ANALYSIS OF FORTRAN USE IN A UNIVERSITY ENVIRONMENT

A Thesis Submitted for the Diploma of
Imperial College
by

P. G. REDDY, Ph.D. .

A

,

Centre for Computing and Automation
Imperial College of Science and Technology .
University of London

October 1970

T




Acknowledgements

This dissertation has been written for presenting as part of the
requirement of the Diploma of Membership of the Imperial College. The
author wishes to acknowledge the valuable assistance and encouragement

that has been provided by Mr. E. B. James and Mr. P. Whitehead.

Acknowledgement is also made of the assistance of Mr. G. Richards
and other Computer Unit staff. The author would like to thank thé
authorities of I.I.T., Delhi, for allowing him to spend a year in
studying Computing Science at Imperial College. Thanks are also due to

the British Overseas Ministry for their kind assistance.

Lastly, the author wishes to express his deep sense of gratitude to
Professor S. Gill for accepting him into his department for the Diploma

course.




CONTENTS

‘1. INTRODUCTION

l.1
1.2

Objectives

The Computing System

1.2.1 Computing in Universities
1.2.2 Use of Fortran, history
1.2,3 The PUFFT System

2. RESULTS AND DISCUSSION

2.1
2.2

2.3
2.4
2.5 .

Execution Analysis
Error Analysis
Fortran Usage Analysis
Further Analysis

Fortran Course Survey

3. DESCRIPTION OF THE ANALYSER PROGRAM

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Description of Tree

Description of the main program
Subroutine MTRPUT .
Subroutine TRSWOP

Function Subprogram BCDINT
Subroutine VARRED

Subroutine TPRINT .

4. CONCLUSIONS AND FUTURE

APPENDICES

REFERENCES

PROGRAM LISTINGS .

Page

1.
1.

1.
3.

7.
10.
16.
19.
23.°

31.
32.
34,
35.
36.
36.
37.

37a.

38.

47.

T

Y T




Abstract

This work is an investigation of methods of analysing the performance
of a university computing system. This involves the development of programs
for analysis of system output tapes, with the production of statistics con-
cerning error messages, execution ratios and distribution of program times.,
There is also presented a detailed analysis of Fortran programs involving

statement frequency and types of error.




1. INTRODUCTION

1.1 Objectives

The purpose of this work is to investigate the behaviour of a
computing system as it processes a typical batch of programs in a

university environment.

This is achieved by an analysis of the system output which provides
an historical trace in considerable detail. It comsists of program
listings, reports during compilation and execution and results from each
program in turn. From this raw data it is possible to develop a wide
variety of interesting statistics which may indicate both the efficiency
with which the system processes user programs and also the level of
proficiency of the users. It seems that the information produced by such
an analysis should prove of fundamental importance to the designers of new
computing systems and should also indicate ways in which the user can be

trained to make more effective use of the system.

It is claimed that this analysis should be of great use to teachers
of Fortran and in general to compile writers. There is a pressing demand
for the introduction of computer education at school level and a recent

- IFIP Conference has given a clear cut recommendation on such education.

1.2 The Computing System

The system under analysis is the PUFFT system for processing small to
medium size Fortran programs at Imperial College. In this section we
provide background information on the use of computers in colleges, on the
use and development of Fortran as the language for college programs and the

structure of the PUFFT system.

1.2.1 Computers in the University

The modern electronic computer has produced a revolution in science,
engineering, industry and commerce and has permeated our society. Even
though a relatively small percentage of computers have been located on
university and college campuses, colleges and universities have played a
key role in computer development. In fact, the more advanced system programs
that permit all computer users easier and more satisfactory access to

computers have been developed by the universities (see Refs. 1 and 2).

~




Computers are used by an increasing number of students either to
do homework or laboratory problems, or to learn about the design and
operation of computers themselves. Like other new technicological
developments, the computer has been over-promoted, abused and misused.
All too often an extensive brute force calculation has been made on a
computer when some thoughtful analysis would have reduced the problem to
one requiring only a modest computer application and perhaps noné at all.
Better education in computer use should improve this situation. The
broad scale reliance of our increasingly technical society on computer
systems, formal languages, and the related problem—solving procedures
will eventually mean that everyone should have a basic non-technical
understanding of the field, much as everyone is now expected to understand
something of history, arithmetic, biology, etc. In fact, this has already
been started on an experimental basis at the grade school level. It is
already generally recognised that the engineers will make so much use of - :
computers that it has been essential to give them instruction in the use
of computers as part of their undergraduate training. As use of computers
is becoming widespread, students in more and more areas will require

training in their use as part of a normal undergraduate education.

Over the past few years there has been a vigorous development of
problem—oriented lamnguages, such as Fortran, ALGOL, COBOL, and PL/1. Their
use has made it possible within a one-term course to impart the technical

knowledge needed for the transcription of a well-defined problem into a

computer program. The advantage in having courses designed to develop
proficiency in a programming language in schools and colleges is that such
courses can form the basis for further formal education in computer-oriented

problem analysis and in more advanced programming logic and language.

Engineers have already accepted the computer as an educational aid,
and the students of engineering are using the computer extensively as a
calculating instrument throughout their undergraduate career. While the
same kind of acceptance is anticipated in other academic areas, an even
greater impact on education is now occuring through the use of computers
for non—numeric processing. This is simply the use of machines for manipu-
lating entities that are not represented in pure numeric form. Included

within this non-numeric field is general information storage and retrieval,

algebraic manipulation, and linguistic work of all kinds. i

N



Writing a machine language program is usually far more difficult
and time-consuming for the programmer than writing a program in a problem-
oriented language, such as Fortran or ALGOL. Basic training in computer

programming is therefore best carried out in a high level language.

1.2.2 Use of Fortran, History

There is a growing tendency for programs in all application fiélds
to be written in Fortran (mainly because of the worldwide availability of
Fortran compilers). Fortran will probably be the most commonly used
programming language in the universities and colleges for at least the
next five to ten years, again mainly because of the ready availability of

Fortran compilers on all machines.

Out of many dialects existing in Fortran, there are two, Fortran II
and Fortran IV, which are most commonly used. Fortran II is now officially
obsolete, although thousands of Fortran II programs are still in use. The
name Fortran was derived from the words IBM Formula TRANslation System, which
described the primary object of the original language. The processor
(compiler) for this language was modified in 1958 to accept programs written
in an augmented Fortran language which was commonly known as Fortran II.
From 1962, compilers for Fortran IV began to appear, which provide important
additional facilities. In 1964, the American Standard Association drew up
a specification of, essentially, Fortran IV which has been widely accepted
as the standard Fortran. All Fortran IV compilers should accépt a program

written to the ASA specification.

It should be noted, however, that of the processors described in
references 12 - 16 , very few appear to have complete compatibility
with ASA Fortran (see references 3, 4 , 17 , and 18 ). In addition two
other Fortran processors may be of importance to users. Both of these
processors provide for very fast compilation, but may producé less efficient
object coding than the manufacturers compilers. PUFFT is used on IBM 7090/4
machines and its specification is nearly the same as version 13 Fortran IV
for the IBM 7094 machine,

It is in many ways remarkable that a language as old as Fortran is

still in use at all, and the extended Fortran is also able to stand the

i
P
{




competition of newer languages such as ALGOL and PL/1. One reason for
its survival seems to be the fact that its very limitations, while not
too serious from the user's point of view, make it relatively éasy to
compile. Fast compiling is particularly important for a language much
used in teaching since student's exercises spend most of their time in
the compiling phase, and indeed the same consideration is important in
any research-based computer centre where the ratio of the programs under

development to those in production will always remain high.

Another important feature of Fortran is the care with which it has
been extended to cover special applications - rather diverse examples can
be found in syntax description 5 , in the list processing 6 , in
simulation 7 , and on character manipulation 8 . Suggestions for
improving Fortran from the user's point of view, mainly by removing irksome
and unnecessary restrictions as well as by creating useful extensions to
the language, are given by Healy 10 . Further suggestions based on
efficiency considerations as seen by the software writer and the machine
manager are given in reference 11 . So it appears that there is still

considerable scope for development.

1.2.3 The PUFFT System

The PUFFT System at Imperial College handles the load of small-scale
Fortran programs produced by students under instruction.or researchers
déveloping subsections of larger programs. Programs of this size form an
increasingly important part of the work load as computing enters the

curriculum of all students.

The development of the PUFFT System is due to Professor S. Rosen and
a small group of workers at Purdue University, where the computing require-

ments are similar to those at Imperial College (referemce 1 ).

PUFFT handles job-to-job sequencing, translating and running of batches
of programs submitted to it in Fortran IV source language, and it was
primarily designed as an independent operating system for the IBM 7090/94
computer. The entire system is resident in just over 16 thousand words of
immgdiate access storage during both compilation and execution. During
compilation the system communicates only with an input tape, from which it

reads the source program, and an output tape, on which it writes the

.




program listing. Everything else is handled in the main core memory.

System Routines: The various system routines that reside in the

lower part of the core memory (the storage assignment for this is the
locations 0 to 17K where K represents 210 = 1024) aré (a) thé éxécutive
routine, (b) the input-output package, (c) the compiling routinés,

(d) the subroutine library and (e) diagnostic message routine. A brief

description of the various routines follows:

(a) The Executive Routine: This handles the monitor functions in

PUFFT. It reads and interprets control cards and controls the sequence

of funtions within a job and between jobs.

(b) 1I/0 Package: The I/0 routines that reside in the system area
are used by the system and by the object programs that aré producéd. At
compile time they provide a double buffered system for reading BCD card
images from the input tape, and for writing lines edited for printing the
system output tape. A pair of 22 word buffers is providéd for BCD input,
‘and the same pair of buffers is used at run time for reading from the
input tape or from any other BCD tapes that the object program may specify.
Two 120 word buffers are provided in the system area to providé for a
blocking factor of at least five lines per block on output to the systém

tape. BCD output on other tapes during output would use the same buffers.

(¢) The Compiling Routines: PUFFT requires that all statements

that have to do with type declaration and storage allocation must appear
at the beginning of the subprogram in a prescribed order since it is
designed as an absolute load-and-go compiler. These include explicit type
statements, DIMENSION statements, COMMON, EQUIVALENCE and DATA statements.

(d) The Subroutine Library: All the standard Fortran library sub-

routines are found in PUFFT and they are part of the resident system. The

subroutine library uses about 2600 words of core memory.

(e) The DIAGNOSTIC Message Routine ERROR: A system like PUFFT,

intended for use by students and for debugging, must be able to recognise

and provide detailed diagnostic messages for all kinds of errors in the

source language program. This routine is called ERROR and is designed such

that a large number of different error messages can be printed without

using an excessive amount of space for their storage.

~

e g




An error message is selected by a parameter word which designates
upto three phrases from a library that could contain a maximum of 511
phrases. Each phrase is encoded in a single computer word which selects
a sequence of upto five English words from a table of 127 different words
of upto 12 characters each. A phrase may require an insert provided by’
the calling sequence, in which case the insert is provided in the arith-
metic registers and the position of the insert within the phrasé is
specified in a field of the parameter word which selects the méssage.
The actual words that appear in messages are stored only once, regardléss
of the number of messages in which they appear. A phrase appéars only
once in the phrase list, even if it is used in many different messages.
Several hundred different messages, and the coding required to select
them and to transmit them to the output routine, all take slightly more

than 500 words of core storage. The parameter word also transmits a

severity code 0, 1, 2 or 3. Most messages are only warnings. Execution

is deleted only for serious errors whose severity code is 3.

Error messages produced during the compilation appear in the listing
of the source language program. An error message is printed immediately
after the source language statement that was on the last card read before

the error was detected.




2.  RESULTS AND DISCUSSION

In this chapter we provide the results of an analysis of the

operation of the PUFFT system over several typical working days.

The analysis may\be divided into three main sections. Firstly,
an overall measurement of the size of the programs and success in
execution; secondly, an analysis of the reasons for failure of the
unsuccessful programs; and finally, a survey of the frequency of use
of the various features of the Fortran language as evidenced from the

program listings.

There are two sets of results for sections (1) and (3) in our
analysis. One is based on statistics from all programs run during one
week of five working days, the other refers to jobs run during two
different days of two other weeks. Both studies are presented to

provide some measure of the consistency of the results.

2.1 Execution Analysis

The distribution of program size is given in Fig. 1. The number

of jobs in each storage requirement category is shown as a histogram.

From this we conclude that relatively very small jobs are much
more frequent than jobs requiring more than eight thousand words of
étorage. ABout 60%Z of the jobs take less than 4K, and about 90Z of
jobs take less than 8K of storage. This implies that in a college where
student instruction represented the main part of the computer use, a very
high proportion of the work load could be processed by a computer with
8K words of 36 bits storage, not including the system. In fact, out of
1047 jobs analysed within a week, most jobs (339) take 1less than 1000

words.

Table I gives details of successful and unsuccessful programs. Out
of 1047 jobs examined, 487 were successfully executed although 807 of
the jobs went into execution. About 32% of the jobs which wént into
execution were terminated either because of execution errors, or because
of excess output (there is an automatic limit to the number of lines
which can be printed out). Only 207 of the jobs were rejected during
compilation., This justifies the PUFFT systém in containing a richer

vocabulary of warning messages than error messages indicating failure.




T rn—p——

13400

! |
! I )
| ! W
] i &
, §
P A7 =
' TA
LTA
q
i \w\
! SToN] 3
A |
i
N\ r 1]
SO o
| e B N
LA/ ] Y L ]
/L7 10 21:/7] 4
/. . 4]
yaraba AN A, ]
_ N 3 [ -1
| I PN D
N DFeS e L
i o <t 1]
N N <D =
7 AP ISF T]
. yararam v
' : N d nw iR
] o~ ]
! w\x D d »g 3 B
; T YPERENE [
il IREN oy 1
DI, n\..u. .
N 3 = !L
m - AN S
H Pie N4 £ 1]
! /1 2L AAS A X T
| 2= AANANA 1
1 2] W = 1]
Z, t ]
: ~, NIEBENMNIES €N m
PN NN O T
I N N 21
(] N = ]
: N NNIRINN T 17
_ VA N A0 S T~ NN
. A2 - V4 [ S
| 14, 4 /] S 8p 4
i / /] < /] 2 1o L1
i i / 2 pavi ~ A4 _F, B ]
i RN NN RNNNE N N N N 4
) ENE N mml
: SN N - B
7~ AN [4) 1
i NNRIN iV |LH
Pt et 4 A A42144 hd H
kd /s i 7 AL IH
o7, \ \ ] 11
_ s 7]
0 L1/ h id o
oy AR ~ SR NNDER N N < ] ~d N K]
- NNNNN N NN NN N N N N
| NN NN N 1. N N SINNN
RSN N N o NN N
N N\ N N . NN KIS NS N
< T # bt ] =) - o) e
~ e 2 A It N )0y P
P! e ] v
) T[T
1]




About 237 of the jobs were terminated with execution error messages

and 97 with excess output. This is calculated from the total of error

messages of level 3,

Timing can be summarised as follows:

Average compile time per program

Average execution time per program

3.3 seconds

49 seconds (approximately)

TABIE I

Total time required for the
compilation of the jobs:

Total time taken for the
execution of the jobs:

Number of jobs:
Number of jobs without listing:

Number of jobs went into
execution:

Number of jobs terminated by
stop:

Number of jobs terminated:

Total number of error messages
including execution messages:

Various types of execution
statements:

. Errors of level O:
Errors of level 1: .
Errors of level 2:

Errors of level 3:

57.55 minutes

853.258 M
Percentage
1047 -
27 2.57
842 o 80. 42
507 O 48.42
670 63.99
4132 | -
2019 48.86
2187 52.93
76 1.84
652 15.78

1217 29.45

i o ey 7 e 3




..10_

2.2 Error Analysis

In a university, a large portion of the users of a computing facility
are students learning programming and graduate students or réséarch investi-
gators who are not full-time programmers, but are faced with the need of
using the computer as an educucational or research tool. For these people
the concern of finding and correcting errors in their programs as quickly
as possible outweighs the need for efficient object code and sophisticated
programming features. For this purpose the PUFFT éystem glves a satisfac-
tory service. However, the diagnostic messages are not fully documented
and it seems that a teacher would need details of the relative frequencies
of errors if he is to help his students to correct their mistakes. From a
knowledge of the errors he is able to assess the relative importance of
statements in Fortran in as much as they give rise to errors and he can

concentrate his teaching on eliminating these errors as far as possible.

The error counts in the compiler performance are distributed into the

following categories:

(i) Compilation time errors associated with

(a) statement format or sequence
(b) subscripts

(c¢) arithmetic expressions

(d) TFORMAT statements

(e) I1/0 statements

(£) reference and definition of entities
(g) statement format punctuation
(h) identifiers

(i) DO statements

(j) GOTO and IF statements

'(k) storage allocation

(1) system control, exceeding time limits and others.

(ii) Execution time errors associated with
(a) arithmetic faults ‘
(b) computed GOTO operations
(c) -I/0 operations
(d) reference and definition of entities
(e) 1library function parametefs
(f) subprogram references .

(g) 1limit controls

i e




—11—

The results are given in table II. This includes both compilation
and execution errors. 5.487 of messages are produced during execution
in a total of 1693 reported errors. The remainder occur during

compilation.

TABLE II

Distribution of compile time errors (per cent of total number of
: compilation errors):

Arithmetic assignment: : 1.81
Statement format and sequence: 1.95
Identifiers: : 2.50
General Punctuation: : : 0.63
Reference and definition: : 66.84
FORMAT statements: - ' 2.06
DO statements: ’ . 0.12
1/0 statements: 0.06
System errors: A , ‘ 7.94 -
Storage allocation: ‘ 7.06
- Type errors: . o 8.12
All others (including subscripts): 0.81

Distribution of execution time errors: (per cent of total number of
execution errors):

I/0 operations: 23.65
Reference and definitions: ’ 25.75

Arithmetic faults: 50.60

From tablesIII and VII we see that 60 or approximately 177 of the total
of 352 jobs contain execution errors and 217 have compilation errors. Thé
number of compilation errors seems to be rather high from this samplé survéy.
They average about 21.5 per program. Most of the compilation érrors are
reported as "illegal BCD characters" and "incomsistent equivalence of

variable". "Illegal BCD character" might arise from several basic mistakes.

‘...,..ﬂ.,a.m_.--,-..”



- 12 -

but this sample has been completely biased by the existencé of one
particular program with over 300 mistakes of this type, arising from

the use of the wrong punching code on the card punch used.

Regarding "inconsistent equivalence of variable" which has occured
the greatest number of times in our survey, it seems likely that it
arises mainly from overflow in the various program and data areas which
are not directly under the control of the user programmer. Other
reasons include illegal common statements or incorrect formatting of an
EQUIVALENCE statement or DATA statement. However, the specification of
the cause of this particular error message seems outside the purpose of

the current work.
Other errors which are seen more frequently in our analysis are:

* 'statement type error", due to incorrect specification of the type
of variable (REAL or INTEGER)

* array not defined in DIMENSION or COMMON statement

* undefined statement number, subroutine or variable (this error is
self-explanatory)

* error in FORMAT at eecesee.

* mixed type operation, - which is caused due to mixing up of REALS
and INTEGERS in an expression '

* illegal card below, — mainly caused due to the incorrect or extra
system card

* check use of array
* number required, statement

* statement cannot be reached

Most of these errors are due to the transposition of cards by careless
handling. ASurprisingly, there are very few punching errors. (We are not
including "illegal BCD character'" under this classification'as explained
already). There are some instances of illegal sequencing of statements, a
few cases of missing job cards, and main program defined twice, statement

numper used twice have also been noticed.




_13_

Among the execution errors the commonest are arithmétic faults due
to underflow or overflow, illegal subscripts, and éncountering the end
of the data file unexpectedly. These mistakes do not imply a lack of
understanding in the use of program statements, but rather carelessness

in the specification of certain numeric: values in the program.-




—14_

TABLE III

ERROR 'STATEMENTS' and their frequency

Level Statement Frequency Percentage
*%3%%  TLLEGAL PUNCTUATION ~ EXECUTION DELETED 9 0.53
3 ILLEGAL REAL CONSTANT - EXECUTION DELETED 0.24
3 ILLEGAL SUBSCRIPT AT ...... — EXECUTION
TERMINATED 24 1.42
ILLEGAL STATEMENT NUMBER - ERROR IGNORED 6 0.35
2 ILLEGAL SEQUENCING OF STATEMENT - STATEMENT
IGNORED 22 1.30
-3 ILLEGAL USE OF BCD CHARACTER - EXECUTION
DELETED 368 21.74
3 ILLEGAL USE OF FUNCTION NAME - EXECUTION
DELETED 2 0.12
ILLEGAL USE OF PERIOD - EXECUTION DELETED 1 0.06
. ILLEGAL- CARD BELOW IGNORED 105 6.20
ILLEGAL USE OF LOGICAL UNIT 00006 -
EXECUTION TERMINATED 0 0.00
ILLEGAL COMMA IGNORED - WARNING ONLY 1 0.06
ILLEGAL ARRAY NAME ...... — EXECUTION
DELETED ‘ 0.35
ILLEGAL OPERATOR - EXECUTION DELETED 0.35
ILLEGAL INTEGER VARIABLE OR CONSTANT -
- EXECUTION DELETED 6 0.35
ILLEGAL END OF STATEMENT - EXECUTION DELETED 1 0.06
3 ILLEGAL VARIABLE NAME ~ EXECUTION DELETED 0.12
ILLEGAL NUMBER OF SUBSCRIPT FORMAT - EXECUTION
DELETED ‘ 1 0.06
3 INCONSISTENT EQUIVALENCE OF VARIABLE -
EXECUTION DELETED 655 38.69
3 INDEX AND LIST LENGTH INCONSISTENT - EXECUTION
DELETED 1 0.06
2 STATEMENT NUMBER REQUIRED — STATEMENT CANNOT
BE REACHED - WARNING ONLY 23 1.36
3 . STATEMENT NUMBER ... USED TWICE - EXECUTION
DELETED 10 0.59
~ 3 STATEMENT TYPE ERROR - STATEMENT IGNORED -
EXECUTION DELETED 120 7.09
3 SYSTEM ERROR AT OCTAL ..... — EXECUTION
DELETED . 13 0.77
3 4 0.24

PARENTHESIS ERROR - EXECUTION DELETED




_15—

TABLE IIT cont.

Level Statement

o W W W

BN W W N

W - W W W O N

[ 5]

PARITY ERROR ON UNIT 00005 - EXECUTION DELETED
PROGRAM OR ARRAY TOO LONG - EXECUTION DELETED
PUNCTUATION ERROR — EXECUTION DELETED

OVERFLOW AT ...... — WARNING OUTPUT FIVE TIMES
ONLY

MISSING OR ILLEGAL JOB CARD
MIXED TYPE OPERATION - EXECUTION DELETED
MAIN PROGRAM MISSING - EXECUTION DELETED

MAIN PROGRAM DEFINED TWICE - FIRST MAIN PROGRAM

USED
ARRAY ...... NOT DEFINED - EXECUTION DELETED

ARGUMENT ILLEGAL IN EQUIVALENCE STATEMENT -
EXECUTION DELETED

AT OCTAL ... , ... USED - UNDEFINED SUBROUTINE

OR  VARIABLE OR STATEMENT NUMBER -
EXECUTION DELETED '

VARIABLE ..... USED AS FUNCTION - EXECUTION
DELETED

VARIABLE OR CONSTANT TOO LONG - EXECUTION
DELETED

HOLLERITH COUNT TOO LONG - EXECUTION DELETED

UNDERFLOW AT ..... AC AND MQ - WARNING QUTPUT

FIVE TIMES ONLY

END CARD MISSING - CALL EXIT USED - WARNING
ONLY

EOF ERROR - CALL EXIT USED - WARNING ONLY
EOF READ ON UNIT 00005 - EXECUTION TERMINATED
ERROR IN FORMAT AT ... - EXECUTION DELETED
NESTED DO'S OVERLAP - EXECUTION DELETED

" CHECK USE OF ARRAY ..... - WARNING ONLY

CONSTANT REQUIRED FOR DATA
WRITE MISSPELLED - WARNING ONLY

EXECUTION TERMINATED

essess DIMENSIONED TWICE - ERROR IGNORED

Frequency Percentage

0.12
0.06

1 0.06
20 1.29
7 0.41
23 1.36
1 0.06
4 0.24
34 2.01
1 0.06
34 2.01
6 0.35
3 0.18
0.06
27 1.59
0.18
0.12
19 1.12
32 1.89
2 0.12
72 4.25
0 0.00
1 0.06
0.06
0.35
1693 100.00




- 16 -

2.3 Fortran (Frequency of Statements) Usage Analysis

We have analysed 1047 jobs to determine the frequency of use of
Fortran statements. Slight inaccuracies are introduced due to thé use
of the UNLIST facility on 27 programs. The system statements for these
27 jobs are included, although the- corresponding Fortran statéménts are

not available on the output tape.

TABLE IV

Analysis by card type

Total cards analysed: 150,934
(these included system cards,
blank cards, etc)

Number“  Percentage
System cards: ' 3,225 - 2.14
Fortran cards: 146,967 97.37
Blank cards: 742 0.49

150,934 100.00

Fortran cards can further be classified as:~

Fortran statements;: . 141,672 - 96.40
Continuation statements: 5,295 3.60
146,967 100.00

Fortran statements can be classified as i-..

Program statements : 124,097 87.59
Comment statements: 17,575 12.41
141,672 100.00

From table IV we can see that an average number of statements per

program is about 144.




—17_

We now examine the distribution of various Fortran statements
from table V, In the analysis the statements like ENDFILE, REWIND,
BACKSPACE, PAUSE are not mentioned because out of the 1047 jobs, not
even a single job contains them. Even the informatted READ statémént
has not been detected. Among the statements, arithmetic assignmént
dominates, followed by a DO statement. It should be noted that the
various control statements like DO, GOTO, IF, CALL, RETURN are
frequently used and they are about 267 of the total statements. The
statements FUNCTION, COMPLEX, EQUIVALENCE, ENTRY, BLOCK DATA, EXTERNAL,
LOGICAL, NAMELIST, and PRINT were very little used.

This analysis has interesting implications for Fortran teachers.
It seems clear that in the early stages, many instruction types can be
omitted entirely from the instruction program in favour of increased
concentration on assignment and control of the simplest kind. Although
similar measurements on more experienced user's programs indicate a
similar neglect of many types of instruction, it should be pointed out
that we cannot assume that more experienced users do not use the more
unusual parts of a programming language from choice. It may be that they
remain ignorant of the potential advantages of the more advanced facilities

due to poor or non-existent training.

Table V, which follows, shows the number of statements of each type

found from the 1020 user's programs and their percentage proportion:

A Doty




- 18 -

TABLE V

Frequency of Fortran Statements

Statement Numbers Percentage
Arithmetic Assignment 55,841 45,00
DO 12,360 9.96
WRITE 5,787 4.66
GOTO 4,562 3.68
FORMAT 7,397 5.96
FUNCTION .31 0.02
IFC 8,205 6.61
INTEGER 275 - 0.22
RETURN 2,466 1.99
REAL 409 0.33
READ(5, 1,384 1.12
READ 0 0.00
CONTINUE 8,238 6.64
COMMON 2,295 , 1.85
COMPLEX 61 ... - 0.05 . ¢
CALL 5,154 4,15
END 3,079 2.48
EQULVALENCE 39 - 0.03
EXTERNAL 86 0.07
ENTRY 63 0.05
DIMENSION 2,680 2.16
DATA 427 0.34

- DOUBLE PRECISION 278 0.22
SUBROUTINE | 2,004 1.61
STOP 917 0.74
BLOCK DATA 17 0.01
LOGICAL 11 0.01
NAMELIST 30 0.02
PRINT 1 0.00

124,097 - 100.00




- 19 -

2.4 Further Analysis

As a back-up to the detailed analysis for the systém pérformance
and for statement frequency, and also data to obtain moré information
on the various types of errors made by the PUFFT users, a furthér 352
complete programs have been analysed. The results are displayéd in
table VI.

There is surprisingly a similar situation regarding the core manage-
ment. This situation agrees with the previous one, that most of the jobs
(about 90%) lie between O - 8K words, and the maximum number of jobs

occupy core below 1000 words of core store. (See table VI.)

From table VII we can see that the execution time is less than the
previous analysis. This could be explained by the fact that there are
a few compilation errors more than before. Regarding the execution per-

centage it is comparable with the previous analysis. Here the successful

jobs are 50%.. 11.9% of jobs went into execution but were terminated because

of the excess output. Approximately 177 contain execution errors and 217

compilation errors. The total number of compilation errors are abnormal in

this. They average about 21.5 per program.

It has already been shown that out of the total number of 352 jobs,
22 jobs are without listings. In this case the total number of cards

analysed, including the system cards and blank cards, amounts to 26,503,

Out of them
Number ~ Percentage
System cards: 842 , o 3.18
Fortran cards: 25,585 96.53
Blank cards: 76 0.29
26,503 _ _ 100.00
En Fortran cards there are -
Fortran statements: - 24,543 95.93
Continuation statements: 1,042 4.07

.

25, 585 100.00




- 20 -

Among the Fortran statements there are -

Program statements: 20,971 85.45 -
Comment statements: 3,572 o 14.55. ;
- 24,543 100.00

It should be noticed here that the average number of statements per

program is equal to 78.

The various other program statements are further classified in

table VIII, From this table it could be observed that the percentage of

arithmetic assignment statements is about 3.5% higher than the previous

analysis and this could be the reason for the increase in the compilation

time compared to the previous one. v ;’

TABLE VI

Core Store Management i

|

!

CO§§ :ngoo words) . Nu?E;: °* Percentage E
o - K . 126 | 35.80

K - 92K 48 13.64 g
2K - 3K 39 11.08 N
K - 4K 19 . 5.40 ]
K - 5K 4 . 12.50 ?
5K - 6K 11 . 3.13 B
6Kk - 7K - 10 ‘ 2.84 fj
7K - 8K . 21 | 5.96 P
8K - 9K 21 - 5.96 f
9K . - 10K 5 | 1.42 S
1K - 1IK 2 0.57 %
11K - 12K 5 1.42 ﬁ
12K - 13K 1  0.28 |

352 100.00 [




- 21 - | :
Table VII gives a summary of performance of record data samples

for 2 days of PUFFT runs in September 1970. :
TABLE VII 1
Overall System Statistics =- Second Batch %
Time required for compilation of 352 jobs: 29.462 minutes ?
oo "  execution " 352 " 323.530 "
Average compilation time per program: 5 seconds 3
" execution " " " n 55,1 " F
Number Percentage i
Total jobs: 352 - :
Jobs without listing: . 22 6.22 R §
Jobs went into execution: : : 278 - 78.98 i
Jobs terminated by stop: L - 176 -~ 50.00 - -
Jobs terminated: - 218 - 61.93 ;
Total error messages: ' 2,425 - B
Total execution messages: , 672 27.71 E‘
Subprograms compiled from DISK: - 60 o 2.47 {
Errors of level O: 756 31.18 - i
Errors of level 1: ' 74 3.05 o
Errors of level 2: o 178 7.34 i : %f
Errors of level 3: 1,417 58.43 L

Programs with compilation errors: 74 . 21.02

Average number of compilation errors o
per program: . : 21,62 ' :




- 22 -

Table VIII gives the frequency of the various Fortran features for

the second survey.

TABLE VIII

. Fortran Statement Analysis -

Second Batch

Statement Number Percéntage
Arithmetic Assignment: 10,203 48,65
DO: - 1,974 9.41
WRITE: 1,392 6.64
GOTO: 754 3.60
FORMAT : 1,597 7.62
FUNCTION: 5 0.02
IF( : 1,250 5.96
INTEGER: 22 0.10
RETURN: 185 0.88
REAL: 84 0.40
READ (5, : 484 2.31
READ( : 2 - 0.01
CONTINUE: 1,031 4.92
COMMON:; s 197 0.94
COMPLEX: ' 18 0.08
CALL: 529 - 2.55
END: 388 1.85
EQUIVALENCE : 5 0.02
EXTERNAL: 23 0.11
ENTRY: 0 0.00
DIMENSION: 335 1.60
DATA: 97 0.46
DOUBLE PRECISION: 30 - 0.14
SUBROUTINE : 194 0.93
STOP: 162 0.77
BLOCK DATA: 3 0.01
LOGICAL: 6 0.03
NAME LIST: 1 0.00
PRINT: . 0 0,00
20,971 100.00




_23_

2.5 Fortran Course Survey

In the previous sections we have surveyed the pérformancé of the
PUFFT system used by various students and research workers who aré
moderately experienced in writing programs. In this section our object
is to acquaint ourselves with the performance of students who are learning

to program.

Tables IX to XIII present information from the performance records
collected from student programs submitted for the Fortran course given
by the Imperial College Computer Unit from September 28th to October 2nd.
This course was an introductory programming course with an enrolment of
131 students. One observation which might be of interest in this summary.
is the distribution of various error messages and the various Fortran

statements.

The distribution of program size is given in table IX. The number
of jobs in ecach storage requirement category is shown. 471 jobs'out of
478 occupied store between 0 to 1000 words of storage. As expected the
execution time is much less than the compile time, since the course is

introductory.

Regarding success and failure ratios, it'could be concluded from
table X that about 597 went into execution and out them 497 were success—
ful. About 8% of the jobs went into execution but they were terminated
because of time trap (there is an automatic 1imit for the time that a
program can take). This might have been caused by permanent looping. The
possibility of excess output does not arise here since the examples set
for the programming course do not take many lines of output. About 1.47
contain execution errors and 417 compilation errors. Surprisingly, the
average compilation errors per program are not many, about 3. The average

number of statements per program is about 29.

The position of the various Fortran statements is shown in tables XI
and XII. From these it can be observed that the arithmetic assignment
statements frequency is about 3% less than the previous surveys. The next
statements which are in commanding position are FORMAT and WRITE. Even the
REAb statement is frequently used. Altogether the I/0 statements are about
217 and hence we can safely emphasize that = proper care should bé taken in

teaching the I/0 statements. This is particularly relevant since 23.5% of

N




...24...

errors are due to incorrect FORMAT statements (see table XIII).

Most of the errors that have been committed are compilation errors.

Most frequent are:

* error in Format at ...

* mixed type operation ...

* at octal ... , ... used - undefined subroutines or variable or statement
number | '

* statement number required

* statement type error

Errors due to wrong format specification have béen observed -as the
most frequent. It would be interesting to know how many times this error
has been caused due to the wrong specification of H-format, but this is
not available from the analysis. There are few spelling mistakes and
these are not of a serious nature, since they produce only warning messagés.
But the arithmetic faults and type mistakes are worth noting carefully

since they cause termination of the program.

A shortcoming of the performance reporting system is that the present
procedures for submitting runs do not collect and retain enough information
to trace the history of a student's trial runs for a particular problem
‘assignment. Although such information would be extremely valuable, obtain- -
ihg it would present the impractical requirement that each student accurately
reports details of each of his runs, such as assignment number, trial number,

and purpoée of trial.

TABLE IX

Core Store Management

Core in K Number of Jobs Percentage
0o - K 471 | 98.54
K - 2K S 7 1.46
Time:

Average compile time per program: 1.1 seconds

Average execution time per program: N 0.5 seconds



- 25 -

TABLE X

Total time required for the
compilation of the jobs:

Total . time taken for the
execution of the jobs:

Number of jobs:
Number of jobs without listing:

Number of jobs went into
execution:

Number of jobs terminated by
stop:

Number of jobs terminated:

Total number of error messages

including execution messages:

Various execution statements:
Errors of level O:
Errors of level 1:
Errors of level 2:

Errors of level 3:

8.82 minutes

3.53.

478

280

234
273

2232
787
816

o4
350

1002

Percentage"

58.57

48.95
57.11

' 35.26
© 36.56
2.86
15.68
44.90




- 26 -

TABLE XI

Total number of cards amalysed: = 13,964

Number Percéntagé
System cards: 1,584 11.35
Fortran cards: 12,377 88,63
Blank cards: 3 - 0.02

13,964 100.00
Fortran cards can further be classified as:
Fortran statements: . 12,188 98.48
Continuation statements: 189 1.52

12,377 100.00
Fortran statements can be classified as:.
Program statements: 11,286 92.60
Comment statements: v 902 7.40




- 27 -

TABLE XII

Number of statements

of each type found from 478 user's programs

Statement Numbér  Pércéntagé -
Arithmetic assignment: 5082 45.03
DO: 72 0.63
WRITE: 1294 11.46
GOTO: 258 2.29
FORMAT: 1537 - 13.62
FUNCTION: - -
IF( : 485 4,29
INTEGER: 3 0.03
RETURN: 141 1.24
REAL: 6 0.05
READ(S, : 664 5.89
READ: - -
CONTINUE: 55 0.49
COMMON: 272 2.41
COMPLEX: - -
CALL: 273 2.41
END: 418 . 371
EQUIVALENCE: -. -
EXTERNAL: - -
'ENTRY: - -
DIMENSION: 280 2.48
DATA: - -
DOUBLE PRECISION: - -
SUBROUTINE: 183 1.62
STOP: 249 2.22
BLOCK DATA: - -
LOGICAL: - -
NAMELIST: - -
PRINT: - -
QTHERS: 14 0.13

b
%




_28_

TABLE XIII

Various error statements, their frequency and percentage

Level Statement | Frequency’ Percentagé

*% k% ILLEGAL USE OF BCD CHARACTER -

EXECUTION DELETED 0 0.00
3 ILLEGAL USE OF LOGICAL UNIT 00006 -
EXECUTION DELETED 0 0.00
3 ILLEGAL USE OF BCD CONSTANT -
EXECUTION DELETED 0 : 0.00
3 ILLEGAL USE OF LOGICAL UNIT 00005 3 0.21
| EXECUTION DELETED
3 ILLEGAL USE OF PERIOD - EXECUTION »
DELETED 6 0.42
3 ILLEGAL USE OF FUNCTION NAME - EXECUTION
DELETED 0 0.00
3 ILLEGAL USE OF LOGICAL OPERATION - EXECUTION
DELETED 2 0.13
3 ILLEGAL BCD CHARACTER - EXECUTION DELETED 17 - . 1.8
2 ILLEGAL CARD BELOW IGNORED = . ri.: 64 443
1 ILLEGAL COMMA IGNORED - WARNING. ONLY 2 0.13
3 TLLEGAL CHARACTER IN DATA - AT OCTAL ... -
EXECUTION DELETED ' 9 .. 0.63
3 ILLEGAL SUBSCRIPT AT ... — EXECUTION '
TERMINATED - " 9 - 0.63
3 . TLLEGAL FUNCTION OR SUBROUTINE NAME - '" S
EXECUTION DELETED 1 0.07
3 ILLEGAL NUMBER OF SUBSCRIPT FOR ... = '
EXECUTION DELETED 1 0.07
2 ILLEGAL SEQUENCING OF STATEMENT - ERROR
IGNORED - , 24 1.66
2 TLLEGAI STATEMENT NUMBER - ERROR IGNORED 9 0.63
3 - TLLEGAL PUNCTUATION - EXECUTION DELETED 15 1.04
3 ILLEGAL REAL CONSTANT - " v _ 24 1.66
"3 TLLEGAL VARIABLE NAME - " " 0 0.00
3 ILLEGAL ARRAY NAME .. - " . " 7 0.48
3 TLLEGAL OPERATOR - " " 18 - 1.26
3 ILLEGAL END OF STATEMENT - L _ 1 0.07-
3

ILLEGAL INTEGER VARIABLE OR CONSTANT -
EXECUTION DELETED >



Level

_29..

TABLE XIII cont.

Lev Statement Frequéncy Pércentagé
3 ILLEGAL NUMBER OF SUBSCRIPT FORMAT -
EXECUTION DELETED 0 0.00
3 INCONSISTENT EQUIVALENCE OF VARIABLE - |
EXECUTION DELETED 0 0.00
3 INDEX AND LIST LENGTH INCONSISTENT -
EXECUTION DELETED 0 0.00
3 INTEGER CONSTANT SUBSCRIPT REQUIRED AT ..
- EXECUTION DELETED 8 0.56
‘3 ERROR IN FORMAT AT ... — EXECUTION DELETED 340 23.54
0 EOF READ IN UNIT 00005 - " " 25 1.74
2 EOF ERROR ~ CALL EXIT USED - WARNING ONLY 6 0.42
2 END CARD MISSING - CALL EXIT USED " 22 . 1.52
1 END FILE MIS-SPELLED ~ WARNING ONLY 4 0.29
3 PARENTHESIS ERROR - EXECUTION DELETED 42 2.91
3 PARITY ERROR ON UNIT 00005 - " 0 0.00
3 PROGRAM OR ARRAY TOO LONG - " 0 - 0.00
3 PUNCTUATION ERROR - " 1 0.07
1 PAUSE MIS-SPELLED - WARNING ONLY 2 0.13
2 STATEMENT NUMBER REQUIRED - STATEMENT
CANNOT BE REACHED - WARNING ONLY 96 6.65
3 STATEMENT TYPE ERROR - EXECUTION DELETED ‘90 6.22
3. SYSTEM ERROR AT OCTAL .. - " " 10 0.70
3 STATEMENT NUMBER ... USED TWICE - " 15 1.04
3 STATEMENT NOT COMPLETE -~ " 7 0.48
2 - SUBROUTINE ... DEFINED TWICE - 1 0.07
3 MIXED TYPE OPERATION - EXECUTION DELETED 110 7.61
2 MISSING OR ILLEGAL JOB CARD 77 5.32
3 MAIN PROGRAM MISSING - EXECUTION DELETED 1 0.07
2 MAIN PROGRAM DEFINED TWICE - FIRST MAIN '
PROGRAM USED 24 1.66
0 UNDERFLOW AT ... AC and MQ - WARNING
OUTPUT FIVE TIMES ONLY 7 0.48
3 VARIABLE OR CONSTANT TOO LONG - EXECUTION
DELETED 3 0.21
VARIABLE USED ... AS FUNCTION - " 29 2.00
VARIABLE ... USED AS SUBROUTINE - " _ 2 0.13
OVERFLOW AT ... - WARNING OUTPUT FIVE TIMES
ONLY ~ 0 0.00
3 0 0.00

NESTED DO'S OVERLAP - EXECUTION DELETED



Level’

_30_

TABLE XIII cont.

Statement Frequéncy Pércentage
CHECK USE OF ARRAY - WARNING ONLY 36 2.49
CONSTANT REQUIRED FOR DATA - EXECUTION
DELETED 0 0.00
1 WRITE MIS-SPELLED - WARNING ONLY 1 0.07
1 FORMAT MIS-SPELLED - " " 2 0.13
1 DIMENSION MIS-SPELLED " " 2 0.13
3 AT OCTAL ... , .. USED - UNDEFINED
(SUBROUTINE) OR (VARIABLE) OR STATEMENT
NUMBER - EXECUTION DELETED 118 8.16
3 ARRAY ... USED AS SUBROUTINE - EXECUTION
DELETED 1 0.07
ARRAY ... NOT DEFINED - EXECUTION DELETED 58 . 4,01
HOLLERITH COUNT TOO LONG - " " 11 0.76
BCD OUTPUT RECORD TOO LONG = ... AT OCTAL = .
EXECUTION TERMINATED 1 0.07
2 FUNCTION ... DEFINED TWICE - ERROR
IGNORED ' | 5 0.34
+++ DIMENSIONED TWICE - ERROR IGNORED 46 ©3.18
... MUST BE VARIABLE NAME - EXECUTION
DELETED 1 0.07
1 ... DEFINED. IN COMMON TWICE ~ FIRST USED 22 1.52:
1445 - 100.00




_31_

3. DESCRIPTION OF THE ANALYSER PROGRAM

The input to the analysing program is the system output tapé

produced by PUFFT. It is therefore necessary to procéss a séquéncé

of records, each one representing one line of the printéd output which
is normally returned to the user. Fig. 2 gives a typical séquéncé of
output records. In fact the physical record on tape is of variaBlé
length and does not necessarily correspond to the logical récord to

be processed. A simple buffering system overcomes this. The reading
of the system tape naturally must be carried out by an assenbly code
routine. A description of this routine, called VARRED, is given in .
"section 3.6. After a record has been transferred to main store, its

tape is recognised and relevant action taken as follows:

(a) $JOB This card marks the start of each job. So a job
count is made and also checked for $UNLIST cards in order to separate

out the number of jobs without listings.

(b) Other system records These are detached as starting with a

$ character and a single count of occurance is encountered.

(c) Error records These are recognised by the pattern

'*&nk* at the beginning, where each n is an integer between O - 3.

According to the value of n the level of the error is known.

(d) Fortran statements Details of this analysis is discussed

in section 3.2. Section 3.1 gives the description of tree.

3.1 Description of Tree

Usually the process of syntax analysis of any high level language
involves the determination of the structure of a statement by using a
processing algorithm which expresses the total structure of all possible
statements in the language. In fact this structure could be expressed
~more or less explicitly as a tree structure. This should be provided
once for all as part of the algorithm and should also be unaltered in
the process of analysis so every statement is analysed as if it were the
first ever. The initial structure of the tree provided for the analysing

algorithm expresses the structure of all 'expected' language statements



Layout of the various types of record on the PUFFT output tape.

Each record occupies 16 or 17 words.

12

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18
_ Time Putput| lines
1 $JOB Jobnumber name PUFFT] 3.0 500 - |A01802 Dake #
$% NAMECARD #
$EXECUTE PUKFT #
$1BJOB, _ #
IMP. COL. BUFFT VERS date #1 '
Any Fortran stdtement] would have [this type of| layoit on the sysitem output thpe
DIMENSION 60321
Vh&kn&A EXECUTION # v _
TRikpA EXECUIION THRMINATED BY [STOP AT |OCTAL 162035 #
1 TIME FOR [JOB 0.27MINS Date A018 0310020168 PUFFT [3.0 0030C0
385 LINES OUTHUT. #
OCOMPILATION 0.02/42MINS EXECUTION O.2478MINS 3111DATA 5228PROGRAM

2

FIG. 2.




- 32 -

and also all expected error statements too. The tree should also
carry a memory of the frequency of all statements. The général
principle is that the tree structure expressing the language and

error statements structure is no longer static, but dynamic. Thé
structure is provided initially and is altered in many different

ways as a result of the continuing process of matching incoming
statements. With all the possible incoming statements it can be

seen that the tree will develop a complex and extensive structuré.'
The matching process may then become too time consuming to bé
practical. There is thus a fundamental requirement for an automatic
restructuring process which aims continually to minimisé thé
complexity of the total matching process. This could be realised by
the use of a 'branch swopping' technique. The set of alternativé
nodes at any point in the tree which represents thé sét of alternative
structures which might be present at a certain point in the input
statement, can be continually rearranged so that those most fréquéntly
relevant are nearest to the root of the tree, and théréforé are

reached more quickly.

When a node is transferred in this way, its attachments to lower
nodes must remain undisturbed. Based on this'philoSOphy, the two
routines MTRPUT and TRSWOP have been written. (Refer to sections 3.3
and 3.4 for details). A '

These tree structures are produced and manipulated with the help
of the various Minislip routines. For details about the various character

handling routines and Minislip routines, refer to Appendix I and II.

3.2 Description of the Main Program

Before describing the main routine it is necessary to specify in

outline the function of the various subroutines called as follows:.
(1) SLIP routines (for details see Appendix I).

(2) MTRPUT routine which helps to form a tree whose various branches are
the various key words of the Fortran statements, such as READ, WRITE,
FORMAT, CALL, etc; and the key words of various possible error statements,
for example, ILLEGAL PUNCTUATION, STATEMENT NUMBER REQUIRED, etc. A

detailed description of this routine is given in the next section.



- 33 -

(3) TRSWOP routine. This subroutine does the job of matching the in-
coming statements against the key words in tree form and classifying
the various statements from the PUFFT output tape. Every timé a staté—
ment (key word) is recognised the count of the number of occurences of
the start is increment. If the key word corrésponding to a particular
output statement is not matched then the "new" keyword is adde& to the

tree.

(4) TPRINT routine. This subroutine prints out the frequency of various

statements analysed from PUFFT output tape.

(5) VARRED. An IOCS routine helps to open the PUFFT output tape and
deblocks it. This mainly brings out the various statements on the PUFFT

output tape and stores them in the temporary buffers.

(6) BCDINT is a FUNCTION subprogram whose main job is to convert the BCD

integer characters into integers.

Initially, a collection of cells (about 10,000) called the List of
Available Space (LAVS) are created with the help of a SLIP routine called
INITAS. The Fortran array A is declared at the beginning of the program
to provide enough space for all cells. Out of the LAVS a cell is détached
and it is addressed as a list header LSWOP. (This prints to the top of the
tree.) The various branches of the tree are the Fortran key words such as
READ, etc. In a similar way, a tree with the top accessed via LSWIP is
formed to represent the various possible error statements as its various

branches.

The correct magnetic tape unit for input is selected, and the program
now starts to read the records from the PUFFT tape, one at a time, into a
buffer, using the VARRED routine. The buffer is then tested for the various

types of record and action is taken as follows:

(1) A $30B record. This indicates the beginning of a new job unless it
also contains ENDRUN, which will indicate the final card to be processed.
As each normal $JOB record is encountered, the count of the number of jobs

is incremented.

(2) A report from the system during compilation or execution. These are
recognised by the presence of the sequence **n** wyhere n is 0, 1, 2 or 3.
An execution report will have EXECUTION, EXECUTION TERMINATED or EXECUTION
TERMINATED BY STOP. All others will be error messages with the levél of

severity indicated by 0, 1, 2 or 3.



_34-

(3) Job timing. This is recognised by "TIME FOR JOB" and the relevant

time is recorded. This gives total time for compilation and execution.

(4) Separate compile and execute times. These occur in a separate record

recognised by the presence of "OCOMPILATION".
(5) Number of output lines. Recognised by "LINES OUTPUT".

The remaining part of the analysis program tests for the various
types of Fortran statement. For this purpose the record which has béen
stored in the buffer with six characters to each word is unpacked to Al
format in an array called LINE. This is then tested in succession for
comments,  continuation, and possible completely blank records. The staté-
ments employing an equal sign but not DO statements are next discovered
and the relevant count is incremented. Finally, the rest of the Fortran

records are matched on the Fortran key word tree.

The main program is written in ASA Fortran. The subroutines which it
makes use of are described below. They also are written in Fortran except

as stated otherwise.

3.3 Subroutine MTRPUT

' The purpose of this subroutine is to create a tree structure in which
each branch represents a permissible string of characters which will later
be matched against a PUFFT record. Two trees are created, one containing
the errar statement, the other containing the standard Fortran key words.
The tree is built up from a sequence of data cards, each specifying a branch.
Each call of MTRPUT results in the addition of a new branch to the tree whose

root is specified in the call.

Part of the tree of Fortran key words produced by MTRPUT might be as

follows:

322 324 326 328 330

1 324 1 {0 ({326 110 328 1 { 332 | 330 2AJ 0 [ 0
R - E A D 0

41 0 |334 2| O 0




- 35 -~

The subroutine is written in Fortran with calls to the Minislip

routines for setting up the list structure.

3.4 Subroutine TRSWOP

The main purpose of this routine is to obtain the frequency of various
Fortran and error statements contained in the PUFFT record. The characters
of a statement from PUFFT output tape is being matched with the existing
tree created by MTRPUT. On finding a successful match the count of such
statements is made. In matching for a successful match, it swops the
various branches of the tree in order to minimise the complexity of the

total matching process.

Suppose before calling TRSWOP the number of READ statements have been
counted as 3, later, when it is called again to match the Fortran key word
READ, then the addition is done as follows:

322 324 326 328 330
324 1] 0 326f {1 | 0 328| |1 1332 330 2] 0
R E A D 4

The branch swopping is carried out as follows:

Suppose the part of

 the tree containing Fortran key words CALL and COMMON is as given below:

100 102 104 106 108
102 | .| 1110 [104 0 {106 o 18 {1210
c A L L 5
110 112 114 116 118 120
1| o112] | 1| o114} |1 116 118 120(] 2
0 M M 0 N 6

Later, on calling TRSWOP, it has to match with the input statement

COMMON, a Fortran key word, then it swops the whole branch COMMON by lowering

the branch ALL, a part of CALL.

If the input statement cannot be matched with any of the existing

branches of the tree, them an additional branch will be created by this

routine.

AN

The subroutine is written in Fortran with calls to the Minislip routines

for setting uﬁ the list structure.



- 36 -

3.5 FUNCTION Subprogram BCDINT

Name: BCDINT.

Purpose: For picking up the numbers from the PUFFT output tape

whose characters are in BCD characters.

Example of use: Y = BCDINT (BCDNUM, NUMCHR).

Arguments: BCDNUM - BCD number to convert NUMCHR - Number of

characters to be converted.

Description: BCDINT is a FUNCTION subprogram and when it is used
it will return a value which is the binary integer equivalent of the
BCD number BCDNUM. The value is stored in Y. Any non-numeric characters
are treated as zeros, but blanks are ignored. (Note: Y and BCDINT must
be declared as same type, i.e. both real or both integer, in the calling

program.)

Language: MAP.

3.6 Subroutine VARRED

Name: VARRED

Purpose: For opening the PUFFT output tape and to deblock the

records.

Example of use: CALL VARRED (NTAPE, BUFF, NUMWRD, IEOF)..

Argﬁments: NTAPE - Logical tape unit number. BUFF - Buffer array
into which the words of the next Logical Recoxrd are placed. NUMWRD -
Number of words found in Logical Record is placed in it. If zero on calling
VARRED, the present Physical Record is truncated and the next Logical Record
is taken from the next Physical Record. IEQF - Addréss to which to transfer

on reading an end of file.

Description: On entering the VARRED, IOCS subroutine the parameters
are stored and NUMWRD is tested for zero, (if zero, the end of the present

Physical Record is forced). The Logical tape unit is converted to the



- 37_.

address of the File Control Block (FCB) and the file is tested for Opén,
(open if not). The value of the FCB is compared with the value the last
time the routine was called. If they are not equal a new Physical Record
is read into internal system buffers and its size contractéd. This size
is tested for zero and another Physical Record is read if it is. Words
are now unpacked from the internal buffer into BUFF until either an end
of Logical Record character (072 at the end of a word) or the end of
Physical Record is encountered. The number 6f words found is stored in
NUMWRD and the return is made (after adjusting the number of words left

in the internal buffer). .

Language: IOCS (MAP)

3.7 Subroutine TPRINT

This subroutine is written in Fortran with calls to the Minislip
routines for printing out the trees which were created by MTRPUT and
TRSWOP. '

On calling this routine it starts printing out the branch of the tree
till it encounters the end of the branch. The value in the data word of the
end of branch is pointed out. - It indicates the frequency of that particular
statement. Then it checks for the other branches of the tree and prints

out the whole tree.



- 37a -

4, CONCLUSIONS AND FUTURE DEVELOPMENT OF THE METHODS

We feel that this type of analysis should prove of fundamental
importance to the designers of new computing systems and should also
indicate ways in which the user can be trained to make more effective
use of the system. The most pertinent aspect of this analysis is that
even an effective and efficient system like PUFFT can produce error
messages which are very ambiguous. For example, during the course of
the analysis we came across an error "inconsistent equivalence of
variable" which was observed more frequently than any other. Without
considerable research into the compiler it does not seem possible to
determine the meaning of this statement or to be certain of the user
program faults which give rise to it. The situation is similar for the
error statement: "* illegal use of BCD character". Both of these errors
in fact lead to an immediate deletion of execution and so the need for

further analysis is pressing.

Another particularly significant result is that the majority of
programs could perfectly well run on a system with more limited storage
and this could lead to a reconsideration of the type of machine necessary

for teaching purposes.

In conclusion, it éppears to the author that what seems at first
sight to be a comparatively mundane job of analysis on data of limited
interest has yielded some surprising results which should be of consider-
able concern to systems designers. The work has also provided valuable
experience'in comparatively complex data structures and analysis, and
valuable insight into methods of statement recognising. It is hoped that
the programming system presented hére will be employed continually to

monitor the effectiveness of the PUFFT system.



_38_

APPENDIX I

Character Handling in Fortran

Although Fortran was designed. for numerical calculations, a great
deal of useful work can be carried out in this 1anguagé in the field of
non-numeric data processing or text manipulation, in which thé quantitiés
being processed are not integer or floating-point numbérs, but strings of :
characters. Areas in which Fortran has been found useful includé informa- |
tion retrieval, automatic documentation, the automatic generation of flow
charts and even the construction of compilers. In scientificvcalculations,
it is often necessary to produce graphs or contour maps on thé.line printer,

and here again Fortran can be employed.

The minimum unit of information manipulated directly in Fortran is 3
one machine word. If individual characters are to be processed separately,

then they canbe dealt with in two ways:

1) By arranging to store one character in a word. Since a character
 requires 6 bits of a word in the IBM 7094 the rest of the bits must
be filled in with blank characters. This method involves using Al

format exclusively for input and output.

2) It is possible to fill the word with characters and have special
 assembly code routines available for manipulating strings of characters

and for packing and unpacking words.

Character Handling routines in PUFFT and IBSYS

There are three routines available for manipulating strings of charac-
ters and for packing and unpacking words. Strings are stored in arrays,
.each word contains six alpha-numeric characters, except the last which may
contain fewer than six characters (which are stored left—adjusted). A string

may be read in as Hollerith information or may be compiled in data statement.

The character positions are referred to as being consecutively numbered

and each character is referred to by its position in the string.

CALL GET(S,I,T) : Get the Ith character from string S and place it in
T (left-adjusted). The last five characters of T are blanks., S is not
affected. N




_39_

CALL PUT(S,I,T) : Put the left-most character of T into the Ith
position of string S. The remaining characters in string S are not

affected and T is not altered.

CALL KOMPAR(S,T,I) : Compare logically the contents of word S with

the contents of word T.

If C(8) are less than C(T), then I = -1
If C(8) are equal to C(T), then I = +0
If C(S) are greater than C(T), then I = +1

Example: Suppose there is a string of 14 characters, (ABCDEFGHLJKLMN)

set up in an array called PLACE. PLACE will have to have three words, so
DIMENSION PLACE (3). '

The first word will contain ABCDEF -
The second word will contain GHIJKL
The third word will contain MNbbbb (b = blank)

CALL GET (PLACE , 13 , TEST) will leave TEST with: Mbbbbb.

(@
Then,

CALL PUT (PLACE , 1 , TEST) will leave PLACE(l) with MBCDEF _
If S contains ABCDEF and T contains ABCDEF, then CALL KOMPAR(S,T,I) will
put -1 in I.

When KOMPAR is used for comparing characters in a word, the values
actually compared are the binary representation of the characters in storage.
The 7094 code is given below. Notice that successive letters of the i
alphabet are in ascending binary value, but BLANK is higher than A-R and
lower than S-Z. If blanks are to be ignored, then the required sorting

~order is not simply on magnitude.



-40_

Storage

Character

Storage

Character

Storage

Character

Storage

Character

Octal

61

62
63
64

65
66
67

70
71
00
73

74

Octal
41

42

43

44

45

46

47

50
51

40
53
S4

Octal

21

22
23
24
25
26
27

30
31

20
33
34

Octal

ol

02

03

04

05

06

o7

10
11

"blank

60
13
14




- 41 -

APPENDIX II

Minislip Routines

SLIP (Symmetric List Processor) is a list processing system in which
each list cell carries both a forward and a backward link as well as alpha-
betic or numeric data. The fundamental information module with which SLIP
deals is a pair of consecutive words called a cell. Out of the 36 bits
contained in an IBM 7094 computer word the first word of the cell has an
identifier (ID) field of 6 bits length, the left link field (LNKL) is of
15 bits length, and the right link field (LNKR) is also of 15 bit length.
The second word of the cell is used for alphabetic or numeric data. The
cell as a whole is referenced by the address of its first word. There are
various SLIP routines available at Imperial College to handle lists and
trees. There are handouts prepared by Mr. E. B. James, and these are given

below.

LISTS and TREES in Fortran

The basic item of information is a cell, which occupies two consecutive

36-bit words.

ID | LNKL LNKR The first word contains: A six-bit
DATA identification field, ID, which can

take values between O and 64; Two
fifteen-bit address fields, LNKL and LNKR. Generally, the ID field denotes

what the cell is used for and LNKL and LNKR provide addresses to connect the

cell into the list or tree. The second word is used for alphabetical or
numeric data. The cell as a whole is referenced by the address of its first

word.

The following ten functions and subroutines, written as one MAP routine
with ten entry points called MCOPS perform basic operations on the components

of a cell.

The example will make use of the cell with contents as follows:

17 392 68 Assume this cell is stored at locations 1544 and 1545.
ABCDETF Also that the Fortran variable NAME is stored at
location 1544. o




- 42 -

1. TFunction ID (NAME) obtains the values of the Identification field
2. " LNKL (NAME) " oo " " INKL address
3. " LNKR (NAb’IE) " " n . " n LNKR addreSS

Examples: ID (NAME) = 17 , LNKL (NAME) = 392 , LINKR (NAME) = 68.

4., INHALT (N) obtains the contents of the machine location whose address

is the value of the Integer variable N.

5. CONT (N) is exactly the same as INHALT (N), but is a Real function.
Both are required to overcome the difficulty of unrequired type

changes in assignment statements.

location is assigned to N contains the integer 1544. Then the
value of INHALT (N) is 17 392 68 , the value of
INKR (INHALT (N)) is 68, the value of ID (INHALT (N)) is 17.
INHALT ( N + 1) is the contents of the data word léﬁé = ABCDEF.

6. MADOV (NAME). This obtains the machine address of the Fortran variable
NAME .

Example: The value of MADOV (NAME) is 1544. The previous six functions .
have obtained values counected with a cell. The following four
routines, which can be called as subroutines or functioms, store

values in various parts of a cell.

7. STRDIR (I, N). Stores value I in machine location occupied by variable
N.

Example: CALL STRDIR (I, N). If I contains ABCDEF, N contains ABCDEF
after the call. If used as a Function the process described
takes place and also STRDIR (I, N) returns the value ABCDEF.

8. STRIND (I, L). Stores value I in the machine location addressed by

the contents of L.

Example: If L has value 1545 and I contains ABCDEF, then CALL STRIND (I, L)

puts ABCDEF into machine location 1545. Its value when used as a

function is the value of I.



- 43 -

9, SETDIR (I, J, K, N) puts the values of Fortran integer variables
I, J, K into the ID, LNKL, and INKR fields of the machine location
occupied by Fortran variable N, If any of I, J, K havé a négative
value, then the corresponding field is unaltered in N. If used as

a function, returned value is the new N,

Example: CALL SETDIR (I, J, K, N). If I =17, J =392, K =68,

N is set to:
IDy LNKL{ LNKR]
17 392 68|

CALL SETDIR (-1, -1, -1, N) leaves N unaltered.

10. SETIND (I, J, K, L) has the same effect as SETDIR, but the values are
set into the machine location whose address is the value of Integer

variable L.

Example: If L contains 1544 and I, J, K are as in the previous example,
then CALL SETIND (I, J, K, L) sets the machine location 1544
to

17 392 68

All the variables in the previous routines can of course be replaced

with arithmetic expressions where appropriate.

Example: CALL SETIND (ID (NAME), LNKL (NAME), LNKR (NAME), NAME) does

nothing at all.

The following routines are written in Fortran IV and reference MCOPS:

1. 'ERROR(J): Writes error messages. Used only internally to the other

routines.

2. INITAS(A, N): A subroutine used at the start of a program to create a
collection of cells, called the List of Available Space, or LAVS. The
Fortran array A is declared at the beginning of a program, of sufficient

size to provide space for all cells to be created.



- 44 -

Example: INTEGER A(5000) followed by CALL INITAS(A,5000) will create a
structure with 2500 cells (N/2, or (N-1)/2 if N is odd). If
A(l) is stored at 3726, then the structure will be as follows:

. Location - LAVS :  AVSL (see over)
3726 0 0 3728 . 0 8724 3726
3727 ' 0 ' l l
I ] top bottom

3728 0 0 3730

0
3730 0 0 3732

0
8724 - ol o 0

‘ 0

A special location AVSL is the pointer to LAVS and carries in its LNKR
the address of the first cell and in its LNKL the address of the last cell
on the list. '

Example: In the list above, LNKR (AVSL) = 3726, LNKL (AVSL) = 8724,

If LNKR (AVSL) becomes zero, then there are no cells remaining in
LAVS, '

2. NUCELL (L). Used as a function or subroutine, detaches a cell from the

list of available space. L and the function value are set to its address.

Example: CALL NUCELL (L) with the above LAVS will detach the first cell from
LAVS. . LNKR (AVSL) becomes 3728 and L receives the value 3726.

3. - RCELL (L). A subroutine only; attaches the cell whose address is in L
to the LAVS.

+ et e o et

h
i



_45-

The following routines set up and manipulate symmetric lists, which

enable the structure to be traced in either direction. The LNKR in each

cell carries the address of the succeeding cell in that list, the LNKL

carries that of the preceding cell.

4,

LIST (M) creates an 'empty' list ready for later use by detaching one
cell from LAVS and setting it up as a list 'header'. M (and the function
value if used as a function) are set to the address of the héadér céll.
When created, the header cell has its LNKL and LNKR both set to its own

address.

Example: CALL LIST (M) with LAVS as in original example. M becomes 3726.

ILNKL and LNKR of cell 3726 are set to 3726.

Later, when cells are added to the new list, the LNKL and LNKR of the

header cell contain the address of the bottom cell and the top cell of the

list. The list is referred to via the Fortran name M.

5.

8.

lo.

11.

LOCT (M). A function only, obtains the address of the header cell of
list M.

NAMTST (M). A logical function, has wvalue TRUE if M is the name of a
list.

LISTMT (M). A logical function, has value TRUE if list M is empty.

- NEWTOP (I, M). Inserts the value of I at the top of the list M. Used

as a function, its value is the address of the cell used to store the

value I.

NOKTOP (M). Removes the top cell from the list M, and returns it to the
LAVS. Used as a function, its value is the data item of the cell

removed.

NOKOFF (L). Removes the cell whose address is the value of L from its
surrounding list structure and returns it to LAVS. Used as a function,

its value is the data item of the cell deleted.

NOKBOT (M). As NOKTOP but removes the bottom cell in the list..



12,

13.

- 46 -

NXTRGT (A, L). Inserts a cell immediately below the cell whose
address is the value of L. Called "nextright" because LNKR is
used to point down the list, LNKL points upQ Used as a function,

its value is the address of the cell inserted.

MTLIST (M). This removes all the cells on list M, leaving it empty,
that is, with only a header. Used as a function, its value is the

contents of Fortran variable M.



3.

10.

11.
12,
13.
14.
15.

16.

- 47 =

REFERENCES

Rosen, S., Spurgeon, R. A., Donnelly, J. K. - PUFFT - The Purdue
University Fast Fortran Translater. Comm. A.C.M., Vol. 8, P.661,
(1965). ,

Shantz, P. W., German, R. A., Mitchell, J. G., Shirley, R. S. K.,
Zarnke, C. R., = WATFOR - The University of Waterloo Fortran VI
Compiler. Comm. A.C.M., Vol. 10, P.41, (1967).

American Standards Association: Fortran Vs Basic Fortran - A program=
ming language for information processing in automatic data proce551ng
systems. Comm. A.C.M., Vol 7, P.591, (1964)

American Standards Association: Appendixes to ASA Fortran
Comm. A.C.M., Vol. 8, P.287, (1965).

Leavenworth, B. M., Fortran VI as a syntax language. Comm. A.C.M.,
Vol. 7, P.72, (1964). :

Weizenbaum, J., Symmetric List Processor, Comm. A.C.M.,'Voi. 6.,
P.524, (1963).

Pritsker, A. A., Kiviat, P. J. SIMULATION with GASP II - A Fortran
based simulation language. Prentice-Hall, (1969).

Healy, M. J. R., Bogert, B. P., Fortran Subroutines for time-series
analysis, Comm. A.C.M., Vol. 6, P.32, (1969).

Pyle, I. C., Character manipulation in Fortran, Comm. A.C.M., Vol. 5,
P.432, (1962)..

Healy, M. J. R., Towards Fortran IV. Computer Journal, Vol. 11, P.169,
(1968) .- - :

&

Hendry, D. F., Samet, P. A., Towards Fortran IV., Part 2. Fortran
in the modern world, Computer Journal, Vol. 12, P.218, (1969).

Atlas Computing Service. University of London, Fortran IV Manual,

I.B.M. Corp. 7090/7090 IBSYS Operating System, Version 13, Fortran IV
Language. File No. 7090-25, Form C28-63903-3, (1966).

I.B.M. Corp. System /360 Fortran IV Language. File No. 5360-25,
Form C28-6515-4, (1967).

Control Data 6400/6500/6600 Computer System. Fortran Extended Ref.
Manual. Publication No. 6017 6600, (1967). :

I.C.L. 1900 series Fortran Technical Publication No. TL 1167, (1966).




17'

18‘

19.

- 48 =

REFERENCES cont.

American Standard Fortran, U.S.A. Standards Institute. X3.9
March 7 (1966). C '

American Standard Basic Fortran, U.S.A. Standards Institute
X3.10 March 7 (1966).

James, E. B., Principles of adaptive analysis. -Computing Science
Research Report No. 20. Imperial College, London, (1970).

e e e o < T




_DATE709/22/70 -

SIEFTC hidii wiC

MAIN Ui SuUnLE STATEMENT = IFN(S) _ =

CINTEUTR B COINT, CARD I €6), A (20006) 7B (FETI2015 LINE(B0T5 REARD
hLlMLNblUV IhtAu(4),IHKIT_()),IFURMT{O),IDAT(Q) -

?*LAiA ILA]/iHD;lHA;lHT;LHA/
BATA_ SHASKI/ZUTTTT7700CQ00 /L _
S LATALSHASKJI /001254 G GO0 00/ a2
CDATA RMASKJIZUTTTTITICOTTT7Y . __
CCUATAZKMASKIZUL45454005045¢ /iismsmmrssass
LATA SMAS1L/0774uCuO00ulu/
S UATALRMASJIL/UDLIGUGO0UGUUU /==
DATA _SMASI12/07.1777171717C0007
DATALRMASJ2/U05541 4622 C0U0 /S0
UATA _SHMASIS/UTTTITTITITTITT / ‘
DATA RMASU3/0250725250463 /=y
. UATA SHAS14/0777777CCCU0G/ I
L DATALKNMASJIE/051464500G000 /=552
DATA SMASIL/ULCCOUCOOUTTIT /A - :
DATATRHMASUB/CO0CE000U6s s = m—nrr— EEEIE
DATA_SMAS 1o/07 7717771747 4 :
DATATRMASJO/05 14451452165 /S
DATA SHMASIT/0TTTXNTITITI0L, . o N
CLDATATRMASJIT/U002340444 7310 /a0 mmansrnans e i s
DATA SKASIS8/0777171177171/ ' '
DATA RMASJIO/U43216331 4645 /5
qug_;NA;jﬂ/uuuuuQu7177oul
- DATA-RMASJ9/0G00GG022 7600 /=25
UATA“§MA>Kj(D71]]1717yyuq/ ' S
DATAZRIMASLEL/ 0626340470000 (= _ =T
UATA AMASKI/OULOOUGOTITTITT L. ' -
= UATAEZAMASKY - 73UGUOG0Z sebe ¢/ issenasmsrasaa = : SRR
_bATA BMAbKI/UUU777777CUUU/ RN

LMASM/WO???????:?Y/
“DATA-DMASKJ /000644543 3r62/EEEEEEE
_DATA NC/LHC/ _ -

ATASZNLGUAL /- J.H = J S T e e e e
NELANK/ iH i
CND/LHS / e o ey
N bU/ LHD/ B _

-_—._M—{ i T‘_ l: & ,‘ T )' i T I R
r e l FU }\w “T ( l'_.,‘l) IR Lot e T T A L ST
Gt LDERT HEG St o b e e s e




. BOUBUY | 1GUleU34 .. . : LmmTnET
GMAIN - EFW. . SOURCE. STATLMLNT =N IFN(S) -qmm"T_m,‘,wa S

C
C - LIST UF.- AVAILABLE SPACE. 5~~-m in BEE

, LAkl INITAS(A, 1GOUU) .. . - } .
G UETAULH FLIRST CELL FRUM LAVb;LALL IT AS LSWOP (s t)LULLcLT—AUDRtSS FOR
L TUP UF TRt . .. e e e e . .
LALL NULcLL(waUP) .

:L LbWUP IanIALLY b5 ZLRUS
CALL b;TlNU(L,U,U,LSNUP)
CALL-WUCELLULSWIP )= et
) . LaLk 5L1lND(L; 070 LSWIP)
—"—~%J LUNTINU» e e
C ..
m"LuLAILUNS UN E--CHAR ACTER- LN E ACH- SLOCATIONZI N-TREE=FORM=2
W—RLAUlD;4l)_LARU

CCALL- MTRPUT(LSWOP,CARD 127 1CARD (1)) =
LG TU 43

47 CONT INUE = = =
P— kcAU(J,BUUU) KUKD —— :
BUOU R FU RM /"\T ( ZI l 1 76“\ d ) ST R R e St e I T T e T s

) }fJF(KUAU(l) Eu.u)soruscsa“_fm”_r

s deU&d -
303:~—CONTINU
;JNITIALIbATIUN

irNt:mﬁ VI
LeVLlu=0,

,T_,qTJUNL51 =0 .
Calen G KDUL 3 T=00
Cm_bLT THE 5TATtMcNT

s ASS TGN 20T 1tuF~**
rNTAPL—lo~ﬂ_

0010 1= 1, 5000 )
CoANLTIAL IS E-THE -BUFFER 32




Tl L UBO0L0s. T 106016034, L T T
MAIN = EFN SOURCE STATEM:NT -

. Lu ol 1JN=1y HUMWRD. e
i BUFF( LJN)=&CARD ... .. = i ey
, CALL VAKRLU hUUTth NHILH uPLNb TH: PUFFT UUTPUT TAPL
CALL  VARRED{NTAPL,BUFF, NUMWRD ILOF).. B

» CRECK UP FUK L $J0B FRUM THE BUFFERS.
S IFAND(BUFF(L - 2}y SHASIL). NL.RMASJl)GUTUlOLl
‘4¢IF(ANu(pUEt(Lt;)_bMASL4)JNL RMASJZ2IGUTULULL
$IF: 1T 150 JOB-CARD -THEN TESTFOR* .ENDRUN "CARD %
IF(ANU(UUFP(L+3),AMASKI)-Nu.AMAb&J)bO]UlOl4

G IF{AND (BUFF(L+4) uAASKl).NL.BMASKJJGDT01014"5-~—-J
. bbTUcu‘M“
ulq CCONT IHUL eE
LQUNT NUMBER. UF _JUBS
LU NJOB=ENJGE+IE
_COUNT NUMBER_O
CIKDSKO+ L
SeT A, FLAG
O NN=U :
GUTU;U

uil‘ CUNTLNU

wLUdl\ FUn LKRUR bTATLMtNTb-Ir_THE FIRST bUFFtR CONTAINS THt MARK

-cduNT NUMBERS UF-ERRUKZAND -LXECUT1.0N- MESSAGCS"iﬁ?i;““””*”:*V
NERK=NERR+L

ﬁcALL"bnT(uUFrxL),4,KuUF) i
LUNyckT -5CD._CHAKACTER. TO_ AN“INTEGER,NUMBtR

LEVEL OF ERKUK- MESSAGES
) INTO. pimenalih T " TUL IR T AT T

B :LtVLu LEVLU+1:

GUTOTS, _ ‘ i -
5 L & VL .L = L t V L .L + l T T D T o e L L L S ST e T A L R S SR T L T

:GUTdiég.mm,mw
cLEvig=LEeViLZ+1
LUTO75. . .
bl 3= LLVLJ+lM
e CONTANUE. oo
CTEST-FOR THE ’cA“LUTIUN‘
EXECUTION, MESSAGES.
CESTOP AN DS COUNTETHES e
“IF(ANU(&UFF(L+d);SMASIJ).NL.RMAbJo)bUTUlOL& o
_IF(AND(BUFF(LiJJ:SMASI4) NtoKMASJQJGUTUlOlZT“*“““"““"”

*rmJn THL sUFF:Rs T0. CLASSIFY THE

_JP(ANU(BUF#(L+3),5MASI)) NE .RMASJS)GOTULL

SIF(AND(BUFF{L*4) , SMASIS)« NE sRMASJSIGUTULLE
_ IF(ANU(BUFF(L#5), SNASTS) o NE «RIMASIY)GOTOLZ
S E(AND (BUFE L5 )5 3MASKL) S NEWRMASLL ) GOTOI 2 s
' _NcAbTP"NLKbTP+l : '




CDATE S/ 2270

LCOLOG3% . o s o
L EEN SUURC&*STATLMENTUM

DT Seends T
’ MAIN PR e

.1:”_ NEAC=NuXCfl e
LOZl CCUNWT INUE ..o e

"'—-”f-uR 'ULUMPILATLU\' Tb .‘-lNu THt TIMLb FUR LUMPILATILN AND I:XtCUTION,
lh: NUMuitRr JF. MLWURY WORLS..THE..JOB. .HAS. . OCCUPILED
G P LAND(BUFF L 7) 9 SHAS 1TV e NE RMASITIGGTULO3 T

: JF(AHU(DUI‘P(L‘*’J);bn’h—\olb) NL RMASJ&)(:UTDJ.O:)l ‘
SCINTL=BCODINT CBUFRF (U+11) y4)=: s St
L ANTZ=BCULINT. (uUFF(L-*L.aJ,o).ww,u_—, S
L JCURE=INTL+INTZ = ERERE S N DS

AhNTo= bLUlNT(bLJJ-F(L-*-Z) ,b)

FUAISINT G e L TR
_~.WT-A1 ¥leb=2 .. o y
S INT D= bLUINT(uUFF(L+$ ),z)"”
SAL=INT 2 e - N — o
ITOOM=T + AI l. FEy s e B e e : IS IETE S
~:._Ju\JTlr-m.LJLNT(Lsu}~f=(1.+7_,~ : : :
=UINTS = m,mNT(JUFt-(uo‘"
AJ=INT 4.
"Ax INTD

Dl FDI\‘/‘A{ (41&,1&:7)(, ID! .‘ﬁ( ARgF .LU 5) )
e GUTA LG .
0315 SCONTINUE o o i
[__LOOK .FUK..THL - CUM"ILNT. S
IF (NN WHE o G)GBTG LT
LALL - GETLBUER(L 1), 1yKBUR
=5 ‘:I'r(l(bUF NE .f“\lC)mGUTUlU‘f—r_M“ ==

S \IU CUUN"[_.T EM

044, LUKTINUt.ﬂ_M“ﬁLJ
‘:“:'?—THID PART -OF= P(\Obr{r\f-lw-
SYthll LAI\Ub— L

E"?'"ilum_s"r =JUNLST+ 15
KUULST=KDULST#5 .

LUNT-diN U' e _
TKD KU+ .L EEG R L e

|54 1= CONT TN UE e L S e R ——— :
. ThE FULLOWING . WILL . TEST_FOK. .THE FORTRAN. STATEMENT‘KEEPING IN_MIND. JTHE
&= RECORD L CNGTH- UFMA~FDKTRAN bTATtMtNT TAKES “1670 : T0

. AF(NUMWRD. «LQel0.
==5G0TOLG s
059 :CUNTINUE .

;CU[\ r" I[\ “lJ;:"__ ‘.._—:;::_:'_:é:;___.:_';.; “:;":‘_::‘”._"“:"" : T i utihtigiih iy = Vl‘w i EEEEE «":._:_‘_"..1 iy
CALL. bLT(BUFF(L++b),l,KBUF) ;ﬁt .




10016035

ol R DATE 09/22/707%]
. EFN SOURCE STATEMENT IFN(S)

L BOOBOSL
MAlV B

_‘mlcsl AND LUUNT BLANn LARDb
Henl LOGTTTd =35, 15 i . B STyt AL

} IF(DUFF(J).NL kLARU)bLTUlObL I
?77.-- EEE LUIW INUE s i s

_Kpi= KuL+l

o ~GUTOLO -
LOél LUNTlNUL N o '
: IF(ouFF(L*L4).NE hLAhD)bDTUluT
LOlz LONT INUE e e .
= EACH . CHAKACTLK BV o bUPFLR Y PACKED> IN:TLINC(BUFF CCNTAINb SIX I
... CHARACTERS IN UNE  WJRD ANU THEY ARE PACKED IN SIX WORDS REPRtStNTED
=i BY AN CARR AY.CLINE) = LT
LoNsO
LDG.121.1d=2, 1452
DU let llzlyo
sl CEETIISS
CALL . bul(bUFF(IJ) IIsLINblN)J o

~121__LuNT1NUE~

?ilF(L1NC(LJ.NL.anMGD BOEE s
607010 _
4J LU ‘\] 11“ Ut LS AT god '.:'1'..‘..'17:,:?::;.‘lff‘f}}}f';z‘"'::“ :::'AE;—:'__.’T'—“‘-“"“"‘"” AT
RKE=KL+L ) S ' :
“TEST--FORY [: Q U A e e e S e e
DU 55 KSB8=L,Te : '
JF(LlN:(hDDJ.LQ-NLQUAL) SODETOES4 s
L0 TUu 55
34 - CONT.INUE.

STEST FUR- cumemuaTIum~4xawﬁ:ﬂxvfé, ~~~~~~
IF(LINE (o) JNE. NDLANK) (0. TO 56 '
GO TU .37 e
_CUNT INUE .
KCONT=KCONTH1:
.....GUTU__10
577 CONT INUEE==
013 CONTINUE .
2 SQUEEZE: upuru _COLUMN=7-E
L 188=T.
hl‘ K b d 7 ’:“"‘“‘" LT ’:‘ LTI -“‘J"“'“"""“"’
__REMOVE. LLANKS _BETWEEN_ LHA%ALILRSHIN A sTATtM
B BEIF (L INE (188N EWNBLUANK)ZGB2T0 6422
.. 1eb= lbb+1
=2 G0 TDCI85.2 S ===
84 CUNTINVE -
5 LINE(K 86)=LINE Cldel) sy
 KB@=Ko 6+l '
Sl E8=18 BHIuE :
IF{105 46T ,72) GU_TU_88
= "(:U TJU.- o;“':"“:" =
86 COUNT INUE
1F{NN<EQ.2)GUTU L0 DTS
IF(MARK N& 1) ou 1O as_

mo
:.c. fh
__‘ Hi

1
E
k.




_ CBGUBuUL: lbULoUJH- . Ll m B N PR T
MAIN _ - LHJ bUUKCL STAth4I:NT - IFN(S)_:,M‘_‘,

) lHLINx.(?)-L»z NUU AND LI\IL(B) LJ.NUO) (zU TO 58
COTheRWise TEST FUK KEAU - th TE, FUKMAT, -AND-DATA® STATEM&:NTS
_._.bu 15 M¥NLl= l 4 e B S =
2 biB I=MN 1T - S L LR D L TR
] lF(Lth(VlB.LJ-\lt IKLAD_JM\Jl)JbUTOGOU
Z CUNT DN U s ar it

..GUTUGY .

S CURT 1N Lat.
bl 14 “ll\lé =14.5.
2 MB ESMIN 2O ZE SAEESEE
lF(Lle:(Vlh.:).\h. -lh‘RITL(M\lZ))bOTUéOl ,
'MA(.UNT IN UEsetemmas == =

CICUNT LN Ui
DU 15 tN3=1,6..
“MB3=HN 3+6 : RS

1F(L1Nt(ma;).vt41fuﬁmrtmv;))suIUoOP__

TCUNTLNUE*“‘ S
DU 1o. HN4=1,4
MBLA=iN 4t o e e T
??re:JF(LlNL(M &) Nt.JuAT(MN4JJGUTULa99,:,;.

Lsgg_._; CONT-IN Ut;:— TR
_;Vq(..OUNT THI;ARJ:TH.

—»~8<§ (,uNT m u.-;
10GL L=k bo)

SHTE IR (NN JEQ T2 )"GUTD 1444 TR
= LOERTH=52 . ... .. I e S et o e
CCALLETREESSHAPE I\UUTINt—-‘fU ¢ :S:S TEYEVARTOUSSSTATEMENTS=
—ACALL ] ‘\bNUP ( LQWUP LINC)?) LUhPTH )

S PN U B
e ROENEXC
o ku lUU *K U/k}" ‘_.._.ZL‘:' LT EIRE I S tyttruly oo plomponilag vty

iudhs_p=,4ux Is/lX.BsHND OF;JchmeNr_INTo“Exscuw~__m;5;4

‘f~'-5‘k\U—N EX T
RD=100 4R D/RF

SEEEC =




S BL0BOA T 10016034 T"DATE 09/22/70

MAIN - = EFN SOWRCE bTATLMLNT:rﬁ:“w

. FURMA](&A,A#HVU Uk JUBS TLKMINATLD -~,9X I‘nS)(,_v~
C1FGe2y 2H PERCENT GE- TOTAL - JOBS) wemroiinn Tl o
: RD=NEXSTP e e e
it RUSIUU OMRD/RF o e ol it e oy ol et 2
e hkl]L(u,92)NLXbTPgRU o i
2.5 FURMAT(1X,33HNO OF JObS. TERMINATED. BY -STOP.:
LFuely 22H_PERCENT UF _TOTAL JUBS)
ol REENGRR el e i AR ER B
RD=L VLG

CRUS100 JRRD/IRF. . i ST s T T o

LHRITEL Gy 93 )INERR LLVLO,RD‘M
3 FUh%AT(LX;gUHTDTAL NO OF-ERROR MESSAGES=

1Fc.2,25HPERCEQI:DE;TDTA.:
CRUsLEVLY .
L RUZLOU oFROIKE - &
L WRhITeloy94)LEVLL,RD —
S FURMAT (IXy 23RERRURS. UF: L:VLL UNL— -
lFo.Z,dJHPchLLVT JE TUTAL tRRORb) -
- Rb=L'EVLZ - EEERES CEEEEE
WRU lUUo*RU/Rr
CWRITE( &y 95)LEVLZ,RDE
AEVFu&WAT(lx,zaHLRRURb OF_LsvelL.
ElF0edy & P ERCENTEOES TUTALmLRRORS)ﬁﬁ
___RUsLeVL3
‘ﬁfRU"UUo*RU/nF =i
~__\'N'KLTL.((:’C.?(:J“..i:VL.‘),:F\U

ENLX Nch+NEXLT+N:XbiP‘iT“T““**”“
JRU=ENEX
CRU=1U0 K D/RF-
CWRITE( Ly 9TINEXRD -
- FURMAT (1K 36HVARIOUS “TYPES® UF EXLCUTIDN MESSAGt<
lPo.gydaHPLRLLVT OF_ TOTAL”&F

Eéz_-FUKMAT(lx,¢4H\u GE40BS. wITH UNLTSTISYSTEM: CARGE 4.
llX,#UHSYSTLH CARDS ASSOCIATED WITH UNLIST JOBS _14)

HMRI1t(é,lUO) &Mww_
FURKM AT 2U0H LAQUb ANALYbLJ—

2100-

_~_mthTL(é,lOlJnu,RD
Ul FURWA1(&UH beTLM‘ C

4ﬂR1]L(c;LQ$) s§;kf
103 FORMAT(20H FORTRAN
G WRITECGy104). KCONT Lo = 0

104 FURMAT(2OHOCONTINUATION LARDS “fisf
S TWRITE 69 T TOIKBC o s e 2o e i




L BUUBUL. 100106036 i o
nAIQ_,.A__.t__LFN - SOUKLL STATEMENT.

170 PUmMAI(léHUbLANK LAhUb lo) . -
105 - FORA AT ( ZOHGFUR TRAN - STATEMENTS- = 16 ) i
CNT=aF=nCUNT. .
HKLTL.( &y lUD)C\.‘
S = T=KL .

“.“’-“-"'w’« nl(lru.( C: :LUD’ i\L-

R hf\ N:( Sy 10T ) K S L
&101 FUKMAT(LuHquubhAM STATLMLNTS 5) _ m"w
s RS=K S - B : : = A NG e S b N s S S
I KAR= hAK L

ol RAKE LOGW¥RAR /RS Lie o
" MWRITE{ ) L08). KARZJRAR ..
106 FDRWA](&UHUARITHM:TIL:“
- RuG=KbU . N
~-RDU= luu.*RDD/ha LRSI e i ‘
o WRITE(E2 LO9) KLU RDO.. . _ R o

IO FOKMAT (20 DO S TATEMENT S22
e WRITEL 09 120 e
ST110 SFORMAT (52HOP ERECENT-FREQUENCYSOFE0THE RESTATEMENTS SASEF GLL GWS
CALL. TREE. PRINT_RUUTINE_TO. RthT_JHL VARIDUS UTHhR_bTATEMENTS
LUARLL IPkINl(LoWUP,dZ,Kb) = =
--NKIT:(O,775)-NW”_WW”AMW
‘n~~—hﬂITc(u,3354) SEESLOSRE Y S
- FORMAT {54HOPER.. LLNI»FRLQUENLXMDh»hRROK_M:SSAGESWARE AS
CINERENERR=NEXC-NEACT~NEXST p=mminsmany
- CALL. TPﬂlNT(LSNque&,NbR)A_— :
SWR ITE(D 776 35 2EE
6. FURMATLIH1) . : : ' ‘
CECLEAR-THE-BUFFIRRSE AbHIN R : === =
__LUuaMASU Ly NUMWRD . -
=By FF ( M l-\bD j =R LAI‘\U T T T T A T e T :*._T».:: T e e e T T e T R
LALL . VARRED_ROUT.INUE ...
—"—LALLmVAKRLU(NTAPLydUFF,NUMWRDWICUF)‘—
L=1
S==TESTTHESENDE OF»TAPchIF~NO““bU AND STARTTH&-PRULESQ S e T T
lF(ANuiBUFf(L) > 5 ‘ '

T F O i 2 10 H P ER Ct N T B e e iyt




DATE 09717/70

~ SUBROUT LNUE MTKPUT CREATES TKEE STRUCTURE IN THE FORN OF CELLS.
Zi  CHARACTER™ IN THE "BRANCH "ANJI T IEND TS THE LASTUCHARACTERTOF"THE BRANCH = ="~

“SUBRGUTINE MTRPUT(LH&AD,.AAD,rBEGIN,ItND)i"
" INTEGEK CARD(B0) T S i
POINT TO LAST AS THE TDP 0- TREE -

LAST=LHEAD e s o

" DOb6K= 1BE GIN, itND —
- TEST THE ID FIELD OF TOP CEll. IF 1T IS ZERUTTHEN IT MEANSTZITIIS NOTZL " &

TFILLED WITH THE INFORMATION. OTHERWISE EITHER IT IS FILLED IN CASE T

tﬁgg'IF(INHALT(LAST+1).EQ'CAR)(K)I;GO T0:22
IF(LNKLOINHALT(LAST) )} «EQ.0) GO TO 44

C LAST=LNKL (INHALTCLAST ) :
GOTO 33 .
U CREATE, MEW CELLTOILEFT {DOWN =i —
44 CALL NUCELL { LINK)

ZCALL SETIND(l:LINh:-l:LAST)

IF(LNKN(INHALT(LAST)) EQ.O) GD TD 55
CLAST=LNKR CINHALT(LAST) JiEEEsss SEEE
GOTO 66- -
SUCREATE NEW CELLPTO RIGHT E73 TR

SET END MARK AND FILL THE DATA HORD WITH 0.
S CALL "SETIND (250,04 LAST):
CALL STRIND(O.LAST+1)
?fﬁﬁ:RETURN Rty = =

e b, . e

et et e < e i 77 e 52 A = et e




IBFTC

SET

TEILASTELINC T

TRSWP .

 Duts03

gTRS w p DECK — :‘ M..i .:'-' LTRSS e wiee T e DD e e e e il

va.iEfo“

AMAR&ER 10 LERD

MARK =0

LAST=L HEAD

S OF LAST WITH. THE:

UU10016036 H1 T T

Vt_SUBRUUTINEvTRSWDP(LHEAD
" INTEGER CARD{80)Ziir

suchc 5TATEHENT ”ff:iFN(SiT ﬂvﬁ

ARD, IBEG IN, IEND)“A "

'tINITIALISE THE LIST HEAD&RW )
G JUSTELHEAD oo

77 DO66K=IBEGIN, IEND: T
UMPARE THE VALUE OF THE ID FIELD OF LAST ‘
THEN FILL JP THEDATA WORD WITH CHARACTER.AND CREATE.A NEW CELL:
 TO RIGHT.
7 IFCIDCINHALT(LAST))LEQ.0)- 6O TO 77
IF IT IS NOT ZERJ) THEN COMPARE WITH THE CONTENTS T
‘CHARACTER_FROM..THE . OUTPUT=TAPELIE THEY. MATCH.GOT0:22:
p. 33 IF(INHALT(LAST+1).EQ.CARI(K)) GU TO 22 ] B
S01F THEY. DU NOT.MATCH:CHECK UP. WHETHER: THE=VALUEZOF  THE= LNKL
___LAST 1S ZERD. IF IT IS ZER) GOTO 44 AND CREATE A NEW CELL. ro LE&T

S"OF THE DATA WORD

LSET JUST _AS LAST. AND*LAST “TD_THE "ADDRESS® OEWIHE LNKLCEOFLAS

THEN GUTO 33 AND COMPARE TAE DATA NURD WITH THE CHARACTER

JUST=L AST

CALL SETIND(L,

" CREATE NEW CELL 10 LEFT(DUW )
T44. CALL NUCELL(LINK) el T
SE 1,LINK INTO ID AND LNKL FIEL
L CALL’ SETIND(LyLINKy=1,LASTI:

1

“STORE THE. CHARALTER _INTO :THE:.DATA:WORD=
CALL STRIND(CARD(K),LAST+1)

/3

DF THE CELLELASTN.“LF:ff:i:ﬁiffﬁéEEfoi

S RAISE A NEW CELL =5
o 55 CALL NUCELL(LINK)
T TCALL bETIND(l:'l:LINK:LAST)

JUST=LAST

: LAST‘LIN<‘ﬁ;WF;hMT




1 DOV50G3° T “10016034 | T
9 TRS WP L EFN SDURL[ STATEM:NT

CALL bETIND(U: aUrLAST)
"GUTD &6
22 CONTINUE
.2 THIS PART OF THE PRUGRAM DUOZS THE SWAPPINGT OF THE  BRANCH- OF- TREEfﬁ“ LR
~ IF(MARK.tQ.0) 6U TO 23
ST TITEMPL=LNKROINHALT(JUST)) 0 = e
ITEMP2=INHALT(JUST+1) ’ |
“"CALL SETIND{1ly=1,LNKR{INAALT(LAST) ) JUS T) e e e e R U T e
CALL STRIND(IVHALT(LAST+1)1JUST+1) e ‘
T CALL SETIND(l,-1,ITEMPL,LAST) i°
CalL STRIND(ITEMPZ,LAST+1)

T LAST=J UST | T e T e
© MARK=0
7723 CONTINUE - BERLTEE LTEE
IF(LNKR(INHALT(LAST)) EQ 0)
CJUST=LAST T TR
LAST = LNKR(INHALT(LAST))
S IFCIDCINHALT(LAST ) LEQ.2) 60 =T0=6T =
GOTD 66 '
C: CREATE A NEW CELL.TO RIGHT -
77 CALL STRIND(CARD(K) LAST+

T CALL bETlND(l"‘l: =1, LAST)E

'”f;IF(ID(INHALT(LAST)).EQ 2VG0T06 T = e e
CALL SETIND(2,0,0,LAST) o o ' R '
} CALL STRINu(o,LA$T+1)_Q;@;”x;xukmxg;gﬁ~ ST rm e

67 CDNT INUE ' )

N= IVHALT(LAST+11+1 o

CALL STRIND(NyLAST+lY
:?RETURN*sv~w

1= INHALT (LAST #1153 : — ‘A.m~mf;;¢4§w:§zza;s




100160345 L i L

D00503 T

(iBETC 9TPR1N D&CK

'E:DATA BLANK =/ 6H =
~ NIL=C
o Ks bl haim

.AND IN. THE CELL LINKI:
" CALL LIST(LINK) - '
“ZPUSH THE DATUM. NIL DOWNTONTTOPZORITHEEZUISTILINKGEEEE s
CALL NEWTOP (NIL,LINK)
SINITIALISATION OF ARRAY.:LINEZ:
_“W77 D0 22 I=K,LDEPTH
.22 LINECI)SBLANK - =57 Zo s
 STORE THE CONTENTS OF DATA WORD DF T*
233 LINE{K)=INHALT(LAST+1). |
INCREASE THL VALUE OF K
UKk L _
‘ThST FOR THt CNU UF THt BRANCH.,

IF THE CDVTENTS UF THE LNKR FIELD

C

CEZLIST - LINK e == e e
CALL NchTOP(LAST GLINK) x: ~ ' .
CZESET . THE - LAST 2P0 IN TER-TO THEZENKKEFTELOZ0EEUASTEANOSC 0TS s e
LAST= LNKR(INHALT(LAST)) SR
;:" GO TU 33 EEIE SEESmamime T e T Sr=ar = R T IS
44 CONT INUE ) L ‘
CUN= INHALT(LAST#1) o G =
L=K=-2
-7 RN=N. LR = S =
R—NbTATS _ §

S TR=100 e ¥RN /RIS =
wath(o.ee) R:N:(LINE(J):

45 CUNTINUE
CECHECK UP WHETHER THELNKL 'FIELD OF LAST'IS ZERD ‘OR 'NOTSTIFTITEIS, ZERD:
C THEN LINK IS 'PIPPED DFF? Ny LAST WHICH MEANS IT IS RETURNED TO
C:i:zLAVS CAND: THE ‘DATUM. CONTAINED. THERE AN DELIVEREDLAS: =THE. VALJE OF=

THE.

e e 1 n e et ~—




DOU503 .Y 10016034 ¢ : R
9TPRIN = EFN  SOURCE STAT&M:NT - IFN(S)_

t“’ FUNLTIUN. RLDULE K IILL THE" HHULE T&Et IS PRINTED OUT.
S IF(LNKLAINHALT(LAST)) «EQ. G) GG TD 55
 LAST= LNKL(INHALT(LAST))
o R=K-1 | e Dol
Gu TO 77
b5 LAST= PUPTOP(LINK)****~*
K=K=1"
T IF(K o GT el )60 TU 45‘:_-":
HETURN
S ZEND T
$18MAP BCDINT NOREF M9U




BCDINT®

"Bcoxoool

LCDATE 99/17/70 ° 0 TIME 3.0 MINS T TE U PASE. 150

AINTD REGISTER :”fmm

:HIGHER INVALIOD TR:AT FITeN
= EQUAL, IGNORE. GET A CHARACTER D

CDMPARE TEN

HIGHER'~INVALID TREAT: ZEQO

TREAT AS™ ZERO
‘VALID ADD TO:TOTAL™"

LOAD BCD VARIABLE NUMBER
" LDAD CHARACTER COUNT™ = ==

. I1C100030%
1CI00040
" 1C100050:

”‘1c1000e>o'~~
1100070

ICI100080

IC100090%

I1C100100
SICIO001107

ICI00L120 -

RS ENEEEET TR ICI 00 3 0“

ICI00L40 -

SFTICIO00L50

e O T Q “:_-—“;EEN U MB E AR

RE BCDINTF1s6s1

"SAVE 'REST OF BCD NUMBER™

XCA

T TENTEE
DUMMY
2 NUMBER:

LAC 944~

“I1C100160
"T1C1001703

“RESTORE" REST BCD NumsEk

ICI00180

SErEianea JCIOO01L90:

1C100200

~ 1Cc100210%

xBLANK BC1==1,00000==

1C100220

' GET VEXT CHARACTER

211002303

TEN

1C100240

T IC1I002507

T 71C100250

r__,__\,,w,“.,.,_v._,...w Oy S —
v :
5 . ' . : o




 VARRED_ 7 DATE 09/17/70 .~ TIME 3.0 . MINS 7

TUENTRY VARRED ¢+

. SYSLOCs4 © SAVE LINKAGE  © .7
L LOIRs4  SAVE REGISTERS

"*:!-«+>LAC-~MM~-FILE,4~- =
UNITl,4
UNITZ,#E"

= COMPARE PRESENT- sILE¥:
w I T H L A> r F IL E TR T LT S D T T LT

_TSX
PR

UNITZ

=k g KN
RECADD,-I-

f""'U'FE}JD TXIE=E %t Lk, **‘m;na%iizﬂﬁﬂ5&@1?3?2%€¢4:~_Mm_ e S e
, SXA ' BUFADD,4% ' '
PARBUFE.LXD i RECADD, 4 TEST "FOR_EMPTY BUFFER”.
‘ 012 ] . :
ZREADy 430 READ NEW :PHYS ICALRECORD-IFLBMPTY e i i o el

~




FUOTTANA D
ERA

pUFF&R $TQ
SIS

AR2FETTAXT

SUFADD AL T

DT

ﬁfTXIM

. VARRED™ "7 "DATE 09/17/70 CTIME 3.0° TMINS iU P

T kg4 UEXTRACT 4ORD FROM BUFFER

RECMRK ~ 'TEST’ FOR RECORD MARK (072)

BUFADD 37 : o

Y STORE IN USER BUFFER :

TUETT e ]y 2y=1 ST INCREMENT (WORD COUNT 77 707 = momamaas e o

“BRANCH IF RECORD MARC =7 7 =0 7o
GET NEXT WORD IF NOT END °HYSICAL zccaR
?SAVE “WORD “COUNT ‘OF ‘LOGICAL RECIRDE o

“RECADD;a':SAVE WORD COJNT ONORDS~LEFT Iv IVT BUFF.'

XR4  AXT

TET%,2 55557 RESTORE REGISTERS

CTLOLLEESINDICSE==T T o T T E T e e e T e

**,4

STO*

TTRATTE 1,4 —==="RETJRN TO USER:

5s4 RETJRN LGGICAL RECDRD SIZE

FILE PZE

Fox PRESENT FILE

LAST FILE.

INDICS PZE

USTEILTPIE "EEm v

RECHMSK -OCT ==

T MASKFOR™ RECORDMARK:

RECMRK OCT |

o

LOIREE IR

RECURD ARK




QNOl.
UNO3.
UNGT.
UNU9.
UN1le
UN13.

UN15.

ENTRY.
UNG2.
UNO%. -
UNOB.
UN1Q.. | ,
CENTRY
UNi2, B

Nl4, ENTRYIZFINT

ENTRY _ IN

UNlé6.
UN17.
‘UN19.5
UNZ20O.
UNZ1,..
UN22.,
UN23 .

ENTRYZEINZS

L REMOVE: .. -DATE 09/17/70 " . TIME 3.0 . MINS. . .. p

CLIN
ENTRY _LINE
ENTRY _IN_

&NTRY‘ IN
ENTRY T.1INZ
ENTRY  IN
ENTRYSZ INTE =

ENTRYf:L

ENTRY ZEIN ==
ENTRY__ IN
E NT R’Y"Z_ET_':' I N ChEEEETEET
ENTRY 1IN
E NTR Y o I N SR RS
ENTRY IN

_IN




Jafwu,ffruTAL COKE fc MPILATlUN Tux~ EC
L BTSN U l7Ub0”“;e;;w;M,U 34920 30400000 il
P __d(_DOH_,__ _,UOU.{‘BL} 446935200

1673 T G o61Ta ] 1)2007:‘::'__:_?:

- ‘____A.lir'*?l‘ V...L.Ubdb(.) ‘rAAZlBOO_W_
ST S T - S U R o I S0 01470{;‘-‘; :
1185 0.05920.

Ve U3170.7
_0.00780_
00U TOE

va e wmpu

J OF Jugs. = e .
) OF JOUS WENT.-INTI. cXLLUTIUN—'——~ﬁ7J 57778 PERCENT OF . TOTAL JOBS. -
b OF JOBS. TR INATED. b “ﬂ44-4* PERCENT _OF TUTAL JOBS,ﬁ
1 CF. JUBS - TERMINATCD BYS STURL= S s =
DTAL NO DF cRRUR M2 $SAGES :

SRCRS .OF.LEVEL=Z ERU === i = «555 ldpLRCLNT GF TOTAL ERRORS

RKURS  UF L &vel _ GNE _0 0+ 0CGPERCENT..CF. TD[AQQERRDRS e
RRORS-UF UBVel S TWie e e e e S B G PERGENT S OF»TOTAL ERRORS ciciEi-simamsees
RROGRS OF LEVEL THREE= . 11 34, :BPtRc&NImGE“TUTAL "ERRURS.
ARLUUSIYP ES-UFEEXECUTIONEMESSAGESS =G =

*;o.ooPERL&NI_UFmTDTALMEKRORSEEséég

e e i, cm—— o et ——



GF JuBs

WITH UNLIST 3YSTeM CaRL

S

STEM CARDS ASJULIATLU hITH.UVLLbT JuBs

RODS ANALYSED — ol
STEMS CARDS 70

aR]hAN

NT]NUA]IUN-L.RUS S
ANK LAKDs ;vmmm”"mﬂﬂiji_wm'HW"”"““
RTKAN“SfKTu4
MMtN] LHKUbM -

UGRAM bTATLMLN 1

2. B8 PERICLNT ORTOTALL

0

ENTS t

I THM ET u,
“STATEMENTS

ER CENT_FREQUENCYZUF. O THERESTATEMENTSZASZEGLLONWS
32 WRITE(

5456

T 06U L EE3 B FURMATS

0 Fggchuw

EEaat e

0 INTLGER'

ST AL

5 COMMDN

0= CUMPLEXE

d7 LUNTINUL

CUUIVALEN—= —

EXTERNAL

4i;~SUdKUUTiN-W*

.3 STUP

DIMENSION

SDUUBLEZE

GUTO

S BLOCKDATAZS

~To oo

0 LOGICAL

NAMELDST

PRINT




'R.chTuFREQUEu Y. UF. EKRUR MESSAGLS ARE.AS FOLLOWS:
1e CILLEGALPUNCTUATIUN

ILLLuALustrﬁuuuuwaA@]

= ILLibALUSEUF LUGICALUNITCO006 =

A
]_
UWUU. 0 1LLEGALUSEUF BUDCHARACTER.
o
0

TlLLLbALUbLUFLUGILALUNITUOUUD
=1 LLEGALUSEUF FUNC T I UNNAME ==

ILLEGALUSEOFPERIOD o

ILLEGALSUBSCRIPTAT frw siiimmm e

ILLEGALSTATE MHENTNUMBER.—.

SEi0E] LLEGALSEQUE NCTNGUF STATEMENT: S

TlLLLbALLARU:tLUUleUREU S —

' =1 LLEGALCUMMA IGNORED
. mmmlLLLGALAkRAYNAML S
L UELEILLEGALKEALS UNSTANT ot

_0..__1LLEGALVARIABLENAME -

)==5] L LEGALUPERA TOR =2

- ILLLbALLNTLuthAhlABLLUR”DNSTANI

S L LEGALENDOF STATEMENT == S &
U ILLEGALNUMBE RUFSUBSCRIPTFORMAT o N
OF=INCOWNSISTENTEQUIVALENCECOFVARIABLEE = ane s = =]
_ 0. NDLXANULISTLthTHINCUNSISTENT A , ] :
E0=05 TATEMEN TNUMBERRE QUI R ED -2 SR e b S R

~STATEMENTTYPEERROR

=S Y STEMERRGRATOC TAL - amsmtmsns

PARENTHE SISEKKUR .

P AR TYERRGRUNUNITG000 5=

. PnUbRAMUKAR&AYTUULDNGfﬁLﬁmwﬁm_\x_xwL_ﬂ
==P UNCTUAT1GNE RRORZEZE EE == =

VARlAbLtLALUStUASFUNLTIDN:::cXECUTlUNDEv

VARIABLEORCONSTANTTOOLONG
MAIthubeMJtPINLDTWI“E

MATNPROGRAMMISSING - =
O MISSINGURILLEGALJOBCARD ,
M TAEGTYPEUPERATION SR En e mr o s
___JVEKFLOWAT ‘ : : _ |
S e NDERFLO WA T - e e R e S
1 tNULARDMlﬁbLNG?WMA S ,
=S == E0FREADUNURNITTO0005= = -
.U i, O ERRURINFORMATAT.. ... S N O
Eﬁbiccxl—“——_“C“‘ NETSTEDDUA SOVERLAP = = =
v — CHECKUSEOFARRAY ‘; i ’ —
=S CONSTANTREQUIREDFORDATA ==y T R e
CWRITEMISSPELLED A

”AKRAYLALNUTQ&FINCU---:KEL

L:::ARxAquuTU:F4Ntu”féEXECUILﬁNﬁEiéTéb““‘ ==

= ATOCTALOUGUO s CUSED===GNDEFINEDSUBRCUTINZ=

FORMATMLSSPZ LLED

SSUSSBLOOUTPUTREC RDTOULONG==




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74

