
ANALYSIS OF FORTRAN USE IN A UNIVERSITY ENVIRONMENT

A Thesis Submitted for the Diploma of

Imperial College

by

P. G. REDDY, Ph.D.

Centre for Computing and Automation
Imperial College of Science and Technology.

University of London

October 1970

Acknowledgements

This dissertation has been written for presenting as part of the

requirement of the Diploma of Membership of the Imperial College. The

author wishes to acknowledge the valuable assistance and encouragement

that has been provided by Mr. E. B. James and Mr. P. Whitehead.

Acknowledgement is also made of the assistance of Mr. G. Richards

and other Computer Unit staff. The author would like to thank the

authorities of I.I.T., Delhi, for allowing him to spend a year in

studying Computing Science at Imperial College. Thanks are also due to

the British Overseas Ministry for their kind assistance.

Lastly, the author wishes to express his deep sense of gratitude to

Professor S. Gill for accepting him into his department for the Diploma

course.

CONTENTS

1. INTRODUCTION

Page

1.1 Objectives 1.
1.2 The Computing System 1.

1.2.1 	Computing in Universities 1.

1.2.2 	Use of Fortran, history 3.

1.2.3 	The PUFFT System 4.

2. RESULTS AND DISCUSSION

2.1 Execution Analysis 7.

2.2 Error Analysis 10.

2.3 Fortran Usage Analysis 16.

2.4 Further Analysis 19.

2.5 Fortran Course Survey 23.

3. DESCRIPTION OF THE ANALYSER PROGRAM

3.1 Description of Tree 31.

3.2 Description of the main program 32.

3.3 Subroutine MTRPUT 34.

3.4 Subroutine TRSWOP 35.

3.5 Function Subprogram BCDINT 36.

3.6 Subroutine VARRED 36.

3.7 Subroutine TPRINT 37.

4. 	CONCLUSIONS AND FUTURE 	 37a.

APPENDICES
	

38.

REFERENCES
	

47.

PROGRAM LISTINGS

Abstract

This work is an investigation of methods of analysing the performance

of a university computing system. This involves the development of programs

for analysis of system output tapes, with the production of statistics con-

cerning error messages, execution ratios and distribution of program times.

There is also presented a detailed analysis of Fortran programs involving

statement frequency and types of error.

1. INTRODUCTION

1.1 Objectives

The purpose of this work is to investigate the behaviour of a

computing system as it processes a typical batch of programs in a

university environment.

This is achieved by an analysis of the system output which provides

an historical trace in considerable detail. It consists of program

listings, reports during compilation and execution and results from each

program in turn. From this raw data it is possible to develop a wide

variety of interesting statistics which may indicate both the efficiency

with which the system processes user programs and also the level of

proficiency of the users. It seems that the information produced by such

an analysis should prove of fundamental importance to the designers of new

computing systems and should also indicate ways in which the user can be

trained to make more effective use of the system.

It is claimed that this analysis should be of great use to teachers

of Fortran and in general to compile writers. There is a pressing demand

for the introduction of computer education at school level and a recent

IFIP Conference has given a clear cut recommendation on such education.

1.2 The Computing System

The system under analysis is the PUFFT system for processing small to

medium size Fortran programs at Imperial College. In this section we

provide background information on the use of computers in colleges, on the

use and development of Fortran as the language for college programs and the

structure of the PUFFT system.

1.2.1 Compters in the University

The modern electronic computer has produced a revolution in science,

engineering, industry and commerce and has permeated our society. Even

though a relatively small percentage of computers have been located on

university and college campuses, colleges and universities have played a

key, role in computer development. In fact, the more advanced system programs

that permit all computer users easier and more satisfactory access to

computers have been developed by the universities (see Refs. 1 and 2).

-2 -

Computers are used by an increasing number of students either to

do homework or laboratory problems, or to learn about the design and

operation of computers themselves. Like other new technicological

developments, the computer has been over-promoted, abused and misused.

All too often an extensive brute force calculation has been made on a

computer when some thoughtful analysis would have reduced the problem to

one requiring only a modest computer application and perhaps none at all.

Better education in computer use should improve this situation. The

broad scale reliance of our increasingly technical society on computer

systems, formal languages, and the related problem-solving procedures

will eventually mean that everyone should have a basic non-technical

understanding of the field, much as everyone is now expected to understand

something of history, arithmetic, biology, etc. In fact, this has already

been started on an experimental basis at the grade school level. It is

already generally recognised that the engineers will make so much use of

computers that it has been essential to give them instruction in the use

of computers as part of their undergraduate training. As use of computers

is becoming widespread, students in more and more areas will require

training in their use as part of a normal undergraduate education.

Over the past few years there has been a vigorous development of

problem-oriented languages, such as Fortran, ALGOL, COBOL, and PL/1. Their

use has made it possible within a one-term course to impart the technical

knowledge needed for the transcription of a well-defined problem into a

computer program. The advantage in having courses designed to develop

proficiency in a programming language in schools and colleges is that such

courses can form the basis for further formal education in computer-oriented

problem analysis and in more advanced programming logic and language.

Engineers have already accepted the computer as an educational aid,

and the students of engineering are using the computer extensively as a

calculating instrument throughout their undergraduate career. While the

same kind of acceptance is anticipated in other academic areas, an even

greater impact on education is now occuring through the use of computers

for non-numeric processing. This is simply the use of machines for manipu-

lating entities that are not represented in pure numeric form. Included

within this non-numeric field is general information storage and retrieval,

algebraic manipulation, and linguistic work of all kinds.

- 3 -

Writing a machine language program is usually far more difficult

and time-consuming for the programmer than writing a program in a problem-

oriented language, such as Fortran or ALGOL. Basic training in computer

programming is therefore best carried out in a high level language.

1.2.2 	Use of Fortran, History

There is a growing tendency for programs in all application fields

to be written in Fortran (mainly because of the worldwide availability of

Fortran compilers). Fortran will probably be the most commonly used

programming language in the universities and colleges for at least the

next five to ten years, again mainly because of the ready availability of

Fortran compilers on all machines.

Out of many dialects existing in Fortran, there are two, Fortran II

and Fortran IV, which are most commonly. used. Fortran II is now officially

obsolete, although thousands of Fortran II programs are still in use. The

name Fortran was derived from the words IBM Formula TRANslation System, which

described the primary object of the original language. The processor

(compiler) for this language was modified in 1958 to accept programs written

in an augmented Fortran language which was commonly known as Fortran II.

From 1962, compilers for Fortran IV began to appear, which provide important

additional facilities. In 1964, the American Standard Association drew up

a specification of, essentially, Fortran IV which has been widely accepted

as the standard Fortran. All Fortran IV compilers should accept a program

written to the ASA specification.

It should be noted, however, that of the processors described in

references 12 - 16 , very few appear to have complete compatibility

with ASA Fortran (see references 3 , 4 , 17 , and 18). In addition two

other Fortran processors may be of importance to users. Both of these

processors provide for very fast compilation, but may produce less efficient

object coding than the manufacturers compilers. PUFFT is used on IBM 7090/4

machines and its specification is nearly the same as version 13 Fortran IV

for the IBM 7094 machine.

It is in many ways remarkable that a language as old as Fortran is

still in use at all, and the extended Fortran is also able to stand the

- 4 -

competition of newer languages such as ALGOL and PL/1. One reason for

its survival seems to.be the fact that its very limitations, while not

too serious from the user's point of view, make it relatively easy to

compile. Fast compiling is particularly important for a language much

used in teaching since student's exercises spend most of their time in

the compiling phase, and indeed the same consideration is important in

any research-based computer centre where the ratio of the programs under

development to those in production will always remain high.

Another important feature of Fortran is the care with which it has

been extended to cover special applications - rather diverse examples can

be found in syntax description 5 , in the list processing 6 , in

simulation 7 , and on character manipulation 8 . Suggestions for

improving Fortran from the user's point of view, mainly by removing irksome

and unnecessary restrictions as well

the language, are given by Healy 10

efficiency considerations as seen by

manager are given in reference 11 .

considerable scope for development.

as by creating useful extensions to

. Further suggestions based on

the software writer and the machine

So it appears that there is still

1.2.3 The PUFFT System

The PUFFT System at Imperial College handles the load of small-scale

Fortran programs produced by students under instruction or researchers

developing subsections of larger programs. Programs of this size form an

increasingly important part of the work load as computing enters the

curriculum of all students.

The development of the PUFFT System is due to Professor S. Rosen and

a small group of workers at Purdue University, where the computing require-

ments are similar to those at Imperial College (reference 1).

PUFFT handles job-to-job sequencing, translating and running of batches

of programs submitted to it in Fortran IV source language, and it was

primarily designed as an independent operating system for the IBM 7090/94

computer. The entire system is resident in just over 16 thousand words of

immediate access storage during both compilation and execution. During

compilation the system communicates only with an input tape, from which it

reads the source program, and an output tape, on which it writes the

-5

program listing. Everything else is handled in the main core memory.

System Routines: The various system routines that reside in the

lower part of the core memory (the storage assignment for this is the

locations 0 to 17K where K represents 210 = 1024) are (a) the executive

routine, (b) the input-output package, (c) the compiling routines,

(d) the subroutine library and (e) diagnostic message routine. A brief

description of the various routines follows:

(a) The Executive Routine: This handles the monitor functions in

PUFFT. It reads and interprets control cards and controls the sequence

of funtions within a job and between jobs.

(b) I/O Package: 	The I/O routines that reside in the system area

are used by the system and by the object programs that are produced. At

compile time they provide a double buffered system for reading BCD card

images from the input tape, and for writing lines edited for printing the

system output tape. A pair of 22 word buffers is provided for BCD input,

and the same pair of buffers is used at run time for reading from the

input tape or from any other BCD tapes that the object program may specify.

Two 120 word buffers are provided in the system area to provide for a

blocking factor of at least five lines per block on output to the system

tape. BCD output on other tapes during output would use the same buffers.

(c) The Compiling Routines: PUFFT requires that all statements

that have to do with type declaration and storage allocation must appear

at the beginning of the subprogram in a prescribed order since it is

designed as an absolute load-and-go compiler. These include explicit type

statements, DIMENSION statements, COMMON, EQUIVALENCE and DATA statements.

(d) The Subroutine Library: All the standard Fortran library sub-

routines are found in PUFFT and they are part of the resident system. The

subroutine library uses about 2600 words of core memory.

(e) The DIAGNOSTIC Message Routine ERROR: A system like PUFFT,

intended for use by students and for debugging, must be able to recognise

and provide detailed diagnostic messages for all kinds of errors in the

source language program. This routine is called ERROR and is designed such

that a large number of different error messages can be printed without

using an excessive amount of space for their storage.

An error message is selected by a parameter word which designates

upto three phrases from a library that could contain a maximum of 511

phrases. Each phrase is encoded in a single computer word which selects

a sequence of upto five English words from a table of 127 different words

of upto 12 characters each. A phrase may require an insert provided by

the calling sequence, in which case the insert is provided in the arith—

metic registers and the position of the insert within the phrase is

specified in a field of the parameter word which selects the message.

The actual words that appear in messages are stored only once, regardless

of the number of messages in which they appear. A phrase appears only

once in the phrase list, even if it is used in many different messages.

Several hundred different messages, and the coding required to select

them and to transmit them to the output routine, all take slightly more

than 500 words of core storage. The parameter word also transmits a

severity code 0, 1, 2 or 3. Most messages are only warnings. Execution

is deleted only for serious errors whose severity code is 3.

Error messages produced during the compilation appear in the listing

of the source language program. An error message is printed immediately

after the source language statement that was on the last card read before

the error was detected.

2. RESULTS AND DISCUSSION

In this chapter we provide the results of an analysis of the

operation of the PUFFT system over several typical working days.

The analysis may be divided into three main sections. Firstly,

an overall measurement of the size of the programs and success in

execution; secondly, an analysis of the reasons for failure of the

unsuccessful programs; and finally, a survey of the frequency of use

of the various features of the Fortran language as evidenced from the

program listings.

There are two sets of results for sections (1) and (3) in our

analysis. One is based on statistics from all programs run during one

week of five working days, the other refers to jobs run during two

different days of two other weeks. Both studies are presented to

provide some measure of the consistency of the results.

2.1 Execution Analysis

The distribution of program size is given in Fig. 1. The number

of jobs in each storage requirement category is shown as a histogram.

From this we conclude that relatively very small jobs are much

more frequent than jobs requiring more than eight thousand words of

storage. ABout 60% of the jobs take less than 4K, and about 90% of

jobs take less than 8K of storage. This implies that in a college where

student instruction represented the main part of the computer use, a very

high proportion of the work load could be processed by a computer with

8K words of 36 bits storage, not including the system. In fact, out of

1047 jobs analysed within a week, most jobs (339) take less than 1000

words.

Table I gives details of successful and unsuccessful programs. Out

of 1047 jobs examined, 48% were successfully executed although 80% of

the jobs went into execution. About 32% of the jobs which went into

execution were terminated either because of execution errors, or because

of excess output (there is an automatic limit to the number of lines

which can be printed out). Only 20% of the jobs were rejected during

compilation. This justifies the PUFFT system in containing a richer

vocabulary of warning messages than error messages indicating failure.

11
MI
. 	I 	I 	I 	 Jai 	li.

lip
 11 	.,•

ill MI li li Iii WI 1 I 	 iiiiiiiiiill iii 	11 I 11111 Iii ilil III! MIK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIILE
11411111 11

lib 1111111111111 111
MEW Win INIMMEMMEMMIMMEMMEMEMMEMMEMEMMIMMEMOMMEMMEMOMMEMOMMINIMMEMI

1

MIME dip Immummommummmummommommimmlimmummommommommummimmum mom m mommommommommommummummu lummuummummommommilimmum MIME rEA MORMEMMOMMEMMEMOMMIMMEMMEMINIMMEMOMMOMMMEMEMEMMEMMEMMEMMEMM
00 111111 PO 11

""' 000.11

iii'

1
1111106111 111114

/

P" 011111111111.111 snamodocapommmumminprimminnummummournimmenes iiillgi piiiiiiiiiiiiiiiidiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilibi
or".m "" ""imiiiiiIIIIIIIiiiiiiliilliiiiiiiilli

1111111611

111 111 111111111111111111111111111111111 	

1 Ilipia 11111111111 1111111 mil""mr.""""1"."111

111111011
111111/1411 111111/81d11 111111111/11111;11
11111611111110:11
milearaftliimillimmillimilimillimillommillimill
11111/11

111 MINIMOMMUMOM6MWOOMOMMOODOOMERMOMMMEMMEMMOMMIUMMEMMOMMIIMMEMERMEMMEME INIMMOMMUMMOMMOOOMOMMOROOMEMMOMMEMEMMEMMEMMEMEMEMMEMMEMMIUMMEMMEMEMEMEM OMMINNOMONOMMOOMMODOMEROMMEMMMOOMMIUMEMEMMEMMOMMOMMEMMEMEMOMMIMME MIIMIMINOMENOSOMMOOMOMURPMUMEMINEMORMEMMEMEMEMMOMMEMMEMMEMEMMERMMEMEM Inummusgssamelmessobalmill 1 ill it iiim III III
1.. palm0.1.0mmensmog.....4 mommusi..........m........................ MEMEMEMOM memonmemmummoomm rocimmandmmummommmosmommol IMMEMMINIMMEMMII MMEMONGOO mOMMEMOMMOMMOMMt kwROMMOMMIIIMMEEBORMMOOmmi'M MEMEMMIMIMMEMEM

11111111111111111111111111111111211111111311119111111111111111 MEMMOMMOMMOMOMMOMMUMMONOOMMOMEMMEE NAOMMODOMMOMI MOOLMffigrommadIMM IMIUMMISIDENOMMNIMMilinkainirallEIMMIANIErnallaffreOMMIGININERIONAMEllirmms

II

miummaamiloponamileillamplimpamouralo. moo • a

IIIIIMINIONI mIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIIIIII
EMEMEMEMEMMEMMEMMEME 	 MMEMEMENUMMEMEMMEMEMEMEMEMMENEMEMMEMMEMENNE

IIIIIIIIIIL

ig. :
'

B
le 	 ' 	 '' 	111111111111

_

1 	111111

About 23% of the jobs were terminated with execution error messages

and 9% with excess output. This is calculated from the total of error

messages of level 3.

Timing can be summarised as follows:

Average compile time per program 	- 	3.3 seconds

Average execution time per program 	- 	49 seconds (approximately)

TABLE I

Total time required for the
compilation of the jobs:

Total time taken for the
execution of the jobs:

57.55 minutes

853.258 	"

Percentage

Number of jobs: .1047

Number of jobs without listing: 27 2.57

Number of jobs went into
execution: 842 80.42

Number of jobs terminated by
stop: 507 48.42

Number of jobs terminated: 670 63.99

Total number of error messages
including execution messages: 4132

Various types of execution
statements: 2019 48.86

Errors of level 0: 2187 52.93

Errors of level 1: 76 1.84

Errors of level 2: 652 15.78

Errors of level 3: 1217 29.45

- 10 -

2.2 Error Analysis

In a university, a large portion of the users of a computing facility

are students learning programming and graduate students or research investi-

gators who are not full-time programmers, but are faced with the need of

using the computer as an educucational or research tool. For these people

the concern of finding and correcting errors in their programs as quickly

as possible outweighs the need for efficient object code and sophisticated

programming features. For this purpose the PUFFT system gives a satisfac-

tory service. However, the diagnostic messages are not fully documented

and it seems that a teacher would need details of the relative frequencies

of errors if he is to help his students to correct their mistakes. From a

knowledge of the errors he is able to assess the relative importance of

statements in Fortran in as much as they give rise to errors and he can

concentrate his teaching on eliminating these errors as far as possible.

The error counts in the compiler performance are distributed into the

following categories:

(i) Compilation time errors associated with

(a) statement format or sequence

(b) subscripts

(c) arithmetic expressions

(d) FORMAT statements

(e) I/O statements

(f) reference and definition of entities

(g) statement format punctuation

(h) identifiers

(i) DO statements

(j) GOTO and IF statements

(k) storage allocation

(1) system control, exceeding time limits and others.

(ii) Execution time errors associated with

(a) arithmetic faults

(b) computed GOTO operations

(c) •I/O operations

(d) reference and definition of entities

(e) library function parameters

(f) subprogram references

(g) limit controls

The results are given in table II. This includes both compilation

and execution errors. 5.48% of messages are produced during execution

in a total of 1693 reported errors. The remainder occur during

compilation.

TABLE II

Distribution of compile time errors (per cent of total number of
compilation errors):

Arithmetic assignment: 	 1.81

Statement format and sequence: 	1.95

Identifiers: 	 2.50

General Punctuation: 	 0.63

Reference and definition: 	 66.84

FORMAT statements: 	 2.06

DO statements: 	 0.12

I/O statements: 	 0.06

System errors: 	 7.94

Storage allocation: 	 7.06

Type errors: 	 8.12

All others (including subscripts): 	0.81

Distribution of execution time errors (per cent of total number of
execution errors):

I/O operations:

Reference and definitions:

Arithmetic faults:

23.65

25.75

50.60

From tables III and VII we see that 60 or approximately 17% of the total

of 352 jobs contain execution errors and 21% have compilation errors. The

number of compilation errors seems to be rather high from this sample survey.

They average about 21.5 per program. Most of the compilation errors are

reported as "illegal BCD characters" and "inconsistent equivalence of

variable". "Illegal BCD character" might arise from several basic mistakes.

- 12 -

but this sample has been completely biased by the existence of one

particular program with over 300 mistakes of this type, arising from

the use of the wrong punching code on the card punch used.

Regarding "inconsistent equivalence of variable" which has occured

the greatest number of times in our survey, it seems likely that it

arises mainly from overflow in the various program and data areas which

are not directly under the control of the user programmer. Other

reasons include illegal common statements or incorrect formatting of an

EQUIVALENCE statement or DATA statement. However, the specification of

the cause of this particular error message seems outside the purpose of

the current work.

Other errors which are seen more frequently in our analysis are:

* "statement type error", due to incorrect specification of the type
of variable (REAL or INTEGER)

* array not defined in DIMENSION or COMMON statement

* undefined statement number, subroutine or variable (this error is
self-explanatory)

* error in FORMAT at 	

* mixed type operation, - which is caused due to mixing up of REALS
and INTEGERS in an expression

* illegal card below, - mainly caused due to the incorrect or extra
system card

* check use of array

* number required, statement

* statement cannot be reached

Most of these errors are due to the transposition of cards by careless

handling. Surprisingly, there are very few punching errors. (We are not

including "illegal BCD character" under this classification as explained

already). There are some instances of illegal sequencing of statements,a

few cases of missing job cards, and main program defined twice, statement

number used twice have also been noticed.

- 13-

Among the execution errors the commonest are arithmetic faults due

to underflow or overflow, illegal subscripts, and encountering the end

of the data file unexpectedly. These mistakes do not imply a lack of

understanding in the use of program statements, but rather carelessness

in the specification of certain numeric values in the program.

- 14 -

TABLE III

ERROR 'STATEMENTS' and their frequency

Level Statement 	 Frequency Percentage

	

3 ILLEGAL PUNCTUATION - EXECUTION DELETED 	9 	0.53

3 	ILLEGAL REAL CONSTANT - EXECUTION DELETED 	4 	0.24

3 	ILLEGAL SUBSCRIPT AT 	 - EXECUTION
TERMINATED 	 24 	1.42

2 	ILLEGAL STATEMENT NUMBER - ERROR IGNORED 	6 	0.35

2 	ILLEGAL SEQUENCING OF STATEMENT - STATEMENT
IGNORED 	 22 	1.30

3 	ILLEGAL USE OF BCD CHARACTER - EXECUTION
DELETED 	 368 	21.74

3 	ILLEGAL USE OF FUNCTION NAME - EXECUTION
DELETED 	 2 	0.12

3 	ILLEGAL USE OF PERIOD - EXECUTION DELETED 	1 	0.06

2 	ILLEGAL CARD BELOW IGNORED 	105 	6.20 ,

3 	ILLEGAL USE OF LOGICAL UNIT 00006 -
EXECUTION TERMINATED

1 	ILLEGAL COMMA IGNORED - WARNING ONLY

3 	ILLEGAL ARRAY NAME 	 - EXECUTION
DELETED

3 	ILLEGAL OPERATOR - EXECUTION DELETED

0 	0.00
0.06

0.35

0.35

3 	ILLEGAL INTEGER VARIABLE OR CONSTANT -
EXECUTION DELETED

3 	ILLEGAL END OF STATEMENT - EXECUTION DELETED 	1

3 	ILLEGAL VARIABLE NAME - EXECUTION DELETED
	

2

3 	ILLEGAL NUMBER OF SUBSCRIPT FORMAT - EXECUTION
DELETED 	 1 	0.06

3 	INCONSISTENT EQUIVALENCE OF VARIABLE -
EXECUTION DELETED 	 655 	38.69

3 	INDEX AND LIST LENGTH INCONSISTENT - EXECUTION
DELETED 	 1 	0.06

2 	STATEMENT NUMBER REQUIRED - STATEMENT CANNOT
BE REACHED - WARNING ONLY 	23 	1.36

3 	STATEMENT NUMBER ... USED TWICE - EXECUTION
DELETED 	 10 	0.59

3 	STATEMENT TYPE ERROR - STATEMENT IGNORED -
EXECUTION DELETED 	 120 	7.09

3 	SYSTEM ERROR AT OCTAL 	 - EXECUTION
DELETED 	 13 	0.77

3 	PARENTHESIS ERROR - EXECUTION DELETED 	4 	0.24

0.35

0.06

0.12

- 15 -

TABLE III cont.

Level Statethent

3 	PARITY ERROR ON UNIT 00005 - EXECUTION DELETED

3 	PROGRAM OR ARRAY TOO LONG 	- EXECUTION DELETED

3 	PUNCTUATION ERROR - EXECUTION DELETED

0 	OVERFLOW AT 	 - WARNING OUTPUT FIVE TIMES
ONLY

Frequency

2

1

1

20

Percentage

0.12

0.06

0.06

1.29

2 MISSING OR ILLEGAL JOB CARD 7 0.41

3 MIXED TYPE OPERATION - EXECUTION DELETED 23 1.36

3 MAIN PROGRAM MISSING - EXECUTION DELETED 1 0.06

2 MAIN PROGRAM DEFINED TWICE - FIRST MAIN PROGRAM
USED 4 0.24

3 ARRAY 	 NOT DEFINED 	- EXECUTION DELETED 34 2.01

3 ARGUMENT ILLEGAL IN EQUIVALENCE STATEMENT -
EXECUTION DELETED 1 0.06

3 AT OCTAL 	 , ... USED - UNDEFINED 	SUBROUTINE
OR 	VARIABLE 	OR STATEMENT NUMBER -
EXECUTION DELETED 34 2.01

3 VARIABLE 	 USED AS FUNCTION - EXECUTION
DELETED 6 0.35

3 VARIABLE OR CONSTANT TOO LONG - EXECUTION
DELETED 3 0.18

3 HOLLERITH COUNT TOO LONG - EXECUTION DELETED 1 0.06

0 UNDERFLOW AT 	 AC AND MQ - WARNING OUTPUT
FIVE TIMES ONLY 27 1.59

2 END CARD MISSING - CALL EXIT USED - WARNING
ONLY 3 0.18

2 EOF ERROR - CALL EXIT USED - WARNING ONLY 2 0.12

0 EOF READ ON UNIT 00005 - EXECUTION TERMINATED 19 1.12

3 ERROR IN FORMAT AT ... - EXECUTION DELETED 32 1.89

3 NESTED DO'S OVERLAP - EXECUTION DELETED 2 0.12

1 CHECK USE OF ARRAY 	 - WARNING ONLY 72 4.25

3 CONSTANT REQUIRED FOR DATA 0 0.00

1 WRITE MISSPELLED - WARNING ONLY 1 0.06

3 BCD OUTPUT RECORD TOO LONG - ... AT OCTAL ...
EXECUTION TERMINATED 1 0.06

2• 	 DIMENSIONED TWICE - ERROR IGNORED 6 0.35

1693 100.00

-16-

2.3 Fortran (Frequency of Statements) Usage Analysis

We have analysed 1047 jobs to determine the frequency of use of

Fortran statements. Slight inaccuracies are introduced due to the use

of the UNLIST facility on 27 programs. The system statements for these

27 jobs are included, although the• corresponding Fortran statements are

not available on the output tape.

TABLE IV

Analysis by card type

Total cards analysed:
(these included system cards,
blank cards, etc)

150,934

Number Percentage

System cards: 3,225 2.14

Fortran cards: 146,967 97.37

Blank cards: 742 0.49

150,934 100.00

Fortran cards can further be classified as:-

Fortran statements: 141,672 96.40

Continuation statements: 5,295 3.60

146,967 100.00

Fortran statements can be classified as:

Program statements: 124,097 87.59

Comment statements: 17,575 12.41

141,672 100.00

From table IV we can see that an average number of statements per

program is about 144.

- 17 -

We now examine the distribution of various Fortran statements

from table V. In the analysis the statements like ENDFILE, REWIND,

BACKSPACE, PAUSE are not mentioned because out of the 1047 jobs, not

even a single job contains them. Even the informatted READ statement

has not been detected. Among the statements, arithmetic assignment

dominates, followed by a DO statement. It should be noted that the

various control statements like DO, GOTO, IF, CALL, RETURN are

frequently used and they are about 267 of the total statements. The

statements FUNCTION, COMPLEX, EQUIVALENCE, ENTRY, BLOCK DATA, EXTERNAL,

LOGICAL, NAMELIST, and PRINT were very little used.

This analysis has interesting implications for Fortran teachers.

It seems clear that in the early stages, many instruction types can be

omitted entirely from the instruction program in favour of increased

concentration on assignment and control of the simplest kind. Although

similar measurements on more experienced user's programs indicate a

similar neglect of many types of instruction, it should be pointed out

that we cannot assume that more experienced users do not use the more

unusual parts of a programming language from choice. It may be that they

remain ignorant of the potential advantages of the more advanced facilities

due to poor or non-existent training.

Table V, which follows, shows the number of statements of each type

found from the 1020 user's programs and their percentage proportion:

- 18 -

TABLE V

Frequency of Fortran Statements

Statement Numbers , 	Percentage

Arithmetic Assignment 55,841 45.00

DO 12,360 9.96

WRITE 5,787 4.66

GOTO 4,562 3.68

FORMAT 7,397 5.96

FUNCTION 31 0.02

IFC 8,205 6.61

INTEGER 275 0.22

RETURN 2,466 1.99

REAL 409 0.33

READ(5, 1,384 1.12

READ 0 0.00

CONTINUE 8,238 6.64

COMMON 2,295 1.85

COMPLEX 61 r 	0.05

CALL 5,154 4.15

END 3,079 2.48

EQUIVALENCE 39 0.03

EXTERNAL 86 0.07

ENTRY 63 0.05

DIMENSION 2,680 2.16

DATA 427 0.34

DOUBLE PRECISION 278 0.22

SUBROUTINE 2,004 1.61

STOP 917 0.74

BLOCK DATA 17 0.01

LOGICAL 11 0.01

NAMELIST 30 0.02

PRINT 1 0.00

124,097 100.00

-19-

2.4 Further Analysis

As a back-up to the detailed analysis for the system performance

and for statement frequency, and also data to obtain more information

on the various types of errors made by the PUFFT users, a further 352

complete programs have been analysed. The results are displayed in

table VI.

There is surprisingly a similar situation regarding the core manage-

ment. This situation agrees with the previous one, that most of the jobs

(about 90%) lie between 0 - 8K words, and the maximum number of jobs

occupy core below 1000 words of core store. (See table VI.)

From table VII we can see that the execution time is less than the

previous analysis. This could be explained by the fact that there are

a few compilation errors more than before. Regarding the execution per-

centage it is comparable with the previous analysis. Here the successful

jobs are 50%., 11.9% of jobs went into execution but were terminated because

of the excess output. Approximately 17% contain execution errors and 21%

compilation errors. The total number of compilation errors are abnormal in

this. They average about 21.5 per program.

It has already been shown that out of the total number of 352 jobs,

22 jobs are without listings. In this case the total number of cards

analysed, including the system cards and blank cards, amounts to 26,503.

Out of them

Number Percentage

System cards: 842 3.18

Fortran cards: 25,585 96.53

Blank cards: 76 0.29

26,503 100.00

In Fortran cards there are -

Fortran statements: 24,543 95.93

Continuation statements: 1,042 4.07

25, 585 100.00

-20-

Among the Fortran statements there are -

Program statements: 20,971 85.45

Comment statements: 3,572 14.55.

.24,543 100.00

It should be noticed here that the average number of statements per

program is equal to 78.

The various other program statements are further classified in

table VIII. From this table it could be observed that the percentage of

arithmetic assignment statements is about 3.5% higher than the previous

analysis and this could be the reason for the increase in the compilation

time compared to the previous one.

TABLE VI

Core Store Management

CORE IN K
(K = 1000 words)

Number of
Jobs

Percentage

0 - 	K 126 35.80

K 2K 48 13.64

2K - 	3K 39 11.08

3K - 	4K 19 5.40

4K - 	5K 44 12.50

5K - 	6K 11 3.13

6K - 	7K 10 2.84

7K 8K 21 5.96

8K - 	9K 21 5.96

9K 10K 5 1.42

10K - 	11K 2 0.57

11K 12K 5 1.42

12K - 	13K 1 0.28

352 100.00

- 21 -

Table VII gives a summary of performance of record data samples

for 2 days of PUFFT runs in September 1970.

TABLE VII

Overall System Statistics - Second Batch

Time required for compilation of 352 jobs:

execution " 352 "

Average compilation time per program:

29.462 minutes

323.530 "

5 	seconds
It execution " " 	It 	II

Total jobs:

Number

55.1

Percentage

352

Jobs without listing: 22 6.22

Jobs went into execution: 278 78.98

Jobs terminated by stop: 176 50.00

Jobs terminated: 218 61.93

Total error messages: 2,425

Total execution messages: 672 27.71

Subprograms compiled from DISK: 60 2.47

Errors of level 0: 756 31.18

Errors of level 1: 74 3.05

Errors of level 2: 178 7.34

Errors of level 3: 1,417 58.43

Programs with compilation errors: 74 21.02

Average number of compilation errors
per program: 21,62

- 22 -

Table VIII gives the frequency of the various Fortran features for

the second survey.

TABLE VIII

Fortran Statement Analysis - 	Second Batch

Percentage Statement Number

Arithmetic Assignment: 10,203 48.65
DO: 1,974 9.41
WRITE: 1,392 6.64
GOTO: 754 3.60
FORMAT: 1,597 7.62
FUNCTION: 5 0.02
IF(: 1,250 5.96
INTEGER: 22 0.10

RETURN: 185 0.88

REAL: 84 0.40

READ(5, 	: 484 2.31

READ(: 2 0.01

CONTINUE: 1,031 4.92

COMMON: 197 0.94

COMPLEX: 18 0.08

CALL: 529 2.55

END: 388 1.85

EQUIVALENCE: 5 0.02

EXTERNAL: 23 0.11

ENTRY: 0 0.00

DIMENSION: 335 1.60

DATA: 97 0.46

DOUBLE PRECISION: 30 0.14

SUBROUTINE: 194 0.93

STOP: 162 0.77

BLOCK DATA: 3 0.01

LOGICAL: 6 0.03

NAME LIST: 1 0.00

PRINT: , 	0 0.00

20,971 100.00

-23-

2.5 Fortran Course Survey

In the previous sections we have surveyed the performance of the

PUFFT system used by various students and research workers who are

moderately experienced in writing programs. In this section our object

is to acquaint ourselves with the performance of students who are learning

to program.

Tables IX to XIII present information from the performance records

collected from student programs submitted for the Fortran course given

by the Imperial College Computer Unit from September 28th to October 2nd.

This course was an introductory programming course with an enrolment of

131 students. One observation which might be of interest in this summary

is the distribution of various error messages and the various Fortran

statements.

The distribution of program size is given in table IX. The number

of jobs in each storage requirement category is shown. 471 jobs out of

478 occupied store between 0 to 1000 words of storage. As expected the

execution time is much less than the compile time, since the course is

introductory.

Regarding success and failure ratios, it could be concluded from

table X that about 59% went into execution and out them 49% were success-

ful. About 8% of the jobs went into execution but they were terminated

because of time trap (there is an automatic limit for the time that a

program can take). This might have been caused by permanent looping. The

possibility of excess output does not arise here since the examples set

for the programming course do not take many lines of output. About 1.4%

contain execution errors and 41% compilation errors. Surprisingly, the

average compilation errors per program are not many, about 3. The average

number of statements per program is about 29.

The position of the various Fortran statements is shown in tables XI

and XII. From these it can be observed that the arithmetic assignment

statements frequency is about 3% less than the previous surveys. The next

statements which are in commanding position are FORMAT and WRITE. Even the

READ statement is frequently used. Altogether the I/O statements are about

21% and hence we can safely emphasize that proper care should be taken in

teaching the I/O statements. This is particularly relevant since 23.5% of

-24-

errors are due to incorrect FORMAT statements (see table XIII).

Most of the errors that have been committed are compilation errors.

Most frequent are:

• error in Format at ...

• mixed type operation ...

• at octal ... , ... used - undefined subroutines or variable or statement

number

• statement number required

• statement type error

Errors due to wrong format specification have been observed as the

most frequent. It would be interesting to know how many times this error

has been caused due to the wrong specification of H-format, but this is

not available from the analysis. There are few spelling mistakes and

these are not of a serious nature, since they produce only warning messages.

But the arithmetic faults and type mistakes are worth noting carefully

since they cause termination of the program.

A shortcoming of the performance reporting system is that the present

procedures for submitting runs do not collect and retain enough information

to trace the history of a student's trial runs for a particular problem

assignment. Although such information would be extremely valuable, obtain-

ing it would present the impractical requirement that each student accurately

reports details of each of his runs, such as assignment number, trial number,

and purpose of trial.

TABLE IX

Core Store Management

Core in K
	

Number of Jobs 	Percentage

O - K 	471 	 98.54

K - 2K 	 7 	 1.46

Time:

Average compile time per program:
	

1.1 seconds

Average execution time per program:
	

0.5 seconds

-25 -

TABLE X

Total time required for, the
compilation of the jobs:

Total time taken for the
execution of the jobs:

8.82 minutes

3.53

Percentage..

Number of jobs: 478

Number of jobs without listing: 0

Number of jobs went into
execution: 280 58.57

Number of jobs terminated by
stop: 234 48.95

Number of jobs terminated: 273 57.11

Total number of error messages
including execution messages: 2232

Various execution statements: 787 35.26

Errors of level 0: 816 36.56

Errors of level 1: 2.86

Errors of level 2: 350 15.68

Errors of level 3: 1002 44.90

The total number of statements per program is approximately 29.

-26-

TABLE XI

Total number of cards analysed: 	13,964

Number Percentage

System cards: 1,584 11.35

Fortran cards: 12,377 88.63

Blank cards: 3 0.02

13,964 100.00

Fortran cards can further be classified as:

Fortran statements: 12,188 98.48

Continuation statements: 189 1.52

12,377 100.00

Fortran statements can be classified as:

Program statements: 11,286 92.60

Comment statements: 902 7.40

-27 -

TABLE XII

Number of statements of each type found from 478 user's programs

Statement Number Percentage

Arithmetic assignment: 5082 45.03

DO: 72 0.63

WRITE: 1294 11.46

GOTO: 258 2.29

FORMAT: 1537 13.62

FUNCTION:

IF(: 485 4.29

INTEGER: 3 0.03

RETURN: 141 1.24

REAL: 6 0.05

READ(5, : 664 5.89

FED:

CONTINUE: 55 0.49

COMMON: 272 2.41

COMPLEX:

CALL: 273 2.41

END: 418 3.71

EQUIVALENCE:

EXTERNAL:

ENTRY:

DIMENSION: 280 2.48

DATA:

DOUBLE PRECISION:

SUBROUTINE: 183 1.62

STOP: 249 2.22

BLOCK DATA: 111,

LOGICAL:

NAMELIST:

PRINT:

OTHERS: 14 	• 0.13

-28-

TABLE XIII

Various error statements, their frequency and percentage

Level Statement 	 Frequency Percentage

3 	ILLEGAL USE OF BCD CHARACTER -
EXECUTION DELETED
	 0 	0.00

3 	ILLEGAL USE OF LOGICAL UNIT 00006 -
EXECUTION DELETED
	 0.00

3 	ILLEGAL USE OF BCD CONSTANT
EXECUTION DELETED 	 0 	0.00

3 	ILLEGAL USE OF LOGICAL UNIT 00005 	3 	0.21
EXECUTION DELETED

3 	ILLEGAL USE OF PERIOD - EXECUTION
DELETED 	 6 	0.42

3 	ILLEGAL USE OF FUNCTION NAME - EXECUTION
DELETED
	 0 	0.00

3 	ILLEGAL USE OF LOGICAL OPERATION - EXECUTION
DELETED 	 2

	
0.13

3 	ILLEGAL BCD CHARACTER - EXECUTION DELETED 	17
	

1.18

2 	ILLEGAL CARD BELOW IGNORED 	64
	

4.43

1 	ILLEGAL COMMA IGNORED - WARNING.ONLY 	2
	

0.13

3 	ILLEGAL CHARACTER IN DATA - AT OCTAL ...
EXECUTION DELETED
	

0.63

3 	ILLEGAL SUBSCRIPT AT ... - EXECUTION
TERMINATED 	 9 	0.63

3 	ILLEGAL FUNCTION OR SUBROUTINE NAME -
EXECUTION DELETED 	 1 	0.07

3 	ILLEGAL NUMBER OF SUBSCRIPT FOR ...
EXECUTION DELETED 	 1

	
0.07

2 	ILLEGAL SEQUENCING OF STATEMENT - ERROR
IGNORED 	' 	24 	1.66

2 	ILLEGAL STATEMENT NUMBER - ERROR IGNORED 	9 	0.63

3 	ILLEGAL PUNCTUATION - EXECUTION DELETED 	15 	1.04

3 	ILLEGAL REAL CONSTANT - " 	It 	24 	1.66

3 	ILLEGAL VARIABLE NAME - " 	It 	0 	0.00

3 	ILLEGAL ARRAY NAME .. - " 	IT 	7 	0.48

3 	ILLEGAL OPERATOR - 	il 	II 	18 	1.26

3 	ILLEGAL END OF STATEMENT - 	il 	1 	0.07

3 	ILLEGAL INTEGER VARIABLE OR CONSTANT -
EXECUTION DELETED

-29 -

Level

3

TABLE XIII cont.

Frequency Percentage Statement

ILLEGAL NUMBER OF SUBSCRIPT FORMAT -
EXECUTION DELETED 0 0.00

3 INCONSISTENT EQUIVALENCE OF VARIABLE -
EXECUTION DELETED 0 0.00

3 INDEX AND LIST LENGTH INCONSISTENT -
EXECUTION DELETED 0 0.00

3 INTEGER CONSTANT SUBSCRIPT REQUIRED AT ..
- EXECUTION DELETED 8 0.56

'3 ERROR IN FORMAT AT ... - EXECUTION DELETED 340 23.54

0 EOF READ IN UNIT 00005 - 	" 	II 25 1.74

2 EOF ERROR - CALL EXIT USED - WARNING ONLY 6 0.42

2 END CARD MISSING - CALL EXIT USED 	" 22 	',. 1.52

1 END FILE MIS-SPELLED - WARNING ONLY 4 0.29

3 PARENTHESIS ERROR - EXECUTION DELETED 42 2.91

3 PARITY ERROR ON UNIT 00005 - 	" 0 0.00

3 PROGRAM OR ARRAY TOO LONG - 	It 0 0.00

3 PUNCTUATION ERROR - 	ini 1 0.07

1 PAUSE MIS-SPELLED - WARNING ONLY 2 0.13

2 STATEMENT NUMBER REQUIRED - STATEMENT
CANNOT BE REACHED - WARNING ONLY 96 6.65

3 STATEMENT TYPE ERROR - EXECUTION DELETED 90 6.22

3 SYSTEM ERROR AT OCTAL .. - 	" 	II 10 0.70

3 STATEMENT NUMBER ...USED TWICE - 	u 15 1.04

3 STATEMENT NOT COMPLETE - 	II 7 0.48

2 SUBROUTINE ... 	DEFINED TWICE - 1 0.07

3 MIXED TYPE OPERATION - EXECUTION DELETED 110 7.61

2 MISSING OR ILLEGAL JOB CARD 77 5.32

3 MAIN PROGRAM MISSING - EXECUTION DELETED 1 0.07

2 MAIN PROGRAM DEFINED TWICE - FIRST MAIN
PROGRAM USED 24 1.66

0 UNDERFLOW AT ... AC and MQ - WARNING
OUTPUT FIVE TIMES ONLY 7 0.48

3 VARIABLE OR CONSTANT TOO LONG - EXECUTION
DELETED 3 0.21

3 VARIABLE USED ... AS FUNCTION - 	" 29 2.00

3 VARIABLE ... USED AS SUBROUTINE - " 2 0.13

0 OVERFLOW AT ... - WARNING OUTPUT FIVE TIMES
ONLY 	. 0 0.00

3 NESTED DO'S OVERLAP - EXECUTION DELETED 0 0.00

- 30 -

Levels

TABLE XIII cont.

Frequency Percentage Statement

1 CHECK USE OF ARRAY - WARNING ONLY 36 2.49

3 CONSTANT REQUIRED FOR DATA - EXECUTION
DELETED 0 0.00

1 WRITE MIS-SPELLED - WARNING ONLY 1 0.07

1 FORMAT MIS-SPELLED - 	It 	It 2 0.13

1 DIMENSION MIS-SPELLED " 	If 2 0.13

3 AT OCTAL ... , 	.. USED - UNDEFINED
(SUBROUTINE) OR (VARIABLE) OR STATEMENT
NUMBER - EXECUTION DELETED 118 8.16

3 ARRAY ... USED AS SUBROUTINE - EXECUTION
DELETED 1 0.07

3 ARRAY ... NOT DEFINED - EXECUTION DELETED 58 4.01

3 HOLLERITH COUNT TOO LONG - 	" 11 0.76

3 BCD OUTPUT RECORD TOO LONG - ... AT OCTAL 7
EXECUTION TERMINATED 1 0.07

2 FUNCTION ... DEFINED TWICE - ERROR
IGNORED 5 0.34

... DIMENSIONED TWICE - ERROR IGNORED 46 3.18

... MUST BE VARIABLE NAME - EXECUTION
DELETED 1 0.07

•
. DEFINED. IN COMMON TWICE - FIRST USED 22 1.52:

1445 100.00

-31-

3. DESCRIPTION OF THE ANALYSER PROGRAM

The input to the analysing program is the system output tape

produced by PUFFT. It is therefore necessary to process a sequence

of records, each one representing one line of the printed output which

is normally returned to the user. Fig. 2 gives a typical sequence of

output records. In fact the physical record on tape is of variable

length and does not necessarily correspond to the logical record to

be processed. A simple buffering system overcomes this. The reading

of the system tape naturally must be carried out by an assenbly code

routine. A description of this routine, called VARRED, is given in

section 3.6. After a record has been transferred to main store, its

tape is recognised and relevant action taken as follows:

(a) $JOB This card marks the start of each job. So a job

count is made and also checked for $UNLIST cards in order to separate

out the number of jobs without listings.

(b) Other system records These are detached as starting with a

$ character and a single count of occurance is encountered.

(c) Error records These are recognised by the pattern

'**n** at the beginning, where each n is an integer between 0 - 3.

According to the value of n the level of the error is known.

(d) Fortran statements Details of this analysis is discussed

in section 3.2. Section 3.1 gives the description of tree.

3.1 Description of Tree

Usually the process of syntax analysis of any high level language

involves the determination of the structure of a statement by using a

processing algorithm which expresses the total structure of all possible

statements in the language. In fact this structure could be expressed

more or less explicitly as a tree structure. This should be provided

once for all as part of the algorithm and should also be unaltered in

the process of analysis so every statement is analysed as if it were the

first ever. The initial structure of the tree provided for the analysing

algorithm expresses the structure of all 'expected' language statements

Layout of the various types of record on the PUFFT output tape. Each record occupies 16 or 17 words.

1 	2
	

3
	

4
	

5
	

6
	

7
	

8
	

9
	

10
	11
	

12
	

13
	

14
	

15 	16
	

17
	

18

1 $JOB

$* NAMECARD

Jotuumber name PUFFT

Time

3.0
Output

500
lines

- A01802 Date 0

0

$EXECUTE, PUFFT 0

$IBJOB i

IMP. COL. PUFFT VERS date il,

Any Fortran statement would have this type of layout on the system output tape

DIMENSION 60321 0

lic*n** EXECUTION 4
***n** EXECUTION TERMINATED BY STOP AT OCTAL 62035 4

1 	TIME FOR JOB 0.27MINS Date A0180310020168 PUFFT 3.0 003000 0

3:5 LINES OUTPUT. 0

OCOMPILATION 0.0242MINS EXECUTION 0.2478MINS 3111DATA 5228PROGRAM i

FIG. 2.

-32-

and also all expected error statements too. The tree should also

carry a memory of the frequency of all statements. The general

principle is that the tree structure expressing the language and

error statements structure is no longer static, but dynamic. The

structure is provided initially anclis altered in many different

ways as a result of the continuing process of matching incoming

statements. With all the possible incoming statements it can be

seen that the tree will develop a complex and extensive structure.

The matching process may then become too time consuming to be

practical. There is thus a fundamental requirement for an automatic

restructuring process which aims continually to minimise the

complexity of the total matching process. This could be realised by

the use of a 'branch swopping' technique. The set of alternative

nodes at any point in the tree which represents the set of alternative

structures which might be present at a certain point in the input

statement, can be continually rearranged so that those most frequently

relevant are nearest to the root of the tree, and therefore are

reached more quickly.

When a node is transferred in this way, its attachments to lower

nodes must remain undisturbed. Based on this philosophy, the two

routines MTRPUT and TRSWOP have been written. (Refer to sections 3.3

and 3.4 for details).

These tree structures are produced and manipulated with the help

of the various Minislip routines. For details about the various character

handling routines and Minislip routines, refer to Appendix I and II.

3.2 Description of the Main Program

Before describing the main routine it is necessary to specify in

outline the function of the various subroutines called as follows:.

(1) SLIP routines (for details see Appendix I).

(2) MTRPUT routine which helps to form a tree whose various branches are

the various key words of the Fortran statements, such as READ, WRITE,

FORMAT, CALL, etc. and the key words of various possible error statements,

for example, ILLEGAL PUNCTUATION, STATEMENT NUMBER REQUIRED, etc. A

detailed description of this routine is given in the next section.

-33-

(3) TRSWOP routine. This subroutine does the job of matching the in-

coming statements against the key words in tree form and classifying

the various statements from the PUFFT output tape. Every time a state-

ment (key word) is recognised the count of the number of occurences of

the start is increment. If the key word corresponding to a particular

output statement is not matched then the "new" keyword is added to the

tree.

(4) TPRINT routine. This subroutine prints out the frequency of various

statements analysed from PUFFT output tape.

(5) VARRED. An IOCS routine helps to open the PUFFT output tape and

deblocks it. This mainly brings out the various statements on the PUFFT

output tape and stores them in the temporary buffers.

(6) BCDINT is a FUNCTION subprogram whose main job is to convert the BCD

integer characters into integers.

Initially, a collection of cells (about. 10,000) called the List of

Available Space (LAVS) are created with the help of a SLIP routine called

INITAS. The Fortran array A is declared at the beginning of the program

to provide enough space for all cells. Out of the LAVS a cell is detached

and it is addressed as a list header LSWOP. (This prints to the top of the

tree.) The various branches of the tree are the Fortran key words such as

READ, etc. In a similar way, a tree with the top accessed via LSWIP is

formed to represent the various possible error statements as its various

branches.

The correct magnetic tape unit for input is selected, and the program

now starts to read the records from the PUFFT tape, one at a time, into a

buffer, using the VARRED routine. The buffer is then tested for the various

types of record and action is taken as follows:

(1) A $JOB record. This indicates the beginning of a new job unless it

also contains ENDRUN, which will indicate the final card to be processed.

As each normal $J0B record is encountered, the count of the number of jobs

is incremented.

(2) A report from the system during compilation or execution. These are

recognised by the presence of the sequence **n** where n is 0, 1, 2 or 3.

An execution report will have EXECUTION, EXECUTION TERMINATED or EXECUTION

TERMINATED BY STOP. All others will be error messages with the level of

severity indicated by 0, 1, 2 or 3.

-34-

(3) Job timing. This is recognised by "TIME FOR JOB" and the relevant

time is recorded. This gives total time for compilation and execution.

(4) Separate compile and execute times. These occur in a separate record

recognised by the presence of "OCOMPILATION".

(5) Number of output lines. Recognised by "LINES OUTPUT".

The remaining part of the analysis program tests for the various

types of Fortran statement. For this purpose the record which has been

stored in the buffer with six characters to each word is unpacked to Al

format in an array called LINE. This is then tested in succession for

comments, continuation, and possible completely blank records. The state-

ments employing an equal sign but not DO statements are next discovered

and the relevant count is incremented. Finally, the rest of the Fortran

records are matched on the Fortran key word tree.

The main program is written in ASA Fortran. The subroutines which it

makes use of are described below. They also are written in Fortran except

as stated otherwise.

3.3 Subroutine MTRPUT

The purpose of this subroutine is to create a tree structure in which

each branch represents a permissible string of characters which will later

be matched against a PUFFT record. Two trees are created, one containing

the error statement, the other containing the standard Fortran key words.

The tree is built up from a sequence of data cards, each specifying a branch.

Each call of MTRPUT results in the addition of a new branch to the tree whose

root is specified in the call.

Part of the tree of Fortran key words produced by MTRPUT might be as

follows:

322
	

324
	

326
	

328
	

330

1 	I 324 1 1 0 326

-R E

1 0 1328

1
	

332 1 330

2 0 0

0

A

D

332
	

334

2
	

0 1 0

0

1
	

0 1 334

L

11 0 114

100 102

1 102 1

C A

110

1 0 112

0

108

2 0 0
5

118 120

118 1 0 120

N 6

104 106

1 0 106

L L

114

	6 1

116 112

1 I 0

0

0 1108 110 1104

-35-

The subroutine is written in Fortran with calls to the Minislip

routines for setting up the list structure.

3.4 Subroutine TRSWOP

The main purpose of this routine is to obtain the frequency of various

Fortran and error statements contained in the PUFFT record. The characters

of a statement from PUFFT output tape is being matched with the existing

tree created by MTRPUT. On finding a successful match the count of such

statements is made. In matching for a successful match, it swops the

various branches of the tree in order to minimise the complexity of the

total matching process.

Suppose before calling TRSWOP the number of READ statements have been

counted as 3, later, when it is called again to match the Fortran key word

READ, then the addition is done as follows:

322
	

324
	

326
	

328
	

330

11 	324

R

1.j 0 326

E

1 I 0 328

A

1 1332 330

D

2I 0 0

4

The branch swopping is carried out as follows: Suppose the part of

the tree containing Fortran key words CALL and COMMON is as given below:

, 	•
Later, on calling TRSWOP, it has to match with the input statement

COMMON, a Fortran key word, then it swops the whole branch COMMON by lowering

the branch ALL, a part of CALL.

If the input statement cannot be matched with any of the existing

branches of the tree, then an additional branch will be created by this

routine.

The subroutine is written in Fortran with calls to the Minislip routines

for setting up the list structure.

-36-

3.5 FUNCTION Subprogram BCDINT

Name: BCDINT.

Purpose: For picking up the numbers from the PUFFT output tape

whose characters are in BCD characters.

Example of use: Y = BCDINT (BCDNUM, NUMCHR).

Arguments: BCDNUM - BCD number to convert NUMCHR - Number of

characters to be converted.

Description: BCDINT is a FUNCTION subprogram and when it is used

it will return a value which is the binary integer equivalent of the

BCD number BCDNUM. The value is stored in Y. Any non-numeric characters

are treated as zeros, but blanks are ignored. (Note: Y and BCDINT must

be declared as same type, i.e. both real or both integer in the calling

program.)

Language: MAP

3.6 Subroutine VARRED

Name: VARRED

Purpose: For opening the PUFFT output tape and to deblock the

records.

Example of use: CALL VARRED (NTAPE, BUFF, NUMWRD, IEOF)..

Arguments: NTAPE - Logical tape unit number. BUFF - Buffer array

into which the words of the next Logical Record are placed. NUMWRD -

Number of words found in Logical Record is placed in it. If zero on calling

VARRED, the present Physical Record is truncated and the next Logical Record

is taken from the next Physical Record. IEOF - Address to which to transfer

on reading an end of file.

Description: On entering the VARRED, IOCS subroutine the parameters

are stored and NUMWRD is tested for zero, (if zero, the end of the present

Physical Record is forced). The Logical tape unit is converted to the

- 37 -

address of the File Control Block (FCB) and the file is tested for open,

(open if not). The value of the FCB is compared with the value the last

time the routine was called. If they are not equal a new Physical Record

is read into internal system buffers and its size contracted. This size

is tested for zero and another Physical Record is read if it is. Words

are now unpacked from the internal buffer into BUFF until either an end

of Logical Record character (072 at the end of a word) or the end of

Physical Record is encountered. The number of words found is stored in

NUMWRD and the return is made (after adjusting the number of words left

in the internal buffer).

Language: IOCS (MAP)

3.7 Subroutine TPRINT

This subroutine is written in Fortran with calls to the Minislip

routines for printing out the trees which were created by MTRPUT and

TRSWOP.

On calling this routine it starts printing out the branch of the tree

till it encounters the end of the branch. The value in the data word of the

end of branch is pointed out. It indicates the frequency of that particular

statement. Then it checks for the other branches of the tree and prints

out the whole tree.

-37a-

4. CONCLUSIONS AND FUTURE DEVELOPMENT OF THE METHODS

We feel that this type of analysis should prove of fundamental

importance to the designers of new computing systems and should also

indicate ways in which the user can be trained to make more effective

use of the system. The most pertinent aspect of this analysis is that

even an effective and efficient system like PUFFT can produce error

messages which are very ambiguous. For example, during the course of

the analysis we came across an error "inconsistent equivalence of

variable" which was observed more frequently than any other. Without

considerable research into the compiler it does not seem possible to

determine the meaning of this statement or to be certain of the user

program faults which give rise to it. The situation is similar for the

error statement: "* illegal use of BCD character". Both of these errors

in fact lead to an immediate deletion of execution and so the need for

further analysis is pressing.

Another particularly significant result is that the majority of

programs could perfectly well run on a system with more limited storage

and this could lead to a reconsideration of the type of machine necessary

for teaching purposes.

In conclusion, it appears to the author that what seems at first

sight to be a comparatively mundane job of analysis on data of limited

interest has yielded some surprising results which should be of consider-

able concern to systems designers. The work has also provided valuable

experience in comparatively complex data structures and analysis, and

valuable insight into methods of statement recognising. It is hoped that

the programming system presented here will be employed continually to

monitor the effectiveness of the PUFFT system.

-38-

APPENDIX I

Character Handling in Fortran

Although Fortran was designed. for numerical calculations, a great

deal of useful work can be carried out in this language in the field of

non-numeric data processing or text manipulation, in which the quantities

being processed are not integer or floating-point numbers, but strings of

characters. Areas in which Fortran has been found useful include informa-

tion retrieval, automatic documentation, the automatic generation of flow

charts and even the construction of compilers. In scientific calculations,

it is often necessary to produce graphs or contour maps on the line printer,

and here again Fortran can be employed.

The minimum unit of information manipulated directly in Fortran is

one machine word. If individual characters are to be processed separately,

then they canbe dealt with in two ways:

1) By arranging to store one character in a word. Since a character

requires 6 bits of a word in the IBM 7094 the rest of the bits must

be filled in with blank characters. This method involves using Al

format exclusively for input and output.

2) It is possible to fill the word with characters and have special

assembly code routines available for manipulating strings of characters

and for packing and unpacking words.

Character Handling routines in PUFFT and IBSYS

There are three routines available for manipulating strings of charac-

ters and for packing and unpacking words. Strings are stored in arrays,

,each word contains six alpha-numeric characters, except the last which may

contain fewer than six characters (which are stored left-adjusted). A string

may be read in as Hollerith information or may be compiled in data statement.

The character positions are referred to as being consecutively numbered

and each character is referred to by its position in the string.

CALL GET(S,I,T) : Get the Ith character from string S and place it in

T (left-adjusted). The last five characters of 'T are blanks. S is not

affected.

-39-

CALL PUT(S,I,T) : Put the left-most character of T into the Ith

position of string S. The remaining characters in string S are not

affected and T is not altered.

CALL KOMPAR(S,T,I) : Compare logically the contents of word S with

the contents of word T.

If C(S) are less than C(T), then I = -1

If C(S) are equal to C(T), then I = +0

If C(S) are greater than C(T), then I = +1

Example: Suppose there is a string of 14 characters, (ABCDEFGHIJKLMN)

set up in an array called PLACE. PLACE will have to have three words, so

DIMENSION PLACE (3).

The first word will contain ABCDEF

The second word will contain GHIJKL

The third word will contain MNbbbb 	= blank)

CALL GET (PLACE , 13 , TEST) will leave. TEST with: Mbbbbb.

Then,

CALL PUT (PLACE , 1 , TEST) will leave PLACE(1) with MBCDEF

If S contains ABCDEF and T contains ABCDEF, then CALL KOMPAR(S,T,I) will

put -1 in I.

When KOMPAR is used for comparing characters in a word, the values

actually compared are the binary representation of the characters in storage.

The 7094 code is given below. Notice that successive letters of the

alphabet are in ascending binary value, but BLANK is higher than A-R and

lower than S-Z. If blanks are to be ignored, then the required sorting

order is not simply on magnitude.

H

S
to

ra
ge

4 co1
F-1

c.)
co

-..1
an

‘..0
r-..

0

H

0

re)
-I

U

%.0
1/40

qc•

VD
%.0

1/40

,.0

N
.

N
.

0

N
.

N
.

0

C
h

a
ra

cter
---.

cn
EA

A

>

3

X

N

0

"
s-0

,-.1 RI
S

to
ra

ge
4.1

--1
N

01

....t
In

kr)

r--
0

H

0

rel
-.7

U
--t

-I-
-7

--.1-
--t

-4-
-I'

Ln
Ln

--T
in

Ln

0

C
h

a
ra

cter
t--)

1-4
Z

z

o

a
l

0
.

r:4
1

'ef)"
-3C

H

LI
S

to
ra

ge
4-1

r-.1
Cg

M

.....I'
Lt

•O

r--
0

•--L
0

re)
....1'

0
 C.1

c-4
N

N

cs1

N

N

N

M

re)
NI

01
ref

C
h

a
ra

cter
<4

co
c.)

A

4.1
rX4

CD
W

H

+

•
.
.

H

to
S

to
ra

ge
4-3

L--i
cNi

rel
..i•

Ln
%CI

I--
C.)

0

0

0

0

0

0

0

C
h

a
ra

cter

0

.--1
(NI

01
....t

Ln
,.o

r--
co

CA
o cd

v—i
on

+

•••

- 41 -

APPENDIX II

Minis lip Routines

SLIP (Symmetric List Processor) is a list processing system in which

each list cell carries both a forward and a backward link as well as alpha-

betic or numeric data. The fundamental information module with which SLIP

deals is a pair of consecutive words called a cell. Out of the 36 bits

contained in an IBM 7094 computer word the first word of the cell has an

identifier (ID) field of 6 bits length, the left link field (LNKL) is of

15 bits length, and the right link field (LNKR) is also of 15 bit length.

The second word of the cell is used for alphabetic or numeric data. The

cell as a whole is referenced by the address of its first word. There are

various SLIP routines available at Imperial College to handle lists and

trees. There are handouts prepared by Mr. E. B. James, and these are given

below.

LISTS and TREES in Fortran

The basic item of information is a cell, which occupies two consecutive

36-bit words.

The first word contains: A six-bit

DATA
	

identification field, ID, which can

take values between 0 and 64; Two

fifteen-bit address fields, LNKL and LNKR. Generally, the ID field denotes

what the cell is used for and LNKL and LNKR provide addresses to connect the

cell into the list or tree. The second word is used for alphabetical or

numeric data. The cell as a whole is referenced by the address of its first

word.

The following ten functions and subroutines, written as one MAP routine

with ten entry points called MCOPS perform basic operations on the components

of a cell.

The example will make use of the cell with contents as follows:

ID LNKL LNKR

Assume this cell is stored at locations 1544 and 1545.

Also that the Fortran variable NAME is stored at

location 1544.

17
	

392
	

68

ABCDEF

-42-

1. Function ID (NAME) obtains the values of the Identification field

2. LNKL (NAME) "
	

LNKL address

3. LNKR (NAME) "
	It n 	TI 	LNKR address

Examples: ID (NAME) = 17 , LNKL (NAME) = 392 , LNKR (NAME) = 68.

4. INHALT (N) obtains the contents of the machine location whose address

is the value of the Integer variable N.

5. CONT (N) is exactly the same as INHALT (N), but is a Real function.

Both are required to overcome the difficulty of unrequired type

changes in assignment statements.

Example: Let the Fortran variable N have the value 1544, that is, the

location is assigned to N contains the integer 1544. Then the

value of INHALT (N) is 	17 	392 	68 	, the value of

LNKR (INHALT (N)) is 68, the value of ID (INHALT (N)) is 17.

INHALT (N + 1) is the contents of the data word 1545 = ABCDEF.

6. MADOV (NAME). This obtains the machine address of the Fortran variable

NAME.

Example: The value of MADOV (NAME) is 1544. The previous six functions

have obtained values connected with a cell. The following four

routines, which can be called as subroutines or functions, store

values in various parts of a cell.

7. STRDIR (I, N). Stores value I in machine location occupied by variable

N.

EInale: CALL STRDIR (I, N). If I contains ABCDEF, N contains ABCDEF

after the call. If used as a Function the process described

takes place and also STRDIR (I, N) returns the value ABCDEF.

8. STRIND (I, L). Stores value I in the machine location addressed by

the contents of L.

Example: If L has value 1545 and I contains ABCDEF, then CALL STRIND (I, L)

puts ABCDEF into machine. location 1545. Its value when used as a

function is the value of I.

-43-

9. SETDIR (I, J, K, N) puts the values of Fortran integer variables

I, J, K into the ID, LNKL, and INKR fields of the machine location

occupied by Fortran variable N. If any of I, J, K have a negative

value, then the corresponding field is unaltered in N. If used as

a function, returned value is the new N.

Example: CALL SETDIR (I, J, K, N). If I = 17, J = 392, K = 68,

N is set to:

ID y LNICL1 LNKRI.

17 I 392 I 68

CALL SETDIR (-1, -1, -1, N) leaves N unaltered.

10. SETIND (I, J, K, L) has the same effect as SETDIR, but the values are

set into the machine location whose address is the value of Integer

variable L.

Example: If L contains 1544 and I, J, K are as in the previous example,

then CALL SETIND (I, J, K, L) sets the machine location 1544

to

All the variables in the previous routines can of course be replaced

with arithmetic expressions where appropriate.

Example: CALL SETIND (ID (NAME), LNKL (NAME), LNKR (NAME), NAME) does

nothing at all.

The following routines are written in Fortran IV and reference MCOPS:

1. ERROR(J): Writes error messages. Used only internally to the other

routines.

2. INITAS(A, N): A subroutine used at the start of a program to create a

collection of cells, called the List of Available Space, or LAYS. The

Fortran array A is declared at the beginning of a program, of sufficient

size to provide space for all cells to be created.

17 1 	392 68

3728 0

0

3732 0

0

8724 0 3726

AVSL (see over)

I
bottom

Location

3726 0

3727

3728 0,

3730 0

8724 0

• LAVS

0 0

0

top
0 I 3730

0

-44-

Example: INTEGER A(5000) followed by CALL INITAS(A,5000) will create a ___----
structure with 2500 cells (N/2, or (N-1)/2 if N is odd). If

A(1) is stored at 3726, then the structure will be as follows:

A special location AVSL is the pointer to LAVS and carries in its LNKR

the address of the first cell and in its LNKL the address of the last cell

on the list.

Example: In the list above, LNKR (AVSL) = 3726, LNKL (AVSL) = 8724.

If LNKR (AVSL) becomes zero, then there are no cells remaining in

LAVS.

2. NUCELL (L). Used as a function or subroutine, detaches a cell from the

list of available space. L and the function value are set to its address.

Example: CALL NUCELL (L) with the above LAVS will detach the first cell from

LAVS. LNKR (AVSL) becomes 3728 and L receives the value 3726.

3. RCELL (L). A subroutine only; attaches the cell whose address is in L

to the LAVS.

- 45 -

The following routines set up and manipulate symmetric lists, which

enable the structure to be traced in either direction. The LNKR in each

cell carries the address of the succeeding cell in that list, the LNKL

carries that of the preceding cell.

4. LIST (M) creates an 'empty' list ready for later use by detaching one

cell from LAVS and setting it up as a list 'header'. M (and the function

value if used as a function) are set to the address of the header cell.

When created, the header cell has its LNKL and LNKR both set to its own

address.

Example: CALL LIST (M) with LAVS as in original example. M becomes 3726.

LNKL and LNKR of cell 3726 are set to 3726.

Later, when cells are added to the new list, the LNKL and LNKR of the

header cell contain the address of the bottom cell and the top cell of the

list. The list is referred to via the Fortran name M.

5. LOCT (M). A function only, obtains the address of the header cell of

list M.

6. NAMTST (M). A logical function, has value TRUE if M is the name of a

list.

7. LISTMT (M). A logical function, has value TRUE if list M is empty.

8. NEWTOP (I, M). Inserts the value of I at the top of the list M. Used

as a function, its value is the address of the cell used to store the

value I.

9. NOKTOP (M). Removes the top cell from the list M, and returns it to the

LAVS. Used as a function, its value is the data item of the cell

removed.

10. NOKOFF (L). Removes the cell whose address is the value of L from its

surrounding list structure and returns it to LAVS. Used as a function,

its value is the data item of the cell deleted.

11. NOKBOT (M). As NOKTOP but removes the bottom cell in the list.

-46-

12. NXTRGT (A, L). Inserts a cell immediately below the cell whose

address is the value of L. Called "nextright" because LNKR is

used to point down the list, LNKL points up. Used as a function,

its value is the address of the cell inserted.

13. MTLIST (M). This removes all the cells on list M, leaving it empty,

that is, with only a header. Used as a function, its value is the

contents of Fortran variable M.

- 47 -

REFERENCES

1. Rosen, S., Spurgeon, R. A., Donnelly, J. K. - PUFFT - The Purdue
University Fast Fortran Translater. Comm. A.C.M., Vol. 8, P.661,
(1965).

2. Shantz, P. W., German, R. A., Mitchell, J. G., Shirley, R. S. K.,
Zarnke, C. R., - WATFOR - The University of Waterloo Fortran VI
Compiler. Comm. A.C.M., Vol. 10, P.41, (1967).

3. American StandatdsAssociation: Fortran Vs Basic Fortran - A program-
ming language for information processing in automatic data processing
systems. Comm. A.C.M., Vol 7, P.591, (1964)

4. American Standards Association: Appendixes to ASA Fortran
Comm. A.C.M., Vol. 8, P.287, (1965).

5. Leavenworth, B. M., Fortran VI as a syntax language. Comm, A.C.M.,
Vol. 7, P.72, (1964).

6. Weizenbaum, J., Symmetric List Processor, Comm. A.C.M., Vol. 6.,
P.524, (1963).

7. Pritsker, A. A., Kiviat, P. J. SIMULATION with GASP II - A Fortran
based simulation language. Prentice-Hall, (1969).

8. Healy, M. J. R., Bogert, B. P., Fortran Subroutines for time-series
analysis, Comm. A.C.M., Vol. 6, P.32, (1969).

9. Pyle, I. C., Character manipulation in Fortran, Comm. A.C.M., Vol. 5,
P.432, (1962).

10. Healy, M. J. R., Towards Fortran IV. Computer Journal, Vol. 11, P.169,
(1968).

11. Hendry, D. F., Samet, P. A., Towards Fortran IV., Part 2. Fortran
in the modern world, Computer Journal, Vol. 12, P.218, (1969).

12. Atlas Computing Service. University.of London, Fortran IV Manual,
(1967).

13. I.B.M. Corp. 7090/7090 IBSYS Operating System, Version 13, Fortran IV
Language. File No. 7090-25, Form C28-63903-3, (1966).

14. I.B.M. Corp. System /360 Fortran IV Language. File No. 5360-25,
Form C28-6515-4, (1967).

15. Control Data 6400/6500/6600 Computer System. Fortran Extended Ref.
Manual. Publication No. 6017 6600, (1967).

16. I.C.L. 1900 series Fortran Technical Publication No. TL 1167, (1966).

-48-

REFERENCES cont.

17. American Standard Fortran, U.S.A. Standards Institute. X3.9
March 7 (1966).

18. American Standard Basic Fortran, U.S.A. Standards Institute.
X3.10 March 7 (1966).

19. James, E. B., Principles of adaptive analysis. Computing Science
Research Report No. 20. Imperial College, London, (1970).

UATASMAS 13/U 77 777 "2777777 /
,LT,ICATA:jU1AS'J 3/02.5.o

DATA SMAS 14/0777777CCC000/ 	
bATA::.RMASJ 4/Li314- b4DUG00L)/-rf-.
DATA .SMAS;I:i/U)..i.CGD.DODO 7:7717 / _ 	

F(MAS'J 	
.

D000 3C. 	
DATA SMAS 16/U777777777777/

TARMASJ Di 05:1443 I4521637------

I I: I C I 	11{ 	iJLGK

S TAT Liii-NT 	IFN(Si

IN TEC; 	Es CD I NT..r. CARD (EC;) A (200.00).:tfi.LFF(120)fiLi -NEILIDY1-.11CA
L1MDNS1UNIKLAU(4)0WitIT.±0:011FORMT(o),IDATi4)

IMENSION ,.KURD (-8O).
DATA 1 RLAD//IiR 1h1; 'HA, it-i D /

.kiK I TE/.1t-IW 	Lill., 'HT 1_11-1E/
uATA 1Ful:11T/1 	1HU 1HR 	M 1HA 1HT/ 	

I EAT /J.HD, 1.HA 1HT
DATA SMASKI/U7777770UCOOD / 	

--_LA TA _S MAS KJ /OD 12.b4 0 COD
DA TA itOASKJ /U377777007777 /

	 UA A_-_:.RMASKI/UI4bitbi-100b454/ -::".
DATA SMAS 11/077Uu000U0UUU / 	

	

	U A A., 	AS J 1/Uil 1 Li 	UUUUU/ 	
DATA SMASI2/077777777C000/

U5343..4 62.2 COW)/ 	

bATA SMAS.17/U777777777777/
_,DATA . RMASJ 7/00 0234644 :t731 I 	
DATA S MAS 16/0 7:1 773 77.77777 /

	 DATA RMASJ 3/04.321 6:531464Sri
DATA SMAS 19/0uuo00077770o/ - .DATA RMASJ9/0000000227000V------

	

DATA Stlitcl./077777777GOOU/ 	 .

	

RMASL 1L62634647CGOu/ 	-._-__—.—_---
DATA-..AMASKI./U0W000077_7777 /

	 DATA'..AMASKJ
LATA iiMAS K I /00 0777 7 770UU0 	
DATA :1.it,IASKJ/CL10514,4,fuLi00/-
LATA C.MASK /000.7 7 7 7 777777 /
DATA.-_DMASKJI:OD 445-433162 P'=--;

• DATA 1\1 C/ 1i1D/ _ _ 	DATA --N DulJAL-41H--4--
DATA N_eLANK/IH /

--
DATA NOD/ 1111.)/ 	
UA NI

DATA R DAR U4611_

1 	F 	1-'01 AT (1H J.)
ULP-I H =i.)

	

10016U.34 	 -1) AT E.:0 9/ 22/.7
AIN 	- EFN 	SOURCE STATLMENT 	IFNCSJ

CALL A JL IP kuUFU 	TU C.KLATL A STRLC TURE_WITH 10000. ..cELL$ _PALLED_
C 	L IS 1 UP AVAI LADLE SP AC 	 - - 	 •-="

cALL iNITAS (A t .10LUU)
ACH FIRST &.L-LL FRUM L AVS, CALL: IT AS LSWOP (I .E C-CiLLECT- 46-0-14SS 	--

TUP UF TR LE
- 	CALL 	UC ELL (LS W UP) 	- - 	- - 	 - 	 - 	- - -

S tl THE. 1 DL.'I 1 I F IL AT I UN FIE L1 .1 LNKL_AND__LNKR___All DRESS_ OF__MAC HI N EIICAT I
-C--:LSWUP 	I TIALLY AS

CALL SETINDi Cr Ul
- 	CALL N UCE LL (LS W I P)

............. CALL S L-T IND (Cs U 0 L SWI P)............-...--......
LUNT iN 	 - -

C 	REAL) A CARU. WHICH CONTAINS. I NEORNATI ON_TO_SE__.STORED_ I N___THE _MACHINE
PC--:-LULA1 IUNS 	E-LHARACTER:: -IN EAL1-i 	 -

RLAL/1 	41-1 -LARD
FORM AT 111 / -75A1)-

- IF (CAN LI 1) . Q. 	- GU -TO -42
CALL M TRPUT(15WC1P-ICARD 2/-3.+CARD

.G0 TU 43
CUNT IN UE

_ 	READ(• 3UUU) KLIRD _
30001-'1'•FLIIM AT (I 17 7bA-.

	

.EL). U.) GU.TU3 C33- 	 _
CALL TRP-UT (i4IP4KORDi 3i-2+10*KORD'i +KORE)--(a 	
GL1

3&33- CO NT INUE
ISATIUN 	

L--NJ 613=0

	

K =1) 	
uN =

KC=0

	

- 	 - 	--

U= U
r:"-- --------- -.

	_NEXCT=0 	

NEXS TP
.L= 1 _
-KE
-Kb C= U

:7371_-77.771

•

____LEVLO=0
	 LtVL -

LE VL -777 • 	 - 	_ _ _ 	_ 	 ___________ 	_ 	_
..ai:LtVL U

• .JUNL ST =0
- 	MAJL ST -(/'

HE S TAT EN 	 E MARK
ASS 1 GN-2O

L 	 •

201)0FuRMAILIA,7H4J.41,1p.A.J2X,10.171TOTAL. CO_RE_I2X4_16HCOMPILATION TIME
:j I4HEX iCUTION'LTI iE 1Xt I7HT 0 TALi,..T.I

C010 i= 11 i)OOU
IN / T I AL iS E.- I HE BU FFiER

•

6
.

	

	.:.•
uUlifia

MAIN
10016034 . 	 _ _

— EFN 	SOURCE STATEMENT — IFN(S1
-ATT4-::]p. 9122/3.

Lu ul 1J1\1=1, NUM WRD.
FF (JN:)=RO D

CALL VARRLU ROUTINE WHICH UP ENS THE PUFF T OUTPUT TAPE
CALL V ARR (NT AP L BUFF 	MWRD I LOF)•

C L CK UP FOR 1 . 	JOB FR UM THE .E3UFFERS
IF (ANL) LUFF-{ L 	f_SMIASIll.NL.RMASJ1
.IF (ANU (j_sUFF(L+1) ,.SMAS 1_2). NE .RMASJ2)GUTO1U11 	
:IT __I : 	 .-ITI-IENYTE:STI:F. OR :ENDR UN :CARO --

(A NU (FFI 	AM AS61_1_._NE .A 	SKJ).G.0 TU1014
.. . IF (AND (IsUFF__CL+-4T,LsMASKI
__

014

	

	. CON T 	- -•
CUUNT NUMBER OF JOBS

NJ OLI--NjOB
CUUNT Nuivi 	 V_ STEM_ CARDS

Ki.)=KU +1
_SET A . F.L.AG

INN =i)
GO TU.L0

C..11 _=- CUNT
__-LOOK FUR ERRUlt STAILMENTS. IF THE FIRST BUFFER CONTAINS THE MARK

A'*-r444 	-E 	 AN,LEXECUTION"-MESSAGt.
IF.(AN DLI) 	L)., RMASK,1) ..NE_•_RMASK I .)GOTU/021 -

	

BEK:A-iF-ZERROk:LAND LEXEC Uri ON1.41 LS SAG ES 	
. NE RR=N ERR
LT-- A .FLA-G.:••

CALL__-G ET t 	 KB-UF -
„CONVERT _ LiCO _CHARM: 	 UMI:1ER

------INT6=BUUIN1•(KisU6 i)
IN1o=INTo+1

COUNT- it-iL - VAR iUUSr---L EVE
GO TO 71, 72_17 31 _7_4

JLEVLo=LEVLU+,17-'•—:
~GUTU 7 i

.1.=LLVL 1+
GU TO

- L L VL 2=LEV1z2+.-
GOTO 75
LL VL 3= LEV L3+_i•
CUNT IN UE_ 	 ,

ES T.-- FOR -=THE .'-E- XEC UT ION 	 THL bUF FE R S TO _ C LASS IF Y_ THE V AR I OUS 	
EX L CU r/ 	 SAGES_ 	 XECUTI UN _TLRMI NAT EQ 	 ivictCD ay_

—STOP--:AN CU LIN
IF (AND BUFF(L+2)_2,_SMASI3:) • NE .RMASJ3)G01.01012

(AND BUFF-CL+-3-J-ISMAS I 41 • NE4RMASJ4.) GOT0101.2=
SET A FLAG

IF (ANU(BUFFL L+.) 1 SMASI IA. NE .RMASJ5 /GOTU.11 	
CIF(LA 6U FF Lfikr SMAS I 6) . NE .RMASJL) G
IF (ANO1 BUFF (L+5), SMASIti).NL .ki4ASJ9)uUT012
IF IANU
NLXS TP =NE XSTP+ 1
GU TO :10-f 	- 	77-

NEXC T=NEX CT+1
TO

: 0008
11 AIN _

•
EF N 	SU URGE IF N

rE:.09122171).-

NaL: 'AG 	LAC..

GUT() 10

p021 LUNT UL _
FOR 4 00UI,IP IL AT i UN ' TG FINL; THE TI ME S FUR GUMP' LATI OW:4:4N
I FIE. NUA 0L1t J F MLYILikY 	 JOB _HAS .ULL UPI EL)
----IF(

	

	(BUFF(-) Siii1 /4 S17).1\IE :RMASJ7.1GOT01031-
(BUFF (L+.1) SilAS I . NE .RMASJ8 G 0301031_

INT1= Li CO I i\IT (bUFF(L+11
.1N1-L=BLUINI (BUFF(L.+.-LO 1 (.)

ICUR E-= IN T 1+1N T2
bLUJ. 11T.(.13UFF.(1.:+2) 16) .

/41- =- INT 6

- 	---- 	' - -INT3-tiLUINT (BUFF-(1...+3-j)

TLOil =T +AI 1 E
.1NT4=BLUINT (BUFF) .;

AJ=INTti
A i=IiNT5

(-ICOM EXC-)
(61;18)N JU i-I.CORL TCO M TL- XL.J.T

7X
„.___...„.„.GUTO _16
0.31 CLJNI IN UE

OK _ FOR. 	COMM 	TEMENU_C OUNT__TtiE
IF(Nisi) GOT010'-=

a—
- 	. 	• KBU 	 01.044— 	 •

• GOTO- .10
.044 CONT- UE

- PART OF '-- PROGRAiiL-S 	r R ----lc NO W=--:1-1 	M BEV-OF =- ...
T E1.1 _ CA RUS-_ -L--;11HEh .ALSU---TE ST.4 	OR _ 	 _ 	_ 	 ''
.IF(K 1.3U F .N E:;ND
IF (U (BU FF)„, 	SKI).. NE .DPIA.S.KJ) GO_TO144_1_ 	

'-jUNLS T-=i
KUULST=KDULST+3
GOTO

.441 ,,,LUNT. OL 	

_„_GUTU. ()
041=1-- 'CUNT- IN UL:

11E. FUL L vi G .11 IL L. .„TE 	 OR TR4N_ STATE MEN T___KE.E,PI 	 D_ 11E.
RECORu L LNGT11- OF A- FOR TRAN-L'S TAThMENT-i-TAKES=I6-i-OR:=-E-17-WOROSJOF4TORE':1

_IF(NUM tiRU..L.(,) 	OR . 	RD.. EQ 	TO105.9 	 - 	- 	- 	- 	- 	

CUNT IN UE
	 IF (ii C./ F 	 E--.RCARU

_GOTU.1.0
'05 	CUNT-IN UE

L +45)).J IBUF 	_ 	
i3CUINT(KOU.Fil.) ::''"

IF(/NI- 7.136/.5 	INTT.E;) .6)
o51L" 	:LUNT iN

•

•

.K.C=K O+

i3O0 605„:;.
MAiN 	 EFN 	SOURCE STATEMENT — IFN(S)

1S1 AN ti CUUNT EiL ANi% CARO S _ _ .
D677 IJ
I f- bU F FIJ) .N E. R CARD/G[1301041
CUNT 1N UE
KtiC=K8L+.1

1061 CUNT IN UL-
IF(bUFF(L +14) E4R C AR 0—) GD

1012 LUNT IN UE
Ci iA R ACT ER..-.1.3EBUFFER:.,IS -PAC KE 	 B U 	C0NT

CHARALT ER S IN ONE WORD ANI) THEY ARE PACKED IN SIX WORDS REPRESENT ED - 	_
bY AN A RR AY:LINE) 	

N=0
---..._=.DO _ 12.I. -_ --.IJ 7F•Z i_14i-T.-,.-.,--

DU 	=11 a 141 11 	 - .-.-_ 	„.......__...._..,_...___ 	_ ..
1 	-,...,- • - - - -- -------- 	 ----:-_t.-. -."-..::..__:_____

CALL (:71.i.1-1 _bUF.F.(1 ..!) , i I)_LIN',--: (Ni i

	

.4.121=1_._ co NT IN UL.: 	 -

11; INN .E.Q. 2)GOTO101
IF (L IN EUU.N. N
GU TO 1U
LuiN1 IN UE-
K =K
EST- 10 R: EuALS

N E
GO fl.i

:34 CO NT-IN
=1

CUt'UN
E 	IT 0 a: 	N 	 _ 	

IF(L
ri GO TO-

5- 4,_CUNT IN UE
CON T=K0ONT+:1_:_

GC) TO 10

	

CONT :IN UE 	 -

	

CUNT IN UE 	_

188=7
-• K88=7 	 	,

EMI3V li BLAIsIKS BETWEEN CHA AC TER S IN A STATEMENT - 	 _ L 	(1.8•;31.- 	N[SLAN KILE13.0=-1-0='-.34 	
181s= b

	

GU T U 85 	

	

84. CUNT IN UE 	
=- L 	88)-=LINE

K8d=K a 6+1
-1661438+1:-
IF(106 •GT aZ) GU TO 88

TO 65 	
88 CONTINUE NN .64. 2) Glit131U15±T--: :::::::::==":7:-=::

IF (MAR K .N E .1) GO TO 89
00!LSTA:f.EMENT. SIIEL-LTHEaLSIA TEMENLII_S-EALD.CILG0T.058 -: -7f

1(,U16034 	
- EFN 	SOURCE STATEMENT

(.9/22t.70.
IFN(S) -

.EQ.NUD.AND.LINE (8) .E.,,I.NUO) Gp, ro58„
EST i'UR RU,. W I TE F URN AT .AND --DATA:--STATEMENT
=1 9

. 	": 	17." •. 	. 	_'• 	_ 	_ .

u Ub
N AIN

IF(LINL(7 1:7

OTh'Ii 1 -
MN

M6 I= MN 1+,6
IFtL1NEIMI311.NE•IkhALLAMNLUGUT060u,

- 	IN UL
...

GO-R.)69

:_lF L IN El bG) •Ii:...1wRITE(MN2).)GOTU601 	
- cu NT IN 	- 	 7 '7

GUTUU9
o1.LcuNr IN UE 	-

6
- 7-±---Mb3=MN 3+6 	•

IF ft IN El t4 B.3) .04 	 T(G011)602. 	
---CUI\IT 'NUL.

_GUTO 69
02 	CUNT IN UE -

	• _DO 16 14144771,4 	
- 	b4=-HINi 4+6 ' - • -" —

F ft IN E(134.)..N E ILlit MN41. GOTD1
1 CUNT IN 0E: 	• 	

GUTO U9
899 	CONT IN 	7=77=27

COUNT I H
K A R- IS A R+1

GUT
M U _

10 -
isi)O=NDU+.1 	

„ GOT°_1(..)
.-CUNT IN L•E.;

LINE. IDULLY.L-Q.NDYL- INc - (- IDOLL)=NBLANK
1\',T. NU

EQ 	C;OTO .1442
- L DEP T

EE"--SliAP-RUU T1 NE-"--.TLF"CLA 	VAR1bliS,T--17--S TATE MENT
— 	- CALL ...1.1.SNUP 1.S14uP

,LINE,.7,.LUEP.TH)

COTO 10• 	 -1-
442___ CUNT IN UE.
	 LOLPTH=45

• .CALL. I RS 4Lti) (LS 11,1Pr 4;4E1 71 LUER
- CUNT-IN UE 	 _ ,

_CUNT 1N UL__
-K1:•=11 J 11 -6 ”

_ 	RD=N EX C
	RU=100 	D/R1-•

4_6_1N40b,NEXCs_RD 	 - 	_
A (1x1

	EC 	
T 	,T

_iTCJN _= 	1.40 5X1 6. 2.1 	 TOTAL_JOIS)___

RD=10C.) 	Ll/ft F
AIL(o f 9IJNEXC T / RD 	

•

•

CUNT iN DE
Du .Lt MN =1 7_5.,
Mb ;=M 2+6 	"

',I 4 15X I

160160.34 	 DATE 09/22/70
MAIN 	 EFN 	SOURCE STATEMENT - 1FN(S) -

•

FORMAT (1X 24H\10 UF JOBS TLRMINATED
1Ft.J

	

	211 P ER 	 TOTAL -JOBS) 	• 	-
1: X STP

	

RITE(B1 92)NEXSTP./ RD 	 .
FORMAT (1X 1 3.1.)H\10 OF JOLiS TERMINATED. BY::STOP.----_

22H. PERCEN T. .1Jk TOTAL JOBS) - . . 	 _
_ 	=N ERR 	-- 	 • • 	-

RD=L E V L(.;
R=10) •*k D/R F 	 - 	"

93)NERR ILLVLO / RD_
FORM AT (IX 2i3HTO TAL_ NO OF :ERROR MESSAGES 	4/1X-1-23HERRQRS..:=OF__-_ L EV

AL LLRO = _ 2 11)X2 .14 / 5X,
• 2, 2.3HP ERC EJ L.-OF-TO TAL1ERROR SI 	

RU=L EVL1
KU= 10U .*R U/14. -
WRITE(ol94)LEVL.1.,RD

-FoRM AT (.1.X I 2...3 i-CERRURS-•- OF1LEVEL
• I.Fo .2, 2311P.EhLol.T.__U1 _ TO TAL„ERRORS 	

RO=LEVL 2 	 -
.RulUO•#R U/RF 	_

-:-1WR IT E (C;$ 95)LVL,RD -
FUAT(lX,.23hERkUftS.JJLLVL........T00 = 1 .1.0)($ 14 15X1 	
Fu.21 	ERCENTIOF:±TLITALfLERRORS) 	

..Rii=L EV L.-3
RD=100 .*R D/R.F

iT E (.61 9 o)L 	RD___

	

ORM AT (.1X ,23 HER R OR S.-:10 	•_VE
_1 Ft> .2, 2.3H1? ERCE 	TO TAL__ERRORS)

	

--z.,,NEX=t4E- XL.-i-NEXCT:+NEXSTP 	 ---
AU=N EX .
1=1U0.*RU/R1,- -

IT E (97)NEX, RD_
RM AT (1X 3 	AR-IO-UTYPE S: OF E XECUTLONTJMESSAGES-i

IF 	1. 	 ClF_LJ.0 JAL -ERRORS) 	
_ RIT E (b, 7.73)

WRITE(6, ..3i3.1JUNLSIT,KO_ULS T. _
-.3-YfiliFORM AT (W I Tif±U7NL I-:-.YSTEM-.J.:ARi).

11X1 40).-iSYSTE1i CARUS ASSOCIATED WITH UNLI ST JOBS _Ii
K 	Ki.) +K EC +K KE 	

ITE(64./00) K_
IUUFUis44 AT t 2jH---CM 	--;AN A LYSE) 	::r:rI OV.

RU=1U0
r77,7.4.7

IT E (.(/ 1 01..) 	 _
101 	FORM AT (20 H. . SYSTEMS_ cA Rfr). 	 16, 4H

A L

- ..

X-11:445X4—. 	

1=.

11445.

Fô.2,19H PER CENT OF TOTAL

KF=K +KC_

Fo .2).
.7.

• ..10(:)16Q34 	 - - 	- - 	 DATE: .0. 9/22/7.0
pi A I \I 	 - 	Ei-N •..S0URL.STATMENT

	

770FUki4 AT (1-1(1 bLAi\IK LARD S

	

FOI\M MT (1-i0FU' TR AN : STATEMENTS:
KT:•--K.I'•-NCLJNT . .

IT E 	l(.J) KT
KS.=;C T-I<L

(I El 6, 3.-UO) -KC
i-0•1 AT (a) Hu CUM 1-1 EN T7.:CAfiDS. 	

.107 FURAT (2.()HUPRJ GRAM_ STA TEMENT.S)

••=77-===-7,2,..-1= 77=1'7

. MR1TiL biJ.U)
• -FORIviAT (5Zi1013 i---R 1:i.:ENI,, FREQUENCY ------7-0FE:OTHERSTATEMENTS'zASaFOLLOWS

CALL TREE PRINT _RUUTINE TO _PAIN 	 MENTS
- 1.PR I NT (L.) WUP 1-321-KS 	

R IT (o f 778)- 	 _ 	
R IT(4:133:34)

3_34,7 FORK AT (.54HOP ER_ _CENT_ .1: REQUENCY_LIE__ERRORA.VESSAGE.S_ARE„AS__,Fol.:140

CALL... TPR1NT(
•:::L-44R IT E (-6 7-7 ti.)

FURYI ATJIH .1
-THE- 	 S 	 -

L1.162.MAS11=1 2 iv UM VJR
Bk.) FF(-MASD)=RCARD - 	•

_

_GALL_V. Afi-tEL) „RU_LT_Ii\lUE
CALL-7:- V ARRIED(UFFINUM VIRDi1E OF „..

1. 	
	• 	Es i----:1----11E-17611 -7(3 	AP---c-- ---77==.1Fi-= 140 1--;-t, 	NUT - - S TART-TFIE'PROCESS 	

..1F (AND(tiU 	SI4ASKI..),NE . SilASKJ).GOT030 	

'7*

000 	 M 	(.4.4171 E P.= 	 E 4C..144-114..K E D)--

T op

END

000503— . 	.

44 CALL NUCELL(LINK)
CALL S ET INDC1, LINKI:771't L—AS:T) 	
LAST=L INK
CALL --,'S ET I ND (-it 01 0,CAST)L:
CALL STRIND(CARD(K) y LAST+ 1)

, 5:CALLIAUC-ELL(IINK)::=Tif

•

IBFTC 9MTRPT DECK

MTRPT 	EFN 	SOURCE STATEMENT 	I F N(S)
.....--.. 	 " '

SU BROUT I NUE -MTRP UT CREATES TREE STRUCTURE IN THE FORM OF CELLS. 	
...

s"-- CHAR ACT ER IN THE — iiRANCH AN) --- END 71 S THEL AS -F'—CH-A-RAC—TER'OF"T HE BRANCH -

SUBROUTINE MTRPUT(LHEADI:ARD, IBEGINE IEND)
• INTEGER CARD(80)
POINT TO LAST AS THE TOP 0 TREE

 	LAST=L HEAD
D066K= IBE GIN, I END

TEST THE ID _FIELD OF TOP CELL. IF IT IS. LERU: THEN. IT MEANSI-71171S NDTT —
FI LL ED WITH THE INFORMATION(OTHERWISE EITHER IT IS FILLED IN CAS E
IT IS 1 OR END OF BRANCH IV CASE IT IS "2.

IF(ID(INHALT (LAST)).EQ.0) GO TO 77
TEST HETHER THE PRESENT CELL CONTAINS 'ITHEINFORMAT-rOW,'WHICHITMATCHES —:::7'
WITH THE CHARACTER UNDER C3NSIDERATI ON.

INHALT(LAST+I) :EQ —,;CAR) CK1T—ZGO—I —TV22 	
IF(LNKL(INHALT(LAST)).EQ. 0) GO TO 44
LAST=LNKL INHALT(LAST) — 	
GO TO 33

CREATE NEW CELL* TO LEFT': D3 WN) 	 -------

•

I BFTC 9TRSWP DECK

TRSWP 	 EFN 	SOURCE STATEMENT

- 	• .

THIS SUBROUTINE HELPS TO COMPARE THE VARIOUS FORTRAN AND OTHER
STATEMENTS OF THE OUTPUT TAPE OF PUFF T. 	 _ 	 . 	- -

IT ALSO BUILDS UP TREE. WHILE COMPARING AND ACCOUNTING THE VARIOUS
STATEMENTS I]. CONVENIENTLY SWAPS THE BRANCHES OF

...

SUBROUTINE TRS WOP(LHE AD f ; ARO / IBEG IN / LEND) 	
INTEGER C AR Di80

SET AMARK ER 	TO ZERO
MARK =0 	-

INITIALISE THE LIST HEADER
JUST =L. HEAD 	— 	-
LAST=L HEAD
D066K= IBEGIN/ I END2--

COMPARE THE VALUE OF THE ID F IELD OF LAST WITH ZERO. IF IT IS ZERO
THEN F IL L JP:THE!"-- DATAi WORD. WITH CHARACTER AND CREATE AJEWI-CELL 77-
TO RIGHT.

. 	D(INHALT (L AST)) .E.C2 •0) GO TO 77 	- •
IF IT IS NOT ZERO THEN COMPARE WITH THE CONTENTS OF THE DATA WORD
0F LAST W IT H:._THELICHARACTER. FRDM__THE- , .OUTPUT--TAPE.l_Frs- -THEY • MAT CH.- ,GOT 01 22 	

33 	INHALT (LAST+1).EQ.CAR) (K)) GO TO 22
iF THEY . DO_ N OT.L MAT CH::CHECK UP WHETHER, THE --- VALUE i OF- THE LNKL--''FIELD OF
LAST IS ZERO. IF IT IS ZER3 GOTO 44 AND CREATE A NEW CELL ro LEFT.

(L NKL INHALT(LAST 1).EQ. 	TO 44-- — 	— - 	
IF IT 15 NOT ZERO IN WHICH ; ASE THERE I § ALREADY ALI NK TO LEFT AND
HENCE SET T HE MARK AS 1 -

MARK=1
SET JUST AS LAST4ND7:-LASTrill-Tat THE ADDRESS -i 	 UFL:THEYINKLOV LAS:
THEN GUTO 33 AND COMPARE THE DATA WORD WITH THE CHARACTER 	
7111:JUST =L AST • 	 _

LAST=LNKL(INHALT(LAST fl
COTO: 33:!.

• CREATE NEW CELL TO LEFT(DOWN)
- 44_ CALL NOCE LL C LINK

• SE 1 / LINK INTO ID AND LNKL FIELDS OF LAST ANDLNKR FIELD
CALL S ET I ND(1, LINK, -1/ LAST)
JUST=L AST
LAST=L IN(
CALL SETIND(1/ 0 / OILAST)

	

...-:%_STORE THE CHARACTER INTO 	 WOR 	 E
CALL STRIND(CARD(K) 1 LAST+1)

RAIS A N EW CELL: 	'

UNALTERED

55 CALL NUCELL (LINK)
CALL SETINDL1,-1,LINK,LASTr
JUST=L AST
L AST_F-71 INK

.THI S TRACKS 'THE COUNT_ UF THE;VARrO,USSLMi LARSTATEMENTSSUCHAS:READ...
' N= IVHALTi LAST+I) +I u
II= INHALT (LAST+1) 	-

GO TO 66
LCRE ME k NEW CELL _ TO a IGHT
77 CALL STRIND(CARD(K) ILAST+1.)

CALL SETIND(11i;71,-11LAST):
GOT() 55
CONT INUE

SET AN END MARK FOR LAST AN) THE DATA WORD TO ZERO
(ID(INHALT (LAST))..EQ:2)-GOT067.-

CALL SETIND(210101LAST)
CALL STR INO(Of LAST+I)-

67 CONT INUE

CALL STRIND(NILAST+1)
	fETU kN 	

END

..... - 	.-7÷:

9 IRS 	- EFN 	SOURCE STATEMENT 	IFN(S)

- - CALL SETIND(OtOILAST)
GU TD 66

22 CUNT INUE
THIS PART OF THE PROGRAM OU S THE SWA PP I NG7.--0E-ITHE.-BRANCH...OF.',:--:TFtEE..

IF(M ARK•LQ.0) GU TO 23 	 •
IT EMP1=LNKk(INHALT(JUST))
IT EMP2=INHALT(JUST+1)
CALL SETI ND(1/ -1/ LNKR INHALT(LAST)
CALL STR IND (IN HALT(LA ST+1) 7 JUST+1)
CALL S INDC-11 -:li ITEMPlf LAST1
CALL STRIND(IT EMP2, LAST+1) 	
LAST=J UST
MARK=0
CONT INUE
IF(LNKR(INHALT(LAsT).).EQ.o1 GO TO 55
JUST =L AST
LAST =LNKR INHALT(LAST))
Ii-(ID(INHALT AST)) .EQ:2):, GO

:77.7:".177.7

SUBROUTINE TP:2 INT (LHEAD/LDEPTH,NSTATS) 	
---- - 	 - 	 -

INTEGER BLANK, L INE(120)
DATA bLAJ K ./ 6H 	1 	—
NI L=O

D0050.3

16IBFTC 9 TP R IN DECK

TPRIN 	— EFN 	SOURCE STATEMENT 	I F N (S)

=7=

THIS ROUTINE PRINTS OUT THE TREEWHI CH HAS ALREADY GEEN CREATED BY
MT RP UT AND TR SW) P 	

L IS T HEADER
LAST = LH EAD

GREAT E AN EMPTY LIST WHICH LEAVES THE NAME LINK BOTH AS ITS VALJE
AND 	T HE CELL L 	 '="-

CALL L IST (L INK)
PUSH _THE DATUM NIL DOWN

CALL NEWTOP (NIL I LINK)
INI T I AL IS ATI ON OF ARRAY --LINE
77 DO 22 I=K fLDEPTH
22 LINE(I)=BLANK -
STORE THE CONTENTS OF , DATA WORD OF THE LAST

LINE (K)=INHALT (LAST+11
INCREASE THE VALUE OF K

':.K=K+1 	 - 	77- 	-
TEST FOR THE END OF THE BRANCH. IF THE CONTENTS OF THE LNKR F IELD
	 S .Z ERO THEW:- IT - IS::THE.:,1.:_ENU1:0FLBRANCH:ANQ:AiENCE7JHESTATEMENTANDtl-I
FREQUENCY IS NOTED AND VALUE IS PRINTED OUT. 	

-rf-t- • 	LNK RLI NHALT(1: AST) • EQ..:-0): GO 7 TEJ
C IF IT IS NOT EQUAL TO ZERO THEN PUSH THE DATUM LAST DOWN UN TOP OF
CTE-:fj.:.LI ST 	L INK ..- - 	 - 	 -

CONTINUE44
N= IN HALT (LASTI-1)
L= K-2
RN=N
R= NS T ATS
R=130 OcR / R
WRITE(6166) R, N, (LINE (J) 1 J=111.)
FORMAT (1H F7.2,3 1J.6i347100A1) .-

45 CONTINUE
CHECK: ,OF WHETHER .THE:::LNKLI:FI.E07 0F1_A ST TI 	ZERO OR_ NOT.•:TIETIlplIS. :::,ZERO:7---- -

C: THEN LINK IS •P3PPED OFF' 4S LAST WHICH MEANS IT IS RETURNED TO
AN D.ILTHE±DATUALICONTAINE.DITHERE..LJD.EL:INEREDifiA.S::,,..±THE:j:N.ALL1.Ej

CALL NEWTOP (LAST f t. INK) _

ET_ - THE L.AS 	IN -TER-__-TO --2=THEA'NKRIFf ELDEOFL--.±-IA.S_T_=-=-3tiNDLqG.0_133====--
LAST =LNKR (INHALT(LAST)) .

TZ.

D0u503 	10016034 	 - 	 - DATE • 09 /17/70--
9 TP 	 - EFN 	SOORLE STATEMENT 	I FN (S)

FUNC.T ION. RLDUcE - K TILL THE WHOLE TREE • I SPRINTEDOU .
IF(LNKL(II4HALT (LAST)) 	0) GO TO 55
LAST =L NKL (INHALT(LAST))
K=K - 1
	 7'7.1'77

GU TO 77
55 LAST=POPTOP (

Is=K -1
IF(K .GT..1)..GU:-.T0::;45
RETURN

SI BMAP BCD INT NOR EF M90 I cIDOD13

•

• • 	. 	' 	7. • " :

. ..

7 7-

CDI NT SAVE

DUMMY

INVCHEt 	 HIGHER -INV AL ID TREAT- ZED
TREAT AS ZERO

ALI D ADD TO -TOTAL

BCDI NT -7777- DATE 09/17/70 	TIME 3.0 	MI NS 	"777" P ASE 15 .

CL EAR TEMPORARY STORE "
LOAD BCD VARIABLE NUMBER
LOAD CHARACTER COUNT
INTO REGISTER

6 GET A CHARACTER
	 .__ COMP ARE BLANK 	 -

INVCHR 	- HI GHER-INVAL ID- TREAT ZERO

	

7,71-fZAC -94.1- ; EQUAL, IGNORE. GET A CHARACTER 	
TEN 	 COMPARE TEN

LG L 	
	 ISS TT: •

IRA
TXI
LAS

...

TXL 	BCDI NT-I-114 11 	TRY LAST CHARACTER
	ST(,)7?-:-ENUMBERI SAVE -REST OF BCD NUMBER7f

	 MULTI PLY INTEGER Torkt;,,,L 	
SAVE IN NEti TOTAL

_REsrogE - REST BCD NUMBER:
GET NEXT CHARACTER

)UMMY PZE 	**
f*LD 1 R 	 _

	XCA 	
M P Y 	E N
STQ 	DUMMY
LO Q 	 NU MBE R
TXI 	ZAC /49-1

\-B-LANK_BC11", 00000L-=
TEN 	 DEC 	10
iUMBE P Z E

I CI 00160
ICI 00170C:
1C100180

1C100230
I CI 00210
1C100220
1C100230s,
1C100240
1C100250ll,
IC100250

 	I CI 001 9D-1

NVCHR ZAC
ADD

STZ 	 DUMMY":
LOQ* 	3,4

-- ELM,- ::777:-7" 41 4'
PAX

ICI 00100
ICI 00110.
1C100120 •

	 I C I 00130::
1C100140

7" ICI 001501

ICI 00030f..:
1C100040
ICI 00050:L
IC100060
I C1000703--
IC100080_
IC100090

7'12;771 -"-•••••_777,7,'

VARRED 	DATE 09/17/70 	TIME 3.0 	MI NS_ 	 PAGE 18_

VARR0001

ENTRY VARRED

	

VARRED SXA
	

SYSLOC 7 4. SAVE LINKAGE 	_

	

SXA
	

L0 IR 1 4 	SAVE REGISTERS • 	
XR 4 7 4 --. 	 . 	• 	. 	- - - •

•s TI
	

1 NDICS
_ SXA _ _ XR2

	

CLA 	3,4 	 ADDRESS LOG.T APE UNIT PARAMETER

CLA 	4 1 4 	ADDRESS USER BUFFER PARAMETER
7.T. STA.

NZT* 	5,4 	TEST FOR FORCING E.0 R
Z S 0 	 RE C AD

	 CLA* 	6,4 _ 	 END OF FILE EXIT.
	 TA '7'=-7---t7-:E OF 	 - 	T 1

CALL 	.FVIO.INTAPE7FILP 	 UNIT 13 FCB ADDRESS

ORG 	 *-2
_ **.

PZE 	FILE
T•UP-i--7FCBZADDRESSi-LPARA4E_T_ERS'-

11 	SCA 	UNIT1 7 4

	

-----_SCA 	UN 132 7 4 L-:±7T

	

LD I 	1,4 	TEST FILE FOR OPEN

	

LF T 	04-00001.

	

TRA 	NE WREC
ITSX—OPEN; 	 7-_OPEN IF NOT

	

UNI T1 MON 	.**
NE:WREC-7, 	FILE =-7:COMPARE PRESENT F IL

	

CAS 	LSTFIL 	WITH LAST FILE
*+

	

TRA 	PARBUF 	EQUAL.TRANSFER TEST EMPTY IgTE11AL .BUF
IS TO -----LSTFIL 	SAVE.:NEs1"-' LAST " FILE'

•READ, ft- 	 READ.' NE4 PHYS ICAL RECORD
	-

.
- **1 1 44+3 -.1,-.

. 	 .

READ •TSX
UNIT27-7PZE
EOFE XT PZE

.1 •
**7 ,READ

- 	• _ 	-

ORTNIT-..** 7** 	 F +d ORDSI IN BUFF. 	
LXD • RECADD7

 	REC ADD, 4 	•
ISLIF ENDLT 	*+1,(t,**:

BUFADD,'p
.RECADD7 	TEST:: FOR_ EMPTY BUFFER 	 Z.

0,2 	 . 	.
READ,4,O.-L;.:RE AD NEW .•••.P_HYS IC AL-IRECORD.L I F L.EM P TYiELJ

SXA •
'PA fkf3, 	LXu

A XT
NXTBIK_ J.X L._

S XD 	RECADD, 4 SAVE WORD COJNT OWORDS LEFT IN1 INIT.BUFF.

	

R2 	A Xr.-7-7:77**, 2 itJzt-77-;:if REST ORE REGISTERS

	

XR4 	A XT
LD I: I ND I 	
STO'

R A , 4. ---
FILE 	PZE **
L S TFI 	ZE ** -71=
I NDI C S PZE **
RECMSK. 	 OCT -7==
RECMRK OCT 72
L 0 1 airf =L011,1

•

PRES ENT FILE
-:LAsu FILE.

OR RECORD-IMARK
RECORD MARK.

RETJRN LOGICAL RECORD SIZE
- RE Tj RN TO USER

VARRED 	DATE 09/17/70 	TIME 3.0 	 --- - PAGE 19

.. 	• • • 	• • -

	

UFADD CAL 	**,4 	EXTRACT rl ORD FROM BUFFER
ANA 27.1 RECMSK

	

ERA 	RECMRK 	TEST FOR RECORD MARK (072)
• - 	1.0Q* - 	BUF ADD

	

OFFER STQ 	**,2 	STORE IN US ER BUFFER
T XI 7'7'71 *f 1 2 --1 - INCREMENT WORD COJNT

,4 1 -1
ENDBLK:.=. 'BRANCH IF RECORD .MAR(
BUFADD, 4,) GET NEXT WORD IF NOT END ?HYSICAL EC3RD

- 	: SAVE WORD COJNT OF LOGICAL lEC3RD

T ZE_
T Xt.(

NDB-1(..K : P CA

•

. 	• 	•'' • 	• ":"

REMOVE:..:.. - DATE 09/17/70 	TIME 3.0 	MINS ..• 	- PAGE 	22:

RE 430001
_ 	 • 	• 	 • • . 	•

	 : 	- 	 • 	. .• 	•
	 •

. 	•

UN1. ENTRY 	IN
UN2. ENTRY 	IN ::17-::•7: -
UNO3. ENTRY 	IN
UNU4.- ENTRY 	N.-
UN7. ENTRY 	IN
UN8. . ENTRY
UNU9. ENTRY 	IN 	
UN10. ENTRY7-1.'; I
UN1.1..ENTRY 	IN
UN12. ENTRY
UN13. ENTRY 	IN

	

,014. ENTRY:f'lIN 	
UN15. ENTRY 	IN 	
UN16.. ENTRY
UN17. ENTRY 	IN 	
UN19. ENTR Y 	 --7----7=-17-t,:.--
UN20. ENTRY 	IN
UN21.-. ENTRY 	IN 	
UN22. ENTRY 	IN 	

	

UN23..-TENTRY=-±-7-2 IN 	
UN24. ENTRY 	IN

END

NU • 	T LT AL 	CUt'E comp ILA TluN 	TIML EXECUTION TIME TOTAL TIME IN SEC
. . 	7 0./7060 .32920 -- _ I 	3U . 0 (...)000

2 U • U7 	8 .U. UU940 4 .9 3200 --
7.3 	_ 0b 17 0 0. 0075u 4.15200

4 .
40 61 O. 10250

.0 	U07.50_
-- 0. 	 47Q jET

• 05920 _ 	_ 	_ 6.45000 _
- 0.02 f.)00 C). U3170 fit 3. 40200

• 431 0.02420 0 0078U 42000
9 	 -320d -7 00,670 7,, 788J0

LF 	Ju tts.
OF JOBS '4-ENT- IN T:i r EXECUTION 	7' ----- -77.7ts PERCENT OF TafAi: JOBS
OF JOBS T ER1 'NATL.:U. 	 4 	44.44 PERCENT _ OF TOT AL JOBS
CF. JOBS TERM INATCU 13Y,L-STOP-- 	=555o PERCENT UF- TUTAi: JOBS

T AL NU OF citROR liaSSAGLS = 32
kGR 	..UF.4J VEL-r=2 - 	 PERCE NT IcF..TOTACERRORS -
kGRS OF L 	UNE 	 0 	O. 00 PERCENT OF_ _TOT ALERRORS
RORS- UF- L EVLTWJ 	 4 	12. 50 PERCENT OF -TOT AERRORS -
RORS_ OF L VEL_,THREE= 	 ,_3 	 ERRORS
li1UUS 	p 	30. ooPERCENT--:-OFZITOT_ALLERRORS

•

	

. 	 - 	•

UF JUbS 	ITii UN LI sT SYSTL-.11 C ARU 	1
(ST LM CARDS AS SUC IA T 	W ITti UN LI ST JOBS.: -

kuS ANALYSED 	 867
ISTLMS CARUS 	 . 88.IPER_TCL
RT RAN 	 od-i 	97.14

MT IN UATILit‘i CARUS 	78

-ANK CARDS 	0

iitT RAN ST AT bl4L.N f S 	764

aMMEN1 CARDS 	 188

ROGRAM STAT.LMENTS 	6 	

ER CLINTLERLQULNCY---D F
5 .56 	32 	Wit I IL 	

0.OU
	

0 	F UNC TI ON
4 • U 	 7- 1 F 	- 	
0.00
	

N IL GER
Tn.

0 .6 7 	 C U MMON

0 .52 3

0.00 	 0 •

	..I.).1.1U13.LE.-----=-=
GO TO
t3L 0 CKLIATAsit ..ITE-_,-,-_,:_-:.__-_:-:,_--.._--.-L---,

LOGICAL 	

	

.0 C 	

	

0.00 	 0 PRINT

- • -

	 TOC-TACOUOUU C LSEU---0NDEF I NEOSUBRCUT-.1N
	FORMATMI_S SPE LLED 	

	LRROR INF URMA TAT 	
:00 -r--='-'0'NLSTLODU-4 SOVLRLAP 	
.00 U 	LHi:CKUSEUFARRAY_

-- CON STAN TRL QUI REUF GROAT
wR.I.TEMIS SP.EL LED

-.-2-b======'-=1 	ARRA VGA LNU TD EFINL 	TIO NOEL

-====-1----=----ARRAYCNUTOLEINEE XECUTIAJNOLLLTL0---- 	

ER. CLitiT FRL.QUENCY...LiF LicRUR NES SAGL S ARC 	_.FOLLOWS

=

	

.U.00 	
U•uu - ----
U.UU
0.00

0.1/0
0•Uk.o,
0 .U0 -- 	

, 	

0.00 .

	

0 ,UU 	

	

12.50 	

	

- -U .0U 	
6.z5
0 .00
U . U

:741;0 	-

	

_0.00 	

2 	I LLL GALP LNCT UATI UN
1 L LL(.7ALUSEUi= bGUGUNSTANT
1 L LEGALUSEUF bLUCHARACTER
ILLL6ALUSLUF LOU! CALUNITUOUU6
1 L LL GALUSLUF LOGI G ALUNI T00005.
I L LLUALUSLUF F UNC T I ONNAML
I L.LL- GALUSLOF Pt:RIO()

_ ILLLGALCARU5LLOWIGNUREU _
I LLLUALUUMMA IGNOREU
L LEGA LA RRAY NAML

- I LLL-GALKLAL; 0NSTANT-
I LLLUAL VARIA6LENAME

	 L LEGA LU 1-kA TOR
_ I LLLUA LI WTI:6 ER VAR1 AbLLORCONSTANT, 	
	IL LEGALE NDOF STATEMENT
	 LLL UALN UMUL ROF SUb SCR IP TFURMAT 	
	 1NCONSI STLNTE QUI VALENCEOFVARLABIC 	

NULXAND LI ST LLNG THINC ON SIS

	STATLMLN TTYPEERROR
Y ST L NER R ORA-TOC TA L-
AR LN THL S I SE RkUR
AR I TYLRRORUNUNI -T00005.
UciRAMURARR A YTOOLONG_

	 UNC-TUA T-I ONE RROR 	
VARIA6LE.CALUSEUASE,UNCTI ON----E_XECUTIONDE 	

• V AR 'ABLE ORCONSTANTTOOLONG=:-:' 	
.,_MA INPRuGRAMD LF I NE-DT WI CL_

1A INPROGRAMM 1 SSI NG
LLE ALJOOCA RD 	

-113.-.XEDT-YP LOPE RATI ON
VER.FLOWAT 	

1LLLUAL-SUbS0 RI PTA I'
L LL GA LS.TA NLNTNUMBER

	 LLE6ALSEQUL- NL I fiGOF

 	TATLMEN TNUMBERREQUIkLD- ---

- 	',UN-0E1:FL° vtiiT
6.25 	1 	EN OLAR UM1SSI_NG 	

-'EOFREADONUNIT0000,

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74

