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- ABSTRACT

Often, in the analysis of scientific data, some relation-
ship between observed responses «nd the response conditions
is sought by means of a mathematical model. Random variation
in the measured response, described by a probability model,
permits statistical analysis of the data. Then, a given stat-
istical model 1s considered more plausiﬁle than another if
it makes the observed data more probable, as measured by the:
likelihood-function.

For various reasoﬁs, a natural linear normal statistical
model has been used traditionally whene%er possible. This
model is extended to nonlinear, transformed response norial
models for biological response surface methodology, and an
example from fisheries bioclogy provided.

The natural linear model is derived for a member of the
exponential family in general, using the binomial probébility
model as a specific example.

By considering observed responses as discrete measure-
ments, a method of comparison and plausibility of fit of
probability models is developed using the multinomial model
as the basis. The proper interval widths are determined by
a graphical method. A number of numerical examples are pro-
vided.

A complete analysis of data is described when various
mathematical and probability models are possible. Numerical

examples are given for normal, exponential, Poisscn, and
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binomial models. The roles played by a power transformation
of a normal respénse are determiired by using the relative
likelihood function.

In special circumstances, specific inferences about a
given parameter in a statistical model, in the absence of
knowledge about any other, may be made using the conditional
likelihood function. Examples involve the binomial and
nonlinear normal distributions.

The exact Flsherlan test of significance 1is described
and applied to contingency table examples. Comparison of the
assumed and the approximate likelihood functions shows how

good the approximafion is when an asymptotic test 1s used.
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CHAPTER I

PROBABILITY MODELS, MATHEMATICAL MODELS,
AND STATISTICAL INFERENCE

l1.Introduction

The analysis of seientific data usually involves, among
others, two basic purposes. First, the scientist may desire
to ascertain if some specific hypothesis, made before the
data were obtalned, is viable. Second, the sclentist wishes
to determine what information the gliven set of data can
provide about the unspeciflied parts of general hypotheses
rade before the data were obtalned. Fcr.example, the data
may be assumed to arise from a normal distribution with
unknown mean. The sclentist wishes to determine if his
specific hypothesis that the mean has value 3, 1s tenable
and also what informaticn the data provide about the plaus-
ibility of various values of the mean within the general
hypothesis of normality.

This brief outline illustrates the difference between
the two purposes: whereas the first requires an absolute
judgement of viability, the second only requlres a compara-
tive Jjudgement of plausibility. Of course, a sufficiently
strong judgement of the implausibility of one of the comp~
ared hypotheses will yield a judgement of inviability; But,
this inviability statement results from some other hypcthesis
than the specified one heing much more plausible and not
from an absoclute measure.

The analysis of scientific data always carries the
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assumption that it is concelvable to obtain further such
data. This assumption will be necessary for developing an
absolute judgement of viability. For a specific hypothesis,
long run probabllity statements may be\made about possible
sets of data (and functions of such data, i.e. statistics)~
not yet available, and from these statements, an absclute
criterion can be developed., Further discusslion of this
purpose in the analysis of sclentific data will be left’
until chapterxr VII; Until that time, we shall be concerned
with developing a comparative measure of plausibility to
fulfil the second purpose.-

In certain situations, information about the probab-
ility distribution of unknown parameters in the hypothesis
will be avéilablé before the data are obtained. Then, this
information may be incorporated into the methods in the
following chapters using Bayes' theorem. Sucn procedures
will not be discussed in what follows.

A number cf numerical examples wlll be given to iliust-
rate_the procedureé developed. Excepf for several examples

in chapter IV, these are drawn from the blological sciences,

2.Probability lModels

Many =ets of scientific data may be considered to
consist of either counts of discrete individuals or measure-
ments of continuous variables made on individuals. In either

~ case, an observation, Vi will be made on the response var-
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1able, Y. Becauss of the finite limits of any measuring
instrument, the mneasurements of a continuous response var-
iable will actually be discrete; they may be designated as
Yty ‘

In order to carry out a statistical analysis of the
data, one must assume that the response variable is subject
to some random fluctuation, €y, so that

Ve = ¥ + €y . (1.1)
Then, the observatiois will have a frequency distribution.
Any hypothesis must speclfy one or more possible protability
functions which may represent (approximate) the frequency
distribution. These hypotheslized probability functions will
be called probability models (PM's). The PH will usually
contain unknown psrameters, g, which must be estimated from
the data and will be represented by F(y;g). When Y is cont-
inuous,
F(y:g) = aF(gigdlay = £{y:ig)ay . (1.2)
" In the following chapters, only FM's from the exponen-
tial family, of the form ‘
| 7Y expla (y)B(p)4¢ (y)+D(p) Jay (1.3)

. J y-—[sy
will be considered, where p is the expected (mean) resvonse,

Flysp) =

n = E(Y). For a discrete PM, dy = 1 and the integral sign
disapocars. If B(p).= 0, thé parameter 6 is called natural,
Common PM's belcnging to the exponentia! family include the
binomial, Poisson, normal, and exponential distributions.

Equation (1.2) may be generalized by the addition of para-
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meters pot related to the mean.

3.Mathematical lodels

Often, scientific data consist of observations of
responses, Xj, measured under a number of different cond-
itions, i, elther determined by experimental design (e.g.
analysis of veriance (ANOVA)) or by nature (e.g. some
regression problems). In such cases, there will be a
different PM under each condition. Usuwally, the probabllity
function wi;l be assumed to remain the‘same for ail i, with
only the parameter values varying with 1. This variation in
parameter values may be described by some mathematical
function which.will be known as the mathematical model (MM).
Incorporation of the KM into the PM yilelds a complete
statistical model (SM). Of course, PM's not incorporating a
MM varying with i may still be considered as SHM's with the
parameter values set equal to (unknown) constants; as in
equation (1.5) below.

If the MM is a linear function of the parameters, then
it is called linear. If, in addition, all of these parameters
are natural, it is called a natural linear IM. Common
examples include normal theory linear regression and ANCVA,
slthough these are special cases because of the presence of
a variance parameter (see chapter V, section 2),

For a given PHM, the least informative (about the

relationship between conditions and response) MM occurs when
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. different parameter (vector) exist; for each condition, i,
for example

B(pi) = €4 . (1.4)
If the various conditions do not actually affect the response,
the MM will be of the form

B(p;) =6 . (1.5)
Usually, desirable FM's lie between these extremes and are
derived by using information about the response conditions.
Again, examples inciude the regression and ANOVA models to
explain variation in the mean of the response. In succeeding
chapters, various lil's involving the mean will be considered.

Natural lineéf SM's from the exponential family are
usually statistically most useful because of the existence
of sufficient statistics for all of the parameters. But,
often theoretical aspects of the scientific problem will
point to some other form of MM, as especlially considered in
chapter II. Elsevwhere, nabtural linear Sk's will be used if
possible. |
After the specification of all ﬁarameter values in a SN,

the .probability of observing'ény given set of data may be
calculated exactly. A SM with all parameter values specified
will be called a simple statistical model (SSM). Then, any
" SH is made up of a set of possible SSk's, labelled by the
unknown parameter values. If various Slis are considered
possible before the data are obtained, thesc form a still

larger set of S3M's,
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L.Iikelihood Inference

The preéeding two sectlions have outlined what is to te
assumed before the data 1s obtained: some combinations of
mathematical models with probability models to form statist-
ical models. No prior probabillitlies are assumed for either
varicus modelé or various parameter values.

. We wish to determine which SSM's are plausible in light
of tue data. For each hypothesized SSHM of the set, the prob-
ablility of obsgrving the given data is calculated. Then, -
the criterion of blausibility for making comparative stat-
istical iInferences, as described 1n the first section of
this chapter, is to consider more plausible that SSM which
makes the observed deta more probablé.

Conslderatlior of the set of SSH's in this way, with the
observed data given and fixed, yields a likelihood function
(LF, of possible Sii's and parameters) for the data,

L(Zgisiy) = Folysdy), (1.6)
where F, specifies the SI, and és the (vector of) parameter(s)
within model s. '

Use of the likelihood function for making statistical
Inferences, as originally proposed by Fisher. has been
recommended by a number of authors: Fisher (1958, 1959),
Barnard, Jenkens, and Winsten (1962), Birnbaum (1962),
Anscombe (1961), Feigl =nd Zelen (1965), Sprott and Kalb-
fleisch (1969) and others. The procedures are well known,

at least when only one S is available and only the
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parameter values are unknown. For a simple explanation in
this case, see.Lihdsey (1970).

In making inferences using the likelihood function,
all statements about SSM's are relative, We do not say that
a SS8M, SM, MM, or PM is implausible unless another corres-
ponding model is much mofé'plausible. This is especilally
relevant to the procedures developed in chapter IV for
discrimination among Pli's., Hence. the relative 1iké11hood
(RL) function, |

B(ggrs) = L(ggs:ix)/L(gg,8:x). , C(1.7)
may always be used for making inferences, where § denotes
the most plausible SM and 3 , the most plausible parsmeter

values within this SH.
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CHAPTER II

MODIFICATION OF THE NATURAL LINEAR NORMAL MODEL
l.Introduction

For many statistical problems arising from sclentific
data, as outlined in the first chapter, some form of natural
linear MM combined with the normal PM is entirely satis-
factory for obtaining ﬁhe desired information from the data.
Hence, normal theory regression analysis and ANOVA have
been developed as prime tools foi the practlsing statlst-
ician. Natural linear normal theory models have a number of
desirable features which enhance theii use: (1) robustness
to departures from the assumption of a normal PM; (ii)
linear 1ikelihood‘equations which may easily be solved to
yield explicit maximum 1ikelihood estimates (KLE's) of the
unknown parameters; (iili)sufficlilent statistics so that the
MLE's contain all of the informatior in the date about the
parameters, The second feature means that these models may
easily ve used without the need fer powerful computing
equipment to mcke the necessary calcqlations. With this forn
of SM, exact long run probability statements may easily be
made about data not yet observed, no matter how much data
is alresdy avallsble (see chapter VII) since the required
distributions are well tabulated.

But, even given these conslderations, the natural
linear normal theory SM may often be unsatisfactory, either
due to theoretical scientific reasons or to implausibility.

Two distinct methods may be used to improve on the natural
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linear ncrmal SI. The parameters of the PM may vary in a
nonlinear manner as the responses change under different
condltions making abandonment of the natural linear KM
necessary. Or, the observed responses may not follow a
normal PM.

Introduction af a nonlinear.MM entails loss of the
second and third features above. lMore powerful computing
equipment is usually necessary to solve the nonlinear like-
lihood equations. Exact long run probabllity statements nay
no longer easily be made. But, often nonlinearity is at the
root of a theoretical discrepancy.

Two approaches may be used 1f the responses do not
appear to follow a normal PM.. The normality assumption may
‘be abandoned or'some transformation of the observed response
which agrees satisfactorily with the normal PM may be used.
The first alternative will be considered in succeeding.
chapters. Traditionally, in adopting the second alternative,
‘some completelyr specified transformation, such as sin-a/?
for binomial type data, is derived frbm theoretical statist-
ical considerations, More recently, transformations involving
unknown parameters have been introduced, as described by
Bex and Cox (1964). These will be used throughout this
chapter., Transformation of the response is occasionally
used tc solve the statistical problems inherent in a non-
linear KM, as when a logarlthmic transformation is applied

to the response in a regression prcblem, while retaining a

L
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linear regression MM, instead of introducing the nonlinear
exponential MM.

As a specific example of the procedures used when
departures from a natural linear normal SM are important,
the'analysis of response surfaces will be considered. Box
and Wilson (1951) originally introduced response surface
methodology, using a second deéree polynomial regression
MM, as a procedure for determining the combination of levels
of varlous factors which produce the optimum response.
Efficient methods have beeﬁ developed for determining this
optimum (e.g. the method of steepest ascent) from experi-
mental results, as well as for devising efficlent experi-
mental designs to galn maximum information from 2 given
number of polnts in the factor space (e.g. composite and
rotatable designs). When important deviations fiom the
polynomial MM occur, Box and Tidwell (1962) have suggested
power transformatlions of the factor variables, This not
‘only Increases the efficiency of determination of the opt-
" imum response, but alsc prevides a more accurate plcture of
the shape of the response sprface as a whole..For departures
from a normal P}, Box and Cox (1964) proposed a procedure
for estimating transformation parameters applied to the
response varlable; see also Dolby (1963) and Draper and
Hunter (1969),. .

' With the 1ntroduction of these two types of nonlinear

parameters, both the PM and the MM may be considered non-
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.linear. Thus, any exact'long Tun probability statements,
elther about statistics derived from the data (e.g. sign-
ificance lef¥els and the probability statements upon which
confidence intervals are based) or about the parameters
(e.g. fiducial intervals), are difficult cr.impossible to
calculate, unless sufficlent data are avallable for asymp-
totle propertles to hold. As stated 1n chapter I, we are
Interested in what ihformation is available from the
observed data wilthou® using asymptotic long run statements.

A number of procedures in the anaiysis of respohse
surfaces, besldes the estimation problems, are developed
extenslively here, since they will be of use in analyzing
data which may he considered to arise from a nonnormal Til.
The use of response surface methodology 1s discussed 1n

relation to the biologlcal field of ecology.

2.The Bole of Blological Response Surface Methodology
Response surface techniques may be used to describe
many blological phenomena (e.g. survival, growth rate,
oxygen consumption) within a range of levels of various
environmental varlables (factors). For limited changes in
the environmental variables (i.e. within a limited region
of the factor space), quadratic systems, such as equation
(2.3) below with oty = €. = 1'(all i, k), are ofter adequate
for approxlimating the relationship between a response and

levels of several of the factors. In this region, a local
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ﬁaximum may be reached and the quadratic relationship will
approximate thls. However, a large portion of the variaticn
due.to the treatments (levels of the environmental variables)
1s often unexplalined after fitting the quadratic surface,
This is.associated with departures of the true blologilcal
response from that expressed by the quadratic‘approximation.
Usually, the required higher order effects are difficult to
determine because of the greatly increased cost and diffi-~ .
culty of a more complex biologilcal experiment. The use of
such transformed response surfaces, with the additlion of
one parameter for each factor variable (forming a nonlinear
MM), provides much greater flexibility for more adequate
representation of the actual surface than does the quadratic
expressioﬁ,

Often, blological resﬁonse data, as gathered, dogs not
follow a normael PM very well, In most cases, thig may be
corrected by the introduction of some transformation of the
response varlable., Here, the power transformation of Box
and Cox (1964), with one estimable parameter, is used to
fulfil better the assumptions of normality and constant
variance of the SIM, Draper and Hunter (1969) demonstrate
that the MLE of ‘this transformation serves as a type of
average in performing these two functions (see also chapter
V, section 10). In addition to the lmproved PM which this
ylelds, the response transformation also provides the same

benefits as does use .of the nonlinear MK, in that the shape
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of thé response surface becomes more flexlble.

| The use of such transformations, both of the response:
end of the environmental variables, may also indicate alter-
nate units of measurement, which may be employed to simplify
(lihearize), as well as to make more biologically meaningful,
fhe relationship. For example, 1f the transformation of a
response of tiﬁe to death is estimated as an inverse power
(Y = =1 in equation (2.1) below), a moré meaningful unit of
measurement would appear to be death rate, In‘this case, the
sclentist is concerned with readlly interpretable transform-
atlons which still allow the SM to explain the observed
response well and which may provide a simpler model (if
possible, linear in the transformed variables) for further
theoretical and experimental work.

| In summary, transformations can (1) provide usefql
insight as to different units of measurement for varlables
. to be used with a linear SM; (11) provide a more accurate
(than the original linear SM) representation of the relation-
ship under study by means of a nonlinear model, and perhaps
lead to a refinement of the model; (1ii) allow the response

to fulfil more closely the probabllity assumptions (PHM).

3.Natation
The general SM to be consldered 1s of the form
}"I = B(.}Si'é) + 81 ’ ) (2.1)

where the PM is
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v
y; = n[B(x,,8), 6% (2.2)
and the MM is
1 oy B X oy &
= ¥ b IJx E =
B(Ei)é) @O+j‘=163x13+jbl k=JQkaijxik (.’L 1,oot’n)o (2-3)
From these egquations, the LF¥, maximized with respect to the
variancé, 62, is
' 11 Y 2,-n/2 n-ﬁ- Y-1
L(C_C_,_B,_,YSX) = (1 1[3’1"3(_&1:@] ) Y i=1y1 Ayi 9 (2.4)
n
where Y ’PEyi
response variable. In the more general form, the normal ILF

is the Jacobian of the transformation of the

maximized with respect to the variance 1is
Lig,Ysy) = 804y 1y, (2.5)
n ' .
where &% = f§i(§§—31[ﬁ(éX3)2/n-

h,Analysis of the Response Surface

,1 Estimation of Parameters

With a nonlinear SM, the normel egquations are nonlinear
in tpe parameters and some iterative'procedure such as
Newfon's method must be used to determine the solutions.
Various methods have been devised which are efficlent with
certain models and/or certain data (see Draper and Smith
(1966) for some of the more important cases). A three-step
linearization procedure which has been found satisfactory
for the above SM is described below, As suggested by Box
and Cox (166L4), a linear transformation of the response
variable simplifies the LF by eliminating the Jacobian of
equation (2.4)., Let the geometric mean, fjiyi/n, for the

response variables, be denoted by &. Then, apply the trans-
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formatlion
. v .
y '} y > =1 .
: ;vz'y*"-T'
The Jacobian of the complete transformation is equal to
unity and the new varlable 1is continuous at Y = 0. This
11near transformation of fr does not affect the MNLE of Y.
A: similar linear transformation may be applied to xj:
@y, & '
Ja
xj > x5 + Xﬁcc 1
for continuity at the or%gin. The family of transformations

then becomes
y 5 @_‘;ﬁ—‘;? =y (Y # 0,1m),
x 3 %=1 = ) (a2 0,4m).
cc-
Denote these transformations, which wlll be used in this
form only for the estimation procedures of this section,
by vV ana z(d").

Initial estimates, q% and Y, , of unity have proven

adequate using the estimatlion procedure here described.
. The three step procedure is as follows:

Step I: After substituting the initial estimates of the
power parameters into equation (2.3), the MLE's of the Gj's
are calculated (i.e. linear least squares estimates), These
estlmates are conditional on the power parameters being set
at the 1nitial estimates.

Step II: Equation (2.3) is linearized with respect co

the power parameters of the factor space (see Draper and

Smith (1966) pp. 267-273). This. is equivalent to taking
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terms up to first order in the Taylor series expansion of
B(zi,g,g) about the initial estimates, & . The resulting

equation is

m
.V§-Yo) = B(Ei'§’§0)+j§1(ccj1 )B“j( i,g <)
m
'=60+3‘§1@ x(F1o)s T, 2 8, (o) (o)
(a ) (2& o), 2 (i) (Ctrem)
[8 Xy do +2§3Jj Jo +£§333k 1Jjo 1kko ]
. ((le-djo)log xij .

Now [@JXi§ﬁ0)+2@jJ %, ®50), 5 k>J@Jk (O:O)XfiKO)]log xij 4o nob

contain the unknown parameters, aﬁl’ of this step, and thus
may be consldered as new independent varliables. Then, MLE's
may be calculated for the new parameters, (0%1-c%o), using
only }inear likelihood equations. Throughout step II, the
valves of 2 from step I are used.

Step III1: The MM now stands as

(Yo) ) ) (Cil )
¥i 00 = BotiE 1@31' ik zﬁ kxij Wi 5 (2.6)
wherelg 1s obtained from step I and o from step II. Note

that in equation (2.6), Q 1s not the MLE when ¢t = & but’
when @ = o - Since much of the computation time in thié
procedure involves calculating cross product matrices, use
of the same &, in thls step as in step I has been found to
be more efficlent than recalculating @ for the new ¢, after
step II. This usually causes a few more iteraticns to be

required for convergence, but the total number of actual

calculations, and therefore the computing tlme, 1is reduced.
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At this stage, the right hand side of eguation (2.4)
(Y)

can be considered as a new dependent varlieble and y
linearized as in step II for the MM. This ylelds the
relationship

Blzy18) = "xi——'—Y;'llﬂYl'Yo)[:y‘i"‘Yol?rJ ¥ %’;:{3'11'(y§°“1()li’g ﬂ
- -1 - o
YOSI ° YOS' 0 Yoy © Yoy ©
The parameter (Yi-Y;) is estimated by simple linear regres-

sion ylelding a new estimate of Y.

The three steps are repeated, using the values of ot and
Y from steps II and III as new initlal estimates in step I,
until some cocnvergence criterion 1s met, In most examples
analyzed, using two and three factor MM's (m = 2 or 3 in
equation (2.3)), cgnvergence to three or more diglts occurred
within tenliterations. Exceptions involve SM's where the ﬁL
function graphs of the parameters'are very flat, hence
pointing to no definite power parameter values, In these
cases, values near the MLE's usually result after ten itera-
tions,

This methed of caiculating the NLE's -1s also used for
estimating the parameters for the maximized RL function by
placing a restraint on the lteration technique so that one
of the parameters remalns at a fixed value. The estimates so
obtained are then substltuted into the RL function,

L,2 Adequacy of the Statistical MHodel

ince no alternatives to the Fli of equation (2.2) are
considered, adequacy will only be discussed within the

framework of this PM., This implies that the PM with a
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transformed normal response estimated from the data will be
considered zdequate. When more than one value of the response
variable is observed under at least some of the environmental
couditions, MM (1.4) may be used, i.e. a different mean for
each condition. Then, the pure error sum of squares (SS) of
Table 2.1 is a measure of experimental error and may be used
in the estimation of the variance in the normal LF (2.5),
providing the Basis for all comparisons, i.e. this LF
becomes the denominator of equation (1.7). The plausibility
(adequacy) of the response surface KN i; then determined by
comparing the LF (2.4) with this. This is the RL for lack
of fit in Tabvle 2.1. Both LF's of the RL are maximized over
all parameters, including Y and o?.

If only one obscrvation is made at each point in the
factor space, the pure error 5SS 1is not calculable since
NLE's of Y and 0 cannot be obtained using this KN. Then,

LF (2.4) must be used as the basis of all comparison, i.e.
the response surface MM must be assumed adequate for all
further comparisons. Some other more ad hoc procedures may
be used to check the walildity of this assumption. leasure-
ment of the response at nearly adjacent factor points will
yleld an approximate estimate of the required variance. The
linear polynomial response LM (equation (2.3) with Y =1 =
ah) can be considered s second order aprroximation to the
Taylor series expansion of some unkrnown function. Box (1954)

has emphasized that the experimental design should allow
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estimation of some higher order effects to give an indication
of adequacy of the approximaticn. This also applies when the
transformations ére considered as changes of units of
measurement, Box and Hunter (1965) have suggested that an
indlication of desired changes in the MM may be discovgred by
making several runs of an experiment using different points
in the factor space.at.each run. The MLE's of the parameters
in the model are given by g, which 1is calculated from the
combined observations for all runs. In addition, zi may be
calculated from each run i1 and the RL for z versus each Zi
used to discover if any significant relationship of the run
estimates of g to the location of the observation points
exists, If so, appropriate modifications will need to be
made to the SM. The relationship of expected to observed
responses (e.g. plots cf residuals) also provide a useful
indication of possible inadequacy, especially of the FM.

L.3 Inferences about the Parameters

Often, the statisticlian 1ls concerned only with two
values for each parameter in making inferences about a SH:
the MLE (or unbiased minimum variance, etc.) and the point
estimate where the parameter disappears from the SH, e.g.
Bj = 0 or xy = 1 in equation (2.3). In the present case for
é linear KM, this is exemplified by use of the ANOVA table
which contains significance tests of the hypotheses that
various parameters and combinations of parameters are zero,

Thus, the two values are that providing the most plausible
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SH given the data, and that simplifying the SH by elimina-
tion of the parameter(s) in question. This is an important
first step which will be considered further; nevertheless,
to understand the SM more completely, the effect of variation
of the parameter values on the model should be considered
through use of the LF, by means ofﬂcontour plots of the RL
function and of the RL function maximized with respect to
all parameters.except that of interest., Consideration of
"varlous parameter values besides the two indicated above
may show that some theoretically more satisfactory value
is plausible, .

In the case of the nonlinear SM, standard F tests are
no longer valid in the ANOVA table, since probabilities
for the ratios of SS's cennot be obtained from exlisting
tables. The column of F values in the ANOVA table may be
replaced by a column of maximlized RL's of the various
parameters and combinations of parameters being zero., Such
ANOVA tables for linear SlM's are useful in familiarizing
oneself wlth the propertlies of the egulvalent tebles in
the nonlinear case, The construction of such a table for a
replicated experiment is shown in Table 2,1, Without repli-
catlons, the residual S5 cannot be split into lack of fit
and pure error SS's, Note the relationship, R = (SSA/SSB)"N/2
= (1+kF)-N/2, using equation (2.4), where F is the F ratio
for A and B, and k is the ratio of degrees orf freedom.

The use of orthogonal polyncmials provides maximum
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independence in making inferences about variouslelements of
8. The method of Robson (1959) for caiculating the polyno-
mials when the spacing between levels of a factor, X?J, are
unequal, has been used. For the linear MM, this procedure is
equivalent to the method mentioned by Box in Davies (1956,
p. 519) for orthogonalizing the quadratic term in the’MM.

If the maximized RL of some coefflcient parameter being
zero or of some power parameter being unity is high, this
indicates that elimination of that parameter from the SM is
possible without affecting the adequacy of fhe model, for
values of the other parameters near their MLE's (anywhere,
if the parameters con be estimated independently). If
elimination of a parameter 1is implausible, a plot of the
meximized RL function will show the plausibility of various
other values, and may point to a plausible interpretable
point in the parameter space.

If the experimenter 15 primarily interested in determin-
ing the optimum response conditions, a RL functlon may be
used to give an 1ldea of the precislion. of the estimates of
the factor coordirates of the centre; see Box and EHunter
(1954),. If equation (2.3) is differentiated with respect
to the various factors, a system of linear equations in the

transformned coordinates is obtained:

m
Y -
a—Lm = 85728 %09z Bucsk = 0 -
dx,

‘These constraint equations can be substituted directly into
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equation (2.3) eliminating the B,'s, yielding
vy = @o+j%1 kgj@,jk(xﬂxglﬁ‘xfgx:lﬁ'xgixﬁ) :
Since X, = (xsl,...,xsm) is the MLE of the centre of the
surface, the RL of various'possible centre points may be
calculated using this equation as a N, and maximizing
over the remaining parameters. |

.4 Plotting the Surface

Plotting the response surface can play a valuable role
in interpreting the inferentlial results, especlally if plots
are made for vearious plausible SSH's, l.e. for various
plausible sets of parametric values, .

With a linear response surface model, both canonlical
analysis of the MM and plotting of the contours are extremely
important in understanding the surface., With nonlinear MM's,
canonlical analyslis yields little information about the
shape of the surface but does provide a simple technique
for calculating points to plot on the surface. This 1s one
important reason for choosing a MM of the form (2.3). The
following is a simple procedure.for determining the centre
of the fitted surface,

Iet B = (gjkajk) be the matrix of coefficients in MM
(2.3), where %k =11f =X and 3 if j # k; let C = (‘21‘63)
be the vector of 0.5 times the coefficlents and let X =
(xg?) he the vector of the centre point. The vector of the
centre coordinates is found by solving the set of simultan-

eous linear equations



BX =C (2.7)
and the response centre by

Y

yS = 60+X'C .

Canonical analysis of the surface uses the elgenvalues
and elgenvectors of the matrix of coefficlents, B, which will
be denoted by A' = (Agy.00yiy) and by ¥i = (Vy4seee,vpy) (4 =
1,..0,m) respectively. Canonical variables arc derived:

3 (x51ex ™
Z2ix < j=1(x13'xsa)vkj :
The point Xy in the factor space 1is transformed to the point

z, = (2

_i il’l."Z
origin at the centre of the surface and its axes along the

im) in the canonical space, which has its

principal axes of the conlcal equation in the transformed
varlables, xfg. The cano;ical enuation of the surface is
yi-y; = ngl)‘:jzij . (2.8)
Equation (2.3) is a conical equation if the units of the
coordinates are considered to be xfg and of the.reSponée to
be y{. Equation (2.8) then shows the conical shape of the
surface in terms of these transformed units. When the sur-
face 1s considered in terms of the original units, xij! it
is,.of course, nonlinear and not conical.
If all of the ﬁi have the same signh, some optimum
(maximum or minimum) has been reached in terms of both the

x?? and the x factor spaces., If the elgenvalues are of

13

differing signs, varlous nonlinecar surfaces are possible.

)

Since an (m+1) dimensional space is involved in the

study of a response surface, difficulties arise in viewing
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the entire spasce when m>.2, When m = 2, contours of
various levels of the response may be plotted on coordinates
of the two factors. In higher dimensional spaces, slices
may be taken. on hyperplanes to obtaln a surface sultable
for plotting in two dimensions. For example, with m = 3,
the plane, X, = kl’ might be considered. and contdurs of ¥y
plotted on the x2x3 coordinates aloﬁg this plane., Thus, all
plotting of surfaces can be considered in terms of the two
factor response surface, The method outlined below provides
the calculations for forty vnolints (xil.?iz) on each response
contour, y = Vi but the number of points may -easily be
altered; see Lindsey (19€8).

When the constraints of the hyperplane are substituted
into equation (2.3), two eigenvalues, Ri, Ré, for the matrix
of coefflilclients may be obtained. Let . .

Uy = £(yk-ys)/AIJ oos[(1-1)17/20] (4 = 1,...,11) (2.9)
'1f the eigenvalues have the same sign, and

uy o= x 1+ gy -y *)/xf]f 1ycosb(a-1)m/20] (1=1,...,11)(2.10)
if they are of opposite sign, where xll is a 1imit on the

size of the xl factor. Also

Y Y 2 3
u2,i = E(yk-ys-}]'.ul,i)/xéj (1
Then, :

1,000,11). (2.11)

(L=1,...,11) (2.12)

Ui, T Wq,42-1 T "Ug 2003 T "Y1 2041

and
Up,a = “Up spoy S Uz pp4p = Uz 22-3 (= 1h...,11), (2.13)
The points are glven by
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CCl = 1 ] L 4 al

X351 = Vig¥y,at21Y2,1 le (1 =1,...,50) . (2.14)
0D _ ' +x 2 .

I R T L IR RAL PL TR

Throughout equations (2.9) to (2.14), x,, and X,, signify the
first and second remaining variable factors after the
constraints of the slice are applied to equation (2.3). If
equation (2.9) is used, only response conditions below the
maximum (conversely.-ébove the minimum) will be calculated,
whereas with equation (2.10) éontours both ébove and below

are used.

5.An Example
Fry and Hart (1948) performed experiments on the effects
of acclimation (xl) and experimental (x,) temperature exper-

ience on the swimming speed of goldfish (Carassius auratus).,

Cruilsing speed of a fish 1s defined as the speed (in f8./
min,) at which the fish can swim steadiiy for a considerable
period of time, although fatigue wlll begln after some hours.
A test fish was thermelly adapted to water at the acclima-
tion temperature before being transfefred directly to a
rotating chamber containing water at the experimental temp-
erature where determination of speed was made.
Unfortunately, although three different fish were used
for each response determination, Fry and Hart only give
average results for each set of three fish, as reproduced
in Table 2.2, Individual response curves plotted by Fry and

Hart for the various acclimation temperatures show that the
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response surface does not have a conical shape; hence, use
of nonlineaf parameters should result in improved fit.

Although not performed speoificélly for response
surface analysls, the experiﬁent lends itself well to such
analysis. With no hypothetical MM avallable, that of equation
(2.3) provides a useful baslis for the analysis. No special
PM seems theoretically justifiable, so that some form of
transformed normal PM may prove satisfactory.

Since only one (average) measurement is avallable at
each response conditlon, the pure error SS cannot be calcu-
lated and the plausibility of the response surface NN (2.3)
cannot be determined, Hence, lack of fit and pure error are
omittea from the ANOVA Tables 2.3 and 2.k, Note that the
residual SS has only 13 degrees of freedom in Table 2.k,
three belng used in estimation of the power parameters,

KLE's of the power parameters are calculated to be
¢ = 0.1080, 61 = 1.6344, and 8? = 1,2939, vielding a non-
linear MM

g0t = 1.48-6x10"%xt Ousx107 3kl 2955107657 26
-1x10-5x§'58+3x10-5x%‘63x%'29 .
From the graphs in Figures 2.1, 2.2, and 2.3 of the RL
functions of the power parameters, the maximized RL's of
the powers being unity are R(Gi=1) = 0,0004, R(cé=1) = 0,05,
and R(Y=1) = 0,008, The maximized RL of the lincar SN (i.e.
all power parameters unity) as opposed to the nonlinear

model 1s 9x10-6, indicating that the simplified linear SHM
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is not plausible. From Figure 2.3, the maximized RL of Y =
0.0, or a iégarithmic transformatlion of the response is high
(R(Y=0.0) =,1.0). Comparison of the graphs of Figures 2.1,
2.2, and 2.3 indicates that Qi and o, are estlmated from the
data more precisely than Y.

The plausibilities of eliminating coefficient parameters
are iisted in the ANOVA Tables 2.3 and 2.4. Only the para-
meter @1 in the linear MM |

y = 21.84+O.97x1+4,49x2-0.18x§-0.21x§+0.28x1x2 ,
with R(@1=O.O) = 0,24, could plausibly be eliminated., but
this is not of interest since the linear MM has been éhown
to be lmplausible.  Note that none of the coefficient para-
meters is estimated independently in elther MM, although
orthogonal polynomliais have been uscd. l

The response centre or point of optimum response

(naximum crulsing speed) is glven as X, = (26.200, 27.500)

with yo = 99.9 ft./min. for the nonlinear SM es compared

with x_ = (22.8°C, 26,6°C) with y_ = 92,6 ft./min. for the

linear SM. The shapes of the linear and nonlinear surfaces
may be compared by means of the contour plots of Figures 2.4
and 2.5, BL function graphs of the centre coordinates afe
omltted here (as are those of the coefficient parameters)
but intervals with maximized RL greater than 0.1 are (25,27)
for x, and (26,29) for %, for the nonlinear M,

The nonlinear SN result;ng from the analysls appears

to provlide a good predictive model for the response surface,
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although little of theoretical biological interest seems to
have resultéd. Measurement of the response, the crulsing
speed of the goldfish with logarithms or, equivalently,

use of the log normal PM may requlire further analysis,
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CHAPTER III

NATURAL LINEAR STATISTICAL MODELS FROHM
THE EXPONENTIAL FAMILY

1.Introduction

As mentioned in chapter I, the normal PM 1is the most
frequently used member of the exponential family; both normal
theory linear regression and ANOVA use natural linear MM's.
Extension to other members of the exponential family is
usually straight forward. A number of concrete examples
wlll be provided in chapter V, including analyses of numer-
lcal date.

In this chapter, for 1llustrative ﬁurﬁoses, some natural
linear FM's for discrete members of the exponential family
wlill be considered, wlth detalled development for the bino-
mial Pli. The discrete exponrnential PMis alre members of the
power series distribution (PSD), examples of which include
the binomial, Poisson, and logarthmic FPlts.

The PSD 1s defined on the set of non-negatlive integers,
T. With parameter 4 and series function g(d) = ;iba(y)dy,

- the PSD 1is defined by the probability function

Y
FY) =a(X)d", YeT, deg=(4i0<h<r) , (3.1)
() g : T

where r 1s the radius of convergence of the power series of

g(d4). By comparison with equation (1.3), A(Y) =Y, Bn(g)]

log 4, C(Y) = log a(¥), and DIn(#)] = -log g(#). Then, the
natural parameter is 0 = log 4.
In the following development of natural linear Nli's

for the PSD, alteration of the probability function when
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simplified MM's are introduced i1s discussed. Although not
necessary for the LF's so far considered, this alteration
will be needed for making more sensitive inferences about
incdividuval parameters in a plausible SM in chapter VI using
condlitional provabllity functlons and also for making tests

of significance in chapter VII.

2.The Natural Linear Mathemafical Model
When the discrete variable Yi is observed under a

nunber of different conditions 1, the general SH will be

F{Y;g) = TTa](YgZég .,

=g (8)) (3.2)

Reduction in the number of paremeters results when some
(hopefully) theoretically justifiable VM dependent on the
conditions of observation is introduced, With members of
the exponential family, use of a natural linear MM insures
that sufficlent statistics will exist for all of the para-
meters. In equation (3'2)2 ?ach observed y; 1s individuelly
sufficient for the corresponding parameter, di. For a given
PM of ths PSD family, the LF derived from equation (3.2)
forms the basis for plausibility comparisons in the presence
of natural linear Mi's,

The slmplest SM to which equation (3.2) may be reduced
is

F(1:4) = r@.&(duzéﬁ— Uir?-sﬂefl (3.3)
e () - )
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where the response conditlons have no effect upon the observ-
ed response. In this case, t =%y, 1s the sufficient stat-

istic for the new parameter 6 = log 4. However, note that

S e )t £3 6 Tar) | (3.4)

¥ 1=l g, (4) v 1=l (4)
since various vectors y will yleld tne same t.

In the same way, the analogue of any normal theory
natural linear Sm; such as linear regression or ANCVA, may
be derived. When the natural linear Ml chosen has fewer
parameters, and hence fewer sufficlent statistics, than
response conditions, an adjustment musf always be made to
'the probability function. This 1s equivalent to lntegration
of a continuous probabllity function using a Jacoblan.

Suppose t*! = (tl,...,ts) (s < n, the number of response
conditiocns) are sufficient statistics for the purameters of
a natural linear MNM. Then, the factor'ﬂéi(yi) becomes

a'(t) =§1Trjla1(y1) ' (3.5)
where the summation, Zf, i1s restricted by the s restraints

defining t. For example, using the SM (3.3) with a binomlal

PH, o
I /N N pa
" H —
cor -T2 m 2 )] (5
z | 1=1\y, }{_i_i=1 i\ B Ky t
so that - .
n (3 -N
Fly:d) = 1_7(1 g1 (144, )01
1=1\y,/) 1 i
becones n o\
= Ny -
F(tid) = <1=g $ 1)
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ANOVA with a PSD may be exemplified by the analysis of
a two-way randomlzed block design wiph one observation per
block. Even with only one observation per block, the inter-
actlon effect may be included in the MM since the variance
need.not be estimated, as 1t usuvually must with a-normal PH.
Then, the natural linear MM may be

1°5‘?‘13=913=”-+°i+63+’f13 , (3.6)

with% oy =—75 Gj =§ Yij =Ej Yij = O,where 1 and ] label the
two¥way system. Thus, effects are measured on.a logarthmic
scale. This MM is equlvalent to that iq;orporated in SHM
(3.2), since each has the same number of parameters.

Examples from PSD's might include: (i) if the observa-

tions, are the numbers of tags returned in a year firom

yij’
a given specles of fish, equal numbers of tagged fish being
releésed of a number of ages, J, at a mumber of locations,
I, the previous year, the PSD being assumed a Poisson FPM;
(i1) if the observations sre numbers of eggs hatching under
various levels of two environmental factors experimentally
maintained, wlth Nij eges held at each combination of levels,
the PSD being assumed a binomial PMN. (

Linear regresslion for a PSD is simllarly developed, the
MM belng

3713
This KM is substituted intc PM (3.2) to form the correspond-

log ngi =9, =%B x . (3.7)

ing natural linear SH,

As mentioned previously, such data as are suitable for
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analysis using these PSD Sk's have traditionally been treated
by some approximating normal thcory SM such as that discussed

in chapter II.

3.Binomial Statistical lodels

Although the Poisson PM 1s probably the simplest PSD to
consider, the binomial PH perhaps ylelds some more famillar
results, especially relatéd to contingency tables and logit
analysis, Rasch (1961), Gart (1969, 1970a, 1670b), and Cox
(1966, 1970) use some of the Hl's outlined below. The famil-

iar form'of fhe binomial PM 1is

FLip) = 7 (1) pyt(1-p)17H

1=1\Y,
In the form of a PSD, this becomes
Ny -N.
F(Yig) = {)Yi(1+¢1) i, (3.8)
l\V '

N N -
with ai(Yi) = (19 and gi(di) = (1+di) 1 so that 8, =
log( Di ), the logit transformation., Natural linear HMM's
-7y .
follow from this logit form.
An IxJ randomized block design with I = 2 corresponds
to J 2x2 contingency tables., Interaction effects are not

usually considered in analysis of such tables so that an

appropriate natural linear MM 1is

0,, = log{ Pii1\ =n + o + B, ©(3.9)
13 (""“‘1-p13) 1t

with;ZZBJ = 0 and @ = =0 Then, sufficient statistics are

Zyij. Ty = Yeom¥oy = y..«% Yyyr 8nd 89 = Jee-yq. =
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y..-%:ylj. Since there are J+1 < 1J parameters, ;?Sa(yij)

must be modified for use in chapters VI and VII:

| 2. )0
a (y..,z,sl) :zzi_- ‘El\y"-rj*—zj -Zj .-

N N
. Mg 2J ) . 10
(yo t"rJ"Sl-'zzj)(Sl’f'sz _} (3 )
The LF is . . (et +81)
’ ¥4 g inroy
el - W(N”)e : : . (3.11)
13V o) (1aePtont Byl

If this MM is found to be plausible Whép compared wlth one
of the form in equation (3.8) (i.e. 1f an interaction effect
is implausible), then the parameter of interest in equation
(3.11) will usually be o = =05. Chapters VI and VII contain
further discussion about inferences for this parameter.
Cne-way ANOVA corresponds to analysis of an Ix2 cont-
ingency table for a-binomial PM. Note that only one obser-
vation (one count of ¥y Successes in Ny trials) is necessary

in each of the I blocks. The MM is

0, = log (T%Z) =R+t (3.12)

where oy = 0. Then, the sufficient statistics are y. =Yy
and ry = y.-yy, with as many sufficient statistlcs (I) as
response conditions 1.e. no reduction in the numbexr of

parameters. The LF lis

(ntoy ) .
L(n, ) =TT (M) el2 : . . )
(n,e) =1 (yi)(ue“m'i)l“i .(3 13)

Interest usually centres on the -vector of parameters, ¢,
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measuring differences among the blocks,

With I = 2, this SK applies to the 2x2 contingency
table. The results developed in chapter VI for a conditional
probability distribution involving only o = -0 lead to
the long run probabllity statements about the data in the
form of Fisher's exact test for the 2x2 contingency table
discussed in chapter. VII.

Suppose that the n groupes of individuals are observed
under quantifiably differenf conditions, such that, of the
Ni individuals in group 1, yi_resﬁond as "successes" under

conditions x ). Then, a natural linear KM is

1 = (Xilyooagxip

0, =log{ Pi) = L B.%xi: » X =1 (all 1).(3.14)
i (I:-I;I) j___.oe,] ij io

The sutficient statistic for @J is t If p+l ¢ n,

— n -
3T =Ty
Tgé(yi) must be modified for use in the conditional distri-

bution. For example, if p =1,

-2 N - -
a'(to.tl) “Anﬂ' (Z) -nzzz 1%y )nx (t -5 2Z )\
i

Sl n-1'"0"151%1
Xn X 1
N
EF n n-2 ‘1
n-l"x y J

The one-hit quantal response model used, for example, by
Cox (1962) 1s a regression KN similar in form to equation

(3.14) but with only the @1 coefficient.
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k.Natural Linear Statistical Models in the Exponential Family

To construct a natural iinear SM in general, using the
probabiiity function of equation (1.3), the function of the
mean, 6 = B(n), is set equal to some linear function of new
parameters which will incorporate information about the
response conditions. MM's (1.%), (1.3), (2.3), (3.9), (3.12),
and (3.13) are exampiss of such models, Obvliously, a theore-
tical MM will often not be natural linear. In thls case,
although sufficlient statistics for the parameters will not
exist, all of the likelihood analyses described in these
chapters, except for those of chapter Vi, are still valid,
and usually are no. more difficult to perform. An example of
a lineer MM which 1s not natural is developed for the mean

of the exponential PH in chapter V,
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CHAPTER IV _
COMPARISON OF PROBABILITY MODELS
1.Introduction

Oftén, more than one PM 1ls theoretically feasible when
considering SM's for an experiment. The problem of determin-
ation of the more plausible PM will be discussed in this
chapter for the simple case where all cbservations are: made
under the same response conditions, i.e. whgre no MM need be
introduced. To do this using likelihood inference, a base
SM must be introduced with which all other SH's under con-
sideration may be comparéd. The derivation to follow yields
the multinomial PM.

Several approéches have been suggested in the literature
to the problem of determining whkich of a number of possible
S#Hi's best describes a set of data. Cox (1961,1962) develops
asymptotic Neyman-Pearson likelihood ratio tests and suggests
an alternative approach involving a combination, either add-
itive oxr multiplicative, of the density functions, with
estimation of additional parameters. This approach is further
developed by Atkinson (1970). The applicability of some of
these long run probabllity statement methods will be further
discussed in chapter VII. When prior probabilities, both
for each SM and for the parameters within the models, are
avallable, Lindley (1961, p.456) gives a posterior odds
ratio of the two models using Bayes theorem. When applicahle
(1.e. when prior probabilities are available), this approach

may be used with the methods developed below.
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Since attention will be restricted, in this chapter, to
the situation where all observations have been taken under
the same conditions, they can be assumed to have the same
(although unknown) PM. The more complex case, where the FM
varies with the observations (i.e. by introduction of a liM),

will be discussed in chapter V.

2.The lNethod of Comparison

The data have some observed frequsency distribution,
and, as polnted out in chapter I, are always dlscrete, .
although they may be theoretically conéinucﬁs. Thus, the
observation space 1s naturally divided into discrete inter-
vals by the means of measurement and recording. A theoret-
ical frequency distribution (FM) will predict what proportion
of the observations should fall into each interval. The dat=
are then the actual frequencies with which the observétions
fall into the vairious intervals and we wish to determine
which theoretical FM best describes the observed frequencies.
If the measuring device is too precise for the number of
observations to be taken, i.e. if there will be too many
intervals in the reglon where most observations will fall
and too few observations per interval, a set of wider inter-
vals may be specified as part of the deslign of the snalysis
before the data are collected cor the procedure described in

the next section may be used.

For observations yjk (kx = 1....,nj), the interval will
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be yjki%ij, the theoretical proportion gprobability) Py
and the observed freguency pj. If the observations are counts
(L.e. the PM is discrete),.A.yj = 1 and the possible yjk's
are integral, If the observations are measurements (i.e.
the theoretical PM is continuous), they will have the form
Yik = i2.5 and.AyJ = 0,1. The best estimate of Pj is
| %j = njA%ni . : (L.1)

There will be as many parameters as intervals (i.e., usually
an infinite number) =nd mény wlll be estimated as zero.
Although the Pl defined by equaticn (k.1) will make the
observed data\most probable} a theoretical model involving
fewer parameters 1s usually desirable, Several may be sug-
gested by the menner in which the datz are to be generated
and we will wish to determine which is preferable, i.e,
which best approximstes the ﬁj's. Thus, equation (4.1)
provides the base PN which is required for making the
likelihood inferences.

Usually, the more parameters to be estimated in the
PM, .the more potential for plausibility, since the flexi-
bility of the PM in following the observed frequency dist-
ribution increases. Before the experiment, theoretical
considerations or desire for simrplicity should determine
the desireble number of parameters sllowable. Cf course,
1f, after the experimenrt, no theoretical P 1s shcwn to bte
plausible as compared to the base model (4.1), the data

may point to scme other PN whose plausibility must be
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affirmed by further data collection.
If the observatlons are independent, the probability of
the observed data using the estimafed proportions, ﬁj, will
be equal to the LF of the multinomial PN,
Ly(8) =TI33 .

If the observations are counts and the proposed PM is dis-~

(4.2)

crete, the theoretical proportion of observations falling
into interval j, given the data, will be

“153 = F(Yjs?é) , (4, 3)
where F is the probability functicn and‘é a vector of est-

imable parameters. For a proposed continuous PM this becor: =

Y.+%AX
F o = J - J . _:_. ; & . . |r
B, jxj_%ayjf(yj.g)dyj £(Y,BAY, (.4

where f is the probability density functioﬁ, Specifically.
for members of the exponential family, these yield equati:
(1.3). The probability of the observed data using the freg .-
encies ﬁj, estimated for the theoretical PN, will be equal
to the LT

Lp(®) = T}%?j

}jﬁF(ka:g) (discrete)

(4.5)

L .
g?kf(yjk,ﬁlﬁyj (continuous).

Then, the plausibility of this theoretical PN compared with
the . most plausible one 1s determined from the RL
. N a
j J
Thus, althcugh the measure of plausibility has been
derived for comparison of theoretical PM's, it is absolute
in that it can be used to determine how well the giveh Pl

fits the data, If enough observations have been made and if
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suiltably sized intervals were previously chosen so that a
number of adjacent intervals have reasonably large observed
frequencies, asymptotic long run probabllity statements mey
be made, as discussed in chapter VII, by means of the log EL,
-2log RF, which gives asymptotically, the Chl-sguared good-
ness of fit test.

For a glven set of datsa, the caiculation of equation
(4.6) for each theoretical PM will give a plausibility ranlk-
ing of the models., If all PM's appear to be lmplausible,
elther insufficient data have been coliected or some diff-
erent PM should be considered. Of coursé, one or more Plits
may be much more implausible than the others; these can be
eliminated. MNote that equation (4.5) is proportional to th-
usual LF and thus, for comparison of Pi's F and G, the ratio
RF/RG is equivalent to the usuel RL. Of course; in this foi.c,
discrete and continuocus PM's may be compared. The need for
such a comparison most ofien arises in determining how well
some continuous PM, such as the normal distribution, approw-
imates to a theoretical discrete PM. This willl be the priuwe
use of this procedure in chapter V, where it is extended to

SM's contaeining a MM.

3. Deternination of Cptimum Interval wWidth
As mentioned in the previous secticn, the interval
widths naturally defined may need to be enlarged, especlel’ -

for continuous data, if they provide too few observatlicns
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per interval. Suppose that the data were generated by some
reasonably smooth unknowﬁ'PM, f(y). If the natural intervals
are too narrow, the observed frequency distribution willl not
apvear to have a smooth shape. We wish to determline the min-
imum interval width which establishes this (unknown) shape
of the frequency distribution. Since the multinomial distri-~
bution follows the shape of the observed frequency distribu-~
tion exactly, ﬁhen the intervals are too narrow, the multi-
nomial probability of the data will be too great for the
data to have arisen from a smooth PM, f(y). Let (Hj) rep-
resent the frequencies predicted by ?(1), the unknown MLE
of the PM, If the natural interval widths are too narrow,

the nj's and n.'s will be very much different. From the

J
inequality
o n, /rv n /o w \ N, N '
(Be)2(Be) 2 2 (BuaBa) 72 (. 7)
2/ \Hp nytn,

as Intervals are combined, the multinomial probabllity of
the data will increase more slowly than the probability
given by the wiiknown PH, ?(x), until they converge. When
the intervals are sufficlently wide so that the observed
frequency distribution is smooth enough, the relationship
Iy =T33 & F(xiay, . . (4.8)
will hold (using equations (4.4) and (4.5) which are numer-
ically good enough for graphical methods). Further increases
in interval widths will not change thls relationship until
the number of intervals becomes so small that the shape of

n -
f(y) is distorted. Thus, log ‘T"M =2jlog ij + a constant in
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this range of interval widths; log LM may be plotted against
%log‘ij for various interval widths. The region of this
curve in which the points begin to follow a straight line
inclined at 45° indicates the required width.

In producing the curve, a simple procedure 1is to plot
points for vafious constant interval widths e.g. 1, 2, 5, 10,
20 units,etec. Then, the 450 1iﬁe is positioned on the straight
region of this curve. The point for a multinomial LF from
the data with tail area intervals combined (e.g. 16 unit
intervals but with small tail frequencies combined in wider
intervals) will lie on the same curve but displaced upwards
to the right from the corresvonding point with constant
interval width,i.e. both log LM and %jog ij will increase.
If the point does not lie oﬁ the curve, the shape of the FH
has been distorted by the unequal widths and the grouping
should be discarded.

Extrapolation of the 45° line to Ylog ij = 0 yields an
approximate value of the unknown log ?gx) which may be com-
pared with the calculated values for the various theoretical
Plts,

This prccedure was apvlied to the three sets of data of
Table 4.8 (sce example 4.6 below) for intervals of constant
widths 1, 2, 3, 4, 5, 10, 20, 30, aud 40 minutes. The results
plotted in Figure 4.1 show the optimum intervals to lie
between 5 and 10 minutes.

After optimum intervals have been determined, the RL's
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of wvarlous theoretical PM's may be calculated for gocdness
of fit and comparison. The priginal, ungrouped data should
be used for estiméting parameter values in these Pli's to avoid
the loss of aécuracy specified by Sheppard's correction.

- Conslder now the expected log multinomial likelihood for
the arbitrary “smooth" density function, f(x). expectations
being taken only over the m 1n£er§als wlth non-zero observed
frequency:

E(log L = E(log nl-n lo n—glo n.!+gnlo n
(log Ly) (log & n- X log Z1Patos 3)

J

I

log nl-n log n-m log nl\-m

& Ay ) otog £(y. )t
-+ f -1 fiyv.)+ 1
g ]

using Stirling's approximation with pj = Af(yj) and ij = A,

As A is made smaller from very wlde intervals to the minimum
(natural) width, the term -% log(nA) stops decreasing as m
stops increasing, while Zf(yj), ZAOg f(yj), and Z}?%§;7
approach constant values. Then, the expected log likelihood
no longer follows the NSO line. Thus, the optimum interval
wildth occurs when further decrease in width does not increase
the number of intervals proportionally, If the number of
observations, n, 1s increased, this optimum width will be
proportionally smaller. Note that these approximate results
are not altered by using more terms of the series expansions

of log x1, pj, or the expected value.

L, Examples

L.1 Fisher (1958, p. 299) discusses linkage in the prog-



53,
eny of self-fertilized heterozygote maize. The two factors
of interest are starchy versus sugary and green versus white
base leaf, where starchy and green are dominant. Thus, obser-
vations (counts) wlll fall into the four rossible intervals
made up of the varlous combinations of the two factors. From

Fisher's data reproduced in Table 4.1, the multinomial LF is

_ 1997 906 90k 32
N @—3%3—) ’ (3%%8) (ngg (3539) '

using equations (4.1) and (4.2).

One possible theoretical PM occurs wilth no linkage,
yileldling a SSK. The expected ratios of the varlous outcomes

1 3, 2 = 9 A = & = 2 - 1
are 9:3:3:1 ylelding by 15 P2 p3 Tg’ and Py = 1
wlth no unknown parameter to be estimsted. The second theor-
etical PM of interest occurs with linkage where the expected

01 - - < = 2+8 S =P = 1"3 = g
ratios are 2+gd:1-4:11-4:14 and Py = 5= Py = Dy = S Dy, .
Then, the two LF's for Fisher's data are
1 \T6 1 \16

and -
LF?_(B) =_(2+a)1997(1_3)1810332 ,~3839

respectively. The RL of no linkage is log RF1 = ~198.34L and

of linkage 1s log R = =1.023 showing that the PM without’

F
2
linkage 1s very lmplausible in comparison to either of the

other models, and that the linkage model 1s a very good rep-
resentaticn ol the multinomial P}. Thls agrees with the con-

clusions from Fisher's Chi-squared tests.

4,2 Cox and Brandwood (1959) provlde a further example
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of the comparison of multinomial PM's, ln this case SSN's.,
Between writing the Republic (R) and the Laws (L), Plato

wrote a number of short dialogues, the order of five of which
is uncertains: Critias (C), Philebus (F), Politicus (P),
Sovhist (S), and Timaeus (T), The distribution of long and
short syllables at the ends of sentences is used in an attempt
to order the seven works. Conslilderation of the last five syl-
lables provides 32 classes (intervals). For each work, two
SSM's are avallable: that the distributicn of syllables 1s the
same as for R and as for L. Cox and Brandwood give the prop-
ortions in each interval reproduced in Table *.2.

The observed brOportions yield the base PH for all com-
prarisons for each work; the multinomial LF's for these Pl's
are glven iﬁ Tabie 4.3, along with the log HL's of the two
SSHl's for each work. These RL's show that nelther SSM fits
well for any of the five works compared. This may be expected
since we are only interested in which is better and not if
elther is good. The ratio of the two RL's for each work pro-
vides a comparison of the fit for the two SSM's; these ratlios
give the ordering R, T, 8, C, P, F, L of the works.

The ratio of RL's divided by the number of sentence
endings for the work yields the statistic 8 which Cox and
Brandwood use. They Jjustify thelr result by the introduction
of a power parameter,‘), to which the probabllities of a sent-
ence falling into one of the intervals is raised., Atkinson

(1970) generalizes thls by lntroducing two power parameters,

r
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ll and 22, one for the probabilities from each of the two
SSM's., These two approaches yield two new SM's, with one and
two estimable parameters,respectively. The RL's for these two
models are given for each work in Table 4,3, These models
both give improved fits for all five works, with the Atkinson
two-parameter model consistently better. But the small size
of the RL's (implausibility) for this two parameter model
casts doubt on 1ts applicability in the manner suggested by
Atkinson (-2 log R asymptotically has a'xz distribution with
2 degrees of freedom, giving very significant lack of fit;
see chapter VII). This poor fit makes the use of the A's for

ranking suspect and thus also the use of § instead of the RL,

b,3 Cox (1962) provides a sample of 30 observations
(Table L.L4) generated frcm a Poisson EM of mean 0.8. The base
PM for these data gives a multinomisl LF of log LM = ~35,095.
In addition to the Polsson and geometric PM's considered by
Cox, the normal model with two estimable parameters 1s also
used here, The estimated theoretical probabilities for these

three models are given by

3 = < B,

ket
]
1
R=h
<
™~
[IRY
T
LS
[IRY
+
<

and f)}N = (2'“‘;52) exp E_(_%,Bgélz:[ '
2

respectively., Then, the log RL's are log R, =-0.609, log R

P G
= -3.548, and log By = -2.369. Thus, very little is lost by

representing the frequencles observed by the Poisson PM (i.e,
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it is véry plausible) while representation by either of the
others is poor. (Note the computstional error in the maximized
likelihood ratio of Cox which should read eB’é 20). Then, the
plausibility ranking of the Pli*s 1s multinomial, Poisson,
normal, and geometric, with probabilitlies of the observations
in the ratios 1:1.8:9.3:35.

Equation (1.2) has been uéed to calculate 8N' The exact
calculation using equation (1.3) ylelds virtually the same

result.

h,h "Student" (1907) gives data, reproduced in Table 4,5,
for the distribution of yeast cells in 400 equal-sized squares
of a haemacytometer. For these data, log Ly = -Lltly, 527, For
the same PM's aé in the preceding example, the log RBL's are
log R

= -4,835, log R, = -9.139, and log RN = -8B6,412, None

P G
of these models fits the data well; the normal PM is much
worse than the others because of the large theoretical proba-
bility of qbserving "negative counts".

Bardwell and Crow (1964) fit a t%o-parameter hyper-
Polsson PM to these data and compare it with the fit of a
Neyman type-A PM; both are improvements over the Poisson:
log RHP = -2.301 and log RNA
provide a descriptlon of this hyper-Foisson P which involves

= -1,789, respectively. They

a confluent hyvergeometric function, and outline methods for
estimating the two parameters,

Asymptotic Chi-squared goodness of fit tests, as in
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chapter VII, applied to the various models give results agree-

ing with those above.

4.5 NMonfort (1964) fits the log normal PM with estimated

thecoretical probabilities

1 T p (2
'IB’LN = (zﬁagz) 2exp l_(logz%fz-sbi_) }y/y

and‘the gamma PM with
B = [82/31)3%(32 ):]ygflexp Eazy/;zl]m

to the observed frequency distributions of the fibre diameters
of eight lots of combed slivers of referénce wools (wool tops)
given in Table 4,6. Jackson (1969) provides'further analysis
of these data using asymptotic Neyman-Pearson likelihocd ratio
tests of Cox (1961, 1962). The results for a multinomial like-
lihood apalysis are given in Table 4.7, where RLN and RG are
the RL's for the log normal and gamma PM's,respectively. The
likelihood ratios for comparison of the two models are calcu-
lated from log BLN-log RG = log RLNG' Using asymptotic theory,
Jackson apparently has calculated approximations to these
ratios (log ELNG in Table 4.7)., This asymptotic theory does
not produce a LF which very well represents the exact LF's
(see chapter VII, section &). Hence, the long run probability
Statements will not be very accurate.

Lots A and C point to the log normal FM and the remain-
ing lots to the gamma. But for lot A, both models fit almost
equally well, and for lots G and H, neither fits well. If we

had assumed that one of the two models was correct, the poor
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fit of G and H might imply that insufficient data had been
collected.,

The eight lots of data appear to be grouped into two
sets, ABCD and EFGH, of which the first set have 600 obser-~
vations per lot anﬁ the second have 450. The observed frequ-
ency distributions of the first set are relatively narrow
and peaked while those of the second set are much more dis-
persed and ill-defined, having two or more modes each. This
is reflected in the poorness of fit of all of the lots of
the second set. Jackson mentions that further investigation
reveals that a "mixture" of two gamma Pl's fits lot H quite
well. This may also'apply to the remaining three lots of this

set.

L,6 Bliss (1967, pp. 106 and 122) provides the data
reproduced in Table 4.8 from the experiments described Dby
Campbell (1927) to determine the survival times in minutes
of fourth instar silkworm larvae when fed a lethal dose of
0.10 mg. of sodium arsenate per gram of bodyv weight. Data
are provided from three experiments. These data provide an
example where most counts arec zeroes with many ones; this
is reflected in the small size of the RL'sS given in Table
4,9 for the ungrouped data. For all three sets of data, the
log normal, the gamma (see the previous example) and the
exponential PM with

. P = %e-gyﬂy

i
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are fitted. From Table 4.9 for the grouped data ( using 10
minute intervals from section 3 above), the log normal and
gamma Pli's are equally plausible for all sets of data, while
the exponentlial is always much less plausible and can be

eliminated.

L,7 In studlies of the carcinogenic effect of ultra-
violet radiation, Blum (1959) expcsed male mice of a given

b ergs/cm?/

strain to dosages of radiation of intensity 3.4x10
sec, for five days per week. Flve groups: of mlice were used,
exposed to different doses per day, l.e. for different lengths
of time, and the deﬁelopment times in days of an ear tumor
determined. In order to provide an example with Ayi varyiug,
the develovment times are grouped into intervals of equal log
days in Table 4.10, as provided by Bliss (1967, p.274). A
comparison of the log normal and gamma PM's in Table 4,11
shows that both are equally plauslible for all doses. The size
of the RL seems to decrease with the size of the multinomial
likelihood, and hence with increace in-sample slze, indicating

that increased sample size provides no stronger evidence that

elther model 1s plausible for this type of data,

5.Discussion
Atkinson (1970) develops the comparison of PM's susgested
by Cox (1961,1962) using a product of probability functions,

each raised to a power 11. Essentially, a new PM, an amalgam
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of those hypothetically possible, is introduced. If this new
PM is also hypothetically reasonsbvle, there will be little
difficulty of interpretation. If not, 1t may have meaning
only in the null cases where 1t reduces to one of the original
PM's. In any case, doubt will be throwm on the utility of using
the WNs for ranking the models ;f the composite PM does not,
itself, fit the data well, as in example 4.2 above.

Interpretation of a composite PM may be further illus-
trated by an example, If the two Pi's to be compared are the
exponentlal and the normal truncated at zero wlith known var-
iance set equal to unity (before truncation), with Rl = 1-&2
= 2, then the derivéd PM 1s normal truncated at zero with
unknown variance. I%i = 62. The graph of the LF of X 1s equiv-
alent to one of (02—1)/02. Thus, only the variance, and no
higher moments, 1s used in thls comparison of Pli's.

Difficulty may arise in using the MIE's of Qi'S'for
ranking PM's without the use of some interval about the max-
imum. In the comparison of two PM's, sgch as those above, the
MLE of A may be greater than one half, say 0.7, pointing to
the first model, while the LF for this PM (A = 1) is smaller
than that for the second (A = 0), making the second more
plausible by the likelihood criterion. In other words, the A
of Atkinson's exponentlial combination may voint to a PM which
makes the observed data less probable than another to which

i1t 1s compared., Of course, Atkinson's combined PM will be

!



61,
more plausible at a.than either of the individual models, and
should be considered if interpretable.

If specific alternatives to the given PM's are to be
considered, and these colncide with the family of PM's defined
by Atkinson'!s exponential product, this approach will yield
useful results. If the plauslibility of the glven PM's is to
be consldered as opposed to any possible alternatives, com-
parison with the multinomlial LF will yleld the desired inference,

In compariéon of Pli's, attention must be ﬁéid to the

slze of each R since a difference betwgen RF'S is of less

Fl

importance 1f the individual R.'s are so small as to lndicate

F
that none of the models 1s very plausible. This 1s especially
important if the applicgbility of at least one of the PN's is
not falrly certain..If thls is reasorably certaln, lack of

it may indicate insufficlent data. For goodness of fit, not
ohnly is the dlfference in number of parameters estimated im-
portant, but also the number of observations made. An indica-
tilon of this is given by the size of the BL in comparlson to
the multinomial likelihood, i.e. by the change in probability
of the data wlth introduction of a theoretical PM as compared
to the maximum probablility of the data, If the RL 1s relatively
large as in the first six examples, sufficlent observations

are usually available, and consideration of the size of RL in
conjunction with parameter numbers (degrecs of freedom) will

determine goodness of fit.In the last example {(4.7), the RL

was not relatively large, and elther insufficient data or poor-
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Pli's may have caused lack of plausibility. But comparison
among dosages seems to indicate that fit does not improve
with incpeased sample size.

In the next chapter, examples involving Mii's will be
considered. For these, we must usually assume that at least i
one of the PM's is acceptable, since insufficlent observa-
tions are usually made under each response condition to check

goodness of fit of the various PM's.
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CHAPTER V

-ANALYSIS OF DATA INVOLVING A MATHEMATICAL MODEL
1.Introduction

In thils chapter, the méthods of the preceding four
chapters will be applied to statistical models (as defined
in chapter I, section 3). Although th:s methods are applicable
to SlM's in general, attention wlill be restricted to PM's from
the exponential family of equation (1.3) and to Kl's describ-
ing variation in the mean of the PM. Most Nl's will be natural
linear or nonlinear extensions of these. The exceptions to
this are éome liM's for the exponential PM in the éxamples of
section 6.

Four Pli's will be conslidered as representative, since
they are probably the most commonly.encountered and since they
usually.require no extremely complicated numericel estimation
procedures (Newton's iterative method sufficing). These are
the normal, exponentiél. binomial, and Poisson PFlM's. The
continuous models are generallized to include such offshoots
as the log normal and the Weibull PM's. Asnalytically, if not
numerically, these methods will apply to other PM's, as well

as to other MK's,than those considered,

2.Probability Models

In chapﬁér II, a generalized fcrm of the normal PN was
conslidered with generalizations of a natural linear MM in the
case of reéponse surface data, when no alternative PM'é were

avallable. Cases where various other PM's are theoretically
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plausible will now be considered. The generallzed normal PM
will ﬁe used, elther as one possibllity or as an apﬁroximating
model,
The LF's for the PM's to be considered are:

(1) normal distribution, N(p,c )

Ly (n, .Y) = exp [g v, n-g %2,:2 _?_ "108@8(%\() (5.1)

(ii) exponential distribution

\

Lp(m,Y) = exp Eg(y.l)/p—los Jl]Ag(y,I) ' (5.2)
(111i) binomial distribution, B(u/n,n)

= 1 log f1-p\+1 , (np = n),(5.3)
LB(n) ‘exp[? og ﬁ%ﬁ +n og, E) 08( I] np = n), (5.3

(iv) Poisson distribution
Lo(n) = exp(y log n - p - log y!) . (5.4)
The unit of measurement 1is Ay, where the A\ operator acts as a
differential, e.g. Ag(y) =Alog y = y-ll.\y. If the cbservations
are counts, then Ay = 1. fhe continucus Ph's (5.1) and'(5.2)
'are generalized by allowing a transformation of the response,
g(Y,Y), which may contain parameters, X, to be estimated,
such as those used in chapter II for the normal PM. For
example, equation (5.2) becomes the LF for the Weibull PM if
g(y,Y) = v, Agly,Y) = Yy’ ‘Ay.

For the normal PM (5.1), the parameter n may still be
considered natural (if there is no estimable parameter, Y),
gince jointly sufficient statistics exist for m and 02. Thus,

natural linear lMM's may be constructed involving n.
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3.Mathematical Xodels

Mafhemétical models were briefly described in chapter I,
section 3 where the two simplest cases for the mean were éiven
in equations (1.&) end (1.5), and more generally in chapter
ITII. From such MH's, the expected value of the response may
be calculated under a given response condition; for example,
He(Y,Y)] = B-l(Gi) using MM (1.4) with the Pl from LF.(5.1)
or (5.2). '

In the examples to follow, the MM's used will be those
for ANOVA and regression. If the response conditlons imply a
two-way factorial experiment, the reduced (from egquation (1.4))
natural linear MM might be either the generalization of equa-
tion (3.6),

Blpyg) =n + oy + 84+ Yy (5.5)
or the generalization of equation (3.9),.

B(nij) =n+oy + 63 , (5.6)
where 1 and J specify levels of the two factors and §°i =
%Qj =%Yij =%Yi.j = 0., For a on.e-way d'esign, the KM might be
the generalization of equation (3.12),

B(py) =n + o (5.7)
with %oc1 = 0 and i1 specifying levels. If the conditions deter-
mine a two-factor response surface or a regression problen,
the reduced natural linear MM 1is

B(y) = 1(8.x,) (5.8)
where l(@,gi) is some linear functicn of the parameter vector

Q such as
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L@x,) = B,t6% HBpm e W Bk Ty ¢ (59)
and (xil,xiz) are the factor levels (transformed to orthogonal
poynomials as in chapvter II) for response Yike A nonlinear MM
analogous to equation (5.9) is given in equation (2.3),

If parameters related to other functions than to those
of the mean of the response are presént in the PH, as in _
equation (5.1), variation of these with the response conditions
may alsc be desirable, For example, if ten observations, yijk
(k = 1,...,10) are taken at each level of an IxJ factorial
experiment and the LF is equetion {5.1) with g(y,Y) = jY, thé
NM's might be equation (5.5) with G(cij) = ci and F(Yij) =.Y.
This typre of situation may occur when the normal PM is used
to represent a response distribution for which the variance
changes with the mean (e.g. binomial, Poisson). Problems
related to this will be discussed in section 9 for the examples
of this chapter. Ctherwise, only parameters related tec the

mean will be considered to vary in the examples.

I, Infereuces

The basic procedures for making inferences about Ski's
were developed in chapter II for the specific case of a non-
linear normal response model. Here, these procedures will be
described more generally, with inclusion of the case where
more than one PN is feasible., The steps outlined below.prov—
ide one way of proceeding; of course, these will often have

to be modified for speciflc problems.
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Step I. Parameter Estimation. In order to carry oﬁt
the following steps, MLE's of all parameters of each SM must
be calculated.

Step II.éoodness of Fit of the PH. As mentioned at the
end of the last chapter, for a SM which varies with the res- ,
ponse ponditions, insufficient observations are usually nmade
to determine the plausibility of the various Fil's. To detér—
mine goocdness of fit, sufficient observations must be made at
a response condition to provide a useful frequency distribu—
tion. This distribution will vary with ﬁpe reponse conditions,
If enough observation are availlsble, plausibility is determined
as in chapter IV using as the base SM the combined multino-
mial PM fitted individually for cach response condition.

An alternative in designing such experiments may be to
take a much larger number of observations at one or more
response conditions (not yielding an extreme response) and to
include these results to determine goodness of fit.

Step III. Comparison of PM's. If several Fli's may pos-
sibly describe the random fluctuation of the response; these
may be compared by fitting one set of parameters under each
response condition for each LF. If only parameters of the
mean are present, this is equivalent to using equation (1.4)
with each LF., The sizes of the LF's using the corresponding
FLE's of all parameters are ther compared as in chapter IV,
Thus, the PN is filtted to the data from each response condi-~

tion individually and the combined distribution for all the
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data is compared with the corresponding one for another PN.
This provides a comparison of PM's for the data without invo-
lving any of the theoretical lNli's. Of course, this Sk (e.g.
involving equation (1.4)) will be equivalent to a SIM including
some hypothesized MM such as equation (5.5) if both have the
same number of parameters (i.e. 1f only a transformation of
the parameter space is involved and not a reduction in number).

If parameters other than functions of u (e.g. cz of
equation (5.1)) are present, the above procedure requires
that more than one observation be made ap the different res-
ponse conditions. In the numerical examples to follow, a
discrepancy from the procedure just described is allowed in
that the normal PM is assumed to have constant variance.

Comparison of Pl's assumes that either some of the
models have been shown to be plausible (in step IT) or that
at least one of them is theoretically justifiable. If Qne P
ls more Jjustifiable theoretically than another, a stronger
plausibility may be required before adopting the second than
1f this were not the c¢ase. '

Step IV, Comparlison of NM's. Usually, it is first useful
to see if a MM is necessary at all, Comparison of the unstruc-
tured SM from the previous step with a common PN fitted to all
of the data (i.e. no parameters varying with response condij
tions, e.g. equation (1.5) for the mean) will show if the -
same LM under all response conditions is plausible. This cor-

responds to the F test for overall treatment effect in ANGVA.
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If an unvarying lill is not plausible, the various post-
ulated lMM's may be compared for any PH selected in step III.
This corresponds to the F test foxr lack of fit in regression
analysis. Even if an unvarying MIl 1s plausible, furthzr anal-
ysis may yleld some likely effects under the postulated lMM's.

'If more than one FM was still plausible after step III,
the inclusion of a reduced M may indicate that some Pli*s can
be eliminated at this stage. This also applies if parameters
other than n are present with only one ohservation per response
condition, making step III impossible, in which case assump-
tions may be made about higher order intéractions.

Step V. Inferences about Parameter Values. After one or
more NMi's has been found plausible, inferences are made as to
whether all of the parameters of each MM are necessary, e.g.
some %1 = 0 in equation (5.9) or some & = 1 in eguation (2.3).
These correspond to F tests for individual treatment effects
1n ANOVA tables. They should then be extended to see which
values of the necessary parameters are plausible by plotting
graphs of RL's (see below). If, within the M, some parameters
are of interest while others may be considered as nuisance
parameters, inferences méy be possible %bout the parameters
of interest in the aksence of knowledge about the nuisaence
parameters. If sufficient statistics are available for the
nulsance paremeters, this may be done using a conditional LF

{see chapter VI). \
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As-1n chapter II, parameters are estimated by maxlimum
likelihood methods. This procedure wlll involve an iterative
process when the likelihood equations a;e nonlinear. Sone
forw of Newton's method is also used here ?or the examples.

Since inferences about the parameters are to be made
by observing the effect on the size of the LF of variation
in the parameters, multidimensional models can yield very
complex situations; see Sprott and Kalbfleisch (1969). Thus,
as in chapter I1I, the simplifying and approximating technigue
of maximizing the LF over all but one or two parameters at a
time is ﬁsed. Within a gilven SM, this ma&imized LF is then
compared with the LF maxlmized over all parameters, by means
of the RL function of equation (1.7):

R(4,) = sup L(g)/sup L(g) . (5.10)
Voo j except £y g

Throughout the examples, log L and log R are listed instead
of the LF and the RL. Steps I and II are omitted in all dis-

cussion of examples.

5.Normal Theory lodels

Since the use of some form of normal theory analysis is
the standard practice for attacking the types of problems
under discussion,most of the examples include this analysis,
usually in various forms depending upon appropriate transform-
ations of the criginal response. These transformgtions arae
incorporated in the LF (5.1) through g(y,Y). Some common

transformations are listed:.

¢
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(A) linear normal (Y = 1 in (B)) gly) =y
(B) power transformed normal g(y,Y) =5
(C) log normal (Y = 0 in (B)) gly) = log ¥y

(D) square root normal (Y = % in (B)) gly) =V¥ .
The following apply only to binomial data with ¥ successes

in n trials:

(E) logit normal (Y =0 in (G)) gly) = log y/(n-y)]
(F) odds normal (Y =1 in (G)) g(¥) = y/(n-y)

(G) transformed odds normal gly,Y) =[:Y/(n-y0:r
(B) per cent normel (Y =1 in (I)) " gly) = 100y/n

(I) transformed per cent normal ‘S(V,Y) = (100y/nf
(J) arcsine normal gly) = sin-%/§7— .

For the normal FH,

B(n) = n = H a(¥,Y)] | (5.11)

so that, for example, from egquation (5.5)
E[g(yij,x')] =?11 oy + @J + Yij

In the examples, neither ¢ nor any parameter in g(y,Y) is

assumed to vary with the response conditions, The validity of
this assumption about the variance is examined in section 9.
Since the normal PI contains the parameter 02 and, pos-
sibly, parameters in g(y,Y), comparison of PN's or use of a
FM such as (1.4), (5.5), or (5.7) is not possible with only .
one observation for each condition. But, these lili's can be
used for all of the other PH's considered: (5.2) (unless z(y,Y)
contains unknown parameters), (5.3), and (5.4}, This means,

for example, that, with one of these Pli's and 2 two-way fact-
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orial experiment with one observaticn per cell, the interac-

_tion effect can be examined using equation (5.5).

6.Lifetime Data

“When data are observations of (life, survival, féaction,
completicn) times, their frequencies may often be described
by one or more of the exponential, Weibull, log normal, and
gamma Pl¥'s, with an appropriate Mii. When ANGVA is involved,
the standard normal theory analysis 1s usually used, perhaps
with a logarithmic or power transformation of the response.
In the examples to follow, the three normal PM's, (4), (B),
and (C), of section 5 are used as well as two exponentisl Pii's
(from equation (5.2) with g(y,Y) = y):

(K) natural linesr exponential in which

B(n) = 1/n = 1/E(Y) : (5.12)
and (L) “"expected value" exponential in which
B*(n) = 1/B(n) = n = E(Y) (5.13)

and B'(n) replaces B(u) in the KM such as equation (5.5).
The natural linear exponential SN equétes the reciprocal of
the mean with the NI whereas the "expected value'" SM equates

the mean with the NHM.

Example 6.1 Box and Cox (19€4) provide two analyses of
a 3x4 factorial experiment on the survival times of animals
(reproduced in Table 5.1}, the factors being three polisons

and four treatments, with each combination used on four animals.
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?ox and Cox use the interaction (5.5) and no interaction (5.6)
MM's with the linear (A) and power transformed (B) 6? = -0.77).
normal Pr's. Ogly the interaction MM is here considered. In
addition, the two exponential SM's (K) and (L) with this same:
MM are used here,

Step III. Assuming that one of the SM's is adquate, the
fit of the four PM'sS may be compared using NN (1.4). Since MM
(5.5) has as many parameters as response conditioné, this
model has as many parameters as (1.4) and the two are equiv-
alent for comparison of PK's, In order of plausibility, the
Pli's are transformed normal, linear normal, and exponential
(Table 5.2). Both of the normal Fl's are much more plausible
than the exponentlal Pl's. Unless theoretical considerations
strongly dietate otherwlse, the exponential Pl may be elimin-
ated.

Step IV. A uniform SM for all response conditions is
very limplausible fer elther normal FM, but much less implaus-
ible for the exponential Fl's. Cnly one theoretical MM 1is
being entertained so that no further comparison is necessary.
Note, from Table 5.2, that the no interaction MM 1s plausible
for all Pii's except the linear normal. Comparison af ME;S (5.5)
and (5.6) is equivalent to determining the plausibility of
eliminating the interaction effect, Yij’ from MM (5.5) in
step V.

Step V. All of the Sk's give the same relative analysis

of effects in Table 5.2, with differences in poisons more
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likely than in treatments, and interaction relatlively less so.
But the likelihood of the various effects (i.e. plausibility
of no effect or of eliminating the relevant parameters) is
much less (plausibility higher) for the exponential than for
the normal SM's.

'For illustrative purposes, regression MM (5.9) was
fitted for Fl's (A), (B), and (XK) to analyze linear and quad-
ratic effects, although the design provides no reason for
doing this. This MM 1is only plausible for the exponential PM
(see regression effects in Table 5.2). Cnly the linear effect
of polsons 1is plausible in the three models, although the
other non-~interaction effects border on plausibility for
model (B). This part of the analysis is an extension of the

methods of chapter II.

Example 6.2 In analyzing experiments with analgésic
arugs, Ipsen (1949) gives two control readings, listed in
Table 5.3, spaced 20 to 30 minutes apart, of the tail fliﬁ
reaction times of ten white rats on nine different days when
a strong light 1s focused on thelr tails. The same analyses
are performed as in the preceding example.

Step III. The reaction times were supposed to follow
the log normal PM (C), to which model (B) with §>= 0.10 and
R(Y=0.0) = 0.95 points. Pii's (B) and (C) provide virtually no

improvement over the linear normal (4) (see Table 5.4), but

all three are more plausible than the exponential models.
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Since the fits of Phi's (B) and (C) are virtually identical,
only the analysis for (C) is given in Table 5.4.

Step IV. With the exponential Fii's, the data might
plausibly have the same distribution for all response cond-
itions, i.e, MM (1.5) (this could be related to the implaus-
ibility of these PM's), but this is very implausible for the
normal PM's. '

Step V. Again, all of the Sil's give the same relative
analysls of effects, ‘nteraction between days and rats 1is
most likely and differences between raté least. But the RL's
for the exponential SM's show that all of the parameters of
MM (5.5) except 1 could plausibly be eliminated, reinforcing
the conclusions cf step IV.

The consistent aifference in size of the RL's for the
normal and exponential Pi's will be further discusséd in

section 11.

Example 6,3 Bliss (1967, p.327) gives the times required
for ten rats to run through a maze on various trials, and looks
at additivity on five of the trials (Table 5.5). These data
are analyzed as in the previous examples, but using no inter-
action MM (5.6) for the normal PM's, since there is ochly one
trial per cell in the 5x10 factorial experiment. Interaction
MM (5.5) is used with thz exponential Pli's.

Step III. With only one observation per response. condi-

tion, comparison of the normal PM with any other is not possible.



. 76,

Step IV. As in the previous example, model (B) with ? =
0.04 points to the log normal PH (C) suggested by Bliss. Both
are marked improvements on the linear normal PM (A), and both
gilve the same analysis, hence only that for (C) is given in
Table 5.6.

With MM (5.6), some of the expected times are negative;
these yield MLE's of zero if exponential LF (5.2) 1s used
(due to the interaction effects shown in step V below), making
use of the exponential Pli's with this M meaningless.

When MM (5.5) is used with the exponential PM's (X)
and (L), the fits are much better than Qith the linear normal
PM but not as good as with the log normal, both using MM (5.6).

| A uniform SM for all response conditions is implausible
for all of the PH's.

Step V. All anaslyses show that differences between trisls
are more likely than between rats, although neither can be
plausibly eliminated. The exponential SM's involving MM (5.5%
show that an interaction effect between rats and trials is

very plausible.

7.Poisson Count Data

When data are observations which appear to follow a
Polsson distribution, and which involve a linear MM, a linear
normal SM 1is often used with either a square root or a lozar-
ithmic transformation of ithe response. In the following examp-

les, normal PM's (A), (C), and (D) are used. The Poisson PH
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(M) of equation (5.3) is also used with a natural linear MM
for which
B(pn) = log » = log E(Y) . (5.14)
Again, the vallidity of the assumptlion of constancy of
variance for varying reponse conditions for the normal FPM's
will be discussed in section 9.
For a Poisson PM, the parameters of the no interaction
MM (5.6) may be estimated exactly without using an iterative

method.

Example 7.1 Bartlett (1936b) provides an example of a
6x6 factoriél experiment testing the effectiveness of four
toxic emulsions in controlling leatherjackets. 36 plots of
one sq. yd. each were divided into six bloclzs znd the emul-
sions applied to four plots in each block, the remaining two
plots of the block being controls. Some days after applica-
tion, two sample couﬁts were made of the number of leather-
jackets remaining on one sq. ft. each, as tabulated in Table
5.7. Since the counts may be considered to have a Poisson PN,
a square root_transformatioﬁ, model (D), was suggested before
rerforming normal theory ANCVA, This is compared below with
linear normal (A), log normal (C), and Polsson (M) FlM's
using interaction MM (5.5).

Step III. Comparison of the four PM's in Table 5.8
shows that the suggested gquare root normal model and the

Poisson provide the same [it, while the linear normal model
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is much worse and the log normal model somewhat better. In
this case, because of theoretical considerationg, use of the
Polsson PM may be preferable, although the log normal PM is
better for this set of data. This comparison of models 1is ‘
further discussed in-section 9, where residuals are considered.

Step IV, With no PM is elimination of the variation due
to response conditions plausible, as shown in Table 5.8. Only
MM (5.5) is considered for all of the FM's,

Step V. With all four PM's, the order of likelihood of .
effects ls the same, with differences bgtwéen treatments most
plausible, and interaction effect next. All analyses show

some difference between the blocks in the experiment,

Example 7.2 A randomized block experiment on the numb-
ers of surviving sugar beet plants (Table 5.9) under four
fertilizer treatmente in four blocks was performed in Jowa;
see Snedecor and Cochran (1967, p.344). Again, a square root
transformation is suggested before performing normal theory
ANOVA. The same PM's as in the previous example are used below,
but with no interaction MM (5.6) since there is only one obs-
ervation per cell., In additipn, the interaction MM (5.5) is
used with the Poisson PH.

Step IV. With nc PM 1s the variation in response cond-
itions unimportant. From Table 5.10, the no interaction NKi
with the three normal PK's provides virtually the same fit,

wnereas the Poisson PN 1s somewhat worse with this kM. The
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interacfion MM with the Poisson PM provides a much ilmproved
. Tit,.

Step V. All no interaction SM's show that the difference
between fertilizers is likely while that between blocks is
not. In addition, the interaction Poisson SI shows that the )
interaction effect is likely.

The same analyses applied to the data of Bartlett (19362)

on the numbers of poppy plants in oats yield similar resuits.

Example 7.3 P. Wickett ( Fisheriéﬁ Research Board of
Canada) has recorded numbers of pink salmon caught by British
Columbia fisheries over a forty year period. Since this spec-
ies of salmon has a two year return cycle, two genetiﬁally
separable groups return on alternate years. The data for the
grouv coming on even years are given in Table 5:;11, together
with measures of rainfall (xl) and sunshine (xz). Regression
analysis was applied to these data with HM's (5.9) and (2.3)
using log normal (C) and Poisson (M) Pm's and the procedures
of chapter II.

Step I. With NM (2.3), the normal theory estimates of
the nonlinear parameters are‘&i = L, 5 and 32 = 1.1.

Step IV. The two MM's for the normal PM (C) may be
compared by R(a1=1,a?=1) = 0.15, showing that the nonlinear
¥M provides little improvement. Thus, the corresponding non-
linear Folisson SM was not attempted, and only the analyses

for the two linear SM's are given in Table 5.12. The normal
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theory model gives a much more plausible fit than the Polsson
model; in nelther case is elimiﬁation of all parameters except
@O plausible (i.e. use of #M (1.5)). MNost of the poofness of
fit of the Poisson SK seems to come from introductiorn of the
Mli., Because of the need to estimate the variance, no statement
can bé made avout this effect for the normal SHM.

Step V. Use of the linear term for rainfall (xl) in the
regression is less plausible than the others in both SK's. But
the'log normal SM only shpws inclusion cf @2 and 34 (1.e. the
sunshine terms) to be very plausible. The ranking of plausi-
bilitles for the various terms in the régression equation
for the two PM's is identical, but the RL's for the Folsson
are very much smaller. This has heen true of all examples
involving Poisson Ph's, and will be further discussed in

section 11.

6.Binomial Count Data

Analysis of binary data in the context of this chapter
presents special problems, since the parameters to be estimated
are the actual probabllities (exﬁected frequencies) in the
binomial.PM. Thus, comparison 6f Fii's will be the same as for
the multinomial exanole 3.1 of chapter IV; the use of the
normal PM will actually be only an alternative means (to max-
imum likelihood estimation) of estimating the probability
parameters and not 2 direct representation of the observed

frequency distributlion. Comparison will z2lways show the bino-
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mial PM MLE's to be better than the estimates obtained from
the normal Pl. We shall be interested to see how well the
normal theory approximates the binomial model estimates.

Using normal theory, from LF (5.1), EE?(Yi,KX] =0,
is the function g(npi,x) of the 14 of LF (5.3). Inferences
may be made about the normal theory Sk's by calculating the
MLE's from equation (5.1) for Ry = g(npi,I), where B(pi) =
ny is any KM, and then comparing PM's by using these esti-
mates, ?& = g'l(ﬁi,ﬁ)/n in the binomial LF (5.3).

Alternatively, in steps IV and V o? section 4, if. a
normal approxiration seems plausible from the preceding
steps, the more conventional inference procedure of looking
at the normal LF (5.1) may be used. But, this often yields
likelihood ratios of much different size than does the
previcus procedure,

A number of transformations, g(y,Y), of the regpoﬁse
may be used in the normal theory PM (5.1), as listed in
section 5, (E) to (J). Then, for example, if g(y) = B(h) =2

i Y
is the predicted value of g(y) in model (E). P = ™/ (1+eM)

g‘l(ﬁ)/n and this is used in LF (5.3).
The natural linear binomial SM (N) has
B(p) = logip/(n-n)] = log(E(Y)/n-E(Y)]) (5.15)
as shovn in chapter III, section 3, and is analogous to the

logit normal model (E).

Example 8,1 If one palir of marginal totals are fixed
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in a 2x2 contingency table, the table may be analyzed using
WE (5.7) (1 = 1,2) and the binomial Pl (N). Since %é%%f%%% =
e®17%2 andg @ toy, = 0, the plausibility of o = o, =20 orlno
effect of treatments 1s analogous to the %? test" for independ-
ence and to Fisher's exact test (although this is conditional
on all marginal totals being fixed). For the contingency
table of Table 5.13, log R(ai=0) = -0,36 proviiing no evidence
against the hypothesis of independence. The conditional like-
lihood analysis of chapter VI for this example and the exact
long run test of significance of chaptef_VII agree with this

result.

Example 8.2 Cox (1966) analyzes the data glven in
Table 5.14 on the effect of rocking on whether or not bables
cry. Each day for 18 days, one baby was chosen at random to
be rocked out of a group varying in number, providing én 18x2
factorial experiment. With the binomial PK (N), interaction
(5.5) and no interaction (5.6) IlM's are used to analyze the
results, .

Step IV. Since MM (5.5) has as many parameters as res-
ponse condibions, it fits the data exactly; MM (5.6) provides
a poor approximation. In neither case is elimination of the
variation due to response conditions plausible.

Step V. Neither MM provides strong evidence (Table 5.15)
that rocking reduces the number of bables crying. Differences

between days (which are not of interest) are very plausible;
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‘MM (5.5) gives an indication of interaction between days and
rocking., |

The effect of rocking is considered further in chapters
VI and VII where a conditional likelihood anslysis and an
exact significance test are appiled. These agree with the
above results. The comparison of these results with the asymp-

totic result of Cox is discussed in chapter VII,

Example 8.3 Snedecor and Cochran (1967, p.300) give the
data reproduced in Tablé 5.16 from a 5xj factorial experiment
in which five replications were made of a comparison of four
treatrents and no treatment of soybean seeds. Out of 100
seeds planted 1n each plot, the numbers falling to emerge
were counted. Snedecor and Cochran use linear normal theory
PM (H) ANOVA with no interaction KM (5.6). The analyses for
logit normal (E), odds normal (F), arcsine normal (J), and
binomial (N) Fli's with no interaction MW (5.6) are also
given in Teble 5.17, using the binomial LF (5.3) with that
for the normal LF (5.1) in parentheses, For all of the Pli's,
the parameters of the interaction Fl (5.5) may be estimated
and hence P = g-l(ﬁ)/n, but the variance of P (5.1) cannot.
The values of log R from LF (5.3) when this % is substituted
in LF (5.3) are given in Table 5.18; those for LF (5.1) can-
not be calculated.

Step IITI. All of the normal SM's provide good approx-

imations to the corresponding binomial Shk's. Using MM (5.5),
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all SM's fit exactly, since there are as many parameters as
response values.

Step IV. Variation in the response conditions is plaus-
ible for all SlM's. In every case, the interaction MM fits
better than the no interaction model.

Step V. All znalyses using LF (5.3) provide the same
result: differences between treatments are more plausible
than tetween replications. Use of MM (5.5) shows thgt the
interaction between replications and treatments is ﬁore
plausible than the differences betwzen f?eatments. This does
not appear in the analysis of Snedecor and Cochran. Except
for the odds normal PM (F), all normal theory analyses using
LF (5.1) and MM (5.6) give similar results to those from LF
(5.3). The unusual results given by FM (F) are difficult to

2xplain.

Example 8.4 Lindsey, Alderdice, and FPienaar (1970)
provide two normal theory analyses (the same as that of chaptér
II) of data of Alderdice and Forrester (1968) from an experi-
ment to determine the effects of variation in salinity (xlo/OO
S) and temperature (XZOC) of sea water on the proportion of

eggs of the English sole (Parophrys vetulus) hatching.‘The

original data, showing counts of eggs hatching, are provided
in Table 5.19. The two aralyses use the per cent normal Pli's
(H) and (I) (Y = 0.85) with linear (5.9) and ronlinear -(2.3)

regression MlK's respectively. Analyses using loglt normal (E)



- 85.
and binomial (N) PM's with the two MlM's are also given in
Tables 5.20 and 5.21 respectively. In the tables, the log
‘RL's from normal LF (5.1) are gliven in parentheses beside
those obtained by substifuting normal theory estimates,?,
in binomial LF (5.3), as in the previous example. .

This example provides an extensicn of the analysis of
response surfaces given in chavnter II to the case where an
alternative PM is avallable. Once the parameters of an accep-
table SM have been estimated,.the procedures outlined in
chapter II for exploring the response éyrface are applicable,

Step I. For the nonlinear MM (2.3), the MLE's of the
power paramebers are &i = 0.34 and &, = ~0.55 for the logit
normal PM and‘@i = 0.19 and 32 = ~0,24 for the per cent nor-
mal PM, This first pelr of estimates is used in the nonlinear
(2}3) binomial Sk instead of calculating the exact MNLE's.

Step III. A comparison of PM's using ¥M (1.4) shows
that the per cent normal models (H) and (I) are very good
approximations to the binomial model (i), while the logit
normal model (E) is not.

Step IV. When K¥'s (5.9) and (2.3) are used in the com-
parison, none of these normal theory approximations appears
to be very good, as shown in Table 5.22. Although the com-
plete analyses are not given here, two other Pi's were fit-
ted, the transformed odds normal (G) (& = 0.18) with MM
(2.3) and the arcsine ncrmal (J) with both NH's (5.9) and

{2.3). The corresponding results for these SkI's are irncluded



- 86,

in Table 5.22. Although neither of these Pli's fits very well,
when the deslred MiM's are introduced, they provide better
fits than the binomial SM's. This implies that some MM der-
ived from these and used with the binomial PM instead of
equation (5.15) (i.e. abandonment of the natural model)
should yield an improved fit.

Step V. As seen from Tables 5.20 and 5.21, all SH's
provide essentially the same analysis of effects, with only

the effect of x, linear being relatively unlikely. The RL's

1
using binomial LF (5.3) ére in all cases much smaller than
those from normal LF (5.1).

In Figure 5.1, contours for p = 0.3 and 0.8 hatch have
been plotted for the linear KM (5.9) with the binomial (N)
and per cent normal (H) PM's, showing that.they give very
similar surfaces. Figure 5.2 gives the corresponding non-
linear SM's, MM (2.3) with PM's (I) and tN), which give
somewhat different surfaces (much different from those of
Figure 5.1). The surfaces for the two best fitting nonlinear
Sli's are plotted iun Figure 5.3, the arcsine normal SM (J)
and the transformed odds normal SKM (G). All of the surfaces
appear to have a similar shape along the plane X, = L.,o

where the surface rises very steeply, and to differ else-

where in the factor space.

9.,kathematical Models for the Variance

All of the preceding examples have involved Ll's des-



87,
éribing variation in a mean parameter with change in the
response conditions. For the normal SM'S; this has involved
an assumption of constant variance. But implicit in the Hli's
for the other PHM's has been an assumption of changing var-
iance, since 02 = pz for the exponential PN, 02 = p-nz/n for
the binomial PM, and 02 = n for the Polsson PH.

If the data in an example actually come ifrom the theor-
etical PM and the normal model is only an approximation, a
linear normal SM will not take this changing variance into
account. The use of a transformed response has traditionally
been one method of attempting to lmprove the situation, the
method used in the- examples. Two alternatives to this are
immediate. If sufficient observations are available, a dif-
ferent variance may be estimated for each response condi-
tion. Or, the relationship stated above between the mean and
variance may be substituted into the normal SH, eliminéting
the variance parameter, In this case, a normal Pl truncated
at zero must be used.

The use of an asymptotic Chi-squared likelihood ratio
test (see chapter VII, section 4) often actually gives an
exact test of significance for the second alternative (using
the relationship between th; mean and variance in a normal
PM) when it is applied to a likelihood ratio such as the
Poisson or expcunential. This is further discussed in chapter

VII.

The assumption of constancy of variance of a normal SN
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may be assessed by fitting a SM with the variance changing
(the first alternative). For the data of example 6.1, an
additional MM, for the variance oij, was introduced into the
normal PM (B) with MM (5.5). This SH gives a RL of fit of

log = -90.51 with ?E=O.52. But, R(Y=1) = 0.85 so that

Ry
normal PM (A) is acceptable with this combination of KlM's.
The lack of fit for this SM may be compared with those given
in Téblc 5.2 for the other two normal Sk's. Although the
improvement is large, especially over tne linear model, the
greatly increased number of parameters.pay not warrant use
of this model. Apparently, the transformation of the response
and the changing variance play sSomewhat the same role in
improving the linear PHM (A), with changing variance being
better at the cost of adding more parameters (see the next
section).

A more ad hoc method is to plot residuals. In Fiéure
5.4, the deviations from expected values for the various
response conditions of example 6.1 are plotted against the
expected values using the interaction MM (5.5) with the
linear normal PM (A). The plot is identical using the exp-
onential Pii (K). The variance appears to increase with
increase in the size of the mean (expected response). In
contrast, tﬁe residuals for the corresponding transformed
normal Sl (B), plotted in the transformed units in Figure
5.5, show no noticeable change in variance with the res-

ponse conditions., Such a transformation of the response
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does got change in the same way the expected values of the
observed responses when transformed back to the original
units, as a comparison of Figures 5.6 and 5.7 shows. In
these diagrams, expected values are plotted against observed
in the original units; only the scale of the expected wvalues
is altered.

Similarly, such plots~may‘be used to compare the dev-
iatiéns for Poisson models. For example 7.1, in plots for
the linear normal (A) and Poisson (M) PHis, the deviations
increase with the mean, confirming the'?elatively good fit
of the Poisson. A plot for the log normal PM (C) shows
little change in varience with the transformed means., For
example 7.3, a plot of residualc for the Poisson PM (M) with
linear regression shows no increase in variance with the
mean. In fact, for the one large response observed (in 1962,

see table 5.11), = 17,381 is estimated as ¥.,.= 17,694,
17

y17
whereas many smaller responses have a larger deviation than
313. This confirms the relativeiy very bad fit reported in
the example.

For normal theory approximations to binomial SM's, the
(transformed) variables can be plotted azalnst the residuals
to determine iIf constancy of variance is valid as above,

When more than one observation is made for each response
condition, comprarison of FPli's in step III is made using a KM

with different mean for each condition (i.e. HM (1.4)). For

a normal PN, this leaves only the assumptions of normality



90.

and constancy of variance for comparison. Hence, fit of such
a SM in step III depends only on these two assumptions, and
the results of this step for the examples mentioned.in this
section are confirmed by the plots of residuals. Use of a
changing variance Sli eliminates the second of these assump-
tions, vproviding an assessment of this normaiity assunption
alone.

The random effects model in ANOVA is a mors common

example of a WM for the varlance.

10.RBoles of Transformations of Normal Besponses

As discussed in chapter II, transformations of the res-
ponse using a normal PM may perform three functions: (i) to
provide a distributional form of P which better describes
the data (e.g. log normal etc.),i.e. to discover new units
of measurement making the response variable more nearly nor-
mal; (11) to fulfil better the assumption of constency of
variance; and (1ii) to provide a better fit for the KM. The
relative importance of these three functions may be analyzed
by an extension of the method of the previous section for
assessing the assumption of constant variance., If more than
two observations arelavailable under each response condition,
three SM's may be fitted, and the RL graph for the transform-
stion parameters plotted in each case. Each SN has a commen
transformation under all response conditions. For the first

SM, a different mean and variance is estimated under each



"91.
response condition; for the second, constant variance with
a different mean under each condition. The thirﬁ SM is the
one of interest, using the specified MMM,

The transformed per cent normal PM (I) of example 8.4
was asnalyzed in this way for the data of Table 5.19. The
three RL gfaphs of the power transformations are plotted in
Figure 5.8, For the Iirst SM, only the normal distributional
form is assumed; the graph is relatively flat with R(Y=1) =
0.75, showing that the data fulfil this assumption well (as
ovposed to the transformed normal altefpative). For the
second SHK, the assumption of conétant variance is added; the
RL gfaph of Y changes markedly, with R(Y=1) = 0.004, indicat-
ing that this is a poor assumption without the transformation.
For the third SH, thé further assumptions uf the nonlinear
response surface MM (2,3) are added; the graph shifts to
give a different range of plausible values or the power
transformation. Thus, for these data, the transformation
performs the second and third functions listed above.

When this analysis is applied to the data of example
6.1, considering the no interaction MM (5.6) a2s the one of
interest, the RL graphs of ¥ from the second and third SM's

are almost identical, revéaling that the transformation is

not important in reducing interaction effect. For these data,
the prime function of the transformation is to fulfil the

assumnption of constant variance,
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11.Discussion

The main problem in extending the principles of normal
theory regression analysis and ANOVA to other Fli's has laln
in the lack of suitable accompanying distributions, such as
the F and Student's t distributions, for developing approp-
riate exact significance tests. In some very simple problems,
such as 2x2 contingency tables(which, it has heen seen, may
be regarded as 2_block one-way ANCVA), exasct significance
tests may be developed by enumerating all of the possible
‘outcomes of the experiment within some defined sample space,
as in chapter VII. But for more complex problems, this rapid-
ly becomes impossible even with a high speed computexr. Vari-
ous avproximating techniques have been employed such as
asymptotic'(large sample) normal approximations (even with
small samples) and Montc Carlo methcds. In this chavter,
likelihood methods of inference have been outlined for a
first attack on the data to determine what information they
can give about various theoretical S5ii*s before any approx-
imating technigues are used.

One drawback to this method, which has appeared through-
out the examples, has been a divergence in the size of like-
lihood ratios for the same MM when different Fli's are used.
The key to these differences may come from the discussion of
csection 9, where the link between the mean and variance is
mentioned. When such a link occurs, change in the i willl

have more effect on the LF than when no such link exists.
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For example, considering the SM's of sectlon 7, in example
7.1, elimination of the effect of treatments from the MN only
directly affects the mean for the normal PN's, Whefeas for
the Poisson PM, the poorer fit of the MM (describing the
mean) causes the variance, and hence the whole Polsson PHN,
to fit much more poorly.

Thus, this apparent drawback may be very useful in
detecting overall departures Ifrom the SM through variation
in the MM. This is true because of the existence of the base
multinomial PM through which all likellhood ratios from a
' given set of data are directly comparable.

Comparison of sizes of likelihood ratios between dif-
ferent sets of data (i.e. data measuring different types of
responses).is not clearly justified, especially if the sets
have very different numbers of observations. But, the same
may be sald of a simple test of significance (in Fisher's
sense): the level at which either a very lmprobable event
has occurred or the hypothesis is wrong will vary with fhe
data set and especlally with the numﬁer of observations. Cf
course, it two sets of data are derived independently from
the same type of exzperiment (meaéuring the same response,
although perhaps at different points in the factor space),
the corresronding LF's may be combined directly by multipl-
ication.

Another problem involves maximization over parameters

in the LF. If the inference desired involves comparison of
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SM's, then we are interested in the best that each SH can do
and maximization is valid. In this case, differences in the
number of parameters maximized over 1s taken into account
by desire for simplicity, theory, or other considerations.
The introduvction of more parameters to be maximized over
will naturally providé more potential for superior fit.

When parameter wvalues are being considered within a
given SM, the method of maximizing the LF over parameters
not of immediate interest must Be viewed as an approximation.
If at all possible, use of the entire LF is desirable. An-~
other procedure for making inferences about parameter values
for a given SM when nuisance parameters are present wlll Dbe
discusced in chapter VI, using a conditional LF.

When fhe methods of chapter IV are applied to data
involving responses neasured under a number of conditions,
so that the PM is actually a product of different probability
functions as in this chapter, consideration of the average
RL per distribution (per condition) 1l.e. the geometric mean
of the RL, is useful. This 1is given in each table of RL's for
the preceding examples in the form %log R where I is the num-
ber of conditions. They show that the difference in plausi-
bility (step II) between Ph's is usually very small, because
of the very small number of observations per condition.

In spite of many apparent problems, proceeaing beyond

standard normal theory Sii's often is useful. Resides yprovid-

ing fresh ins?ght'into the data, fittling a thecretically more
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justifiable PM than one involving the normal distribution
often allows more complicated ¥li's, by eliminating the

variance parameter, 2nd provides the potential for better

predictlive power.
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CHAPTER VI
INFERENCES USING. THE CONDITICNAL LIKELIHCOD FURCTICN
1.Introduction

In analyzing a set of data, the stage is usually reached
where some S is considered acceptable (plausible) and we
wish to consider the plausibility of various parameter values
within the model. No problem arises in using the LF for com-
parison of plausibiiities if only one estimable paraméter is
present in the SM. If more than one such parameter is present
and all are of equal interest (perhaps linked in some way),
agein theoretically, no problem arises. Various SSM's to be
éonsidered may be compared by use of the likelihood ratio.

If we wish to see how plausibility varies with change in the
parameter values, methods of visualization become increas-
ingly difficult with lerger numbers of parameters. As used
in previous chapters, one method of overcoming this problem
is consideration of a2 silhouette of the likelihood surface,
obtained by maximizing the LF over some of the parameters.
But the approximating interpretation of this must be kept in
mindg.

Often a épecial circumstance appears when a Sk has been
adopted for the explicit consideration of only some of its
estimable parameters. Although the remainirg nuisance para-
meters are sssential for considering the Sk as a whole (steps
I to IV of chapter V, section 4) and the LF is then used,
after the Sl has been found to be acceptable, we wish.to

make inferences about the parameters qof interest in the
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absence of knowledge of what values the nulsance parameters
might have. Since sufficient statistlos contaln all of the
1nforﬁation in the data about a parameter, in order to do
this exactly, all of the nulsance parameters must have suf-
ficient statistics. Then, inferences about the parameter(s)
of interest will be made, conditional on this informatlon-
about the nulsance parameters, through the use of the cond-
itional probability function in ithe form oi a conditional
likelihood function {CLF).

Fraser (1967) introduced the concept of marginal likeli-
hood in connection with structual inference, for use 1ln the
elimination of nuisance parameters. Sprott (1968) and Kalb-
" fleisch and Sprott (1970) have extended this concept by
considering likelihoods based on distributlions conditlonal
on sufficient statistics. This 1s somewhat similar to obtaln-
ing some forms of uniformly most power similar confidence
tests for multiparameter distributions by conditloning on
sufficient statistics, as in Lehman (1959, p.134), and also
to Fisher's exact test for the 2x2 cdntingency table

Because of the strong restrictions, CLF's wlll only be
applicable in certain special cases. In addlition, thelr use
will be further restricted by the difficulty of deriving tThe
appropriate conditional distribution for many of the Ki's
considered in chapters III and V. This aifficulty usually
results from the condition (as in ANOVA) that a number of

parameters svm to zero, e.g. Hli's (5.5), (5.6), (5.7).

4
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Of the MM's considered.in ﬁrevious chapters, those for
ANOVA may often present cases where a CLF would be desirable.
In man} such problems of two-way ANOVA, only the effect one
way is of direct interest (see any of the two-way ANOVA
examples of chapter V). Then, for example, we should be int-
erested in making conditional likelihood inferences about
all of the oi's of no interaction MM (5.6) in the absence of
knowledge about p or any of the Qj's. Unfortunately, in such
cases as this, derivation of the conditional distribution is
usually difficult. The MM of a regression problem does not
usually contain nuisance parameters, although in cases such
as response surfacé methodology it may.

When transformation of the response is introduced into
a continuous Pl, we may be primarily interested in what val-
ues of the transformation parameters are plausible., The sane
applies for the nonlinear parameters of a regression MK such
as equation (2.3). Then, all other paramsters will be cons-
idered as nulssnce parameters.

Two types of examples will be prévided in succeeding
sections: conditlional likelihood inferences about parameters
of interest in ANOVA involving a binomial PM (of chapter Vv,
section 8), an extension of the likelihood analogue of Fish-
er's exact test, and about the power parameters:of normal SH's.

As a prelude to the first of these, and an extension of

the results of chapter II1, the CLF's will be derived .Tor

various MM's using the binomial PHM,
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2,The Ceonditional Likelihood Function
Suppose that the SM represented by f(y:;4) has parameters

of interest g, with nulsance parameters éz, and that, for
fixed g;, minimal sufficient:statistics, &, possibly func-
tions of él’ exist for the elements of gz. Then, the marginal
distribution for these statistics is given by

£,(tpid) = 5§2=const.f(z;é)d‘z , (6.1)
where the integral becomes a summation for discrete Slk's. The
conditional distribution of the observations ziven theée suf-
ficient statistics will then not be a function of the nuis-
ance parametefsz .

folxid,/t,) = £(xsg)/f,(t,58) (6.2)
From this conditional distribution, a CLF may be obtained
which may be handled in the same way as the ordinary LF
previously used, althoush the interpretation of inferences
will be different, as described in the previous section. Com-~
plications arise, treated in Kalbfleisch and Sprott (1970),
when a transformation of the response contains a parameter
of interest, as in the SK's arising from LF's (5.1) and (5.2).
Only relatively straightforward examples will be used here.

The CLF is equivalent to the conditional distribution

of equation (6.2):

Loldy) = To(zid /t,) (6.3)
As with the ordinary LF, all comparisons use ratios of CLF's.
Analogous to equation (1.7), a conditional relative likeli-

hood (CBL) function may be defined:
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Ry (d,) = Lol )/Lo(E) (6.4)
where 2& denotes. the parameter vector maximizing the CLF,
Agein, with many parameters of interest, looking at profiles
of the CRL surface by maximization over all but one or two
parameters of éi may be a useful approximate tool, .although
exploration of the complete surface will be more meaningful.

Note that no base CLF, anadlogous to the multinomial LF
used in the ordinary likelihood inferences of previous chap-
ters, 1s defined. When theoretical provlems arise in deriva-
tion of a CLF for a continuous PN, reteption of the base
multinomial LF may clarify the »nroblem. Then, equation (6.1)

becomes

fyltyid) = =c§18t.f(x;é)ﬂy_ .

Theoretically, this is useful in such problems as the deri-

vation of a CLF for the power transformation of the response.

3.Conditional Likellhoods for Binomial Statistical lodels
Various natural linear SM's for the FSD and specifically,
for the binomial PN have been extensively considered in chap-
ter III. For the PSD, if each element of the parameter vector
g has a corresponding minimal sufficient statistic in the
statistic vector t, and if dl 1s the parameter of interest,

then the CLTF is

Lo(dy) = a”s.)zftl (6.5)
C 1 e \- 1 ’Z . .
22_& (Z,Lz,e..,tk)y)lj

This may easilylbe extended to a parameter vector of inter-

est, él' The Sik's considered for the binomial distribution
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will all be of this form, with sufficient statistics for all
parameters, since natural linear MHM's are used.

| For the analysis of J 2x2 contingency tables (a 2xJ
randomized block design with binomial error) with no intexr-

action El (3.9), the parameter @, = -a, is of interest. Then,
Zaiyl.
Lalay) = (6.6)
¢t ZE(y”erﬂe%ﬂ

from equation (6. 3), where a'(y..,x,s ) is from equation

(3.10) end 4, = e™, If this SH is implausible and the inter-

action MM (3.6) 1is necessary, then the CLF becomes
| eZJaiyl.
L.(a, ) = N N e (6.7)
et TT( 13 )( 23 } 23 zJ
% [J ylj-yli-i-z yZJ-YZ-"'y- o ~2Z Q-ﬂ-

In this case, a(y) need not be modified since the interaction

MM has as many paTrameters as response corditions. These two
CLF's will be used to make further inferences about some of
the parameters in examples of chapter V, section 8.

FFor the analysis of an Ix2 contingency table with MM
(3.12) {one-way ANCVA), the difference parameters, g, may be

of interest with p a nulsance parameter. The CLF 1is

TTe% Y1
Lo(a) = z[l -1 )eo:lri(y ->:r> o:I(y.-z.ri)—‘ (6.8)

Again, no modification of a(y) is needed. For I = 2, this

reduces to the CLF for the 2x2 contingency table,
ezaiyl
L.(a ) = N )( 3 2T . (6.9)
c'1 1 151 .
%1[ \rl y.-T ]

Equations (6.6) and (6.7) also yield this result when J = 1

as does the conditional distribution used to make Fishqr's
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exact test of significance for the 2x2 table.
For the binomial regression SM with MM (3.14) and p = 1,
suppose the parameter of interest 1is @b, after reﬁoval of the

effect of the independent variable Xyqe Then,

: Boto ’
= g , (6,10
Lo (@) %Ea'(z.tl)e@oz] )

where t ==Sji and a'(to,tl) is from equation (3.15). This

may be extended to a multiple regression situation where

oniy some of the coefficient parameters are of linterest.

I,Examples from the Binomial Distribution

k.1 The tra@itional SM to which a conditional argument
has been applied is that for the 2x2 contingency table for
which Fisher proposed his exact test of significance, The
CLF in this simple case illustrates the main points of cond-
itional likelihood inference.

In Figure 6.1, the RL function for o, maximized with
respect to pn of MM (5.7) has been plotted for the data of
chapter V, example 8.1. In the same figure, the CRL function
for oy 1is plotted using equation (6.9). Log RC(01=O) = ~0,34
whereas log R(@,=0) = -0.36 and the MLE, & = -0.45 virtually
the same as the conditional KLE.

Use of the maximized (over u) RL function for @, assuues
that n takes on (is known to be) the value maximizing the LF
wifh ay set. Use of the CRL function assumes that the value
of p is unknown, This makes very little difference fog inf-

erences in this problem, as illustrated vy the very similar
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graphs for the two functions in the figure.

4,2 The example (8.2; chapter V) from Cox (1966) con-
cerning the effect of rocking on bables crying 1s a case
where a one-way treatment effecf is impbrtant in a two-way
ANOVA, In Figure 6.2, the RL function for T naximized with
respect to p and Q of no interaction MM (5.6) has been plot-
ted, along with the CRL function.ngain, the CBL graph is
very similar in shape to that for the RL, but log By (oy=0) =
-2.04, Gic = 0,62 whereas log R(ai=0) = -2.33, o = 0.70, ag
indicated by the displacement of the graph in the figure.
Thus, use of the CRL function mekes an effect due to rocking
less plausible and gives a smaller best estimate of difference
in effect.

But the no interacvion MM was found to be implausible
in chapter V. The corresponding plots for interaction MM (5.5)
yield uniform (R=1) graphs for o

1
this model, the data provide no information about the differ-

in both cases, i.e, for

ence in éffect of rocking. This reveéls another reason for
plotting the LF. The analysis in chapter V using MM (5.5)
gave log R(a1=0) £ 0,0 which might lead one to conclude that-
@y lies very near zero. In fact, the data do not indicate
"this, and conly a plot reveals that the LF is flat.

The flrst part of thls analysls agrees with the results

provided by Gart (1970Db).
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4,3 Gart (1970a) analyzes the results of an experiment
by Innes et al testing the carcinogenic effect on mice of a
funglcide, Avadex. AS given in Table 6.1, individuals of two
strains of mice, split by sex to give four strata, are elther
treated or used as controls, and the number with tumors after
85 weeks recorded. This yields a 2xl4 ANOVA table. These data
are snalyzed as in chapter V, section 8 using the binomial
PM (5.3) with the interaction (5.5) and no interaction (5.6)
Mi's. This analysis, provided in Table 6.2, shows plausible
effects both of the treatments and witﬂin the sex-straln
grouping. Although the RL for no effect of treatment is
slightly larger than that for sex-stfain differenbes, this
effect may be considered more plausible because the change
of MM here only involves loss of one parameter whereas for
the sex-strain effect, three parameters are 1nvolved._No
interaction effect is indicated using MM (5.5).

Primary interegt lies in the carcinogenic effect of the
treatment. Thus, the BL function for the parameter of inter-
est, maximized wlth respect to the oﬁher parameters, has been
plotted in Figure 6.3 for both of the MM's . For comparison,
the corresponding CRL functions have been plotted in the
same figure. All four functlions are nearly 1dentlcai, with
those for the interaction lMH slightly wider.

With other sets of simmilar déta analyzed, the same
result ocecurs. The conditional and ordinary LF's for a given

MM are very similar, although the'difference in graphs bet-
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ween two MM's may be greater than in this example. The larg-
est discrepancy found between the two analyses for a given
MM occurs in the previous example (Figurelé.z), but here the
corresponding graphs for the other (interaction) MM are com-

pletely different, being flat.

5,Conditional Likelihoods for Nonlinear Normal Kodels

A second type of parameter of interest in the SM's dis-
cussed in preceding chapters may be the power transformation,
elther of the response for a continuous PM or of the factors
of a regression or response surface MM. Conditional likeli-
hoods for transformation of the response raise speclal diffi-
culties agbout the meﬁric of the sample space, since the
transformation is incorporated in the differential of the LF;
see equation (5,1). Kalbfleisch and Sprott (1970) discuss
some of the problems encountered in'this situation., Only the
second case, transformation of the independent variable, will
be considered here, for a normal PM,

As a simple example of the development, consider the Il

Blyy) = 6, + 8 (6.11)

with the normal P¥ of LF (5.1) and g(y,Y) = y. The nuisance
parameters are @.and 02. For given o, the sufficient statlis-
-tics for these parameters are b ==Zyi, 1 —-Tyix /Ek % and

A
—-SXyi o @i . The marginal distribution is

r (88, a0%) = ftT/s'-’&"Z‘E“T%

E(n-—d)znﬂl il
. exp ~-3%~ n{8o10

— s
X ZBV \%1 _ 3 ) L
“20° T 20"




106.

and the conditional distribution 1is

’ -2 -2
£o(pra/t) = r'(iz;)n - [(2) __,
217 Z tgzi 25y < _Z(yi-go-élx?)z

so that the CLF is n
Lol =[z(yi"§o-61x?)zj—72 .
This compares with the ordinary maximized LF

ma:uézL(o:,%, o) = [Z(yi-éo-éljf?) 2-—J-n/2
derived from equation (2.4). In general, the power in the LF
will change from -% to —Elgll in the CLF, where p 1s the num-
ber of coefficient parameters conditloned out. For the two
factor response surface model in the example of chapter II,
p = 6 and the CLF is a function of the two parameters, o,
and . This function can then be maximized over one of the
parameters and plotted as in chapter II, or contour plots of
the surface can be made as below. ‘

The effect of use of this CLF on inferences may be more
clearly seen than in the previous two sections. Here, the
power in the L} is altered by a factor corresponding to the
number of nuissnce parameters eliminated; the graph for the
parameter(s) of interest is widened without changing the
MLE's., Little effect is produced if the number of parameters
eliminated is much smaller than the number of observations.

The nonlincar Sk of chapter II, section 5 is refitted
to the data of that section, but with Y = 1, giving MLE's of

L

ai = 1.61 and 32 = 1.36. Contours of the RL function are
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plotted in Figure 6.4 along with those for the CRL function.
For these data, n = 22 and p = 6 so that the power changes
by a factor of 15/22 producing considerable effect. For an
analogous MM with data from chapter V, sectlion 8.4, the effect

would be much smaller since n = 68 and the factor is 61/68.

6. Discussion

The results of section 4 give some indication.that
conditional inferences may make very little difference when
the nulisance parameters elimlnated are_of the same forﬁ as
the parameters of interest (linear parameters describing the
mean in this case). This is related to the fact that varia-
tion in one parameter will not greatly affect the NLE of an-
other, 1l.e. the parameters are estimated almost lndependently.
In this context, it may be noted that the analogous CLF for
the Poisson PM with the no interaction KM (5.6) 1s identical
to the corresponding LF maximized with respect to the nuls-
ance parameters, When the parameter of interest is of a
different type from the nuisance parémeter, a definite dif-
ference in inferences 1s often discernable, as in section 5.
Another simple example involves data from a normal PN with
mean, n, and varlance, 02, where p is the nulsance parameter.
The conditional MLE of 0'2 is E(yi-§)2/(n-1) as opposed to the
MLE, Exyi—i)z/n; the CLF is correspondingly modified.

Normal theory ANCVA is not changed by lntroduction of

the conditional argument 1f the variance is known. Condition-
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ing out a (constant unknown) variance makes some difference
_in the width of the likelihood graph without affecfing the
estimates of mean parameters. From equation (2.5), the normal
LF with no power transformation, maximized with respect to
the variance and to any other nuisance parameters, éz, is

nig,) = [ (g,.8,)T% .
Corresponding to this the CLF is

L) =[P, H) T

where the vector éz has p elements. Thg lack of effect is
assoclated with independence of the sufficlent statistiES‘

for the mean parameters in contrast to joint sufficiency

with the variance statistic. The same is true for the Foisson
SM mentioned above. Apvarently, the ANOVA MM's for the other

FM's approéch independence closely, although not exactly,

yielding CLF's very similar to the LF's.
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CHAFTER VII
TESTS CF SIGNIFICANCE
1,Introduction

The previous chapters have provided a means of attack-
ing one of the problems outlined in chapter I, where the
plausibilities of a number (possibly infinite) of hypothe-
sized SSK's are to be compéred: No assumption is made about
preference for any subset of these SSH's before collection
of the data., If this problem of chapter I is extended to
include an assumption of preference for members of the set
of possible SSM's, by means of prilor distributions or loss
functions, then the approcpriate posterior probabilities (from
Bayes!'! theorem) of losses may be calculated extending the
likelihood analyses derived in the previous chapters. This
process will not be discussed here.

Often, an assumption (null hypothesis, Ho) will be
available of strict preference for one or a few of the possi-
ble SSli's, and this will be of special interest (l.e., consid-
eration of the first purpose of chapter I, section 1). This
subset will often be derived by setting some parameter(s)
defining the SM constant, e.g. no effect In an ANGCVA MM, If
this set does not consist of a unigue element, l.e. define a
unigue SSH, a conditional argument, as in chapter VI, is
used in the following procedure. In this case, thé prefer-
ence assumption is a composite Ho' Yhen Ho defines a single
SSM, it is called simple.

For a simple Ho' the probabllity of any outcome in the
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sample space, including the one observed, may be calculated.
If the observed outcome has a smaller probability of occur-
rence than most possible outcomes, either a rare event has-
been observed or the assumed SSH is wrong. One method of
determining where the observed outcome stands on the scale
of possible outcomes under the given SSM is to sum up the
probabilities of all outcomes with st least as small a prob-
2bility as that of the one observed, giving a significance
level, as described in Fisher (1959).

Extreme care must be taken in defining what constitutes
an outcome for continuous Fl's, i.e, in defining the inter-
vals into which observations may fall. Some natural unit of
interval width, Ay,, should be used as in chapter IV, since
a nonlinear transformation of this will change the probabi-
lity scale of possible outcomes. Of course, intervals with
small probebility may be combined as in discrete cases. An
example of a norlinear width was given in chapter IV, example
k.7 where A'y1 = 1ogAy1 was used,

For a composite Ho, the same précedure must be repeated
for each SSM in the subset. This provides a collection of
significance levels, one for each S3K, The level of largest
size will be the significance level of the subset of 3SM's,
since sufficient evidence must be obtained about each SSHM
being wrong before considering the entire subset to be wrong.
This is discussed in Fisher (1959, pp.89-93).

Sometimes, all of the information provided by the data
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about variation in plausibllity of the various SSN's within
the subset may be summarized in sufficient statistics for
the parameters determining the various members of the subset,
i.e. the nuisance parameters. Then, setting these sufficient
statistics equal to thelr observed valueé defines a subspace
and a conditional probability statement may be made about
each element of this subspace. The significance level is
calculated using the probabilities of outcomes in the sample
subspace analogous to when the subset contains a single SSH,
Thus, a composite HO can be considered simple in the subspace.
This is equivalent to the argument for derivihg a CLF in
chapter VI,section 3.

Unless sufficient statistics are available for the par-
ameters seé constant by Ho’ placing the observed ovicome in
the scale of possible outcomes according to probability of
occurrence will usually be very difficult. The search for
statistics to provide this result without great loss of
information has resulted in the approximations of Neyman-
Pearson theory. These problems will be further discussed in
section 5.

Occagionally, as well as giving a fixed parameter value

(e.g. zero mean), H_ states that the possible parameter val-

o
ues lie in a range (e.g. non-negative mean) smaller than
that allowed by the SH. Then, to make the exact test, the
possible outcomes with smaller probability to be considered

are restricted to those unfavourable to this assumption,
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glving a one-sided test. This is only possible when sufficient
statistics are avéilable for the parsmeters so that a mono-
tone relationship between parameters and statlistics can be
used ‘to restrict outcomes considered for smaller probability.

Two points should be noted. The use of tests of signi-
ficance is an attempt to provide an absolute measure of in-
plausibility about certain selected SSH's and not to compare-
plausibllities of various SSM's, as with a likelihoéd ratio,
nor to provide probabilities of long run error as in Neyman-
Pearson theory. The significance level obtalned 1is a proba-
bllity statement about possible outcomes, not about parameter
values or Sli's.

Care must be taken if several H,'s are avallable aboﬁt
a SH, each'involving a different set of parameters Iln the SM
(e.g. no effect each way in two-way ANCVA or stepwise mult-
lple regression where different answers may result depending
on whether parameters are added or removed). After an infer-
ence has been made .about one H_ (subset of SSM's), further
inferences must take this result into account. This must be
especially emphasized where condltional signlflcance levels
are involved. Only when the two sets of sufficient statistics
are distributed independently, not jointly, can ordexr of the
inferences be ignored. This precautlion 1s not necessary wﬁen
making ordinary 1likellhood inferences, since thecse always
involve comparison of SShki's ("preferences").

For example, in multiple regression wlth two independent
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variables and a normal.PM. suppose the first H,, that @1 = 0,
is plausible. Then, testing the second H,, that @2 = 0, in
the original IiM, without taking the first result into account,
and finding this second Ho plausible, of course, does not mean
that both parameters may be plausibly eliminated (unless the
sufficient statistiecs are distributed independently, 1l.e.
orthogonal polynomials are used and the variance is known).
Again, suppose @1 = 0 is plausible and, taking thls into
account, @, = 0 is implausible. Then, testing §, = 0 first
will not necessarily yield tﬁe same reéplt.

Often, the subset of SSM's 1is not derived by setting
some parameter(s) constant; preference 1ls only stated for a

given PM (e.g. H_ : the data arise from a Poisson FM). Thus,

o
the test of significance is used for determining the goodness
of fit of the SN no matter what values the paramzters have.
All of the above arguments also apply in this case.

Only occasionally 1s calculation of exact signiflcance
levels for SSM's feasible. For many sitvations involving
normal PM's, the necessary distributicns have been tabulated,
at least for the éSM where the parameter(s) disappear from
the model. For discrete FPli's involving small counts, tabula-
tion of the probabilities of all possible outcomes 1s often
possible, using an electronic computer, and hence derivatlon
of the significance level. In other cases, asymptotic approx-

imations are usually adopted. These involve representing the

subset of SSk's by an equivalent set of distributions which
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has been or easily can be tabulated.

Thus, two situations arise where approximate methods
are needed for tests of significance: (1) sufficient statils-
tics are available for the parameter(s) about which a null
hypothesis 1s made, but the distribution has not been and
cannot easily be tabulated; (il) no sufficient statistics
for these parameters are avallable making determination of
possible outcomes with smaller probability than that of the
one observed difficult. In the first case, an aymptotiec ‘
distribution is required, assuming thsat enough observations
are availaeble, In the second case, an approximate statlstic
using most of fhe information in the data about the paramet-
er(s) is required. In either case, an approximate LF results;
the usefulness of the approximate test for a particular set

*

of data may be assessed by comparing the approximate LF graph

with that for the observed exact LF.

2.Exact Tests of Significance

Fisher (1959. pp.86-89) discusses an exact test of sign-
ificance for a difference parameter in the 2x2 contlngency
table using a conditional argument as in chapter VI, example
I,1. This analysis may be extended to the case of J 2x2 cont-
ingency tables in analogous manner to the likelinood infer-
ence procedure of examples 4.2 and 4.3 of the same chapter,
Thus the probabilities of outcomes are defined by a binomial

PM with no interaction KM (5.6) where the é parameters refer
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to differences between tables and @ = =0p = &, defines the-
subset of preferred SSM's. As in the derivation of CLF (6.6),
the subset of SSM's may be reduced to one SSM by conditioning
on the sufficient statistics for n and %, glving the condi-

tional probablility function,

2ayyq.
f (y l;&)-: a'(y"'zvb’---y.‘-)e 191

o " %[a'(y:;;z;ui-;z)ezcizj

from which CLF (6.6) was derived.After replacing o by the

vy (7.1)

value Xy the probability of any outcome in the sample sub-
space may be calculated, and the condif}onal significance
level derived. Since tabulation of these probabilities 1is
necesszry in order- to calculate the denominator of the CLF
(6.6), if the CLF is plotted, very little further calculation
is needed to determine the significance level. In the samé
way, a conditional significance level may be calculated for

a hypothesized value of oy in Ml(5.5) after deriving the
corresponding conditional probability function.

Since even data consisting of continuous measurements
are actually dliscrete, theoretically,'exact significance
levels can zalways be calculated by this summation procedure
in the discrete sample space. In practice, for continuous,
Pli's, significance levels are calculated by integration. In
this way, the tables used in normal theory analysis have been
produced. A simple example from normal theory occurs when Ho
sets the mean as Ho for unknown variance. Then, the condi-

tional distribution used for an exact test 1ls Student's t.
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If sufficient statistics are available for all of the
parameters in a SM., the conditional argument will yield an
exact test for the HO that the data come from the given SM
without specifying any parameter wvalues. For a discrete SN,
the significance level is obtained by summing probabilities
in the sample subspace as before. Since integration is d4if-
ficult in the continuous case because of lack of sufficient
statistics for the SM after conditioning, summation may be
used, considering the data discrete. This procedure is only'
used for lack of fit of a single SH. If‘other Sli's are also
being considered, as in chapter IV, they may be compared with

the first using likelihood ratios.

3.Exact Tests for Contingency Tables

The three numerical examples c¢f the previcus chapter for
ANOVA using a binomial FM will be reconsidered for the Ho’
aqy = = 0. In each case, additional parameters ere present
in the SM so that the preference assumption yields a subset
of SSM's instead of a unique SSM. Sufficient statistics are
ava;lable both for the nuisance parameters, so that the cond-
itional argument can be used, and for the parameters of int-
erest, so that determination of outcomes less probable in
the sample suhspace is simple,

he first example (8.1, chapter V and 4.1, chapter VI)
involves one 2x2 contingency table; we wisn to determine the

implauéibility of no effect between treatments. Summation
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over the sample subspace determined by conditloning on the
sufficient statistic, y., for the nulsance parameter, u,
yields the probability 0.608 of an event occurring which 1is
at least as improbable as the one observed under Ho' so that"
the given outcome is relatively quite probable under Ho.
This 1s Fisher's exact test.

The second example (8.2, chapter V and 4.2, chapter VI)
involves eighteen 2x2 contingency tables for Which we wish
to determine the implausibility of no (common) effect between
treatments of the bables. Here, two Hli's are possible, as
considered in chapter V. Each will lead to a different test,
sincg variation in the subset of SSli's determined by Ho will
be different i.e. the nulsance parameters will be different.
For the interaction KM (5.5), the sample subspace is deter-
mined by the sufficlient statistics, A and yil"yiz'y'1+y‘2
(1 =1,s.,,18), for the parameters pn, @, and Y. Unfortunately,
this subspace contailns only one point, the observed outcone,
ylelding a significance level of 1.0. For the no interaction
MM (5.6), the sample subspace is determined by Yy (L =1,...,
18) for the parameters p and g. Under this Ho' the probabllity
is 0.062 of observing an outcome at least as improbable as
that observed, agaln showing that Ho is not too implausible
for the observed outcome.

Cox (1966) adds to this H, that ay must be non-negative
(i.e. that rocking cannot produce a negative effect)..-A suf-

ficient statistic is available so that outcomes in the sample
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subspace unfavourable to this assumptlion may be determined.
Summation over this restricted subspace ylelds a (one-sided)
level of 0,0449, showing the Ho to be more implausible under
this additional assumption. This HO with an additional
assunption should not be confused with the HO that o is
non-positive. In this case, the significance level must be
calculated for each non—positi&e o in the ordinary (two-
sided) way and the largest level chosen for the composlte Ho?

The final example (4.3, chapter VI) involves four 2x2
contingency iables, where the test 1s for no carcinogenic
effect of Avadex on mice. As in the previous example, two
MM's are possible..The likelihood analysis of chapter VI
revealed little difference between the two MlM's (Table 6.2).

But, the significance level of HO for the no interaction MM

is 0.0096 whereas it is 0.036 for the interaction model,

L.Asymptotic Tests of Significance

If the required sufficient statistics are available, any
test of significance, theoretically, ban be reduced to a test
involving one (verhaps by conditioning) or more SSH's. In
this section, cases are considered where such a reduction can
be made but where the resulting (perhaps conditional) SSH
nelther has heen nor can be readlly tabulated. Then, sone
asymptotic diSerbution is needed which represents the SS8N
exactly when the number of observations becomes very large

and is a good approximation for smaller numbers. Thus, a
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normal distribution or some distribution derived from it 1is
usually most useful.
The two most common approximations involve the (C)LF.

(1) 1t H  1is true,

3 log L(g)| -E 3 10g L(#) 5
[o] - (o}
% /[ (Leoe )]

for large n. (ii) Asymptotically, -2 log R(do) will have a

con(0,1)  (7.2)
dO

Chi-squared distribution with one degree of freedom when HO

is true. This assumes that the (conditional) NMLE

3:\31\1(4250; yn E[(%Blog L(szf))z] d) ; (7.3)
"l O

see Wilks (1962, p.l08). The extensions to multi-parameter

situations are straightforward. For the conditlonal argument,
L and L are replaced by LC and RC. Cther approximatlions have
been derived for special circumstances.

To check the appronriateness cf the approximation for a
given set of data, the LF derived from the assumptions (nor-
mal in the above cases) may be plotted along with the exact
LF. Unfortunately, in many situations where such a test of
significance is desirable, the exact (C)LF 1is difficult to
tabulate, as for the CLF of chapter VI, examples 4.2 and 4.3,
In this case, the original assumptions (7.3) of the Chi-
squared approximation may be used under the null hypothesis,
as by Cox (1966). But the approximate LF (conditional in
this case) cannot- be compared easily with the eract one.
Sometimes, point comparison of LF's is useful, as was done

in chapter IV, example 3.5.
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A simple example of checking appropriateness occurs with
thé asymptotic Chi-squared test for the 2x2 contingency table
approximating the exact test given in the previous section.
The approximate LF can be plotted for variouvs values of oy
by using the fact that'ki is the square of a normal, N(0,1),
variate with variance proportional to ﬁl(l—ﬁl)/ezqi(ﬁl+ezqi
-ﬁlezci)z. The expected values in the table are calculated
by fixing the marginal totals and setting the log odds ratio
equal to the determined constant, 2Q1. For the data of the
first exemplc of the previous section,~phe approximate test
gives a significance level of 0.401 compared with the “exact
0,608. A graph of the approximate LF has been included in
Figure 6.1, showing the differeuce which explains the diver-
gence in significance levels.

As a second example, consider the data of chapter IV,
example 3.3. Suppose H0 is that p = 1 in the Poisson PN,
vielding a unique SSM. Then, the exact level of significance
is 0.52 providing no evidence agalnst Ho' Using an asymptotic
Chi-squared likelihood ratio test, the approximate level is
0.55, with log R{(n=1) = -0.288. The approximate LF derived
from equation (7.3) comes from

30f = 26 e W(30m,30p)
(See chapter V, section 9). This and the exact LF are plotted
in Figure 7.1. The approximate iog R(p=1) = -0.342. The div-
ergence in LF's explains the difference in significance lev-

els. This asymptotic test approximates the Poisson Pl by a
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normal PHM with n = 02.

These methods can be extended to the asymptotic Chi-
squared goodness of fit test usually used for discrete data.
Expected values of the freguencies are calculated from the
SM, using MLE's of any unknown parameters. Tne Chi-squared
test applied to deviations from observed values provides an
asymptotic equivalent fo the exact test of section 2. In
this case, however, no parameters are left for an approximate
or an exact LF to determine how good 1s the approximation.

Often, an asymptotic approximatioﬂ'is useful for deter-
mination of outcomes less probable than the one observed.
Since many distributicns are asymptotically symmetric (normal),
distance of the MLE of the mean from the value given by Ho
for any possible outcome can be used. Those outccmes giving
ﬁ further from Po than the observed ﬁ are consildered less
probable., If the distribution actually 1is symmetric, this
vields an exact test. This asymptotic procedure usually is
useful only for a mean parameter.

Sprott and Kalbfleisch (196S9) discuss comparisons of
approximate and exact LF's and show how transformation of

the parameter may provide a better. approximation.

5.Tests of Significance without Sufficient Statistics
Most of the examples considered in the previous chapters
used Sk's with sufficient statistics avallable for all para-

meters. The only major excepticn is the normal SM with power
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transformations of the response or of the regression.variables.
If HO specifies a value of the transformation parameter(s),
sufficlent statistics are available for the remaining. para<--
neters and the conditional argument applies. But no sufficl-
ent statistics are available for the transformation parameters
making determination of outcomes less probable than the one
observed difficult. Two procedures are available: (i) the
two scsymptotic tests, (7.2) and {7.3), of the precedirig sec-
tion are usually available; (11) some statistic may be found
which is almost sufficient and an appr&gimate test applied.
In either case, an approximate LF is available to compare
with the exact one. _
Box and Cox (1964) use the first method for the data of
chapter V, example 6.1 for a power transformaticn of the
- response, but without using a conditional argument.
Williams (1962) uses the second method for a Sl involv-
ing nonlinear regression parameters. In a simple example,
suppose Y, & N(e"®*1,1), i.e. 2 normal PN with MM

-X
B(P-j_) = e i,

Then, the statistic, E&ixie-cxi, has distribution NCExie-ZGxi,

'Eﬁﬁe-zaxi) which may be used to calculate an approximate
significance level for some Ho about a. The distribution of
the statistic may be used to plot an approximate LF for com-
perison with the assumed SM for the data to determine how

much of the information in the data is used, i.e. how.closely

the statistic apprcaches sufficiency. If coefficient paramet-
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ers are present in the M, a conditional argument is used.
This procedure may be extended to obtain an approximate test
when = noﬂlinear MM such as equation (6.11) or (2.3) is used.

analogous to the CLF of chapter VI, section 5.

6.Discussion

When a scientific experiment is to be perfarmed, the
assumptlons about underlyiﬁg méchanisms which will produce
the observed outcome can take many forms. The experiment may
be performed to test the validity of sépe specific null hypo-
thesis about the mechanism, in which case a test of signifi-
cance is used. Or, 1t may be simply to provide (further) in-
formation about the mechanism, in whlch case a likellhood
analysis is applicable. This likelihood anaiysis may provide
the basis for some null hypothesis which can be tested by
further experimentation., But, even when a nuil hypothesis is
avallable, further exploration of the underlying mechanism
by means of the LF is always useful to gain maximum utillity
from the data.

Although likelihood analysis 1s a relative criterlion of
plausibility, an absolute basis for comparlson always exists,
the (multinomial) SH making the observed data most probable,
In contrast, a test of significaﬁcewis always an absolute
measure of 1lmplausibility in itself; Cnly in certaln special
cases, when independently distributed sufficient statistics

exist, as described in sectlon 1, can more than one test be
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applied for a given set of data. Thus, if two Pl's are sus-
pected of being pleusible for an experiment, such as the
Poissbn and geometric of chavter 1V, example 3.3, a combined
hull hypothesis that the correct SN is Polsson or geometric
does ﬁot make sense., One SM is chosen for HO and the avpprop-
riate (conditional) test of significance applied to give an
implausibility measure for it. The plausibility of the other
SM may then be compared to this by means of the likelihood
ratio as in chapter IV. The same reasoning arplies to para-
meter values. A null hypothesis will not state that ¢ = ¢1

or g = dz. One value is chosen, zs above for SH's. In.the

special case where'Hois dl = g, and dz = ¢20 a2nd independ-

lo
ent suificient statistics exist for ¢1 arnd ¢2, the two parts
of Ho may be tested indeperidently by a conditional argument
using different sample subspaces.

From the gbove discussion, initial assumptions may fall
within several levels of complexity. They may specify two or
more SSM's from which the most plausible is to be selected.
They may allow any parameter values ﬁithin a specified SM,
perhaps with a null hypothesis about one value. Likelihood
analysis may allow this to be reduced to the preceding situ-
ation for the next experiment. Or they may allow several SM's,
perhaps with a null hypothesis about one. Likelihood analysis
may then reveal parameter values within a selectved plausible

Sli for analysis as in the preceding situations for a future

experiment., Thus, statistical analysis of scientific experi-
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ments becomes a succession of steps, eliminating implausible:
null hypotheses and searcﬁing for plausible mechanisms i1llum-

inated by the avallable data. .
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APPENDIX II

TABLES
S5 ety F o RL
Treatments 386%Z(§§y)-ffy))2 I-1 Mssé/mssz* (ssl/ssz)“N/2
Regression ss5=3362583 K-1 MSS5/M884 (ssl/ssuj'N/2
RBesidual SSU=SSZ+SSB N-K
Lack of Fit ssBQZ(§§Y)-§§Y))2T T-K M3337M332 (ssu/ssz)‘N/2

Pure Error SSZQZ(ﬁgg)-§§Y))2 N-I

N ol S AL Lo NN S

%
MSSé = SS6/(I—1) etc.,
t&ls value of ¥ 5 predicted by equation (2.3),

Table 2,1 Analysis of variance for MM (2.3) with N obs-
ervations, I points in the factor space (treatments), g a
vector of K elements, and o =1 (all k). The subscript j denotes
replications.

¥ f£t./min,| x,°¢ ;ZQOC
bk ENDE;
5 5 10
68 5 15
68 5 i 20
L1 5 25
57 10 ¢ 10,
Ll 15 1 51
71 15 3 15
79 15 .20 ¢
77 15 25 |
100§ 20 | 20
55 25 | 15
79 25 t 20 ¢
96 i 25 25 ¢
100 25 30 ¢
68 25 35 i
98 1 30 i 30
30 35 | 20|
58 35 | 25
70 35 30 i
. 76 35 35
8k 35 1 38

2 LI N WA )
Table 2.2 Cruising speeds, y, of goldfish for 22 pairs

of acclimation (x,) and test (x.,) temperatures. Fry and Hart
(1948). 1 2
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SS ar MSS F RL

Regression | 7003.621 5| 1400.72 19.14 5.21x10"é0
Linear 2918.641 2| 1459.321 19.94 1.06x10-°

X, linear 163.50] 1} 163.50% 2.23 2.37x10'6

X, linear | 2246,671 1| 2246.67{ 30.69} 7.64x10_g

Quadratic 4790,801 21| 2395.40 % 32.73} 1.68x10 8

x, quad. 4310,92 | 11 4310.92 | 58.90 | k.22x107¢

x5 quad. 2202,10 | 1 |2202,10 | 30,08 { 8,82x107¢

x,%, inter. 2574.301 11} 2574,301 37.63§ 1.67x10
Residual 1170.96 | 16 73.18

-Table 2.3 Analysis
2.2 according to MH(2,3)

of varlance for the data of Table
with o =1 (21l k).and Y=1.

SS ar| MSS Approx F RL .
Regression 8514,18] 51 1702.84 | © 54.36 | 1.79x10" 1
Linear 1147.84 0 2| 573.72 18.31 | 3.98x10~7
x¥1 linear 805.85] 1! 805,85 25,72 t 6,10x10"
%2 linear 1041.851 1| 1041.85 33,26 | 8.63x10"7
. Quadratio 6005.69 | 2| 3002.8%| 95.86 | 6.77x10~1%
xi; quad. 5141,461 1| 5i41.46) 164,13 | 3.33x10-13
%22 quad., 3280,43! 1} 3280.43{ 10%4.72 | 2.98x10-11
x%%x2 inter. | Bo41.49| 1| Bos1.49| 129.02 |.3.78x10-12
Relidfal 407,21 13 31.32
Total 8921.,42 | 21 {

Table 2,4 Analysis of variance for the data of Table
2.2 according to MNM(2.3) with & =1.63, &,=1.29, anda ¥=0.11,

[V §

Observed No Linkage* Linkage
Starchy green| by = 1997 2159.4375 | 1953.775
Starchy white n; = 906 719.8125!¢! 925,475
Sugary green n, = 904 719.81251 925,475
Sugary white np = 32 239.9375 |  3%.275
%, . 0.03571

e 287,69 2,0154

log RF log LM=-4069.297! -198. 34k -1,023

Tébié 4}i -Analysié of linkage in the progeny of self-

fertilized heterozygote maize. Fisher (1958, p.299).
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o~ kT

]

] "R { L t C F P S T
Log L -12839:;-12328 -501 —3117' —2551 . =31451 ~2616:
Log RR 0.0 1-821.2! -26.4 —249,05—158.0 -106.4 —9”.6£
Log R . =1004 0.0y =31.5] -53.0 *59.4;—1”6.2 -183.8:
Log R 1003.6:-821.2; 5.1(-189.0: -98,61 39,9 89.3,
Log R%A )’ ‘ -13.91 -40.51 -h5.8] -28:5] -3L4.3 1

Log R(AJ { -19.8! -53.h; -51.7] -68.9 -B1. 3

Table 4.3 Analysis of the data of Table 4.2 for order-
ing the works of Plato,

PR UL

v, ] 0] 1 Y

fi 12 11 6 1 0

Table 4,4 Frequency distribution of observations gener-~
ated from a Poisson distribution of mean 0.8. Cox (1962).

» e e e g ket » >y —te e

yi| O 1] 2 l‘ 3 g b i 51 6
1

£y | 213 128 | 37 18! 3 '? )
Table 4,5 Frequency distgzgitlégwég Jgg;g.c 11s in 40C
equal-sized sguares of a haemacytometer. ."Student" (1907).

6—..-...-.*.._.-,-

N AT R e wat s g a s AT LIRS A e de a7 A ooy = g e vme

A B | ¢ D

F , G H

. -1270 -1268 |-1328
Log Rg -8.0¢ =-5.5.,-16.2 | -6.7 i~

Log RLI\‘ "703 "7 ?; "9 2 "11-1

i

!
lrog Ly, |-1236 -1341 -1481 |-1569 |-

; —15.8z-23.9 -h1.2

i

E
223
3.31~13.9 -21.1(-27.4
6.0

9

Log Bryg | 0+73 -2.15 6,95 |-k.46 |- -1.80 -2,84 (-13.8
Log Blyq 3.371—3 61: 9. 29'—3-13|-2-87; -3.66 —1 ?31-13 9

¢

cmtartrme R . WS e bunn s m——— s WAL S Ll s s B

Teble k. 7 Anaivsis of the data of Table L,6, comparing
the fit of the gamma (G) and log normal (LN) Fi's.
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Dlemeter | A | B C | D! E | F | G | H
9-11 51 2 1:
11-13 3, 13! 6 9! 3 2 3 1
13-15 89 391 16f 16: & 2 2 T
15-17 1105: 61i 45; 31: 8 7 11 3
17-19 {125: 96§ 66f 427 12] 11{ 11 Ly -
19-21 95 110! 84f 58: 35] 20: 18 9
21-23 ?75¢ 99: 83! 67. 35 21. 21 9 1
23-25 43 731 88F 77 Loy 46: 391 17
25-27 1ib | 38¢ 611 65; 391 A7i 391 24 ;
27-29 11 31: 4o}{ sk° 38} 4oi 39! 32§
;  29-31 2] 22! 37} 38F 51} Lii Lo} 15
31-33 1] 12}, 29, 38 39: 36 A3} 24|
33-35 3 18] 31; bt 331 431 37|
35-37 | 1 6! 19' 28; 28! 38! 43!
37-39 1 8! 13- 2237 26| 23; 34~
39-41 5 8¢ 13 28% 18} 34 «
L1-43 2 77 7} 22%¢ 13) 28
43-45 2t 3 6f 9 2kl 29
b 5-L7 1 1} 67 137 61 33
L7-49 1{ 1 3{ 81 20
49-51 2 b5 3 9; 18
51-53 30 51 1i 12
53-55 1 i1 3 2 10
57-59 1: 1 1 {4
59-61 : ; b1
61-63 P 2 |
} 63-65 | ! 2 {
65-67 i ! b1
67-69 | R i L
Total , 600 | 600 | 600: 600 | 450 1 450 | 450 : 450 |

Table 4.6 Frequency distribution of eight wool tops
with diameters measured in microns. Menfort (19€4).



135.

A (MINUEES) . e e s s s

210 215 Jei7 1218 [226 2297233 235 1238 [239

oo 1241 (2)2Llk(2)2h8 250 251 253(3)254(2)255 260(2),

261(2)262 265 1267 270(2)271(3)273(2)275(2)276  [278

279(2)220(3)282 }283(2)285(2)286 287 289 292 1293(2)

200 (2)296 ~298(2)299 1300 309 310 31k i3h5 1366 .

B —

2037 21Z 15— 218 |2221(2)226 228 i230 233 33577

237 *240(2) b1 243 245 246 250 252 o5k 1255 :

256 1258 59 260 }263 266(2)267(4)270(2)271 273 !

274 275(2)276 277( }280(2)281(2)283(2)284 285(L4)286(2),

287 289 291 299 %302 304 {307 g_310 319 322 ;

bar_. 3301338 1336 4 e

210 1215(2)218 226 228 230  233(2)235 236 ‘zuo(zy

2b1(2)243 i2bh 248 251 253  254(2)255 1256 258(2)
. 259 260(3)261 ’267(3)270 271(3)273 274 f2?5(3)279
- 280 (4)282 '283(2)284 ~ 285(3)286(2)287 289 291 292

293(2)294 ‘296 {298(2)299 ;300 302 307 =309 }310(2)

31 319 1330 9339 345 366 i .. i .. i !

Table 4.8 Survival times of three groups of silkworm
larvae when a lethal dose of sodium arsenate is apolied., If

more than one larva survived a given time,
given in parentheses,

Bliss (1967),

PP

the number is
106 and 122.

1 Ungrouped (1‘minuté3 1M Grouped (10 mlnutpg) t

A B c f A B c

el R TS BT o — A m—— o - - t eva o aef e S g s " - - ,ia
Log Ly {-268.10 -272 Ll -313 29‘-162 52 —168.58 -195 51
Log RL\T -6L.85| -66.18} ~73.03° -9.67| ~7.82| -6.72

Log RG ~6L. ok | —€6.00{ -73.0L © -9.66| -7. 651 -6,70!

Log RE -193,62 i-189, 17;-215 .36 -138 85 -131 65 [-148 b2 !

.......... e asmeneriann raceon an b sumrm e om <reven R

Table 4.9 Comparison of the log normal (LN), gémma
(G}, and exponential (E) PH's fcr the data of Table 4,8,

Dose 0. 76 § 1. SC' "Z“éb“i'

l' ‘! ST TNt TN et ] e e X BT e e e

' Log L | -5L. 07 -200. 41* 232,13 ]
i Log PLI' -60, 51 —20& 77 '-229,65 1
% Log fig" | =60.01 {-205.05 -229.88
Table 4,11 Comparison of the log

3-30
—5“.711-113.?9
-6L,16 -130.97
-cu 39 -130. 55

kN 5 oo .

von i srre

normal (Lh) Qnd

garma (G) Pl's for the data of Table 4,10,
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Development Time Dose in 107 ergs/cmg
Days Ai 0.7611.80{2.60{3.30(5.00
91.2 6.5 2
Q7.7 7.0 2 1

104,7 7.5 2 5
112,2 8.0 2 2 1 1
120.2 8.6 st ol 3| 4
128,.8 9.3 3 8 7 3
138.1 9.8 10 10 1 13
147.9 | 10.6 1 7 1 19 3 6
158.5 11.3 16 11 2 L
169,8 12.1 7 14 1 8
181.9 | 13.0 17 6 2 2
194,9 14,0 2 7 7 2 L
208.9 15.0 6 3 1
223.9 | 16,0 1] 21 2 3
239.6 | 17.2 14 1] .
257.1 | 18,3 5 1 !
275.4 19.7 3 1 !
316.2 | 22.1 L
338,88 | 24.3 2
363.1 26.0 1
389.1 27.8
§16.9 | 29.8 14

Total 23 {86 | 98 | 25 | 51

-Table 4,10 Frequency distribution of development
times of ear tumors in male mice exposed to various doses
of ultraviolet radiation. Blum (1959).

i Treatment
Poison£
i A ) B C D
I {0.31 0,4610.82 0.88 10,43 0.63 10,45 0,66
Lrmemsroen 0a 5.0, 43,i1.10_0,72.10. 45 0,76.i0.71_0.62 |
II  0.36 0.40:0.92 0,49 0,44 0,31 0,56 0.71
| 0.29 0.2310.61 1,24 [0.35 0.k0 11.02 0.38
III 0.22 0.18,0.30 0.3870.23 0.2 0.3070.31
0.21 0.23]0.37 0.29{0.25 0.22 0.36 0,33

Table 5.1 Survival times of four animals under each

combination of three polisons and four treatments. Box and
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H u

Rat

PM
No.

Regression
LIinear
Quadratic
Linear
Quadratic
Linear
Table 5.2

Table 5.1 using maximized log RL's.

FM Lack of Fit-124,37

Overall Effecti{-31.74

Treatments
Poisons
Interaction
Av.Lack of Fit

Tai1l-flip reaction times in seconds of ten

(1949).

Table 5.3
vhite rats in two trlals on ezch of nine different days.

Ipsen
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PrR S P TR Y VR N

P Linear Log Nat Linear {"Exp. Valh
Normal (A} |[Normal (C) |Expon. (K) {Expon, (L)
Overall Effect| -126,97 { -121,72 -2,81 -2.81
Between Days -73.90 -65.48 -1.05 -1.09
Between Rats -34.80 34,14 -0.45 -0.45
Interaction -77.06 -76.34 -1,27 -1.26
PM Lack of Fit |-1333.73 1-1334.43 [-1666.68 {-1666.68
Av Lack of Fit -14,82 -14,83 -18.52 -18.52
Table 5.4 "Analysis of variance" for the data of
Table 5.3 using maximized log RL‘'s,
: Trial Number :
No.l2 }5 {8 11} 1ui
i ‘ ( i !_,w;_...{
i1 145 140 401 18:¢10°
2 | 50 45:16110: 81}
3 {300; 180 352 22; 20 1
| b 240; 45} 85§ 70 30 !
5 |165) 951 35| 50| 18
6 1102 831 k5| b8! 23
7 {3051 59:¢ 54% Lo 20,
8 3451 100;1103 551 35 ;
9. |422 1253 751 73} 20
ho |3z 505 81 7] 6]

Table 5.5 Time in seconds required by ten rats to run
a maze on five different trials. Bliss (1667) p. 327.

MM No Interaction (5. 6) 7Tnteract10n (5. 5)
PM Linear Log Nat Linear "EXD Val"
Normal (A) {Normal (C) |[Expon. (K) Expon. (L)
Overall Effect i -35.20 | =55.71 | -26.67 |  -26.67
Between Trials -29,89 47,37 -93.28 -17.07
Between Rats -4, 44 -32.26 -5, 03 -7, 01
Interaction L~y =02 -» -
Lik.Lack of FiY{f -263,30 ~214,42 -24€,04 -246,04
Av, Likelikood ~5.26 -4,29 -4, 92 -4 92

*No convergence; log R approaches negative infinity.

Table 5.6 "Analysis of variance" for the data of
Table 5.5 using maximized log RL's.
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9.
Control; Toxicec Emulsion
Block g ; -
1] 2 3% 4; 50 6
I 33 30 8 12 6117
59 ‘,mié“ ..... ' 17:101.8
II 36 23 15' 6L 3
‘mwmmwmmawz3,zoxmkmwzmw&“
Il 195 L2 103 12 I 6
27 1 39 75101 12 3
IV ‘1’ 39} 171 5 5 1
H“”mwgkmggnlzo 261 8 5 1
'h2; R T 21 2
27 22 ¢ 11: 12 6 5
Vi 84 231 27 161 19T 6
50 | 37030 4311 5

Table 5.7 Counts of numbers of leatherjackets surviv-
ing on two one sq. ft. areas in each of 36 one sq. yd. plots
divided into six blocks with two control and four sprayed
plots per block. Bartlett (1936b).

Teble 5.7 using maximized log RL's.

PM Linear Log Sq. Rbot >wPoisson‘_
Normal (4) |Normal (C) |Normal (D) (M)
ioverall Effect| -81.3h4 ~93,00 292,07 | 433,48 |
Between Treat, -71,51 -8L,27 -84,29 ! ~309,71
Between Blocks -16,12 -20,36 ~-18,.92 -20.45
Interaction -36.08 ~b0, 64 -37.27 -61,19
{PM Lack of Fit| -173,48 -138,28 -1h2, bl -142,88
Av Lack of Fit -4, 82 -3.84 -3.96 -3.97
Table 5.8 M“Analysis of variance" for the data of

| Block |

Treatment e
1 2 3 L

S - ” i

None 183 176 291 25h
Superphosphate (P) {356 1300 1301 {271

Potash (K) 22k 258 1244 217

P+ K 3291283 308 {326

Table 5.9 HNumhers of surviving sugar beet plants under

four fertilizer treatments in four blocks.

Cochran (1967)

p. 34k,

Snedecor and
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MM No Interaction (5.6)
. Linear Log Sgq. Root
PM Normal Normal Normal
: (4) . (C) (D)
Overall Effect | -8.79 -8,46 -8,64
Between Blocks -1.15 j -1.23 -1.18
Between Fert. -8.36 ! =-7.98 -8,20
Interaction - .
Lik,Lack of Fit (-76.57 | =77.61}1 =76.99
Av. Likelihood { -4,79 : -L4,B86 -4, 81

TNt (5. 5),
‘Polsson| Polsson:
(M) (1)
-50.00 -77.19
- 3 . 8 ? "Ll' . ? 9
-46,13 { -48,69

-27.19
-86.54 { -59,35
- 5 ° Ll'z - 3 » ? 1

.

PRSIy L 2F LV

Table 5.10 "Analysis of variance' for the data of -
Table 5.9 using maximized log RL's.

Year

1930
1932
1934
1936
1938
1980
1942
1944
1946
1948
1950
1952
1954

1956 i

1958
1960
1962
19€4
1966
1968

USRI

- r——

v

No. Caught x10'3(y) Rainfall (xl) Sunshine (xz)
8496 19.5 217
1242 5.4 219
2532 20.5 175
3928 17.2 ob2
1504 15.7 201
680 11.6 210
1234 26.6 291
2230 6.8 : 153
2040 29.4 ! 233
2800 17.4 210
2800 24,3 . 231
2406 13.8 234
1752 10,7 163
2026 10.1 262
2488 18.5 178
17381 22,2 350}
5152 - 17.8 ‘ 278 !
2031 : 19.8 5 293 i
9706 ! 13.2 f 301 ;

Table 5.11 Numbers of pink salmon caught in British
Columbia fisheries with rainfall and sunshine conditions

on even years over a forty year period. P, Wickett,
Fisheries Research Board, Nanaimo, Canada.
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H ]

’ Log Poiégbn i

PM i
Normal (c) (M) .
) Regression § -8.99  |-20805.00
¢, =0 i -0.14 -59.03
g3 = 0 | -1.16 | -2812.49
3 = 0 i =3.17 ] -2390.09
=0 -0.72 4 =408,06
Lacé of Fit of Reg. }_173_74 -£864, 69
Lik,of PM Lack of Fit . lu;g@ng“gq
Table 5,12 Reqression eanalysis for the data of Table
5.11 using maximized log BL'S. . -

1 -} b 5ﬁ 9
2 L -} 2 6

Table 5,13 A 2x2 contingency table.

T Experimental Babies|  Control Babies |

. Day | Not Crying Total Not Crying Total
1 1 1 3 8
;2 1 1 2 6
: 3 1 1 1 5

pob 0 1 1 6 |
: 5 1 1 L ‘ 5
6 1 1 L 9
7 1 1 5 8
8 ‘1 1 L . 8
9 1 1 3 5
10 0 1 8 i 9
11 1 ; 1 5 i 6
12 . 1 ! 1 8 { 9
i3 1 1 5 J 8
L1 1 1 Ly { 5
115 | 1 1 oo 6
116 | 1 1 7 ; 8
p 17 0 1 b 6
L18 { 1 i 1 ! 5 : 8

Teble 5. 14 Number of babies not crying after a test
periond of either rocking (experimental) or not on eighieen
days. Cox (1966).
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R L R T e

B

Table 5.15

: MM No Interaction (5.6) Interaction (5 5)
i Overall Effect -15.08 -23.23
: Rocking -2.33 -0,00
, Between Days ~13.28 -5.10
{ Interaction : -8.15
| Lack of Fit of MM -8.15 0,00

"Analysis of variance" for the data of

Table 5.14 using the binomial FM (N) and meximized log RL's.

. Replication .
Tre atment LB T AT A A S AT T T T T3 A M N LA 2 : ek L oL VR m-s-\-m-nn-u-r.
[ i1 2 3 ¢ 4 5
Control "178/100 110/100 {12/100 13/100 11/100
Arasan : 2/100 ¢ 6/100 i 7/100 11/100 | 5/100
Spergon i 4/100 {10/100 { 9/100.. 8/100 |10/100
Semesan Jr. ; 3/100 | 5/100} 9/100:10/100 | 6/100
[Fermate { 9/100 i 7/1€0: 5/100: 5/100 | 3/100

Table 5.16 Numbers of soybean seeds falling to emerge
in five replications of five treatments in 25 plots. Snedecor
and Cochran (1967) p. 300.

» Logit Cdads Per Cent | Arcsine
PM i Normal Normal Normal Normal {Binomial
(E). ummw(Flnﬁnwwm_( l<m_mmm$.) qwm‘( 1), .
Overall ~9.85 -8 29.08 1 =9.48 5. 48"
S (-10.49) {(-0. 009) (-9.85) i(-11.13)
[Replications|{ =-3,81 ~3.22 -3.35 -3.68 -3.72
(-5.93) {(-0.003) { (-4.62) | (-5.81)
Treatments -5.92 ~5.25 -5.37 -5.73 ~5.75
(-6.70) [(-0.006) i (-7.01) 1+ (-7.63)
Lack of Fit -7.91 -8,02 ¢ -7,.88 -7.66 ~-7.50
Table 5.17 "Analysis of variance" for the data of

Table 5.16 using no-interaction MM (5.6) and maximized log
RL's fer binomial LF (5.3) with those for normal LF (5.1)
in parentheses.

J P T U Ty

v trorm i 2

! Logit | Odds %Pe; Cent Arcsine. b
l PH Normal | Normal { Normal . Normal B1n0m1a1f
: (E) i (F) i (u) (3) o N), ]
Overall ~-17.76 "1-16,98 ) -16,96 | -17.13  -16.96 !
Replications ! -5,29 | =4, 54 Vooy,3h boon,2h 0 —b,37 |
Treatments ' -7.37 | -6,732 -6,21 | -6.36 -6.72
Interaction { -7,91 . -8,02 -7.E8 =7.66 _=7.50
Table 5.18 "Analysis of variance'" for the data of

Table 5,16 using interaction KM (5.5) and maxiunized lag
RL's for binemial LF (5.3).
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Sal. {Temp. Tank- Number

©/00S | °C N 3 oo
(xl) (xz) Hatch Total {Hateh Total Hatch Total {Hatch Total
15 b 236 666 203 72k 183 6L 212 723
is 8 600 656 697 747 615 76 641 703
15 12 407 566 343 603 365 560 302 394
25 Ly 203 717 177 782 155 852 138 590
25 8 591 621 564 640 714 754 | 532 570
25 12 475 622 L65 6hs 506 608 hisg 532
35 It 1 738 3 655 10 742 3 743
35 8 526 616 bi9 467 410 - 434 374 606
35 {12 272 362 | 352 4v8 | 392 590 | 382 459
10 10 303 681 t 329 710 262 611 301 700
V10 6 277 757 1 234 681 263 647 287 801
40 10 387 450 § 389 553 388 564 i 318 604
4o 6 276 662 247 542 1 248 527 | 1h9 591
20 10 351 391 559 650 527 603 76 548
20 6 | 585 643 t 620 671 | 437 W97 | 667 771
30 10 Lly7 Lo1 462 530 L7s 5hs g9 556
30 10 522 573 615 680 539 581 517 561
30 6 563 666 i 600 704 562 656 615 7275

: Table 5,19 Effects of salinlty and temperature on the
proporticn of eggs of English sole hatohing Alderdice and
Forrester (1968)

RO WFUR

PH

S LIRSS W T oy

Logit

. P TR

v

normal

(E)

I A Al F ek s v a3 A MR bt e

Per Cent Normal

(H)

Regression

Linear

xl linear
X5 linear
Quadratic

X x2 Inter.

MitI&ck of Fit -1414 00
PM Lack of Fit

Overall Effect

X, quadratic
X5 quadratic

l-7433 16
2774, 49

83.87
-2947,22
~4687,92
-2838,86
2963, 75
-269 25

-12,48

Between Tanks

~8847.16(-119.76)

(
(-33.38)
(-1.28)
(-32.98)
(=44,91)
(-23.57)
(-38.k45)
(-12,63)
(-58.21)

| ~8798,68(-11
-61,56) | ~7347.59

Table 5,20

3 aZoar

fhle iD= e £ s e e

(~73.

""5662 38 ("‘ .
58.06
-5673.77 (-
"‘”‘8“’5. 5? ("‘
—19150 ?2 (“'
-364,21
~1.95

9. 43
9
Iy
3
.2
9
i
e 3
L

t
£1 F\»vv?I-F\:H
kn\JOVQ(hU\Oknuro

TP B e gt oy e en ..

Binomiall
(N) g
-8?58 89
(-7931, 69
:=2700, 9%
-3. 06
-2690, 94
61, 06
2438, 41
.-3022, 58
i 317,52
i -827, 20
i 0. OO
i =330, 2L

B e

"Analysis of variance" for the data of

Table 5.19 using linear MM (5.9) and maximized log RL's for

pinomial LF (5.3) with those for normal LF (5.1) in

parentheses,
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Table 5.21

PM Logit Normal Transform Per Cent Binomial

(E) Normal (I) (N)
Overall Effect [-8847,16(-119.76)} ~-8762.57(-122,81) |-8758. 89
Regression -8083.79 (-84.43) ) -8249,97(-101,06) |-8381.18
Linear ~-5029.55 (-61.43) ] -9277.06 (-79.61) [~4371, 96
x1 linear 16,46 (-0,31)] - -36.46 (=-4,94) ] Z-13.49
x82 linear |[-5082.42 (-61.L1)| -B169.53 (-78.85) [-4297, 84
" Quadratic -4115.59 (-57.05){ -5303.45 (-74.00) {-3600.82
x{1 quadratic-3061.11 (-41.98) | -2508.81 (-58.29) |-2623. 97
§§2 quadraticg-2150,39 (-44.51) |-13617.72 (-58.80) {~1898, 3q
x§Ix32 Inter. | -413.22 (-24.041) | -553.45 (-17.11) -366.98
MM™Lack of Fit | -763.37 (-35.33)| =512.60 (-21.75){ -377.71
PM Lack of Fit| -12,48 =1.53 0. 00!
Betweon Tanks _ I -330,21

"Analysis of variance" for the data

of

Table 5.19 using nonlinear MM (2.3) and maximized log RL's
for binomial LF (5 3) with those for normal LF (5.1) in

parentheses,
- wremeg
MM Linear (5 9) ]
1 TRl SR [ R R 28— . f
Logi.t Per Cent Ar051ne§ ;
EM Normal % Normal E Normal i{Binomiall
m | @ (5) |
SN Lack of Fit —1426.48 -1453.03 2919, 45§ ~827.20
PN Lack of Fit, -12,48{ -1.95( 20 PE 0,00
MM Nonlinear'(z.j)
L L AT LV PR IPRE W N RO P e e »T-fans E ‘Pfgfi.é ; rpa - ;
PM Loglit |[Per Cent Cdds Arcsine |
" Normal Normal Normal ‘ Normal :Binomiall
(E) (I) (G) (J) (N)
SM Lack of Fit‘ -775.85 -514 131 =264, 861 -279. 55 -3??.7Q
Ph Lack of Fit =12, 48 —l 53 —1? 613 -5, ?1i 0. 00

Table

s Aot e

“ve e ser s

5. 22 Comnarison of various Siifs and Fli's fitted

to the data of Table 5,19 using maximized log RL's for

binomial LF (5.

3).
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Stratum

Sex-strain%

'
Treated g Control

! With [Total ! With Total

X males

Y males

X females i

Y females :

3
:
-
i
l
3
3

BT Y 5
2 | 16 1.3
v | 18 | 10
11 15 3

1
arfal, QAP et v o e v B
.

N LR L T

79
87
90
82

s rea.

Table 6.1 Counts of mice of four sex-strains with
tumors after 85 weeks either fed Avadey or used as controls.

Gart (1970a).

furer < s

C e e tsiotn s

i

M. No lnteractiont Interaction |
(5.6) i (5.5)
Overall Effect -7.14 § -7.57
Between Sex-strains -3.62 ; -2,98
Treatment -3.48 -2.36
Interaction -0.43 ;
MM Lack of Fit R 0.00 :

e o e

Table 6.2 "Analysis of variance" for the data of
Table 6.1 using the binomial PM (N) and maximized log RL's.
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APPENDIX. III FIGURES

1.0 -+

0.8 -™

R(ai)

OQLI'--

052""'

- [l i l [
1.2 T 1.6 1.8 2.0 e,
Figure 2.1 Maximized RL graph for power parameter
o{ 8M_(2.3) for the data of Table 2,2,

1 }
0.0 170 iz D 1.6 %
2 Maximized RL graph for power paramete o,
T

e 2
3) for the data of Table 2.2.

0.8
Figur
of MM (2.
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0.6 -

R(Y) A
0.k

\ N I { ) -
O.O "Olol"‘ -0'92 O-O 0|.2 O'L" \‘
Figure 2.3 Maximized RL graph for response transforma-
tion Y of PM (2.2) for the data of Table 2.2.
1\

Lo ? /|

1 i } Q
° 5 10 25 30 0 x, C
Figure 2.4 Response surface contours foxr cruising épeed

of goldfish at 20 ft/min intervals for the dat
using linear LM (2.3) with oy = o = Y fpe data of Table 2.2
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1 1 [

° 5 10 20 30
Figure 2.5 BResponse surface contours for crui
speed of goldfish at 20 ft/mi

0 xloc'
sing

intervals for the -data of

Table 2.2 using nonlinear MM (2.3). 40
Log Ly 30 x/*
-1004 ® °u0
20 / Z
3t ' 30
°20
A X—x
B se—a
C o~o0
-300 A
L f 4 ;i 52 —
& 100 150. 200 250 2losAy

2b
Pigure 4,1
in minutes for the three sets of data of Table 4,8.

Graphs to determine optimum interval wildths



xz C
15
10+ T
5+ T
““““ Binomial ——
Normal -
0 + — ! —
0 10 20 30 Lo Xy /008

: Figure 5.1 Response surface contours of 30% and 80%
hatch for the linear MM (5.9) wlith binomial (N) and per
cent normal (H)' Pli's for the data of Table 5,19.

o
xz C
15
10«
5‘4-
Binonlzal ——
Normal -
0 $ 4 3 }
0 10 20 30 40 X1°/ooS

Figure 5.2 HKesponse surface contours of 30% and 80%
hateh for the nonlinear KM (2.3) with binomial (N) and trans-
formed per cent normal (I) Pk's for the data of Table 5.19,



o
x, C
215
10+
5..
Transformed Odds Normal =
Arcsine Normal -
0 4 ] } {
0 10 20 30 40 Xl°/oos

Figure 5.3 Response surface contours of 30% and 80%
hatch for the nonlinear MM (2.3) with transformed odds rormal
(G) and arcsine normal (J) PM's for the data of Table 5.19.

Deviation
e 0.5
» ]
Expected Lt e, T
t t e —i
Value 7 0.3 -_ﬁzp,i ) ,1.0
0"'0.5

Figure 5.4 Deviations from expected values for the
data of Table 5.1 using the linear normal (A) or exponential
(K and L) PH's,



151,

Deviagign
Expected t . i :::. . .
Value _4f5 30,55, 3 e+ 0. 5 1.0
-L_0'5

Figure 5.5 Deviationé from expected values in trans-

formed units for the data of Table 5.1 using the power
transformed normal (B) PN, : ‘

1.071

Expected 0.5
Value

0.0 \ . ' Observed
"70.0 0.5 1.0 1.5 Value
Filgure 5.6 Observed and expected values for the data of

Table 5.1 using the linesr normal (A) or exponential (K and
1) Piits.

1.0--

Expected 0.5
Value

) ! . Observed
0.0 0.5 1.0 1,5 Value

Figure 5.7 Observed and expected values for the data
of Table 5.1 using the transformed normal (B) Pli.

0,C
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° Nonlinear -
L7 Response Surface MM
Changing lNean, —_——
0.8+ . Constant Variance
ol °\\ Changing Mean .-
) and Variance
AN
006-‘ )
\.
R(Y) T N
AN
On“’" .\
LR N
N
0.2"'
0.0+ ok V" o8 1l T 'y

Figure 5.8 lMaximized RL graphs showing the roles of
he Bower transformation Y of the transformed per cent normal
(I) PN for the data of Table 5.19.

1.0
0.8'- ‘
Maximized RL ~——
Conditlonal RL =--
T Approximate RL ****
016".
Rlay )y
O.“""
0'2 ‘T
[+
-3
L ol oo.
o7
00030 2.0 100 0.0 170 4
igure 6,1 "Relative likelihood graphs for parameter oy
of Il (5.7) for the data of Table 5.13.



1c0 T
0.8 T Maximized RL —
Conditional RIL, ~-—-
0.6 +
R(ei)—
O.LI’"
0.2
- 1
0:9, 0.5 0.0 0.5 10 1.5 océ
1gu e 6.2 Relative 1ikelihood Eraphs for parameter G
. of MM (5.6) for the data of .Table 5
1.0°7 \\No Interaction Mk (5.6)
Jf \“o aximized RL ~—
L \« Conditional RL =---
\°¥nteraction MM (5.5)
0.8 1 Maximized RL —*—
* \\uonditional RI, +v->
0.6 T
B(Otl)"
OnLl‘ T
0.2 T
<] pes
o4
> * N
/ . \\
0.9,5 0.2 0.4 08 0.8 1.0

figure 6.3 Relative 1ikelihood graphs for parameter oy
of MM's (5.5) and (5.6) for the data of Table 6,1.
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1 1 1 !

o ' ' ' Maximized RL —

__ — —=-——__ Conditional RL —-—

- 0.1 ~ 1

.1. 75 T -~ ~
1.50 T
1025 T
1|OO ™
1.00 1,25 1.50 1,75 2.00

Figurs 6, 5 Relative 1ikelihood contours for the wer
transformations Gi an o? of the two factors of LM (2. B) for
theodata of Table h Y=1 1in PM (2.2).

hMaximized RL ———
Approximate BL ---

0.6 T

R{p) +

0.2 T

/

0.0 L

[}

l 1 [ =
0.8 1.0 1.2 1.b n
Fig ure % % Relative likelihood graphs for parameter 1
of Poisson LF (5.4) for the data of Table 4.4,
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