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ABSTRACT 

Previous theories of magnetic field reconnection at 

X-type neutral lines of the magnetic field, in the presence of 

a conducting plasma, are first reviewed. 	Much existing theory 

is appropriate only to collision-dominated fluids with scalar 

conductivities; considerations of self-consistent flow-field.  

models for the collisionless case are different and have been 

little studied. 	These require knowledge of.particle trajec- 

tories in order to obtain the charge and current distributions. 

However, for many applications in astrophysics and space phys- 

ics the collisionless case is appropriate. 	One such case is 

the Earth's magnetosphere, and evidence that merging with the 

interplanetary field plays the decisive role in its behaviour 

is presented. 	Parameters of the geomagnetic tail are used in 

later numerical calculations. 

As a first step in the development of self-consistent 

models for the X-type field configuration, only neutral sheet 

(straight field-line) systems are treated here. 	It is assumed 

that the only current source is the plasma contained on the 

field lines of the neutral sheet system, implying a fixed vol- 

tage drop across it. 	The basic properties are-investigated 

via self-consistency between current and magnetic field, con-

servation of energy and momentum and charge neutrality in the 

current sheet. Conservation of momentum and the condition for 

charge neutrality imply a varying current sheet thickness across 

the width of the system; model field calculationsyield:. good 

agreement between the two. The results imply that the volt-

age drop is localized in a region of dimension the ion plasma 
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wavelength 7(1)  in the current sheet, near the boundary where 

ions leave the system. 	This in turn implies that ion flow 

energies above the sheet approach the potential energy across 

the system, and the theory of plasma drift-flow has been gen— 

eralized to include this case. 	The neutral sheet current is 

carried mainly by a thin electron beam of thickness (1-22.) ::p. 
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CHAPTER 1 

REVIEW AND DISCUSSION OF PREVIOUS WORE ON THE PROPERTIES 

OF MAGNETIC NEUTRAL SHEETS AND LINES 

(i) Fluid Models 

Most of the early work on the theory of field line 

reconnection and annihilation at (respectively) neutral lines 

and sheets in the magnetic field was done with special refer- 

ence to the problem of the solar flare. 	This phenomenon 

consists of the sudden release of a considerable amount of 

energy in the form of electromagnetic radiation (x-rays, 

optical and radio) and energized particles from a very local-

ized region on the sun, located near sunspot groups'. - The 

emission rises to a maximum within about 10 minutes and there-

after declines, with a total life.of about half an hour. 

From considerations of the total energy released it appears 

that the only reasonable source is in the magnetic field near 

the site of the flare. 	This magnetic field is considerably 

enhanced over the general value, and the complex field struc-

ture near sunspots is expected to contain x-type neutral 

points (Sweet, 1958b). 	Acceleration of particles during the 

flare must proceed by an electric field, and if the particles 

are 'linearly accelerated' by it large currents must result. 

This is called a 'discharge'. Following earlier suggestions 

by Giovanelli (1947, 1948) and Hoyle (1949), Dungey (1953, 

1958a,b) first quantitatively investigated the possibility of 

such discharges occuring at neutral points. For simplicity 

we shall consider two-dimensional problems with a/ag.  s 0 
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along the neutral line. 	If the current density is zero in 

the vicinity of the neutral line then the magnetic field lines 

are rectangular hyperbolae and the principle axes of the field 

(i.e. those connected to the neutral point) are orthogonal 

(see Fig. 1.1(a)). 	For a non-zero current these axes are no" 

longer orthogonal and the field lines are systems of hyperbolae 

locally, near the null. (Fig. 1.1(b)). 	The current must be 

provided by the presence of a conducting fluid on which acts 

the electromagnetic force 4 A Pi c• 	For the field configurat- 

ion shown in Fig. 1.1(b) the direction of this force is shown 

in Fig. 1.1(c), and Dungey argued that the fluid must flow in 

the same general direction. 	When the fluid is of infinite 

conductivity the field lines may be regarded as being frozen 

into the fluid motion so that the flow shown in Fig. 1.1(c) 

tends to increase the rotation of the principle axes, and with 

it, increase the current density. 	Hence the situation in un- 

stable, for a small current will cause motions which in turn 

increase the current, and a discharge then occurs. 	This cur- 

rent instability at a neutral point is in direct contrast to 

the situation where B is non-zero. 	In this case Lenz's law 

applies, the electromagnetic force' being such as to cause mot-

ions which reduce the current. 

j = 0 
	

9 
	A B lines 

(a) 
	

(b) 
	

(c) 

Figure 1.1  
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The equations which govern the system are Maxwell's equations, 

the hydromagnetic equation of motion 

p du = 

dt 
4 " B - v + 	 —1) 

where p is the mass density; Ohm's law 

+ (u A B)/c 	j/6 
	 (1.2) 

where the Flail term is neglected; and the equation of con-

tinuity 

du 
at -pV.0 	 (1.3) 

In these equations a 	3/n4. + (u dt 	vt- v). •— Dungey  considers 

an infinitely conducting fluid (a = 00) so that eauation 

(1.2) becomes 

E + (u A B)/c  = 0 	 (1.4) 

and hence the induction equation for the rate of change of 

the magnetic field is 

a5 	
4(cc io) 
	

( 1-.7)B (B.v)11 — B (v.u) (1.5)  

From this the 'frozen-in' theorem may be obtained. 	Dungey 

now neglects the pressure force in the equation of motion (to 

be the subject of later discussion), and as is usual the dis-

placement current in Maxwell's equation for curl B to obtain 

from (1.1) 

au 
at (g-V)u t (7/• B) B  

tit?. 
(1.6) 

From equations (1.5) and (1.6) it can be seen that a point 
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which is initially a neutral point of the magnetic field and 

a stagnation point of the flow remain so in all subsequent 

motions. 	Using Dungey's notation we write B..13 = DBi/Dxj; 

u..13 = Zui/, . to obtain at the neutral point (u = 0, B = 0) oxj  

the governing equations (from (1.5), (1.6) and (1.3)) 

Z B.
0
. 

Zt.  — 	• R 	P. ik 	• -Jr 	i k 	Bu 	„ K  

3L. —u • u 	(B. -14.si  - I k 	 K I ATEll.  (1.7) 

p_ 	 1-4-KK 

In two dimension we then' have nine equations governing nine 

unknowns. 	We consider an initial system as shown in Fig. 

1.2(a); the coordinate system differs from that used by 

Dungey, but proves useful in later considerations. 

2 z 2. 

  

t 

  

  

    

    

    

    

      

(a) 
	

(b) 	(c) 

Figure 1.2 

By the symmetry of the system B11  = B22 = 0 and 

B21 < 0, B12  < 0 throughout the motion. Also u- 12 = u21 = 

0 throughout, if the system retains its symmetry. Then 

equations (1.7) become 

a  
at B1 2 u22 B12 • 

(1.8) 
.(b) 



a 
at ull = • u• ll

2 	
(B21

-.n
' 	

n
121  '21/41Tu 

at u22 = • u• 22
2 	

(B21-B12) 
   n 

'12/47ru 

at u u (u11 +u ) 22 

11. 

and from these 

a 

	

TT(B21-B) = -2u22(B21-B12) - 2B21(u11-u22 	(f) 12 

-2u11(  2 -B12) 	2B(u-u22) 

at 

	

(u11 +u22 ) = -(u11
2+u22

2) - (B21-B12)
2
/4Trp 	(g) 

a 
t.'

f  
1111-u2 = -(u111-1122)(ull-u22)-(B214-B12)(B21-B12)/471, 

(h) . 

From equations (c), (f), (g), (h) and (e) it can be seen that 

if u11 < 0 (giving flow towards the null along the '1' difec- 

tion); (u11+u22)<0 	(B21-B12)<0 ; and (u11-u22)<O  then the 

sign of the derivatives of each of these quantities is the same 

as the sign of the quantity, and the instability develops as 

shown in Fig.2b. 	From the above conditions we have -11.1111<u22<  

lull!' so there is no guarantee that u22>0 (giving flow away 
from the null along 	as shown in Fig.2b), but since initially 

3t 
422 = (B21 - B12)  B12/47u > 0 

this will be so, at least initially. Also, if it is assumed 

that the gas is incompressible u22 = -u11 > 0 . 

Similarly if u22  < 0 i (u11+1122 )  < 0 ; (B21-B12 )  > 0; 
22) > 0 the instability proceeds as is shown in Fig. 1.2c. 
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Numerical results quoted by Dungey show that ull  and (B21-B12)  

initially grow exponentially with time constant 

32-A 	612.1 

(i.e. the time required for an Alfven wave to cross a charac- 

teristic length of the system). 	When perturbation-quadratic 

terms in eauations (1.8 a-)11) become of the same magnitude as 

the linear terms (D12 and B21 only are non-zero initially) 

all components become infinite in a time of order T. 	That  

the pressure gradient does not oppose this motion is seen by 

considering static equilibrium for a system containing an 

x-type neutral point as shown in Fig. 1.3. 

Figure 1.3  

The condition for equilibrium is 

V -= 
13  

„ B 

 

and using this Dungey showed that the current density at the 

null must be infinite (a step in the magnetic field). Thus 

if inull = c°  is required for equilibrium it is highly un- 

likely that pressure forces oppose the instability sufficiently 

strongly to prevent this equilibrium from being reached. 

This has been further argued by Dungey (1958b). 

The magnetic field at any time is, near the neutral 

point, taking x E 	and y = .'2' 
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B1  (y,t) = B12 (t) y 

B2 
 (x,t) = B21 (t) x 

(1.9) 

such that the field lines are hyperbolae satisfying at time 

t 

2 	B21 (t) 	2 	2 
B12 (t) x 

	c 

with asymptotes y (B21 ) Z  
X 

B12 
(1.10) 

The fluid velocity is given by 

u1  (x,t) = u11. (t) x 

u2  (y,t) = u22 (t)  

so that the flow lines at any time are given by 

u22/ull 
c (1.12) 

We note that for an incompressible fluid 1122/ull = -1 and 

we obtain a system of rectangular hyperbolae. 

The kinetic energy which the fluid derives from the 

instability must be at the expense of the magnetic field; 

however, the instability does not depend on field line recon-

nection at the neutral point. To see this auantitatively 

we consider the instantaneous fluid velocity on the field 

lines connected to the neutral point (i.e. the field asymp-

totes given by equation (1.10)) and compare it to the velocity 

of the asymptotes themselves. 	Since the field is 'tied' to 

the fluid, no reconnection is taking place if these velocities 

are the same. Refering to Fig. 1.4 we have the fluid vel-

ocity perpendicular to the asymptotes 



Y CV) 

 

14. 

 

 

Figure 1.4 

  

    

uI = u2 cos 0-u sin 0 

B21 	-2 
where tan 0 = a(t) = ( 	) 

D12(t) 

For any value of x we have, on the asymptote, from equation 

u2 	u22 tan Ox = u22 ax ul = U11X 

and hence u1  = x sin 0 (u22 - u11) = 	ax(1+a2)2 ' L (u22 - u11) 	(1.13) 

while the velocity of the asymptote is 

x cos e cl-c( (82-' Cosa at 	+ oe-Y2-  okt 812./ 
(1.14) 

(1.15) Now 
(B2A)113- - - 	d 	a B.) 	_ a (U.2.2.- U-1) dt 	8,2.) _ 	Biz a 	132., a l 

from equations (1.8a) and (1.8b). 	Thus we have from (1.13), 

(1.14) and (1.15) 

= 
ax u 2 = 7ITT7P  (u22 - ull)  

Thus no field line reconnection occurs in the sense that a 

fluid element located in one quadrant of the magnetic field 

structure is never transfered to another quadrant in the course 
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of the motion. 

Exact, non-linear solutions of fluid motion involving 

this instability have been obtained by Chapman and Kendall 

(1963, 1966) and by Uberoi (1963, 1966) who consider the 

motion of a cylinder of fluid, surrounded by a vacuum and 

located about an x-tvpe neutral line of the maanetic field. 

The fluid is perfectly conducting and incompressible, hence 

the flow lines, as shown above, are rectangular hyperbolae. 

Pressure gradients are included in the analysis, and while 

these are found to retard the growth of the instability, the 

growth times found in Dungey's analysis are confirmed. 	The 

progress of the instability is shown in Fig. 1.5 (after 

Chapman and Kendall (1963)). 

Pio-srr‘a Cylirzer 

(a) 

Figure 1.5  

Again, as for Dungey's analysis, field line reconnection does 

not occur, a fact that has also been pointed out by Yeh and 

Axford (1970). This result was-proved above using only the 

induction equation for an infinitely conducting fluid and 

does not depend on any details 'of the instability. It may 

therefore be considered as a general proof that field line 
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reconnection cannot occur at an m-type neutral point in the 

presence of an infinitely conducting fluid. 

Thus field line reconnection involves consideration 

of a plaSma with finite conductivity, and from equation (1.2) 

it can be seen that no matter how large a is, the term 4/a  

becomes important in Ohm's law at some stage as the current 

goes to infinity at the neutral point. 	With the inclusion 

of this term we may then look for steady state situations 

described by the hydromagnetic equations (1.1) and Ohm's law 

(1.2). 	In two dimensions it is first seen that the induction 

equation-requires the electric field to be uniform. 	Thus  

4/6 = H 13_ 	inull 

c 	a 

and the steady-state hydromagnetic equation is 

11(u . V)u = - pp 

	

+ 4 	B 
— 

(1.16) 

(1.17) 

As in the discussion of Dungey's neutral point current in-

stability, we consider only the conditions occurring near 

the neutral point and hence expand inNTaylor series to the 

lowest order in spatially varying terms 

X2 	2 =
o + 11XX 	Pyy 2

Y. 
 3  

a 	(0, 0, j. X2 	2 
+ j 	+ j 	) xx 2 	yy 2 

VP = (PXX x,  Pyy Y' 0) (1.18) 

u = (ulx  x, u2y  y, 0) 

B = (B/y  y, B2x  x, 0) 

where we have chosen axes such that uly  = u2x  = 0; Blx = B2y = 0 
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and have taken Vp = 0, vp-= 0 at the neutral point. 

We have modified the notation slightly such that 

Oi rx 	 2-9rt•  

)( 	axay etc. 

From the continuity equation we find ulx  = - u2y  to lowest 

order such that the fluid flow lines are locally rectangular 

hyperbolae. 	Ohm's law gives 

2u 
Jyy = C— ulx Bly jxx = 

2u ulx El2x 	(1.19) c  

the hydromagnetic equation gives 

2 
)113 x 	PX 	j0 Bls /0) = "'"" yy -4- J° 8i  VC 	(1.20)  

and from Maxwell's equation 

4Tr . 
c 30 	B2x B  y 

(1.21) 

The field lines are given by y2  - B2x x2  = constant, so 
ly 

that for an x-type neutral point B2x  and Bly  are of the 

same sign. 	Let us choose jo 	; then B2x  > Bly  and we 

choose both positive. (Fig. 1.6). 	Dungey's instability 

indicates ulx < 0 for this situation, and equation (1.19) 

then indicates that the current decreases away from the 

neutral point in both directions. The current dies away 

more quickly in the x-direction (into the large-angled wedge) 

than in the y-direction. From equations (1.20) we have 

	

but since 	> 0 we have Pxx + jo 82x/c < 0, 	-o 82x 

i /c. Thus a pressure gradient decelerates the Pxx < -Ijo 82x 

flow into the neutral point. We also have 	jo Bly/c 
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e-- Skrearn tines 
Fie_12.4 lines 

Figure 1.6  

and if p
YY 
 < 0 also, the fluid is accelerated out of the 

small wedge. The flow Situation described here is the same 

as that given by Yeh and Axford (1970) in their section (4). 

There appears to be a wide variety of conditions which may 

occur at a neutral point in the steady state; the properties 

of the flow at large distances from the neutral point must 

determine these for any particular problem. The question 

also remains as to whether such equilibria are stable; the 

arguments used by Dungey tend to show that they should be 

unstable to the current instability described above. 	How-

ever, since it is the pressure gradients which hold the mech-

anical equilibrium of the above system and these were neglected 

from his stability analysis no quantitative theory is avail-

able, and the stability question must remain open. 

There exists a degenerate solution of the above 

equations for Bly  = 0, when a neutral sheet is formed rather 

than a neutral line and conditions vary only in the x-direction. 

In this case field lines are annihilated at the neutral sheet 

rather than reconnected. Equations (1.19) then give 

2a w = 0 and 
37- 	jxx = c uxB2x. 
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Since ulx < 0 and 47/° 3 
'° =  B2x we then have 

(Y-)Jo — 	x2) 

The sheet half-thickness, P., is determined by putting j = O. 

Writing uo 	lulxlx for the flow velocity external to the 

sheet we obtain the half-thickness 

w. 
	C 2 

411- c uo  

Of course, the continuity equation cannot be satisfied for 

this case, and hence we must postulate a plasma sink at the 

neutral sheet. 	An equivalent situation has been discussed 

by Yeh and Axford in which 

u = (- sgn (x) uo, 0, 0) . 

The induction equation in the steady state is then 

UL 	. 	D213.1- 
Dx 	A-Tur axy 

with solution 

Bou e41Tuux/c2)  By 	 in x O. 

The half-thickness of the current sheet is 

(1.22) 

(1.23) 

2, C 2  
47ra u0  (1.24) 

as above, and the field annihilation rate (as given by the 

flow velocity u0) is arbitrary. The steady state is set up 

from a balance between inward convection of the field lines 

-and resistive annihilation at the neutral sheet. The sheet 
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thickness simply changes in response to changes in the para- 

meters governing these rates. 	However, if the plasma sink 

has physical reality, the annihilation rate (uo) may be ob-

tained from (1.24) if the thickness 2, can be determined in 

some fashion from the sink's properties. 	This is just the 

situation as discussed by Sweet (1958a) and Parker (1957b, 

1963). 

Sweet argued that when two oppositely directed fields -

are pushed against each other in the presence of a highly 

conducting fluid, the fluid will flow out from the region of 

contact,- along the lines of force. 	This allows them to 

approach still closer, and the process continues, until, no 

matter how large the conductivity, resistive diffusion of the 

magnetic field becomes important. 	The field configuration 	en- 

visaged is shown in Pia. 1.7, which could also be the result 

of Dungey's current.instability rather than just from 'shoving 

the fields together'. 

22 

Figure 1.7. (after Parker (1963)). 

The particle density in the incoming flow is No, pressure pop  

and the magnetic field is Bo. In the field annihilation 
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region the density is n. By conservation of particle flux 

(see Fig. 1.7) we then have 

No u0  L = nut 	 (1.25) 

The momentum equation yields, for the direction normal to 

the neutral sheet 

B
2 

P TT constant 

for small incoming velocities, so that if po  << B02/87r  we 

have the fluid pressure at the neutral plane 

(1.26) 

which, together with a temperature, would determine the 

amount of compression (n/No) undergone by the gas. 	In the 

direction parallel to the sheet we have 

rim u. Du
ay 

- 	
ay 
	(1.27) 

where the magnetic tension force 
cBx  aBy  
4w ax accelerating the 

plasma out of the system is neglected. For an isothermal 

expansion n = constant if (1.26) is satisfied so that from 

(1.27) 

n ut.7- 
2_ (1.28).  

where we assume the ambient pressure is resumed outside the 

neutral sheet. Then 

(1.29) 

7 r7n 
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and the gas is expelled at approximately the Alfven velocity 

computed from the enhanced gas density in the sheet. Thus 

from (1.24), (1.25), (1.26) and (1.29) we arrive at the gov-

erning equations 

u. = c Nou,„L - nut u= 	 
rr11  

kT= B.2  

 

Parker regards the quantities No, 80, and L as given, so we 

obtain 

Uo  ( n, %/4" cc,) 	a.  VA L 
(1.30) 

( 1\144- 'C2 t_ 
rt, 	4,z(3-• VA (1.32) 

where VA  is the Alfven velocity computed from the gas density 

outside the sheet. • We also have, for roughly isothermal 

conditions 

N. 
INJ P 

P0 

 

 

P0 

such that gas compression may'significantly enhance annihil- 

ation rates (uo) over the incompressible case. 	Thus, in 

effect, from equations (1.25) and (1.29) Parker determines the 

sheet half-thickness 9. in terms of 'known' auantities L, Bo, 

NO, substitution into (1.24) then gives u0. 	For any partic- 

ular situation Parker regards the length L as being given by 

a typical dimension of the system. However, Yeh and Axford 

have objected to this, saying that, like 2., L should instead 

be regarded as being determined by (1.30) once uo  is given in 
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terms of the external flow. The most that can be said is' 

that L > 2, and hence 
• 4* 

rn up 	= VA  qt)/L VA  (u-) 2  . 

That the L in equation (1.30) should not be regarded 

as the scale size of the system was first recognized by 

Petschek (1964). 	He suggested that while Parker's analysis 

may be valid near the neutral point, magnetic field energy can 

be converted to fluid flow energy by the presence of standing 

TIED shock waves further away. 	In his analySis 2L is still 

the scale length of the system, but the length of the 'diffus-

ion region' is 2y* (hence y* replaces the 'I,' in equations 

(1.30) and (1.31)). 

A 

   

   

   

zL 

Figure 1.8. (after Petschek (1964)). 

We first consider the properties of the fluid flow 

between the shock waves under the assumption that the external 

flow and magnetic field are uniform (i.e. a linearized analy-

sis). This solution is matched to a Parker-type diffusive 

solution near the neutral point. The perturbation of the 



= 	cx Bo  Bx  (3) 
4-TE 

Petschek gives 
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external flow by the presence of this "boundary layer" is 

then considered, and an upper limit on the incoming flow is 

found such that this perturbation is not too large. 	Quan-

tities in the external flow have the subscript 'o' while those 

in the boundary layer are subscripted 'b'. 

First, the density is assumed constant throughout the 

boundary layer, a situation which would occur for an isothermal 

flow with the pressure pb z B02/8Tr z constant. 	The compres- 

sion of the gas in the layer is given by 

a 	= 	Po/ Pb 	 (1.32) 

such that 0 < a < 1, and a is regarded as known. 

The equation of continuity gives 

No  uo  y = n ub(y) 6(y) 

or 	a uo  y = ub(y) 6(y) 	 (1.33) 

The momentum equation along the boundary layer is (with 

ubx 	0 and the neglect of the fluid pressure gradient) 

3 u Ltb  „r 	by 	rw3,3  
Dyx) j 4n ax 

(1.34) 

aB 	Bo 	aBx  Bx  
6(10 	ay 

Writing --Y = - 	and 	L we have for S« L ax  

1
3
—
ax
B  —Y. I 

>> C
rx 1.  Then for constant pb, equation (1.34) '  

becomes 

6(9) 	(  Lebi  (9)) 
k 	 - 

_ 	Bo  Bx  (y) 
4--rt 

(1.35) 
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which appears difficult to obtain with any reasonable assump- 

tions. 	Substitution of (1.33) in (1.35) then yields 

(ut 	„ 	( 32. 	 e''"(f) 
2 S2 v A 	 ()) 	 (1.36) 

where VA is the Alfv6n velocity of the incoming (unperturbed) 

flow. 	To maintain a standing shock wave the speed with which 
By, 

the wave propagates relative to the fluid = 	VA (away Do 

from the boundary) must be matched by the flow of fluid to-

wards the boundary, so that 

o 

up 	px(y)1 
VA 	B I 

(1.37) 

Since uo, VA and Bo are zero-order constants this requires 

that Bx is also a constant, i.e. Bx(y) = - sgn(y) Bx. 	Then 

equation (1.36) may be integrated by putting f(y) = Y/6(y) 
to obtain 

MCP (°(-N-t it yo~yl 	 y.A L  
(1.38) 

where yo, S(y0) may be reaarded as being determined by matching 

to the Parker solution at the origin. Petschek obtains, 

instead of (1.38) 

uo 
a (Vii) y1 (1.39) 

The diffusive solution is obtained from (1.35) by putting 

6(y) = 61) 	constant, we obtain Bx(y): 

Bx (Y) 

BC 

2_ uo ) y 
VA,) SD (1.40) 
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Note that the fluid is accelerated out of the diffusion region 

by the tension force neglected in Parker's treatment. 	The 

two solutions match when Bx(y)/B0 given by (1.40) reaches 

the value required for the existence of standing waves (1.37) 

.i.e. 

I~l = 	:= • 	Sj) 

(t) 
(1.41) 

For y < y* the diffusion mechanism dominates, while for 

y > y* the wave mechanism is dominant. 	Thus equation (1.38) 

becomes 

tIVA)1Y1/ [I 
4 "Q°3 (T4`) 

(1.42) 

Thus Petschek's result (1.39) may be regarded as an approxim- 

ation valid only for lyl 	a(y*). 	The flow diverges more 

slowly according to (1.42) than the linear approximation. 

From the previous discussion we have SD = c2/4youo so that 

Y* 
c2  VA 

4.11-a VA a uo 

Petschek gives half this value. 

The perturbation of the external flow is caused by 

currents flowing in the shock waves. Under the assumption 

that curl B= 0 and curl u= 0 (where u= c E A E/B2) 

these are calculated for the external flow. The largest per-

turbation 131/Bo occurs just outside the boundary layer at 

the origin and is given by 

(1.43) 



Thus we obtain 

t_to  

( VA) 
max 	

2 (1 - -0(.03 
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The maximum allowed perturbation is arbitrarily chosen to be 

By t/B0  = -1/2  ; (By /Bo  s -1 in any case). 

Then for L/Y' * 	103  say, or greater we find uomax  VA/10 

and since logarithms are slowly varying functions this result 

does not change very much as the parameters vary. 	Also, from 

(1.41) we find ymin* = 10 op. 	However this assesment of the 

maximum rate of field annihilation is in reality a condition 

for the breakdown of Petschek's linearized treatment; whether 

it has any physical significance is highly questionable. 

Yeh and Axford (1970) have obtained exact two-dimensional 

solutions of the MHD equations for a perfectly conducting, in- 

viscid and incompressible (a = 1 in the above analysis) fluid 

in the region external to the neutral point. 	The analysis 

is carried out in terms of the variables Y and A where (since 

div B = 0 and div u = 0) 

	

curl A 
	

A = (0, 0, A) 

(1.45) 

	

u = curl T 	= (0, 0, T) 

(The third dimension is perpendicular to the flow). The 

lines A = constant then define a field line and T = constant 

a stream line. Using cylindrical polar coordinates it is 

assumed that 

= r g (0) 	and 	A = r f (0) 	(1.46) 

It is then found that the curl of the momentum equation 
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(eliminating the pressure gradient) 

.EL 	(1.47) 03._(.9.1^5- 	(1.47) 

and Ohm's law 

u B 
E 	 = 0 	 (1.48) 

(where E = (0, 0, E0) is constant in the steady state) 

do not depend on r. 	The above two basic equations are then 

solved (numerically in the aeneral case) to obtain f(0), g(0) 

and hence the field and stream lines. 	The magnetic field 

and flow velocity are then obtained from equation (1.45) 

Br 	'71  f 	Be 	f(e) 	Ur  -= 
cie Lt.e= —3(0) (1.49) 

It is found that for general case, each streamline crosses 

two shocks as it flows from one wedge of the magnetic field 

into another (discontinuities in the derivatives of f(0) and 

g(0) occur). 	Across these shocks, which lie along 0 = con-

stant lines the normal components of the flow velocity, mag- 
, 2 
" netic field and hydromagnetic pressure (p +  /

8w) are con-

tinuous, whereas the tangential components are discontinuous 

and satisfy 

J [Ur] 2  = 
4x 

[Br]
2  

The general characteristics of the flow are shown in 

Fig. 1.9. 	In order to describe the flow near the neutral 

point in the steady state a conduction term clearly needs in- 
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eluding in Ohm's law (1.48) since E is constant. 	The field 

and flow near the null is the same as that described above by 

equations (1.18) and (1.20), i.e. hyperbolic field lines and 

rectangular hyperbolic flow lines. 	The flow velocity then 

determines the pressure gradients near the neutral point. 

While it is not rigorously shown how the two regions match, 

it is clear from Fig. 1.9 that they are qualitatively similar. 

The angles between the wedges for the two solutions can be 

matched by the choice of B / . 	The electric field at 2x Div  

the null is the same as that in the external flow giving jo  

from jcva  = E, and hence determining ( 
- 2x Bly). The 

pressure gradients are then determined by matching the flow 

velocity given by ulx  at some distance from the neutral point. 

Figure 1.9.  (after Yeh and Axford (1970)). 

Since for all cases the electric field remains a free 

parameter of the solutions, they conclude that reconnection 
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may occur at essentially any speed consistent with the boun- 

dary conditions. 	The higher the velocities the smaller 

becomes the 'diffusion region' near the neutral point. 

Yeh and Axford have compared their external solution 

with that of Petschek's, since they should be-comparable in 

some regime y* < r < L. 	They find-that the conditions 	near 

the shocks cannot be reconciled with Petschek's picture, nor 

with the later double-shock modifications of Petschek and 

Thorne (1966). 	They therefore conclude that Petschek's 

linearized analysis does not represent a valid solution of the 

MHD equations "and accordingly that his arguments are less 

convincing than they seemed originally". 

(ii) Summary and Criticism of Fluid Models 

The fluid models of magnetic field line reconnection 

at a neutral line may be summarized as follows, where we con-

sider a nearly neutral-sheet configuration for simplicity 

(produced perhaps by Dungey's (1953) current instability). 

If the magnetic field far from the sheet is Bo  and the flow 

velocity is uo  the electric field is E0  = 120130/c  and is uni-

form over the entire system in the steady state. Thus the 

current at the neutral sheet is jo  = 6E0  and for consistency 

with the magnetic field change 4mjc  jo  Q = Bo  where 2. is 

the half-width of the diffusion region. Then we obtain 

= c2/47rauo. While Parker (1963) goes on to determine 2. in 

terms of the scale size L of the system by writing uoL = vk 

and v 	Petschek (1964) argues that the above L is 

not the scale size of the system and may be much smaller than 
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this. Far away from the neutral point field energy may be 

converted to flow energy across standing shocks, and the 

'length' of the diffusion region becomes much smaller than L 

when uo is large. An upper limit to the inflow velocity is 

estimated from a condition of breakdown of his linear analysis. 

While Petschek's argument is confirmed by the exact analysis 

of Axford and Yeh (1970) it appears that his linearized theory 

is not a valid solution of the MHD equations. 	They further 

show that the inflow velocity uo  can be comparable with the 

Alfv6n speed in favourable circumstances, though any lower 

value is possible, depending on the boundary constraints. 

Whether these steady state solutions are stable (with respect 

to the current instability) remains an open question. 

However, the treatment of the problem in the MHD 

approximation in the above two-dimensional manner is open to 

the following objections when the fluid under consideration 

is collisionless. 

(a) In all the models 'diffusion regions' of very small 

spatial extent occur. For astrophysical and space physics 

applications £ is usually given aa being in the range of 

millimeters to meters, while the gyroradii of electrons and 

ions may be larger. MHD assumptions then break down (e.g. 

the pressure tensor P = pl) and this calls into question 

the validity of treating with fluid equations the properties 

of a collision-free plasma near a neutral point. 

(b) It has always been assumed that the conductivity of the 

plasma is homogeneous and isotropic, which is a valid assump-

tion if it is collision-dominated. However, for neutral 
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sheets and lines in galactic objects, stellar winds or plan-

etary magnetospheres the treatment must be collision-free. 

The collision mean-free-time is then replaced in the theory 

of conductivity by the time the particle remains in the sys-

tem, which depends on the field geometry (see for example 

Speiser (1970)). 	The conductivity is then by no means homo- 

geneous or isotropic and the currents should be determined by 

studies of the particle trajectories, rather than by simply 

giving a value to cr. 

(c) 	A qualitative study of particle trajectories near neutral 

sheets was given by Dungey (1953), but this has seemingly 

been ignored by many succeeding authors. 	He showed that par- 

ticles oscillate about the sheet and become accelerated along 

it by the electric field; positive particles moving in the 

direction of the electric field, negative particles in the 

opposite direction. 	Inclusion. of the weak field component 

normal to the sheet in the 'x' configuration causes them to 

turn away from the neutral line and move out along field lines 

as envisaged in the fluid theories. 	Seymour (1959) obtained 

exact solutions of the equations of motion for particles 

moving in a magnetic field of constant gradient containing a 

neutral sheet, but with no electric fields. 	(This followed 

a much shorter investigation by Parker (1957a)). 	The motion 

of particles which do not cross the neutral line is described 

by the usual 'VB' drift of charged particles in a non-uniform 

magnetic field. 	Particles crossing the neutral line oscillate 

symmetrically about it and may travel along it with any 

velocity (up to the total particle velocity) in either direc-

tion, (Fig. 1.10a). Seymour envisaged that such enhanced 
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drift velocities might give rise to important charge-separation 

effects in the plasma near the neutral sheet. 	Particle traj- 

ectories in such field configurations together with an elec-

tric field along the neutral sheet have been studied by 

Speiser (1965), (1968) and directly confirm Dungey's (1953) 

arguments. 	Particles drift into the region under the action 

of the electric field from both sides and then oscillate about 

the sheet, becoming accelerated by the electric field, opposite 

charges in opposite directions (Fig. 1.10b). 	Seymour's con- 

jecture about the importance of charge separation effects now 

takes on-added significance. 	Inclusion of a weak field com- 

ponent perpendicular to the sheet turns the particles away 

from the neutral line as they accelerate untiltiljaretravel-

ling parallel to the field lines emerging from the current 

sheet, when the particles, too, emerge from the current sheet; 

(Fig. 1.11). 
CDB vs E 	GB < 	 
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Figure 1.10 
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Figure 1.11 

It appears from these collision-free discussions that 

the variations of the system in the third dimension (along the 

neutral line) may be very important, especially if the normal 

component of the magnetic field is very small. 	Indeed, for 

a strictly neutral sheet the third dimension becomes crucial 

in the discussion since infinite extent in this dimension with 

a finite inflow velocity implies an infinite current of oscil-

lating and accelerating particles in the sheet and infinite 

particle energization. 	(Speiser (1965) showed that once par- 

ticles enter the sheet and oscillate about it they never 

leave it, the amplitude of the oscillations in fact slowly 

decreases as the energy increases without bound in the electric 

field). 

(iii) Collision-free plasma models. 

The first description of the properties of a self- 

consistent neutral-sheet model for a collision-free plasma 

was given by Alfvgn (1968), and in view of the above comments 
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it is perhaps not surprising that the considerations involved 

are rather different from those of the fluid theories. 	He 

considers a neutral sheet configuration which is of finite 

width d in the third dimension (along the electric field), 

the system being hounded by 'condenser plates', which lust 

represent equipotential boundaries and a sink for charged 

particles (see Fig. 1.12). 	The magnetic field outside of 

the field reversal region is Do  and is constant if appropriate 

currents flow on the boundary equipotentials. 	(If the mag- 

netic field outside the system is zero, these boundary currents 

are just half the neutral sheet current). 	As a valid first 

approximation to the motion of cold plasma, the particles 

drift towards the neutral sheet from both sides under the 

action of the crossed electric and magnetic fields with vel- 

ocity v = cE..130/B02  . 	From flux continuity, we have N/B a 

constant along a trajectory, and since B is uniform, we may 

take N (the number density of positive of negative particles). 

to be uniform in the flow, and equal to No. 	Here, we are 

generalizing Alfv4n's analysis, which assumed a uniform elec- 

tric field to include non-uniform electric fields. 	The en- 

tire flux of positive (or negative) particles into the sheet 

is 

3.1 = acN1E  „ 	2cNi„ 
Bo 	 E•0 	

(1.50) 

C. C 

where t is the total electric potential across the system. 

'c' is a contour crossing the system along any path from one 

boundary equipotential to the other, above or below the neutral 

sheet, and Bo.dL = 0. 

2.c. Noil 
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Following Speiser's (1965) analysis of the particle 

motions, positive particles in the neutral sheet move towards 

= • 	Thus at ¢ = 0 all the current is carried by posi-

tive particles while at ¢ = <D an equal current is carried 

by electrons. 	The neutral sheet current is uniform across 

the system and hence equal to eF (equation 1.50). 	For self-

consistency between the magnetic field and the current we 

thus have 

2 B 	 2ec,N0 0 	41T " C  
C 	B, 2 

Thus 

and 

820- 
4-TE Noe 

c Bo  

(1.51) 

(1.52) 

Pod 	grit  Nda 
We generalized Alfv&I's analysis in the above manner because 

of the suggestion of the importance of considering charge 

separation of the plasma at the neutral sheet, with attendant 

non-uniform electric fields. Far enough away from the sheet, 

however, we expect a uniform flow so that the drift velocity 

expression used becomes exact. 	Hence since contour c is 

arbitrary, Alfv&I's result is also found to be valid in such 

situations. 

If the plasma consists of protons and electrons, the 

velocity of ejection of the particles after falling through 

potential (I) is 

V = 	2e 	Citp +Merl/  Arit  Vri 	Ve t:- (IT-Ir----HYVTVrt  
mP 	m J me 
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Figure 1.12. 	(after Alfven (1968)). 

where VA  is the Alfven velocity in the region external to the 

neutral sheet and field. reversal region. 	Thus since 

m- >> me 

Vp  = /2 VA 	and 	Ve = 
m 1/2 

/f VA  me  (1.53) 

The average velocities of ejection (potential drop of V.1) are 

mn  1/2  
V = VA 	and 	Ve  = 	VA  . me  

The philosophy of this calculation is simply that 

from a knowledge of the particle trajectories a self-consistent 

incoming flux of plasma can be computed to produce the current 

required by the change in the magnetic field. No knowledge 

of the detailed structure of the flow or field near the neut-

ral sheet is required, and none is obtained from the calcul- 

ation. 	These ideas are somewhat more similar to Parker's 

calculation of the incoming flow velocity from the properties 

of the plasma 'sink' (see equation (1.33) and discussion) 

rather than Yeh and Axford's assertion of arbitrary flow 

rates for a given system. 

It can also be shown (Cowley 1971b) that Alfv4n's 

formula for the total potential across the system also satis- 
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fies conservation of energy. We have a Poynting flux S 

electromagnetic energy into the sheet from above and below, 

while energized particles flow out from the equipotential 

boundaries. 	The Poynting flux integrated across the system 

is 

w cAq = 2c  Bo E.0iL = 2c 13,„I 
4Tc (1.54) 

As above the flux of protons or electrons towards the sheet 

across element dL of contour c is 

dF 	= No  1(  cE 	B) 	dL 
B2  

and by conservation of particle flux dF is the flux of par- 

ticles from dL emerging from the boundary. 	If dL is at 

potential 	the protons will be accelerated and gain an 

energy e4, while electrons gain an energy e(q)-4) by the 

time they emerge from the boundary. Adding proton and elec-

tron contributions, the particle energy flux from the sides 

of the sheet from dL is dW = e(1) dF. 	Integrating dW across 

the system gives W
P'  the particle energy per unit time per 

unit length of system (along the magnetic field) flowing out 

of the boundaries. Multiplying by two for inflow from both 

sides we obtain 

W = 2Nocet.2 
P Bo  

Equating Ws  and WP  for the steady state gives 

(1.55) 

(1) B02  
,rte Noe 73e 

/ , regaining Alfven s formula, equation (1.51). 
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Alfve'n's analysis may be readily extended to the sit-

uation with a weak normal component of the field 131  perpendic- 

ular to the current sheet. 	The electric field may be removed 

by a frame transformation of velocity vT  = cEo/B1  parallel 

to the reversing field component. 	In this frame the plasma 

simply streams down the field lines into the current sheet 

with approximately the transformation velocity. 	Inside the 

sheet the particles oscillate about the field minimum while 

cE0  me 	2 0  
describing a half-circle of radius r = 	

= me F in 
B1 e131 	e B12. 

a plane parallel to the sheet (Speiser 

1965, 1968). 	After describing this half-circle the particles 

are again moving approximately along a field line and thus 

leave the sheet from above or below. 	In order to calculate 

the current flowing we first draw a 'locus of injection 

points', which is simply the curve on which particles enter 

the sheet and pass through point P in the neutral sheet plane. 

This locus is a semi-circle as are the trajectories in this 

plane (Fig. 1.13a). 	The current (or flux of particles) across 

an element dL of the sheet is simply determined by the flux 

entering the surface enclosed by the locii of injection points 

for the end points P1  and P2  of the element dL (Fig. 1.13b). 

However, we note that the flux contribution across dL in the 

direction of the arrow in Fig. 1.13b is positive for one sec-

tion of the enclosed area and negative for the other (marked 

1+1 and '-'). 	The net enclosed area for the evaluation of 

the current in the direction of the electric field of the 

untransformed frame is seen to be 2 r dL1  and zero for the 

perpendicular direction. (Fig. 1.13c). 

The incoming flux per unit area of the sheet is 2N071 where 
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vi = vT  B.1/, , and Bo  is the magnitude of the reversing compon-
-Do 

ent of the field, outside the sheet. 	Adding proton and 

electron contributions to the current per unit length of 

sheet, we have, by conservation of flux 

• = 	2No e 
	Bs  x  2_ rp  -I- re) = 2 Noe c Eo 2 (rp  + re)I 

and for self-consistency between the current and the field 

B 	4-rt ( 2-END c E0  j2.0-p+ re)} • 
c 	go  

(1.56) 

Comparison with equation (1.51) now shows that in the untrans-

formed frame the Alfv6n potential now falls across a distance 

which is the sum of the gyrcdiameters of the positive and 

negative particles in the sheet, R. 	Hence 

E0  
R and c(13. 

RB0  

2mc2E0  
eB12or, since R = 2(rp  + re) - 	 we have Bo  = BoB1 

AwNompc2  

Outside the field reversal region the conductivity may be re- 

garded as infinite, whilst inside it is given by, for Alfv4n's 

case 

J 	= 	c Bo  ot, 	2. No  e cd. 
Eo 	Eo 	Z tQ 	R.. Bo  

where L is the thickness of the field reversal region vet to 

be determined! 	(It must ultimately be related to the break- 

and B1 	VA/ 
VL = 	 (1.57) 

awNomp  
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down of 'frozen-in' infinitely conducting flow due to small 

scale lengths in the fields). 	When B1 is included this just 

becomes Cr - 
-c Bo  R 2ecNoR 

Q Bo 

 

272-0 

 

There are, however, two assumptions which have been made in 

Alfv4n's analysis. 	First we have assumed that all incoming 

particles contribute to the current at the neutral sheet. 

This must be true if, as in systems of interest here, the 

particle energy in the incoming flow (theiwal plus convective) 

is much less than the total potential energy across the system 

eq). 	Then, on energy grounds only very few particles entering 

near the system boundaries can possibly reach the 'wrong' 

boundary, and so not contribute to the current. 	Secondly, 

and more importantly, we have assumed that the plasma surroun-

ding the neutral sheet is the only source of current, and that 

no particles can enter the sheet from the 'sides' of the system. 

Such an injection of plasma from the sides may raise or lower 

the potential across the system depending on the sign of the 

current contribution. The orbits of such particles will be 

similar to those shown in Fig. 1.10a. 	Protons and electrons 

which drift across the system such as to enhance the current 

(orbits (1) and (2)) reduce the potential across the system, 

while the others give a net reduction of the current and the 

potential must be enhanced. 	Of course, for particles of the 

latter type only those entering with energy greater than er4) 

will be able to drift the whole way across the system. Those 

of lower energy drift into the neutral sheet before reaching 

the boundary and are then accelerated back out again, making 

no net current. (Fig. 1.14). Particle access into a magnetic 

field region having field gradients and a neutral sheet have 
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95=I 
Figure 1.14 

been considered by Stevenson and Comstock (1968). 	They took 

only a simple plane boundary for the magnetic field, which in 

any physical situation must be a drastic assumption, the de-

tailed structure of the layer between the two plasma regimes 

should be taken into account. 	However, particles entering 

from the sides can provide the total current in the neutral 

sheet, and a general method for constructing such solutions 

has been given by Harris (1962). 	The eauations to be solved 

are the time-independent Vlasov set " 

v. V f 	(E + 	 =- C)  J 	m• (1.58) 

B 	4it ckiSf V cev (1.59a,b) 

where f. is the distribution function of particle species j. 

We assume that B = (0,B(x),0) ; E = (E(x),0,0) and that 

B = 0 at x = 0 (see Fig. 1.15). 	Since all particles are 

to be provided from the 'sides' Ez  = 0. We also have the 

magnetic vector potential A = (0,0,A(x)) such that 
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For a symmetrical sheet A is an even function of x and A > 0 

for the magnetic field configuration shown in Fig. 1.15 if 

we choose A(x=o) = 0. 

T 

Figure 1.15  

For these fields we find the following constants of the motion: 

the Hamiltonian for the motion in the x-z plane 

• vx
2 + vz

2  + ?qj  th m • 3 

the canonical momentum in the z direction 

= 	vz 	• + ai c  A(x) m3  

(1.60) 

(1.61) 

and the velocity in the y-direction (along the magnetic field). 

It is well known that any distribution function which is a fun-

ction only of the constants of the motion is a solution of the 

time independent collisionless Boltzmann equation (1.58). 

At the neutral sheet 4) = A = 0 so that 

2 • 7 	= P 	and 	vx = H - P2 
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Then, if we choose a distribution- function at x = 0, i.e. 

fj = fj(yz,vx,vy), then fj = fj(P,i1W,vy) is a solution 

of (1.58) over all space. 	Then the currents and charge den-

sity can be calculated as functions of ¢ and A; substitution.  

in. (59 a,b) then aives the (in general coupled) differential 

equations for ¢(x) and A(x). 	Harris chose a Maxwellian 

distribution at the origin, centred about a mean velocity in 

the z-direction 

N exp inj (v2 	vj)l- 
a k7i 

such that 
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The current and charge density of the jth species is then 

given by 

j3  = 9,3Vj  N exp[ ( y2±14) 49) 
5  C 

J 
(1.62) 

and hence we obtain from equations (59 a,b), writing 

protons and 'e' for electrons 
• 

d2  R 
otx 41T-ce 	1\1  Vrexpig- 

1-1113  
- veR 

1.63) 
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obvious solution to (1.64) is ¢ = 0 (i.e. we will obtain an 

exact charge-neutral model): Then (1.63) becomes 

d_7- Pk 	+me_ N kir! + 	e jx4-- 	A(X)  
axt 	 i Tp  C (1.65) 

 

For the current shown in Fig. 1.15) ,Vp  < 0. 	Then with the 

21-, 
boundary conditions A(x=o) = 0 ; P(x=o) = - — (x=o) = 0 Dx 

we obtain 

2ckTn 	x, A(x) - 	 log cosh (T1 elV PI 
(1.66) 

where _ C( 	k Ti  
IVrI 27e2N (1 + Te/Tp) 

1/2  
(1.67) 

Hence Bj()() 	 STC  N kTr  2 (1.68) 

     

where we note that the magnetic pressure at infinity is equal 

to the total particle pressure at the neutral sheet. 	The ion 

and electron densities are given by (see Fig. 1.16) 

e IV I A 
ni = ne = N exp ( 	p 	). 

k T c 

n(x)1  B(x) 

N  

cosh2  
(1.69) 
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Although self-consistent models can be set up, as above, in 

which particle flow from the 'sides' can provide the neutral 

sheet current, Dungey (1971) has given a simple argument to 

show that when a neutral sheet is observed in nature it is 

clearly a case in which the particle influx is insufficient 

for this purpose. 

	

	As above, the condition for equilibrium is 
R2 

^ )2/c  = Ep or p 	81T  = constant. 	This is clearly true in 

the Harris solution since 

Y2 = pc)  tanh2(2;-) 	and 	p(x) - • 	 
Po 

8Tr cosh2(1) 

from equations (1.65) and (1.66). 	(T is constant as may be 

seen from the equation for f.
3
(x,v)) hence 

2 
Po 	 	 + p = 	(sinh2(2S) + 1) 8irr cosh2(1C) = p0 • 

However, if the pressure is sufficient at x = 0 to satisfy 

equation (1.68) for a given magnetic field it would also be 

sufficient to separate the two regions of magnetic field en-

tirely and no neutral sheet system would exist, i.e. the sys-

tem would have to be very carefully set up at the boundaries 

in order to maintain such a model. In nature the regions of 

magnetic field would simply separate, and plasma would fill 

the region between. 

(iv) Discussion and conclusions. 

It appears that the considerations involved in a fluid 

description of magnetic field annihilation and reconnection 

are rather different from those which have been given for 
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systems in which particle collisions are unimportant. 	The 

latter case is by far the least developed at the present time, 

but applies in many situations in nature (e.g. the Earth's 

magnetic tail, solar wind and possibly in interstellar space 

and other astrophysical objects). 	It is the aim of this 

thesis to investigate the field and flow in the situation des-

cribed by Alfv&I (1968), as a first step in the understanding 

of such systems. 	Thus we shall neglect any component of the 

magnetic field perpendicular to the neutral sheet and assume 

that the only source of current is the plasma above and below 

it. 	In addition, such self-consistent configurations must 

be set up before stability analyses can be performed. 	At the 

present time there is no reason to suppose that the system 

should be grossly unstable, indeed, examples investigated in 

nature have been notable for their long-term stability and 

the general 'quietness' of the fields. 	Although a neutral 

sheet is known to be unstable to the tearing mode (a breakup 

of the sheet current into filaments, see, for example, 

Dobrowolny (1968)) it has recently been found that non-linear 

effects quickly quench the growth rate, and the instability 

leads to no more than a little turbulence in the component of 

the field perpendicular to the sheet (Biskamp et. al. (1970)). 

The possibility of other micro-instabilities of the two-stream 

type occuring in current sheets has been investigated by Dungey 

and Speiser (1969). 	While it is by no means obvious that a 

strictly neutral sheet should be unstable to these modes, 

Dungey (1969) and GjOen (1971) have shown that, in the event, 

strong damping occurs by the radiation of cold plasma waves 

into the surrounding medium. Thus it appears that the self- 
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consistent steady-state model to be investigated here is not 

likely to be seriously afflicted by instabilities. 
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CHAPTER 2  

FIELD-LINE MERGING AND THE EARTHS MAGNETOSPHERE 

(i) Introduction  

Although the model neutral sheet system we shall be 

considering here is highly idealized (straight field lines 

contained between parallel equipotential boundaries), this 

field geometry corresponds quite well to that of the geomag- 

netic tail. 	It is the purpose of the present chapter to re-

view the observational evidence concerning the importance of 

field-line merging as a basic process of magnetospheric phys-

ics, and to obtain the tail parameters used in numerical 

calculations. 	We shall also consider the applicability of 

our straight field-line model to the geomagnetic tail. 

(ii) The Magnetosphere and Interplanetary Medium 

The magnetosphere is the region surrounding the Earth 

containing and controlled by the geomagnetic field. 	This 

region is not of infinite extent due to the presence of plasma 

radially expanding from the Sun (the solar wind) which is 

sufficiently highly conducting to prevent the penetration of 

geomagnetic field lines. 	The Earth's magnetic field is thus 

constrained to lie within a magnetospheric cavity around which 

the solar plasma flows, the dimensions of the cavity being 

determined by pressure balance across the plasma-field inter-

face (the magnetopause). Shown below are the average near-

Earth solar wind properties obtained by the Vela series of 

54. 



55. 

satellites 	(Montgomery 	(1971)). 

Quantity 	Averacre 90% Range 

Proton density N(cm-3) 7 3 - 15 

Bulk velocity V(Km/sec) 410 305 - 550 

Proton temperature (°K) 8x104 
 

2 - 24 x 104 

Electron temperature (oK) 1.4x105 0.85 	- 2.1 x 105 

It should be noted that for protons .the energy of the 

bulk motion (e (bulk) = 1 keV) is much larger than the 

thermal energy (Cp  (thermal) = 10 eV), while the opposite is 

true for the electrons (ee  (bulk) = 0.5 eV ; ee  (thermal) = 

20 eV). 	From these figures we note that the sound speed 

(Cs2  = yk (Tp  + Te)/mp) is typically = 50 Km/sec. 

The solar wind's magnetic field is found to be 5 to 10 

near the Earth, and results from 'frozen-in' outward transport 

of the Sun's field from the base of the corona (of magnitude a 

few gauss). A solar wind field line should thus be defined 

by the locus of the plasma stream emitted from a given position 

on the Sun's surface. 	Since the sun is rotating (- 27 day 

period) we thus find, on average, a 'garden-hose' pattern of 

field lines in the solar wind, with an angle near the Earth of 

about 45°  w.r.t. the Earth-Sun line. 	The field can, however, 

point either towards or away from the sun, depending on the 

surface field direction, and this results in a corotating struc-

ture of sectors of definite polarity observed near the Earth. 

Four sectors were observed at the most recent sunspot cycle 

minimum (1964-65) and two at the following maximum (1969-70). 
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Although the average solar wind magnetic field can be described' 

by the corotating garden-hose sector structure, considerable 

variations can occur, with significant components out of the 

ecliptic plane,.both northward and southward pointing, which 

may remain steady for periods of an hour or more (or less). 

In particular largeout-of-the-ecliptic components of magni-

tude several tens of gamma may occur behind an interplanetary 

shock-wave triggered by a solar flare on the surface of the 

sun. 	It is this component of the field, its duration, sign 

and strength, which i.s•crucial to field-line merging in the 

magnetosphere, to be discussed in the next section. 

The Alfv&I speed in the solar wind, from the above 

valuesj is typically 40 to 100 Km/sec, similar to the above 

value of the sound speed. 	The wind is therefore supersonic 

in the Earth's frame with a mach number of M = 4 - 8 with 

respect to the magnetosonic velocity (C2  = CA2  + Cs2))  and 

hence a detached bow shock is formed in front of the magneto- 

spheric cavity. 	Across the shock the plasma velocity is re-

duced, the density is increased (by a factor < 4), and the 

total pressure (particle plus field) increased. 	As this 

shocked plasma (magnetosheath) expands as it flows around the 

cavity, the velocity increases again and the density and par-

ticle temperatures drop such that plasma conditions similar to 

the solar wind are resumed downstream (Fig. 2.1). 	Experimen- 

tally, the sheath plasma is found to be highly variable on a 

scale of a few minutes or less in flow speed and direction, 

particle temperatures and magnetic field evenwhen the solar 

wind is quiet. However, 'typidal' parameters for the 'nose' re-

gion are N = 20 cm 3; - cp(bulk) = 0.5 kell. (710  - 300 km/sec); 
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Figure 2.1: Density, velocity and temperature fields for 

supersonic gas dynamic flow past the magnetosphere; (M = 8, 

y = 5/3). (From Spreiter, J.R., Summers, A.L. and Alksne, A.Y. 

1966. Hydromagnetic flow around the magnetosphere, Planetary 

and Space Sci., 14, 223-253). 
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ep  (thermal) = 200 eV (T - 2 x 106 oK) ; e (bulk) 0.5 eV 

ce  (thermal) = 50 eV (Te  - 5 x 105 °K) ; B = 10 - 40 y 

(B/B, = 3  - 4)- 
	As in the solar wind, the energy density 

of the magnetic field in the magnetosheath is usually rather' 

smaller than that of the plasma, such that the flow dominates 

the field, and the field lines may be regarded as being carried 

along by the flow and 'draped' around the magnetosphere. This 

has been experimentally confirmed by Behannon and Fairfield 

(1969). 

If we neglect the sheath magnetic field and the mag-

netospheric particle pressure, then the condition for pressure 

equilibrium of the magnetopause near the nose may be easily 

used to obtain its distance from the Earth. 	Simply substit- 

uting sheath parameters into the equation leads to a nose 

distance of about 12 RE, a result which changes little with 

changing interplanetary parameters since the nose distance 

varies inversely with the sheath pressure (dynamic and thermal) 

only to the 1/6  th power. 	This result is in agreement with 

observations and establishes a scale of distances for the mag-

netosphere. 

The currents flowing in the magnetopause boundary 

which 'switch off' the magnetospheric field, and provide the 

4 A .12/c  magnetic pressure force on the sheath plasma, form 

the Chapman-Ferraro current system, shown in Fig. 2.2. 	The 

cavity shape expected from these simple pressure-balance con-

siderations would be an asymmetrical 'doughnut', the 'hole' be-

ing representative of the dayside magnetopause neutral points 

to which all the magnetopause field lines are connected (Slutz 

.and Winkelman, 1964). 	However, there appears to be a second 
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Figure 2.2: The magnetopause Chapman-Ferraro current system, 

and the asymmetric 'doughnut' magnetospheric configuration 

obtained by Slutz and Winkelman (1964) from pressure-balance 

considerations between the magnetosphere and flowing magneto-

sheath. 
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magnetospheric current system, resulting in the formation of 

an elongated magnetic tail, the existence of which was sugges-

ted by measurements from Explorer 14 (Cahill (1966)) and con- 

firmed by Ness (1965) on Imp 1. 	This tail was found to con 

sist of two bundles of oppositely directed magnetic field 

(connected to the two polar caps) of a quiet and orderly nature, 

separated by a current sheet of a few thousand Km in thickness 

(Speiser and Ness (1967)), shown in Fig. 2.3. 	Since these 

early measurements (within XSM = - 30 RE), an extensive inves-

tigation of the tail structure has been carried out by the 

Explorer 33 and 35 satellites, showing a well-ordered config-

uration out to 80 RE, the average properties of which has been 

reported by Behannon (1970). 	The results show the tail to 

be roughly circular in cross-section, with its radius increas-

ing from about 20 RE  at a distance of - 25 RE  from Earth to 

about 25 RE at a distance of - 60 RE  ; a 'flaring out' consis-

tent with the angle of the boundary with respect to the Earth-

sun line required for pressure balance with the flowing mag- 

netosheath plasma. 	The average field magnitude in the two 

tail lobes decreases from about 15 y at a distance of 20 RE  to 

about 8 y at a distance of 70 RE. 	This decrease can be under-

stood when both the tail flaring, and the small- flux across 

the current sheet (a northward component of a gamma or two is 

usually observed at least in this near-Earth section of the 

tail) is taken into account. However, it has recently been 

shown that the tail configuration is rather variable over time 

scales of one or two hours and so such 'average' properties 

are of limited significance. 

The length and large distance properties of the tail 
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Figure Figure 2.3: The addition of the C-F current system to the 

'tail' current system leads to the observed long magnetospheric 

tail. Note that in the night side outer zone, the north-south 

'dipole + CF' field is reduced by the tail current system. 

A section of the tail current system is also shown, looking 

towards the earth. 
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are at the present time undetermined, but evidence of its pre-

sence at 500 and 1000 RE  downstream from the Earth have been 

obtained by the Pioneer 7 and 8 spacecraft (Ness et. al. (1967) 

Fairfield (1968a), Mariani and Ness (1969)). 

The "plasma properties within the magnetospheric cavity 

are in general very complex and highly variable, and may best 

be discussed within the framework of the convecting magneto-

sphere, described in the next section. 

From this section we will use the following tail para-

meters in our neutral sheet theory: 

B = 10 y 	and 	d (width) = 3 x 1010cm = 47 RE - . 

(iii) Magnetospheric Convection and Substorms 

Both Axford and Hines (1961) and Dungey (1961) sugges-

ted the possibility of the convection of magnetic field and 

plasma within the magnetosphere, an idea involving the trans-

fer of magnetic flux from the dayside magnetopause into the 

tail, followed by its convective return, throughout the body of 

the magnetosphere, to the dayside. However, while Axford and 

Hines postulated that the convection would be driven by a vis-

cous-likedrag at the magnetopause (like the convection in a 

water-drop falling through the atmosphere), Dungey argued that 

strong convection would be set up when the interplanetary (and 

hence magnetosheath) magnetic field has a southward component. 

In such a situation an X-type neutral point is formed between 

the southward sheath field and the northward dayside magnetos-

pheric field. Merging can then take place (Fig. 2.4), result-

ing in polar cap field lines becoming directly connected into 
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Figure 2.4 (a): Flow in the reconnection model of the magneto-

sphere (after Dungey (1961)). 

(b): Motion of the field-line feet over the polar 

cap for uniform convection driven by field-line merging. These 

paths are electric field equipotentials, so that for a Hall con-

ducting ionosphere the current flows in the opposite direction 

to the flow. The expected electric field directionp are also 

shown. 
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the magnetosheath. 	The flow of the sheath plasma pulls the 

field lines over the polar cap and into the tail (being pres- 

umably responsible for its formation). 	In the steady-state 

situation this flux transferred from the 'closed' region-of 

the magnetosphere (topologically a 'doughnut') to the 'open' 

tail (topologically two cylinders) must be balanced by recon-

nection at a second X-type neutral line in the tail (see Fig. 

2.4(a)). 	The overall flow may be considered to be driven by 

an electric field from dawn to dusk across the magnetosphere 

(E = - v - 2/c  ; or v = cE E/B2), the flow within the 

'closed' region being towards the dayside. 	The expected mo- 

tion of the feet of the field lines over the polar cap is shown 

in Fig. 2.4(b), and for a primarily Hall-conducting ionosphere 

the current is in the opposite direction. 	This should lead 

to a well-defined world-wide magnetic disturbance pattern char- 

acteristic of the convective state driven by field-line 

merging. 

It was natural that an attempt should be made to give 

an explanation in terms of this model to one of the magneto- 

sphere's most spectacular phenomena, the magnetospheric sub- 

storm. 	Its effects as observed on the ground are primarily 

the intensification and breakup of the quiet-time night-side 

auroral arcs, and the. development of an intense westward elec-

trojet in the night auroral oval (106 amps across at latitud- 

inal strip 10°  wide, centered on A 65°) leading to - 500 y 

negative bays in the H component magnetogram traces. Such 

phenomena,which start suddenly in a small region near midnight 

and expand northwards (the auroral 'bulge') and along the 

auroral oval to east and west are part of the substorm expan- 
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sion phase. (See review by Akasofu (1968) and references 

therein). 	This was interpreted as being due to an explosive 

onset, or enhancement of field line reconnection in the tail 

(Dungey (1968)), although the trigger for this onset was not 

understood. More recently it has become clear that a well-

ordered sequence of events takes place prior to the sudden on-

set of the expansion phase, all of which may be interpreted in 

terms of the reconnection model of the magnetosphere, directly 

confirming Dungey's predictions. 	During the so-called 

'growth phase', we appear to see the evolution of the magneto-

sphere from a non-convecting (or slowly convecting) state to 

a strongly convecting equilibrium, in response to the appear-

ance of a southward component of the interplanetary magnetic 

field. The sudden onset of the expansive phase following the 

- 1 hour duration of the growth phase then represents the effect 

of some instability or large change in the flow situation which 

is triggered as the magnetosphere approaches its new eauilib- 

rium. 	The 'trigger' mechanism is still not certain, although 

instabilities in field-aligned current systems associated with 

the night-side electrojet which upset the flow pattern are cur-

rently being seriously considered (Coroniti and Kennel (1971)). 

By comparison with the growth phase, the events- following the 

sudden onset of the expansive phase are ill understood, though 

it is clear that strong field line reconnection in the tail is 

involved. An interpretation will be attempted in Chapter 6. 

That auroral zone electrojet activity (or DP-1 activity, 

following the current system nomenclature of Nishida (1971)) is 

correlated with periods when the interplanetary or magnetosheath 

fieldhas a southward component has been appreciated for a con- 
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siderable time, following Dungey's (1961) theoretical predic- 

tion. 	Fairfield and Cahill (1966) first showed that the sev- 

eral substorms they studied occurred during periods of such a 

southward field, roughly an hour after its onset. Many authors 

subsequently tried to correlate interplanetary parameters with 

the lip index of ground magnetic activity. 	This index responds 

to all sources of ground fluctuations since it is compiled from 

the data of mid-latitude stations, so it is not surprising that 

it correlates with virtually every bulk parameter of the solar 

wind; however, it does correlate positively with south 

(Schatten and Wilcox (1967), Wilcox et. al. (1967), Rostoker 

(1968), Hirshberg and Colburn (1969)). 	In addition, Kp  is a 3 

hourly index, so that 3-hourly solar-wind data was necessarily 

used by these authors. Since the substorm expansion lasts only 

about an hour K is again a far from ideal index to use. However, 

Hirshberg and Colburn'had also shown that geomagnetic world-

wide storms (comprising a sequence of substorms in rapid succes-

sion) occur only if the interplanetary field is southwards fol-

lowing an interplanetary shock (behind which large out of the 

ecliptic field components can occur). 	If it is northwards an 

s.i. (or s.s.c.) is the only result, the main phase starting 

only when B becomes large and southward. Arnoldy (1971) has 

recently clinched the matter by a correlation of 'interplanetary 

parameters with the hourly AE index, which specifically meas-

ures the strength of the DP-1 electrojet. He found that the 

only controlling parameter of AE was the sum of Bsouth  for the  
,t1 

preceedinq hour- (i.e. j 	Bs  dt),l which is a measure.  
t1-1 hour 

of the southward flux 	' 	brought up to the magneto 

sphere by the solar wind (vsw  - 400 Km/sec). The positive. 
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correlation here means that the larger the flux brought up, 

the larger the eventual substorm electrojet, an observation of 

relevance to theories of the expansive phase onset triggering 

mechanism. 

The DP-1 eouivalent current system (Fig. 2.5), the sig-

nature of the expansion phase, and shown to be correlated with 

periods of southward interplanetary field, does not correspond 

to the ionospheric current system expected from magnetospheric 

convection (Fig. 2.4(b)). 	However, Nishida.(1968a,b;1971), 

discovered a new world7wide geomagnetic current system, promin-

ent in polar cap records, which appears to be very closely con-

trolled by the north-south component of the interplanetary field. 

This is called DP-2 and consists of two current vortices aligned 

approximately along the Earth-Sun line, with no auroral enhan-

cement (the primary characteristic which distinguishes it from 

DP-1, apart from the different orientation of the vortices). 

An example is shown in Fig. 2.6, together with Imp 3 data of 

the interplanetary field. Nishida infers from this and other 

data that the DP-2 current system is coherent with respect to 

Ps, but there appears to be a time delay between the satellite 

and ground data of about 20 min, while we note that the solar 

wind transit time between the two is only about-5 min. The 

correspondence between these observations and those expected 

for convection should be clear, except that the magnetosphere 

appears to respond slowly (- 20 min e-folding time) to the on-

set of a southward field. It would also seem that this com-

ponent may have to exceed a minimum value of - 5 y before DP-2 

is set up, on one of Nishida's'auiet days there existed a south-

ward component for over 10 hours but its maanitude was only 3 y. 
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Figure 2.5: Typical DP-1 (electrojet) equivalent current sys-

tem, the characteristic disturbance pattern of the substorm 

expansion phase (from Nishida (1971)). 
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Figure 2.6: Simultaneous interplanetary and ground disturbance 

magnetic fields characteristic of DP-2, the signature of the 

growth phase (from Nishida (1971)).  
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(This may be a requirement on the 0 angle of the field rather 

than its magnitude). 

Thus convection is set up every time there exists a 

(significant?) southward field; a substorm expansion occurs 

after perhaps an hour of southward field, but is not otherwise 

related to any particular solar wind event. We note, in pass-

ing, that McPherron (1970), examining auroral zone magnetograms 

for an isolated substorm, noted 'fluctuations' for about an 

hour prior to breakup (presumably DP-2), and was the first to 

coin the phrase 'growth phase'. 

The electric field direction across the polar cap re- 

quired by the convective flow is shown in Fig. 2.4(b). 	In 

the dawn-dusk meridian it is from 'dawn to dusk' across the 

polar cap, reversing at lower latitude to become 'northward' 

in the evening and 'southward' in the morning. 	Recentlyrtech- 

niques have been developed which directly measure the magneto-

spheric electric field, usually near the Earth where it is 

strongest. 	These are the double probe technique (measuring 

the potential difference between two separated and insulated 

conductors in (hopefully) identical plasma conditions), either 

carried by a low altitude satellite or by balloon, and releases 

of barium ion clouds into the ionosphere where their motions 

can be observed (see review.  by Maynard (1971)). 	The first 

results of a rather crude experiment (double -probe on Injun 5; 

Cauffman and Gurnett (1971)) detected the field reversal along 

the dawn-dusk meridian at latitudes between 70°  and 80°, and 

occasionally the electric field across the entire polar cap 

was sufficiently large (even - 120 mV/m) for them to be able 

to detect it. Results of a more sophisticated experiment on 
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OGO-6 (Maynard (1972)) showed the continual presence of the 

expected electric field pattern, with general magnitude 

10 to 40 mV/m, 	corresponding to flow speeds of 0.2 to 0.8 

Km/sec or a north-south motion of 5 to 25o latitude per hour' 

(Fig. 2.7). 	Polar cap barium releases (Beppner et. al. 1971) 

have supported these results, showing a day to night flow cor- 

responding to electric fields of 20 to 40 MV/m. 	Balloon 

double-probe measurements of the electric field across the 

night-side auroral zone (60°  to 80°) have shown that the expec-

ted westward field exists for about an hour prior to the sudden 

expansion (Mozer and manka, (1971), Mozer (1971)). 	This field 

rises from a few mV/m to - 30 mV/m just prior to breakup. 

Except for these balloon measurements, none of the data have 

yet been correlated with interplanetary or other concurrent 

magnetospheric data, but may be said to generally support the 

reconnection picture of strong magnetospheric convective flow. 

As we have said, the DP-2 current system (and hence 

the convection) takes 15 to 20 min to build up following the 

appearance of a southward component of the interplanetary field. 

If we assume that merging at the dayside magnetopause takes 

place whenever the field has such a component, then we must 

conclude that during the early growth phase, flux is removed 

from the dayside and added to the tail, without a balancihg re-

turn flow from the tail restoring flux to the dayside, and this 

continues until a new equilibrium configuration is approached 

(i.e. strong convection equilibrium). 	These flux changes are 

observed experimentally as an inward motion of the magnetopause 

(the earth's field at the boundary must remain roughly constant, 

for pressure balance) and an increase in tail field strength. 
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Meng (1970) showed on a statistical basis that large values of 

AE (hourly average) occur when the boundary is closer to earth 

than average. 	Typically <R> 	R = 1 -- 2 RE  when AE 

200 -4- 400 y, while for R 	<R> > 0 the AE index is small • 

CS 10 to 100 y). 	The first detailed observations of substorm-

associated tail field changes were made by Camidge and Rostoker 

(1970) and Fairfield and Ness (1970), who showed that for one 

or two hours prior to the maximum of the AE index the field 

strength can approximately double in a roughly linear fashion, 

although motions of the plasma sheet can complicate the picture. 

During this time the field assumes a 'tail-like' configuration 

with very little (< 1 y) north-south component, corresponding 

to an enhancement of the tail current system (see Fig. 2.8). 

. However, simply adding flux to the tail does not increase the 

field strength if the magnetosheath pressure is constant. 	It 

was shown by Arnoldy (1971), Aubry et. al. (1970) and Aubry 

and McPherron (1971) that the increase in tail field was not 

due to changes in the thermal or dynamic pressures of the solar 

wind, so that the flaring angle of the tail must increase, if 

the field strength increases. 	In addition, the flux content 

of one of the quiet tail lobes at X = - 20 RE is " 5 x 1016 

maxwells (B - 20 y), while if Meng's results of-magnetopause 

motions are typical, the flux transferred from the dayside 

(- 50 y field at the boundary) is - 1016 maxwells. 	However, 

we may typically find field strengths of - 30 y in the tail 

during the growth phase so that there is an indication that the 

tail radius decreases by a factor - 0.9 at least for X > - 20 

RE  (see Fig. 2.9(a)) 

These data have thus shown .a strengthening and earth- 
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Figure 2.8: Behaviour of the tail field during isolated sub-

storms when the spacecraft is far from the expected position 

of the neutral sheet (From Fairfield and Ness (1970)). 
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Figure 2.9(a): Schematic diagram of the change of field con-

figuration between (i) quiet times, (ii) growth phase, prior 

to substorm onset. We have indicated the shrinkage of the nose 

of the magnetosphere, the increasing flaring angle of the tail, 

and the possible decrease of tail radius for the near-Earth 

section. 
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ward motion of the tail current system during the growth 

phase. Both these effects combine to make a large pertur-

bation in the night-hours outer zone field (as observed on 

ATS-1 at 6.6 RE  by Cummings et. al. (1968)). 	Here, as expec-

ted, the growth phase is characterized by a decrease in field 

strength (the south to north field is the major component) on 

a time scale of an hour or two, by 20 to 60 y (dipole field 

- 100 y). 

The most interesting data set so far obtained concer-

ning this aspect of the growth phase has been presented by 

Aubry et. al. (1970) whO used OGO-5 observations of the mag-

netopause motions with concurrent magnetic field data in the 

solar wind, magnetosheath and tail. 	They directly observed 

the inward motion of the magnetopause following the appear-

ance of a southward component of the interplanetary field (the 

boundary oscillating about a -.2 RE  displacement after about 

20 min. of such a field), and the increase in tail field 

(somewhat obscured by plasmasheet effects). 	A substorm ex-

pansion followed somewhat later. From this concurrent data 

set, the statistical result of Meng (1970), the observations 

-of Cummings et. al. (1968) and Fairfield and Ness (1970) and 

the reconnection model of the magnetosphere are brought to-

gether to form a consistent picture of the evolution of the 

magnetosphere to a convection equilibrium. 

The motion of the aurorae during the growth phase pro-

vide further coroborative evidence of the magnetospheric chan-

ges inferred here, although these effects are much less spec-

tacular than the nightside breakup, bulge and surge phenomena 

during expansion. Aurorae, of the dayside oval are produced 
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by 150 eV electrons, associated with < 1 keV proton precip-

itation'(optical observations of Eather and Mende (1971)), 

and are discrete, rayed forms, which are very short-lived 

and fleeting, but nearly continuously present. 	The electron 

energy flux'during quiet times was found to be - 0.1 erg/cm2/ 

sec throughout a region extended from - 77°  to 82°  near the 

noon meridian and was continuous in longitude from (at least) 

09:00 to 15:00 L.T. 	This precipitating plasma forms a dis-

tinct 'soft-zone' of structured low-energy particle fluxes 

at high invariant latitudes on the day side. 	This was 

first detected unambiguously by Burch (1968) (75°  to 80°  at 

noon) and further investigated by Hoffman (1969) (75°  to 850 

at noon) from low altitude polar orbiting satellites. 	The 

first good energy spectra of these particles was obtained by 

Heikkila and Winningham (1971), and these showed considerable 

similarities to magnetosheath spectra, with energy fluxes of 

- 0.3 erg/cm2/sec compared with - 0.5 erg/cm2/sec in the sheath. 

That the dayside soft zone is magnetosheath in origin, having 

direct access via the polar cusp (i.e. dayside magnetopause 

neutral line or points) has recently been confirmed by Frank 

(1971) using particle measurements carried out by Imp 5 from 

the magnetosheath down to low altitudes. The-identification 

of the soft-zone fluxes with dayside aurorae has recently been 

confirmed by Hoffman and Berko (1971). When the interplanet-

ary field turns southward, the faint rayed structures of east-

west elongation change to a more active and brighter band 

which moves equatorward (Kaneda (1971)). The brightening 

presumably corresponds to either neutral sheet acceleration 

during reconnection, or a different mode of access due to the 



77. 

differing field configuration; the equatorward drift is ex-

pected since the loss of dayside flux during the early part of 

the. 
the growth phase means that the field lines connected toAmag- 

netopause are to be found at lower latitudes. For an inward 

displacement of the magnetopause by 2 RE at the euuator, the 

shift in latitude is about 5°. 	More recently Akasofu (1971) 

has also measured this equatorward shift and finds such a 

motion for an hour or two prior to breakup, with displacements 

of 5 to 7°. 	For larger substorms larger shifts are seen, in 

confirmation of Arnoldy's (1971) result that the strength of 

the electrojet is proportional to the strength of the convec-

tion. 

By contrast with the dayside, the aurorae of the night 

time oval take the form of simple arcs (one or more) of basic-

ally east-west elongation which may be stable in form for 

several hours. 	They are formed in the 100 -4- 200 km height 

range and extend for thousands of km along the oval, but are 

extremely thin (3 to 5 km). 	Their magnetospheric origin near 

the equator is indicated by the close conjugacy of the quiet 

arcs between north and south hemispheres observed by Belon et. 

al. (1969). 	This close conjugacy rapidly deteriorates during 

breakup events however. During quiet times these arcs are 

located near - 70°  at midnight, and are associated with - few 

keV electrons as measured by sounding rockets (see Hones et. 

al. (1971a).for a comprehensive reference list). 	The partic- 

les have not been measured by polar satellites because of the 

small latitudinal extent, and do not seem to be identifiable 

with magnetospheric particle distributions. Their most likely 

source seems to be neutral sheet acceleration on multiple 
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X-neutral lines in the near-Earth tail. During the growth 

phase the arcs drift equatorwards with the convection drift 

velocity (Kelley et. al. (1971)) of 3°  .4- 7°/hr, ending up near 

650A prior to breakup (corresponding to an eauatorwards ex-

pansion of the auroral oval). 

The occurrance of strong convection in the magneto-

sphere leads to very definite patterns of particle populations 

within it, and changes in the convection strength produces the 

temporal changes which occur. 	As has been previously stated, 

plasma flow within the. region of closed field lines is basic-

ally towards the sun, i.e. particles are convected from the 

tail region, around the Earth to the dayside magnetopause. 

As they move from the weak magnetic fields of the tail region 

into the stronger fields near the Earth, preserving p and J, 

they become energized (as may be seen from the conservation of 

p = 1,574/B), the increasingly important velocity dependent mag- 

netic drifts moving the particles across equipotentials. 	The 

motion of particles is thus highly dependent on their energy 

compared with the electric potential energy across the magneto-

sphere associated with the convection (- 50 kV for strong con-

vection). For particles starting with very low energies in 

the tail the electric drift dominates at all points on their 

drift path and their motion in the equatorial plane is simply 

along electric equipotential lines. They are hence rather 

easy to describe. With increasing energy in the tail the 

magnetic drifts become more important such that the particles 

near the Earth will have gained energies comparable with the 

electric potential energy (a few tens of kilovolts). Of 

course, energization is limited to the potential drop across 
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'the magnetosphere, such that particles with too high an 

energy in the tail will drift to the magnetopause and be lost 

before they enter the region of strong magnetic fields near 

the Earth. 	However, any high energy particles (rather lar- 

ger than the potential energy) which are produced near the 

Earth (not by convective energization) will drift around it on 

closed paths conserving p and J, virtually ignoring the elec- 

tric field. 	We thus expect, broadly speaking, to be able to 

describe the distribution of particles below a few tens of key 

energies in terms of convective energization, while any par-

ticles of higher energy should have a different morphology 

owing to their different origins. 

In the absence of convection, a radial (towards the 

Earth) electric field would exist, arising from the fact that 

the feet of the magnetospheric field lines are embedded in the 

conducting ionosphere, which corotates with the Earth. 	This 

electric field, which decreases with a 1/L2  dependence, pro-

duces circulation of the low-energy magnetospheric plasma 

around the Earth with a 24-hour period. If we simply add the 

corotation and convection electric fields together, the resul-

ting equipotentials and low-energy particle path in the equat-

orial plane are shown in Fig. 2.9(4. We note that there exists 

a region near the Earth which does not take part in the con-

vection, and that this constitutes a 'forbidden zone' for low- 

energy particles drifting in from the tail. 	If we consider 

a magnetic flux tube which is initially devoid of plasma and 

which is connected at either end to the ionosphere, a flow of 

plasma into the tube will star:t. This is initiated by ambi-

polar diffusion of the electrons setting up a parallel elec- 
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Figure 2.9(b): Electric equipotentials in the magnetic equat-

orial plane obtained by the addition of a radial corotation 

electric field to a uniform convection field from dawn to dusk 

across the magnetosphere. The total potential drop across the 

system is 40 keV. These lines are also the drift-paths for 

low energy plasma. 
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tric field, which pulls out the light ionospheric ions 

(mainly hydrogen), while the heavier ions (mainly oxygen) re- 

main stationary. 	Banks and Holzer (1968) showed that such 	a 

flow of light-ion plasma would become supersonic above a few 

thousand km, with a flux out of the topside ionosphere of 

order 108  ions/cm2/sec. 	The plasma streams from north and 

south hemispheres interact at the equator to produce shocks 

which propagate back into the ionosphere (taking several 

hours, Banks et. al. 1971) to terminate the supersonic flow. 

Subsonic flow then ensues for a period of a few days until 

an equilibrium distribution in the flux tube exists, with 

plasma densities comparable with topside ionospheric ion den- 

sities. 	Thus within the region of corotating field lines 

the low-energy plasma density should be high (- 103  to 104 

ions/cm3) and this region is called the plasmasphere. 	Field 

lines taking part in the convective flow, however, periodi-

cally become 'open' allowing the escape of the thermal plasma 

and the setting up of supersonic flow from the ionosphere. 

This flow of plasma, mainly from the polar cap into the open 

tail field lines is termed the polar wind. When reconnection 

occurs in the tail, shocks are-formed which, as above, prop-

agate back to the ionosphere, but may not in fdct reach it to 

terminate supersonic flow before the field line has moved 

towards the day side and become open again (the two time 

scales are comparable, Banks (1972)). 	Thus conditions for 

supersonic flow out of the ionosphere may exist at all lati-

tudes above the plasmapause during extended periods of strong 

convection. The plasma density appropriate to the flow sit-

uation is very low compared to that of the plasmasphere, as 
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may be imagined from the fact that it takes several days for 

the equilibrium situation to be setup. For example, the 

polar wind density of the tail may be estimated from topside 

fluxes of order 107  to 108  ions/cm2/sec as follows: Consider 

a:tube of force of cross-sectional area Alin the ionosphere, 

where the field magnitude is B1, and of area AT  in the tail, 

with field strength BT. 	Then we have 

nIvIAI 	nTvTAT and  BIAI = BTAT 

(n v ) I I  • 	T or 	nT 	(—B  ) vT 

Since BT/BI = 103  and vT  = 30 to 40 km/sec (Ep(bulk) - 10 eV) 

we find nT = 10
-1  to 10-2  /cm3  for topside fluxes (at 3000 km 

altitudes) of (nivI) = 4 x 107  to 4 x 108 cm2/sec. 	This, as 

far as is known, is the only continually present plasma com-

ponent to exist on the open tail field lines, so that in our 

neutral sheet model of the magnetotail, we shall use plasma 

densities outside the current region of order 10-1 to 10-2  /cm3  

in numerical calculations. 

' Experimentally the plasmasphere and plasmapause were 

discovered by the study of the propagation of ducted whistler 

signals in the magnetosphere (Carpenter (1966)), but recently 

direct measurements have become possible. As expected, it 

.is found that the plasmasphere is much larger during times of 

magnetic quiet (low convection electric field) than during 

disturbed times. Typically, the plasmapause moves in from 

L = 6 for K p  < 1 (usually the boundary is not sharp during 

quiet times, because the outer regions are in the process of 
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being steadily filled), to L < 3 for Kp  - 4 to 5. 	During 

such disturbed times the boundary is usually sharp with a 

drop of density from - 10
3 H+ ions/cm3 to - 0.1 cm-3 across 

it (Chappell et. al. (1970)). 	Simple theory (Fig. 2.9) 

suggests that the boundary should be rather local time depen-

dent, being perhaps a factor two larger near dusk than near 

dawn, a trend noted by Carpenter, but not so far discussed in 

terms of the direct measurements. 	If the convection electric 

field increases (as during the growth phase). the region of 

closed drift paths becomes smaller, and the outer corotating 

field lines start to convect towards the day magnetopause, 

taking their high-density plasma with them. 	This leads to 

high-density plasma clouds becoming 'detached' from the plas-

masphere, a process which establishes the new plasmapause 

position. 	Similarly, after a. relaxation of the convection 

electric field, the region of closed drift-paths expands, and 

the newly corotating field lines start to fill with plasma. 

As this can take several days, a 'two-step' structure in the 

density profile is often observed, corresponding to the new 

and old plasmapause positions. (For examples of 'detached 

plasma' and 'two step profiles' see Harris et. al. (1970)). 

Direct observations of plasma flow and associated 

topside density and ion composition changes above the plasma-

sphere latitude at 3000 km altitude have recently been ob- 

tained by Hoffman (1971). 	He observed fluxes of 3 to 5 x 

10
8 ions/cm2/sec from the winter pole and - 5 x 10

7 ions/cm2/ 

sec from the summer, with speeds of - 10 km/sec, thus confirm-

ing Banks and Holzer's results and our estimate of the tail 

number density. 
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Measurements in the tail of such low densities of 

very low energy (1 to 10 eV) particles is rot at present pos-

sible, and until very recently only one report concerning the 

plasma of the high-latitude magnetotail had been published, • 

presumably due to the background responses of most instruments, 

which are designed to detect higher fluxes of more energetic 

particles. 	Bame (1968) presented a sample spectrum obtained 

from a Vela satellite at a radial distance from Earth of 18 

RE. 	The calculated number densities for Ee  > 30 eV, Ep  

30 eV were ne  5- 0.04.cm
-3 

and n 	
3 

0.2 cm . 	Because of 

the poor statistics and unknown background counting rates 

(none were subtracted) these densities represent upper limits. 

In general it was stated that the indicated density (above 

30 eV) was S 0.1 cm-3, with average energy < 100 eV for elec- 

trons and < 1 keV for protons. 	These particles, possibly of 

magnetosheath origin, have densities comparable with those 

expected from the low-energy polar wind, so that our original 

estimate of the density of particles in the open tail field 

lines is unaffected; their energies are low compared with 

the several tens of kilovolts expected across the tail and so 

may, to a first approximation,.be treated as being 'cold', in 

the same way as the polar wind. 	It should be -noted, however, 

that higher fluxes of more energetic plasma may exist at times 

in this region,' as evidenced by the appearance of polar cap 

aurorae, although these, too, have received very little study. 

(Very recently Bame et. al. (1971) have reported the existance 

of a nearly monoenergetic stream of ions flowing outwards from.  

the Earth in the high-latitude' tail during magnetic storms. 

Typical energies lie in the range 300 eV to 3 keV, with - 10% 
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spread of energies about the mean, and fluxes are 5 105  ions/ 

cm2/sec. 	Their density is thus typically less than 10-2 

ions/cm3. 	At the present time their detailed morphology 

and origins are unknown, and so will not be discussed further, 

except that it is interesting to note that mapping these 

fluxes back into the ionosphere gives fluxes of order 108  ions/ 

dm /sec, similar to those of the polar wind). 

While the high latitude magnetotail is thus a region 

of very low particle energy and density, a thick, hot slab of 

plasma (the plasma sheet), has been found to exist near the 

field minimum plane (Montgomery et. al. (1965)), over a wide 

range of distances from Earth - 10 RE  z X ?. - 60 RE  (at 

least). 	Several authors have interpreted this as being due 

to the direct access of magnetosheath plasma near the Emin  

plane (Alfven and F.L.thammar (1971), Bird and Beard (1972), 

Atkinson (1972)), even though their spectra are rather differ-

ent (though their mechanism of access may be energy dependent). 

However, it is also possible that the plasma sheet is produced 

in the small-angle wedge of the X-neutral field configuration 

by Speiser's acceleration mechanism acting on polar wind plas-

ma (see Fig. 1.11), and such a. model has been proposed by 

Holzer (1971). 	Since the particles constituting the radiat-

ion belts must come from the plasma sheet (convected inwards 

from the tail during substorms) this latter suggestion would 

imply that the whole of the magnetosphere's particle distrib-

ution is ionospheric in origin. 

The majority of the information concerning the plasma 

sheet and its evolution during. substorms has been obtained 

by the Los Alamos Vela series of satellites which have high 
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(60°) inclination orbits with an almost constant radial dis- 

tance of - 20 RE. 	They thus cross.the sheet basically in a, 

north-south direction giving information on the density and 

energy profile with Zsm  at the given radial distance. Un-

fortunately they carry no magnetometers. During quiet times 

the particle population at X - - 20 RE  at midnight is con-

tained within - 8 RE of the Bmin  plane (estimated from the 

formula of Russell and Brody (1967)) and has the following 

properties (Fame (1968)). 

N = 0.5 cm 3 (0.1 to 3.0) ; 7e  = 600 eV (100 eV to 10 keV) 

cp  = 5 keV (1 to 20 keV) 

We note that the electron energy density is only 10% to 20% of 

that of the protons, although the electron distribution and 

its variations is most often used for plasma sheet studies. 

We also note that the typical energy densities of a few x 10
-9 

erg/cm3, is equivalent to the pressure of a few x 10 y mag-

netic field, so that a significant depression of the magnetic 

field (through the diamagnetic effect) is expected in the 

plasma sheet. 	This has been observed by Behannon (1970), 

Hrugka and Hrugkov (1970) and Fairfield and Ness (1970) in 

the radial distance range x - 20 RE  to - 40 RE. Whether 

the plasma sheet represents the sole source of current-carrying 

plasma in the tail, in the sense that the magnetic field 

smoothly reverses over the 8 RE'thickness (as argued by 

Schindler (1971), Bird and Beard (1972)), or whether there is 

a region of strong current near the Bmin  plane causing a 

sharp reversal in the field, is presently being discussed. 
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Speiser and Ness (1967) reported the existence of such a cur-

rent sheet at distances of - 16 to - 30 RE, with thickness 

a few hundred to a few thousand km (< 1 RE), while Mihalov et. 

al. (1970) interpret their data to show a current sheet of 

thickness a few tens to a few hundreds of km at X - - 60 RE. 

Schindler and Ness (1971) claim, however, that these sharp 

Changes in the magnetic field could be due to tearing mode 

noise near the Bmin  plane within a much thicker current sheet 

structure. 	It is interesting to note that Mihalov (1970), 

while finding the plasma sheet field depression in data ob-

tained in the range - 20 RE  > XSM  > - 50 RE, found none in 

samples obtained from - 50 RE  > XSM  > - 81 RE. 	To date 

information does not exist on the radial gradients of the low 

energy plasma sheet particles; however, Meng (1971), using 

Ee  > 22 keV and Ee  > 45 keV electrons as plasma sheet markers 

(these form the high-energy (non-Maxwellian) tail of the 

plasmasheet distribution) found its existance over a broad 

region at X - - 60 RE, although their fluxes were about a 

hundred times less than those at X - - 20 RE  (i.e. peak 

fluxes (se  > 45 keV) of - 2 x 10
2 (cm2-sec-st)-1  at X = - 60 

RE  compared with - 104 to 10
5 lcm2-sec-st)

-1 at X = - 20 RE  

to - 30 RE). 

Early analyses of the observations of the plasma sheet 

behaviour associated with substorms at X - - 20 RE, showed 

that the basic growth phase phenomenon was a 'plasma drop-out' 

i.e. a large decrease of particle density, coupled with a 

smaller decrease of particle average energy. Since the outer 

boundary of the plasma sheet is basically a density boundary 

this was interpreted as a 'thinning' (Hones et.. al. (1967), 
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(1970)), a result which has been confirmed by simultaneous 

two-satellite studies (Hones et. al. (1971c)). (Fig. 2.10). 

No 'compression' effects are seen near the Bmin  plane (Fig. 

2.11). 	Such changes must be related to the changing field • 

configuration of the tail, and if Holzer's plasma sheet model 

is correct, it implies that either the angle of the closed-

field wedge becomes smaller, or that the tail neutral line 

moves towards the Earth. 	Both effects would contribute to 

the large reduction of the northward field component across 

the tail lobes observed by Fairfield and Ness. 	From two-

satellite studies the contraction speed is - 6 km/sec, and 

interpreted in terms of an E ^ B drift, gives - 50 kv across 

the tail. 	The process may continue for several tens of min- 

utes after breakup, although the literature on this aspect is 

.rather confused, due to difficulties in defining the onset 

time of substorm expansion with limited ground data. 

The plasma sheet has a well-defined inner edge when 

observed in several hundred electronvolt electrons (the major 

constituent of the electron plasma sheet), which appears as 

a 'rapid drop in electron temperature (not in density) as one 

moves earthwards across the (presumably roughly field-line 

aligned) boundary. 	The first observations were presented by 

Vasyliunas (1968a,b), but the detailed energy spectral change 

were not available until the work of Schield and Frank (1970). 

According to the latter authors the boundary is approximately 

one RE  thick across which te  changes from 2 to 5 keV in the 

plasma sheet to - 500 to 800 eV in the outer zone, with little 

change in particle density (- 2 cM-3). It is located between 

X • - 6 RE. to - 9 RE  in the noon-midnight meridian•(local 
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time variations are shown in the work of Vasyliunas), separ- 

ated by h to 3 RE  from the plasmapause. 	The region between 

the plasmasphere and the inner edge of the plasma sheet is 

termed the 'electron trough'. 	Note that the average plasma.  

sheet electron energies at the inner edge are a factor - 5 

times those observed at X - - 20 RE, as may be expected from 

the increase in magnetic field strength and decrease of field- 

line length. 	Such observations can only be made as a 'snap- 

shot' by a satellite in a highly eccentric orbit passing 

radially through the region. 	However, such 'snapshots' can 

only be made twice per orbit, and orbital periods are gener- 

ally a couple of days. 	Thus inward motions of the boundary, 

as expected for enhanced convection, as a function of substorm 

phase are impossible to measure by such means. 	However,  

during substorm activity the inner edge is found much closer 

to the Earth, and also closer to the contracted plasmapause 

(L = 3 to 4), as reported by both Schield and Frank, and 

Vasyliunas. 

The structure of the proton inner edge has not re-

ceived such detailed study, but during quiet times it seems 

to be continuous from the plasmasheet, through the electron 

trough up to the plasmapause, inside which it decays away 

over a scale length of - 1 RE. During periods of strong 

convection (e.g. world-wide magnetic storms) a similar situat-

ion is observed, but the inner edge lies just outside the 

plasmasphere (Russell and Thorne (1970) , using the proton 

data of Frank (1971) and plasmasphere data of Taylor et. al. 

(1968)). 

These results can be interpreted in terms of convec- 
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tive particle drift from the tail (given a plasma sheet distrib-

ution at X - - 20 RE), using the results obtained by Kavanagh 

et. al. (1968), Kennel (1969) and Wolfe (1970). 	In the same 

way as the plasmapause represents the boundary of a 'forbidden' 

zone for low energy particles convecting inwards from the tail 

(Fig. 2.9), 'forbidden zones' occur for higher energy particles 

drifting in from the tail with fixed p and J. 	The results of 

Kavanagh et. al. (1968) show that these forbidden zones become 

larger with increase of particle tail energy, leading to rapid 

drops in plasma temperature as one moves earthwards, and the 

plasmasphere always lids within them, in agreement with the 

observations of Schield and Frank, and Russell and. Thorne (for 

the strong convection case). 	The forbidden zone for protons 

of given tail energy generally lies closer to the Earth than 

that of the electrons of the same energy. 	Kennel (1969) con- 

sidered the effect of precipitation of plasma sheet particles 

in the strong diffusion limit on inwardly convecting flux tubes, 

arguing that when the loss time for particles becomes ecival to 

a scale time for the flow, then the tube rapidly becomes dep- 

leted of particles. 	The process is again energy dependent, 

high-energy particles precipitating first, such that the obser- 

ved electron temperature boundary will be formed. 	With inc- 

reasing convective speeds the particles penetrate further before 

becoming lost, such that the inner boundary moves towards the 

Earth. His results indicate that the inner plasma sheet edge 

• for electrons is such a precipitation boundary, where particles 

of given energy become lost before their forbidden zone is 

reached, while protons of plasma sheet energies can move much 

further in, so that their inner edge may be a flow (forbidden- 

. zone) boundary and consequently much closer to the plasmasphere. 
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Wolfe (1970), in addition to considering how magneto-

spheric flow-is modified by the presence of a conducting ionos-

phere, suggested that the shape of the inner boundary of the 

electron plasma sheet observed by Vasyliunas could be accounted 

for by a combination of the forbidden zone and precipitation 

models, as shown in Fig. 2.12. 

These models are not self-consistent, however, because • 

the question of the space charge of convecting protons within 

the electron flow/precipitation boundary has•not been consid- 

ered. 	However, if Schield and Frank's electron trough is 

such a region, then it is clear that the proton space charge 

is neutralized, by - 100 eV electrons (see Fig. 2.13) presum- 

ably originating in the ionosphere. 	(Since we are outside 

the plasmasphere, the ambient density of thermal (ionospheric) 

particles is < 0.1 cm-3, compared with observed electron trough 

densities (90 eV to 50 keV) of 1 to 2 cm 3). 

In addition to 'snapshots' of the radial profiles of 

particles, information has also been obtained at a fixed rad-

ial distance by satellites in circular orbits (mainly the geo- 

stationary distance 6.6 RE). 	During the quiet times 6.6 RE  

is generally located within, or• near, the plasmapause, and 

hence outside the plasma sheet. With increasing convection el-

ectric fields, this boundary, which is energy dependent, moves 

across the spacecraft as the flow/precipitation boundaries 

contract towards the Earth. Such events occur in one to one 

correspondence with substorms (De Forest and Mcllwain (1971)), 

but the latter authors claim that their results are consis-

tent with an increase of fluxed starting at the substorm ex- 

pansion phase. 	This is difficult to understand if strong 
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convection takes place for - 1 hour preceding the expansion, 

but it may be -noted that the Earthward convection speed at 

6.6 RE  is - 1.5 RE/hour such that the plasma sheet particles 

-may only reach 6.6 RE  from their old location after an hour 

of strong convection. 	The lower energy particles, whose, 

boundary is not far removed from the synchronous altitude 

according to Schield and Frank, should, however increase 

steadily during the growth phase. 	Such observations have 

not been noted by De Forest and McIlwain (19.71), but have been 

reported by Shelley et.. al. (1971) at the same altitude; 

measuring electrons (0.5 to 50 keV) they found that lower 

energy particle enhancements occurred before those of higher 

energy, the increases starting - 1 hour before a substorm 

expansion (i.e. during the growth phase). 

Having reviewed the observations of magnetic field 

and particle populations and their temporal evolution into 

a strongly convecting state, we shall now consider briefly 

those effects associated with substorm expansion and recovery. 

To recapitulate, by the time expansion starts, the interplan-

etary field has been southwards for - 30 minutes to 1 hour 

(Arnoldy, (1971)), DP-2 currents are well-established (Nishida 

(1968a,b), Oguti (1969)), the tail current system is enhanced 

(Cummings et. al. (1968), Fairfield and Ness (1970)), the 

plasma sheet thinned (Hones et. al. (1971b,c)) and its inner 
(i.e. 6.04) 

boundary is being detected at ATS altitudes (Shelley et. al. 

(1971)), all processes aualitatively, and to some extent 

quantitatively understood in terms of the picture of strong 

convection set up by dayside merging. In the night-time 

auroral zone the quiet arcs have been drifting equatorwards 
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from A - 70°  reaching A - 65°  under the influence of a - 30 

mV/m -westward electric field (Kelley et. al. (1971), Mozer 

(1971)). 	Then, rather suddenly (over a minute or two) the 

arcs near the eguatorward edge brighten and move rapidly 

northwards, varying in shape and intensity. 	The arcs become 

broken up, resulting in rapidly moving patches and irregularly 

folded pulsating bands moving eastwards. 	The area of activ- 

ity expands westwards (as a surge along the Quiet arcs) and 

eastwards (reaching past the dawn-dusk meridian after 10 or 
as 

20 minutes), as wellAto the north; the general 'glow' be- 

comes enhanced and active aurorae fill the whole sky in the 

nightside oval. 	The westward electrojet, producing negative 

bays in the H component, occurs over the region swept by the 

auroral bulge; the equivalent current system of an electro-

jet (DP-1) current system is shown in Fig. 2.5, indicating 

intense westward currents flowing in the nightside oval. 

After perhaps an hour the electrojet dies away, active aur-

orae fade and quiet arcs reform at high latitudes (see 

Hultqvist (1969), p. 145-146, for more details of ground ob-

servations and references). 

Balloon-bourne electric field detectors in the auroral 

zone indicate that the - 30 mV/m westward electric field char-

acterizing the growth phase remains during the expansion. 

Thus the northward motion of aurorae during the expansion 

does not imply E B drift in an eastward electric field. 

However, the onset of the negative bay is coincident with the 

appearance of a large southward directed electric field of 

magnitude 20 to 100 mV/m (Mozer and Manka (1971), Mozer (1971)), 

which is consistent with the eastward motion of the broken up 
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arcs mentioned above (velocities - 500 to 1000 m/sec), 

(Kelley et. al. (1971)). 	Thus the westward electrojet is 

thought to represent the effect of the southward electric 

field in the Hall-conducting nightside oval. 

In the magnetosphere, the tail current system declines 

in strength over a time scale of 30 min to .1 hour, if obser-

ved in the high-latitude magnetotail (uncontaminated with 

plasma sheet effects), and as a result the field in the tail 

and outer zone become more 'dipole like' (Fairfield and Ness 

(1970), Cummings et. al. (1968)). 	Specifically, the tail 

field magnitude drops, while the north-south component inc- 

reases (Fig. 2.8). 	Nearer the Bmin  plane the field both 

rises more quickly during the growth phase and declines more 

quickly during recovery due. to the contraction and subsequent 

expansion of the plasma sheet. 	Within the sheet Bx  is much 

depressed, and the increased Bz  is often the major field com- 

ponent. 	Multiple neutral sheet crossings (i.e. reversals 

of the minor Bx  component) are often seen following sheet ex- 

pansion (and during very quiet times), even as much as - 5 RE  

from its estimated position. 	It is unlikely that any thin 

current layer exists at such times, a situation contrasting 

with that of the growth phase, when multiple crossings are 

not seen, usually only a single clear field reversal within 

the thinned plasma sheet. As expected, the field magnitude 

at 6.6 RE  in the outer zone increases, though these effects 

can sometimes be complicated by the current set up by the 

energized plasma sheet particles near the Earth (the ring 

current). The continuity of these signatures in the magnetic 

field has recently been shown by Russell et. al. (1971), who 

observed field changes due to four weak substorms while OGO-5 
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moved in from X = - 18 RE  to X = - 6.5 RE. 	They observed 

the 'tail' signature as close in as - - 9 RE, where the field 

had been enhanced over that of a dipole during the growth 

phase. 	However, a 'recovery' observed 0.5 RE  closer to the. 

Earth on the same pass, where the field had been depressed 

w.r.t. the dipolar field was accompanied by a field increase, 

as is the case at 6.6 RE. 

Observations of the plasma sheet recovery was initiated 

by Hones et. al. (1967), and continued by Hones et. al. (1970), 

(1971b,c). 	Briefly, the expansion starts (perhaps) some 

minutes after the breakup on the ground, and proceeds in the 

Z direction with speeds in the range 5 to 20 km/sec (Hones et. 

al. (1971c). (See Fig. 2.10). 	Since the sheet expands by 

say --6 RE, this takes some 30 min to 2 hours. 	Clearly, 

observations depend critically on distance from the Bmin  

plane. 	Some information on the radial propagation of the 

expansion has been presented by Meng et. al. (1970) and Akas-

ofu et. al. (1970), where examples include an expansion ob-

served at Vela ( ;m= - 19 RE, Zoi= - 4.6 RE) occurring half an 

hour after that at Imp 3 (.(1,r  - 32R,, Z$M  0.2 RE). 'Such 

results indicate that the expansion must start throughout the 

range Xoj - 20 to - 30REin a time short compared with 30 min. 

It has been suggested in several of Hones' papers 

that the plasma sheet expansion is directly related to the 

northward expansion of the auroral bulge. He also showed 

(Hones et. al. (1971a)) that neither quiet nor post-breakup 

auroral particle spectra show any resemblance to plasma sheet 

spectrae  the auroral particles having more flux at higher 

energies. Thus while the two may be related, individual 
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details should not be expected to correspond, although such 

a comparison has recently been carried out, with inconclusive 

results, by Akasofu et. al. (1971). 

The northward expansion of the aurorae and the tail . 

field changes are indicative of very rapid merging in the tail, 

but electric field and convection declines during the recovery 

phase by which time the period of southward interplanetary 

field is usually over. 	The particles which have been 

driven deep into the outer zone by strong convection thus 

find themselves within. the new forbidden zones, and thus sim- 

ply circulate about the Earth. 	Since the strong convection 

period lasts for only a fraction of the drift period around 

the Earth (for lowish energy particles), this results in a 

drifting plasma cloud which disperses as time goes on (the 

magnetic drifts are energy dependent), as has been shown by 

the results of De Forest and Mcllwain (1971) from the ATS-5 

satellite. 	Typical electron densities are 5 to 10 cm-3 dur-

ing the substorm (50 eV to 50 keV), but this seems to decline 

fairly rapidly, down to 1 to 0.1 after several hours (reform- 

ing the electron trough). 	Proton densities are not so var- 

iable, indicating that charge neutrality is maintained by 

ee  < 50 eV electrons. 	These protons, inside the (topologi- 

cal) plasma pause, form the 'quiet-time ring current', which 

has a decay time of a few days (Frank and Owens (1970)). 

The distribution seems to be 'mopped up' as the plasmapause 

move out (as it fills), on a time scale of days (Fig. 2.14), 

(Russell and Thorne (1970)). 	This accounts for the auiet 

time observations of a proton population - 1 RE  inside the 

plasmasphere. 
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Figure 2.14: The relative distributions of thermal ion concen-

tration (plasmasphere) and 31 keV < Ep  < 49 keV proton ring-

current fluxes for (a) pre-storm, (b) world-wide storm main-phase 

(c) recovery phase, and (d) post-storm. It can be seen that the 

protons moved to low L-shells during periods of enhanced convec-

tion are depleted in step with the expanding (filling) plasma-

sphere. (Russel and Thorne (1970)). 
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It has been postulated by Cornwall et. al. (1971) that 

the energy of the proton distribution is dissipated by wave 

particle processes (cyclotron resonance) which operate only at 

sufficiently high ambient plasma density (i.e. when the plasma-

sphere has filled to a given n at a given L).-  The wave-energy 

is fed to the ionosphere by low energy electrons, and gives 

rise to the sub-auroral red (SAR) arcs. 	Though one might have 

expected some (small) discontinuity between the decaying quiet 

time ring current distribution with the plasmasphere and the 

protons forming the new flow inner boundary - of the plasma sheet 

just outside the plasmasphere, none has been noted in the lit-

erature, and none is very evident in the published data. 

As we commented at a very early stage, magnetospheric 

particles with energies above several tens of kilovolts cannot 

be produced by convective energization of ionospheric plasma, 

and so may be expedted to show rather different behaviour from 

particles of lower energy, due to their different origins. 

Such electrons can conveniently be measured (as is usually 

done) by Geiger-Muller tubes sensitive to energies above • 45 

keV. 	Significant fluxes of them can be found in the plasma 

sheet, where they represent the high-energy (non-Maxwellian) 

tail of the energy distribution, but it is found that their 

fluxes increase by several orders of magnitude (2 to 3) as 

one moves earthward across the electron inner boundary of the 

plasmasheet. 	(Frank (1967a), Schield and Frank (1970) (Fig. 

2.15). 	The formation of the two features by strong diffusion 
• 

of particles appears intimately related. After production, 

their motion will be dominated.by  magnetic drifts, and the 

magnetic field model of Fairfield (1968b) indicates that 
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only those particles produced within L 5. 7 RE near the mid-

night meridian will be able to execute a complete drift around 

the Earth without intersecting the magnetopause at dawn. 

During the strong convection periods associated with substorms 

we find, as'expected, that these particles are produced in 

the region swept out by the inward moving inner plasma sheet 

boundary. 	It appears from the results of Pfitzer and Winckler 

(1969) that such particles are continuously generated in the 

region between (at least) 5 to 8 RE  from the Earth for 

about an hour during the substorm. Such generation occurs 

in one to one correspondence with substorms, and as with the 

low-energy particles, results in 'clouds' which drift around 

the Earth from the midnight sector, being observed at succes-

sively later times (from storm onset) at 6.6 RE  as the satel-

lite moves from midnight through dawn to the dayside; the 

delay corresponding to the appropriate fraction of the drift 

period. These clouds can sometimes be seen on the second 

lap, but now dispersed and attenuated by precipitation 

(Arnoldy and Chan (1969), Lezniak and Winckler (1970)). 	This 

population of high-energy electrons is apparently much more 

stable than the low-energy particles, decaying away over a 

time period of several days (Owens and Frank (1968)) presum-

ably by cyclotron scattering and radial diffusion; it clearly 

exists quite happily within the plasmasphere while the auiet 

time ring current protons are being depleted (Russell and 

Thorne (1970)). 

We would now like briefly to relate this discussion 

of the particle morphology in the magnetosphere to the obser-

vation made by low-altitude polar orbiting satellites and 
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ground data obtained primarily during the night hours. At 

all local times two distinct electron precipitation zones 

occur at low altitudes, 'soft' and 'hard', the soft zone at 

higher latitudes, the latitude of the boundary between 

them being a function of local time (Burch (1968), Hoffman 

(1972)). 	Due to the crude nature of these particle experi-

ments (two or three point energy spectra) this classification 

cannot be made more precise; high resolution spectra are not 

yet available. 	As has already been discussed, the dayside 

soft zone (A - 75°  to 82°) can be identified with magneto- 

sheath plasma entering Via the dayside polar cusp. 	The 

nightside soft zone at midnight is found between the latitudes 

of 68°  and 77°  (Hoffman (1972)). 	The photometric measure- 

ments of Eather and Mende (1971) have also detected this band 

of precipitation, and find it to be produced by an influx of 

0.1 erg/cm2-sec, consisting of - 500 eV electrons, with insig-

nificant proton fluxes, between A - 71° to 79°  during auiet 

times. 	It is tempting to identify this region with the plas-

ma sheet (se  - 600 eV), and this identification is suppor-

ted by the magnetic models of Fairfield and Ness (1970) who 

show the plasma sheet mapping into Am70° to 76°  during quiet 

times. Furthermore, an isotropic pitch-angle-distribution 

of plasma sheet particles produces electron energy fluxes of 

- 0.3 erg/cm2, and proton energy fluxes of - 0.2 erg/cm2/sec. 

While the electron fluxes agree quite well with Eather and 

Mende's observations, the lack of observed protons indicates 

that these particles have a loss cone in their distribution. 

Thus noise within the plasma sheet may be sufficient to iso-

tropize the electrons (strong diffusion) but not the protons 
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(weak diffusion). 

' 	Both day and night 'hard' zones (as identified by 

large fluxes of - 10 keV electrons) are then associated with 

the high energy electrons (10 keV to 103  keV) produced and • 

injected into the outer radiation zone during substorms. "The 

latitudinal extent given by Hoffman (1972) is 64°  to 69°  at 

midnight (L = 5 to 8) and 68°  to 75° at noon. 	This precipi-

tation is associated with a sub auroral-zone latitude, un- 

structured subvisual glow, known as the 'mantle aurorae'. 	In 

addition, because of the appreciable number's of ce  > 10 keV 

electrons present, there is aopreciable penetration of the 

ionosphere down into the D-region. Following the injection 

of a cloud of such particles the ionization and absorption of 

that region is increased, whence riometers measuring galactic 

(or cosmic) radio noise see a decrease in signal strength. 

Such CNA (cosmic noise absorption) events can be used to study 

the progress of the energetic electron clouds of the hard 

zone as they move around from midnight on the morning side 

following substorms. 	The 'hard zone' boundaries are, how-

ever, easily detectable at low altitudes from ce  > 40 keV GM-

tube electron data. McDiarmid and Burrows (1968) found that 

the smooth flux profile at low latitudes suddenly begins to 

change rapidly in slope and intensity on moving to higher 

latitudes (the 'smooth' boundary, As  - 65° at midnight), and 

then rapidly decreases by several orders of magnitude (the 

'background' boundary, AB 	70°  at midnight) (Fig. 2.16). 

The interpretation in terms of AB  mapping into the inner edge 

of the electron plasma sheet is clear, with the 'smooth' 

boundary associated with the lowest latitude of substorm par- 
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Figure 2.16: Typical latitudinal variation of fluxes of Ee  > 

35 keV electrons at low altitude, showing the 'smooth' (As) and 

'background' boundaries (Ab). The background boundary should 

map into the - 10 keV inner boundary of the plasma sheet. 
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ticles recently directly injected into the outer zone. 	The 

smoothly varying fluxes at lower.  L-shells are presumably the 

result of radial diffusion over many successive storms and 

substorms. 	Fritz (1968, 1970) has confirmed these results, 

using Quiet-time data only, and also found that on the night 

and morning sides the region between the smooth and background 

boundaries is characterized by isotropic particle fluxes, 

though this only indicates that the loss-cone in space is iso-

tropic (maybe produced by an ionospheric effect) not that the 

whole distribution is isotropic. 

The motion of these boundaries during substorm activ- 

ity has been studied by Rao (1969a,b). 	He found that the 

high-latitude boundary (A - 68°) did not move during a sub-

storm prior to recovery, but that (effectively) the region be-

tween the background and smooth boundaries widened to lower 

latitudes (down to - 60°), and inside this region the flux 

levels were much. enhanced (by 1 to 2 orders of magnitude). 

This is consistent with the magnetospheric measurements of the 

inward convecting plasma sheet producing such particles over 

a wide range of L (5 to 8, corresponding to A = 64°  to 69°). 

During recovery the fluxes extend to higher latitudes. 	It 

would seem fairly easy to identify (roughly) the region of 

origin of the nightside quiet arcs by using optical data con-

current with low-altitude Ee  > 45 keV electron measurements, 

used as a marker of the inner edge of the electron plasma 

sheet. McDiarmid and Burrows (1968) compared their AB  and 

As  values as functions of local time with the average auroral 

zone of Feldstein (1966); this approach is unsatisfactory, 

however, because of the wide range of latitudes over which 
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the quiet arcs can be found, depending on the convection rate. 

In this section we have reviewed in detail the inter-

pretation of magnetospheric particle distributions and field 

configuration in terms of the reconnection model of the magneto-

sphere. Strong uniform convection occurs during the substorm 

growth phase, leading to the particle and field changes discus-

sed. Indeed, the entire population of low-energy particles and 

their temporal behaviour can be (at least) qualitatively under-

stood within the framework of the model. However, the substorm 

expansion phase cannot be explained in terms of uniform con-

vection,- and at present there exists no widely accepted inter-

pretation. Strong convection must still be involved, but the 

detailed flow is different from that of the growth phase. 

Using the results of the next three chapters, a possible explan-

ation will be attempted in Chapter 6. 

(iv) Applicability of the Straight Field-Line Model of Alfv6n  

The discussion concerning this section centers on the 

importance of the component of the magnetic field normal to the 

current sheet in determining its physical properties. We recall 

from Chapter 1 that (from the results of Speiser, 1965, 1968) 

low energy particles drifting into the current sheet under the 

action of the convection electric field become trapped about the 

neutral line and accelerated along it. For no normal field 

(i.e. straight field lines) the particles are accelerated indef-

initely along it, eventually being lost at the dusk and dawn 

boundaries of the tail, into the magnetosheath. Including a 

weak normal component of magnetic field now causes the particles 

to turn around in the sheet as they accelerate. Protons and 

electrons are turned towards the Earth if the field is directed 



308. 

northwards, and they turn until moving perpendicular to z.he 

electric field and 'looking' straight down a field line emerging 

from the sheet. They then leave the field reversal region, moving 

out along the field line towards the Earth, with very small pitch 

angle (a few degrees) in the Earth's frame (Speiser, 1965). For 

our model to be valid, therefore, the perpendicular magnetic 

field must be small enough so that particles do not turn 

around and leave the sheet before they have travelled across 

the tail and have been lost from the sides. 	It was shown in 

Chapter 1, under the assumption of a uniform electric field 

E0  and polar wind flow velocity in the tail negligible com-

pared with the convection velocity that the distance travelled 

across the tail in the. current sheet is, for particles of 

mass• m3  

Y. = 
J 

2 m, c2  Eo 

e B12 

and that the electric field is given by 

2 
Bx  - 

E   for  y
P 
 « d and 	« Cl 

0 4nNoe(Yp+Ye)  

Bx
2 

471-Noed 

2 	2 
(13x1  

In the latter case Y. 	
MiC  

27rNoe2d 'Bz 

and for consistency (Yj > d) we require 

MiC2 	1/2  
Bz  < ( 	 27TNoe2d2  ) Bx' 

The maximum values of Bz for the values of No  typical of the 

high-latitude magnetotail (last section) are shown below. 

Bx  has been given the nominal value of 10 y, but we note that 

Bx  varies from - 20 y at quiet times up to - 40 y during storm 

E0  = for Y > d 	and 	Ye  > d. 
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times in the near-Earth tail. 

No  = 0.1 cm 3 	No  = 0.01 cm 3  

Electron 
	0.001 y 	0.003 y 

Proton 
	0.04 y 	0.12 y 

In the region of the tail where the particles are turned onto 

the field lines towards the Earth (within the small-angled 

wedge of the X-neutral field configuration),, we form the 

plasma sheet, according to Holzer (1971). 	Thus the straight-

field line model is not expected to throw any light on this 

aspect of the tail phenomena, and plasma sheet parameters are 

not appropriate for substitution into our numerical calculat- 

ions. 	The plasma parameters to be considered should be those 

of the high-latitude magnetotail as have been used here, and 

discussed in the preceeding section. 

Observationally, the perpendicular field component is 

usually northward pointing within the lunar distance (X > 

- 60 RE, the region of extensive satellite mapping), but is 

highly variable at a fixed distance from Earth due to substorm 

effects previously discussed. During quiet times following 

substorms the northward field is the major component inside 

the expanded plasma sheet, and can be 5 y to 10 y in magnitude. 

'Field reversals' in the minor Bx  component then only corres-

pond to a 'wobbling' of the field about the Z-axis, and lead 

to 'multiple sheet crossings', as defined by the GSM  angle of 

the field. During such periods the models of Schindler (1971) 

and Bird and Beard (1972) may be of relevance (i.e. a thick 
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current sheet, with no enhancements near the Bmin  plane). 

During the growth phase and outside.of the thinned plasma 

sheet the normal field is small, generally less than 1 y, with 

-almost equal positive and negative excursions (see Fig.2.17, 

taken from Fairfield and Ness (1970)), presumably due to 

'wobbling' of the field about the X-axis. 	Inside the growth 

phase plasma sheeti Bx  is the dominant component, with Bz  < 1 y 

and generally northwards; there also exists a current enhan-

cement near the Bmin  plane at such times (see the field re-

versal at - 06:21 hrs in Fig. 2.17), as must be the case if 

the tail current system'is enhanced while the plasma sheet 

thins without compression. 	For such situations the model 

discussed by Eastwood (1971) may be valid, where the majority 

of the current is supplied in a thin sheet by the acceleration 

of polar wind plasma flowing into the tail (similar to the 

straight-field-line model). 	The above comments are relevant 

to the radidl distance range Xsm  - 20 to - 40 RE; at and 

beyond the lunar distance the incidence of southward directed 

fields at the Bmin  plane increases as expected for a reconnec- 

ting tail. 	Mihalov et. al. (1970) found that out of the 60 

sheet clear crossings they analysed, 4 had Bz  < - 0.5 Y, 

16 had Bz  > 0.5 y, but the majority were within one digitiz-

ation window (± 0.25 y) of zero. 

Thus, although our model will only be valid for ex-

tremely weak Bz  (< 0.001 y, such that electrons can travel 

across the width of the tail in the current sheet and be lost 

from the sides), it appears possible, in view of the measured 

values of Bz, that protons may be accelerated across the whole 

sheet width without turning out of the theet as close in as 
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Figure 2.17: Behaviour of the tail field during isolated sub-

storms seen by a satellite near the vicinity of the neutral 

sheet. Very rapid changes in field-strength are related to 

plasma-sheet motions. Note the single sharp field reversal at 

- 06:21 hours U.T. during the growth phase of the second sub-

storm, as compare& with the expansion-phase 'multiple field 

reversals'. 
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20 RE  during the storm growth phase. Clearly, future work 

should include generalizing the model to describe the situat-

ion in which protons are accelerated the whole way across the 

tail, while electrons are turned out of the sheet over dis-

tances less than the tail width. 
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CHAPTER 3 

THE ADIABATIC FLOW MODEL OF A NEUTRAL SHEET 

(i) Particle Motions in Simple Neutral Sheet Fields and the Self-. 

Consistent Magnetic Field Structure.  

This first analysis of the properties of Alfv'en's 

neutral sheet will be based on a study of particle motions in 

simple electromagnetic fields which was initiated by Speiser 

(1965). 

Near the neutral sheet Speiser assumed that the field 

could be approximated by the simplest possible structure 

= (0, E0, 0) 	B = (Bx(z), O, 0) 
	

(3.1) 

where Bx(z) = Bop and Bo  > 0, E0  > O. If Bo  is taken as 

the value of the magnetic field outside the field reversal 

region, then 'a'  is the half-thickness of the current sheet. 

The particle equations of motion in these fields are 

or 

m dvz  _vyBx m  dvy 	vzBx 	m  dvx  ) 
dt 	q dt (Eoq dt 

//2hlyx (E + Bvz m dvz  _vyBo  o z  
q dt 	ac 	q dt - 	ac 

= 0 	(312) 

(3.3a,b) 

Clearly, if qvy  > 0 then oscillatory solutions of (3.3a) occur 

and the particle moves in a trapped orbit about the neutral 

line. 	From (3.3b) 

d my 
- at q 
Boz2  
2ac 
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q B0  ( 
2 - 	2) + (1E°  (t-to) or. 	vy = vyo 	2amc -z  

(3.4) 

Thus, if the amplitude of the oscillation is small, the par-

ticle may be considered to be uniformly accelerating along the 

neutral sheet in the electric field in which case we would 

have q v
Y > 0. 	Speiser also noted that sufficiently far from 

any zeros of vy  these oscillating and accelerating particle 

trajectories would be approximated by the MB solution to 

(3.3a). 	In general terms the differential equation 

 

i(t) + g(t) z(t) = 0 (3.5) 

has an approximate (h'KS).  solution 

(t) cs--• C  cos 	e-  (e) 	+ 56) 
fro  

 

 

(3.6) 

where C and 4)  are arbitrary constants. 	This solution is valid 

far away from the zeros of g (at t = to) provided that g(t) 

is 'slowly varying' (i. e. only a 'small' change in one period 

of the oscillation). 	Thus, from (3.3a) 

Z (t) 	C 	CAS(4, B:1  (ET etc  +,,$) 
(3.7) 

Bov3,(b) 14- 	 1. 	c 
L. mac 

The amplitude constant C is dependent on the initial conditions. 

Speiser showed that particles drifting into the field reversal 

region become trapped in these orbits and accelerated along the 

neutral line. In order to determine C for such circumstances 

we must therefore investigate the particle motion as the plasma 
• 

drifts into the sheet from the exterior region. 

In the presence of non-uniform crossed electric and 
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• 

magnetic fields, where B has zero-  curvature, the-motion of cold 

particles (zero magnetic moment) in the steady state can be 

written in the series form (Northrop, 1963) 

vr, - v + 1)-12 	 =v (0)  + v (1) + 
q B 	 —E 	 t3-40/ 

where vE  = CE B/B2•  

This expansion is valid (i.e. v (0) 
> > 

v (1) etc.) provided that 

the scale lengths for changes in the electromagnetic field is 

much larger than the distance travelled by a particle at the 

1 velocity 	 during yr-r  of a gyroperiod. 	This lengthwe call 

the gyrolength, g = vE/b. 	The first term in the expansion is 

the adiabatic approximation, where the inertial terms are en-

tirely neglected in the equation of motion and represents par- 

ticle drift along equipotentials. 	The second term has, in 

general, components parallel and perpendicular to the electric 

field, the parallel component being just such as to account • 

for the changes in kinetic energy associated with changes in 

YE, i.e. 

d 
dt mvE

2 
) 	= q E . v(1) • (3.9) 

The zero-order drift provides no current, since it is indepen-

dent of mass or charge, however, there exists current due to 

first order terms which satisfies 

dvE 	4(1) A g 
Po dt (3.-10) 

where 4.(1) = Noe (vp(1) - v (1)) and pc. = No(fip  + me) 

However,-the scale length for changes in the magnetic field 
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associated with 4(1) is given by 

L Bo  - 	Boc 

  

irgAtt 	4--rc Noe lvp —vn (3..11) 

where we have used tEl I = kB02/4 7Noed from Alfv4n's equation' 

for (1), the total potential across the system. 	Thus if 
k 	a(1) then L » d in the region where the adiabatic ap-

proximation to the flaw is valid. We thus expect the current 

sheet, where large currents flag , to be the region where the 

adiabatic assumption breaks dcwn, so that the scale lengths of 

this region must be approaching the gyrolength of the incoming 

particles. 	In follcwinq Speiser's analysis of the particle 

motions with a uniform electric field and a varying magnetic 

field we are thus making the assumption that the breakdcwn of 

the drift equations, and the consequent graath of current, is 

set up by the inhomogeneity in the magnetic field. Haaever, 

the variation in the magnetic field is produced by the currents, 

so that a self-consistent description must be sought. With a 

uniform electric field the drift expansion (3.8) breaks dawn 
(v (0) 	v(1). when 

Bx(z) 
dB ( 2C) dz 

mc2E0  
e Bx2  

We see that this is equivalent to the statement 

L 
vE  
SI 

where L is the scale length of the magnetic field. For a 

magnetic field Bx  = Bo  z/a we thus have 
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zB 	inc2E0  1/3 1  
(7-3 . = (

ae B02)  	—1/3  (3.12) 

where zB is the distance from the neutral plane where the 

drift expansion breaks dawn and R is the ratio of the sheet half- 

thickness (a) to the incoming particle gyrolength (mc2E0/eB02  = 

VE/O. Up to the position zB  the particle accelerates tovards 

the sheet as the magnetic field. decreases 

cE0  a . • 
(7)  Bo  

However, aswas noted -above, the inertial terms become impor-

tant at the breakdcwn of the drift equations and the particle 

ceases to accelerate tcwards the sheet. 	Thus the particle 

moves towards the sheet with a velocity 

z 
cE0  
Bo  R 

1 / 3  

and reaches it at a time t = 	2/3  after the breakdagn of cE0  

the drift equation. While this 	description is seen from 

Fig. 3.1 to be rather rough, it gives a surprisingly good ac-

count of the particle velocity at the neutral sheet. 

It is to be noted that while the adiabatic approximation 

is valid the electric and magnetic forces balance in the equat-

ion of motion parallel to the sheet (3.3b); • or with reference 

to equation (3.4) 

B 2  
lac (z02  - z2) = Eo( - to) 

for any (zo, to) so that 

= 	v yo = 0. 

vE  

aBc, 1 



• 
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vz 
Figure 3.1: z/a  versus (cE0)  for computed proton trajectories 

in fields given by 	Bo 	Bx  = Po z/a, Ey  = E0; for 

various values of R, the ratio of sheet half-thickness a over 
REQ the incoming gyrolength go _ Bogo' Particles were started at 

z=a with vz  = -cEo/B0. The trajectory of a zero-mass particle 

(i.e. truely adiabatic, R=.0) is indicated by the dotted line. 

Arrowed are the values of vz  /(2) ) at the neutral sheet expec-

ted from the simple theory (vz.=
eB0 

 -R
1/3 
 cEo/B0), for the R 

values corresponding to the computed particles. Good agreement 
is obtained over the two-order-of-magnitude range of R. 
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After the breakdown of the adiabatic approximation the 

electric force becomes stronger than the magnetic force (since 

vz  is smaller than the adiabatic approximation) and the particle 

starts to be accelerated by the electric field. 	Thus taking 

to  = 0 and zo  = zB  (the breakdown of the adiabatic condition), 

we have from (3.4) 

vY 	m ac . 	(Bo 
(z2-zB2) + E t) 

or 
53n, (s)..vsy 	c Eo  BoeL 4. (B 	Rya)1 

B. 1, 

At the first crossing of the neutral sheet (t 

we thus have 

sgn-  (ci,) v,1 	t Rv3  — R1131 

aBo  1 
cE0  2/3' 

so that we see that the magnetic term in (3.4) is already half 

the electric term. If the amplitude of the oscillations then 

remains at z a/Rl/3 (as will be shown from the WEB solution) 

after one or two oscillations the magnetic term may 	entirely 

neglected, and the particle accelerated uniformly in the elec-

tric field to a very good approximation. Thus, with increasing 

accuracy as time goes on sgn(q) vy  (t) = rn• Eot-, where time 

is measured from the breakdown of the adiabatic approximation. 

Returning now to the WEB solution for the oscillations, 

eauation (3.5),we have 

g (t) e2BOEot 
• m2ac 

Thus the amplitude of the oscillations is 



R 
1/3  
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C  
e2  B„Ec, t.  114  

rtet.2-  a.0 

and we also have the velocity amplitude 

A 	

Bo  b  1'4 
Vz 	C rti.3-  c 

where C is to be determined. We have, from the above discus-

sion that 

_ cE0  
Bo 

for times of order 

and hence we put 

aBo 1 
E —773  

R 

E 	 E° B. 	(aB.& EQ) 

Thus C 
1 

cEo /3  
Bo  (eBo/ 1/3)11  mcR  

and hence 

c Eo me I 021.3 	 xi 	 14 
(t) = 	Bo e 	 a 	R 3  

( RI/3  Va Bok Rti3  t  

(o-e* E.)) 
Thus the initial amplitude of the oscillations is approximately 

the distance way from the sheet at which the drift expansion 

breaks down, thus vindicating the statement concerning the neg-

ligibility of the magnetic term in the equation for motion 

	

parallel to the sheet in the above discussion. 	The validity 

of this theory was checked against the initial oscillation am-

plitude of computed particle trajectories and the results are 
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shown in Fig. 3.2. 	The magnetic field chosen for these com- 

putations was 

Bx (z) = Bo  tanh 

so that for a — 	 a small Bx (z) = Bo  —. 	The above theory is expected 

to hold for R < 1 when using this magnetic field structure, 

and good agreement is found. For R > 1 we may approximate 

the neutral sheet by a step in the magnetic field and the initial 

amplitude of the resulting cycloidal motion is given by 

,„ 0.685  
1 -51 /R 

The computed points are seen to make a smooth transition between 

the curves representing these extreme approximations to the 

tanh(a) field. 

As we previously stated, the magnetic structure must 

be made consistent with the particle othits. 	If we make the 

sheet width consistent with the proton orb its then the oscil- 

lation amplitude must be the same as the sheet thickness. 	Thus 

approximately 

z 	1 = 	1 i 	Rp1/3 

for consistency, or 

a 
cE0  mRF 
Bo  eBb* 

• 

as we might have expected. Then the drift expansion breaks 

down due to the magnetic gradient immediately the particles 

enter the sheet and the electric current extends over the whole 

sheetwidth. 



It 

0 
0 

0 

o 
CN1 
Cr) fV 

co OD 

0 

 

0 

135. 

Fi c P T.-e 3.2 



136. 

Figure 3.2: Initial amplitude of oscillation zo  of computed 

particle trajectories (in units of 'a', the sheet half-

thickness) in fields given by Bx  = Bo  tanh (z/a), Ey = E0) 

for various values of R = a/go. Particles were started at 

large distances from the neutral sheet [(z/a)>5] with the ad-

iabatic velocity. Curve A represents the behaviour of a par-

ticle incident on a step in the magnetic field, a valid approx-

imation to the given field if go>a (i.e. R<1). Curve B repre-

sents the expected behaviour for a particle in a field of uni-

form gradient (Bx  = Bo  z/a), a.valid approximation for go<a 
(i.e. R>1). A smooth transition of agreement between the two 
approximations is seen at R=1. In addition if 20/a  1 is re- 
quired for cocsistency between the field and current then R=1 
or a=go. 
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Thus the proton orb its are approximated by 

(4 co -̂--• c Ec, 	E 
ED) 

a 

 

1'4 
(a Eidc ED) 

A comparison of these results with the results of a computed 

particle trajectory for R = 1 is shown in Figs. 3.3a and 3.35 

and again, good agreement is dotained. 	The complete particle 

orbit is shoran in Fig. 3.4a. 	The WKB solution becomes a better 

approximation as time increases; if we could determine C and ¢ 

at a later time, the accuracy would be improved when compared 

with the computed othit. 	In Figs. 3.4b and 3.4c, C and ¢were 

determined from the computed orbit at t = 20 apo/cE0  and the 

WKB solution then gives an excellent account of the motion 

almost from the first crossing of the neutral sheet. 

We noted in the first chapter that significant charge 

densities may exist in the neutral sheet, set up by the accel-

erating particles and these will be examined quantitatively 

later in this chapter. Within the framework of the WKB theory 

we may include electric fields of the form Ez  = El 	into the 

z-equation of motion, andwe may take such a field as a first 

representation of the electric field of the charge. 	The equat- 

ion of motion perpendicular to the sheet then becomes 

m  dvz  
q dt = (E3 

 

 

which is of WKB form. However, if the particles are adiabatic 

outside the sheet we have 

cE.1 
B  
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Figure 3.3(a): Amplitude of oscillation z(t)/a  for a computed 

proton trajectory in fields given by 

a = Bx  = Bo 	Ey = Eo 	go 
R  = 1.vz  

The particle was started at 2/a  = 1 with cEo = -1 at time t=o, 

and the values of-z 	
' 

at the extreme. 	
Bo ' 

of 	the oscillatory 

motion are marked with crosses. The solid line represents the 

expected values from the WKB theory, 
B )3/4  

i •e • 	= a 
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Figure 3.3(b): Velocity amplitude vz(t) /(1c3E°)  for the com-
puted proton trajectory of Fig. 3.3(b). The°  values of the 
velocity amplitude at the neutral sheet crossings are indi-

cated by crosses. The solid line represents the expected val- 

ues 

i.e. 

from WKB theory, 

vz(t) 	t 

(Ea) (.112Q1 
'cEop' 

• 
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Figure 3.4(a): Computed proton trajectory (z versus y) in 

the fields of Figs. 3.3(a), 3.3(b). 
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Fiaure 3.4(b):  z(t)/a  for the computed proton trajectory in 

the fields of Fig. 3.3(a), compared with the WKB solution 

(dotted), where the WKB constants C and 4) were fitted to the 

trajectory at 	t  = 20 
t!BooN 
'87;1 
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Figure 3.4(c):  vz(t)/  cE (a) 
Bo  

MB solution (dotted), where 

fitted to the trajectory at  

for the computed proton trajectory.  

Fig. 3.3(a) compared with the 

the 1110 constants C and 0 were 

= 20 

in the fields of 
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on entry into the field reversal region. As the particles 

accelerate 

cEi 
vy 	 + 11(  Eot Bo 

and hence 
m  dvz 	_ qE0Bot z/ 
	) a 

dt = ( me 
as before. 

We can thus remove such an electric field by a frame transfor- 

mation along the sheet with velocity cE 	and in this frame 

the trajectories are as given above. 

In the most general WKB form we have 

g (t) ( 	  

	

B_(t)v (t) 	BIM • 
a1  (t) c 	a2(t)  

but for the present purposes we can take Bo(t) = Bo, a constant, 

and 	a1  (t) = a2(t) so that 

g(t) 	_a_ 	( vot)B0  
Ea.(t) ) 	(3.14) 

ma(t) 

hence 	Z (t) (3.15a) 

ct' (V-1C9E1" E.114  mae) C 

(t) 	{ 9, ( (0 B. E j0 .()1141-. 	(3.15b) 
n1.0.(E) 

Following the less general analysis above, we consider the case 

R(t=o) = 1, where t=o is the time the particle enters the 

sheet. 	Then for t = a(o)B0  	we have c Ey(0)  
c EY(o) 	• Bo 	

and 

since for t-o 

	

E Yf'''' 	
c(°)  vy(t) m 	

.:14. 	E.1 
 0 

we have at this 
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time 
q Bo 	cE2(o) 

a(o) + 	 mc 	Bo  

Thus from (3.15b) 	C 
cEy(o) 
Bo 	(22) 

me 

• 

and hence for the general case 

ci (o)  53n- (cO CV:y (.0 - c EJA-Ve44  
L (aWeBo/mc 

a (9) 
53ct(q,) CV:1(0 - c-E-LW/1314  t.  

(ci-(0  e B. /mc r&- 

(3.16a) 

(3.16b) 

In the present chapter we shall assume that the flay energies 

in the adiabatic motion above the sheet are very small compared 

with the potential energy across the system. 	This is equiva- 

lent to the assumption that the adiabatic approximation of the 

flow outside the sheet, i.e. v = cE A B/B2 is a good approxim-

ation, since with the above assumption, the particles need only 

drift a small way from their 'parent' equipotential in order 

to make the energy change indicated by the change in 	The 

condition for small flag energies is 

MC2E2  eel) 	 (3.17) 

 

while the condition for the validity of the adiabatic approx-

imation is 

1 or mc E (3.18) 
eB02L 

where L is the scale length of-the electric field (the magnetic 
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field is very nearly constant in this region as shoran above). 

However, since the total potential across the system is fixed. 

we have 

EL 	(I) . 

Thus equation (3.18) becomes 

MC2E2 
< < ecD so2  

and hence the two approximations are equivalent. 	Thus if the 

adiabatic flaw approximation is valid outside the field rever-

sal region the incoming particle energies are much smaller than 

the energies gained by acceleration along the neutral sheet 

and maybe neglected in equations (3.16a) and (3.16b). 	We 

now consider the ratio of the energy in the oscillatory motion 

of the particles compared with the kinetic energy along the 

sheet. 	From equation (3.16a) we have 

2_ 
C I  E;(0) 	5311. (CO yy (t) 

V Arj1() ame-Bvme 

 

(3.19) 

 

a(t) = k"' 	me  (t) Bo  .g.gc; 

'(

t

2 

 

Ar 	
nJ 	C E .y(0) 

3/2. 
I 

E50 -V_Mi 01—c0 . 

or, writing we dbtain 

(3.20) 

Thus as the particle accelerates along the sheet and vy (t) > > 

cEo (o)/B0  the importance of the energy in the oscillations 

rapidly diminishes, and may very quickly be approximated by a 

particle linearly accelerated along the neutral line, i.e. 
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my 2  
2 	q (00  - (3.21) 

where cpo  is the potential at which the particle entered the sheet. 

This is shown from the computed particle trajectory for the case 

Where k(t)=1 and the electric field uniform (see Fig. 3.5). 

After acceleration through a potential of order 0 the amplitude 

of the oscillation is, from (3.16b) 

   

me Ej,(0)/Bolka 
e 	 

 

Q (o) 

  

 

(3.22) 

and even if the potential energy exceeds the flog energies by 

several orders of magnitUde, the oscillation amplitude of the 

particles does not change very much during the acceleration, 

due to the 1/4  power laa. 	Thus we expect k(t) 	1 for consis- 

tency at all positions along the sheet. 

However, since the electrons carry a significant con-

tribution to the current and their oscillation amplitude is 

much smaller than the protons, the magnetic field structure 

cannot be as simple as this. For example, ifwe have an as-

sumed field structure Bx(z) = Boz/a  and a = mpc2E0/eB02 so 

that R = 1 for protons, then the electrons have an initial 

me 1/3  amplitude from equation (3.13) of = () 	a - 0.1a (see Fig. mp  

3.2). This results from the fact that the electron mass is 

much smaller than the proton mass and hence they remain adiabatic 

(negligible inertial terms) up to much smaller distances from 

the sheet. We may thus expect two scale lengths in the mag- 

netic field at the neutral sheet, one consistent with the pro- 

ton sheet and one consistent with the electron sheet. 

At a potential 4) in the sheet the ratio of the current 
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1,1•Imi• 

Figure 3.5:  v Y/ (T
cE  oc)---) against Y/a  for a computed particle 

trajectory in 	the fields of Fig. 3.3(a) (R=1); com-

pared with a particle uniformly accelerating along the neutral 

line in the electric field (dotted). The latter is given by 
2 — 	.., 	 1/2 .p ./, 
	 = Eo Y 	or 	—IX__ = 1.1Y % 

1 
for R=1 2 (Jaz% 

'Bo ' 
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carried by protons to that carried by electrons is 

(1 -)  

Ie 	(/4„) 
	 (3.23) 

and for simplicity we assume that the current is distributed 

uniformly across both the proton and electron sheets. The 

half-widths of these current sheets are respectively ap  and 

ae  such that at potential ¢ 

Bx(E) = 

 

f /Qp  for 	at, 
I for > 

 

E/Qe  -for .Cle  

I 	for ImI>Cle  

 

  

  

    

    

For consistency the particles must become non-adiabatic near 

the current sheet boundaries so that 

zE  mc 0  
dB (—dz) N  eB2  

At the boundary of the electron sheet B = B0(1 

where we have assumed ae  < ap, and 

- -) ae  ap   

dB ¢ 1 	¢ 1 = Bo(1 - 	- + B - - = dz 	0 	o 0 ae ap 	ae  

Thus the consistency condition becomes 

Oe 
me  CZ E0  

  

• (3.24) 
e f B  snsk 

Ctp 
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which is a cubic equation for ae. At the boundary of the 

proton sheet we have B = Bo  and 

dB 
dz 	Bo  (1 - ) cl) ap  

so that 

a 
4, (1 	‘ mec2Eo  
01  eB02  (3.25) 

mec2Eo, 
0

1/3  For 	= 0 the electron sheet is given by ae 	( 
eB z ) 

in agreement with the previous discussion, while for 0 > 0 

we have ae  « a due to the mass factor and 

ae  ISO 
mec2Eo 	1  

• 
eD02  04)

2  (3.26) 

Thus although we cannot apply the results of the WKB treatment 

of the particle motions exactly, there is no reason to suppose 

that the qualitativ6 results are in serious error. 

We have thus developed an internally consistent series 

of approximations which describe a model neutral sheet structure 

based on Speiser's trajectory analysis and the assumption of 

adiabatic particle flow external to the sheet. 	In this model 

the current is very small outside of the region where the par-

ticles oscillate about the neutral sheet. Adiabatic theory 

breaks down in the field reversal regio'n due to the small scale 

length of the magnetic field. The sheet width is then given 

by a = 7p/O. •Adiabatic theory is valid if the incoming par-

ticle energies are very small compared with the potential 

energy and the motion of the particles constituting the current 

in the sheet can be well approximated by uniform acceleration 

by the electric field along the neutral line. 
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The assumption of adiabatic flow leads to a very 

simple description of the region external to the sheet. Because 

the drift velocity is independent of the mass or charge of the 

particles there is no significant currents flowing in this 

region and also no charge densities. 	The magnetic structure 

then depends simply on the current flowing in the neutral sheet 

and on the bounding equipotential surfaces, and the electric 

field on the charge in the neutral sheet and external boundary 

conditions. 

The total current in the neutral sheet must be uniform 

across the system since each incoming stream of neutral plasma 

charge-separates at the 'sheet to produce equal fluxes of posi-

tive particles moving towards (I) = 0 and negative particles 

towards (1) = 	Thus, with appropriate boundary currents the 

magnetic field may be taken as uniform in the external region. 

By particle flux conservation N/B  is a constant along a tra-

jectory for adiabatic flow, so that the particle density may 

also be taken to be constant in this region. 

We now turn to consider charge in the neutral sheet on 

the basis of this model. 	If the electric field produced by 

the charge is so strong that. mc2E2/B2  " a(e(D) then the model 

breaks down. 	In this case the non-adiabatic condition for 

the growth of the current depends on the electric field scale 

lengths rather than the magnetic field scale lengths as is 

implied by the discussion of the particle trajectories above. 

The flow structure for such a situation will be discussed in 

the next two chapters. 
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(ii) Charge in the Neutral Sheet and the Self-Consistent Electric 

Field. 

Charge in the neutral sheet certainly warrants consid-

eration since, as we stated in the preceding section, incoming 

neutral plasma charge-separates at the neutral sheet to provide 

a positively charged beam moving towards cp = 0 and a negative 

beam moving towards (1) = 4). 	We thus expect the sheet to become 

positively charged near 4) = 0 and negatively charged near 

= 4). 	If we consider a closed volume into, and out of which 

equal fluxes of protons and electrons flow, the charge content 

of the volume in the steady state is proportional to the dif-

ference in time a proton and an electron remains within the 

volume 

i.e. 	= eF (Tp - Te) 
	

(3.27) 

where F is the total flux (particles/sec) of positive or nega-

tive particles entering or: leaving the closed volume. Consid-

ering a unit length (along the magnetic field) of the field 

reversal region as the closed volume, eF is the total current 

flowing, i.e. 

eF cBo 
2w (3.28) 

The time a particle spends accelerating along the sheet is 

given by 

t (_1any)  
Eo 

where y is the distance travelled in the sheet.  Writing 

y = d/2 for definiteness (d is the width of the sheet) we then 

have 
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P (-1-3 
 E 
CL  512.  

c, 	VA 
(3.29) 

where we have used Alfven's formula for the electric field and 

VA  is the Alfven velocity in the region external to the sheet. 

(We previously noted that a particle accelerated through poten-

tial V2  reaches a velocity VA). In addition the electron 

spends a time 

aBo  
T 	cE0  

moving adiabatically towards the neutral sheet in the field 

reversal region before it becomes non-adiabatic. 	If a 

2E / mpc ofeB0  then2 

MpC 
T 	eB 

The condition Te >> T  is (.12) where * is the 

proton plasma wavelength 

* 
P 	( 472202±) 1/2  

mp  

(3.30) 

. However, for the adiabatic assumption to be valid we require 

at the very least 

MP  C
2
E0 

2 

2B02  

2  
which may be rewritten 	

ry., 	
2. Thus if this condition is 

well satisfied we have Te  » T I  and we need consider only the 

acceleration phase. Hence the total charge content of the 

neutral sheet (per unit length along the magnetic field) is 

expected to be  

< < 
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Q 	VA 
 {1 - 

-P 
} . 	 (3.31) 

From this discussion we expect the sheet to be, on the whole, 

positively charged, the electron charge being of order 

(ne/mp)1/2  - 1/40 compared with the proton charge. 	If we  

divide Q by d we obtain a typical 'surface charge density' a 

(i.e. charge per unit area of the sheet), and the electric 

field produced by such a sheet is Ez = 2na, thus 

Ez 

 

2TrI 
VA 

This is to be compared with the uniform Alfven field E0  = 4)/d 

where 	= mioVA2  from Alfv‘n's formula for (1). 	The ratio 

between these two fields is 

e I. off. 	cecL (41t No  ti10 2  Eo 	rnf V A 	!YIP Bc:-  (3.32) 

In order to obtain internal consistency with this model we 

require 

m cE2 

2B02 
 << < e 

where E is given by equation (3.32) for E >> E0. 	Rearranging, 

this becomes 

Bog 2  
() > > 

(No mpc2)2  
2 3.33) 

i.e. the magnetic energy density must be somewhat larger than 

the mass-energy density of the particles. 	In-such a case 



157. 

and we investigate the relationship between points (1) and 

(2) in the stream. 	Point (1) is in the adiabatic flow and 

point (2) is in the field reversal region. 	By conservation" 

of flux we have 

F1  = N0v1dL1 = Novdyl = n2v2dL2 
	(3.34) 

We also have 
vz2 dz2 - 	= tan e 	(see Fig. 3.7) 
vy2  dy2  

Figure 3.7 

	

Thus we have cos 0 = 
41,2 	vy2 

	

dz2 	V2 

Then the surface charge density contributed by the stream is 

F1dz2 	F1 = n2 dz2 v2dL2 	vy2 
(3.35) 

and the current along the sheet is, of course 

q F1  vy2  dz2 	.q F1  
dIll  = q n2  vy2  dz2  

v2 dL2 

Since the point (1) is in the adiabatic flow region 

(3.36) 

and from the analysis of the particle orbits (equation (3.21)) 
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2a 	1/2 vY2 v2 	(.(y1) 0y2)) sgn(q) (3.37) 

where 4(y1) and 4(y2) are the electrostatic potential in the 

sheet at points (1) and (2) 

Thus 

(dpo) 	- 2ecNo  CL1)) 
Bo 	 (2,-.1)11  (4)CSI) - ckJf.  1)) 

where we have multiplied by two to account for particle inflow 

from both sides of the sheet. From their direction of travel 

the protons which contribute to the charge density at 4(y2) 

enter the sheet with 4(y2) 	4(y1) 	(1), while electrons con- 

tributing at (y2) enter with 0 •5 4(371) 
	
"372).  

Thus 

2ecNo  1/2 	ac1)1  
2) 	(3'_ cii.)16" 

 

Bo  

 

hence 

and 

hence 

r ( 4)) 	= 

6e (4)= 

ae(4) 	= 

(4-ecNo \(_r_r_t i z 	 (3.38) 

# )2- 
0 

(3.39) 

B ciD1 

2ecNo (nf 
2e• 

_ 4ecNo 	me 1 /2 	11 
4 Bo  

(We do not expect there to be large potential differences 

across the sheet thickness at a given y-position for this 

model). Thus the total surface charge in the sheet at poten-

tial 4  due to the oscillating particles is 



159. 

 

( 	 z Ley 	IT) 
f 	t4))/2. 	rnz  

ae (3.40) 

 

  

As we anticipated, the sheet is mainly positively charged, and 

this is largest near 4,  = 0; the negative charge is largest 

near 0 = 0. 	Examination shows that for 	= 4)/2  equation 

(3.40) is identical to Q/d  from equation (3.31) which was de-

rived earlier from the more qualitative time-of-flight argument. 

Since we now have the charge as a function of the poten-

tial and the potential may be derived from the charge (with 

boundary conditions) by Coulomb's equation, we can now write 

down an integral equation for $(y) in the neutral sheet. 	We 

assume that the charge is uniformly distributed over a constant 

thickness a, giving a charge density fo(0) = 0(0)/a  for 

izI < a. 	Although we could use the value of 'a' discussed in 

this chapter, the results do not depend on its assumed value, 

provided d/a  >> 1. For convenience d/a  = 100 was used here 

in the numerical work. 	Then Coulomb's equation for a slab of 

charge of thickness 'a' gives 

db.  Q/2._ 

cl) 	clpoei 11) +dy, t.c d.7.,cotxt  Cr-  ( st01)) 

c112 	c2  

X 	
lZ  , 4- x; 

 

I  

Cz2.1-1-x;-1-(ck— vi)
12} 

(3.41) 

 

where the last term in the curly bracket produces a constant 

contribution to 0(y) which ensures- 0(y = d/2) = 0. 	The first 

term which varies linearly with y is used to set the boundary 

condition ¢(y.= -d/2) = cI) by'adjustment of 00  (see Fig. 3.8). 



160. 

13- 

2 

< 	 
E  
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Figure 3.8  

 

Performing the above integrals over z1 and x1 we find 

d/2  

(130) 	(2 - 	d3, Cr 	(S6(31)) ("3  
_4/ 	CL 2  

(3.42) 

where the Coulomb geometric factor f(y,y1) is given by 

f (3)Yt) 
(1-J‘I- +  
0 	(1)2J (3.43) 

+ 	( 	( 	) 4arCI  2- (3 - 1)),1 2-(21 

Since 4 ( y = d / ) = 4) we thus have 

clh 

1 — jCt i CY (4)(Y))  f (--1)) ct. 
_c1.42  

so that, finally 

i6(A)(i(vi  (3.44) 

    



and 4(27mio) ( B02  
1/2  ceNO3/2d)  
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where the integral term now represents the whole effect of the 

charges. 

We now dedimensionalize by writing y' = Y/d  and 

= (1)/4)  to obtain for - 1/2  < y' < 1/2  

where 

vz  

31) 4" 	ot3,1  0-/((i)I(:)) ti1 (31A1 ) - --J)i '(l )1 
(3.45) 

 - 	C I— 	(AS2 44,1"&) 

Sbi  (39 
	

( 
_/ 

z 

. eon  (11)2  
(3' -IT CCI-J 

4- 4 	
1 	

' 	11 & -J11) -6C1( 
2- 	1))  2  (3 

The value of the integral is of order unity, and so 

the value of parameter A determines the importance of the 

charges in the sheet. 	In fact 

1 Ez  

(E ) 0 
(3.46) 

from equation (3.32). 	For A << 1 the potential is distributed 

linearly across the sheet. 

Solutions of (3.42) were obtained by successive subs-

titutions of q'(y') for A = 0.46, 2.40 and 5.16, taking a 

linear variation as the first approximation to cp'(y') for 

A = 0.46. The consistent solution for this value of A was 

then used as the first approximation for the next highest value 
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of A. As the value of A becomes larger than one, such that 

the integral term in (3.45) becomes more important that the 

linear term, the convergence became very poor, but the results 

for the above values are sufficient to indicate the trends. 

(There exists no standard technique for the solution of such -

non-linear integral equations as (3.45) for the case A > 1). 

The results obtained, of 41 (y') and o'(y') are shown in 

Fig. 3.9a,b. 	We see that the effect of the positive charge 

in the sheet is to localize the Alfven potential drop over a 

short distance near the q) = 0 boundary, as we might have ex-

pected from the direction of the electric field produced by 

the charge. This decrases the time the average proton remains 

in the field reversal region, by both increasing the acceler-

ating electric field and reducing the distance travelled, i.e. 

2mnv 

tP 
= eE 

and putting Ey = t/2, we have 

(mpy 	
(3.47) 

Thus tp  decreases as 1/E for a given potential drop kt, and 

hence the total charge is reduced. 

From equation (3.46), and writing Ez  L = t where L is 

approximately the length over which the potential drop is local-

ized in the sheet, we have 

L 	1 
/Tit A 

Thus for A = 0.46, 2.40, 5.16, we expect L/d = 0.49, 0.094, 

0.044, in good agreement with the results of Fig. 3.9a. The 
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Figure 3.9(a): 	versus Y/d • along the neutral line. 
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Figure 3.9(b): a' versus Y/d • along the neutral line. 
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flow of plasma into the neutral sheet can then be obtained by 

solving Laplace's equation in the external region using (1)'(y') 

as one of the boundary conditions. For the presentation of the 

resulting flow systems (plasma flows along the equipotentials) 

in Fig. 3.10 a,b,c we have taken the 4'=0 equipotential to be 

given by the line y'=1/2  and 	(I) is given by y'=-1/2. (i.e. flow 

between parallel boundaries). The method used to obtain solut-

ions of Laplace's equation with such boundary conditions will 

be given in the next chapter. As can be seen, most of the plas-

ma inflow occurs near (p=0 for A>l, where the electric field E 

is large.' The electric fields just outside the current sheet, 

Ey, Ez  and 1E1, normalized to the uniform AlfVen field E0, are 

shown in Figs. 3.11 (a, b and c). A logarithmic plot of EY/Eo  

versus (P4 is shown in Fig. 3.12, where it can be seen that, 

due to the increasing electron charge near 4=4, Ey  tends to 

rise near this boundary. The system would be symmetrical 

about y=O for equal'mass particles. Finally, Ey, Ez  and 1E1 .are 

plotted against cp in Figs 3.13 a,b,c. 

(iii) Summary and Discussion 

We have shown that the simple model of adiabatic drift 

towards the neutral sheet followed by Speiser-like acceleration 

along the neutral line is not valid for the geomagnetic tail 

due to the presence of the charge density of accelerating par- 

ticles in the sheet. 	This charge creates such an electric 

field as to dominate the structure of the system, and the 

Alfven-Speiser picture is only valid if (equation (3.33)) 

B02 	No  mp  c2  

In 
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Figure 3.10 (a,b). 
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Figure 3.10 (a,b,c): Flow lines of plasma into the neutral 

sheet (i.e. equipotentials) for A = 0.46, 2.4, 5.16; obtained 

by solving Laplace's equation in a rectangular half-space 

using the results of Fig. 3.9(a) as boundary conditions along 
z/d  = 0. 
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Figure 3.11(a): E along the neutral line, plotted against 

Y/d and normalized to the Alfven electric field E0  = . 
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Figure 3.11(b): Ez  just outside the current sheet, plotted 

against Y/d, and normalized to the Alfven electric field 

E0  = 0/d 
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2 
Figure 3.11(c): 1E1 = (Ez  + Ey

2
) 	just outside the current 

sheet plotted against Y/d and normalized to the Alfv61 elec-

tric field E0  = (1)/(1  . 
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Figure 3.12: Logarithmic plot of Ey/Eo  along the neutral 

line against cl'Ap . 
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Figure 3.13(a): -- Ev " along the neutral line, plotted against 474)  Eo 
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Figure 3.13(b): 

against 4l, 

just outside the current sheet, plotted 
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...P. Figure 3.13(c): 	just outside the current sheet, plotted E0  
against 4/0 
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It should, however, be emphasized that Alfv‘n's result for 

the total potential across the system is still valid for 'non-

adiabatic flow' models, since this only depends on the assump-

tion that all incoming particles contribute to the current. 

For the tail field value of Bo  = 10/  the above con-: 

dition for the validity of the adiabatic flow model becomes 

No < 10
-5 cm-3. 	For reasonable values of the density (No  - 

0.1 cm 3) the electric field that would be produced by the 

charges greatly exceeds the Alfven field, leading to breakdown 

of adiabatic assumptions. 	Such a situation corresponds to 

A >> 1 and we would expect approximate charge neutrality to 

hold in this case (i.e. (op  - a )/ 	<< 1). e aP  
(3.40) this would be 

From equation 

4, 	+ me/mp) 

in the sheet, with very large electric fields near 4 = 0. 

Thus for such situations we need to consider the properties of 

cold plasma drift flow where the energies in the flow become 

of the same order as the potential across the system, and also 

the condition for charge neutrality in the sheet. If the flow 

a much thicker field reversal region than we 

The negative charge contribution of electrons 

drifting towards the neutral sheet then needs 

we might expect 

have given here. 

adiabatically 

reconsideration 

velocities are much larger than vo cEo/B0  

as a source of neutralization for the accelerating protons. 

In the next chapter the.general theory of cold plasma 

drift-flow is presented, while in Chapter 5 further considerat- 

ion is given to the structure of the field reversal region. 



176. 

• 

References 

Alfvn, H. 1968. Some properties of magnetospheric neutral 

surfaces. J. Geophys. Res. 73, 4379-4381. 

Cowley, S.W.H. 1971a. The Adiabatic Flow model of a neutral 

sheet. Cosmic Electrodynamics 2, 90-104. 

Northrop, T.G. 1963. The Adiabatic Motion of Charged Par-

ticles. Interscience Publishers, New York. 

Speiser, T.W. 1965. Particle trajectories in model current 

sheets, 1: Analytical Solutions. J. Geophys. Res. 

70, 4219-4226. 



177. 

CHAPTER 4 

THE DRIFT-FLOW OF COLD PLASMA 

(i) Introduction 

In this chapter we shall derive the equations which 

govern the flow of cold plasma in crossed electric and mag-

netic fields for the case where the particle energies in the . 

flow are not negligible compared with the potential energy 

across the system. We shall only consider two-dimensional 

flow in a plane, where the electric field is in the plane of 

the flow and the magnetic field perpendicular to it. 

Specifically, we will treat the problem where the flow is 

uniform at infinity but not necessarily of constant density . 

The assumption is made that the scale lengths characteristic 

of the flow are large compared with particle gyroradii. 

In the simplest approximation used in the last chap-

ter the inertia of the plasma is entirely neglected, the 

equation of motion then becomes 

E
c
A  —8  - 0 	 c EAB  v   or (4.1) 

since by assumption E . B = 0. Plasma streams perpendicular 

to the electric field, or in other words, along equipotentials. 

The velocity in equation (4.1) is independent of particle 

charge or mass so that all constituents of the plasma have 

the same velocity at all points. Thus there are no charge 

or current densities in the flow if the plasma at infinity is 

charge neutral. The electromagnetic field is then deter-

mined solely by the system boundary conditions, i.e. the field 
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sources. 

However, of course, if the electromagnetic field im-

posed by the boundary conditions is non-uniform then the vel-. 

ocity along the eauipotentials of the plasma changes. This 

implies that the particles change kinetic energy and must 

therefore slowly drift across equipotentials. 	The drift 

across equipotentials is obviously dependent on the particle 

mass and charge, the effect being more severe the larger is 

the mass. 	Such drifts obviously give rise to current den- 

sities in the flow leading to perturbations in the magnetic 

field; the charge neutrality of the plasma also needs inves-

tigation. We here derive the equations which determine the 

electromagnetic field and flow of the cold plasma when boun-

dary conditions impose non-uniformities. 

The equation of motion of a particle in the steady 

state can be written in Eulerian form, since by assumption 

the plasma is cold,'having no 'thermal' motions. 	The vel- 

ocity is then regarded as a function of position, so that 

ift  (Y-.12)Y_ 	'1,(E 	 (4.2) 

By using the vector identity 

(Y.7)Y =o (12) — 

and since E = -V4) in the steady state equation (4.2) becomes 

V (ct 	 C rrizva) == rn v A Y /‘ + 3: c  v (4.3) 
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The right hand side of equation (4.3) is a vector perpendic-

ular to v, so that V(q¢ + -mv27-) is also perpendicular to v. 

Thus the flow lines are lines of constant total energy, a 

very reasonable result! Hence we may in general write, for 

some A 

v2N rc  -2‘ a 7_ OA' f'12 L73) 6 

or equivalently 

AA V (V.1*•1/) =•-• 1_X)7 (9.(1) raz\tt) 

(4.4) 

(4.5) 

(ii) The Velocity Expansion 

Now according to the well-known drift-theory of par-

ticle motions in an electromagnetic field (see for example, 

Northrop, 1963), the velocity of a particle at a point in the 

flow may be expressed in terms of the electromagnetic field 

values (and their derivatives) at that point, so long as the 

scale lengths L for changes in the field are much greater 

than the particle gyroradius (e.g. equation (4.1) for example). 

If the particles are cold (zero magnetic moment) the gyro-

radius is zero, and is replaced in the theory by the distance 

the particle travels, moving with the local drift velocity in 

1 (—) of a gyroperiod. This distance we call the gyrolength g 2n 

and is given by 

g 	
= • VD 	

(4.6) 

where s2 = eB is the local gyrofrequency. me 

For cold particles VD  , the drift velocity, is the total 
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velocity of the particle and is determined as a series in 

from the equation of motion (4.1), which we now write as 

v = cEAB 
B2  

inc. 
cf/ 61  _ (4.7) 

The series is generated as follows. As a first approximation 

we take 

c  EAB 
BZ  (4.8) 

(i.e. neglect the inertial term as in equation (4.1)), and 

then subtitute v(0) into the inertial term to obtain v(1) 

i.e. 

\/°) = 	nla 13. P. ( (°! 	\/°') 
T3-1- (4.9) 

These two terms are the same as those given by Northrop (1963). 

To obtain the general term we write 

(v  co+ vo) 	= g. 	Ai(v  0).4.vo) ..) (0*-1- 

to obtain 

v 	= 	Eng. 	(v(K)  V) v (1-K-1)  ._ 	• 
‘12 	Kr 0 9. -far 	(4.10) 

Thus we obtain v(j)  in terms of all lower-order velocities 

v(0) to  v(j-1) each one of which is ultimately related to 

_v(0), i.e. to the local values of the fields E and B. Taking 

a typical term in the series for v
u

) . 
)

we have 

 

c9- 	vci 	y_ 
\ 

0- 
lg 

 v 
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It is clear therefore that we have generated a series, valid 

when the gyrolength is smaller than the field scale length, 

which relates the velocity of a particle at a point to the 

local field values. This velocity expansion must satisfy 

equations (4.4) and (4.5) and hence determines A as a power 

series in g/L  in the region where the drift theory is valid. 

In order to do this we first define an ordering of the energy 

c = q¢ + mv2/2  of the particle, consistent with the velocity 

ordering: 

such that E.0) m v 
2 

(o)  E, =_- ryl v etc. 

From equation (4.4) we should then find 

J 
c a p1 /4 57  V = 	—R. 2. 

K=o 

c B For j=O we have v(0) 	
q 

= — ---1- A (A (0)  Vq4). 	Comparing with 
— 	B 

equation (4.8) shows x(0) = 1. 	Similarly, for j=1 we have 

vti) = CA B' 
X(°)  E.(I)  + 7(')  V E")) 

(4.11) 
• 

From equation (4.9) we have 

Y 	= 	(v  co) •v) v 	MC5_ A ( ezn v  (c) 

S' 	
_  

In general from equation (4.10),  

v 	B AF ci)  
—

where 	F (0) 	Q((IA) 

4-1  
e  co) 	 a (.3)  

V c-K-0 
for j  

x=0 

vc 



182. 

and F rn 0-1v) v 
(4.12) 

so that 

V (rn) 	V (n.)) AF1A('91 /` = (71.. 	T-3  — 

= 	ctv (F0)) rm' 
(4.13) 

Thus v ca.) 	v 'on (s_)2-ciiv (12-9A>))a(clso = 	ct,vg_)'264) 
B 	9-B 	6  

and hence 

V CI) t 	( (m21 4 (1-) 2 (9)4) 

Comparing with (4.11) shows that 00)  = 1 and X(1)  = 

qB " div (SE). 

Again, for j=2 we have 

V(2-) 	c B A x(°)  V Ecz)  * )`) V e' 	v Eco) 
= — 

tY- (4.14) 

while from equation (4.10) we have 

V C2-' = me B A (v(1). 	v (b)  2.1* 

me. 	13_ A lc?' (V  co? 

Vc°11C7)\1̀11 

V / A AVC0)) °n (v Av(1)) 

From (4.13) we have 

V (0  (V A \/(1)) 
m ( \i"). Q(t4) 

8
dtv 	 

) 



v C 	v \/(!-̀') 
B J L 2 

CcE/6) It is clear that 
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and 

  

B J 
(vc°).V)voi 

Thus 

ct;v(SE-.1[v 7')  + c ) 	a 	co (-ET17- (cLcii 

) V = 	13  nV (m v(43? v") 
9, B2-   

me 	v (ravitol 
9,13 	B) 

(r23-9,[33 (folly— Bdiv Pa? 7)\in (9s) 

Comparing with (4.14) we thus find 

0) 
X = 	X = (r29 (-C-1-

B
) 8  

(4.15) 

B01;v (C\L''). 
B 

and xcz.1 	cE/B 	(1)2" 
_214 

Thus we have determined A as a series with g/L  as the small-

ness parameter. The value of X(j) may be found in a similar 

manner to that given above, though, of course, succeeding 

terms become ever more complex. 

We have thus shown that eauation (4.4) is satisfied 
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by the adiabatic drift expansion and we have evaluated the 

first three terms of the series for X in this case. 

It is worthwhile to point out at this stage that 

since the velocity and hence kinetic energy of the particles 

is known at each point in the flow, the total energy is also 

known, and has a unique value at each position. The par-

ticles move on a locus of constant energy, and so particle 

orbits of a single species never cross each other. 

(iii) Current Densities in the Flow and Magnetic Perturbations  

We now investigate the particle density N, in the 

flow via the continuity equation 

div (Nv) = 0 

Using the particle velocity in the drift-flow as aiven by 

equation (4.4) we have 

day 	ND B Ay_ 64, 	_ B  curQ (" (co, 	= 0 \ rs 	 g 	y 

where we have used the fact that E/B  is a constant vector 

in two-dimensional flows. Also, since the curl of any vec-

tor in the plane of the flow is perpendicular to that plane 

and hence parallel to E/B this implies that 

CALtt (" 2  V1) P-- 

Expanding this we have C+0 	
(9-4)  ± V2) = 
	

(4.16) 
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of using (4.4) again 

NX 
- — _v (B- ) v . V (--) 	0 	 (4.17) 

Thus 111/B  is a constant along a streamline. 	To zero order 

(0) (X 	X 	= 1) we have N/B a constant along a streamline, 

thus recovering the well-known result for the zeroth order 

flow along equipotentials described by 'equations (4.1) and 

(4.8). (See, for example, Chandrasekhar, 1960, p.75). 

However, if the density at infinity is non-uniform, NA/B is 

not constant across streamlines. 	Cold particles produce no 

diamagnetic effect so that differing densities at infinity do 

not perturb the magnetic. field, which we assume to be uniform. 

For definiteness we consider flow between parallel boundaries 

which have an electrostatic potential difference between them 

If the plasma at infinity is exactly charge-neutral the 

electric field is also constant across the system irrespec-

tive of density gradients. Thus with constant E and B the 

flow velocity between the boundaries is constant across the 

system and given by equation (4.1). For the incoming flow 

at large distances the density can thus be written as a func-

tion of the potential across the system. For species j we 

thus write 

N 	= 	No  c.( 4';) 0,1 	- (4.18) 

where cpi  is the 'initial potential' of the streamline. For 

a two-component plasma (protons and electrons) the charge 

neutrality condition is 

N p(ch) = Noe(cI)). 
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Non-uniformities in the flow are then imposed by a boundary 

condition which, say, defines a non-uniform potential drop 

across the system at some position. 	In our case this boun-

dary condition is set by the properties of the magnetic field 

reversal region where the conditions for the validity of the • 

drift equations are no longer satisfied (See Fia. 4.1). 

non-uniform 
potential drop 
imposed here 

0 	• OB 
ciD -0 

Figure 4.1 

Since NA/B is constant along a streamline and energy 

is conserved, the density of particles of species j in the 

flow where the potential (I) and the flow velocity vj  is given 

by (from (4.18)) 

= NOB f.(4)i=  Sp + Mi(\11-\100) 

Bo  -I 	 z (4.19) 

We shall first consider the magnetic field changes which are 

consistent with a given electric field perturbation. These 

are given by Maxwell's equation 

curl B = VB/\-13-1  = 	N • V 
4 -- • 	— 	C 	—J (4.20) 

Using equation (4.4) for vj  and (4.19) for Ni  we have 
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= 
cci,3  No 	(4, 	m j(v v co) A. Na (4)  + m,a) 

60 	 2cki 	B 

No 	6 A  2 	 jo r {Sr 	nw-vc,:-.).)  a  (c ..„. rr5(vi- v9} 

Bo   2.1j 	 2.07,j  

Thus, on integrating equation (4.20) we obtain 

B 	4Tc No  7 	( 	
-29d 

	

+ 	(v,ii--vc:))a  (43+  yyt i(vi-1-_vo.:,) 

Bo  ZA 

constant 
	

(4.21) 

N.
3  

or,in terinsof4).
1  = 

c1) -F m
3
..2-Nr 2)/2q3  . (at any point this 

•  
is 

6 	4:11: 
L 	fi(dc.;) out> 	cortskan. 

Bo   

The indefinite integral may be replaced by the definite inte- 

gral 	
4- ri  (V.1--vcW2q,,i 

	

(4i)ctc13i = 	csi (4 it) aci): 

where Rio  is arbitrary. The lower limit represents the 

arbitrary constant, which contributes a constant term on 

either side of equation (4.21), and which may be cancelled. 

Farawayfromthesheetv.=v for all species, and B = 

B0  so that equation (4.21) can be written 

	

4 	 4);=4)k 

B 	41t No Zvi  lag): )c14);1  = B + 4-1'1\10 Zck4f,i(C)44); 
Bo 	

el, ‘.1  

where (I) on the right hand side can take any value and is 
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not necessarily the same as the ¢i  on the left hand side. 

However, by the charge neutrality assumption 

47R 

Ticl- I E • (0 ci..4)! J 	j 

for all ¢R. 	So if we let ¢R  = ¢ we obtain 

(1i) ii  ) (vf-vo:021/241:i 
 

4-7C8I\ 10  0 2;  ,,, 	j(,:),1.4,i, ( Bo — B) 
(4.22) 

(1)  

The interpretation of this equation becomes clear if we con-

sider the flux of particles crossing an equipotential (5 along 

which the flow velocity varies, while energy is conserved in 

the flow. 	If the flow velocity for species j is v. at poten-

tial ¢ at any point the flow, the change in kinetic energy 

undergone by the particles is m.(v.2-v 
c°
2)/2, this implying 

3 3  
that particles with initial potentials between ¢ and 

¢ + m3.(v.32-17 t° 2)/2a. have crossed equipotential ¢. 	The par-

ticle flux at infinity is 

Fj  = No  v,,, 	= 	N°E° “4)-,) 13, 

and the number of particles per second crossing an element dL 

perpendicular to the flow is FdL. Writing EodL = d¢if the 

number per second crossing the potential d¢i  is 

F cis!): 	cN 0 	(4) 
 Eo 	Bo  43 N. I. 

Thus the total flux of particles moving across the equipoten-

tial 0 is given by 

43;0  



and 4> the total potential across the system. 

(4.23) 

with I 

Thus 

and 

j(vjt— V(2)/2cki 
	 189. 

cN. 
Bo  

cfp 

The current in the direction of the electric field is thus 

= c N. 
B 

4,  + 

4" 
which gives, via Maxwell's equation 

(Bo_ 	4-7 No  
Bo  

, 

fsi  (cow, 

For illustration we consider the simple case of a linear 

variation of N across the system, with No  the average density 

(at the centre of the system) and the density at the boundaries 

No(1±V2). Then 

No  (4,) = No  (I + 4' 	—1)) 

With this simple form for f(q) equation (4.22) becomes 

4-rc N o  7 cv, (§, 4  ryb 	vOI)v 
TS° 	 1 

 

  

- ID (1 141  0 IV 



or 

--N4t) 1— (1 —1 — reli(vs12—(‘;&)))) 
2%1. 

(B0-"B) = 	
No 

13. . 
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For the special case ip = 0 (uniform flow) this reduces to 

(4.24a) 

For an electron-proton plasma, we see that due to the mass 

factor mp/me  - 2000 and the fact that vp  = ve  in the drift 

flow only the term due to protons need be included. Per-

turbations in the electromagnetic field which considerably 

affect protons leave electrons flowing very nearly along 

equipotentials. 

Then (4.24) simplifies to 

= 2Tt No 1110( 	
2. 

vb1"—v02,0)(1 	([ 24) 
I 	— rn 

(‘Vp2—vc,,i(4.25) 
Bo   2e4  

At a potential 4) the maximum possible value of mp(vp2-v.2)/2e 

is (4) - 4)) so that again neglecting the electron contribution, 

the minimum value of B from equation (4.22) is given by 

(60.-B) = 
4-rol

° 
 eS 

f -  (4),I)4 
Bo 	 i 

cP 

At 4, = 0 we expect all the current to be carried by protons 

(the above neglect of electrons then being immaterial) and the 

minimum value of B must be zero for self-consistency between 

the magnetic field and the current. If, in the above expres-

sion No  is the average incoming particle density then 

f 	= 

0 
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Thus, for self-consistency (Bmin  = 0 at 4) = 0) the total 

potential across the system is given by 

= 	go  

z1 /2-it Noe 
(4.26) 

where No is the average density. 

This equation is the same as that derived by Alfven (1968) 

under the assumption that all incoming particles contribute 

to the current. This assumption is equivalent to ours that 

protons carry all the current at ¢ = 0; (electrons carry all 

the current at ¢ = 0). 	Accepting this value of 0 (4.25) 

becomes, for the linear density variation 

(rni,(vp2- —v )/2  (1  __ 
2 

and from the above discussion 

( to) min 

— 	nie(ve2-- ‘10:21  ( 4 . 2 7 ) 

(4.28) 

B = I 
B0 

Writing m...07
P  2

-v 2)/2 = e(cI).-4) equation (4.27) becomes P  

(d)i -(0(1  _ 1(1  -(4)+o))) 2 80 

We have plotted in Fig. 4.2 B/B0  vs ¢i  for given ¢ values. 

The effects of increasing the incoming flux near ¢ = 0 

(* > 0) and increasing it near ¢ = 0 (* < 0) are apparent. 

Now since in the drift-flow region the velocity can 

be expressed as a function of the local electromagnetic field 

and its derivatives, equation (4.22) is, in fact a relation-

ship between the local electric and magnetic fields'as a 
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14 = `2'0 

Figure 4.2 (a,b)  

B 
Bo  
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Mp(V 2-V 2) 
Figure 4.2 (a,b,c): The value of B/B0  versus 4'1_4 = (1-1- 	 2ef  
for various values of 4)4. As fi(ZO at a given ¢ increases, the 

cross-equipotential proton fluxes increases and B/B0  decreases; 

for fi=f there are no fluxes and B/B0=1. The variations shown 

for non-uniform inflow are in accord with expectations for 

(a) larger densities near 4)=4) (P0) i.e. smaller changes of B/Bo 
at cP=0 for a given fi, than for the uniform density case 

(dotted) 

(b) larger densities near f=0 (*<0) i.e. larger changes of B/Bo  

at ¢=0 for a given fi, than for the uniform density case 
(dotted) 

(c) uniform incoming profile, (4)=0) a linear variation of B/130  
at a given ¢ as fi (z.f) increases. 
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function of the potential. To lowest order we have vp  = 

cE/B, and (4.22) and (4.27) are in this approximation a 

direct relationship between E and B in, the flow. 

The ratio of the incoming kinetic energy to the par-

ticle potential energy (at ¢ = 4)) is 

(mr  V,Z 
rnp 

=- 
2e 
) 

 

i.e. half the ratio between the incoming particle kinetic 

energy density and the magnetic field energy density. We 

shall be interested in systems where this ratio is very small 

(e.g. the geomagnetic tail fed by polar wind plasma). Thus 

if we wish to consider mpvp2/2  - 0(e(D) such that significant 

magnetic field perturbations occur, then the incoming flow 

energy may be neglected in (4.27) to obtain 

(v2- 1 impv„2.)(g2- \12  
Eo) 4-  (1-243-. {.( mPv:X )21 2ep Ev 

2-  Bo 	—to) 	
(4.29) 

i.e. a biquadratic equation for (---) in terms of Eo  

with solution 

(B/Bo) 

(t)=-0012- f -q--')(10-FI( 

   

1112-4-2_21-A 	\ —6+ IP (14> (4.30) 

and 

Vg = 
vco 	M V 2-  

P ce 1

1( f 	 
z}' `  

o
AI 
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It is to be remembered, from (4.28) that *(1- 4(1- 4)) < 
B 
Bo 

< 1. For uniform inflow (4, = 0) the above reduces to 

( Bo t) 	v:52- ( 88)(0 (PA
2p v421) 

(
2e.s\V2. 

n7F Q-) 	±  
rnPy~(Zed)/ 

and 

(4.32) 

(4.33) 

the latter two results without the approximation v << v . 

The general form of equations (4.30) and (4.31) may be found 

by considering the simpler equations for 11). 0, (4.32) and 

(4.33). 	From equation (4.32) we see that (E/Eo) is zero 
m v 2 at Bo = 0 and at B/Bo 1 + 	= 1 (these are the 

maximum and minimum values of E in the system). Between 

these values (B/Eo ) has a maximum value of 

f_x_, 2 (2e- 1- 	atB 
0 /max 3 ,FS mp Vco 	 BO 3 

,LatqL, 	. 

of v is given by ,2e
77-2,

l) %1/2 
(2) 	= v 

	at 
vc° max 	mvc° 

B = 0 and v is 

monotonically decreasing as B/D0 increases. Thus v has 

its maximum value at the minimum B rather than the maximum 

of E. 	Graphs of (3/E0) and (vp/v00 as functions of 

B/Bo for various (I) and tp can be seen in Fig. 4.3. 

In summary, therefore, we have seen how the variation 

in drift-flow velocity along an equipotential sets up current 

densities and perturbs the magnetic field. This effect is 

produced by particles drifting across equipotentials (as 

described by non zeroth-order terms in the drift velocity 

For these values The maximum value 
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(
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Figure 4.3(a): Variation of E and vp  as functions of B/110  

at given potentials for Ap = 2.0 from eqns. (4.30) and (4.31). 

If vp  is known at a given potential then E and B can be sep--

arately determined to 1st order. 
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Figure 4.3(b): Variation of E and vp  as functions of B/E0  
at given potentials for IP = -2.0, from eons. (4.30) & (4.31). 
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0.2 	0.4 0.6 0.8 

Variation of E and vp  

uniform inflow, from equations (4.32) 

are now independent of the potential, 
2 2 

/43/m 	 MP(VP 	)max _ 
` 'w

1 	= 1 
min 	et 	0 

as functions of B/po  for 

and (4.33). The results 

except that at a potential 

4)  I 

1.0 
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0.4 
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B  

0.8 	1.0 Bo  
Figure 4.3(c): 
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expansion) and so conserving energy. We hence obtain a 

relationshipbetweenv.and B/Bo, and using as a first 

approximation vj  = cE/B  we obtain a relationship between 

E and B in the flow (in the general case as a function of 

c/o). We have also found that, for self-consistency between 

the available current source (the incoming particle flux) 

and the magnetic field at large distances, a total potential 

0 must exist across the system, given by equation (4.26), 

which is in agreement with Alfv61's result. 

A aiven value of vp  however, implies a given value 

of E, and for mpv 2/2  - t9(e0) we have found that 

	

(E) 	 >> 

for the systems of interest here. 	Since the total potential 

across the system is fixed, however, such electric fields can 

exist only over small regions of the system. This implies 

that for a given value of E scale lengths L exist such that 

(E - E0) L 	010. 

We thus write 

KO  where K 1. 	(4.34) (E - E0) 

Hence 	3 	v 	mr V? 	 (4.35) 

K e § 

Thus the drift-expansion will only be valid in the region 

where the flow energies are rather less than the potential 

energies. In order to estimate the likely importance of 

41igh-order terms in the drift-expansion of such quantities 



200. 

as vj  and X we consider the properties of the series 

= 	(1T.  =  	for 9/1__ 4 I 
L-J n 

 --9/L) 

A graph of S versus (g/L) is shown in Fig. 4.4 together 

with the first two approximations 1 + (g/L) and 1 + (g/L) + 

(g/L) 2 . 
	If we approximate the series by the first m terms, 

then the error is 

= 	— S M 	(s/1--r 	and 
(I —9/0 

Thus for a maximum fractional error of f = Em/s. we must 

have 

M ng 	 (4.36) 

For example, if we choose f = 0.1 (a 10% error) as the max-

imum error allowable in say, vj  and X, then by using only the 

first two terms (v.
0 
 = v(0) + v(1) and X = X(0)  + X(1)  ) 

we must restrict ourselves to g/L < 0.3 or, from equation 

(4.35) 

M V p 
eI z - 9  < 0.16 E 

On the other hand, if three terms were taken, then for.  

f < 0.1 we require g/L  0.46 or 

fY) V p.  2" 
< 0.23 

ZeI 
The above considerations give us a quantitative estimate of 

the error involved in any quantitative calculations based on 
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1  
Figure 4.4: The function (1-g/L) versus g/L  together with 

the first two approximations * 1+g/L  and (1+g/L+(g/L)2). 
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Bo  L 	? r  

Rewriting (4.37) we have 

(4.37) 

= — me 

>ke. 
(vez—vo;-)/2„)1 
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the drift theory, and also some idea of its limits of validity. 

(iv) Charge Densities and Poisson's Equation for the Drift-Plow... 

We now investigate charge neutrality in the flow and 

derive the form for Poisson's eauation which, when integrated 

with given boundary conditions finds the electric field (and 

equipotential structure) in the region where drift-flow theory 

is valid. 

If the potential at a point is 4) and the flow velocity 

for species j is vj  (given in terms of the local field values), 

then since NX/B  is constant along a trajectory, we have 

B No 
-I cbf.(i= + 	v:)/2i,j) 7v Bo   

as before. Thus for the proton-electron plasma, the charge 

density is given by.  

(N r-NO No  B 

 

if (4) ( 	(44- nif(Vt,2--VG))  _f(q)( 
Ne 	 2e Ai) Bo  

L1/42.  (f (13  nu. (ye—v.1)/20 —Rd))) 
?e 	(4) mr  (vpl—voW2.0 —Rep) 4.38) 

This equation may be simplified first of all by noting that 

since me/mp  -(3(10-3) we may take Ile  = 1 for our first-

order theory. For instance, if gP/L = 0.1, then. 



, x fve"-V:  )11 
\/132--‘10-2:0 

and, noting that (4.39) is satisfied the equation may be 

== 	E3 No 1.4.  - (I!  __LW?s121  4.11) 
Xp E3. 	21/ 	Ne 	2.eq, 	L 	e Ae 	(4.42) 
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gr, 
- 10-4  and Xe  = 1 +0-((fc) ) while Xp = 1 +0-(gp/L). 

Secondly, again because of the mass ratio, and the fact that 

vp  = ve  we see that.  

(95  — me (Vel  — V0)/2.e) — f (cID) 

f (4) -A- Mp(Vrt— Vci)/Ze) — f(+) =‘J 0--( LY\--4) 
(4.-39) 

unless the function f varies very pathologically. These 

simplifications amount to the neglect of the electron inertia, 

considering them simply to flow down equipotentials with the 

velocity given by equations (4.1) and (4.8). 	Thus we simplify 

(4.38) to 

Np_Ne  0_, Nob f f(4)  0 ),p) 	(f(4 -1-rni)(v
p2--Vci)/212) 	(c4b1( 4 . 40) ), Bo 

From equation (4.15) we have 

do/ (c9 C ((;_Er) e B 	T3-  

(d;v E — E.VB). 
e B' 

Substituting into equation (4.40) we finally have, to first 

order, 

N 	rnPc2\I° If (4))( E .V B  'Sty 	+ t1:32.1 	(4)+Mt(Vp1--Vool))  
2e.  ) (4.41) Are BB. 	8 	ffl Cl\ 

- 
f (4))) 

For the case of the uniform gradient in the incoming density 

(equation (4.23)), equation (4.38) is 
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simplified to the form of (4.41) 

/6 e-11\1°  
e BB° 	

ca,• 	- E--T3'12-211÷Yjkt-iiff- 	ez 4.43) 

The first term on the right-hand side of equations (4.40), 

(4.41) and (4.43) is the charge density set up by the variation 

of X along the trajectories, while the second term is only 

present for a non-uniform initial density across the system 

and is simply set up by cross-equipotential flow of protons 

while electrons remain tied to equipotentials. 	If the initial 

particle density is higher at higher potentials Op > 0), 

increasing proton velocities (vp  > v.) causes them to drift to 

lower potentials and hence a positive charge density results. 

Similarly, a negative charge density results when Ili < 0 and 

> v . 
We now note that (X--1) 

(4.35), and that 

M V 2  

(gP/L ) 	(5-(  3e1D, 	 ) from 

(4) + Mp(Ve2- °)/2e) 	f 	"If (V- v°°)  

Thus, if f(cp) and Of/a 0/40) -0-(1) the first and second 

terms in equation (4.40) are of the same order and we can look 

for the condition for charge neutrality. 

To this end it is now usual to invoke the 'plasma 

approximation', that is in this case 

N 	e « 1 o  

and hence equate to zero the right-hand side of equations 

(4.40) or (4.41). 	However, to justify this step we first 

Np 
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look at the consequences of having Np Ne. Firstly, from 

Maxwell's eauation 

div E = 4Tre(Np-Ne) 

and, very crudely, div E E/L  where L is the scale length 

of the electric field produced by the charge imbalance. 

Again using the argument contained in (4.34) we have 

E2  
Kep 4ne(Np-Ne) . 

E 2 eO  Now according to the previous discussion (---E0  ) max 	(1upv 2), 

for higher electric fields the drift-flow theory breaks down. 

Thus (ti - NO 	, 	E2 	^, 8: Noe P , 	III0Jg 	(  --rce K Ory,0_,,, 
ti-Tc K meCz  

 

Np  —Ne) 
No 	K mre 

 

or (4.44) 

  

Now m c2  = 106 KeV while the typical e(1) values we shall be 

considering are in the range i .4- 102 KeV. 	Thus 

(
p _ 
	Ne) < 10-4 	10-6 

No 

in the drift-flow reaion. We thus write 

div E = 41reNoc 	 (4.45) 

where c < 10-4 10-6 produces significant perturbations of 

the electric field in the flow. 	However, from (4.41) we 

have 
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eBz Ic(d) mr(vP - )---EM)- f(c0(otiv 
yczk k' 	 4.-Tr Na  Al  

ape B13. E 	?APB(ee 
rn f) 	 Bo  Ullpc-1) (4.46) 

e4) But we have seen from (4.44) that c 	(---T) mpo 

flow reaion, so that with Ap 1 and B/D0  < 1 

in the drift- 

XPB 

B. 
(f_t_ 	,N) 	(e2") m av 

Thus, comparing equations (4.45) and (4.46) we see that while 

each term on the left-hand side of (4.46) is of order E, the 

combination shown is of order (or thereabouts) of e2. We 

have therefore justified the use of the plasma approximation 

in the drift-flow region, i.e. equating the right-hand side 

of (4.41) to zero to obtain 

div E 

	

EL.YEL + "e 	(1)1-rn,(v,t-c(0j 

	

m c 	 I'W (4.47) B 	 P 

For the uniform gradient example this becomes 

cuvg 	IP B2  ( vr2—vc:) 
	

3 —.0) 
	

(4.48) 

On putting to zeroth order vp = cE/B  we have finally 

dig/ E E V B 
B 

a:002)  

0 4- 	( -i ---1)) 
(4.49) 

which is Poisson's equation for the drift-flow. 

Since, from equation (4.30) we have 3/B0  as a function of 
E/Eo  in the drift-flow region, equations (4.47) and (4.49) 
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determine the structure of the flow. These equations are 

equivalent to Laplace's equation V2¢ = 0 (or div E = 0) 

for ¢ in a vacuum, which may be integrated is some region 

for the potential field when the boundary conditions are 

given. 	In the simpler case ¢ = 0 (uniform inflow), we 

have from equation (4.40) that Xp = 1 is the governing eauat- 

ion; or to first order from (4.49) that 

divE 	Z.VB 	 (4.50) 
B 

From equation (4.5) we note that this implies that V ' v
P  = 0, — — 

the flow is, in hydromagnetic terms, irrotational. 

(v) Numerical Results of Drift-Flows Obtained from Poisson's Equation 

In this section we shall present some results of num-

erical solutions of equation (4.49) i.e. the flow for uniform 

incoming density gradients. The method used will be discussed 

in some detail, since it was found to be highly satisfactory 

in dealing with problems of this type when used in conjunction 

with high-speed computers. 

The method chosen is a refaxation method, known as 

the cyclic Chebyshev modification of the successive over-

relaxation by points (SOR) process (see, for example, Hockney 

(1970). 	The potential ¢i,j  is defined on an n x n mesh 

covering the region of interest, the length of a mesh spacing 

being h, and 1 	n. Using the usual five-point 

difference expression for the Laplacian operator, Poisson's 

equation in difference form is 

— 4TrAti 	9';ij 	(4.51) 



new 	old 
and then take 4). = (1-W) 	4- w cp (4.53) i 1  fi 	 ,j 	i,j 
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In order to shorten such expressions we define 

A 	off 

(4.52) 

The mesh is 'swept' in some manner and the potential at each -

point (except the boundary points) is recalculated according 

to the following procedure. First the residual R is calcul-

ated 

R  = 

	

	[
°cc 

	

(P. • - 	i 

	

new 	old 

	

and we then replace cb 	= 	+ 	W is the "over- i,j 	i,j 	4 

relaxation factor" which may be adjusted to improve overall 

convergence. 

Equivalently, we can calculate a cpifj  from (4.51) 

off 

In the straight SOP, procedure W is fixed," and it has been 

shown for model problems that best convergence results when 

= Wb 	= 2/(1 + (1-p2)1/2) 

where p = cos (7/n). Note that for n large Wb = 2, so 

-that from (4.53) we are 'over-relaxing' the solution. 	The 

guaranteed asymptotic (after - n/2 iterations) decay of the 

error at each point is then (Wb  - 1) per iteration. For n 

large we have 
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so that the error reduction factor is (1 - 27T per iteration. 

As can be seen, the convergence is very slow for very large 

numbers of mesh points. 	In the model problem the 'sweep' 

is first carried out over the odd mesh points (those for 

which i + j is odd), then over the even mesh points (i + J .  

even), the 'new' values of potential immediately replacing 

the 'old' values on the mesh and being used in all succeeding 

recalculations. 	This method has been used in the calculations 

presented here. 

In the cyclic Chebyshev modification, the over-

relaxation factor W is changed for each of these 'half- 

iterations I , 

W 
Co) 

according to 

w 	h 
/ W iti _ Ao-v\iw) 

3  

This leads to a much improved initial error decay, although . 

for large t W Wb  so that the asymptotic error decay is 

the same as for the straight SOR process. Of course, the 

absolute error after n iterations depends principally on the 

errors in the initial 'guessed' solution. 	In the calculat- 

ions performed here for flow between parallel boundaries we 

have used the solution to Laplace's equation with the given 

boundary conditions as the initial 'good guess'. 	This sol- 

ution will be derived below. 

Although the convergence of these relaxation methods 

are rather poor for large meshes, and the procedures relatively 

inefficient when compared with the 'direct' methods their 

great advantage is that they are very easy to program for a 
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computer. 	For instance, Hockney's Fast Fourier Analysis/ 

Synthesis procedure calculates in 'one shot' the exact sol-

ution to the difference equations in the time required to 

perform 5 or 6 SOR iterations. However, the large amount 

of code required to do this is to be compared with the SOR 

which, to carry out a sweep of the mesh, correct the poten-

tial, including the odd/even logic reduces to just six 

Fortran statements. 

DO 10 I = 2,M 

K = (I - (I/2) *2) + 2 

IF ((IT/2)*2.NE.IT) K = (I/2)*2-1+3 

DO 20 J = K,M,2 

20 PH(I,J)=(1.-W)*PH(I,J)+W*(PF(I+1,J)+PH(I-1,J)+PH(I,J+1) 

1 + PH(I,J-1) + Q(I,J)) 

10 CONTINUE 

where M is n-1, PH(I,J) is (Pi,j  and IT is the number of the 

iteration (IT = 1,2,3, etc). 	We correct the odd mesh when 

IT is odd and the even mesh when IT is even. 	In the present 

problem, however, theq. 	are not fixed, but are functions 

of the local field values derivable from the potential. 	In 

this case we simply allow qi,i  to relax with the solution. 

As has been stated we use the solution of Laplace's 

equation with the given boundary conditions on the potential 

as our initial 'good guess' solution. We first dedimension-

alize as follows: 

and 
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Figure 4.5 

where x', z' are as shown in Fig. 4.5. 	The boundary con-

ditions on 0l(x1 ,21 ) are: 01(x',0) = 0, V(x',1) = 1 

and 01 (0,z1 ) = f(z'), where f(0) = 0 and f(1) = 1. 

If we first consider the,problem with 0'(x',1) = 0, the sol-

ution of our problem with 4'(x',1) = 1 is given simply by 

adding z' to the former solution (i.e. a uniform electric 

field). 	This is possible because of the linearity of 

Laplace's equation. We look for a separable solution of the 

form 0'(x',z') = X(x')Z(z'), and using separation constant 

k2 obtain 	Z(z1) = A cos kz' + B sin kz' 

X 	= C ekx'  + D e-kx'  

Applying the boundary conditions 01(x1 ,0) = 0; 0'(x',1) = 0 

and 0(x',z1 ) + 0 as x' 	(the solution to be valid for 

x' Z 0) we obtain A = 0, C = 0 and k = nw 	n = 1,2,3,... 

Thus the general solution 

1.1t X i  
Sin nit Z I) e 

or, for boundary conditions 0 ( ',1) = 1 we obtain 

5610e,z) _nx.xs 
Attsin 	e (4.54) 

11=1 
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Clearly, the An  are the coefficients of the Fourier series 

of the boundary condition c5'(0,z1) = f(z'), and hence are 

obtained from 

	

A 	 ( a
t Y 1) sin (rc ) dm! -  (4.55) 

0 

As can be seen, the shorter the wavelength of the Fourier 

mode, the faster is its exponential decay away from the x' =.0 

boundary. We are interested in problems where the electric 

field becomes much larger than the value in the incoming flow, 

and so we choose the x' = 0 boundary condition such that 

the potential drop occurs across a small region near z' = 0. 

In order to obtain a simple form for the An  we choose (see 

Fig. 4.6) 

sin pz' 	0 .1 z'.1 71/2p 

	

f(z1) = 	 (4.56) 

172p < 	< 1 

0.0 
it 
2p 

Figure 4.6  

Then substituting (4.56) into (4.55) for the Fourier coef-

ficients we have 

A n.  == 	42- 	cols 
n-rE(r--(nT)2) 

  

2p (4.57) 
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Clearly, in order to obtain a good representation of the boun-

dary potential we must not terminate the series until 

n >> P/n  . For x' > 0 the short-wavelength modes rapidly 

die away and far fewer terms need to be considered. 

We choose p such that the maximum flow velocities in 

the system are a significant fraction of the total potential 

energy for the range of system parameters of interest. The 

maximum value of E occurs at x' = z' = 0 and is given by 

E 
t---) 

0 max 
mc2E2 p  

Let us thus write 	 = Key where K is the 'significant 
B2 

fraction'. Then 

5Ec) ed B 4r  
cB0 	mP  

For the geomagnetic tail we have d = 3 x 1010 cm and 

No = 0.1 .+ .01 cm
-3. 	Taking No = 0.05 for definiteness and 

B/B0  1 (for 4 = 0 we have B/B0  = 1-K from (4.33)) we 

find 

E 	1/2  
max 
) 	= 300 K 

Then putting K = 0.1 we have 	p = 100. We thus 
Eo max 

choose p = 100 as being representative of the order of the 

electric field enhancement we are likely to obtain in the 

systems of interest. As indicated above, we must therefore 

not terminate the Fourier series until n » 30. Using 

(4.57) and (4.54) the potential in the region x' 	0 and 

0 < z' < 1 was then evaluated using a maximum of 200 series 

terms 	0.2% error in 40, but successively less terms being 

used as the short wave-length modes exponentially decay with 
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increasing x'. The equipotential lines from this calculation 

are shown in Fig. 4.7. 

The most significant perturbations from a uniform 

electric field occurs in the region where the electric field 

is considerably enhanced, i.e. near x' = 0, z' = O. 	The 

approximate solution to Laplace's equation in this region for 

these boundary conditions is (see Fig. 4.8) 

9s(e) — 

p 
wd 	 z for 	2 < r « d, where 0 = tan-1  (R) and r = (x4z2)1/2- 

X 

Ir,6p 	1.0 

Figure 4.8 

We then have E = E0  5 and E0  = r2IVITr  . Putting E0  = 47d  

we obtain 
(ct..  

E0 	LF) 

If again K is the ratio between the kinetic energy of the flow 

and the total potential across the system we can find K as 

a function of the radial distance from x' = z' = 0. 

2. 
K = mP vP2- 	e2  EJ- 	mpc.2  

N 2 eI  	 7 (i) Ze B21 2ce-e2NoTc.3 	r 

• 
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Figure 4.7: Equipotentials of the solution of Laplace's equat-

ion in a rectangular space using the boundary condition (4.56) 

along the.line ''c'=0, with '(z'-=-0) = 0 and ¢'(z 1 =1) = 1. 

Obtained by Fourier analysis of the )0=0 boundary potential 

yeriation.. 
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-7 	2 
or for geomagnetic tail parameters K = 10 

	
(-d ) 

No  r 

(where B/Bo  = 1-K and K << 1). Thus K « 1 for 

;- -7 10 (a) > 	or, for 	= 0.1 -4- 0.01 am-3 for (5) > 10-3. 
No  

Since the number-of mesh points to be corrected per 

iteration increases as (n - 2)2 and the guaranteed asymp-

totic error decay decreases as n increases as described above, 

we should use a minimum number of mesh points compatible with 

the detail of information required from the calculation. 

The region of interest is near x' = 0, z' = 0, and in view 

of the above consideration we choose to restrict our calcul-

ation to a region given by 0 x', z' < 5 x 10-2, such that 

K on the boundary has a maximum value of - 4 x 10-5/No  . 

From the above we also have 1E01/E0  = 10 on the boundary, so 

that for 	0 from (4.49) div E is likely to be significant 

on the boundary, although much less than in the interior 

region. We have chosen to cover the region with a 51 x 51 

mesh which gives a sufficiently detailed description of the 

potential distribution in the region. The potential on the 

boundaries of the region was taken for all calculations to be 

the values given by the analytic solution to Laplace's equation. 

In order to test the iteration scheme, Laplace's 

equation was first solved on the mesh with the above boundary 

conditions but starting with 0i,j  = 0 on the interior points 

(i.e. a 'bad initial guess'). 	After 100 steps (50 full 

sweeps of the mesh), the values of potential were changing 

by < 1% in 5 full sweeps and were in agreement with the analy- 

tic solution to the differential equation (rather than the 

difference equation being solved here) to within about 1%. 

Such satisfactory agreement gives us a high degree of confidence 
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in the quality of the solutions of Poisson's equation for the 

drift-flow (equation (4.49)) obtained by this iteratio:m 

scheme, and now to be discussed. 

We first dedimensionalize according to 

v 1  = dv ; 	4) 1  = 4)4 	; = B/B 
E s = E/ 

/E0  

These preserve the relationship E' = 	V'¢'. 

The first case to be considered is 	= 0, so that 

Poisson's equation becomes 

E 'B' 
13,  or 

v1 2.4,1 =  v9f3i.viai 
(4.58) 

In difference form this is 

4-(d?`!4! u.) 

(4)‹.,•46,3  - 	 Bu-o.6))/(4.B.,,i) 

so that the correction step in the iteration scheme becomes 

fau3 	 oid 
. 	w) 	+ w f .4)t 	-1.(( 43.;  5.) 	 '-,l1616 • -4'. • XB 	-8.  cy+o 	cr0 	j ci40 8;, ci--1 

+ 	cl) 	.); e • 

We calculate B = B(E) from equation (4.32) 

El 	= a1/2  B' ((1 + 1/a) - BI)1/2  

2et where we choose a - ----T  such that the maximum electric pv. 
field perturbation (E' = 100) results in the maximum magnetic 
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field perturbation. From Fig. 4'.3.we see that the maximum 

electric field in the drift-flow is given by 

wiz o.4 

rAcvit 

which results in B' = 0.7. 	For E'max = 100 we thus find 

a = 6 x 104. For higher values of a, E' = 100 does not pro- 

duce such large magnetic field perturbations. We have chosen 

to use a = 9 x 104 such that (EVa1/2) max = 0.33 and the 

minimum value of 13' on the mesh is thus = 0.85. 	Since we 

also have 

oC = ?It e z  oLl  Na  
mp  2_ 

for tail parameters, 	= 9 x 104 corresponds to No  - 0.03 

cm-3, which is within the range of interest (0.1 0.01 cm-3). 

The results of the calculation after 40 full sweeps of the 

mesh are shown in Fig. 4.9, where the solid line represents 

the equipotentials of the solution and the dotted line the 

solution of Laplace's equation. 	The small 	196) changes in 

the potential on the mesh are due to the facts that, first, 

VB is small, and secondly that since approximately 4 = 4)(0) 

so that E = E (r)'6 and hence VB = IvBir, we have 

E . VB = 0 in the region of interest. 

The perturbations of the equipotentials when 4) V 0, 

are more pronounced. In dimensionless form the equation for 

which we require a solution is 

2 43
1  =. 

 

— 11) (E" 1312)  
+11'6i)'--D) (4.59) B' 

Since we have already found that the perturbations due to the 
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0=01 	0-2 	0-3 	0.4 	 0.5 

0.6 

Figure 4.9: Equipotentials of the solution of Poisson's eauat-

ion for cold plasma drift-flow, for incoming plasma of uniform 

density (4=0) (solid line). The boundary potentials used for 

the computed region 0 x', z' s 0.05, are those from the sol-

ution of Laplace's equation (Fig. 4.7). The equipotentials of 

the solution of Laplace's equation with these boundary condit-

ions are shOwn dotted; only very minor variations are noted. 
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first term on the right-hand side are small, we neglect it. 

Also, since E'2  » B'2  in the region of interest, we finally 

simplify equation (4.59) to 

_ 	(2'.4 2* 

 

(4.60) 
(14- 11)(4.1- -)) 

Then Poisson's equation in difference form becomes 

ioff 	I  

112b  cP(' — 	 (j-1)51 

and the the correction step in the cyclic Chebyshev iteration 

scheme is 

	

new 	 dd 

	

cb•L).3  • 	(NW) Cb- 

The results for various values of 1p (11p1 < 2) are shown in 

the form of equipotential lines in Fig. 4.10. 	These results 

were obtained after 50 full sweeps of the mesh, at which stage 

the solutions were changing by < 1% in 10 full sweeps. 	It 

is clear from the figures that significant perturbations of 

the Laplace potential will exist outside of the region com-

puted, that the equipotentials all converge to the same points 

on the boundary is just a consequence of maintaining fixed 

boundary potentials (as must be done in such numerical calcul-

ations). We first note that the equipotential systems ob-

tained, while significantly perturbed from the Laplace solut-

ion, do not represent an enormous change in the qualitative 

nature of the fields. 	For 11, > 0 .it can be seen that the 
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X` 

Fiaure 4.10(a): Equipotentials of the solution of Poisson's 

eauation for the drift flow for 4 = 0.5, 1.0, 1.5 (solid lines) 

The boundary potentials used for the computed reaion 0 ,s x', 

z' s. 0.05 are those from the solution of Laplace's eauation 

(fig. 4.7). The equipotentials of the solution of Laplace's 

equation with these boundary conditions is shown dotted; the 

variations shown are those expected for a positive charge den-

sity in the region. 
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Figure 4.10(b): As for Fig. 4.10(a) except * = -0.5, -1.0, 

-1.5 (solid lines). The variations shown are those expected 

for a negative charge density in the region. 
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high electric field region near z' = 0 is extended to higher 

x' values, i.e. the eauipotentials are relaxing back to a 

uniform electric field configuration more slowly than the 

Laplace solution. Indeed, for large enough p  the maximum 

in the electric field occurs for x' > 0 rather than on the 

boundary x' = 0. These results are not surprising when one 

considers the direction of the electric field set up by a 

region of positive space charge (which is present when 11, > 0 

and vp  > V..); it enhances lEz I for small values of z' and 

diminishes it for larger values. 	Similarly, the negative 

space-charge present when 4, < 0 has the opposite effect, 

and, as can be seen, this results in the equipotential struc-

ture relaxing back to the uniform electric field configuration 

over a shorter distance in x'. These differences are more 

clearly displayed in contours of 1E1 for various 1p values 

shown in Fig. 4.11. 

Summary 

In this chapter we have developed the equations which 

govern the drift-flow of cold plasma in crossed electric and 

magnetic fields. The magnetic field is consistent with 

current densities in the flow and the electric field is given 

by the boundary conditions together with charge densities in 

the flow. The resulting equations are a relationship between 

B and E, and a Poisson's equation for the equipotential struc-

ture respectively. A method of obtaining solutions of 

Poisson's equation for the drift flow which has been found 

highly successful has been described and some sample results 

presented. 
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and for $ = 0.0 (dotted), showing the enhancement of the 
electric field near z' = 0 due to the positive charge. 



• S. 
10 ' 

• 
• 

'10 • •••• • 

• 
• 

15 
15.  

225. 

	

. • 	 . N 

	

0.02 ‘ • 
	

N. 

	

. 	‘ 30, 	 N‘. \ 	• 
• X 	\ 
• N‘, 	• 

. — --- 30 .............2..‘  

	

-....z%. 	
'N 

.\5 

	XXX 
	

\

\I 

• • 	 X 

	

0 '01 	----- 
50 - 	*---- 	•N. 

40 ....1%, 	N. 	 \ \ N 	
ti 

- 

	

, 	 % 	\ 	t 	1 .'"\-,. 	% N. 
60 
	

.N 	 ' 

	

. — 5 0 --7... ". 	‘ N. 	
\, N 
	% 	

\ \ .---• -- -• -_, tz--- . 	N,,  % • -.. 

	

, 	,N,.  i 	\ 
. 	1  1 

 

- 	• 	N   

- - 	-...-_•-::^-• -.7.-. ..--,  .N.' 	 N. 	 - II  80 	---:"2--,7.---- • 2•-•... - ...**-- • 1.*** 	• ...**• 	I 	• 

90 	.____.,....-„,-.4--- • i..., 4. .\ s N 	\ 	
Z1 

	

100-0 	 0'71 	0'02 	. 0.03 	0.04 	0'05 

	

90 	80 70 60 
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and for * = 0.0 (dotted), showing the enhancement of the 

electric field along Z'=0, and its reduction along X'=O, ex-
pected for a negative charge in the region. 
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CHAPTER 

A SELF-CONSISTENT DESCRIPTION OF THE PROPERTIES OF A MAGNETIC 

NEUTRAL SHEET SURROUNDED BY COLD PLASMA 

(i) General Discussion 

We have previously shown that the simple assumptions 

about the structure of the electromagnetic field in a neutral 

sheet system made by Alfven and Speiser (i.e. nearly uniform 

electric field and adiabatic particle flow) are only valid if 

B02  

 

>> > MC2  
471\10  

This condition ensures that the kinetic energy of the flow 

into the field reversal region is much less than the electro-

static potential energies across the system when account is 

taken of the electric field produced by the charge of trapped, 

accelerating particles. 	Systems in which this condition is 

not satisfied (e.g. the geomagnetic tail) should thus be con-

trolled by the structure of the electric field, which must 

be extremely non-uniform. We also saw that the effect of 

the positive charge in the sheet was to localize the Alfv4n 

potential drop near the cp = 0 boundary. 	Thus we may infer 

that the electric field scale length involved in the break-

down of adiabatic flow is related to the distance over which 

the Alfven potential falls near this boundary. 	For the 

breakdown of the adiabatic approximation we reauire 

vP 	mp  c2  E 
QL = a71 1 	(5.1) 
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and with the above interpretation of L we may write 

EL = t . 	 (5.2) 

Eliminating L from (5.1) and (5.2) gives 

rnpc2E 	
e 

B2  

i.e. the flow energies in this region are comparable to the 

potential energy, indicating that particles drifting across 

equipotentials provide significant currents, together with 

any particles oscillating about the sheet. This further im-

plies that a significant fraction of the protons reach the 

(I) = 0 boundary without crossing the neutral sheet and oscil- 

lating about it. 

If we eliminate E from (5.1) and (5.2) we then deter- 

mine L, i.e. 

 

= 
e2  1/2 	wpi  • 	AI) 

rnp  

(573) 

 

We thus expect the potential drop to occur over a distance 

comparable with the proton plasma wavelength. 

In Chapter 3 we found that 

(-t2) - d 
r2E:22 

 
Bid where vo = 
o  

and so, if mpvo 2 << e it then L << d. 	Numerically eauation 

(5.3) is 

L = 2 x 102 KM 
Not 

or L = 600 Km when = 0.1 cm , and L = 2000 Km when 
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No  = 0.01 cm 3. This may be compared with d = 3 x 10
5 Km 

for the geomagnetic tail. 

However, it should be noted that even with such non-

uniform electric fields the electrons remain adiabatic since 

if 
mpc2E 	 me 

gP/L eBL 	then ge/L 1 . 

The electrons thus remain adiabatic until they are very close 

to the neutral sheet when adiabatic theory breaks down due 

to the magnetic field scale length. 	(We assume that there 

are no electric fields so large that mec2E2/B2 	ecD). 

From the previous discussions it should be clear that 

the plasma approximation 

np  - ne  
<< < 1 

np  

must be valid for such a neutral sheet system, and we may 

again consider charge neutrality by the time-of-flight argu-

ment used in Chapter 3. We first apply it to the region of 

length L in which proton currents are important. The time 

electrons and protons spend in this region being accelerated 

by the electric field is 

L k 
tP eE 

te  
L Me 
eE )  

• (5.4a,b) 

and clearly t » te' 	However, as we noted above, elec-

trons remain adiabatic (i.e. moving along eauipotentials) 

until they are very close to the sheet, and hence spend a time 

te  a 
ve  (5.5) 
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drifting through the proton current region towards the neut- 

ral sheet. 	Here 'a' is the thickness of the proton current 

sheet. 	Equating tp  and to  to find 'a', and using vp  = ve  = 

(eVm  ) 1/2 we thus find 

yin 
a = 	 (5.6) 

which is a reasonable result. We thus see that the proton 

charge density must be balanced by electrons adiabatically 

drifting towards the field reversal region. 	Since ne  = NoB/B0  

the density in the proton current sheet np  s No. 	In the  

Speiser picture protons and electrons spend approximately 

equal times reaching the neutral sheet, but the largest time 

is spent oscillating and accelerating along the neutral sheet. 

It can now be seen that the system responds to the charge 

density produced by such motions such that a significant 

fraction of protons no longer have this oscillation phase. 

Those particles which do enter the neutral sheet (with (I) - (D) 

will only perform a few oscillations since the length of the 

proton current sheet L is of the order of the incoming par-

ticle gyrolengths. Thus while Speiser's description of the 

particle orbits holds good for electrons, the behaviour of 

protons is rather different, significant currents being pro-

duced in the 'drift-flow' as well as in the 'current sheet' 

(there being no strict dividing line between the two regions); 

see Fig. 5.1. 	Since we expect the potential (1) to fall across 

a region of dimension L near 4, = 0 and L << d, over most 

of the sheet we expect the current to be carried by electrons 

moving in a thin current layer where :the electric field para-
llel to the layer is very small indeed. Considerations of 
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Equipotentials 

- 	Particle 
trajectories 

Figure 5.1 

the structure of this layer is given in a later section of 

this chapter, but we shall now investigate in detail the 

structure of the small proton current region of length L. 

(ii) Charge Neutrality & Momentum Conservation in the Current Sheet. 

We shall first consider what can be learned from the 

charge neutrality condition. 	Since the charge density of 

electrons adiabatically flowing towards the neutral sheet has 

been shown to be important we need to be able to calculate 

" their contribution to the charge content of the region at a 

given potential (1). 	We have already calculated the charge 

content at cp due to accelerating particles in the sheet in 

Chapter 3. 

The adiabatic contribution may be calculated from the 

relation E/N = constant for adiabatic flow, but we reauire 

a model for the magnetic field. The current carried across 

equipotential line (I) comprises an electron and proton contrib-

ution given by 
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Ie = I 0 0 (5.7) 

where Io, the total current, is Io  = c/47T  Do. 	Since elec-

trons are expected to remain adiabatic until very close to 

the sheet we assume that the electron current is carried in 

a very thin layer near the neutral sheet. For simplicity we 

assume that the proton current is uniform over a reaion of 

half-thickness a. 	The magnetic field structure at potential 

is then assumed to be given by 

Bx(z) = Bo  ft sgn(z) + (1 - 1) 
(I) 	-.a: (5.8) 

for Izi < a and outside of the thin electron current layer. 

Note that we have made no distinction between the regions 

where the proton current is carried by particles in the 'drift 

flow' and where it is carried by particles oscillating about 

the neutral sheet. This appears to be justified because the 

current densities in the two regions must be nearly the same, 

so that the nature of the magnetic field does not change 

across the boundary of the region of oscillating particles. 

Using the model structure (5.8) the adiabatic electron 

surface charge density is given by 

Ede 4)= 
a 

-2e f Ne(z,0)dz 
0 

2eN a  ----a J B(z,c0dz 
Bo o 

so that 	age 	- e No a (1 + 7) • 
	(5.9) 

Since the protons are essentially being accelerated across 

equipotentials from small velocities by the electric field in 

this region, both in the drift-flow and in the oscillatory 
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motion about the neutral sheet, we expect the expressions 

derived in Chapter 3 for the surface density of accelerating 

particles to be valid (equation (3.40)) 

i •e • a(¢) 
4ecN 
Bo  

k 	k m  k k 
(112 ) { 	— 	1 2e 	—P 

Thus writing a(¢) + aae = 0 for charge neutrality gives the 

sheet half-thickness 'a' as a function of ¢ 

(5.10) 

0 ct:'4.) 
which, apart from numerical factors, agrees with the time-of-

flight argument used above which gave a = 7p. The value of 

'a' versus ¢ from this calculation is shown in Fig. 5.2 for 

No = 0.1 cm 3 and No = 0.01 cm
-3. An estimate of the thick- 

ness of the electron current layer may be obtained if it is 

assumed that the breakdown of the adiabatic condition for 

these particles is consistent with the scale lengths of the 

magnetic field. This gives 

ae c- ve 
e 

. where = cE/B and cE mp(T3— e.1). 

me Thus ae = 	t p  , and since aP 
 = t

13' 
 our approximation mp   

that the electron current layer provides a 'step' in the mag-

netic field appears to be justified. 

As an independent check on these results for the thick-

ness of the proton current sheet we now turn to consider con-

servation of momentum for the system. Clearly a problem 

exists for the component of the momentum flux parallel to the 
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Fiaure 5.2: The values of the half thickness 'a of the proton 

current sheet for geomagnetic tail parameters No  = 0.1, 0.01 

cm-3  plotted against 4'4. The upper curve for a given density 

was calculated for conservation of momentum (eqn. 5.20), while 

the lower curve is that for charge neutrality between the 

adiabatic electrons and accelerating protons (equation 5.10). 
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neutral sheet (and perpendicular to B) since we have protons 

emerging from one boundary with the same energy spectrum as 

electrons from the other, but carrying a factor (Wme)2  

times more momentum. 

We first calculate the momentum flux of particles in 

the direction parallel to the sheet carried across equipoten-

tial s by protons and electrons. The maximum momentum flux 

in this direction occurs if the particles are moving very 

nearly parallel to the sheet with small perpendicular veloc- 

ities. 	This is the situation we expect in the electron 

and proton current layers where the particles are being accel- 

erated across eauipotentials by the electric field parallel 

to the sheet. 

The proton momentum flux crossing equipotential 

consists of those particles flowing into the system with init- 

ial potential energies Si  in the range • < Si 5 (1). 	The flux 

of protons entering the system between equipotentials Si to 

si + dsi  is 

dF 
• 2cNodSi  

(5.11) 

 

Bo  

and this flux is preserved as the particles are accelerated 

in the current layer across potential cp. 	Assuming, as above, 

that these particles are moving very nearly parallel to the 

sheet, by conservation of energy their parallel velocity at 

potential o is 

2e 	1/2 
vy  = {-- (4)i - (5.12) 

where we have neglected the small kinetic energy of the inflow 

far away from the sheet. Thus the momentum per unit length 
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of the system (along B) per second carried across potential (f) 

by these particles is 

2cNo 	1/2 

dMPF 	(2emp) 	(cPi - ¢) d¢i  (5.13) 

and integrating ¢i  from 4,  to ¢ to account for all incoming 

protons crossing eauipotential (I) we have 

2cNo 	1/2 	(1) 	1/2  

MP  (¢) 	I d¢i (¢i - (P) P 4) = 	
Bo 	(I) 

4 (gem )1 /2  cNo 
OD - (0

3/2  
(5.14) 

P Bo 

Similarly for electrons (travelling in the opposite direction) 

me(4,)  
4 - 	clic)  3/2 -  

(5.15) (2eme) Bo 

As expected, we find Mp(¢=0) = G2) 1/2  Me(0). 	We note that 

any motion of particles perpendicular to the neutral sheet 

on crossing equipotential (I) will reduce the above values, 

but as discussed above, we expect this to be a small effect 

for particles accelerating in the current layers. 

It is clear from the above expressions that due to 

the mass factor we have a net particle momentum flux towards 

0 carried by the protons. This must be balanced by the 

electromagnetic momentum, as expressed by the second (momentum) 

moment of the steady-state collisionless Boltzmann eauation. 

div (E m. f d3v f. v v - T) = 3 	3 - - - j 	-= 
(5.16) 

Ineauation(5.16) .f is the particle distribution function 

in (v,x) space of particle species j, and T is the Maxwell 
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stress tensor, given by 

T E + B B - 	(E2  + B2) 1). - - 
2 

Quadratic terms in E will be of order (v/c) compared with 

those in B, where v is the particle flow velocity (v = cE/B), 

and are hence neglected. 	Since B = Bx(y,z) x we have T 

diagonal with 

- T
YY 	

- Tzz = Bx2  xx 	 /87r 

Performing a volume integral on equation (5.16) and using the 

divergence theorem we have 

	

. (z m
j 
 I d3v f. v v 	T) 	0 	(5.17) 

j 	-co 	— — 

which is just a statement that the net momentum in any direc- 

tion flowing through a closed surface is zero in the steady 

state. 	The volume we shall consider will consist of a unit- 

length slab of the system (along the magnetic field), bounded 

by the cp and cl) equipotentials. 	It is closed at a large dis- 

tance from the sheet where the momentum flux is small and 

directed towards the sheet (see Fig. 5.3). 	There is no mom- 

entum flow in the X direction, and that in then direction 

cancels to zero if the incoming streams are symmetrical. 

We are left with the momentum flux parallel to the sheet 

across the eauipotentials 	and 0. 	The appropriate compon- 

ent of eauation (5.17) then reads 

2 
P. 	

B2 

I 

dz(. 	= 	dz 	+ . yy 	yy. 8r (1) 
(5.18) 
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Figure 5.3  

CO 

where M = E m. I d3v f. v 2  is the particle momentum 
YY 	j 3  -. 	Y 

flux in the y-direction. 	The integrals of these latter quan-

tities along the equipotentials has already been found in 

equations (5.14) and (5.15), i.e. 

1/2  
I dz M 	= 1  (2em-) 

YY 3  P 0 

cNo  3/2  me {(t. -0) 	+ Bo 	mp  

k 4) 3/2} 

4 	cNo  me  
I dz M 	= - (2em_) 	(1)

3/2 
yy 3 -p B m (1) 	o 	p 

Thus using (5.18) we have 

I dz 	-• II  dz 	= -(2em_). 
8w 	8w 3 P Po 

2x 	4 	cNo  

(me) 
1 3/2 

(;) 	(4' 	- 
-10  

(5,19) 

2 	2 
3/2  {(10-0) 	- 
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Neglecting the small electron term on the right hand side, the 

integral of E2/87 along an equipotential is monotonically 

decreasing with decreasing potential in the sheet. We inter-

pret this as simply a change in the thickness of the field 

reversal region, it being thickest near ¢ = 0. 	This result 

is in qualitati.ve agreement with the result obtained by con- 

sidering charge neutrality. 	However, by again using the model 

magnetic field structure, equation (5.8) which contains the 

arbitrary thickness parameter 'a', we can use eouation (5.19) 

to determine 'a' as a function of 47 for momentum conserv- 

ation. 	This then can be compared with the 'a' required for 

charge neutrality. 

Using the model field 

I E2  dz - f E2  dz = 2  Bola (2 + 1)(1 - (1)  3 

and hence from equation (5.19) we find 

m 4 t 	(1 - ¢/0)3/2-  (-2) 	(1 - (Y
A 
 4)

3/2 
 ) 

am 	
___P 	

(me) 
	} (5.20) 

IT 	(1 - 470(1 + 4720 

The similarity to equation (5.10) is remarkable, and we have 

plotted am  vs 470 in Fig. 5.2 to facilitate an easy compari-

son with the charge-neutrality calculation of a. Thus while 

both calculations may be considered rather rough, using a 

model magnetic field, the agreement we have found here indi-

cates that the model must bear fairly close resemblance to 

the truth. 	Since the electron charge density is related to 

the magnetic field through N/E = constant, and hence to the 

current, the problems of magnetic and electric field structure 
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are closely coupled. The above calculation then shows that 

the sheet thicknesses expected to be produced by the proton 

currents are entirely consistent with those required for charge 

neutrality. 

(iii) Trajectory Studies in Model Fields  

In order to obtain a clearer picture of the field con-

figuration and the particle orbits which we are envisaging 

here, we have computed some proton trajectories in a model 

field configuration which resembles the structure to be ex-

pected. This has been chosen so that the flow energies are 

comparable with the potential energies, and resembles the sol-

ution to Laplace's equation at large distances (see Fig. 4.8 

and discussion). 

For simplicity we have taken a uniform magnetic field 

which reverses as a step across the neutral sheet. The 

changes in drift-flow energy are then only associated with 

changes in the electric field strength along the equipotentials. 

In order to set up the electric field structure we look for 

separable solutions of curl E = 0 in polar coordinates de- _ 

fined in Fig. 5.3(0.) 

From this we obtain 

r 
Er = f(r) g(e) 	Ee = 1 

	f(r') dr' 1:-Ig de 

where we impose the constraints 

g(0) = 1 	g 	0 	12  (0) de 

The function f(r) may be obtained by requiring, say, 
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= h ( 4) 	along 6 = 0 (the neutral sheet). 

Er(r=o), and Eo < 0. 	From this we obtain 

0(r, p=o) = o(1 — e-r/L) 

where L = 471E01, and hence 

Er 
E0  

For simplicity we take Er/Eo  = (1 - (1/4) such that E0  = 

f (r) = 

The function g(6) satisfying the above constraints was 

chosen to be g(6) = cos 6. We thus arrive at the model 

fields 

cp(r, e) 	= o(1 — e_r '/ L) cos e 

Er r/L cos 6 1E01 
(r/L) 

(1 - e /L) 
r 

sin e 

In Fig. 5.4 we show the equipotential lines and the contours 
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of E/Eo, where the length scales are in units of L. The 

drift flow-lines to first order-are the contours of 

where 

(1) 	mp  c E02  E 2 
— +  	) 
4) 	2 E02  e0 	Eo 

• 

The maximum flow energy occurs at r = 0 where E takes its 

maximum value Eo. If we thus write 

then those particles with initial potential energies in the 

range 0 < (Pi/) 	K will drift out of the system (across the 

4). = 0 equipotential) before reaching the neutral sheet. 

For the results shown here we have chosen K = 0.4, so that 

the drift-lines are given by 

./(1, + 0.4 (k) 	(I) • 
	constant. 

These are plotted in Fig. 5.4. 	In Fig. 5.5 we show (P/4„ 

E/Eo  and q/0  as functions of r/L  along the neutral line. 

The results of the trajectory integration in these 

fields are shown in Fig. 5.6. ' The particles were started on 

the lines where ¢i = 0.1, . . 0.9 at large distances from 

the origin (r/L  > 5), with the adiabatic velocity. 	The 

computed orbits follow the lines of ti = constant as expec-

ted; those particles with q/0  < 0.4 do not reach the neutral 

sheet. 	Particles with ¢i/c1, z 0.4 reach the neutral sheet 

and then oscillate about it in Speiser-type orbits, being ac-

celerated towards the ¢ = 0 boundary. The initial amplitude 
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E0 

Ficure 5.4: Properties of the model field structure used, in 

the trajectory studies of section (5-iii). Shown (solid) are 

the eauipotential lines, the first order particle trajectories 

(dashed) and the contours of the electric field normalised to 

the value of Ez  at z' = 	= 0. The length scales are in 

units of L (see text). The waanetic field is taken to be uni-

form with a step across the neutral sheet for simplicity. 



244. 

0 
lE • 

1'0 

0.8 

0.6 

0.4 

01 

	 .z' 0.5 	1.0 	1.5 	2.0 	- 2.5 	3.0 	3.5 	4'0 

Figure 5 .5 (a)  

E 
• Eo  
• 

0'8 

0.6 

0.4 

0.2 

01 	1.0 	1.5 	2'0 	2' 5 	1 0 	3.5 	4•0 Z 

Figure 5.5 (b) 



245. 

1.0 

0.8 

0.6 

0 .4 

0.2 

0 
	

0•5 	1.0 	1.5 	2.0 	2.5 	3.0 	3•5 	4.0 

Figure 5.5(c)  

Figure 5.5: (a) The potential (5/ versus r/L  along the neutral 

sheet. 

(b) The electric field E/Eo  versus r/L  along the 

neutral sheet. 

(c) The initial potential 4i/0  of incident particles 

at the neutral sheet versus r/L according _to 
firstorder theory. 
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of their oscillations is expected to be 

a = (iT - '/3) 

(for particles incident on a step in the magnetic field in 

the presence of a uniform electric field E N  vp  Bo  /c) so 

that 

a(r/L) 	 (►i3 - v 	' ' 
t
E

3) 	E ) = 0.8 ( 	- 7/3) e -r/L 
L 	 o 

This has also been plotted in Fig. 5.6 and can be seen to 

give general agreement with the computed orbits'. 

(iv) A Detailed Model of the Structure of the Proton Current Sheet. 

We shall now look in more detail at the properties of 

the proton current sheet, separating the region of pure drift-

flow from the layer containing oscillating non-adiabatic 

protons. The theory to be developed is an extension of that 

considered in Chapter 3, and uses the results of Chapter. 4. 

We shall first calculate the surface density at potential ¢ 

of trapped, accelerating protons, when the incoming stream 

has flow energies comparable with e(' - 0). 	(In Chapter 3 

the incoming flow energies were assumed negligible). For 

simplicity we consider only the case where the incoming plasma 

far away from the sheet is uniform; the non-uniform case dis-

cussed in Chapter 4 represents only a straight forward exten-

sion to the theory presented here. 

In the drift-flow region the particle velocity can be 

written as (eauation (4.4)) 

v 	cx a . v(eo mpvie, •7173 	eB 	- 	2 	' 
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Figure 5.6: The computed proton orbits in the model field con-

figuration (solid) compared with the first order drift lines 

(dashed). The initial amplitude of oscillation of the particles 

about the neutral sheet expected for near normal incidence on 

a magnetic field step is also shown. 
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and from (4.17) 

Na 
T3— = constant along a streamline. 

Thus the particle flux at any point is given by 

cNo  B 	movn2  
F = Nv 	- 	(ecb + 	-2- ) eB0  

and the flux across a line element dL is 

CN0 ranVn CN0 

a  did = 	dL.V (e(p. + 	r"2'" ) - d4). ePo 	 e  Po 

.(5.21) 

(5.22) 

Let us consider the proton flow into the layer of non-

adiabatic particles, where the velocity at a point on the boun-

dary of the layer is vp((p), and 

(pit0 = 

2 mpvp  
2e 

Since the particle orbits do not cross each other in the 

drift-flow (pi(4)) must be a monotonically increasing function 

of cp. 	This means that only the particles with initial poten-

tials in the range 

(I) 

contribute to the surface density of trapped particles at 4), 

as they move towards the 4 = 0 boundary. By conservation 

of flux (from 5.22) the surface density of trapped protons at 

with initial potentials in the range 	to 	+ dpi  is 

given by 

dJP ((!), 
- 

Bv (A o y 

2cNo  
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(multiplying by two for particle inflow from both sides of 

the sheet). Neglecting the velocity of the particle perpen-

dicular to the sheet (i.e. in the oscillation) we have 

2e 	1/2 
NrY 	P 

(4,, 4i ) 	= 	( TT— (4i- — 4 ) } 	. 

Thus a ((P) is given by 

J

cio L=.T. 

6p(i)) ,--.. c No  (zn, e)1.2. 	41. 

	

Be \ 	(9bi — 4z.)1/z 
tip;  ...- cp-1- Inpvp2- 

2e 

= 	ec No rn  
( 	— finpyrny2:1 Bo  2e L 

(5.23) 

If we neglect the incoming flow energy at potential 4), then 

(5.23) simply reduces to the corresponding equation in Chapter' 

3 (equation (3.38)). 	Note that we have assumed that the pro-

tons, on entering the sheet are moving with v > 0 (towards 

= 0), and so continue to be accelerated by the electric 

field. This should be true for the field configuration we 

have here, as evidenced by our computed particle trajectories. 

A similar calculation could be performed for electrons, 

but, as we have seen, if mpv 2 	el), then meve2  << e.1) and 

the expression for the trapped electron density derived in 

Chapter 3 should be valid. 	Thus, for the trapped particle 

we have 

4ecNo  (mom) 	M V 2  
	 —) {0-40 	( ILP  ) - go  2e 

me 
rp 6 1 	(5.24) 
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We shall assume that once the protons enter this region they 

become non-adiabatic and are uniformly accelerated by the 

electric field, so that the only proton charge present is due 

to non-adiabatic particles, and given by equation (5.23). 

However, electrons are clearly adiabatic throughout the region, 

except very near the neutral sheet and to calculate their con-

tribution to the charge at a given in the layer we need a 

model of the magnetic field. 	The thin electron current layer 

is again approximated by a 'step' in the magnetic field, of 

magnitude 

B1  (¢) 
	

Eo 

The magnetic field at the boundary of the trapped proton layer 

is given by equation (4.27) in terms of the proton velocity in 

the drift-flow at potential (I) 

-i.e. 
E2  (fl 

1 - 111 	(v 2(¢) - vo2) Bo 	2e(1) P (5.25) 

Assuming a linear variation for simplicity, we then have 

B( 	
mp(vp24)-v02)  1 } 

	(5.26)cp,z) = Bo  {-t 	{(1 	 ) 	2e(1) 

for z < a, where a is the half-thickness of the non-adiabatic 

proton layer. Then the surface density of adiabatic electrons 

is given by 

a mp(v.02-v02)  
.  

aae = -2eN0  f dz EE ,z)  = eallo  {1+  	1 0 	2e0 

(5.27) 

= -eallo 	+ -1 
B0 
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Since 'a' is the thickness of the region of oscillating pro-

tons at potential 4, it must be related to the incoming 

proton gyrolengths. For example, near cp = 0, where we may 

expect a nearly linear field reversal we found in Chapter 3 

that for consistency between the sheet thickness and the am-

plitude of oscillations that 

a 

If we go to the other extreme and have a step in the magnetic 

field (like near 4 = (:,) then elementary analysis shows 

a = 	(1/T - 7/3) 	= 0.7 -cv-2  . 

Thus we write for some x(cp) - a(1) that 

a ( ) X 272221 _ x vp(cP) Po 
(4)) - 	Ro  

(5.28) 

where B is the field value at the boundary of the trapped 

proton zone, given by equation (5.25). 

Then 

,B 
aae 	= -eaN0  — + 1} = eN Xvp")  tB o (1) 	o 	{1 +i 13 } a 	Bo  (5.29),  

The charge-neutrality condition is then obtained by equating 

equations (5.24) and (5.29). The charge-neutrality of the 

thin electron current layer will be considered separately 

later, and we neglect it here to obtain 

2f(2e(-(5) 
 1/2 
) - v (0) = op  (6){1 	

Bol 
P 	1).B 



v (¢) = 
P 

+ 2(1'+ 	122)1 B 

or k 
(2e (4)-4))) . mp  

(5.30) 

252. 

Thus the charge-neutrality condition (or plasma approximation) 

determines v (¢) at the boundary of the proton current 

layer, although the right-hand side of (5.30) has a hidden 

dependence on v (¢) through B/B0  in the denominator. 	How-

ever, by using an iterative procedure starting with B/B0  = 1, 

calculating v (¢) then substituting into (5.25) for a new 

value of B/Bo  etc., we can obtain v (¢) for various values 

of X. 	These are shown in Fig. 5.7 where we have normalized. 

v (¢) to If VA, the velocity, of a particle after accelerat-

ion from rest through the potential (I) (mpv2/2  = e(1), mpVA2  = 

e0 	• • v = / VA). 	The corresponding values of B/Bo  against 

(P/0  are shown in Fig. 5.8. 

The thickness of the region of oscillating protons 

is given by 

Xv 0) P 	XvP 	
(4)) Po a - 	 _  

n (,) 	Q0 	B 

VA  
which may be rewritten as (since 7- = tp) 

o 

= vT t 	()(Bo)  s— , 
P /T VA  

(5.31) 

(5.32) 

We have plotted (a/ p̀) in Fig. 5.9 for various values of x, 

also included in the figure is (a/t ) from the momentum 

calculation. 	Near ¢ = 0 we have from (5.30) 

mP v_P 2(o) 

- 2e 	--(1 + X/2)2 
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Figure 5.7: The values of incoming proton velocity vp(s) as a 

function of 114)  (normalized to I-2-  VA) for charge neutrality in 

the trapped proton beam. The thickness of the beam was taken 

as a = x vP/cp and results are shown for x = 0.2, 0.4, ..., 

1.4, 1.6. The line marked with crosses results from taking x 

to be linearly varying from a value of 1.0 at t=0 to a value 

of (11 - 73) at t/  =1.0. Shown dotted is the value of vp/ifi v?  
versus 4)/0  used in the trajectory studies in model fields 
(section 5-iii). 
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Figure 5.8: The values of E/p0  as a function of 47,;„ at the 

boundary of the trapped proton beam, corresponding to the val-

ues of v (40 in Fig. 5.7. 
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Ficrure 5.9:  The values of a/A - x vF")  (the half-thickness 
of the trapped proton beam) versus 	along the neutral sheet. 

The line marked by crosses represents the linear variation of 

X (as in Fig. 5.7). Shown by dotted lines are the half thick-

nesses of the total proton current region (trapped beam plus 

drift-flow) obtained from the momentum and charge neutrality 

calculations of section (5-ii). 
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so that B/B, 
m v 2 

- 	P P  = 1 2e¢ 
1 

(1 + x/2 ) 2  

Thus, for X - 2̂•1 , P/B0  ^ 5/9 	and hence 

-1 
a(¢=0) 	= if * 	( 	X 	

) ( 1 	
1 	 ) _ 2.4 x  

P 1+ X/2, 	(1 + X/2)2 	4T P  

4 
P 

which is somewhat less than the value a(¢=0 12 
	

for the 

whole current region (drift-flow plus non- 

adiabatic layer) given by the momentum calculation. 

However, a more significant parameter than vp(6) 

is 0i/4, as a function of '/(1) , given by 

(1 - 0/0 
= _ mPvP2((p) - 	+ 	 

2e0 	x "- 	B 
 ± Bo 2 

2 	" 
(5.33) 

which is shown in Fig. 5.10. 	As we stated before, this should 

be a monotonically increasing function of ¢; for a given X 

this is only true for x z 1. 	When dft/c1.4)  < 0 in terms of 

the present theory, we have a negative flux of particles into 

the sheet, which in the present context has no physical mean- 

ing. 	However, if x = x(¢) then this difficulty can be 

removed for x < 1, for example if x decreased with increas-

ing potential. We previously argued from simple ideas that 

X should vary between. x = 1 at -  ¢ = 0 and x = (/3 - 773) 

= 0.7 at ¢ = 0, and if this occurs in a roughly linear 

fashion, we then obtain the dashed line in Fig. 5.10, -which,. 

as can be seen has dSi/d4)  > 0 for all '1/4. 

Near 4 = 0 we find 

Oi 	1 = 
0 	( 1 + ) 
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Figure 5.10: The values of 	versus 	for various values 

of x. The line marked by crosses represents the result for the 

linear variation of x from 1 to (VT - 1T/3), while the dashed 
line shows 1'14 (first order) versus ''''/(1)  for the model fields 
of section (5-iii). 



so that near 0 = 0 	
vo 	E(0)  

E0  
1  	 {1 

(1 +l X/2) 	(1 	X/2) 2
} 

 /-2-  VA  
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so that for x = 1 we have 0i4 = 4/s. Thus protons with 

initial potentials in the range 

0 < 

do not enter the region of oscillating protons, but cross the 

= 0 boundary in the drift-flow region. 

Finally, if vp(0) = cE(4))/B(fl we can obtain E(0) 

which is shown in Fig. 5.11 in the form of 

vo E  

/2 VA 0) 
versus 	4)/(1)  . 	(E0  = /d) 

We have 

vo 	E(0) 	(
v
P
(0)) 	B(0) 

/2-  VA  E0 
	

if VA 
	

Bo 

and for x = 1 

 

vo  

 

E(0) 	10 
E0 	27 0.37 	(5.34) 

if VA  

In order to obtain a rough idea of the potential structure 

near the boundary of the proton current layer from this elec-

tric field as a function of ([74), we have (by trial and error) 

constructed a boundary potential t(y) which gives the re- 

quired E(0) = (E y2 	E z 2)1/2  when Laplace's eauation is solved 

with rectangular boundary conditions (as in Chapter 4). 	W 

remember that we found that the solutions for the potential 

structure given by Poisson's equation for the drift-flow when 
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vo E  
Figure 5.11: The values of of 	vA  E;  versus t/0  (the electric 
field near the boundary of the trapped proton beam) for various 

values of x. The line marked by crosses represents the result 

for linear variation of x, while the dashed line shows the 

model field of section (5-iii). 
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the incoming flow is unifOrm do not differ appreciably from 

the solutions of Laplace's equation with the same boundary 

conditions. The electric field considered was that for 

= 1.2 (see Fig. 5.11), and (E/Eo) was taken as 100 at ci) 

0. 	Thus from (5.34) we imply that 

If VA 
	 = 270 

vo  

x• 
2e(1)  2 	 XT1 	MV02 1/2 

or equivalently ( 2) = 270. 	Since (-e)  = ( 
p  
e,5 ) mpvo 

we have, furthermore 

4c, 
	270 0.005 = 0.005 

The result of 474, versus z/d is shown in Fig. 5.12 and as 

expected we find that the total potential falls across a 

region whose characteristic length is a few times Grp. 	The 

equipotential structure in the drift-flow is essentially the 

same as those shown in Chapter 4, the boundary potential used 

in the latter calculations is shown as a dotted line in Fig. 

5.12. 

Also shown in Figs. 5.7, 5.10 and 5.11 are the corres-

ponding values of vp(4))//iVA. . ciSi(¢)/(1)  and vo/vyvri  (E/Eo) 

which were used in the above proton trajectory calculations, 

given by 

V 	( frit  C El°n12-  E ) 	(- .442)5  

42 VA 	B e 	LE(p) 
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Figure 5.12(a): The potential structure along the neutral sheet 

which gives the required 1E1=E(4) (for x=1.2 of Fig. 5.11) at 

the lower boundary when Laplace's equation is solved in a rectan-

gle (as in Chapter 4). E/Eo  was taken as 102  at 474, = 0. 
(b): The boundary potential.along the neutral sheet 

used for calculating drift-flow eauipotential structures in 

Chapter 4, i.e. Vc, = sin 6ilY with p = 100. 

(c): The potential along the neutral sheet of the 

rodel field of section (5-iii) where we have taken E(r=0) =" 

100 Fo, or equivalently L = d/100-. 
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On Fig. 5.12 we also show the potential of the model field 

along the neutral sheet, taking E(r=o) = 100 E0  = 100 0/d 

as above we obtain 

-100 z/d 
= .(1 - e 	) 

Thus we see that the model fields correspond fairly well to 

the general results presented here, so that Fig. 5.6 gives us 

a good qualitative idea of the fields and particle motions to 

be expected. 

(v) A Critism of the Above Current Sheet Theory 

In the above theory it was assumed that the protons 

become non-adiabatic immediately on entry into the region of 

trapped particles, and so immediately start to be 'linearly 

accelerated' by the electric field (i.e. as though B = 0). 

Consequently the only contribution to the positive charge of 

the layer considered was that due to the uniformly accelerating 

trapped proton beam, this being neutralized by the density of 

adiabatic electrons drifting towards the neutral sheet through 

the beam. The thickness of the slab was taken as 

X viD(0) 
sip with 	0"(1). (t) 

However, merely by writing a = vivo  as a valid estimate of 

the thickness of the trapped proton beam and hence of the pro-

ton current layer, we do not necessarily guarantee that the 



B 	 eta 	 NVe/J2.) i3; f 	+ 	(Bt  —512)1019 	(5.36) 
L 	4),2) 

(g) 	go 11 
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incoming protons become non-adiabatic on entry into the layer. 

This is due to the 'step' in the magnetic field produced by 

the thin electron beam. ,For example, if the magnetic field 

at the boundary of the layer is B1(4)) 4 Fo, the expected 

magnetic field structure at potential 4) is 

B(¢,z) = Bo 	
B1 	ll  

o ' 

 CI 	  1B  

X tY_EI 	0  `  
(5.35) 

and hence the scale length in the direction of the incoming 

particles (roughly the z direction) in the current layer is 

For example, at 4)/ = 0.9, B1  = o and hence 

LB 

In Fig. 5.13 we show 

trapped proton layer, 

LBW/ vp(0)  at the boundary of the (24) ) 

i.e. z = x(vP(4)/R(0)) 

LB (¢) 	X 131/Bo 

71717:3" Bl 0 
(n (¢) 	

{__ Bo - _} 

from eauation (5.36), where we have taken x to be linearly 

varying between x = 1 at ¢ = 0 and x = (VT - ¶/3) at 

0. 	For LB  (c)/ (vivo > 1 the protons remain adiabatic 

as they move into the beam as far as the magnetic gradient 

concerned. At the centre of the proton beam (i.e. the edge 

of the thin electron current layer, z = 0 in equation 5.36) 

we have 
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Figure 5.13: The ratio of the magnetic field scale length 

over the particle gyrolenath at 

(a) the boundary of the trapped proton zone, and at 

(b) the boundary of the electron current sheet. 

LA 	 U, 	0 
F.  
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x 
- 01 _ I} 
B0 	(I) 

while the appropriate gyrolength is 

v (z=0) 
	 = 
P(z=0) 

MpC2E 	 lip( ) Bi 2 0  2 
A 	2 = 	 (T-1(7)) (—) 

e B 2 	( (I)) 0 	(I) 

Hence 

LB  (z=0) 

(vp(z=0))  

(z=0) 

Bi 2  B1 A 
(13--) 	(D )  0 0 

which is also shown in Fig. 5.13 taking the linearly varying x. 

Again, if LB/( v
12)  > 1 the protons are adiabatic at the centre 

of the beam, 	before they cross the neutral sheet, as 

far as magnetic gradients are concerned. 

The scale lengths of the electric field may be estim-

ated from 

E LE 

so that 

2e0 	vP 	. /I vA  2  1,2  
(—) 	) 	) MpVio4  0 	vp  (5.37) 

Typically, near 	= 0 we obtain 

.so that 

LE tz,  2 (gip) 

while for higher values of 

vp/r2  VA  = 0.2, giving 

2 M v P P  
2et. 1/2 	(see Fig. 5.7) 

say, near 	= 0.9, 



N = p 	BO 
Ap. 

while Ne 
NoB 
BoXe 

N0B 

267. 

We have plotted LE(¢)/ 

in Fig. 5.14. 

Thus, from the model, the scale lengths of the elec- 
v , 

tric and magnetic fields are of order ( 13/0 near ¢ = 0, 

while for higher values of ¢/ , we expect the protons to 

obey the drift-equations as they move through the trapped pro-

ton zone towards the neutral sheet. -'It is only after they 

cross the neutral sheet and become truly non-adiabatic that 

we can count them as being part of the trapped beam. How-

ever, the density of these adiabatic protons flowing through 

the trapped beam can be different from that of the adiabatic 

electrons, since 

against (1)/4)  from equation (5.37) 
S/ • 

where Xe is very nearly unity. Outside the beam the neut-

rality condition is simply Xp = 1 (for the case of uniform 

inflow), giving Poisson's equation for the drift-flow derived 

in. Chapter 4. 	If NB  is the beam density at some point, the 

new neutrality condition within the layer becomes 

1 	'NB  Po  
= (1 - 

p 	"10  .u" 

or 

.2 	B 	No B 2 	
E 

d 	
E2 

iv ( 
 

= 	- 

	

) 	_ 

where 	= eB/mpc. 

On a more qualitative basis, since Xp  is a power series 

in gp/L  = vp/QL  we may expect it to have the properties of 
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Figure 5.14: The ratio of the electric field scale length • 

over the particle gyrolength at the boundary of the trapped 

proton zone. 
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1 2  
1 + a + 	+ 

(1 - g/L) 

Thus, the net negative charge density of adiabatic particles 

in the layer is 

N 

Boo (Ne 	NP)  ad = 	
(gP/L) 

whereas in the above theory, we assumed CWT.,  = 1 upon entry, 

and neglected the adiabatic protons. 

A detailed calculation of the properties of the sheet 

based on these ideas has not yet been carried out. However, 

since we are now attempting to balance the beam density against 

the density difference between adiabatic protons and electrons, 

rather than electrons alone, the result must be an increase in 

the electric field and sheet thickness and a decrease in beam 

density over the results obtained above. Qualitatively there 

can be little difference. 

Ice have, however, neglected one possibility in this 

discussion, which would validate the above theory, but this 

has not been investigated in sufficient depth to raise it above 

the level of a suggestion. 	There may exist electric fields 

localized in the trapped proton layer arising from differing 

density distributions between the trapped beam and the adia- 

batic particles. 	Such an electric field would redistribute 

the densities within the thickness of the layer in order to 

satisfy the plasma approximation. 	These electric fields are 

on the scale length vP/n, the thickness of the beam, and may 

be of sufficient strength to make the protons become non-

adiabatic immediately on entry into the layer. 

If we consider the adiabatic electron density within 

the trapped proton beam, this is a maximum at the boundary, 
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and decreases with the magnetic field towards the centre of 

the sheet. 	Since v (4) decreases with increasing (t) (1) ' 

and oscillation amplitude.  decreases as particles accelerate 

along the sheet, particles in the beam at potential (I) coming 

from higher potentials will tend to have amplitudes of os- 

cillation less than v (WQ(4)). 	We may expect therefore, 

that the beam density will be larger nearer the sheet centre, 

or at least relatively constant across the thickness of the 

beam. 	It is thus sensible to consider the effects of a posi- 

tive potential localized within the beam, the form of which 

is shown in Fig. 5.15. 

TRAPPED 
PRoxoN 
8 ERM 

4)-o 
Figure 5.15  

Incoming protons are reflected out of the sheet by the electric 

field Ez, so long as 

mpvp 2 
 

2e 

where 64) is the potential difference between the centre and 

edge of beam at a given y. 	They are then turned round (back 

into the sheet) by the magnetic field, gaining energy, and 
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then penetrate further into the sheet, only to be reflected 

again. Protons thus oscillate about the line where the elec-

tric force Ez, and magnetic force vyEx/a  balances. We 

expect the velocity along the sheet to increase uniformly as 

it is accelerated by Fy, the velocity in the oscillations re-

maining roughly constant at the incoming (perpendicular) 

particle velocity. 	When v has increased so much that the 

electric field Ez  can no longer balance the Lorentz force, 

the particle crosses the neutral sheet and oscillates symmet-

rically about it, continuing to accelerate in the electric 

field. 	Thus a positive potential has the effect of redistrib-

uting the protons in the manner desired, and should also cause 

them to become non-adiabatic at the edge of trapped proton 

beam. 

We have studied these effects by computing some proton 

trajectories in model field configurations, where the electric 

field was taken as 
a Eo  
2 

Eo 	Ez 

( 	0 	 izi > a 

so that the potential field is given by 

a Eo  a 
2 

where we have taken the y = 0 equipotential outside the 

sheet as the arbitrary zero. 	This eauipotential crosses the 

neutral sheet at y = as (see Fig. 5.16). 

The protons are assumed to be moving adiabatically towards.the 

sin /1!..7 ‘ 	< a 

f - E0  y + 

- Eo  y 

(cos < a 



	o 	NkLuVrio0 
Sheet  

3/90 = ("27 sin cc_c_n) 
"L.(C°5(7)-1:  2T) 

2 

(5.39) 

a -o eB02  

272. 

a 

Figure 5.16  

sheet, with velocity vp  = cEo/B0, and hence having energy 

m c2E 2 
P 0  

2  
They will thus be reflected by the localized 

2 B0 	• 	
eaEoa > MP

E c 2 ° 2 
potential if 	or a > 1/2  if we 

2 B02  

112 - ml3c2E° - put a _ 	_ 	 
e B02  • 

As our example we take Bx  = Bx( ) = Bo  sgn(z) so that the 

line about which the particles oscillate is given by 

a Eo  4 	
a 

sin Trz 
2 

  

c 

 

•2e where vY 	2 = 	{- 
aEoa 

(cos P-) + 1) + F0  y}} a 

assuming that we start the particle at y = C with 	> a. 

Thus the line is 

where go  is the initial gyrolength of the particles, 

The computed particle trajectories are shown in Fig. 
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5.16 for a = 0, 2, 4. 	When a = 0 (no localized potential) 

the particle moves adiabatically towards the sheet, and the 

initial amplitude of the oscillation is (1/3 - 713) go  it 

0.685 go, as expected for the cycloidal motion in uniform, 

crossed electric and magnetic fields. 	This amplitude defines 

the sheet thickness in this region, so we put a = (/3 - 113)go  

in the equation for Ez(z) when a 	0. 

The orbits for a = 2, 4 are also plotted in Fig. 

5.16(V and show the anticipated oscillations about the line 

where Ez  and vyBx/c  balances, given by equation (5.39); this 

is also plotted in the figure. This motion may be further 

understood by considering the effective potential for the 

motion perpendicular to the neutral sheet. 	If we write 

dvz 
mp dt 	@z where 

_ 	v 
- az 	e (Ez 	) 

then the equivalent potential V(z,t) in the sheet is given 

by 

z 
V(z,t)-V(o,t) = e i4 (z,y(t))-(1)(0,y(t))+ .1-1  t Bxwdz) 

0 

where we consider vy  to be independent of z. We define the 

value of V(o,t) such that V(z,t) = 0 when vy  = O and 

z = a, so that the particle is incident on the sheet at zero 

potential, i.e. 

V(o,t) = e {t(o,y) - e(a,y)1 

Then 

vy  z V(z,t) = e 	z,y(t))- a,y(t))+ --- I Bx(z)dz) 
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Figure 5.16: Computed proton trajectories in the model fields 

of section (5-v) for a = 0,2,4. The dotted line is the line 

along which the electric and magnetic forces balance for the 

incoming particle, and about which the particles initially 

oscillate. 



go V(z,t)  
(—a ) a (cos (i)+1) + 28 (-I) sgn(z)) 
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and using the given fields 

1TZ 	z 
V(Z,t) = ea {----(cos(--)+1) + 	 )sgn(z)) 	(5.40) { a  (cos 2 	c a 

The first term is simply the electrostatic potential which re-

pels the protons from the sheet, while the second term, pro-

duced by the magnetic force, turns the particles back into 

the sheet when v > 0. 	If we write v = 8(t) cEo/ro  for 

some value of 0, and normalize V(z,t) to the initial kinetic 

energy of the proton co = MpC2E02/-)11. 2  we then find that 

and this is plotted for a = 4, for various values of 0 in 

Fig. 5.17. 	It shows the minimum in the effective potential 

about which the proton oscillates; it also shows that there 

exist two solutions of Ez  =vB/ y xic  

ponding to 

for a range of a corres- 

ma a a 
0 	a 	

Y

go
x  

(cos 614-) + 1) 	Y/g0 < 2g  

in eqution (5.39), (see also Fig. 5.1e. 	However we now 

see that the solution with the higher value of z at a given y 

represents a minimum in the effective potential about which 

. the particle can oscillate, while the lower z solution is a 

maximum in the potential about which the particles cannot 

oscillate. 	As v increases 	increases), the minima move 

towards z = 0, and become less deep, such that the particle 

eventually has sufficient energy to escape from the potential 

well and start to oscillate symmetrically about the neutral 
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Figure 5.17: The effective potential of the electromagnetic 

field near the neutral sheet for the model fields (a=4) of sec- 

tion (5-v) for various values of a =
( 	

As the particle 
.2.E.Q) 

accelerates along the sheet 	Eo 	( increase€) the 

minimum in the potential about, which the particle oscillates 

becomes shallower, and eventually it is able to escape and move 

symmetrically about the neutral line. 
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Figure 5.18(a)  
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Figure 5.18: Proton velocity parallel to the neutral sheet 

versus time from entry into the trapped beam (marked with the 

letter A) for the computed proton trajectories of Fig. 5.16 

and section (5-v). Neutral sheet crossings are marked by an 

arrow. The trajectories are compared with that of a particle 

uniformly accelerating in the electric field from rest, 

	 - 
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sheet. 

In Fig. 5.18 we have plotted vy against time, which 

shows the expected result that for a t 0 the particles start 

to accelerate along the sheet immediately on entry, while for 

a = 0, we have adiabatic motion until the neutral sheet is 

reached. For uniform acceleration from rest in the field 

Eo  we would obtain the straight line v = e Eo/rP 
 t, while for 

'  

uniform acceleration from an:-initial velocity cEo/po  , 

E0 c vy  = e Eo/mpt + 	and these lines are also shown in Fig. 
Lo 

5.18 for comparison. (t = 0 is the time of entry of the 

particle into the trapped proton layer, 	z = (/• - IT/3)  go).  
Finally, we note that the trapped protons are redis-

tributed about the sheet by the, potential such as to tend to 

neutralize the assumed charge densities. 

(vi) The Properties of the Thin Electron Peam 

The majority of the present work has been_devoted to 

the study of the proton current sheet of dimension tp  << d, 

across which falls the Alfv4n potential 4). All the plasma 

entering the sheet enters in this region, and it produces a 

thin beam of electrons moving towards 	= i which provides 

the current for the remainder of the neutral sheet. Within 

the proton current sheet we have assumed that the electrons 

'remain adiabatic until very close to the neutral sheet, where 

adiabaticity breaks down due to the scale lengths of the mag-

netic field. We have not been lead to suggest the existance 

of electric fields whose scale lengths are comparable with 

ve/oe, such that meve2 	If this is true, the WKP 
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theory used in Chapter 3 should be adequate to describe the 

properties of the electron current sheet. 	However, the de-

tailed structure of the sheet still poses considerable prob-

lems, bearing in mind that the electrons enter the sheet with 

widely different initial conditions, depending on 4)/(1) . 	Conse-

quently we shall restrict ourselves to a much simpler problem 

in our investigation of the self-consistent magnetic structure. 

We shall consider the problem of the self-consistent magnetic 

field structure set up by a beam of electrons entering the 

sheet at potential ¢i  and being accelerated along the sheet up 

to the potential 4). 	If, for instance we take ¢i  = (172  then 

the results of this problem should give a good indication of 

the structure to be expected. From Chapter 3 we recall that 

the oscillation amplitude and velocity amplitude of particles 

in a magnetic field structure of the form 

B(z(t)) 	Bi(t) z(t)  

a(t) 

is given by 

Z (t) 
zo 	;7.z (t) 	

‘i
ntecvy(t) - 	 

o a(t)eBi(t))  mecvli(t) 
(a(t)eBi(t))  

(5.41 a,b) 

We see that = Z0  and vz = vZo  when 

c(t) - a 	 (5.42) 

For consistency, the initial amplitude of the particle oscil-

lations must be eaual to the sheet thickness and from Chapter.  

3, we found that 

a(t=o). = vzi 4.) 
fi(t=o) 



where Cio  mec If the magnetic field structure is to be 
ePo  
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where t = 0 is the time of entry of the particle into the 

sheet. For times t > 0, v
Y 
 increases, and as a first approx-

imation 

v 	(t) 	= 	2e (0(t) - 0i)) 
1/2  

> > vz (t) 

whereas, from (5.41a) the oscillation amplitude, and hence 

a(t), decreases. 	Thus (5.42) is only satisfied when v (t) = 

vzi(q) i.e. very near t = 0. 	Thus, in the formulae (5.41a,b) 
A 
zo  and vzo  are the initial amplitude and velocity of the os- 

cillatory motion on injection into the sheet, given by 

= a(t=o) 20  
0(t=o) 

A 

Zo = VZi 4.) 

and we put vy 	a(c1)) 0(4) 	vzi  (0i) at t = 0. 

(t) We also have B1(t) - cp 
	so that 0 

ve.,(4>0 
141- \/..Y(t)  

(110 Si  ate) Cts  ( SLo 

A 	 v (e) 	h 
vz(t) = vzi(4).) 1 	( 	YAr+) 

• - 	a (t) PL-1-==“2 o 

(b) 

and 

(5.43) 

(5.44) 

consistent with this beam of particles then a(t) = z (t), so 

that for consistency we obtain from (5.43) 

/ 
v z.(0i) 	/3 	(1)C2 	1/3  

a 	( 	1 	) 4 

	
0 o  

(mil)n 	vy(t) ) 
oo 



283. 

or 	a = Vei(43;) 

(t)a°  

1 

Vet (4 )  )/3  

v..Y (e) 

(c5:) 	\f ;  (430  
(4011 	14); 	(4)-43)"2 

From the properties of the proton current sheet where the elec-

trons enter the sheet, the initial velocities vzi  .(¢.) are 

such that 

mp  vz.2 	
Key 

2 

giving 
R

z4  
(1:12.f.) 	(2K)k = 

P o  

Thus 
v• 

( 	) (2 1,01  ( 
Tisb 	mr C47-4). LI I 

	

\ 	I/ 

	

me  W4 / .2.14.) 	\ " 114°  (4) 

 

 

   

(5.45) 

   

and when cp = 4), and taking (pi = 472, K = 0.2 (from Fig. 

5.10), we finally arrive at the thickness of the electron cur-

rent sheet on emergence from the proton current layer 

7/6  
a 	(IT-E) 	• 

Now (mP/me)
7/6 	x .103 	and 

	
600 Km for No  = 0.1 cm-3  

and t :1  2000 Km for No  i= 0.01 cm-3.- Thus, from the theory 

we arrive at the following estimates of the sheet thickness 
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a -1  •0.1 Km for No  = 0.1 cm-3  

a 	0.3 Km for No  = 0.01 am-3  

Before leaving the problem of the self-consistent magnetic 

field structure we should like to show that the procedure adop- 

ted above to determine the sheet thickness i.e. matching 

a(t) to Z(t) of the WKB solution gives results consistent with 

a more usual 'fluid'-like approach, based on 'pressure balance'. 

For hydromagnetic equilibrium 

B 
EP 	 (5.46) 

c 

nv
z  2 

 
and writing j = nevy  , and Vp - a  me  we have 

	

nev Boy 	nvz 	vz2 
	 - --- , or 	a = 

Q 

	

c 	a 	vy  

From the 'self-consistent' WKB theory we have 

(5.47) 

vz  = v (--X-) zo a Po  (5.48 a,b) 

taking B1(t) = Bo  for simplicity. 	Thus vzz = constant. 

For self consistency we put z = a and zo  = v2o 
no  

hence obtaining 

a = 
vz 0

2 

covz 
(5.49) 

• 

Thus, if (5.49) and (5.47) are to be consistent we reauire that 

vz3  = vz02  vy  from the WKB theory. 

From (5.48) we have 
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V 	3 4 3(—Y-__) vZ 	a Ro  

while from (5.48b) we have for consistency between the oscil-

lation amplitude and sheet thickness a 

VZ0 1- 
a
. 	zo  . 4 

= 	(LE) 1/4  = (27.:0 CIO 
'C20 	 RO 

Thus vz  3 	4  C20 	Vv 4  
V
Zo

3 (-1) -17;0 ) Ei;) 	V70  2  VY  , 	the re- -- 
0 

quired result. 

Finally, we turn to the question of the charge neutrality of 

the beam. 	At a potential cb in the sheet its surface charge 

density is given by 

4ecN0  me  1- 	 t---1 As 
Bo 	'2e' Y  

me which, while a factor of (w.,--) 	smaller than typical values of 

the trapped proton density, still requires the plasma approx-

imation to be valid. The only source of neutralizing positive 

charge is trapped protons moving towards (I) = 0, whose density 

is given by 

	

4ecNo  m, 	1/2  
a 0) = 

B 	
0-40 

o 	2e  

(the flow energies into the sheet outside of the 'proton current 

sheet' must be much smaller than efl. Thus, for charge neut-

rality we simply obtain 

(1 + a) mp  

for the electron current sheet. We interpret this result as 

rL 
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indicating that a potential drop of 0/(lime/mp) occurs across 

the proton current sheet of dimention *p, rather than (I), 

and the remainder falls across a small region near the other 

boundary, where a small flux of protons enter the sheet, neut-

ralizing the electron beam as they flow towards ¢ = 0 (see 

Fig. 5.19). 	These particles must be contained wholly within 

the electron current sheet which, as we have seen, is expected 

to be of dimension 

7/6  
= (me) a 	x . 

This can happen provided that this sheet thickness is of order 

vp/Rp  for the incoming protons. 
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Thus 
me 7/, 
(—n, ) 
-P 	P P 

7/6  
or 	

co nP (
141!) 	t 
m- .

p  

On this basis the characteristic length of the region of i 
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coming protons should be given by 

1/6  
me (1, 	me = 	3* mp 	P 	P 

which is again much smaller than d. 

7/6  

We also have E 	(—rape) 	(
d  
I3) 0  

so that 

= 0.1 	for 	No  = 0.1 cm
-3 

E0  

and E 	0.03 	for 	No  = 0.01 cm-3. o  

Conclusions 

The basic properties of the system may be summarized 

as follows. 

(i) Nearly all the potential drop across the sheet occurs near 

the boundary where the protons leave the system. The charac-

teristic dimension of this region is *p, so that 

mp  vp2 	mpc 

2e4) 	2E2et 2  

Thus drifting protons in this region have energies comparable 

with e, and hence many drift out of the system before reaching 

the neutral sheet. 

(ii) Those protons reaching the sheet and performing the non-

adiabatic oscillation about it, form a trapped proton beam near 

the neutral sheet, the charge density of which must be neutral— 
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ized by electrons adiabatically drifting through the beam to- 

wards the neutral sheet. 	The thickness of the sheet is again 

of order t
P 

(iii) Over most of the sheet the current is carried by elec-

trons which are neutralized by a few protons entering the sheet 

near the 4) = c,  boundary. 	The thickness of this current 

me 
sheet has been estimated as a few times 	t . (me) 

p 
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CHAPTER 6 

DISCUSSION, CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

This thesis represents a first attempt to consider 

the self-consistent properties of a neutral sheet, where the 

current is provided by a collisionless plasma surrounding the 

field reversal region. 	It can now be seen that evaluating 

the currents by simply writing an Ohms law of the form 

E + —V 	-  = j. 
C 

with a constant conductivity cc, as in the 'fluid' theories, 

effectively suppresses all the interesting physics of the 

collisionless system. 	However, since this has been a first 

attempt at a somewhat unorthodox plasma physics problem the 

methods used to analyse the system have had to be specially 

developed for the purpose. Even where previous theories have 

existed (e.g. the drift-flow of cold plasma, the WKB approx-

imation for particle motion in a neutral sheet) considerable 

extensions were found to be necessary before they could be 

applied to the problem. 	Even so, the approach has necessar-

ily been rather crude, for example by considering the plasma 

approximation for the 'surface charge density' in the trapped 

particle beams, rather than .a detailed point by point np  = ne. 

However, we feel that the aualitative results we have obtained 

should be valid, if not the details of the quantitative ans-

wers, since these rely on several approximations, and a little 

intuition. 
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A criticism of the theory developed here has already 

been given in Chapter 5, its shortcomings (within its own 

terms) being pointed out.and discussed. 	While these comments 

and suggestions for improvement might be considered with some 

profit, it seems likely that extensions of the sort of analy-

tic work we have been investigating here will not yield con-

siderably more understanding of the basic principles involved. 

Significant improvements of understanding will probably only 

be possible by conducting a computer simulation of the system 

in all its complexity, and this is quite a formidable problem. 

However, direct extensions of the theory in several directions 

are possible. 

Firstly, it should be possible to extend the theory 

given here to include a thermal (rather than cold) external 

plasma. 	For instance, in the drift-flow region we should be 

able to write 

e  
vd qX = 	

" 111127  ( 	Wth)  — 	134  

where Wth is the thermal energy of the particle, which becomes 

a funct.on of position through the conservation of the first 

adiabatic invariant (the magnetic moment 11 to first order). 

The first order thermal drift term is then 

cu 
—d q B2  

VB 

i.e. the well-known 7B-drift. 	However, the modification to 

the theory by including therMal effects should be small unless 

Wth mPvd2/2' and since mpvd /2 - eY in the interesting 

regions, thiS becomes Wth  e0. The problem then becomes 
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less interesting from the plasma-energization point of view. 

A much more interesting problem would be to consider 

the effects of a small component of magnetic field perpendic- 

ular to the current sheet. 	As we have seen, this has the 

effect of turning particles around in the sheet as they are 

accelerated along it by the electric field, until they are 

ejected along the magnetic field lines. 	As a first problem 

we might consider a normal magnetic field small enough to 

leave protons uneffected but strong enough to significantly 

modify the electron trajectories. 	If the electrons are ejec-

ted from the sheet, this immediately raises questions about 

the current system and charge neutralization of the ejected 

particles, and at the present time it seems unwise to make 

firm predictions as to the probable answers. 	However, it is 

possible that even with such a normal magnetic field, elect-

rons may be prevented from leaving the current sheet by the 

magnetic mirror effect or a potential drop along the field 

lines near the current sheet, or a combination of both. Some 

interesting future work along these lines seems promised, es-

pecially as it is likely to be the situation appropriate to 

the geomagnetic tail quite close to the Earth during substorms. 

(Chapter 2, section (iv)). 

Another question which we have not considered yet in 

great depth is the magnetospheric consequences of the results 

obtained, notably the localization of the potential drop in 

the current sheet near the dusk boundary of the tail (over 

a distance • 1 RE) which is demanded for self-consistency. 

Figure 6.1 shows the Earth's north polar cap during 

quiet times, where we have plotted (a) the precipitating 
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electron 'soft zone' for Kp  < 2 (adapted from Hoffman and 

Berko (1971)); (b) the region of 'transverse magnetic distur-

bances' for Kp  < 2+ (Zmuda et. al., 1970); and (c) the region 

of open field lines. We recall from Chapter 2 that the day-

side soft zone is associated with magnetosheath plasma enter-

ing via the dayside neutral line (or lines), while it was 

argued that the nightside soft zone is associated with the 

tail plasma sheet. 	The region shown in Fig. 6.1 is that for 

which there is greater than 40% probability of observing soft- 

zone fluxes (with Kp  < 2). 	Being a statistical distribution, 

however, it should be noted that the width of the region at 

any local time will be rather narrower than shown, and as a 

warning we have plotted along the noon meridian typical ex-

tents and positions of the dayside soft zone for Kp  = 0 to 1 

and K = 1 to 2 (taken from Hoffman (1972)). 	In addition we 

have plotted on the midnight meridian the latitudinal extent 

of the plasma sheet during quiet times as indicated by the 

magnetic field studies of Fairfield and Ness (1970). 

The soft-zone fluxes produce enhanced ionization in 

the ionosphere, and lead to the formation of high conductivity 

strips (the dayside and nightside auroral zones), which are 

broad in longitude, but narrow in latitudinal extent. Mag-

netospheric electric fields can drive Hall or Pedersen currents 

either north-south or east-west along these strips, and we 

assume, in accordance with many recent authors, that current 

continuity is maintained by field-aligned currents flowing in 

or out near the boundaries of the strip (Bonnevier et. al. 

(1970), Heppner et. al.. (1971), Coroniti and Kennel (1971)). 

If the conductivity gradients are more gentle than we have 
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23 	01 00 

Figure 6.1: The north polar cap for auiet times showing (see 
text for full description) 

	 Electron soft-zone. -- —Region of 'transverse 
magnetic disturbances'. 

X X X Typical noon meridian extent of soft zone for K-L.) = 
0 to 1. 

 	Typical noon meridian extent of soft zone for K P 
1 to 2. 

	 Midnight meridian extent of quiet-time plasma sheet. 

01+ Klo  value and position of electric field reversals 

	

(Xp  5 241. 	

. Estimated boundary of open field lines for auiet 
times. 
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implied here, then field-aligned current densities will be-

come correspondingly more distributed. The north-south 

currents and their field-aligned continuity currents form a 

system similar to a long solenoid (Fig. 6.2(a)); this sys-

tem produces little magnetic perturbation outside the region 

enclosed by the currents (i.e. on the ground), but the field 

inside becomes 'tipped' in the east-west direction. 	Such 

'transverse magnetic disturbances' are assumed to be those 

observed by Zmuda et. al. (1966, 1967, 1970) and Armstrong 

and Zmuda (1970), and should thus be associated with the soft 

zones as shown in Fig. 6.1 On a smaller scale, such current 

systems are associated with the enhanced conductivity inside 

an individual quiet-time nightside auroral arc (length, sev-

eral thousand Km east-west, width - 10 Km north-south), as 

has been shown by Cloutier et. al. (1970) and Park and 

Cloutier (1971). 	A current driven along the strip, with 

its field-aligned continuity currents, as shown in Fig. 

6.2(b), will cause ground perturbations, and is assumed to 

correspond to the current systems of the substorm expansion 

eastward and westward electrojets, as has been suggested by 

Bonnevier et. al. (1970), Heppner et. al. (1971), and shown 

to be the case by Kisabeth and Rostoker (1971). 	In both 

current systems (Figs. 6.2(a,b)) the field-aligned currents 

are assumed to close in the magnetosphere. 

The region of open field lines in the polar cap 

(Fig. 6.1) has been drawn to coincide with the equatorward 

boundary of the soft-zone at noon for Kp  = 0 to 1, and with 

the poleward boundary of the plasma sheet at midnight. Thus 

at noon the boundary latitude is A 78°, which agrees 
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(b) 

Figure 6.2:(a) The solenoid system produced by currents driven 

across the high-conductivity soft zone ionosphere. 

(b) The electrojet system produced by currents driven 

along the high-conductivity soft zone ionosphere. 
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with the field lines mapping into the magnetopause, according 

to the magnetic model of Fairfield (1968), and also with the 

lower boundary of the dayside auroral oval of Feldstein 

(1966) for Kp  = 0 to 1. 	At midnight the boundary is at 

A - 76°, and is just polewards of the plasma sheet soft zone 

poleward boundary if these particles are produced by accel-

eration in the X-neutral field configuration in the tail 

(Holzer (1971)). 	In the dusk and dawn quadrants the boun-

dary of open field lines maps into the magnetopause along 

the tail flanks, and this will be approximately an equipoten-

tial, being a boundary between oppositely directed flows, 

towards the sun in the magnetosphere, and antisolar in the 

magnetosheath. Thus in the polar cap the direction of the 

electric field reverses across this boundary, as has been 

observed by Cauffman and Gurnett (1971) and Maynard (1972). 

The observed positions of this reversal of the electric 

field direction in the dusk and dawn quadrants for northern 

hemisphere passes with K = 0 to 2+ has also been plotted in 

Fig. 6.1 

The flux contained within the region of open field 

lines thus obtained is approximately 4 x 1016 maxwells 

(gauss-cm2), which is also the flux in one of the tail lobes 

at the lunar distance (diameter = 50 RE, B = 10 y). 

In Fig. 6.3 we show the expected region of open 

field-lines prior to substorm breakup, which has been deter-

mined on the above bases from the position of the dayside 

soft zone for K = 4 to 5 (Hoffman (1972)) and the plasma 

sheet soft zone"for the substorm growth phase indicated by 

Fairfield and Ness (1970). The noon boundary latitude of 
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Figure 6.3: The north polar cap prior to substorm expansion, 

key as for Fig. 6.1. The soft zone data for disturbed 

times are not currently available, but its position is 

indicated by the region of transverse magnetic distur- 

bances. 
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- 72° is corroborated by the results of Akasofu (1971), who 

showed that the dayside auroral forms can move 5°  to 7°  

equatorwards from A - 78° to 80°  as flux is removed from the 

dayside magnetopause during the growth phase. 	This is con- 

sistent with inward displacements of the dayside magneto-

pause by 1 to 2 RE  observed by Meng (1970) and Aubry et. al. 

(1970). 	In this diagram (Fig. 6.3) we also show the region 

of 'transverse magnetic disturbances' for Kp  = 3- to 5+ 

(Zmuda et. al. (1970)) which relates to the position of the 

soft zone as above, and the position of the electric field 

reversals in the dawn and dusk quadrants for Kp  > 3 from 

Cauffman and Gurnett (1971) and Maynard (1972). 

The flux contained within the region of open field-

lines is now = 6 x 1016 maxwells, such that = 2 x 1016 max-

wells have been transferee from the dayside magnetopause 

into the open-field-line region (tail) during the growth 

phase. 	This is in agreement with Aubry et. al.'s (197.0) 

data, which indicate a flux transfer of = 1016 maxwells. 

In Fig. 6.4 we have redrawn the region of open field 

lines in the north polar cap for disturbed periods as des-

cribed above, and then schematically indicated the paths of 

the feet of the field lines (i.e. the equipotentials) within 

this region as required by our analysis of the tail electric 

field structure for the straight field-line model. We have 

also indicated how the equipotentials are expected to close 

at lower latitudes, assuming that the. localization of the 

potential drop near the dusk boundary of the tail neutral 

sheet relaxes towards a uniform electric field closer to the 

Earth. 	Our straight field-line model, as discussed in 
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Figure 6.4: Schematic diagram of polar cap flow reauired by 

our analysis of the tail electric field structure. 	In addition 

we show the polar cap Ba+  cloud tracks of Heppner et. al. (1971), 

and selected auroral zone tracks from Haerendel and Lust (1970). 

Regions of positive (++++) and negative (----) bay disturbances.  

are also indicated. 
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Chapter 2, is valid only in a region where Bz  is small enough 

such that particles entering the current sheet and acceler-

ating along it, exit into the magnetosheath rather than along 

a tail field-line towards (or away from) the Earth. 	The 

region of the tail where protons have the former history, 

may be of considerable extent (X < - 20 RE) during the growth 

phase, since we only require Bz  < 0.5 y (Chapter 2). 	It 

is reasonable to assume that the localized potential drop 

should exist with this region, since in the straight field-

line model it results from all incoming protons flowing in 

the current sheet towards dusk boundary (we have not con-

sidered the electron motion for such large Bz  values, however). 

Closer to the Earth where Bz  is significantly larger, the 

proton orbits in the sheet become small compared with the 

tail width, and in such a case there is no a priori reason 

to believe that the electric field should be non-uniform. 

This is where the plasma sheet should form, and as we have 

drawn in Fig. 6.4, we assume that the localized potential 

drop relaxes towards a uniform electric field in this reaion. 

We should note that the localized potential drop may exist 

in an extensive region of the tail; this maps into an extreme-

ly thin latitudinal strip on the polar cap, since the amount 

of flux involved is very small 	1015 maxwells). 

It can be seen that our model predicts considerable 

effects in the polar cap and auroral zone flow pattern. 

We shall interpret these in terms of observations durina,Sub- 

storm breakup and expansion phases, to which they clearly 

apply. 	Firstly, the polar cap (open field-line) flow should 

be basically antisolar in the daytime. and evening sectors 
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(i.e. a dawn to dusk electric field), but should be nearly 

westwards in the midnight-morning region (i.e. a northward 

electric field in the region above the auroral zone). 	The 

only vector electric field measurements for the polar cap 

region so far published have been via three Ba
+ 
vapour re-

leases (A - 750), and a balloon-bourne double probe (A - 780). 

The barium releases (Heppner et. al. (1971)) were conducted 

during substorms (with Kp  = 3), in the local time sectors 

17:00 to 18:00 and 02:00 to 03:00, and directly confirm the 

flow pattern we find here.. The Ba
+ 
cloud tracks have been 

drawn in Fig. 6.4 for comparison; electric field strengths 

were 20 to 40 mV/m. 	The balloon data (Mozer and Manka 

(1971)) indicate that in the local morning sector of the 

polar cap a (growth phase) westward electric field is replaced 

by a northward electric field of - 20 mV/m at substorm ex-

pansion, which also agrees with our result. 

In the night-side auroral zone (which we identify 

with the lowish latitude region of the soft zone), the flow 

is predominantly eastwards (i.e. a southward electric field) 

in a region extending from late evening into late morning, 

and is westward (i.e. a northward electric field) from late 

afternoon to early evening. .It has been consistently shown 

from rocket-bourne double probes (Mozer and Bruston (1967), 

Mozer and Fahleson (1970), Kelley et. al. (1971), Potter and 

.Cahill (1969), Potter (1970)), Ba+  vapour releases (F6ppl 

et. al. (1968), Harendel and LUst (1970), Wescott et. al. 

(1969), (1970)) and balloon-bourne double probes (Mozer and 

Serlin (1969), Mozer and Manka (1971), Kelley et. al. (1971 

(a)), Mozer (1971)) that northward and southward electric 

fields are to be found during substorm expansions in the 



302. 

regions indicated. 	The balloon-bourne experiments have fur- 

ther shown explicitly that during the growth phase, the_electric 

field develops a westward component (i.e. DP2 activity), with 

the north-south field associated only with substorm expansion. 

This latter field component drives strong Hall currents along 

the highly conducting soft zone strip, leading to negative bay 

disturbances in the region of southward electric field and 

positive bay disturbances where the field is northward, as 

shown by the barium vapour experimenters. 	These currents are, 

of course, the eastward and westward electrojets. 	However, 

it has also been shown that the strength and position of the 

electrojets are more highly dependent on the ionospheric con-

ductivity profiles, rather than on the electric field strength. 

Thus the electrojets form where the conductivity is high, 

rather than where the electric field is high. 	Conductivity, 

produced by precipitating particles on the nightside, will 

be low for field lines connected to rapidly convecting regions 

of the magnetosphere where the magnetospheric particle life-

times are much longer than flow times (even in the strong dif-

fusion limit), but becomes much enhanced (two orders of mag-

nitude perhaps) for ionospheric regions connected to slower 

flow, where loss times are comparable with flow times (Kennel 

(1969)). 	Thus we expect the conductivity to peak near the 

equatorward boundary of the plasma sheet electron soft zone 

- 65°) if we interpret this as such a precipitation boun- 

dary. 	This then, is the region where the electrojets will 

initially form, as shown by Kisabeth and Rostoker (1971). 

In the late evening to late morning auroral zone, the 
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electric field will have westward and southward components, 

with Ewest 10 to 30 mV/m, Esouth 10 to 100 mV/m (Dozer 

(1971)). 	According to FOppl et. al. (1968) the height-

integrated Pedersen conductivity is about half the height-

integrated Hall conductivity in the night-side auroral zone. 

The westward electric field drives Pedersen currents and the 

southward field Hall currents westwards along the oval, forming 

the westward electrojet, as above (Fig. 6.2(b)). 	The Hall 

current should be about four times the strength of the Pedersen 

current since Es/Ew 	2, and El-1/z - 2. 	However, the 

Pedersen current to the south driven by Es, should be approx-

imately the same strength as the Hall current driven to the 

north by Ew 	Thus the direction of the field-aligned current 

system of Fig. 6.2(a) in the negative bay region is likely to 

be rather variable, certainly difficult to predict. We note 

that Zmuda et. al. (1966, 1967, 1970) were unable to discuss 

the direCtion of the currents producing the 'transverse mag-

netic disturbances', since the satellite orientation was unknown. 

We conclude this thesis with an interpretation of the 

magnetospheric substorm in terms of the results we have found, 

and discussed above. We are not able to comment on auroral 

effects, since it is not certain how or where they are produced. 

No investigations have yet been carried out attempting to re-

late concurrent auroral data with particle measurements of the 

soft zone, hard zone or Ee  > 45 keV 'trapping boundary'. 

In Chapter 2 we found that magnetospheric changes 

during the growth phase were directly attributable to field-

line merging at the dayside magnetopause, adding flux to the 

tail. The tail current system is enhanced, the magnetic field 
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component perpendicular to the current sheet becomes steadily 

smaller and the plasma sheet thins. 	We interpret this as a 

'closing up' of the X-neutral field-line configuration in the 

tail. 	Although we have not considered such a system, we post-

ulate that for large angles of the 'X', a localized potential 

drop does not occur across the dusk boundary of the tail cur- 

rent sheet. 	This is reasonable, even at the neutral line, 

because particle motion along the line is unstable to pertur- 

bations in the XSM direction. 	Thus during the growth phase 

it is probable that few protons are able to completely cross 

the tail, implying that the localized potential drop does not 

exist as is indicated by the form of the DP-2 flow system. 

However, as the X-neutral configuration closes up, there will 

come a time when protons will be able to travel the whole dis-

tance across the tail in a considerable spatial region, and 

the localized potential drop will develop. The minimum time 

scale for such a configuration to be set up can be estimated 

by considering a system with uniform electric field and large 

Bz. 	If we 'switch off' Bz  at a given time, the information 

that this has happened will travel with the trapped protons 

across the current sheet. The typical proton velocity in the 

current sheet is the Alfven velocity of the external medium 

(Chapter 1), so that the minimum time scale for the setting up 

of the localized potential should be t d/va  (d is the tail 

diameter). 	With VA.- 103 km/sec, we find a characteristic 

time of about five minutes. 	The data,  of Fairfield and Ness 

(1970) indicate. that the normal field component (XSM 	- 30 R 

decreases at a rate of about 5 to 10y/hr during the growth 

phase, so that the time required for the tail to chahge from a 
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uniform electric field system (Bz  - 1 y say) to one of small 

enough Bz  to allow the escape of protons at this distance 

(Bz  < 0.2 y) is 5 to 10 minutes. 	We thus argue that on a 

time-scale of 5 to 10 minutes the X-neutral configuration can 

change from one where few protons can escape into the magneto-

sheath (uniform electric field), to one where protons escape 

over a rather large spatial region. The localized potential 

drop near the dusk boundary is then set up. We identify this 

with the onset of the substorm expansion phase. 

During the 5 to 10 minutes that the localized potential 

is forming, the developing southward ionospheric electric field 

region propagates westwards across the nightside oval until 

the configuration of Fig. 6.4 is set up. 	The region of strong 

electric fields, which separates the northward and southward 

directed electric field regions at lower latitude (i.e. posi-

tive and negative bay regions) will thus form in the premid-

night zone and appear to propagate towards the evening. This 

is clearly identifiable with the westward travelling surge. 

It is satisfying that no similar effect is anticipated, or 

observed, in the morning hours. As reconnection of field 

lines in the tail proceeds, leading to a contraction of the 

region of open field lines, the precipitation of plasma sheet 

particles moves to higher latitudes (i.e. the northward expan- 

sion) as shown in Fig. 6.5. 	The westward surge will also move 

to higher latitudes, although its motion in local time is more 

difficult to anticipate. 	The plasma sheet then 'expands'. 

In relation to the ground magnetic perturbations, DP2 during 

the growth phase is explicable only in terms of uniform con-

vection. The DP-1 equivalent current system (shown in Chapter 
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Mil  PLASMA SHEET 

Figure 6.5: Showing the northward expansion of the soft zone 

(auroral zone) and the thickening of the plasma sheet which 

occurs during the expansion phase, when the tail merging rate 

exceeds the dayside merging rate. 
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2) consists of the eastward and westward electrojets and their 

supposed 'return' currents across the polar cap and at lower 

latitudes. 	Interpreted as ionospheric Hall currents driven by 

magnetospheric convection electric fields, the indicated flow 

does not agree with the flow model we have presented here. 

However, as we have already said, the polar cap magnetic dis-

turbances and those at a somewhat lower latitude than the aur-

oralzone, have been shown to be consistent with the field-

aligned current continuity models of Fig. 6.2(a) and (b), by 

Kasabeth and Rostoker (1971) and Heppner et. al. (1971). Small-

er ionospheric currents produced by the electric fields of Fig. 

6.4 outside the soft zone (i.e. low conductivity regions) are 

masked by such effects. We expect that at very low latitudes, 

however, the ionospheric currents should resemble DP2 activity 

even during substorm expansion (as indicated in Fig. 6.4), 

which has been found to be true by Nishida (1971). 
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Appendix : Growing Plasma Oscillations for Symmetrical Double-

Humped Velocity Distributions  

The problem considered here is that of growing longi-

tudinal waves which propagate in a hot plasma parallel to any 

magnetic field which may be present (i.e. the magnetic field 

is neglected in the Vlasov equation). 	Here it is shown that 

for any symmetrical double-humped velocity distribution, all 

growing waves with real wave-number have phase velocity equal 

to the velocity at the minimum of the distribution function. 

Distributions made up of parabolae are convenient for calculat-

ion, and growth rates are obtained for several symmetrical dis-

tributions made up of parabolae. 

The dispersion relation for growing waves (i.e. 

m(w) > 0, where the electric field varies as ei(kz-o9) was 

obtained by Vlasov (1938) 

where W = k, fo(v) is the normalized combined velocity dis-

tribution function for all species of particles present, and 

w is the plasma frequency. We shall consider the special 

case of fo(v) symmetrical about v = 0 with two maxima, at 

v = ± vm. 	Then from the symmetry of fo(v), (A.1) becomes 

tZp 

2 
= 2 f m  ;fo(v) 	vdv  

0 	;17 	v2 - w2 

and writing W = (wr+iwi)/k  = a+iS and separating real and 

imaginary parts we must solve simultaneously (for > 0) 
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v(v2-a2+132)dv 
2  fw  afo 	 j 
o 3v (v2-a2+f32)2  + 4a2 f3 2  

k 2  
coP  

- (A . 2) 

- (A.3) 
a  I' 	fo 	vdv 

0  aV 	2 
o (V2—a2+132) + 4a2 32  

If a 	0, then the integral in (A.3) must vanish and (A.2) 

becomes 

rc° afo 	v3dv 
3v 	2 

0 	(V2—a2+132) + 4a2O2  

k 2  
— 1/2  (---w  ) P 

- (A.4) 

Then multiplying the integral in (A.3) by vm2  and subtracting 

from (A.4) gives 

• of 	v(v2-vm2)dv 	2 
f 

	o  	k  — 	 . av 	(v2-a2-132)2  + 4a2f32 	
(7)17,) 

 
- (A.5) 

But the product (v2-vm2) 3f°/av is always negative while the 

other factors in the integrand are positive over the range of 

integration. Thus the integral must be negative and hence 

an unacceptable solution, since we require k to be real. 

The only other solution to (A.3) is a = 0, when (A.2) 

becomes 

2 I afo 	vdv 

o 317 	v2 4. 82 Wp 
- (A.6) 

which may give a positive result for k2. 	Thus the only grow 

ing waves have zero phase velocity, the velocity at the minimum 

of the distribution function. 	This result is in contrast to 

that of the 'bump-in-the-tail' problem, where waves in a ranae 

of phase velocities may grow, with growth rate proportional to 
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af 0, 
‘av 'vcor/k  • 

Growth rate calculations are made using (A.6) for fo(v) 

constructed from three paiabolae, so that 0/av is linear in 

v. 	The parameters of the distribution are s and W as shown in 

figure A-1, and K = 1 fmin. 	It is found convenient to de- 
f max 

fine r = W/s  and use the parameters r, s and K. We also 

write t = (1 - Kr2). 

Figure A-1  

Then fo(v) and its first derivative for v > 0 is taken to be 

fo(v) -afo/3/7  Range 

max 

r Kv2  
+ (1-K) 

2V - 
'
4. 	

2 
V 2 

fmax 

2Kv 

) 
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st 
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Normalization of fo(v) gives 



	> 	> 

k =0 — 
- 

K. 

ti-foriT 

K 	'r: 	(t —.0) 

,
A&16.

1  
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fmax = (2s)  (K2r2 + 2r - 2K + 3)-1  

We note that for fixed r = W/s, K cannot be arbitrarily chan- 

ged. 	If r. > 1 then .K can take on its full range 0 < K < 1 ; 

but for r < 1, there is an upper limit for K, i.e. K < 1 —2 , and 

hence 0 < K < r-.2  (Fig. A-2). 	At this upper limit the central 

parabola disappears, there is a cusp at v = 0 in the distrib-

ution function and effectively a discontinuity in 3fo/av  

(Fig. A-3). 	Conversely, for a given K, the maximum value of 
1 r is /R.-, and its minimum value is, of course, zero, i.e. 

1 
0 < r < 67. 

r < 1, allowing 0 < K < 1. 	r > 1, showing the upper limit 
to K at K = l/rz 

Figure A-2  

Figure A-3  



316. 

o  
Substituting af av  into (A.6) and rearranging into dimen- 

sionless form we have 

t r2 	l+r 
( 
ks
)  
2 	6 	IR f v dv

r 	
12  f 	(1-v1 )17'dv
i} (.7/7, 

	

(K2r2+2r-2K+3)   t 0 orlzi.cz)  r t 	(viz+ez) 

Or 

1
,ks 	6 	(l+r)2±c2)+cftan-/(1+r)_ lx  
Ci r (K 	+2r-2K+3) {1/2log( t2+e2 

- 
Xtan1 

t 
 1 -r } - (A.7) 

- where v' = v/s  and c = 13/s - wl/., ks • 

The right-hand side of (A.7) is evaluated for given 

values of K, r, and E. 	For given K there is a range of r for 

which there is a range of c which gives a positive result, as 

required. 	Within this range of r, the right-hand side of 

(A.7) is positive for c = 0, goes to zero as c increases and 

never again is positive (it approaches zero as c 	co). 	If 

ite k = kmax. As (—) decreases as c increases, we have 

(073-)"forc=0,thenthiscorresporldst-(1".=0 at fin-
ks 2  

(Ws)  
ks 2 
	 1 

,ks, thus a range of k < kmax for which wi is positive. 	As v---) 
P .  

goes zero when c is finite, this corresponds to wi .4- 0, as 

k 	0 such that Wi/k  > constant. However, for some ranges of 

r at given K we find that the right-hand side of (A.7) is neg- 

ks 2  ative for all E. 	This is true if (---) < 0 for E = 0 (i.e. wp  
k  2 < 0).  
max - 

For c = 0 equation (A.7) becomes 

2  cmax s  	6 	l+r ( 	loq( ----y) - r } 
Wp 	r2(K2r2+2r-2K+3) 	1-Kr  (A.8) 
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e r 
2 
( - 	14-r )  

and the r.h.s. is positive if K > 	. 	The latter 
r er 

expression is monotonically 	decreasing with 

increasing r, its maximum value (for r positive) is 0.5, at 

ks 
r = 0. 	Thus for K > 0.5 there is a range of (w) for which 

1 	p 
toi  > 0, since kmax  > 0, for all 0 <r < 	However, for - . 

K < 0.5, there exists a minimum value of r = rmin  (given by 

er - (1-1-r) 	kmaxs  2  the solution of K = 	) below which ( 	) < 0. 
2 r 	w r e 	 P 

The range of rmin  ..<_ r </-- for which there exists a range of _ K  

O <k < kmax  for which coi  > 0 for given K is shown in Fig. 

A-4. 	For example, for K = 0.2, a range of k exists (0 <k < 

kmax) for 1.5 < r < 1  = 2.24. 	As r approaches 1.5 from 

above, kmax  decreases to zero, and no solutions occur for 
2 ks ✓ < 1.5, since (---) is negative for all c > 0. 	We also wi 

note that for the case r - ,/k-- we have (equation (A.8) kmax  = 

so that coi > 0 for 0 <k < co. 

The results of the numerical calculation are plotted 

in the form of 
wi 
 versus 	obtained from a cif(c,X,r) 

Wp 	
‘ , wp wp  

where f(c,K,r) is the value of the r.h.s. of equation (A.7). 

Fig. A-5 shows the growth rates for distributions with a shal- 

low minimum (K = 0.2), and a deep minimum (K = 1.0). 	For 

K = 0.2, we find wimax  - 0.03 wp  at k = 0:26 wp/s; while 

GJ 

for K = 1.0, wimax - 0.3 w 	with k = 0.7 

147.2 
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Figure A-5(a)  

Figure A-5(b)  

This may be compared with the growth rates for two cold counter- 

streaming beams, i.e. fo  = 	{6(v-s) + 6(v+s)}. 	From equation 
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(A.6) we have, integrating by parts 

ks 2  = 2 	vdv  ccaf co 
k wpi 	ay 

1,72-1-a 2 = 2Ef 0 V2+132-1 

Co 
S2—v22 	f0 (v2+32)2  dv 

(v2-82) dv = 2 f f0 (v2+$2)  

and substituting for fo  we have 

2 - (62+1) _ 
(62+1)2  

Thus 
2 

(=) 	= 	14+8 (7,—ks 	(1+2( --) 2  — 	kS 2  
) )1 . 7  

cur' 

The maximum growth rate occurs at k = z 1-ts)2  = 0.61 	with 

wp 
growth rate wi  - 2/7  = 0.35 wi). 	The results of our calcul- 

ation with distributions made up of parabolae are very similar 

to these when K approaches unity. 
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