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ABSTRACT 

The reader is referred to the list of contents for a detailed 
abstract of this thesis. Following the introductory first chapter, 
Chapters II, III and IV contain a detailed analysis of the systematic 
errors in high and low frequency acoustic thermometry. By "high" and 
"low" frequency thermometry we mean thermometry where the operating 
frequencies are respectively above (usually far above) and below the 
lowest characteristic cut off frequency of the resonant cavity used to 
measure the velocity of sound. A case is developed for using the low 
frequency approach although in the past it has led to apparently 
inferior results. Attention is drawn, in particular, to Sections 2.2.3 
and 2.3 where two important difficulties for the high frequency 
approach are discussed. In the former section it is shown that it is 
impossible to tell from the positions of the observed cavity 
resonances whether or not there are errors in the measured velocity 
due to the presence of unresolved high order resonances (although as 
is shown in the following section these are likely to be small in the 
work done hitherto). In Section 2.3 an account of the errors to be 
expected from bad cavity geometry is given. This applies only to low 
frequency devices, the extension of the analysis to higher frequencies 
being very difficult. Thus. at the moment, there also remains an 
unanalysed source of error in the high frequency technique. 

Neither of these two problems arise at tow frequencies where the 
predominant systematic error is due to the acoustic boundary layer. 
The theoretical corrections for this effect are discussed at length in 
Chapter III where it is also argued that past criticisms of the theory 
are in error. It is, in any case, possible to measure the boundary 
layer corrections relying only on a restricted set of theoretical 
assumptions. 

Chapters IV, V and VI discuss in detail the design, testing and use 
of such a low frequency acoustic thermometer. Measurements have shown 
that the systematic errors characteristic of this technique function 
exactly as expected and it has been used to measure the normal boiling 
points of helium-4 and equilibrium hydrogen and the triple point of 
equilibrium hydrogen.' 
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The NPL's Acoustic Thermometer. 
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CHAPTER I 

INTRODUCTION 

In 1967 the National Physical Laboratory (NPL) instigated an 

investigation into the possibilities and Limitations of measuring true 

thermodynamic temperatures in the range 2-20K by means of acoustic 

thermometry. As a result of this study a low frequency variable—path 

acoustic thermometer was designed and constructed which appears to 

have met the requirements of a primary thermometer with some 'measure 

of success. The burden of this thesis is to review the various sources 

of systematic error in this and other comparable acoustic techniques 

of primary thermometry, and to report the results of an experimental 

investigation of the practical instrument. By way of an introduction 

to the subject the relation between primary and secondary thermometry 

in the range of interest will be discussed, followed by an account of 

the dependence of various thermodynamic parameters — in particular the 

thermodynanic temperature — on the velocity of sound. It will be 

understood throughout that the thermometric medium under discussion is 

always helium-4 gas. Nothing else apart from the lighter isotope of 

helium, helium-3, remains uncondensed over the whole range. Earlier 

acoustic thermometry is also discussed. 
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1.1 Primary and Secondary Thermometry in the Range 2-20K.  

Since the conception of this project the relationship between 

primary and secondary thermometry from 2 to 20K has changed somewhat. 

It was not until 1968 that the definition of the International 

Practical Temperature Scale (IPTS) was extended down to cover part of 

this range. The previous version of this scale, IPTS-48, defined by 

the Comite Consuttatif de Thermometrie (CCT) of the Comite 

Internationale des Poids et Mesures (CIPM) in 1948, El) terminated at 

the normal boiling point of liquid oxygen (then assigned a value of 

90.18K). This was superceded by IPTS-68 [2,3,4] whose Lowest point is 

the triple point of equilibrium hydrogen to which the value 13.81K is 

assigned. The extension of the IPTS below 90K enabled the confused 

situation which existed previously to be rationalised. It used to be 

the case that a large number of secondary practical temperature scales 

carried on platinum resistance thermometers were in use. [5] These 

scales were defined mainly by the various national standards 

Laboratories of the world and were related to their own gas 

thermometry. .Published comparisons of the scales enabled temperature 

measurements (and other measurements based on temperature 

measurements) to be reinterpreted in terms of the scale to which any 

individual worker happened to be committed. Now any new work in this 

range may simply be referred to IPTS-68 as may any previous work 

through published comparisons of IPTS-68 with the old scales. 

The extent to which the old scales disagreed can be seen clearly 

from figure 1.1 which is taken from reference 5. At the triple point 

of equilibrium hydrogen PRMI-54 (defined by the Physicotechnical and 

Radiotechnical Measurements Institute of the USSR in 1954) differed by 

as much as 57mK from PSU-54 (Pennsylvania State University - 1954). 

The other two scales represented in figure 1.1 are those of the 

National Physical Laboratory. NPL-61. and of the National Bureau of 
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FIGURE 1.1  

The Differences between some of the More 

Common Platinum Resistance Thermometer Scales 

and IPTS-68. 

(a) PSU-54 
(b) NBS-55 
(c) NPL-61 
(d) PRMI-54 



Standards (USA), NBS-55. 

The IPTS-68 is defined by assigning carefully chosen values of 

thermodynamic temperature to the various reproducible fixed points in 

the range of interest (see Table 1.1). A convention is then stated for 

interpolation using the specified interpolation device calibrated at 

the fixed points so that any intermediate temperature may be measured. 

From 13.81K up to 903.90K the interpolation instrument is the platinum 

resistance thermometer. It is the loss of sensitivity of pure platinum 

which limits its use as a thermometric element below about 14K. In 

this region its residual resistance (largely attributable to 

impurities and lattice imperfections) begins to mask the thermal 

resistance arising from the scattering of electrons by phonons. Thus. 

in the absence of a new interpolating instrument. the IPTS-68 cannot 

be extended far below the triple point of hydrogen. 

However. the CCT of the CIPM has recommended the use of practical 

helium vapour pressure scales between 0.2 and 5.2K. The helium-4 

vapour pressure scale of 1958. T-58. is defined by a set of published 

tables relating saturated vapour pressure to temperature from 0.5 to 

5.2K. [6.7] These values are derived from the integrated 

Clausius—Clapeyron equation for a first order phase change. Since the 

thermodynamic temperature appears in this equation it might be asked 

why it should not form the basis for a primary thermometer — an 

exceptionally simple one to use by the standards of other primary 

thermometers. Unfortunately the basic relationship involves certain 

temperature—dependent thermodynamic quantities such as the latent heat 

of evaporation and the molar volumes of the two phases present at any 

given temperature. The determination of these will therefore 

presuppose some independently defined temperature scale. In fact the 

CCT evaluated them on the basis of several sets of gas thermometry 

measurements. A similar secondary vapour pressure scale, T-62, was 
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TABLE 1.1  

Fixed Points in the Range 2-20K. 

Practical 
Scale 

IPTS-68 

IPTS-68 

IPTS-68 

IPTS-68 

T-58 '-
and 
1-62 

T-58 
and 
T-62 

Status of 
Point 

Primary 

Primary 

Secondary 

Primary 

Tabulated 
Value 

Tabulated 
Value 

Assigned 
Temperature 

(K) 

20.397 

20.28 

17.042 

13.956 

13.81 

4.215 

3.190 

Fixed Point 

n.b.p. of normal hydrogen. 

n.b.p. of equilibrium 
hydrogen. 

b.p. of equilibrium 	2 
hydrogen at 33 330.6 N/m . 

triple point of normal 
hydrogen. 

triple point of 
equilibrium hydrogen. 

n.b.p. of helium-4. 

n.b.p. of helium-3. 

IPTS-68. 	Secondary 

Primary fixed points are the defining fixed points of IPTS-68. 
Secondary fixed points are additional fixed points whose temperatures 
are given on IPTS-68 as defined by the primary points. Thus the 
secondary temperatures are ultimately traceable to the temperatures 
assigned to the primary points rather than to direct thermodynamic 
measurements. 

The n.b.ps. of the two isotopes of helium are not properly 
called fixed points of the scales T-58 and T-62 since they are 
tabulated values of equal status to any other value in the tables. 
However they are widely used as fixed points in the calibration of 
many simple secondary thermometers such as carbon resistors or 
thermodouptes. The valves assigned are usually those shown. 
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defined in 1962 relating temperature to the vapour pressure of 

helium-3. (8,91 The upper limits of T-58 and T-62 are set by the 

critical temperatures of the two isotopes of helium and the lower by 

the diminution of their vapour pressures. These three secondary 

scales. IPTS-68, T-58 and 1-62, still leave a gap from 5.22K up to 

13.81K in the present range _of interest for which no established 

secondary practical scale exists. At the moment workers may use 

various thermocouples relying on such information as is available for 

their calibration or calibrate them themselves at several fixed 

points. Some electronic circuit devices have also been used as 

temperature sensors with varying degrees of success. £10,113 However, 

none of these methods can easily offer the precision, thermodynamic 

accuracy and, in particular, the reproducibility of the three approved 

secondary scales. They do, on the other hand, have the advantage of 

simplicity which is always important in secondary practical 

thermometry. Fortunately, for more demanding requirements, there 

remains the doped germanium (or, occasionally, silicon) resistance 

thermometer. (10) Over the last ten years this has been developed to 

the point where its reproducibility on thermal cycling is good enough 

for it to function as the calibrated carrier of a primary scale. Its 

range and sensitivity are widely controllable through adjustment of 

the doping impurities. But, unlike the platinum resistance thermometer 

or the first order phase transition of a pure substance, there is no 

sufficiently accurate theoretical description of its resistance—

temperature dependence to enable it to function as a conventional 

secondary 'thermometer. Instead of determining a few constants in a 

simple theoretical relationship, it is necessary to calibrate it 

against a primary thermometer at many points over its whole range 

(typically twenty points between 2 and 20K) and to fit, for example, a 

high order polynomial to the points for the 	purposes of 
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interpolation. (12] 

It is clear. therefore. that primary thermometry plays a dual role 

in this region. It provides, as at higher temperatures, values of 

thermodynamic temperatures for the readily accessible fixed points of 

conventional convenient secondary thermometry. In addition, in the 

absence of a simple interpolating secondary device for part of the 

range. it provides direct closely spaced thermodynamic calibrations. 

There also remains 'the possibility of using an instrument 

conventionally operated as a primary thermometer — that is an 

independent thermometer measuring accurate thermodynamic temperatures 

in the usual sense — as a secondary thermometer. It could be 

calibrated at one or more fixed points or it could be 

self—calibrating. Subsequently it could be used as an interpolating 

thermometer over the whole range of interest. Hitherto no acoustic 

thermometer has been used in this way, but it has become commonplace 

to calibrate a gas thermometer at a single or a few temperatures 

rather than to•plot a full pressure—volume isotherm at any temperature 

to be measured. If such thermometers are self calibrating they still 

do not merit the title of primary in the strong sense, however, since 

they will not measure thermodynamic temperatures entirely 

independently. This arises because corrections for the non—ideality of 

the thermometric substance will generally be required from another 

instrument. For example virial coefficients will be needed for this 

type of gas or acoustic thermometry. 

Mention should also be made of the unique status of magnetic 

thermometry in this range. Too complex a technique for general use as 

a secondary scale, it does however cover the whole range 2-20K 

(remaining useful down to much lower temperatures as welt). And, like 

vapour pressure thermometry. it is based on a theoretical 

relationship, the Curie—Weiss law, in which the thermodynamic 
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temperature appears as a function of the magnetic susceptibility of a 

paramagnetic salt. But again, it is unsuitable for use as a primary 

thermometer since it depends on the independent evaluation of several 

(three or four) constants in the basic equation. Nevertheless, it has 

been found worthwhile to use magnetic thermometers in the past to 

check the internal consistency of the purportedly thermodynamic 

temperatures of other primary thermometers and of the three approved 

secondary scales. (13.141 They are also used at lower temperatures (as 

Low as 0.006K using cerium magnesium nitrate as the thermometric salt) 

where the choice of thermometers, primary or secondary. is very 

narrow. 

1.2 The Velocity of Sound as a Function of Thermodynamic Temperature.  

For a wide range of frequencies the propagation of sound in a gas 

is almost perfectly adiabatic so that the velocity of sound, C., in the 

unbounded medium will be given by: 

c
a. 

=NM 
MENNE, (1.a..1) 

where B is the adiabatic bulk modulus of the gas and e  is the 

density. Since 

E s  = — \/(3?) 
QVis 

Ct. 2.. 2.) 

where P and V are the pressure and volume of the gas respectively, and 

since for n motes of gas 
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= 	M / V 	 ( 3 

where M is its molecular weight, we obtain for an ideal gas 

0- 'RV M 	 (I- 1 4+) 

Here iris the ratio of the principal specific heats, C /C 	R is the 
p v 

gas constant and T the thermodynamic temperature. Conversely . 

  

G  
a. 

thus enabling the thermodynamic temperature to be established in terms 

of the velocity of sound in an unbounded ideal gas. This is the basic 

principle of acoustic thermometry in gases. 

The claim to measure true thermodynamic temperatures will stand or 

fall in the first place on the Justification for our interpretation of 

T in this equation. We take as the fundamental definition of 

thermodynamic temperature that conventionally given in terms of ideal 

Carnot cycles in most formulations of thermodynamics. That the 

temperature appearing in the equation' of state for an ideal gas 

(Boyle's law) is the same thermodynamic temperature of the fundamental 
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definition follows from an elementary theorem of thermodynamics. Thus, 

given the basic widely confirmed relation, 1.2.1, of fluid dynamics, 

we may interpret the variable, TO of equation 1.2.5 as the 

thermodynamic 	temperature 	with 	full 	confidence. 	The ' same 

interpretation holds even more directly for primary gas thermometry 

, where Boyles law is applied without the intermediation of equation 

1.2.1. 

As with primary gas thermometry, however, allowance must be made 

for the non—ideality of the gas available for use as a thermometric 

fluid. Expressing the square of the acoustic velocity as a virial 

expansion of pressure terms we obtain: 

e
L 

= Ao(T) 	P1 j(T)I? t fl(TYP2-+' • • • 	(1.2..6) 

where 

(T) = o-R  

   

Equation 1.2.7 follows from the increasingly ideal behaviour of real 

gases at progressively lower pressures where equation 1.2.6 must 

ultimately conform with equation 1.2.4. 

From equatiOn 1.2.6 it can be seen that the value of A (and so of 
0 

the thermodynamic temperature) may be obtained by plotting isotherms 
2 	 2 

of c as a function of pressure and obtaining its value,c 	at the 
0 

intercept with the line P=0. At sufficiently low pressures when the 
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quadratic term of the virial expansion is negligible, the slope of the 

isotherm gives the second acoustic virial coefficient, A . 
1 

In principle a "density" expansion: 

• 

Ao  T) + A 11(1)(2....) + /l
v

a  (T) (_)n _) a 

( I • 	) 

could be used instead of equation 1.2.6 and the corresponding isotherm 

plotted as a function of reciprocal molar volume. But in practice the 

pressure expansion is always used since molar volume is far harder to 

measure than pressure. In primary gas thermometry on the other hand, 

both expansions are found . But there the molar volume has to be 

determined in any case. It is the avoidance of this measurement with 

its necessity of estimating satisfactory dead—space and adsorption 

corrections which is deemed to be a major advantage of acoustic 

thermometry. However, it sometimes appears that these errors are not 

markedly more difficult to deal with than the systematic errors 

characteristic of the latter method which will be discussed at Length 

in the following chapters. 

In order to determine the thermodynamic temperature from an 

acoustic isotherm two procedures may be adopted. Firstly, and more 

simply. it may be calculated from equation 1.2.5 where the value. c 
0 

is substituted for c and accepted values for M and R are used.0- taking 

the exact theoretical value for an ideal gas (5/3 for monatomic 
2 

helium-4). The constant of proportionality. 0.R/M. between c and T 

plays the same role as the constant nR in primary gas thermometry 

which relates the directly measured quantity PV to T. This quantity. 

nR. is usually evaluated experimentally by measuring pressure and 
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volume at the triple point of water where the thermodynamic 

temperature is defined to be 273.16K — a convention which determines 

the Kelvin. Thus there is an essential difference between primary gas 

and acoustic thermometry here. The former is unable to function 

without a calibration at the triple point of water. Knowledge of the 

gas constant is of no use in this respect since, to apply it, one 

needs to know how many moles of gas, n, one has in the thermometer. 

But to determine this requires either an application of Boyle's law at 

the triple point of water in any case, or an even more difficult 

measurement of the mass of the gas used. (*1) Acoustic thermometry, on 

the other hand, does not require this triple point calibration since 

it is independent of the amount of gas used. This is because the 

velocity of sound is an intensive thermodynamic quantity whereas PV is 

not since V is extensive (Cf respectively, the quantities arRT/M and 

nRT). 

However, this is not to say that an acoustic thermometer may not be . 

directly calibrated at the triple point of water — this being the 

second operating procedure mentioned above. Since 0- and M are 

independently known to a high degree of accuracy this would in fact 

offer a new method of determining the gas constant. (*2) It may easily 

be shown that the fractional error in measured temperature, T. 

associated with an acoustic calibration error at the triple point of 

(1) The combination of these two measurements enables the gas 

constant to be measured. It is, in fact, the basis of the 

conventional technique of limiting density (See, for example, T. 

Batuecas, Proc. Sec. Intl. Conf. on Nuclidic Masses, Vienna 

(1963), Ed. W. H. Johnson (Springer—Verlag, 1964)) 

(2) Such an acoustic determination of the gas constant is about 

to be undertaken at the NPL. 
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water is 

AT 	= ATc 	ACc 	( 1 • a. • c\ 
T 	2.613.16 	Cc  

where the subscript, c, refers to the calibration values. AT may be 

4 
expected to be less than .01K and Ac /c one or two parts in 10 . 

c c 
Thus the second term is the predominant one. The comparable error 

arising from using the existing value of the gas constant is a little 

less being equal to the fractional error in the gas constant itself 

since a- and M are known much more accurately. The standard error 
6 

usually quoted for R is 45 parts in 10 . Taking the previous figure 
4 

of one or two parts in 10 to be three standard errors it can be seen 

that there is a marginal advantage (based only on rough figures) in 

using the existing value of R . This is further recommended by the 

experimental simplification brought about by adopting the orthodox 

value. In particular, operation of an acoustic thermometer at the 

triple point of water would entail rigorous precautions against 

gaseous impurities in the thermometric helium which are not necessary 

at very low temperatures. 
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1.3 The Velocity of Sound and the Virial Coefficients of the Equation 

of State for a Real Gas  

The aforementioned virial expansions of gas thermometry are the 

pressure and density expansions of the product PV which form the most 

familiar alternative statements of the equation of state of a real 

gas: 

? V = 

+ B (7)1...a.) + C (T)t....Y41+ - • -1 
V 	V I 

Ct. 3.1) 

and 

?V = 

n RT t +B (TIP + CATYP 2. 4-• 
	

(i.z.a.) 

The virial coefficients and the thermodynamic temperature may be 

obtained by plotting pressure—volume isotherms in the usual way and 

extrapolating to zero pressure or density. Values of virial 

coefficients obtained from the different expansions may be compared 

through the following relations: 

Bi(T) = 33CTURT 
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and 

C(T) = C (T) 	$3.1.(T) 	 RI  1 	( . s •j+) 

(See Appendices 1.1 and 1.2 respectively). 

Values of acoustic and pressure—volume virial coefficients may be 

compared as welt: 

1 (T) = 	1B (T) 	cla(1)  
3 clT 

d/13(T)1 
16 	ciTz  

( t. 3.5) 

and 

	

a  .(T) = cr 	13 C(T) + 16 T GLUT) 

	

MRT 5 	5 	elT 

+ a. TIct."-C CT) + a. /31( T) + 9 8 -121  cL/B(T)  
ci.T`t 	5~ 	 45 	k 

4- 	1-4(ctai3(T))  F 	1-13(T) et.8(T) 
45 	ci.Ta 	86" 	ctT 

+ 8 T 8 (T)  co-B(7))  + 6'6 Ilet.E(T))(d:t8LT))1  
IS 	k ara. 	1+6 	k cri" 

(See Appendices 1.3 and 1.4 respectively) 

Since it is unnecessary for the purposes of primary thermometry —

gas or acoustic — to work at pressures high enough for the third 
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virial term to become important, there is very Little information on 

the form of A CT) or C(T). B(T) on the other hand may be roughly 
2 

represented by the form: 

11(T) 	+ b iT 	 (1.1•'1) 

which is suggested by the Van der Waals two constant equation of 

state. Since this equation has only the simplest of theoretical 

justifications the Limitations of equation 1.3.7 are not surprising. 

Experimentally measured values of B(T) may be represented to within 

several per cent in our present range of interest which is somewhat 

less than the disagreement found in the results of different workers. 

The exact form of the temperature variation of B depends upon the form 

of the intermolecular potential of helium-4. It is usual to postulate 

a plausible form for this potential and to derive a relation between 

8(T) and the chosen function. Measured values of B(T) may subsequently 

be used to evaluate constants in the intermolecular potential. The 

successive terms in the virial equation of state are then seen to 

correspond to interactions of increasingly higher order between 

molecules. However. whilst this procedure constitutes an important 

theoretical justification for the virial equation of state, it will be 

appreciated that it cannot offer a theoretical description of the form 

of B(T) in the absence of a prior and independent definition of the 

intermolecular potential. It is therefore necessary to approach the 

problem experimentally and to obtain B(T) from such data as is 

available. Since the disagreement between the various measured values 

of 8 is as Large as it is. it is felt that there is little point in 
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attempting to represent B(T) with a many—constant numerical 

approximation so that pressure—volume and acoustic virial coefficients 

may be compared accurately. Taking equation 1.3.7 and substituting for 

B(T) in equation 1.3.5 we obtain 

(T) 	= 	10:x + 
	

(1.1.8) 
5T 

or 

= ci + e 

where 

d= 	a cr 	 e =. 6 0- 	• 3. 0 
M. M 

thus deriving a similar functional dependence on temperature for the 

second acoustic virial coefficient. 
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1.4 The Velocity of Sound and the Principal Specific Heats of a Real  

Gas 

Expressing equation 1.2.1 in terms of the isothermal bulk modulus. 

B =B /o.  we obtain 
T S 

   

t • 1*. I 
3VT [`An 

which is easily evaluated from the virial equation of state, 1.3.1, to 

give 

p/Cv  

Me al  i 
RT 

BC-OW + (1611CT) - C. CO ).P_Ll 
V 	

-11 

(1•14.2) 

A second relationship between C and C may be obtained from the 

familiar equation 

cP 
	

Cv Te inv Wilp 	(1  L") 

whence 
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C 	C P 	v 

+ Z 44-8(1-)? 	e(T) LiTB( -r)  au-r)  
R cl.T 	 SIT 

( 	- 10 
Equations 1.4.2 and 1.4.4 enable cr, C and C to be calculated from a 

knowledge of the viriat coefficients and the thermodynamic 

temperature. To measure the latter acoustically it will be necessary 

to assume that4Thar=5/3, the ideal gas value, at vanishingly small 
0 

pressures. Given this, values of d', C and C may be calculated at 

higher pressures. 

It would. however, be useful to check that 0 = 5/3 at limitingly 
0 

Low pressures. Such a check could in principle be made if an 

independent measurement of temperature was available. This value might 

then be substituted into the limiting form of equation 1.4.2: 

M c (I 44 

 

T 

 

to give 0-. In the range 2-20K this would require a primary gas 
0 

thermometry determination of T which needs make no assumption as to 

the value of cr. However, the experimental error in such a value would 
0 

'exceed the error expected in the assumed theoretical value of a- . 
0 

Thus. in practice. the suggestion is not very helpful. Moreover, the 

status of acoustic thermometry as a technique of primary thermometry 

+ TIctIB(T) 	C. CT) 	ciC LT))  ?la  
cer 	cI  i JR.'T 
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hangs upon the independence of its measurements. To use a measured 

value ofcr would be tantamount to doing secondary (but hardly 
0 

practical) acoustic thermometry. In any case, systematic errors in 

acoustically measured temperatures attributable to or should become 
0 

apparent in direct comparison with temperatures measured by primary 

gas thermometry provided that they can be disentangled from other 

sources of error. This would not be made any easier by the above 

approach. 

1.5 Existing Acoustic Thermometry  

In recent years several interferometric investigations have been 

made into the propagation of sound in helium gas in the range 2-20K. 

These have been directed mainly at measuring thermodynamic 

temperatures, but have also served to evaluate the other thermodynamic 

parameters dealt with in the previous two sections. Standing wave 

techniques of sound velocity measurement have invariably been used 

since it is far simpler to house resonant cavities in a liquid helium 

cryostat than any conceivable time of flight device of comparable 

accuracy. Due largely to a naive approach to the design of acoustic 

interferometers the earlier measurements fell far below what could be 

currently achieved by conventional gas thermometry. Accordingly our 

attention will be directed to more recent measurements (15-25] of 

greater metrological usefulness. 

Two different approaches seem to have emerged in acoustic 

interferometry in general (and in acoustic thermometry in particular). 

Firstly there are high frequency methods with the attendant risk of an 

ill—defined wave field in the resonant cavity C15,16,21-24] and 

secondly low frequency methods (17-19,25] where this problem is 

avoided at the expense of incurring difficulties with boundary Layer 

effects for which reliable theoretical corrections may not easily be 

made. These two different types of systematic error will be dealt with 
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in detail in the following two chapters. It suffices to point out here 

that in the event of agreement being reached between high and low 

frequency acoustic thermometry it-would be difficult not to conclude 

that their characteristic systematic errors were accounted for 

correctly and that, all other things being equal, true thermodynamic 

temperatures were being measured. Moreover, should both methods then 

agree with the results of primary gas thermometry then we might say 

that all primary thermometry in the range 2-20K was basically sound 

and reliable. The internal consistency of the measured temperatures 

(but not .their absolute values) could be further checked by magnetic 

thermometry. 

There exist two important sets of tow frequency measurements due to 

De Laet (19] (following earlier work at Leiden (15-17]) and to 

Grimsrud and Werntz. (25] De Laet used a cavity of fixed length and 

determined sound velocities from measurements of its resonant 

frequencies. Grimsrud and Werntz used a cavity of variable path 

excited at some constant frequency and measured the separation of the 

positions of resonance. With the exception of a measurement close to 

the boiling point of hydrogen from De Laet neither of these 

investigations extended beyond the region between 2 and 4.3K in the 

present range of interest. Temperatures determined by De Laet were 

higher than temperatures measured on the helium— 4 vapour pressure 

scale, T-58, by as much as 22mK at 3.2K and 12mK at the normal boiling 

point of helium-4 . This last figure compared with a 32mK discrepancy 

found in the earlier Leiden work using ultrasonic techniques. The 

acoustic temperatures of Grimsrud and Werntz determined using both 

helium-3 and helium-4 as the thermometric gas exceeded temperatures 

measured in the 1-58 scale by between 1 and 7mK over the range 1.2 to 

3.8K. 

These results of Grimsrud and Werntz are in general agreement with 
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the ultrasonic thermometry of Plumb and Cataland [21-247 in the region 

in which they may be compared. The temperatures determined by the 

latter using a variable—path interferometer excited at a frequency of 

1MHz were higher than T-58 temperatures by between 5 and 12mK in the 

region 2 to 5K.with a 10mK difference at the normal boiling point of 

helium-4. However, the results of Plumb and Cataland extend over the 

whole range 2-20K at intervals of roughly 1K thus forming a detailed 

ultrasonic temperature scale over a wider range than has yet been 

achieved with low frequency acoustic thermometry. This was a major 

factor in our deciding to pursue low frequency acoustic thermometry 

rather than the high frequency method. 
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CHAPTER II 

THE THEORY OF THE ACOUSTIC INTERFEROMETER WITH IDEAL 

BOUNDARY CONDITIONS 

There are many possible forms of acoustic interferometer which 

might be adopted for the measurement of wavelength and hence acoustic 

velocity. The most familiar devices are those where the sound 

propagates axially in a cavity of rectangular or circular cross 

section between two reflecting end faces. But in principle any cavity 

might be used where reflected waves have a constant phase relationship 

with incident waves and where the wavefronts are coextensive thus 

allowing interference to take place. For example a sphere excited at 

its centre or the region between two concentric spheres would suffice. 

In practice, however, only the two familiar cavities mentioned above 

have been widely used. This arises firstly because the wave equation 

for an inviscid fluid is easily stated and solved in the appropriate 

coordinate systems, and secondly because, unlike the spherical 

interferometers, they are easy to construct with a high degree of 

accuracy. Here only the cylindrical resonator is discussed since it is 

universally used for Low temperature acoustic thermometry. It is not 

feasible to manufacture a rectangular cavity with truly squared 

vertices other than by assembling four separate flat walls. These have 

then to be effectively and reliably sealed and to remain so at the 

lowest temperatures. Such practical cryogenic problems are less acute 

with the cylindrical cavity and so it has always been the preferred 
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alternative. 

The cylindrical interferometer may be used in several ways. It can 

be excited at one end by a suitable transducer which may also serve to 

monitor the resonances in the cavity. Alternatively a separate 

receiver, commonly the opposite end reflector, may be employed as 

well. Wavelengths may then be determined either by measuring the 

resonant frequencies of a cavity of fixed length, or by measuring the 

lengths at which a variable—path cavity resonates at some constant 

frequency. The results about to be derived will apply equally to 

variable—path and variable frequency instruments. But for the most 

part we shall restrict our investigation to interferometers where a 

single transducer is used both to excite the cavity and to monitor the 

sound. This better suits the type of experimental instrument 

ultimately adopted for our measurements . Generally the extension of 

the theory to the other case will be obvious. 

2.1 The Ideal Interferometer  

In the absence of viscosity and of effects attributable to the 

thermal conductivity of the boundaries of the cavity, the general 

problem of deriving the acoustic field within the cavity (Figure 2.1) 

becomes very simple. Following Hubbard [26.27] we assume that the 

transducer at z=l vibrates like a perfect piston, i.e. the amplitude 

of its vibration at any instant, t, is the same over the whole 

radiating face: 

o e Ca. Li) 

where is the angular frequency of the vibration and i is the 

imaginary unit. 

It is assumed that plane waves travel in both directions in the 

cavity suffering attenuation on reflection at the transducer, T, and 
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FIGURE 2.1  

The Acoustic Interferometer Cavity. 

.., 
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the reflector, R, and in the body of the gas itself due to the usual 

mechanisms of acoustic absorption. The respective reflection 

coefficients, R and R 	are taken to be real and only slightly Less 
R 	7 

than one so that 1—R 	<<1. If 1—R 	:141 where dis the acoustic 
R,T 	R,T 

absorption coefficient and I the length of the cavity then we may say 

that losses by reflection •and absorption are comparable. Practical 

values will be discussed at the end of this section. 

Summing the negative and positive going waves we obtain 

	

Jot 	00 	
nrI 

 -(Atih) (Davi. il.t -2-) 
ctz ) .- S,  e 	E Rik RT  e 

n=o 
00 	11+1 IA — (014 i.k ) a. an+ 6 tt R) 

—E RR RT e 
rt=0 

4.cat 	(ctf )(I- 	- (4+ 	Gi+ 
= 	e 	e 	- RR e  0 

- 	Rikr e 

where k=2717A»clis the wavenumber, A being the wavelength of the 

sound. This equation enables us to calculate the acoustic reaction on 

the transducer from the following relation for the acoustic (i.e. 

excess) pressure in the cavity: 

- ec,' s(x.) 

2. 
k 	

--Cat ik) 	(cli-tk) (.14 
iec 

 
+ Rik e  

k.) 4. 
- Rik R-s- e 

where e  is the density of the gas, c the velocity of sound and where 

we have made the approximation ik for the factor a+ik). Thus at the 

— a 0..4-ik)1 

I 
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face of the transducer (z=t) this becomes 

—a(ck-tik)4, 
p (1) = teclk 	+ RR e •  

- 1(01.-Fik)-t 1 	- RR Fvr e. 

or 

(2-• 1. 1i) 

I)(1) = ie 	{Rc, 	— i X c, 	 • 5) 

where 

a. 	- 
- RR RT e 	+RA (1-RT)e 	c,os 

2.  e. 	cos a.kt +Rit  R,a_ e- 4-t  

and 

X c, (13 = 

 

RR. ( +11-r) e 	sin  silk  

 

 

I — RaRr 
ad 	1, -4014 

e
- d) 

cosa.11.4. + 	tkr
a_ 

e 
1.1) 

Since over the face of the transducer both transducer and gas have 

the same particle velocity their respective mechanical impedances, Z 
—1` 

and Z (Dr may be added to give the total mechanical impedance 
G 

Z(•-t) = ZT + ZsO) 	 0.- I- s) 

where 

Zci  (i) = per) = _e c I Rci 	— X c U)  

i • 9) 
and A is the area of the radiating face of the transducer. 
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Equations 2.1.6 and 2.1.7 are in agreement with the relevant 

results of Hubbard if we substitute zr=R =R =CR +R )/2 for 
RT RT 

Our expressions have the advantage that R and R have 
R 	T 

assumed to be equal. — an important consideration when one 

R and R . 

not been 

or both of 

the coefficients is very low. However, with the current assumption 

that 1—R <<1 Hubbard's approximation can be seen to be very accurate 
R,T 

in the vicinity of a resonance when R (l) takes its maximum value and 
G 

X (l) is zero. This arises because cos(2kl);-1 near resonance and 

because 	the 	(identical) 	denominators of R (l) and X Cl) are 
G 	 G 

symmetrical in R and R which appear only in powers of the product 
R 	T 

R R . Since they appear as 	 the numerator of a factor R (1+R )12 in 
R7 
	

R T 
X (1.),X Cl) may be 

	

	 by 	Hubbard's regarded as well represented 
G 	G 

approximation for all values of kl and dl. It is exact both at 

resonance and antiresonance. R Cl), on the other hand, ,has an 
G 

approximate minimum value of Kl+(1—R )/2 at antiresonance which, 
R 

depending only on R , may not necessarily be equal to Hubbard's 
R 

corresponding approximation, 1+(1—W)/2. However, it is nearly always 

possible to regard this quantity as being negligible in the 

measurement of the velocity of sound'in the present context. Thus for 

our purposes we shall consider any interferometer with which we may be 

concerned as having end faces with equal reflection coefficients, W. 

Then with Hubbard we have 

- 1444 	 d_d- 
e 	+ iC I -20 e co% ukt 
a 2A1 

e 
- 	

czs xikt + 4e-14" • 
(2.1.1o) 

'Rs 

and 

I 
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Xs(.1) 	 + I ) strt A.k 	2.• • 

- 11('-e-2LitoS 	+etc 4"1  

Figure 2.2 shows the form of the functions R (l) and X (I) and that 
G 	G 

the locus of Z (l) is a series of circles in the complex plane which 
G 

are approximately touching when Z (l)=0 if 1—W<<1 andoLL<<1.The ratios 
—0 

of the diameters of the impedance circles are shown as being 1 : 1/2 : 

1/3 : 1/4 : ... diminishing as the order of resonance, N, increases. 

This is characteristic of the situation where reflection losses are 

negligible (1—W<<Al). In this case equations 2.1.10 and 11 simplify to 

give 

'Rs (4.) 	sink axtk 	 (1.1./a) • 

cosh 2.c1.4 - cos 

and 

= 	sift 	(1.1. t3) 

cosk icta - cos 5.1z1 

From equation 2.1.8 it can be seen that the point Z (l)=0 on the 

impedance circles will be located at Z in the complex plane and that 
T 

Z(l) will be the vectorial resultant at Z 41 (l). For the familiar 
—T —G 

case of an ultrasonic quartz crystal transducer driven at resonance 

Z 101 and the circles Z (l) would lie symmetrically about the posative'  
—T 	0 
real axis touching the origin. In that case 2(1), the experimental 

function generally measured, would have the approximate form of R Cl) 

with exact agreement at resonance and antiresonance i.e. when l=042 

or (2N-1)h/4 (N=1,2,3, ...). The form of Z(l) for the example of 
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figure 2.2 is shown in figure 2.3. 

It can easily be seen that if an experimental plot of Z(l) such as 

this is obtained, then one has-all the information necessary to draw 

the impedance circles of figure 2.2. The diameter, D , of the 11th • 
N 

impedance circle is obtainable from the difference between the maximum 

and minimum values of Z for the resonance. Thus all the impedance 

circles may be drawn on collinear diameters touching at one point on 

their circumferences. It is then only necessary to locate the origin 

of the complex plane. It will lie at a distance Z from the point of 
T 

contact of the circles. It will also lie at that distance from the 

centre of any one circle given by the mean, Z 	of the maximum and 
AV 

minimum values of Z for that circle. Thus, having drawn the circles, 

one may draw two arcs to locate the origin — or rather the two 

possible positions of the origin. Which is the true position is easily 

determined by seeing from one's experimental Z(L) curve whether Z(l) 

must increase or decrease as the circles are traversed in a clockwise 

direction from antiresonance to resonance. 

Having drawn the complete figure from the measured function, VD, 

the values. Z 	of Z at resonance may be taken by measuring the 
RES 

distance from the origin of the extreme points on the circles for 

which Z (l) is entirely real. The corresponding values, l 	of l at 
RES 

resonance may then be read from the original experimental curve. As 

can be seen from figure 2.2 the functions R (l) and X (l) are changing 
G 	G 

very rapidly at resonance in such a way that nearly the whole 

circumference of a circle is traversed for only a small change in 1. 

It should be possible using this type of instrument to measure 
4 

velocities to several parts in 10 and so. all other things being 

equal. to measure temperature to within twice this fractional error. 

Some idea of the relative importance of the expected absorption and 

reflection Losses may be obtained from TabLes 2.1 and 2.2. The 
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FIGURE 2.2  

Showing the Combined Complex Mechanical 

Impedance 2 of Transducer and Gas Loading. 
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A 

FIGURE 2.3  

The Experimental Trace of Z(l) from which 

Figure 2.2 may be Constructed. 
\ 
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reflection losses have been calculated from a formula due to Herzfeld 

[287 which allows for the losses arising from the existence of a 

`temperature" wave which occurs in the gaseous medium when a 

compressional adiabatic wave is reflected from a solid reflector. The 

combined temperature wave amplitude and the normal reflected wave 

amplitude must equal the amplitude of the incident acoustic wave. i.e. 

the particle velocity must be zero at the boundary. Thus the reflected 

acoustic wave must be diminished to an extent beyond that to be 

expected solely from the impedance mismatch of gas and wall. The loss 

does not . arise from the propagation of heat into the wall since it 

periodically flows in and out of the wall, but is due to the 

temperature wave causing the excess temperature of the gas to be 

slightly out of phase with the acoustic pressure. Only when they are 

in phase will the work integral per cycle vanish. 

In the derivation of Herzfeld's formula, which we prefer to write 

b 
=_Le9

' 0.0) 4 	(.I.1) ecp  

where K is the thermal conductivity of the gas and c the specific 

heat
p  

per unit mass at constant pressure, it is assumed (entirely 

justifiably) that the thermal conductivity of the solid reflector may 

be regarded as being infinite in comparison to that of the gas. 

Thus Irshould depend only upon the transport properties of the gas in 

the interferometer cavity and not upon those of the end faces. This is 

fortunate in that the opposite ends of an interferometer cavity often 

require to be made of different metals (e.g. when one end is to be the 

diaphragm of a transducer and the other a movable reflector of the 

same metal as that of the cylindrical bore). Thus if Herzfeld's 

mechanism of reflection loss could be guaranteed to be the only one 
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TABLE 2.1  

Reflection Losses and Absorption Losses. 

Frequency 
(Hz) 

2 

1-/r 

-5 

bo( 
KH 

-5 

oC 

—1 
cm 

-10 
10 4.8x10 9.2x10 4.2x10 

3 -4 -4 -8 
10 1.5x10 2.9x10 4.2x10 
4 -4 -4 -6 

10 4.8x10 9.2x10 4.2x10 
5 -3 -3 -4 

10.  1.5x10 2.9x10 4.2x10 
6 -3 -3 -2 

10 4.8x10 9.2x10 4.2x10 
7 -2 -2 0 

10 1.5x10 2.9x10 4.2x10 

The rough values of 1-v, bo( and 0( at a pressure of one atmosphere 
KH 

and a temperature of 4.2K are shown. They have been calculated from 
equations 2.1.14, 15 and 16 using the following values for helium-4 gas: 

3 
R=2.079x10 J/K.kg 

3 
C =3.917x10 J/K.kg 
p 

0-=2.05 

c=120.8m/s 
-6 

9=1.27x10 Pa.s 

K=0.009W/K.M 
3 

e=11.9kg/m 
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TABLE 2.2  

Reflection Losses and Absorption Losses. 

Frequency 1-6 bd 
(Hz) KH 

—1 
cm 

2 -4 -4 -10 
10 3.0x10 3.3x10 5.1x10 

' 	3 -4 -3 -8 
10 9.5x10 1.0x10 5.1x10 
4 -3 -3 -6 

10 3.0x10 3.3x10 5.1x10 
5 -3 -2 -4 

10 9.5x10 1.0x10 5.1x10 
6 -2 -2 -2 

10 3.0x10 3.3x10 5.1x10 
7 -2 -1  0 

10 9.5x10 1.0x10 5.1x10 

The rough values of 1-15. bd. and °cat a pressure of one atmosphere 
KH 

and a temperature of 273K are shown. They have been calculated from 
equations 2.1.14. 15 and 16 using the following values for helium-4 gas: 

3 
R=2.079x10 J/K.kg 

3 
C =5.297x10 J/K.kg 
p 

0-=1.63 

c=971.9m/s 
-9 

9=1.86x10 Pa.s 
-2 

K=14.15x10 J/K.m 
3 e *0.1785kg/m 
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present, then there would be a sound theoretical justification for 

adopting Hubbard's approximation. 

Two absorption coefficients are shown. The first,o( , is 
KH 

calculated from the formula for the absorption coefficient for sound 

in an infinite tube which was derived by Kirchhoff and Helmholtz 

t29,30]: 

I 

± 	+ Cor-1)( K )11 [co i 	(a..1.15) 
be 	 e  cp 	2. 

where ti  is 	the 	kinematic 	viscosity and b the radius of the 

interferometer cavity. Some obvious points of comparison with 

Herzfeld's formula for reflection losses are apparent here, notably 

the dependence on the square root of the frequency of the sound. Such 

a dependence on frequency commonly occurs with boundary layer 

corrections to a first order analysis of an acoustic problem based on 

the assumptions that all propagation is both adiabatic and 

frictionless. It is not suggested here that this formula is anything 

other than a device for rough approximation in this situation. A 

fuller discussion on the problem of boundary layer corrections will 

follow in the next chapter. It does, however, give some indication of 

the relative importance of this mechanism of absorption compared to 

Losses by reflection. 

The second absorption coefficient, o(, is calculated from the 

familiar equation [31] for the effects of viscosity and thermal 

conduction within the body of the gas itself: 

1 	4 V + Co- t) K 	41a.  
a. C3 3 	 c Cp 
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This mechanism depends on the square of the frequency of the sound 

and so may be expected to predominate over both the aforementioned 

,boundary loss mechanisms at sufficiently high frequencies. Tables 2.1 
mr 

and 2.2 show this. The values used for the various parameters occurling 

in equations 2.1.14 to 2.1.16 are also given. Since they are only 

roughly known the values of d. ,ck and 1-1rshould be regarded as being 
KH 

comparative rather, than absolute. 

In the equations for Z R and X the argument of the' functions 
G 

has been the length of the cavity, I. It is equally valid to regard k 

(=2X/Ak=c4c) as the variable and to apply the equations to the 

aforementioned fixed path interferometers operated at variable 

frequency. There is, however, one practical problem which arises in 

the latter case when drawing the impedance circle diagrams. For the 

fixed path cavity it is possible to assume that Z 	is a. complex 
T 

constant whereas this is unlikely when the frequency is varied. It 

would be expected that Z might remain approximately constant over the 

narrow bandwidth of a single resonance, but not that it would be the 

same at successive orders of resonance. This would result in the 

corresponding impedance circles of figure 2.2 ceasing to lie on 

collinear diameters so that for each circle a new determination of Z 

would need to be made. More important, however, it would be impossible 

to infer anything about the relative magnitudes of the absorption and 

reflection losses since these,. too, change with frequency and require 

at least two circles to be taken at any one frequency for their 

determination. The full significance of this will be discussed at 

length in Chapter IV where practical designs are considered. 
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2.2 The Effect of Practical Transducers  

The assumption of section 2.1 that a transducer behaves like a 

perfect piston vibrator is obviously implausible in practice. At low 

frequencies driven diaphragms of stiff metal sheet are frequently 

employed. These diaphragms are clamped at their edges and so must flex 

if they are to vibrate at their centres. The conventional quartz 

crystals of ultrasonic interferometry may also fail to approximate to 

the ideal in many cases. 

The effect of such vibrations is to excite the higher modes• of 

propagation in the cavity which are, in addition to the zero order 

(plane wave) mode, allowed solutions of the wave equation. Each of 

these higher modes can be shown to have a unique phase velocity which 

is higher than that of the plane wave mode, and a characteristic 

cut—off frequency below which it is severely attenuated. Often.workers 

with the acoustic interferometer have operated at frequencies well 

above many of these cut—off frequencies and have observed "satellite' 

(sic) peaks corresponding to resonances of the higher modes. t32-34] 

When unresolved these parasitic resonances can Lead to errors in 

measuring the velocity of sound due to the increased phase velocities 

of their parent modes. Measured values of absorption coefficients are 

also too high because of interference between the plane wave 

resonances and those of the higher modes. 

The purpose of this section is to show how the amplitudes of the 

higher modes may be calculated from the way in which the transducer 

vibrates. Knowing this it should be possible to decide in advance the 

suitability of various possible designs of transducer for working at 

high frequencies. 
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2.2.1. The Form of the Normal Modes  

In order to establish the form of the normal modes we follow a 

similar method to that used by Krasnooshkin[35) except that we shall 

allow for the angular dependence of the modes as well as for their 

radial. dependence. It is assumed that a velocity potential 

CD 

ic.)E 
(*el 	e 	 (2,1. 

exists such that 

where q =k —id. 	is the complex wavenumber for propagation in the 
00 00 00 

unbounded medium. Thus 4, is the free gas absorption coefficient and 
00 

k 	the corresponding wavenumber (previouslydand k respectively). 
00 
Expressing equation 2.2.2 in cylindrical coordinates it becomes 

+ 	 I 1. J. 	,c 	 e  2 
+  B  1-0 	r_ 0 

Assuming a solution of the form 

ce (1.09,x) = Rt.() 009)Z(x) 	(2.2.0 

this separates into. the three equations 

(a.. 2...3) 
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(ER + 
&fa' 	11.  

° 	2 	2 ,  
where —q and —m are the respective z and e separation constants. 

Solving 2.2.5 we obtain 

Z 	oc 	etc 	
- 

° 	K e 
ic'.  

where J and K are constants. Assuming perfect reflection at z=0 

Ci.e.lr=1) we have 

0 (2.- a.. 9) 

so that 

and 

a_. 
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Z (X) ce cos Qt-4 

We prefer to write the solution of,equation 2.2.6 in the form 

CO Gc ri cos me 	sirt 

m will be restricted to integer values so that 

c (`-() ix)•= ce (v) e +/Yi )  X) (a.2.1.$) 

Equation 2.2.7 is Bessel's equation with solutions 

L Tin  ( too Fl) + M 	 2.. I it) 

where L and M are constants and J and Y are Bessel functions of 

order m of the first and second kind respectively. Since 

yn., (0) 	- 00 	 Ca.:J.1s) 

we require that M=0 giving 

'R (-r) aC Tra  (Yj 41.20-6 	 (2.-1.16) 

We shall assume that the wall of the cylinder is perfectly rigid so 

that the radial component of the particle velocity must vanish i.e. 

0 (z.z.0) 

r b 
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for a cavity of radius b, or 

eL 3:1 (X) 
cLX 

  

t0 
X 	b J cv.2-0  - 

 

    

2 2 1/2 
where X=r(q -q ) 	. 

00 
The (n+1)th solution of this equation is given by 

X„n  = . 	ct,a 
	

IGO 

Some values of X 	which are always real (see Appendix 2.1) are 
mn 

given in Table 2.3. It will be noticed that since b and q 	are 
00 

constants, equation 2.2.18 gives rise to a series of complex 

wavenumbers, q=q 4, for the modes corresponding to the various values 
mn 

of X . q may be calculated from 
mn mn 

Ci-rYtn. CVO Co 
Ott  

)411  

whose real and imaginary parts, k 	and -di. respectively, are given 
mn 	mn 

by 

kVA h. itoo  — cte.0 	Kati.) 4 i 	 t11) 4 oco  ko  
6 

and 

ct-oo Ito() iki" 

k 	/k 	and c( ig 	are plotted in figure 2.4 as a function of 
mn 00 	mn 00 
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TABLE 2.3  

Some Values of X . 
mn 

n= 0 1 2 3 4 5 

= 0 	0 3.83 7.01 10.17 13.32 16.47 

1 	1.84 5.33 8.54 11.71 

2 	3.05 6.70 9.97 13.17 

3 	4.20 8.01 11.37 14.54 
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k /k 
mn 00 

c( /0( 
mn 00 ' 

1 

FIGURE 2.4  

The Dependence of the Wavenumber and Absorption Coefficient 

upon the Order of the Mode. 

The cut off condition for the mnth mode is seen to be k =X /b. 

00 mn 

A 

1 

X 
mn 

bk 
00 



-50— 

X /bk . Although full curves are drawn it will be appreciated that 
mn 00 
they represent the general distribution of discrete points each 

corresponding to a value of X . At X =bk =2nbbk 	(where b/A 
mn 	mn 00 00 	00 

like l/N 	is to be considered as a fundamental scaling parameter of 
00 

the interferometer) it can be seen that the wavelengths, A =2H/k 
mn 	mn 

of the higher modes become very Large as do the corresponding 

absorption coefficients,o( . This gives the cut—off condition for a 
mn 

high order mode. The larger b/A 	the larger is the value of X at 
00 	 mn 

this point and the greater the number of higher modes which can 

propagate .in the cavity. 

The dependence of the phase velocity of the mnth mode upon m and n 

arises from the z and a separation constants of the wave equation 

remaining in the radial equation 2.2.7. The necessary imposition of 

the radial boundary condition 2.2.17 then puts the constraint 2.2.20 

upon the wavenumber, q. requiring it to take only the values. q . 
mn 

Consequently the phase velocity of'the mnth mode will be 

Cmg 	to Arne% 

which must also take a set of discrete characteristic values different 

from c =0/k . Combining the expressions for R(r). B(e) and 2(z) we 
00 	00 

obtain 

( 	(km  CoVitke twv,s‘:,,A.pko cos ot.  
Firma 

( 2.. a.. a.$) 

for the form of the mnth mode. Its amplitude will be 
2 	2 1/2 	 —1 

IA +B .1.1F(A 	+B 	) 	with a "phase lag" on 	of tan (B /A ). 
mn m mn mn 	 mn mn 
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where t (r,e) is the amplitude of vibration at (r,e) on the face of 
0 

the transducer. Equation 2.225 thus asserts the continuity of particle 

t.) —c
c-

01. 	(kn.  (Xrn,i(tfihm  costvez+-15hm.Sirme) Sinci.mri4 
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2.2.2. The General Solution and the Amplitudes of the Normal Modes.  

The general solution,l(r,ea), of the wave equation in the cavity 

will be a superposition of the normal modes. (i) (r,e,z): 
ran 

(set a )7.) 
ao 

 

oo 

E E im(Xmrcr)(ntyln  coSvne 13 111A Sinine) CtSCI nt=o and 	 .  

Applying the one remaining boundary condition 

_ 

    

(ScPc,o) e14*) .a-a5) 

      

       

we obtain 

velocity at the transducer (assuming that no temperature wave is 

present i.e. that =1). 

The amplitudes A 	end B where m>0 are simply obtained from the 
mn 	mn 

orthogonality relations for circular functions and Besse'. functions. 

Multiplying equation 2.2.26 by cosje or.(sinje) where j=1,2,... and 

integrating from e=0 to e=2Trit becomes 

CDS . e  Cne) a.0 si" 4 	0 
0 
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since 

So 	Co S 	sin aweCt.() 	0 
• sumCbs 	Co% N.0 	 it 

SixLie co sivt.0 
0 sistn4.6 	 al • • 

where & is the Kronecker S. 
jm 

Now multiplying by rJ (X r/b) where k= .1,2,... and integrating 
j jk 

from r=0 to r=b we obtain for m>0 

Amin 
I?) nut 

a, 
b 	ci-mrt (I- ill 2/X1  )TIX m m $itli.nta  

111 

io Jm ( X mr)  cos !no 	e de 
stn 	o  

(x.a.a.g) 

Here the following relations for Bessel functions have been used prior 

to changing the subscripts j and k back to m and n respectively: 

1 Y.  
Jo 	t b 

(Xtivc)  ckc 
6 _a. 

- sika  r Jj 
J o 	b 

cir 

= Skn 1)2'  (1—YAiit)•TAX:)1A.) 
a 

Ca.. a. xi) 

For the case where m=0 the answer is only slightly different. 
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Integrating equation 2.2.26 from e=0 to o=21; one obtains 

(1-1 9)G1.6 ,,  

and from the relations 2.2.29 

27. 
Ron 2     Vcie) ac de 

To 0 
blei-or:To (Xon.)

on  

In particular, since J (X )=J (0)=1, the amplitude of the plane wave 
0 00 0 

mode will be 

b 
oo =  	occ-, e) ac clue 

0 -10 
si.n. 

F00 	r00 

	

The amplitudes B 	cannot be derived,-but are not required since 
On 

when m=0, sinme=0 and the second term in the expression for cp 
On 

vanishes. 

We prefer to restate these results in the following form so that 

the amplitudes A and B 	cease to be functions of 1, and so that an 

	

mn 	mn 
obvious analogy may be drawn with the analysis of the ideal case of 

section 2.1: 

t-L 	
1_0,1 	(Xonr) non  sin. 0% I 

6 	 on 
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1 CYO  GI  n .7- 	thnIrl + -i.ocnut) x 

Trim (  )(berm 1r)  (Can CDS tu.13 + ahymcirtnte) 
b 

X (Rtnt,(4) — t XhIn (-0) 1 	 (3... X - 31) 

where generally 

CSR = 	2.i.c..) 
2/ Wirt 

17 ba.  (12L4 + 4i4.1.-,) ( I — rreAttn) TINA-2  ( )(nu%) 

b 
xf 	i Y J I.T.,(  Xrvm-tr)  

0 0 	b 
(-LYS Im-es 

1-11 .4.0 
(..c) -c) e)  et,9 c 01 

U. 2..14.) 

2 2 
(2 being replaced by 1 if m=0 where m /X =0 also), 

On 

Iknut CO = s 1..tA.k 2.41,4,,,,,Q ( 1.. a...ss) 

  

ccAll. 2.46444.4. — cps 2ktu.i.. I 

and 

Xwtvi (4.) -= stir 2. tz.„,, 4 	 (9--1.36) 

   

cock 2.d,,,,. 44 - cos 2.1z0,..t, Li 

The functions R Cl) and X (l) are of the same form as R (t) and 
mn 	mn 	 G 

X (l) defined by equations 2.1.12 and 2.1.13 in the ideal case. (The 
G 
latter now become R Cl) and X (1).). Since k <k 	when min>0 the 

00 	00 	mn 00 
maxima of R (l) will be more widely spaced as will the corresponding 

mn 
points on X (l) and the increase in the absorption coefficients will 

mn 
cause both functions to decay more rapidly with increasing order. For 
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evanescent modes 	»k 	and the functions R 	and X 	are of 
mn mn 	 mn 	mn 

negligible value even at resonance (1.--0t /2, N=1,213,...). It is then 
mn 

only necessary to perform the summations of equation 2.2.33 over those 

modes whose cut—off frequencies are not exceeded. For transducers of 

good design the amplitudes C 	and D of the higher modes are in any 
mn 	mn 

case only significantly Large for the lower values of m and n as will 

be shown. In practice, therefore, it may only be necessary to take the 

first few modes into consideration even if others may propagate in the 

cavity. For such modes ok may still be small in comparison to k 	and 
mn 	 mn 

so may be removed from equations 2.2.33 and 2.2.34. 

2.2.3. Velocity Errors Due to Higher Modes  

The effect of the higher modes on the measured impedance of the 

transducer may now be calculated. The power dissipated in the 

interferometer cavity will be given by: 

b Yvci (.1 ke -1:0 (.t) Re it (Al ct'cle 
0 0 

From 

e 	cr)e re) ethel 
at 

we have 

Re C4.1 	E E 
frk 

ty, (Xmn-r)  Crirt  CoS tete 4-3)ma Sin rile) X 

sinot 	cosu)t)} 
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and from • 

(43 = i•G) c6clo) e 

we obtain 

[t(4.) = -S (ne Sin cot o   

Thus, substituting these expressions into equation 2.2.37, it becomes 

‘;,/4(4) '= E E F lkm„(4) sin tzt• Xmagol stru.)toasatl 

(1•Z•38) 
where 

a.ecnu,coal(rbali-rnalX,,t,,) Jn,1 Xrrrt,)) 

[ 	bf  ar; 

TyL()SmELL-) cosme (•(',e )
o 	 0 

a. 

T (Xmolsinnte  d:cde 
0 o 	1) 	° 

(1.1•19) 

2 2 
if m>0 and half this if m=0 (where m /X =0). 

mn 
We now suppose that we may write t (r,e) in the form 

'0 

% t) 	= 
	

s (t )e 	 O.. a .40) • 

where t is the amplitude of vibration of that point on the radiating 
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face of the transducer at which the amplitude is measured — usually 

the centre. This is always possible in practice and would only cease 

to be so were different parts of a transducer able to vibrate entirely 

independently. Since such devices are not used to excite acoustic 

interferometers the treatment remains entirely general for all 

practical purposes. 

Wo . for to write equation 2.2.38 in the form 

CttiL)  = 434  C 	rt  L C1nutikout(1) Str1 

-t- 	E Clam Xmat)) StricA CoStAl n 

where 

Given equation 2.2.40 it may easily be seen from equation 2.2.39 that 

G 	is independent of r . Thus the right hand side of equation 2.2.41 
inn 	'0 
has the familiar form for the power dissipated on a damped harmonic 

system of impedance Z=R—iX: 

W 	= a. 2. 	
R strx (-gat --- X s into E cos 43 E 

We may therefore assign some effective impedance 

= 	R.c CA) — 	Xc, (4) 

qmrteRtna (/) 	gtn.n Xtm, 

• 
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to the gas loading which may be conceived of as an impedance 

associated with a vibrating system which has the same velocity as the 

centre of the transducer, -(4sinot. 
0 

Some power, W , will also be expended on the transducer itself. If 
T 

we regard this too as a system to which the same unique velocity may 

be assigned then we may write 

WT 	= 	
a 
;0

a 
RT  sir t cat -I- X T  sinotcoscobl 

where R and X are constants chosen to give the correct value for W . 

The total power dissipated will then be 

W(4.) = 	1:4-r  + 	(1) 

warn (RT  4-Rctt)) sirt4cot 

+(XT  - Xc,(4))sinA)E-cosc,361 

which enables us to regard the combined- system as a system having a 

resistance R=R +R Cl) and a. reactance X=X -X Cl) vibrating with a 
T G 	 T G 

single easily measurable velocity, -ceisimt. At constant driving 
0 

force this combined impedance could be measured in arbitrary units 

from the reciprocal of the velocity or displacement amplitude at the 

centre of the transducer. 

This recourse to first principles for a definition of the combined 

mechanical impedance is forced upon us because the particle velocity 

and acoustic pressure are, ex hypothesi, no longer constant over the 

face of the transducer. Consequently a simple application of the 

electroacoustic analogy cannot be made here as in section 2.1. 

Reduction of a system electrical or acoustic, to a lumped circuit 
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has to be possible if the electroacoustic analogy is to function. and 

this presupposes that currents or particle velocities may be 

considered to be constant over the cross sections of the circuit 

elements. 

It is possible to define the state of resonance of the gas in 

, several ways which, prima facie, may not be equivalent when higher 

modes are present in the cavity. The cavity might be said to resonate 

when the impedance Z (1), is entirely real or, alternatively, when the 
G 

real part of Z (l) is greatest (that is when the maximum time averaged 

power is dissipated in the cavity at constant amplitude). These 

alternative definitions are, however, shown to be equivalent in 

Appendix 2.2 provided that the frequency is high enough to ensure that 

the higher mode resonances are far from being resolved. Consideration 

of some practical cases in the next section will indicate that, it ,is 

generally only the lower modes (small m and n) that have amplitudes 

comparable to that of the plane wave mode. Where calculation shows 

this not to be the case it is assumed that the transducer design in 

question would not be adopted. Furthermore, if such higher modes as 

are present in strength have their cut—off frequencies exceeded to a 

large degree then, as may be confirmed from equations 2.2.21 and 

2.2.22, k 	and d 'will vary only slowly with m and n thus leading to 
mn 	mn 

the 'bunching' of these major resonances responsible for the poor 

resolution at high frequencies. In this situation the derivation of an 

expression for errors in measured velocity is comparatively simple. At 

somewhat Lower frequencies where one or more of the higher modes may 

be almost resolved, a correction to the simple case may be derived. 

However, the fOrm of this correction will be slightly different for 

the two definitions of resonance. We shall pursue an analysis in terms 

of the second criterion for resonance, and. should it be required, the 

other case may be dealt with in an exactly analogous way. Such 
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differences as will be found are briefly outlined in Appendix 2.2 and 

do not in any way affect the validity of the general conclusions which 

the expressions for the velocity errors lead us to. 

It is thus possible to make a general analysis of the effect of 

practical transducers on the measurement of the velocity of sound by 

considering only the simplest definition in terms of the maximum 

average powe'r dissipation. Taking a time average of equation 2.2.38 we 

have 

. 

wcu) = Wit  g 	E E cput Rynn  (1) 	(1-c1.43) 
m n 

for the power dissipated in a cavity of length, L. It is clear from 

this that an experimental measurement of W (l) would produce a 
• G 

superposition of resonance curves each of the form R (l) 
mn 

corresponding to each of the modes present in the cavity. The 

situation is shown in figure 2.5. Two effects are apparent. Firstly, 

because the higher modes have increased phase velocities their 

resonances become increasingly displaced from those of the plane wave 

mode as the order of resonance, N, is raised. This results in the 

maximum of the resultant (group) resonance being increasingly 

displaced from that of the plane wave, so that the measured separation 

of the resonances is too large. Wavelengths and velocities are 

consequently overestimated. Secondly the group maxima appear to die 

away more rapidly than they should because of the increasing 

separation of the phase maxima. It may be seen from figure 2.5 that 

this comes about because the decay of the group maxima is larger than 

that of the plane wave maxima. Thus measured values of the plane wave 

absorption coefficient, clL 	will be too great like the measured 
00 

velocity. An estimate of the magnitude of the effect may be obtained 

by differentiating equation 2.2.43. We have: 
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A 
Measured 
Attenuation 

A 
True Attentn. 
of 00th Mode 

00 mn 	 

X /2 	 NA /2 
00 	 00 

mn 00 

FIGURE 2.5 

Showing the Effect of a Single Nigher Mode 

on the Measured 

Positions of Resonance and the Measured Attenuation. 
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Rrnn. 	) = 	sink 24(.)„.n. 

co<A, 	- Cos 9-itrruil 

tfvam 11  4- 

 

it 	( - 4rt ) z 	( 	- 44) 

the 	vicinity of a resonance where d 10( «1, k Lk 	and 
mn 00 	mn 00 

I =NX /2. We require that 
mn mn 

E EqntiAnytu.) E E 	Rynitt,t) 0 rn 
c 	

n 
lA 

which to a good approximation gives 

Inn - tn10  

ALA 	- thin )1  14  

where A =c1( l/k 	is the half-width of the ninth mode resonance at 
mn mn mn 

half the height of the resonance.A will be roughly constant and 
mn 

equal to )% for cases of interest since di = d 	and k Lk . At 
00 mn 00 	mn 00 

sufficiently high frequencies it becomes unlikely that any modes of 

significent strength will be resolved since 

Amn 
	> > 	ut - 4rnn) 	 .1 • 4 7) 

Then, since the t 	are constant, we have 
mn 

z • 	a) 
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so that 

ci nut .arrtri 	N EEQ tnrt Xrila ( 2 • .z rn rt 	 m 

   

E E Cnin 

 

11-1.i 2:: (inmn rn r‘ 

leading to a fractional error in measured velocity of 

Ac = L E  cm" (Amn -Aa30) =  E E Cru% Xrrt ( 9.. 2..50) 
TVL n  

E E cr,%71 	alkto E E cnn E 

It may be seen from 2.2.49 that I. at resonance depends only on the 

order of resonance. N, as would be the case if only the plane wave 

mode were present. Thus for situations such as these there can be no 

check from the observed separation of the resonances that errors 

resulting from parasitic modes are not occurring. Only if an 

examination of the symmetry of a resonance is made may such a 

situation become apparent. but even then it is uncertain since sets of 

amplitudes, G , may easily occur which preserve the symmetry of the 
mn 

peak whilst still causing it to be displaced. For example, if a single 

unresolved mnth mode is present in the same strength as the 00th mode, 

resonances would remain almost perfectly symmetrical. 

The range of applicability of the approximations 2.2.48 and 49 

depends upon the validity of the inequality 2.2.47. If 
2 

Cl 	)/2=l(X /bk ) /4 is taken as a rough estimate for (l—1 ) 
00 mn 	mn 00 	 mn 

then the requirement 2.2.47 becomes 

a. Ina. 

0100  o Xmn /16b (1.1.50 
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The values presented in and with Tables 2.1 and 2.2 enable the 
2 2 

quantity dL k 	to be evaluated for various different frequencies. 
00 00 

At a frequency of 1MHz in a cavity of 2cm diameter the approximation 
4 	4 

2.2.48 is valid for modes where X <<10.3 at the normal boiling 
mn 

4 	4 
point of helium-4 and where X 	at NPT. Should higher modes be 

mn 
present in comparable strength to those satisfying these conditions a 

better way of estimating the error is required. Rather than attempt a 

solution of equation 2.2.46 it would be preferable to calculate a 

first excessive approximate value of l from 2.2.49 and use it to 

recalculate a new set of amplitudes. G' 	thus 
mn 

cux 	(

tnAn )1  

A rnn  

G„ 	1 I + 441.1401,4   (v cip, (4, - 	a  
cok 

k 	(a.• 
which could again be used in equation 2.2.48. This could be repeated 

until the values of the amplitudes converged. However, it is not 

anticipated that more than one recalculation would be necessary in 

most practical cases. 

Inspection of the denominator in equation 2.2.52 reveals that the 

corrected amplitudes, G. 	will very rapidly become negligible once 
mn 

2 2 
the order of the mode is high enough to ensure that (l—1 .) >A . 

mn mn 
Thus it is possible to ignore these modes which, in any case, may be 

expected to be resolved. It is the case, therefore, that the above 

procedure offers a method of assessing errors due to higher modes 

whether they are far from being resolved or are, in fact, virtually 

resolved. The recalculated amplitudes, G. 	are not dependent on the 
mn 

value of l or the order of resonance, N so that our previous remarks 

on 	the impossibility of ensuring that higher,  modes were absent are 

cr.% n 
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still valid when modes are present which are nearly resolved. The 

difficulty is thus seen to be entirely general at all frequencies 

where it is possible for at least one higher mode to be present. In 

particular, it applies to the instrument used by Plumb and Cataland 

[21-24] for their acoustic thermometry. If this is correct then it 

would appear they were mistaken in arguing that the constant 

separation of the resonances in their instrument as the order of 

resonance increased proved that only a single wavelength (assumed to 

be A ) was present. However, examination of the amplitudes. G 
• 00 	 mn 
which could be expected with their type of instrument at a frequency 

of 1 MHz will show that errors from this source are likely to be 

negligible. The possibility of detecting higher modes from the 

increase in absorption coefficient is dealt with in Appendix 2.2, but 

is found to be unreliable also. 

2.2.4. Some Practical Cases  

The first case to be considered is that of an ideal transducer 

executing perfect piston-like vibrations. Values of G 	will be 
mn 

calculated for various diameters of transducer up to and including the 

cavity diameter, 2b. In the Latter case we would expect to obtain the 

result of section 2.1 where only the 00 order mode is propagated. 

Initially it might be expected that any transducer executing such 

'vibrations could excite only plane waves in the cavity. However it 

should be remembered that only modes characteristic of the cavity 

which satisfy the wave equation enter into the expansion of 	(r,e), 
0 

and that if the transducer has a radius ado there will be a 

discontinuity at r=a which cannot easily be approximated to with a 

plane wave. This is one more manifestation of a general feature of 

approximation by orthogonal functions. - namely that when there are 

discontinuities present in the function to be represented, the higher 

terms in the expansion are required in greater strength. It is the 
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increasing number of maxima and minima usually found in the range of 

definition of the higher order functions which enables them to 

represent discontinuities more readily than the lower order members of 

the set. 

The present case is shown in figure 2.6. From the definition of 

piston—like vibrations we have 

to 	= o 	(1f- 

= 	 < a-) 	(L.z.64.) 

From 2.2.39 and 2.2.42 

(zec„,,, 	b (1-inmn r VX n(X 

X ( I t DT„ 
o b I 

1; 	 art 

(S 	co ri,Le cif; 	+ 	sin me de 
o 

) (a 

or half this if m=0. Thus 

) _ > o Ca•.z. 56 

con =  ‘;.; co, -t Too (X010- .) 

  

a. 
= 	kr% 	e cart (J t Xort.o- to )  

Xon To  (Xon) 
( a. a.. s7) . 

 

where n>0, and 

)Z 
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b 

z=0 	 z=l, 

FIGURE 2.6 

Showing an Ideal Transducer of Radius a Less than b. 

z 
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Ca..1.ss) 

 

Several points of interest arise from these results. Firstly, as 

expected, G =0 if m>0 or n>0 and a=b. All amplitudes are zero if m>0 
rim 

due to the e-integrals of equation 2.2.55 and our not having specified 

any e-dependence for the transducer vibrations. G =0 for n>0 when a=b 
On 

because J (X a/b)=J (X ) is dJ (X )/dX which is identically zero by 
1 On 	1 On 	0 On 

definition of X . Thus only plane waves may propagate in the cavity 
On 

when a=b concurring with the results of section 2.1. We have from 

equation 2.2.42 

ci( ) = nbacoo { R.. CI) 	X..(4) 	5`1) 

in exact agreement with equation 2.1.9. If the plane wave amplitude., 

G 8 is expressed in terms of its value when a=b we find 
00 

qoo (cL.4.-.b) 	= 

q c),(0„=b) 

a. (a.z•6o)  

13 

 

showing that the amplitude of the plane wave falls off very rapidly as 

the diameter of the transducer decreases. This is attributable to two 

causes - the decrease in the power radiated due to the diminishing 

area of the transducer and the loss of that power which goes to excite 

the higher modes of vibration . The former effect applies equally to 

ail modes of course, but nevertheless represents a practical 

difficulty in that the overall sensitivity of the interferometer is 

reduced. Expressing the Onth amplitudes in the same units we have 
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The amplitudes G 	to G 	are shown in Table 2.4 for a/b=1, 3/4, 1/2 
00 	05 

and 1/4. The fractional errors to be expected in a velocity of sound 

measurement have been calculated from equation 2.2.50 and are also 

included together with the resulting error in a temperature 

measurement made at 4.2K at a frequency of 1 MHz in a cavity of 2cm 

diameter. It can be seen that they are tolerably small even when 

a/b=1/4. When a/b is small the transducer behaves something like a 

point source in the cavity and the plane wave mode is barely excited 

at all. This situation is representative of interferometers whei-e the 

cavity is excited by entering the sound through a small 'circular 

, central port in one end face. Both De Laet [19] and Grimsrud and 

Werntz [25] used such a technique, but since both instruments were 

operated below the first cut—off frequency, f 	they would not have 
10 

'led to experimental errors. However the value of G for a/b=1/4 shows 
00 

how very inefficient a method of exciting plane waves this must be. 

The second model to be considered is perhaps of more general 

application. Many transducers are unable to vibrate at their 

perimeter, but may flex to provide a useful amplitude at their 

centres. At frequencies beloQ about 100KHz stiff metal diaphragms 

clamped at their perimeter and driven by a moving coil are frequently 

employed whilst at ultrasonic frequencies the conventional quartz 

crystal is often mounted in such a way as to restrict vibration at 

r=b. Some typical cases are shown in figure 2.7. In order to estimate 

the consequences of using such transducers we shalt assume the 

following form for k tr,e): 
'0 
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n 

Amplitudes 

a/b 

TABLE 2.4 

Transducer. 

2 	2 
2b k 	Ac/c KT at 4.2K 

G 	for an Ideal 
mn 

G 
On 00 (mK) 

0 1 1.000 * 0 0 
1 0.000 
2 0.000 
3 0.000 
4 0.000 
5 0.000 

0 3/4 0.317 16.8 0.26 
1 0.249 
2 0.061 
3 0.010 
4 0.006 
5 0.008 

0 1/2 0.063 29:5 0.45. 
1 0.164 
2 0.061 
3 0.017 
4 0.001 
5 0.007 

0 1/4 0.004 46.2 0.71 
1 0.019 
2 0.019 
3 0.009 
4 0.001 
5 0.000 

* By Definition 

All amplitudes G 	where m is greater than zero are zero. 
mn 
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A 

b 
	

a 

z=1 

(a) Stiff Metal Diaphragm with Radius a Greater than the Cavity Radius b. 

(b) Stiff Metal Diaphragm Clamped against•Mouth of Cavity. 

Cc) Quartz Crystal Transducer Clamped against Mouth of Cavity. 

FIGURE 2.7  

Three Common Transducer Mountings 

Where no Motion is Possible at the Perimeter of the Transducer. 
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0 	CP ?_ 0-) 

--(Y(c1z-1-1) 
o e 

> 

z.61) 

Thus away from its equilibrium position the face of the transducer is 

conceived of as being bell—shaped with a maximum displacement, 	at 
0 

its centre. Calculating the amplitudes, G 	as before we have: . 
mn 

CiMn 	0 . 	Cwt. > o) 

and 

  

00 k- e  coo 
4 u.t_ 	- s2/(i- set) )a-  6, 1•C4) 

5e 	cis 
C .  

where L=b/a if a>b and L=1 if a<lo. The variable s has been substituted 

for r/a. The integrals have been evaluated numerically and the results 

are shown in Table 2.5 as before. 
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T4BLE 2.5 

n 

Amplitudes G 
mn. 

a/b 	G 

for a Clamped Transducer. 

	

2. 	2 

	

2bk 	Ac/c AT at 4.2K 
on 00 (mK) 

-4 
0 4 5.752 0.005 7.8x10 
1 0.002 
2 0.000 
3 0.000 
4 0.000 
5 0.000 

-2 
0 2 4.582 0.160 2.5x10 
1 0.037 
2 0.004 
3 0.000 
4 0.000 
5 0.000 

-1 
0 1 1.000 * 7.030 1.1x10 
1 0.658 
2 0.043 
3 0.002 
4 0.000 
5 0.000 

-1 
0 3/4 0.316 12.192 1.9x10 
1 0.609 
2 0.012 
3 0.018 
4 0.000 
5 0.001 

-1 
0 1/2 0.063 26.466 4.1x10 
1 0.235 
2 0.113 
3 0.007 
4 0.004 
5 0.003 

0 1/4 0.004 88.932 1.4 
1 0.021 
2 0.029 
3 0.026 
4 0.016 
5 0.007 

* By Definition 

All amplitudes G 	where m is greater than zero are zero. 
mn 
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,2.3 The Effect of Geometrical Misalignment of the Cavity End Faces.  

Very often, when reporting values .for sound velocities 	and 

absorption coefficients measured with acoustic interferometers, 

workers have omitted to mention what errors are attributable to 

mechanical misalignments in their instruments. In general it is 

tacitly assumed that if errors in geometry are small compared to the 

wavelength of sound in the medium under investigation, then any 

resulting acoustic errors will be negligible. At low frequencies this 

condition is easily achieved and often it has been thought unnecessary 

to state the tolerances to which an instrument has been built. At very 

high frequencies, on the other hand, when wavelengths can approach 

orders of smallness not far removed from what are normally considered 

to be fine engineering tolerances, it has occasionally been the 

practice to quote the accuracy to which transducers and reflectors 

have been aligned. But, again, no assessment of the errors to be 

expected is offered. Neither is it shown that the tolerances achieved 

are sufficient to make the errors negligible. 

2.3.1 Bad Geometry and Velocity Errors.  

Unfortunately, to solve the problem of evaluating the wave field at 

any point within a cavity whose end faces may be described by the 

equations 

= Z Crje) 4.c A.14 

and • 

Z. 	= Z-r(-r, e) J2, 	 3-a,) 

is not easy because the solution to the wave equation fails to 

separate as in the case of perfect geometry. However, we may attempt 



Qztttl irtx) 

= 	Ty, Xrn si)  ( A mrt. 	counD t Zfrulstrote) e 

(1- 3. ) 
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an approximate treatment of the problem which yields a separable 

solution at frequencies below the lowest cut—off frequency of the 

cavity. 

It is supposed that normal modes, I) 	of the form 
mn 

propagate in the interferometer. For values of m and n greater than 

zero. however, the modes will be evanescent and will only travel 

extremely short distances before becoming severely attenuated. Thus it 

is only necessary to consider such modes in the immediate vicinity of 

the end faces where they arise from the incidence of the plane wave 

mode which is the principal constituent of the wave field in the 

cavity. It is also assumed that because the errors in geometry are 

small, the amplitudes of the higher modes are small even in the 

neighbourhood of the end faces. And for the same reason we write 

    

   

= 0 	 1. ) 
z 4R6ria ) 1 = ZC-cle) 	z 

 

     

for an approximate boundary condition on the end face. Thus for a 

plane wave 

e 

incident upon an end face we have 



n  
0. 
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— E q9_,„(nr.„,. Cosrs1 /40 	8nArt Sin e) 
1-fl. 	rt. 

- 	e ) 
x 
	

( z. L. 
6 

Multiplying both sides by exp(iq z(r,e)) this becomes 
00 

2.i-c}bek_Ac c)  0 ) 

(1, 	e —E E cl. 	CONMe Zmy1S.C1114te) TrniXrim r)  e 	" nu% h 	 k b 

• 
.1.10 	MM. 
MM. E retrt (Amn COSPAZ + rnti SN:r1( .9) nit 	tv 

The approximation follows because z(r,e) is very small as are A 	and 
mn 

B 	when m,n>0 and because when m,n=0 the index in the exponential 
mn 
term on the right hand side vanishes. Integration from e=0 to 2-tend 

from r=0 to b now yields 



ill; at 	e ) 
drde Ra AO 0 
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zz t(' 	e) -.2cl.. rt(1-1P )) dr" a.I 	,.0 
J 0 

16 I  - 	gr. 	jr zKC-c,e ) clr 04) 
a. 2. 	0 0 6 A.,,„ 

2.44 
—it— 	fr ettcle) drcte 

ID 0  eA.•0  
( 	?) 

Thus we see that the attenuation of the reflected plane wave is only 
2 

of the order z (r.e) but that there is a phase change of order 
R. 

z tree). A similar reflection coefficient may be derived for a wave 
R 
incident upon an end face from the opposite direction. but here the 

phase change is of the opposite sign. We have therefore 

RR. 	E 	iSR.  

- 	 ( a.. 1. 	) 

where 



4- 
6 . 
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and 

The effect of such complex reflection coefficients may be seen from 

equation 2.1.4. It is to add a term CS -S )/l to the wavenumber. k. in 
R T 

the denominator which essentially determines where resonance is going 

to occur. Thus a fractional error in the measured velocity of sound 

results given by 

A c - Ak = ST-SR 	 (2..1 

Equation 2.1.4 should be further modified by a factor exp(-ig /2) on 
T 

the right hand side arising from the fact that the transducer. being 

geometrically imperfect. imparts a phase change to the wave it emits. 

But since all partial waves have this factor it may be omitted in a 

discussion of velocity errors. 

Evaluation of the velocity error to be expected from a practical 

instrument is now possible given the form of the functions z (roe) and 
R 

z (r.e). It will be calculated for two important practical examples. 
T 
However, the error will only arise. in principle. for a cavity of 
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fixed length (*1) as will be argued in section 4.2 (although end 

effects will be encountered in a variable path cavity if the end faces 

— in particular the moving one — change their alignment during a 

measurement). Whether or not thisis true for a cavity operated above 

the first cut off frequency cannot be said on the basis of this simple 

theory. 

2.3.2 Tilted End Faces.  

It will now be assumed that the end faces are perfectly flat, but 

tilted off axis as in figure 2.8. If the maximum angle of tilt is 

%where Ic.c1 in a direction is=e we have 

Cr) e Co% ( - Goa.  

so that 

= 46 x  a,T 

f"  

COS - ) °Rol' 
 

 

0 

and 

(1) It would be more correct to say that it only arises in 

cavities whose measured geometrical length (as opposed to their 

effective acoustic length) is used in the calculation of the 

velocity of sound. Thus it need be of no concern where the 

distance separating resonances is measured. 
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z=0 	 z=l 

FIGURE 2.8  

An Interferometer with Tilted Transducer and Reflector. 



1.%; 3 

64 Aso  

itAits'r 	arae = 
-10 

Xft,T 

- 81 - 

2.% 
EA./. . $,._ le RI T  . t3 cos (0-9.E0) dr(*)  

b 

2:tb 'X ik 
	

Ikon 

0 

C z. I. lc) 

Thus, since S 	is zero. the only effect of a tilted end face is to 
R,T 

decrease Herzfeld's real reflection coefficient. Y. by 	an amount of 
2 2 2 

order IOC 	/A. . It is not even necessary to call for the 
R.T 00 

finest engineering tolerances to ensure that this term is no greater 
-5 	-6 

than 10 or 10 and so entirely negligible compared to reflection 

losses from boundary layer mechanisms. 

2.3.3 The Flatness of the End Faces.  

End faces which are not flat 	like imperfect transducers. are not 

easy to treat in a general way since it is difficult to find a model 

for them which typifies faults in a wide range of instruments. In 

order to obtain an approximate idea of what is to be expectedSand 

Ewili be calculated for a parabolically concave or convex end face. We 

write 

km. (Tie) r. 	 (a. 1.10 

Again. X is a parameter which is 'a measure of the geometrical 

imperfection present being the depth of the parabolic face. From 

equation 2.3.10 
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whilst from equation 2.3.11 

E R, 
b it Sr 

y; lx oto. 	f accift = 

6 0 0 
boo 

WAIT 

3 

(2. 3.18) 

As before E 	is easily made small enough to be of no consequence. 
RA* 

but now S 	is of the order X /21 . But from equation 2.3.12 it can 
R.T 	R,T 00 

be seen that if the fractional error in a velocity measurement is not 

to become comparable to the precision otherwise expected from the 

instrument. then the expression lE /k X l must not exceed several 
R.T 00 00 

4 
parts in 10 . 
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CHAPTER III 

THE PROBLEM OF THE BOUNDARY LAYER 

It has already been pointed out that the simple boundary conditions 

of Chapter,II are not entirely realistic. Hitherto we have required 

only the normal component of the particle velocity to vanish at the 

boundary whereas for a viscous fluid the tangential component should 

also vanish. Furthermore, the presence of a solid boundary may be 

expected to disturb the temperature field associated with the.particle 

velocity field. In the vicinity of the interface acoustic propagation 

would tend to be isothermal rather than adiabatic due to the enormous 

thermal conductivity of a solid compared to a gas. Thus the velocity 

of sound would lie somewhat to the Newtonian side of the Laplacian 

value. 

3.1 The Theory of the Boundary Layer.  

Helmholtz was the first to attempt to treat this problem in 1863. 

By taking the effect of viscosity into account he was able to derive a 

quantitative estimate for the decrease in the velocity of sound 

propagated in an infinitely long tube. Five years later Kundt reported 

only a qualitative agreement with Helmhottz's predictions and 

suggested that the thermal conductivity of the walls be taken into 

account. This calculation was carried out by Kirchhoff in the same 

year leading to results which we prefer to quote in the following 

form: 
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_ t  

Ac = A (a(i) (1.t.1) 

   

c 	b 

expressing the fractional error in velocity, c, to be added to values 

measured in infinite tubes to obtain the values which would be 

measured in the unbounded medium. Here 

• A 
e PIz  

(1.1.a.) 

The acoustic absorption coefficient was found to be 

A 	to) 07, 
	

(1.1.3) 
13c k 

Considerable discussion of these results has taken place. 

Weston[36] has clarified the exact conditions under which Kirchhoff's 

various approximations apply, and Shields, Lee and Wiley[37] have 

tested them against a more exact numerical solution of the problem. 

They find that the fractional error due to approximation in the 

correction is no greater.  than the fractional correction itself. Other 

work has also been done to extend the scope of the Kirchhoff—Helmholtz 

corrections. Molecular slip,flexible or porous walls and walls• with 

low thermal conductivity could all, in principle, affect the form of 

the correction. These effects have been investigated theoretically by 

Henry[38] together with the effect of a temperature discontinuity at 

the boundary C an analysis Later corrected by Weston[36]). Similar 

treatments to that of Kirchhoff have also been given to finite 
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amplitude propagation in tubes and to the propagation of pulses. But, 

most important for our purposes, the effect of end reflectors has been 

considered. In 1907 Thiesen derived a quantitative expression for the 

boundary Layer effect on the velocity of sound in an interferometer 

rather than in an infinite cylinderE39]..The existence of a second 

small term in addition to the term found by Kirchhoff was proven: 

Ac = A (2,Q) a  — A l  Co) 

— A l  1 (4-i- 
91. 4, la 

(3.1.10 

where 

a  

At infinite cavity lengths this result agrees with Kirchhoff's as 

expected. 

More recently FritcheC402 has given a somewhat wider and simpler 

treatment of the problem which is capable of giving the boundary layer 

corrections to the phase velocities and absorption coefficients of the 

higher modes as well as to those of the plane wave mode which is the 

only mode of propagation to which the results of Kirchhoff and Thiesen 

may be applied. Unfortunately, since his main preoccupation was with 

the accurate measurement of absorption coefficients, the treatment of 

velocity errors was developed to a lesser extent. Because of this and 

because all of these workers have written in German we shall outline a 

solution to' the boundary Layer problem for a variable path 

interferometer which will show that Fritche's approach yields the same 

answer as originally obtained by Thiesen when applied to plane waves. 

It will also be indicated how the corrections to the phase velocities 
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and absorption coefficients of the higher modes may be obtained should 

they be required. 

3.1.1,Towards a Simple Statement of the Problem.  

In considering a fluid where the effects of heat conduction and 

viscosity may no longer be ignored it becomes necessary to employ as 

many as five equations in the initial specification of the problem. 

This section will be devoted to reaching a briefer and more tractable 

statement. The five equations are: 

Co  V. Ir = 

the equation of continuity asserting the conservation of the fluid). 

ec, 	4- 	= 9,  V 1:Lf 4- I),V v. -Is: ( 3 . 	) 
3 t 

C the Navier—Stokes equation which is the equation of motion for a 

viscous fluid replacing the simpler equation of Euler for an ideal 

fluid ), 

e RT  = 	(C - cvir 

C the equation of state for an ideal gas which should be a 

satisfactory approximation to the virial equation of state for the 

purposes of examining a small correction to ideal propagation at any 

pressure likely to be of interest ), 
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c c, )T + V.W 	(s. Lei) 
b 

( stating that energy is conserved in an elementary volume of fluid if 

frictional losses may be neglected ) and, finally 

W = - K V. T 

   

which is jourier's Law of heat conduction. Compared to conduction 

losses, losses from a volume element of fluid by radiation may be 

shown to be entirely negligible for our purposes. Zero subscripts 

indicate here that the subscripted variable takes its mean value —

that is its value in the absence of an acoustic disturbance. The 

vector v is the particle velocity and c and c are the specific heats 

per unit mass at constant pressure and volume respectively.is the 
'1 

layer viscosity whilst )3 	is a quantity given by r) =5+1/39 where 
/2 	 '2 	1 

5 is the bulk viscosity. W is a vector giving the field of heat flow 

associated with the particle velocity field v. 

Kirchhoff, Thiesen and Fritche all proceed in essentially the same 

way to reduce these five equations to three partial differential 

equations in three variables. Unlike the particle velocity field for 

an ideal fluid.v may no longer be considered to be irrotational. We 

must therefore write 

 

Va 	(3•ii) 

  

where? and a are respectively scalar and vector fields. We also 

require that V.a be zero in order that T  and a thus defined are 

uniquely specified. Taking the divergence of both sides of this 



and 

a 
- v V a. 

t 

where V (previously V )=1) /io and V = 9 
‘c, 	2 2' 

Since the divergence of a is zero we have: 

Q. = 0 

(3.1.(5,  

(1. 1. 1 6 ) 
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equation therefore gives: 

Thus, by substituting for v and N7.v from equation 3.1.11 and 3.1.12 

into the Navier—Stokes equation, 3.1.7, we obtain: 

V -7_ 	QnA = o 	 (1.1.13} 

where 

(vi t- 	)Q •lo 	(1.1. t 

making an obvious analogy between equations 3.1.13 and 3.1.11. Thus 

the Navier—Stokes equation has been used to show that a new "particle 

velocity",V, may be expressed in terms of a scalar potential, f, and a 
vector potential, A related to the true velocity potentials as above. 

Taking the divergence of equation 3.1.13 yields: 
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a_ 
= 
	 (1.1.1'7) 

which is the first of the new equations, 	being the first of the new 

variables. 

The variables P,W and v may now be eliminated from the energy 

equation 3.1.9 using the equation of state, 3.1.8, Fourier's law. 

3.1.10. and equation 3.1.12. If the acoustic motion is of sufficiently 

small amplitude this yields: 

a. —v3  V
.2.

4-1- 36) ÷ V i9 = 
c)t 

(s.1.1&) 

where V =K/(f c is the thermal diffusivity and 
3 	0'v 

(3.1.1i) 
	 T- 1-0  

0-  — I 	1 o 

CT—T )/T being the fractional change in temperature associated with a 
0 0 

given point in the fluid ( giving a similar interpretation to the 

scalar field Q ). Equation 3.1.18 is the second of the three new 

fundamental equations and °the second new variable. 

The remaining new equation is obtained from equation 3.1.14 which 

on differentiating with respect to time becomes: 

=2 	— (v, 4- v)D\719' +1(2—) 
3E 	eta" Dt 	3t Co 

1o) 

In order to evaluate the last term we turn to the equation of state 

3.1.8. For the small changes in 13, e  and T associated with an acoustic 
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disturbance it gives: 

PQ  y e - eo 	-TO  = e - e6  
"P0 	CO 	O 	eo 

Differentiating this with respect to time and substituting for aev3t 

from the equation of continuity we obtain: 

 

a a 

(eo) c T 	3: 0- 
(1.i.aa) 

 

1/2 
where o=(o1,  /e ) 	is the velocity of sound in the absence of 

0 0 
boundary layer effects. Thus from equation 3.1.20 

(1)14v2..) 3  V)9  ca.  VrIlt -I- c.10--- 1) a e 
a El 	a 	0- 	 3t 

which is our third new equation andp the remaining new variable. 

Assuming a harmonic time dependence of angular frequency,Q, for the 

fieldsfeeandf the equations become: 

= 0 

v VG t Lc.) - V lo = o 

t 

rr 

2., ) 	e 4- c 1-AztvI4.-N)Iv + 

(1.1.10 

where the functions f,C) andiono longer have time as an argument, but 

are functions solely of position. 
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The procedure now adopted by Kirchhoff was to eliminate and (to from 

three equations similar to these leaving a single equation of fourth 

order in 0. Solution of this equation yielded a complex wavenumber 

which could be associated with the propagation of any of several 

acoustic variables since they would all propagate with a constant 

phase relationship with 0. Thus the required corrections to velocity 

and absorption coefficients were available from the real and imaginary 

parts of the wavenumber respectively. Fritche and Thiesen, on the 

other hand, start by expandingi3Oandfin terms of the solutions of 

the wave equation: 

+  9.2' 4) ti  in = 
0 t . 21-0 

and point out that they must alt contain the same number of terms 4) , 
1 

.1) 	etc. in their expansions so that the wave fields of the 
2 3 

 

functions are of the same general form. Their respective phase 

relationships at any given point may be accounted for in the 

coefficients of the expansions. Thus 

nr-o 

G= E a  K Yrk 
n-zo 

N 

= E 6n Trt 
n=o 

where a and b will generally be complex. Substitution of these 
n 	n 

series into the three fundamental equations 3.1.24 to 3.1.26 yields 



+ 	I 7.. 0 (.3 » 1.31}.) 
1- Ct.!  

where 

kz = LIZ/ C 

(.1.s()) 

as before. and 

Cv 114) 

42. 

v,fiv 2 	.1.3, 	V1  +VI. 
z. 	 (1.1.14) 
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o 	 (3.1.11) 

-1.  — -LL) 	+ v 	c (o-- )iwct s, - ito bn.  -z o t.„   
o- 	

— 

and 

cr. 4 	q 4- ctn.  
cox 

Thus if q 40 we have b =0 from the first equation whilst from the last 

n 	n 
two 

t 

0 

and 

Iv 
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From the last equation, 3.1.33, 

art 

and from the wave equation q willi be zero so that a =0 also. It then 
0 	0 

follows from equation 3.1.32 that b =—ica. So finally 
0 

= 	0 + Ti 	‘Ta- 

= 	cA. 1 4) I +- c% W2. 

'LW To  

The small number of terms arises from equation 3.1.34 which being 
2 

quadratic in, q 	has only two independent solutions which we call q 
n 	 1 

and q . These are approximately 
2 

aL 
4- 1:63 	vi 	v 	+ 	 v3  1 7.-1: 

c a. 

( 3 _ - la) 

a
s 

erg 	 [ 	+Va.  — ‘)-S 
rT 

(1 .1-43) 
where q and q are to be regarded as the complex wavenumbers of the 

1 	2 

and 

2. 
k 

T 
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4 	and T 	waves respectively. Evaluation of the imaginary part of q 
1 	2 	 1 

will yield the classical absorption coefficient for a viscous gas with 

a small, but finite, thermal conductivity. This will be put aside 

until we are in a position to evaluate the propagation constant for an 

infinite tube, however. But we are now ready to retrieve the 

conventional acoustic variables v and p from the functions ,0 and 

Tend to assess some of the qualitative aspects of the wave field when 

boundary layer effects are present. 

3.1.2 The Existence of an Acoustic Boundary Layer and its Properties.  

The particle vetocitylv, may be calculated from equation 3.1.11 

once the vector potential, a, is known. From equation 3.1.15 we have: 

	

Q ua. 	- A 	C3.L44) 
vt 

where 

LW  1  = 1+ 	40 2- - 
I; 

The solution of this differential equation will be 

_ A + 1,1 	 ( - I - 	) 

     

 

1:4) 

   

so that 
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= v(4). P1 + vex.)  - I VA A + V4 y3  

= v(4), 4 kRz  ) 4 VA tp3  - L  (vii-VA?) 
'1,w 

Thus 

( 9)1  4)2. 	VA  

while 

0 	= 	C‘ 1  Ts + 	Tz. 	 ('.t.tte) 

and 

ct-r, 111 = 0 	 ( . L4'0 

In the absence of thermal conduction and friction N)=V=1/ 4  so that 
1 2 3 

from equations 3.1.42 and 43 q =k whilst the imaginary (dissipative) 
1 

parts of q and q become infinite. Thus the 9)  andy waves do not 
2 3 	 2 —3, 

propagate whilst theT wave propagates with the real wavenumber, k. 
1 

of an unattenuated sound wave in an ideal fluid. The three basic 

equations 3.1.47 to 49 then become: 
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V Pi 

2 
where from equation 3.1.33 a rzio/c 	and 

1 

= 	 (1.1.5Z) 

It may now be seen thatT =pis the familiar velocity potential of an 
1 

adiabatic sound wave in an inviscid fluid. 

When V 1V and V take on finite values, however, lV and T are 
1 2 	3 	 ' 2 	—3 

able to propagate, but even then only for very short distances since 

they are so highly attenuated. Using the values presented with table 

2.1 to calculate q 	and q 	at a pressure of one atmosphere and a 
2 	3 

temperature of 4.2 K for a frequency of 10 kHz we have: 

and 

( 14 	kceco 
(1 3  

2. 
x 	x 10 cm 
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3 	—1 
(1-i i)X4.9X10 cm 

the imaginary parts of which may be seen to constitute a massive 

absorption coefficient. The distances these waves travel before 

becoming severely attenuated are therefore of the order of 0.01 cm. 

This being. the case they would not be expected to be present 

throughout the wave field in any significant strength, but would 

appear only at boundary surfaces if at all. The distance of 0.01 cm 

would then be a measure of the thickness of the "boundary layer" or 

that layer in which they may be said to propagate. The application of 

suitable boundary conditions for a gas—solid interface shows that they 

do in fact occur. 

From the expressions used to calculate q and q 	it can be seen 
2 	3 

that the propagation of 4) and 1) depends upon I) the thermal 
2 	—3 	3 

diffusivity, and V, the shear viscosity, respectively. We shall thus 
1 

refer to them as a "temperature" wave (recalling Herzfeld's usage 

mentioned in section 2.1) and a "viscous" wave. This is not, of 

	

course, intended to suggest that 4) 	and kip 	represent wave—like 
2 

temperature or viscosity fields — their physical interpretation is 

only available through the three equations 3.1.39 to 41. 

It is also important to realise that whilst the waves y 	and %V 
5  2 	_L3 

contribute to the particle velocity, v, and to the "excess 

temperature-, D. they do not contribute to the acoustic pressure, p. 

Consequently the work integral per cycle 
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c11,4 cc, 	rus cft 

for some elementary area will not vanish due to the phase shift in v 

relative to p brought about by the contributions ofT and W to v. 
2 	13 

Were it not for this p and v would remain in phase and boundary layer 

losses would not occur. Substituting forT in equation 3.1.25 from 

equation 3.1.22 we find 

P eo Cit 
	

V e (31. 
I  

a_ 

(3 .!-S3) 

cl-T 

Since °itself depends only upon 	and ti) it can be seen that 9) will 
1 	2 	3 

2 	2 
not contribute to the acoustic pressure. Noting that q L.crq 	this 

2 T 
becomes 

P 
	

eo ca  la (v1T1 cLiTi) cti (72-4)'+ (11:L1)21 

. 1.53) 

Since the second term on the right hand side is zero. p will not 

depend upon 9  either which confirms our assertion that the acoustic 
2 

pressure remains unchanged by boundary layer effects. 
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3.1.3 Boundary Layer Corrections Associated with the Radial Boundary  

Conditions.  

If the wave equation for 	is expressed in cylindrical coordinates 
—3 

and it is assumed thatT has no azimuthal dependence, it becomes 
—3 

v...7  

V tijyy =o 	 ( . s-  s-  ) 

V 	 '3e  4-( (21:43  ) 	 = 0 	 (1. 1.5-6) ) Se 

and 

Tlz 	cv 	= 0 3z 

where the subscripts r,e and z refer to the directional components of 

TP3. Demanding symmetry about the z axis limits the generality of the 

treatment, but greatly simplifies the problem at this stage because it 

enables the vector field,y to be replaced by a scalar field. We —.3 
write 

1,6 = 11 	0 	 ( 3. 1 . 

and 
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BY De 

where G satisfies the wave equation 

a 
V 	+ 	o 	('s.1.6.0) 

The scalar function G is then seen to have a propagation constant q . 
3 

so that in conformity with our current notation we denote it byy . 
'3 

We are now in a position to express v in terms of these functions 

so that the appropriate boundary conditions may be applied to them. We 

have 

v-r 	Afc, s 	+ -tsz  t • 

= 	V ( 	) 	V 	( t 	) 

Thus 

3 	f 	4), * 31 
 
4'3 	. L(>2.1 

31- 
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AS'e 
	 (1.1_63) 

vz 	3 

t . 	1) 

to which we add 

e 4)1  4- ck,_ 

to form the current set of working equations for the problem. 

If the wave .NP is now expanded in terms of Bessel functions of 
1 

the first kind of order zero we have 

ri To WY' 	e 

Thus y satisfies the wave equation as required (these terms being of 

1 
the same form as the terms T 	of the previous chapter in the 

On 
expansion of di). The value of X and hence of q will be determined 

n 	1n 
by the radial boundary conditions applied to the wave field. 

Previously it was required that 
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z J o (Xortr\  0 	 (1 .1 . c7 

  

Since the new radial boundary condition to be derived from equations 

3.1.62 and 65 will be different, we expect X to differ slightly from 
n 

X . Consequently q , which is given by 
On 

a 
( 3 .1 . Le) 

will change as well. In particular, the -plane wave' wavenumber,q 
10 

will be less than q because X will not be exactly zero like. X . 
1 	0 	 . 00 

For 	andT we write 
'2 	3 

	

9.)2. = E z To(Yrtr/b) 	E C nTo (xrci-Meic1.24  

and 

"P3  = E Dn  To (Zrirh, )e 1"i- E Et-1 (XnYlb 

( . .10 

where 
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a. 	a. 
c1.1  - (Yn/bi z  

(11-5 
	— (z /1)) 
	

(3.1.-i1  

This method of expanding M) 	and 9'  enables them to share the same 
2 	.3 

phase on the cylinder walls and on the end faces of the cavity as the 

9)1 	wave from which they arise whilst differing from 9over the cross 
1 

section of the cavity C where they are expected to be of negligible 

amplitude in any case ). 

The new radial. boundary conditions derived from equations 3.1.62 to 

65 whichT 	and t;) must satisfy are 
1 2 3 

(Xtvr) + n 	 ct, 
k b 	 b 	 .1  etc 	b 

a.) 

z O z' L.  'Y. (Xr.) + &.% T. ( \in 
	(in) 1,, T. (711) 

0 	at  A, To  (An) + ctlE, To  (y A) 	 (1. 1.10 

= 0 
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Terms with propagation constants q 	or q 	have been neglected so 
• 2n 	3n 

that these boundary conditions apply to within a distance of the 

interferometer end faces approximately equal to the boundary layer 

thickness. Should B =0 =0 it can be seen that the first of these three 
n n 

equations reduces to the original boundary condition, 3.1.67, and that 

for an inviscid fluid and thermally non—conducting walls the latter 

two would not be appropriate. 

The function J (X r/b) may be expanded in terms of the original 
0 n 

orthogonal 	functions J (X r/b) which will lead to a relation 
0 On 

expressing .d.1 (X r/b)/dr in terms of these functions and to a value of 
0 n 

X . We write 

(X,x-i-  /b) 	E Cnk To (X0010  

so that 

6 
qk 	a_ 	jo  Y.  To ( 	To (  xrcr) cir 

133- (Xott) 	
/ kb/ 

(1.06) 

where the familiar orthogonality relations of Chapter II C equation 

2.2.29 ) have been used. Evaluating the integral, G becomes 



cvs, 
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= 	a.b 	 a- To tkrt  

`xn
b  

- X,.-To(X,k) 

 

t .Y1 

 

  

   

Since X 	will be closely equal to X 	the only significant term in 
k 	 Ok 

this series will be the kth so that 

& T. (Xhr\  
ciLv - 

b(rt Xov,)  3  ()Con) 
I b 	(3.1.18.  

  

which is the promised relation between dJ (X r/b)/dr and the function 
0 

J (X' ). 
0 On 
The assumption that X IX also allows Y and Z to be evaluated 

n On 	n • 
from equations 3.1.71: 

a. 
7.* 	c1.2. 	+ (xon) 

b 

	

a 
	>> 	

( 	. 19) 

2 2 	2 
if q >>q —(X /b) . This is plausible if it is assumed that only 

2 	1 	On 
modes where n is small are required in the approximations for T 	9) 

1 	2 
and kp. Similarly 

3 
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( -&.1.20) 

Thus we now have complete expressions for the radial dependence ofy # 
'1 

y and 4/  . Since this information has been derived solely from 
'2 	3 
consideration of a set of radial boundary conditions it should enable 

a wavenumber to be calculated which is appropriate for propagation in 

an infinite tube. This we may calculate from equation 3.1.63 once: 
2 

(X /b) 	has been explicitely evaluated which we do from equation 
n 

3.1.78: 

a 	 a 
Xn 
 =("") 	  

To tAtIr) 
b 	b 	(Xort) skr 	k• 

) 

The last term on the right hand side of this equation may be obtained 

from the radial boundary conditions and the relations 

eL  
6 

(Yri )  
k 6 

(3.1.21) 

which are approximately true since the moduli of Y and X are very 
n 	n 

Large. We find 
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rl  ks 
ck.z, 

 

at  

 

a 
4 	 — a. i. - 

f

Cr- 1  

b 	 %b 1,2. 6 

This, together with equation 3.1.68, will enable the propagation 

constant for any Onth mode to be calculated. For the moment we shall 

consider only the 'plane wave" solution for which n=0 and X =0 
On 

causing the first term to disappear Leaving 

a. 
9.1 	 1)1 2' 4 (0--- 1< 	 -  (-1J-) 
b 	 tecp/ 

where we have substituted for q q and q . From equation 3.1.68 the 
1 2 3 

real part of q 	is 
10 

to = 	—I 4- 1 v1v11 (o-- 1) K 21 (..)) 7.1 
6 	ke cp/ 

leading to a fractional error in measured velocity of 
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c. 	b I 	ke cpi 

(1.1.?‘) 

which is the Kirchhoff—Helmholtz correction of equation 3.1.1. The 

corresponding absorption coefficient, 0 	wilt be given by 	the 

imaginary part of q : 
10 

V1  4- v2.. + co--1)  K 	(..3 

e cp 

2 

I 

VI1 	

- t 	 1-1  ) 	2. 	(.1.1.2'1) 
be 	 c cr, 

which' is clearly the sum of the classical absorption coefficient,44, 

attributable to losses from thermal conduction and friction within the 

body of the gas itself, and to the boundary layer absorption 

coefficient, S. 	of Kirchhoff and Helmholtz due to the same 
KH 

mechanisms occurring at the walls of the tube. 

Similar expressions may be obtained for higher modes by taking the 

first term on the right hand side of equation 3.1.83 into account. We 

find 

(x6n) + 
1.1 6 	ca/c410 1 k 1.6 1 	) 

At Low frequencies where boundary Layer losses predominate over Losses 
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occurring in the gas itself it is not possible to ignore terms which 

are powers of (X /q b) even for the tower values of n. Thus 
On 1 

(1. t .20t) 

and 

i 	s 	 % 	I 
1  [ I—  (X013-1ii_ V1 ` 4- (0--  I) 	(K )2-11:.0\k- 

cib 	be 	f i_ I  xott )1) e.CID 	. 

`‘,L 61 

These last two expressions are, however, not very useful for high 

accuracy acoustic measurements since it is common practice to work 

either at very high frequencies where boundary layer effects may be 

ignored altogether, or at frequencies below the lowest cut—off 

frequency where such modes do not propagate. There is seldom any good 

reason for operating at intermediate frequencies where both systematic 

errors arising from boundary layer effects and from a complex wave 

field have to be accounted for. 



— 110 — 

3.1.4 The Boundary Layer Corrections for the End Faces of an  

Interferometer.  

There is no need to recalculate the wave field in the cavity by 

summing posative and negative going disturbances with appropriate 

boundary conditions for the waves I) , y and ty . Instead the 
1 	2 	3 

reflection coefficient,W, of a single end face will be calculated and 

substituted into equation 2.1.4 in place of R and R . If complex 
R 	T 

(‘becoming 'exp(—iS)) rather than real as supposed in Chapter II, then 

the denominator will become 

a  -2.(a+iLki-sik34.) 
e 

Thus the denominator of R (L) and X (l) in equations 2.1.10. and 11 

will be altered in one respect only. The wavenumber k will.  become 

k+S/l so that resonance will occur when 

= NX/a. 	SA/2.17 

leading to a fractional error in velocity of 

 

0.00 
0.110. 

 

  

It now only remains to calculateSto arrive at an expression for the 

boundary Layer correction appropriate for velocities measured in 

interferometers rather than in infinite tubes. This is obtained by 

adding the correction 3.1.92 to our original correction 3.1.86. 

Supposing the three wavesl9 	andkV to be present at a boundary 
1 1 	2 	'3 

at z=0 we have 
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0 	An_ 	 - F 
trIn. 

t . 	) 

= 0 A 
1-tn n Ci„2..rt. Crt 	n )101. 	= cvin  cn  

and 

= 0 : 	ck.%  A n  4- c.4 2. 	 . 1.55 )  

where F is the amplitude of the nth component of an incidenty wave. 

Since y 	and y waves are so rapidly damped, it is assumed that no 
2 	3  

such waves are incident upon the boundary, and that only those arising 

from the immediate incidence of the klle 	wave are present. The 
1 

components of the 4) 	and Vi) 	waves propagating inwards from the 
2 	3 

cylinder walls have also been ignored for the same reason. From the 

first equation we have 

I rt 4- Fn  + cr. 

 

which is of the first order of smallness in view of the magnitude of 

q . Again considering only the "plane wave" case for which X ;X =0 
3n 	 On 00 

2 
we also find from equation 3.1.83 that (X /b) is of the first order 

n 
of smallness for a similar reason. Thus the second equation here, 
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3.1.94, nay to a good approximation be written 

01. flo c 
tri 	2.rt  

Thus from the third equation, 3.1.95: 

wtt-is) 

cl 0 
	

co 

 

Qi 	 0 — Ct C1-""Lo 

  

 

c1.-1 0 4" "1 Ch.0 

 

(1.1.cts) 

giving 

   

I 	I 
t_ 2t 	= 	(0----1) 	(24.3)1  

C 	kec? 

and 

(4)--‘) 
	

)'-(ao) 
	

(3 . 1 lo o) 

The former equation quoted in Chapter II ( equation 2.1.14 ) was that 

originally derived by Herzfeld. and from the Latter we obtain 



-113- 

- 	(0--1) 	K )-1:(11 	( . . t.tot) 

h. 4. 

which was the second term added to the Kirchhoff-Helmholtz correction 

by Thiesen ( Cf equations 3.1.4 and 5 ). 

No absorption coefficient correction arises from the end effects in 

the sense that it does from the radial boundary layer effect. The 

absorption_ coefficient, df., measured from the decay in the size of the 

resonances or the diameters of the impedance circles of Chapter II, 

will be correctly evaluated if one proceeds on the assumption that the 

resonances decay as implied by the function R Cl) C see equation 
G 

2.1.10 ) wherel5takes Herzfeld's real value. The maximum value of this 

function is approximately proportional to 1/(Atil) where ii.=1-'and the 

minimum to oll+P/2 which is negligible in comparison so that the former 

expression is a good approximation for an impedance circle diameter in 

arbitrary units. Thus the measurement of the diameters of two 

impedance circles will givedandp in arbitrary units. How these may be 

converted to absolute units is described in the following chapter 

where practical interferometer designs are discussed. If, on the other 

hand, it is assumed that -=0 C or that )5=1 ) when in factilis of the 

order of oil, then an error would arise in the calculation of on the 

basis of measurements made on two impedance circles. But examination 

of three or more impedance circles should reveal that their diameters 

do not decrease as described by the incorrect function 1al, and the 

correct functional dependence would then become apparent. 
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3.2 Objections to the Boundary Dyer Corrections.  

Unfortunately, white the boundary Layer corrections derived in the 

previous section appear to be theoretically sound and complete for the 

purposes of audio frequency or ultrasonic acoustic interferometry, it 

has been suggested in the past that they are, nevertheless, incorrect. 

Two types of criticism have arisen. Firstly the dependence of the 

effect upon the square root of the frequency is challenged, and 

secondly, given this dependence, the constant of proportionality is 

said to be incorrect. Since the experimental sources for both these 

views seem to be somewhat tenuous whilst the theory of the boundary 

layer, widely applied to other phenomena, seems reliable, it is 

surprising that they have gained the currency they have. 

The only experimental information known to count against the' order 

of the frequency arises from the work of Schneebeli and Seebeck [41, 

427 which goes back to the years 1869 and 1870 respectively. Their 

instruments were somewhat crude judged by present day standards being 

mechanically excited resonant systems of indeterminate engineering 

finish. In order to investigate the boundary layer effect it is 

absolutely essential that microscopic protrusions and interstices on 

the cavity walls are small not only compared to the acoustic 

wavelength used, but also to the boundary layer thickness. These 

important features of the instruments used are simply not discussed —

an omission which still seems to be acceptable today. No doubt the 

historical reason is that the early interferometers were fashioned 

from glass tubes containing fine powder whose distribution after the 

decay of the sound Left a record of the acoustic field. Such devices 

frequently had side ports welded to the cavity for the admission and 

'evacuation of gas and had end faces which were equally crude. It was 

assumed that if rough and ready instruments Like these could be shown 

to operate much as predicted by a simple theory of the acoustic 
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interferometer such as we gave in section 2.1 then they were suitable 

for accurate studies of the boundary layer theory. Unfortunately there 

is no justification for such an assumption. The smaller the effect to 

be investigated the greater are the demands upon the geometry of the 

cavity. Notwithstanding this the results of Schneebeli and Seebeck are 

often taken to have demonstrated a frequency dependence for the 

velocity decrease of order 3/2. 

The only theoretical support for the work of Schneebeli and Seebeck 

has been given by Schweikert [437 who derived the following formula 

for the measured velocity, c', in an interferometer 

   

C —  or, C  

a N co 

  

from considering the superposition of an incident wave upon a 

reflector at z=1. 

= 	s e 	Sin (cot — kz) 	(3.a.a.) 

and a reflected wave 

_0( tat-z) 
e.„ 	= sre 	six. Cwt - La-t- ]) 

The resultant acoustic (i. e. excess) density was written as 



— 116 — 

e = 
( -- 

S 	e 	sin t.t.)L - z 
(14.- 

-r e 	stn. (L.) - 

C S. oz. 4) 
from which he deduces that the acoustic intensity at some point z in 

the cavity is 

sa 

{ *2-  4- bl  4- e A 	 + a A e cos 2,11. 

( 	• k • c) 

) 
z 	e 	cos 2. k.t 

-GL(a..t-z) 
C 	= 	e 	Sin 2.1k1 

Differentiation shows that this has a maximum at 

where 

and 
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ot. 

a L1.4  

rather than at l=1W2. Since our equations 2.1.10 and 2.1.11 do not 

give this result, it must be the case that an error has arisen either 

in our own or in Schweikert's analysis. To show that it must be in 

Schwaikert's consider the acoustic density at the reflector (z=l) when 

r=1. According to the physical presuppositions of Schweikert which are 

essentially- those of section 2.1. the acoustic density should vanish 

at z=l whereas we find from equation 3.2.4 that 

_act 
e 	= 	s e. 	sin (G)E - kt) 

Only if the reflection coefficient, r, is negative will we obtain the 

correct answer. But in replacing the positive sign in equation 2.1.4 

by a negative sign it ceases to be possible to derive Schweikert's 

correction 3.2.1 and we find instead that I=10/2 at resonance as in 

section 2.1. But even were Schweikert's equation 3.2.1 correct his 

proof that a frequency dependence of order 3/2 for the decrease in the 

velocity of sound occurs is not. Moreover, the proof requires one to 

take the dependence' of the orthodox absorption coefficient, 0( , on 
KH 

the square root of the frequency to be correct, yet not that of the 

orthodox velocity correction to which it is intimately related. The 

absorption coefficient is substituted into equation 3.2.1 to give a 

fractional velocity error of 
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EKCp 	a al  0" 

  

(s.a.$) 
This fractional correction to the velocity is smaller than that 

predicted by the boundary layer theory by a factor 1 /2  and so might 

be difficult to detect even in the absence of the boundary layer 

effect conventionally predicted. But in using the predicted absorption 

coefficient, ck , it is surely admitted that the expected boundary 
KH 

Layer reduction in velocity should also occur. Thus on Schweikert's 

theory it still remains to be explained why Schneebeli and Seebeck did 

not see a much Larger dependence on the square root of the frequency 

in addition to the dependence on its 3/2th power. 

By far the largest majority of workers investigating the ,boundary 

layer effect agree that it must depend upon the square root of the 

frequency but find various degrees of disagreement on the validity of 

the size of the coefficient of proportionality. It is often confirmed 

exactly but may be in error by as much as 40 per cent. It seems quite 

likely, however, that this may be attributed to the casual approach 

most workers have towards the engineering finish to the inner walls of 

their acoustic cavities and to a Lesser extent to the poor knowledge 

of the transport properties of the gases used in the evaluation of the 

theoretical constant of proportionality. The problem of the constant 

of proportionality need not worry us, however, since it can easily be 

measured as will be shown in the next chapter. 



- 119 - 

CHAPTER IV 

PRACTICAL DESIGN CONSIDERATIONS FOR AN 

ACOUSTIC THERMOMETER 

If an acoustic thermometer is to achieve an accuracy comparable to 

that of the conventional constant volume gas thermometer it is 

essential that velocities should be measurable to one or two parts in 

ten thousand. This would represent an error in measured temperature of 

about 1mK at the normal boiling point of helium-4 and about 6mK at the 

hydrogen boiling point. Slightly Less accuracy is required, however, 

to make a useful investigation of the errors thought to exist in the 

temperatures assigned to the normal boiling point of helium-4 on the 

scales T-58 and T-62 and to the hydrogen boiling point on IPTS-68. 

Several recent measurements have suggested that the value of 4.215K 

for, the helium point is too low by approximately 10mK while the error 

in the hydrogen point may be measured in tens of mKs rather than mKs. 

Growing suspicion of the value assigned to the hydrogen point has Led 

to the suggestion that the extension of IPTS-68 down to the triple 

point of hydrogen was premature - a point of view which should be seen 

in the light of the continued debate as to whether the IPTS should be 

maintained as a thermodynamic temperature scale or a stable and rarely 

altered means of comparison for individual temperature measurements. 

Either way the necessity for thermodynamic temperatures, whether 
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embodied in the definition of the IPTS or used as corrections to it, 

remains, and so every effort has been made to design an acoustic 

thermometer which will provide thermodynamic temperatures of the 

highest accuracy available from this method. 

4.1 High Frequencies vs. Low Frequencies.  

The first decision to be taken in the design of an acoustic 

interferometer is whether to operate at high or low frequencies. In 

operating at high frequencies all the problems of a complex wave field 

dealt with in Chapter II arise. The difficulty with this type of 

systematic error is that it cannot be corrected for in the absence of 

a knowledge of the way in which the transducer vibrates. Our guesses 

as to the form of the function S (r,e) (equations 2.2.54 and 62) are 
0 

plausible and so serve to show what order of velocity error may be 

expected. However, it will have been noticed that no azimuthal 

dependence of the amplitude of vibration of the transducer was 

specified. This was not because it made the problem mathematically 

intractable, but rather because the azimuthal dependence of one 

transducer might differ greatly from that of another depending upon 

such things as the eveness of clamping of a 'diaphragm or a quartz 

crystal and the homogeneity of their constituent materials. Many such 

parameters could be enumerated. Moreover, the radial dependences are 

only plausible guesses and as such could not be relies upon to correct 

measurements from a given instrument. It might be the case, for 

example, that a quartz crystal clamped as in figure 2.7(c) might 

vibrate only over a small region of its face at the centre. Were this 

the case the amplitudes of Table 2.5 for a/b=1/4 might be more 

appropriate than those for a/b=1. But, far worse, it might, unbeknown 

to its user, vibrate over a small region slightly off centre in which 

case no useful assessment of a velocity error would be made at all on 

the simple assumptions of Chapter II. ALL that may reliably be said is 
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that at a frequency of lt:Hz in a cavity of diameter 2cm (the exa:npLe 

of Table 2.5) a reasonable guess would suggest that errors would 

negligible. Such a situation is obviously unsatisfactory from the 

point of view of obtaining the very highest accuracy. 

An equally serious problem at high frequencies is that of deciding 

how the imperfections in the geometry of one's cavity will affect the 

measured velocity. The results of section 2.3 apply only below the 

first cut—off frequency, f . At higher frequencies geometrical errors 
10 

could only be more serious; firstly because the wavelengths are not so 

large compared to the cavity imperfections and secondly because it 

would be expected that modes akin to the normal. modes 9 	for the 
mn 

ideal cavity would propagate. A superposition of such modes would not 

correspond exactly to the previous superposition of normal modes since 

there would be perturbations entering our previous calculation due to 

the complex boundary conditions of the imperfect end faces of the 

cavity. A brief investigation suffices to show how unwieldy the 

problem becomes when an indefinite number of higher modes may 

propagate in the cavity. 

Less important at higher frequencies, however, is the problem of 

the boundary layer. Reference to the values of Table 2.1 shows that at 

about 1MHz the absorption coefficient attributable to losses within 

the gas is not significantly larger than the boundary layer absorption 

coefficient. However, at 10MHz the former absorption mechanism is so 

severe as to make measurements of velocity virtually impossible. But, 

fortunately, boundary layer velocity errors have become fairly small 

by the time the frequency has approached 1MHz (which is presumably why 

Plumb and Cataland chose to work at this frequency). From equation 

3.1.36 we find that the error to be expected in a temperature 

measurement at the normal boiling point of helium-4 is only about 

0.1mK based on the values presented with Table 2.1. This may be 
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considered negligible but could be corrected for if desired. 

Nevertheless, since the two main problems of operating at high 

frequencies seem insurmountable in principle it was felt that the 

advantage to be gained with regard to the boundary layer was not 

worthwhile and that a low frequency design of acoustic interferometer 

should be adopted. This would be further justified in that it would 

offer a more independent check on the ultrasonic work of Plumb and 

Cataland by encountering, and hopefully circumventing, an entirely 

different kind of main systematic error - the boundary layer error. 

The generally accepted view that the boundary layer effect depends 

upon the square root of the frequency was defended in the last 

chapter, but there is no reason why it should not be tested 

experimentally for a given instrument. Having ensured that the 

acoustic absorption coefficient and the velocity of sound both vary as 

expected with frequency, it would then be possible to obtain the 

constant of proportionality, A, between each of them and the square 

root of the frequency from a measurement of the absorption 

coefficient. This could then be used to correct the measured velocity. 

Assuming the frequency to be sufficiently low so that the boundary 

layer absorption mechanism is the predominant one, we have 

ok 	A w a- 
b c 

arid 

A c = A 	to 	
c .b 

so that 
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c 	0'. c 

    

which expresses the fractional correction to be added to velocities 

measured in tubes. This is only approximately correct for a short 

interferometer because Thiesen's end correction has not been accounted 

for. Strictly 

Ac 

 

However, if we may'anticipate the discussion of the next section on 

the relative merits of variable path and variable frequency 

interferometry, it will be apparent that in a variable path instrument 

where wavelengths are measured from the separations of the resonances, 

the total error in the separation of the first and Nth resonance will 

be 

A/N  - 4.1  = 	A 	- 	- u 1.1  + A 	w  z 
bb 

-J_ 
A UN  - 11 ) co 1 a 

ta. 

so that 
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1, 	A 

A 	= 	 A.'2-1\1 	1:14.1 

C 	-LN 
A r  72 or:. C 	(4.1.6) 

as before. Thus only if a single resonance is detected in a cavity 

whose absolute length is measured in order to derive the velocity will 

it be necessary to allow for Thiesen's term. This applies, in 

principle, both to variable path and variable frequency instruments, 

De Laet's interferometer being an example of the latter. In practice, 

however, variable path interferometers are not used in this way. 

Further problems encountered in using variable frequency instruments 

will be dealt with in the following section. 

In order to measure the radial boundary layer correction in a 

variable path interferometer, the absorption coefficient,c(, must be 

measured for substitution into equation 4.1.3 Ca rough uncorrected 

value being good enough for the velocity substitution). 

The measurement of may be carried out in either of two ways. At 

resonance X Cl)=0, and 
G 

Rc(..11 = Rs(NAA) =  1 + Ye 
a44_, 	

(4.1.'1) 

— 

or, putting V=expC—p) where p«l: 
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Since, for practical values of ea and/3, R at antiresonance is very 

small compared to R at resonance, this gives the values of the 
G 

diameters of the impedance circles to a high degree of accuracy. Thus 

	

by fitting a function of the form 1/(aN+b)=D 	to the experimentally 
N 

measured diameters, D , where a/b=a0/211, the ratio aqs may be 
N 

calculated. In order to evaluate A, a further relation with A is 

required. (*1) This may be obtained from the rate of change of the 

phase,ip,of the impedance of the gas column with l: 

Larof 	- X (4_ ) = 	- 	2C-1- 1) sin 2. k 

	

3 Lvet-t 	 — anC j-kCi (Z) 	e 	- “r --1)e 	cosa_k41 

On differentiating one finds at resonance: 

(1) In ultrasonic interferometry where reflection coefficients 

are expected to be Low and classical absorption coefficients 

high, and where quartz crystal transducers are commonly used, 

thi's second relationship is easily obtained by measuring the 

value of R at antiresonance.(See, for example, Refs. 26 and 27 
G 

or Howard C. Hardy, J. Acoust. Soc. Amer. 15,2 (1943)). Because 

in the present case the transducer impedance is not zero so that 

circles do not lie symmetrically about the real axis, a more 

complicated procedure has to be devised. 
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n=0 

t 

a tok.n.0  4- E.-1n 	• 

where ,C=Na/b. To a good approximation if A<<1 and xis of order no 

greater than unity: 

which, taken with the expression for a/b, enables Otto be calculated. t 

may be evaluated by plotting a graph of tanTagainst Z from values 

obtained by measurements on the impedance circles. Then 

= cgs. J 	012 	cL4 (11-1•U) 

aeartT 0 	a text cf Jcp = o cLZ p= o 

the latter gradient being obtained from the original experimental 

curve of Z(L) once a value of Z at resonance has been obtained. 

A graphically less arduous way of calculating dis to express 

dZ/d(tanT).  at resonance in terms of quantities already calculated for 

drawing the impedance circles. We see from Figure 2.2 that 

7 	= 	(RT  +Rs) + (X 7.- Xc) (4.1.13) 

Substituting 
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RCe 	= 4r~ sr T" CO S 
Z11 

kL1.1 

and 

24_1-N Lis) 

where r 	is the radius of the Nth impedance circle and where the 

approximations apply near resonance, we obtain 

so that ( 	6) 

TN XT 	 (4 z 

cp = o  2 RES cl. tan. (1) 

t may be found from equation 4.1.10 and the calculation proceeds as 

before. 

The second way to calculate the absorption coefficient is from its 

relationship with the half widths of the resonances. The height of the 

function R (l) at l=NA/2 (or the diameter of the Nth impedance circle) 
G 

is known to be 1/(4l+g). By solving the equation 

R= 
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we- may therefore calculate 	, the half width of the Nth resonance at 

half the height of the resonance. It is given by 

d,41 	 .1.19) 

  

which is compatible with the expression dl/k quoted in Chapter II 

where reflection Losses were assumed to be negligible. Reference to 

figure 2.2 shows that the corresponding value of Z. Z 	at the half 
HALF 

height of R Cl) are given by the distances of the upper and lower 
G 

extremities of the impedance circles from the origin. And the useful 

value of Z 	— that is the one encountered between Z 	and Z 	on 
HALF 	 MAX 	MIN 

the resonance — will be the shorter. A' similar conclusion will also be 

reached for the case where X is negative and the circles lie below 
T 

the real axis since they are still traversed in a clockwise direction. 

Thus we write quite generally 

ZHAI,F 

 

a 
(R-T +;4 ) 	TN) 1 a  

 

( 

	

a. 	a. 

	

ZT 	 . N 	21-1,4T  - IX TIT 

(14.c.ao 

It is now a simple matter to read off the corresponding value of 1. 

, from the experimental Z(l) curve and to take the 'difference 

HALF 
from L 	to gives . Then if at least two resonances are available 

RES 
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sand (3 may be calculated from equation 4.1.19. However, it is 

probably better practice to calculate the ratio d/A from the circle 

diameters as already described, and to use it to solve each of the 

equations '4.1.19. This is because the value of d/f3 is likely to be 

comparatively accurate since the circle diameters are quite easy to 

measure. Half widths, on the other hand, may be a little more 

difficult to measure precisely, and so it is wasteful of useful 

statistical 'evidence to effectively expend one value on the 

calculation of the ratio when the figure is already available from 

another source. 

Whether it is preferable to calculate the absorption coefficient 

from the gradient of the Z(L) curve at resonance or from the half 

width is difficult to say in advance. Both techniques will be examined 

in the light of the data which becomes available and agreement between 

the two methods will also be checked to ensure that the resonance 

curve is of the form assumed theoretically. 

Should Large values of dl orpbe encountered, the validity of our 

assumption of section 2.1  that all the impedance circles touch at 

Z (1)=0 may be questioned. It may be shown from equations 2.1.10 and 
G 

11 that while X (l)=0 at antiresonance, R (D=11/2+20140. Whether or 

not this will cause some small error depends upon how the impedance of 

the transducer, Z 	is measured. If some single value is used to 
T 

construct the impedance circle diagram (calculated, say, from the 

height of the resonance curve at the first antiresonance) then 

successive circles will require to be displaced in the direction of 

the positive real axis by a distance equivalent to (3/2+2001 so that a 

second approximation of Z 	can be made. The conversion of the shift 
RES 

(3/2+24l to the arbitrary units used in the complex plane (cms, say) is 

best accomplished by equating the diameter of some impedance circle to 

itcdt.+R) which will give the conversion factor to a high degree of 
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accuracy. However for the cases under consideration it is unlikely 
—5 	—6 

that the shift will amount to more than 10 	or 10 	of the impedance 

circle diameter so that it is probably quite satisfactory to continue 

as outlined in section 2.1. A better way of dealing with the problem 

would be to calculate the value, Z 	for.each impedance circle from 

T 
the average of the values obtained from the antiresonances either side 

of the corresponding resonance. This way the circles would be plotted 

with the correct displacement from the point Z (L)=0 right from the 
G 

beginning. 

4.2 Variable Path vs. Variable Frequency Interferometry.  

Having decided to work below the first cut—off frequency it is 

necessary to choose between fixed path interferometry entailing the 

measurement of resonant frequencies, and variable path interferometry 

at some fixed frequency entailing the measurement of resonant cavity 

Lengths. 

Fied path interferometry, requiring no moving parts, has the 

advantage of simplicity — a doubly important consideration in a liquid 

helium cryostat. It 'might also seem, prima facie, that resonant 

frequency measurements are straightforward compared with measurements 

of resonant cavity lengths. However, both of these advantages diminish 

on close examination. Firstly, the one single critical measurement of 

the Length of the cavity needed in fixed path interferometry requires 

the exact definition of the positions of the ends of the cavity. Quite 

apart from the problem of allowing for the overall thermal contraction 

of the cavity, a precise knowledge of the mean position of the 

vibrating transducer at low temperatures is required. Thus careful 

consideration needs to be given to the coupling of the transducer to 

the cavity. The possibility of exciting a cavity with two rigid end 

reflectors through a port in one of them whilst monitoring the 

acoustic pressure through a port in either is to be viewed with 
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circumspection because, although it solves the problem of the length 

of the cavity, it can, as in section 2.2.4, result in the wasteful 

excitation of evanescent modes at the expense of the plane wave mode. 

As the ports become sufficiently small to be negligible the difficulty 

of adequate excitation of the cavity and of monitoring the intensity-

of the sound with sufficient sensitivity increase accordingly. 

Regarding the measurement of,the true resonant frequency, it will 

be appreciated that it requires, in principle, a frequency independent 

method of measuring the acoustic pressure in the cavity as the 

exciting frequency sweeps through resonance. This calls for a 

transducer whose impedance and a microphone whose sensitivity are 

sufficiently constant with changing frequency. Furthermore, if their 

diaphragms are to form the end reflectors of the cavity, their 

reflection coefficients must be frequency independent as well. (unless 

the reflection losses are negligible compared to losses in the body of 

the gas or on the cylinder walls). Given the narrowness of the 

resonances, these requirements should be met quite easily, thus 

enabling single uncorrected measurements of velocity to be made. 

However, as has been shown, velocity measurements made at several 

orders of resonance enable acoustic absorption coefficients, and so 

the boundary Layer corrections to the velocity, to be measured rather 

than calculated from theoretical considerations whose applicability 

has occasionally been in doubt. This requires velocity measurements to 

be made at well separated frequencies where changes in the transducer 

and receiver characteristics are bound to occur. Even by using a 

transducer and microphone at frequencies well separated from their 

main natural resonant frequencies - e. g. far into the mass controlled 

region.  - one can still expect to see, with practical devices, lesser 

natural resonances superimposed upon a slow drift with frequency of 

impedance or sensitivity. Similar behaviour might also be expected for 
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their respective reflection coefficients. Thus for each resonance it. 

would only be possible to calculate the sum cf. A/2-13, rather than the 
N 	N 

absolute valu:s of d and r . Consequently it would not be possible to 
N 	1  N 

make a measured boundary layer correction. This problem has been 

avoided by Smith and Harlow [443 in an experiment at room temperature 

where a long cavity was used so that ckl»13, thus enabling end face 

losses to be ignored. However, accommodation of such an instrument in 

a cryostat would cause considerable practical difficulties, and it 

also seems to be bad practice to dispose of one Loss problem by making 

other losses large in comparison since it results in an overall 

reduction in the sensitivity of the instrument. 

The additional inconvenience of having to recalculate the 

transducer impedance at each successive order of resonance has already 

been pointed out in section 2.1, but is no more serious than having to 

do it in the case of a variable path interferometer if the corrections 

for. large absorption and reflection coefficients are made as suggested 

at the end of the previous section. 

Both problems of absolute length measurement and of frequency 

stability are removed by using a variable path interferometer. 

Distances are measured relative to the first position of resonance 

which can be determined unequivocally since all acoustic impedances, 

sensitivities and .reflection coefficients are guaranteed to be 

constant at constant frequency. Moreover, there is also the advantage 

of evading the the boundary layer end effect, which, it will be 

recalled, causes each peak to be shifted by the same amount so that 

the separations remain unchanged although the absolute resonant 

lengths of the cavity require a small correction inversley 

proportional to these lengths. The same applies to end effects 

attributable to imperfections in cavity geometry which were seen to 

arise in the same way — namely by adding a small 1/l term to the 
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wavenumber. For these reasons the variable path technique was chosen. 

4.3 The Excitation of the Cavity and the Detection of Resonance.  

Grimsrud and Werntz in their variable path interferometer made use 

of a separate microphone to monitor the acoustic pressure in addition 

to the transducer used to excite the cavity. De Laet used a similar 

technique in her variable frequency acoustic thermometer. Such a 

combination is very simple to use since the resonance curve obtained 

from the microphone will be of the form R (1) so that the positions of 
G 

resonance are immediately available from the positions of the maxima. 

Plumb and Cataland used only an x—cut quartz crystal transducer which 

also served to detect the resonances through the changes in its 

measured impedance brought about by the gas loading. It was explained 

in section 2.1 that because such a transducer has a very small and 

real impedance the resonance curve is also of the form of the Junction 

R 	We feel that the technique of using only a single transdUcer is 
G 

to be preferred at tow temperatures because of its greater 

constructional simplicity and reliability although at low frequencies 

we cannot avail ourselves of the use of a quartz crystal. Instead we 

have • chosen to use a moving coil driven diaphragm which, having a 

complex impedance of the type indicated in figures 2.2 and 2.3, 

necessitates a much more detailed examination of the resonance curve 

which is no longer of the form given by R (L). 

G 
The mechanical impedance of such a transducer is usually measured 

in terms of its electrical impedance. However, the measured electrical 

impedance has a purely electrical component which masks to some extent 

that part of the impedance attributable to the gas loading of the 

transducer. It has already been pointed out in section 2.2.3 that the 

mechanical impedance may be measured in arbitrary units directly from 

the reciprocal of the velocity amplitude provided that the driving 

force is constant. With our moving coiL driven diaphragm this would 
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best be achieved by attachinga small piezoelectric accelerometer to 

the rear face of the diaphragm at its centre. At constant frequency 

the voltage across the faces of the accelerometer would be 

proportional to its velocity as required. The necessary constant 

driving force is obtained simply by driving the transducer at constant 

current. Since the accelerometer, being . a natural piezoelectric 

crystal or 'a piece of synthetic piezoelectric ceramic, will have an 

extremely high impedance and will be in close proximity to the driving 

coil, it is necessary to know what the effect of interference in the 

accelerometer circuit from.the drive circuit will be. Interference is 

Likely to be due to three causes and, of course, of the same frequency 

as the driving current. These are (a) interference due to the motion 

of the accelerometer and its electrical leads in the stray magnetic 

fields from the permanent magnet providing the radial field .for the 

moving coil, (b) induced interference from the driving current and (c) 

interference from the driving voltage due to resistive or capacitative 

coupling or a mixture of both. 

Ideally we have for the accelerometer voltage: 

0 

where 

to,rt ot - X 	XCI CL)  

     

and where b is some constant which determines the arbitrary units of 

the measured mechanical impedance, Z, of the Loaded transducer. 

Considering the first type of interference due to magnetic 

) 
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) 

induction we have instead of equation 4.3.1: 

4- b sixt. 

F cos (.1-.)E.  -01' ) 
z 

where F is the amplitude of the constant driving force, a is a 

constant determining the amplitude of the interference and where we 

have supposed that 

- 	strk. (44 - GC) 

(6.)e,  - co) 

L 

and 

V ec 	= ( 

Equation 4.3.3 may be written 

V = Vo l  stn (LIE- CO 

where 

and 

0. 
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Vo 	F a  4- 61  
z 

( 

Thus even if this type of interference is very large, it is of no 

consequence since the reciprocal of the driving voltage still gives 

the mechanical impedance in arbitrary units. In fact an inductive 

accelerometer would serve our purposes just as well as the 

piezoelectric accelerometer except that it might be slightly more 

complex in construction. 

The second type of interference due to inductive pick up of the 

driving current is more serious. We write 

— 	c, s.irx  (czt ce ) -Fr6 s in. (La - 	 . 3 . S ) 

where the first term on the right hand side represents the induced 

voltage. Advancing our time scale by ?k) we have instead 

V 	= 	a, sLnwb + 6 si-n- (ot— ck. ) ( 4.3.c) 

if di—ce . Or 

V Vol  stir Cwe— 

where 
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tan. 	= - 	sift 0( 	 1 . 

   

cos d. a211) 

if a«b/Z as it should be, and 

V b 	 Z  0 	- 	 cos oC 	4.3.1).) 

or 

Lt-
ck. Z. cos ot 
	

(14.1,11) 

A similar expression could be derived 'for the third type of 

interference arising out of resistive or capacitative coupling. 

We now need to know what values of aZ/b are tolerable so that a 

check can be made that such interference as is found to occur will be 

negligible. In the presence of interference our experimental resonance 

curve, ZCl), will take the value 

S 	Zrte.s 	1 -4- et. Le -s 	(1-t.S.14) 

at l=NAJ2. Errors in the measured position of resonance will arise if 

	

this differs from the value of Z 	Z" 	, calculated from the 

RES 	RES 
constructed impedance circle diagram. We have 
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IrtEs 	= 	(R1.1.4-  3)N 	+ X Ti a  V5̀ 

ZT -D 1 a. - 	T N 

ZRes 	+ ck- a.  
Zags  

Z co s  T +I)

N 
 co s +D

T   
RTI,„ CoSct N  

04 .s.is- 
which  is, unfortunately' not the same as equation 4.3.14. D' is 

N 
defined in the same way as Z.  since it is the difference of the 

maximum and minimum values of Z. Inspection of figure 2.2 will reveal 

that cosd takes the same values for these two values of Z. The error 

in the value of Z 	for the purposes of calculating the error in the 
RES 

position of resonance wilt be given by the difference of the two 

correction terms of Z' 	and Z" 	, and may be calculated once rough 
RES 	RES 

values of Z 	D 	R 	cos and cosd have been obtained. Typically we 
T N T 

might take Z =D 12Z 	/3 and cosAcosci 11 so that 
T N RES 

Z ics  I + 3a. aZaks  
b 

(si .1.10 

giving an effective error in Z 	of 
RES 

ZfIES 5 

 

Z s 

   

ati 

obtained by subtracting Z' 	. The resulting error in l • 
RES 	 RES 	RES 

will be given by 
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!Res  = A Z ckEs  
aks 

 

  

Z gtES 

6 	TN 

 

  

(. 	. 1. 18) 

where A 	is the half width of the Nth resonance,. Thus 
N 

 

A't 	 Z a=-s 	 (11.1.1c1) 

Typically aZ/b=0.01 while ajk=0.001. Thus the error is likely to be 

negligible especially since it will be reproduced to some extent from 

one resonance to the next so that the separations of the resonances 

are affected to a lesser degree. Simple checks on the voltage 

amplitudes a and b/Z should ensure that this is, in fact, the case. 

Apart from the errors which arise from misalignment and lack of 

flatness in the diaphragm which have already been treated in section 

2.3, there still remains the problem of coupling the transducer to the 

cavity which, if not approached carefully, might lead to a new kind of 

geometrical error. The larger the diameter of the diaphragm compared 

to that of the cavity, the more efficient and sensitive it will be in 

exciting and responding to plane waves, and the easier to align 

accurately. It will also have a lower spring rating which should help 

to keep its impedance, Z 	low compared to the impedance of the gas 
T 

loading which is the real goal of the measurements. However, as may be 

seen from figure 2.7(a) a diaphragm such as this has to be mounted a 

small distance from the mouth of the cavity to allow• it to vibrate 

freely unlike the less effective, but at present more predictable, 

diaphragm of figure 2.7(b). Prima facie this gap might welt present a 
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cavity imperfection which could lead to velocity errors. However, an 

analysis of the type undertaken in section 2.1 would suggest that the 

complete system might be considered as two interferometers with two 

sets of standing waves loading the .diaphragm. The first set of 

standing waves would occur between the exposed part of the diaphragm 

and the movable reflector as before, and the second set between the 

masked part of the diaphragm and the end'of the cavity which masks it. 

Since the Length of this second interferometer is constant, the 

loading of the second set of standing waves would merely contribute a 

constant term to the impedance of the transducer, Z . Thus their 
T 

effect would automatically be taken into account by the existing 

procedures for analysing the resonance curve. A very small effect 

might arise due to the fact that the boundary layer correction to the 

original plane waves would be different for a short distance from the 

diaphragm where the cavity has a wider diameter. This effect would not 

be noticable since the difference in the small correction would only 

apply at most over a fraction 2g/?of total distance travelled by the 

waves where g is the width of the gap. We might expect g to be of the 

order of 0.03cm and the wavelength about 3cm. However, it should be 

possible 	to 	investigate the effect experimentally by superimposing a 

direct 	current 	on 	the 	alternating 	current 	used to drive the 

transducer. 	This 	would 	shift 	its 	mean 	position and enable any 

significant effect which depended upon the width 	of the gap 	to be 

observed. 
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4.4 Some Remaining Systematic Errors of Acoustic Origin.  

Hitherto, the discussion of systematic errors has centered entirely 

on the problems associated with the wave field at higher frequencies 

and the boundary layer at lower frequencies. It will now be 

demonstrated that other likely sources of systematic error will be of 

no consequence. 

4.4.1 The Effect of Finite Sound Amplitudes.  

Elements of an acoustic wave propagate with a velocity proportional 

to their amplitude. Thus the high pressure part of the wave is 

expected to draw level with the trough of the wave after a certain 

distance leading to the formation of a shock wave. It is essential 

that amplitudes used in acoustic interferometery are sufficiently low 

to prevent this effect becoming significant before the sound wave has 

decayed to a negligible amplitude. 

We have for the velocity of such a wave 

S 
C + 	0** + I 	(..) 

    

a. 

where US is the particle velocity amplitude at some point on the 
0 

wave[45]. Thus the relative velocity of a peak with respect to the 

trough in front will be 

( Cr+ I ) 6.1 	 (-) 0 / 	4.4.1) 

for monatomic helium-4. In order to calculate a value of t 	let us 
0 

assume that the acoustic power, W. radiated into the cavity is as 

'large as 10mW. Thus 
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e c 	b 
Col 	

O. o Watts (4.y.1) 0 

-7 
giving t =2x10 cm at the normal boiling point of helium-4 at a 

0 
frequency of 3.3kHz. Thus from equation 4.4.2 the velocity of approach 

-3 
of peak and trough is approximately 3.1x10 	cm/s which implies that 

the shock. wave would have formed after about 600 seconds - the time 

taken to travel one half wavelength at this speed. By this time the 
6 

wave itself has traveled 3.6x10 cm and acquired an attenuation factor 
3 	4 

exp(-dz) with an exponent of 10 or 10 . Thus we may conclude that at 

realistic amp,litudes the velocity of sound is for all practical 

purposes equal to the velocity of sound at vanishingly small 

amplitudes. 

4.4.2 The Effect of Frequency Dispersion.  

When the frequency of the sound is sufficiently high the per'icd of 

oscillation becomes comparable to the mean collision rate of the 

helium molecules so that translational relaxation occurs. Under these 

conditions the slower molecules will be incapable of transmitting the 

disturbance since the acoustic driving force on some volume element of 

gas will have changed its direction before the necessary molecular 

collisions can take place. Thus only the faster molecules participate 

in sound transmission and acoustically the gas appears to be warmer 

than it would at lower frequencies so that the velocity of sound is 

too great. The mean collision frequency, f 	of the molecules will be 

given by 

g o-r, kT a 	 4,• 
it m 

where n is the number of molecules per unit volume, m is their mass 
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and k is the Boltzman constant. The total scattering cross section, 0, 

may simply be calculated from the approximate cross sectional area of 

the helium atom for our present purposes. At a temperature of 4.2K and 
11 

a pressure of 1 atmosphere we find f =10. per second which is higher 

than the highest acoustic frequencies we are likely to use by some 

seven orders of magnitude. Thus we may consider that translational 

relaxation is entirely negligible. Other mechanisms of molecular 

relaxation are not, of course, available to a monatomic gas. 

4.4.3 Approximations in the Radial Boundary Condition.  

We have assumed in Chapter II in requiring that the radial particle 

velocity vanishes at the cylindrical walls of the cavity that there is 

a perfect acoustic mismatch between gas and walls. In practice, 

however, the walls will not be entirely rigid and some sound will 

propagate into them. But, since the acoustic mismatch is as large as 

it is, it has usually been assumed that this effect is negligible —

especially in comparison to the boundary layer effect. Such a point of 

view probably arises becaue an incorrect analogy is drawn between 

this radial boundary condition and the end face boundary condition 

where the reflection loss will be proportional to the ratio of the 

specific acoustic impedances of gas and end face, p c 	c . In a 
GGWW 

copper cavity filled with helium-4 gas at a pressure of 1 atmosphere 
—6 

and a temperature of 4.2K this will be of the order of 10 . This 

ratio is derived by demanding that both the normal particle velocity 

and acoustic pressure be continuous at the end face. In order to 

obtain the particle velocity, the velocity potential has to be 

differentiated with respect to z so that the wavenumber appears as a 

factor in the expressions for the particle velocities either side of 

the boundary — hence the existence of the ratio. of the, velocities in 

the expression for the attenuation on reflection. In the case of the 

radial boundary condition, on the other hand, differentiation of the 
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velocity potential is with respect to r, and so does not lead to this 

factor. Thus only the ratio of the densities of the two media enters 

into the expression for the loss. Del Grosso [467 has done this 

calculation and obtained a result from which we may derive the 

following characteristic equation appropriate to our system: 

"3-0 (x) 	ew 	K. C1)/&s) 	(4.4.$) 

X T. (x) 	ec (b/h.;) K t (b/hc) 

where K and K are modified Sessel functions of the second kind and 
0 	1 

where X will equal X 	if the ratio of the densities becbmes infinite. 
On 

Notice that c does not enter this equation C*1). Turning to the plane 
w 

wave case, we assume that X.tX =0 so that we may write 
00 

1-(0 05A0 	. 

The ratio containing the Bessel functions is of order unity for 

situations of immediate interest. so  that. very roughly, we may write 

111104•••••••• 

(1) Except. that is. as a second order term which we have 

omitted in this case. Del. Grosso retained it since his interest 

was in liquid filled cavities where velocities in the two media 

are comparable. 
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Xo 
	e 	10 

	 ( . ) 

e„ 

leading to a fractional error in measured velocity of 
2 .  —3 

(X /bk ) /2=10 . This is small. though by no means negligible. but 
0 G 

since we are plotting velocity isotherms and extrapolating to zero 

pressure, the ratio of the two densities in the characteristic 

equation will, in fact, tend to infinity and our final answer for the 

velocity of sound will not be affected. However, the higher points on 

the velocity isotherm will be depressed to some extent which will 

change the measured second acoustic virial coefficient by a small 

amount. 

4.4.4 Parametric Oscillation.  

Hitherto we have treated the length of the cavity. I, as a variable 

with no time dependence. In fact it oscillates with the transducer: 

t o.+ 	e 
tw t 	

( .4 ) 

Breazeale and Adler (47] have investigated the effect of such a 

variation and conclude that fractional harmonics of the fundamental 

resonant frequencies will occur in the cavity if the amplitude of 

vibration of the transducer. 	exceeds a threshhold value. dl 
0 	 0 

—3 
We may assume that this quantity will be of the order 10 cm whereas 

—7 
we have already calculated a rough value for 	of 10 cm. Thus we 

0 
assume that we may continue to regard the length of the cavity as 

being constant without incurring any error whatsoever. 
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CHAPTER V 

THE PRACTICAL INSTRUMENT AND TESTS 

ON THE SYSTEM. 

A practical instrument was constructed in accordance with the 

principles outlined in the previous chapter. It was designed to be 

operated at some fixed frequency below the first cut off frequency and 

could be brought into resonance by moving an acoustic reflector. The.  

main innovations were in the use of an optical (laser) interferometer 

to measure the separations of the positions of resonance and in the 

use of an accelerometer to measure mechanical impedances directly. 

Careful tests have been carried out on the system to ensure that 

its behaviour conforms with all the relevant theoretical assumptions 

of the previous chapters. 

5.1 The Acoustic Interferometer.  

The acoustic interferometer is shown in Figure 5.1 suspended in its 

vacuum can, V. and surrounded by a radiation shield. 	At the bottom 

of the instrument the transducer assembly may be seen hanging on the 

lower end of the acoustic cavity. G. whose length may be increased by 

withdrawing the piston. H. The lower face of this piston is the 

acoustic reflector whilst the upper end carries a cube corner 

reflector. J, which is the moving mirror of the optical 

interferometer. The fiducial mirror of the optical interferometer, a 

semi—reflecting beam splitter, L. is situated in the horizontal plate 

above the piston. By these means the length of the acoustic cavity — 
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Figure 5.1  

The Acoustic. Interferometer. 

A — Stycast Seals. B — Permanent Magnet Assembly, C & D'— Electrical 
Lead Screens, E PZT Accelerometer, F — Transducer Diaphragm, G —
Acoustic Cavity, H — Piston Reflector. I — Germanium Resistance 
Thermometers. J — Cube—Corner Reflector. K — Pushrods. L — Beam Splitter. 
M — Gimbals. N — Optical Window, 0 — Bearing, P —.Upper Chamber, Q —
Moving Tube. R — Radiation Shield. S — Temperature Controlling Sensor, 
T — Thermal Anchoring Grooves (with heater). U — 4.2K Thermal Anchoring 
Grooves. V — Vacuum Can. W — Central Supporting Tube. Y — Laser Beams. 
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or rather changes in length — may be measured without any of the 

problems of indeterminate thermal contractions encountered in the 

conventional pushrod technique where reflector displacements are 

measured outside the cryostat with a micrometer bearing on the end of 

the pushrod. Both Plumb and Cataland and Grimsrud and Werntz suffered 

from this problem. 

Above the beam splitter a second coaxial chamber, P. can be seen 

guiding a sliding brass bearing, 0. This bearing serves two functions. 

Firstly it carries gimbals, H, through which the vertical actuation is 

transmitted to the piston without transmitting any lateral force. This 

was intended to help maintain the alignment of the acoustic 

interferometer. Secondly it houses a cryogenic vacuum tight optical 

window, N, seating the end of a moving tube down which the light 

travels to the optical interferometer and up which the two beams — one 

from the moving mirror, one from the fiducial — return. This light 

tube also serves to actuate the brass bearing and so the piston via 

the gimbals and two thin pushrods, K, passing either side of the beam 

splitter. The thermometric gas for the interferometer descends through 

the annulus between the moving tube and a wider supporting tube, W, 

and thence through various channels drilled for that purpose into the 

cavity and the spaces behind the transducer diaphragm. 

In accordance with good cryogenic practice the instrument was made 

almost entirely with oxygen free high conductivity copper to diminish 

the risk of thermal gradients appearing in the walls of the cavity. 

Most Of the parts were assembled using Wood's metal — a low melting 

point solder. 
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5.1.1 The Cavity, its Dimensions and Alignment.  

The first cut off wavelength will be given by 

= 2.rb /1.94 	= 1.10.13 
	

(s.1.1) 

Thus, having decided to work below the first cut off frequency, we are• 

obliged to use wavelengths greater than 3.42 cavity radii. It was 

decided, somewhat arbitrarily, that a little over five half 

wavelengths should be a sufficient length for the cavity giving three 

more than the absolute minimum of two required to calculateo(and 

Should any unexpected systematic deviation of measured velocity with 

acoustic path occur it would be likely to be greatest in the'early 

orders of resonance where 1;-)L. By the fifth order it might be.expected 

to show a change and thus betray its presence. To keep the cavity as 

short as possible it was desirable to use a bore of small radius. On 

the other hand. boundary layer errors would then increase and the 

loading of the gas column on the transducer would decrease so leading 

to a drop in sensitivity. The value of b=1cm was finally chosen which 

just enabled the smallest cube corner reflector which could be 

obtained to be mounted on the rear face of the moving acoustic 

reflector. This formed the aforementioned moving reflector, J. of the 

optical interferometer. A usable cavity length of 9.4cm was therefore 

made available which allowed five half waves to be accomodated when 

operating at a cut off frequency of 0.9f . A plot of f 	for this 
10 	10 

cavity is shown as a function of temperature in Figure 5.2. 

It was in order to ensure good alignment of the moving acoustic 

'reflector in any position that it was made in the form of a piston 

10cm Long (not including the cube corner housing or retaining cap). 

Being of copper it was chrome plated on its curved surface to diminish 
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The First Cut Off Frequency as a Function 
of Temperature. 
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wear and to prevent it sticking to the unplated copper walls of the 

bore. This measure was thought to be necessary at the fine tolerances 

to which the bore and cylinder were tapped. Clearance was estimated to 

be a few ten thousandths of a centimetre. The face of the piston was 

aluminised to give it an optically reflecting surface and an 

autocollimator was used to measure the squareness of the piston face 
0 

at various positions in the bore. By rotating the piston through 180 

on its axis and measuring the angular displacement of the reflected 

beam in two mutually orthogonal planes, an estimate of its alignment 

could be made. This method did not require the direction of the axis 

of the cavity to be determined independently. It was found that the 

piston face was out of true by less than an angle of 15 microradians 

(+ or - 10 per cent) in the worst case and about half this in the 

best. At the walls of the bore this is equivalent to -an axial 
-6 	 -6 

displacement of 15x10 cm or less than 5x10 of the cut off 
-11 

wavelength leading to a reflection loss of approximately .2x10 

(calculated from equation 2.3.15) which is entirely negligible. Due to 

the method of lapping the end faces, it would be expected that the 

depth of any convexity or concavity would be far less than the 

"depth". bac. of any tilt, X. But since this interferometer is operated 

in such 'a way as to 'measure the separation of resonances rather than 

absolute resonant lengths in accordance with the recommendations of 

section 4.2. no errors in measured velocity will arise from these 

causes. it being a question merely of keeping reflection losses to a 

minimum. 

A longitudinal groove (not shown in figure 5.1) had been cut in the 

side of the piston to take a sprung Teflon pad should it be needed. 

This was designed to hold the piston hard against the opposite wall of 

the bore as it moved. But in the light of these alignment figures it-

was discarded since it was felt that it might add to the difficulties 
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of ensuring that the interferometer bore remained scrupulously clean 

after assembly. It has already been pointed out that, in any case, 

lateral forces cannot be transmitted to the piston because of the 

gimbals (themselves travelling on the bearing in the upper coaxial 

chamber). 

The diaphragm of the moving coil transducer was held at• its 

perimeter between two flat copper surfaces. The upper copper surface 

was machined on the flange at the lower end of the bore which was 

turned on a close fitting mandrel. This seemed the best way of 

ensuring that the -diaphragm was square to the axis. Similar tests to 

those carried out on the piston were performed on this surface. A 

circular optical plate of the same diameter as the diaphragm was made 

and laid on the inverted cavity so that its lower face occupied the 

same position as would the radiating surface of the diaphragm. This 

face was aluminised except for a circular window of two centimetres 

diameter which looked into the mouth of the cavity. The autocollimator 

was thus able to focus on two reflected graticules simultaneously —

one from the piston face as before, and one, in effect, from the 

radiating face of the diaphragm. This enabled the angular misalignment 

of transmitter and reflector to be measured directly. It was found 

never to exceed 28 microradians (+ or — ten per cent) representing an 
—6 

axial displacement of 28x10 cm at the walls of the cavity or 
—6 

approximately 8x10 	of the cut off wavelength. Again such a figure 

represents an entirely negligible reflection loss. 
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5.1.2 The Transducer and the Accelerometer.  

After checking the alignment of the transducer with the cavity 

there still remain two other geometrical problems — the flatness of 

the diaphragm and its coupling to the cavity. 

Every care was taken to ensure that the diaphragm was flat. It was 

punched from puralumin sheet 0.25mm in thickness, laid between two 

lapped steel blocks and subjected to a load of some fifty tons in an 

hydraulic press. It was then annealed for several hours at a 
0 

temperature of 450 C between the same lapped blocks under a load of 

approximately 20kg. Subsequent measurements with an engineer's 
—3 

micrometer capable of discerning differences of less than 10 cm 

failed to show any variations in thickness. 

Experiments with diaphragms of several thicknesses loaded with a 

range of weights had shown that a lower spring rating made for greater 

sensitivity. Changes of mass, on the other hand, were not nearly so 

important. Accordingly, the diaphragm finally chosen for use had eight 

holes of 1cm diameter punched on a circle surrounding the central 

region which radiated into the cavity. Apart from lowering the spring 

rating they also diminished the gas loading on the diaphragm due to 

the pockets of gas in the transducer housing — in particular the gas 

between the outer region of the diaphragm and the flange at the base 

of the bore, which, it will be recalled from section 4.3. adds a 

constant term to the impedance of the transducer, and so Lowers its 

sensitivity. 

It'was not possible to check the flatness of the diaphragm in situ, 

but it was felt that it could not possibly be distorted after this 

preparation. The flat clamping copper surfaces and the comparatively 

greater contraction of the diaphragm on cooling would also help to 

remove distortion had it occurred. 

The undamped diameter of the diaphragm was four times that of the 
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cavity. Had it been clamped at the edge of the cavity (see figure 

2.7(b)) it would have suffered from the drawbacks outlined in section 

4.3. Furthermore. there would have been insufficient space on the rear 

face to accommodate the driving coil and accelerometer which both• 

require to be situated well in from the edge of the diaphragm to 

function to the best advantage. 

The driving coil was wound on a perforated paper former, the 

purpose of the perforations being to prevent standing waves occurring 

in the gap between the rear face of the diaphragm and the pole piece 

• of the permanent magnet. It was earthed at a centre tap and drkren by 

a floating drive voltage. It was hoped that the resulting symmetry in 

the drive circuit would inhibit interference between the driving 

current and the accelerometer circuit. Every care was taken to ensure 

that the coil was aligned centrally in the gap of the permanent magnet 

assembly. Using a cryogenic varnish, it was stuck to the diaphragm in 

a specially constructed jig which held it central and kept it 

perfectly circular. ;The diaphragm itself was exactly located by a 

brass ring encircling the two copper clamping faces. Another jig was 

made which tightly fitted the gap in the permanent magnet assembly. 

The securing screws of the assembly were loosened. the jig inserted 

and the screws retightened. The assembly as a whole was centralised by 

being accurately placed in the copper housing which had the lower 

clamping ring machined on its upper face. 

The accelerometer was a small lead zirconate titanate (P2T) 

'synthetic piezoelectric element in the form of a cylinder. Supplied by 

the Brush Clevite Company, it had been poled axially to form the 

piezoelectric designated as "type 5A" and was plated on its end faces. 

• It was loaded with a 4g disc of brass which also functioned as an 

electrical, screen. The accelerometer assembly was glued together with 

cryogenic varnish and attached to the diaphragm in the same way. 
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Leads to both accelerometer and coil were tightly twisted •and led 

away through screens of hypodermic tubing to pass through separate 

Stycast seats in the base of the transducer housing. They were then 

immediately rescreened and taken out of the cryostat through separate 

tubes and vacuum seals. 

5.1.3 The Optical Interferometer.  

The design of the optical interferometer is shown in Figure 5.3 and 

the situation of the low temperature components — already discussed — 

in Figure 5.1. The beam splitter providing the optical fiducial is 

located at some distance from the transducer diaphragm whose position 

it represents. But since the whole instrument is maintained at the 

same constant temperature. this is of no consequence. The same applies 

to the cube corner reflector moving at constant separation from the 

acoustically reflecting face of the piston. In this configuration 

there is approximately zero optical path for maximum acoustic path. 

Should the optical path increase to half the length of the cavity of 

the laser which is used. the output of the interferometer would be 

expected to fall owing to interference between the closely spaced 

wavelengths in the spectrum of the laser light. This calls for the use 

of a laser with a cavity at Least twice as long as the maximum 

acoustic cavity length. Alternatively, a more sophisticated laser with 

only 	a 	single 	line could be employed. or.  a more elaborate 

interferometer which could function either side of zero optical path. 

In this case a 1mW helium—neon laser supplied by Spectra—Physics Ltd. 

was used with a cavity about 27cm long. An external magnet was 

supplied to polarise the beam. 

Having used a cube corner for the full reflector, the only 

'alignment required within the cryostat was that of the beam splitter. 

This was achieved simply by ensuring that the mating faces of the beam • 

splitter plate and the upper cavity against which it was held were 
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Figure 5.3  

The Optical Interferometer. 
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true. It was with this in mind that Wood's metal solder was employed 

for assembly and Sealing rather than the neater and cleaner crushed 

indium technique. With the tatter changes of alignment unavoidably 

occur as the indium wire is crushed between the mating surfaces. 

The laser was mounted on an kijustable'bench hinged about the point 

where its beam impinged upon the semi—reflector which diverted half 

the light down into the cryostat. A single screw was used to tilt the 

bench until two beams of light re—emerged. The laser could then b4 

positioned exactly so that the emergent beams were parallel and also 

coplanar with the laser beam. By adjusting the small room temperature 

reflector the two beams could be superimposed and aligned in the same 

direction. They would then interfere. Once aligned. only occasional 

small adjustments were made. The stability of the optical 

interferometer was ensured by hanging the cryostat from a thick 

stainless steel optical table, itself supported on a heavy iron frame. 

All vacuum pumps were mechanically isolated from the frame with the 

aid of dampers and anti—vibration mountings both on the pumps and in 

the vacuum lines. 

The light entered and left the cryostat through the moving tube 

which also served to raise and tower the piston. The beams were about 

2 or 3 mm in diameter and the tube was 11.7mm internal diameter which 

enabled them to be kept well separated from each other and from the 

walls of the tube. At its room temperature end it was sealed' with an 

optical window, and at its Lower end was the cryogenic vacuum tight 

optical window welded onto a graded glass seal on a thin Cover tube. 

It was felt to be necessary to evacuate the moving tube in case gas 

convection or oscillation occurred over the large thermal gradient and 

made the optical interferometer unstable. Some consideration was also 

given to sealing the two cold components of the interferometer in a 

vacuum for the same reason. However. with the present type of 
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interferometer. this would have required a complex system of thin 

bellows to link the stationary beam splitter plate with the moving 

tube and piston. Such a system would almost certainly have been 

unreliable and so the idea was rejected. In fact such optical 

instability did occur as will be explained, and reduced the maximum 

pressure at which it was possible to operate the thermometer. Amore 

satisfacto.ry method would have been to provide two separate evacuated 

tubes into the instrument. One. being stationary. would descend to the 

fiducial. and the other. much as in the present instrument.- would move 

with the reflector on the piston. However, no interruption of its 

vacuum to accomodate a stationary beam splitter would be necessary. 

The window, in any case. was the cause of considerable difficulty. 

Attempts were made to glue optical flats into thin swaged copper. 

tubes. Several of these functioned for a period of time, and then, 

failed. even though all of them had been shock tested by plunging into 

liquid nitrogen many times whilst being monitored for leaks with a 

mass spectrometer. It seems that the usual resins available in a 

cryogenic laboratory are prone to crystallisation after prolonged 

thermal cycling._The problem with welding optical windows onto graded 

glass seals. on 'the other hand. is that they become optically 

unsatisfactory. However. after making several — all of a diameter 

larger than that required for optical purposes — one was obtained with 

a sufficiently good central region for optical interferometry. This 

has now been in use.for some time. 

The two sets of fringes obtained from the optical interferometer 

were in approximate quadrature since the fiducial beam in output 1 

(see Figure 5.3) has had four reflections compared to the three in 

output 2. Both outputs were monitored by solar cells as was the 

intensity of the Laser. After attenuation to the mean level of the 

fringe signals. the tatter signal was subtracted from them to 
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compensate for any variation in laser intensity. The resultant signals 

were then amplified through d.c. amplifiers and subsequently used to 

trigger a bi—directional counter giving two counts for every fringe. 
—5 

The wavelength of the Light was 6.3299x10 cm in vacuo, thus giving a 
—5 .  

precision of approximately 1.58x10 cm in a length measurement. A 

small correction was made to the wavelength to account for the 

refractive index of the thermometric helium which filled the optical 

interferometer. The density of the gas was calculated from a 

preliminary (and alwayssufficiently accurate) value of its 

temperature. Using the law of Gladstone and Dale: 

JA -I 	ce 	e 	 (c.t.a.) 

it was possible to correct the refractive index,ja, at STP for the 

prevailing conditions. The correction was of the order P/T parts in 
7 	 2 

10 at a pressure of P N/m and.a temperature of TK. 

5.2 Control and Measurement of Temperature'and Pressure.  

5.2.1 The Cryostat.  

The cryostat was supplied by the British Oxygen Company and was of 

conventional modern design. The whole assembly hung from the optical 

bench and could be taken apart layer by layer as shown in Figures 5.4 

to 5.8. The outer 'layer was a standard British Oxygen Company 

stainless steel dewar modified so that the internal vacuum — usually 

common to the air/liquid nitrogen wall and the liquid nitrogen/liquid 

helium wall — could be split into two to facilitate precooling. This 

dewar could be disconnected from its vacuum lines and lowered on 

extensible springs from the optical bench against which it sealed to 

reveal the vacuum can in which the acoustic interferometer and 

radiation shield were suspended. Two vacuum tines also carrying the 
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The Dewar Hanging from the Optical Table. 
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The Interferometer Vacuum Can. 
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The Radiation Shield. 
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The Interferometer. 
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various electrical leads descended to the can from the optical bench 

above as did the large central tube within which the evacuated light 

tube moved. Three copper radiation baffles cooled by the gas boiling 

off from the liquid helium bath prevented room temperature radiation 

from the optical bench falling upon the can. This method of insulating 

the bath from above is preferable to the older and much more 

complicated technique of inserting another vacuum above the bath as.  

well as around it. 

To operate the system it first had to be precooled. A few hundred 
2 

N/m pressure of air was let into the nitrogen/helium vacuum wall as 

thermal exchange gas, and the helium bath was filled with helium gas 

at atmospheric pressure. Helium exchange gas was also let into the 

interferometer vacuum can at Low pressure. The liquid nitrogen bath 

was then filled and the interferometer gradually cdoled to 

approximately 80K over a period of about 36 hours. Liquid helium could 

then be transferred into the helium bath until it covered the vacuum 

can to a depth of up to 30cm - sufficient for almost 48 hours 

operation under the most favourable conditions. If care was taken to 

ensure that the liquid level did not fall below the bottom of the 

interferometer vacuum can, it was a matter of minutes to top up the 

bath in the mornings so that a velocity measurement could be taken in 

the afternoon and evening. After transferring the liquid helium, the 

helium exchange gas was evacuated from around the interferometer and 

the temperature and pressure controlling systems for the 

interferometer and its charge of thermometric gas could be switched 

on. The exchange gas in the nitrogen/helium wall, being air, 

solidified immediately the liquid helium transfer was initiated so 

that there was no need to evacuate this space. 

The simple design of this cryostat ensured complete reliability 

except on two occasions when the only demountable vacuum seal in the 
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system leaked at low temperatures. This was a crushed indium wire seat 

on the flange of the interferometer vacuum can which probably leaked 

because it was not tightened sufficiently. However, the whole system 

may now be considered to be entirely reliable. 

5.2.2 Temperature Measurement and Control.  

Three four-lead germanium resistance thermometers were inserted 

into the walls of the interferometer so that they would be in thermal 

contact with the thermometric gas (see Figure 5.1). All had been 

calibrated at the normal boiling point of helium to within less than 

1mK and carried the NBS acoustic scale, NBS-65, of Plumb and Cataland. 

The latter calibration was obtained through a comparison with a 

thermometer sent to the NPL from the NBS and originally calibrated 

against a resistance thermometer taken directly from their high 

frequency acoustic thermometer. Our comparison depended upon.transfer 

via a computed fit and is therefore only accurate to + or - 2mK. Plumb 

and Caialand, it will be recalled, found that their temperature was 

10mK above that defined on the T-58 and T-62 vapour pressure scales at 

the normal boiling point of helium. This was subsequently confirmed by 

Rodgers et al.[48] to within 3mK and by Cetas and Swenson[13]. Cetas 

and Swenson using a magnetic thermometer calibrated against the old 

platinum resistance thermometer scale, NBS-55 (see Figure 1.1). 

between 20 and 30K find the vapour pressure scale value too low by 

6.7mK with a similar precision so that this result, too, would seem to 

confirm a figure in the order of 10mK. We have found our NBS-65 

calibration to be 8mK (+ or -2mK) high relative to T-58 and T-62 at 

this point which is compatible with the other measurements. 

In an experimental measurement of velocity the interferometer was 

brought to a temperature within several mK of the required temperature 

(always a fixed point for the work done to date). The values of 

velocity thus obtained were subsequently corrected to their exact 
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boiling point values using the gradient of the resistance—temperature 

curve for the germanium resistance thermometer. Thermometer 

resistances at temperatures other than the normal boiling point of 

helium were only known roughly for these thermometers, but when the 

need arose one was replaced by another calibrated thermometer, or, on 

one occasion, corrections to the velocities were made in retrospect 

when a calibrated thermometer subsequently became available. Errors 

introduced by uncertainties in the reproduction of the true fixed 

point temperature will be dealt with when the results themselves are 

discussed. 

The temperature of the interferometer was controlled by a fourth 

germanium resistor — a two lead element this time — which formed an 

arm of an equal ratio a.c. Wheatstone bridge. The in—phase component 

of the out—of—balance signal from the bridge was selected by a phase 

sensitive detector whose output was used to control the current in a 

heater on the interferometer. Since the heater necessarily maintained 

the interferometer at a higher temperature than the ambient coolant 

bath, the latter had to be pumped slightly below its normal boiling 

point when measuring velocities at 4.2K. The controlling temperature 

was set by adjusting the resistance of another bridge arm and the 

quadrature component of the bridge output was nulled manually by a 

parallel variable capacitance. The lead to the controlling germanium• . 

sensor was of 1mm thick Karma wire as was a compensating lead in the 

other side of the bridge.. Both electrical returns were via the 

cryostat itself thus enabling one side of the sensor to be soldered to 

the interferometer for good thermal contact. 

With this controller temperatures could usually be held constant to 

better than + or —0.5mK for the duration of a measurement at 4.2K. At 

20K they seldom varied by more than + or —2mK. However, these small 

drifts in temperature are easily corrected for. The velocity is 
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calculated from the positions of the first and last resonances which 

are recorded at the initial and final temperatures respectively.• If 

there is a drift of AT, it may _easily be shown that an error in 

measured velocity occurs of 

c 	N 	AT 	 Cs--. a .1 ) 
N- 1 T 

where N is the order of the last peak (usually five for our 

instrument). Accordingly the error in measured temperature will be 

T Ac ONO 
•0111. N AT (5% a. a) 

     

     

   

N - 1 

  

Thus if a rough value ofAIT is obtained from the monitored resistance 

thermometers this is easily corrected for. 

5.2.3 Pressure Measurement and Control.  

It was necessary that the pressure of the thermometric gas was held 

sufficiently constant for the duration of a velocity measurement. 

However, it became unstable above a certain value which was quite well 

defined for any given temperature. It appeared that gas convection 

took place within the annular region between the stainless steel 

supporting tube and the tube moving within it. (*1) The situation was 

4111•1•••••••••=001116 

(1) A similar problem was encountered by Plumb and Cataland (see 

Reference 24). It would seem to be bad practice to use this 
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greatly improved by winding nylon cord around the inner tube so that 

the direct path of the gas was almost entirely obstructed whilst 

allowing it impeded access to the interferometer via a helical path. 

Nevertheless, it was not possible to operate the instrument much above 

0.3 of an atmosphere at the boiling point of helium or about 1 

atmosphere at the hydrogen boiling point. The onset of this pressure 

instability was accompanied by a marked deterioration in the stability 

of the temperature of the interferometer and, at the same time, an 

increase in the power required to maintain it at the chosen isotherm 

temperature. The stability of the optical interferometer was also 

adversely affected as has already been mentioned. 

, 

	

	However, this problem has not greatly diminished the effectiveness 

of the instrument.  since it remains sensitive down to much lower 

pressures than these. In any case it is the lowest pointg on an 

isotherm that are the most valuable since they narrow the range of 

extrapolation to zero pressure. Their comparatively large boundary 

layer corrections are not necessarily any more problematical than 

smaller corrections at a greater distance from the intercept. 

The pressure was controlled by a Texas Instruments pressure 

controller. This functioned by bleeding helium in or out of the system 

through servo controlled needle valves. The necessary controlling 

annulus to take the thermometric gas down to the interferometer 

— probably because it will be denser in the region passing 

through the helium bath than in the warmer interferometer below. 

It is suggested that in any future instrument a tube is provided 

which descends past the interferometer and rises to it from 

beneath or else that the descending tube should be vacuum 

insulated from its room temperature end right down to the 

interferometer. 
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signal was supplied from a quartz spiral Bourdon tube gauge from the 

same manufacturer. In the absence of the aforementioned instability. 
2 

pressures could nearly always be held constant to within + or -5N/m 

for the duration of a measurement - about three hours. 

The pressure of the thermometric gas was measured and frequently 

checked using a recently calibrated Kew pattern mercury barometer. the 

usual corrections to standard temperature and gravity being made. 
2 

Pressure measurements are estimated to be accurate to + or -5N/m 

which represents only a very small part of the total error in a final 

value of isotherm temperature. 

5.3 The Modus Operandi and Tests on the System.  

5.3.1 The Measurement of Velocity.  

The velocity measurement itself consisted of taking values of the 

amplitude of vibration of the transducer as a function of .acoustic 

path so that a resonance curve of the form shown in Figure 2.3 could 

be constructed. The amplitude was obtained in arbitrary units by 

measuring the the r.m.s. voltage from the PZT accelerometer. It was  

amplified by a high impedance low noise differential amplifier, passed 

through a tuned filter (both from AIM ltd.) and then fed to a Dynamco 

a.c. to d.c. converter. This device enabled the r.m.s. voltage to be 

determined directly in terms of its heating effect on a vacuum 

thermojunction by providing a d.c. output voltage which was 

continuously adjusted to have the same heating effect. This was then 

measured by a digital voltmeter from the same manufacturer reading 

from 0 to 1.9999. A full analysis of the performance of this measuring 

system will be given in the next section. 

Each time a value of the accelerometer voltage was recorded so was 

the value of the acoustic path. The acoustic reflector was initially 

brought down to the transducer and the optical counter zeroed. It was 

then raised and held at about four hundred positions on the resonance 
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curve whilst readings were taken. Both numbers were punched onto paper 

tape, one immediately after the other. Between the movement of the 

piston and the recording of the points sufficient time was allowed to 

elapse to enable pressure and temperature equilibrium to be achieved. 

But since the movement on the resonances was generally only some ten 

or twenty wavelengths of light, this took only a few seconds. The 

density of points between resonances was low since the curve varied 

only gradually, but the resonances themselves were covered much more 

fully. Prior to a run a rough plot of the resonance curve was obtained 

on a graphical x—y plotter. This was retraced during the run proper, 

and enabled one to see where the greatest point densities were 

required. Generally, the procedure was the same for all points on all 

velocity isotherms except in one respect. In the earlier readings the 

values of the maxima and minima of the resonance curve were found 

simply by searching for the extreme values on the digital voltmeter by 

moving the piston up and down. Later, points were taken over the 

maxima and minima and fitted with a low order polynomial fit whose 

peak• gave the values adopted for the maxima and minima in the 

calculation on the impedance circles. The method finally adopted was 

to take points with a very close spacing over the peaks and merely to 

select the greatest and the least. There seems to be no difference in 

the quality of the answers obtained in the three different ways which 

is why the last method, being the simplest, was adopted. An example of 

a resonance taken at 20K is shown in Figure 5.9. 

The driving current was obtained directly from the floating output 

of a frequency standard. This was of the frequency synthesising type 

supplied by the company of Schlumberger and claims an accuracy better 
7 

than one part in 10 . It was used with an output impedance set to 600 

ohms driving the transducer symmetrically through two 330 ohm 

resistances — a method which ensured that the driving current was 
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•E 	• 
1.80 1.81 1.82 I•y3 1.84 cm 

Figure 5.9  

The First Resonance Taken at the Boiling Point of 
2 

Hydrogen at a Pressure of 50030 N/m . 
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4 

constant to at least one part in 10 . The desired operating frequency 

was dialled digit by digit, each digit locking onto the internal 

frequency standard. This value of frequency was used in the 

calculation of the velocity. 

The experimental curves were plotted on the NPL's computer 

controlled graph plotter and an occasional point was removed if it was 

found that that it Lay well off an otherwise smooth curve. The data 

was then processed by computer rather than by manually drawing 

impedance circles as described in sections 2.1 and 4.1. However, the 

programme was an exact reformulation of the- graphical procedure in 

terms of coordinate geometry and so, in principle, introduced nothing 

new. The data was split up into segments of resonances and 

anti—resonances (i.e. the slowly changing parts of the curve between 

the resonance peaks) and fitted with orthogonal polynomial fits. 

Values of Z Were then calculated for each impedance circle from the 
T 

anti—resonances either side of each resonance together with values of 

Z 	and Z 	followed by a first approximation of Z 	. This enabled 
MAX 	MIN 	 RES 
the -six points closest to resonance on each peak to be selected and 

refitted with a low order orthogonal polynomial so that l 	and dl/dZ 
RES 

could be accurately calculated. From the latter value an absorption 

coefficient could be calculated for each resonance. Absorption 

coefficients were also calculated from the half widths of the 

resonances and, as will be shown in Section 5.3.3, generally appeared 

to be more self consistent. The average of these was used to calculate 

the boundary layer correction to the velocity as explained in section 

4.1. 
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5.3.2 Tests on the Accelerometer.  

The first test to be performed on the accelerometer was to check 

that it did 	indeed, yield impedance circles as expected. The signal 

from the accelerometer was amplified and split into in—phase and 

quadrature components with respect to the driving current (or the 

driving force). This was achieved by using a phase sensitive detector 

from AIM Ltd. The d. c. outputs were fed to the terminals of an x—y 

graph plotter so that mechaniilal impedance — or rather admittance —

circles could be drawn directly. 

VU.) oe 	1 	 (5.3.1) 

lc (i) 

The origin of the admittance plane was found by disconnecting the 

accelerometer input and marking the paper where the pen came to rest. 

This point represented a situation where no vibration was possible 

even with'a finite driving force i. e. infinite impedance or zero 

admittance. 

&similar test was carried out using the voltage across the driving 

coil instead of the accelerometer voltage so that another set of 

circles could be obtained — electrical impedance circles this time. 

V (i) cc Z COIL  -1- 	1 	(5.3.02) 

ZT  Z. 

Two potential leads going down into the cryostat to the driving coil 
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had been provided for this purpose in case the accelerometer technique 

had proved unsatisfactory in practice. This enabled us to ensure that 

our direct mechanical "impedance" measurements were qualitatively 

similar to the electrical impedance measurements which constitute the 

raw data in the conventional and well established method of operating 

such an interferometer. The two sets of circles are shown in figure 

5.10 and indicate clearly that, whatever the strict interpretation of 

the circles may be, they may still be regarded as impedance circles 

for our purposes since the true point of resonance Will be obtained by 

exactly the same procedures that have already been described with 

regard to mechanical impedance circles proper. The only point for 

careful consideration arises with the calculation of absorption 

coefficients where the wrong sign will be obtained unless the slope of 

"Z" is correctly expressed at resonance. Accordingly we shall feel 

free to talk, of the various distances on the diagrams as rep.resenting 

the same quantities as they did in figure 2.2 — in particular, the 

distance of the circles from the origin will be taken to be a measure 

of Z although, from equations 5.3.1 and 2 it will be apparent that it 
T 

is not. 

The short distance of the accelerometer circles from the origin 

compared to their diameters shows that the newer method is the more 

sensitive one. The greater ratio of Z to Z Cl) in the case of the 

electrical measurements is the result of the purely electrical 

impedance of the device being included in its total measured 

impedance. This effect was predicted in section 4.3 and leads to a 

loss of sensitivity in the detection of the position of resonance and 

hence in the measurement of velocity. Since the purely electrical 

component of the transducer impedance remains the same at increasingly 

lower pressures, the instrument tends to become less sensitive at the 

lower end of the isotherms where the effect is least welcome. However, 
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Z /Z (N2) = 3.19 
T G 	- 

Electrical Impedance 

Circles 

Z /Z (h/2) = 1.06 
I G 

Accelerometer Mechanical 

Admittance Circles 

Figure 5.10  

A Comparison of the Accelerometer Technique for Detecting 

Resonance with the Conventional Technique. 
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the purely mechanical contribution to Z in either type of impedance 
T 

diagram may be expected to fall to some extent due to the fact that 

the internal gas loading of the transducer (that due to the pockets of 

gas behind the diaphragm for example) falls at lower pressures in the 

same way that Z (l) does. Thus the impedances tend to remain of 
G 

comparable size even at low pressures in the accelerometer method. 

The poor'quality of the circles (i. e. their ovality) was traced to 

a phase error in the circuitry responsible for resolving the input 

voltage into in—phase and quadrature components. It can be seen that 

it is similar for both types of measurement. The quality achieved in 

this sort of application using the'type of phase sensitive detector 

commercially available is not likely to be significantly better than 

this. Lengthy investigations with an accurate impedance bridge would 

be required for exact plotting of the circles. However, this was 

considered to be an adequate demonstration that the accelerometer 

signal was behaving in a qualitatively similar way to the electrically 

measured impedance, only with greater sensitivity as expected. 

Simple tests were also carried out at room temperature on the 

accelerometer leads to ensure that there was no serious interference 

from the driving current in accordance with the criteria of Section 

- 4.3. Dummy Leads in physical, but not electrical, contact with the 

accelerometer were substituted for the normal leads and the 

accelerometer was short circuited and earthed. The interference 

voltages were then read on an oscilloscope and compared to the normal 

accelerometer signal obtained under similar conditions. The results 

are• shown in Table 5.1 where it can be seen that the interference 
—3 

voltages are hardly ever in excess of 10 	of the signal from the 

interferometer and always less than one per cent. Since the smaller 

voltages could not be read very easily, an upper limit to the signal 

to noise ratio had to be calculated from the smallest visible 
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TABLE 5.1  

Interference in the Accelerometer Leads from the 
Driving Coil. 

• 

Frequency 

(kHz) 

Accelerometer 

Signal 

(Vp-p) 

Noise in 

Leads 

(Vp-p) 

-5 

Signal to 

. Noise Ratio 

3 
2.0 0.28 7x10 4x10 

-5 3 
4.0 0.05 «5x10 »1x10 

-5 2 
6.0 0.04 «5x10 »8x10 

-5 3 
8.0 ' 0.07 «5x10 >>1x10 

-5 2 
10.0 0.02 «5x10 	- »4x10 

-5 
N. B. 5x10 	was the smallest readable voltage 

although smaller voltages could be seen. 
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interference voltage so that the figure, as written, will almost 

certainly be pessimistic. But, in any case, they represent an entirely 

negligible error when substituted into equation 4.3.19. 

The Linearity of the PZT accelerometer and its associated circuitry 

was tested by plotting the amplified output signal against the current 

passing through the transducer coil. Block diagrams of the 

accelerometer circuit and the drive circuit, both described in the 

previous section, are shown in Figure 5.11. In the latter circuit a 

transformer has been added across one of the 330 ohm series 

resistances in order to isolate it from the voltmeter which would 

otherwise earth one end of it. The voltmeter used was in fact the a.c. 

to d.c. converter and associated digital voltmeter which also served 

to measure the amplitude of the accelerometer signal. 

Like the circle tests, these were carried out at the normal boiling 
2 

point of helium-4 at a pressure of 16690N/m in the acoustic cavity 

and a driving frequency of 3.3kHz. Measured values of the driving 

current in terms of the voltage dropped across the series resistor and 

output signal are shown in Table 5.2, and their ratio plotted as a 

'function of the former in Figure 5.12. It can be seen that above an 

output reading on the digital voltmeter of 0.1500 the system is linear 

to better than one per cent. In practice voltages read are always 

greater than Aikaa 0.1500 under these conditions, so it is felt that 

this figure represents the Linearity achieved in an actual temperature 

measurement. The linearity of the driving current measurements should 

be considerably better (about 0.07 per cent, which is the linearity for 

the converter specified by the manufacturer). 

However, even if non—linearities were far worse than this, it 

should still not affect measured temperatures. This is because on 

extrapolation of measured velocity to zero pressure the range of the 

voltages measured becomes increasingly small compared to the voltage 
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Figure 5.11  

Circuits for Accelerometer Linearity Tests. 
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TABLE 5.2 

The Linearity of the Accelerometer. 

Current Acceleronetor 
SiTnal 

Ratio 

0.0522 0.1853 3.549 
0.0754 0.2740 3.632 
0.0929 0.3412 3.672 
0.1265 0.4702 3.716 
0.1510 0.5635 3.732 
0.1760 0.6575 ./.736 
0.2003 0.7485 3.737 
0.2258 0.8472 3.752 
0.2497 0.9350 3.744 
0.2754 1.0378 3.768 
0.3184 1.1972 3.760 
0.3186 1.1972 3.758 
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Accelerometer Signal/Drive Current 

Or 

Transducer Velocity/Driving Force 

3.8 

3.7 

3.6 

3.5 
0 

Drive Current 

Or 

Driving Force 

0.1 0.2 0:3 

Figure 5.12  

The Linearity of the Accelerometer. 

I 
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characteristic of the impedance, Z . Consequently non—linearities in 
T 

the system are removed by extrapolation just like gas imperfections. 

5.3.3 Tests on the Boundary Layer Corrections.  

In view of the aforementioned suspicion of the orthodox frequency 

dependence of the boundary layer effect of order 1/2, it was decided, 

as suggested in Chapter III, that it should be tested experimentally. 

Accordingly several velocity and absorption coefficient measurements 

were taken at the same temperature and pressure, but at varying 

frequencies. The results are shown in Table 5.3. At the lower 

frequencies, the reactance of the transducer appeared to become 

somewhat small leading to resonances of a fair degree of symmetry 

reminiscent of those characteristic of a quartz crystal transducer. 

Thus the true point of resonance lay close to the peak so that its 

exact location was difficult since the height of the resonance curve 

becomes rather insensitive to changes in cavity length under these 

conditions. The situation is further complicated because small amounts 

of noise or a small scatter on the points becomes more serious when 

' the curve becomes flatter. Absorption coefficients were calculated 

both from the slopes of the resonance curves at resonance and from the 

half widths of the resonances. It can be seen that the latter values 

are more self consistent and so it has been decided to use these for 

the calculation of the boundary layer corrections. Their superiority 

is most in evidence at the l9w frequencies where the symmetry of the 

resonances makes the measurement of the slope at resonance harder, if 

anything, than the location of the resonance itself. This is because 

the slope near the maxima varies considerably with position and also 

because, even when the exact position of resonance is correctly 

defined, noise can seriously change the slope of a fit put through a 

mere six points (see .Section 5.3.1). At higher frequencies when the 

slope of the curve is very steep at resonance, it can be seen that the 
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• TABLE 5.3  

  

Tests on the Frequency Dependence of the Boundary Layer Effect. 

• 

3 	3 
f 	Date 4(10 (km 

(from 	(from 	(meas'd) corr'd for 
slope) 	h/wdth) 	at b. p. b. layer 

(kHz) 	(/cm) 	(/cm) 	(cm/s) 	(cm/s) 

1.5 	27/04/71 1.125 
1.176 

1.153 
1.158 

(velocity not 
successfully taken) 

29/10/71 1.110 1.058 (11957.6) 
1.262 1.151 11954.5 

04/11/71 1.545 1.259 (11957.1) 
CI) 0.894 1.099 11953.5 

04/11 /71 1.318 1.158 (11960.4) 
(II) 0.942 1.155 11956.4 

Mean: 1.171 1.149 11954.8 
Std. Error: 0.064 0.019 0.7 

11972.2 

1.75 	25/06/71 1.135 1.296 . 	(11952.4) 
(I) ,5.095 1.550 11950.7 

08/07/71 1.668 1.233 (11956.4) 
1.117 1.119 11951.5 

20/07/71 1.202 1.086 (11956.5) 
2.888 1.167 11950.7 

Mean: 2.184 1.288 11951.0 
Std. Error: 0.587 0.060 0.4 

11967.7 

2.05 	' 	15/06/71 1.306 1.270 (119604) 
1.287 1.276 
1.257 1.267 11957.6 

Mean: 1.283 1.271 
Std. Error: 0.012 0.001 

11971.7 

continued 	 
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2.25 	25/06/71 1.320 1.376 	(11960.4) 
(II) 1.353 1.397 

1.376 1.346 	11958.0 

Mean: 1.351 1.373 
Std. Error: 0.013 0.012 

11971.9 

2.50 	24/06/71 1.398 1.412 	(11959.9) 
11.464 1.382 
1.454 1.414 	11956.8 

Mean: 1.438 1.403 
Std. Error: 0.017 0.009 

11969.6 

3.0 	07/07/71 1.661 1.677 	(11961.9) 
2.995 1.739 
1.742 1.624 
1.625 1.801 	11958.3 

Mean: 2.006 1.710 
Std. Error: 0.286 0.033 

11971.0 

3.3 	10/01/71 1.739 1.742 	(11952.3) 
1.669 1.645 
1.676 1.780 
1.770 2.636* 	11959.1 

Mean: 1.714 1.951(use 1.723) 
Std. Error: 0.021 0.200 

11971.0 

* These vaLues are rejected as being spurious since 
they are more than three standard deviations from the mean 
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two absorption coefficients agree very well when the occasional 

spurious point has been removed. Spurious points have been marked in 

Table 5.2 and the justification for each rejection is that the value 

rejected compares badly with the remaining values taken at the same 

frequency. Because of the prevalence of such points at the two lowest 

frequencies (1.5 and 1.75kHz) and because of the large scatter in the 

raw velocity measurements they have been repeated several times. The 

mean of the better answers has been taken and treated as a single 

point. In our judgement the weight deserved by these two averaged 

points is more nearly comparable to that merited by the higher 

frequency points, and so all points will be treated equally without, 

we feet, unduly overrating the importance of any one measurement 

relative to another: Had all the low frequency measurements been 

employed as individual points in the curve fitting invstigations 

about to be described, then a seriously misleading influence would 

'have been exerted on the functions being fitted to the points. 

It was assumed that 

(6.33) 

   

be 

and log o( was fitted with a straight line as a function of log f so 
10 	 10 

that 

%to 	0( 
I 

103,.   A r121+ 	f 
_b c 

thus enabling p to be obtained from the slope of the fit. It was found 
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that 

p = 0.519 + or — 0.066(std. error) 

where the standard error has been quoted. We feel that, unless one is 

prepared to consider values for p which are not simple fractions, this 

shows that the orthodox frequency dependence for the boundary layer 

absorption coefficient is correct, and certainly that an order of 3/2 

is not applicable to our instrument. The latter conclusion is further 

reinforced by a plot of the absorption coefficient against the square 

root of the frequency. Here we find that a' polynomial fit to the 

points of order three has a somewhat larger standard deviation than a 

Linear fit. A value of 

A = 0.211 + or — 0.027(std. error) 

was calculated from the slope of the linear fit which compares very 

well with the theoretical value of 0:198 calculated from such rough 

values of the transport properties of helium gas that were available 

for this temperature and pressure. If, in addition to the seven 
1/2 

experimental points of dl and f 	we include the origin we obtain a 

better value still: 

A = 0.201 	or — 0.009(std. error) 

The latter step is quite 	legitimate 	since, whatever the 

frequency dependence of the boundary layer effect, we may assume that 

absorption losses will disappear at zero frequency where the particle 

velocity at any point in the gas, and so the rate of working, will be 

zero too. In any case, it was found with the first fit that the line 

passed by the origin well within a distance given by the standard 

error of the intercept. The results of these fits are shown in Tables 

5.4 and 5. 

In order to assess the dependence of measured velocity upon 

frequency. the velocities were fitted against the reciprocal of the 

square root of the frequency with Linear, quadratic and cubic 
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TABLE 5.4  

Linear Fit of the Logarithm of the Measured Absorption 
Coefficients as a Function of the Logarithm of the 

Frequencies. 

Log f Log 	Log 
	

Residuals 

	

10 	10 	10 

	

Data 	Data 	Calced 

3.17609 -2.93968 -2.94528 -0.00560 
3.24304 -2.89008 -2.91055 -0.02047 
3.31175 -2.89585 -2.87490 +0.02095 
3.35218 -2.86233 -2.85393 +0.00840 
3.39794 -2.85294 -2.83019 +0.02275 
3.47712 -2.76700 -2.78911 -0.02211 
3.51851 -2.76371 -2.76764 -0.00392 

• 
Result: 

Constant Term = -4.59301 + or - 0.22280(std. error) 
Linear Coefft. = +0.51879 + or - 0.06640(std. error) 

Standard Deviation of Points = 0.0199 
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TABLE 5.5  

Polynomial Fits of the Measured Absorption Coefficients 
as a Function of the Square Root, of the Frequency. 

Linear Fit: 

3 3 3 
Alf dX10 00(10 	Resdls. x10 	Resdls. 

5 
x10 

5 
x10 

Data Data Calc'd from 7 pts. Calc'd from 8 pts. 
(1/Hz) C/cm) C/cm) 	C/cm) C/cm) 	C/cm) 

0 0 -0.01003 -0.01003 
38.7928 1.14900 1.12630 -2.26983 1.14407 -0.49292 
41.8330 1.28800 1.22428 -6.37160 1.23654 -5.14584 
45.2769 1.27100 1.33303 +6.20257 1.33917 +6.81665 
47.4342 1.37300 1.40114 +2.81404 1.40345 +3.04498 
50.0000 1.40300 1.48216 +7.91565 1.47991 +7.69087 
54.7723 1.71000 1.63284 -7.71599 1.62212 -8.78836 
57.4456 1.72300 1.71725 -0.57484 1.70178 -2.12203 

Result for seven point fit: 
-4 

Constant Term = -(0.96590 + or - 1.92451(std. error)) x10 
-5 

Linear Coefft. = +(3.15749 + or - 0.39821Cstd. error)) x10 
-5 

Standard Deviation of Points = 6.55x10 

The Standard Deviations for the quadratic and cubic fits are. 
-5 	-5 

	

6.03x10 	and 6.95x10 	respectively. 

Result for eight point fit: 
-5 

Constant Term = -(1.00334 + or - 5.78865(std. error)) x10 
-5 

Linear Coefft. = +(2.97988 + or - 0.12804(std. error)) x10 

-5 
Standard Deviation of Points = 6.11x10 

The Standard Deviations for the quadratic and cubic fits are 
-5 	-5 

	

6.44x10 	and 6.06x10 	respectively. 
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polynomials. It was found once more that the standard deviation of the 

fit deteriorated a little on raising its order to two or three. Again, 

the lack of improvement in the fit with the cubic polynomial suggested 

that no dependence on the 3/2th power of the frequency was present in 

the measured velocities. A value for A of 0.208.  + or — 0.082(std. 

error) which is in very good agreement with the values calculated from 

the absorption coefficients was obtained from the linear fit using 

equation 4.1.2, and the value of the intercept, interpreted as the 

value of the velocity at infinite frequency (when the boundary Layer 

error in the velocity is zero), was 

c = 11971.4 	or — 5.9(std. error) cm/s 
co 

Reference to Figure 5.13 shows that all the corrected velocities lie 

within one standard error bar of this value as would be expected. This 

value was subtracted from the measured values of velocity. and the 

following form for the frequency dependence was assumed: 

=  Ac  
2.617 2- 

A straight line fit of log (c—c ) against log f we's then carried out 
10 °" 1* 	10 

as before: 

(c.-- c)
10 
	1 t 4.03,o f 
Ib 

(5.3.6) 

so that the order of the frequency dependence could be obtained. It 

was found that 

p = —0.483 + or — 0.172Cstd. error) 
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Figure 5.13  

The Boundary Layer Correction as a Function of Frequency. 
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which again is a satisfactory answer from the point of view of the 

orthodox theory showing that our initial assumption that the frequency 

dependence was of order one half was self consistent. However, this 

answer suffers from the rather inaccurate value obtained for coo, and 

so it was decided to investigate a 'fit of the corrected velocities 

against the reciprocal of the square root of the frequency to ensure 

that they were constant to within the statistical error of the fit. 

Corrections were made to the measured velocities from equation 4.1.3 

5*. s 

and we obtained 

c = 11971.6 + or — 5.0(std. error) 
1/2 

— (39.977 + or — 235.865(std. error))/f 

This function was chosen to represent any frequency dependence that 

might remain in the purportedly corrected velocities because it was 

assumed that such errors would in any case vanish at,  higher 

frequencies where the boundary layer effect becomes negligible. It can 

be seen that the magnitude of the remaining frequency dependence is 

far less than one standard error and so may well be of purely 

statistical origin. Furthermore, at the highest frequency (3.3kHz) 

where temperature measurements are made it amounts to only 58 parts 

per million in the velocity equivalent to approximately 0.5mK which is 

virtually negligible, and far less than the uncertainty in the 

frequency independent term C+ or — 2.3mK). The details of the Last 

three fits are given in Tables 5.6 to 8. 
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TABLE 5.6  

• 

Polynomial Fits of the Measured Velocity as a 
Function of the Reciprocal of the Square Root of the 

Frequency. 

Linear Fit: 

100/0 
Data 

(NFIz) 

c 
Data 

(cm/s) 

c 
Calc'd 
(cm/s) 

Residuals 

(cm/s) 

2.58199 11954.8 11953.3 -1.5 
2.39046 11951.0 11954.7 +3.6 
2.20863 11957.6 11955.9 -1.7 
2.10819 11958.0 11956.6 -1.4 
2.00000 11956.8 11957.4 +0.6 
1.82574 11958.4 11958.6 +0.2 
1.74078 11959.1 11959.2 +0.1 

Result of Linear Fit: 

Constant Term = 11971.4 + or - 5.9(std, error) 
Linear Coefft. = -699.866 + or - 276.634(std. error) 

Standard Deviation of Points = 2.03 

The standard deviations for the quadratic and cubic fits are 
both 2.27. 
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TABLE 5.7  

Polynomial Fits of the Logarithm of the Estimated 
Boundary Layer Velocity Error as a Function of 

the Logarithm of the Frequency. 

Linear Fit: 

Log 	f 
10 
Data 

Log 	c 
10 
Data 

Log 	c 
10 
Caled 

Residuals 

3.17609 1.22011 1.25218 +0.032 
3.24304 1.30963 1.21987 -0.090 
3.31175 1.13988 1.18671 +0.047 
3.35218 1.12710 1.16720 +0.040 
3.39794 1.16435 1.14512 -0,019 
3.47712 1.11394 1.10690 -0.007 
3.51851 1.08991 1.08693 -0.003 

Result of Linear Fit: 

Constant Term = 2.78499 + or - 0.57752(std. error) 
Linear Coefft. = -0.48261 + or - 0.17210(std. error) 

Standard Deviation of Points = 0.0516 

The standard deviations for the quadratic and cubic fits are 
0.0576 and 0.0627 respectively. 
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TABLE 5.8  

A Linear Fit of the Corrected Velocity as a 
Function of the Reciprocal of the Square 

Root of the Frequency. 

100/Vf 
Data 

(/VHz) 

c 
Data 
(cm/s) 

c 
Calc'd 
(cm/s) 

Residuals 
• 

(cm/s) 

2.58199 11972.2 11970.6 -1.6 
2.39046 11967.7 11970.7 +3.0 
2.20863 11971.7 11970.8 -0.9 
2.10819 11971.9 11970.8 -1.1 
2.00000 11969.7 11970.8 +1.1 
1.82574 11971.3 11970.9 -0.4 
1.74078 11971.0 11970.9 -0.1 

Result of Linear Fit: 

Constant Term = 11971.6 + or - 5.0(std. error) 
Linear Coefft. = -39.9768 + or - 235.865(std. error) 

Standard Deviation of Points = 1.73 
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5.3.4 Tests on the Measured Diameters of the Impedance Circles.  

Fundamental to the whole treatment of the raw data is the 

assumption of Section 4.1 that the circle diameters are of the form 

given by 

 

I 

 

If this is not true then it will certainly be impossible to measure 

the boundary layer corrections in the way we had hoped and, depending 

upon the reason for the discrepancy, it may not be possible to 

calculate the exact Position of resonance as outlined in Section 2.1. 

In order to demonstrate that our assumption was, in fact, correct, 

the first eight isotherm points taken at the normal boiling point of 

helium (see next chapter) were investigated. The reciprocals • of the 

diameters of the circles (obtained by subtracting Z 	from Z 	) were 
MIN 	MAX 

plotted against the order of resonance, N, to ensure that straight 

lines were obtained. The diameters are given in Table 5.9 together 

with the pressure at which they were taken, and their reciprocals are 

plotted in Figure 5.14. As may be seen they confirm the predicted 

Linear relationship very closely with the exception of the last point 

at the lowest pressure which is due to an error in the reading of 

Z 	. We have rejected this point and calculated the velocity from the 
MIN 
first four resonances alone. The quality of the agreement suggests 

that in future we might use such plots to correct each impedance 

circle diameter — especially the first and last — in order to smooth 

out the scatter in the measured diameters. The slopes and intercepts 

are used to calculate the values of a and b and the ratio GR/13 as 

deicribed. 
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TABLE 5.9  

Measured Impedance Circle Diameters as a 
Function of the Order of Resonance. 

Pressure 	Date 

2 
N/m 

N 

8470 10/01/71 1 0.9320 
2 0.6956 
3 0.5424 
4 0.4586 

10700 17/01/71 1 1.1894 
2 0.8904 
3 0.6976 
4 0.5896 
5 0.5116 

12510 13/01/71 1 1.5580 	• 
2 1.1310 
3 0.8918 
4 • 0.7404 
5 0.6492 

15940 11/01/71 1 1.9554 
2 1.4486 
3 1.1292 
4 0.9318 
5 0.8206 

19700 15/01/71 1 2.6830 
2 1.9284 
3 1.4800 
4 1.2060 
5  1.0478 

23260 09/01/71 1 3.9232 
2 2.8080 
3 2.1478 
4 1.7206 
5 1.4688 

26660 08/01/71 1 5.9616 
2 4.1362 
3 3.2154 
4 2.5330 
5 2.0662 
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Figure 5.14  

The Relation of the Impedance Circle Diameters, D 	to the 

Order of Resonance, N. 
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5.3.5 Testing the Coupling of the Transducer to the Cavity.  

At the end of Section 4.1 it was suggested that the mean position 

of the diaphragm might be shifted in order to investigate any 

unexpected effect there might be due to the gap (0.25mm) separating it' 

from the mouth of the cavity. The shift was to be achieved by passing 

a direct current through the driving coil superimposed upon the usual 

alternating driving current. 

Simple investigations with a diaphragm at room temperature using a 

' dial gauge micrometer and some small weights had shown that it had a 

spring rating of approximately one ten thousandth of an inch per gram 

weight Loading. HoweveN'the applicability of this figure to the cold 

diaphragm mounted in situ is of some doubt. It was estimated that if 

it did apply, the gap could be closed with a current of some 250mA 

through the coil which, it was felt, could lead to serious pr'-oblems of 

temperature control if the coil resistance began to increase du6' its 

warming up. But, in any case, the restoring force of the diaphragm was 

far from Linear over this distance and so no serious attempt uas made 

to use a current of this magnitude since it would still not close the 

gap. The best that could be achieved without causing serious 

instability was a current of 30mA which was reversed to give an 

estimated total shift of (very roughly indeed) 0.06mm equivalent to 

1/4 of the gap. 

Measurements made with this current flowing through the coil 

yielded the following answers for velocities when corrected to the 

n.b.p. of helium-4 

c = 11959.8 cm/s 

and 

c = 11958.4 cm/s 

which shows that in a rather ill defined test no effect was observable 

which exceeded the normal. scatter expected in two such measurements 



— 199 — 

CCf the scatter amongst the velocity measurements of Section 5.3.4). 

The circuit employed for superimposing the direct current upon the 

alternating drive current is shown in Figure 5.15. 

It is conceded that the limitations of this test are such as to 

guarantee no more than the absence of an error of the most unlikely 

magnitude. Had it been possible, an attempt would have been made to 

operate the diaphragm so that it almost touched the mouth of the 

cavity at the limit of its traverse since it is only in Such a 

situation (where the gap is reduced to a distance comparable to the 

amplitude of vibration and to the boundary layer thickness) that any 

effect might have been expected to show. However, we are content to 

assume that the gap is of no consequence for the reasons given in 

Section 4.3 and also because, if there were any effect, it would be 

expected to manifest itself as as a real or complex reflection 

coefficient which, irrespective of size, is cancelled out by using a 

variable path cavity. 
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Figure 5.15  

Circuit for Shifting Mean Position of Diaphragm. 
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CHAPTER VI 

EXPERIMENTAL RESULTS 

Three acoustic isotherms have been plotted at the normal boiling 

point of helium-4 and at the triple point and the normal boiling point 

of equilibrium hydrogen. -The thermodynamic temperatures of these 

points have been evaluated from isotherm intercepts as described in 

Section 1.2 and rough values of the second virial coefficients have 

been obtained from the gradients of the isotherms. On making certain 

simplifying assumptions as to the form of the temperature dependence 

of the viriat coefficients it is possible to calculate the approximate 

pressure dependence of the principal specific heats of helium-4 at 

these temperatures. 

6.1 The Normal Boiling Point of Helium-4.  

Thirteen measurements of the velocity of sound with changing 

pressure have been made at the normal boiling point of helium-4 at a 

frequency a little below the first cut off frequency of the cavity. 

Absorption coefficients have also been measured so that the boundary 

layer corrections can be calculated. The results of these measurements 

are shown in Table 6.1 together with the various corrections that have 

been made. 
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TABLE 6.1  

Isotherm Data at the Normal Boiling Point of Helium-4. 

3 
Pressure 	Date 

2  

(N/m ) 

0000 

C/cm) 

(Meas'd) 	Corr'd for 
at b.p. 	b. 	layer 

(cm/s) 	(cm/s) 

8470 	10/01/71 1.723 (11952.3) 
11959.1 	11971.0 

10700 	17/01/71 1.412 (11919.1) 
11926.9 	11936.6 

12510 	13/01/71 1.352 (11894.8) 
11901.7 	11911.0 

14100 	23/06/71 1.287 (11882.3) 
11880.9 	11889.7 

14500 	08/06/71 1.310 (11882.7) 
11877.9 	11886.8 

15940 	11/01/71 1.201 (11845.1) 
11852.5 	11860.6 

18010 	14/06/71 1.221 (11829.1) 
11826.0 	11834.2 

19700 	15/01/71 1.129 (11788.0) 
11795.1 	11802.7 

21600 	16/06/71 1.073 (11770.4) 
11768.8 	11775.9 

23260 	09/01/71 1.056 (11732.6) 
11740.1 	11747.1 

25010 	17/06/71 1.013 (11719.4) 
11717.1 	11723.8 

26660 	08/01/71 1.004 (11679.9) 
11687.5 	11694.1 

29890 	19/01/71 0.865 (11628.0) 
11635.9 	11641.5 

N.B. All measurements 	were made at 	a 	frequency 	of 3.3kHz 
exactly, and absorption coefficients have been calculated from 
the half widths of the resonances. 
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6.1.1 Reproduction of the Isotherm Temperature  

We have already mentioned in Section 5.2.2 that the interferometer 

carried three - germanium resistance thermometers all calibrated at the 

normal boiling point of helium-4. Their calibration was effected by 

mounting them in close fitting wells in the outer wall of a small 

copper vapour pressure bulb, good thermal contact being ensured by 

smearing them with conducting grease beforehand. A thin-walled 

stainless steel tube left the bulb and was connected to a mercury 

barometer so that the vapour pressure of the liquid helium which was 

condensed into the bulb could be measured. This vapour pressure tube 

was vacuum jacketed up to its room temperature end so that cold spots 

could not occur on its walls - especially at the surface of the liquid 

helium bath in which it was immersed. Fourteen readings of resistance 

were taken at pressures in the neighbourhood of one atmosphere. These 

resistances were then fitted with a quadratic polynomial so that the 

exact normal boiling point resistance (i.e. the resistance at a vapour 
2 

pressure of 101325 N/m ) could be calculated. Using the gradient of 

this resistance-pressure curve and the gradient of the 

pressure-temperature curve as given by the secondary scale T-58, a 

rough value of the resistance-temperature gradient could be calculated 

for each thermometer. This value was sufficiently accurate for us to 

be able to calculate how far from the true boiling point a velocity 

measurement might be made, and thus enabled the appropriate correction 

to be added to or subtracted from the measured velocity to bring it - to 

its exact boiling point value. 

Following our remarks in Section 1.1 on the necessary independence 

of a "primary" temperature measurement, it might be objected that the 

use of the scale T-58 was not available to us - even for the purposes 

of making a small correction - if we wished to maintain our claim to 

be doing primary thermometry. However, the gradient of vapour pressure 
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with temperature in T-58 is obtained directly from the 

Clausius-Clapeyron equation: 

L  
cLT 	T L1 V 

where L is the latent heat of evaporation of the liquid and AV the 

corresponding increase in volume. Our rough uncorrected acoustic 

temperature is sufficiently accurate for a value of I whilst L and AV 

may be measured without assigning a thermodynamic temperature to the 

boiling point. Thus this procedure 'requires only that the rough 

initial acoustic value and the value assigned on T-58 are sufficiently 

close to give cLPAAT to the necessary degree of approximation. This 

was always the case, the actual difference being much smaller than the 

greatest tolerable difference. Thus the use of the scale T-58 is 

justified by our acoustic thermometry rather than presupposed by it. 

One thermometer was always used to make the correction to the 

normal boiling point and the remaining two were used to check that no 

change had occurred in its calibration (on the assumption that an 

identical change in two thermometers would not occur).. Resistance 

measurements on all three were taken at the start and the finish of 

each scan of the resonance curve. These values coincided closely with 

the temperature of the thermometric gas as the first and last 

resonances were traversed - temperatures which might be slightly 

different. To correct for this a small velocity correction was made 

from equation 5.2.1 to bring the measured velocity to the value which 

would have been obtained had the instrument remained at the 

temperature at which the first resonance was traversed. It was this 

value of velocity which was subsequently corrected to 'the normal 

boiling point value. 
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These corrections do not require that any temperature drift remains 

uniform since the velocity of sound is calculated solely from the 

positions of the first and last resonances. The positions of the 

intermediate points of resonance are calculated in order to evaluate' 

the absorption coefficients which are affected only to a negligible 

extent by small changes in temperature. 

Alt resistances were measured with a Diesselhorst d.c. 

potentiometer which, on recent calibration, has been shown to be more 

than accurate enough for our purposes. If the worst possible 

combination of decade errors is supposed to have occurred at this 

temperature, then it would only amount to a temperature error of 0.2mK 

at the most. (*1) This is exceedingly unlikely, however, and so we 

shall count it as three standard errors. The three four—lead 

resistance thermometers were connected in series together with two 

calibrated four—Lead standard resistors of 100 and 1000 ohms nominal 

resistance. Thus the same current could be passed through all of them 

and the resistances of the germanium thermometers could therefore be 

calculated from the ratios of the voltages measured across their 

potential leads to the voltages measured across the potential leads of 

the standard resistors. The current was drawn from a current source of 

the optically stabilised type and was reversed so that the effect of 

small thermal voltages could be accounted for by taking the mean of 

(1) This figure of 0.2mK for the potentiometer errors is likely 

to' be overly pessimistic, in fact, since its most significant 

decades were set to the same values both for calibration and 

during the acoustic measurements. The remaining decades varied 

for each of the fourteen calibration points and for each of the 

thirteen isotherm points so that the errors would be expected to 

average out to a large extent. 
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the measured voltages obtained before and after reversing the current. 

This was standard practice for resistance measurements at all isotherm 

temperatures. 

The estimate of the maximum possible error in the reproduction of 

the normal boiling point is + or — 1.1mK (counted as three standard 

errors again). This figure is obtained from the previous figure of 

0.2mK for 'potentiometer errors to which we add firstly 0.4mK which is 

thought to be the maximum conceivable error which could arise from the 

head of helium vapour in the cold part of the vapour pressure tube in 

the calibrating instrument. This head of vapour would Lead to too low 

a barometer reading at the true boiling point and so the estimated 

boiling point resistance would correspond to a slightly higher 

temperature where the measured vapour pressure would have risen to one 

atmosphere. On comparing the three resistance thermometers long after 

work was completed at this temperature, it was found that 'they alt 

agreed to within 0.7mK, and that two of them agreed to within 0.2mK, 

the "working" thermometer being one of them. Since the working 

thermometer agreed so closely with one of the others it is a plausible 

' assumption that this pair represent very closely the true boiling 

point calibration whilst the third thermometer is slightly in error. 

It has therefore been decided to use the working thermometer 

calibration and to assign it a maximum error of 1mK'which we count as 

three standard errors once more. This generously embraces all three 

values and accords well with the general experience that in the 

absence of a drastic change of calibration, these thermometers are 

stable to within this figure. Thus combining this error with the' 

previous errors of 0.2mK and 0.4mK by taking the root of their summed 

squares, we obtain an overall three standard error bar of 1.1mK or a 

standard error of 0.4mK. The greatest care was taken to ensure that 

the germanium thermometers were in good thermal contact with the 
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copper into which they were inserted both in the vapour pressure bulb 

during calibration and in the interferometer. In the former they were 

in direct contact with the liquid of the bath as was the vapour 

pressure bulb and so no temperature difference would be expected. In 

the interferometer, on the other hand, there was a danger of thermal 

conduction via the electrical leads into or out of the germanium 

"chip" within its sheath. To avoid this the leads were carefully 

varnished down to the copper body of the interferometer before 

reaching the resistance thermometers to "thermally anchor" them to the 

operating temperature of the interferometer (see Figure 5.1). A 

considerable length of wire, approximately one metre, was then 

suspended in the vacuum and anchored again at the temperature of the 

coolant bath by being wound on a copper bobbin in thermal contact with 

the bath. It was felt that these precautions precluded the possibility 

of the thermometers being at any temperature other than that of the 

interferometer. 

6.1.2 The Boundary Layer Corrections at the NBP of Helium-4.  

The measured values of the absorption' coefficients are given in 

Table 6.1 and plotted as a function of pressure in Figure 6.1 where 

the theoretical curve (derived from the Kirchhoff—Helmholtz 

expression) is also shown. Additional points have been calculated from 

the absorption coefficients taken at lower frequencies for the purpose 

of confirming the theory of the boundary Layer (see Section 5.3.3). 

These were converted to the appropriate value for a frequency of 

3.3kHz by multiplying by the square root of the ratio of the 

1/2 
frequencies e.g. by (3300/2050) 	for the absorption coefficient 

measured at 2.050kHz. It can be seen that they are compatible with the 

values taken at 3.3kHz and, furthermore, that all values seem to 

confirm those predicted theoretically. 
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Figure 6.1  

Measured Absorption Coefficients at the NBP of Helium-4. 
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6.1.3 The Isotherm at the NEP of Helium-4.  

The squares of the measured velocities, both before and after 

correction for the boundary layer, are plotted in Figure 6.2 as a 

function of pressure. It can be seen that a significant curvature 

towards lower values becomes apparent at pressures . above about 

2 
18kN/m . Thus fitting a straight line to this data would be expected 

to yield 'an excessive value for the intercept leading to an 

overestimate for the normal boiling point of helium. If a quadratic is 

fitted to the points, on the other hand, then, provided that the  

curvature is attributable solely to the existence of a quadratic term  

as in the acoustic virial expansion, the correct intercept should be 

obtained. However, if the curvature is of a slightly different form 

attributable to small effects which are not dependent on the square of 

the pressure, or if the curvature arises from an unfortunate and 

statistically improbable, but nevertheless possible, distribution of 

points, then an incorrect answer will be obtained. In order to avoid 

these possibilities it is advisable to fit a straight line to the 

lower portion of the isotherm if it can be shown to be linear, and to 

abndon the higher points. In fact straight lines have been fitted to 

progressively fewer and fewer paints starting with all thirteen and 

finishing with the three at the lowest pressures. The resulting 

intercepts with their'standard error bars are shown in Figure 6.3 

together with comparable results using quadratic fits. As expected the 

value of the intercept for the linear fits decreases as the range of 

pressure is lowered, ppears to become roughly constant for between 

four and seven experimental points and then rises erratically due, 

presumably, to the short range of the data compared to the range of 

the extrapolation and to the small number of points. Because of this 

we have d6cided to adopt the answer for the normal boiling point 

obtained from the linear fit to the first seven data points giving: 



10 mK 

0 Uncorrected Vatues 

+ Corrected for Boundary Layer 

2 
Pressure (kN/m ) 

1 

1.45 

1.40 

1.35 

• 
2 	-8 	2 

	
-210- 

c x 10 	(cm/s) 

Linear Fit to First Seven Points 

0 
	

10 
	

20 
	

30 

Figure 6.2  

The Isotherm at the NBP of Helium-4. 
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Figure 6.3  

Values of Intercepts Calculated from Linear and Quadratic Fits to the 

Isotherm Points at the NBP of Helium-4. 
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T(intercept) = 4.2218K 	or — 2.5mK(std. error) 

Full details of this fit are given in Table 6.2 where it can be seen 

that the linear fit has a smaller standard deviation than a quadratic 

fit to the same points 	(the 	latter giving a consistent answer, 

however, as would be expected). The value obtained from a quadratic 

fit to all the data would be: 

	

TCintercept) = 4.2177 	or — 3.8mK(std. error) 

which differs by 4.1mK from the answer we have adopted. In fact this 

difference is almost accommodated by a single standard error bar in 

the latter answer and so may be considered to be compatible. 

Nevertheless we still prefer the answer based on the low pressure data 

both for the reasons given above and also because the standard 

deviation of the linear seven point fit is slightly lower than the 

standard deviation of the quadratic fit to all the data. This shows 

that the data at Low pressures is better represented; if only 

Marginally, by a straight line than is all the data by the quadratic. 

details of which are given in.Table 6.3. 

Our final answer for the normal boiling point of helium-4 will be 

given when we have accounted for the only remaining (known) systematic 

errors — those contributing to the standard error of 0.4mK in the 

reproduction of the correct isotherm temperature and that due to the 

standard error of .45 ppm in the gas constant (equivalent to 0.2mK). 

Taking the square root of the sum of the squares of these and the 

statistical standard error in the intercept, we obtain: 

NBP of helium-4 = 4.2218 + or — 2.5mKCstd. error) 

the systematic errors making a negligible contribution to the total 

error due to the comparatively large random error. 
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TABLE 6.2  

Polynomial Fits to the Low Pressure Data at the 
Normal Boiling Point of Helium-4. 

Linear Fit: 

Pressure 

(Data) 
2 

(N/m ) 

2 	—8 
c x10 

(Data) 
2 

(cm/s) 

2 	—8 
c x10 

(Catc•d) 
2 

(cm/s) 

Residuals 
—4 • 

x10 
2 

(cm/s) 

8470 1.43305 1.43276 —2.9 
10700 1.42482 1.42518 +3.5 
12510 1.41872 1.41901 +3.0 
14100 1.41365 1.41361 —0.4 
14500 1.41296 1.41224 —7.2 
15940 1.40674 1.40735 +6.1 
18010 1.40048 1.40028 —2.1 

Result of Linear Fit: 
8 

Constant Term = (1.46161 + or — 0.00088(std. error)) x10 
Linear Coefft. = —340.5 + or — 6.3(std.error) 

4 
Standard Deviation of points = 4.99x10 

The standard deviations for the quadratic and cubic fits are 
4 	4 

5.45x10 and 6.12x10 respectively, and the corresponding 
8 

intercepts are (1.46319 + or — 0.00385(std. error))x10 and 
8 

1.47264x10 . 
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TABLE 6.3 

Polynomial Fits to All the Data at the 
Normal Boiling Point of Helium-4. 

Quadratic Fit: 

Pressure 

(Data) 
2 

(N/m ) 

2 	-8 
c x10 

(Data) 
2 

Ccm/s) 

2 	-8 
c x10 

CCalc'd) 
2 

Ccm/s) 

Residuals 
-4 

x10 
2 

Ccm/s) 

8470 1.43305 1.43280 -2.5 
10700 1.42482 1.42529 +4.6 
12510 1.41872 1.41909 +3.7 
14100 1.41365 1.41358 -0.7 
14500 1.41296 1.41217 -7.9 
15940 1.40674 1.40712 +3.9 
18010 1.40048 1.39972 -7.7 
19700 1.39304 1.39362 +5.8 
21600 1.38672 1.38666 -0.6 
23260 1.37994 1.38052 +5.7 
25010 1.37449 1.37393 -5.5 
26660 1.36752 1.36767 +1.5 
29890 1.35525 1.35521 -0.3 

Result of Quadratic Fit: 
8 

Constant Term = (1.46019 + or - 0.00133(std. error)) x10 
Linear Coefft. = -312.0 + or - 14.9(std. error)) 

-3 

	

Quadratic Coefft. = 	+ or - 0.4(std. error)0 x10 
4 

Standard Deviation of Points = 5.27x10 

The standard deviations for the linear and cubic fits are 
4 	4 

7.35x10 and 5.55x10 respectively, and the corresponding 
8 

intercepts are (1.46442 + or - 0:00063Cstd. error))x10 and 
8 

1.45976x10 . 
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6.2 The Triple Point of Hydrogen.  

Nine measurements of the velocity of.sound and acoustic absorption 

coefficients have been taken at the triple point of hydrogen in 

exactly the same way as before. The data is shown in Table 6.4. 

6.2.1 Reproduction of the Isotherm Temperature.  

A platinum resistance thermometer was available at the NPL whose 

resistance'had been measured at the triple point of hydrogen in one of • 

our fixed point apparatuses. A germanium thermometer was calibrated 

against this and exchanged for one of the three already in the 

interferometer. Comparisons with the remaining two were immediately 

made so that any subsequent changes in any of the thermometers could 

be detected. It was estimated that the overall uncertainty in the 

reproduced temperature attributable to these calibrations was 	or - 

0.6mK which, again, we count as three standard errors. Unfortunately, 

however, when checking this calibrated resistance thermometers after 

the measurements were completed it was found to have changed by a 

small amount (about 3mK) since the calibration. This change must have 

occurred before comparison with the other two thermometers since all 

three remained in agreement throughout the time they were in use, and 

since a corresponding discrepancy was subsequently noticed in 

measurements of their helium boiling point resistances made before its 

removal from the cryostat. Consequently, it was decided to recalibrate 

all our resistance thermometers against a standard platinum resistance 

thermometer in a comparison cryostat. This showed that a small 

correction amounting to 3.3mK needed to be subtracted from our final 

answer. Given this correction our estimated uncertainty in the 

thermometer calibrations remains at 0.6mK. Combining this figure with 

an uncertainty of 0.75mK due to the maximum possible potentiometer 

error, we obtain a figure of 1.0mK for the overall error in the 

reproduced isotherm temperature or an estimated standard error of 
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TABLE 6.4  

Isotherm Data at the Triple Point of Hydrogen. 

3 
Pressure bate 	cul 0 

2 
(N /m ) C/cm) 

(Meas*d) 
at b.p. 

(cm/s) 

Corr'd for 
b. 	layer 

(cm/s) 

10050 25/05/71 3.214 (21821.8) 
21824.4 21865.0 

10120 20/05/71 3.252 (21820.8) 
21823.0 21864.1 

20080 21/05/71 2.301 (21831.2) 
(I)  21833.9 21863.0 

30060 21/05/71 1.849 (21836.4) 
(II)  21839.1 21862.5 

39980 22/05/71 1.635 (21840.0) 
21842.4 21863.1 

50170 19/05/71 1.430 (21845.0) 
21847.3 21865.4 

59970 22/06/71 1.364 (21846.5) 
21849.2 21866.5 

64770 01/07/71 1.224 (21844.6) 
21848.9 21864.4 

69990 21/06/71 1.162 (21850.4) 
21852.1 21866.8 

N.B. All measurements have been made at a frequency of 6.0kHz 
exactly, and absorption coefficients have been calculated from 
the half widths of the resonances. 
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0.3mK. As before corrections for small drifts and conversions to the 

exact boiling point were made to the measured velocity. 

The gradient for the resistance - temperature relation for this 

thermometer which was required for these corrections was obtained from 

a rough prior calibration in agreement with IPTS-68 and T-58. The 

justification for its use on this occasion is that, in retrospect, the 

calibration was confirmed to a sufficient degree of accuracy by 

acoustic measurements at 4.2K, 13.81K and 20.28K. Had this not been 

the case the calibration would have had to be corrected to achieve 

agreement with the uncorrected acoustic measurements. It would have 

then yielded a sufficiently accurate value for the gradient to make 

the corrections. Thus the temperatures finally arrived at are 

independent of any errors in the initial calibration and so our 

thermometry may still claim to be truly primary. 

6.2.2 The Boundary Layer Corrections at the Triple Point of Hydrogen.  

The measured absorption coefficients are plotted in Figure 6.4 as a 

fuhction of pressure together with values calculated theoretically. 

Again it can be seen that there is good agreement between them. 

6.2.3 The Isotherm at the Triple Point of Hydrogen.  

The isotherm at the triple point of hydrogen is plotted in Figure 

6.5. This time the curvature present in the previous isotherm at 

higher pressures is no longer visible. However, the standard deviation 

of a quadratic fit is marginally lower than that of the linear fit as 

may be seen from Table 6.5. But the points are more randomly 

distributed about the line in the linear fit and so we shall adopt the 

answer given by the linear intercept. As for the low pressure data at 

4.2K we find, as we should, that the linear and quadratic intercepts 

are statistically compatible. 

The data at this temperature is of a better quality than that' 

obtained at the helium boiling point having a standard error on the 
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'Measured Absorption Coefficients at the Triple Point of Hydrogen. 
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The Isotherm at the Triple Point of Hydrogen. 
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TABLE 6.5 

Polynomial Fits to the Data at the 
Triple Point of Hydrogen. 

Linear Fit: 

Pressure 

(Data) 

2 	-8 
c x10 

(Data) 

2 	-8 
c x10 

(Calc'd) 

Residuals 
-4 

x10 
2 2 2 2 

(N/m ) (cm/s) (cm/s) (cm/s) 

10050 4.78078 4.78009 -6.9 
10120 4.78039 4.78009 -3.0 
20080 4.77991 4.78026 +3.5 
30060 4.77969 4.78042 +7.3 
39980 4.77995 4.78059 +6.4 
50170 4.78096 4.78076 -2.0 
59970 4.78144 4.78092 -5.2 
64770 4.78052 4.78100 +4.8 
69990 4.78157 4.78108 -4.9 

Result of Linear Fit: 
8 

Constant Term = (4.77993 + or - 0.00040(std. error)) x10 
Linear Coefft. = 1.65 + or - 0.89(std. error) 

4 
Standard Deviation = 5.86x10 

The standard deviations for the quadratic and cubic fits are 
4 	4 

4.77x10 and 4.28x10 respectively, and the corresponding 
8 

intercepts (4.78096 + or - 0.00058(std. error))x10 and 
8 

4.78233x10 . The linear intercept has been chosen since the 
standard deviations are comparable and the signs of the 
residuals are slightly more randomly distributed. 
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intercept which is smaller even in absolute terms, and much less 

relative to the value of the intercept. This may seem surprising in 

view of the fact that there are approximately the same number of 

points and similar standard deviations, for the two isotherms (the 4.2K 

standard deviation beino the lower). The reason for this is almost 

certainly that whilst the maximum densities are comparable, the 

pressure range of the present isotherm is- about six times the distance 

to be extrapolated whilst the comparable figure on the 4.2K isotherm 

is about one. The temperature corresponding to the linear intercept is 

given by: 

T(intercept) = 13.8066K 	or — 1.2mK(std. error) 

To obtain our final answer we subtract the retrospective temperature 

correction of 3.3mK and combine the systematic errors with the random 

errors as before by taking the root of the summed squares of the 

standard errors from every source (the standard error due to' the gas 

constant being 0.6mK at this temperature). Thus we have: 

Triple Point of Hydrogen = 13.8033 	or — 1.7mK(std. error) 

The comparable answer for the quadratic fit would 13.8063K with a 

total standard error of 1.9mK. 

6.3 The Normal Boiling Point of Equilibrium Hydrogen.  

Ten measurements of velocities and absorption coefficients have 

been made at this temperature. They are tabulated as before in Table 

6.6. 
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TABLE 6.6 

'Isotherm Data at the Normal Boiling Point 
of Equilibrium Hydrogen. 

3 
Pressure 

2 
(N/m ) 

Date c(x10 

C/cm) 

(Meas°d) 
at b.p. 

(cm/s) 

Corr'd for 
b. 	layer 

(cm/s) 

10170 18/05/71 4.072 (26478.0) 
26429.4 26492.1 

20240 01/03/71 3.059 (26477.4) 
26467.9 26515.0 

30020 02/03/71 2.541 (26469.9) 
26482.2 26521.2 

40330 24/02/71 2.019 (26497.2) 
26494.2 26525.3 

49740 09/03/71 1.633 (26496.9) 
26509.1 26534.3 

50040 03/03/71 1.874 (26485.7) 
26510.2 26539.1 

60030 10/03/71 1.470 (26518.6) 
26521.2 26543.9 

69920 11/03/71 1.570 (26520.9) 
26534.0 26558.3 

80090 25/02/71 1.287 (26524.0) 
26543.7 26563.6 

97790 28/02/71 1.330 (26563.2) 
26569.5 26590.1 

N.B. All measurements have been made at a frequency of 7.25kHz 
exactly, and ail absorption coefficients except that at a 

2 
pressure of 60030 N/m have been calculated from the half widths 
of the resonances. An excessively low value (0.000902/cm) was 

2 
obtained for that at 60030N/m for reasons which remain 
uncertain, and so it was evaluated from the gradient at 
resonance which agrees better with the theoretical value and 
with the other data Csee Figure 6.6). 
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6.3.1 Reproduction of the Isotherm Temperature.  

At the time these measurements were made no resistance thermometer 

calibration was available to enable us to reproduce the exact isotherm 

temperature. Instead, it was necessary to rely on a rough calibration 

on one of our existing three germanium thermometers. Subsequently, 

when an exact calibration became available, we were able to transfer 

it onto this thermometer and to make the necessary corrections to the 

measured velocities to allow for drift and to bring them to their true 

boiling point values. However, the same germanium thermometer was used 

for this purpose as was used at the triple point of hydrogen, and so 

an additional correction of 1.7mK has to be subtracted from our final 

answer as before. 

The total uncertainty in the final reproduction in the isotherm 

temperature is + or — 4mK which, as usual, is counted as three 

standard errors. 

6.3.2 The Boundary Layer Corrections at the NBP of Equilibrium  

Hydrogen.  

The measured absorption coefficients are plotted against isotherm 

pressure in Figure 6.6 together with a plot of values calculated from 

the Kirchhoff—Helmholtz formula. Unfortunately they seem to have a 

larger scatter about the theoretical curve than in the previous cases 

which is particularly regrettable at this temperature because of the 

correspondingly higher corrections. These amount to about 100mK at the 

lowest pressures. However, large residuals close to the intercept are 

not necessarily any more problematic than smaller residuals some 

distance away. This would seem to be the case in the present isotherm 

where the standard error in the intercept is much smaller than these 

residuals as will be seen in the following section. 
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Figure 6.6  

Measured Absorption Coefficients at the NBA of Equilibrium Hydrogen. 
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6.3.3 The Isotherm at the Normal Boiling Point of equilibrium  

Hydrogen. 

Values of the square of the acoustic velocity both before and after 

correction for the boundary layer are shown in Figure 6.7 plotted 

against pressure. Given the large scatters the isotherm would appear 

to be linear, but with the small number of points available it is 

possible that a considerable unresolved curvature exists. Were this 

the case, there could be a large error in the intercept. However, the 

isotherm appears to be linear in its central and upper regions which, 

given the form of the acoustic virial expansion, would suggest that it 

would remain linear down to the intercept. The evidence obtained from 

fitting the isotherm certainly does not suggest otherwise, the linear 

fit having a smaller standard deviation than the quadratic. 

The details of the fits are given in Table 6.7. Adopting the value 

obtained from the linear intercept, we have: 

T(intercept) = 20.2643K 	or. — 4.9mK(std. error) 

Taking from this the retrospective temperature correction of 1.7nK and 

allowing for a standard error of 1.4mK in the reproduction of the 

isotherm temperature and 1.0mK due to the uncertainty in the gas 

constant, it becomes: 

NBP of Equilibrium Hydrogen = 20.263K + or - 5mK(std. error) 
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Figure 6.7  

The Isotherm at the NBP of Equilibrium Hydrogen. 
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TABLE 6.7  

Polynomial Fits to the Data at the Normal 
Boiling Point of Equilibrium Hydrogen. 

Linear Fit: 

Pressure 

(Data) 
2 

(N/m ) 

2 	-8 
c x10 

(Data) 
2 

(cm/s) 

2 	-8 
c x10 

(Calc'd) 
2 

(cm/s) 

Residuals 
-5 

x10 
2 

(cm/s) 

10170 7.01831 7.02107 +2.8 
20240 7.03045 7.02646 -4.0 
30020 7.03374 7.03168 -2.1 
40330 .7.03592 7.03720 +1.3 
49740 7.04069 7.04223 +1.5 
50040 7.04324 7.04239 -0.9 
60030 7.04579 7.04773 +1.9 
69920 7.05343 7.05302 -0.4 
80090 7.05625 7.05846 +2.2 
97790 7.07033 7.06792 -2.4 

Result of Linear Fit: 
8 

Constant Term = (7.01563 + or - 0.00170(std. error)) x10 
Linear Coefft. = 53.5 + or - 3.0(std. error) 

5 
Standard Deviation of Points = 2.43x10 

The standard deviations for the quadratic and cubic fits are 
5 	5 

2.53x10 and 2.10x10 respectively and the corresponding 
8 

intercepts are (7.01707 + or - 0.00301(std. error))x10 and 
8 

7.01019x10 
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6.4 The Second Virial Coefficient.  

Another piece of evidence that suggests straight lines should be 

fitted to our isotherm data is afforded by the slopes of these lines. 

It will be 'recalled from section 1.3 that if the second virial 

coefficient, BCT), of a pressure—volume expansion is of the form a+b/T 

as past measurements would often-suggest, then the second acoustic 

virial coefficient, A CT), is also. Consequently, if our values of 
1 

A CT) 	lie on a straight line when plotted against reciprocal 
1 
temperature, then there is further reason to be confident that. the 

Linear slopes, and therefore the linear fits, were the correct ones. 

Such a plot is shown in Figure. 6.8 where it can be seen that our three 

points lie very close to a straight line. In each case the residual is 

less than two standard errors in the gradient obtained from the fit. 

Calculating values of a and b from equation 1.3.10 we obtain: 

a = 18.63 + or — 0.30Cstd. error) 

b = 419.0 + or — 3.5Cstd. error) 

These values lie close to those obtained by other workers some of 

which are listed in Table 6.9. 
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TABLE 6.8 

A Linear Fit of A CT) against 1/T. 
1 

10/T 	A CT) 	A (T) 	Residuals 
1 	1 

(Data) 	(Data) 	(Calc'd) 

0.49349 +53.4730 +51.8372 —1.64 
0.72429 +1.65355 +3.51893,  , +1.87 
2.36870 —340.494 —340.724 —0.23 

Result: 

Constant Term = 155.1 + or — 2.5(std. error) 
Linear Coefft. = —2093.5 + or — 17.2(std. error) 

Standard Deviation of Points = 2.49 

2 —2 —2 
N.B. T is expressed in K and A CT) in cm s /Nm  . To obtain a 

1 
3 

and b in cm /mole, multiply the constant term and, the linear 
coefficient by 0.1 and substitute them into equations 1.3.10 for 
d and e respectively. 
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6.5 The Principal Specific Heats of Helium-4 and their Ratio.  

Provided that care is taken not to extend our results beyond the 

pressure ranges within which our isotherms are linear, we may 

approximate in equations 1.4.2 and 1.4.4,obtaining: 

z 
0- 	C_ ir I C. 

cv 	RT 
1. LT) a 

V 

  

(6.5.1 ) 
R.T 

and 

C C P 	v 4- 	ca. ci_6(11 ? 	.6-. 2) 
R T 

Putting B(T)=a+b/T we have 

0- = Mclf 1 - (cLi5/71 o- -a__.(0.41)/T)1 
`RT R.T 	 L RT 

and 

V 

  

R.-14 

giving 
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_  Cp _ CV 	321.-Ab 	( 
cr — 1 	 (R 1) 

L.) 

• IR I + 
2 t. [ 

• Cv.  
RT 

where the zero subscript refers to the ideal gas value of the 

subscripted variable. C 	CC —C ) and c- have been calculated using the 

p v 
values of a and b given in the last section. Their values have been 

plotted in Figures 6.9 to 6.11. Clearly such values much be treated 

with care since they are based on values of a and b which are derived 

by fitting a straight line to only three points, two of which are 

rather close to each other. 

6.6 Conclusions  

There is nothing to be said in conclusion which has not already 

been said, but it may be useful to draw together our main results. For 

the three measured temperatures we found: 

NBP of Helium-4 = 4.2218K + or — 2.5miastd. error) 

Triple Point of Hydrogen = 13.8033K + or — 1.7mKCstd. error) 

NBP of Equilibrium Hydrogen = 20.263K + or — 5mKCstd. error) 

and for the second viriaL coefficient of helium-4 the following 

temperature dependence was calculated: 

= 18.63 — 419/T 

From the considerations of Chapters II to IV and from the 
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investigations of Chapter V into the boundary layer effect, it would 

seem that, in the absence of hidden systematic errors, these 

temperatures are true thermodynamic temperatures. This belief is 

further supported by the agreement which exists between these results 

and those of the most recent primary gas thermometry and the 

ultrasonic thermometry of Plumb and Cataland both of which depend on 

the circumvention of entirety different types of systematic error. The 

values obtained by these other two methods are given in Table 6.9. 

The only possible systematic error which we feel might be present 

in our work arises from the possibility that the wrong type of curves 

have been fitted to our isotherm data. The only way in which this can 

be checked is by accumulating further experimental data — in 

particular at the _lowest pressures on the isotherms at 4.2K and 20.3K. 

It can easily be seen that in the latter case, for example, removal of 

the lowest point would suggest quite strongly that the appropriate 

function to fit to the points is a quadratic whose intercept would be 

higher than the currently adopted linear intercept by some tens of 

mKs. For this reason we feel that the results reported here should be 

regarded as being preliminary. However, it does seem that these 

investigations have shown that, as a primary technique, low frequency 

acoustic thermometry is capable of providing information every bit as 

useful, as that obtainable from ultrasonic thermometry, and somewhat 

better than has been obtained in the past at low frequencies. 
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TABLE 6.9 

Comparable Results from Other Techniques. 

Existing values of the three isotherm temperatures: 

Present Work 
(K) 

Ultrasonic Thermometry 
CO* 

Gas Thermometry 
(K)** 

20.263 +— 0.005 20.265 C22) 20.2746 +— 0.0004 
20.285 E48,493 

13.8033 +— 0.0017 

4.2218 +— 0.0025 4.225 [24] 4.2240 +— 0.0003 

* Errors have not been assessed by Plumb and Cataland for their 
ultrasonic thermometry so that it is impossible to check for 
consistency when their results lie outside our three standard 
error bar. 
**•These are some preliminary results of K. H. Berry obtained at 
the NPL. We.believe them to be the best values available from 
primary gas thermometry. 

Existing values of a and b: 

a b Source Method 

18.6 +— 0.3 —419.0 +— 3.5 Present work l.f. 	acstc. 
17 —385 [51] prmy. gas 
20 —408 C52] prmy. gas 
22 +— 4 —433 +— 22 [25] l.f. 	acstc. 
19.8 +— 6.3 —441 +— 3  C24] ultrasonic 

a and b for the last four cases were calculated by Rogers et al. 
[50] 
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APPENDIX 1.1 

Proof of Equation 1.3.3 Relating B(T) and V(T). 

The density and pressure expansions for the product PV are 

'PV 	ta'RT 1 + 2( -i) 	C T 	+...    
V 	V 

and 

#PV = vIRT1 	 Ci(T)- -1- • 
3 

respectively. From equation 1.3.1 

= RT 	+ ELT)til.) 	CCTV t_!1_ 
3
-1-•••1 (A.1) 

L v 	kv/ 	tvi 

so that from equation 1.3.2 



and 

PV = ART 	B I CT)RT n 
V 
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V 	7-- 1-1(RT 	111 RT 	-Tr Z( n 
.... V 	V 

z 
cl n 

  

••• 

 

    

    

z—z 
Tr1 i-bin )4- C( 

kV / 

• a ) 

At sufficiently Low pressures equations 1.3.1 and A.2 become 

approximately 

= 	nIR T 	► -0-- 12) (T) n 	 (A•1) 
V 

• 

where second order and smaller terms in P and n/V have been ignored. 

Thus 

'T) = V(-r)R.T 
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APPENDIX 112 

Proof of Equation 1.3.4 Relating CCT) and CCT). 

Knowing the relation between BCT) and S'CT)► it is possible to 

calculate the relation between CCT) and CCT). Substituting for 8' in 

equation A.2 from equation 1.3.3 we obtain 

13 V 	riRT c i B(T) n (Ba(T)-1- C I(T)RT)(141- 
V 

-C) 
Thus by comparison with equation 1.3.1 

(T) 	B&  ( 	a.  (1.3 
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APPENDIX 1.3 

Proof of Equation 1.3.5 Relating A (T) and B(T). 
1 

We have 

z 
110  CT) ÷ A , CT)? 4- Fla  (TIP ir • • • U1.6) 

and 

(-L-P) e s 
\L—Zir a.  11  3-P  
M 	k‘t/ )s 

cp 
c, k 

the second equality arising because 

C p  (  DP ) 
V s 	V IT 

It may also be shown that 

CA. 
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a 
CY" 	CP = I —T  OP \ / /PP)  

C v 	C*)-1.)v/ 	\Jill_ 
• a 

so that 

• a_ 	a 
c = T (N/  

11 Cv  

 

— 	 (A.:0) 
.1\1 OJT  

 

which may be evaluated from the equation of state if it is remembered 

that ' 

C 	=  	T I pa:P 	ciV 	(A-13) 
Jco 	3Ta  lv 

Thus from equations 1.3.3, A.10 and A.11 
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-0- 98 T 
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cth 	$ 	 1.0. 18 T X3d3 
La Sr 	14; 	UT 

s 7.- 1̀6( 	\  1- 5-4  --r 	\icl'13 ) 
Sc 	ct.T2J 46. 	d-Ta  

• • • 
	 tn • 

where terms of the same order in n/V have been collected together and 

where cr is the ratio of the principal specific heats of an ideal 
0 

gas. By comparing this with the acoustic density expansion: 

c
P.. 

= 	Ao(i) -t• Fiji) n -t- 	
a 	

(1.3.8) 
v 

we obtain the following expression for the coefficient, A CT): 
1 

Aii(T) = 16(i1 .1- T &SCA") 	c1.2.8(T)  (A.13) 
3 	ciT 	I S cirrl  

The corresponding expression for ,the second acoustic virial 

coefficient in the pressure expansion is easily obtained from this by 

expressing A CT) in terms of A' CT), This is done as it was in 
1 	 1 

4.  
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appendices 1.1 and 2 for the viriat coefficients of gas thermometry 

i.e. by substituting for the pressure terms in the pressure viral 

expansion to obtain an expansion in terms of n/V which may be compared 

to the original density expansion. We thus obtain 

and 

Fla  (T) = A, ti-) (TUT' 	 (R • 10 

so that we find 

n i t-r) = cr 112)(T)   + 	012_8(1)1  
cl_T IS ci."1 
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APPENDIX 114 

Proof of Equation 1.3.6 Relating A (T) to B(T) and C(T). 
2 

The required relationship follows directly from equations A.12 and 

A:14. to give equation 1.3.6. 
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APPENDIX 2.1 

Proof that the Zeros, X , of Equation 2.2.18 are Real. 
mn 

It has often been shown that 

r 	GO- Trrt P.T) ci,t• 

;(1(4):Tnall) Trit(0()In(g)i (11.15) 

2 2 
where 	. If (3 is the complex conjugate of 42( we may write instead: 

t Yn (air) Trt,(Z-1-) ac 

3711. (at) a Tom, 	ityL(.r) a Tat ((kr) 
GO- - 	 cur 	 at 

Assuming that if 

  

Tiy(cu) = 0 (A • 6) 

then 
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a 	3; Coi.-t) = 0 	 (A • 

also, we have in this situation 

S
tx,(at.r) 3y,(1r) 

	
= t 	(at Tivt  Ur) 

	
0 

Ttn (6)..V) a'r 4 
	

0 

Thus gkcannot be complex. However, it may still be imaginary since the 

denominator of equation A.15 vanishes in this case. But, expanding J 
m 

in an infinite series, gives 

co 
TMCX = E (--On(X/1)11f1.4-rn 

 - I 
antm  

n=o 
cLX 	 n! (nom.) 	D. 

t1 ) 
 a. 

a. E  (via)  
n=° rt. Crt411..) ! 	a. 

0 

y) 
	

( • 11) 
so that of being neither complex nor purely imaginary must be real. 
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APPENDIX 2.2 

Proof of the Equivalence of Several Criteria for Resonance 

at Sufficiently High Frequencies and the Effect of Higher 

Modes on the Measured Absorption Coefficient. 

It will be shown that the same values of l at resonance are 

obtained when (a) Z Cl) is entirely real. (b) The real part of Z (l) 
G 	 G 

is greatest or Cc) the power dissipated is greatest povided that the 

frequency is sufficiently high. 

Condition (a) 

From equation 2.2.24 it can be seen that this requires 

to n 
Cip„ Xmit(i) 	0 	n.2.0) 

Now from equation 2.2.36 

,n E 	= 

E E ciMIII 
In 111 

akftwl. 	(R-.7.1) 

cost-Lac:4,1,4- cos ahma 
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But at high frequencies clL 	and k 	are roughly constant for the•  
mn 	mn 

first few values of m and n which are expected to correspond to those 

modes of high amplitude which are unlikely to be resolved. Thus we may 

for practical purposes cancel the denominators in equation A.21 to 

give 

It will now be shown that this same criterion for resonance is 

obtained in cases (b) and Cc). 

Condition (b) 

Again, equation 2.2.24 enables this condition to be interpreted 

into the following constraint on l: 

EE cmartnci) = 	E q„ cunin 	= 0 (4.2.-s) 
n 	 tn 11 

cU 

Now 

arc„', (01cLjn., Q — cos a kitui P. 	Sirtastod) 
cL 

(CoSit kind_ - cos .2.1z,„, )`Z 
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Ii.ct.ntti  tz," 	lizr,ibk 	 (A• Z3i.) 

( cosh .14,44 — cos 

where we have retained only terms of second order of smallness, there 

being none greater in the immediate vicinity of the resonance. As 

before the denominator can be cancelled together with the factor 

k 	which is also approximately constant with changing m and n for 
mn mn 

the same reasons. This leads to the same condition on l at 'resonance 

as was obtained in the previous situation. 

Condition Cc) 

It may immediately be seen from equation 2.2.40 that this condition 

leads to the same equation for l at resonance as have the last two 

conditions. 

At somewhat lower frequencies where 0( and k may no longer be 
mn 	mn 

considered to be exactly equal for the various different values of m 

and n, the conditions 
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( A . 

  

Costs. 2.4%,„A (4"2..k191la 

and 

E E si.rt tl,„ 

( cosh. 2.0LAIL - cu s Itzmik 

are no longer equivalent. In such a case the denominators of equations 

9 

2.2.46 and 2.2.52 will no longer be raised to the power two if 

resonance is defined by criterion (a). It may easily be shown that the 

requirement for the equivalence of these criteria of resonance is, in 

fact, equation 2.2.47: 

a 
• 

rnn >> 	 (1. a.. i4l1) 

stating that the mnth resonance is far from being resolved. 

Higher Modes and the Measured Absorption Coefficient. 

The effect of higher modes upon the measured absorption coefficient 

may also be calculated easily at frequencies high enough to satisfy 

equation 2.2.47. At the observed resonance 
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WSW =N 	 mil  

crArt 
m 11. 

But 

 

(1.18) 

 

ct„t,,i+ hy,„(1.—t 
	

Oto ‘4 0 0 

under the approximations already used at these frequencies. :thus 

xvc,(1) = 	 (A..c1) 

410 0 

At somewhat lower frequencies when equation 2.2.47 no longer holds 

good, but when the higher modes still remain unresolved, this becomes 

‘Nic u) = 	E Cwitv, 	 (11.30) ri 

4400 410 0 

It might at first be supposed that both these expressions would lead 

to errors in the evaluation of the absorption coefficient since the 
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equivalent ideal expression would be 

 

‘44ct  co 	goo  

 

01.1 1) 

  

100 

However, in order to evaluate 0( , independent evaluation of their 
00 

numerators is required. These values might be obtained from the 

corresponding values of W CL) at antiresonance which are 
G 

xpvc, (1) = 	 GLvot2. v, 
G410  Est E 

for the first two cases where higher modes are present, or' 

`'100 C4' 00 

in the ideal case. Thus a correct value of o( may be calculated from 
00 

measured values of EEG d 	and ila 	at sufficiently high 
n mn 00 	mn 00 

'frequencies as for the ideal case. In the case of the lower 

frequencies, on the other hand, a fractional increase in o( of 
00 
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mn 

EE ctinIrt 
gm. 	n. 

will be found. This might betray the presence of higher modes if 

adequate data is available to enable a reliable value of the true 

absorption coefficient to be calculated from equation 2.1.16. For 

example, if we take the case of Table 2.5 where a/b=1 (i.e. a stiff 

driven diaphragm of the same diameter as the cavity) we may derive 

from equation 2.2.52 the following amplitudes G' 
mn 

mn 	G 	X 	G' 
mn 	mn 	mn 

00 1.00 0.00 0.94 

01 0.66 7.01 0.56 

02 0.04 10.17 0.01 

Here we have assumed that the 02th mode is virtually resolved so that 

ll-1 . This occurs at a frequency of approximately 1MHz for a 
00 02 

cavity of 2cm diameter filled with helium-4 gas at a temperature pf 

4.2K and a pressure of one atmosphere. Thus 



ct 71  . 1 o  dl  
17. 

1.51 
no 
	1.06 100 

— 255 — 

showing a 6 per cent increase in the measured value of the absorption 

coefficient over the correct value. Unfortunately, however. much of 

the information on the transport coefficients of gases is of uncertain 

accuracy. and so an effect of this size may not be a sufficiently 

pronounced indication of the presence of higher modes to enable a 

definite conclusion to be reached. Furthermore, there is no guarantee 

that the spectrum of this example is relevant to any given practical 

case where, for example, one single higher mode may predominate thus 

leading to a change in the measured velocity, but to no visible change 

in the measured absorption coefficient at all. Consequently measured 

values of absorption coefficients cannot be relied upon to check on 

the absence of errors attributable to higher modes. 
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A low frequency acoustic thermometer for the range 2 — 20 K. 

by 

A.R. Colclough, National Physical,Laboratory, 

Teddington, Middlesex, United Kingdom. 

Abstract 

A low frequency acoustic thermometer for the liquid helium range is 

described which incorporates several novel features designed to eliminate 

the difficulties commonly encountered with this technique. Boundary layer 

errors which are particularly troublesome at low frequencies have been corrected 

for experimentally rather than by using the apparently unreliable corrections 

of Kirchhoff, Helmholtz et al. Increased sensitivity has been achieved with 

a method of detecting the resonances which is independent of the purely 

electrical impedance of the transducer used to excite the interferometer 

cavity. Acoustic paths are measured with an optical interferometer operating 

under isothermal conditions inside the cryostat. 

Acoustic isotherms at the normal boiling points of helium-4 and equilibrium 

hydrogen have been plotted to yield thermodynamic temperatures which are in 

fair agreement with the high frequency work of Plumb and Cataland. 
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A low frequency acoustic thermometer for the range 2 - 20 K 

by 

A. R. Colclough 

National Physical Laboratory, Teddington, Middlesex, United. Kingdom 

Introduction  

In recent years a number of interferometric investigations into the 

propagation of sound in helium gas have been made with a view to measuring 

thermodynamic temperatures in the range 2 - 20 K.
1-12 Two methods seem to 

have emerged: the use of high frequencies with the attendant risk of an 

ill-defined wave field/  '2'7-11  and low frequency methods3-5' 12  where this 

problem is avoided at the expense of incurring difficulties with boundary 

layer effects for which reliable theoretical corrections may not easily be 

'made. At the moment, however, there seems to be no detailed low frequency 

temperature scale to compare with the high frequency scale of Plumb and 

Cataland.
10 It was in answer to this need that the National Physical 

Laboratory designed and constructed a low frequency acoustic thermometer and 

undertook an examination of the systematic errors characteristic of low 

frequency acoustic interferometry. The degree of self-consistency achieved 

in the measurements made so far leads us to believe that the systematic 

errors have been successfully corrected for and the agreement reached 

between our preliminary results and the aforementioned. ultrasonic work tends 

to support this view. 

1. 	The design of the instrument  

The instrument which is to be described more fully elsewhere is 

essentially a variable-path cylindrical acoustic interferometer (Fig. 1) 

operated at some constant frequency below its first characteristic cut-off 

frequency so that only plane waves may propagate in the cavity.14,15 As a 

result of the low frequencies used, the boundary layer causes a sizable 

decrease in the measured velocity of sound relative to the value in the• 

unbounded fluid.16-20 There is also an increase in the acoustic absorption 

coefficient brought about by the same mechanism. By measuring the acoustic 

absorption coefficient, however, it is possible to calculate the correction 

to the velocity. This enables one to avoid the use of the theoretical 

corrections of Kirchhoff, Helmholtz, Thiesen et al. which have often been 

.found to be unreliable. 

1 
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Figure 	1  

The Acoustic Interferometer. 

A — Stycast Seals, B — Permanent Magnet Assembly, C & D — Electrical 
Lead Screens. E — PZT Accelerometer. F — Transducer Diaphragm, G —
Acoustic Cavity, H — Piston Reflector, I — Germanium Resistance 
Thermometers. J — Cube—Corner Reflector, K — Pushrods, L — Beam Splitter, 
M — Gimbals. t — Optical Window, 0 — Bearing, P —.Upper Chamber, Q —
Moving Tube, R — Radiation Shield, S — Temperature Controlling Sensor. 
T — Thermal Anchoring Grooves (with heater). U 4.2K Thermal Anchoring 
Grooves• V — Vacuum Can. W Central Supporting Tube. Y — Laser Beams. 
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Conventionally resonance in the interferometer cavity is detected 

either by using a microphone to monitor the acoustic pressure or by 

measuring the electrical impedance of the transducer used. to excite the cavity 

which is modified by the mechanical loading of the gas.
21-24  The latter 

method has the advantage of simplicity, but the mechanical impedance of the 

system may not be coupled. very strongly to the electrical impedance of.the 

device and will, in any case, be masked to some extent by that constituent 

of the electrical impedance which is purely electrical in origin. For this 

reason it was decided. to measure the mechanical impedance of the loaded. 

transducer directly. 

A small lead zirconate titanate (PZT) piezoelectric accelerometer was 

attached to the rear face of the moving coil driven diaphragm which served 

as the transducer. At constant frequency the amplitude of the voltage from 

the accelerometer gave the velocity amplitude of the diaphragm in arbitrary 

units. By dividing the driving force of the diaphragm by this quantity the 

mechanical impedance of the system is obtained. Since the driving force 

is constant at constant current, the impedance in arbitrary units may 

be obtained simply by taking the reciprocal of the voltage amplitude: This 

method enabled sound velocities to be measured at considerably lower 

pressures than would otherwise be possible. 

The separation of the various positions of resonance from which the 

acoustic wavelength is calculated (and hence the velocity of sound) was 

measured. using a laser interferometer situated within the acoustic inter-

ferometer unit itself. The wavelength of sound is therefore measured in 

terms of the accurately known wavelength of light from a laser. This has 

the advantage over the conventional pushrod and micrometer method where 

acoustic paths are measured from outside the cryostat in that it does not 

suffer from the indeterminate thermal contractions in the pushrod. 

2. Experimental procedure'.  

The normal boiling points of equilibrium hydrogen and. helium-4 were 

realised by controlling the temperature of the interferometer at values 

which closely reproduced the calibrated boiling point resistances on three 

germanium resistance thermometers which were in thermal contact with it. 

Subsequent corrections of the measured velocities to their exact boiling 

point values were made from a rough prior calibration of these thermometers. 

It was estimated that the final value of velocity which was calculated 

corresponded to a temperature within ± 1.1 mK of the boiling point of helium-4 

or within ± m1 at the hydrogen point. In quoting our final results these 
errors have been taken to be equal to three standard errors. 
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The interferometer was suspended. in a vacuum can immersed in the 
liquid helium bath of a conventional liquid. helium cryostat. For the 4.2 K 
isotherm the liquid. coolant was pumped. to a temperature slightly below its 
normal boiling point so that the interferometer itself could. be  brought to 
the exact boiling point by means of an electrical heater. It was, of course, 
unnecessary to pump the bath at the higher isotherm temperature. The heater 
current was controlled using an equal ratio a.c. Wheatstone bridge one arm 
of which was a two lead. germanium sensor mounted. close to the heater on the 
interferometer. Using this controller temperatures were held. constant to 
within - 0.5 mK. at the lower point and. seldom varied. by more than ± 2 mK 
at the hydrogen point. 

The pressure of the thermometric gas was controlled by a pressure 
controller from Texas Instruments Ltd. This device functioned. by bleeding 
helium in or out of the interferometer through servo-operated. needle valves. 
These were driven by an out-of-balance signal from a quartz spiral bourdon 
gauge supplied. by the same manufacturer. Pressures could be held. constant 
to within ± 5 N m 2  for the duration of a measurement (about three hours) 
and were measured and constantly monitored. with a recently calibrated' Kew 
pattern mercury barometer. The accuracy achieved in the measurement was 
about ± 5 N 11-2 which represented an entirely negligible error in the ' 
final values of isotherm temperature. 

At the highest frequency which could. be  used. without exceeding the 
first cut-off frequency it was possible to accommodate five resonances in 
the cavity when fully extended. The resonances were scanned and about four 
hundred. readings of the accelerometer voltage (and. hence impedance) were 
takert at various points, together with the corresponding readings of acoustic 
path from the optical interferometer. This resonance curve was subsequently 
analysed by plotting impedance circles for each resonance which enabled the 
exact points of resonance to be determined. to within several parts in 104  
of the acoustic cut-off wavelength (approximately 3.1k. cm with a cavity radius 
of 1 cm);. All other things being equal, temperatures may be calculated.to 
twice the fractional error in the final value obtained for the velocity or 
wavelength of sound.. 

It is also possible to calculate from the resonance curve the reflection 
coefficients for the ends of the cavity and the acoustic absorption 
coefficient, pt,, which is almost entirely attributable to the boundary 
layer at these frequencies.. Thus, taking the fractional error in the 
measured valocity, v , to be 64.v/63 where (0) is the angular frequency Of 
the sound, it is then possible to make a measured correction to the velocity 
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for the effect of the boundary layer. The validity of this correction depends 

on the assumption that the absorption coefficient is directly proportional to 

the square root of the frequency whilst the velocity correction varies inversely 

with it. Tests made at two frequencies at the helium point indicate that this 

is in fact the case. The ratio of the two measured absorption coefficients 
was equal to the square root of the ratio of the corresponding frequencies 

within the.limits of accuracy achieved. Furthermore, the corrected velocities 

were equal to within the general reproducibility of velocity measurements made 

at the same frequency! No such tests were made at 20 K, but the corrected 

velocities were found to lie randomly about a straight line whereas the 

uncorrected velocities showed a distinct curvature. We feel confident, there-

fore, that the systematic errors attributable to the boundary layer have been 

correctly assessed. 

3. Experimental results  

The values of the normal boiling points of helium-4 and equilibrium 

hydrogen which are presented are to be regarded as provisional pending the 

accumulation of sufficient data to define the shape of the isotherms more 

closely. Nevertheless, it is already clear from the results now available 

that their self-consistency is of a high enough order to justify confidence 

in the instrument. 

Measured and corrected values of the velocity of sound at the normal 

boiling point of helium,4 are given in Table I together with the measured 

absorption coefficients and the frequencies at which they were obtained. 

The isotherm is plotted in fig. 2 where uncorrected values of the velocity 

are also included to show the general effect of the boundary layer on measured 

temperitture. The two lowest points on the isotherm were the points taken at 

the two frequencies as described above. It can be seen that the point taken 

at the lower frequency has a correspondingly higher boundary layer correction 

as expected. 

Straight line, quadratic and cubic polynomial representations of the data 

were tried and it was found that the quadratic fit was best, but not greatly 

superior to the linear fit. Details of the straight line and quadratic fits 

are given in Table II. It can be seen'that the two answers for the boiling 

point differ by 4.6 mK - a difference easily covered by twice the sum of the 

purely statistical standard errors in the individual answers. Unfortunately, 

however, it is impossible to make a rational choice of one value in preference 

to the other. The improvement observed on raising the order of fit to two 

might be attributable to a curvature in the points brought about by the 

* See Addendum 
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TABLE I 

Showing Results at the Normal Boiling Point of Helium-4 

Pressure 

2 	. 

Measured 
Velocity 

- 1 ms Nm - 
J
Frequency 

kHz 

Measured 
Absorption 
Coefficient 

-1 
m 

Corrected  
Velocity Velocity 1 

Ms 

Square of 
Corrected 

• 2 	-2  
111 	s 

8470 119.592 3.3 .185o 1191720 14332.9 

84.80 119.486 1.5 .1220 119.671 14321.1 

10700 	. 119.274  3.3 .1430 119.372 14249.7 

12520 119.018 3.3 .1460 119.118 14189.1 

15930 118.517 3.3 .1270 118.603 14066.7 

19700 117,961 ' 3.3 .1190, 118.041 13933.7 

23290 117.401 3.3 .1170 117.479 13801.3. 

26630 116.880 3,3 .1380 116.971 13682,2 
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TABLE II 31  

Showing Details of the ,fit to the Isotherm 

at the Normal Boiling Point of Helium-4 

V 2 _o- R T o 	- M 

where 	R 	is the gas constant 

(8.3143 x103), o• = Clitv  = 5/3 V
2 
= Vol  + ap V2 = Vol + ap + bp2 

and 	M 	is the molecular weight 

of He-4 (4.00260) 

• 

RMS deviation of V2 	m2 	s-2  3.7 3.1 	• 

Equivalent temperature MK 1.1 0.9 

2 ± Vo 	standard error 	m
2 
8
-2 

14630 ± 4 .14614 ± 11 

Equivalent temperature  

± - standard error K 4.2258 I 0.0011 
+ 

4.2212 - 0.0033 

a - .0035525 - .0033276 

b - 6.5988 x10-8 

Mean value of two boiling points 
+4.2235 1. 	.0018 
- standard error K 

, 	• 

a See Addendum 
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physical properties of the thermometric gas. Or - equally likely on the present 

evidence - it could. be  brought about by the random distribution of points about 

what may transpire to be a straight'line on further investigation. Accordingly 

the mean of the two answers has been adopted until the question can be settled. 

The compounded standard error in the mean is 1.8 MK. To this statistical error 

must be added any other source of systematic error which has not been accounted 

for, in particular the error due to the uncertainty in the reproduction of the 

boiling point and that due to the uncertainty in the gas constant. The former 

is taken to be ± 0.4 MK and the standard error in the gas constant 45 parts in 
106 which is equivalent to -.0.2 mK in the final answer. Thus for the normal 
boiling point of helium-4 we have: 

T(n. b. p. helium-l}) = 4.2235 K t 1.9 mK*  
where we have quoted the total estimated standard error. 

The experimental results for the normal boiling point of ovilibrium hydrogen 

are given in Table III and the isotherm is plotted in fig. 3. It can be seen 
that the boundary layer corrections are considerably greater in this isotherm 

than in the previous one due to the lower gas densities at the higher. temperature. 

However, in terms of a fractional error they are roughly comparable. For this 

isotherm no improvement was Observed on increasing the order of fit to two, and 

so a linear representation of the data could. be  unambiguously chosen. Assessing 

the errors in the same way as before we find 

T(n. b. p. e-hydrogen) = 20.263 K + 5 mK. 

Full details of the linear fit to the data are given in table IV. 

4. Conclusions  

A thermodynamic temperature of4.2235Kfor the normal boiling point of 

helium-4 indicates that the helium-4 vapour pressure scale, T58, assigns it a 

value (4.215 K) which is too low by 8.5 mK. This is almost equal to the discrepancy o 
mK 

found by Plumb and Cataland using their high frequency instrument.10 	
LJO  

An early estimate of theirs8 of the normal boiling point of equilibrium 

hydrogen gave the value as 20.265 K with a reproducibility equivalent to ± 7 mIc. 
in the measured velocities. Later measurements10 at the slightly lower 

temperature of 20.0 K. indicated that their acoustic temperature exceeded 

temperatures measured on the scale NBS-5533  (defined only to th 10 mK) by 
approximately 3 mK. This scale yields a value of 20.27125 for the normal 
boiling point of equilibrium hydrogen indicating a rough value only of 20.2714. K 

for the acoustic estimate which must be considered entirely compatible with the 

earlier measurement. 

* See Addendum 
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TABLE III 

Showing the Results at the Normal Boiling 

Point of Equilibrium Hydrogen 

Pressure 
2 Nm- 

Measured 
Velocity 

...1 
ms 

Frequency 
kHz 

Measured 
Absorption 

Coefficient 
m
-1 

Corrected 
oci y Vel 	't 
-1 

ms 

Square of 
Corrected 
Velocity 

2 	-2 
m 	s 

10170 264.294 7.25 .4072 264„921 70183,1 

2020 264..679 7.25 .3059 265.156 70304.5 

30020 264.822 7.25 .2541 265.212 70337.4 

1+0330 264.942 7.25 .2091 265.253 70359.2 

49740 265.091 7.25 .1633 265.343 70406.9. 

50040 265.102 7.25 .1874 265.391 70432.4 

60030 265,212 7.25 .1470 	• 265.439 70457.9 

69920 265.340 7.25 .1570 265.583 70534.3 

80090 265.437 7.25 .1287 265.636 70562.5 

97790 	' 265.695 7.25 .1330 265.901 70703.3 
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The Isotherm at the NBP of Equilibrium Hydrogen. 
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TABLE IV 

Showing Details of the Fit to the Isotherm at the 

Normal Boiling Point of Equilibrium Hydrogen 

2 	cr R 

Linear Fit 

V2 = V0 2  + ap 

V.() 	= 	m 	T 

where 	R 	is the gas constant (8.31434 x103), 

cr = cri/Cv  = 5/3 and 	M 	is the molecular weight 

of He-4 (4,00260) 

	

- 2 	. 	_ RIM deviation of V2  m2  s 	. 

Equivalent temperature mK 
_ 	 . 

	

21.7 	,. 

	

6.3 	' 

. 2 	- V'o 	- 	standard error m2 s 
2 

+. 
Equivalent temperature - standard error K 

70156.3 - 17.0 
+ 

20.2643 - 0.0049 

a 0.00534730 

A small correction of 1.7 mK is subtracted from the value 

20.2643 K to allow foi a calibration error of the germanium 

resistance thermometers at this point. Thus we have 

20.2626 Kt 4,9 mK for the NBP of e-hydrogen. 
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A second exact determination was reported in 1967 giving a value of 

20.285 K.
26,27 

This value, in company with values arrived at by other 

workers using gas thermometry, was used in the determination of the value, 

20.28 K adopted for the corresponding primary fixed point on the 

International Practical Temperature Scale (1968).
28
'
29 

It is, 

unfortunately, impossible to say whether or not this most recent result is 

compatible with our own value since it lies outside our three standard 

error 'bar and we are unaware of its associated error, knowledge of which is 

necessary to resolve the matter. 

It is felt that the tests carried out on the boundary layer at 4.2 K 

together with the excellent agreement reached•with the high frequency work 

of Plumb and Cataland lends considerable support to our claim to have 

measured the true thermodynamic boiling point of helium-4. 

A similar conclusion follows for the normal boiling point of equilibrium 

hydrogen. Whilst no tests on the boundary layer corrections have been made 

at this temperature there is no reason'to suppose that any new problems 

would arise which are not visible at the lower temperature. Furthermore, 

it can be seen from the isotherm that the corrected velocities are linear 

whilst the uncorrected velocities lie on a distinct curve which, as 

expected, falls away increasingly rapidly at the lower gas pressures. 

• 
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ADDENDUM 

Further measurements have been made'at the NBP of helium-4 since this 

paper was submitted to the Symposium making a present total of 13 isotherm 

points in all. A definite curvature has become visible above a pressure 

of about 18 xwm
2  . Fitting a straight line to the lower (linear) part of 

the isotherm has produced an improved value of 4.2218 K ± 2.5 mK (standard 

error). A compatible answer was obtained by fitting a quadratic polynomial 

to the whole isotherm. 

In addition a value of 13.8033 K ± 1.7 mK (standard error) has been' 

obtained for the triple point of hydrogen. This was obtained from a 

linear fit to nine isotherm points between 10 and 70 Wm2. 

Very full investigations have now been carried out on the boundary 

layer effect at 4.2 K, and it has been found to behave exactly as pre4icted 

theoretically both qualitatively and quantitatively. 

Summarising our best current values we have, therefore, 

NBP of Helium-4 	= 4.2218 K 1: 2.5 mK (standard errqr) 

Triple Point of Hydrogen 	= 13.8033 ± 1.7 mK (standard error) 

NBP'of Equilibrium Hydrogen = 20.263 ± 5 mK (standard error) 

Further work is to be carried out on th9se isotherms and so these results 

are still to be regarded as being preliminary. 

77 
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Higher Modes in Acoustic Interferometry 
by A. R. COLCLOUGH 

National Physical Laboratory, Tcddington, Middlesex 
Summary 

The form of the high order modes in a cylindrical acoustic interferometer is deduced, 
together with equations relating their amplitudes to the way in which the transducer 
vibrates. It is then possible to calculate the shape and shift in position of the resonance 
peaks in the interferometer, and the resulting error in a velocity of sound or absorption 
coefficient measurement. The theory is illustrated by an analysis of the likely performance 
of a common type of instrument, and its general bearing on interferometer design is 
discussed. 

Sommaire 
	Modes plus c:let4s en inter] erom&rie acoustique 

On donne la forme des modes d'ordre Cleve dans un interferometre acoustique cyJindri-
que en meme temps que des equations etablissant le rapport de leurs amplitudes suivant 
la fagon dont vibre le transducteur. Il est alors possible de calculer la forme et la varia-
tion en position des pointes de resonance dans l'interferometre ct Perreur resultants dans 
la vitesse du son ou la mesure du coefficient d'absorption. La theorie est illustree par 
Panalyse d'une performance vraisemblable d'un type commun d'instrument et on discute 
son comportement general sur le dispositif interferometrique. 

Hohere Moden bei akustischer lnterferometrie 

Zugammenfassung 
Es wurden die Form der Moden hOherer Ordnung in einem zylindrischen akustisdien 

Interferometer und Gleichungen fiir ihre Amplituden, wie sie der Wandler produziert, 
abgeleitet. Es ist dann moglich, die Gestalt und die Verschiebung der Resonanzpeaks im 
Interferometer und den sich daraus ergebenden Fehler bei Schallgeschwindigkcits- und 
Absorptionskoeffizientenmessungen zu berechnen. Die Theorie wird an Hand ciner Analyse 
der wahrscheinlichen Arbeitsweise eines fiblichen Instrumententyps dargestellt. Ferner wird 
ihre allgemeine Bedeutung fiir die Interferometerkonstruktion diskutiert. 

I. Introduction 

It is well known that apart from plane wave mo-
des more complicated acoustic modes can be pro-
pagated down cylindrical tubes. Each of these higher 
modes can be shown to have a unique phase velocity 
which is higher than that of the plane wave mode, 
and a characteristic cut-off frequency below which 
it is severely attenuated. Often workers with the 
acoustic interferometer have used frequencies well 
above many of these cut-off frequencies, and have 
observed "satellite" peaks corresponding to reso-
nances of the higher modes (BELL [1]). When un-
resolved these parasitic resonances can lead to er-
rors in measuring the velocity of sound due to the 
increased phase velocities of their parent modes. 
Measured values of absorption coefficients are also 
too high because of interference between the plane 
wave resonance peak and those of the higher modes 
(KRASNOOSHKIN [2], BELL [1] ) . 

The purpose of this paper is to show how the 
amplitudes of the higher modes may be calculated 
from a knowledge of the way in which the trans-
ducer in the interferometer vibrates. Knowing this, 
it is possible to predict the shape of the resonance  

peaks and to assess the \error in •the positions of their 
maxima. This theory enables the likely performan-
ces of alternative transducer designs to be compar-
ed, and might be used to correct experimental 're-
sults when other methods of dealing with the prob-
lem are not applicable. 

2. The form of the high order modes 

In order to establish the form of the high order 
modes we follow a method similar to that used by 
KRASNOOSHKIN [2], except that we shall allow for 
the angular dependence of the modes as well as 
for their radial dependence. It is assumed that a 
velocity potential 

rh~(r,z?, z,t) = (r, 	z) 	 (1) 

exists such that 

V2 0(r, z) ago (r, z) = 0 	(2) 

where aoo=koo — i aoo is the complex wavenumber 
for propagation in the unbounded medium at an 
angular frequency, w. Thus a00 is the free gas ab-
sorption coefficient of sound whilst i= ( —1)i. 



Table I. 
Values of X,,,,, . 

74 
m 	0 	1 1 2 J 3 	4 I 5 
0 I 	0 
1 1.84 
2 f 	3.05 
3 4.20 

3.83 1 7.01 110.17 13.32 
5.33 I 8.54 11.71 
6.70 	9.97 I 13.17 
8.01 I 11.37 ; 14.54 

16.47 

r- 

2.8 

2.4 

2.0 

1.6 

 fi 1.2 aon  

0.8 

034 
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X•Thib 

Fig. 2. Variation of Icon and aon  with &nib (aoo = 0.1, 
k00=62.83). 
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The relevant boundary conditions for an inter-
ferometer of radius b and length / (Fig. 1) are: 

30 -a— I . 	0, 	 (3) 
z -o 

Piston 

'Aill111111E, Transducer 

Fig. 1. The acoustic interferometer. The length of the 
cavity, I, May be changed by moving the piston. 

(r, 	z) = 0 (r, + 2 It, z), 	(4) 

30I 
—ar r. b =0,  

(r, 	z) must not be infinite 

—30' I 	a (F(r, 6) e")  
az n 	at 

where F (r, 6) is the amplitude distribution over 
the face of the transducer. Using the first four of 
these boundary conditions and assuming a solution 
of the form: 

0(r,0,a) = R (r) 0(0) Z(z) 	(8) 
for eq. (2), its solution separates to give the follow. 
ing expression for the m n-th mode: 
0„,„(r, 19, z) = Jm(X „,„ b) X 

X (A,,,,, cos m0 +B„,„ sin m 0) cos a„,„ z 
where m, n = 0, 1, 2, ... and A. and B.,, are con-
stants determining the amplitude of the m n-th mode. 
X„,„ is the (n +1),-th root (always real) of: 

d/„, (X) 

	

= 0 	(10) dX x=1,(a3„..0)1 

where I,,, is a BESSEL function of order m of the 
first kind and — a2  and — m2  are the respective z 
and 0 separation constants of .eq. (2). From eq. 
(10) it can be seen that for every value of limn there 
is a unique value of a, am,,-, which is to be inter-
preted as the complex wavenumber of the m n-th 
mode. Some values of X„,„ are given in Table I, and 
the corresponding values of a a.n  are obtainable 
from: 

	

ce„. = ago — (X,„„lb) 2 	(11) 
whose real and imaginary parts, km. and —Gin, 
respectively, are given by: 

---- (140 —ao02 — (Xnin/b)2+ ((ail 
— (x„,„/b)2)2 +4 43  140 )1/1 ) (12)  

and 	 anon = a00 kedkmn • 	 (13) 

Values of kon  and ao„ are plotted in Fig. 2 for a 
plane wave mode wavelength of 0.1 cm with ao0 = 

= 0.1 and b =1 cm. The phase velocity, v„,„ , of the 
m n-th mode is given by: 

V inn = alikma = 1InnI2 	 (14) 

where 2„,„ is the wavelength of the m n-th mode. The 
cut-off frequency, /„,n  , of the m n-th mode is the 
frequency at which the wavenumber, am„ , would 
become purely imaginary if ctoo  =O. It is given by: 

f„,„ t4,0 X„,„/2 b 	(15) 

3. The general solution and the amplitudes 
of the high order modes 

• The general solution of eq. (2) will be a linear 
superposition of the m n-th modes. At the face of the 
transducer it is given by: 

0 (r, O,1) = 2 2 I ,, (X 	b) (Am  cos m 
171 11 

+B„,,, sin m 0) cos am„ / . 	(16) 

Applying the last boundary condition, eq. (7), 
we obtain: 

F (r, t) = — 2 2 amn 	(A„,,, cos 	+ .1 
CO on n 

±B.„ sin m 6) sin a„,„ 	 (171 

and 

(5)  

(6)  

(7)  

(9) 
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On integrating this with respect 'to .0 from 0 to and 
23 it becomes: 

. K = f r (Xi. rib) dr = 
2 a - 
--- 	aon 	b) Aon  sin ao,, l . i f F(r, 0) d0 

0 
(18) 

Now multiplying by r Io(Xok rib) where k=0, 1, 
2, ... and integrating with respect to r from 0 to b 
we have: 

b 2a 
f f  r 10(Xok rib) F(r, 0) dr d:7= 

o o 	 (19) 
2;t 	 a 

= 	2. (ion /10,, sin ao,, I f r .10(Xok b) .10(X0 ,, r/b) dr 

which after applying the following orthogonality 
relations: 

1= f r .10(Xek rib) .10(.710„ rib) dr = 0 if n k (20) 

and 

1= f r (xok rib) dr.= 2  .42) (Xok) if n=k (21) 

becomes: 

AOn = 
	 i 	 
it b2 ao„ 42,(xo ,$ ) sin ao„ 1 X 

b 2a 
X f f r .10(Xon rib)F(r,.0) dr d0 (22) 

o o 
after rearranging and changing the subscript k to n. 
The amplitude 'of the 0 n-th mode is given by I A0 ,, 
and, in particular, the amplitude of the plane wave 
(00-th) mode is given by I A00 1 for which 

Ja(Xon) =1 . 

In order to find 	(where it is understood that 
m> 0) eq. (17) is multiplied by cos j 0 with j= 0, 
1, 2, ... and integrated with respect to 0 from 0 
to 23: 

I cos j F (r,1) d0 
0 

It v. 	" v. 	, , 
= w ain 	 A TI I m 	aj,,/ • (23) 

Multiplying eq. (23) by r (X rib) with k = 0, 
1, 2,... and integrating with respect to r.from 0 
to b it becomes: 
b 2a 
f f r h(xik  rib) cos j F(r,0) dr d0 
o 0 	 (24) 

a 
= 	2 ap, 	sin a j„ Z f r 	rib) 11(X1,,r1b) dr w 
which on applying the following orthogonality rela-
tions: 

K=011 r .1i (X ik  rib) h(Xi.r16) dr = 0 if n# k (25) 

(26) 

=.. 
 2

1,2 
(1 — j2/262k ) 	(X ik ) if n = k 

2 

gives: 

Am n= - II 	b2 amn 
	2 i 

	

oin) / 	1,(l. yin) sin amn /2 't y 

b 2a 
X f 	 f r I 	r/ b) cos nr0 F (r, 0) dr dO (27) 

o o 

after rearranging and changing the subscripts j and 
k to m and n respectively. 

Similarly, it can be shown that: 

2 i 
b2 	—m2/X»,,,) J n (X„,,,) sin a„,,,1 

a 2a 
X f f rim(X,,,hrlb) sin m iI F (r, 79) dr di/ . 	(28) 

o 

So that if F (ro') is known the amplitude of the 
m n-th mode may be calculated from 

I limn+ Bmnl • 

From eqs. (16), (22), (27) and (28) it is now 
possible to write a completely defined expression for 
the velocity potential at the face of the transducer. 
In its preferred form it becomes: 

(r, 0, 1) = 	(konn-Fiamn) 	rib) X  (29) 
01 /I 

X (Cm„ COS M 	D,„„ sin m 0) coth (a„,„ 	k,„„) 1 
where 

con — b2(kg. +4.) 18 (Xon) X  
b 

X of of r ./0(Xon rIb) F (r, 0) dr d0 , 	(39) 

CHM = 	 b2(k;2,,n + agm) (1 — m2Pan) Jm (Xwl) X  
	2 w 

b 
X f fr (1Cm. rib) cos m0 F (r, 0) dr d0 (31) 

o 

and 

2 w  
Dmn— b2(kln  + aln) ( 1 — m2Pan) Jm (Xmn) X  

b 2a 
X f f r j„,(X„m rlb) sin m 0 F(r,0) dr d0 . 	(32) 

o o 

4. The shape of the resonance peaks 

Eqs. (29) to (32) enable the shape of the re- 
sonance peaks to be determined in terms of the 
power dissipated in the cavity. The power, W (1), 
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is given by: 

(1)1 f f r Re(E(I))Re(p(I)) dr (10 	(33) 
o o 

where E(l) and p(1) are respectively the particle 
velocity and the excess pressure at the face of the 
transducer. From the definition of F(r, 	: 

(l) =i w F(r, 0) eicd 	' 	(34) 
so that 

Re ( (1)) = — w F (r, 0) sin to 1. 	(35) 

The pressure at the transducer may be obtained 
from: 

p(1) = e 	(0 (r,0, 1) 	(36) 

so that, since a„,„ < k„,„ for all cases of practical 
interest, 
Re (p (/) ) = 	2 k,,,,,1„,(X„,„r1b) X 

/I 

X (Cmn COS /9 D„,„ sin m t9) (P„,„(1) sin w t + 
+ Q„,„(1) cos w t) 	(37) 

where P,,,,,(1) and Q,,,,,(1) are respectively the real 
and imaginary parts of coth (a„,„ i k,„„) 1 given by: 

Pm (1) = 	sinh 2 a„,„ 1 

and 

Qm.(1) — cosh 2 a„,„ 1— cos 2 k„,„ 1 

So, substituting eqs. (35) and (37) in eq. 
and performing a time average: 

W(/) = 	Fmn Pinn(1) 
IN It 

where, if a,,,,, is again taken to be small in compari-
son with km:, 

	

Vtnn (02 	 

	

Finn=
Xb2  (1 — m2a2mn) 	 (41)  

b 2.7 
X ((f r ,,,(X„,„ 

o 0 
b 2.‘ 

+ ( f f r J„,(X„,„rlb) 
0 

400 

rlb) cos m 	(r, 0) dr 

sin m 	F (r,P) dr 

4 

c10) 2  + 

d19) 2) 

1st peak 

200 2 

0 0 
Ago  Xoo 199A00  

when m> 0, and 

F0„= I F,,,,, as defined above when at = 0. 	(42) 

In order to illustrate the use of eqs. (40) to (42), 
the peak shapes for an ideal transducer executing 
perfect_ piston-like vibrations will be derived and 
compared with those produced by a stiff diaphragm 
driven, say, by a moving coil. Often transducers of 
the latter type have a diameter larger than that of 
the cavity in order to approximate to the ideal by 
diminishing the curvature of the diaphragm at the 
extreme positions of its vibration. 

For the ideal case we put: 

F(r, 0) = 4,0  
where 	is a constant. All the amplitudes, F„,„ for 
which m > 0 are zero since the t9 integrals of eq. 
(42) vanish. Similarly FO„ is zero when n>0 be-
cause of the r integral in eq. (41). So, as would 
he expected, only the plane wave amplitude, Foo , ;5 
finite. In units of It Q (03  so  b2I2 koo  it Is given by: 

F00 =1 . 	 (44) 

The peak shapes for this case are shown in Fig. 3 
where a00  has been taken to be 0.1. Since no high 
order modes have been excited the peak maxima al-
ways fall on a position for which 1.= s 200/2 where 
s= 0, 1, 2,... . 

To approximate to the amplitude distribution of 
the stiff diaphragm we choose: 

F(r, V) = SO e—r2/(al—ri)  for 0 S r 5 a 	(45) 

where a is the,radius of the diaphragm. This ensures 
that F(r, 0) is zero at the edge of the diaphragm 
where it is clamped and that af(r,0)lart,,,„ is 
also zero to allow for the stiffness of the diaphragm. 
In order to consider how the performance of the in-
strument is affected by changing the diameter of the 
diaphragm, peak shapes will be calculated for 

alb =1 and alb = 4. 

The two cases are shown in Fig. 4. 
For the same reason that was given in the ideal 

case, F,,,,, vanishes when m > 0. But now the ampli- 

100,100 	401100  

cosh 2 am 1 — coi 2 k„,„1 

sin 2 k,„,,1 

(38)  

(39)  

(33) 

(40)  

100 thpeak 

  

200M peak 

   

   

 

50,100 	399 X00  
4 
	

2 	4 
	

4 	 4 
pig. 3. Peak profiles for ideal transducer. 



alb Fon 
4 5.752 

1 4 0.002 
2 i 4 0.000 
3 4 0.000 
4 4 0.000 
5 4 0.000 

1 1.000 
0.058 

2 1 0.013 
3 1 0.02 
4 1 0.000 
5 1 0.000 

Casel: a/b-i 
	 ;a-b 

Piston 	 Transducer 
z-0 	 z-1 

I 
a-4b 

Case2 I a/b-4 
	

1 

Piston 	 Transducer 
z-0 

Table II. 
Amplitudes of the 0 n th modes for a stiff diaphragm. 

1st peak 

A 

4 
Fig.& Peak profiles for a/b =1. 
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z—L 
Fig. 4. The interferometers arc shown wIls small and 

large diaphragms. The latter ma) be expected 
to approximate to the ideal. 

tudes, Fft„ , are no longer generally zero as may be 
seen from Table II where they are expressed in 
units of F00 when a = b. The resulting peak shapes 
are shown in Figs. 5 and 6 for cases 1 and 2 respec-
tively. It can be seen that the case where a/b = 4 
approximates so well to the ideal case that there is 
no discernible difference in the peak shapes (the 
change in scale merely reflecting the change in 
units). The case for which a/b =1, however, has 
two parasitic modes, the 01-th and the 02-th, which 
cause severe distortion of the peaks. A marked asym-
metry can be seen by the 100-ih peak and by the 
200-th peak the 01-th mode is virtually resolved. In  

practice, though, it is unlikely that a transducer 
could be made which would be sensitive enough to 
respond to these distortions so that the presence of 
the higher modes might go unsuspected. This would 
result in an error of several parts in 10 000 in a 
velocity of sound measurement and about 7% in aoo . 

In the cases considered there has been no 0 de-
pendence in the amplitude of vibration of the trans-
ducer. Consequently F„,„ has always vanished when 
nt>0. But were this not the case the peaks could be 
further complicated by the presence of rn-th modes. 
Furthermore, the functions chosen for F(r, 0) have 
been concisely expressible, whereas in practiCe it 
may well have to be expanded as a series of ortho-
gonal functions of r and 0 (preferably the In n-th 
modes). 

0 
100  
4 

lit peak 100 th peak 
1000 10 

200th peak 

• 500 5 

0 0 
A00 199.100  50.100  

4 

399100 	100100 	401100  
4 4 4 	 4 

Fig. 6. Peak profiles for a/b = 4. 
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5. Higher modes and interferometer design 

It is clear from the last example that if accurate 
acoustic measurements are to be made, it is neces-
sary to know what effect high order modes are 
having on the performance of one's instrument. 

Of several ways of dealing with the problem, the 
simplest and most effective is to work below the cut-
off frequency of the O1-th mode. Since only the 
plane wave mode can then be propagated it will be 
certain that all resonances are pure plane wave re-
sonances. This is a satisfactory ,method if velocities 
alone are to be measured. But, in order to examine 
enough peaks to enable absorption coefficients to be 
measured, a very long interferometer might be re-
quired. A sufficient number of peaks must be tra-
versed to enable a measurable decrease in their 
height to be observed. So quite apart from the in-
crease in wavelength brought about by operating 
at low frequencies, allowance must be made for the 
diminished rate of decrease in peak height brought 
about by the dependence of 200  on the square of the 
frequency. Thus at low frequencies there arc two 
factor working to increase the length of the cavity 
required. And as a consequence problems of tem-
perature uniformity in the tube and mechanical 
alignment of the transducer and piston may become 
troublesome. 

Secondly an attempt could be made to detect the 
presence of unwanted modes by using an inter-
mediate frequency and a cavity of sufficient length 
to resolve a significant O1-th mode resonance (and 
therefore any other significant resonance). But, apart 
from any problems of temperature uniformity and 
mechanical alignment which might arise, there re-
mains the problem of designing a sufficiently sensi-
tive transducer capable of responding to deformities 
in the smallest peaks. In practice this is likely to 
require the use of a quartz crystal since other elec-
tromechanical devices, even when driven on reso-
nance, have too large an impedance compared to 
the small changes in gas impedance which are to be 
measured. 

Thirdly, a measurement might be made of F(r,19) 
with a view to applying the preceding theory to cor-
rect the positions and heights of the resonance 
peaks. Such a measurement would have to be done 
in situ if it was to be of any value since trans-
ducers tend to be sensitive to the smallest changes 
in their immediate environment. This would almost 
certainly involve an optical experiment on the trans-
ducer so that its amplitude of vibration would have 
to be large compared to the wavelength of light. The 
amplitude would be limited by the maximum toler-
able power input to the cavity. But, since the power 
radiated into the cavity is proportional to the squa- 

res of the amplitude and frequency of .the trans-
ducer, this implies a maximum frequency for any 
given amplitude. For some interferometers it might 
be the case that, in order to obtain a measurable 
amplitude of vibration, the driving frequency of the 
transducer would have to be lowered to a value 
which again introduces problems in the measure-
ment of absorption coefficients. 

There is also another problem associated with the 
precise application of the preceding theory arising 
out. of the "tube effect". When measured in tubes, 
velocities are found to be less than the free gas velo-
cities of sound at the same frequency, and. absorp-
tion coefficients are in excess of their free gas val-
ues too. This arises out of wall effects due to the 
viscosity of the gas and the relatively high thermal 
conductivity of the walls of the cavity. Unfortunately 
to try and take them into account from first prin-
ciples produces a mathematically intractable prob-
lem, but there do exist corrections to allow for them. 
The corrections, given by the KIRCHEIOFF-HELM-
HOLTZ equations, are fully discussed in a paper by 
WESTON [3], but it suffices to say here that they 
arc large at low frequencies and in cavities of small 
bore, and small at high frequencies and in cavities 
of large bore. The difficulty arises because they are 
only relevant to the plane wave mode, so that it is 
not possible to tell exactly to what extent the phase 
velocities of the higher modes are altered by wall 
effects. It may be supposed, however, that the tube 
effect becomes increasingly unimportant for all mo-
des as frequency and cavity bore increase, so the 
preceding theory may be expected to apply under 
these conditions. And, even at low frequencies, an 
optical experiment could provide useful confirmation 
that a well designed transducer was approximating 
to the ideal in which case the question of the phase 
velocities of the higher modes would not arise. 

A more practical solution to the problem would 
seem to be to design a transducer which, according 
to the above theory, would be unlikely to excite un-
wanted modes and then to operate it below the first 
cut-off frequency. If it is then necessary to obseive 
a' larger number of peaks (to measure absorption 
coefficients) the frequency may be increased and a 
check made that velocities measured at the new fre-
quency are compatible with those measured below 
the first cut-off frequency. This procedure should be 
quite satisfactory so long as all measurements are 
carried out at low enough frequencies to avoid prob-
lems associated with velocity dispersion. 
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NOTATIONAL GLOSSARY 

a p21; a figs.2.6 and 2.7; a pp125,136; a p87; a p91; 
n 

A pp46,84; 'area of transducer face; A p88; A' p85; A 	p50; A 
mn 	n" 

p101;A 	A 	A 	A' 	... acoustic virial coeffts. pp15.16; 
0 1 2 0 

b p21; b fig. 2.1; b pp125.135; b p91; 
n 

B. B' virial coeffts. p19; B adiabtc. bik. moths.; B 	isothl. blk. 
S 	 T 

modls.; B 	p50; B p102; 
mn 

c velocity of sound; c 	c 

p 
C . C principal specfc. 
p v 
d p22; 
D p102; 
n 
e p22; 
f frequency; 
F pill; 
n 
G subscript signifying gas  in cavity; G p150; G p1.04; 

k 

hts./mole; C p102; 
n 

principal specfc. hts./unit mass; c 	p50; 
mn 

imaginary unit; 
J Bessel function of first kind; 
k wavenumber; 
K thermal conductivity; modified Bessel function of second kind; 

length of acoustic cavity; 
2 

m subscript for mnth mode (—m is separation const. for azimuthal 
variable p45); 
M molecular weight; 
n subscript for mnth mode (see equn. 2.2.19); n number of moles; 
N order of resonance; ' 
p acoustic (excess) pressure; 
P pressure; 

2 
q 	complex wavenumber of mnth mode (—q is axial separation constant 
mn 

p45); q •q  p92; q 	p101; q .q 	p102; 
v t 	1n 	2n 3n 

✓ radial cyl. coord.; 
R gas const., resistance or real'refln. coefft., p44; 
t p126; 
T thdc. temp., subscript signifying transducer; 
✓ particle velocity; 
V voltage; V p88; 
W power; W heat flux; 
x Cartesili coord.; 

X reactance; X p101; X p47; 
n 	mn 
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y Cartesian coord.; 
Y Bessel function of second kind; Y p102; 

n 
z Cartesian or axial cyt. coord.; z 	z p74; 

R T 
Z p44; Z p102; 

n 

o( absorption coefft./unit length 
p124; 

1r complex acoustic refln. coefft.; 
Kronecker S ; p110; 

Q 	 half width of mnth resonance; 
mn 	• 

E p77; 

t bulk, viscosity; 
9 	r.;11  layer viscosity; 9 pp86,87; 

2 
O azimuthal cyl. coord.; p79; 
E0 p44,89; 
• acoustic wavelength; 
_A refractive index; 

V 	kinematic layer viscosity; 10 p88; Y thermal diffusivity. 
1 	 2 	3 

p89; 
g particle displacement; 
e density; 
cr ratio of principal specfc. hts., c /c ; 

t. velocity potential; 
j°  p51; 
X p79; 

p91; 
06 angular frequency; 

p v _ 
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