own weight
(including the initial uniformly distributed swperimposed weight
over the whole span) are described in Sections 2,02 and 2,03,
A1l three wires were tested under applied vertical concentrated loads
placed successively at various points along the span, The
main purpose of these tests was the verification of theoretical

values obtained in Chapter 1,

2,02 Experiment on a wire of ,032" diameter

W
The wire was suspended between two rigid towers under its

own weight and the dead weight of the uniformly spaced steel

blocks fixed to the wire, Details about the wire are given below,

The wire was drawn from high tensile steel,
Span, 1 = 33 ft,, Central-dip, d = 3 ft,
Spacing of steel blocks 4,5",
Dead weight of the wire and blocks w = 0,85 1b/ft span,
Total dead weight 28,15 1lb,
Weight of the hanger used for loading = 0,156 1b,

*
The wire was part of a one hundredth full size model of the cebles

and towers of the Férth Road Bridge, set up for a study of its
vibration characteristics,



(9,1
D
°

The span was divided into ten eqgual segments by mezns of nine
equally speced stetions, and both verticnl and horizontal deflections
were neasured »t each stotion, for concentrated loads of varying
magnitude, applied successively at stetion nos. 1, 2, 3, 4, and 5,
The value of applied load P (including the weicht of the hanger)
varied from 2,156 1lb. to 5,136 1lb,, with increments of 1 lb., i.e.

w varied from 0,0765 tc 0,.1835,

A typicel set of curves for vertical and horizontal deflections
are given in Figures 37 and 38, The figures show values of deflection
for load applied at stationmw, 2, Theoretic-l values of vertical
deflections for w ecual to ,0765 and .1835 are also given in Figure 37,
It will be noted that agreement between theoretical and experimental
values under the loaded point is good but the differences become
considerable away from the loaded point, Figure 39 gives the vertical
and horizontal deflections at the loaded point, for the two extrecme
values of point load, Horizontzl ceflection to the right and vertical
deflection downwards is taken as positive, The relation between W
and the deflections will be seen to be non-linear, It will also
be observed that the maximum values of deflection under the load occur

near the quarter points of the span,

2,03 ZIZxperiments on ,064" and ,0164'" Qiameter wires

The knowledge of a single cablc¢ behaviour has bzen used in
obtaining theorctical results for a plane system (see 1,20)
and it is desired to check these ageinst experimental values,
It was, thereforec, thought necessary to check thc single ceble

theory against cexperimental results obtained from the same size
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of wire (,064" diamecter) 2s used in the experimental model of a plane
system, Another reason for doing these experiments was that,
although the values from the tests on the ,032" diameter wire showed
good agrecement with the theory under the loaded point the discrepancy
was rather large away from this point, & study of the results
obtained for the 064" diamcter wire led to the experiment on the

thinner wire,

The set-up for both the wires is shown in Figure 40, Figure 41
shows the ,064" diameter wire loaded at the gquarter point. Both

wirces were sct up in the manner described below,

(i) The wire was clamped at one end on a rigidly fixed support,
(ii) The other end was stretched over a pulley with a load equal
to the desired horizontal component of wire tension.

(iii) Vertical loads were then applied to the wire by means of
uniformly spaced hangers over the whole span,
(iv) The wire was then clamped at the pulley end and the pulley

removed,

Data for the ,064" diameter wire and results

Span 40",

Central sag (measured from a horizontal wire stretched between the
supports) 2,52",

Spacing of hangers, cach carrying 1,25 1b,, 2",

Average uniformly distributed weight w = 625 1b/in,

50 1b,

49,8 1b,

o o
Measurements were taken ot an average temperature = 720 + 1,5 F,

]

Horizontal component of wire tension (computed)

]

Horizontal component of wirce tension (measured)

The wire was intercepted by two load cells each 1/2" away from
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the central hanger, The load cells were calibrated by direct loading
and then used for neasuring forces, (The load cells are described

in detail later in Section 2,19.

1/8" diameter nylon balls werc cemented on the wire at each hanger
position and measurements for vertical and horizontal movements for

applied loads were taken by sighting these balls through a cathetometer,

Figure 42 shows the vertical dcflections for values of P equal to
2,54 1b,y 5,04 1b., and 7,54 1lb., applied vertically at centre and
quarter points respectively, Figure 44 shows the horizontal deflections

®

for the same applied loads The results for the change in wire

tension (mean valuc from the two load cells) are given below,

= Change in tension for Change in tension for
load at ccntre point load at quarter point
(1bs) (1bs)
0,1 5450 7457
0.2 11,15 15,00
0.3 : 16,94 22,65

It will be observed in Figure 42 that the experimental deflection

*»
The horizontal deflections hzve bzen calculated by using equations

4Oa and 40b which are derived from equations given by Pugsley
(Section 1,02),
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curves do not have a sharp discontinuity under the load point but have
a smooth cusp instead, This is contrary to the results obtained from
the tests on the ,032" diameter wire (Sec.2-02) and it appears

that the ,064" diameter wire suspended over 40" span has some

bending stiffness, It was decided to confirm this by testing a

«O0164" wire, whose moment of inertiz is approximately 230 times

smaller than the thicker wire,

Data for the [0164' diameter wire and results

Span,y, L = 40",

Measured central sag 2,48",

Spacing of hangers, each carrying 0,1 1b., 2",
Average uniformly distributed weight, w = 0,05 1b/in,
Total weight of the wire 2 1b,

Horizontal component of tension (computed) 4 1b,

The results obtained for applied load P equal to 0,2 1lb, and
0.4k 1b, (W = 0,1 and 0,2 respectively) are shown in Figures 43 and 4l4,
It will be observed that the curves for expcrimental vertical
‘deflections show a very sharp cusp under the loaded point, unlike a
smooth cusp for the ,064'" diameter wire, which can now be justifiably

attributed to the bending stiffness,

Correlation between theoretical and oxperimental results is

discussed in Chapter 1,
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2,10 Experiments on the model of a plane systen

Sections 2,11, 2,12, 2,13, 2,14 and 2,15 describe the experiments
carried out on 2 structural model of a2 plane prestressed system, The
main purpose of the experiment was the verification of the theories,
applied to solve a2 plane system in Chepter 1, and to : et a better
physical apprzciation of the practicel problems involved, The
experiment was just a fundamental study and the model did not represent
any full scale structure, The model consisted of two main wires,
anchored firmly at their ends, within a rigid frame, and prestressed
by means of uniformly spaced vertical wircs, The wires used were of
stainless steel,

The letters usced to mark the photographs (Figures 47, 48, 49, 51
and 52) are applicable only in the section of the text where the
particular part of the experimcntzl set-up is described and have no

connection with the general notction being used in the thesis,

2,11 A note on the size of the model and the material used

The choice of the size of the model, wires and the material used
was governed by the fellowing factors,
(1) It was required to have rigid supports for the two main wires,
Whereas massive supports would have been nceded for 2 large size model,
a welded frame, made out of 3" x 1-1/2" channel sections (welded
together tc form a 3" x 3" box scction) was sufficient to provide a
rigid sclf-contained support,
(2) 1In terms of sheer labour involved it is ruch easier to deal with
a smnll size model than with a bigger one,
(3) 1In order to get any real advantages of a bigger model (even

disregarding some problems creatcd by its size) it was thought that a
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50 ft, to 60 ft, long model would be reguired, It might have been
possible to get a more accurate model and also better measurements on a

- bigger scele, This size wes not easily possible because of limitations
of space and facilities at the time thce experiment was planned,

(4) It is necessary for this kind of cxperiment to have reasonable
temperature control, Considerable difficulty was experienced in obtaining
proper temperature conditions for the model tested., It was found that
small changes in temperature and drafts of wind affected the results
appraciably, until finally the model w2s moved into a sm21l room with
strict temperature control, Similar control on a bigger size model
would be extremely difficult,

(5) Normally roof structures of this kind have a dip to span rotio of
1/15 to 1/20. Main wires in this model have a dip to spen ratio of 1/16
and their spacing was governad by the method of measurement of forces in
the hangers,

(6) It was decided to join the wires at their junctions by means of
fusion-welding, as it wcs preferred to tiechanical joints from the point
of view of slip, Also, on this scale mechanicel joints would have been
difficult to make and too big,

(7) Stainless stcel wires were chosen for the model with a particular
consideration of their welding properties, Although wires of magnetic
stainless steel would have been preferable from the point of view of
measuring forces in the hangers, they had to be rejected because of the
brittle welded joints obtained from themn,

(8) Once the size of the model was decided upon it governed the size of
the wires, The smallest possible size of the wires was chosen, The
»010" diameter wire used for thc hangers was about the smallest
procticable size that could be used, Each hanger was to carry an

initial tension of 1,25 1b, (stress = 7,12 t.s.i.)., The main wire
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size wes ,06L4" diamcter, and initial maximum tension in either wire

was expected to be 51,5 1b, (stress = 7,15 t.s.i.).

2,12 General description of the model and the procedure used for its

assemblx

The erection of the model consisted of the steps described in

this section,

(1) The frame, made by welding 3" x 3" box sections,apfl having inside
dimensions L1" x 24", was placed on level supports, The frame had two
1/L" diametcr holes spaced at 10" centres vertically in each of its
short sides, Four anchor blocks 1-1/2" x 1-1/2" x 1/2" were screwed
.to the irame, with their anchoring surfaces level with the centre of
each hole., The frame also had a 2" x 1/2" flat bar fixed to it at

the top and carried hooks above each hanger position,

(2) The top wire, with load cells in the right position, was anchored
at one end and loaded over a pulley at the other to calibrate the load
cells, (For details see 2,13),

(3) The wire was then stretched over a tcmplate to give it the correct
profile, The template consisted of 3/8" diameter copper tubes,
screwed vertical on to 2 1" thick wooden board, The tubes were
uniformly spaced and placed such that a tangent to the cutside surface

of the tubcs would be a parabelic curve with a central sag of 2,5",

In order to provide more welding surface and a more uniform heat
of fusion small stubs of ztainless sticel approximately ,025" thick

were welded to the wire at hsnger points,
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(&) The wire was loaded over a pulley with a weight of 50 lb, (the
desired value of HU). Hangers weirc suspended from the hooks in the

top bar and loaded with 1,25 1b, eachj alternate hangers were placed

on opposite sides‘of the wire, in order to reduce overall torsion, -

It was confirmed that the torsion caused had little effect on the
results, The hangers were welded to the stubs on the main wire and

the template pulley removed, A check on the load cell readings showed
negligible change when the wire was clamped cnd the pulley removed,

(5) Milc steel wire of 004" diameter wos now coiled round and

affixed at its conds to the hangers, over a length of about half an

inch, to make the hanger m~ognetic loczlly, so that it could be excited
magnetically and the force mecsured acousticelly, The mild steel coil was
so positioned that it would be central in each honger when the

structure was fully assembled, The hangers were then calibrated for
'Frequency of vibration against tension' by cirect loading., (For details
see Section 2,13), The hengers were then unloaded,

(6) Steps (2) and (3) were then repeated for the lower wire and it

was loaded with 5C 1b, over the pulley. An extra set of hengers

locded with 1,25 1b. each was now suspended from springs, which were
fixed to the hooks on top, The hangers were welded to the lower main wire
on the side opposite to the first set of hangers and slightly away from
the stubs. The load on the hangers and the template was then removed
and the wire was just spring loaded, Loads of 1,25 1lb, each were
replaced on the original set of hangers, Figures 45 and 46 show the

two wires loaded with loads and springs respectively and by mezns of

seperate sets of hangers,
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The idea of using springs was that, if the profile of the
template was siightly wrong, the geonetry of the wire would be
corrected by a2 readjustment in the large extensicn of the springs
(1.5" average extension £er 125 1b, load). Ncasurcments showed
small readjustnents, 211 within ,01M",

(7) The original set of hangersy loading the upper wire, werc then
welded to the lower wirg springs, loads and extra set of hangers were
renoved, lMeasurement on load cells still showed only very small
changes,

(8) The pulley end of the lower wire was clanped and the pulley was
removed, Figure 47 shows the ccnpleted model, The numbers on top of

the frame refer to the hangers,

Welding

It is important to note that if the wires were welded, with the
thinner wire under tension, it wes brolen due tc the high heat of fusion,
Therefore, the wires werc first held in position between the tongs of
the welding tweezer head, the load was remcved from the thin wires and

the fusion was affected, The load was then replaced on the hanger,

2,13 Methcds for neasurement

The cheoice of suitable devices of measuring forces in the model

was governed by the following reguircnents,

(1) It was important to know the absoclute pretension in the structure
and tc keep a recerd of any voriations in it, It was therefore necessary
that the wmeasuring instrument would not show o drift in reading unless

the pretension itself changed,



(2) The measuring device should not affect the stiffness properties

of the elements of the structure,

The use of thin single wire clectrical strain gauges, directly
cemented to the wire, was first envisaged but rejected due to the

above-nientioned reascns,

Optical and rcchanicel met-ods of wmeasuring strain in the hangers
were thought of and rejected for want ef too much precision and
elaboration, The metnods of mesnsurenent finally decided upon and

uscd are described in the following paragraphs,

Measurement of forces in the wein wires (,064" diancter)

X K
Load cells of the typc shown in Figures 48 znd L9 were used for
measuring forces in the main wires. A loa@d cell consisted of the

following components (see Figure 48),

(1) Two aluminium fstrips, 1" x 5/16", narkcd 'A', The thinner pert of

______ o _/[

the strips is 3/85“i6ng and 5/16" x ,0145" in cross-section. Cne

electrical strain gauge on each strip was cemented longitudinally along
the axis of the wire on thc outside of the strip, marked '0', and one
strain gauge each was cemented on the inside, marked 'I!,

(2) Anchoring blocks meorked 'BYy were cut out of 3/8" diameter
stainless steel rounds and arc 3/16" nigh, 1/8" diameter pins
protrude on cither side of the block and the pins are hollow and
thrcaded to fit 10 BA screws, The wire 'W! is throaded at its end and
hos two nuts fitted to it (cach nut locking the other), The nuts

bear on block 'B!' within a cylindrical hollow space provided in the
biock., The anchor block wes sc designed thot the wire and nuts could

rotate freely, thus aveiding any kind of fixity,
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(3) Small stainless steel flats, 'F', fitted as shown. The

purpose of thesé flats was to mprotect the outside gouges and provide
a2 place for sccuring the lead wires from the gauges. TFigure 49
shows the load cells after gauges have been cemented and they have
been placed within the structure, The way the lead wires are

cenented to the flats 'F!' can be seen,

The four gauges on cach load cell formed part of a wheatstone
bridge circuit in such a way that

(i) for a direct pull on the load cell, the tensile strain in
the longitudinal gauges and the compressive strain in the
transverse gauges all adds up, thus giving increased
#ensitivity to the device

(ii) for a change in temperature all gruges have the same sign
of strain wiich cancels out, thus making the load cell seclf
compangating for temperature
(iii) any strains caused by bending about the horizontal plane

of syrmmetry, passing through the wires, would cancel out,

Each gouge had a geuge length of 1/8" and a gnuge factor of 2,14,
The cross section of the aluminium strips was so designcd that the
gauge will have the same extensibility as the wire, 4verage strain
per pound of lood wss found to be 30,66 x 10-6, measured on an
instrument designed for a gauge factor of 2,

The actual strain = 30,66 x 1070 x 2

2,14
6

it

28,65 x 10

If Foisson's ratio for aluminium is assumed to be 0.3,

~6

longitudinal strezin per gauge = 28,65  x 10
2(1+0%3)

= 11,03 x 10"6/1b.
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Area of the wire is 3220 x 10_6 sq, ins,
. . . . 6 .
'E' for the wire (determined experimentally) is 28.3 x 10 p.s.i,

Strain per pound on the wire = 1
3220 x 10~ x 28,3 x 106

= 1 = 11.1 x 10"6

91000

On an average the load cell is 0,6% stiffer,

While calibrating the load cells it was found that the reading
in the cell alteéred apprecizbly if its orientation was altered with
respect to the axis of the wire (it is presumed this imposed some
sort of cccentricity in loading or altered the eccentricity if already
present), The load-strain rclationship, however, did not alter by
more than 2e3%, In order to avoid errors on this account the load cells
were calibrated within the model frame, The wire was anchored at one
end and loaded over a pulley at the othcr end to calibrate the load
cells, The orientation of the load cells was also fixed, and in order
that the absolute reading could be relicd upony wes maintained the

same throughout the experiment as far as possible,

Four load cells of the type described were placed in each wire
at 2", 20", 30" and 38" away respectively from the left hand support
(Figure 47), A typical load-strain ef>ve, for load cell number 1 on
Figure 47, is g¢iven in Figure 50, The curve shows very slight
non-linezrity but departure from a straight line is so small that
the mecen values were used for calculating forces from strains, HNean

values of strain per pound arc given here,

Load cell 1 2 3 A 5 6 7 8

Strain x lO6 30,86 32,05 29,31 27.,8& 33,28 32,50 30.30 29,15
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The load cells, however, did show a drift in recding with time
and could not be rclied upon to maintzin a force-history of the main
wires, It was justifiably hoped on the basis o7 previous readings
that the load-strein relztionship could still be relied upon to

evaluate changes in tension,

Measurement of forces in the hangers (,010" diameter wire)

The type of load cells used for the mein wires would have been
difficult to menufacturce for the hangers becausce it wouid be impractical
to heve load cells of the same extensibility as the hangers, It wes
decided to use the property that the freguency of vibretion of a thin
wire is a function of its tension, If the bending stiffness of the

wire is neglected, its frequency of vibration is given by:

f=1 T (47)
21 n
where, f = fundemental frequency of notural vibration
T = tension in the wire
m = mass per unit length of wire
and 1 = gauge length, i,e, the distance between the two nodes,

The principle used here is thot the wire hanger forms part of a
vibrating wire gauge, The wire is plucked by a magnet (connected to an
oscillator) to initiate the vibrations and the frequency of vibration
is mcasured on an oscilloscope. Since the hangers were of non-magnetic
wire, the wire was made locally magnetic by coiling a 004" diameter
nild steel wire around it (see 'MC' in Figure 49),.

+ *

The gauge is shown in Figures 51 and 52 (the magnet is shown

disconnected from the oscillator), The instrument wos mounted on a

telescope stand, so that it could be moved from hanger to hanger,
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The telescope stand was provided with ~djusting screws for fine
vertical movement and rotstion about the verticel axis to facilitate
the positioning of the gauge, Major parts of the gauge, marked on

Figures 51 and 52, are described below,

(1) Block '.i', which could be moved nearcer to or farthcr away from
the wire by adjusting the nuts 'N', had the wmrgnets 'ﬂ' fixed to it.
(2) Block 'B' carrying thc blocks 'C' and 'D!' could be moved along
its horizontzl axis by a differential threzd screw hecad 'EY,

(3) Block 'C', weighing approximately 1/2 oz., pivots about a pin
with an eccentricity of anproximately 0.2", Block 'D' is fixed to
'B' and the flat portion against which the wire rests has a width of

.05". The roller at the end of Blcck 'C' just holds the wire against
the flat in block 'D',

The gauge length (the distance between the two nodes produced
by blocks 'C' and 'D') wcs measured to be 3-3/4", During the
development stage of the gauge, wiich was extensive, the following

important points were noted,

(i) Gauge lengths of 1=-1/4", 2", 3" and 3-3/4" were tried, At
geuge lengths of 1-1/4" and 2" the wire was too stiff to be
initiated by the pull of the magnet and at 3" the vibrations
did not last long enough for being able to get a balance on
the oscilloscepe, At 3-3/4" the demping was not quite so
high and the vibrations lasted a convenient period of time,

(ii) It was required to hove the magnet at a specific distance
(approximateiy 1/32") from the wire to get a proper
Lissajous figure on the oscilloscope sereen,

(iii) It wes most important that the conditions =t the support be
repeated precisely in order to get consistent results. The
points particularly noted with regard to the supports were:

(a) the flat portion in block 'D' should just touch the wire,



76.

so that the wire is not pushced out of its rplaneg

(b) the pressure exerted by the roller should be

kept the minimum pessible, otherwise there is a
teadency to drag the wire, which would affect the
teasion in the wirey

(o) the blocks 'C!' should rotate in the same direction

so that the drrg, if any, is compensating,

Figure 53 shows a long plate, which is fixed to the frame, 4
number of washers are glued down to the plate and two of the legs
of the telescope stand are positioned by the washers, Thp position
of the weashers wes fixed wher the hengers were being celibrated, so that
it would be possible to rcpeat the seme position of the gauge whenever

recdings were taken,

Ezch hanger was calibrated separately, All hangers fell into
three slightly different classes (the difference perheps
attributable to the slight difference in length of the mild steecl coil),
say /Ly B and C, The calibration curves are shown on Figure 54, Good
consistgncy vas obtained in the results, This can be seen from
Tables é‘and 7: which show how accurately it was possible to measure
loads and small differences in loads with the help of the cslibration

graphs,

. » > 3 . - .
Taking measurements with the vibrating wire gauge consisted of

the following steps,

(i) The telescope sthnd wes brought into position for the
particular wire on which measurement was to be made,

(ii) The gauge was adjusted such that blocks 'D' werec just
tcuching the wire and the magnets were facing the mild

steel wire coil,

X Page 32
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(iii) The blocks 'C' werz rotsted sbout the pins to restrain
the wire at two points,
(iv) The wire was plaeed by the magnets tc give a Lissajous
figure on the oscillator scrcen and reading was taken
at resonance,

(v) The wire was released by rotating back the block 'C' and
the structure was then loaded or unloaded and allowed to
deflect, unobstructed by the gauge,

(vi) Steps (ii), (iii), (iv) and (v) were rcpeated to take

the next readings.

Measurement of deflections

Nylon balls 1/8" diameter were cemented to the main wires, at
each hanger position, Deflections were measured by sighting these

3

balls through a cathetometer, reading tc 1 x 10~ in.

2,14 Maoin dimensions of the model and experimental results

The important details and dimensicns of the model are given
below (see Figure 1la for notation),
n = 20

39-7/8" (measured between inner faces of the anchor blocks)

10-1/16" (centre to centre distsnce of the main wires at

[

the anchorage block)
ay = 4 = 2,54" (obtained by plotting a profile of the wire)
Average value of a = 2"; the first hanger is at 1" from the left support.
Average value of T = 1,20 1b, There is a seatter of +15%; the
desired value was 1,25 1b, in c¢ech hanger, Hanger tensions were
measured several times during the course of the experiment and the

average value showed no appreciable change,

w = 0,600 1b/in,
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H_ (nmecsured at the time of assenbly) = 47,8 1b,

U
HL (neasured at the time of asseumbly) = 49,0 1b,

Meosurements were taken in a temperanturce-controlled room at an

average value of 68° + 1° F.

Measurements at the supports showed no movenent due to applied

londing,

The value of the Young's liodulus of elasticity, E, for the wire

. . 6 .
was determined oxperimentally to be 28,3 x 10 p.Seis

The method of loading con be scen from Figure 52, Load hangers

are suspended from wireg straddled over the . main wire,

For both the 'load' and 'no load! condition three sets of readings
were taken, unless the first two scts agrecd very closely., Results
were obtained by taking & mean value from the different sets of

readings,

The various cases of loading end the results obtained are

enumerated here,

(1) Concentrated applicd vertical load zqual to:
(a) 2,5 1b, at quarter point on upper wire
(b) 5.0 1b, at quarter peint on upper wire
(¢) 2,5 1b, " hanger no, 10 on upper wire

(¢) 5,0 1b, at hanger no,10 on upper wire
The results are sho.» in Figures 12 to 18,

(2) Concentrated applied vertical lozads at hanger nos, 2y 34 4y 5,
6, 7y 8 and 9 cqual to:

(a) 0.5 1b, each on upper wirc , p

Il

0,25 1b/in,
0,50 1b/in.

(b) 1.0 1b, each on upper wire , p
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0.75 1b/in,
0,25 1b/in,
0,50 11/in.,

n

(c) 1.5 1b, coch on upper wire + P

(¢) 0.5 1b. emch on lower wirec 4 p

L}

(e) 1.0 1b, each on lower wire 3 P

The londing is meant to represent a uniformly distributed load,
'p' per unit length of span, over part of the lcft half of the span, The

results are shown in Figures 21, 22 and 23,

(3) Cemcentrated applicd vertical loads ot 4", 8", 12", 16", 20", 24",
32" and 36" from the left support equal to:

(2) 1.0 1b, ecach on upper wire 4 p = 0,25 1b/in,

0.50 1b/in,

il

(b) 2.0 1b, ecch cn upper wire , p
(c) 3.0 1b, ecch cn uppsr wire , p = 0,75 1b/in,

The load is mcant to represcnt a uniformly distributed loady py
cver the central 36" of the span, The results for the change in forces

are given in Figure 55,

(&) 1Influence lines for change in tension in hsnger nos, 5 and 16
(which are symmetrically placed in the structure) are given for applied

vertical lcads of 2,5 1b, and 5 1b, in Figure 56,

(5) 1Influence lincs for hU' hL and values of deflccticn in the upper
cable under the loaded point for vertical apwnlied loads of 2,5 1lb, and
5.0 1b, are given in Figure 57 and 58, Values of hU and hL’ rmeasured
at centre point loed cells only, sre given, Measured values from
other load cells show similar variation and very little difference

in magnitude from the valucs given,

It will be noted from the above results theot:

(1) under an applied point losd, there is o sharp decrease in

tension in the hanger immediately under it and the two
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hangers adjecent to it have ¢ bigger increzse in tension
than the rest of the hangersg

(ii) the stiffness of the structure gocs con increasing with
applicd load;

(iii) under a load uniformly distributed over the wholc span,
there is an almost equsl sharing of load between the two
main wires, unlike for any other kind of loadingj

(iv) a maximum value of deflection under load occurs near the

guarter point,

The correlation of experimentzl and theroetical results is

discussed in Chapter 3,

2,15 Sourccs of error and points of diffcrence from an fideal' model

(1) The main wires are broken up into scveral segments by the load cells
causing some change in their stiffness value, This alsc gives a certain
degree of undesirable freedom to the segments {o rotate with respect to
each other, despite the fact that this tendency is resisted at the load

cclls due to the friction between nuts and anchor blocks 'B' (Figure 47).

(2) The hangers have unequal prctension, which may hove been caused by
slight rotations at the joints while welding or some other steps of

asscembly,

(3) The hangers arce eccentrically connected to the main wires and
although alternate hangers are cn the opposite side of the wire, this

would causoe a certain amount of torsion,

(4#) Therc is the possibility of errors being caused by a slight error

in the positioning of the vibrating wire gauge,



(5) If there is a certain degree of eccentricity in the loading,

the wirc segments can rotate with respoct to ccch other, causin
P ’

undesirable changes in the hanger tension, lMeasmi:rements were taken

for rotations in the wire due to applied loading. The roteotions

were noted to be greatest near the centre pcint load-cells,

81.
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Loed on the wire Load ncasured % error
ib, ib,
0|6[i 00655 2033
0.84 0,860 2,33
1,04 1,050 0,96
1.24 1,255 1.21
1.bk 1,540 Nil
1.64 1,640 Nil
1.84 1,855 0.80
2,0k 2,040 Nil
TABLE 7
Initial load on | Final load on | Differences in %
the wire (1b) the wire (1b) the load necasured | Error
(1v)
0,64 O 7h 0,103 +3,00
1,04 1.14 0,099 -1,00
1,64 1.74 04104 +4 00
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CHLPTER 3

CISCUSSION ON RESULTS

3.01

The theoretical and experimentesl results obtained have already
been given in Chapters 1 and 2 respectively, along with comments about
the important features of the results, Nost of the experimental results
are plotted on the same figures as the corresponding theoretical
results, This Chapter gives a summary of observations from the results
as well as a discussion on the comparison between the theoretical and

experimental values,

3.02

Results of point loads applied only ~t the quarter point and
the centre point (or very necar the centre point) of the span are given,
because the maxima and the minima of the different parameters,
being studied, occurs when point loads are¢ applied near these points,

(See Figures 19 and 20,)

3.10 Single Cable

The theory used for analysing the single cable is for flexible
cables only and it will be seen from Figures 42 and 43 that the sgreement
between theoretical and experimental values for vertical dcflections is
closer for the ,0164" dismeter wire than for the ,064" wire, which has
considerably more bending stiffncess than the thinner wire, The agreement
for the ,0164" diameter wire is excellent, For small values of i
there is little difference betwecen the values obtained from Pugsley's
theory and the more accurnte theory but for larger values of ﬁ the

values obtained from the more accurete thcory show better correlation,
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The correction terms included in the more cccurate theory,
which nre neglected by Pugsley, cre only material st high values of

applied loads,

The agreement between experimental and theoretical results for
horizontal deflections (Figure 4L) is also reasonable, the agreement
being better for the thinner wire. Theoretical values for horizontal
deflections have becen obtained by using Pugsley's *heory, which does not

consider the size of the wire,

The theory is extremely simple to usc and the required computations

can be easily done on a desk calculating machine,

3,20 The FPlane~system

3.21 Gencral Obscrvations

(i) The resistance of a single cable to deflections under applied
loads is mainly due to its 'gravitystiffnesst A plane system, on the
contrary, derives most of its stiffness from its prestress, and has very
little 'gravity stiffness!', Indirectlyy, however, it con be seen as a
structure with two single crbles of reverse curvature interacting
with each other, Therefore, thore is justification in expecting
that the plane system will heve greater stiffness than a single cable
(provided 'w' is thc same for both), It will be secen from the results
that the ratio of the maximum experimental vortic~l ond horizontal
deflections for o single cable and a plone system is approximately 1,6

for the same value of w and ¥,

(ii) It hos been shown thrt the 064" diamceter wires uscd as the
main cables in the experimental modely arc not completely flexible at

that scale, Both methods of theoretical s~lution are only meant for
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structurcs with flexible eclements and as such the model with the
JO56L" diameter wire does not comply entirely with thcoretical requirements,
There are also some differences arising becruse of “he difficulty of

representing all model conditions in 2z theoretical treatment,

(iii) The structure gets increasingly stiffer with applied loads and
has o basically non-linear behoviecur, just like a single cable, It
will be seen for all cases of loading that the values of deflection,

Ny hU'and hL vary nen-lincarly with the magnitude of applied loads,

(iv) For lords applied to the upper ceble, the hangers immediately
under the load or within their immediate vicinity experience a decrease
in tension and all other hangers undergo. an increase in tension,

If the magnitude of aprlied loads is increased to an extent such that
some of the hangers go slack and become ina&tive. the two cables
still continue to interact through the rest of the hangers (except
for a cese of uniformly distributed load over the whole span), For
loads applied to the lower cable all the hangers undergo an increase

in tension,

(v) It will be seen for loads applied on ecither the upper or the
lcwer cable that values of hU are much larger than | hLI s which shows

that the upper cable is the load-carrying cable,

(vi) Results for the range of loads applied have shown that there
is negligible difference between the uppor and the lower cable vertical
deflections; also there is ncgligible difference in vertical
deflections whether the upper or the lower cable is loaded., Therefore
only upper cable vertical dcflections have been plotted for all
loeding cases, Corrzspending points on the two cables move in

opposite directions horizontally and the deflecticns are comparable,

(vii) The ratio between meximum horizontal and vertical deflections

calculated under a loady, P = 2,5 1b, (W = 0,1) varies from



approximately 0,25 for a load near the end to approximately 0,075

for a load at the centre pcint,

The ratio of maximum calculated vertical deflections for a
load P = 2,5 (¥ = 0,1), applied horizontally or vertically at the

centre point is approximately 0,125,

3.22 Discussion on the compariscon of results

(i) Figures 12 to 23 show the experimental and theoretical
results for the plane system, vhich arce being compared here, It
will be secen. that there is better all-round agreement between
experimental values and the values from the 'General method', than
the values from the 'Influence Coefficient! method, The

experimental results lie between the results from the two theories,

(ii) Deflections

+ .
The agreement shown ir. Table 8 is reesonable, It will be

seen that the errors from the 'Influence coefficient! method go cn
increasing with the values of load whereas they ore almost unaffected
in the case of values obtnined from the 'General method!. Figure 23
shows that for uniformly distributed load, py negative cdeflections
obtained by the 'General method! show much better agreement than

those obtained by the 'Influence coefficient! method,

(iii) Values of hU

Excellent agreement between the theroetical values obtained
from the 'Gencrzl method!'! and the cxperimental values can be seen wn
Table 51 The values of the point load applied at the quarter point
obtained by the 'Influence coefficient! method are particularly bad
but the other values show reasonable agreement, Valuces of hU have

not been tabulated as they are smell and unimportant; the values can be

+ Page 89 x Page 90
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seen in Figures 19, 21 and 22,

Errors given in Tables 8 and 9 are computed on the experimental

values,

(iv) Values of change in hanger tension

It can be scen from Figures 12 and 15 thet ressoncble agreement
is cbtained by the 'General method! for all values and positions of the
applied point lond, The values from the 'Influcnce cocfficient' method
are not so close to the experimentoal values, cspecially for ﬁ = 0,2,
For a uniformly distributed load on the upper cable (see Figure 21)
values from the 'General mcecthod! show feirly good agreement and the

order of error is unaffected by the variotion in p,

The 'Influence coefficient'! vazlues show fair agreement for
p/w = 0.4k but start to diverge from the experimentzl values for larger
values of p, Both methods show good agreecment for the lower cable

carrying load p (see Figure 22),

3,30 Three-dimensional system

A suspcnsion system consisting of three cables has been solved
in Section 1,33, It has been shown that the !General method' gives
satisfactory solutions for the initial geomectry., 4 numerical example
has also been solved for an applied peoint load, The different parameters
in the structure are deliberately chosen such that it is very nearly

the same as a plane-systen,
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X X
z z
Y Y
. To= 0 5(EA)"\5‘ 0
. —-005"t—
(EA)¢,= 90,000 Ib.
t @ T (EA)c,=(EA, = 45,000 Ib.
(EAly, = 4450 b. | T=121b. > Ti=Tp=061b) | (EA)= (ENy, = 2225 Ib.
: i ~
(EA) = 90,000!!:.@ . . (EA)c,= 90,000 1b.
PLANE SYSTEM : 3=-CABLE SYSTEM

CROSS SECTION AT THE CENTRE

Table 5 shows that the resulta rrou the two solutions agree
within about 2,5%,as axpoctcd.
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% Error in values of deflections
Load Applied at Influcnce Coefficient General ncthod
method
#=0,1 Henger no, 10 - 43 + 11,2
W=0,2 Hanger no,l0 - 11,3 + 13,8
W= 0.1 Quarter point - 6,5 + 3,9
W = 0,2 Quarter point - 11,6 + 4,0
p/w = 0,4) + 3,0 + 5,0
)
) Part of the
p/w = 0,8) left half of + 6,0 + 6,0
) the span
)
p/w = 1.2) + 10,0 + 3.7
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TABLE 9
——
% Error in values of hU
Load Applied at Influence Coefficient General method
method
¥-o0. Hanger no.10 + 1k,7 nil
W= 0.2 Hanger nc,10 + 1hh + 1,5
W= 0,1 Quarter point + 42,5 + 2,1
W= 0,2 Quarter point + 54,0 + 2,6
p/w = 0,4 ) - 10,0 nil
J1 Part of the
)| left half of
p/w = 0.8 )| the span on - 7.5 nil
)| upper cable
)
p/w = 1R ) - 3.2 nil
p/w = 0.4 )| Part of the - 11,7 - 3,9
)| left half of
)| the span on
p/w = 0,8 )| lower cable - 2,0 - 0,7
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CHAPTER 4

CCNCLUSIONS

4,01 Introduction

Chapters 1, 2 and 3 describe the fundamental study on 2 single
cable, which is basicrlly a gravity system, and plene and three
cable structures, which are basic prestressed funicular suspension
systens with little or no 'gravity stiffness', Most suspension
systems (except the type shown in Figure la) consist of two or more
cables of reverse curvature, prestressing and thus stiffening ecch
other., The study of two cables interacting with each other is,
therefore, fundamental and the results cbiained for the planc systen
are of application to general suspension systems, The study of the
three-cable system is a step towards a more detailed study of space

suspension structures,

A1l this study hes been carried out feor structures supported
by rigid and unyielding supports znd at constant tempersture., A
method for considering the effects of support movements, slip at the

support and temperaturc changes has, howevery 2l1lso been suggested.

The main features of the 'influence coefficient' method and the
_'General' method hove been discussed in Sections 1.23‘and 1,34
respectively, Observations on the thecoretical results on a single
cable and the planc system are made in Sections 1,10, 1.22 and 1.32,
The possible sources of error in the experimental work are given in
Section 2,15, and other important points sbout the experiments are
discussed in general in Chapter 2, General observations about the
behaviour of the plane system are made in Section 3,21, and those on
the comparison of theoretical ané experimcntal values follow in

Section 3,22,



The main conclusions drawn from the cbove study are given in

the following sections,

4,10 Single cable

An experimental and theoretical study has been made for single
cables under applied point load, The theory, which is very simple
in approach, is meant for flexiblce cobles only., Excellent
egreenent has been obtained between the theoretical and experimental
values, The theory has been used to obtain an approximate solution

for a plane prestressed suspension systen,

L,20 Plane-systen

The plane system has been studied in great detail, experimentally
as well as theoretically. Two methods of theoretical solution hzve
been used, and keeping in view that the experimental model could not
comply entirely with theoretical requircments, the agreement obtained

is quite reasonable for most cases,

The 'influence coefficient! nethod is much simpler to apply
but it is limited to considering verticel loezds and deflections only,
It gives reasonable results for deflections under applied loads;
agreement for forces is also rcasonable for smcll applied loads,
Where a large discrepancy has occurrcd between theoretical and
experimental values of forces, the theoretical values are the
greater, It has been shown that the value of unit load should be

.0l or less times the value cf wL, in order not to affect the results,
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It will be scen from the comparison of results in Section 3,22
that the values from the 'Influence coefficient!' method are

in reasconable agreement for small values of lozd, but arc in error
for larger vclues, This shows that the law of superposition used
in the method is justifiable for small loads but introduces errors
for larger values of spplied load, The nethed is thought to be

quite suitsble for a prelinminery analysis,

The 'General method! is very simple in principle but involves
a ccnsiderable amount of computation, The agreement obtained with
this method is very good for both concentrated and unifarmly
distributed applied loading and is hardly affected by the magmitude

of locds,
It has been shown for boih methods of solution that the
number of nodes can be cut down, reducing the computcotion work

considerably and at little sacrifice of accuracy.,

4,30 Three~dimensional structures

The applicability of the 'General method! of solution to three-
dipensional prestressed systens h-s becen shown by using it to solve
& three-cable structure. Thé generality of the method mckes it

a very useful tool for the analysis of prestressed suspension systems,

4,40 Experiments

The experiment on the plone system presented some difficulties
in the messurecmient of forces, particulorly o3 it was desired to
maintain a force-history of the structure. The load cells used as
links in the main wires and the vibrating wire gauge for the hengers

proved to be a satisfactory izecans of meacsurement, The vibrating wire



gauge was found sctisfoctory for meintaining the force<history of the
model, but the design of the losd=cell needs further improverient before
it is sufficiently dependable in this respect, The load cells and the

vibrating wire geuge are described in detcil in Section 2,13,

4,50 Computotion

Both the thecretical approaches used to solve the plane system lead
to the numericsal solution of simultaneous equations sufficiently large
in number to require the use of digital computers, Computer prograrmes
were written in 'MEDNCURY LUTOCODE' and are suitable to be run on the
VATLA3' computer using 'compiler EMA', The programmes are most general
in nature and s study of Section 1,31 and the flow diagrams in
Appendix 'B' will show thst it will be more eccnonical if a large
number of cases of loading are sclved in the same run of the
programmé. The programmes require as data the geometry and stiffness

of the structure and the londing,

A similer programme was written for the solution of the three-
cable system. The programme can determnine the gecmetry of the
structure for initial force and then sclve the structure for applied
loads, It will be more economical to solve a large number of cases

of loading in the same run of the programae,
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The symbols and letters used have the following definition,

unless otherwise mentioned. Cables No. 1, 2, and 3, and hangers

No. O, 1 and 2, refer to the three-cable system. Upper and lower

cable refer to the plane system.

A
E
(aB),

<AE)ho5 hy; hy

(AE)

(AE)¢ .

(AE). . .,
Cy5 Cp3 C3

N Fo

The area of the cables or the hangers
Young's modulus of elasticity
The value of AE for the hangers

The value of AE for hangers No. 0; 1; 2

The value of AE for a cable

The value of AE for upper cable; lower cable
The value of AE for cables No. 1; 2; 3
A uniformly distributed vertical dead weight or

the initial prestress per unit length of span

The uniformly distributed applied vertical load
per unit length of span

An applied vertical point load

_F
w X span

The pretension in the hangers of plane system

The change in hanger tension at node k

The initial assumed force in a member k - i

member k - i is the member joining nodes k and

i, kK and 1 being any general nodes in a structure

The pretension in member k - i

The change in force in member k - 1



=1

=]l

An applied point load at node k along X-axis

An applied point load at mode k along Y-axis

An applied point load at node k along Z-axis

The

The

The

pretension in hangers No. 03 1; 2

horizontal component of the single cable tension

horizontal component of the change in the single

cable tension

h
1+ m
The tension in a single cable at any point X
The horizontal component of tension in the upper

cable; lower cable

The
the

The

horizontal component of change in tension in
upper cable; lower cable

vertical reaction at the supports (under

pretension only) in the upper cable; lower cable

The

average value of the positive values of Tk

The span of the structure

The length of a single cable

The change in cable length

The vertical distance between supports

The distance between supports mcasured along the
Z-axis

The central sag of a single cable

The central sag of the upper cable; lower cable

The vertical sag of cables No. 13 2; 3

97



(Xk: k2 Zk)
(u-k, Vk, Zk)

(u?

K Ve 2

The horizontal sag of cables No. 15 2; 3

The assumed length of member k - 1

The length of member k - i under pretension

The length of the hanger k

% ywhere x 1is the distance from the origin of
the point where the deflection is being calculated
The spacing of hangers

The total number of hangers, or the number of the
sets of hangers in the three-cable system

The coordinates of a node k

The movements of the node k along the X, Y
and Z axes respectively

The values of correction applied to the initially
assumed values of X Yy and z, respectively

The horizontal deflection of the single cable
The vertical deflection of the single cable

The vertical deflection at the loaded point in the
single cable

The vertical deflection of a single cable at
station j for a vertical applied load at station

The vertical deflection in a suspension bridge
stiffening girder at station j for a vertical
unit load applied at 1

The vertical deflection of the upper cable at
hanger k for a vertical unit load applied at
hanger m

The vertical deflection of the lower cable at
hanger k for a vertical unit load applied at
hanger m

i

8.



K =
M =
F = G =
U =
Ut =

R

EA + Fo

o=

(L - 2r)

Nl =l

(1 + 2r)

T Li at hanger k
(AE),

The coefficient of linear expansion / degree

change in temperature
change in temperature
Slip at the support

EA
w.t

Vertical displacement
at x =~ L/2

Vertical displacement
at x =L/2

Vertical displacement
at x = - L/2

Vertical displacement
at x=1L/2

of the upper

of the upper

of the lower

of the lower

cable

cable

cable

cable

support

support

support

support
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Horizontal displacement

at

Horizontal displacement

at

Horizontal displacement

at

Horizontal displacement

at

x=-L[f2

x=L/J/2

x=-L/J2

x =L/2

of the upper

of the upper

of the lower

of the lower

cable

cable

cable

cable

support

support

support

support

100 .
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Appendix A

Derivation of equation (34)

Length of a small element in

the cable can be given as E dy
. v
2 |/2 ) : :
dl = [ l+(§%—) }-dx (48a) : v
: 1
]
After deflection v has occurred P
the changed length can be
obtained by replacing y by
(y + v), as
‘. dy _ dv
d1 {|+(ch »du) }dx (48b)
The change in length due to deflection v is, from equations
(48a) and (48b) )
N Vz /2
$(d1) _ ’ _
S = dl-dl =1l +(a+b) 1 +a?
or ¢ (a+b) - ¢(a) (49)
= dy = d'__v
where a = dx and b ax

(15) as

¢ (a+b) can be expanded in Taylor's series

2

) = [26)],.q +b[ S0 pq * F 5500 o

2 I
or ¢(0-) + b[(l b) ] + g [WZ] b-—; ..... (50)

Neglecting higher order terms and substituting this value of
@ (a+b) in equation (49) we have



102 .

ii

C - U
dx (1+a?)"2 2 (|+a (1+a2)2

Substituting the original values of a and b and integrating

to obtain the total change in length, we have

L/2 L2
dv
A1 = :i . - 7 -dx +L2 ( ) -————%-dx (51)
{H(%i)} 2 {1+@9)3
- Y2

Equating this change in length to the extension of the cable

due to increase of cable tension, we can restate equation (35) as

L2 4 L/2
J
. gx 1 [eav . ¢hL
/dx [H(gg)i]'?z dx + z/( ) l.»,(z!_)?-,ﬂz AE (52)
-Lh “L2

(Note: Evaluation of S 1is given later in this appendix.)

Derivation of equation (36)

Equation (51) can be rewritten as

L2 73
dyy ;d | dy ¥ V[ duye[, 3 dy,?
[ @ - @ e tf@f-t@’} e oo
-t/ L2 :
2
neglecting higher order terms of (f%%)

Change in length from x =~ L/2 to x=1L , Al

Differentiating equation (1) with respect to x and

substituting the value of H we have
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il
4y _ 8d.x
dx 2 . (54)
Différentiating equation (58) w]_th respect to x we get
dy ELE[-H{- - 1-2v) } -—-] (55a)
2 2 2 - 2
dvy _ead 1 X _ X oo L. -2x L IX _aG-
dx) LZ [%2 {—LT L w (‘ 27') + ( 27') } L i’\{L W(l 27)}
' 2
+ ’:2] (55b)

2
ituti dy v g (v
Substituting values of T’ dx 2nd ( Tx ) from

equations (54), (55a) and (55b) along with the following substitutions

2

G = 32 EE (inside the integration sign)
d2

F =- 32‘—5 (outside the integration sign)
L ;

K = 5(1 - 20)

In equation (53) we have

. rL. . riL :
2F x3 1 rx x x?
—L- . {JC -G'—}{i(—C—K) - —r}dx + F/(l -36 'rz')

LZ
-L7 -L/2
_'_.(xz-ZK.E+ k?) - 2X. L (X_k) +_x_7' .dx
n e L L hMt L2 (56)

In spite of having the same value G and F have been separately
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denoted, because by equating G to zero, it will be seen that the

denominater term reduces to uaity.
On integrating and rearranging the terms we have -

*

2 2 :
= 2FE10 (KL K20 3 K6, 3 3GK .4 36 5
Al «[ ( X~ SxT X T {-4?-:: |o_§x)

3 xX=rL
+_1.(_GK.x4+_2_G_.xs __x.._-G_s.xs (57)
6L 100 )
J(—-L/;_

Change in length from x’= 1L to x=L/2, A1y

Differentiating equation (5b) we have

TR T

Putting M =-"§J (1 + 2r) we obtain

dv _8d |l x _x
ax - LRt L] (58a)
dv\2_ ead’[ 1 ,x? X 2y 2X | /X x?

and (dx)" Lz'_f?"(_l.i +?.M—L-+M)--—L—-_;‘-(—L+M)+? (58b)

It will be noted that the term W2 enters the expressions through

104,

2 .
(%:f) " and hence if the second term in equation (53) is to be excluded,

'W-z should be equated to zero.

2
Substituting values of % and (g—:—:—) from equations (58a)

and (58b) in equation (53) we have



v
L/2
| X G .2
Al = /(I-Fx) —.}:( +M)-T]dx + F-/(l-}L—z-x )
. rL
L, % | 2% X x?
[ 2t o) -4 BEEow) + 5 ax 39
On integrating and rearranging terms we have
2
2F[ 1 ML MZIZMGSBﬁ_tt_SG_S
Al = T‘[Tz'(—z"'“?* Yau X X Ty E* o X
+_|_ M6 4+4-x5)——'--xs— 6,5 b2 (60)
EYLRERNT oL o L

Total change in length Al can now be obtained from equations (57)
and (60) as

Al = AL+ Bl = -Z-E['—h,_{(xz-uz)'n (K+M) r2-L (K M)T5L5+SG (keM)r* }

2
+-.—h-2-.{(|g2+M2)' +(|<+M) + G(x M ) G-(mm)-é—: -'—5:—0'-1.2}
A . 2 2 2
) 44 L GL
-T‘--%?-(Ki'M)Y L [G(K+M) = +G-— ] ~5q -‘a)-] (61a)

Putting the following values in equation (61la) we have
KtM = W s K-M = -2rW

- -2
KB+MmE = os5(+ar)w? s KE-mE = -2rw
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FL 1 G , ty=2 Y 2
Al = _4_...,',‘.:.[-(2—0 +?)h - 46Wr ' h + 6|

ISES
U‘ -

22 -2 -
- { 4(1—-52-<3r-2)-»in--z +8(1-6r)wr ] + {(t+4r2)wz+w +'§]

-6 {3 ear)w? + 3w o 2] | (61b)

The right hand side in equation (52)

= g.hbt

h
AE

HL

Y

b
H

or U(h-i) where Uu = s.ﬂh , (62)

Equation (52) now becomes, by substitution from equations
(61b) and (62)

12U 3 12Uy =2 = 4 o T
= h (156 +1- =) + 6(12Wr -075W -0-6) -h

+12(1- 15Gr) WrP + 24 () —c;rQ)'v'v-zv2 - {l +3W +5(4+4rz)w2}
+ G-{ o-75>‘(1+4-.~z)\7v2 +1125 W +o-45} =0 . (63)
and is identical to equation (36). Equations (37a) to (37e) are

easily derived from equation (36) or (63). Extensibility of the

cable can be neglected by equating U to zero.
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Derivation of the value of S
If it is assumed that
(1) 1length of the cable 1 = span L
(1i) initial tension in the cable = H , throughout its
length, and
(iii) increment in cable tensiomn = h , throughout its length
then the extension of the cable due to h = %% and S = 1.

The above assumptions are justifiable for a small ratio of
dip to span. A more accurate expression for the extemsibility of
‘the cable is derived here. The change in cyable tensipn AT for
an applied load P (see Figure 3) can be evaluated by considerations

of statics.

_ . 2 2 2 V2 _
AT()(= 2 to i) = [(VA-u:.x) +(h+H)2] - {(—‘i’zi- wx) + Hz} = AT, . (642)

and = {(VA-P-WI)zi'(h-fH)]Vi [(%_wxf+ “Z}h = AT,  (64b)

AT(JL =rL to Lf2)

The initial length of a small element of the cable dL 1is

given by equation (48a) as

- [ | +(—§T‘%)?]V2

-

w X
Or 1+
{ Hz}

The extension of the cable becomes

rL

’ i _ w212 i\
Ci(x=-tpmwr) = -A-E'[AT-'(H 5T) dx (65a)
-L/2 ’
. L/2
/ I = w?x?y V2 '
= 4= [AT Q1+ —=—5)""-d 65b
ezkxﬂ'l- to L/2) AE [ 2-(1+ Hz) x ( )

107 .
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The value of S 1is evaluated here for r =0 , in which
case the equations (65a) and (65b) are identical and the total

extension becomes
e = 2¢ (66)

The value of e 1is obtained by numerically integrating the

expression in equation (66), and S can be evaluated as

The calculations have been done for a cable of span 100 in.
and weight 1 1b./in. of span. It will be seen from the following

values that the value of W does not appreciably affect S .

d/L W s
0.05 0.1 1.012656
0.05 1.0 1.013007

Values of S have been obtained for W = 0.1 for other

values of d/L and are given below

d/L S
0.05 1.012656
0.10 1.048925

0.20 1.190880
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2
These values of 'S are very nearly equal to {1l + 4.8 gi )
L
and this expression has been adopted for general use to express the
extensibility of the cable. The empirical comnstant of 4.8 could have
been calculated with greater accuracy but it was considered needless
because the results are not affected even if S is taken as umity

(see Figures 5 and 6).
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Agggndix B

The computer programmes written to employ the 'Influence

" coefficient method' and the 'General method' to solve nuﬁerical
problems are described here. The limitations of each progranme are
enumerafed and their working is described by ﬁeans of flow-diagrams,
The symbols used and not covered by the general notation are defined

by their use in the flow-diagram or defined separately,

Programme 1, Influence coefficient method for solving a plane system‘

The programme has the following limitations:-

(1)  Structure should be symmetrical about the y-axis and the x-axis
passing through the centre point between the vertices of the two
main cables,

(ii) n3} 20

(iii) n x total number of applied loads =5 40O

(iv) At least one load must be applied on each cable, however its
value can be put equal to zero.

(v) RP50

(vi) Q%511

The symbols not included in the general notation and also not

clearly defined by the flow-diagram are given below:-

R = Number of loading cases
A
N* = Number of applied loads in each loading case on the upper cable
M? = n " " " " 1" " woon " Jower n
H2'2

= W —
Azz 2L wt TL
A23 = Wt |
W = Unit load as proportion of wL

we

Value of unit load in units of wlL
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Matrix A' = n x n sized left hand side matrix in equation (43)

Matrix B' = the right hand side matrix for R loading cases, size n x R

1 2 3---~----R
B oo
] t ' I
[ A | t
) Tht-fmm - - L
— '
MatrixT = oy . Size mnxR.
' ! |
]
Lo !
' )
Co !
T"+_|______‘L

Programme 2. General method for solving a plane system

The programme is written to assume the geometry of the main wires,
correct it if necessary and then solve the structure for applied loading
or movements at the supports, The structure should be symmetrical
about the y-axis and n should not be greater than 20,

Following are the symbols needing separate defination:e

M = Number of iterative cycles required to correct the initially

assumed geometry.

S = Number of iterative cycles required to obtain a solution for

applied loading. »
Matrix A = Matrix consisting of the coefficients of the unknown matrix U,

and is generated from the left hand side of Equation (33),

Size of the matrix is (4n x 4n).

vy Ubber
Usp | cable
Matrix U =

Vh Lower
Up Cable




Matrix B = Right hand side matrix which is also produced from

equation (33) and its size is (4n x 1)

= B

Matrix B 1 + B2
where,

Y‘h

Xu
Matrix B = i

Yh

Xn
and

th

Kxn
Matrix B, =

Ky,

KFh

Output block No.l:

Prints matrix U in a block by itself with a maximum of L' numbers on

a line. —

Output block No,2:

Prints &4 Foi for the
] "
1 A Foi 11
" 1" "
A Foi

The output is in a block by itself with 3 numbers per line
ia= 1’ 2’ 3 sessosssesses I3 for hanger!

im= 0" l‘ 2' 3 sececsees Il for cables

Upper
Cabie

Lower
Cable

Upper
Cable

Lower
Cable

lower

hanger

A=l,2-

upper cable

xii

W2 .
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xiii

Programme 3. Solution of a three-cable system

The programme either reads in as data the values of Xor Yo Zo 10i

and Foi or establishes the initial geometry of the structure and

then finds solutions for applied loads. The structure should be

symmetrical about the y-axis and the value of n should not exceed 9.

The following notation needs separate definition:-

Matrix A = The matrix containing the coefficients of the unknown
matrix U and is produced by using equation (33), It is

(9n x 9n) in size,

wsy, Cable | (fig.-36)

Matrix U = Wy Cable 2 ¢ » ) Stze (Inx!)

w,  Coble3 ( »)

Matrix B is the right hand side matrix produced from equation (33).

It is (9n x 1) in size,

ix B =
Matrix B1 + Bz,

where,

' Cable 1

<N X
i

Matrix B|= T Cable 2

< MNX
il

s Cable 3




Matrix Bl =

Matrix V =

Matrix C = Matrix consisting of the coefficient of V is calculated

from the left hand side of equations (25 b and c).

Kx g
Kzp
Kyg

Kxp
Kz g,
Ryn

Kz g
Kyh

Cable

Cable

Cable

Cable

Cable

Cable

Size (én«xl)

Xiv

14,

Matrix D = Right hand side matrix produced from equations (23 b and c).

Output block No,., 1t

(i) Prints F!

i

for cables 1, 2 and 3 and prints 1'i for cables 1,

2 and 3 in a block by itself with 6 numbers on each linej

i = 0, 1, 2 sesesesses I
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Xv

(ii) Prints lg for hangers 1, 2 and 3 in a block by itself, with
3 numbers on each line; i = 1, 2, cesesceecss N

(iii) Prints z, for cables 1, 2 and 3 and prints y, for cables 1, 2
and 3 in a block by itself with 6 numbers on each linej

K =0y 1y 2 youeveeee (n + 1)

Output block No, 2

(i)  Prints z, for cables 1, 2 and 3 and y, for cables 1, 2 and 3
in a block by itself with 6 numbers on each linej
k = O‘ 1’ 2 accenvever (n + 1)

. . , (W (v

(ii) Prints 1y for cables 1, 2 and 3 and 1Y for hangers 1, 2
and 3 in a block by itself with 6 numbers on each line except
when i = O and there are only 3 numbers on the linej
i= 1’ 2y esossee N for the hangers; is= O. 1, 2 sesccsse N for

the cables,

Output block No. 3

Prints A Foi for cables 1, 2 and 3 and prints A Foi for hangers 1,
2 and 3 in a block by itself, with 6 numbers on each line except when
i = O and there are only three numbers on the linej
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FIGURES 48 and 49 are on page 69,
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FIGURES 51 and 52 are on pages 73 and 7k

respectively,
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