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• 2. 

• ABSTRACT 

Often, in the analysis of scientific data, some relation-

ship between observed responses and the response- conditions 

is sought by means of a mathematical model. Random variation 

in the measured response, described by a probability model, 

permits statistical analysis of the data. Then, a given stat 

istical model is considered more plausible than another if 

it makes the observed data more probable, as measured by the: 

likelihood function. 

For various reasons, a natural linear normal statistical 

model has been used traditionally whenever possible. This 

model is extended to nonlinear, transformed response normal 

models for biological response surface methodology, and an 

example from fisheries biology provided. 

The natural linear model is derived for a member of the-. 

exponential family in general, using the binomial probability 

model as a specific example. 

By considering observed responses as discrete measure-

ments, a method of comparison and plausibility of fit of 

probability models is developed using the multinomial model 

as the basis. The proper interval widths are determined by 

a graphical method. A number of numerical examples are pro-

vided. 

A complete analysis of data is described when various 

mathematical and pr'bability models are possible. Numerical 

examples are given for normal, exponential, Poiss3n, and 
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binomial models. The roles played by a power transformation 

of a normal response are determi-2ed by using the relative 

likelihood function. 

In special circumstances, specific inferences about a 

given parameter in a statistical model, in the absence of 

knowledge about any other, may be made using the conditional 

likelihood function. Examples involve the binomial and 

nonlinear normal distributions. 

The exact Fisherian test of significance is described 

and applied to contingency i;able examples. Comparison of the 

assumed and the approximate likelihood functions shows how 

good the approximation is when an asymptotic test is used. 
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9. 
CHAPTER I 

PROBABILITY MODELS, MATHEMATICAL MODELS, 
AND STATISTICAL INFERENCE 

1.Introduction 

The analysis of scientific data usually involves, among 

others, two basic purposes. First, the scientist may desire 

to ascertain if some specific hypothesis, made before the 

data were obtained, is viable. Second, the scientist wishes 

to determine what information the given set of data can 

provide about the unspecified parts of general hypotheses 

made before the data were obtained. Fcr example, the data 

may be assumed to arise from a normal distribution with 

unknown mean. The scientist wishes to determine if his 

specific hypothesis that the mean has Valuepo  is tenable 

and also what information the data provide about the plaus-

ibility of various values of the mean within the general 

hypothesis of normality. 

This brief outline illustrates the difference between 

the two purposes: whereas the first requires an absolute 

judgement of viability, the second only requires a compara-

tive judgement of plausibility. Of course, a sufficiently 

strong judgement of the implausibility of one of the comp-

ared hypotheses will yield a judgement of inviability. But, 

this inviability statement results from some other hypothesis 

than the specified one being much more plausible and not 

from an absolute measure. 

The analysis of scientific data always carries the 
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assumption that it is conceivable to obtain further such 

data. This assumption will be necessary for developing an 

absolute judgement of viability. For a specific hypothesis, 

long run probability statements may be made about possible 

sets of data (and functions of such data, i.e. statistics) 

not yet available, and from these statements, an absolute 

criterion can be developed. Further discussion of this-

purpose in the analysis of scientific data will be left' 

until chapter VII. Until that time, we. shall be concerned 

with developing a comparative measure of plausibility to 

fulfil the second purpose. 

In certain situations, information about the probab-

ility distribution of unknown parameters in the hypothesis 

will be available before the data are obtained. Than, this 

information may be incorporated into the methods in the 

following chapters using Bayes' theorem. Sucn procedures 

will not be discussed in what follows. 

A number of numerical examples will be given to illust-

rate the procedures developed. Except for several examples 

in chapter IV, these are drawn from the biological sciences. 

2.Probability Models 

Many sets of scientific data may be considered to 

consist of either counts of discrete individuals or measure-

ments of continuous variables made on individuals. In either 

case, an observation, yk, will be made on the response var- 
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cable, Y. Because of the finite limits of any measuring 

instrument, the measurements of a continuous response var-

iable will actually be discrete; they may be designated as 

Yk±lAYke 

In order to carry out a statistical analysis of the 

data, one must assume that the response variable is subject 

to some random fluctuation, €k, so that 

Yk = Y 	ek • 	(1.1) 

Then, the observations will have a frequency distribution. 

Any hypothesis must specify one or more. possible probability 

functions which may represent (approximate) the frequency 

distribution. Thesb - hypothesized probability functions will 

be called probability models (PM's). The PM will usually 

contain unknown parameters, A, which must be estimated from 

the data and will be represented by F(DA). When Y is cont-

inuous, 

F(DgD = dF(DDiaZ = f(DZ.MAY. 	(1.2) 

In the following chapters, only PM's from the exponen-

tial family, of the form 
fri-Ly 

F(y;j) = oyLyexpEA(y)B(A)4C(y)+D(A)]dy 

will be considered, where p. is the expected (mean) response, 

= E(Y). For a discrete PM, dy = 1 and the integral sign 

disappears. If B(A) = G, the parameter G is called natural. 

Common PM's belonging to. the exponentia-i family include the 

binomial, Poisson, normal, and exponential distributions. 

Equation (1.3) may be generalized by the addition of para_ 

(1.3) 
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meters not related to the mean. 

3.Mathematical Models 

Often, scientific data consist of observations of 

responses, Yi, measured under a number of different cond-

itions, i, either determined by experimental design (e.g. 

analysis of variance. (ANOVA)) or by nature (e.g. some 

regression problems). In such cases, there will be a 

different PM under each condition. Usually, the probability 

function will be assumed to remain the same for all i, with 

only the parameter values varying with i. This variation in 

parameter values may be described by some mathematical 

function which will be known as the mathematical model (MM). 

Incorporation of the MM into the PM yields a complete 

statistical model (SN). Of course, PM's not incorporating a 

NM varying with i may still be considered as SM's with the 

parameter values set equal to (unknown) constants;  as in 

equation (1.5) below. • 

If the NM is a linear function of the parameters, then 

it is called linear. If, in addition, all of these parameters 

are natural, it is called a natural linear MM. Common 

examples include normal theory linear regression and ANOVA, 

although these are special cases because of the presence of 

a variance parameter (see chapter V, section 2). 

For a given PM, the least informative (about the 

relationship between conditions and response) MM occurs when 
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a different parameter (vector) exists for each condition, i, 

for example 

B(pi) = 9i  . 	(1.4) 

If the various conditions do not actually affect the response, 

the MM will be of the form 

B(Ai) = 9 . 	(1.5) 

Usually, desirable NM's lie between these extremes and are 

derived by using information about the response conditions. 

Again, examples include the regression and ANOVA models to 

explain variation in the mean of the response. In succeeding 

chapters, various NM's involving the mean will be considered. 

Natural linear SN's from the exponential family are 

usually statistically most useful because of the existence 

of sufficient statistics for all of the parameters. But, 

often theoretical aspects of the scientific problem will 

point to some other form of MN, as especially considered in 

chapter II. Elsewhere, nE..tural linear. SM's will be used if 

possible. 

After the specification of all parameter values in a SM, 

the. probability of observing - ny given set of data may be 

calculated exactly. A SM with all parameter values specified 

will be called a simple statistical model (SSM). Then, any 

SM is made up of a set of possible SSM's, labelled by the 

unknown parameter values. If various STD's are considered 

possible before the data are obtained, these form a still 

larger set of SSM's. 



4-. Lit 	Inference 

The preceding two sections have outlined what is to be 

assumed before the data is obtained: some combinations of 

mathematical models with probability models to form statist-

ical models. No Prior probabilities are assumed for either 

various models or various parameter values. 

, We wish to determine which SSM's are plausible in light 

of the data. For each hypothesized SSM of the set, the prob-

ability of observing the given data is calculated. Then,• 

the criterion of plausibility for making comparative stat-

istical inferences, as described in the first section of 

this chapter, is to consider more plausible that SSM which 

makes the observed data more probable. 

Consideration of the set of SSM's in this way, with the 

observed data given and fixed, yields a likelihood function 

(LF, of possible SM's and parameters) for the data, 

L(Zs,s;z) 	Fs(z; s), 	(1.6) 

where Fs  specifies the SM, and 	the (vector of) parameter(s) 

within model s. 

Use of the likelihood function for making statistical 

inferences, as originally proposed by Fisher. has been 

recommended by a number of authors; Fisher (1958, 1959), 

Barnard, Jenkens, and Winsten (1962), Birnbaum (1962), 

Anscombe (1961), Feigl end Zelen (1965), Sprott and Kalb-

fleisch (1969) and others. The procedures are: well known, 

at least when only one SM is available and only the 
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parameter values are unknown. For a simple explanation in 

this' case, see Lindsey (1970). 

In making inferences using the likelihood function, 

all statements about SSM's are relative. We do not' say that 

a SSM, SM, NM, or PM is implausible unless another corres-

ponding model is much more plausible. This is especially 

relevant to the procedures developed in chapter IV for 

discrimination among PM's. Hence. the relative likelihood 

(AL) function, 

R(Zses) = 1,(41s;Z)/L( s.A;h10., 	.(1.7) 

may always be used for making inferences, where s denotes 

the most plausible" SIFT and 2 , the most plausible parameter 
values within this SM, 
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. 	CHAPTER. II 

MODIFICATION OF THE NATURAL LINEAR NORMAL MODEL 

1.Introduction 

For many statistical problems arising from scientific 

data, as Outlined in the first chapter, some form of natural 

linear MN combined with the normal- PM is entirely satis-

factory for obtaining the desired information from the data. 

Hence, normal theory regression analysis and ANOVA have 

been *developed as prime tools for the practising statist-,-

ician. Natural linear normal theory models have a number of 

desirable features which enhance their 'use:.(i) robustness 

to departures from the assumption of a normal PM; (ii) 

linear likelihood equations which may easily be solved to 

yield explicit maximum likelihood estimates (MLE's) of the 

unknown parameters; (iii)sufficient statistics so that the 

NLE's contain all of the information in the data about the 

parameters. The second feature means that these models may 

easily be used without the need for powerful computing 

equipment to make the necessary calculations. With this form 

of SM, exact long run probability statements may easily be 

made about data not yet observed, no matter how much data 

is already available (see charter VII) since the required 

distributions are well tabulated. 

But, even given these considerations, the natural 

linear normal theory SM may often be unsatisfactory, either 

due to theoretical scientific reasons or to implausibility. 

TWo distinct methods may be used to improve on the natural 
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linear normal SM. The parameters of the PM may vary in a 

nonlinear manner as the responses change under different 

conditions making abandonment of the natural linear MM 

necessary. Or, the observed responses may not follow a 

normal PM. 

Introduction of a nonlinear MM entails loss of the 

second and third features above. More powerful computing 

equipment is usually necessary to solve the nonlinear like-

lihood equations. Exact long run probability statements may 

no. longer easily be made. But, often nonlinearity is at the 

root of a theoretical discrepancy. 

Two approacheS may be used if the responses do not 

appear to follow a normal PM, The normality assumption may 

be abandoned or'some transformation of the observed response 

which agrees satisfactorily with the normal PM may be used. 

The first alternative will be considered in succeeding. 

chapters. Traditionally, in adopting the second alternative, 

1- some completely specified transformation, such as sin-1J 

for binomial type data, is derived from theoretical statist- 

ical considerations. More recently, transformations involving 

unknown parameters have been introduced, as described by 

Box and Cox (1964). These will be used throughout this 

chapter. Transformation of the response is occasionally 

used to solve the statistical problems inherent in a non- 

linear MM, as when a logarithmic transformation is applied 

to the response in a regression problem, while retaining a 
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linear regression MM, instead of introducing the nonlinear 

exponential MM. 

As a specific example of the procedures used when 

departures from a natural linear normal SM are important; 

the analysis of response surfaces will be considered. Box 

and Wilson (1951) originally introduced response surface 

methodology, using a second degree polynomial regression 

MM, as a procedure for determining the combination of levels 

of various factors which produce the optimum response. 

Efficient methods have been developed for determining this 

optimum (e.g. the method of steepest ascent) from experi-

mental results, as-  well as for devising efficient experi-

mental designs to gain maximum information from a given 

number of points in the factor space (e.g. composite and 

rotatable designs). When important deviations from the 

polynomial NM occur, Box and Tidwell (1962) have suggested 

power transformations of the factor variables. This not 

only increases the efficiency of determination of the opt-

imum response, but also provides a more accurate picture of 

the shape of the response surface as a whole..For departures 

from a normal PM, Box and Cox (1964) proposed a procedure 

for estimating transformation parameters applied to the 

response variable; see also Dolby (1963) and Draper and 

Hunter (1969).. 

With the introetuction of these two types of nonlinear 

parameters, both the PM and the MN may be considered non- 
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linear. Thus, any exact long run probability statements, 

either about statistics derived from the data (e.g. sign-

ificance le'els and the probability statements upon which 

confidence intervals are based) or about the parameters 

(e.g. fiducial intervals), are'difficult or impossible to 

calculate, unless sufficient data are available for asymp-

totic propei-ties to hold. As stated in chapter I, we are 

interested in what information is available from the 

observed data withott using asymptotic long run statements. 

A number of procedures in the analysis of response 

surfaces, besides the estimation problems, are developed 

extensively here, -since they will be of use in analyzing 

data which may he considered to arise from a nonnormal Pii. 

The use of response surface methodology is discussed in 

relation to the biological field of ecology. 

2.The Role of Biological Response Surface Methodology 

Response surface techniques may be used to describe 

many biological phenomena (e.g. survival, growth rate, 

oxygen consumption) within a range of levels of various 

environmental variables (factors). For limited changes in 

the environmental variables (i.e. within a limited region 

of the factor space), quadratic systems, such as equation 

(2.3) below with 0:4j  = a- = l'(all j, k), are often adequate 

for approximating the relationship between a response and 

levels of several of the factors. In this region, a local 
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maximum may be reached and the quadratic relationship will 

approximate this. However, a large portion of the variation 

due to the treatments (levels of the environmental variables) 

is often unexplained after fitting the quadratic surface. 

This is associated with departures of the true biological 

response from that expressed by the quadratic approximation. 

Usually, the required higher order effects are difficult to 

determine because of the greatly increased cost and diffi-

culty of a more complex biological experiment. The use of 

such transformed response surfaces, with the addition of 

one parameter for each factor variable (forming a nonlinear 

MM), provides much- greater flexibility for more adequate 

representation of the actual surface than does the quadratic 

expressions 

Often, biological response data, as gathered, does not 

follow a normal PM very well. In most cases, this may be 

corrected by the introduction of some transformation of the 

response variable. Here, the power transformation of Box 

and Cox (1964), with one estimable parameter, is used to 

fulfil better the assumptions of normality and constant 

variance of the SM. Draper and Hunter (1969) demonstrate 

that the MLE of 'this transformation serves as a type of 

average in performing these two functions (see also chapter 

V, section 10). In addition to the improved PM which this 

yields, the response transformation also provides the same 

benefits as does use .of the nonlinear MM, in that the shape 
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of the response surface becomes more flexible. 

The use of such transformations, both of the response: 

and of the environmental variables, may also indicate alter-

nate units of measurement, which may be employed to simplify 

(linearize), as well as to make more biologically meaningful, 

the relationship. For example, if the transformation of a 

response of time to death is estimated as an inverse power 

(Y = -1 in equation (2.1) below), a more meaningful unit of 

measurement would appear to be death rate. In this case, the 

scientist is concerned with readily interpretable transform-

ations which still allow the SM to'explain the observed 

response well and which may provide a simpler model (if 

possible, linear in the transformed variables) for further 

theoretical and experimental work. 

In summary, transformations can (i) provide useful 

insight as to different units of measurement for variables 

to be used with a linear SM; (ii) provide a more accurate 

(than the original linear SM) representation of the relation-

ship under study by means of a nonlinear model, and perhaps 

lead to a refinement of the model; (iii) allow the response 

to fulfil more closely the probability assumptions (PM). 

3.Notation 

The general SM to be considered is of the form 

yi = 	+ ci  , 	(2.1 ) 

where the PM is 



N [B ( xi 	r21 
	

(2.2) 

and the MM is 
m cc  m 111 

	

XCC.17..71Xk 	1 B (xi  , A) = 0+ ji% jxi jc%; 	j1;7Ejk__i rik 	_ (1 =_ O OOO O  n). (2.3) 

From these equations,. the LF, maximized with respect to the 

variance, a2, is 

L  (cc t a,y;z)  = 	ErYi (24  z.)  2 ) -n/2ynitri yi 1241 	(2.4) 
where Yr1i1 yY-1  is the Jacobian of the transformation of the = 

response variable. In the more general form, the normal LF 

maximized with respect to the variance is 

L(6y;z) = /4.-ny114-1h,, Ji 

where. S2  = ii1(3-Bi51(g3)2/n. 

(2.5) 

4.Analysis of the Response Surface 

4.1 Estimation of Parameters 

With a nonlinear SM, the normal equations are nonlinear 

in the parameters and some iterative procedure such as 

Newton's method must be used to determine the solutions. 

Various methods have been devised which are efficient with 

certain models and/or certain data (see Draper and Smith 

(1966) for some of the more important cases). A three-step 

linearization procedure which has been found satisfactory 

for the above SM is described below. As suggested by Box 

and Cox (1964), a linear transformation of the response 

variable simplifies the LF by eliminating the Jacobian of 
n 

equation (2.4). Let the geometric mean, Ay-if", for the 

response variables, be denoted by y. Then, apply the trans- 
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Y 
Y -> Y

Y 
 Y

-1 	• 
kV-1  

The Jacobian of the complete transformation is equal to 

unity and the new variable is continuous-at Y= 0. This 

linear transformation of y does not affect the IbILE of Y. 

A:similar linear transformation may be applied to xj  

x 4 xCII(34 xC9-1 

for continuity at the origin. The family of transformations 

then becomes 

Y'- 

x 4 xc4--1 = x(41) 	i(X 
Cc- 

Denote these transformations, which will be used in this 

form only for the estimation procedures of this section, 

by  y(Y)  and x(ct). 

Initial estimates, co  and Yo, of unity have proven 
adequate using the estimation procedure here described. 

The three step procedure is as follows: 

Step I: After substituting the initial estimates of the 

power parameters into equation (2.3), the MLE's of the 

are calculated (i.e. linear least sauares estimates). These 

estimates are conditional on the power parameters being set 

at the initial estimates. 

Step II: Equation (2.3) is linearized with respect 'co 

the power parameters of the factor space (see Draper and 

Smith (1966) pp. 267-273). This-is equivalent to taking 
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terms up to first order in the Taylor series expansion of 

B(x1,6,(0 about the initial estimates, 0c o. The resulting 

equation is 

r ) yi = B(zi,E,50)+JT1(Ccji -iMio)Bc5j(2ci,a,S0) 

=@ (Cr oc 	.5,-((xj0).,,(cci-0) 
o 	 1 ixii 	j1 kj jk-ij 

+ 	C? x(ctio)+23 .(2°Iioc 	T(ctio),(cEico)i 
j=1 _ j  i j 	ji ij 	k>j jk-ij 	-ik 

*(91-ajo )log xij  . 

(mj0 ) 	(20,90 : 8 x(90)x(ako)]log  x  do not Now E jxij  +21(3iix 	4? 
ij k>j‘jk ij 	lk 	ij  

contain the unknown parameters, 0)1, of this step, and thus 

may be considered as new independent variables. Then, MLE's 

may be calculated for the new parameters, (Ce i  J,-CC.Jo), using 

only lineal  likelihood equations. Throughout step TI, the 

valves of from step I are used. 

Step III: The MM now stands as 

v(Y°)+ 	37(acil)+ 1)t 	C3'l 1.1 	x(atil)x(ixicl) 	(2.6) - To j=1 j-ij 	j= k=j jk-ij 	-ik 

where3 is obtained from step I and al  from step II. Note 

that in equation (2.6), 	is not the PALE when oc = ctl  but' 

when Cc = go. Since much of the computation time in this 

procedure involves calculating cross product matrices, use 

of the same CC in this step as in step I has been found to 

be more efficient than recalculating 4 for the new a/  after 

step II. This usually causes a few more iterations to be 

required for convergence, but the total number of actual 

calculations, and therefore the computing time, is reduced. 
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At this stage, the right hand side of equation (2.4) 

can be considered as a new dependent variable and y(Y) 

linearized as in step II for the MM. This yields the 

relationship 

B(xi,a,cc) =  yi  —1  +C(1.-Y0) yiolog yi-  4.0-1  -(4'0 -1) log 	. 
)(0k)(0-1 	yokY0-1 yokYo-1  

The parameter (Y1- Y°)is estimated by simple linear regres-

sion yielding a new estimate of Y. 

The three steps are repeated, using the values of aand 

Yfrom steps II and III as new initial estimates in step I, 

until some convergence criterion is met'. In most examples' 

analyzed, using two and three factor NM's (m.= 2 or 3 in 

equation (2.3)), convergence to three or more digits occurred 

within ten iterations. Exceptions involve SN's where the RL 

function graphs of the parameters are very flat, hence 

pointing to no definite power parameter values. In these 

cases, values near the MLE's usually result after ten itera-

tions. 

This method of calculating the MLEis.is also used for 

estimating the parameters for the maximized RL function by 

placing a restraint on the iteration technique so that one 

of the parameters remains at a fixed value. The estimates so 

obtained are then substituted into the RL function. 

4.2 Adequacy of the Statistical Model 

Since no alternatives to the FM of equation (2.2) are 

considered, adequacy will only be discussed within the 

framework of this PM. This implies that the PM with a 
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transformed normal response estimated from the data will be 

considered adequate. When more than one value of the response 

variable is observed under at least some of the environmental 

conditions, MM (1.4) may be used, i.e. a different mean for 

each condition. Then, the pure error sum of squares (SS) of 

Table 2.1 is a measure of experimental error and may be used 

in the estimation of the variance in the normal LF (2.5), 

providing the basis for all comparisons, i.e. this LF 

becomes the denominator of equation (1.7). The'plausibility 

(adequacy) of the response surface KM is then determined by 

comparing the LF (2.4) with this. This is the RL for lack 

of fit in Table 2.1. Both LF's of the RL are maximized over 

all parameters, including y and a2. 

If only one observation is made at each point in the 

factor space, the pure error SS is not calculable since 

MLE's of y and a2  cannot be obtained using this MM. Then, 

LF (2.4) must be used as the basis of all comparison, i.e. 

the response surface MM must be assumed adequate for all 

further comparisons. Some other more ad hoc procedures may 

be used to check the validity of this assumption. Measure-

ment of the response at nearly adjacent factor points will 

yield an approximate estimate of the required variance. The 

linear polynomial response NM (equation (2.3) with I = 1 = 

a)) can be considered a second order approximation to the 

Taylor series expansion of some unknown function. Box.(1954) 

has emphasized that the experimental design should allow 
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estimation of some higher order effects to give an indication 

of adequacy of the approximation. This also applies when the 

transformations are considered as changes of units of 

measurement. Box and Hunter (1965) have suggested that an 

indication of desired changes in the MM may be discovered by 

making several runs of an experiment using different points 

in the factor space.at each run. The NLE's of the parameters 

in the model are given by 	which is calculated from the 

combined observations for all runs. In addition, 21  may be 

calculated from each run i and the RL for 2, versus each 2 

used to discover if any significant relationship of the run 

estimates of to the location of the observation points 

exists. If so, appropriate modifications will need to be 

made to the SM. The relationship of expected Co observed 

responses (e.g. plots of residuals) also provide a useful 

indication of possible inadequacy, especially of the PM. 

4.3 Inferences about the Parameters 

Often, the statistician is concerned only with two 

values for each parameter in making inferences about a SM: 

the NLE (or unbiased minimum variance, etc.) and the point 

estimate where the parameter disappears from the SM, e.g. 

= 0 or 	= 1 in equation (2.3). In the present case for 

a linear KM, this is exemplified by use of the ANOVA table 

which contains significance tests of the hypotheses that 

various parameters and combinations of parameters are zero.  

Thus, the two values are that providing the most plausible 
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SN given the data, and that simplifying the SM. by elimina-

tion of the parameter(s) in question. This is an important 

first step which will be considered further; nevertheless, 

to understand the Sri more completely, the effect of variation 

of the parameter values on the model should be considered 

through use of the LF, by means of contour plots of the RL 

function and of the RL function maximized with respect to 

all parameters except that of interest. Consideration of 

various parameter values besides the two indicated above 

may show that some theoretically more satisfactory value 

is plausible. 

In the case of the nonlinear SN, standard F tests are 

no longer valid in the ANOVA table, since probabilities 

for the ratios of SSTs cannot be obtained from existing 

tables. The column of F values in the ANOVA table may be 

replaced by a column of maximized RL's of the various 

parameters and combinations of parameters being zero. Such 

ANOVA tables for linear SM's are useful in familiarizing 

oneself with the properties of the equivalent tables in 

the nonlinear case. The construction of such a table for a 

replicated experiment is shown in Table 2.1. Without repli-

cations, the residual SS cannot be split into lack of fit 

and pure error SS'8. Note the relationship, R = (SSA/SSB) -N/2 

= (1+kF)-N/2, using equation (2.4), where F is the F ratio 

for A and B, and k is the ratio of degrees of freedom. 

The use of orthogonal polynomials provides maximum 
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independence in making inferences about various elements of 

The method of Robson (1959) for calculating the polyno-

mials when the spacing between levels of a factor, xT, are 

unequal, has been used. For the linear MM, this procedure is 

equivalent to the method mentioned by Box in Davies (1956, 

p. 519) for orthogonalizing the quadratic term in the NM. 

If the maximized RL of some coefficient parameter being 

zero or of some power parameter being unity is high, this 

indicates that elimination of that parameter from the SM is 

possible without affecting the adequacy of the model, for 

values of the other parameters near their MLE's (anywhere-, 

if the parameters can be estimated independently). If 

elimination of a parameter is implausible, a plot of the 

maximized AL function will show the plausibility of various 

other values, and may point to a plausible interpretable 

point in the parameter space. 

If the experimenter is primarily interested in determin-

ing the optimum response conditions, a RL function may be 

used to give an idea of the precision. of the estimates of 

the factor coordinates of the centre; see Box and Hunter 

(1954).. If equation (2.3) is differentiated with respect 

to the various factors, a system of linear equations in the 

transformed coordinates is obtained: 

=+21 xcei+ 	c3 xak = 0 j 	JJ s k j jk sk • 

axi  

These constraint equations can be substituted directly into 



30. 

equation (2.3) eliminating the 	yielding 

m 
"i = (lo+fil INAk(xnxik-xijxsk-xsixik' 

cxk 	cc 	ak cqc • 

Since xs = (xs11 ""xsm)  
is the MLE of the centre of the 

surface, the RL of various possible centre points may be 

calculated using this equation as a MM, and maximizing 

over the remaining parameters. 

4.4 Plotting the Surface 

Plotting the response surface can play a valuable role 

in interpreting the inferential results, especially if plots 

are made for various plausible SSN's, i.e. for various 

plausible sets of parametric values. 

With a linear, response surface model, both canonical 

analysis of the MM and plotting of the contours are extremely 

important in understanding the surface. With nonlinear MM's, 

canonical analysis yields little information about the 

shape of the surface but does provide a simple technique 

for calculating points to plot on the surface. This is one 

important reason for choosing a MM of the form (2.3). The 

following is a simple procedure.for determining the centre 

of the fitted surface. 

Let B = ( jidjk) be the matrix of coefficients in MM 

(2.3), where jl,  = 1 if j = k and i if j 	k; let C = (i@j) 

be the vector of 0.5 times the coefficients and let X = 

(41) he the vector of the centre point. The vector of the 

centre coordinates is found by solving the set of simultan-

eous linear equations 
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BX = C 	 (2.7) 

and the response centre by 

yv  = p0  +xlc . s  
Canonical analysis of the surface uses the eigenvalues 

and eigenvectors of the matrix of coefficients, B, which will 

be denoted by A' = (21,...,Am)  and by vl = (vii,...Ormi) (i = 

1,...,m) respectively. Canonical variables arc derived: 
m 

z 	- .5: (xQl.i..x.i)v ik - 	 1 ij sj kJ I 

m l' 	Y _ li- i, 
Yi-Ys - gr---71 AJzi 

2 
J • 	(2.8) 

Equation .(2.3) is a conical equation if the units of the 

coordinates are considered to be 41 and of the response to 

be 4. Equation (2.8) then shows the conical shape of the 

surface in terms of these transformed units. When the sur-

face is considered in terms of the original units, xis, it 

is,.of course, nonlinear and not conical. 

If all of the 9ii  have the same sign, some optimum 

(maximum or minimum) has been reached.  in terms of both the 

xi and the xij  factor spaces. If the eigenvalues are of 

differing signs, various nonlinear surfaces are possible. 

Since an (m+1) dimensional space is involved in the 

study of a response surface, difficulties arise in viewing 

The point xi  in the factor space is transformed to the point 

A z 	= (z11,  " ''zim) in the canonical space, which has its 

origin at the centre of the surface and its axes along the 

principal axes of the conical equation in the transformed 

variables, xis. The canonical equation of the surface is j 
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the entire space when m >.2. When m = 2, contours of 

various levels of the response may be plotted on coordinates 

of the two factors. In higher dimensional spaces, slices 

may be taken. on hyperplanes to obtain a surface suitable 

for plotting in two dimensions. For example, with m = 3, 

the plane, xi  = k1, might be considered. and contours of y 

plotted on the x2x3 coordinates along this plane. Thus, all 

plotting of surfaces can be considered in terms of the two 

factor response surface. The method outlined below provides 

the calculations for forty points (x 1  ,x ) on each response,  i2 

contour, y = yk, but the number of points may -easily be 

altered; see Lindsey (1968).. 

When the constraints of the hyperplane are substituted 

into equation (2.3), two eigenvalues, XI, 	for the matrix 

of coefficients may be obtained. Let 

u1,1 = D kif-ynn'1ilcos[(1-1)1V20] 	(.1 = 1,...,11) (2.9) s  

if the eigenvalues have the same sign, and 
, 

ulti  = 41+17.(4,-y1-)/AfP-xlcos[(1-1)11/20] (1=1,...,11)(2.10) 

if they are of opposite sign, where x11  is a limit on the 

size of the x1 factor. Also 

(i 	= 	1,...,11). 	(2.11) u2,1 = [(YYk-Y$-2,4u 
	

)/A' s 	1,1 	2l 

Then, 

u1,1 = u1,42-1 = -u1,22-1 = -111,20+i 	(1  = 1,...,11) 	(2.12) 

and 

u2,i = -u2,42-1 = u2,20+1 = u2,22-1 	(i = 1 	11). 	(2.13) 

The points are given by 
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xil
1  

= 	i+xsi 	(i = 	. 	(2.1).0 

	

xcr2 	vs u +vi u +x°c2  

	

i2 	12 1,i 22 2,1 s2 
Throughout equations (2.9).to .(2.14), xil  and xi2  signify the 

first and second remaining variable factors after the 

constraints of the slice are applied to equation (2.3). If 

equation (2.9) is used, only response conditions below the 

maximum (conversely,. above the minimum) will be calculated, 

whereas with equation (2.10) contours both above and below 

are used. 

5.An Example 

Fry and Hart (1948) performed experiments on the effects 

of acclimation (x1) and experimental (x2) temperature exper-

ience on the swimming speed of goldfish (Carassius auratus), 

Cruising speed of a fish is defined as the speed (in ft./ 

min.) at which the fish can swim steadily for a considerable 

period of time, although fatigue will begin after some hours. 

A test fish was thermally adapted to water at the acclima-

tion temperature before being transferred directly to a 

rotating chamber containing water at the experimental temp-

erature where determination of speed was made. 

Unfortunately, although three different fish were used 

for each response determination, Fry and Hart only give 

average results for each set of three fish, as reproduced 

in Table 2.2. Individual response curves plotted by Fry and 

Hart for the various acclimation temperatures show that the 
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response surface does not have a conical shape; hence, use 

of nonlinear parameters should result in improved fit. 

Although not performed specifically for response 

surface analysis, the experiment lends itself well to such 

analysis. With no hypothetical MM available, that of equation 

(2.3) provides a useful basis for the analysis. No special 

PM seems theoretically justifiable, so that some form of 

transformed normal PM may prove satisfactory. 

Since only one (average) measurement is available at 

each response condition, the pure error SS cannot be calcu-

lated and the plausibility of the response surface MM (2.3) 

cannot be determined. Hence, lack of fit and pure error are 

omitted from the ANOVA Tables 2.3 and 2.'I. Note that the 

residual SS has only 13 degrees of freedom in Table 2.4, 

three being used in estimation of the power parameters. 

MLE's of the power parameters are calculated to be 

Y = 0.1080, Gi = 1.6344, and Cr.2  = 1.2939, yielding a non-

linear MM 

y0.11 = 1.48-6x10-5x1'63+5x10-34.29_5x10-6x.26 1 
-1x10 -5 x2 

2.58+3x10- '1
1 5,.63 x2.29 

. 

From the graphs in Figures 2.1, 2.2, and 2.3 of the RL 

functions of the power parameters, the maximized RL's of 

the powers being unity are R(a1=1) = 0.0004, R(a2=1) = 0.05, 

and R(Y=1) = 0.008. The maximized RL of the linear SM (i.e. 

all power parameters unity) as opposed to the nonlinear 

model is 9x10-6, indicating that the simplified linear SM 
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is not plausible. From Figure 2.3, the maximized RL of Y = 

0.0, or a logarithmic transformation of the response is high 

(R(y.o.o)--1,1.o). Comparison of the graphs of Figures 2.1, 

2.2, and 2.3 indicates that a
i 

and cc2  are estimated from the 

data more precisely than Y. 

The plausibilities of eliminating coefficient parameters 

are listed in the ANOVA Tables 2.3 and 2.4. Only the para-

meter (31 in the linear NM 

y = 21.84+0.97x
1
+4,49x2-0.18x1-0.214 +0.28x1x2 ' 

with R(31=0.0) = 0.24, could plausibly be eliminated, but 

this is not of interest since the linear MM has been shown 

to be implausible.. Note that none of the coefficient para-

meters is estimated independently in either MM, although 

orthogonal polynomtals have been used. 

The response centre or point of optimum response 

(maximum cruising speed) is given as xs  = (26.2°C, 27.5°C) 

with ys  = 99.9 ft./min. for the nonlinear SM as compared 

with x = (22.8°C, 26.6°C) with ys = 92.6 ft./min. for the 

linear SM. The shapes of the linear and nonlinear surfaces 

may be compared by means of the contour plots of Figures 2.4 

and 2.5. RL function graphs of the centre coordinates are 

omitted here (as are those of the coefficient parameters) 

but intervals with maximized RL greater than 0.1 are (25,27) 

for x1  and (26,29) for x2  for the nonlinear NM. 

The nonlinear SM resulting from the analysis appears 

to provide a good predictive model for the response surface, 
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although little of theoretical biological interest seems to 

have resulted. Measurement of the response, the cruising 

speed of the goldfish with logarithms or, equivalently, 

use of the log normal PM may require further analysis. 
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CHAPTER III 

NATURAL LINEAR STATISTICAL MODELS FROM 
THE EXPONENTIAL FAMILY 

1.Introduction 

As mentioned in chapter I, the normal PM is the most 

frequently used member of the exponential family; both normal 

theory linear regression and ANOVA use natural linear NM's. 

Extension to other members of the exponential family is 

usually straight forward. A number of concrete examples 

will be provided in chapter V, including analyses of numer-

ical data. 

In this chapter, for illustrative purposes, some natural 

linear MM's for discrete members of the exponential family 

will be considered, with detailed development for the bino-

mial PM. The discrete exponential PM's are members of the 

power series distribution (PSD), examples of which include 

the binomial, Poisson, and logarthmic PM's. 

The PSD is defined on the set of nom-negative integers, 
as 

T. With parameter $ and series function g(0) = y  a(Y)", 

the PSD is defined by the probability function 

F(Y) = a(Y)$Y  , 	Y e T, 0 E 	= (0:0<0<r) 	(3.1) 
g(0) 

where r is the radius of convergence of the power series of 

g($). By comparison with equation (1.3), A(Y) = Y, BEA(S).] = 

log 0, C(Y) = log a(Y), and D51(0)] = -log g(0). Then, the 

natural parameter is 0 = log S. 

In the following development of natural linear MM's 

for the PSD, alteration of the probability function when 



38. 

simplified NM's are introduced is discussed, Although not 

necessary for the LF's so far considered, this alteration 

will be needed for making more sensitive inferences about 

individual parameters in a plausible SM. in chapter VI using 

conditional probability functions and also for making tests 

of significance in chapter VII. 

2.The Natural Linear Mathematical. Model 

When the discrete variable Y is observed under a 

number of different conditions i, the general SM will be 

F(x;D pr244141 
(3.2) 

Reduction in the number of parameters results when some 

(hopefully) theoretically justifiable MM dependent on the 

conditions of observation is introduced. With members of 

the exponential family, use of a natural linear MM insures 

that sufficient statistics will exist for all of the para-

meters. In equation (3.2), each observed yi  is individually 

sufficient for the corresponding parameter, 01. For a given 

PM of the PSD family, the LF derived from equation (3.2) 

forms the basis for plausibility comparisons in the presence 

of natural linear NM's. 

The simplest SM to which equation (3.2) may be reduced 

is 

Yi 	/El i f F(Y;ro) = 	= p 	ai(Y1)  , 
i=1 

gi($) 
 • 1=1 

gi($)  

(3.3) 
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where the response conditions have no effect upon the observ-

ed response. In this case, t =Eyi  is the sufficient stat-

istic for the new parameter A = log 0. However, note that 
yi a 	t 
	rZ Tfai(Yi) 	(3.4) 

i=1 
gik" t i=1gi‘P/ 

f.11 

since various vectors will yield the same t. 

In the same way, the analogue of any nomal theory 

natural linear SN, such as linear regression or ANOVA; may 

be derived. When the natural linear MN chosen has fewer 

parameters, and hence fewer sufficient statistics, than 

response conditions, an adjustment must always be made to 

the probability function. This is equivalent to integration 

of a continuous probability function using a Jacobian. 

Suppose t' = (ti,...,ts) (s < n, the number of response 

conditions) are sufficient statistics for the parameters of 

a natural linear MM. Then, the factor TTai(yi) becomes' 

a'(t) = 	1= f1.1  ai 	' 

	

(y ) 	(3.5) 

where the summation, f, is restricted by the s restraints 

defining t. For example, using the SM (j.3) with a binomial 

PM, 

 

= L.. 
( 

'-' 7  Ni 1 Nn 
i 	n-1 

k i 1=1 k tt- 	.., k 
L 	i % i=.t. i 

 

a' (t) = 	.Ni 

  

  

so that 

F() = TT 
(q

i 
 ) 
$,i(11-0i)

-N v.Z 	T 	i 
i=1 	-i- Yi  

becomes 	n \ 

	

Ni i , 	-I 
F(t;95) = 1=1' pe(11-$) Ni t • 
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ANOVA with a PSD may be exemplified by the analysis of 

a two-way randomized block design with one observation per 

block. Even with only one observation per block, the inter-

action effect may be included in the MN since the variance 

need not be estimated, as it usually must with a normal PM. 

Then, the natural linear MM may be 

log Oij  = Gij  = g + 01 + 	+ Yij 	(3.6) 

with T.  01 = 	@j  = '`elj  = Yij  = 0,where i and j label the 

two-way system. Thus, effects are measured on. a logarthmic 

scale. This MM is equivalent to that incorporated in SM 

(3.2), since each has the same number of parameters. 

Examples from. PSD's might include: (i) if the observa-

tions, y
ij

, are the numbers of tags returned in a year from 

a given species of fish, equal numbers of tagged fish being 

released of a number of ages, J, at a number of locations, 

I, the previous year, the PSD being assumed a Poisson PM; 

(ii) if the observations are numbers of eggs hatching under 

various levels of two environmental factors experimentally 

maintained, with N1  eggs held at each combination of levels, 

the PSD being assumed a binomial PM. 

Linear regression for a PSD is similarly developed, the 

MM being 

log $1.  = Gi  = pjxii  . 	(3.7) 

This MN is substituted into PM (3.2) to form the correspond-

ing natural linear SM. 

As mentioned previously, such data as are suitable for 



analysis using these PSD SM's have traditionally been treated 

by some approximating normal theory SM_such as that discussed 

in chapter II. 

3.Binomial Statistical Models 

Although the Poisson PM is probably the simplest PSD to 

consider, the binomial PM perhaps yields some more familiar 

results, especially related to contingency tables and logit 

analysis. Rasch (1961), Gart (1969, 1970a, 1970b), and Cox 

(1966, 1970) use some of the NM's outlined below. The famil-

iar form of the binomial PM is 

F(DP) = 	(Ni)Pii(1-PONI Yi 
i=1kY 

In the form of a PSD, this becomes 

F(Y;p = 
i=1kYi  

with ai(Yi) = 	and gi(gi) = (1+00Ni so that Ai  = 

log( Pi_  ), the logit transformation. Natural lineer NM's 
17:1 . 

follow from this logit form. 

An IxJ randomized block design with I = 2 corresponds 

to J 2x2 contingency tables. Interaction effects are not 

usually considered in analysis of such tables so that an.  

appropriate natural linear MM is 

0 	= log(  Pil 	= 	01 
11-pig  i 

( 3. 9 ) 

with 7? = 0 and ai = -a-2. Then, sufficient statistics are 

Ye• = 2::Y44. rj  = Y..-Y.i  = Y• 	Yij, and s1  = y..-yl. = 

• 

(3.8) 



y..-Fyij. Since there are J+1 < IJ parameters, i
TT
j 
 a(y ) 

must be modified for use in chapters VI and VII: 
••••••••• 

a'(y..,m,s1) J-1( Nli )(m2i) 
• 

   

The LF is 

1J 	

J1j1314: 

N2J  

(y.. -r -s -Yz 	,Ez.) 
(3.10) 

L(p.,o4e) T 
Nij)e3rii(11-Eari) = T 

(1+ell+ci+(b)Nii 
• (3.11) 

If this MM Is found to be plausible when compared with one 

of the form in equation (3.8) 	if an interaction effect 

is implausible), then the parameter of interest in equation 

(3.11) will usually be al = -a-2. Chapters VI and VII contain 

further diScussion about inferences for this parameter. 

One-way ANOVA corresponds to analysis of an Ix2 cont-

ingency table for a-binomial PM. Note that only one obser- 

vation (one count of yi  successes in Ni  trials) is necessary 

in each of the I blocks. The MM is 

Oi  = log ( Pi ) = A al 	(3.12) 
3-pi  

where 	= O. Then, the sufficient statistics are y. =T:yi 

and ri  = y.-yi, with as many sufficient statistics (I) as 

response conditions i.e. no reduction in the number of 

parameters. The LF is 

L(.1,a) 	 Ni  Ji(111-0c)- (3.13) 
Vri)(1-1-J-4-Q101 

Interest usually centres on the vector of parameters, 



measuring differences among the blocks. 

With I = 2, this SM. applies to the 2x2 contingency 

table. The results developed in chapter VI for a conditional 

probability distribution involving only al = -or2 lead to 

the long run probability statements about the data in the 

form of Fisher's exact test for the 2x2 contingency table 

discussed in chapter. VII. 

Suppose that the n groups of individuals are observed 

under quantifiably different conditions, such that, of the 

N individuals in group i, y respond as "successes" under 

conditions xi = (xi1,...,x110). Then, a natural linear NM is 

Gi = logI Pi = 
j=og

vo.x.. xio = 1 (all 	i).(3.14) 

The sufficient statistic for e 	is tj = iE~ If p+1 < n, 

179.(y ) must be modified for use in the conditional distri-

bution. For example, if p = 1, 

( 

Nn-1 n.2 	n-2 \ (t1 	1= -.2_ 1 zi xi )-xn-1 (t0 - 1 
?... z

i 
) 

1= ) 
x -x 

at(t
0' 
t ) n-2(Ni) 

TT 
1=1 zi 

  

n n-1 

Nn ( n-2  
(t1i 1zi xi )-xn (tO -i1z ) 

xn_i xn 
• 

(3.15) 

The one-hit quantal response model used, for example, by 

Cox (1962) is a regression MM similar in form to equation 

(3.14) but with only the (;?,1 coefficient. 



4.Natural Linear Statistical Models in the Exponential Family 

To construct a natural linear SN in general, using the 

probability function of equation (1.3), the function of the 

mean, G = B(1.1), is set equal to some linear function of new 

parameters which will incorporate information about the 

response conditions. NM's (1.4), (1.5), (2.3), (3.9), (3.12), 

and (3.13) are examples of such models. Obviously, a theore-

tical. MM will often not be natural linear. In this case, 

although sufficient statistics for the parameters will not 

exist, all of the likelihood analyses described in these-

chapters, except for those of chapter VI, are still valid, 

and usually are no. more difficult to perform. An example of 

a linear MM which is not natural is developed for the mean 

of the exponential PM in chapter V. 



45. 

CHAPTER IV 

COMPARISON OF PROBABILITY MODELS 

1.1ntroduction 

Often, more than one PM is theoretically feasible when 

considering SM's for an experiment. The problem of determin-

ation of the more plausible PM will be discussed in this 

chapter for the simple case where all abservations are: made 

under the same response conditions, i.e. where no MM need be 

introduced. Tb do this using likelihood inference, a base 

SM must be introduced with which all other SM's under con-

sideration may be compared. The derivation to follow yields 

the multinomial PM. 

Several approaches have been suggested in the literature 

to the problem of determining which of a number of possible 

SM's best describes a set of data. Cox (1961,1962) develops 

asymptotic Neyman-Pearson likelihood ratio tests and suggests 

an alternative approach involving a combination, either add-

itive or multiplicative, of the density functions, with 

estimation of additional parameters. This approach is further-

developed by Atkinson (1970). The applicability of some of 

these long run probability statement methods will be further 

discussed in chapter VII. When prior probabilities, both 

for each SM and for the parameters within the models, are 

available, Lindley (1961, p.456) gives a posterior odds 

ratio of the two models using Bayes theorem. When applicable 

(i.e. when prior probabilities are available), this approach 

may be used with the methods developed below. 
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Since attention will be restricted, in this chapter, to 

the situation where all observations have been taken under 

the same conditions, they can be assumed to have the same 

(although unknown) PM. The more complex case, where the PM 

varies with the observations (i.e. by introduction of a MM), 

will be discussed in chapter V. 

2.The method of Comparison 

The data have some observed frequency distribution, 

and, as pointed out in chapter I, are always discrete, 

although they may be theoretically continuous. Thus, the 

observation space As naturally divided into discrete inter-

vals by the means of measurement and recording. A theoret-

ical frequency distribution (PM) will predict what proportion 

of the observations should fall into each interval. The data 

are then the actual frequencies with which the observations 

fall into the val•ious intervals and we wish to determine 

which theoretical PM best describes the observed frequencies. 

If the measuring device is too precise for the number of 

observations to be taken, i.e. if there will be too many 

intervals in the region where most observations will fall 

and too few observations per interval, a set of wider inter-

vals may be specified as part of the design of the analysis 

before the data are collected or the procedure described in 

the next section may be used. 

For observations yjk (k = 1,...,nj), the interval will 
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be yik±illyi, the theoretical proportion (probability) pi, 

andtheobservedfrequency, nj.If the observations are counts 

(i.e. the PM is discrete), Lyi  = 1 and the possible yjk's 

are integral. If the observations are measurements (i.e. 

the theoretical PM is continuous), they will have the form 

yjk  = 12.5 andAyi  = 0.1. The best estimate of pj  is 

= niAlni  . 	 (4.1) 

There will be as many parameters as intervals (i.e. usually 

an infinite number) and many will be estimated as zero. 

Although the PM defined by equation (4.1) will make the 

observed data most probable, a theoretical model involving 

fewer parameters is usually desirable: Several may be sug-

gested by the manner in which the data are to be generated 

and we will wish to determine which is preferable, i.e. 

which best approximates the pi's. Thus, equation (4.1) 

provides the base PM which is required for making the 

likelihood inferences. 

Usually, the more parameters to be estimated in the 

PM,.the more potential for plausibility, since the flexi-

bility of the PM in following the observed frequency dist-

ribution increases. Before the experiment, theoretical 

considerations or desire for simplicity should determine 

the desirable number of parameters allowable. Of course, 

if, after the experiment, no theoretical PM is shown to be 

plausible as compared to the base model (4.1, the data 

may point to some other PM whose plausibility must be 
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affirmed by further data collection. 

If the observations are independent, the probability of 

the observed data using the estimated proportions, 

be equal to the LF of the multinomial PM, 

(4.2) LN(13) 

If the observations are counts and the proposed PM is dis-

crete, the theoretical proportion of observations falling 

into interval j, given the data, will be 

Pj  = F(Y ;) (4.3) 

where F is the probability function and A a vector of est- 

imable parameters. For a proposed continuous PM this becol-1 
y.+1-AY 4  

p. - Jr(y ;)dy 	f(YA)AY. 
Y  

where f is the probability density function. Specifically, 

for members of the exponential family, these yield equati(-

(1.3). The probability of the observed data using the freq-.-

encies Pi, estimated for the theoretical PIE, will be equal 

to the LF 

1 TT f(y 4)L•Y j,k 
Then, the plausibility of this theoretical PM compared 

the.most plausible one is determined from the RL 

RF(i) 	- J/p.)ni . 	
(4.6) 

j 	J 
Thus, although the measure of plausibility has been 

derived for comparison of theoretical PM's, it is absolute 

in that it can be used to determine how well the given PM 

fits the data. If enough observations have been made and If 

will 

LF(2) =T1P3j = Iy(yik4) 	(discrete) 
(4.5) 

(continuous). 



.49. 

suitably sized intervals were previously chosen so that a 

number of adjacent intervals have reasonably large observed 

frequencies, asymptotic long run probability statements may 

be made, as discussed in chapter VII, by means of the log HL, 

-21og RF, which gives asymptotically, the Chi-squared good-

ness of fit test. 

For a given set of data, the calculation of equation 

(4.6) for each theoretical PM will give a plausibility rank-

ing of the models. If all PM's appear to be implausible, 

either insufficient data have been collected or some diff-

erent PM should be considered. Of course, one or more PM's 

may be much more implausible than the others; these can be 

eliminated. Mote that equation (4.5) is proportional to the 

usual LF and thus, for comparison of PM's F and G, the rat 

RF/RG is equivalent to the usual RL. Of course, in this f0:1", 

discrete and continuous PM's may be compared. The need for 

such a comparison most often arises in determining how well 

some continuous PM, such as the normal distribution, appro:'-

imates to a theoretical discrete PM. This will be the priu 

use of this procedure in chapter V, where it is extended to 

SM's containing a MM. 

3. Determination of Optimum Interval Width 
As mentioned in the previous section, the interval 

widths naturally defined may need to be enlarged, especial-J 

for continuous data, if they provide too few observations 
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per interval. Suppose that the data were generated by some 

reasonably smooth unknown. PM, f(z). If the natural intervals 

are too narrow, the observed frequency distribution will not 

appear to have a smooth shape. We wish to determine the min-

imum Interval width which establishes this (unknown) shape 

of the frequency distribution. Since the multinomial distri-

bution follows the shape of the observed frequency distribu-

tion exactly, when the intervals are too narrow, the multi-

nomial probability of the data will be too great for the 

data to have arisen from a smooth PM, f(z). Let (iii) rep-

resent the frequencies predicted by f(z), the unknown MLE 

of the PM. If the natural interval widths are too narrow, 

the n Ys and no's will be very much different. From the 

inequality 

	

(71, 	)n 
, 4,  4 V11112 

 1+n 2 (4.7) VI1) fl2i n1+n2 
as intervals are combined, the multinomial probability of 

the data will increase more slowly than the probability 

given by the unknown PM, f(z), until they converge. When 

the intervals are sufficiently wide so that the observed 

frequency distribution is smooth enough, the relationship 

L = phi WiTAY 

	

M 	 (4.8) 

will hold (using equations (4.4) and (4.5) which are numer-

ically good enough for graphical methods). Further increase:: 

in interval widths will not change this relationship until 

the number of intervals becomes so small that the shape of 

7(z) is distorted. Thus, log Lm  ="iilog4Nyi  + a constant in 
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this range of interval widths; log Lm  may be plotted against 

Elog Ay for various interval widths. The region of this 

curve in which the points begin to follow a straight line 

inclined at 45°  indicates the required width. 

In producing the curve, a simple procedure is to plot 

points for various constant interval widths e.g. 1, 2, 5, 10, 

20 units,etc. Then, the 45°  line is positioned on the straight 

region of this curve. The point for a multinomial LF from 

the data with tail area intervals combined (e.g. 10 unit 

intervals but with small tail frequencies combined in wider 

intervals) will lie on the same curve but displaced upwards 

to the right from the corresponding point with constant 

interval width,i.e. both log Lm  and:ZlogLyj  will increase. 

If the point does not lie on the curve, the shape of the PM 

has been distorted by the unequal widths and the grouping 

should be discarded. 

oi  
approximate value of the unknown log f(y) which may be com- 

pared with the calculated values for the various theoretical 

PM's. 

This procedure was applied to the three sets of data of 

Table 4.8 (see example 4.6 below) for intervals of constant 

widths 1, 2, 3, 4, 5, 10, 20, 30, alAd 40 minutes. The results 

plotted in Figure 4.1 show the optimum intervals to lie 

between 5 and 10 minutes. 

After optimum intervals have been determined, the AL's 

Extrapolation of the 45
o 
line to flog Ay = 0 yields an 
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of various theoretical PM's may be calculated for goodness 

of fit and comparison. The original, ungrouped data should 

be used for estimating parameter values in these PM's to avoid 

the loss of accuracy specified by Sheppard's correction. 

Consider now the expected log multinomial likelihood for 

the arbitrary "smooth" density functiOn, f(x), expectations 

being taken only over the m intervals with non-zero observed 

frequency: 

E(log L ) = E(log nt-n log n-2 log n.1+ nlog n) 
M 	 j=1 	j=1 , 

	i 
 

log nl-n log n-m log nh-m 
2 

+ inEnAf(y )-lo& f(y.)+ 	1  
2 .3  4nAf(yi) 

using Stirling's approximation with p. =Lf(y
3
) and Lyj  = L. 

As A is made smaller from very wide intervals to the minimum 

(natural) width, the term It log(nA) stops decreasing as m 

stops increasing, while:Ef(y ), :Elog f(y ), and L - 
T577 

approach constant values. Then, the expected log likelihood 

no longer follows the 45°  line. Thus, the optimum interval 

width occurs when further decrease in width does not increase 

the number of intervals proportionally. If the number of 

observations, n, is increased, this optimum width will be 

proportionally smaller. Note that these approximate results 

are not altered by using more terms of the series expansions 

of log xl, pi, or the expected value. 

4.Examples 

4.1 Fisher (1958, p. 299) discusses linkage in the prog- 
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eny of self-fertilized heterozygote maize. The two factors . 

of interest are starchy versus sugary and green versus white 

base leaf, where starchy and green are dominant. Thus, obser-

vations (counts) will fall into the four possible intervals 

made up of the various combinations of the two factors. From 

Fisher's data reproduced in Table 4.1, the multinomial LF is 

= (1997 1997( 906)906  (_22/1. 9o4(.2 32 

\3839)
M 
	0839 3839) 0839)

2__A 

using equations (4.1) and (4.2). 

One possible theoretical PM occurs with no linkage, 

yielding a SSM. The expected ratios of the various outcomes 

are 9:3:3:1 yielding P/  = 	p2  = p3  = Ti, and p4  = 1.1t, 

with no unknown parameter to be estimated. The second theor-

etical PM of interest occurs with linkage where the expected 

es, 2+g e, 	14  ratios are 2+0:1-$:1-0:0 and 
P1 = -4-' P2 	--4-1  

Then, the two LF's for Fisher's data are 

1997 	1810 	32 

LF1 = (-14) 	(A) 
and 

(1 ) =.(24)1997(14)1810e2 4-3839 
'2 

respectively. The RL of no linkage is log RF1  = -198.344 and 

of linkage is log= -1.023 showing that the PM without 
'2 

linkage is very implausible in comparison to either of the 

other models, and that the linkage model is a very good rep-

resentation of the multinomial P11. This agrees with the con-

clusions from Fisher's Chi-squared tests. 

4.2 Cox and Brandwood (1959) provide a further example 
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of the comparison of multinomial PM's, in this case SSM's. 

Between writing the Republic (R) and the Laws (L), Plato 

wrote a number of short dialogues, the order of five of which 

is uncertain: Critias (C), Philebus (F), Politicus (P), 

Sophist (S), and Timaeus (T), The distribution of long and 

short syllables at the ends of sentences is used in an attempt 

to order the seven works. Consideration of the last five syl-

lables provides 32 classes (intervals). For each work, two 

SSM's are available: that the distribution of syllables is the 

same as for R and as for L. Cox and Brandwood give the prop-

ortions in each interval reproduced in Table /1-.2. 

The observed proportions yield the base PM for all com-

parisons for each work; the multinomial LF's for these PM's 

are given in Table 4.3, along with the log }L's of the two 

SSM's for each work. These RL's show that neither SSM fits 

well for any of the five works compared. This may be expected 

since we are only interested in which is better and not if 

either is good. The ratio of the two RL's for each work pro-

vides a comparison of the fit for the two SSM's; these ratios 

give the ordering R, T, S, C, P, F, L of the works. 

The ratio of RL's divided by the number of sentence 

endings for the work yields the statistic g which Cox and 

Brandwood use. They justify their result by the introduction 

of a power parameter, X, to which the probabilities of a sent-

ence falling into one of the intervals is raised. Atkinson 

(1970) generalizes this by introducing two power parameters, 
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11  and 2, one for the probabilities from each of the two 

SSM's. These two approaches yield two new SN's, with one and 

two estimable parameters,respectively. The RL's for these two 

models are given for each work in. Table 4.3. These models 

both give improved fits for all five works, with the Atkinson 

two-parameter model consistently better. But the small size 

of the RL's (implausibility) for this two parameter model 

casts doubt on its applicability in the manner suggested by 

Atkinson (-2 log R asymptotically has a rX2  distribution with 

2 degrees of freedom, giving very significant lack of fit; 

see chapter VII). This poor fit makes the use of the k's for 

ranking suspect and thus also the use of 5 instead of the RL. 

4.3 Cox (1962) provides a sample of 30 observations 

(Table 4.4) generated from a Poisson PM of mean 0.8. The base 

PM for these data gives a multinomial LF of log Lm  = -35.095. 

In addition to the Poisson and geometric PM's considered by 

Cox, the normal model with two estimable parameters is also 

used here. The estimated theoretical probabilities for these 

three models are given by 

= e4F/y1 , 

= ay/(114)1+Y  9 

= (271112)-1-expE(y41)  2- 

2 

the log RL's are log Rp =-0.609, log AG 
= -3.548, and log AN  = -2.369. Thus, very little is lost by 

representing the frequencies observed by the Poisson PM (i.e. 

11.43P 

5G 

and 50 

respectively. Then 
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it is very plausible) while representation by either of the 

others is poor. (Note the computational error in the maximized 

likelihood ratio of Cox which should read e3  A 20). Then, the 

plausibility ranking of the PM's is multinomial, Poisson, 

normal, and geometric, with probabilities of the observations 

in the ratios 1:1.8:9.3:35. 

Equation (1.2) has been used to calculate Pm. The exact 

calculation using equation (1.3) yields virtually the same 

result. 

• 

4.4 "Student" (1907) gives data, reproduced in Table 4.5, 

for the distribution of yeast cells in 400 equal-sized squares 

of a haemacytometer. For these data, log Lm  = -444.527. For 

the same PM's as in the preceding example, the log RL's are 

log RP = -4.835, log RG  = -9.139, and log Rm  = -86.412.. None 

of these models fits the data well; the normal PM is much 

worse than the others because of the large theoretical proba-

bility of observing "negative counts". 

Bardwell and Crow (1964) fit a two-parameter hyper-

Poisson PM to these data and compare it with the fit of a 

Neyman type-A PM; both are improvements over the Poisson: 

log RHp 	-2.301 and logRNA = -1.789,  respectively. They 

provide a description of this hyper-Foisson PM which involves 

a confluent hy-cergeometric function, and outline methods for 

estimating the two parameters. 

Asymptotic Chi-squared goodness of fit tests, as in 
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chapter VII, applied to the various models give results agree- 

ing with those above. 

4.5 Monfort (1964) fits the log normal PM with estimated 

theoretical probabilities 

pLN 	
[ 	N 2 

= (21' 2̀) -(10F y -01)  
21912 

and the gamma PM with 

PG  = p2/pi ) 2A-(02) 2-1 
 exP E42Y/klAY 

to the observed frequency distributions of the fibre diameters 

of eight lots of combed slivers of reference wools (wool tops) 

given in Table 4.6..Jackson (1969) provides further analysis 

of these data using asymptotic Neyman-Pearson likelihood ratio 

tests of Cox (1961, 1962). The results for a multinomial like- 

lihood analysis are given in Table 4.7, where 	and RG are 

the RL's for the log normal and gamma PM's,respectively. The 

likelihood ratios for comparison of the two models are calcu-

lated from log RLN-log RG  = log RLNG'  Using asymptotic theory, -  

Jackson apparently has calculated approximations to these 

ratios (log RLNG  in Table 4.7). This asymptotic theory does 

not produce a LF which very well represents the exact LF's 

(see chapter VII, section 4). Hence, the long run probability 

statements will not be very accurate. 

Lots A and C point to the log normal PM and the remain-

ing lots to the gamma. But for lot A, both models fit almost 

equally well, and for lots G and H, neither fits well. If we 

had assumed that one of the two models was correct, the poor 
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fit of G and H might imply that insufficient data had been 

collected. 

The eight lots of data appear to be grouped into two 

sets, ABCD and EFGH, of which the first set have 600 obser-

vations per lot and the second have 450. The observed frequ-

ency distributions of the first set are relatively narrow 

and peaked while those of the second set are much more dis-

persed and ill-defined, having two or more modes each. This 

is reflected in the poorness of fit of all of the lots of 

the second set. Jackson mentions that futther investigation 

reveals that a "mixture" of two gamma PM's fibs lot H quite 

well. This may also apply to the remaining three lots of this 

set. 

4.6 Bliss (1967, pp. 106 and 122) provides the data 

reproduced in Table 4.8 from the experiments described by 

Campbell (1927) to determine the survival times in minutes 

of fourth instar silkworm larvae when feel a lethal dose of 

0.10 mg. of sodium arsenate per gram of bodv weight. Data 

are provided from three experiments. These data provide an 

example where most counts are zeroes with many ones; this 

is reflected in the small size of the RL's given in Table 

4.9 for the ungrouped data. For all three sets of data, the 

log normal, the gamma (see the previous example) and the 

exponential PM with 

. PE  = e-43rA%r 
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are fitted. From Table 4.9 for the grouped data ( using 10 

minute intervals from section 3 above), the log normal and 

gamma PM's are equally plausible for all sets of data, while 

the exponential is always much less plausible and can be 

eliminated. 

4.7 In studies of the carcinogenic effect of ultra-

violet radiation, Blum (1959) exposed male mice of a given 

strain to dosages of radiation of intensity 3.4x104  ergs/cm/ 

sec. for five days per week. Five groups.of mice were used, 

exposed to different doses per day, i.e. for different lengths 

of time, and the development times in days of an ear tumor 

determined. In order to provide an example with Ayi varying, 

the development times are grouped into intervals of equal log 

days in Table 4.10, as provided by Bliss (1967, p.274). A 

comparison of the log normal and gamma PM's in Table 4.11 

shows that both are equally plausible for all doses. The size 

of the AL seems to decrease with the size of the multinomial 

likelihood, and hence with increase in sample size, indicating 

that increased sample size provides no stronger evidence that 

either model is plausible for this type of data. 

5.Discussion 

Atkinson (1970) develops the comparison of PM's suggested 

by Cox (1961,1962) using a product of probability functions, 

each raised to a power 	Essentially, a new PM, an amalgam 
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of those hypothetically possible, is introduced. If this new 

PM is also hypothetically reasonable, there will be little 

difficulty of interpretation. If not, it may have meaning 

only in the null cases where it reduces to one of the original 

PM's. In any case, doubt will be thrown on the utility of using 

the Ws -for ranking the models if the composite PM does not, 

itself, fit the data well, as in example 4.2 above. 

Interpretation of a composite PM may be further illus-

trated by an example. If the two PM's to be compared are the 

exponential and the normal truncated at zero with known var- 

iance set equal to unity (before truncation), with 	= 1-X2 

= 2,, then the derived PM is norma3 truncated at zero with 

unknown variance. 
1
-1

A  
, = 62. The graph of the LF of 1 is equiv-

alent to one of (62-1)/62. Thus, only the variance, and no 

higher moments, is used in this comparison of PM's. 

Difficulty may arise in using the MLE's of pi's for 

ranking PM's without the use of some interval about the max-

imum. In the comparison of two PM's, such as those above, the 

MLE of 2 may be greater than one half, say 0.7, pointing to 

the first model, while the LF for this PM CA = 1) is smaller 

than that for the second (2l = 0), making the second more 

plausible by the likelihood criterion. In other words, the 

of Atkinson's exponential combination may -coint to a PM which 

makes the observed data less probable than another to which 

it is compared. Of course, Atkinson's combined PM ::ill 'be 
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more plausible at "1/4  than either of the individual models, and 

should be considered if interpretable. 

If specific alternatives to the given PM's are to be 

considered, and these coincide with the family of PM's defined 

by Atkinson's exponential product, this approach will yield 

useful results. If the plausibility of the given PM's is to 

be considered as opposed to any possible alternatives, com-

parison with the multinomial LF will yield the desired inference, 

In comparison of PM's; attention must be paid to the 

size of each RF' since a difference between RF's is of less 

importance if the individual RF's are so small as to indicate 

that none of the models is very plausible. This is especially 

important if the applicability of at least one of the PM's is 

not fairly certain..If this is reasonably certain, lack of 

fit may indicate insufficient data. For goodness of fit, not 

only is the difference in number of parameters estimated im-

portant, but also the number of observations made. An indica-

tion of this is given by the size of the RL in comparison to 

the multinomial likelihood, i.e. by the change in probability 

of the data with introduction of a theoretical PM as compared 

to the maximum probability of the data. If the RL is relatively 

large as in the first six examples, sufficient observations 

are usually available, and consideration of the size of RL in 

conjunction with parameter numbers (degrees of freedom) will 

determine goodness of fit.In the last example (4.7), the RL 

was not relatively large, and either insufficient data or poor• 
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PM's may have caused lack of plausibility. But comparison 

among dosages seems to indicate chat fit does not improve 

with increased sample size. 

In the next chapter, examples involving NN's will be 

considered. For these, we must usually assume that at least 

one of the P11's is acceptable, since insufficient observa-

tions are usually made under each response condition to check 

goodness of fit of the various PM's. 



' 63. 

CHAPTER V 

-ANALYSIS OF DATA INVOLVING A MATHEMATICAL MODEL 

1.Introduction 

In this chapter, the methods of the preceding four 

chapters will be applied to statistical models (as defined 

in chapter I, section 3). Although the methods are applicable 

to SM's in general, attention will be restricted to PM's from 

the exponential family of equation (1.3) and to MM's describ-

ing variation in the mean of the PM. Most MM's will be natural 

linear or nonlinear extensions of these. The exceptions to 

this are some MM's for the exponential 15M in the examples of 

section 6. 

Four PM's will be considered as representative, since 

they are probably the most commonly encountered and since they 

usually require no extremely complicated numerical estimation.  

procedures (Newton's iterative method sufficing). These are 

the normal, exponential, binomial, and Poisson PM's. The 

continuous models are generalized to include such offshoots 

as the log normal and the Weibuil PM's. Analytically, if not 

numerically, these methods will apply to other PM's, as well 

as to other MM's,than those considered. 

2.Probability Models 

In chapter II, a generalized form of the normal PM was 

considered with generalizations of a natural linear MM in the 

case of response surface data, when no alternative PM's were 

available. Cases where various other PM's are theoretically 
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plausible will now be considered. The generalized normal PM 

will be used, either as one possibility or as an approximating 

model. 

The LF's for the PM's to be considered are: 

(i) normal distribution, N(g,a) 

Lm
(
11,a

2
,y) = exp ( Y2 

	-  11
2 
 -log 21a2  g(Y,Y), (5.1) 

2 	2c14  

(ii) exponential distribution 

Lg(p.,Y) = exp[Eg(y,Y)61-log 3x Ns(y,y.) 	(5.2) 

(iii) binomial distribution, B(p/n,n) 

LB(A) = expi! logLE_N+n logil-EWog(1 
\ n-Al 	\ nj 	kY) 

(iv) Poisson distribution 

L (p) = exp(y log p - 3z - log y!) 	(5.4) 

The unit of measurement is ay, where the L1 operator acts as a 

differential, e.g. .g(y) •=t.log y = y -1L.A  Ny. If the observations 

are counts, then ay = 1. The continuous PM's (5.1) and (5.2) 

are generalized by allowing a transformation of the response, 

g(Y,Y), which may contain parameters, Y, to be estimated, 

such as those used in chapter II for the normal PM. For 

example, equation (5.2) becomes the LF for the Weibull PM if 

g(y,Y) = yY , Ag(y,y) = yyY-1©y. 

For the normal PM (5.1), the parameter p may still be 

considered natural (if there is no estimable parameter, V), 

since jointly sufficient statistics exist for A and a
2
. Thus, 

natural linear MM's may be constructed involving A. 

(np = A),(5.3) 
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3.Mathematical Models 

Mathematical models were briefly described in chapter I, 

section 3 where the two simplest cases for the mean were given 

in equations (1.4) and (1.5), and more generally in chapter 

III. From such NM's, the expected value of the response may 

be calculated under a given response condition; for example, 

Cg(Y,Y)] = B-1(91) using MM (1.4) with the PM from LF-(5.1) 

or (5.2). 

In the examples to follow, the NM's used will be those 

for ANOVA and regression. If the response conditions imply a . 

two-way factorial experiment, the reduced (from equation (1.4)) 

natural linear MM might be either the generalization of equa-

tion (3.6), 

. 	B(pii) = 	+ 	+ @j+ Yij 	(5.5) 
or the generalization of equation (3.9),, 

B(Aij) = 	+ ai + 	(5.6) 

where i and j specify levels of the two factors and IcK, = 

B =Ey . :Ey = O. For a one-way design, the NM might be 
j  

the generalization of equation (3.12), 

B0.11) = p. + al , 	(5.7) 

with tai  = 0 and i specifying levels. If the conditions deter- 

mine a two-factor response surface or a regression problem, 

the reduced natural linear MM is 

B(31i) = 	 (5.8) 

where 1(,:11) is some linear function of the parameter.vector 

such as 



66. 
a. 	„ 

= i604- 1x114- 2xi2 ',3x11
4.
.Y4i2

,
e5-3.1-i2 (5.9) 

and (xxi2
) are the factor levels (transformed to orthogonal 

poynomials as in chapter II) for response yik. A nonlinear MM 

analogous to equation (5.9) is given in equation (2.3). 

If parameters related to other functions than to those 

of the mean of the response are present in the PM, as in 

equation (5.1), variation of these with the response conditions 

may also be desirable. For example, if ten observations, yijk  

(k = 1,...,10) are taken at each level of an IxJ factorial 

experiment and the LF is equation (5.1) with g(y,Y) = P., the 
2 	2 

NM's might be equation (5.5) with G(ci) = ai and F(Yij) =-Y. 

This type of situation may occur when the normal PM is used 

to represent a response distribution for which the variance 

changes with the'mean (e.g. binomial, Poisson). Problems 

related to this will be discussed in section 9 for the examples 
of this chapter. Ctherwise, only parameters related to the 

mean will be considered to vary in the examples. 

4.Inferelices 

The basic procedures for making inferences about SM's 

were developed in chapter II for the specific case of a non-

linear normal response model. Here, these procedures will be 

described more generally, with inclusi.on of the case where 

more than one PM is feasible. The steps outlined below prov-

ide one way of proceeding; of course, these will often have 

to be modified for specific problems. 
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Step I. Parameter Estimation. In order to carry out 

the following steps, MLE's of all parameters of each SM must 

be calculated. 

Step II.Goodness of Fit of the PH. As mentioned at the 

end of the last chapter, for a SM which varies with the res-

ponse conditions, insufficient observations are usually made 

to determine the plausibility of the various PM's. To deter-

mine goodness of fit, sufficient observations must be made at 

a response condition to provide a useful frequency distribu-

tion. This distribution will vary with the reponse conditions. 

If enough observation are available, plausibility is determined 

as in chapter IV using as the base SM the combined multino-

mial PM fitted individually for -eachresponse condition. 

An alternative in designing such experiments may be to 

take a much larger number of observations at one or more 

response conditions (not yielding an extreme response) and to 

include these results to determine goodness of fit. 

Step III. Comparison of PM's. If several PM's may pos-

sibly describe the random fluctuation Of the response, these 

may be compared by fitting one set of parameters under each 

response condition for each LF. If only parameters of the 

mean are present, this is equivalent to using equation (1.4) 

with each LF. The sizes of the LF's using the corresponding 

MLE's of all parameters are then compared as in chapter IV. 

Thus, the PM is fitted to the data from each response condi-

tion individually and the combined distribution for all the 
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data is compared with the corresponding one for another PM. 

This provides a comparison of PM's for the data without invo-

lving any of the theoretical MM's. Of course, this SM (e.g. 

involving equation (1.4)) will be equivalent to a SM including 

some hypothesized KM such as equation (5.5) if both have the 

same number of parameters (i.e. if only a transformation of 

the parameter space is involved'and not a reduction in number). 

If parameters other than functions of A (e.g. ole2 of 

equation (5.1)) are present, the above procedure requires 

that more than one observation be made at the different res-

ponse conditions. In the numerical examples to follow, a 

discrepancy from the procedure just described is allowed in 

that the normal PM is assumed to have constant variance. 

Comparison of PM's assumes that either some of the 

models have been shown to be plausible (in step II) or that 

at least one of them is theoretically justifiable. If one PM 

is more justifiable theoretically than another, a stronger 

plausibility may be required before adopting the second than 

if this were not the case. 

Step IV. Comparison of NM's. Usually, it is first useful 

to see if a NM is necessary at all. Comparison of the unstruc-

tured SM from the previous step with a common PM fitted to all 

of the data (i.e. no parameters varying with response condi-

tions, e.g. equation (1.5) for the mean) will show if the / 

same MM under all response conditions is plausible. This cor-

responds to the F test for overall treatment effect in ANOVA. 
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If an unvarying I•iN is not plausible, the various post-

ulated MM's may be compared for any PM selected in step III. 

This corresponds to the F test fog lack of fit in regression 

analysis. Even if an unvarying MM is plausible, further anal-

ysis may yield some likely effects under the postulated MN's. 

If more than one PM was still plausible after step III, 

the inclusion of a reduced MM may indicate that some PM's can 

be eliminated at this stage. This also applies if parameters 

other than }.1 are present with only one observation per response 

condition, making step III impossible, in which case assump-

tions may be made about higher order interactions. 

Step V. Inferences about Parameter Values. After one or 

more I'IN's has been found plausible, inferences are made as to 

whether all of the parameters of each MM are necessary, e.g. 

some 	= 0 in equation (5.9) or some al  = 1 in equation (2.3). 

These correspond to F tests for individual treatment effects• 

in ANOVA tables. They should then be extended to see which 

values of the necessary parameters are plausible by plotting 

graphs of RL's (see below). If, within the MM, some parameters 

are of interest while others may be considered as nuisance 

parameters, inferences may be possible about the parameters 

of interest in the absence of knowledge about the nuisance 

parameters. If sufficient statistics are available for the 

nuisance parameters, this may be done using a conditional LF 

(see chapter VI). 
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As in chapter II, parameters are estimated by maximum 

likelihood methods. This procedure will involve an iterative 

process when the likelihood equations are nonlinear. Some 

forill of Newton's method is also used here for the examples. 

Since inferences about the parameters are to be made 

by observing the effect on the size of the LF of variation 

in the parameters, multidimensional models can yield very 

complex situations; see Sprott and Kalbfleisch (1969). Thus-, 

as in chapter II, the simplifying and approximating technique 

of maximizing the LF over all but one or two parameters at a 

time is used. Within a given SM, this maximized LF is then 

compared with the LF maximized over all parameters, by means 

of the RL function of. equation (1.7): 

R(0i) = 	sup 	L(A)/sup L(A) 	(5.10) 
W3 except 0i  

Throughout the exemples, log L and log R are listed instead 

of the LF and the RL. Steps I and II are omitted in all dis-

cussion of examples. 

5.Normal Theory Models 

Since the use of some form of normal theory analysis is 

the standard practice for attacking the types of problems 

under discussion,most of the examples include this analysis, 

usually in various forms depending upon appropriate transform-

ations of the original response. These transformations ara 

incorporated in the LF (5.1) through g(y,Y). SoMe common 

transformations are listed:. 
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(A) linear normal (( = 1 in (B)) 	g(Y) = Y 

(B) power transformed normal 
	

g(Y,Y) = 3/- 

(C) log normal 0( = 0 in (B)) 	g(y) = log y 

(D) square root normal Cr = 2 in (B)) g(y) = f . 
The following apply only to binomial data with y successes 

in n trials: 

(E) logit normal (Y = 0 in (G)) 
	

g(y) = lodEY/(n-y)J 

(F) odds normal Or = 1 in (G)) 
	

g(Y) = Y/(n-Y) 

(G) transformed odds normal 
	

g(Yor =IY/(n-y)] 

(H) per cent normal (y = 1 in (I)) 
	g(y) = 100y/n 

(I) transformed per cent normal 	g(y,Y) = (100y/n)Y  

(J) arcsine normal 	g(y) = sin-1477ri . 

For the normal PM, 

B(11) = u = 	 (5.11).  

so that, for example, from equation (5.5) 

ED(Yii,Y)J = 	al -4- 

In the examples, neither cr nor any parameter in g(y,Y) is 

assumed to vary with the response conditions. The validity of 

this assumption about the variance is examined in section 9. 
Since the normal PM contains the parameter a2 and, pos-

sibly, parameters in g(y,Y), comparison of PM's or use of a 

MM such as (1.4), (5.5), or (5.7) is not possible with only. 

one observation for each condition. But, these NM's can be 

used for all of the other PM's considered: (5.2) (unless E(y,Y) 

contains unknown parameters), (5.3), and (5.4). This means, 

for example, that, with one of these PM's and a two-way fact- 
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orial experiment with one observation per cell, the interac- 

tion effect can be examined using equation (5.5). 

6.Lifetime Data 

_When data are observations of (life, survival, reaction, 

completion) times, their frequencies may often be described 

by one or more of the exponential, Weibull, log normal, and 

gamma PM's, with an appropriate NIl. When ANOVA is involved, 

the standard normal theory analysis is usually used, perhaps 

with a logarithmic or power transformation of the response. 

In the examples to follow, the three normal PM's, (A), (B), 

and (C), of section 5 are used as well as two exponential PM's 

(from equation (5.2) with g(y,Y) = y): 

(K) natural linear exponential in which 

B(g) = 1/p. = 1/E(Y) 	 (5.12) 

and (L) "expected value" exponential in which 

Bi(A) = 1/B(11) 17. u = E(Y) 	(5.13) 

and B'(A) replaces B(.') in the KM such as equation (5.5). 

The natural linear exponential SM equates the reciprocal of 

the mean with the NM whereas the "expected value" SM equates 

the mean with the MM. 

Example 6.1 Box and Cox (1964) provide two analyses of 

a 3x4 factorial experiment on the survival times of animals 

(reproduced in Table 5.1), the factors being three poisons 

and four treatments, with each combination used on four animals. 
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Box and Cox use the interaction (5.5) and no interaction (5.6) 

NM's with the linear (A) and power transformed (B) 	= -0.77). 

normal PM's. Only the interaction MM is here considered. In 

addition, the two exponential SM's (K) and (L) with.this same,: 

MM are used here. 

Step III. Assuming that one of the SM's is adequate, the 

fit of the four PM's.illay be compared using MM (1.4). Since MM 

(5.5) has as many parameters as response conditions, this 

model has as many parameters as (1.4) and the two are equiv-

alent for comparison of PM's. In order of plausibility, the 

PM's are transformed normal, linear normal, and exponential 

(Table 5.2). Both of the normal PM's are much more plausible 

than the exponential PM's. Unless theoretical considerations 

strongly dictate otherwise, the exponential PM may be elimin-

ated. 

Step IV. A uniform SM for all response conditions is 

very implausible for either normal PM, but much less implaus-

ible for the exponential PM's. Only one theoretical MM is 

being entertained so that no further comparison is necessary. 

Note, from Table 5.2, that the no interaction MM is plausible 

for all PM's except the linear normal. Comparison of MN's (5.5) 

and (5.6) is equivalent to determining the plausibility of 

eliminatingtheinteractioneffect,.from MM (5.5) in 

step V. 

Step V. All of the SM's give the same relative analysis 

of effects in Table 5.2, with differences in poisons more 
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likely than in treatments, and interaction relatively less so. 

But the likelihood of the various effects (i.e. plausibility 

of no effect or of eliminating the relevant parameters) is 

much less (plausibility higher) for the exponential than for 

the normal SM's. 

For illustrative purposes, regression MM (5.9) was 

fitted for PM's (A), (B), and (K) to analyze linear and quad-

ratic effects, although the design provides no reason for 

doing this. This MM is only plausible for the exponential PM 

(see regression effects in Table 5.2). Only the linear effect 

of poisons is plausible in the three models, although the 

other non-interaction effects border on plausibility for 

model (B). This part of the analysis is an extension of the 

methods of chapter II. 

Example 6.2 In analyzing experiments with analgesic 

arugs, Ipsen (1949) gives two control readings, listed in 

Table 5.3, spaced 20 to 30 minutes apart, of the tail flip 

reaction times of ten white rats on nine different days when 

a strong light is focused on their tails. The same analyses 

are performed as in the preceding example. 

Step III. The reaction times were supposed to follow 
A 

the log normal PM (C), to which model (B) with if = 0.10 and 

n(y.o.o) = 0.95 points. PiM.s (B) and (C) provide virtually no 

improvement over the linear normal (A) (see Table 5.4), but 

all three are more plausible than the exponential models. 



• 75. 

Since the fits of PM's (B) and (C) are virtually identical, 

only the analysis for (C) is given in Table 5.4. 

Step IV. With the exponential PM's, the data might 

plausibly have the same distribution for all response cond-

itions, i.e. MM (1.5) (this could be related to the implaus-

ibility of these PM's), but this is very implausible for the 

normal PM's. 

Step V. Again, all of the SM's give the same relative 

analysis of effects. Interaction between days and rats is 

most likely and differences between rats least. But the RL's 

for the exponential SM's show that all of the parameters of 

MM (5.5) except p. could plausibly be eliminated, reinforcing 

the conclusions of step IV. 

The consistent difference in size of the RL's for the 

normal and exponential PM's will be further discussed in 

section 11. 

Example 6.3 Bliss (1967, p.327) gives the times required 

for ten rats to run through a maze on various trials, and looks 

at additivity on five of the trials (Table 5.5). These data 

are analyzed as in the previous examples, but using no inter-

action MM (5.6) for the normal PM's, since there is only one 

trial per cell in the 5x10 factorial experiment. Interaction 

MM (5.5) is used with the exponential PM's. 

Step III. With only one observation per response.condi-

tion, comparison of the normal PM with any other is not possible. 
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Step IV. As in the previous example, model (B) with = 

0.04 points to the log normal PM (C) suggested by Bliss. Both 

are marked improvements on the linear normal PM (A), and both 

give the same analysis, hence only that for (C) is given in 

Table 5.6. 

With MM (5.6), some of the expected times are negative; 

these yield MLE's of zero if exponential LF (5.2) is used 

(due to the interaction effects shown in step V below), making 

use of the exponential PM's with this MM meaningless. 

When MM (5.5) is used with the exponential PM's (K) 

and (L), the fits are much better than with the linear normal 

PM but not as good as with the log normal, both using MM (5.6). 

A uniform SM for all response conditions is implausible 

for all of the PM's. 

Step V. All analyses show that differences between trials 

are more likely than between rats, although neither can be 

plausibly eliminated. The exponential SM's involving MM (5.5) 

show that an interaction effect between rats and trials is 

very plausible. 

7.Poisson Count Data 

When data are observations which appear to follow a 

Poisson distribution, and which involve a linear MM, a linear 

normal SM is often used with either a square root or a logar-

ithmic transformation of the response. In the following examp-

les, normal PM's (A), (C), and (D) are used. The Poisson PM 
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(M) of equation (5.3) is also used with a natural linear MM 

for which 

B(A) = log ;u = log E(Y) 	(5.14) 

Again, the validity of the assumption of constancy of 

variance for varying reponse conditions for the normal PM's 

will be discussed in section 9. 

For a Poisson PM, the parameters of the no interaction 

MM (5.6) may be estimated exactly without using an iterative 

method. 

Example 7.1 Bartlett (1936b) provides an example of a 

6x6 factorial experiment testing the effectiveness of four 

toxic emulsions in controlling leather jackets. 36 plots of 

one sq. yd.'each were divided into six blocs and the emul-

sions applied to four plots in each block, the remaining two 

plots of the block being controls. Some days after applica-

tion, two sample counts were made of the number of leather-

jackets remaining on one sq. ft. each, as tabulated in Table 

5.7. Since the counts may be considered to have a Poisson PM, 

a square root transformation, model (D), was suggested before 

Performing normal theory ANOVA. This is compared below with 

linear normal (A), log normal (C), and Poisson (M) PM's 

using interaction MM (5.5). 

Step III. Comparison of the four PM's in Table 5.8 

shows that the suggested square root normal model and the 

Poisson provide the same fit, while the linear normal model 
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is much worse and the log normal model somewhat better. In 

this case, because of theoretical considerations, use of the 

Poisson PM may be preferable, although the log normal PM is 

better for this set of data. This comparison of models is 

further discussed in.section 9, where residuals are considered. 

Step IV. With no PM is elimination of the variation due 

to response conditions plausible, as shown in Table 5.8. Only 

MM (5,5) is considered for all of the PM's. 

Step V. With all four PM's, the order of likelihood of 

effects is the same, with differences between treatments most 

plausible, and interaction effect next. All analyses show 

some difference between the blocks in the experiment. 

Example 7.2 A randomized block experiment on the numb-

ers of surviving sugar beet plants (Table 5.9) under four 

fertilizer treatments in four blocks was performed in Iowa; 

see Snedecor and Cochran (1967, p.344). Again, a square root 

transformation is suggested before performing normal theory 

ANOVA. The same PM's as in the previous example are used below, 

but with no interaction MM (5.6) since there is only one obs-

ervation per cell. In addition, the interaction MM (5.5) is 

used with the Poisson PM. 

Step IV. With no PM is the variation in response cond-

itions unimportant. From Table 5.10, the no interaction MN 

with the three normal PM's provides virtually the same fit, 

whereas the Poisson PM is somewhat worse with this MM. The 
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interaction MM with the Poisson PM provides a much improved 

. fit. 

Step V. All no interaction SM's show that the difference 

between fertilizers is likely while that between blocks is 

not. In addition, the interaction Poisson SM shows that the 

interaction effect is likely. 

The same analyses applied to the data of Bartlett (1936a) 

on the numbers of poppy plants in oats yield similar results. 

Example 7.3 P. Wickett ( Fisheries Research Board of 

Canada) has recorded numbers of pink salmon caught by British 

Columbia fisheries over a forty year period. Since this spec-

ies of salmon has a two year return cycle, two genetically 

separable groups return on alternate years. The data for the 

group coming on even years are given in Table 5.11, together 

with measures of rainfall (x1) and sunshine (x2). Regression 

analysis was applied to these data with ITIM's (5.9) and (2.3) 

using log normal (C) and Poisson (N) PM's and the procedures 

of chapter II. 

Step I. With MM (2.3), the normal theory estimates of 

the nonlinear parameters are /Oci.  = 4.5 and Or: = 1:1. 

Step IV. The two MM's for the normal PM (C) may be 

compared by R(a1=1,a;,?=1) = 0.15, showing that the nonlinear 

MM provides little improvement. Thus, the corresponding non-

linear Poisson SM was not attempted, and only the analyses 

for the two linear SM's are given in Table 5.12. The normal 
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theory model gives a much more plausible fit than the Poisson 

model; in neither case is elimination of all parameters except 

1)o 
plausible (i.e. use of NM (1.5)). Most of the poorness of 

fit of the Poisson SM seems to come from introduction of the 

NM. Because of the need to estimate the variance, no statement 

can be made about this effect for the normal SM. 

Step V. Use of the linear term far rainfall (x1
) in the 

regression is less plausible than the others in both SM's. But 

the log normal SM only shows inclusion 3f t32  and 	(i.e. the 

sunshine terms) to be very plausible. The ranking of plausi-

bilities for the various terms in the regression equation 

for the two PM's la identical, but the RL's for the Poisson 

are very much smaller. This has been true of all examples 

involving Poisson PM's, and will be further discussed in 

section 11. 

8.Binomial Count Data 

Analysis of binary data in the context of this chapter 

presents.special problems, since the parameters to be estimated 

are the actual probabilities (expected frequencies) in the - 

binomial.PN. Thus, comparison of PM's will be the same as for 

the multinomial exarrole 3.1 of chapter IV; the use of the 

normal PM will actually be only an alternative means (to max-

imum likelihood estimation) of estimating the probability 

parameters and not a direct representation of the observed 

frequency distribution. Comparison will always shod the bino- 
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mial PM MLE's to be better than the estimates obtained from 

the normal PM. We shall be interested to see how well the 

normal theory approximates the binomial model estimates. 

Using normal theory, from LF (5.1), Eri(Yi,Y)J = lli 

is the function g(npi,r of the pi  of LF (5.3). Inferences 

may be made about the normal theory SM's by calculating the 

MLE's from equation (5.1) for pi = g(npi,/), where B(pi) = 

pi  is any MM, and then comparing PM's by using these esti-

mates, pi = g-1(ftli,2)/n in the binomial 11F (5.3). 

Alternatively, in steps IV and V of section 4, if. a 

normal approximation seems plausible from the preceding 

steps, the more conventional inference procedure of looking 

at the normal LF (5.1) may be used. But, this often yields 

likelihood ratios of much different size than does the 

previous procedure. 

A number of transformations, g(y,Y), of the response 

may be used in the normal theory PM (5.1), as listed in 

section 5, (E) to (J). Then, for example, if g(37.) = B(A) =51 

is the predicted value of g(y) in model (E). p = eil/(1+JI) = 

g-1(Wn and this is used in LF (5.3). 

The natural linear binomial Sig; (N) has 

B(p) = log[p/(n-p)] = log(E(Y)R.n-E(Y)]) 	(5.15) 

as shown in chapter III, section 3, and is analogous to the 

logit normal model (E). 

Example 8.1 If one pair of marginal totals are fixed 
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in a 2x2 contingency table, the table may be analyzed using 

MN (5.7) (i = 1,2) and the binomial PM (N). Since P1(1-1:12/ = 

a 0t,
4 	

P2(1-131) 
e 1 	and ai+cc2  = 0, the plausibility of al  = 	= 0 or no 

X. effect of treatments is analogous to the X. test',for independ-

ence and to Fisher's exact test (although this is conditional 

on all marginal totals being fixed). For the contingency 

table of Table 5.13, log R(a=0) = -0.36 providing no evidence 

against the hypothesis of independence. The conditional like-

lihood analysis of chapter VI for this example and the exact 

long run test of significance of chapter VII agree with this 

result. 

Example 8.2 Cox (1966) analyzes the data given in 

Table 5.14 on the effect of rocking on whether or not babies 

cry. Each day for 18 days, one baby was chosen at random to 

be rocked out of a group varying in number, providing an 18x2 

factorial experiment. With the binomial PM (N), interaction 

(5.5) and no interaction (5.6) IM's are used to analyze the 

results. 

Step IV. Since NM (5.5) has as many parameters as res-

ponse conditions, it fits the data exactly; MN (5.6) provides 

a poor approximation. In neither case is elimination of the 

variation due to response conditions plausible. 

Step V. Ncither MM provides strong evidence (Table 5.15) 

that rocking reduces the number of babies crying. Differences 

between days (which are not of interest) are very plausible; 
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MM (5.5) gives an indication of interaction between days and 

rocking., 

The effect of rocking is considered further in chapters 

VI and VII where a conditional likelihood analysis and an 

exact significance test are applied. These agree with the 

above results. The comparison of these results with the asymp-

totic result of Cox is discussed in chapter VII. 

Example 8.3 Snedecor and Cochran (1967, p.300) give the 

data reproduced in Table 5.16 from a 5=5 factorial experiment 

in which five replications were made of a comparison of four 

treatments and no treatment of soybean seeds. Out of 100 

seeds planted in each plot, the numbers failing to-emerge 

were counted. Snedecoa! and Cochran use linear normal theory 

PM (H) ANOVA with no interaction MM (5.6). The analyses for 

logit normal (E), odds normal (F), arcsine normal (J), and 

binomial (N) PM's with no interaction MM (5.6) are also 

given in Table 5.17, using the binomial LF (5.3) with that 

for the normal LF (5,1) in parentheses. For all of the PM's, 

the parameters of the interaction MM (5.5) may be estimated 

and hence ID' = g-1(u)/n, but the variance of PM (5.1) cannot. 

The values of log R from LF (5.3) when this p is substituted 

in LF (5.3) are given in Table 5.18; those for LF (5.1) can- 

not be calculated. 

Step III. All of the normal SM's provide good approx- 

imations to the corresponding binomial SN's. Using MM (5.5), 
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all SM's fit exactly, since there are as many parameters as 

response values. 

Step IV. Variation in the response conditions is plaus-

ible for all SM's. In every case, the interaction MM fits 

better than the no interaction model. 

Step V. All analyses using LF (6.3) provide the same 

result: differences between treatments are more plausible 

than between replications. Use of MM (5.5) shows that the 

interaction between replications and treatments is more 

plausible than the differences between treatments. This does 

not appear in the analysis of Snedecor and Cochran. Except 

for the odds normal*PM (F), all normal theory analyses using 

LF (5.1) and MM (5.6) give similar results to those From LF 

(5.3). The unusual results given by PM (F) are difficult to 

explain. 

Example 8.4 Lindsey, Alderdice, and Pienaar (1970) 

provide two normal theory analyses (the same as that of chapter 

II) of data of Alderdice and Forrester (1968) from an experi-

ment to determine the effects of variation in salinity (x1. 0-/ oo 

S) and temperature (x2
o
C) of sea water on the proportion of 

eggs of the English sole (Parophrys vetulus) hatching. The 

original data, showing counts of eggs hatching, are provided 

in Table 5.19. The two analyses use the per cent normal PM's 

(H) and (I) (i?  = 0.85) with linear (5.9) and nonlinear .(2.3) 

regression NM's respectively. Analyses using logit normal (E) 
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and binomial (N) PM's with the two MM's are also given in 

, Tables 5.20 and 5.21 respectively. In the tables, the log 

- 11L's from normal L•F (5.1) are given in parentheses beside 

those obtained by substituting normal theory estimates,P, 

in binomial LF (5.3), as in the previous example. 

This example provides an extension of the analysis of 

response surfaces given in chapter II to the case where an 

alternative PM is available. Once the parameters of an accep-

table SN have been estimated,,the procedures outlined in 

chapter II for exploring the response surface are applicable. 

Step I. For the nonlinear MM (2.3), the NLE's of the 

power parameters are /6-1.  = 0.34 and Cr,2  = -0.55 for the logit 

normal PM and l‘o 1  = 0.19 and l'a2  = -0.24 for the per cent nor- 

mal PM. This first pair of estimates is used in the nonlinear 

(2.3) binomial SE instead of calculating the exact MLE's. 

Step III. A comparison of PM's using MM (1.4) shows 

that the per cent normal models (H) and (I) are very good 

approximations to the binomial model (N), while the logit 

normal model (E) is not. 

Step IV. When NM's (5.9) and (2.3) are used in the com-

parison, none of these normal theory approximations appears 

to be very good, as shown in Table 5.22. Although the com-

plete analyses are not given here, two other PM's were fit- 

ted, the transformed odds normal (G) 	,... 0.18) with MM 

(2.3) and the arcsine normal (J) with both NN's (5.9) . and 

(2.3). The corresponding results for these SM's are included 



in Table 5.22. Although neither of these PM's fits very well, 

when the desired MN's are introduced, they provide better 

fits than the binomial SM's. This implies that some MM der-

ived from these and used with the binomial PM instead of 

equation (5.15) (i.e. abandonment of the natural model) 

should yield an improved fit. 

Step V. As seen from Tables 5.20 and 5.21, all SM's 

provide essentially the same analysis of effects, with only 

the effect of x1  linear being relatively unlikely. The RL's 

using binomial LF (5.3) are in all cases much smaller than 

those from normal LF (5.1). 

In Figure 5.1., contours for p = 0.3 and 0.8 hatch have 

been plotted for the linear MM (5.9) with the binomial (N) 

and per cent normal (H) PM's, showing that they give very 

similar surfaces. Figure 5.2 gives the corresponding non-

linear SM's, 1114 (2.3) with PM's (I) and (N), which give 

somewhat different surfaces (much different from those of 

Figure 5.1). *The surfaces for the two best fitting nonlinear 

SM's are plotted in Figure 5.3, the arcsine normal SM (J) 

and the transformed odds normal SM (G). All of the surfaces 

appear to have a similar shape along the plane x2  = 4.0 

where the surface rises very steeply, and to differ else-

where in the factor space. 

9.Mathematical Models for the Variance 

All of the preceding examples have involved NM's des- 
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cribing variation in a mean parameter with change in the 

response conditions. For the normal SM's, this has involved 

an assumption of constant variance. But implicit in the MM's 

fOr the other PM's has been an assumption of changing var-

iance, since a
? = 2 

for the exponential PM, a
2 
=

2
In for 

the binomial PM, and a? = pz for the Poisson PM. 

If the data in an example"actually come from the theor-

etical PM and the normal model is only an approximation, a 

linear normal SM will not take this changing variance into 

account. The use of a transformed response has traditionally 

been one method of attempting to improve the situation, the 

method used in the examples. Two alternatives to this are 

immediate. If sufficient observations are available, a dif-

ferent variance may be estimated for each response condi-

tion. Or, the relationship stated above between the mean and 

variance may be substituted into the normal SM, eliminating 

the variance parameter. In this case, a normal PM truncated 

at zero must be used. 

The use of an asymptotic Chi-squared likelihood ratio 

test (see chapter VII, section 4) often actually gives an 

exact test of significance for the second alternative (using 

the relationship between the mean and variance in a normal 

PM) when it is applied to a likelihood ratio such as the 

Poisson or exponential. This is further discussed in chapter 

VII. 

The assumption of constancy of variance of a normal SM 



.88. 

may be assessed by fitting a SM with the variance changing 

(the first alternative). For the data of example 6.1, an 

additional MN, for the variance a
2 jI was introduced into the i 

normal PM (B) with MM (5.5). This SM gives a RL of fit of 

log RVN = -90.51 with Y= 0.52. But, R(1=1) = 0.85 so that 

normal PM (A) is acceptable with this combination of MN's. 

The lack of fit for this SM may be compared with those given 

in Tablo 5.2 for the other two normal SM's. Although the 

improvement is large, especially over the linear model, the 

greatly increased number of parameters may not warrant use 

of this model. Apparently, the transformation of the response 

and the changing variance play somewhat the same role in 

improving the linear PM (A), with changing variance being 

better at the cost of adding more parameters (see the next 

section). 

A more ad hoc method is to plot residuals. In Figure 

5.4, the deviations from expected values for the various 

response conditions of example 6.1 are plotted against the 

expected values using the interaction MM (5.5) with the 

linear normal PM (A). The plot is identical using the exp-

onential PM (K). The variance appears to increase with 

increase in the size of the mean (expected response). In 

contrast, the residuals for the corresponding transformed 

normal SM (B), plotted in the transformed units in Figure 

5.5, show no notice.t:Lble change in variance with the res-

ponse conditions. Such a transformation of the response 
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does not change in the same way the expected values of the 

observed responses when transformed back to the original 

units, as a comparison of Figures 5.6 and 5.7 shows. In 

these diagrams, expected values are plotted against observed 

in the original units; only the scale of the expected values 

is altered. 

Similarly, such plots may - be used to compare the dev-

iations for Poisson models. For example 7.1, in plots for 

the linear normal (A) and Poisson (M) PM's, the deviations 

increase with the mean, confirming the relatively good fit 

of the Poisson. A plot for the log normal PM (C) shows 

little change in variance with the transformed means. For 

example 7.3, a plot of residuals for the Poisson PM (M) with 

linear regression shows no increase in variance with the 

mean. In fact, for the one large response observed (in 1962, 

see table 5.11), y17= 17,381 is estimated as i;*717= 17,694, 

whereas many smaller responses have a larger deviation than 

313. This confirms the relatively very bad fit reported in 

the example. 

For normal theory approximations to binomial SM's, the 

(transformed) variables can be plotted against the residuals 

to determine if constancy of variance is valid as above. 

When more than one observation is made for each response 

condition, comparison of FM's in step III is made using a MM 

with different mean for each condition (i.e. MM (1.4)). For 

a normal PM, this leaves only the assumptions of normality 
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and constancy of variance for comparison. Hence,,fit of such 

a SM in step III depends only on these two assumptions, and 

the results of this step for the examples mentioned.in this 

section are confirmed by the plots of residuals. Use of a 

changing variance SM eliminates the second of these assump-

tions, providing an assessment of this normality assumption 

alone. 

The random effects model in ANOVA is a more common 

example of a MM for the variance. 

10.Roles of Transformations of Normal Responses 

As discussed in chapter II, transformations of the res-

ponse using a normal PM may perform three functions: (i) to 

provide a distributional form of PM which better describes 

the data (e.g. log normal etc.),i.e. to discover new units 

of measurement making the response variable more nearly nor-

mal; (ii) to fulfil better the assumption of constancy of 

variance; and (iii) to provide a better fit for the I.M. The 

relative importance of these three functions may be analyzed 

by an extension of the method of the previous section for 

assessing the assumption of constant variance. If more than 

two observations are available under each response condition, 

three SM's may be fitted, and the RL graph for the transform-

ation parameters plotted in each case. Each SM has a common 

transformation under all response conditions. For the first 

SM, a different mean and variance is estimated under each 
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response condition; for the second, constant variance with 

a different mean under each condition. The third SM is the 

one of interest, using the specified MM. 

The transformed per cent normal PM (I) of example 8.4 

was analyzed in this way for the data of Table 5.19. The 

three RL graphs of the power transformations are plotted in 

Figure 5.8. For the _first SM, only the normal distributional 

form is assumed; the graph is relatively flat with R(r=1) = 

0.75, showing that the data fulfil this assumption well.(as 

opposed to the transformed normal alternative). For the 

second SM, the assumption of constant variance is added; the= 

RL graph of y changes markedly, with R(r=1) = 0.004, indicat-

ing that this is a poor assumption without the transformation. 

For the third SM, the further assumptions of the nonlinear 

response surface MM (2.3) are added; the graph shifts to 

give a different range of plausible values of the power 

transformation. Thus, for these data, the transformation 

performs the second and third functions listed above. 

When this analysis is applied to the data of example 

6.1, considering the no interaction MM (5.6) as the one of 

interest, the RL graphs of y from the second and third SM's 

are almost identical, revealing that the transformation is 

not important in reducing interaction effect. For these data, 

the prime function of the transformation is to fulfil the 

assumption of constant variance. 
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11.Discussion 

The main problem in extending the principles of normal 

theory regression analysis and ANOVA to other PM's has lain 

in the lack of suitable accompanying distributions, such as 

the F and Student's t distributions, for developing approp-

riate exact significance tests. In some very simple problems, 

such as 2x2 contingency tables(which, it has been seen, may 

be regarded as 2 block one-way ANOVA), exact significance 

tests may be developed by enumerating all of she possible 

'outcomes of the experiment within some defined sample space, 

as in chapter VII. But for more complex problems, this rapid-

ly becomes impossible even with a high speed" computer. Vari-

ous approximating techniques have been employed such as 

asymptotic (large sample) normal approximations (even with 

small samples) and Monte Carlo methods. In this chapter, 

likelihood methods of inference have been outlined for a 

first attack on the data to determine what information they 

can give about various theoretical SM's before any approx-

imating techniques are used. 

One drawback to this method, which has appeared through-

out the examples, has been a divergence in the size of like-

lihood ratios for the same NM when different PM's are used. 

The key to these differences may come from the discussion of 

section 9, where the link between the mean and variance is 

mentioned. When such a link occurs, change in the MN will 

have more effect on the LF than when no such link exists. 
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For example, considering the SM's of section 7, in example 

7.1, elimination of the effect of treatments from the MM only 

directly affects the mean for the normal PM's, whereas for 

the Poisson PM, the poorer fit of the NM (describing the 

mean) causes the variance, and hence the whole Poisson PM, 

to fit much more poorly. 

Thus, this apparent drawback may be very useful in 

detecting overall departures from the SM through variation 

in the MM. This is true because of the existence of the base 

mu)tinomial PM through which all likelihood ratios from a 

given f;et of data are directly comparable. 

Comparison of sizes of likelihood ratios between dif-

ferent sets of data (i.e. data measuring different types of 

responses) is not clearly justified, especially if the sets 

have very different numbers of observations. But, the same 

may be said of a simple test of significance (in Fisher's 

sense): the level at which either a very improbable event 

has occurred or the hypothesis is wrong will vary with the 

data set and especially with the number of observations. Of 

course, it two sets of data are derived independently from 

the same type of experiment (measuring the same response, 

although perhaps at different points in the factor space), 

the corresronding LF's may be combined directly by multipl-

ication. 

Another problem involves maximization over parameters 

in the LF. If the inference desired involves comparison of 
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SM's, then we are interested in the best that each SM can do 

and maximization is valid. In tnis case, differences in the 

number of parameters maximized over is taken into account 

by desire for simplicity, theory, or other considerations. 

The introduction of more parameters to be maximized over 

will naturally provide more potential for superior fit. 

When parameter valuesare being considered within a 

given SM, the method of maximizing the LF over parameters 

not of immediate interest must be viewed as an approximation. 

If at all possible, use of the entire LF is desirable. An-

other procedure for making inferences about parameter values 

for a given SM wheh nuisance parameters are present will be 

discussed in chapter VI, using a conditional LF. 

When the methods of chapter IV are applied to data 

involving responses measured under a number of conditions, 

so that the FM is actually a product of different probability 

functions as in this chapter, consideration of the average 

HL per distribution (per condition) i.e. the geometric mean 

of the HL, is useful. This is given in each table of AL's for 

the preceding examples in the form -log H where I is the num-

ber of conditions. They show that the difference in plausi-

bility (step II) between Fin's is usually very small, because 

of the very small number of observations per condition. 

In spite of many apparent problems, proceeaing beyond 

standard normal theory SM's often is useful. Besides provid-

ing fresh insight into the data, fitting a theoretically more 
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justifiable P14 than one involving the normal distribution 

often allows more complicated NM's, by eliminating the 

variance parameter, and provides the potential for better 

predictive power. 
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CHAPTER VI 

INFERENCES USING. THE CONDITIONAL LIKELIHOOD FUNCTION 

1.Introduction 

In analyzing a set of data, the stage is usually reached 

where some SM is considered acceptable (plausible) and we 

wish, to consider the plausibility of various parameter values 

within the model. No problem arises in using the LF for com-

parison of plausibilities if only one estimable parameter is 

present in the SM. If more than one such parameter is present 

and all are of equal interest (perhaps linked in some way), 

again theoretically, no problem arises: Various SSN's to be 

considered may be compared by use of the likelihood ratio. 

If we wish to see how plausibility varies with change in the 

parameter values, methods of visualization become increas-

ingly difficult with larger numbers of parameters. As used 

in previous chapters, one method of overcoming this problem 

is consideration of a silhouette of the likelihood surface, 

obtained by maximizing the LF over some of the parameters. 

But the approximating interpretation ,of this must be kept in 

mind. 

Often a special circumstance appears when a SE has been 

adopted for the explicit consideration of only some of its 

estimable parameters. Although the remaining nuisance para-

meters are essential for considering the SM as a whole (steps 

I to IV of chapter V, section 4) and the LF is then used, 

after the SM has been found to be acceptable, we wish to 

make inferences about the parameters of interest in the 
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absence of knowledge of what values the nuisance parameters 

might have. Since sufficient statistics contain all of the 

information in the data about a parameter, in order to do 

this exactly, all of the nuisance parameters must have suf-

ficient statistics. Then, inferences about the parameter(s) 

of interest will be made, conditional on this information-

about the nuisance parameters, through the use of the cond-

itional probability function in Lhe form of a conditional 

likelihood function (CLF). 

Fraser (1967) introduced the concept of marginal likeli-

hood in connection with structual inference, for use in the 

elimination of nuisance parameters. Sprott (1968) and Kalb-

fleisch and Sprott (1970) have extended this concept by 

considering likelihoods based on distributions conditional 

on sufficient statistics. This is somewhat similar to obtain-

ing some forms of uniformly most power similar confidence 

tests for multiparameter distributions by conditioning on 

sufficient statistics, as in Lehman (1959, p.134), and also 

to Fisher's exact test for the 2x2 contingency table 

Because of the strong restrictions, CLF's will only be 

applicable in certain special cases, In addition, their use 

will be further restricted by the difficulty of deriving the 

appropriate conditional distribution for many of the MN's 

considered in chapters III and V. This difficulty usually 

results from the condition (as in ANOVA) that a number of 

parameters sum to zero, e.g. NM's (5.5), (5.6), (5.7). 
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Of the IM's considered in previous chapters, those for 

ANOVA may often present cases where a CLF would be desirable. 

In many such problems of two-way ANOVA, only the effect one 

way is of direct interest (see any of the two-way ANOVA 

examples of chapter V). Then, for example, we should be int-

erested in making conditional likelihood inferences about 

all of the ai's of no interaction MM (5.6) in the absence of 

knowledge about pt or any of the j's. Unfortunately, in such 

cases as this, derivation of the conditional distribution is 

usually difficult. The MM of a regression problem does not 

usually contain nuisance parameters, although in cases such 

as response surface methodology it may. 

When transformation of the response is introduced into 

a continuous PM, we may be primarily interested in what val-

ues of the transformation parameters are plausible. The same 

applies for the nonlinear parameters of a regression MM such 

as equation (2.3). Then, all other parameters will be cons-

idered as nuisance parameters. 

Two types of examples will be provided in succeeding 

sections: conditional likelihood inferences about parameters 

of intexest in ANOVA involving a binomial PM (of chapter V, 

section 8), an extension of the likelihood analogue of Fish-

er's exact test, and about the power parameters'of normal SM's, 

As a prelude to the first of these, and an extension of 

the results of chapter III, the CLF's will be derived for 

various NM's using the binomial PM. 
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2.The Conditional Likelihood Function 

Suppose that the SM represented by f( DA) has parameters 

of interest Al  with nuisance parameters A2, and that, for 

fixed Al, minimal sufficient statistics, t2, possibly func-

tions of Al, exist for the elements of g2. Then, the marginal 

distribution for these statistics is given by 

f (t
'  
•A) =

S =const.
f(x;A)dz 	(6.1) 

14 —2 
where the integral becomes a summation for discrete SM's. The 

conditional distribution of the observations ;liven these suf-

ficient statistics will then not be a function of the nuis-

ance parameters: 

fc(Vlit2) = f(iig)/fm% 	(6.2);A) • 

From this conditional distribution, a CLF may be obtained 

which may be handled in the same way as the ordinary LF 

previously used, althou3h the interpretation of inferences 

will be different, as described in the previous section. Com-

plications arise, treated in Kalbfleisch and Sprott (1970), 

when a transformation of the response contains a parameter 

of interest, as in the SM's arising from LF's (5.1) and (5.2). 

Only relatively straightforward examples will be used here. 

The CLF is equivalent to the conditional distribution 

of equation (6.2): 

LC  (A ) = fC  (DA1  /t2  ) . 	(6.3) 1  

As with the ordinary LF, all comparisons use ratios of CLF's. 

Analogous to equation (1.7), a conditional relative likeli-

hood (CRL) function may be defined: 
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RC(A1
) = Lc  (A )/Lc - (1,?61 	, 	) (6.4) 

where 	denotes. the parameter vector maximizing the CLF. 

Again, with many parameters of interest, looking at profiles 

of the CRL surface by maximization over all but one or two 

parameters of Z may be a useful approximate tool, ,although 

exploration of the complete surface will be more meaningful. 

Note that no base CLF, analogous to the multinomial LF 

used in the ordinary likelihood inferences of previotis chap-

ters, is defined. When theoretical problems arise in deriva-

tion of a CLF for a continuous PM, retention of the base 

multinomial LF may clarify the problem. Then, equation (6.1) 

becomes 

f (t 	= 	f ( Y.; )AY_ • M 2' =const. 
Theoretically, this is useful in such problems as the deri-

vation of a CLF for the power transformation of the response. 

3.Conditional Likelihoods for Binomial Statistical Models 

Various natural linear SM's for the PSD and specifically, 

for the binomial PM have been extensively considered in chap-

ter III. For the PSD, if each element of the parameter vector 

Z.  has a corresponding minimal sufficient statistic in the 

statistic vector t, and if 01  is the parameter of interest, 

then the CLF is 
t1 LC(01) = 	a'(,1„Mi  

1d7 	
(6.5) SEa'  ( z , t2  , . • tic 7)1] 

This may easily be extended to a parameter vector of inter-

est, Al* The SE's considered for the binomial distribution 



101. 
will all be of this form, with sufficient statistics for all 

parameters, since natural linear MM's are used. 

For the analysis of J 2i2 contingency tables (a 2xJ 

randomized block design with binomial error) with no inter- 

	

action MM (3.9), the parameter al  = 	is of interest. Then, 

e2a1Y1'  
LC(a1)LC(a1) = /E

1  (y.. ,r, y..-z)e2ct1 	
(6.6) 

from equation (6.3), where a'(y..,r,s1) is from equation 

(3.10) and $1  = eat. If this 814 is implausible and the inter-

action MM (3.6) is necessary, then the CLF becomes 

Lc(ai) = ;OTT( 	Nu21 	(6.7) 2Ja-z] 
z 1_3  Orlj-Y1*-1-z) 	e  

In this case, a(z) need not be modified since the interaction 

NM has as many parameters as response conditions. These two 

CLF's will be used to make further inferences about some of 

the parameters in examples of chapter V, section 8. 
For the analysis of an Ix2 contingency table with MM 

(3.12) (one-way ANOVA), the difference parameters, a, may be-

of interest with A a nuisance parameter. The CLF is 

Tie o:  

	

Lc  (a) = ._ 	(Ni) eairi  NI )eaI(Y*-Iri)  

	

2. 	 A. i) 	5r• -Tri 

Again, no modification of a(/) is needed. For I = 2, this 

reduces to the CLF for the 2x2 contingency table, 

e20:131.1 
(N1\  ( N2  \ 

1 r1 	r1)  

Equations (6.6) and (6.7) also yield this result when J = 1 

as does the conditional distribution used to make Fisher's 

(6.8) 

L
C 
 (m ) 
1 (6.9) 
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exact test of significance for the 2x2 table. 

For the binomial regression SM with MM (3.14) and p = 1, 

suppose the parameter of interest is %, after removal of the 

effect of the independent variable xii. Then, 

Ooto  
LC(ao) 	.2.  

- 
Ea' ( z' t1) e(3ozj 	

(6.10) 

where to  =Iyi  and at(t0,t1) is from equation (3.15). This 

may be extended to a multiple regression situation where 

only some of the coefficient parameters are of interest. 

4.Examples from the Binomial Distribution 

4.1 The traditional SM to which a conditional argument 

has been applied is that for the 2x2 contingency table for 

which Fisher proposed his exact test of significance. The 

CLF in this simple case illustrates the main points of cond-

itional likelihood inference. 

In Figure 6.1, the RL function for al  maximized with 

respect to A of MM (5.7) has been plotted for the data of 

chapter V, example 8.1. In the same figure, the CRL function 

for al is plotted using equation (6.9). Log Rc(cc1=0) = -0.34 

whereas log R(a1=0) = -0.36 and the MLE, 81 = -0.45 virtually 

the same as the conditional MLE. 

Use of the maximized (over A) RL function for al  assumes 

that p. takes on (is known to be) the value maximizing the LF 

with of  set. Use of the CRL function assumes that the value 

of p. is unknown. This, makes very little difference for inf-

erences in this problem, as illustrated by the very similar 
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graphs for the two functions in the figure. 

4.2 The example (8.2, chapter V) from Cox (1966) con-

cerning the effect of rocking on babies crying is a case 

where a one-way treatment effect is important in a two-way 

ANOVA; In Figure 6.2, the RL function for Q1 maximized with 

respect to ;.1 and of no interaction MM (5.6) has been plot-

ted, along with the CRL function..Again, the CRL graph is 

very similar in shape to that for the RL, but log Rc(a1=0) = 

-2,04, 	C  = 0.62 whereas log R(a1=0) =. -2.33, al = 0.70, as 

indicated by the displacement of the graph in the figure. 

Thus, use of the CRL function makes an effect due to rocking 

less p)ausible and gives a smaller best estimate of difference 

in effect. 

But the no interaction MM was found to be implausible 

in chapter V. The corresponding plots for interaction MN (5.5) 

yield uniform (R=1) graphs for ai in both cases, i.e. for 

this model, the data provide no information about the differ-

ence in effect of rocking. This reveals another reason for 

plotting the LF. The analysis in chapter V using MM (5.5) 

gave log R(a1=0) = 0.0 which might lead one to conclude that` 

a1 lies very near zero. In fact, the data do not indicate 

'this, and only a plot reveals that the LF is flat. 

The first part of this analysis agrees with the results 

provided by Gart (1970b). 
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4.3 Gart (1970a) analyzes the results of an experiment 

by Innes et al testing the carcinogenic effect on mice of a 

fungicide, Avdex. As given in Table 6.1, individuals of two 

strains of mice, split by sex to give four strata, are either 

treated or used as controls, and the number with tumors after 

85 weeks recorded. This yields a 2x4 ANOVA table. These data 

are analyzed as in chapter V, section 8 using the binomial 

PM (5.3) with the interaction (5.5) and no interaction (5.6) 

NM's. This analysis, provided in Table 6.2, shows plausible 

effects both of the treatments and within the sex-strain 

grouping. Although the RL for no effect of treatment is 

slightly larger than that for sex-strain differences, this 

effect may be considered more plausible because the change 

of MM here only involves loss of one parameter whereas for 

the sex-strain effect, three parameters are involved. No 

interaction effect is indicated using MM (5.5). 

Primary interest lies in the carcinogenic effect of the 

treatment. Thus, the RL function for the parameter of inter-

est, maximized with respect to the other parameters, has been 

plotted in Figure 6.3 for both of the MM's . For comparison, 

the corresponding CRL functions have been plotted in the 

same figure. All four functions are nearly identical, with 

those for the interaction MM slightly wider. 

With other sets of simmilar data analyzed, the same 

result occurs. The conditional and ordinary LF's for a given 

MN are very similar, although the difference in graphs bet- 
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ween two MM's may be greater than in this example. The larg-

est discrepancy found between the two analyses for a given 

NM occurs in the previous example (Figure 6.2), but here the 

corresponding graphs for the other (interaction) NM are com-

pletely different, being flat. 

5. Conditional Likelihoods for Nonlinear Normal Models 

A second type of parameter of interest in the SM's dis-

cussed in preceding chapters may be the power transformation, 

either of the response for a continuous PM or of the factors 

of a regression or response surface MM. Conditional likeli-

hoods for transformation of the response raise special diffi-

culties about the metric of the sample space, since the 

transformation is incorporated in the differential of the LF; 

see equation (5.1). Kalbfleisch and Sprott (1970) discuss 

some of the problems encountered in this situation. Only the 

second case, transformation of the independent variable, will 

be considered here, for a normal PM. 

As a simple example of the development, consider the MM 

B()11) = 	+ 	 (6.11) 

with the normal PK of LF (5.1) and g(y,Y) = y. The nuisance 

parameters are 	and a?. For given o4 the sufficient statis-

tics for these parameters are to  =:Eyi, t1  = ryixi/Exi
2oz. 

 , and 

t2 =DY -q 	xcc)
2
. The marginal distribution is 

A 

i KO 1 i 	1 

• expl 	2  - 	0 1 

 2 a
2 ,o 1 ' 26- 

t 	n((3 +q xcr-l6 	y-92  
-91)2 

 A 	...] 

f (t oct,o'2) = 	77777'r 
M 	Tr Emz-) 2n 0, 

2 
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and the conditional distribution is 

1-1(nf) 	[(nf) 
f (Daft) = 	 

n- 2 n- 	n-21-  
2 ifr-t2 	21 	4o1-21;(7. 	xai  )2D3  

so that the CLF is 
2 n-3  

( cx) = 	( yijklolixci() ] 2 

This compares with the ordinary maximized LF 

maxL(am, 0  o.g ) = a( y - 4'  xi) i  
derived  from equation (2.4). In general, the power in the LF 

-1  will change from -1i. to n-n in  the CLF, where p is the num-

ber of coefficient parameters conditioned out. For the two 

factor response surface model in the example of chapter II, 

p = 6 and the CLF is a function of the two parameters, of  

and 40.2. This function can then be maximized over one of the 

parameters and plotted as in chapter II, or contour plots of 

the surface can be made as below. 

The effect of use of this CLF on inferences may be more 

clearly seen than in the previous two sections. Here, the 

power in the Llo is altered by a factor corresponding to the 

number of nuisance parameters eliminated; the graph for the 

parameter(s) of interest is widened without changing the 

MLE's. Little effect is produced if the number of parameters 

eliminated is much smaller than the number of observations. 

The nonlinear SM of chapter II, section 5 is refitted 

to the data of that section, but with Y.= 1, giving MLE's of 

= 1.61 and A;2  = 1.36. Contours of the AL function are 
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plotted in Figure 6.4 along with those for the CAL function. 

For these data, n = 22 and p = 6 so that the power changes 

by a factor of 15/22 producing considerable effect. For an 

analogous NM with data from chapter V, section 8.4, the effect 

would be much smaller since n = 68 and the factor is 61/68. 

6. Discussion 

The results of section 4 give some indication.that 

conditional inferences may make very little difference when 

the nuisance parameters eliminated are .of the same form as 

the parameters of interest (linear parameters describing the 

mean in this case)'. This is related to the fact that varia-

tion in one parameter will not greatly affect the MLE of an-

other, i.e. the parameters are estimated almost independently. 

In this context, it may be noted that the analogous CLF for 

the Poisson PM with the no interaction MM (5.6) is identical 

to the corresponding LF maximized with respect to the nuis-

ance parameters. When the parameter of interest is of a 

different type from the nuisance parameter, a definite dif-

ference in inferences is often discernable, as in section 5. 

Another simple example involves data from a normal PM 'with 

mean, 11, and variance, 0
2, where la is the nuisance parameter. 

The conditional MLE of a2  is ::(yi-Y)2/(n-1) as opposed to the 

FILE, Dyi-Tf)2/124 the CLF is correspondingly modified. 

Normal theory ADLVA is not changed by introduction of 

the conditional argument if the variance is known. Condition- 
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ing out a (constant unknown) variance makes some difference 

in the width of the likelihood graph without affecting the 

estimates of mean parameters. From equation (2.5), the normal 

LF with no power transformation, maximized with respect to 

the variance and to any other nuisance parameters, 	is 

,_.[0.2(A1,a2)1n/2  

Corresponding to this the CLF is 
n-p-1  

1,C( 1) = [c2(A1'12) 

where the vector A2 has p elements. The lack of effect is 

associated with independence of the sufficient statistics-

for the mean parameters in contrast to joint sufficiency 

with the variance'statistic. The same is true for the Poisson 

SM mentioned above. Apparently, the ANOVA NM's for the other 

PM's approach independence closely, although not exactly, 

yielding CLF's very similar to the LF's. 
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CHAPTER VII 

TESTS OF SIGNIFICANCE 

1.Introduction 

The previous chapters have provided a means of attack-

ing one of the problems outlined in chapter I, where the 

plausibilities of a number (possibly infinite) of hypothe-

sized SSM's are to be compared. No assumption is made about 

preference for any subset of these SSN's before collection 

of the data. If this problem of chapter I is extended to 

include an assumption of preference for members of the set 

of possible SSN's, by means of prior distributions or loss 

functions, then the appropriate posterior probabilities (from 

Bayes' theorem) or losses may be calculated extending the 

likelihood analyses derived in the previous chapters. This 

process will not be discussed here. 

Often, an assumption (null hypothesis, Ho) will be 

available of strict preference for one or a few of the possi-

ble SSM's, and this will be of special interest (i.e. consid-

eration of the first purpose of chapter I, section 1). This 

subset will often be derived by setting some parameter(s) 

defining the SN constant, e.g. no effect in an ANOVA uN. If 

this set does not consist of a unique element, i.e. define a 

unique SSN, a conditional argument, as in chapter VI, is 

used in the following procedure. In this case, the prefer-

ence assumption is a composite Ho. When Ho  defines a single 

SSN, it is called simple. 

For a simple Ho, the probability of any outcome in the 
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sample space, including the one observed, may be calculated. 

If the observed outcome has a smaller probability of occur-

rence than most possible outcomes, either a rare event has-

been observed or the assumed SSM is wrong. One method of 

determining where the observed outcome stands on the scale 

of possible outcomes under the given SSM is to sum up the 

probabilities of all outcomes with at least as small a prob-

ability as that of the one observed, giving a significance 

level, as described in Fisher (1959). 

Extreme care must be taken in defining what constitutes 

an outcome for continuous FM's, i.e. in defining the inter-

vals into which observations may fall. Some natural unit of 

interval width, Ayi, should be used as in chapter IV, since 

a nonlinear transformation of this will change the probabi-

lity scale of possible outcomes. Of course, intervals with 

small probability may be combined as in discrete cases. An 

example of a norlinear width was• given in chapter IV, example 

4.7 where A'yi  = logLyi  was used. 

For a composite Ho, the same procedure must be repeated 

for each SSM in the subset. This provides a collection of 

significance levels, one for each SSM. The level of largest 

size will be the significance level of the subset of SSM'-s, 

since sufficient evidence must be obtained about each SSM 

being wrong before considering the entire subset to be wrong. 

This is discussed in Fisher (1959, pp.89-93). 

Sometimes, all of the information provided by the data 
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about variation in plausibility of the various SSM's within 

the subset may be summarized in sufficient statistics for 

the parameters determining the various members of the subset, 

i.e. the nuisance parameters. Then, setting these sufficient 

statistics equal to their observed values defines a subspace 

and a conditional probability statement may be made about 

each element of this• subspace. The significance level is 

calculated using the probabilities of outcomes in the sample 

subspace analogous to when the subset contains a single SSN. 

Thus, a composite Ho  can be considered pimple in the subspace. 

This 1E3 equivalent to the argument for deriving a CLF in 

chapter VI,section' 3. 
Unless sufficient statistics are available for the par-

ameters set constant by Ho, placing the observed outcome in 

the scale of possible outcomes according to probability of 

occurrence will usually be very difficult. The search for 

statistics to provide this result without great loss of 

information has resulted in the approximations of Neyman-

Pearson theory. These problems will be further discussed in 

section 5. 
Occasionally, as well as giving a fixed parameter value 

(e.g. zero mean), Ho  states that the possible parameter val-

ues lie in a range (e.g. non-negative mean) smaller than 

that allowed by the SE. Then, to make the exact test, the 

possible outcomes with smaller probability to be considered 

are restricted to those unfavourable to this assumption, 
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giving a one-sided test. This is only possible when sufficient 

statistics are available for the parameters so that a mono-

tone relationship between parameters and statistics can be 

used•to restrict outcomes considered for smaller probability. 

Two points should be noted. The use of tests of signi-

ficance is an attempt to provide an absolute measure of im-

plausibility about certain selected SSM's and not to compare-

plausibilities of various SSM's, as with a likelihood ratio, 

nor to provide probabilities of long run error as in Neyman-

Pearson theory. The significance level obtained is a proba-

bility statement about possible outcomes, not about parameter 

values or SM's. 

Care must be taken if several Ho's are available about 

a SM, each involving a different set of parameters in the SM 

(e.g. no effect each way in two-way ANOVA or stepwise mult-

iple regression where different answers may result depending 

on whether parameters are added or removed). After an infer-

ence has been made.about one Ho (subset of SSM's), further 

inferences must take this result into account. This must be 

especially emphasized where conditional significance levels 

are involved. Only when the two sets of sufficient statistics 

are distributed independently, not jointly, can order of the 

inferences be ignored. This precaution is not necessary when 

making ordinary likelihood inferences, since these always 

involve comparison of SSI4's ("preferences"). 

For example, in multiple regression with two independent 
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variables and. a normal PM, suppose the first Ho, that pi  = 0, 

is plausible. Then, testing the second Ho, that (32  = 0, in 

the original MN, without taking the first result into account, 

and finding this second Ho  plausible, of course, does not- mean 

that both parameters may be plausibly eliminated (unless the 

sufficient statistics are distributed independently, i.e. 

orthogonal polynomials are used and the variance is known). 

Again, suppose 1,1.  = 0 is plausible and, taking this into 

account, 2  = 0 is implausible. Then, testing 2  = 0 first 

will not necessarily yield the same result. 

Often, the subset of SSM's is not derived by setting 

some parameter(s) constant; preference is only stated for a 

given PM (e.g. Ho: the data arise from a Poisson PM). Thus, 

the test of significance is used for determining the goodness 

of fit of the SM no matter what values the parameters have. 

All of the above arguments also apply in this case. 

Only occasionally is calculation of exact significance 

levels for SSM's feasible. For many situations involving 

normal PM's, the necessary distributicns have been tabulated, 

at least for the SSM where the parameter(s) disappear from 

the model. For discrete PM's involving small counts, tabula-

tion of the probabilities of all possible outcomes is often 

possible, using an electronic computer, and hence derivation 

of the significance level. In other cases, asymptotic approx-

imations are usually adopted. These involve representing the 

subset of SSN's by an equivalent set of distributions which 
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has been or easily can be tabulated. 

Thus, two situations arise where approximate methods 

are needed for tests of significance: (1) sufficient statis-

tics are available for the parameter(s) about which a null 

hypothesis is made, but the distribution has not - been and 

cannot easily be tabulated; (ii) no sufficient statistics 

for these parameters are available making determination of 

possible outcomes with smaller probability than that of the 

one observed difficult. In the first case, an aymptotib 

distribution is required, assuming that enough observations 

are available. In the second case, an approximate statistic 

using most of the information in the data about the paramet-

er(s) is required. In either case, an approximate LF results; 

the usefulness of the approximate test for a particular set 

of data may be assessed by comparing the approximate LF graph 

with that for the observed exact LF. 

2.Exact Tests of Significance 

Fisher (1959. pp.86-89) discusses an exact test of sign-

ificance for a difference parameter in the 2x2 contingency 

table using a-conditional argument as in chapter VI, example 

4.1. This analysis may be extended to the case of J 2x2 cont-

ingency tables in analogous manner to the likelihood infer-

ence'procedure of examples 4.2 and 4.3 of the same chapter, 

Thus the probabilities of outcomes are defined by a binomial 

PM with no interaction MM (5.6) where the 	parameters refer 
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to differences between tables and ai = 	= mo  defines the-

subset of preferred SSM's. As in the derivation of CLF (6.6), 

the subset of SSN's may be reduced to one SSM by conditioning 

on the sufficient statistics for p and ., giving the condi-

tional probability function, 
2a.y . 

f (Y "
a) =  a'(y..,r,y..-yi.)e 	1 

9 (7.1) 
C 1" 1 

Ty(y;;;r;y:.-z)e2al.z.] 

from which CLF (6.6) was derived.After replacing al  by the 

value aO' the probability of any outcome in the sample sub-

space may be calculated, and the conditional significance 

level derived. Since tabulation of these probabilities is 

necessary in order-to calculate the denominator of the CLF 

(6.6), if the CLF is plotted, very little further calculation 

is needed to determine the significance level. In the same 

way, a conditional significance level may be calculated for 

a hypothesized value of al  in MM(5.5) after deriving the 

corresponding conditional probability function. 

Since even data consisting of continuous measurements 

are actually discrete, theoretically, exact significance 

levels can always be calculated by this summation procedure 

in the discrete sample space. In_practice, for continuous, 

PM's, significance levels are calculated by integration. In 

this way, the tables used in normal theory analysis have been 

produced. A simple example from normal theory occurs when Ho  

sets the mean as 110  for unknown variance. Then, Lhe condi-

tional distribution used for an exact test is Student's t. 



116. 

If sufficient statistics are available for all of the 

parameters in a SN. the conditional argument will yield an 

exact test for the Ho that the data come from the given SN 

without specifying any parameter values. For a discrete SN, 

the significance level is obtained by summing probabilities 

in the sample subspace as before. Since integration is dif-

ficult in the continuous case because of lack of sufficient 

statistics for the SN after conditioning, summation may be 

used, considering the data discrete. This procedure is only 

used for lack of fit of a single SM. If other SM's are also 

being considered, as in chapter IV, they may be compared with 

the first using likelihood ratios. 

3.Exact Tethts for Contingency Tables 

The three numerical examples of the previous chapter for 

ANOVA using a binomial PM will be reconsidered for the Ho, 

al  = 	= 0. In each case, additional parameters ere present 

in the SM so that the preference assumption yields a subset 

of SSM's instead of a unique SSN. Sufficient statistics are 

available both for the nuisance parameters, so that the cond-

itional argument can be used, and for the parameters of int-

erest, so that determination of outcomes less probable in 

the sample subspace is simple. 

The first example (8.1, chapter V and 4.1, chapter VI) 

involves one 2x2 contingency table; we wish to determine the 

implausibility of no effect between treatments. Summation 
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over the sample subspace determined by conditioning on the 

sufficient statistic, y., for the nuisance parameter, A, 

yields the probability 0.608 of an event occurring which is 

at least as improbable as the one observed under Ho, so that' 

the given outcome is relatively quite probable under Ho. 

This is Fisher's exact test. 

The second example (8.2, chapter V and 4.2, chapter VI) 

involves eighteen 2x2 contingency tables for which we wish 

to determine the implausibility of no (common) effect between 

treatments of the babies. Here, two NM's are possible, as 

considered in chapter V. Each will lead to a different test, 

since variation in' the subset of SSM's determined by Ho  will 

be different i.e. the nuisance parameters will be different; 

For the interaction MM (5.5), the sample.subspace is deter-

mined by the sufficient statistics, yi. and yi/-yi2-y.1+y.2  

(i = lgoes ,18), for the parameters )1, 	and Y. Unfortunately, 

this subspace contains only one point, the observed outcome, 

yielding a significance level of 1.0. For the no interaction 

MM (5.6), the sample subspace is determined by yi. (i = 

18) for the parameters )1 and i. Under this Ho, the probability 

is 0.062 of observing an outcome at least as improbable as 

that observed, again showing that Ho  is not too implausible 

for the observed outcome. 

Cox (1966) adds to this Ho  that al  must be non-negative 

ci.e. that rocking cannot produce a negative effect)..A suf-

ficient statistic is available so that outcomes in the sample 
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subspace unfavourable to this assumption may be determined. 

Summation over this restricted subspace yields a (one-sided) 

level of 0.0449, showing the Ho  to be more implausible under 

this additional assumption. This Ho  with an additional 

assumption should not be confused with the Ho  that ol is 

non-positive. In this case, the significance level must be 

calculated for each non-positive ai 
in the ordinary (two-

sided) way and the largest level chosen for the composite Ho. 

The final example (4.3, chapter VI) involves four 2x2 

contingency tables, where the test is fpr no carcinogenic 

effect of Avadex on mice. As in the previous example, two 

NM's are possible.%The likelihood analysis of chapter VI 

revealed little difference between the two MM's (Table 6.2). 

But, the significance level of Ho  for the no interaction NM 

is 0.0096 whereas it is 0.036 for the interaction model. 

'.Asymptotic Tests of Significance 

If the required sufficient statistics are available, any 

test of significance, theoretically, can be reduced to a test 

involving one (perhaps by conditioning) or more SSM's. In 

this section, cases are considered where such a reduction can 

be made but where the resulting (perhaps conditional) SSM 

neither has been nor can be readily tabulated. Then, some 

asymptotic distribution is needed which represents the SSM 

exactly when the number of observations becomeS very large 

and is a good approximation for smaller numbers. Thus, a 
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normal distribution or some distribution derived from it is 

usually most useful. 

The two most common approximations involve the (C)LF. 

(i) If Ho  is true, 

ei log L(0)Ii-E( 2   log L(qS)T I 
S

cvN(0,1) 	(7.2) 
"g7 	6i2   

for large n. (ii) Asymptotically, -2 log R($0) will have a 

Chi-squared distribution with one degree of freedom when Ho 

is true. This assumes that the (conditional) MLE 

c---)14(f,g0; yn ED7log L(1 	(7.3) 10 

see Wilks (1962, p.408). The extensions to multi-parameter 

situations are straightforward. For the conditional argument, 

L and 11 are replaced by Lc  and R.  Other approximations have 

been derived for special circumstances. 

To check the appropriateness of the approximation for a 

given set of data, the LF derived from the assumptions (nor-

mal in the above cases) may be plotted along with the exact 

LF. Unfortunately, in many situations where such a test of 

significance is desirable, the exact '(C)LF is difficult to 

tabulate, as for the CLF of chapter VI, examples 4.2 and 4.3. 

In this case, the original assumptions (7.3) of the Chi-

squared approximation may be used under the null hypothesis, 

as by Cox (1966). But the approximate LF (conditional in 

this case) cannot- be compared easily with the enact one. 

Sometimes, point comparison of LF's is useful, as was.done 

in chapter IV, example 3.5. 
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A simple example of checking appropriateness occurs with 

the asymptotic Chi-squared test for the 2x2 contingency table 

approximating the exact test given in the previous section. 

The approximate LF can be plotted for various values of Q1 

by using the fact that 
Al 

is the square of a normal, N(0,1), 

variate with variance proportional to iti(141 
 )/e2g.1.(.11.e2ori 

-13
A
1e  -1 

2n%).2 e The expected values in the table are calculated 

by fixing the marginal totals and setting the log odds ratio 

equal to the determined constant, 2oc1. For the data of the 

first example of the previous section, the approximate test 

gives a significance level of 0401 compared with the'exact 

0.608. A graph of the approximate LF has been included in 

Figure 6.1, showing the difference which explains the diver-

gence in significance levels. 

As a second example, consider the data of chapter IV, 

example 3.3. Suppose Ho  is that p = 1 in the Poisson PM, 
yielding a unique SSM. Then, the exact level of significance 

is 0.52 providing no evidence against Ho. Using an asymptotic-

Chi-squared likelihood ratio test, the approximate level is 

0.55, with log R(p=1) = -0.288. The approximate LF derived 

from equation (7.3) comes from 

30Ap = 26(•.,  N(30p,30p) . 

(See chapter V, section 9). This and the exact LF are plotted 

in Figure 7.1. The approximate log R(p=1) = -0.342. The div-

ergence in LF's explains the difference in significance lev-

els. This asymptotic test approximates the Poisson PM by a 
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normal PM with A = 0

2
. 

These methods can be extended to the asymptotic Chi-

squared goodness of fit test usually used for discrete data. 

Expected values of the frequencies are calculated from the 

SIN using MLE's of any unknown parameters. The Chi-squared 

test applied to deviations from observed values provides an 

asymptotic equivalent to the exact test of section 2; In 

this case, however, no parameters are left for an approximate 

or an exact LF to determine how good is the approximation. 

Often, an asymptotic approximation is useful for deter-

mination of outcomes less probable than the one observed. 

Since many distributions are asymptotically symmetric (normal), 

distance of the ?iLE of the mean from the value given by Ho  

for any possible outcome can be used. Those outcomes giving 

A 	 A 
A further from 	than the observed A are considered less 

probable. If the distribution actually is symmetric, this 

yields an exact test. This asymptotic procedure usually is 

useful only for a mean parameter. 

Sprott and Kalbfleisch (1969) diScuss comparisons of 

approximate and exact LF's and show how transformation of 

the parameter may provide a better. approximation. 

5.Tests of Significance without Sufficient Statistics 

Most of the examples considered in the previous chapters 

used SM's with sufficient statistics available for al], para-

meters. The only major exception is the normal Ski with power 
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transformations of the response or of'the regression variables. 

If Ho 
specifies a value of the transformation parameter(s), 

sufficient statistics are available for the remaihihgzpara-

meters and the conditional argument applies. But no suffici-

ent statistics are available for the transformation parameters 

making determination of outcomes less probable than the one 

observed difficult. Two procedures are available: (i) the 

two asymptotic tests, (7.2) and (7.3), of the preceding sec-

tion are usually avatlable: (ii) some statistic may be found 

which is almost sufficient and an approximate test applied. 

In either case, an approximate LF is available to compare 

with the exact one; 

Box and Cox (1964) use the first method for the data of 

chapter V, example 6.1 for a power transformation of the 

response, but without using a conditional argument. 

Williams (1962) uses the second method for a SM involv-

ing nonlinear regression parameters. In a simple example, 

suppose Y1 (Nb N(e-ccx1,1), i.e. a normal PM with MM 

B(pi) = e-axi 

e_ 	
-2ax, 

Then, the statistic, yixie-axi, has distribution Nixie 

r 2 -2ax„ e 	1) which may be used to calculate an approximate 

significance level for some Ho  about a:. The distribution of 

the statistic may be used to plot an approximate LF for com-

parison with the assumed SM for the data to determine how 

much of the information in the data is used, i.e. how.closely 

the statistic approaches sufficiency. If coefficient paramet- 
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ers are present in the MM, a conditional argument is used. 

This procedure may be extended to obtain an approximate test' 

when a nonlinear MM such as equation (6.11) or (2.3) is used. 

analogous to the CLF of chapter VI, section 5. 

6.Discussion 

When a scientific experiment is to be performed, the 

assumptions about underlying mechanisms which :•rill produce 

the observed outcome can take many forms. The experiment may 

be performed to test the validity of some specific null hypo-

thesis about the mechanism, in which case a test of signifi-

cance is used. Or,- it may be simply to provide (further) in-

formation about the mechanism, in which case a likelihood 

analysis is applicable. This likelihood analysis may provide 

the basis for some null hypothesis which can be tested by 

further experimentation. But, even when a null hypothesis is 

available, further exploration of the underlying mechanism 

by means of the LF is always useful to gain maximum utility 

from the data. 

Although likelihood analysis is a relative criterion of 

plausibility, an absolute basis for comparison always exists, 

the (rnultinomial) SM making the observed data most probable. 

In contrast, a test of significance is always an absolute 

measurt of implausibility in itself. Cnly in certain special 

cases, when independently distributed sufficient statistics 

exist, as described in section 1, can more than one test be 
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applied for a given set of data. Thus, if two PE's are sus-

pected of being plausible for an experiment, such as the 

Poisson and geometric of chapter IV, example 3.3, a combined. 

hull hypothesis that the correct SM is Poisson or geometric 

does not make sense. One SM is chosen for Ho and the approp-

riate (conditional) test of significance applied to give an 

implausibility measure for it. The plausibility of the other 

SM may then be compared to this by means of the likelihood 

ratio as in chapter IV. The same reasoning applies to para-

meter values. A null hypothesis will not state that = 01 
or 0 = 02. One value is chosen, as above for SE's. In the 

special case where' H is 01  = 010  and 02  = 020  and independ-

ent sufficient statistics exist for 01 and 02' the two parts 

of Ho may be tested independently by a conditional argument 

using different sample subspaces. 

From the above discussion, initial assumptions may fall 

within several levels of complexity. They may specify two or 

more SSM's from which the most plausible is to be selected. 

They may allow any parameter values within a specified SM, 

perhaps with a null hypothesis about one value. Likelihood 

analysis may allow this to be reduced to the preceding situ-

ation for the next experiment. Or they may allow several SM's, 

perhaps with a null hypothesis about one. Likelihood analysis 

may then reveal parameter values within a selected plausible 

SM for analysis as in the preceding situations for a future 

experiment. Thus, statistical analysis of scientific experi- 
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ments becomes a succession of steps, eliminating implausible 

null hypotheses and searching for plausible mechanisms illum-

inated by the available data.. 
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44 	5 1 5 
58 	5 - 10 
68 	5 I 15 
68 	5 f 20 
41 	5 . 25 
57 	10 	10 
44 	15 	5 
71 	15 	15 
79 	15 	20 
77 	15 	25 
100 
55 	

20 	20 
25 	15 

79 	25 	20 
96 
100 

25 	25 
25 	30 

68  25 	35 
98 	30 i 30 
30 	35 ' 20 
58 	35 F  25 
70 	35 	30 
76 	35 	35 
84 	35 	38 

x °C Ix2°C 
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APPENDIX II 

TABLES 

SS d.f. F RL 

Treatments 7(  - ( 	 ) - CO N2  SS6=,_ yi. 	-Y.. 	, I-1 Mss6/NSS2  (SSIISS2)-N/2  

Regression SS5=SS6-SS3  K-1 NSS5/NSS4 (SS1/SS4)-N/2  

Residual SS4=SS2+SS3  N-K 

Lack of Fit SS
3 

 =-2,E(YriY)-P1Y) 	21  I-K NSS3/MSS2  (SS4/SS2 )-N/2 

Pure Error SS2 - 	-ij Y)--i° 77-(11)2  N-I 

Total \-- 	Y) 	-(Y)%2 SS1=:4.(yii 	-Y.. 	). N-1 
nv.... 	,+[ *.••••'.+4, a .•••••rus.nf.u...av re••••••...u..... 

MSS6 = SS6/(I-1) etc. 

value of yij  predicted by equation (2.3). 

Table 2.1 Analysis of variance for MN (2.3) with N obs-
ervations, I points in the factor space (treatments), $ a 
vector of K elements, and ak=1 (all k). The subscript j denotes 
replications. 

Table 2.2 Cruising speeds, y, of gOldfish for 22 pairs 
of acclimation (x1) and test (x2) temperatures. Fry and Hart 
(1948). 
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SS df MSS F RL 

Regression 	1 7003.62 5 1400.72 19.14 5.21x10-1;°  
Linear 	1  2918.64 2 1459.32 19.94 1.06x10-° 
xi  linear 	1 163.50 1 163.50 2.23 2.37x10-16  
x2  linear 2246.67 1 2246.67 30.69 7.64x10:8  
Quadratic 4790.80 2 2395.40 32.73 .1.68x10_0  
x1  quad. 4310.92 1 4310.92 58.90 4.22x10 
x2  quad. 2202.10 1 2202.10 30.08 8.'82x10-'4)  
x1x 	inter. 2574.30 1 2574.30 37.63 1,67x10-' 
Residual 1170.96 16 73.18 • 
Total 8174.59 21 

-Table 2.3 Analysis of variance for the data of Table 
2.2 according to MM(2.3) with ak=1 (all k).and 1=1. 

SS df MSS Approx F RL 
aaL..-.....ah ,••• 	..r•-•,* A4...-s•ar,.. ....r.....*1... t 

Regression 8514.18 5 1702.84 54.36 1.79x10-15 
Linear 1147.44 2 573.72 18.31 3.98x10-7 
xal linear 805.85 1 805.85 25.72 6.10x10-,'4 
x 2 linear 1041.85 1 1041.85 33.26 8.63x10-.(h  

, Quadratic 
x?:1 quad. 

6005.69 
5141:46 

2 
1 

3002.84 
5141.46 

95.86 
164.13 

6.77x10-t, 
3.33x10-1)  

Vt2 quad. 3280.43 1 3280.43 104.72 2.98x10-11  
x -:±x°"2 inter. 4041.49 1 4041.49 129.02 - 3.78x10-12 

Rehidfial 407.21 13 31.32 
Total 8921.42 21 

Table 2.4 Analysis of variance for the data of Table
2.2 according to MM(2.3) with '&1=1.63, Cc2=1.29, and Y=0.11. 

Observed 
--- 

No Linkages 	Linkage I 

Starchy green 
Starchy white 
Sugary green 
Sugary white 

ni 
 = 1997 

n 	= 	906 
n2 = 	904 
n 	= 	32 

I" 

	

2159.4375i 	1953.775 

	

719.8125 	925.475 

	

719.81251 	925.475 

	

239.9375 1 	34.275 

re 
log AF  log LM=-4069.297 

t 	0.03571 

	

287.69 	! 	2.0154 

	

-198.344 	1 	-1.023 

Table 4.1 Analysis of linkage in the progeny of self- 
fertilized heterozygote 	Fisher (1958, p.299). 



SophistiTimaeusi 

2.8 
3.6 
3.4 
2.6 
2.4 
2.5 
3.3 
4.o 
2.1 
2.3 
3.3 
1.6 
3.o 
3.o 

'3.o 
5.1 
5.2 
2.6 
2.3 
3.7 
2.1 
3.0 
3.4 
1.3 
4.6 
2.5 
2.9 
3.5 
4.1 
4.7 
2.6 
3.4 

2.4 
3.9 
6.o 
1.8 
3.4 
3.5 
3.4 
3.4 
1.7 

1 3 q.4
.3 

2.7 
3.0 
2.2 
3.9 
3.0 
3.3 
3.3 
3.3 
3.o 
2.8 
3.0 
3.3 
3.0 
2.2 
2.4 

6.4 
3.8 
2.2 
1.8 

1 

919 	762 
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Republic . Laws Critias Philebus Politicus 

	

1.1 	2.4 

	

1.6 	3.8 
3.3 
2.0 

2.5 
2.8 

1.7 
2.5 

1.7 	' 1.9 2.0 2.1 3.1 
.1.9 	2.6 1.3 2.6 2.6 
2.1 	3.0 6.7 4.0 3.3 
2.0 	3.8 4.0 4.8 2.9 
2.1 	2.7 3.3 4.3 3.3 
2.2 	1.8 2.0 1.5 2.3 
2.8 	0.6 1.3 0.7 0.4 
4.6 8.8 6,0 6.5 4.o 
3.3 
2.6 	11.0 

3.4 2.7 
2.7 

6.7 
0.6 

5.3 
0.9 

4.6 	i 1.1 2.0 0.7 1.0 
2.6 1.5 2.7 3.1 3.1 
4.4 3.o 3.3 1.9 3.o 
2.5 5.7 6.7 5.4 4.4 
2.9 4.2 2.7 5.5 6.9 
3.o 	1.4 2.0 0.7 2.7 
3.4 	1.0 0.7 0.4 0.7 
2.0 	2.3 2.0 1.2 3.4 
6.4 	2.4 1.3 2.8 1.8 
4.2 	0.6 4.7 0.7 0.8 
2.8 	2.9 1.3 2.6 4.6 
4.2 	1.2 2.7 1.3 1.0 
4.8 	8.2 5.3 5.3 4.5 
2.4 	1.9 3.3 3.3 2.5 
3.5 	4.1 2.0 	3.3 3.8 
4.0 	3.7 	4.7 	3.3 4.9 
4.1 	s  2.1 	6.o 	2.3 2.1 
4.1 	' 8.8 	2.0 	9.o 6.8 
2.0 	3.o 	3.3 	2.9 2.9 
4.2 	5.2 	4.0 	4.9 7.3 

3778 	3783 	150 	958 770 

Table 4.2 Percentage distribution of 32 possible sentence 
endings in seven works of Plato. The number of sentences in 
the work is given at the bottom of the column. Cox and 
Brandy ood (1959). 
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• a  F 	P 	 1 	S 	 T 

_...............,41,.......,,, , . i _.. 	nft. -• - ,.....- 	vv.- ..". tr. . . t,.. r  ,....„....,„ ...,, , ___. +•••• at •e.- tti 

..12830'...12328 	^501 1 	- 3117 ""'25511 "'3145 -2616 
0.0 	II  -821.21 -26.4 1-242.0 -158.01-106.4 -94.6 1  

-10043 	0.0! -31.51 -53.0 -59.4!, -146.2 -183.8 
1003.6;  -821.2 	5.11-189.0 -98.61 39.9 	89.3, 

1I -15,91  -49.5 -45.81 -28.5 -34.3i 

Log 
Log 
Log 
Log 
Log 
Log -19.8  -53.4 -51.71 -68.9 -81.31 

j enb* ••..; 
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Table 4.3 Analysis of the data of Table 4.2 for order-
ing the works of Plato. 

0 2 3 4 

12 6 1 0l 

Table 4.4 Frequency distribution of observations gener-
ated from a Poisson distribution of mean 0.8. Cox (1962). 

yi  

1 f. 

yi  0 

f. 213  

1. 	2 	3 	4 

128 37 18., 3  

5 # 6 

Table 4.5 Frequency distribution of yeast cells in 400 
equal-sized squares of a haemacytometer. ."Student" (1907). 

__ 
A 	B 	C 

i 	
D 1 E 1 F 	G 	 k 	 

I 
	
H 

Log Lm 	-1236 -1341,-1481 -15691-12231-1270 -1268 -1328 
Log RG 	-8.0 -5.5 :-.16.2 -6.7 1-13.3'-13.9 -21.1 -27.4 
Log RLN 	-7.3 -7.7 -9.2 -11.11-16.0i-15.8 -23.9 -41.2 

Log LILNG  0.73 -2.15 6.95 -4:46
1
-2.69t-1.80.-2.84 -13.8 

Log RLNG  3.37 -3.61 9.29 -3.131-2.87 1
-3.66 -1.73 -13.91 

L  
Table 4.7 Analysis of the data of Table 4.6, comparing 

the fit of the gamma (G) and log normal (LN) PM's. 
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Mr•anNalkeilag*.e., 

Diameter 

9-11 
11-13 
13-15 
15-17 
17-19 
19-21 
21-23 
23-25 
25-27 
27-29 
29-31 
31-33 
33-35 
35-37 
37-39 	1 
39-41 
41-43 
43-45 
45-47 
47-49 
49-51 
51-53 
53-55 
55-57 
57-59 
59-61 
61-63 
63-65 
65-67 
67-69 

A 

	

5 	2 
34 1 13 c  
89 ! 39 

	

105 	61 : 
125 96 
95 110 
75 99, 
43 ' 73 
14 38 

	

11 	31 , 

	

2 	22 , 

	

1 	127  
3 
1 

DIE 	FIG 

9 3 23 3 
16 4 23 2 
31 8 7a 1 

	

42 	12 	11 4  11 
58 35 20 18 
67 35 21, 21 
77 49 46 39 

39 47 39 
54 38 4o 39 
58i 51 41 4o 
38 39 36 43 
31 44 33 43 
19 28 28 38 
13: 22 26 23 
8 13*  28 18 
7 7 22 13 
3 6 9 24 
1 ; 6 13 6 

	

1 	1 	3 	8 

	

.5 	3 	9 

	

3 	5 	1 

	

1 	3 
1 

	

1 	1 	1 

2 
2 

1 
1 

6 
16 

66 
84 
83 
88 
61 
4o 
37 
29 
18 
6 
8 
5 
2 
2 
• 1 

2 

1 

H 

1 
4 

- 3 
4 
9 
9 

24
17  

32 
15 
24 
37 
43 
34 
34 
28 
29 
33 
20 
18 
12 
10 
3 
4 
1 

Total , 600  600 600 600 45o 45o 45o 45o 

Table 4.6 Frequency distribution of eight wool tops 
with diameters measured in microns. Monfort (1964) . 
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Ungruuped (1 minute) ' 1 Grouped (10 minutes) 

A 	B 	C r A 1 

Log LN  
Log R,,T  
Log 
Log 11'i' 

-268.10 -272.44 -313.29;-162.52 -168.58 -195.51i 
-64.85 -66.18 -73.03' -9.67 -7.82 -6.721 
-64.94 -66.00 -73.04 -9.66 -7.65 -6.70! 
-193.62 -189.17 -215.36 -138.85 -131.65 -148.42! 

4 -66.00 -73.04 -9.66 -7.65 -6.70! 
-193.62 -189.17 -215.36 -138.85 -131.65 -148.42! 

C  
[210 121512)218 1226 228 1230 733111235 
[241(2).243 244 !248 251 1253 254(2)255 
259 	00(3)  261 	f267(3Y2.70 	;271(3)273 z274 
280(4).282 283(2)284 285(3)286(2)287 289 
293(2)294 296 t298(2)299 	1300 	'302  130 7 
1314  

-706 -122R0 M 
!256 1258(2) 
1275( 3)279 
;291 292 
1309 ;310(2) 

Table 4.8 Survival times of three groups of silkworm 
larvae when a lethal dose of sodium arsenate is applied. If 
more than one larVa survived a given time, the number is 
given in parentheses. Bliss (1967), pp. 106 and 122. 

Table 4.9 Comparison of the log normal (LN), gamma 
(G), and exponential (E) PM's fcr the data of Table 4.8. 

Table 4.9 Comparison of the log normal (LN), gamma 
(G), and exponential (E) PM's fcr the data of Table 4.8. 

Dose 	0.76 1  1.80 I 2.6o 	3.30 1 5.00 
,...._ 	, 
Log P. :51.07 !-200.41 -232.13 -54.71 :113.3:74 
Log _ 	60 51 ,204.77 -229.65 -64.16 -130.97 

I Log EiLN  : -60:011-205.05 :-229.86 -64.39 -130•55 __ 	1   
Table 4.11 Comparison of the log normal (LN) and 

gamma (G) Pll's for the data of Table 4.10. 

Dose 	0.76 1  1.80 I 2.6o 	3.30 1 5.00 
,...._ 	, 
Log P. :51.07 !-200.41 -232.13 -54.71 :113.3:74 
Log _ 	60 51 ,204.77 -229.65 -64.16 -130.97 

I Log EiLN  : -60:011-205.05 :-229.86 -64.39 -130•55 __ 	1   
Table 4.11 Comparison of the log normal (LN) and 

gamma (G) Pll's for the data of Table 4.10. 
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Poison, 	 

A- 
I ,0.31 0.46 

II 0.36 0.40 
0.29 0.23 

III p0.22 0.18 
0.21 0.23 

Treatment 

C 

0.82 0.88 0.43 0.63 0.45 0.66 
1,0. 	0_,_72 Q. 45_0 .,36,0 .21_0_, 62_1 
0.92 0.49 0.44 0.31 °.56 0.71 
0.61 1.24 0.35 0.40 11.02 0,38 
0.30 0.38 0.23 0.24 ;0.30 0.31 
0.37 0.29 0.25 0.22,0.36 0.33 

i36. 

Development Time 
. 	2 	' Dose in 107  ergs/cm. 

Days Ai  0.76 1.80(2.60 
- 

3.30 5.00 
-_-_ 

91.2 6.5 2 
97.7 7.0 2 1 
104.7 7.5 2 5 
112.2 8.0 2 2 1 1 
120.2 8.6 , 5 9 3 4 
128.8 9:3 3 8  7 3 
138.1 9.8 10 10 1 13 
147.9 10.6 1 7 19 3 6 
158.5 11.3 16 11 2 4 
169,8 12.1 7 14 1 8 
181.9 *13.0 17 6 2 2 
194.9 14.0 2 7 7 2 4 
208.9 15.0 6 3 1 
223.9 16.0 1 2 2 3 	1 
239.9 17.2 1 1 
257.1 18.3 5 1 

i 
275.4 19.7 3 1 
295.1 21.1 2 1 

i 316.2 	- 22.1 4 
338.8 24.3 2 • 
363.1 26.0 1 
389.1 27.8 
416.9 29.8 1 , 

Total 23 	86 98 	25 
--1 

51 
--i 

Table 4.10 Frequency distribution of development 
times of ear tumors in male mice exposed to various doses 
of ultraviolet radiation. Blum (1959). 

Table 5.1 Survival times of four animals under each 
combination of three poisons and four treatments. Box and 
Cox (1964). 
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' 	- 	• 	....1 

PM 
.4,9m-r....2.2".-,eit 

Linear 
Normal (A) 

Ywr. 	••••.Irr%. 

Transform 
Normal (B) 

Nat Linear 
Expon. 	(K) 

"Exp. Val" 
Expon. 	(L) 

overall Effect -31.74 -47.65 -4.83 -4.83 
Regression -13.10 -24.79 -3.29 

Treatments 	1-18.38 -28.60 -1.41 -2.04 	• 
Linear -1.1 -:- 	. 	7 .-0.26 
Quadratic -1.97 -2.32 -0.33 

Poisons -19.89 -37.80 -2.29 -2.73 
Linear -10.29 -20.55 -2.54 
Quadratic -1.35• -2.80 ;-0.65 

Interaction -6.52' -3.49 -0.22 -0.61 
Linear --0.00 -0.33 -0.05 

PM Lack of Fit 124.37 -99.04 -162.39 -162.39 
Av.Lack of Fit -10.04 -827 -13.55 -13.55 

Table 5.2 "Analysis of variance". for the data of 
Table 5.1 using maximized log RL's. 

111....•••*1 

Response on April 

20 1 23 

	

1 	7.0 7.2 9.7 6.3, 8.0 10.9! 9.11 5.5 6.7 
6.4 10. 	6.9 5.7.1_7.2 12.31_2,41 6,1apa... 
10. 	•.0 9.0 7.2 10.1 9.9! 8.6 6.6' 6.4 
10.4 7.9 7.2 7.8 	6t5 9.9 7..6 6..5  zio_l 

	

3 	5.7 6:4 11.0 6.0 5.5 11.8' 7.0 8.1 5.61 
4. 	7..8 6.7, 6.0 	o 7.2  6.51 9,6 
.5 5.7 6.6 8.o 7.3113.0 7.9 8.1 9.7: 
8.1 6.8 8.6 9.1 8.8 11.4i 8.0 6.7 8. 

6:o" 7.1 5.9 7;81  
8.2  
8.1 7.5 9.0 9.2 8.2 12.8 6.2 8.0 9.4 
10.7 	7.5 9.8 3.8 8.9 10.8 6.9 7.4 	8 

	

7 	e.2 6:2i 7.5 5.2 8.6 7.4 8.7i 5.0 	.2 
	 4--7,_. 05.t.8 	50.16_ 6.5,$ .2 	6.0 	 

	

8 	7.2 1  -8.0 7.8 6.6 8.1 10.0 8.5 7.0 7.5 
1,7.6  .7. 1 7.8 5.2 8.o 9.81_8.3 6.6 •  8.7  

. 	6.5 9.1 7.5' 6.9 7.5 
_9,8 _7.4' 6.6' 6.6 _8.6_9,9_ 

	

71-0 	4.5-7. 3 	7.8 1_0./0.7 7.5 8.7 
10.3 8.4 10.5- 9.2 8.5:10.1J9.0   7.5,7.8 

Table 5.3 Tail-flip reaction times in seconds of ten 
white rats in two trials on each of nine different days. 
Ipsen (1949). 

18 

  

25 27 

  



Trial Number 

1 	i 2 , 5 i 8 I   lit 14, 
1 	• 	i 	i _ , i _ . _4 

145 ;140 66 18 ao 
50 ; 45: 16t 10 ; 8 i  
300 1180 35 22 i 20 
240 i ,45 85! 70 30 

	

165 	951 351 5o t 18 
110 1 83! 451 48 t 23 
305 1 59 i 54 f  4o 1 20 
3451100 1110 1 55 35 
422 1253 75 ! 73; 20 

	

32 	50 ' 8 t 7 	6 

Rat 
No.  

12 

3 
4 
5 
6 
7 
8 

10
9.  

(Over 
Betty 
Betty 
Inte

all Effect 
een Trials 
een Rats 
raction 

Lik.Lack of Fit 
Av. Likelihood 

PM 	Linear 
Normal (A) 

-35.20 
-29.89 
-14.44 

-263.30 
-5.26 

138. 
• PM Linear 

Normal (A) 

- 	.......-- ....... 
Log 

Normal (C) 

_ 
Nat Linear 
Expon. 	(K) 

Exp. Val" 
Expon. 	(L) 

Overall Effect 
Between Days 
Between Rats 
Interaction 
PM.Lack of Fit 
Av Lack of Fit 

-126.97 	. 
-73.90 
-34.80 
-77.06 

-1333.73 
-14.82 

-121.72 
-65.48 

 -34.14 
-76.34 

-1334.43 
-14.83 

-2.81 
-1.05 
-0.45 
-1.27 

-1666.68 
-18.52 

-2.81 
-1.09 

. 	-0.45 
-1.26 

-1666.68 
-18.52 

Table 5.4 "Analysis of variance" for the data of 
Table 5.3 using maximized logIRL's. 

Table 5.5 
a maze on five 

Time in seconds required by ten *rats to 
different trials. Bliss (1967) p. 327. 

run 

MM No Interaction (5.6) Interaction (5.5)] 

Log 	Nat Linear "Exp. Val" 
Normal (C) Expon. (K) Expon. (L) 

-55.71 	-26.67 	-26.67 

	

-47.37 	-93.28 	-17.07 
-32.26 	-5.03 	-7.01 

r-4  - 0* 	-> -m 

	

-214.42 	-246.04 	-246.04 

	

-4.29 	-4.92 	-4.92 

*14o convergence; log R approaches negative infinity. 

Table 5.6 "Analysis of variance" for the data of 
Table 5.5 using maximized log RL's. 
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Block 
• 

Control. Toxic Emulsion 

11 	2 
- 
31 	4 	5 6 

17 
8 

I 33 	30 
9 -1 36 
36 	23 

19 i 42 
27;39 

	

8 	1 12: 	6 

	

.1.1. 	ly! 	.o 

	

15 	6i 	4 

	

10 1 121 	4 

	

P? 	lof 	12, 

,......„,24,1_23_2a,i44-!____2_ 
II 

III 
3 

6 
3 

----- 
V 

71 	59-  
A99.,._ 
22 1'42 
27; 22 

171 	51 	5- 
26}. 	8  } ....5 

1 
1 

14 t  12 I 	2 
11 	121 	6 

2 
5 

84; 23 	22 	1761-17 	6 
50 37 	30 	4] 11 	5 

Table 5.7 Counts of numbers of leatherjackets surviv-
ing on two one sq. ft. areas in each of 36 one sq. yd. plots 
divided into six blocks with two control and four sprayed 
plots per block. Bartlett (1936b). 

1 	PM I 

1 

Linear 
Normal (A) 

Log 
Normal (C) 
- - 

Sq. Root 
Normal (D) 

Poisson 
j 	(M) 

Overall Effect -81.34 -93.00 -92.07 -433.48 
Between Treat. -71.51 -84.27 -84.29 1 	-309.71 
Between Blocks -16.12 -20.36 -18.92 -20.45 
lInteraction -36.08 -40.64 -37.27 -61.19 
!PM Lack of Fit -173.48 -138.28 -142.44 -142.88 
Itiv Lack of Fit , 	- -4.82 -3.84 -3.96 -3.97 

Table 5.8 "Analysis of variance" for the data of 
Table 5.7 using maximized log RL's. 

Block 
Treatment 

1 2 3 
bwranal...1.....01.010.6.,......W. 

None 	183 176 291 
Superphosphate (P) 356 300 301 
Potash (K) 	224 258 

K 	_a29,283 

4 I 

254 
271 

244 217 
308 326 

Table 5.9 Numbers of surviving sugar beet plants under 
four fertilizer treatments in four blocks. Snedecor and 
Cochran (1967) p. 344. 
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MM
,r1.1 

No Interaction (5.6) Int.(5.5) .. 
Linear Log Sq. Root 

PM Normal Normal Normal 'Poisson Poisson 
• (A). I. 	(C) (D) (N) 	. (N) 	: 

_. -. 	- 
Overall Effect ,-8.79 1 	-8.46 -8.64 -50.00 -77.19 
Between Blocks -1.15 -1.23 -1.18 -3.87 -4.79 
Between Fert. -8.36 -7.98 -8.20 -46.13 -48.69 
Interaction -27.19 
Lik.Lack of Fit -76.57 	, -77.61 -76.99 -86.54 -59.35 
Av. Likelihood -4.79 	. 	.-4.86 -4.81 -5.42 -3.71 

Table 
Table 5.10 	"Analysis of variance" for the data of 
5.9 using maximized log RL's. 

Year No..Caught x10-3(y) Rainfall (x1) Sunshine (x2) 
1930 8496 19.5 217 
1932 1242 5.4 219 
1934 2532 20.5 175 
1936 3928 17.2 242 
1938 1504 15.7 201 
1940 680 11.6 210 
1942 1234 26.6 291 
1944 2230 6.8 	153 
1946 2040 29.4 	233 
1948 2800 17.4 210 
1950 2800 24.3 231 
1952 2406 13.8 234 
1954 1752 10.7 193 
1956 	3719 11.0 172 
1958 	2026 10.1 262 
1960 	2488 18.5 178 
1962 	17381 22.2 354 
1964 	5152 17.8 278 
1966 	7031 	19.8 	293 
1968 	9706 	13.2 	301 

Table 5.11 Numbers of pink salmon caught in British 
Columbia fisheries with rainfall and sunshine conditions 
on even years over a forty year period. P. Wickett, 
Fisheries Research Board, Nanaimo, Canada. 
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-8.99 
-0.14 
-4.2o 
-1.16 

	

=o 	-3.17 

	

Lack
= o 	-0.72 

Lack 
Lik.of PM Lack of Fit 
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5 
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8 
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8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

, 14 
15 
16 
17 

L18 

_ 	. 
Ex erimental Babies 	Control _Babies  

Day Not Crying 	Total Not Crying 	Total 

3 
2 
1 
1 
4 
4 
5 
4 
3 
8 
5 
8 
5 
4 
/4,  
7 

5 

14i. 

Poisson 
(N) • 

_ 
-20805.00 

-59.03 
-6876.88 
-2812.49 
-2390.09 
-408.06 

-6864.69 
-98.23 

• 

Table 5.12 Regression analysis for the data of Table 
5:11. -uding maximized log RL's.-. 

Table 5.13 A.  2x2 contingency table. 

Table 5.14 Number of babies not crying after a test 
period of either rocking (experimental) or not on eighteen 
days. Cox (1966). 



Replication 	1 
• Treatment 

1 	2 	3 	4 

8/100110/100 12/103/160 
2/100? 6/100 7/100 11/100 
4/100110/100 9/100.. 8/100 

Jr. ; 3/100 I 5/100 9/100 ,10/100 
9/1001 7/100 5/100% 5/100 

5 

11/100 
5/100 
10/100 
6/100 
3/100, 

Control 
rasan 

'ppergon 
iSemesan 
:Fermate 
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1 ' 	 MM No Interaction (5.6) Interaction (5.5) 

Overall Effect 
Rocking 	3  
Between Days 

1 Interaction 
;Lack of Fit of MM - 	, 	.1 ....t• ..M1.-MM 

-15.08 
-2.33 
-13.28 

• 
-8.15 

- 

-23.23 
-0.00 
-5.10 
-8.15 

 0.00 

Table 5.15 "Analysis of variance" for the data of 
Table 5.14 using the binomial PM (N) and maximized log RL's. 

Table 5.16 Numbers of soybean seeds failing to emerge 
in five replications of five treatments in 25 plots. Snedecor 
and Cochran (1967) p. 300. 

PM 
LogiiT 
Normal 	, 
(E) 	_. 

Odds 
Normal 
(F) 	_., 

Per Cent 
Normal 
Di) 

Arcsine 
Normal 
_(J)__00 

Binomial 
.,..A 

Overall -9.85 -8.96 -9.08 -9.48 " -:/ig' 	' 
(-10.49) (-0.009) (-9.85) (-11.13) 

Replications -3.81 -3.22 -3.35 -3.68 -3.72 
(-5.93) (-0.003) (-4.62) (-5.81) 

Treatments -5.92  -5.25 -5.37 -5.73 -5.75 
(-6.70) (-0.006) 	(-7.01) (-7.65) 

Lack of Fit -7.91 -8.02 	-7.88 -7.66  -7.50 

Table 5.17 "Analysis of variance" for 'the data of 
Table 5.16 using no-interaction MM (5.6) and maximized log 
RL's for binomial LF (5.3) with those for normal LF (5.1) 
in parentheses. 

Logit 
PM 	i Normal 

(E)  
;Overall -17.76 
'Replications! -5.29 
.Treatments _7.37 
Interaction -7.91 

i 	(F..) 
1 -16.98 ; -16.96 ! 
! -4.54 	-4.34 1 

-6.32 	-6.21 i 
-8.02 : -7.88 I 

-17.13 
(1\1) 

-7-±-6.9-6-  
-4.24 -4.37 
-6.36 -6.72 

-7.66 -7;50 

Odds !Per Cent Arcsine 
Normal Normal . Normal Binomial! 

Table 5.18 "Analysis of variance" for the data of 
Table 5.16 using interaction VIM (5.5) and maximized.log 
RL's for binomial LF (5.3). 
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Sal. 'Temp. 

°/00S 

(x1) 

t 

, °C 

(x2) 

Tank-Number 

 1 

ratch Total 

' 	2 

Hatch Total 

.3 	- 

_Hatch Total 

4 

Hatch Total 

15 4 23. ... 203 72 1 3 764 212 723 
15 8 600 656 697 747 615 746 641 703 

12-55 1124' 1-214()) 
343 603 365

55 g65 
302
3 g(-:1 

25 8 591 621 564 64o. 714 754' 532 570 
25 12 475 622 465 645 506 608 415 532 
35 4 1 738 3 655 10 .742 3 743 
35 ' 	8 526 616 419 467 410. 484 374 606 
35 '12 272 362 352 478 392 590 382 459 
10 10 303 681 329 710 262 611 	' 301 700 

, 10* 6 277 757 234 681 263 647 287 801 
4o 10 387 450 389 553 388 564 318 604 
4o 6 276 662 247 542 248 527 149 591 
20 10 351 391 559 65o 527 603 476 548 
20 6 585 643 620 671 437 497 667 771 
30 10 447 491 462 530 475 545 499 556 
30 10 522 - 573 615 68o 539 581 517 561 
3o 6 563 666 600 704 562 656 615 723 

Table 5.19 Effects of salinity and temperature on the . 
proportion of eggs of English sole hatching. Alderdice and 
Forrester (1968). 

PNi 1 Logit Normal Per Cent Normal Binomial 
• (E) (H) (N) 

`Overall Effect 
Regression 
1 Linear 

x1 linear x2  linear 
Quadratic 
xi  quadratic 
x2  quadratic x1  x2  Inter. Sill Lack of Fit 

PI Lack of Fit 
Between Tanks  

1-7433.16 -7347.59 (-73.92) -7931.65 
1,-2774.49 (-33.38) -5662.38 (-45.42) -2700.97) 

	

83.87 (-1.28) 	58.06 (-0.32) -3.0e 
I-2947.22 (-32.98) -5673.77 (-45.26) -2690.9/4! 
,-4687.92 (-44.91) -4845.57 (-56.94) -4461.06 
-2838.86 (-23.57) -1915.72 (-37.45) -2438.411 
-2963.75 (-38.45) -14095.26 (-46.32),-3022.5q 

	

-269.25 (-12.63) 	-364.21 (-7.48) -317.62 
-1414.00 (-58.21) -1451.08 (-45.51) -827.26 

I-8847.16(-119.76) -8798.68(-119.43)• -8758.89  

-12.48 	-1.95 0.00 
_ 	1...22.33°:2141  

Table 5.20 "Analysis of variance" for the data of 
Table 5.19 using linear MM (5.9) and maximized log HM-s for 
binomial LF (5.3) with those for normal LF (5.1) in 
parentheses. 
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PM  

osi.too•araftwt. 

Logit Normal 
(E) 

aocrwanmsaan....u.aboperni...aiem............-au 

_ 
Transform-Per Cent 

Normal (I) 

- 
Binomial 

(N) 

Overall Effect -8847.16(-119.76) -8762.57(-122.81) -8758,8, 
Regression -8083.79 (-84.43) -8249.97(-101.06) -8381.18 
Linear 	. -5029.55 (-61.43) -9277.06 	(-79.61) -4371.96 
x'9. linear 16.46 	(-0.31) - -36.46 	(-4.94) , 	-13.49 
x 2 linear -5082.42 	(-61.41) -4169.53 	(-78.85) -4297.0 
• Quadratic -4115.59 (-57.05) -5303.45 (-74.00) -3600.821 

x11. quadrati -3061.11 	(-41.98) -2508.81 	(-58.29) -2623.971  
x92 quadrati 
xi  x22 Inter. 

	

-2150.39 	(-44.51) 

	

-413.22 	(-24.41) 

	

-13617.72 	(-58.80) 

	

-553.45 	(-17.11) 
-1898.36, 
-366.9g 

NM Lack of Fit -763.37 (-35.33) -512.60 	(-21.75) -377.711 
PM Lack of Fit -12.48 -1.53  0.00 
Between Tanks -330.211 

Table 5.21 "Analysis,of variance" for the'data of 
Table 5.19 using nonlinear MM (2.3) and maximized log RL's 
for binomial LF (5.3) with those for normal LF (5.1) in 
parentheses. 

(5.9) Linear 

Arcsinei 
Normal 	,Binomial 
(j) 	(N) 

MM 

	

Logit 	Per Cent 

	

Normal 	Normal 
(E) 	! 	(H) 

PM 

001.114.011 

SM Lack of Fit 
PM Lack of Fit 

-1426,48-1453.031 
-12.4C 	-1.95 

-  919.451 -827.20 
-5.711 	0.00 

MM Nonlinear.(2.3) 
Trans. Trans. 

PM 	1 Logit Per Cent Odds 	5  Arcsine 
Normal Normal Normal 	pp Normal Binomial., 
(E) (I) (G) 	a 	(J) (N) 

SM Lack of Fit 	-775.85 -514.13 -264.861 -279.55 -377.70 
PM Lack of Fit 	-12.48 -1.53 -17.61i 	-5.71 0.00 

Table 5.22 Comparison of various SM1s and FM's fitted 
to the data of Table 5.19 using maximized log RL's for 
binomial LF (5.3). 
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Sex-straini Treated 	Control 
Stratum 

With Total With Total 

79 
i 87 
1 90 

82 

Table 6.1 Counts of mice of four sex-strains with 
tumors after 85 weeks either fed Avadex or used as controls. 
Gart (1970a). 

MM. 	No Interaction Interaction 
(5.6) 	(5.5) 

...,.....P 	,61 	 n 	.---,-4.-n,...-...en .... V•p•-•1•,..... w....1.1.7.•,.. 

Overall Effect 	-7.14 	1 
. 	-7.57 

Between Sex-strains 	-3.62 	-2.98 
Treatment 	- 	13.48 	. -2.36 
Interaction 	 -0.43 
NM Lack of Fit 	-0.43 	1 	0.00 

•••••••• 

Table 6.2 "Analysis of variance" for the data of 
Table 6.1 using the binomial PM (N) and maximized log RL's. 

X males 4 16 5 
X females 2 16 . 	3 
Y males ; 4 18 10 
Y females 1 15 3 
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APPENDIX_ III FIGURES 

0.8 

0.2- 

0.0 	1 	- 1 	1 	11.8 	2 1.2 	1.4 	1.6 	.0 	(1:1 Figure 2.1 Maximized RL graph for power parameter al 
of MM (2.3) for the data of Table 2.2.. 1.0 -- 

0.8- 
- 

0.6- 

4((x2 )-- 
0.4-- 

•••••111. 

0.2— 

o. °0.8 	1.0 	1 	11.2 	11.4 	11.6 a, 
Figure 2.2 	Maximized RL graph for Power parameter Gic.2  

of MM (2.3) for the data of Table 2.2. 
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0.0 	-o.4 	-0.2 	0.0 	0.2 	0.4 	T 
Figure 2.3 Maximized RL graph for response- transforma-

tion ( of PM (2.2) for the data of Table 2.2. 
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x2
oC 	20 

10 

0 lb 	2b 030 	40 xi  C 
Figure 2.4 Response surface contours for cruising Speed 

of goldfish at 20. ft/min intervals for the data of Table 2.2 
using linear MM (2.3) with al  = cr2  = Y =1. 
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20 	30 	40 xi oc  

Figure 2.5 Response surface contours for cruisingJ- 
speed of goldfish at 20 fqmin. intervals for the.data of 
Table 2.2 using nonlinear iiiii t2.3). 	4o x  
Log Lm 	 30 //* 

x 
-100 	 * 

A x--x 
B *--* 
C o--o 

100 	15. 	200 	240 	EiosAyi  
Figure &1 Graphs to determine optimum interval widths 

in minutes for the three sets of data of Table 4.8. 
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Figure 5.1 Response surface contours- of 30% and 80% 

hatch for the linear MM (5.9) with binomial (N) and per 
cent normal (H).  PM's for the data of Table 5.19. 

x2
oC 
15 

10 

5 

0 0  10 	20 	30 	40 	x
1  0
/00S 

Figure 5.2 Response surface contours of 30% and 80% 
hatch for the nonlinear NM (2.3) with binomial (N) and trans-
formed per cent normal (I) PM's for the data of Table 5.19. 
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Arcsine Normal 
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Figure 5.3 Response surface contours of 30% and 80% 

hatch for the nonlinear MM (2.3) with transformed odds normal 
(G) and arcsine normal (J) PM's for the data of Table 5.19. 
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Figure 5.4 Deviations from expected values for the 

data of Table 5.1 using the linear normal (A) or exponential 
(K and L) PM's. 
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Figure 5.5 Deviations from expected values in trans--

formed units for the data of Table 5.1 using the power 
transformed normal (B) PM. 
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0.0 	 Observed / 
0.0 	0.5 	1.0 	1.5 Value 

Figure 5.6 Observed and expected values for the data of 
Table 5.1 using the linear normal (A) or exponential (K and 
L) PH's. 

Figure 5.7 Observed and expected values for the data 
of Table 5.1 using the transformed normal (B) PM. 
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Nonlinear 
Response Surface MM 
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Figure 5.8 Maximized RL graphs showing the roles of 

the power transformation 'Y of the transformed per cent normal 
(I) 

0
PM for the data of Table 5.19. 

O 

0 

	

0.8 	a 	o • - 

O 
 

Maximized RL --- O 0 

Conditional RL --- 
• • 	 Approximate RL "" 
• 

/ 	a 

	

0.6 	 0 

	

e 	 et 
CP / 	0 

IR 
R(al) 	

6
• 	t I 
0 

6 
C 

0 

	

0.4 	6 	/  
e 

O / 	
• 
b 

a • 
a 	 .0 

/ 
3 	 0 
4 

C 	 4 

60 

	

0.2 	0 o / 	 0 

0 	 s 

	

0 / 	
e 

0 4 

O / 
0 	 • 

O / 	

,0 
o ..."

0  

	

0.0 b 	1 .0 	-2.0 	-1.0 	0.0 	1.0 	al 
igure 6.1 Relative likelihood graphs for parameter as  

of MM (5.7) for the data of Table 5.13. 

o a a 
a e 
P E / 



\N 
0 

.153. 
1.0- 

0.8- 
Conditional RL 

Maximized RL 
am. 

0.2 

0.0 
-0.5 	0.0 	0.5 	1.0 	1.5 
Figure 6.2 Relative likelihood graphs for paramer al 

of MN (5.6) for the data of.Table 5.14. 
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Figure 6.3 Relative likelihood graphs for parameter a 

of MN's (5.5) and (5.6) for the data of Table 6.1. 



1.50 

1.2 

1.00 

1154. 
c 2 

1.75 0.1 
Maximized RL -- 

Conditional RL  -- 

• 
1.00 	 1p 5 	1. 0 	1.75 	2.10 
Figure 6.4 Relative likelihood contours for the power 
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the data of Table 2.2 with 1- = 1 in PM (2.2). 1.0— 	 / 
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Figure 7.1 Relative likelihood graphs for of Poisson LP (5.4) for the data of Table 4.4. 
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