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ABSTRACT  

The elementary and Reggeized Absorption models are 

applied to the reaction 03+  ÷ 1 	3/24-  . U(6,6) symmetry is 

used to predict all couplings for spin-0 and spin-1 exchanges. 

In the Reggeized version the spin-2 exchanges are obtained by the 

assumption of strong exchange degeneracy. There are no drastic 

failures of the model and some considerable successes. Of course, 

the better fit to the experimental data is obtained by the Reggeized 

version of the model, due to the improved energy dependence of the 

vector and tensor exchanges. 
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CHAPTER I  

INTRODUCTION  

1.1 	Characteristic Features of Two-Body Scattering.  

Experimental information on hadron-hadron collisions exist 

in great abundance for two-body and quasi-two-body processes. 

(The term quasi-two-body is applied to those processes in which 

resonances living long enough to be treated as particles are 

produced). These processes may be represented in the centre-of-

mass frame of the incoming particles 1 and 2 as a collision 

yielding particles 3 and 4 at an angle 0 with respect to the 

incoming direction. This is shown schematically in Fig. 1. 

For multiparticle production processes initiated by 

collisions of elementary particles at high energies (say above 

the resonance region - 3 GeV/c) we can make the following 

observation. Dalitz plots of these reactions show that a large 

part of the final state proceeds through the formation of one or 

moire resonances, which subsequently decay
(1)

. In Fig. 2 we show the 

Triangle plot for the reaction(2)  

- 
K 	Tr

+ 
 P 

In Fig. 3 we show the NO.  IT ) and 14(P +) projections of the 

Triangle plot. It is clear that a large proportion of the events 

proceed through the two reactions 
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The two-body process of Fig. 1 will be described by the 

three Lorentz-invariant variables 

=+P ) 	E 
2 

= 
2 

(P 1 	c.m. 

= (P1-  
3)2 	

square of foUr-momentum transfer 

between particles 1 and 3 

u 	= (P1 -P4)
2 	

= 	square of four-momentum transfer 

between particles 1 and 4 

where P. = (P.;E.) is the four-momentum of particle i. These 

three variables satisfy the relation 

s t u 
	

m 2. 

i 

We define two-body or quasi-two-body exchange reactions as those 

reactions where non-vanishing intrinsic quantum numbers are 
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exchanged in the t- or u-channel, where we call intrinsic any 

quantum number other than angular momentum and associated parity. 

One of the empirical facts resulting from all the experimental 

data on such processes is that forward or backward peaks occur if, 

and only if, the quantum numbers allow the exchange of a member 

of a U(3) singlet, octet or decuplet in the t- or u-channel(3). 

Here we define the forward and backward directions by following 

the baryon number. This is illustrated in Fig.4. 

The peaking of the differential cross-sections near 

t = o (u = o) for forward (backward) scattering, suggests that 

the amplitudes describing these processes may be dominated by the 

presence of singularities which occur near t = o (u = o) but in 

the kinematically forbidden region of t and u; this region is called 

the crossed channel. In the case of forward (backward) scattering 

the crossed channel which is closest to the physical region, and 

therefore expected to dominate is the t-channel (u-channel). 

To be more explicit, if the reaction we are studying is 

	

1 + 2 -* 3 + 4 	(s-channel) 

then its amplitude is related to the amplitude of the reactions 

	

1 + 5 ÷ 2 + 4 	(t-channel) 

	

2 + 3 	(u-channel) 

by analytic continuation. Therefore, if the t-channel S-matrix 

contains a singularity near t = o at a value of t which is non-

physical for the s-channel, such that the t-channel amplitude has a 

12. 
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maximum, one expects that the analytically continued s-channel 

amplitude will be dominated by this t-channel singularity for 

small values of Itl. 

1.2 	Early History of the Model.  

The theoretical formulation of the model starts from the 

Feynman diagram in Fig.5. The incident particles 1 and 2 

interact with each other by the exchange of particle e; this 

interaction leads to the particle systems 3 and 4. 

According to Feynman rules the matrix element Mfi  for 

the process i +f which is represented in the diagram has the 

following general structure: 

1 

Mfi = M13 
(t,m1

2
) 	 

2 
M
24 

(t
'
m
4
2
) 

t m
e 

where M
13 

and M
24 

are the vertex functions. On the mass-shell 

they are the matrix elements for the following processes 

1 + e 

2 + e+ 4 . 

When 	3 and 4 are quasi or real particles these vertex functions 

at t = m 
2 
 are proportional to the appropriate coupling constants. 

The factor (t m
e
2
)
-1 

is the propagator of the exchanged particle. 

14. 
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There. thus exists poles in the S-matrix, in the momentum 

transfer, t, which correspond to the exchange of a single 

particle. 

As an example, we consider nucleon-nucleon scattering. 

There is a diagram in which a pion is exchanged as shown in 

Fig.5. Neglecting spin, this gives a contribution to the 

scattering amplitude of the form 

1 

9 	 
t - m

2 
7r 

where g is the pion-nucleon coupling constant and mir  is the 

pion mass. We expect this pole term to dominate the NN scattering 

amplitude in the region t = m
2 
. In the centre-of-mass system, 

however, t = - 2q
s
2
(1-cose) where q

s 
is the s-channel centre-of-

mass three-momentum and so the singularity occurs at 

m
2 

toss = 1 + 

Since cose is here greater than 1, the pole does not occur in the 

physical region. Hence in order to reach a region of cos0 where 

one is sure that the pole dominates, it is necessary to extrapolate 

to beyond the forward direction as indicated in Fig.6. One may 

observe that, as the energy increases, the position of the pole 

moves closer to the physically accessible region. It has therefore 

been conjecture, as we stated previously, that at high energies 

the scattering amplitude in the physical region near the forward 

direction will be dominated by this type of pole. The approximation 

16. 
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of keeping only this pole in describing the amplitude near cose = 1 

is known (essentially) as the peripheral model and has had some 

success in describing high-energy experiments. 

The basic assumption of the peripheral model is that the 

scattering amplitude is given by a sum of one-particle-exchange 

(OPE) amplitudes, 

T = T
p 

+ T
v 
 + T

B 
 + • • • 

where p = pseudoscalar, v = vector meson, B = baryon, indicate 

the quantum numbers of the exchanged particles. As previously 

indicated the motivation for this assumption arose from the fact 

that each term will contain the factor 

1 

t - m 

The function (t - m2)-1  is largest at the smallest value of -t 

and thus produces the type of peak found experimentally. 

Let us consider the exchinge of a particle of spin £, 

as shown in Fig.7. Thus, we have in the s-channel 

s = 4(q
s
2 
+ 
	

t =-2q
s
2(1-coso

s
) 

where cos()
s is the cosine of the scattering angle in the s-channel 

centre-of-mass frame. In the t-channel centre-of-mass, if coset 

is the cosine of the scattering angle, and qt  the three-momentum, 

18. 
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we have 

s = -2q
t
2 

(1-cose
t
) ; t = 4(q

t
2 
+ M

2
) 	. 

If we look at the process in the t-channel, by angular momentum 

conservation, only the 	2th partial wave can contribute. The 

pole term is therefore 

20. 

g2 	g2 

2 P(cose
t) = 

t - m 	t - m
2 

Pt  (1 +-27t2- ) 
• 

Looking now in the s-channel and letting s 	, we see that if 

the pole term really dominates 

T(t,s 

  

2 
s lQ 

( 	
2qt

2 J 
t - m

2 S co 

 

 

t fixed 

where no functional relationship between m and t is assumed. 

This means that if particles with arbitrarily large spin can be 

exchanged, the scattering amplitude can diverge arbitrarily fast. 

This is unfortunate as experiments. show that cross sections do not 

diverge at high energy. In addition it has been shown from the 

axioms of field theory that there is a bound on the asymptotic total 

cross section called the Froissart bound which is given by 

lim a
TOT

(s) < c ln
2 

(s) 

si-oo 

The idea that the factor (t-m
2
)
-1 

is responsible for the 



peaking at small 	It! , although very attractive, is not borne 

out quantatively by specific calculations. Both the s- and 

t-dependence of the differential cross sections are found to be in-

correct. Specifically the main failings are : 

a) The momentum transfer distributions are not 

sufficiently peaked in the forward direction. 

b) The absolute normalization of the momentum 

transfer distribution is too large, even at 

small momentum transfers. 

Information about the exchange mechanism by 

which resonances are produced in quasi-two-body 

processes can be obtained from the t-dependence 

of the decay density matrices. The predictions 

of the elementary exchange model (using these 

exchanges) are found to be in gross disagreement 

with the data. 

d) 	The s-dependence of the cross-sections is in error 

for all but spin-0 exchange. 

1.3 	Absorptive Corrections to the Peripheral Model. 

In order to remedy these defects the idea of absorption 

was introduced. The peripheral absorption model has had some 

considerable success in explaining the production of resonances in 

quasi-two-body reactions, and the subsequent decay of resonances. 
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22. 

The main assumption of the peripheral absorption model, is that 

production amplitudes for forward or backward scattering must be 

modified to account for the effects of competing inelastic 

channels. 

The absorption idea has had a long history. It originated 

in low-energy nuclear physics in the suggestion put forward by 

Butler in 1957
(4) 

 . A full exposition of this can be found in the 

review article by Dar(5). In high-energy physics the model was 

first proposed in 1962 by Sopkovich,who treated the reactions 

NN 	KR and g 	Yi;(6). The model was then successfully applied 

to a number of reactions. A complete review of this can be found 

in the article by Jackson(). 

The basic assumption of the peripheral absorption model is 

that in reactions where fixed or moving poles are exchanged, the 

partial wave amplitude for the process is given by the traditional 

Watson formula(8)  

Tfi 
	2   { Sff Tjfi + T

j
fi Sii ) 

where T
fi 

is the partial wave amplitude for the process i 	f, 

j is the total angular momentum, and Sii  and Sff  are the 

elastic scattering S-matrix elements in the initial and final states 

respectively. For practical purposes we diagonalise the elastic 

scattering S-matrix elements, take them to be independent of helicity 

and parameterize it as a pure Gaussian. This is done because elastic 

scattering at high energies is dominated by the forward diffraction 



peak and the S-matrix is mainly diffractive and helicity 

preserving. 

Because we are usually unable to observe the elastic 

scattering of the final state particles we make the additional 

assumption that 

S
ff 

= S.. . 

This is strictly only true for pair-wise equal mass scattering. 

Then our formula becomes 

S 

	

fi 	
. 

 

This modification has the effect of making 

j 

	

T . 	T . 

for large values of j while 

	

T 'i 	TJ  

	

fi 	fi 

for small values of j, where the influence of the competing 

channels would be felt the most. Thus, the low partial waves are 

suppressed, with the s-wave almost completely eliminated. When the 

partial-wave series is resummed, the modified amplitude looks quite 

different from the original Born amplitude. 

23. 



There is usually considerable freedom of manoeuvre in 

calculating pole graphs for peripheal collisions, which arise from 

three main sources : (i) there is often a wide variety of 

particles to be considered as intermediary; (ii) there are often 

alternative couplings possible at the vertices and (iii) the 

values of the coupling constants may usually be chosen freely. 

Rather than use arbitrary D to F ratios, and relative 

magnitudes of vertex couplings it seems preferable to assume some 

higher symmetry in which the Lagrangian and the coupling constants 

are uniquely determined, and compare the model against experiment. 

In this work we assume the U(6,6) symmetry(9). The U(6,6) effective 

interaction Lagrangian is given by 

= 	9 (J5  05  + Jii0p  ) + h(J5 05  + jp°p) 

where 05  and 0
u 

are the pseudoscalar and vector nonets and g and 

h are the "U(6,6) coupling constants': 

1.4 	Criticism of the Model.  

The differential cross section for the exchange of a fixed 

pole of spin J behaves like (see previous section) 

da 
= f(t) s2j-2  

dt 
S 	co . 

It is now well known that the inclusion of absorptive effects, as 

in the present work, cannot effect the energy dependence of the 

24. 



`differential cross section
(10)

. Since all production cross sections 

decrease with energy at sufficiently high energy, only spin-0 

exchange can be expected to give agreement at all energies. The 

use of the absorption model for the exchange of elementary particles 

with spin can only be expected to produce agreement with experiment 

over a limited range of incident momenta. 

By treating the spin of the exchanged particle as virtual 

we are able to improve the situation for higher-spin exchange. This 

idea, which was first put forward by Regge(11), is to treat the 

spin as a function of the momentum transfer, J 	a (t), i.e., 

as a continuous variable. In this case our momentum transfer 

dependence is 

da 	2a(t)-2 
- f(t) s 

dt 
S 	co . 

The s-channel reaction zmp 	n has the following 

quantum numbers in the t-channel: Y=O, B=0, G = +1, I = +1. The 

only possible exchanges are the 

• 

p(.765 GeV, JPG  = 1 

and 

g(1.650 GeV, JPG 
	

• 

A fit to the momentum transfer data above 4 GeV/c was made by H6hler et. 

alcigbsing the above equation over the range 

25. 



- 1.0 < t < 0.0 (GeV/c)
2 

they obtained 

a(t) 	(0.57 + 0.01) + (0.91 + 0.06)t . 

Their fit is shown in Fig.8. which is referred to in the literature 

as a Chew-Frautchi plot. It is interesting to note that the 

extrapolation of the a(t) determined for t <0 (scattering region) 

into t >0 (resonance region) intercepts 	a = 1.1 at the mass of 

the p, and a = 3.03 at the mass of the g. J=1 is, of course, 

the established spin of the p and J=3 is the preferred experimental 

value for the spin of the g. We have therefore reached the 

remarkable phenomenological conclusion that for charge-exchange 

scattering the t-channel singularities are not fixed in the J-plane, 

and that moreover they seem to be constrained to move in such a way 

that when projected into the resonance region they intercept integer 

values of J which correspond to the physical resonances which can 

be.exchanged in the t-channel. 

With the aid of Reggeization we are able to produce quite 

remarkable agreement with the data for the s-dependence of a large 

number of reactions. Thus, the problems of high spin exchange 

vanish with the introduction of the Reggeization procedure. 

26. 
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1.5 	Reggeization. 

In the simple Regge-pole model one assumes that the 

amplitude which describes peripheral processes is dominated by 

a crossed-channel singularity which moves in the J-plane. The 

locus of these poles is described by a(t) (or a(u) if we are 

considering the u-channel) which is called a Regge trajectory. 

Each trajectory possesses definite quantum numbers such as 

isotopic spin I, parity P, hypercharge Y, baryon number B, G-parity 

(in the case of non-strange mesons and baryons) and signature T . 

When a(t) is extended to 	t> 0 it intercepts integer values 

of a at t = t
R' 

where t
R 

equals the mass squared of resonances 

having the quantum numbers of the crossed channel and spin J = a(tR) 

where (-1)j  = T (for baryon trajectories the signature is given 

by (-1)
J-i

). 

The specific result of the model for the case where there is 

only one trajectory and where we neglect the spin of the external 

particles is that the scattering amplitude for large s is given 

by.  

A(s,t) - 

( 
s(t) (t) 	

a(t) 

r(l+a)sinTra(t) 	so  

where 	(t) = 1 + T e-iTra 
(t  ) is the signature factor, so  is a 

scale factor traditionally taken to be 1(GeV/c)
2 
and a(t) is the 

Regge trajectory. 

We may now briefly examine the function of each term in 

the above equation. s(t) is the residue function, which is related 

28. 



29. 

to the coupling constant in the one-particle-exchange (OPE) model. 

For the process 1+2 4- 3+4 it is assumed that 

B(t) = Y13(t) Y24 (t) 

which is called factorization. The term fsinTr a(t) 1
-1 
 gives: 

poles at integer values of a(t) and can be compared with the 

propagator in the one-particle-exchange model. The signature 

factor E(t) gives a zero at integer values of a(t), which 

correspond to wrong signature points (values of a such that (-1)a= -T) 

which means that in the resonance region poles occur on a trajectory 

in steps AJ=2 at values of a where (-1)a  = T. The factor 

{ r(l+a) }
-1 
 compensates the poles of 	sin 7ra(t) for negative 

integer values of a , which are nonsense values of the spin. The 

combined effect of E(t){ r(l+a)}
-1 

is to give a zero in the Regge 

amplitude at wrong signature nonsense values of a ; since these 

values of a occur in the scattering region the differential cross 

section will have a dip-bump structure. 

A drawback of the absorption model with moving pole input is 

that for proper application it requires a knowledge of the elastic 

scattering amplitudes in both the initial and final states. However, 

there are only a limited number of final states for which the 

elastic scattering parameters can be evaluated, e.g., pn 4- np and 

Tr P 	Tr°n(13). Thus, we are forced, if we want to keep the model as 

free as possible of arbitrary parameters, to make the assumption 

that the initial and final state scattering parameters are the same. 



30. 

A criticism of the Reggeized absorption model is that 

although the absorptive correction prescription is an unambiguous 

parameter-free technique of introducing Regge cuts, it is probably 

not the complete answer on cuts. In particular, cuts other than 

Regge pole-Pomeron cuts are not included. 

The many attempts to justify the absorption model 

(14) 
prescription are not entirely convincing 	. At present we must 

regard the absorption prescription as an ansatz which can only be 

tested by comparison with experiment. 

In spite of these difficulties the peripheral absorption 

model with moving poles is able to correlate a large number of 

experimental facts. Thus, even though the theoretical basis of the 

model is very shaky we believe that the prescription predicts 

production amplitudes which are a good approximation to the actual 

amplitudes. The prescription, as we use it, is absolutely devoid 

of any free parameters. Thus, while making comparisons with the data 

on s- and t-dependences of the data we are able to compare absolute 

normalizations as well. 

Previously we mentioned the considerable freedom of manoeuvre 

in calculating pole graphs for elementary particle exchange. 

Reggeization of such graphs gives rise to additional freedom which has 

three main sources: (i) the possibility of different exponential 

damping factors in each vertex coupling factor; (ii) a choice of various 

kinds of dip mechanisms at nonsense points and (iii) the impossibility 

of measuring some of the coupling constants for higher spins, e.g., 

gA
2
FIN • This freedom results in the t-dependence of the differential 

cross sections being essentially arbitrary. 



1.6 	Description of Thesis.  

The present work is concerned with the application of 

the absorptive peripheral model with fixed and with moving poles 

exchanged. The particular reactions considered are of the type 

oi+÷ 1 3/2+ 

of which the only ones for which data exists are 

+ 	
p 0 A

++ 

irP4-w 0 A
++ 

+ 	*0 ++ 
Kp÷KA 

- -- - 70  
Kn÷ K 	A• 

We present a detailed account of our method of calculation. 

Firstly, we calculate the pole graphs for spin-0 and spin-1 exchange 

and with absorptive effects included compare these with the available 

experimental data. 

The spin is then Reggeized and the spin-2 contribution is 

obtained from the spin-I exchange amplitude by the assumption of 

strong exchange degeneracy. These results are then compared with the 

experimental data. 
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CHAPTER II  

THE U(6,6) ABSORPTION MODEL  

2.1 	The U(6,6) Symmetry Scheme.  

In any given reaction, there are usually a multitude of 

possible particles which can be exchanged. Thus, the couplings 

at the three-point vertices must be obtained. Some of these 

couplings can be fixed by appealing to SU(6), universality or 

isospin invariance. However, we cannot fix all the couplings 

without using a higher symmetry scheme or by choosing the unknown 

couplings to be parameters to be fitted to the data(15). We 

choose the former approach and use U(6,6) 0 0(3,1). 	In this 

section we illustrate how this group can be used to calculate the 

pole graphs for all reactions of the type 35 0 56 4- 35 0 56 

and 56 4 56 4- 56 0 56 which proceed by 35 exchange in the t-channel 

and 35 @ 56 4- 35 G 56 which proceeds by 56 exchange in the u-channel 

in terms of two coupling constants which can be determined 

experimentally. Since the 35-plet contains the 0 octet and 1 nonet 

• 3 
and the 56-plet contains the

+ 
 octet and /2

4. 
 decuplet, this accounts 

for a 16'rge section of the two-body and quasi-two-body processes on 

which data is presently available. In this symmetry scheme, higher 

multiplets can be regarded as angular momentum excited recurrences of 

lower ones. 
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The U(6,6) algebra has 144 generators 
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B 	b8 , 
	

b 

)
A 	

(
aa 
	

a 
	YR)  a  • 

R = 1,2,..., 16 ; i = 0,1,...,8 ;A,B = 1,2,...,12 

and the 	are the Dirac matrices 

YR  - 1 . Y a = Yu , 
 pv Y11 ,YV  ) 	iYu  Y5,Y5  = YoY1Y2Y3 • 

TheT . are defined by I  

1 Ti  = 2 A. (i = 1, ..., 8) 

T =
o  

where the :A. are defined by Gell-Mann
(16) 

The basic spinor representation (quark) transforms under 

the group in the following way: 

S
A 

ip
B 

= 	(exp (icRi  TRi) )A
B 

By taking products of quark representations and reducing to 

irreducible components higher representations can be constructed. 

The product of quark and anti-quark gives 

with 

S
A 
B 



12 	= 1 4:0 143 

and the product of three quarks gives 

12 0 12 0 12 	= 	220 8 364 ED 572 el 572 

where representations are denoted by their dimensions. 

Two of the above multi-spinor representations are of 

interest to us; (i) the traceless meson tensor 4)AB(143) and the (ii) 

fully symmetric baryon tensor 
IP(ABC)

(364). 

Under SU(3) 0 U(2,2) these decompose as 

143.  = (8,15) CD (1,15) 	(8,1) 

364 = (10,20) CD (8,20) 9 (1,4) 

Thus the 143 contains the pseudoscalar meson octet and 

vector meson nonet and the 364 contains the baryon octet (i+) and 

decuplet (3/24'). 

The explicit decomposition of the meson tensor is 

thA 
	= t 
B 	

f iR1 
T 
 JA

B esRi 
'  

f  

= 	(1-- )
b 
 ( 	+Y505 

+ TY 5 0
i 	

0
i 

+ is P

i 
) 

1 a 	u u5 u 	 uv a 
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for a,b = 1,2,3 ; (1,0 = 1,2,3,4; the trace term being included. 

We testrict to the mass shell by setting P
2 

= p
2
, where 

is the meson mass, by application of the Bargmann-Wigner 

equations 

—11) 4(P) = 0  - 

This gives the relationships 

0=0, 

iP 	= 1-1 05  p P5 

iP 0 = p0 
p pv 

'hi 0115  = 

i uO 	= P 0 - P 0 
v 	v p 

With these relations and the equation of continuity of the vector 

field 

P 0 = 0 
11 V 

we get 

cl)AB(P) = (Ti)ab(-(1+5bipp) Y
5
05i + (1 + P/uv)Yp  0:(1))):. 

Then 0 (P) and Oip(P) are the nonets of pseudoscalar and vector 

fields (in momentum space) respectively. Here pp  and 	pv  

are the pseudoscalar and vector masses respectively. In the exact 

symmetry pp  =pv  = u . 
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The decomposition of the baryon tensor is performed 

similarly to give 

(c 	N r 1d  
* 	

+ 
(ABC) = D(abc),aai 2/6- abd 

f 
cbcd

N 
 (i3y) 	N

d 
c d 	b tya j 	

) 

Here N is the i+  octet 

mN(a6y(p) = ((fa + m )15C)co  NY(P) 

and D is the 
3/2+ 

 decuplet 

D(ciai) (P) = 
(y

p-- C)cta DY
(P) 

(a 'C) 	PPDv  (P)  - OyDP  (P)) 
2 	"  
mD 

with C the charge conjugation matrix 

C
-1 

y0  C = - y
o 

• 

The three meson vertex is described by the unique effective 

interaction Lagrangian 

= 4)B
A  
(1) dab 

with 

P,P') 
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J
A  B

(P,P') = h( (DA
c
(P) ACA(-12") + 1)A

C
(41 )

A
(P)) 	• 

In this expression 'h is the coupling constant, P is the 4-momentum 

of the incoming meson, P' the 4-momentum of the outgoing meson, and 

q = P - P'. 

Evaluating the traces we find eventually that 

05(-q)J5(P,P') 	Ou(-q) Jp(P,P') 

where J
5 

and J 	are the pseudoscalar and vector currents 

respectively. 

2.2 . 	Evaluation of Born Graphs.  

The relevant Born graphs with U(6,6) symmetry are 

evaluated to obtain the s-channel helicity amplitudes for 0 and 1 

exchanges in the t-channel. These pole graphs involve the exchange of 

35 .mesons, which couple uniquely through U(6,6) to 56 0 56 and 

35 0 35 . The three-particle vertices are written as 

X5BM = 0(ABC) 
B(ABD) 

m
CD 

• 
hfM,M1 	

A 
A 
C 

MMM 
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where A,B,C and. D are the U(6,6) indices. 



Retaining just those parts of the currents in which we 

are interested, we have, for the pseudoscalar current 

J
5 

= J
5
(0) + J

5
(D) + J

5
(V) , 

where 

P
2 	

- J
5(0) = 

g (1 + 	) 	(Ny5N)D  4. 
 2 F-S, 

4m
B 	5  

J
5
(D) = g(1 + um) 

J5(V) = -3h QA(0x05)F, 

and for the vector current 

J
P 
 = J 

P 
 (0) + J 

p 
 (D) + J 

P 
 (P) + J 

p
(V), 

where 	, 	 • 

J (0) -11 	
n2 

 (1 + 	) (RN) 
2m8 	2m4. 	F+3S 

  

+ (1 + 111) (R 
r 

P2 N)  2 
m
B 	

D+-
3
F-S 

  

J(D)=- 2-- 0 -I- 	
uvKX 	

PvQ1(050)G g 	2 

B 

2 
J (P) = h (1 + 	) P (0505)F  , 

211 
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jp(V)  = 3h  cpvKA PV QK (FMOD+2S, 
2Mm  

where 

r = 	P iflYg s 
P 	TIVKA 	V K A 4.1 

P and Q are the sum and difference, respectively, of the incoming 

and outgoing momenta at a vertex, and F, D and S are the anti-

symmetric, symmetric and singlet U(3) couplings, respectively. 

We have also introduced explicitly a G-coupling for the decuplet-

octet-meson vertex defined as 

(15NM)G 
	m 
= VT 5rst 
	NV 

t
u 
 usv r 

where M,N and D are the usual meson and baryon fields. The 

arises since since we have normalised to PPff°  . In these currents we take 

2 
P and Q

2 
on-shell, since the three-particle vertices are derived 

on the assumption that all the particles are on the mass-shell. 

• 
	Since there is no definitive procedure for mass splitting 

in higher symmetry schemes, we have adopted a simple prescription 

which seems physically reasonable. For the U(6,6) meson mass we 

take p = .63 GeV/c
2
, the average of the 0 	and 1 nonets, and 

for the U(6,6) baryon mass we take m = 1.27 GeV/c2, the average 

of the i+  octet and 
3 
 /2 	decuplet. Where shown we have used the 

average mass of the incoming and outgoing particles at a vertex, 

since these terms arise from Feynman rules rather than the symmetry 

scheme. In the kinematics we have used the exact physical mass of 
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the particles. 

The two coupling constants, g and h, which appear in the 

currents are obtained from the known pion-nucleon coupling constant" )  

giving 

2 	2 
g NNIT 	

2 
- 14.9 = — (1 + 2m

)2 (1  _ 	) 0)2 

4w 	 4n 	4m
B 
 3 

) 
and from the p±2n decay width

(18 
 , giving 

• 2 
gPITIT  

4n 
- 2.09 = (3h)2  

4Tr 

It is now a straightforward matter to write down the Born 

amplitudes in terms of these currents for the prkesses in which we 

are interested. Denoting the pseudoscalar and vector exchange 

amplitudes by Tp  and Tv  , respectively we have for 

_ 3 
i 	-* 1 	/2 

T = J5( J (V) 
t - M

2 	5 ' 

Q 
= 	J (D) 

1 

t 	M2 (- gpv 
Q 
- 	v 2-2-11) j (V)  
M 

where M is the mass of the exchanged particle and the metric is 

g 	= (+1; -1, -1,-1). 
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Explicit expressions for the helicity amplitudes are 

evaluated using standard techniqueS. The contributions from the 

Q Q 
v
/M
2 

term in the spin-1 propagator, which when Reggeized would 

lead to 14 singularities, are eliminated by appealing to pair-

wise equal mass kinematics. These terms are non-leading in s. 

2.3 	Parameterization of Elastic Scattering. 

Elastic scattering is experimentally characterized by 

a forward diffraction peak which is to a very good approximation 

exponential over the range 0.1 I t k 0.5 (GeV/c)
2 
, i.e. 

Aa = A e-Bit' • 
dt 

The partial wave decomposition of the elastic scattering 

amplitude (see appendix A) is, in the case of spinless external 

particles 

T(e) 

   

(2t+1) a 	(cose) 
8.ff ,/§ . 	2P 2. 

where 	a
t 	

-itz  = 1 - Sz  = 1 - C e
2iSt 

-2ImS 	2iRes 
= 1 - 	

, e 

For low partial waves, where there is a lot of absorption Im d 	is 

large and 	az  ÷ 1. For high partial waves St 	
2 

÷ 0 and 	a + 0. 
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Thus a represents the opacity of the absorbing 

region; 	0 	1. Since we expect an imaginary amplitude , 

al' is —largely real. 

We can convert the partial wave analysis into impact 

parameter form using 

t + 	= Pb 

and the approximations 

Pt(cose) = Jo  ((t+ i) 2sin 	) 

= Jo( b/ Iti ) i.e. Ppb  (cose) = Jo  (b iltI ) 

1 
f1P2

' 	P 
(cose) d(cose) + 	o ilt1 d ilt1 J

o 
(b/ ItI) 

CO 

4- f 	P db 
0 

2, =0 

which are valid for 0 «1 	and S + 	Then 

T(e)  
&Dr§ 

00 

i P f 	a(b) Jo  ( b ✓  Itl ) bdb 
0 

The appropriate form for a(b) is a Gaussian 

a(b) = C e 
	/R2 
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since this gives 

T(0) 	. 
8'rr FS- 

43. 

R
2 

PCR2  - I t l 
i P I

. 	

e
-b2/R2 

J0( b /It! ) bdb = i 	e 	
4 

 

0 

  

R
2 

t I ' 
- -2— 	I da = 	CR2 

dt 	 2 
e 

   

• Thus R can be found from the slope B of the differential 

cross section 

R = 

C is found from the total cross-section using the optical theorem 

°TOT 
27r R2 • 

Thus, we obtain 

S(b) = 1 - Ce
-b2/R2 

or 
	1 - Ce- (t+i)2/R2p2 

This is often written 

- 	C 	e-k (t +1 )/R2P2  

the values of C and C' do not differ significantly. 



2.4 	The Absorption Model.  

This is a convenient point to examine the formalism of 

unitarity for two-body scattering. The unitarity of the S-matrix 

gives 

s's = 1 	. 

Putting 	S = 1 + iT 

and taking T as a symmetric matrix (which is possible whenever 

S is time-reversal invariant), unitarity gives 

2 ImT = T
+ 

T 

In the one-particle-exchange (OPE) model, 

= 1 (Born graphs) 
= TBORN ' 

Since the Born terms are real, the term ImT is identically zero. 

In quantum electrodynamics, the Born term TBORN  is proportional 

to a the fine structure constant, and T+T is then, in fact, zero 

too, to lowest order in a . In strong interactions the coupling 

constants are large and so is the term T
+
T. Since the perturbation 

theory of strong interactions does not converge, one has to modify 

the Born terms in order to get a unitary model. 
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One such unitarizer is the K-matrix which is related to 

the usual transition matrix T by the expression 

T = 2K + iTr Kp T 

where p is the density of states factor. Most authors follow 

Dalitz(19)  and define new quantities 

T' 
	

= 	(702
1 	

I (u))1  

K' 	= 	(TT) 	K (7p)1  

which are related by an expression 

T' 	= 2K' + iK'T' 

which has the advantage of involving only channel labels. 

In terms of the usual S-matrix this gives 

1 + iK 
S = 1 + iT 

When K is small we get 

= 1 + iT 	1 +2 iK 

so we identify 

45. 
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T = 2K. 
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The use of the K-matrix automatically leads to a unitary 

S-matrix. This is so because the Born terms are real 

and symmetric, which are exactly the requirements that the K-matrix, 

with which they are identified, has to fulfill. 

The expression relating 	and K' becomes, with channel 

labels, 

T' = 2K' 	+ iX K' 	T' 
a$ 	 ay 	yt3 

The first term is the usual-Born amplitude and the second term 

including the summation over all channels represents the unitary 

correction. 

. 	The series expansion for the T-matrix is 

	

= 21c3
ay 

 + 2i K ' 	+ 	K 'ty  :t 	K:
as 	 ro ds 

+ 2i3  K' 	K' K' 
	

KEG  + 
ay yd c.:  

where the summation over repeated indices is implied. It is the 

idea of the absorption model to approximate this by 

T' a$  = K' + iK K' + 	K' 

	

2 	
.aa 	as as 	as aa 

- 	' 	' K K K - K' K' K' 
aa ao dB 	ay ya aa + 

II • • 



K' 	 f3 + iK' 	(K'a 
	a 
+ i K's 

	s 
K'

a 
 + ...) 

af3 	010  

+ i (K' 	+ iK' 	K' 	+ ...) K' 
as 	ay ya 	 as 

= Kai  + iK' af3 	af3 

T' 	T' t30 	aa + i.  
2 	 2 

K' af3 

T' 	= 	2K' 	+ iK' 	T' + 	i T' 	K' 
af3 	af3 	af3 	f30 

 act 	cta 

= 	K' 	+ iK' 	T' + 	K' 	+ i T' 	K' af3 	a6 	RR 	as 	act 	a f3 

a ( 1 + i rad + 1 + ' 
aa Kai 

= 	K' 	S' 	+ 	S' 	K' 

	

a 	1313 
 act as 

Making the identification K = TBORN we obtain the traditional Watson 

formula (8) 

	

Tab = / ( 	(rBoRN);:o sin 	.SCoa (TBORN )C0 } 

In this way the effects of unitarity are allowed for by 

assuming initial and final state interactions consisting of unitarized 

elastic scatterings, with no helicity changes. The absorption 

approximation involves truncation over only one set of intermediate 

states, and the elastic correction factors contain the combined effects 

of many complete sets of intermediate states. 
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Such an absorption calculation is in principle simple 

and elegant. The approach fails altogether for the Regge pole 

model for two reasons. Firstly that the Regge pole model is 

often used to calculate elastic scattering, and secondly that 

the real K-amplitude cannot be identified with the complex Regge 

pole amplitude. 

Another form that is sometimes used is 

	

T' 	4/S T 1/§ 

	

a 	act a f3 13(3 

which is due to Sopkovich
( 

. 	In practice we usually do not know anything about the 

elastic scattering in the final state, and so take S 	= S act 	Oa ' 

.so that both formulae reduce to 

a13 
T S 
a$ sa 

As previously noted this is exact only for pair-wise equal mass 

scattering. 

Now we have 

ABS f T 	• (T 	Si  
ex 	el 	

S i
e 	ex 

)  
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If we write 



S
el
- = 1 + i T

el 
 

We have 

TABS . T
ex 

+ i (T
ex  Ti el  + Tel Tex) 

 

We can think of this diagramatically as shown in Fig.9. 

The first term is the single particle exchange while the 

other terms correspond to double particle exchange terms. In the 

absorption model the intermediate particles are put on the mass-

shell. This only includes corrections due to elastic scattering 

in the initial and final states. It would seem reasonable to also 

include other intermediate states. This is, in addition to diagrams 

like 

alalb and albib 

we should include terms like 

49. 

where c 	a or b. 



co 

(a) 
	

(b) 
	

(c) 

First-order absorptive corrections to the pole graph: 	particle exchange, • 
ccg 

--on-shell meson, 	on-shell baryon, 	elastic rescattering. 



2.5 	Summary of the Model. 

The OPE helicity amplitudes are calculated employing the 

U(6,6) couplings, and their partial wave projections found. These 

partial wave amplitudes are then multiplied by the absorption 

factor of the previous section, and the partial wave series resummed 

to give the modified amplitudes. These are used to calculate the 

differential cross-section, and the spin density matrix element in 

the case where one of the particles is a resonance. 

This technique provides an essentially parameter-free model 

of nearly all two-body and quasi-two-body processes for which 

differential cross-sections exist, and the complete set of 

calculations has been performed by the Imperial College group
(20,21,22,23) 

• 

The only arbitrariness in the model lies in - 

a) The choice of masses to be used in the U(6,6) 

currents; 

b) The choice of absorption parameters for final state 

elastic scattering, since this is usually inaccessible 

experimentally. 

As pointed out previously the OPE graph for vector meson 

exchange has the wrong energy dependence, and the model is not 

expected to be successful for reactions doMinated by such an 
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exchange, except over a very limited energy range. The main 

application of the model, with fixed pole exchange, has been 

in processes dominated by pseudoscalar exchange, but where the 

density matrix elements reveal an admixture of vector (or tensor) 

exchange. The hope is that the model will give a reasonable 

representation of the vector components over a reasonable range 

of intermediate energies. 

52. 



CHAPTER III  

FIXED POLE MODEL FOR 01-4.  4- 1- 3/2+  

3.1 	Introduction. 

In this section we present calculations of the 0ff  4- 1 3/2+  

processes for which data is presently available. U(6,6) symmetry is 

used to write down the peripheral matrix elements for pseudoscalar 

and vector exchange, and the absorption model is used to allow for the 

fact that there are many competing open channels available to the 

initial and final states. 

In previous calculations on 0i+ 	1 3/2 	scattering 

processes with fixed pole exchange using the absorption model, only 

the contribution of the t-channel singularity nearest the physical 

region, the u pole, was considered. Generally this gave a good 

result for the reactions(21)  

w
+
P 	p

o 
A
++ 

K A 
*0 ++ 

Data on K-n 	A at high energy has only recently become 

available(24). With elementary u and absorptive corrections there 

is a discrepancy between the experiment and theory of about a factor 

of two in normalization. 
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Here we consider the contributions of the t-channel 

singularities closest to the physical region, the 7 and the p poles, 

and, of course, the interference between the two. Rather than use 

an arbitrary mixture of 71-  - and 	p-exchange matrix elements 

which would be varied at will to fit the, experimental data, we use 

the U(6,6) symmetry scheme to fix uniquely the relative magnitude 

of each contribution. The absorption parameters used are given in 

Table 3. 

3.2 	Comparisons with the data. 

In figure 10 we show the momentum transfer distribution 

resulting from an absorbed 
	

exchange for the process Tr+P 	p
o 
A
++ 
.
(25,26) 

We see that the general structure of the theory seems to be correct, 

i.e. a sharp forward peak, due to the proximity of the pion pole 

followed by a broad relatively flat distribution. The normalization 

which is experimentally somewhat variable, is reproduced in the 6.95 

and the 13.1 GeV/c theoretical distributions. 

In figure 11 is shown the available experimental data (27,28)  

++ 
the reaction 	K+P 	K

*o 
 A 	for PLab  ?. 3.0 GeV/c along with the 

predicted theoretical distributions. We see that although absorbed 

exchange alone adequately represents the data the addition of 

p exchange certainly results in a poorer fit. This fit gets worse 

with increasing energy, of course. 

on 
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FIG. 10. 
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In figure 12 the data on the reaction w+P 	w
0++ (25,29) 

at 4 and .8 GeV/c is plotted. The theoretical curve 

is at 8 GeV/c. We see that the theory fails to reproduce the 

normalization, the s-dependence or the t-dependence of the 

experimental data. Since 	w
+
P 	

woo-F.+ 
proceeds by p exchange the 

calculations of 4 GeV/c will produce an answer which is the same 

as that at 8 GeV/c. This shows most clearly the failings of the 

absorption model with fixed pole input. 

The density matrices for the K
*
(890) decay inK+P+K*oA

++ (27) 
 

at 3.5 GeV/c are shown in fig. 13 . For elementary pion exchange 

without absorption we have 

poo =  1 • 

From Fig. 13 we see that 

POO 	
.8 	(cose .+1) . 

This density matrix element definitely indicates that pion exchange is 

* 
the dominant mechanism by which the K (890) is produced, at least in the 

forward direction. 

We will discuss the density matrices further when we Reggeize 

our amplitudes. Thus to avoid needless repetition we will end our 

discussion here. 
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CHAPTER IV  

REGGE POLES 

4.1 	Sommerfleld-Watson Transformation.  

For the partial-wave expansion 

CO 

A(s,z) = 	(2t+l) At(s) Pt(zs) 

=o 

we can write equivalently 

(2t+l) A(s,t) Pt(-zs) 
A(s,z) = - 	d2 	 

2i c 	sins, 
0 

where we integrate around the contour shown in Fig.14 , picking up 

one term in the sum for each zero of simrt enclosed. We have assumed 

that A(s,k) is an analytic function of t throughout the right-half 

£-plane with only isolated singularities. The contour 	co 	is 

chosen to include the positive integers and zero, but to avoid any 

singularities of A(s,k). The integrand has a pOle at each integer, n, 

when 

sin (70 	(i-n) 

R, -* n 
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The residue of the pole is thus 
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1 (2Tri) 
(2n+1) A(s,n) Pn(-zs) 

von it.  

 

  

2i 

 

= - (2n+1) A(s,n) Pn  (zs) 

where we have used the fact that 

Pn (-zs)  = (-1)n  Pn (zs)  

So Cauchy's theorem gives (note that the clockwise path Of integration 

-gives a negative sign) our original partial-wave expansion as 

required. 

Let us assume that the only singularities of A(s,t) for 

Ret > - 	are poles with Im z >0. So we now displace the contour 

c
o 	

to 	c
1 	

as shown in Fig.15 . If there are no singularities 

of A(s,z) to the line L1  then 

c0 	c
1  

It can be shown that the contribution from the semi-circle vanishes 

at infinity. 

If we now displace the line parallel to the imaginary axis 

towards the imaginary axis, we shall encounter singularities of A.(s,t). 
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FIG. 15. 



Suppose that the "leading singularity" encountered (i.e. the 

right-most in the complex k-plane) is a pole at t = am(s), 

with residue am(s), so that 

64. 

A(s,k) 
am(s) 

 

as 	2, 4- am(s) 
- am(S) 

Then in exposing this pole, as shownin Fig.16 , we get 

A(s,t) = 
1 

(2k+1) A(s,k) 

c2 

P(-z
S
) 

dk 
2i sin Trk, 

 

4,1 

 

Pam(s)(-zs ) 
2rri (2am(s)+1) am(s) 

sinff a
m
(S) 

  

1 

'2i 
(2k+1) A(s,k) 

c2 

 

dQ 
sinTrk 

(s) + 1) am(s) 

As 	z 	co 	we have 

gm(s) (-zs ) 

 

sin Tram(s) 

 

la+i 1-  i 
pa 	(z ) -->- Z 

Z 	co 

, a / negative integer 

So, since 	Re am(S) > L2  in Fig.16 , the second term in the above 

will dominate asymptotically if Re am(s) > - / and we have 
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FIG. 16. 



A(s,t) 	ti 	(Zs) 
zs-• 

Re(am(s)) 
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If the singularity which we meet in deforming the contour is a branch 

point at ac(s), we can draw a branch cut in the t-plane running back 

towards negative 	Re t as shown in Fig. 17 . 	The amplitude is 

then given by 

1 
A(s,t) - 

 

(22.+1) A(s,t) 	s  
Po (-z ) 

sin Trt 
dz 

2i 
B. 

 

 

and its asymptotic behaviour will be 

Re (a (s)) 
A(s,t) 	(1, 	(z,.) 	c  

Z 

apart from logarithmic factors. 

As far as we know, the only singularities in the k-plane 

are likely to be poles and branch points. We can minimize the 

contribution of the vertical path of integration by moving the 

contour back to Reg, = 	and obtain 

A(s,t) = 
2i 

(2t+1) A(s,t 	
P
t 
 (-z

s
)

) 

	

d2. 
simrt 

CO 

- I w 

i poles 

Pails)  (-Zs) 
.(s)+1) $.(s)  

sinm ails) 



4 'rat 

B1  

/Reit 
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FIG. 17. 



P2., (-Zs 
 ) 

- X 	--1 	(2t+1) A(s;k)  	dt 
2i , 	sinTrt 

j cuts '-j 

The first term, the so called "background integral", vanishes as 

z
s 	

, leaving a sum of "Regge poles" and "Regge cuts". The 

function 	ails) is referred to as a "Regge trajectory". 

Froissart(30)  showed by studying unitarity in the t channel 

that cross sections cannot increase indefinitely as a positive power 

of energy if the forces are of finite range, which is equivalent to 

requiring no zero-mass particles and is all right for the strong 

interactions. Thus a
TOT .

and da/
dt 

are bounded and we may conclude 

a.(S) 1 for s 0 

Combining this with the requirement that all trajectories have positive 

slope shows why no trajectory lies above.ai(s = o) = 1. 

What.  is going on when the trajectory goes through J=0 at a 

negative square mass? The differential cross section goes to infinity 

unless the residue vanishes in Such a way as to cancel the denominator 

as ai(s) 	0, removing the pole at this one point. This must happen 

since unitarity does not allow the cross section to become infinite. 

Thus, as Gell-Mann first pointed out, the residue vanishes and no 

ghost state of ',Ilaginary mass appears. 
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Asymptotically a cut will give a contribution to a 

transition amplitude of the general form 

j- 
a (t) 
c 	

2' 

A(s,t) 	g(k,t) 	d. 

(background) 

where a
c
(t) is the branch point of the cut and g(k,t) is obtained 

from the discontinuity of the partial-wave amplitude across the cut 

which has been chosen to lie to the left of the cut. The region 

of the cut away from ac(t) does not effect the asymptotic behaviour 

so only the discontinuity close to the end points needs to be 

considered. If the discontinuity is regular at the branch point, 

we may expand g(k,t) in a Taylor's series 
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g(k,t) = g (t)) + (k - ac(t)) I 	ag  I 

j 
= ac(t) 

+. 

Wept 

Bo(t) + 	ac(t)) 	(31(t) 
	

• • • 

ac  (t) 

 

A(s,t) = 	g(k,t) d2 

  

(background) 

ac(t) 

kin {F) 00(t) + ( k- ac(t)) pi  (t) + 	1 e 	o 



ac  (t) 
tin 

1 

dL + e, ( ) 	(2-- ac(t)} e A(s,t) = 
so dt+... 

ac(t) 	tln 

a
c 
 In 

so  

• • • 

ac(t) 

1
(t) (-1) 	 + . . 

[÷
2 

= f3o(t) 
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••• CO 

ac(t) 
	

[so  

In { L-- so  

{ 

ac(t) ln -:0- 

e 
al (t) 

e 
ao(t) 	 

   

12 

 

In so 

  

{ac(t) ink) 

_ ac(t) 

so  

• 

ac(t) 
S 

ac(t) 
S 

= a(t) 0 	 (t) 
ins 

    

 

lns) 2  

• • • 

  

   

In general, if the discontinuity behaves as 



— a (t) I 
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at the branch point, the asymptotic contribution of the cut is 

,cgc(t) 
i  

0 

{ in (11 	i.  

.where the phase in the denominator comes from keeping track of the 

phase of the signature factor. This only differs from a pole by 

the logarithmic factor, but, of course, different models for 

g(t,t) can give different sorts of behaviour. 

In the above series the first term represents a constant 

discontinuity while the other terms represent discontinuities that 

vanish at the branch point. 

It was hoped for a long time that the only singularities 

in the complex J-plane which would need to be considered would be 

simple poles. A model based entirely on poles has been very successful 

in explaining many of the features of high-energy scattering data(31); 

in particular, the simple power law behaviour of the differential 

cross sections. However, there area number of facts that cannot be 

explained in terms of a model based only on poles. These can be 

briefly summarized as: (i) Polarization Phenomena, (ii) Pion Peaks and 

(iii) the Cross-Over Mechanisms. (iv) High-Energy Total cross sections and 

(v) Q=2 exchanges. 



4.2. 	Polarization.Phenomena:. 

In reactions where only one Regge Pole can be exchanged, 

the polarization is predicted to be identically zero. For example, 

in the charge-exchange reaction 

7 P
o
n 

there is only one known Regge pole which can be exchanged, namely 

the p , which is a J 	= 1 	particle. Now the polarization 

depends on the term 

P(t) 	Im (044  04_ ) 

where 044  and 	04._ are the s-channel helicity non-flip and 

helicity flip amplitudes. Since only one Regge pole can be exchanged, 

both 0
-14 

and 0
+- 

have the same phase, given by the phase factor 

-in a (t) 
1 

so that the polarization is zero. However, experimentally the 

polarization is about 25%(32). 

We can explain this in terms of a pure Regge pole model by 

introducing another trajectory, which we call the p 1(33). We can 

then obtain polarization by interference between the two poles. 
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In the case of the reaction 

Tr P -}  

which goes by A2  exchange only, we could appeal to a second A2  

trajectory, since the A2  resonance is known to be split(34). 

But there is no known particle corresponding to the 
	(35) 

Analysis suggests that the 	p' would need an intercept 

a 	(0) = 0 

but the nearest candidate for this 1 	particle has a mass of 

1.55 GeV, which, if we suppose a linear trajectory of slope about 1, 

suggests an intercept of - -1. 

A far more likely explanation is the existence of a Regge 

cut resembling a nearby secondary pole. 

4.3 	Pion Peaks.  

For reactions where the pion can be exchanged, for example, 

the charge-exchange reaction 

pn 	np 

the experimental differential cross section shows a very sharp 

forward peak of width 

At = m
2 	= .02 
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and an s-dependence of s-2. Since 

da 	
s
2a -2 

and 	a (0) = 0 this strongly suggests that TT exchange is the 

dominant mechanism. 

However, normal Tr exchange is evasive, that is, it 

vanishes at t=0, giving a forward dip rather than a forward peak. 

In the reaction 	pn 	np, the TT contributes to two helicity 

amplitudes, which are usually known as(36)  

02 = 0 '++,-- 

04 = 0+-,-+ 

Because the 	Tr is a 0 	particle, parity considerations mean that 

11 
04 
	 0 

Now 0
4 

corresponds to a net helicity flip of 2, and so, from 

angular momentum conservation, we must have 

7r 
o4 	 as t 0 

and hence 	2 
4-  0 
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and the it contribution vanishes in the forward direction. 

Now 02  corresponds to zero net helicity flip, so it 

need not vanish at t=0. The only way out in a pure Regge pole 

framework is to invoke a parity doublet to the Tr , a 0+  particle, 

known as the pion conspirator. We then have 

1'c 
4 

0 

Hence 
	+ rb 

75. 

and 

If we make 

(44 — 04 

. 072  

= 

oc4  

at t = 0 by making the trajectories 

cross, we then have 

20; 

and 04  = 0 

This satisfies angular momentum conservation without having 

as 	t 	0, so we can get a pion peak. 

There are two difficulties with this conspiracy solution. 

Firstly, there is no evidence for the existence of a particle lying 

on this trajectory, and secondly, if this approach is carried through 



all pion exchange reactions, by using factorization we predict a 

forward dip for 

PA 

whereas a forward peak is seen experimentally
(37)

. 

Much fancier schemes have been proposed with, for example, 

the A
l 

playing a major role instead, but all these solutions 

ultimately founder on factorization difficulties. 

Introducing a Regge cut is an obvious solution. It can 

conspire with the evasive pion to give non-vanishing terms at t=0 and 

hence a sharp forward peak. We will return to this point later. 

4.4. 	Cross-Over Mechanism.  

	

High energy PP and 	PP elastic scattering are supposed 

to be dominated by the P, P' and the w Regge poles. The 	Al, A2, 

p 	and 	B 	are also present but give small contributions, 

since they control 	pn -* np 	and 	p5 	n5 	charge exchange, 

which are small in comparison. 

We can write the amplitudes symbolically as 

A(PP) 	= 	P + P' 

A(PP) 	= 	P + P' 
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Now experimentally da/dt for PP is larger at .t=0 but more 

steeply t-dependent than du/dt for PP, so that they intersect 

at 	t = t
o = -.1 . In terms of pure Regge poles this cross-over 

requires the w residue to change sign at t = to. 

Factorizing, the residue is a square 

2 
Y 	1 

so
1 
 must contain the factor 

Y1 (t to)1  

Now, other NN scattering amplitudes have residues factorizing like 

2 
Y1 Y2' 	Y.2 

If all these residues are real and free from singularities at t = to, 

as is normally expected, then y2  must contain the factor y2 	- to)1. 

Similarly by considering chains of inelastic processes with and without 

2 a nucleon vertex, with residues like yiyj, yj  , yj  yk  , yk
2  

and so on, 

we see that all 	w residue functions must have at least this factor 

of (t - t°)1  , so that all 	w 	residue functions vanish at t
o 

giving a universal zero. 

This agrees nicely with the observed cross-over in KI-P elastic 

scattering,which is also dominated by P + P' + w , but it does not 

show up universally. For example yP 	q°P is supposed to be 
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dominated by w exchange, but it does not show a minimum at to. 

One solution is to have another w -like term, w'. 

The cross-over is then explained by having'the w + w' amplitude 

changing sign at to, without having to have a zero in the residue. 

However, there is no plausible candidate for the w', so possibly 

the 	term is a Regge cut. 

4.5. 	High-Energy Total Cross Section.  

The new Serpukov data(38)  on high-energy total cross 

sections for ITN 	and 	KN are very much flatter than would be 

expected by extrapolating pure Regge pole fits. 

Possibly these results can be understood by appealing to 

cut contributions(39)  

4.6. 	Q = 2 Exchanges.  

Certain reactions cannot be mediated by the exchange of 

any single particle contained in the known U(3) singlet, octet, or 

deciments. However, the successive exchange of two single particles 

could take place. Examples of two such reactions on which data now 

exists are : 

Pn + A ,644 (40) 

and 	p5 	E 	E- (41) 
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4.7.. 	Regge Cuts and Absorptive Corrections. 

The existence of cuts in the complex angular momentum 

plane was first proposed by Amati, Fubini and Stangehellini (42)  from 

a study of perturbation theory. Mandelstam
(43) 

later showed that the 

two-Reggeon cut in the AFS diagrams were cancelled by other contributions, 

but he showed how to generate cut diagrams which really have a cut 

contribution. 

The essential difference between the AFS and Mandelstam 

diagrams is that, whereas the AFS diagram does not have a third 

double spectral function 	Est , the Mandelstam diagrams do. 

No one really knows how to calculate the cuts, but we do know 

some general properties, which we will now mention(44). 

(i) 	The discontinuity across the cut near j = a
n
c  is 

given by 

disc 	anc(t) - 

for the n-Reggeon exchange. Then the cut contribution to the 

amplitude behaves like 

ac(t) 

f
cut 

In s
n-1 

It would be nice if we could detect the presence of Regge 

cuts directly from experiment by measuring this extra logarithmic 

n-2 

3 



s-dependence of the cut, but in practice this is not possible 

because the logarithmic dependence is too slow. 

(ii) 	If 	n Regge poles ai(t) are exchanged, the 

leading cut has a branch point given by 

n 

  

a
n
c
(t) = Max 

= 1 

a.(t
1
.) - n +1 

  

where the quantities 
	

iltI 	and 	ITETI have to form a closed 

polygon. 

For two linear trajectories 

a.(t) = im.
1
(0) + a!

1
t 

the two Reggeon branch point is also linear and is given by 
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(t) 
= al(o) a2(°) 

a4 a
2 

t 

 

al  + a2  

'The cut not only has a slope smaller than either slope (if ai > 0) 

but also generally has lower intercept at t = 0. So the pole will 

always dominate for a range of t near zero, but the cuts will 

be important for sufficiently large It I. If all the Reggeons except 

one are pomerons, with «10(0) = 1, the branch points of all the cuts 

coincide at t=0 with a
1 

and lie above it for t < 0. So we expect 

pomeron-induced cut corrections to dominate asymptotically over poles 



for t < O. At t = 0 they are unfavoured logarithmically. 

(iii) A Regge pole belongs to a unique spin-parity 

class whereas a two-Reggeon cut does not. It can have contributions 

to both parities, and so can conspire with itself. 

(iv) Cut contributions are non-factorizable so this 

eliminates the problems arising from factorizing residues and relating 

different processes. 

One of the difficulties with Regge cuts is the lack of 

knowledge of the discontinuity function. At present there is no 

really satisfactory way to estimate the cut discontinuities, the 

standard approach is to use the ideas of the absorption model of 

Jackson(). (A popular approach is to identify the Regge pole 

term as the first term in some series. The higher terms are then 

given by interactions of the first term, generating cuts. One of these 

approaches is the absorption model). 

The traditional Watson formula(8 ) is the basic formula 

of the absorption model and has been used with considerable success for 

processes dominated by pion exchange
(20,21,22) 

 . It also serves as 

the starting point for the generation of Regge cut amplitudes. 

The traditional Watson formula, or closely related expressions, 

forms the basis for numerous calculations of peripheral processes 

with "absorbed" Regge pples(45). 	A number of these papers address 

themselves to the polarization seen in A charge exchange, as well as 
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the shape of the differential cross section. There are two view-

points here. One is that the basid Regge pole amplitude which is 

to be inserted into the Watson formula should be a traditional 

amplitude with appropriate factors to cause it to vanish at 

"nonsense" J values (J <IJ
z
I). In the Watson formula we have terms 

like 

R O P 

If R which is put into the convolution changes sign in the region of 

integration, there will be a cancellation in the integral and the 

resulting cut amplitude will tend to be small. Thus the absorptive 

correction will cause only modest changes from the pure pole term. 

Dips will still be mainly a consequence of the structure of the pole 

amplitude itself. The idea that the pole amplitudes possess the sense-

nonsense factors is partly supported by the successes of exchange 

degeneracy in correlating the presence or absence of direct channel 

resonances with the Regge poles in the crossed channels. 

An alternative view, put forward by Henyey et. al.
(46) 

 , is 

that in the presence of absorptive,corrections all prior notions about 

sense-nonsense factors should be discarded. This idea rests upon the 

work - of Jones and Teplitz (47)  and Mandelstam and Wang(48)  who 

showed that the usual arguments for the presence of sense-nonsense 

factors fail because the residues become singular at wrong-signature 

nonsense points when the third double spectral function is present. 

The mechanism fc the dip in the differential cross section is then 

the distructive interference berween the pole and the cut 

amplitudes (46)  
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One important point should be made about t = O. There 

	

are a number of processes (pn 	np, •yp 	n+n , 71-4-p 	p0  A++  ) 

that appear to be dominated by the exchange of a single Regge pole 

(in the examples listed, the pion). In some of these processes, 

the amplitude of the single Regge pole must vanish at t = 0 for 

kinematic reasons(36). The differential cross section is then 

expected to vanish in the forward direction. The observations show, 

on the contrary, sharp forward peaks. Such peaks find a natural 

explanation in terms of absorptive corrections. The cut amplitude, 

being a convolution, is smoothly varying and non-zero at t = O. The 

pole amplitude increases away from t = 0, causing distructive 

interference and a sharply falling cross section. This mechanism 

explains all the sharp forward peaks and avoids the difficulties 

of conspiracies. 

At the high energies we are considering, we are approaching 

the classical, limit and thus the low energy analysis of the scattering 

in terms of angular momentum may be replaced by a description in terms 

of the impact parameter. The scattering amplitude for the 

transition i 	f in terms of the angular momentum,assuming no spin, 

is 

Tfi 	

°°
cose) 	(1 - eix ) 

	

= i 1 	(2t+1) 	 fi 	P (cose) 
87r ii 	 2, = 0 	2 P 	t 

where x(t) is the "eikonal matrix". Using the orthogonality property 

of the Legendre polynomials, 
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P (cos e) P (cos 	d (cose) = 
2,- 	 2k+ 1 

this. gives 

 

1 

 

 

Tfi  (cos 0) 

arr 
-1 

P
2, 

(cose) d (cose ) 

Taking (1 - eix)fi 	(49)fhis gives 

  

Tfi(cose) 

 

xfi(2.) = P 

 

P (cose) d (cose) 

 

87r lg.—  

     

The term Tfi (cose)is the "Born amplitude" of the model and is 

identified with an amplitude for the transition i+ f parameterized 

in a simple Regge pole exchange model, i.e. 

Tfi(cos e) = 
I • 

Regge 

poles 

The impact parameter representation has been introduced in Chapter II. 

Let us assume 

Tfi(cose)= 

84. 
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2621' 

S 
S. 

(t) 

0 



Xf

R  
ik I = 

1 irEr d (iFEr ) Jo(biTTT) 
87r $rs- 

P 
1 a (t) 

R 
xfi(b) - 1 d 017E1 ) (biltl ) 

8TrPIrs- 

 

In 

 

e 

which is the typical Regge pole form without signature. Then 

 

1 
Tfi(cose) 

P(cose) d (cose) 
871- 

Xfi(50 = 

 

which in the impact parameter representation becomes 
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Taking a(t) = ao  + 

0 

CO 

1 	
a(t) In 

iTEI d(ilt1 ) J0  (biltl ) e 

0 

S 
so 

     

a 14s  
so  ] 

   

        

1 

   

d(✓Ttl ) Jo  (b411 ) 

  

it 

       

    

e 
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The calculation of the Regge cut in the impact parameter 

representation is based entirely on the application of the Fourier-

Bessel transform. 



0
2 

j 
x
v+1 

e
-ax

2 4a 
0x) dx = 	e 

(2a)v-" 
0 

(Rea > 0 ; Rev > -1) 

In our case we obtain with 

v = 	; 13 = b ; 	a= 	a' 
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R 

' 
87 P 	so  

x to 
fi  

b
2 

1 
4ainfi71 

( oJ 

1 

( 2a' lnis 

0 

Thus, for the exchange of n Regge poles described by the 

trajectory a(t) we get 

1 
R
1 
 0R

2 
 I) ... R

n 
=y(2z+1) 	 Pn(coso) n 
k=o 	2iP 	i=1 fi 



CO 

bdb Jo (bilti) e 
4a' In 

0 
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b2 

4a' 

   

        

j P2  db(2Pb) 	1 	J,*(b/rEr)  
Zip 

0 

   

1 

2a' Mil_ 
is 

   

      

 

arrPis- 

   

    

       

nb2 

1 n o 	(2P
2
) 

. 

(8nPii)n 	2i [so I n  (.2a' lnrs 
(so 

n 
With 

R1  

v= 0; a = 

9 	R2 

in-1P2  

iltl 

s 

Rn  

; 

nao 

= a we have 

1 
e 

4a 1 	1n 

1 

5—sol 

(8.NPA-)n  so  2a' 	ln s 
sQ  

2n 
4a' ln Is 	1 

so  j 

4a'14
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,01t1 
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4n 
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So we have the result 

R
1 

9 R
2 

9 	R
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na
0 
- a  

- 1 t 
in-1P2 

 

 

1 

  

(8wPii)n  

 

n (2a' lni s 

   

    

      

       

Taking the high-energy limit, i.e. s 4- 0. 	and 	P 4- rT, we 

have 

0 R
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Saving only factors in 	s we have 

a (t) 

R
1 	

0 R2 
	'' 

0 	. R 

   

  

S 	co 

 

   

d 
where 	a

c
(t) = na

o 
- n + 1 + 	

i 
—
n

t 

Thus we see that absorptive corrections to Reggeized pole 

graphs gives rise to cut contributions to the transition amplitude. 



CHAPTER V  

REGGE POLE MODEL FOR 01+ 4- 1-3  

5.1 	Introduction. 

To Reggeize the amplitudes we make the replacement 
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4 	a-J 
-1

1 m
2 
. 

2 

i=1 
1 

l

so  

         

1 	dx 
dt 

t-M
2 

    

1+ Te-iffa  

 

s+it 

 

2 	
s n Tr(or -J ) 	2 

   

t=M 

   

        

where a  =J at the pole t = M 	and T is the signature. The scale 

factor 
	

is taken to have the value 1 (GeV)2  since any other 

choice is equivalent to the introduction of an exponential factor into 

the residue. The coupling constants 	g 	and 	h 	retain the values 

,at the poles. By expanding in a Taylor series about t = M2  

sin Tr  (a -J . sin 7
d  
d t 	

sin Tr(a-J)1 	(t-M
2
) 

t=M
2 	

t=M
2 

da 
Tr 	 (t-M

2
) , 

dt 
t=14'
,  

and noting that the signature and s a-j  factors are unity at t = M2, 

we-see that this relation is exact at the pole t = M
2
. 
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The Gell-Mann ghost eliminating mechanism(36)  is then 

introduced by making the replacement 

r (a) r(1-a) 
sin Tra 

and dividing by r(a) for natural-parity exchange, and making the 

replacement 

Tr 
- r( -a) r(1 +a) 

sin Ira 

and dividing by r(14-a) for unnatural-parity exchange in all amplitudes. 

Here natural parity is defined by (-1)J=P and unnatural parity by - (-1)J=P 

where P is the intrinsic parity. This mechanism retains the same 

ratio between the helicity amplitudes when they are extrapolated from 

the pole. 

We also wish to consider the exchange of the A2  meson (J
P 

	2+), 

which does not belong to the (35, k= 0). By employing the representation 

of U(6,6) which contains the A2, namely, the 4212, we have forced upon us 

exotics, for which no experimental evidence has been found. Therefore, to 

obtain mesons not belonging to the (35 , . = 0) we angular-momentum 

excitate this lowest representation of U(6,6) to obtain U(6,6) 0 0(3,1). 

This has the effect of only changing the spin and parity of the particles. 

Using a spin-2 field-theoretic propagator then gives amplitudes which are 

similar to those for 1 exchange but containing one more power of s 

and some extra terms which are non-leading in 	s. If we ignore these 

extra terms, we may obtain the Reggeized 2.1...exchange amplitudes simply 

by changing the signature and Clebsch-Gordan coefficients. This is the 

7i 



procedure we adopt since we wish to obtain the coupling strength 

from the additional assumption of strong exchange degeneracy. 

The 1+-exchange amplitudes are obtained from the 0-exchange 

amplitudes in a similar manner. Since previous authors have shown 

the applicability of p - A2  exchange degeneracy and SU(3) 

symmetry to 0 
	

÷ 0
-I- 

charge-exchange reactions(3), we consider 

this a reasonable prescription. 

Explicit expressions for the s-channel helicity amplitudes 

are given in Appendix E. 

The Regge trajectories required were obtained from the Chew-

Frautschi plot shown in fig. 18 by assuming 

p (765) - A2(1300) 

IT (140) - B (1235) 

exchange degeneracy. The result is given in Table 2. 

For processes of the type 01:1-  4- 1 3 	data is available for 

the following reactions 

( 
+
p 	4- p 6

-FE25,26,50) 
 

* 	
(27) 

Kp 	4-K oA 

(24) 
K-n 	R*o - 

-14 	
(25,29,50) 

Tr
+p 
	wA 

* 
The p 	and K - production data are characterized by the presence of 

a forward peak, presumably due to TT exchange. 
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-1.0 	Ii 	1.0 	2.0 	3.0 	4.0 
t 	(G eVic )23 

FIG. 18. 



5.2 
	+p 	

p
++ 

Our results for the differential cross section for w
+
p 	p

0
A, 

which proceeds by the exchange of W and A2, are shown in Fig. 19 . 

The essential features of the theoretical curves are a sharp forward 

peak due to W exchange and a relatively flat wide-angle distribution 

due to w + A
2 exchange. This behaviour is exhibited by the data, most 

markedly at 13.1 GeV/c. In general the theory agrees with the experimental 

data in respect of the forward peak and reproduces the s dependence of the 

data. For larger momentum transfers the theoretical distributions are 

consistently too high. 

The density matrix elements for this reaction are shown in Fig.20 

Before absorption unnatural-parity exchange ( wand B) gives 

p00 	P1,-1 
	

0 	 Re plo  = 0, 

while natural-parity exchange ( pand A2) gives 

p00 = 0, 
	p 	= 1 

1,-1 Re p10- 
= 0, 

for the density matrix elements of the meson resonance. For the A 

resonance unnatural-parity exchange gives 

P
3 3 = 
	

Rep3,_1 = 0, 	Rep3 1 . = 0, 

while natural-parity exchange gives 
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P3,-1 

0.4 
Re  P 1,0 

0.0 

Rep 

1.0 0.5 0.5.  -0.4 1.0 
-(1(6evic)21 

1 



p3 3 	3/8 , 	Re p3,_/  = /VT , 	Re p3  = 0. 

The absorption does not have much effect on these values. The large 

value of p
00 	

, and the small values of p _„ p3 3  and Re p3,_1  
1, 

indicate strong unnatural-parity exchange dominance, particularly for 

small t. This is given by the model, Tr exchange being the dominant 

mechanism. 

5.3 
	

K
+ 	

K
*0 

A
++ 

In fig.21 we compare with the data our results for the 

differential cross section for the reaction K
+
p 	

K*o++, 
 which permits 

Tr , p, B and A
2 
exchanges. The data for this reaction is poorer than 

f
o
r w

+
p 	p

0
A
++
, thus making it difficult to discern details in the 

momentum transfer distributions. Our theoretical predictions show a 

pion forward peak which, as in the previous reaction, becomes sharper 

with increasing energy as 	t
min 	

0, followed by a relatively flat 

distribution. The 	s dependence of the data is well reproduced 

at 3.0, 3.5 and 5.0 GeV/c but is poorer at 12.7 GeV/c. 

The density matrix elements for this reaction, shown in fig.22 

have the same general experimental features as in the previous 

reaction and appear to be well represented by our model. 
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5.4. 	K-n 	K
*o 

 A 

The reaction K
-
n 	K

*o
A
- 
is similar to Kpi K

*0
A
++ 

	

except that the p - 	and B-exchange contributions change sign. 

In particular, for the pole graphs 

dt 

da 
K-n = 

da 	7 	4-  

dt 
	
(K p 	K

*0 
A
+ 

). 

A comparison of the data at 5.5 and 5.0 GeV/c, respectively, for these 

two reactions suggests that this prediction is broken by about 50%, 

indicating the importance of including contributions from the p and 

A
2 
 exchanges and dis-similar absorption corrections. The theoretical 

distributions and the available data for K
*0

A
- 

production are shown in 

fig. 23. The normalization is too large but the t dependence appears 

to be correct, although the data is not good enough to observe detailed 

structure, in particular, the expected sharp forward pion peak. -No 

data is available for the density matrix elements. 

5.5 	w p wA
++  

In fig.24 we show the contributions of p, B and p + B exchange 

to the differential cross section for IT
+
p wA. The p exchange shows 

a large dip at t = -.5 
	

As in the reaction w+n 	p, the constructive 

interference between the p and B exchanges helps to fill in this dip 

but the coupling of the B given by strong exchange degeneracy is not 

sufficiently large to completely eliminate this structure. 
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The available high-energy data for this reaction and the 

theoretical predictions for the momentum transfer distributions 

are shown in fig.25 . The s dependence of the theory is quite 

satisfactory. 

The contributions to the density matrix elements for this 

reaction from p,B and p + B exchanges are shown in fig. 26 . 	As 

in 74-n ÷ 4,61)  the addition of B. meson exchange improves the 

results obtained from pure p exchange to give reasonable agreement 

with the data. 

5.6 	Discussion and Conclusions. 

In summary we make the following observations. 

For the processes we have analysed the angular dependence of 

the differential cross sections predicted by the model agrees with the 

essential features of the experimental data, in particular, forward peaks, 

turnovers and dips, in all cases where the data is sufficiently good to 

enable such comparisons to be made, This is also true of the density 

matrix elements. Although the dips in the differential cross sections 

arise originally from the nonsense zeros introduced in the Reggeization 

procedure, this feature is largely due to the influence of the symmetry 

scheme, which determines the ratios of the helicity amplitudes and the 

relative strengths of the couplings at the vertices. 

The energy dependence of the model derives mainly from the 

replacement of s")  by sa  in the Reggeization of the amplitudes, although 
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there is an addition slow 	s dependence in the absorption parameters. 

This is in general agreement with experiMent. 

One not entirely unexpected shortcoming of the model we have 

found is in the prediction of absolute normalizations, which do not 

always coincide with the data. This may not be unconnected with the 

difficulty of obtaining absolute normalizations experimentally. It 

should be remembered that the quoted normalization errors on experimental 

data are often in the region of 20 - 30% and frequently higher. When 

data is available for a particular reaction from different experimental 

groups, agreement may be reasonably good for one set of data but poor 

for another. Although such a procedure is justified, we have not smoothed 

the data within the stated normalization errors in order to improve the 

appearance of our results. We should also remark that this difficulty of 

relative normalization errors makes the extraction of meaningful 

parameters from data extremely difficult. 

It should be emphasised that in this model we are in a theoretical 

strait-jacket, in that the symmetry scheme and strong exchange degeneracy 

fix completely the pole graphs. Since SU(3) is well known to be broken, 

we certainly do not expect U(6,6) tp give perfect agreement with 

experiment. However, rather than at this point introduce a few arbitrary 

parameters and perform curve fitting procedures to bring about detailed 

agreement between theory and experiment, we feel that effort could more 

profitably be directed towards investigating a better consistent and 

physically plausible scheme for mass-splitting in U(6,6) 0 0(3,1) and a 

-method of breaking strong exchange degeneracy. 



Discrepancies between the predictions of our model 

and the experimental data, particularly the steepness of the t 

dependence, could be reduced by allowing the final-state absorption 

to be different from the initial-state absorption. However, the 

coefficients cannot be determined experimentally and we feel that 

little real insight is to be gained by making these arbitrary 

parameters to be fitted to the data. (51)  

It must also be borne in mind that while the general concept 

of the absorption model is probably correct, the exact procedure for 

including such corrections is not at all clear at present, and that 

although our Reggeization procedure seems very natural, other reasonable 

schemes could be devised. 

This model has also been applied to baryon-baryon scattering 

processes. Extremely satisfactory agreement with the experimental data 

on the differential cross sections and density matrix elements has been 

obtained for the reactions 

pp 	nA 

PP P 

and for the reaction 

pp ÷ 6,44A°  

over a wide range of energies(52). We feel that useful tests of 

this model would be its application to the reactions 
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pn 	np 

pp 4. nn 

backward scattering(53)  and photoproduction. These are currently 

being considered. 

Encouraging results have been obtained by applying the 

Veneziano model to 3-particle production processes both in the spinless 

approximation
(54) 

and taking some account of spin(55). U(6,6) has been 

included in such B
5 

calculations to produce a Veneziano model with 

spin with favourable results for the reactions 

K-p 4T.71-+  A 

Kp 	
Ro - p. (56) 

More sophisticated models are currently being developed(57). Since most 

of the assumptions of the present paper are consistent with the Veneziano 

model, a Venezianoized U(6,6) absorptive peripheral model has been 

developed with a preliminary application to KN and RN charge-exchange 

reactions(58). The model is presently being applied to K*(890) and A(1236) 

production 

For the numerical work we used an exact partial-wave series(60  ) 

as discussed in Appendix F rather than suffer the laboriousness and 
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inaccuracies of the impact-parameter representation. We 

employed a 48-point Gaussian quadrature to calculate explicitly 

30 partial waves. Previous experience has shown this to be 

extremely accurate. To perform the partial-wave expansion, to 

modify the partial waves and re-sum the series to obtain the results 

for all the reactions presented in this thesis took approximately 

60 seconds on a CDC 6600. Along with Lovelace, we find it easier 

to be exact. (61) 



Reaction Exchange BaryOn Vertex Meson Vertex 

G D F 

+ 	o ++ 
1T p -±pA 

K
+
p 4. K

*o
A
++ 

- 	- 
Kn-4-K

*o
A 

7
+
p -4- w ++ 

 

U, A
2 

if 	A
2 

p, 	B 

ff, A2  

p, 	B 

p, 	B 

- /2-  

- 

- /2 

12 

/2 

- /2-  

72- 

IF 

2 

- 2 

-/-2- 

. 

TABLE 1  

1 1 0 . 

Clebsch-Gordan coefficients for 0 i+  -+ 1 	3/2
+ 



Trajectory a
o 

a-{(GeV/c)-2} 

7 , 	B  - 	.013 .665 

p 	, A2  .470 .905 

TABLE 2.  

Regge trajectories. 



Channel Plab (GeV/c) C (R-1  )(GeV/c) 

w
+
p 3.54 .90 .27 

4.0 .87 .27 

6.95 .79 .27 

8.0 .78 .27 

13.1 .74 .27 

16.0 .73 .27 

K-p 5.5 .73 .26 

K
+
p . 	3.0 .91 .36 	- 

3.5 .85 .34 

5.0 .71 .32 

12.7 .51 .27 

TABLE 3  
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Absorption coefficients. 



A 1 	A2 

	

x 	A 

	

3 	4 
0 	.1.1 

2 0 	 1 
2 

+1 	+ 3 /2 01 -4)12 

0 	+ 3 /2 
cP  2 

0
11 

-1 	+ 3/2 03 -010 

+1 	+ 	i 04 4)9 

0 	+ 	2 4)5 48 

-.1 	+ 	i 06 07 

+1 	2  4)7 -(1)6 	- 

0 	- 	i 08 4)5  

1 	- 	i 09 -4'4 

+1 	— 3/2 0 10 03 

0 	— 3  /2 0 11 —42  

—1 	— 3/2 
cl)  12 4)1 

TABLE 4  

Helicity dependence of amplitudes for 0 
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APPENDIX A  

DEFINITIONS,NOMENCLATURE & NORMALIZATIONS.  

The two-particle helicity states IP00;x1 x2> are used to 

describe a system of two particles in the center of mass frame. 

P
1 
 is the three-momentum of particle 1 which in polar coordinates 

is denoted by P1 =(IP1 10,0) ; xl  is its spin projection along its 

direction of motion (i.e. its helicity). Particle 2 moves in the 

opposite direction and has helicity x2. The two particle state is 

constructed out of two single-particle states with covariant 

normalization 

< PIP > = 	2E.E  (27x)3  6 
	

I  -P) 

The S and T matrices are related by 

1+ iT 

When taking matrix elements we get 

< fISIi> = < fli> + i 270
4 4 

(Pi-P ) < f ITI i > 

where the 6-function is inserted to ensure overall energy-momentum 

conservation. Here 	i and f denote initial and final states 

respectively. 
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The incoming meson and baryon and outgoing meson and baryon 

are denoted by "1", "2", "3" and "4" respectively. We take 

mi, Ei, Pi  and Ai 	to be the mass, energy, four-momentum and 

helicity of particle "i" respectively. The magnitudes of the centre-

of-mass three-momentum in the initial and final states are taken as 

K and q respectively. The square of the centre of mass energy is 

denoted by s. As we are considering the scattering of unpolarized 

particles the scattering has azimuthal symmetry, and we therefore 

consider scattering in the xz plane. The incident meson travels 

along the positive z axis, and the scattered meson at an angle 0 to 

this axis. 

Thus the covariantly normalized centre-of-mass scattering 

amplitude is 

1 
	(S,cose) = < geghx x ITIK 0 0;x1 x2  > 

The differential cross section is then 

da 	1 	g 	. 1  
<x3x4IT I A1 A2> I 2  

dn 	611ff
2
s 	(2s1+1)(2s2+1) (x) 

do- 	 da 
dt 	qK dci 

.The various helicity amplitudes are related in pairs by the 

conservation of parity 
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< -A
3 

-a4 I  T1 -A
1 

-A
2
> = n

p
< A

3 
A
4
ITIA

1
A
2
> 

• 

n n + - s, s2  s3- s4 	A
3 

-A
4 

- A
l 

+A
2 

= 	

,3 

1 

n4  

2  n
P 	(-1) 	(-1) 

where n
i
's are the intrinsic parities of the particles. 

The partial wave decomposition of the scattering amplitude 

is 

(cose) = 	y (2J+1) T 	„  , 	d„(e) 
A3A4 AlA2 AP  

with.  
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T
J 

A3
A
4 

1 
2 (cose) d u(e)  p(0) dcose T

A
3
A
4
,A

1
A
2 	

A 

-1 

where 	A = A
l 

- A
2 

and p = A
3 

-A
4 

 

If we define angular momentum helicity states IJM;x1 A2> 

with the normalization 

< Jim.; Ai a2 JIA;Aixe = 6JJ. 614 . 6A1xi 6
X 

 
2 2 

we obtain a different normalization for the partial wave amplitude 

<J 1MI;x3A 4ITIJM;AlA 2> =
JJ 

J 
6 	t 

I 	A3A4;X1 A2 • 



The relation between the two normalization is 

tJ  
2 (4)2  

TJ 

 

The usual partial-wave S-matrix element is then 

SJ  x x 	 „ 
3

x 
4'  1

x 	 + i 
2 	

X
3
X
1 	

X
4
X
2 	-3-4 "1-2 ' 
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APPENDIX B  

PARTIAL-WAVE EXPANSIONS.  

We are interested in obtaining the helicity states for 

processes of the type 

+ 	
-  

1 +
2 

The production amplitudes in the helicity representation are denoted 

by 

X 3X 411)1  X 1 X 2 > 

By parity invariance we have 

	

n n 	x-v 3 4 	s +s -s,-s 
(... )3 4 	2 (-1) 	‹._A3_x41 0 i_xl-x2  

< X3X4 Ildx1 X2> 	n  n 
12 

.wheres.are the spins of the particles and ni  are their intrinsic 

	

parities. Here p = x3  -x4 	and x = xi  

Our.general partial-wave expansion in the helicity representation 

is 

< x3x4N xixe = X (2j+1).0,3x4 IT3 (E)Ixi x2> dap(e) . 
j 
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Our partial-wave expansions are : 

01 = 	E 	(2j+1) Ti (E) di 	(8) 
Q=0 

02 = E (2j+1) T(E) di 	(0) 2 
2=1 	_1_

2 L3 
 , 

03  = E (2j+1) T3(E)  di  5  (8) 
2=2 	 f 

04  = E (2j+1) TAi(E) di  (6) 
2=0 	' 22 

05  = E (2j+1) T (E) di 	(0) 

06  = E (2j+1) Ti(E) di  3  (0) 
L=1 	 f 

= E (2j+11 'PE) di  3  (a) 
t=1 

= E  

2=0 
(2j+1) 4(E) di 	(e) 
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09  = E  

Q=0 
(2j+1) T9(E) di 	(0) 

(2j+1) Ti  (E) di  010 = E 	(8) 
k=2 	10.-i; 

011  = E (2j+1) Ti 1(E) di 	3  (e) 
k=1 

°12 = E (2j+1) T1 2(E) di 	(0 ) . 
2=0 



APPENDIX C  

DENSITY MATRICES. 

In a 2-body reaction where either of the final particles is 

a resonance, information concerning the production process may be 

obtained from the spin density matrix elements of the resonance. 

Taking particle 3 to be the resonance, in the c.m. frame the 

density matrix elements are given by 

A1 A2A4
< A' 

3  A  4 	1 2 	<A3A4I 	xlx2 
W I A A 

Experimental results are usually quoted in the Jackson frame i.e. the 

rest frame of the decaying resonance, particle 3, in which the z axis 

is taken parallel to the momentum of the incident particle, particle 1, 

in this frame, and the y axis is perpendicular to the production 

plane. With respect to this new reference frame, the density matrix 

elements are given by 

p 	= 	y 	d 
3 	

ft ) ds
3 

(b lo 
m-x-  3' mx

3
3'-x-x 

All A 	3 

where ip3  is the angle between the directions of particles 1 and 4 

as seen in the rest frame of particle 3, and 
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PAA 	= 
3 3 	2 



    

121. 

tan 11)3  = 
m
3 	

- cos
2 

6 

  

    

E3  (cose -. qE1 ) 

kE
3 

wherethem.and E. are the masses and c.m. energies, respectively, 

of the particles. 

Similar expressions hold when particle 4 is the resonance, with 

tan 11)4  = 
m
4 	

- cos
2 

e 

E4  (cos 6- qE2) 

kE
4 



2 	

X -E:p 	X - p 

cos 
2  
-9  ] {-sin di 

 p
(X) - X 

(i+ AY. 	x)! 

 

(i4.1)! (j- 

 

   

X - p, x+ p 

P3 	
(cose), 291 

APPENDIX D  

ROTATION FUNCTIONS. 

The functions di  (x), where x = cose , are evaluated 

by first writing these functions in terms of Jacobi polynomials, 

122. 

where a -11 and x+ 11  O. The Jacobi polynomials obey two recurrence 

relations, 

1 2  (2 +ct+0+2n) (x+1) Pna' 13+1  (x) 

= (n+1). 
Pn+1 	Nx)- 	(1 +0+ n) Pna'f3(x) 

and 

1 2  (2+a+0+2n) (x-1)P
n

a+1 ' 13(x) 

= (n+l) P
n+l

a '18(x) 	(1 iq+n) Pna '13(x). 

By application of these relations the Jacobi polynomials can be 

reduced to Legendre polynomials, since 
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ntA 
0,0,1  = p f„,%.  

r 	0" 

The resulting expressions for the rotation functions therefore contain 

no derivatives of Legendre polynomials. 

This procedure gives, for the function of interest here, 

1 
dj 	(x) = [2(1+x)2 

1 

P2.+1(x) ± PIt  (x) 

 

d 	(x) 	
(i (2.+2  )2.) 1  

- 	 
(4+3) (22.+1) 

1 

 

(1 ±x) (1 	x) 

x [(4+1)fP2.i.2(x) - Pi(x)} ±(22.+3){1)10.1 (x) - P2._1 (x)} , 

di 	(x) 	[i(t+3) (2.+2)2.(2.-1 )) 1 	1 

5,14 	(4+5) (4+3) (22.+1) (22.-1) 	(1±x)3/2(1 TX) 
2 

(4-1){(4+1)P
t+3

(x), - 2(4+3)P
2.+1

(x) + (22.+5)P2._1  (x) } 

	

1 

± 	(2t+5){(4-1)132.4.2(x) - 2(4+1)Pk(x) + (2z+3)P2,_2(x)1 , 

where j = 2. 

x 



The other d
j
p  (x) may be obtained from the relations 

di
p 
 (x) 	(-1)A-P d

PX 
 (x) = di 	,(x), 

The Legendre polynomials appearing in these expressions are 

evalutated using the recurrence relation 

(n+1)Pn+1
(x) 

 = (2n+1) x Pn(x) - n Pn_1 (x) 

given that 

Po(x) = 1; 

P
1 
 (x) = x. 
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APPENDIX E  

HELICITY AMPLITUDES. 

We distinguish between the incoming meson, target baryon, 

outgoing meson and outgoing baryon by the label i = 1, 2, 3 and 4, 

respectively. The c.m. coordinate system is defined such that 

particle 1 is travelling along the +z direction and particle 3 

is travelling at an angle oto this direction in the x-z plane. 

The quantities mi, Ei  and x i  denote the mass, c.m. energy and 

helicity, respectively, of particle i, and k and q are the 

magnitudes of the c.m. 3-momenta in the initial and final states, 

respectively. 

In addition to the notation introduced in the text, the 

following expressions are used 

C 

	(E
4 

 -Hn
4 

 ) (E
2  +m2 - 

)+ kq 

l(Lem4 )  (12+1712)  

k ±(E2+m2) q 

/(E4+m ) (E2+m2 ) 
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We also define 

Pp 	= 	p r(-ap) 

PA 	= a" A 
r(-ct A

) 

-lira 
1 +e s + it - 

a A  

2 

-iTra
A 1 	- e 

so  

S + it - iEj 

2 so 

1 	e 
-lira V S + it - ZE 

r(1 
PV 	

= aV 

1 + e 

2 

TraT  

so 

S + it - iE 
PT 	= 	

T
r(1- 	) 

where the labels 	P, A, V 	and 

2 

T refer to 

so 

0,1 4-, 1 

(t) 	= a 0  +et., 

with s
o 

the scaling factor, and 

4 

X ml2 

i=1 

The g's and h's with subscripts which are combination of D,F, S 

and 0 are the appropriate SU(3) Clebsch-Gordan coefficients at the 
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exchanges, respectively, the trajectories being defined by 



baryon and meson vertices, respectively. These are given in Table 1. 

The helicity dependence of the amplitudes is shown in Table 4. 

With this notation, the following expressions are obtained for 0i
+ 	

1 
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4
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APPENDIX F 

CALCULATIONAL TECHNIQUES. 

The computer program described here is designed to aid the 

analysis of scattering data. The essential function of the program 

is to partial-wave analyze the scattering amplitude, modify the 

partial waves in a prescribed manner, re-sum the series and compare 

the theoretical results with the experimental data. 

Frequently in high-energy physics the theory is only able 

to provide a scattering amplitude in terms of functions involving a 

number of unknown parameters. Since these parameters are adjusted 

to agree with experimental data by a fitting procedure which involves 

many passes through the program, the technique for calculating the 

partial waves must be fast and accurate. This program satisfies this 

requirement and may be added to any of the standard fitting routines, 

e.g. MINUITS (CERN Program Library No: 0506), with no difficulty. 

Once the optimum fit to the data has been obtained, the program 

produces a numerical and, if required, a visual summary of the results. 

Included in the program is a CALCOMP package
(62) 

which can produce 

cartesian, log-linear and log-log plots of the results. 

The program is currently in use on the University of London 

CDC 6600 to calculate the differential cross sections for a wide range 

of meson-baryon scattering reactions
(51) 
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METHOD OF SOLUTION  

Typically in high-energy physics we are concerned with the 

evaluation of the differential cross section(63)  for 24body scattering 

processes. 

where 	s 

This 

da 	_ iT 

t 

may be written 

1 

and 

2 

s
2 

dt 

and 

(2s1 +1) 	(2s2+1) 

are the usual Mandelstam variables, 

8 ,r 

s
1 

are the incident and target particle spins respectively, k is the 

centre-of-mass 3-momentum and the Oi  are the s-channel helicity 

amplitudes. 

The helicity amplitudes can be decomposed in the helicity 

representation(64) 

< A3x410(s,t)lx1x 2  = j (2j+1)<A3A4  IT3(s)1A1 A2> dlu(cose) 

where j is the total angular momentum, Xi  are the helicity labels 

of particles 1-4, 	diu  (cose) are rotation matrices of the first kind, A 

= A
l 

-A
2 

and u = A
3 
 -A

4 
 , 0 is the centre-of-mass scattering angle 

and 
<X3X4 

T
3
(s)1A

1
A
2
> 	are the partial-wave amplitudes. 

By making use of the orthogonality property of the rotation 

functions 	di 
 u
(cos0), 

A 
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di
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2 

 

135. 

-1 2j + 1 	JJ 

 

we obtain the partial-wave amplitudes 

<x3x411-j (s)lye = 

	

11 

 

<x3x4  I 0(s ,t)ly 2> d3  (cose) d(cose) 

-1 

In the absorption model the partial waves corresponding to the 

exchange of a Regge pole are modified according to the prescription 

< A3x4 IT'
3

(s)1 A1x2> = Si  < 
	

T3(s)I AlX2  > 

where s' is the S-matrix element for elastic scattering between the 

incident and target particles. This is usually parameterized by a 

Gaussian form 

Sj = 1 - c(s) 	
e-L(56+1)/v

2
(s) K

2 
 

where k = j-i. The quantity v is the radius of the interaction and 

c is related to the opacity of the target particle. The quantity v is 

determined from the observed exponential slope of (da/dt) 
'elastic and 

using the optical theorem c is obtained from the relation 

= 
crTOT 

2 Trv2 



The program spends most of the time integrating by Gaussian 

quadrature to obtain the partial-wave amplitudes. Only a small 

fraction of the time is spent modifying the partial-wave amplitudes 

and resumming the series. Thus, the integration must be as efficient 

as possible. 

The principle of.an  N-point Gaussian quadrature(65)  

is that 
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jf(x) 	dx 

-1 

N 

m=1 
W
m 	

f(x
m 

 ) 

This integrates exactly a polynomial of degree 2N-l.In this case 

< Ay, 	0(s,t)lxi  xe dijp(cose) d(cose) = N X <x3x410(s,coselm)(xix2  > 

-1 	 m=1 

di  (cosem )   Wm   m 

where where Wm  is the quadrature weight associated with the point Xm. 

Clearly the rotation matrices are independent of energy and depend only 

on the value of the angle cosem. These values of cose
m 

depend only 

on the order of the Gaussian quadrature. Thus, the integration can be 

written in terms of new weights 

W' = idj 	(cose
m) 
 ) W 

u m m 



These "new weights" need only be evaluated at the first entry to the 

program, thus saving an immense amount of computing time. From the 

symmetry properties of the di
p 
 functions the number of rotation 

X 

matrices required is less than or at most equal to the number of 

independent s-channel helicity amplitudes. In the former case this 

technique brings about an additional saving in time. 

It is important in order to minimize computing time to reduce 

the number of calls to angle dependent routines. This is accomplished 

by a judicious nesting of loops corresponding to the indices j for 

the total angular momentum and i for the independent helicity 

amplitudes. 

DESCRIPTION OF THE CODE.  

The program consists of the main program, FCN, which directs 

the flow of the calculations and fourteen sub-programs BLOCK DATA, 

DATIN, NEWWT, DJ, KIN, KAYS, PTWAVE, REGGE, GAMMA, AMP, RESUM, CALAMP, 

SORT and APLOT. 

The code is organised so that it can be readily modified to 

treat many processes and exchanges. 
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THE MAIN PROGRAM FCN.  

The flow of this routine is shown in Fig. 27 . This is 

set up to be called by the minimization program. 	Here IFLAG=1 is 

the first entry to the program, IFLAG=2 is not used, IFLAG=3" is used 

for printing results and IFLAG=4 is the minimization call. 

SUBPROGRAM BLOCK DATA.  

This routine contains the data for the Gaussian quadrature 

in BLOCK DATA form. The program at present uses a 48-point Gaussian 

quadrature. 

SUBROUTINE DATIN.  

This routine is called by the Fortran statement CALL DATIN. 

This reads in all the data needed for the program, namely; 

experimental data points, types of exchanges allowed, coupling constants 

and absorption parameters. 

SUBROUTINE NEWWT.  

The statement used to call this routine is CALL NEWWT. As 

described previously 	, this routine calculates the "new weights" 

from the Gaussian quadrature weights which were entered at compilation 

time from BLOCK DATA. 
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(START  
4  

[NFCN. NFCN. 1 

CALL DAT IN 	 RETURN 

CHISQ = 0 
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CALL SORT 

P =1 

ASSIGN ROTATION 
MATRICES AND VARIABLES 
FOR CURRENT PROCESS 

NO 

YES 

WRITE 
NFCN 

CHISQ 

	( RETURN IFLAG - 
YES 

(RETURN 

(STOP 77. 

CALL APLO T 

FIG. 27. 



FUNCTION DJ  

This routine calculates the necessary rotation matrices from 

Legendre polynomials. Calls to this routine are denoted by 

DJ(J,CT,N,JFLAG) where J is the total angular momentum, CT is the 

current value of cose , 	N labels the different rotation functions 

and JFLAG is a subtlety to reduce the number of evaluations of the 

Legendre polynomials. 

SUBROUTINE KIN  

The statement CALL KIN leads to the calculation of the 

kinematic quantities which are independent of the scattering angle. 

SUBROUTINE KAYS  

This is called by the statement CALL KAYS. The elastic 

scattering S-matrix elements are evaluated in this routine. 

SUBROUTINE PTWAVE  

This subroutine, which is called by the statement CALL PTWAVE, 

partial-wave analyzes the scattering amplitude. 

SUBROUTINE REGGE  

The Fortran statement used to call this routine is CALL REGGE (CT) 

where CT is the value of cos 0. In this routine all the angle dependent 

Regge pole factors are calculated. 
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FUNCTION GAMMA 	• 

This function subroutine calculates the gamma function 

of complex argument u,r (U.), by means of Chebyshev polynomials. 

FUNCTION AMP  

This is called by the. statement CALL AMP(CT) , where CT 

is the current value of cos e. This routine calculates the helicity 

amplitudes. 

SUBROUTINE RESUM  

CALL RESUM is the statement used to call this routine. 

In this routine the modified partial-wave amplitudes are resummed 

to calculate , for example, the differential cross section. As a 

check on the convergence of the series the unmodified partial waves 

are resummed so that this sum may be compared with the original 

amplitude. 

SUBROUTINE CALAMP  

This routine is called by the Fortran statement CALL CALAMP 

(CT,F) where CT is the current value of cos e and the array F 

contains, on return, the values of the helicity amplitudes. 
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SUBROUTINE SORT. 

When used in conjunction with the minimization program 

MINUITS, this routine is called by the statement CALL SORT(X). 

The variables in the array of parameters X from the minimization 

program are associated with the variables used in the Regge pole 

program. 

SUBROUTINE APLOT.  

CALL APLOT is the statement used to call this routine, 

which is used, if required, to Calcomp plot the results of the 

program's calculations. An example of this(66)  is shown in Fig.28. 
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