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ABSTRACT

The reader is referred to the Llist of contents for a detailed
abstract of this thesis. Following the introductory first chapter.,
Chapters II. III and IV contain a detailed analysis of the systematic
errors in high and low frequency acoustic thermometry. By “"high” and
"low" frequency thermometry we mean thermometry where the operating
frequencies are respectively above (usually far above) and below the
lowest characteristic cut off frequency of the resonant cavity used to
measure the velocity of sound. A case is developed for using the low
frequency approach although in the past it has led to apparently
inferior results. Attention is drawn. in particular. to Sections 2.2.3
and 2.3 where two important difficulties for the high frequency
approach are discussed. In the former section it is shown that it is
impossible to tell from the positions of the observed cavity
resonances whether or not there are errors in the measured velocity
due to tne presence of unresolved high order resonances <(although as
is shown in the following section these are likely to be small in the
work done hitherto). In Section 2.3 an account of the errors to be
expected from bad cavity geometry is given. This applies only to low
frequency devices, the extension of the analysis to higher frequencies
being very difficult. Thus. at the moment. there also remains an
unanalysed source of error in the high frequency technique.

Neither of these two problems arise at low freguencies where the
predominant systematic error is due to the acoustic boundary layer.
The theoretical corrections for this effect are discussed at length in
Chapter III where it is also argued that past criticisms of the theory
are in error. It is, in any case., possible to measure the boundary
layer corrections relying only on a restricted set of theoretical
assumptions. .

Chapters IV, V and VI discuss in detail the design. testing and use
of such a low frequency acoustic thermometer. Measurements have shown
that the systematic errors characteristic of this technigque functicn
exactly as expected and it has been used to measure the normal boiling
points of helium-4 and equilibrium hydrogen and the triple point of
equi librium hydrogen.'. .
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| CHAPTER I

INTRODUCTION

In 1967 the National Physical Laboratory (NPL) instigated an
investigation into the possibilities and limitations of measuring true
thermodynamic temperatures in the range 2-20K by means of acoustic
thermometry. As a result of this study a low frequency variable-path
acoustic thermometer was designed and constructed which appears to
have met the requirements of a primary thermometer with sone 'measuré
of success. The burden of this thesis is to review the various sﬁurces
of systematic error in this and other comparable acoustic techniques
of primary thermometry. and to report the results of an experimental
investigation of the practical instrument. By way of an introduction
to the subject the relation between primary and secondary thermometry
in the range of interest will be diécussed. followed by an account of
the dependence of various thermodynamic parameters = in particular the
thermodynanic temperature = on thé velocity of sound. It will be
understood throughout that the thermometric medium under discussion is
‘always helium-4 gas. ‘Nothing else apart from the lighter isotope of
helium. helium=3. remains uncondensed over the: whole range. ‘Earliér

“acoustic thermometry is also discussed.
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1.1 Primary and Secondary Thermometry in the Range 2-20K.

Since the conception of this project the relationship between -
primary and secondary thermqmetfy from 2 to 20K has changed somewhat.
It was not until 1968 that the definition of the International
Practical Temperature Scale (IPTS) was extended down to cover part of
this range. The previous version of this scale, IPTS-48, defined by
the Comite COnsultatif de Thermometrie (CCT) of the Comite
Internationale des Poids et Mesures (CIPM) in 1948, [1] terminated at
the normal boiling point of liquid oxygen (then assigned a value of
90.18K). This was superceded by IPTS-68 [2.3.,4] whose lowest point is

the triple point of equilibrium hydrogen to which the value 13.81K is
assigned. The extension of the IPTS below 90K enabled the confused
situation which existed previously to be rationalised. It used to be
the case that a large number of secondary practical temperaturé’scales
carried on platinum resistance thermometers were 1in use. [5] These
scales were defined mainly byi the various national standards
laboratories of the world and were related to their own gas
thermometry. -Published comparisons of the scales enabled temperature
measurements (and other measurements based on temperature
measurements) to be reinterpreted in terms of the scale to which any
individual worker happened to be committed. Now any new work in this
range may simply be referred to IPTS-68 as may any previous work
through published comparisons of IPTS-68 with the old scales.

The extent to which the old scales disagreed can be seen clearly
from figure 1.1 which is taken from reference 5. At the triple point
of equilibrium hydrogen PRMI-54 (defined by the Physicotechnical and
Radiotechnical Measurements Institute of the USSR in 1954) differed by
as much as 57mK from PSU-54 (Pennsylvania State University = 1954).
The other two scales represented in figure 1.1 are those of the

National Physical Laboratory. NPL-61, and of the National Bureau of
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Standards (USA). NBS=55. ¢

The IPTS-68 is defined by assigning carefully chosen values of
thermodynamic temperature to the various reproducible fixed points in
the range of intergst (see Téble 1.1). A convention is then stated for
interpolation using the specified interpolation device calibrated at
the fixed poiﬁts so that any intermediate temperature may be measured.
From 13.81K Qp to 903.90K the interpolation instrument is the platinum
resistance thermomete}. It is the loss of sensitivity of pure platinum
which Llimits its use as a thermometric element below about 14K. In
this region its residual resistance (largely attributable to
impurities and lattice imperfections) begins to mask the thermal
resistance arising from the scattering of electrons by phonons. Thus,
in the absence of a new interpolating instrument., the IPTS=68 cannot
be extended far below the triple point of hydrogen.

However:, the CCT of the CIPM has recommended the use of préctical
helium vapour pressure scales between 0.2 and 5.2K. The helium—4
vapour pressure scale'of 1958, T-58, is defined by a set of published
tables relating saturated vapour pressure to temperature from 0.5 to
5.2K. [6,7]1 These values are derived from the integrated
Clausius~Clapeyron equation for a first order phase change. Since the
thermodynamic temperature appears in this equation it might be asked
why it should not form the basis for a primary thermometer — an

exceptionally simple one to use by the standards of other primary

L]

thermometers. Unfortunately the basic relationship involves certain

femperature-dependent thermodynamic quantities such as the latent heat
of evaporation and the molar volumes of the two phases present at any
given temperature. The determination of these will therefore
presuppose some independently defined temperature scale. In fact the‘
CCT evaluated them on the basis of several sets of gas thermometry

measurements. A similar secondary vapour pressure scales T~62: was
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TABLE 1.1

Fixed Points in the Range 2-20K.

Practical Status of Assigned X Fixed Point
Scale Point Temperature
- (K)
IPTS~68 . Secondary 20,397 n.b.p. of normal hydrogen.
IPTS~68 Primary 20.28 n.b.p. of equilibrium
hydrogen.
IPTS=68  Primary 17.042 b.p. of equilibrium 2
' - hydrogen at 33 330.6 N/m .
IPTS-68 Secondary 13.956 triple point of normal
hydrogen. .
1PTS~68 Primary *  13.81 " triple point of
' ‘ ' equi librium hydrogen.
T-58 ° Tabulated 4.215 n.b.p. of helium=4,
and Value
T-62
T-58 Tabulated 3.190 n.b.p. of helium=3,
and Value
T-62

Primary fixed points are the defining fixed points of IPTS-68.
Secondary fixed points are additional fixed points whose temperatures
are given on IPTS-68 as defined by the primary points. Thus the
secondary temperatures are ultimately traceable to the temperatures
assigned to the primary points rather than to direct thermodynamic
measurements. ,

The n.b.ps. of the two isotopes of helium are not properly
called fixed points of the scales T-58 and T-62 since they are
tabulated values of equal status to any other value in the tables.
However they are widely used as fixed points in the calibration of
many simple secondary thermometers such as carbon resistors or
thermocouples. The valaes assigned are usually those shown.
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defined in 1962 relating temperature to the vapour pressure of
helium3. [8,91 The wupper Llimits of T=58 and T-62 are set by the

critical temperatures of the two isotopes of helium and the lower by

the diminution of their vapour pressures. These three secondary

scaless IPTS=68, T-58 and T-62, still leave -a gap from 5.22K up to
13.81K in the present range _of interest for which no established
secondary practical scale exists. At the moment workers may use

various thermocouples relying on such information as is available for

their calibration or calibrate them themselves at several fixed

pointé. Some electronic circuit devices have also been used as
temperature sensors with varying degrees of success. [10,11] . However,
none of these methods can easily offer the precision., thermodynamic
accuracy ande in particular, the reproducibility of the three approved
secondary scales. The& do., on the other hand. have the advantage of
simplicity which. 1is always important in secondary préctical
thermometry. Fortunately., fof more demanding requirements. there
remains the doped germanium (or, occasionally., silicon) resistance

thermometer. [10] Over the last ten years this has been developed to

the point where its reproducibility on thermal cycling is good enough

for it to function as the calibrated carrier of a primary scale. Its

range and sensitivity are widely controllable through adjustment of
the doping impurities. But, unlike the platinum resistance thermometer
or the first order phase transition of a pure substance, there is no
sufficiently accurate theoretical description of its resistance-
temperature dependence to enable it to function as a conventional
secondary ' thermometer. Instead of determining a few constants in a
simple theoretical relationship, it  is necessary to calibrate it
against a primary thermometer at many points over its whole range
(typically twenty points between 2 and 20K) and to fit, for example. a

high order polynomial to the points for the purposes of

e S— e = vx
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interpolation. [121

It is clear. therefore: that primary thermometry plays a dual role
in this region. It provides, as at higher temperatures., values of
thermodynamic temperatures for the readily accessible fixed points of
conventional convenient secondary thermometry. In addition, in the
absence of a simple interpolating secondary device for part of the
range, it provides direct closely spaced thermodynamic calibrations.

There also remains the possibility of using an instrument
conventionally operated as a primary thermometer = that is an
independent thermometer measuring accurate thermodynamic temperatures
in the usual sense =~ as a secondary thermometer. It could be
calibrated at one or more fixea points or it could be
self-calibrating. Subsequently {t could be used as an interpolating
thermometer over the whole range of interest. Hitherto no éqoustic
thermometer has been used in this way, but it has become commonplace
to calibrate a gas thermometer at Ia singte or a few temperatures
rather than to'plot a full pressure-volume isotherm at any temperature
to be measured., If such thermometers are self calibrating they still
do not merit the title of primary in the strong sense, however. since
they will not measure thermodynamic temperatures entirely

independently. This arises because corrections for the non-ideality of

the thermometric substance will generally be required from another

fnstrument. For example virial coefficients will be needed for this
Atype of gas or acoustic thermometry. -
Mention should also be made 6f the unique status of magnetic
thermometry in this range. Too complex a technique for general use as
a secondary scales it does _however cover the whole range 2-20K
~(remaining u;eful down to much lower temperatures as well). And. like
vapour pressure thermometry., it\ ijs based on a theoretical

relationships, the Curie~Weiss law, in kuhich the thermodynamic

e A — oA b St T S



_13_

temperature appears as a function of the magnetic susceptibility of a
paramagnetic salt. But again, it is unsuitable for use as a primary
thermometer since it depends on the independent evaluation of several
(three or four) constants iﬁ the basic equation. Nevertheless, it has
been found worthwhile to use magnetic thermometers in the past to
check the internal consistency of the purportedly thermodynamic
temperatures.of other primary thermometers and of the three approved
secondary scales. [13,14] They are also used at lower temperatures (as
“low as 0.006K using cerium magnesium nitrate as the thermometric salt)
where the choice of thermometers, primary or secondary. is very
narrow.

1.2 The Velocity of Sound as a Function of Thermodynamic Temperature.

For a wide range of frequencies the propagation of sound in a gas-
is almost perfectli adiabatic so that the velocity of sound. c. in the

unbounded medium will be given by:

¢t = Bs/f’~ | (raa)

where B §s the adiabatic bulk modulus of the gas and e is the
s

density. Since

1l

BS —V(_B_P_) (1. 2.2)
Vis

where P and V are the pressure and volume of the gas respectively, and -

since for n moles of gas
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nM/V ‘(LLQ'

where M is its molecular weight., we obtain for an ideal gas

¢* = «RT/ M (2.s)

Here o0~ is the ratio of the principal specific heats, C /C + R is the

. - p Vv
gas constant and T the thermodynamic temperature. Conversely

T':‘- M C .
. «R. | “(t.2.5)

thus enabling the thermodynamic temperature to be established in terms
~of the velocity of sound in an unbounded ideal gas. This is the basic
principle of acoustic thermometry in gases.

The claim to measure true thermodynamic temperatures will stand or
fall in the first place on the justification for our interpretation of
T in this equatioﬁ. We take as the fundamental definition of
thermodynamiq temperature that conventionally given in terms of ideal
Carnot cycles in most formulations of thermodynamics. That the
temperature appearing in the equation’' of state for an ideal gas

(Boyle's law) is the same thermodynamic temperature of the fundamental
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definition follows from an elementary theorem of thermodynamics. Thus,
given the basic widely confirmed relation, 1.2.1, of fluid dynamics,
we may interpret the variable, T, of equation 1.2.5 as the
thermodynamic temperature‘ with full confidence. The ~ same
interpretation holds even more directly for primary gas thermometry
where Boyle's law is applied without the intermediation of equation
1.2.1.

As with primary gas thermometry. however, allowance must be made
for the non-ideality of the gas available for use as a thermometric
fluide Expressing the square of the acoustic velocity as a virial

expansion of pressure terms we obtain:

a “ a
¢ = RATI+ A(TIP + A (TP +-  Liae)

where

R (T) = «aR T (1.2.%)

Equation 1.2.7 follows from the increasingly ideal behaviour of real
gases at progressively lower pressures where equation 1.2.6 must
ultimately conform with equation 1.2.4.

From equatibn 1.2.6 it can be seen that the value of A (and so of

0
the thermodynamic temperature) may be obtained by plotting isotherms
2 2
of ¢ as a function of pressure and obtaining its value,c , at the
0

intercept with the line P=0, At sufficiently low pressures when the
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quadratic term of the virial expansion is negligible, the slope of the

isotherm gives the second acoustic virial coefficient:, A .

-In principle a "density” expansion: !
& ; | _ 1 a
¢ = AJ(T)+ H,(T)(L_) + Hl(T)(_i:\_a Foo
. ) Vv V

(1.2.8)

could be used instead of equation 1.2.6 and the corresponding isotherm
plotted as a function of reciprocal molar volume. But in practice the
pressure expansion is always useg since molar volume is far harder to
measure than pressure. In primary gas thermometry on the other hand.
both expansions ére found . But there the molar volume has to be
determined in any case. It is the avoidance of this measurement with
its necessity of estihating satisfactory dead-space and adsorption
corrections which is deemed to be a major advantage of acoustic
thermometry. However, it sometimes appears that these errors are not
markedly more difficult to deal with than the systematic errors
characteristic of the latter method which will be discussed at length
in the following chapters.

In order to determine the thermodynamic temperature from an
acoustic isotherm two procedures may be adopted. Firstly. and more
simply, it may be calculated from equation 1.2.5 where the valué. C
is substituted for ¢ and accepted values for M and R are used.d‘takigg
the exact theoretical value for an 1ideal gas (5/3 for monatomic :
helium=4). The constant of proportionality. o"R/M. between c2 and T
plays the same role as the constant nR in primary gas thermometry

which relates the directly measured quantity PV to T. This quantity.

nRs 1s wusually evaluated experimentally by measuring pressure and
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volume at the triple point of water where the thermodynamic
temperature is defined to be 273.16K — a convention which determines
the Kelvin. Thus there is an essential di fference between primary gas
and acoustic thermometry here. The former 1is unable to function
without a calibration at the triple point of water. Knowledge of the
gas constant is of no wuse in this respect sincer, to apply it. one
needs to knoﬁ how many moles of gas. ns, one has in the thermometer.
But to determine this requires either an application of Boyle's law at
the triple point of water in any case. or an even more difficult
.measurement of the mass of the gas used. (*1) Acoustic thermometry. on
the other hand. does not require this triple point calibration since
it is independent of the amount of gas used.. This 1is because the
velocity of sound is an intensive thermodynamic quantity whereas PV is
not since V is e#tensive (Cf respectively., the gquantities o RT/M and
nRT). '

However, this is not to say that an acoustic thermometer may not be .
directly calibrated at the triple point of water - this being the
second operating procedure . mentioned above. Since 0- and M are
independently known to a high degree of accuracy this would in fact
offer a new method of determining the gas constant. (*2) It may easily
be shown that the fractional error in measured temperature. T,

associated with an acoustic calibration error at the triple point of

(1) The combination of these two measurements enables the gas
consfant to be measured. It is, in fact, the basis of the
conventional technique of limiting density (See. for example. T.
Batuecas: Proc. Sec. Intl. Conf. on Nuclidic Masses, Vienna
(1963), Ed. W. H. Johnson (Springer—Verlag, 1964))

(2) Such an acoustic determination of the gas constant is about

fo bé'hndertakén‘at fhe NPL.
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water is
AT = ATe ~ 2 Dce (1.2-9)
T 273.16 Ce

where the subscript, ¢, refers to the calibration values. AT may be
c

4

"~ expected to be less than .01K and Ac /¢ one or two parts in 10 .
: c C

Thus the second term is the predominant one. The comparable error

‘arising from u;ing the existing value of the gas constant is a Llittle
less being equal to the fractional error in the gas constant itself
since o~ and M are known much more accurately. The sfandarg error
usually quoted for R is 45 parts in 106 . Taking the previous figure
of one or two parts in 104 to be three standard errors it can bs seen
that there 1is a marginal advantage (based only on rough figures) in
using the existing value of R . This is further recommended by the
experimental simplification brought about by adopting the orthodox
value. In particular. operation of an acoustic thermometer at the
triple point of water would entail rigerous precautions against
gaseous impurities in the thermometric helium which are not necessary

at very low temperatures.
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1.3 The Velocity of Sound and the Virial Coefficients of the Equaticn

of State for a Real Gas

The aforementioned virial expansions of gas thermometry are the
pressure and density expansions of the product PV which form the most
fami liar alternative statements of the equation of state of a real

gas:

PV =
nRT &‘I + B(T)(_\%.) + C(T)(.{l./_)l*:---} (1313

.

and

PV =
nRT {l +B(MP + (MP e l (i.3.2)

—

The virial coefficients and the thermodynamic temperature may be
obtained by plotting pressure-volume isotherms in the usual way and
extrapolating to zero pressure or density. Values of virial
coefficients ?btained from the different expansions may be compared

through the following relations:

B(T) = B(T/RT (1.3.3)
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and

() = e —B‘L(T)}/R’*T"' (1.3.1)

(See Appendices 1.1 and 1.2 respectively).
Values of acoustic and pressure-volume virial coefficients may be

compared as well:

A(T) = .S'.‘.{QLB(T) v BT
M |

'3 AT
1 a2
+ 4 T é_ﬁ_(_]'_)_l (1.3.5)
\5 4 TH . '

and

R, (T) = _o {13 C(T) +16 T ALC(T)
MRT 5 T

+ 2 T2 + 2 34N + 98 (cL*B(T))
15

aTd 5 LT

+._8._T“(aaecr> Y+ as TR LB

4S dT? s T

+8 T *am(ea*mﬂ . 56 T(oLB(T)){d’*BLT)»

s A7 /45 AT /N aT?
(1-3.6)

(See Appendices 1.3 and 1.4 respectively)
Since it is unnecessary for the purposes of primary thermometry -

gas or acoustic = to work at pressures high enough for the third
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virial term to become important, there is very little information on
the form of A (T) or C(T). B(T) on the other hand may be roughly

2
represented by the form:

P(T) = o «+ b/T | (1.3.4%)

which is suggested by the Van der Waals two constant equation of
state. Since this equation has only the simplest of theoretical
justifications the limitations of equation 1.3.7 are not surprising.
Experimentally measured values of B(T) may be represented to within
several per cent in our present range of interest which is somewhat
less than the disagreement found in the results of different workers.
The exact form of the temperature variation of B depends upon the form
of the intermolecular potential of helium~4. It is usual to postulate
a plausible form for this potential qnd to derive a relation between
B(T) and the chcsen function. Measured values of B(T) may subsequently
be used to evaluate constants in the intermolecular potential. The
successive terms in the virial equation of state are then seen to
correspond to interactions of increasingly higher order between
molecules. However, whilst this procedure constitutes an important
theoretical justification for the virial equation of state, it will be
appreciated that it cannot offer a theoretical description of the form
of B(T) in the absence of a prior and independent definition of the
intermolecular potential. It is therefore necessary to approach the
problem experimentally and to obtain B(T) from such data as is
available. Since the disagreement between the various measured.values

of B is as large as it is, it is felt that there is Llittle point in
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attempting to represent B(T) with a many-constant numerical
approximation so that pressure-volume and acoustic virial coefficients

may be compared accurately. Taking equation 1.3.7 and substituting for

B(T) in equation 1.3.5 we obtain

ﬁ{1a+.§_%§ (l.-3-8.)

A, (T)

or

i

'F}"(T) | A e /T (1-3.4)

whare

bor b (l-l.lo)
sM

)

dtz &z&m—wd. e
™

thus dériving a similar functional dependence on temperature for the

second acoustic virial coefficient. -
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1.4 The Velocity of Sound and the Principal Specific Heats of a Real

Gas

Expressing equation 1.2.1 in terms of the isothermal bulk modulus,

B =B /or, we obtain

T S
2 \ 1 :
¢ (-_-’-Of_(ap) V (vog )
- \oV/T Mn ' |
which is easily evaluated from the virial equation of state. 1.3.1. to
give |
© = CP/CY

- m‘{. - 1B(N(2) +(ael(-r)-3c(-r))ﬁ_§ |
F;'T‘ \/ le-rl
(1.4.2)

and C may be obtained from the

A second relationship between ¢
P v

familiar equation

G TEYBY, e

whence
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CP-CV =

R i, + A dB(T)P +‘<g*(1-) - LTB(T) BT
R dT ‘ T

4Tt 4T JRT?

i L
F T 3BT - o(T) + LTcLC(T)) P ls
(ron-n)
Equations 1.4.2 and 1.4.4 enable ¢, C and C to be calculated from a
P v
knowledge of the virial —coefficients and the thermodynamic

temperature. To measure the latter acoustically it will be necessary

to assume that 6=0=5/3, the ideal gas value, at vanishingly small
0
pressures. Given this, values ofd, C and C may be calculated at

. p v
higher pressures.

It yould. however, be useful to check that ¢ =5/3 at Lihitingly
Low pressures. Such .a check could in pringiple be made if an
independent measurement of temperature was available. This value might

then be substituted into the limiting form of equation 1.4.2:

e a'= Mc | - bus)

to give 0" « In the range 2-20K this would require a primary gas
. 0 .
thermometry determination of T which needs make no assumption as to

the value of ¢ . However, the experimental error in such a value would
0

‘exceed the error expected in the assumed theoretical value of 0 .

. 0

Thuss in practice. the suggestion is not very helpful. Moreover, the

status of acoustic thermometry as a technique of primary thermometry
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hangs upon the independence of its measurementS. To use a measured
value ofo- would be tantamount to doing secondary (but hardly
practical) gcoustic thermometry. In any case. systematic errors in
acoustically measured tempefatures attributable to o= should bécome
apparent in direct comparison with temperatures measurgd by primary
gas thermometry provided that they can be disentangled from other
sources of efror. This would not be made any easier by the above

approach.

1.5 Existing Acoustic Thermometry

In recent years several interferometric investigations have been
'made {into the propagation of sound in helium gas in the range 2-20K.

These have been directed mainly at measuring thermodynamic

temperatures, but have also served to evaluate the other thermodynanmic

parameters dealt with in the previous two sections. Standing wave

" techniques of sound velocity measurement have invariably been used

since it is far simpler to house resonant cavities in a liquid helium
cryostat than any conceivable time of flight device of comparable
accuracy. Due Llargely to a naive approach to the design of acoustic
interferometers the earlier measurements fell far below what could be
currently achieved by conventional gas thermometry. Accordingly our
attention will be directed to more recent measurements [15-25] of
greater metrological usefulness.
Two different approaches seem to have emerged in  acoustic
interferometry in general (and in acoustic thermometry in particular).
. Firstly there are high frequency methods with the attendant risk of an
ill-defined wave field in the resonant cavity [15,16,21-24] and
secondly low frequency methods [17-19,251 where this problem is
avoided at the expense of incurring difficulties with boundary layer
effects for which reliable theoretical corrections may not easii§ be

made. These two different types of systematic error will be dealt with

+
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in detail in the following two chapters. It suffices to point out here
that in the event of agreement being reached between high and low
frequency acoustic thermometry it-would be difficult not to conclude
that their characteristic systematic errors were accounted for
correctly and that, all other things being equal., true thermodynamic
temperatures were being measured. Moreover, should both methods then
agree'with tﬁe results of primary gas thermometry then we might say
that all primary thermometry in the range 2-20K was basically sound
and reliable. The internal consistency of the measured temperatures
(but not . their absolute values) could be further checked by magnetic
thermometry.

There exist two important sets of low frequency measurements due to
De Laet [19]1 (following earliér work at Leiden [15-171) and to
Grimsrud and Werﬁtz. {251 De Laet used a cavity of fixed length and
determined sound velocities from measurements of its resonant
frequencies. Grimsrud énd Werntz' used a cavity of variable path
excited at some constant frequency and measured the separation of the |
positions of resonance. With the exception of a measurement close to
the boiling point of hydrogen from De Laet neither of these
investigations extended beyond the region between 2 and 4,3K in the
present range of interest. Temperatures determined by De Laet were
" higher than temperatures measured on the helium—~ 4 vapour pressure
scale, T-58, by as much as 22mK at 3.2K and 12mK at the normal boiling
-point of helium4 . This last figure compared with a 32mK discrepancy
found in the earlier Leiden work using ultrasonic techniques. The
acoustic temperatures of Grimsrud and Werntz determined using both
helium=-3 and helium—4 as the thermometric gas exceedéd temperatures
measured in the T-58 scale by between 1 and 7mK over the range 1.2 to -

3.8K.

b
1

These results of Grimsrud and Werntz are in general agreement with
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the ultrasonic thermometry of Plumb and Cataland [21-24] in the region
in which they may be compared. The temperatures determined by the
latter using a variable-path interferometer excited at a frequency of
1MHz were higher than T-58'temperatures by between 5 and 12mK in the
region 2 to 5K ,with a 10mK difference at the normal boiling point of
helium=4. However., the results of Plumb and Cataland extend over the
whole range 2~20K at intervals of roughly 1K thus forming a detailed
ultrasonic temperature scale over a wider range than has yet been
achieved with low frequency acoustic thermometry. This was a major
factor iq our deciding to pursue low frequency acoustic thermometry -

rather than the high frequency method.



- 28 =

CHAPTER 1II

THE THEORY OF THE ACOUSTIC INTERFEROMETER WITH IDEAL

BOUNDARY CONDITIONS

There are many possible forms of acoustic interferometer which
might be adopted for the measurement of wavelength and hence acoustic
velocity. The most familiar devices are those where the sound
propagates axially .in a cavity of rectangular or circular cross
section between two reflecting end faces. But in principle any',cavity

might be used where raeflected waves have a constant phase relationship
with 1incident waves and where ‘the wavefronts are coextensive thus.
allowing interference to take place. For example a sphere excited at
its centre or the region between two concentric spheres would suffice.
In practice, however, only the two familiar cavities mentioned above
have been widely used. This arises firstly because the wave equation
for an inviscid fluid is easfly stated and solved in the appropriate
coordinate systems, and secondly because., unlike the spherical
interferometers, thay are easy to construct with a high degree of
accuracy. Here only the cylindrical resonator is discussed since it is
universally used for low temperature acoustic thermﬁmetry. It is not
feasible to manufacture a rectangular cavity with truly squared
verticas other than by assembling four separate flat walls. These have
then to be effectively and reliably sealed and to remain so at the
lowest temperatures. Such practical cryogenic problems arelless acute

with the cylindrical cavity and so it has always been the preferred
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alternative.

The cylindrical in£erferometer may be used in several ways. It can
be excited at one end by a suitable transducer which may also servé to
monitor the resonances in the cavity. Alternatively a separate
receiver, commonly the opposite ;nd reflector, may be employed as
well. Wavelengths may then be determined either by measuring the
resonant freduencies of a cavity of fixed length, or by measuring the
lengths at which a variable-path cavity resonates at some constant
frequency. The results about to be derived will apply equally to
variable-path and variable frgquency instruments. But for the most
part we shall restrict our investigation to interferometers where a
single transducer is used both to excite the cavity and to monitor the
sound. This better suits the type of experimental instrument
ultimately adopted for our measurements . Generally the extension of
the theory to the other case will be obvious.

2.1 The Ideal Interferometer

In the abseqce of viscosity and of effects attributable to the
.thermal . conductivity of the boundaries of the cavity"the general
problem of deriving the acoustic field within the cavity (Figure 2.1)
becomes very simple. Following Hubbard [26,27] we assume that the
transducer at z=l vibrates like a perfect piston, i.e. the amplitude
of its vibration at any instant, t. is the same over the whole

radiating face:

it

£ e (a.1.1)

£(r,0)

‘wherewis the angular frequency of the vibration and i 1is the
imaginary unit.
It is assumed that plane waves travel in both directions in the

cavity suffering attenuation on reflection at the transducer. T, and
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-.z:

FIGURE 2.1

The Acoustic Interferometer Cavity.
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the reflector, Rs and in the body of the gas itself due to the usual
mechanisms of acoustic absorption. The respective reflection
coefficients, R and R . are taken to be real and only slightly less
than one so zhat 1IR <<.1. If 1-R =dl wheredis the acoustic
absorption coefficient a:&Tl the length ﬁ;Tthe cavity then we may say
that losses by reflection -and absorption are comparable. Practical
values will be discussed at the end of this section.

Summing the negative and positive going waves we obtain

iwt, ® n n =-@+iR)(LanndL-2)
5, e { I RaRy e

n=o

E(z)

-l

E 'p\n“Rn ~ (4R} (LAn+ 1 L+2)
- R Ry € | l

NnN=g0
it - W4iRL~2) - (dt 1RY (d+2)
= % e e - Rr e
- - 2A{d+1R)L
| - RRRTe
Ca.i.2)

where k=2@/A>>d is the wavenumber. A being the wavelength of the
sound. This equation enables us to calculate the acoustic reaction on
the transducer from the following relation for the acoustic (i.e.

excess) pressure in the cavity:
ple) = - ect (=) fox
2 - (et R) (L-2) = (daik) (d+x)
= ipc R e | + Rr e

~L(A+1 N}
(l. |.3) .

where @ is the density of the gas, ¢ the velocity of sound and where

'we have made the approximation ik for the factor @+ik). Thus at the
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face of the transducer (z=1) this becomes

-2 {d+1Rk)d (2. 1-
~P('“ = ieclh |+ Rr e ) l

i - RR‘RTQQ 2.(pL+{.h)-L

or
‘ 2 ’ .
ple) = 1pc R {’P\q(i) -1 Xq(-l.)} (x-1.5)
where
2 -Ldd ~aLd
Rq(Q) = _1 ~RaRre +Ra(i-Ry)e Cos LR
: -4 -
1= LRaRre wosa ke -b?%é?’{i.fa et
(- 1-6)
and
: -8
Xq(-l.) = Ra (1+Rr) e sinakd _
2440 -
I - dRaRre  cosdkd +'R:'R:€ watd
(2-1.4)

Since over the face of the transducer both transdycer and gas have
"~ the same particle velocity their respective mechanical impedances, Z

and Z (1), may be added to give the total mechanical impedance

ZW < Zr v Zo@ (s

where
Lle) = AP(e) =Rec i'Rc‘(@) -1 Xc,(-l)}
£(2)

(@er-a)

and A is the area of the radiating face of the transducer.
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Equations 2.1.6 and 2.1.7 are 1in agreement with the relevant

results of Hubbard if we substitute ¥=R =R =(R +R )/2 for R and R .

R T R T R T

Our expressions have the advantage that R and R have not been
. R T

assumed to be equal - an important consideration when one or both of

the coefficients is vary low. However, with the current assumption

that 1-R  <<1 Hubbard's approximation can be seen to be very accurate
RsT
in the vicinity of a resonance when R (1) takes its maximum value and
G .
X (L) is zero. This arises because c¢os(2kl)>1 near resonance and
B ]

because the (identical) denominators of R (L) and X C(l) are

G G
symmetrical in R and R which appear only in powers of the product
| R T : ]
RR . Since they appear as a factor R (1+R )=2 in the numerator of
- RT R T

X (L)sX (1> may be regarded as well represented by Hubbard's
G G ' ‘

“approximation for all values of ki and dl. It {s exact both at

resonance and antiresonance. R (l), on the other hand,  has an

G
approximate minimum value of &l+(1=R )/2 at antiresonance which,
. ‘ R
depending only on R » may not necessarily be equal to Hubbard's

R -
corresponding approximation, L+(1-¥)/2. However: it is nearly always

possible to regard this quantity as being negligible in the
measurement of the velocity of sound\in the present context. Thus for
our purposes we shall consider any interferometer with which we may be

concerned as having end faces with equal reflection coefficients. ¥.

Then with Hubbard we have

_ 4  -hdd - ddd
Rq(d) = L - X e + ¥(i-¥)e cosdhd
- ,l -
|- ¥t e Pkl + yhe M

(2:140)

and
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'XQ(J).= K(X+—I)suxakl (2.1-11)
- Ldd

~24d
1 - A¥te hios 2RE +¥Ye

Figure 2.2 shows the form of the functions R (L) and X (1) and that
G G
the locus of Z (L) is a series of circles in the complex plane which

are approximétgly touching when Z (1)=0 if 1-¥<<1 and dl<<1.The ratios
of the diameters of the impedancescircles are shown as being 1 : 1/2 :
13 : 1/4 : ... diminishing as the order of resonance. N, increases.
This is characteristic of the situation where reflection losses are’

negligible (1-¥<<dl). In this case equations 2.1.10 and 11 simplify to
give

Rg (L) = sinh 244 (2-12)

Cosh 248 - cos AR
and

Xq(L) = sin Lk d (2.1.13)

corh 248 ~ cos LR

From equation 2.1.8 it can be saen fhat the point Z (1)=0 on the
impedance circles will be located at Z in the compleprlane and that
ZC(L) will be the vectorial resultant atT'g +Z (l). For the familiar
case of an ultrasonic quartz cfystal tr:nsgucer driven at fesonance

Z.éo. and the circles Z (1) would lie symmetrically about the posative-
T G

real axis touching the origin. In that case 2Z(l), the experimental
function generally measured, would have the approximate form of R (L)

: G
with exact agreement at resonance and antiresonance i.e. when [=NA/2

or N-DA/4 (N=1.2,3, ...). The form of 2(l) for the example of
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figure 2.2 is shous in figure 2.3.

It can easily be seen that if an experimental plot of Z(Ll) such as
this is obtained, then one has -all the information necessary to draw
the impedance circles of figure 2.2. The diameter, D , of the MNth
impedance circle is obtainable from the difference betﬁeen the maximun
and minimum values of Z for the resonance. Thus all the impedance
circlss may Be drawn on collinear diameters touching at one point on
their circumferences. It is then only necessary to locate the origin
of the complex plane. It will lie at a distance Z from the point of
contact af the cirsles. It will also lie at t;at distance from the
centre of any one circle given by the mean, Z ., of the maximum and
minimum values of Z for that circle. Thus. ﬁ!ving drawn the circles.,
one may draw two arcs to locate the origin = or rather the two
possible positions of the origin. Which is the true position is easily
determined by seeing from one’s experimental Z(l) curve whether z(L)
must increase or decrease as the circles are traversed in a clockwise
direction from antiresonance to resonance.

Having drawn the complete figure from the measured function. 2Z(L).,
the valuess Z + of Z at resonance may be taken by measuring the
distance from tggsorigin of the extreme points on the circles for
which Z (1) is entirely real. The corresponding values, L of L at
resonancg may then be read from the original experimeqtal Riﬁrve. As
can be seen from figure 2.2 the functions R (1) and X (l) are changing
very rapidly at resonance in such a gay that Gnearly the whole
circumférence of a circle is traversed fsr only a small changs in L.
It should be possible using this type of instrument to measure
velocities to several parts in 104 and so. all other things being
equal, to measure temperature to within twice this fractional error.

Some idea of the relat1ve importance of the expected absorption and

" reflection losses may be obta1ned from Tables 2.1 and Z.2. The
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Imaginary

FIGURE 2.2
Showing the Combined Complex Mechanical

Impedance Z of Transducer and Gas Loading.
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vV V

FIGURE 2,3

The Experimental Trace of Z(l) from which

Figure 2.2 may be Constructed.
|
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reflection Llosses have been calculated from a formula due to Herzfeld
[281 which allows for the losses arising from the existence of a
“temperature” wave which occurs in the gaseous medium when a
compressional adiabatic uavé is reflected from a solid reflector. The
combined temperature wave amplitude and the normal reflected wave
amplitude must equal the amplitude of the incident acoustic wave. i.e.
the particle.velocity must be zero at the boundary. Thus the reflected
 ;acoustic . Wave must Ee diminished to an extent beyond that to be
expected soiely from thé impedance mismatch of gas and wall. The loss
does not _arise from the propaggtioh of heat into the wall since it.
periodically flows in and out of the wall., but s due to the
temperature Qave causing the A excess temperature of the gas to be
slightly out of phase with the acoustic pressure. Only when they are
in phase will the Qork integral per cycle vanish.

In the derivation of Herzfeld's formula, which we prefer to write’

-

ey (K )'i(.;u.,)‘i (2.1.11)
c eCp

where K is the thermal conductivity of the gas and ¢ the specific
heat per unit mass at constant pressure, it is agsumed (entirely
justifiably) that the thermal conductivity of the solid reflector may
be regarded as being infinite in comparison to that of the gas.
Thus ¥ should depend only upon the transport properties of the gas in
the interferometer cavity and not upon those of the end face#. This is
fortunate in that the opposite ends of an interferometer cavity often
require to be made of different metals (e.g. when one end is to be the
diaphragm of a transducer and the other a movable ‘reflector of the

same metal as that of the cylindrical bore). Thus if Herzfeld's

mechanism of reflection loss could be guaranteed to be the only one
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TABLE 2,1

Reflection Losses and Absorption Losses,

Frequency 1-¥
(Hz)
2 . =5
10 4.,8x10
3 -4
10 ‘ 1.5x10
4 =4
10 4.8x10
5 : -3
10. 1.5x10
6 -3
10 4.8x10
7 -2

10 1.5x10

The rough values of 1-¥: bo!

2.9%x10

bl
‘KH

-5
9.2x10
-4

-4
9.2x10
-3
2,9x10
-3
9.2x10
-2
2.9x10

KH

K

-1
cm

-10
4,2x10

-8
4,2x10

-6
4.2x10

-4
4.2x10

-2
4.2x10

0
4.2x10

and o at a pressure of one atmosphere

and a temperature of 4.2K are shown. They have been calculated from

equations 2.1.14, 15 and 16 using the following values for helium=4 gas:

3
R=2.079x10 J/K.kg
3
€ =3.917x10 J/K.kg

p
0-=2,05

¢=120.8m/s
-6
') =1.27x10 Pa.s

K=0.009W/X.m -
’ 3
e=11.9kg/m
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TABLE 2.2

Reflection Losses and Absorption Losses.

Frequency 1§ bol A
(Hz) KH
. -1
cm
2 -4 -4 -10
10 3.0x10 3.3x10 5.1x10
' 3 -4 -3 -8
10 9.5x10 1.0x10 5.1x10
A -3 -3 -6
10 3.0x10 3.3x10 S5.1x10
5 -3 -2 -4
10 9.5x10 - 1.0x10 5.1x10
6 -2 ‘-2 -2
10 3.0x10 3.3x10 5.1x10
7 -2 -1 0
10 2.5x10 1.0x10 5.1x10

The rough values of 1-%¥, bd and K at a pressure of one atmosphere
and 5 temperature of 273K are sﬁgwn. They have been calculated from
equations 2,1.14, 15 and 16 using the following values for helium-4 gas:
| ! R=2.079x103J/K;kg
c =S.297x103J/K,kg

p
L 07=1,63

l“c=971.9m/s
'7 =1.86x1 O-j;a.s
K=14,15x10 J/K.m
e 5.10.‘1785kg/m3
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present, then there would be a sound theoretical justification for
adopting Hubbard's approximatioﬁ.
Two absorption coefficients are shown. The firstio + is
calculated from the formula for the absorption coefficient fgg sound
in an infinite tube which was derived by Kirchhoff and Helmholtz

[29.,301:

L yeny =_l_{ vi 4+ (o-n)(__K___ %-l {%F (9.-\45).

where ¥ is  the kinematic viscosity and b the radius of the
interferometer cavity. Some obvious points of comparison with
Herzfeld's formula for reflection losses are apparent here, notably
the dependence on'the square root of the frequency of the sound. Such
a dependence on frequency commonly occurs with boundary  layer
corrections to a first order analysis of an acoustic problem based on
the assumptions that all propagation 1is both adiabatic and
frictionless. It is not suggested here that this formula 1is anything
other than a device for rough approximation in this situation. A
fuller discussion on the problem of boundary layer correcfions will
follow in the next chapter. It does, however. give some indication of
the relative importance of this mechanism of absorption compared to
losses by reflection.

The second absorption coefficient:d:, is calculated from the
familiar equation [311 for the effects of viscosity and thermal

conduction within the body of the gas itself:

4 = 1 {_5_\: + (o-1) K lma (3..\.\6\
ac® L3 ¢Cp
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This mechanism depends on the square of the frequency of the sound
and so may be expected to predominate over both the aforementioned
boundary loss mechanisms at sufficiently high frequencies. Tables 2.1
and 2.2 show this. The value§ used for the various parameters occud;;g
in equations 2.1.14 to 2.1.16 are also given. Since they are only
roughly known the values of & A and 1-¥ should be regarded as being
comparative rather than absolﬁze.

In the equations for Z »+ R and X the argument of the' functions
has been the length of t:e cgvity. T. It is equally valid to regard k
(=2%/A=w/c) as the variable and to apply the equations to the
aforementioned fixed path interferometers operated at variable
frequency. There is., however., one practical problem which arises in
the latter case when drawing the impedance circle diagrams. For the
fixed path cavity it is possible to assume that Z is a., complex
constant whereas this 1is unlikely when the freque:cy is varied. It
would be expected that Z might remain approximately constant over the
narrow bandwidth of a si:gle resonances, but not that it would be the
same at successive orders of resonance. This would result in the
corresponding impedance circles of figure 2.2 ceasing to lie on
collinear diameters so that for each circle a new determination of Z
would need to be made. More important, however, it would be impossible
to infer anything abodt the relative magnitudes of the absorption and
reflection losses since these,.too, change with frequency and require
at least two circles to be taken at any one frequency for their

determination. The full significance of this will be discussed at

length in Chapter IV where practical designs are considered.
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2.2 The Effect of Practical Transducers

The assumption of section 2.1 that a transducer behaves Llike a
perfect piston vibrator is obviously implausible in practice. At low
frequencies driven diaphragm§ of stiff metal sheet are frequently
employed. These diaphragms are clamped at their edges and so must flex
if they are to vibrate at their centres. The conventional quartz
crystals of ultrasonic interferometry may also fail to approximate to
the ideal in many cases.

The effect of sdch vibrations is to excite the higher modes- of
propagation in the cavity which are.~in addition to the zero order
(plane wave) mode. allowed solutions of the wave equation. Each of
these higher modes can be shown to have a unique phase velocity which
is higher than that of the plane wave mode, and a characteristic
cut—off frequency.below which it is severely attenuated. Often.workers
with the acoustic interferometer have operated at frequenciés well
above many of these cut-off frequencies and have observed “satellite”
Qgig) peaks correspdnding to resonances of the higher modes. [32-34]1
When unresolved these parasitic resonances can lead to errors in
measuring the velocity of sound due to the increased phase velocities
of their pérent modes. Measured values of absorption coefficients are
also too high because of interference between the plane wave
resonances and those of the higher modes.

The purpose of this section is to show how the amplitudes of the
higher modes 'may be calculated from the way in which the transducer
vibrates. Knowing this it should be possible to decide in advénce the
suitability of various possible designs of transducer for working at

high frequencies.
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2.2.1. The Form of the Normal iModes

In order to establish }he form of the normal modes we follow a
similar method to that used by Krasnooshkin[35] except that we shall
allow for the angular dependeﬁce of the modes as well as for their

radial dependence. It is assumed that a velocity potential

, . ) (A7Y
? (x,e,x,t) = ¢ (v, 6,2) e (2.2.1)

exists such that

i
V ¢ (x0,x) + O‘_ioc()(*,e,z) = o (a.2.2)

where q =k =ik - is the complex wavenumber for propagation in the
00 00 00
unbounded medium. Thus & 1is the free gas absorption coefficient and
00 .
k the corresponding wavenumber (previouslyd and k respectively).
00 ‘

Expressing equation 2.2.2 in cylindrical coordinates it becomes

oY 4 12 4o 3 4% * = 0
{3*1 ~ Ot Yk~bel azl (P +C‘_oo(()
(1.2.3)

Assuming a solution of the form

¢ (x,0,x) = R()B(e)Z(x) (2-2.4)

this separates into the three equations
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dQ.Z + %1 = 0 ' ' (2-,1.‘5)
d z? '

2 2 f
d°® + m® = o (1-1-6\
de? -

and

LR o+ 0 dR 4 (c{‘ -{-_mf)u o (2.29)
dxl - dy e t?

2 2
where =g and -m are the respective z and e separation constants.

Solving 2.2.5 we obtain

-iq % .
* (2.2.8)

‘ iﬂz
ZYo Je " + Ke
where J and K are constants. Assuming perfect reflection at 2z=0

(i.e. ¥=1) we have

@_SE_ = (o) (1- Q',‘I)

Q% | z-0

- so that

K = J (a.2.10)

and



Z&) ol cos qx (2. 2.11)

We prefer to write the solution of equation 2.2.6 in the form

O(e) £ Acosme + Bsinme , (1-1.!1)

m will be restricted to integer values so that
({3(‘(':\9,2) - = Ce(f,e+2‘.1,z) (2.2.13)

Equation 2.2.7 is Bessel's equation with solutions

RG) & LTnl(efg2 -q") + MY 035 -97) . (2.2.my)

where L and M are constants and J and Y are Bessel functions of
m m
order m of the first and second kind respectively. Since

Y (o) = - = (2.2.15)

we require that M=0 giving

'R(f\ L Tm(YJop ol_’*s | (2.2.16)

0o

We shall assume that the wall of the c¢ylinder is perfectly rigid so

that the radial component of the particle velocity must vanish i.e.

QD Tmlelq -9 | =0 (2.2.7)

aT . . t=b
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for a cavity of radius b, or

4 J,.(X) | =0 - (2.219)

d X X =l -

2 21/2
where X=r{q =g 3 .
00
The (n+1)th solution of this equation is given by

X = Xpn = blq? -¢q° (2.2.9)

some values of X which are always real (see Appendix 2.1) are
mn
given in Table 2.3. It will be noticed that since b and q are
' 00
constants, equation 2.2.18 gives rise to a series of complex

wavenumbers. q=q » for the modes corraesponding to the various values
mn
of X . a may be calculated from
mn  mn -

b

‘Lm,tl = {%:; - (_X_mn.)’“}i (1-:?..10)

whose real and imaginary parts, K and ~%h respectively, are given
mn mn
by

o [ e T

(2. 2.24)

and

k /k andol /o are plotted in figure 2.4 as a function of
mn 00 mn 00

°Lh\n. = doo hoo /kmn (.1-3.-1_&,\



1.84
3.05
4.20

3.8
5.33
6.70
8.01
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TABLE 2.3

Some

7.01
8.54
2.97
11.37

Values of X .
mn

3 4 5
10.17 13.32 16.47
1.7

13.17

14.54
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A A
k /k ) A /o
mn 00 ~mn 00 -

11

0 - 1 X
‘ mn

bk
00

FIGURE 2.4

The Dependence of the Wavenumber and Absorption Coefficient

upon the Order of the Mode.

The cut off condition for the mnth mode is seen to be k =X /b.
00 nmn
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X /7bk . Although full curves are drawn it will be appreciated that
mn 00

they represent the general distribution of discrete points each
corresponding to a value of X . At X =bk =2rb/A (where b/A .
‘mn mn 00 00 00
like LU/A  is to be considered as a fundamental scaling parameter of
the inter?grometer) it can be seen that the wavelengths, A =2w/k .
of the higher modes become very large as do the corTZSpond?gg
absorption coefficientss d . This gives the cut-off condition for a
high order mode. The larggr b/A . the larger is the value of X at
this point and the greater the ggmber of higher modes whichmncan
propégate.in the cavity.
The dependence of the phase velocity of the mnth mode upon m and n
- arises from the 2z and o separation constants of the wave equation
remaining in the radial equation 2.2.7. The necessary imposition of
the radial boundary‘condition 2.2.17 then puts the constraint 2.2.20
upon the wavenumbar. q. requiring it to take only the values, q . -

: . mn
Consequently the phase velocity of the mnth mode will be

Cmn = ‘3///hwnn

which must also take a set of discrete characteristic values different
from ¢ =o/k . Combining the expressions for R(r). €(e) and z{z) we

00 00
obtain

‘Pmn = Jm (_an.t) (Q..mcoxue +%Nus\l~uo)ct>sc\_ z
b ma ,
(2.2.23)

for the form of the mnth mode. Its amplitude will be

‘ 2 2 172 -1
A +B nf(A +B ) with a "phase lag” on ¢ of tan (B /A ).
mnom mn mn mn mn
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2.2.2. The General Solution and the Amplitudes of the Normal Modes.

The general solution.jﬁ(r.e.z). of the wave equation in the cavity

will be a superposition of the normal modes.q: (reosz):

@ (<0,2) -
Z 2 J-m(zgmmr)(ﬂmn CoS-me+quSinme) Ccs,c‘r %
b mn

m=0 a=o .
Applying the one remaining boundary condition (2"51'5L1§)
' ok
—'.?:g = 0 £ (6 e (1.2.25)

BE Z2=4 ot

we obtain

g (~,e)

L BT 9 Tl ot s
(2.2.26)

whare g (rse) 1is the amplitude of vibration at (r.e) on the face of

the transducer. Equation 2.295 thus asserts the continuity of particle
velocity at the transducer (assuming that no temperature wave is
present i.e. that ¥=1).

The amplitudes A and 8 where m>0 are simply obtained from the
mn mn

orthogonality relations for circular functions and Bessel functions.

Multiplying equation 2.2.26 by cosje or‘(sinje) where j=1.,2/... and

integrating from e=0 to e=27 it becomes

Jo an“eg(’re)de =
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Cosje CoS M@
Cosje sinme qLe =
s'i_nje CoSmP

o p
1
=\ 0 o 2\
CH
G
3

sinj D sinme ' 53.-,\
where & is the Kronecker §.
Now iﬂLtiplying by rJ.(x. r/b) where k= +1¢27... and integrating
from r=0 to r=b we obtai; fé§ m>0
Rma = AW
Bmn

wb* ‘Lmn (1- m"/an\T (an) qu.mn
J j"\- I anr) os megcve)e\w\e

(2.2 .;'8)

Here the following relations for Bessel functions have been used prior

to changing the subscripts j and k back to m and n respectively:

b

[, D) T e [ ) o

= Shnﬁ(“f/xjﬂﬂﬁ)(')h)
a
(2-2.29)

For the case where m=0 the answer is only slightly different.
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Integrating equation-2.2.26 from =0 to o=2w one obtains

1% _
J g (so)de = 25 T q Jo(xonr)non sing_J
© i " b ‘ on

(&-2.30)

and from the relations 2.2.29

b 2% — |
Ry = 1w j J TJo( &nv)go(v,e) d<de
1 oJo b
T‘blﬁ-on'j—o (Xor\) S’U\C‘_o;!.

(2-2.31)

In particular, since J (X )J)=J (0)=1, the amplitude of the plane wave
' 0 00 O .
mode will be

F\o._, z ) JBJ :‘ go(v,e) drde (1131)

—_—p i S
b o‘_ws n ’cl“\!_

The amplitudes B  cannot be derived, but are not required since
On
when m=0, sinme=0 and the second term in the expression forq;
0

n
vanishes.

We prefer to restate these results in the following form so that

the amplitudes A and B cease to be functions of L. and so that an
mn mn

obvious analogy may be drawn with the analysis of the 1{ideal case of

section 2.1:
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$ («,6,0) = § Z“-' {(hmn + idimn) X

T (an f) (Cmn. CoS e ® +:Dhmsmm.e\
b

X (Rmnld) = T Koo (1)) } (%.2.33)

where generaliy

- Dmn

" b:L (kiu + t{m);\) (\ - mn) (XM“)

j J ¥ I va) coswe € (¥,6) declo
b (>

STh MO
(a.2.34)

2 2

(2 being replaced by 1 if m=0 where m /X =0 also),
- On
Run (£) = sinh Ady & (%.2.35)
covh Ldumd ~ cos LR d

and
anLQ) = San Lhm-l.ﬁé Ll'l~36\

cosh Ldmud - cos Zhnu

The functions R (L) and X (L) are of the same form as R (1) and
mn nn G
X (L) defined by equations 2.1.12 and 2.1.13 in the ideal case. (The
G .
latter now become R (1) and X (l).). Since k <k when m.n>0 the

00 00 mn 00
maxima of R (L) will be more widely spaced as will the corresponding
mn
points on X (L) and the increase in the absorption coefficients will
mn

cause both functions to decay more rapidly with increasing order. For
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evanescent modes & >k and the functions R and X are of
- mn mn mn mn
negligible value even at resonance (l=NA /2, N=1.2,3r...). It is then

mn
only necessary to perform the summations of equation 2.2.33 over those

modes. whose cut-off frequeﬁcies are not exceeded. For transducers of

good design the amplitudes C and D of the higher modes are in any

case only significantly largz for t:: lower values of m and n as will

be shown. In practice. therefore, it may only be necessary to take the

first few modes into consideration even if others may propagate in the

cavity. For such modes & may still be small in comparison to k and
mn mn

so may be removed from equatiéns 2.2.33 and 2.2.34.

2.2.3. Velocity Errors Due to Higher Modes

The effect of the higher modes on the measured impedance of the
transducer may now be calculated. The power dissipated in the .

interferometer cavity will be given by:

\;/c‘(l) = JBIHT 'Rei'P(i)lRe{g (-ﬂ.)} clede
| °° (2.2.3)

From

pld) = ¢ L{i(f,e,t) e

1ol
" |

we have
’Re{?u)} = - LY (emhm x

| . Tm (an-r) (Cm,\ Cosme +Dmn S'inme) X
| St |

(R ld) sinet = Xan() coswt\}
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and from -
<k
i0g (v,0) €

n

E (L)
we obtain
'P\e{’é(-ﬂ.)} = - w§ (v,e) stnowt

Thus, substituting these expressions into equation 2.2.37, it becomes

Wq (&) ‘= § 2; F . {Rm(.n sin"6E = Xmal0) stnwtces ot}s

(&.2.38)
where )
gaueCm(J /(ub (l‘ a./an) (an))}
b 25 ' .
¥ Ju r) cosme g (v,6) rds
o
b Q—u | ) d
)Smn_f_)sinmeg(f,e) dede
b- S
(2.2.39)
2 2
if m>0 and half this if =0 (where m /X =0).
We now suppose that we may write go(??e) in the form
Elre) =% qlre) (2.2.40) .
0 o

where g is the amplitude of vibration of that point on the radiating
0
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face of the transducer at which the amplitude is measured - usually
the centre. This is always po;sible in practice and would only cease
to be so were different parts of a transducer able to vibrate éntifeiy
independently. Since such deﬁices are not used to excite acoustic
interferometers the treatment remains entirely general for all
practical purposes.

Yo orefer to write equation 2.2.38 in the form

Weld) = o'g’ ﬂ (?:_5 ¥ qumu)) sintot

¥ (5;- ; Gme anu;))sidcot wswt}

(a.2.41)

where

CGon = Frun fu0"82

Given equation 2.2.40 it may easily be seen from equation 2.2.39 that
G is independent of g « Thus the right hand side of equation 2.2.41
0

mn
has the familiar form for the power dissipated on a damped harmonic.

system of impedance Z=R-iX:

W = Q’“E): {‘Rsmlcot - X sincobcoscol:}

We may therefore assign some effective impedance

L) = Rgl) - 1Xq @)
F zn;: zr; qmnﬂmn(i)‘i EFGMQXMQ(&')

(2.2.42)
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to the gas load{ng which may be conceived of as an impedance
associated with a vibrating system which has the same velocity as the
centre of the transducer, -wg sinwt.
Some power, ﬁ » Will alsé ge expended on the transducer itself. If
Wwe regard thisTtoo as a system to which the same unique velocity may

be assigned then we may write

Wr

i

wag:; &RT smlwt + X-r SinotQSwt}

where R and X are constants chosen to give the correct value for W .
T T T
The total power dissipated will then be

W) s Wr o Wed)

"

wigk g(’aT + R (L)) sin*ot

+(X'-,- —Xg(.e))sinosl:wswb}

which enables us to regard the combined system as a system having a
resistance R=R +R (l) and a. reactance X=X =X (l) vibrating with a
single easily m:asgrable velocity. -4a§sinn¢T gt constant driving
force this combined impedance could ge measured in arbitrary units
from the reciprocal of the velocity or displacement amplitude at the
centre of the transducer.

This recourse to first principles for a definition of the\ combined
mechanical impedance 1is forced upon us because the particle velocity
and acoustic pressure are., ex hypothesi.‘no longer constant over the
face of the transducer. Consequently a simple application of the

electroacoustic analogy cannot be made here as in section 2.1.

Reduction of a system . electrical or acoustic, to a lumped circuit
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has to be possible if the electroacoustic analogy is to function., and
this presupposes that currents or particle velocities may be
considered to be constant over the cross sections of the circuit
elements.
It is possible to define the state of resonance of the gas in

_several ways which, prima facie, may not be equivalent when higher

modes are present in the cavity. The cavity might be said to resonate
when the impedance Z (L), is entirely real or, alternatively. when the
real part of Z (L) ig greatest (that is when the maximum time averaged
power is _disgipated in the cavity at constant amplitude). These
alternative definitions are. however, shown to be equivalent in
Appendix 2.2 provided that the frequency is high enough to ensure that
the higher mode resonances are far from-being resolved. Consideration
of some practicaLAcases in the next section will indicate that it .is
generally only the Llower modes (small m and n) that have amplitudes
comparable to that of the plane wave mode. Where calculation shouws
this not to be the case it is assumed that the transducer design in -
guestion would not be adopted. Furthermore, if suéh higher modes as
are present in strength have their cut-off frequencies exceeded to a
Large degree then, as may be confirmed from equations 2.2.21 and
2.2.22: k and d will vary only slowly with m and n thus leading to
the 'bungging' 22 these major resonances responsible for the poor
resolution.at high frequencies. In this situation the derivation of an
expression for errors in measured velocity is comparatively simple. At
somewhat lower frequencies where one or more of the higher modes may
be almost resolveds a correction to the simple case may be derived.
However, the form of this correction will be slightly different for
‘the two definitions of resonance. We shall pursue an analysis in terms

of the second criterion for resonance, and. should it be required., the

other case may be dealt with in an exactly analogous way. Such
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differences as will be found are briefly outlined in Appendix 2.2 and
do not in any way affect the validity of the general conclusions which
the expressions for the velocity errors lead us to.

It 1s thus possible to make a general analysis of the effect of
practical transducers on the measurement of the velocity of sound by
considering only the simplest definition in terms of the maximum
"average power dissipation. Taking a time average of equation 2.2.38 we

have

4

V:qu;) - w & };;C\m'\\mu) (2.2.43)

'3

for the power dissipated in a cavity of length, L. It is clear from
this that an experimental measurement of W (1) would produce a
superposition ' of resonance curves eacﬂ ¢ of the form R (L)
corresponding to each of the modes present 1in the cavity.mnThe
situation is shown in figure 2.5. Two effects are apparent. Firstly.
because the higher modes have increased phase velocities their
resonances become increasingly displaced from those of the plane wave
mode as the order of resonance, N, is raised. This results in the.
maximum of the resultant (group) resonance being inc}easingty
displaced from that of the plane wave, so tHat the measured separation
of the resonances is too large. Wavelengths and velocities are
consequently overestimated. Secondly the group maxima appear to die
away more rapidly than they should because of the increasing
separation of the phase maxima. It may be seen from figureVZ.S that
this comes about because the decay of the group maxima is larger than
that of the plane wave maxima. Thus measured values of the plane wave
absorption coefficient' dbo' will be too great Llike the measured

velocity. An estimate of the magnitude of the effect may be obtained

by differentiating equatioh 2.2.43. We have:
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FIGURE 2.5
Showing the Effect of a Single Higher Mode

on the Measured

Positions of Resonance and the Measured Attenuation.

I}l



- 62 -

Rmn (4) = stnh 2l 4
Cosh 2dmad - Co5 L Rmnd
= Amn d
AL K ()t (220
in. the vicinity of a resonance where = <<1, k =k  and

mn 00 mn 00
L =NA /2. We require that
mn  mn

-i- ; z;‘ C;mn.'Rmn,(-Q) = ; }: C;m.r\ _Q_L_'Rmn('E) =0
dd " AL

(1.2.45)

which to a good approximation gives

/T_“I 5;1 G (L- &my) _ .0 (1-.1-%3"'
B+ (4 ]

where A =& l/k is the half-width of the mnth mode resonance -at
mn mn mn
half the height of the resonance./\ will be roughly constant and
mn
equal toA for cases of interest sincedd =d and k =k . At
00 : mn 00 mn 00
sufficiently high frequencies it becomes unlikely that any modes of

significent strength will be resolved since

i 1
N.. >> (Ld-8ma) . (2.2.4%)

Then: since the A are constant, we have
mn

;}; an(-a“gmn) =0 (2.2.18)



so that

J': E;anﬂmn 3_;‘\_)_2

mn mn (2. l.kq)

LG
L LGma * L Gron

m

leading to a fractional error in measured velocity of

Ac = Zm‘l ;. C;mn(xmn-“l\ao\ = Zh:)—:\: anxn::n (.'1°l~5'o)
" LL G 2Bk 2 2 G

It may be seen from 2.2.49 that L at resonance depends only on the
order of resonancer N, as would be the case if only the plane wave
mode were present. Thus for situations such as these there can be no
check from the observed separation of the resonances that errors
resulting from paraéitic modes are not occurring. Only if an
examination of the symmetry of a resonance is made may such a
situation become apparent. but even then it is uncertain since sets of
amplitudes, G . may easily occur which preserve the symmetry of the
peak whilst st??l causing it to be displaced. For example., if a single
unresolved mnth mode is present in the same strength as the 00th mode,
resonances would remain almost perfectly symmetrical.

The range of applicability of the approximations 2.2.48 and 49
depends upon the validity of the inequality 2.2.47. If
(L =L )/2=L(X /bk )2/4 is taken as a rough estimate for (l-L )

00 mn mn 00 mn’

then the requirement 2.2.47 becomes

L L

hoo > X‘:nn /iGb‘I A(l.l.SI)

)
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The values presented in and with Tables 2.1 and 2.2 enable the
2 2

quantity A Kk to be evaluated for various different frequencies.

At a frequggcyogf 1MHz in a cavity of 2cm diameter the approximation

2.2.48 is valid for modeg where X 4<<1O.34 at the normal boiling
[¢ 4 4mn :

point of helium—4 and where X <<8.2 at NPT. Should higher modes be

present 1in comparable streng?ﬂ to those satisfying these conditions a

better way of estimating the error is required. Rather than attempt a
solution of equation 2.2.46 it would be preferable to calculate a ~
first excessive approximate value of L from 2.2.49 and use it to

recalculate a new set of amplitudess G*' ., thus
mn

A =1

a1 W

Gonn i\ +l+aL"‘ = b'*(?‘)g ij(th-an))k
oo RNoo ZZ C|Jh ‘

) R (2.2.52)

which could again be used in equation 2.2.48. This could be repeated

i

until the values of the amplitudes converged. However, it is not
anticipated that more than one recalculation would be necessary in
most practical cases.

Inspection of the denominator in equation 2.2.52 reveals that the
corrected amplitudess G° ., will very rapidly become negligible once

mn

2 2
the order of the mode is high enough to ensure that (l-L .) >A .

Thus it is possible to ignore these modes which, in any cagg. magnbe
expected to be resolved. It is the case, therefore, that the above
procedure offers a method of assessing errors due to higher modes
whether they are far from being resolved or are., in fact, virtually
resolved. The recalculated amplitudes, G° . are not dependent on the
value of L or the'ordér of resonance, N som:hat our previous remarks

‘on the impossibility of ensuring that higher modes were absent are
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still valid when modes are present which are nearly resolved. The
- difficulty is thus geen to be entirely general at all frequencies
where it is possible for at'Least one higher mode to be present. 1In
particular, 1t - applies ‘to'the instrﬁment used by Plumb and Cataland .
[21-24] for their acoustic thermometry. If this is correct then it
would appeaf‘ they were mistaken 1in arguing that the constant
separation of the resonances in their instrument as the order of
resonance increased proved that only a single wavelength (assumed to
be A ) was present. However, examination of the amplitudes. G
whicgo cou@d be expected with their type of iﬁstrument at a freque2:y
of 1 Mdz will show that errors from this source are Llikely to be
negligible. The possibility of detecting higher modes from the
increase in absorption coefficient is dealt with in Appendix 2.2. but
is found to be unreliable also.

2.2.4. Some Practical Cases

The first case to be considered is that of an ideal transducer
executing perfect piston-like vibrations. Values of G will be
calculated for various diameters of transducer up to and ingTuding the
cavity diameter, 2b. In the latter case we would expect to obtain‘ the
result of section 2.1 where only the 00 order mode is propagated.
Initially it might be expected that any transducer executing such
vibrations could excite only plane waves in the cavity. However it
should be remembered that only modes characteristic of the cavity
which satisfy the wave equation enter into the expansion of g (r.e).:
and that if the transducer has a radius a<b there willo be a
discontinuity at r=a which cannot easily be approximated to with a
plane wave. This is one more manifestation of a general feature of
approximation by orthogonal ~ functions. = namely that when there are

discontinuities present in the function to be represented. the higher

terms 1in the expansion are required in greater strength. It is the
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increasing number of maxima and minima usually found in the range of
definition of the higher order functions which enables them to
represent discontinuities more readily than the lower order members of
the set. . | |
The present case is shown in figure 2.6. From the definition of

piston=like vibrations we have

g (t,e) = o© (v 2 a)

g (v, 0)

14 (+< o) (2.2.54)

From 2.2.39 and 2.2.42

G = (280 [0/ RE T o))

2% 2 an 'y ‘
X {(j Cosme de) +(J sinme oLe\) } (9--&-55')
o o] '

or half this if m=0. Thus

Gmn = © (m> o) (2.2.5¢)

on 7 bt ([ o) &)’

= k% a.a'(’Co-\ ( j—l'()s_?_r\.& b) )a (2-157)
Keon Jo (Xon) o |

where n>0, and



_67_

z=0 ; ' ' z=1

FIGURE 2,6

Showing an ldeal Transducer of Radijus a Less than b.

v



R .
Goo = hio ec,, - 2 (x.2.58)

Several points of interest arise from these results. Firstly, as

expecteds G =0 if m>0 or n>0 and a=b. AlL amplitudes are zero if m>0
. mn

due to the e—integrals of equation 2.2.55 and our not having specified

any eo—dependence for the transducer vibrations. 6 =0 for n>0 when a=b

On
because J (X a/b)=J (X ) is dJ (X )/dX which is identically zero by
' 1 On 1 On 0 On
definition of X -. Thus only plane waves may propagate in the cavity
. on

when a=b concurring with the results of section 2.1. We have from

equation 2.2.42

2
L d) = Wb, {Roa(t) -1 Xoo(1)§ (x.2.59)
in exact agreement with equation 2.1.9. If the plane wave amplitude.,

G . is expressed in terms of its value when a=b we find
00
L

Goo (b)) = a (2.2-60)

c;<>o ( Q= t>) l) N

showing that the amplitude of the plane wave falls off very rapidly as
the diameter of the transducer decreases. This is attributable to two
causes = the decrease 1in the power radiated due to the diminishing
area of the transducer and the loss of that power which goes to excite
the higher modes of vibration . The former effect applies equally to
all modes of course, but nevertheless represents a practical
difficulty in that the overall sensitivity of the interferometer is

reduced. Expressing the Onth amplitudes in the same units we have
1
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Gon (.CL £b) | = kL Cka J, ()(orx o t>\ .

Ctoo (a: b) » b1 XOnj—o(Xon)
‘ (2.2.a)
The amplitudes G to G are shown in Table 2.4 for a/b=1, 3/4, 1/2

00 05
and 1/4. The fractional errors to be expected in a velocity of sound

measurement have - been calculated from equation 2.2.50 and are also
included together with the resulting error in a temperature
measurément made at 4.2K at a frequency of 1 MHz in a cavity of 2cm
diameter. -It can be seen that they are tolerably small even when
a/b=1/4. When a/b 1is small the transducer behaves something like a
point source in the cavity and the plane wave mode is barely excited
at all. This situation is representative of interferometers where the
cavjty is excited by entering the sound through a small ‘circular
central port in one end face. Both De Laet [19] and Grimsrud and
Werntz [25] used such a technique.‘but since both instruments were
operated below the first cut-off frequency, f . they would not have
"led to experimental errors. However the value oloG for a/b=1/4 shows
how very inefficient a method of exciting plane uasgs this must be.
The second model to be considered is perhaps of more general
application. Many transducers are unable to vibrate at their
perimeter, but may flex to proviﬂe aw useful amplitude at their
centres. At frequencies below about 100KHz stiff metal diaphragms
clamped at their perimeter and driven by a.moving coil are frequently
employed whilst at wultrasonic frequencies the conventional quartz
crystal is often mounted in such a way as to restrict vibration at
r=b. Some typical cases are shown in figure 2.7. in order to estimate
the consequences of using such transducers we shall assume the

following form for§ tree):
0
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TABLE 2.4

Amplitudes G "for an Ideal Transducer,

n a/b
0 1
1

2

3

4

S .

0 374
1

2

3

4

5

0 172
1

2

3

4

5

0 174
1 N
2

3

4

5

All amplitudes G

1.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

mn

mn

G . 2b k RPc/c AT at 4.2K
On 00 : (mK)

000 * 0 0
000
000
000
000
000

317 16.8 0.26
249
061
010
006
008

063 29.5 0.45-
164
061
017
001
007

004 46.2 0.71
019
019
009
001
000

* By Definition

where m is greater than zero are zero.
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(a) Stiff Metal Diaphragm with Radius a Greater than the Cavity Radius b.

l\

z=

[ |

L “,

(b) Stiff Metal Diaphragm Clamped against -Mouth of Cavity.

| — h

| -

(¢) Quartz Crystal Transducer Clamped against Mouth of Cavity.

FIGURE 2.7
Three Common Transducer Mountings

Where no Motion is Possible at the Perimeter of the Transducer.



-T2 -

1]
(o)

(v 2 a)

g, (+.0)

N
N (2 o) ,
go (T)g) z E_’)oe / &t (~ o)

(2 .2.62)

Thus away from its equilibrium position the face of the transducer is

conceived of as being bell-shaped with a maximum displacement, g ¢ at

0
its centre. Calculating the amplitudes. G , as before we have:
- mn
2
-7 (1-s%) 2

L
Gon = L%Ccon . ot j s e To-&i-%_)ds

j_oa(Xon)’ b °

and ' | (2.2.¢3)
2 a a .
Goo = 2@ Coo °~l* - '5/,("‘5) (:L-:L.Ll.,)
S e ds
<+
b 0

where L=b/a if a>b and L=1 if a<b. The variable s has been substituted

for r/a. The %ntegrals have been evaluated numerically and the results

are shown in Table 2.5 as before.
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TABLE 2.5

Amplitudes G for a Clamped Transducer.
mn .

2 2
a/b G 2bk  Ac/c AT at 4.2K
on 00 (mK)

Vidh NN O

WO

SN -2 O WO

WD 2O

VW= O

4 5.752
-0.002
0.000
0.000
0.000
0.000

k]
nN

4,582
0.037
0.004
0.000
0.000
0.000

1 1.000
J 0.658
0.043
0.002
0.000
0.000

374 0.316
0.609
0.012
0.018
0.000
0.001

172 0.063
0.235
0.113
0.007
0.004
0.003

174 0.004
0.021
0.029
0.026
0.076
0.007

0.005

0.160

7.030

12.192

26,466

88.932

* By Definition

-4
7.8x10

2.5x10

1.9x10

-1
4.1x10

1.6

AllL amplitudes G where m is greater than zero are zero.

mn
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:2.3 The Effect of Geometrical Misalignment of the Cévity End Faces.

Very often. when reporting values -for sound velocities and
absorption coefficients measured with acoustic interferometers.,
workers have omitted to mention what errors are attributable to
mechanical misalignments in their instruments. In general it is
tacitly assumed that if errors in geometry are small compared to the
wavelength .of sound in the medium under investigation: then any
resulting acoustic errors will be negligible. At low frequencies this
condition is easily achieved and often it has been thought unnecessary
to state the tolerances to which an instrument has been built. At very
high frequencies, on the other hand. when wavelengths can approach
orders of smallness not far removed from what are normally considered
to be fine engineering tolerances, it has occasionally been the
practice to quote the accuracy to which transducers and reflectors
have been aligned. But, again., no assessment of the erro;s to be
expected is offered. Neither is it shown that the tolerances achieved
are sufficient to make the errors negligible.

2.3.1 Bad Geometry and Velocity Errors.

Unfortunately., to solve the problem of evaluating the wave field at
any point within a cavity whose end faces may be described by the

equations

h{.

Zglqe) <A (a.3.).
and -

z = Zolne)+d (2. (ge)«c,e)(2:3.2)

is not easy because the solution to the wave equation fails to

separate as in the case of perfect geometry. However. we may attempt
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an approximéte Ereatment of the problem which yields a separable
solution at frequeﬁcies belqw the lowest cut-off frequency of the
cavity.

It is supposed that normal modes.<P s of the form
mn

tlottq, 2)
Pn = I"(_Xrn_;j_)( O osme + Brsinme ) € "

(2-3.3)

propagate}in the interferometer. For values of m and n greater than
zeros however, the modes Qill be evanescent and will only travel
éxtremely short distances before becoming severely attenuated. Thus it
is only necessary to consider such modes in the immediate vicinity of
the end faces where they arise from the incidence of the plane wave
mode which is the principal constituent of the wave field "in the
cavitf. It is also ‘assumed that because the errors in geometry are
small, the amplitudes of the higher modes are small even in the

neighbourhood of the end faces. And for the same reason we write

-Ve | = = -2¢ = o (2.2.4)
2:2(re) 0% |¥<%(ve)

for an approximate boundary condition on the end face. Thus for a

plane wave

¢ = A eﬂwhi”z) (2.3.5)

incident upon an end face we have
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- ; Z{C\-mn(qm Cosmo + Bma S*inue)

'1 -1 2 (<, 0) "
X Tm(anf) e Hranat60 S (2.3.¢)

Multiplying both sides by exp(ig z(r.e)) this becomes
. 00

Q.tq,ooza( <,0)
I e, -

g - Y2l o)
_; Z_:,. s (Ama covme + ans-mm;) Tm(xmg‘.) e Qoo Ve’ BE11E

= - l\; znj Q\»mn (Amn cosme + Bemn sinme) Tm(-ﬁﬂll)ni) N

The approximation follows because z(r.,e) is very small as are A and

mn
B  when m.n>0 and because when m.n=0 the index in the exponential
mn

term on the right hand side vanishes. Integration from e=0 to 2gand

from r=0 to b now Yields
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1,, ai Z(r,)
Ra = A = JJ c*". odrde
R . ..b

2%
Y j (I + 1“1 2,(.1‘ o)~ 2(‘ x (T,e))clrd.e
..\:.
'lu
- 1 -~ 9% J jrza(r J0) drde
\3:

J ]’I‘E(f,o)drde (2. 3. 0)

Thus we see that the attenuation of the reflected plane wave is only
of the order z Z(r.e) but that there -is a phase ’change of order
z (rs0). A s?ﬁilar reflection coefficient may be derived for a wave
igcident upon an end face from the opposite direction., but here the

phase change is of the opposite sign. We have therefore

i

Re

V- & =ad, B (2.3.9)

[}

Ry

where



, b 2w .
&WT = I J TI&T(ge)dr&e ' (2.3.10)
BAs, °°°
and
b 23 4
Eaqvr = 8% J J‘Tzﬂrr (c,6) dedo (2.3.0)
pak, ~°

The effect of such complex reflection coefficients may be seen from
equation 2.1.4. It is to add a term (§ =8 /1 to the wavenumber, k. in
the denominator which essentially deteﬁmi:es where resonance i§ goingb
to occur. Thus a fractional error in the measured velocity of sound

results given by

Ac . - Ak St-8p (9.‘.3‘”.)

Equation 2.1.4 should be further modified by a factor exp(-ig /2) on
T

the right hand side arising from the fact that'the transducers being
geometrically imperfect. imparts a phase change to the wave it emits.

But since all partial waves have this factor it may be omitted in a

discussion of velocity errors.
Evaluation of the velocity error to be expected from a practical

instrument is now possible given the form of the functions z (rse) and
R -
2z (re6). It will be calculated for two important practical examples.

T
Howevers the error will only arise. in principle, for a cavity of
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fixed length (*#1) as will be argued in section 4.2 (although end
"effects will be encountered in a variable path cavity if the end faces
- in particular the moving one =— change their alignment during a
measurement). Whether or not this is true for a éavity operated above
the first cut off fréquency cannot be said on the basis of this simple

theory.
2.3.2 Tilted End Faces.

It will now be assumed that the end faces are perfectly flat, but

tilted off axis as in figure 2.8. If the maximum angle of tilt is

x whare %X<<1 in a direction e=e we have

0
,zR,T '(r,e ) ’=' <+ 'XK,T Cos (9 - 9‘,“ T) ‘2- 3. |'$) '
so that .
Sa.-r = hbXax J cos (o ~Ooa.7) ,cle
T eo ° (2.3.14)
= o0

and

(1) It would be more correct to say that it only arises in
cavities whose measured geometrical length (as opposed to their
affective acoustic length) is used in the calculation of the

velocity of sound. Thus it need be of no concern where the

distance separating‘resonances is measured.
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FIGURE 2.8

An Interferometer with Tilted Transducer and Reflector.
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ER‘T = 8n'x &TJ J u‘f Cos (8 sbg.‘) d.f'dg

- z.fb‘xf\, / Ao (2.3.15)

Thus. since 6 is zero, the only effect of a tilted end face is to
decrease Herzfe?&rs real reflection coefficient, ¥, by an amount of

order b%K /A . It is not even necessary to call for the
finest enginE;Iingootolerances to ensure that this term is no greater
than 10-5 or 10-6 and so entirely negligible compared to reflection

losses from boundary layer mechanisms. .

2.3.3 The Flatness of the End Faces.

End faces which are not flat . like imperfect transducers. are not '
easy to treat in a general way since it is difficult to find a model
for them which typifies faults in a wide range  of instrumeﬁts. In
order to obtain an approximate idea of what is to be expected<§and‘
e¢will be calculated for a parabolically.concave or convex end face. We

write

R R R S 72 T LR AT

Again: X is a parameter which is a measure of the geometrical
imperfection present being the depth of the parabolic face. From
equation 2.3.10
, b 2% 3

§ = LXar ¥ cdedp = 28 Xgj,T

AT o = ) -

A o A

L’f;\.° Q0
(a.3,149)




whilst from equation 2.3.11

T b 1‘.’- 2
£a.-'-.- = 8% 'X On XRT | dr&a . xR, T
. 2
b AOQ : {15
(2+3,18)
As before & is easily made small enough to be of no consequence,
R«T
but now & is of the order X /A . But from equation 2.3.12 it can
R.T ReT 00

be seen that if the fractional error in a velocity measurement is not
to become comparable to the precision otherwise expected from the

instrument, then the expression X /k A L must not exceed several
R.T 00 00
4
parts in 10 .,
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CHAPTER III

THE PROBLEM OF THE BOUNDARY LAYER

It has already been pointed out that the simple boundary conditions
of Chapter II are not entirely realistic. Hitherto we have required
only the normal component of the particle velocity to vanish at the
boundary whereas for a viscous fluid the tangential component should
also vanish. Furthermore, the presence of a solid boundary may be
expected to disturb the temperature field associated with the.particle
velocity field. In the vicinity of the interface acoustic probagation
would 'tend to be isothérmal ratéer than adiabatic due to the enormous
thermal conductivity of a solid compared to a gas. Thus the velocity
of sound would Llie somewhat to the Neﬁtonian side of the Laplacian
value.

3.1 The Theory of the Boundary Layer.

Helmholtz was the first to attempt to treat this problem in 1863.
By taking the effect of viscosity into account he was able to derive a
quantitative estimate for the decrease in the velocity of sound
propagated in an infinitel} long tube. Five years later Kundt reported
only a qualitative agreement with. Helmholtz's predictions and
suggested that the thermal conductivity of the walls be taken into
account. This calculation was carried out by Kirchhoff in the same
year leading to results which we prefer to quote in the following

form:



1
(Leo) ¢ (vova)

expressing the fractional error in velocity. c. to be added to values
measured in infinite tubes to obtain the values which would be

measured in the unbounded medium. Here

‘

A

The acoustic absorption coefficient was found to be

L= Afolz | (3.1.3)

amta—

be \ &

Considerable discussion of these results has taken place.
Weston[36] has clarified the exact conditions under which Kirchhoff's
various approximations apply. and Shields, Lee and Wiley[37]1 have
tested them against a more exact numerical solution of the problem.
They find that the fractional error due to approximation in the

“correction is no greater than the fréctional correction itself. Other
work has also been done to extend the scope of the Kirchhoff-Helmholtz
corrections. Molecular slip.flexible or porous walls and walls with
low thermal conductivity could all, in principle, affect the form of
thé correction. These effects have been investigated theoretically by
Henry[38] together with the effect of a temperature discontinuity at
the boundary ( an analysis later corrected by Weston[361). Similar

treatments to that of Kirchhoff have also been given to finite
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amplitude propagation in tubes and to the propagation of pulses. But,
most important for our purposes: the éffect of end reflectors has been
considered. In 1907 Thiesen derived a quantitative expression for the
boundary layer effect on thé velocity of sound in an interferometer
rather than in an infinite cylinder[391.-The existence of a seconq

small term in addition to the term found by Kirchhoff was proven:

- N
P A fo) &
4 &

3 (3.1.4)

>
o

i

l=
~~
P
&

where

A' = A - & (L|£)

At infinite cavity lengths this result agrees with Kirchhoff's as
expected.

More recently Fritchel40] has given a somewhat wider and simpler
treatment of the problem which is capable of giving the boundary layer
corrections to the phase velocities and absorption coefficients of the
higher modes as well as to those of thé plane wave mode which is the
only mode of propagation to which the results of Kirchhoff and Thiesen
may be apblied. Unfortunately, since his main preoccupation was with
the accurate measurement of absorption coefficients, the treatment of
velocity errors was developed to a lesser extent. Because of‘this and
because all of these workers have written in German we shall outline a
solution to' the boundary layer problem for a variable path
interferometer which will show that Fritche's approach.yietds the same
answer as originally obtained by Thiesen when applied to plane‘ waves.

It will also be indicated how the corrections to the phase velocitias

i
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and absorption coefficients of the higher modes may be obtained should
they be required.

3.1.1 Towards a Simple Statement of the Problem.

In considering a fluid where the effects of heat conduction and ~
viscosity may no longer be ignored it becomes necessary to employ as
many as five equations in the initial specification of the problen.
Thi§ section will be devoted to reaching a briefer and more tractable
statement. The five equations are:

o€ + ¢ V.v =0 (3.1.¢) |

it

£

( the equation of continuity asserting the conservation of the fluid),

( the Navier—Stokes equation which is the equation of motion for a
'. viscous fluid replacing the simpler equation of Euler for an ideal

fluid )1

P 2‘6%1 = e(cp_c_v)T (2.1.8)

( the equation of state for an ideal gas which should be a
satisfactory approximation to the virial equation of state for the
purposes of examining a small correction to ideal propagation at any

pressure likely to be of interest ),
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)

-PV. v ecy ol + V. W (3.1.9)

ot

( stating that energy is conserved in an elementary volume of fluid if

frictional losses may be neglected ) and, finally

W = - KWV.T (3.1.10)

———
'

which 1is Fourier®s Law of heat conduction. Compared to conduction
losses, losses from a volume element of fluid by radiation may be
shown to be entirely negligible for our purposes. Zero subscripts
indicate here that the subscripted variable takes its mean value -
that 1is its value 1in the absence of an acoustic disturbance. The
vector v is the particle velocity and ¢ and ¢ are the specific heats
per uﬁit mass at constant pressﬁfe and SOLume :espectively. 91 is the
layer viscosity whilst 7 is a quantity given byl7 =§+‘l/39 where
2 2 1

§ s the bulk viscosity. W is a vector giving the field of heat flow
associated with the particle‘velocity field v.

Kirchhoff, Thiesen and Fritche all proceed in essentially the same
way to reduce these five equations to three partial differential
equations in‘three variables. Unlike the particle velocity field for

an ideal fluid.v may no longer be considered to be irrotational. We

must therefore wWrite

No= V?P + Va o (3.1.11)

wheretP and a are respectively scalar and vector fields. We also
require that {/.a be zero in order that P and a thus defined are

uniquely specified. Taking the divergence of both sides of this

7
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equation therefore gives:

i
Vg = V.u (3.1a2)

Thus, by substituting for v and Y.v from equation 3.1.11 and 3.1.12

into the Navier-Stokes equation.»3.1.7. we obtain:

V = V¢ + Vap = o (2.1.3)

where

§ = 2% ,*‘ P -*(V.i-v;.)va?) (z.m)

and

A= 9% - vWWa (3 01a5)

where V (previously V)=n /pand ¥ =Y /0.
1 %6 2 5

Since the divergence of a is zero we have:

B (3.1.16)

making an obvious analogy between equations 3.1.13 and 3.1.11. Thus
the Navier-Stokes equation has been used to show that a new “particle
velocity”,V, may be expressed in terms of a scalar potential.»ﬁf. and a
vector potential., A related to the true velocity potentials as above.

Taking the divergence of equation 3.1.13 yields:



V % =0 (3.1.19)

which is the first of the neQ equations:ﬁf being the first of the new
variables.

The variables P,W and v may now be eliminated from the energy
equation 3.1.9 usiné the equation of states 3.1.8. Fourier's law,
3.1.10, and equation 3.1.12. If the acoustic motion is of sufficiently

small amplitude this yields:

v,V 0+230 + V9 = o (s.1.18)
ot

where V =K/P ¢ is the thermal diffusivity and
3 Ov

(3.1.19)
0 |

n

(T-T )/T being the fractional change in temperature associated with a
giveg po?nt in the fluid ( giving a similar interpretation’ to the
scalar field © ). Equation 3.1.18 is fhe second of the three new
fundaméntal equations and @) the second new variable.

The remaining new equation is obtained from equation 3.1.14 which

on differentiating with respect to time becomes:

.5_;5. = o*? - (V.+v,.)_Q_Vl<p +__3__(P) (3.1.20)

ot ot ot dat\e. ,

In order to evaluate the last term we turn to the equation of state

3.1.8. For the small changes in P,e and T associated with an acoustic
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disturbance it gives:

E—EE = e - 6o -}—T—To:f—fg‘i‘(ﬂ'—l)@‘
P Co S €o

(s.\.lx)

Differentiating this with respect to time and substituting for AL/t

from the egquation of continuity we obtain:

A_(l.) = -_Cf_l V-lcp v (o) 96 (2.1.22)
ot \& o o ot

172
where c=(oP /@) is the velocity of sound in the absence of
0 0
boundary layer effects. Thus from equation 3.1.20

98 - '¢ "(v‘+\),_)_§_VQ(F+_(:V%F 1-5(0‘-:‘)__3_@
ok e+ ok o & ok

(3.0.23)

which is our third new equation and(p the remaining new variable.
Assuming a harmonic time dependence of angular frequency.w., for the

fields@:@and ¢ the equations become:

Vafﬁ = 0 (3.1.2%)

2 A
wVO rtiwd ~-Ve = o0 (3.1.25)

Mo 6 +-{_cf-im(v‘+vz_\ivacp+wz? w0 <o

o (v g

(3.1.26)

vhere the functions Q‘.@ andq:no longer have time as an argument. but

are functions solely of position.
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The procedure now adopted by Kirchhoff was to eliminate andcp from
three equations similar to these leaving a single equation of fourth
order in 8. Solution of this equation vyielded a complex wavenumber
which could be associatea with the propagation of any of several

. acoustic variables sfnce they would all propagate with a constant
phase .relationship with @. Thus the required corrections to velocity
and absorption coefficients were available from the real and imaginary
parts of the wavenumber respectively. Fritche and Tﬁiesen. on the

other hand, start by expanding§.9 and?o in terms of the solutions of

the wave equation:

VZ\P,[ +le\ Y =0 (3.1.24)

and point out that they must all contain the same number of terms q) ’
. 1
91 .\Y » etc. in their expansions so that the wave fields of the
2 3
functions are of the same general form. Their respective phase

relationships at any given point may be accounted for in the

coefficients of the expansions. Thus

P = 1{: b | (3.1.28)

1

© = Z A, W (":ul.l“l)‘\

N
.é- = 2 bn\yn : (’S.I.30)

where a and b will generally be complex. Substitution of these
n n

series into the three fundamental equations 3.1.24 to 3.1.26 yields
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3
C‘,- bn = O ('&I.'Sl)
n
a X . ) 3 :
W ..Q" i_sr_ - 1w (v‘.;vl\k*-f_(u'—l)mqn—iwb = ©
n
o
(3.1.12)
and
V., & 4 1 A (‘3 )
199 twa, +9. = 0 .33

Thus if q #0 we have b =0 from the first equation whilst from the last
n n
tWo

k . a
% i! + \g‘ -%nga+ 1o+ k+l=0(3.LSO
T4l g R

where

R = co‘““/c’* (3.1.35)

q - imki‘ - 1eA Smecv}‘i (3.1.36)

and

q = {_1_@____%7‘9: =|+i§.co ‘g!i (3.\.3‘:)‘
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From the last equation. 3.1.33.

2 2
o, = _1I Yo s (x.1.38)

. L _ ot

and from the wave equation q will be zero so that a =0 also. It then

0 0
follows from equation 3.1.32 that b =iw. So finally
0
@ = Yo r W o+ Ya (34&%)
@ = wW + oW, (3.1 .40
F - -ieY (yov.41)

The small number of terms arises from equation 3.1.34 which being

2
quadratic in. g has only two independent solutions which we call q
n ; 1
and q . These are approximately
2
a a s S ¢
q * h{s+1w[v'+vl+(0'—t>v:|}=h
1 a 3
C o
i (2.1.42)

<L
]

2 a N . a
= Qﬂ'(l {I "iwd‘[\)‘-{-\’l—_}_] IQ*CL
2 T Cl o T
(2.1.43)

where q and g are to be regarded as the complex wavenumbers of the
1 2



- 04 -

\V and %) waves respectively. Evaluation of the imaginary part of g
wgll yieldzthe classical absorption coefficient for a viscous gas wit;
a small, but finite, thermal conductivity. This will be put aside
until we are in a pos%tion fo evaluate the propagation constant for an
infinite tube, however. But we are .now ready to retrieve the
conventional acoustic variables v and p from the functions iiC)and

? and to assess some of the qualitative aspects of the wave field when

boundary layer effects are present.

3.1.2 The Existence of an Acoustic Boundary Layer and its Properties.

The perticle velocity.!, may be calculated from equation 3.1.1%

once the vector potential., a, is known. From equation 3.1.15 we have:

<
|
"
5
le
1l

- A _ (‘3.1.1414)

X

where

q, = {iw}i = _'_.t_l-_g_“:’.. P ('S.l-l&g)“

The solution of this differential equation will be

a =-R + Y, (2.1.146)

WA

so that
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AL = §7§J + ‘71; o

= V(¥ + P +¥a) - ' VaA + Va y,

10

r——
-

= VIV W)+ Vayp, - L (VE+VaR)

Thus
v o= VIV +Y¥,) + VA_‘_VE (’;.;.m)'

while
© = Y +a g, (2.14€)

and

V'Y o+ 4l Y - o (3.1.59)

In the absence of thermal conduction and friction V=V=V =0 so that

12 3
from equations 3.1.42 and 43 q =k whilst the imaginary (dissipative)
1
parts of q and q become infinite. Thus the Q) and‘f waves do not
2 3 2 -3, .

propagate whilst the\y wave propagates with the real wavenumber, k.
1
of an unattenuated sound wave 1in an ideal fluid. The three basic

equations 3.1.47 to 49 then become:
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(3.1.50)

e
<
€

© = a,V, | ' (z.1.51)

, 2
where from equation 3.1.33 a =i®w/¢ , and
‘ , 1

Va‘%’,‘ PR, - o | (3.1.52)

It may now be seen that\+:=?is the familiar velocity potential of an
adiabatic sound wave in an inviscid fluid.

When \;.1; and-\g take on finite values, however. \VZ and :t; are
able to propagate:. but even then only for very short distances since
they are so highly attenuated. Using the values presented with table
2.1 to caleculate g and g at a pressure of one atmosphere and a

.2 3
temperature of 4.2 K for a frequency of 10 kHz we have:

. , 1 >
1 = (h&l){”“’ll = (+47) x l.ix 10 m
* 2V,

and
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q. * (ride 2 (i) xL.axios am
3
A,

the imaginary parts of which may be seen to constitute a massive
absorption coefficient. The distances these waves travel before
becoming severely attenuated are therefore of the order of 0.01 cm.
This being. the case they would not be expected to be present
throughout the wave field in any significant strength, but would
appear only at boundary surfaces if at all. The distance of 0.071 cm
would' then be a measure of the thickness of the “boundary layer™ or
fhat layer in which they may be said to propagate. The application of
suitable boundary conditions for a gas-soiid interface shous that they
do in fact occur. |

From the expressions used to calculate g and q it can be seen

2 3
that the propagation of \P and \V depends upon V , the thermal
2 -3 3
diffusivity. and ¥V , the shear viscosity, respectively. We shall thus

1
refer to them as a “temperature” wave (recalling Herzfeld's usage

mentioned in section 2.1) and a “viscous™ wave. This 1s not, of
courser, intended to0 suggest that \P and \P represent wave-like
2 —3

temperature or viscosity fields - their physical interpretation is
only available through the three equations 3.1.39 to 41.

It is also important to realise that whilst the waves HP and ky

2 -3

contribute to the particle velocity, v+ and to the “excess

temperature”, ®, they do not contribute to the acoustic pressure, p.

Consequently the work integral per cycle
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dw &’jﬂr) P et

for some elementary area will not vanish due to the phase shift in v

relative to p brought about by the contributions ova and LP to v.
, 2 3

Were it not for this p and v would remain in phase and boundary layer

losses would not occur. Substituting foqu in equation 3.1.25 from

equation 3.1.22 we find

'y 2
P :__eo_c,_.ivgﬂl-c’ti:@} (3,,_53)

o~ a
A

since Q itself depends only upon \P and ¥ it can be seen that '~‘U will
1 2 3

2 2
not contribute to the acoustic pressure. Noting that q =2¢q this
' 2 T
becomes

p = 6 z& { Q, (Vl\}’, + q:\{),))r az(qu)x-k"Li%)}
(2.1.53)

Since the second term on the right hand side is zeros p will not
depend upon HJ either which confirms our assertion that the acoustic
2

pressure remains unchanged by boundary layer effects.
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3.1.3 Boundary Layer Corrections Associated with the Radial Boundary

Conditions.
If the wave equation for\y is expressed in cylindrical coordinates
—3
and it is assumed that\y has no azimuthal dependence, it becomes

4 _3

Vg‘*’h + (qf‘-! )YT = 0 (3.1.55)

Va%e +(<12-,L)L%)36 - 0 (5.1.5)

and

V'¥erq ¥, -o (3.1.57)

where the subscripts r,® and z refer to the directional components of
VJ . Demanding symmetry about the z axis limits the generality of the
a3

treatment, but greatly simplifies the problem at this stage because it

enables the vector field.\}’. to be replaced by a scalar field. We

-3
Write

Yoo = Yy = 0 (3.1.5%)

and
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2L
Y., = -6 (3.1.59)
oY Jds

where G satisfies the wave equation

VQG + cl-z Q=o (3.1.¢0)

The scalar function G is then seen to have a propagation constant q .
3
so that in conformity with our current notation we denote it by\Y .
; 3
e are now in a position to express y in terms of these functions

so that the appropriate boundary conditions may be applied to them. We

have
Moo= VyXY + Ugs ¥+ Yt
- VIV + Y)) » Vi Y, (3.v.¢1)
Thus

(3.1.62)

&
le/
=€
+
€
o+
Q)M
E
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g = (o) ) (3‘-63)

vz = _O i + “i)l"(bluf‘s*‘ auﬁjs)
‘ oyt T Or

(v.1.61)

to which we add

@ = &, kP| + Q. Ui)?_ (5‘(,'5)

to form the current set of working equations for the problem.

If the wave.q) ¢ is now expanded in terms of Bessel functions of
1

the first kind of order zero we have

L A X,;' A Jp (Xnx/b) e he (2.1.66)

Thus QJ satisfies the wave equation as required (these terms being of
1

the same form as the terms ?) of the previous chapter in the
On
expansion of é?). The value of X and hence of ¢ will be determined
n 1in
by the radial boundary conditions applied to the wave field.

Previously it was required that
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? I‘,(xm) o (2.1.¢7)

aY ‘r—_b

b

Since the neuw radial boundary condition to be derived from equations
3.1.62 and 65 will be different: we expect X to differ slightly from
n

X . Conseqﬁently g "+ which is given by .
On 1q )

A

will change as well. In particular, the “plane wave” wavenumber.q .

. 10
will be less than 9 because X will not be exactly zero like X .

1 0 00
For and we write
v, Yy

Y= 2B Tl /be " D Co T2 (Kar/be
" " (3.1.69)

and

19 % 1
H - D0uTZar/b)e ™ D ETalxar/b)e P
’ (3.1.70)

where
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ﬂi - (Yn/b)l

:..Q
=]
n

L A

- % % " (Zn /b):l (3.0.71)

0

This method of expanding kY and‘Y enables them to share the szme
phase on the cylinder walls ang on thésend faces of the cavity as the
\Y1 wave from which they arise whilst differing from‘f; over the cross .
section of the cavity ( where they are expected to be of negligible
amplitude in any case ).

The new radial boundary conditions derived from equations 3.1.62 to

65 which'y » Y andP must satisfy are
1 2 3

Vezoe Apd ja(x.;«) +Bad :r.,(ynf)~ q. D, SL_JI,(Z“)

dx dxr b e b

Coet) (3.1.72)

Uz = 0= nft TD (Xr\) + Ba To(Yr\\ - (__Zgﬁ_)&:bnm(Zn) '

(3.1.73)

© c0: AT (Xa) + 0 Ba T (Ya) (2. 17n)
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Terms with propagation constants g org have been neglected so
that these boundary conditions ngply 329 within a distance of the
interferometer end faces approximately equal to the boundary Llayer
thickness. Should B =p =0 it ?an be seen that the first of these three
equafions reduces tg tge original boundary.condition. 3.1.67, and that
for an idnviscid fluid and thermally non—conducting walls the latter

two would not be appropriate.

The function J (X r/b) may be expanded in terms of the original

0 n
orthogonal  functions J (X r/b) which will lead to a relation
3 On
expressing dd (X r/b)/dr in terms of these functions and to a value of
0 n
X . We wWrite
n

Jo (Xax /b)) = (LEC\RI(XORT/M
: | | ‘(sﬁnﬁsﬁ

so that

Gu = & J v x(m)x(xnv d

baj}l(xok)
(3.1.74)

where the familiar orthogonality relations of Chapter II ( equation

2.2.29 ) have been used. Evalﬁating the integral. G becomes
k
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G, = __ ab d To(xhr) (3.1.9%)

— b
I GARN M I b

Since X will be closely equal to X the only significant term in
k 0k
this series will be the kth so that

4 UL(XY\T) - e Xen) Tolton)
dx b /e b (:.1.79).

which is the promised relation between dJ (X r/b)/dr and the function
) ' 0 n
J (X ).
0 On .
The assumption that X =X also allows Y and Z to be evaluated

n On n n
from equations 3.1.71:

(Yr\/b)él = Q“Z—C\:n

. 2 L
= q_a - C"\ + (Xon)
b
P8
29 Y ‘
(2.1.79)
2 2 2
if q >>q =X /b) . This 1is plausible if it is assumed that only
2 1 On )

modes where n is small are required in the approximations for %ﬁ ¥

1 2

and \}" . Similarly
3
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A . 2 :
(Zn/b) = 9, 7 (3.1.80)

Thus we now.have complete expressions for the radial dependence dqur
\Yz and \+g. Since this information has been derived solely from
censideration of a set of radial boundary conditions it should enable
a wavenumber to be calculated which is appropriate for propagation in
an inf;nite tube. This we may calculate from equation 3.1.68 once

X /b has been explicitely evaluated which we do from equation

n
3.1.78:

'y
(x") ] (‘ym) ) b:;,(xon) i»j;(xgr) oy

(3.1.81)

The last term on the right hand side of this equation may be obtained

from the radial boundary conditions and the relations

dyv b ’ b
| (3.1.8a)
which are approximately true since the moduli of Y and X are very

n n
large. ¥e find '



é " (—\%&> {H}?igg ] éLiﬁj{q}ib T }

b 9,0

(2.1.83)

This, together with equation 3.1.68, will enable the propagation

constant for any Onth mode to be calculated. For the moment we shall

consider only the “plane wave" solution for which n=0 and X

=0
0
causing the first term to disappear leaving "
1 . s ' N -
(Xo) = (\+i)_°¥_.{v"’+ (0“-:)("( )12/0) 2
b L ecp/ N2
(3.0.81)

where we have substituted for q » q and q . From equation 3.1.68 the

1 2 3 :
real part of 9 s

10

R = R [. +,.'_{ I+ lo-—n(_K__)'?}(m)'?]
b €Cp
(?;.\'.8‘3)

leading to a fractional error in measured velocity of
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Be s - e ()T Ge) S
c b eCp

: ‘ (2.1.26)

which is the Kirchhoff-Helmholtz correction of equation 3.1.1. The

corresponding absorption coefficient, oA, will be given by the

imaginary part of g :
10

COE. {v‘-év,_i-(o-—n)K}wa
.‘1-(-5 . GCP

+._L__{‘”{i N (ﬁ“~\)(_EL_)k} %Si%i (3.1.84)
- be | € Cp 2 '

which' is clearly the sum of the classical absorption coefficient, ds
attributable to losses from thermal conduction aﬁd friction within the
body of the gas itself: and to the boundary Llayer absorption
coefficient, CiKH' of Kirchhoff and Helmholtz due to the same

mechanisms occurring at the walls of the tube.

Similar expressions may be obtained for higher modes by taking the

first term on the right hand side of equation 3.1.83 into account. We

find

A '

%L b e k]

(3.1.883)

At low frequencies where boundary layer losses predominate over losses
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occurring in the gas itself it is not possible to ignore terns which

are powers of (X /q b) even for the lower values of n. Thus

on 1

(R
(2.1.%4)

and

(‘3. 1.90)

These last two expressions aré. however:, not very useful for high
accuracy acoustic measurements since it is common practice té viork
either at very high frequencies where boundary layer effects may be
ignored altogether. or at frequencies below the Llowest cut-off
frequency where such modes do not propagate. There is seldom any good
reason for operating at intermediate frequencies where both systematic
errors arising from boundary layer effects and from a complex wave

field have to be accounted for.
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3.1.4 The Boundary Layer Corrections for the End Faces of an

Interferometer.

There is no need to recalculate the wave %ield in the cavity by
surming posative and negative going disturbances with appropriate
boundary conditions for the waves \]/1, (PZ and LVS. Instead the
reflection coefficient,¥ s of a single end face will be calculatad znd
substituted into eguation 2.1.4 in place of R and R . If complex
({becoming ¥exp(-i&)) rather than real as supposedRin Chagter II, then

the denominator will become

2 -2(A+iLR+5/014)
- 2

Thus the denominator of R (1) and X (1) in equations 2.1.10, and 11
G G
will be altered im one respect only. The wavenumber k will become

k+8/1 so that resonance will occur when

4

NA/a - S§N/au (3.1.91)
leading to a fractional error in veiocity of

j@iﬁi >~ - é;;\
c 25 d (2.1.92)

It now only remains to calculateSto arrive at an expression for the
boundary layer correction appropriaté for velocities measured in
intérferometefs rather than in infinite tubes. This is obtained by'
adding the correction 3.1.92 to our original correction 3.1.86.

Supposing the three waves\W .\P and\? to be present at a boundary
1. %2 3
at z=0 we have



Vizo t Anvla-9q) E4: -F {3.1.93)

d
Yz =0 Ghr\ Hn * c’bln.c'“ ¥ {\—)S'E'-) c\-snEn - C‘"“ Fn

(3 .v.44)

and

8'-:03 Q‘An-i- C(.Lcn = "Q‘F (’5.|.C,5§

where F is the amplitude of the nth component of an incident%f wave.
1

n

Since ﬁ) and %J waves are so rapidly damped, it is assumed that no
2 3

such waves are incident upon the boundary., and that only those arising

from the immediate 1incidence of the \%’ wave are present. The
1

components of the \P and‘ﬁ) waves propagating inwards from the
2 3
cylinder walls have also been ignored for the same reason. From the

first equation we have

C\'sz“ = c“ (nn + Fa o+ CJ (2.1.9¢)
in ’

which is of the first order of smallness in view of the magnitude of

g . Again considering only the “plane wave™ case for which X =X =0
3n On 00
2
we also find from equation 3.1.83 that (X /b) 1is of the first order
n
of smallness for a similar reason. Thus the second equation here.
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3.1.94, may to a good approxinmation be written

%, A, + %Y Ch = c‘_mF“ {(2.1.97)
_ Thus from the third eguation, 3.1.95:
¥e® 1 x0-18)
- Ao /G ,
-: O\;J.Cl—|o - C‘\no‘-’!_o
oL Yo + O G, {3.1.a8)
giving
' A )
=% = (o==1) (K )l(lw)” (3.1.99)
c ecp
and
L 1
§ = _ (e-1) ( K \(ae) * (3.1.100)
'd eCp/

The former equation quoted in Chapter II ( equation 2.1.714 ) was that

originally derived by Herzfeld. and from the latter we obtain



(Lo)——‘i (’:-\.\ol\
A

which was the second term added to the Kirchhoff-Helmholtz correction
by Thiesen ( Cf equations 3.1.4 and 5 ).

Mo absorption coefficient correction arises from the end effects in
the sense that it does from the radial boundary Llayer effect. The
absorption coefficient, &, measured from the decay in the size of the
resonances or the diameters of the impedance circles of Chapter II,
will be correctly evaluated if one proceads on the assumption that the
resonances decay as implied by the function R (1) ( see equation
2.1.10 ) where ¥ takes Herzfeld's real value. TheGmaximum value of this
function 1is approximately proportional to 1/(Al+§) where §=1-Kand the
mininum to Al+f/2 which is negligible in comparison so that the former
expression is a good approximation'for an impedance circle diameter in
arbitrary uﬁits. Thus the measurement of the diameters of two
impedance circ,;!.es will giveo(andpin arbitrary units. How these may be
converted to absolute units is described in the following chapter
where practical interferometer designs are discussed. If, on the other
hand, it is assumed that $=0 ( or that3=1 ) when in fact‘lis of the
orﬁer of d.[. then an error would arise in the calculation of on thé
basis of measurements made on two impedance circles. But examination
of three or more impedance cibcles should reveal that theif diameters
do not decrease as described by the incorrect function 1/LL, and the

correct functional dependence would then become apparent.
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3.2 Objections to the Boundary lLayer Corrections.

Untortunately, while the boundary layer corrections derived in the
previous section appear to be theoretically sound and complete for the
purposes of audio ffequencf or ultrasonic acoustic interferoretry., it
has been suggested in the past that they ére. nevertheless:, incorrect.
Two types of criticism have arisen. Firstly the dependence of the
effect upon the square root of the frequency is challenged, and
secondly: given this dependence. the constant of proportionality is
said to bes incorrect. Since the experimental sources for boih these
views seem to be somewhat tenuous uhilst the theory of the boundary
layer, widely epplied to other phenomenar seems reliables, it is
surprising that they have gained the currency they have.

The only experimental information known to count against the ' order
of the frequency arises from the work of Schneesbeli and Seebeck [41.
421 which goes back to the years 1869 and 1870 respectivety; Their
instruments were Somewhat crude judged by present day standards being
mechanically excited resonant systems of indeterminate engineering
finish. In order to investigate the boundary layer effect it is
absolutely essential that microscopic protrusions and interstices on
the cavity walls are small not only compared to the acoustic
wavelength used, but also to the boundary Llayer thickness. Thése
important features of the instruments Qsed are simply not discussed -
an.omission which still séems to be acceptable today. No doubt thé
historical reason 1is that the early interferometers uwere fachioned
from glass tubes containing fine powder whose distribution after <%he
decay of the sound left a record of the acoustic field. Such devices
frecuently had side ports welded to the cavity for the admission and

‘evacuation of gas and had end faces which were equally crude. It uas
assumed that if rouéh and ready instruments like these could be shoun

to operate much as predicted by a simple theory of the acoustic
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interférometer such as we gave in section 2.1 then they were suitable
for accurate studies of the boundary layer theory. Unfortunately there
is no justification for such an assumption. The smaller the effect to
be investigated the greater ére the demands upon the geometry of the
cavity. Hotwithstanding this the results bf Schneebeli and Seebeck are
often taken to have demonstrated a frequency dependence for the
velocity decrease of order 3/2.

The only theoretical support for the work of Schneebeli and Seebeck

has been given by Schweikert [43] uwho derived the following formula

for the measured velocitys, c', in an interferometer

¢ = ¢ ia ~ &C } (3.2..1)
- AN® W

from considering the superposition of an incident wave 'upon a

reflector at z=l

- Z )
; = Se stn (wE-hkz) (3.2.2)
_and a reflectea wave
- (aL-2)
. = STe sin (ot -k[2e-27)

(3.2.3)

The resultant acoustic (i. e. excess) density was wWritten as
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e = & + &
-dz
- sie  stnlwb-kz)
—k{ad-2) '
+ Te - Sin(wt-ﬁaL&E—z])i

(3.2.4)

from which he deduces that the acoustic intensity at some point z in

the cavity is

&

§* -

2 a 2 2
s {a r B +-C—r&ﬂBumlh1+lﬂC9hlhzg

vhere : ( 2. 9..5_)
-z
A = e ;
~L{af-z)
B = Ye cos AR
and
L lad-2)
C =7Ye sin 2R d

Differentiation shows that this has a maximum at

N



v = NA o+ 4 (3.2.¢)
a AR

rather fhan at L=NA/2. Since our equations 2.1.10 and 2.1.11 do not
give this result, 1t must be the case that an error has arisen either
in our oxn or in Schueikert's analysis. To show that it must be in
Schuaikert's consider the acoustic density at the reflector (z=l) when
r=1. According to the physical presuppositions of Schueikert which are
essentially those of section 2.1, the acoustic density should wvanish.

at z=l vwhereas we find from equation 3.2.4 that

~od
e = dse  sin(wbt-kE) (3.2.%)

Only 1if the reflection coefficient:, rs is negative will we obtain the
correct answer. But in replacing the positive sign in equation 2.1.4
by a negative sign it ceases to be possible to derive Schueikert’s
correction 3.2.1 and we find instead that l=NA/2 at resonance as in
section 2.1. But even were Schweikert's equation 3.2.1 correct his
proof that a frequency dependence of order 3/2 for the decrease in the
velocity of sound occurs is not. Moreover:. the proof requires one to
take the dependence ' of the orthodox absorption coefficient, d . on
the square root of the freguency to be corrects, yet not that oiﬂlthe
orthodox velocity correction to whfch it is intimately related. The

absorption coefficient is substituted into equation 3.2.1 to give a

fractional velocity error of



A
& }

A = =1 {yi & (e-1)[XK ——
c 21&;} CCp/ 12707
(3.2.8)
This fractional correction to the velocity is smaller than that
predicted by the boundary layer theory by a factor 1/2ivand so might
be difficult to detect even in the absence of the boundary layer
effect conventionally predicted. But in using the predicted absorption
coefficients & o+ it is surely admitted that the expected boundary
Layer reduptigﬁ in velocity should also occur. Thus on Schueikert's
theory it still remains to be explained why Schneebeli and Seebeck did
not see a much larger dependence on the square root of the frequency
in add%tion to the dependence on its 3/2th power.
8y far the largest majority of workers investigating the  boundary
layer effect agree that it must depend upon the square root of the
frequency but find various degrees of disagreement on the validity of
the size of the coefficient of proportionality. It is often confirmed
exactly but may be in error by as much as 40 per cent. It seems quite
likely, however, that this may be attributed to the casual approach
most workers have towards the engineering finish to the inner walls of
their acoustic cavities and to a lesser extent to the poor Kknowledge
of the transport properties of the gases used in the evaluation of the
theoretical constant of proportionality. The problem of the constant
of proportionality need not worry us: however, since it can easily be

measured as wWill be shown in the next chapter.
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CHAPTER IV
PRACTICAL DESIGN CONSIDERATIONS FOR AN

ACOQUSTIC THERMOMETER

If an acoustic thermometer is to achieve an accuracy comparazle to
that of the conventional constant volume gas thermometer 'it is
essential that velocities should be measurable to one or two parts in
ten thousand. This would represent an error in measured temperature of
about 1mK at the normal boiling point of helium~4 and about émK at the
hydrogen boiling point. Stightly less accuracy is required, however,
to make a useful investigation of the errors thought to exist 1in the
temperatures assigned to the normal boiling point of helium~4 on the
" scales T-58 and T-62 and to the hydrogen boiling point on IPTS-68.
Several recent measurements have suggested that the value of 4.215K
for the helium point is too low by approximately 10mK while the error
in the hydrogen point may be measured in tens of mKs rather than mKs.
Growing suspicion of the value assicned to the hydrogen point has led
to the suggestion that the extension of IPTS-68 doun to the triple
point of hydrogen was premature - a point of view which should be seen
in the light of the continued debate as to whether the IPTS should be
‘maintained as a thermodynamic temperature scale or a stable and rarely

altered means of comparison for individual temperature measurements.

Either way the necessity for thermodynamic temperatures, whether

*
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embodied in the definition of the IPTS or used as corrections to it,
remains, and so every effort has been made to design an acoustic
thermometer which will provide thernodynamic temperathres of the
highest accuracy available ffom this method.

.7 High Frequencies vs. Low Fraquencies.

The first decision to ba +taken 1in the design of an acoustic
interferometer is whether to operate at high or low frequencies. In
operating at high frequencies all the problems of a complex wave field
dealt with' in Chapter II arise. The difficulty with this type of
systematic error is that it cannot be corrected for in the absence of
a knouledge of the way in which the transducer vibrates. Our gueéses
as to the form of the fhngtion go(r.e) (eguations 2.2.54 and 62) a}e
plapsible and so serve to show what order of velocity error may bev
expected. However., it will havé veen noticed that no azinuthal
dependence of the amplitude of vibration of the transducer ‘was
specifieds This was not because it made the problem mathematically
intractable, but rather because the azimuthal dependence of one
transducer might differ greatly from that of another depending upon
such things as the eveness of clamping of a diaphracm or a quartz
crystal and the homogeneity of their constituent materials. Many such
parameters could be enumerated. Moreover, the radial dependences are
only plausible guesses and as such could not be relied upon to correct
neasurements from a given instrument. It might be the case, for
example, that a quartz crystal clamped as in figure 2.7(c) might
vibrate only over a small region of its face at the centre. Were this
the case the amplitudes of Table 2.5 for a/b=1/4 might be more
appropriate than those for a/b=1. But. far worse, it might. unbeknown
to its user, vibrate over a small region slightly off centre in which
case no useful assessment of a velocity error would be made at éll on

the simple assumptions of Chapter II. All that may reliacly be said is
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thet at a frequency of 1iHz in a cavity of diameter 2em (the exanple
of Teble 2.5) a reasonable guess would sugcest that errors would bz
negligible. Such & situation 1is obviously unsatisfactory from the
point of view of obtaining the very highest accuracy.

An equally serious\problem at high freéuencies is that of deciding
how the imperfections in the geometry of one's cavity will affect the
measured velocity. The results of section 2.3 apply only belecw the
first cut-off frequency, f . At higher frequencies ceometrical errors
could only be more seriouszofirstly because.the wavelengths are not so
large compared to the cavity imperfections and secondly becausc it
would be expected that modes akin to the normal modes ?pnn' for the
ideal cavity would propagate. A superposition of such moées wwould not
correspond exactly to the previous superposition of normal modes since
there would be perturbations entering our previous calculation due to
the complex boundary conditions of the imperfect end faces of the
cavity. A brief investigation suffices to show Hbu unwieldy the
problem becomes when an indefinite number of higher modes may
propagate in the cavity.

Less important at higher frequencies. however., is the problem of
the boundary layer. Reference to the values of Table 2.1 shows that at
sbout 1MHz the absorption coefficient attributable to losses within
the gas is not significantly larger than the boundary layer absorption
coefficient. However, at 10MHz the former absorption mechanism is so
severe as to make measurements of velocity virtually impossible. But,
fortunately., boundary layer velocity errors have become fairly small
by the time the frequency has approached 1MHz (which is presumably why
Plumb and Cataland chose to work at this frequency). From equation
3.1.86 we find that the error to be expected in a temperature

measurement at the normal boiling point of helium—4 is only about

0.1mK based on the values presented with Table 2.1. This may be
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considered negligible but could be corrected for if desired.

Nevertheless: since the two main problems of operating at high
frequencies seem insurmountable 1in principle it was felt that the
advantage to be gained with regard ~to the boundary layer was not
worthwhile and that a low frequency desién of acoustic interferometer
should be adopted. This would be further justified in that it would
offer a more independent check on the ultrasonic work of Plumb and
" Cataland by encounterfng. and hopefully circumventing, an entirely
different kind of main sYstematic error = the boundary layer error.<

The generally accepted view that the boundary layer effect depends
upon the square root of the frequency was defended in the last
chapter, but there 1is no reason why it should not be tested
experimentally for a given instrumént. Having ensured that the
acoustic absorption coefficient and the'velocity of sound both vary as
expected with frequency, it would then be possible to obtain the
‘constant of proportionality. A. between each of them and the square
root of the frequency from a measurement of the absorption
coefficient. This could then be used to correct the measured velocity.
Assuming the frequency to be sufficiently low so ‘that the bcundary

layer absorption mechanism is the predominant one. we have

A = A w X (‘{,i\)
bec &

and

B (4.1.2)

g
o
1
e

so that
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which expresses the fractional correction to be added to velocities
measured in tubes. This is only approximately correct for a short
interferometer because Thiesen's end correction has not been accounted

t

for. Strictly

bc A -

c b

{

Al fu]"2 (et 1)
4
AL

£

i

However:, 1f we may‘anticipate the discussion of the next section on
the relative merits of variable path and variable frequency
interferometry., it will be apparent that in a variable path instrument
where wavelengths are measured from the separations of the resonances.
the totai error in the separation of the first and Nth resonance will

be

My-AY = (B4 <A - AL e age]

. b b a

2135_(4’1“- &) i%}-i‘ (4.0.5)

so that
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L
Ac = Adw-AL = A ggg_‘%a = de (b))
cC Jihg'_ sé; - * w

as before. Thus only if a single resonance is detected in a cévity
whose absolute length is measured in order to derive the velocity will
it be necessary to allow for Thiesen’s term. This applies, in
principle.‘ both to variable path and variable frequency instruments.
De Laet's interferometer being an example of the latter. In practice.
however, variable path interferometers are not wused in this way.
Further problems encoqntered in using variable frequency instruments
will be dealt with in the following section.

In order to measure the radial boundary layer correctién in a
variable path interferometer, the absorption coefficient.d . must be
measured for substitution into equation 4.1.3 (a rough uncorrected
value baing good enough for the velocity substitution).

The measurement of may be carried out in either of two ways. At

resonance X (L)=0, and
G

-2l
Re(4) = Relmn) = 1 + ¥e (4.145)

~add
|-X;e

or. putting ¥=exp(~B) where B<<1:
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Ro{nNa) = ~ (.1 8)
Li+ 3

*

Since, Tfor practical values of &l andfa. R at antiresonance is very
small compared to R at resonance. this g?ves the values of the
diameters of the igpedance circles to a high degree of accuracy. Thus
by fitting a function of the form 1/(aN+b)=D to the experimentally
measured diameters. D . where a/b=deJ2$¥ the ratio o(/ﬁ may be
calculated. In order‘toNevaLuate A, a further relation with g is
required. (¥1) This may be obtained from the rate of change of the

phase.?>. of the impedance of the gas column with L:

~¥(¥+1) sinakd

~Lotd -2 d
Ra(l) 1 -%% - ¥(¥=1)e  cosikd

cT
o)
o
-8
I
1
X
Mol
7~
(@)-
S’
I

(e.1.4)

On differentiating one finds at resonance:

(1) In ultrasonic interferometry where reflection coefficients
are expected to be low and classical absorption coeff{cients
high., and where quartz crystal transducefs are commonly wused.
thi's second relationship is easily obtained by measuring the
value of R at antiresonance.(See, for example. Refs. 26 and 27
or HowardGC. Hardy, J. Acoust. Soc. Amer. 15,2 (1943)). Because
in the present case the transducer impedance is not zero so that

circles do not lie symmetrically about the real axis. a more

complicated procedure has to be devised.
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where X=Na/b. To a good approximation if f<<1 and xis of order no

greater than unity:

: !
@ = - RE (Eq.\. il
i + X
which, taken with the expression for a/b, enablesd to be calculated. t

may be evaluated by plotting a graph of tan? against Z from values

obtained by measurements on the impedance circles. Then

E = dd Az .odd (y.102)

S——————

dtanglp=o dtcmcio @=o0 dZ [p=0

the Llatter gradient. being obtained from the original experimental
curve of Z(l) once a value of Z at resonance has been obtained.

A graphically less arduous way of calculating dkis to express
dz/d(tang) at resonance in terms of quantities already calculated for

drawing the impedance circles. We see from Figure 2.2 that

t

Z {('RTa-Rq)a%-(XT—Xq)lii (4.1.13)

+

Substituting
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and

X
O
1

T, $in 21(2?) = ATy to.nola (.18

-Zlc

where r is the radius of the Nth impedance circle and where the
N

approximations apply near resonance. we obtain

& AN
Z = { ZT + L&TN(RT‘XTtan?}{-hTiEK

.

so that ; ( k.1 lé)

d Z = AT Ky (L.1.14)

dtong @ =0 ZRES

t may be found from equation 4.1.10 and the calculation proceeds as
before.

The second way to calculate the absorption coefficient is from its
relationship with the,half widths of the resonances. The height of the
function R (L) at |=NA/2 (or the diameter of the Nth impedance circle)

G )
is known to be 1/@Ll+R). By solving the equation

Rg(ﬁ) = | (4 118)

a{dls p)
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we - may therefore calculate &4 ; the half width of the Nth resonance at

"
Half the height of the resonance. It is given by

DNy = 4i+6 {119
=y '

which is compatible with the expression dlL/k quoted in Chapter II
where reflection losses were assumed to be negligible. Reference to

figure 2.2 shouws that the corresponding value of Z, Z s at the half

HALF :
height of R (L) are given by the distances of the upper and lower
G
extremities of the impedance circles from the origin. And the useful
value of z - that is the one encountered between Z and 2 on
HALF MAX MIN

the resonance - will be the shorter. A similar conclusion will alsec be

reached for the case where X 1is negative and the circles lije below
‘ T

the real axis since they are still traversed in a cleckwise diregtion.

Thus we write quite generally

ZHRLF = (R + Tm)l + ( !XTI- TN)‘I %i

Z: + &f§'+ Q;TN('RT-}XTi) 2
(4.1.20)

It is how a simple matter to read off the corresponding value of L.

l + from the experimental Z(l) curve and tc take the "difference
HALF
from L to givef

. Then if at least two resonances are available
RES N
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& and g may pe calculated from equation 4.1.19. However. it is
probably better practice to calculate the ratio /g from the circle
diemeters as already describgd. and to use it to solve each of the
equations "4.1.19. This is because the value of d/ﬁ is likely to be
comparatively accurate since the circle diameters are quite easy to
measure. Half widths, on the other hand, may be a little more
difficult to.measure precisely, and so 1t 1s wasteful of wuseful
statistical ‘evidence to effectively expend one value on the
calculation of the ratio when the figure is already available from
another source.

Whether it is preferable to calculate the absorption coefficient
from the gradient of the 2{(l) curve at resonance or from the half
width is difficult to say in advance. Both techniques will be. examined
in the light of the data which becomes available and agreement betuween
the two methods will also be checked to ensure that the regonance
curve is of the form assumed theoretically.

Should large values of dl orgbe encountered, the validity of our
assumption of section 2.1 that all the impedance circles touch at
E.CL)EO may be questioned. It may be shown from equations 2.1.10 and

G
11 that while X (1)=0 at antiresonance, R (l)=g/2+2&l#0. Whether or

not this will causg some small error dependsGupon how the impedance of
the transducer, 2 . is measured. If some single value 1is wused to
construct the i;pedénce circle diagram (calculated, say., from the
height of the resonance curve at the first antiresonance)‘ then
successive circles will require to be displaced in the direction of
the positive real axis by a distance equivalent to R/2+2dl so that a
second approximation of 2z can be made. The conversion of the shift
B/2+2dLl to the arbitrary ugiis used in the complex plane (cms. say) is

best accomplished by equating the diameter of some impedance circle to

1/CAl+B) which will give the conversion factor to a high degree of
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accuracy. Howsver for the cases under cogsideration 1t i1s unlikely
that the shift will amount to more than 10 or 10 ° of the impedance
circle diemeter so that it is probably guite satisfactory to continue
as outlined in section 2.1. A better way of dealing with the problem
would te Eo calculate the value. Z . for.each 1impedance circle from
the average of the valuss obtainederom the antiresonances either side
of the corresponding resonance. This way the circles would be plotted
with the correct displacement from the point Z (1)=0 right from the
béginning. ' °

4,2 Variable Path vs. Variable Frequency Interferometry.

Having decided to work below the first cut-off frequency it 1is
necéssary to choose between fixed path interferometry entailing the
measurement of resonant frequencies, and variable path interferometry
at some fixed frequency entailing the measurement of resonant cavity
lengths.

Fixed path interferometry. requiring no moving parts, has the
advantage of simplicity — a doubly important consideration in a liquid '

helium cryostat. It 'might also seem, prima facie, that resonant

frequency measurements are straightforward compared with measurements
of Eesonant cavity lengths. However. both of these advantages diminish
on close examination. Firstly., the one single critical measurement of
the length of the cavity needed in fixed path interferometry requires
the exact definition‘of the positions of the ends bf the cavity. Quite
apart from the problem of allowing for the overall thermal contraction
of the cavityr a precise knowledge of the mean position of the
vibrating transducer at low iemperatures 1is required. Thus careful
consideration needs to be given to the coupling of the transducer to
the cavity. The possibility of exciting a cavity with two rigid end
reflectors through a port in one of them whilst monitoring the

acoustic pressure through a port in either is to be viewed with
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circumspection because, although it solves the problem of the length
of the cavity, it can. as in section 2.2.4, result in the wasteful
excitationxof evanescent modes at the expense of the plane wave mode.
As the ports become sufficiehtty small to be negligiple the difficulty
of adecuate excitation of the cavity ana of monitoring the intensity-
of the sound with sufficient sensitivity increase accordinoly.
Regarding the measurement of.the true resonant freguency. it will

be appreciated that it requires, in principle, a freguency independent
method of measuring +the acoustic pres;ure in the cavity as the
exciting frequency sweeps through resonance. This caLLé Tor a
transducer whose impedance and a microphone whose sensitivity are
sufficiently constan: with changing frequency. Furthermore. if their
diaphragms are to form the end reflectors of the cavity. their
reflection coefficienfs must be frequency independent as well. (unless
the reflection losses are negligible compared to losses in the body of
the gas or on the cylinder walls). Given the narrowness of the
resonances, these requirements should be met quite easily. thus
enabling single uncorrected measurements of velocity to be made.
However: as has been shown. velocity measurements made at several
orders of resonance enable acoustic absorption coefficients: and so
the boundary {ayer corrections to the velocity, to be measured rather
than calculated from theoretical considerations whose applicability
has occasionally been in doubt. This requires velocity measurements to
be made at well separated frequencies where changes in the transducer
and receiver characteristics are bound to occur. Even by using a
transducer and microphone at frequencies well separated frbm their
main natural resonant frequencies - e. g. fér into the mass controlled
region® — one can still expect to see, with practical devices, lesser

natural resonances superimposed upon a slow drift with frequency of

impedance or sensitivity. Similar behaviour might also be expected for
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their respective reflection coefficients. Thus for =ach resonance it
would only be possible to calculate the sunm thR/2+FZ. rather than the
absolute vealuzs of cﬁjand F}' Consequently it would hot be possible to
make a measured boundary‘ Layer correction. This problem has been
avoided by Smith and Harlow [44] in an experiment at room temperature
vhere a long cavity was wused so that di>>p thus enabling end face
losses to be ignored. However, accommodation of such an instrumeﬁt in
a cryostat would cause considerable practical difficulties. and it
also seems to be bad practice to dispose of one loss problem by making
other losses large in comparison since it results in an overall
reduction in the sensitivity of the instrument.

The additional inconvenience of having to recalculate the
transducer impedance at each successive order of resonance has already
been pointed out in séction 2.1, but is no more serious than Having to
do it in the case of a‘variabLe path interferometer if the corréctions
for. large absorption and reflectiop coefficients are made as suggested
at the end of the previous section.

Both problems of absolute length measurement and of frequency
stability are removed by using a variable path interferometer.
Distances are measured relative to the first position of resonance
which can be determined uneguivocally since all acoustic impedances.
sensitivities and .reflection coefficients ‘are guaranteed to be
constant at constant frequency. Moreover, there is also the advantage
of evading the the boundary Llayer end effect, which, it will be
recalled, causes each peak to be shifted by the séﬁe amount so that
the separations remain unchanged although the absolute resonant
lengths of the cavity require a small correction inversley
proportional to these Llengths. The same applies to end effects

attributable to imperfections in cavity geometry which were seen to

arise in the same way = namely by adding a small 1/l term to the
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wavenumber. For these reasons the variable path technique was chosen.

4.3 The Excitation of the Cavity and the Detection of Resonance.

Grimsrud and Werntz in their variable path interferometer made use

ot

a separate microphone to monitor the acoustic pressure in addition
to the transducer used to excite the cavify. De Laet used a sinmilar
technique 1in her variable freguency acoustic thermometer. Such a
combination is very simple to use since the resonance curve obtained
from the microphone will be of the form R (l) so that the positions of
resonance are immediately available fromGthe positions of the maxima.
Plumb and Cetaland used only an x—cut quartz crystal transducer which
also served to detect the resonances through the changes in its
measured impedance brought about by the gas loading. It was explained
in section 2.1 that because such a transducer has a very ;mall and
real impedance the resonance curve is also qf the form of the function
R (LY. We feel that the technique of using only a single transducer is
tg be. preferred at Llow températures because of its greater
constructional simplicity and relizbility although at low frequencies
we cannot avail ourselves of the use of a quartz crystal. Instead wue
have ' chosen to wuse a movgng coil driven diaphraam which, having a
complex impedance of the type indicated in figures 2.2 and 2.3,
necessitates a much more detailed examination of the resonance curve
which is no longer of the form given by R ().

The mechanical impedance of such a tra:sducer is wusually measured
in terms of its electrical impedance. However., the measured electrical
impedance has a purely electrical component which masks to some extent
that part of the impedance attributable to the gas loading of the
transducer. It has already been pointed out in section 2.2.3 that the
mechanical impedance may be measured in arbitrary units directly from

the reciprocal of the velocity amplitude provided that the driving‘

force is constant. With our moving coil driven diaphragm this would
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best be achieved by attaching a small piezoelectric accelerometer %o
the rear face of the diaphragm at its centre. At constant freguency
the wvoltzge across the faces of the acceleromgter would ke
proportional to 1its velocity as reouired. The necessary constant
driving force is obtained simply by driviﬁg the transducer at constant
current. Since the accelerometer, being . a natural piezoelectric
crystal or a piece of synthetic piezoelectric ceramic, will have an
extremely high impedance and will be in close proximity to the driving
coils, it is necessary to know what the effect of interference in the
accelerometer circuit from the drive circuit will be. Interference is
likely to be due to three causes and, of course. of the same frequency
~as the driving current. These are (a) interference due to the motion
of the accelerometer and its electrical leads in the stray magnetic
fields from the pérmanent magnet providing the radial field .for the
“moving coil., (b) induced interference from the driving current and (c)
interference from the driving voltage due to resistive or capacitative
“

coupling or a mixture of both.

Ideally we have for the accelerometer voltage:

V o=V, sinlwe-a") = b sinlob-a')
z
(t.3.1)

where

Eand’ = = X+v - Xq(d) (h.3.2)

Ry - Re (4)

Y [><

and where b is some constant which determines the arbitrary - units of
the measured mechanical impedance. Z, of the loaded transducer.

Considering the first type of interference due to magnetic
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induction we have instead of equation 4.3.1:

Vo= o.é + b sin {wk-d’)
Z

= F ocos{wb-a') + b stnlub-d') (4.3.3)

B
Z Z
where F is the aemplitude of the constant driving force:. a is a

constant determining the amplitude of the interference and where we

have supposed that

Wary
i

-8 sin (wt- A')
(o]

3?; = -wg s {wb-o")

| and
V £ g = wa‘go sin {wb-d") (1 .2.1)

Equation 4.3.3 may be written

I

V = V, sinl(sk-g) = {h.2.5)

where

Ean ﬁ = - b (H.S.G)

and



____iiag”?:a-%bll—i (n.3.m)
Z

Thus even if this type of interferenée is very large, it is of no
consequence since the reciprocal of the driving voltage still gives
the mechanical impedance in arbitrary units. In fact an inductive
accelerometer would serve our purposes just as well as the
piezoelectric accelerometer except that. it might be slightly more -
complex in construction.

The second type of interference due to inductive pick up of the

driving current is more serious. We write

V = - asin (mt-?) + b sin(wt-49 (4.%.8)
> ,

where the first term on the right hand side represents the induced

voltage. Advancing our time scale by (P/Q we have instead

V = astnebt+ b sin(ob-4) (4.3.9)
Z

ifc(=?r1£‘. or

I

V =V, sta (wb-g) (4.3.10)

where
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‘Banp = - sind (4.3.01)

Cosdh + aZ/b

if a<<b/Z as it should be, and

]

Ca(sZed] G

or

i

7 : Z §|+ o Z CO$0L§ (h.3.03)
b g

A similar expression could be derived for the third type of
interference arising out of resistive or capacitative coupling.

We now need to know what values of az/b are tolerable so that a
check can be made that such interference as is found to occur will be
negligible. In the presence of interference our experimental resonance

curve, Z(l), will take the value

N

RES - ans g‘ +_°LZ‘;B_€_S_LoSaL} (h.3.04)

at L=NA/2. Errors in the measured position of resonance will arise if

this differs from the value of 2 . 2" . calculated from the
, RES RES
constructed impedance circle diagram. We have
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g(P"T’f ) X'Tag

»l-

N

.

. L& ‘ 2 iR
= {ZT + Dy + D.’P\;D'NF

. 3 3 1 2
2 Legs %x - [ZTC—OSO(T +Dy, cosoL+DNZT+RTDNCoseL:i
t):zRES
' (k.35

which 1is: unfortunately. not the same as equation 4.3.14. D' s
N

defined in the same way as Z° since it 1is the difference of the

maximum and minimum values of Z. Inspection of figure 2.2 will reveal

that cosd takes the same values for these two values of Z. The error

in the value of Z for the purposes of calculating the error in the
RES
position of resonance will be given by the difference of the two
correction terms of Z' and Z” « and may be calculated once rough
' RES . RES .
values of Z , D + R + cosd and cos®k have been obtained. Typically we
T N T T
might take Z =D =22 /3 and cosk=cosd =1 so that
T N RES T
7]
ZRES = ZRES i + 31 QZRESK (H.S.‘b)
a1 b -
giving an effective error in Z of
RES
_ o Z -
Azaes = 5 RES. . (4.3.19)
a4 b

obtained by subtracting 2Z° . The resulting error in l "+ ’
RES . RES RES
will be given by
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DL

il

AZges L
Z Rres

RES

= 5§ o Zgaes DAy
29 b Ty (4.3.18)

where A =dl/k is the half width of the Nth resonance. Thus
N

AL 2 5 alass & (.3.19)
d % by, R |

TypicaLLy az/b=0.01 while d/k=0.001. Thus the error is likely to be
negligible especially since it will be reproduced to some extent from
one resonance to the next so thaf the separations of the resonances
are affected to a lesser degree. Simple checks on the QoLtage
amplitudes a and b/Z should ensure ‘that this is. in fact, the case.
Apart from the errors which arise froﬁ misalignment and lack of
"fLatness in the diaphragm which have already been treated in section
2.3, there still remains the problem of coupling the transducer to the
cav%ty which, if not approached carefully. might lead to a new kind of
geometrical error. The larger the diameter of the diaphragm compared
to that of the cavity. the more efficient and sensitive it will be in
exciting and responding to plane waves, and the easier to align
accurately. It will also have a lower spring rating thch should help
to keep its impedance, Z . low compared to the impedance of the gas
loading which is the reaI goal of the measurements. However, as may be
seen from figure 2.7(a) a diaphragm such as this has to be mounted a
small distance from the mouth of the cavity to allow+ it to vibrate

freely unlike the Lless effective. but at present more predictable,

diaphragm of figure 2.7(b). Prima facie this gap might well present a
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cavity imperfection which could lead to velocity errors. However. an-
analysis of the type undertaken in section 2.1 would suggest that the
complete system might be considered as two interferometers wi§h two
sets of standing waves loading the .diaphragm. The first set of
standing waves would occur between the exposed part of the diaphragnm
and the movable reflector as before. and the second set between the
masked part of the diaphragm and the end of the cavity which masks it.
Since the length of this second interferometer 1is constant, the
loading of the second set of standiné waves would merely contribute a
constant term to the impedance of the transducer, Z . Thus their
effect would automatically be taken into account gy the existing
procedures for analysing the resonance . curve. A very small effect
might arise due to the fact that the boundary layer correction to the
original plane waves would be different for a short distance‘from the
diaphragm where the cavity has a wider diameter. This effect would not
be' noticable since the difference in the small correction would only
apply at most over a fraction 2g/Aof total distance travelled by the
waves Where g is the width of the gap. We might expect g to be of the
order of 0.03c¢cm and ;he wave length about 3cm. However, it should be
possible to investigate the effect experimentally by superimposing a
direct current on the alternating current used to drive the
transducer. This would shift 1its mean position and enable any

significant effect which depended upon the width of the gap to be

observed.
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4.4 Some Remafning Systematic Errors of Acoustic Origin.

Hitherto. the discussion of systematic errors has centered eqtirely
on the problems associated with the wave field at higher frequencies
and the boundary layer ét lower frequencies. It will now be
demonstrated that other likely sources o{ systematic error will be of
no consequence.

4.4.1 The Effect of Finite Sound Amplitudes.

Elements of an acoustic wave propagate with a velocity proportional
to their amplitude. Thus the high pressure part of the wave is
expected to draw level with the trough of the wave after a certain
distance leading to the formation of a shock wave. It 1is essential
that amplitudes used in acoustic interferometery are sufficiently Llow
to prevent this effect becoming significant before the sound wave has
decayed to a negligible amplitude. . !

We have for the velocity of such a wave

- C = c + ¢+ ! ng ("*J-b-\)

where WE 1is the particle velocity amplitude at some point on the
A 0 :
~wavel45]. Thus the relative velocity of a peak with respect to the

trough in front will be

(re)wg = swgojs - Ghy2)

for monatomic helium—4. In order to calculate a value of g ¢ let wus
. . . 0
assume that the acoustic power. W, radiated into the cavity is as

"large as 10mW. Thus
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.

W = ecxn bg’wa %‘1
o

C. 01 Wakte (k.k.%\

-7
giving g =2x10 cm at the normal boiling point of helium—4 at a

frequency of 3.3kHz. Thus from equation 4 4.2 the velocity of approach
of peak and trough is approximately 3.1)(‘10--3 cm/s which implies that
the shock. wave would Have formed after about 600 seconds - the time
taken to travel one half wavelength at this speed. By this time the
.wave itself has traveled 3.6x106cm and acquired an attenuation factor
exp{-dz) with an exponent of 103 or 104. Thus we may conclude that at
realistic amplitudes the velocity of sound is for all practical
purposes equal to the velocity of sound at vanishingly small
amplitudes.

4.4.2 The Effect of Frequency Dispersion.

When the frequency of the sound is sufficiently high the period of
oscillation becomes comparable to the_ mean collision rate of the
helium molecules so that translational relaxation occurs. Under these
conditions the slower molecules will be incapable of transmitting the
disturBance since the acoustic d;iving force on some volume element of
gas will have changed its direction before the necessary molecular
collisions can take place. Thus only the'faster molecules participate
in sound transmission and acéusticaLly the gas appears to be warmer
than it would at lower frequencies so that the velocity of sound is
too great. The mean collision frequency. f . of the molecules will be

c
given by

5.

()

nm

Son { hT}_?: | Chon)

where n is the number of molecules per unit volume, m is their mass
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and k is the Boltzman constant. The total scattering cross section. o, ‘
may simply be calculated from the approx1mate cross sectional area of
the helium atom for our present purposes. At a temperature of 4. ZK and
a pressure of 1 atmosphere we find f =101? per second which is higher
than the highest acoustic freque;cies we are likely to use by some
seven orders of magnitude. Thus we may consider that translational
relaxation is entirely negligible. Other mechanisms of molecular

. relaxation are not. of course. available to a monatomic gas.

4.4.,3 Approximations in the Radial Bodndary Condition.

We have assumed in Chapter II in requiring that the radial particle
velocity vanishes at the cylindrical walls of the cavity that there is
a perfect acoustic mismatch between gas and walls. In pracfice,
however, the walls will not be entirely rigid and some sound will
propagate into them. But., since'the acoustic mismatch is as iarge as
it is, it has usually been assumed that this effect is negligible -
especially in comparison to the boundary layer effect. Such a point of
view probably arises because an incorrect analogy is drawn between
this radial boundary condition and the end face boundary condition
where the reflection ioss will be proportional to the ratio of the
specific acoustic impedances of gas and end face. chquwcw. In
copper cavity filled with helium-4 gas at a pressure of 1 atmosphere
and a temperature of 4.2K this will be of the order of 10-6. This
ratio is derived by demanding that both the normal particle velocity
and acoustic pressure be continuous at the end face. In order to
obtain the particle velocity., the velocity potential has to be
differentiateq with respect to z so that the wavenumber appears as a
factor in the expressions for the particle velocities either side of
the boundary =~ hence the existence of the ratio of the velocities in

the expression for the attenuation on reflection. In the case of the

radial boundary condition. on the other hand, differentiation of the
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velocity potential is with respect to r. and so does not lead to this
factor. Thus only the fatio of the densities of the two media enters
into the expression for the .loss. Del Grosso U[46]1 has done this
calculation and obtained a result from which we may derive the

following characteristic equation appropriate to our System:

j;()() = _ Cuw Ko(b/hC.) (H—.L;.S)
X Jo (X) €q (b/ke,) K,(b/hq\

where K and K are modified Bessel functions of the second kind and
0 1

where X will equal X if the ratio of the densities becomes infinite.
On

Notice that ¢ does not enter this equation (¥1). Turning to fhg plane
W

wave casa, we assume that X=X =0 so that we may write
00 :

2 i 6. Ko (b/Re) (4.15.6)
Cq (b/Re) K (b /Re)

The ratio containing the Bessel functions is of order unity for

situations of immediate interest., so that., very roughly. we may write

-~

(1) Excepts that is. as a second order term which we have
omitted in this case. Del Grosso retained it since his interest
was in liquid filled cavities where velocities in the two media

‘4

are comparable.'
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1 -3 y
Xo 2 Cq = 10 (k.l-i.“l)
& €w
leading to a fractional error in measured velocity of
2 -3

(X /bk ) /2210 . This is small, though by no means negligible, but
sigce Gwe are plotting velocity isotherms and extrapolatihg to zero
pressure. the ratio of the two densities in the characteristié
equation will., in fact. tend to infinity and our final answer for the
velocity of sound will not be affected. However. the higher points on
the velocity isotherm will be depressed to some extent which will .
chaqge the measured second acoustic virial coefficient by a small

.amount.

4.4.4 Parametric Oscillation.-:

~ Hitherto we have treated the length of the cavity, |, as a variable

with no timevdepéhdence. In fact it oscillates with the transducer:

;

Breazeale and Adler [47] have investigated the effect of such a
variation and conclude that fractional harmonics of the fundamental
resonant frequencies will occur in the cavity 1if the amplitude of

vibration of the transducer.'g ¢ exceeds a threshhold value, &l c/w.
- 0 0
-3
We may assume that this quantity will be of the order 10 cm whereas
-7
we have already calculated a rough value for g of 10 cm. Thus we
0

assume that we may continue to regard the length of the cavity as

being constant without incurring any error whatsoever.
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CHAPTER V

THE PRACTICAL INSTRUMENT AND TESTS

ON THE SYSTEM.

A practical instrument was constructed 1in accordance with the

- principles outlined !'in the previous chapter. It was designed to be

operated at some fixed frequency below the first cut off frequency énd
could be brouéht into resonance by moving an acoustfc reflector. The
‘main innovations.were in the use'of an optical (laser) interferometer
to measure the separations of the positions of resonance and in 'tﬁe
use of an accelerometer to measure’me?hanjcal impedances directly.

Careful tests have been carried out on the system to ensure that
its behaviour conforms with all the relevant theoretical assumptions
‘of the previous chapters.

5.1 The Acoustic Interferometer.

The acoustic interferometer is shown in Figure 5.1 suspended in its
vacuum can. V. and surrounded by a radiation shield. R. At the bottom
of the 1instrument the transducer assembly may be seen hanging on the
lower end of the acoustic cavity. G, whose length may be increased by
withdrawing the piston, H. The Llower face of this piston is the
acoustic reflector whilst the upper end carries a cube corner
reflector, J. which is the moving mirror of the optical
interferometer. The fiducial mirror of the optical interferometer, a
semi-reflecting beam splitter, L. is situated in the horizbntal,plate

above the piston. By these means the length of the acoustic cavity =
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Fiqure 5.1
The Acoustic Interferometer,

‘A = Stycast Seals, B - Permanent Magnet Assembly, C & D+~ Electrical

. Lead Screens, E ~ PZT Accelerometer, F = Transducer Diaphragm, G -

" Acoustic Cavity,» H - Piston Reflector:, I - Germanium Resistance
Thermometers:, J ~ Cube~Corner Reflector. K = Pushrods, L = Beam Splitter,
M - Gimbals: N - Optical Window, O — Bearing., P ~*Upper Chamber, Q@ =
Moving Tube. R - Radiation Shield, S - Temperature Controlling Sensor,

T = Thermal Anchoring Grooves (with heater), U = 4.2K Thermal Anchoring
Grooves, V = Yacuum Can, W - Central Supporting Tube, Y - Laser Beams,
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or rather changes in length = may be measured without any of the
problems of indetefminate thermal contractions encountered in the '
conventional pushfod technique where _reflector displacements - are
measured outside the cryostét with a micrometer bearing on the end of
the pushrod. Both Plumb and Cataland and érimsrud and Werntz suffered
from this problem.

Above the beam splitter a second coaxial chamber. P, can be seenl
guiding a sliding brass bearing., 0. This bearing serves two functions.
Firstly it carries gimbals. H, through which the vertical actuation is
transmitted to the pision without transmitting any lateral force. This
was intended to ﬁelp maintain the alignment of the acoustic
interferometer. Secondly it houses a cryogenic vacuum tight optical
window, Nf sealing the end of a moving tube down which the light
travels to the optical interferometer and up which the two beams - one
from the moving mirror. one from the fiducial - return. This Llight
tube also serves to éctuate the ‘brass bearing and so the piston via
the gimbals and two thin pushrods. K. passing either side of the beam

splitter. The thermometric gas for the interferometer descends through
the annulus éétween the moving tube and a wider supporting tube, W,
and thence through various channels drilled for that purpose into the
cavity and the spaces behind the transducer diaphragm.

In accordance with good cryogenic practice the instrument was made.
almost entirely with oxygen free high conductivity copper to'diminish
the risk of thermal gradients appearing in fhe walls of the cavity.

Most of the parts were assembled using Wood's metal - a low melting

point solder.



- 149 -

5.1.1 The Cav§ty. jts Dimensions and Alignment.

The first cut off wavelength will be given by

Mo = 2%b /isy = 3.4ab (s.1.)

Thus, having decided torwork below the first cut off frequency. we are-
obliged to use wavelengths greater than 3.42 cavity radii. It was
decided, somewhat arbitrarily, that a Llittle over five half
wavelengths should be a sufficient length for the cavity giving three
more than the absolute minimum of two required to calculated and p.
Should any unexpected systematic deviation of measured velocity with
acoustic path occur it would be likely to be greatest in the early
orders of resonance where l=A. By the fifth order it might be, expected
to show a change and thus betray its presence. To keep the cavity as
short as possible it was desirable to use a bore of small radius. On
the other hand. boundary Llayer errors would then increase and the
loading of the gas column on the transducer would decrease so leading
to a drop in sensitivity. The value of b=1cm was finally chosen which
5 just enabled the smallest cube corner reflector which could be
'xobtained'to be mounted on the rear face of the moving acoustic
reflector. This formed the aforementioﬁed moving reflector, J. of the
opt}cal interferometer. A usable cavity length of 9.4cm was therefore‘
made available which allowed five half waves to be accomodated when
. operating at a cut off frequencf of 0.9f . A plot of f d%or this
cavity is shown as a function of temperazgre in Figure 5.;?

It was in order to ensure good alignment of the moving acoustic
‘reflector in any position that it was made in the form of a piston
10cm long (not incl&ding the cube corner housing or retaihiné capl.

Being of copper it was chrome plated on its curved surface to diminish
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wear and to prevent it sticking to the unplated copper walls of the
bore. This méasure was thought to be necessary at the fine tolerances
" to which the bore and cylinder were lappéd. Clearance was estimated to
be a few ten thousandths of a centimetre. The face of the piston was
aluminised to give it an optically. reflecting surface and an
autocollimator was used to measure the squareness of the piston face
at various bositions in the bore. By rotating the piston through 180
on its axis and measuring the angular displacement of the reflected
beam jn two mutually orthogonal planes. an estimate of its alignment
could be made. This method did not require the direction of the axis
of the cavity to be determined independently. It was found that the
piston face was out of true by less than an angle of 15 microradians
(+ or - 10 per cent) in the worst case and about half this in the
best. At the walls of the bore this is equivalent to an axial
displacement of 15x10_6cm or less than 5x10-6 of the cﬁt off
uaveiength leading to a reflection Lloss of approximately ‘2x10-11
(calculated from equa&ion 2.3.15) which is entirely negligible. Due to
the method of Llapping the end faces. it would be expecfed th;t the -
depth of any convexity or concavity would be far les§ than the
“depth”™, b& of any tilt., X. But since this interferometer is operated
in such "a way as to measure the separation of resonances rather than
absolute resonant lengths in accordance with the recommendations of °
section 4.2, no errors in measured velocity will arise from these‘
* causess it being a question merely of keeping reflection losses to a
minimum.

A longitudinal groove (not shown in figure 5.1) had been cut in the
side of the piston to take a sprung Teflon pad should it be needed.
This was designed to hold the piston hard against the opposite wall of

the bore as it moved. But in the light of these alignment'figures it

was discarded since it was felt that it might add to the difficulties

o -
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of ensuring that the interferometer bore remained scrupulously clean
. after assembly. It has already been pointed out that., in any case.
lateral forces cannot be transmitted to the piston because of the
gimbals (themselves traveliing on the bearing in the upper coaxial
chamber) . |

The diaphragm of the moving coil transducer was held at- its
perimeter between two flat copper surfaces. The upper copper surface
was machined on the flange at the lower end of the bore which was
turned on a close fitting mandrel. This seemed ‘the best way of
ensuring that the diaphragm was square to the axis. Similar tests to
those carried out on the piston were performed on this surface. A
circular optical plate of the same diameter as the diaphragm was made
and laid on the inverted cavity so that its lower face occupied the
same position as ﬁoufd the radiating surface of the diaphragm. This
face was aluminised except for a circular window of two centimetres
diameter which looked {nto the mouth of the cavity. The autocollimator
was thus able to focus on two reflected graticules simultaneously -
one from the piston face as before., and one. in effect, from the
radiating face of the diaphragm. This enabled the angular misalignment

of transmitter and reflector to be measured directly. It was found

. hever to exceed 28 microradians (+ or - ten per cent) representing an

-6 .

axial displacement of 28x10 cm at the walls of the cavity or
_6

approximately 8x10 of the cut off wavelenath. Again such a figure

represents an entirely negligible reflection loss.
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5.1.2 The Transducer and the Accelerometer.

After checking thé alignment of the transducer with the cavity
there still remain two othér geometrical problems — the flatness of
the dinphragm and its couplfng to the cavity.

Every care was taken to ensdre that tﬂg diaphragm was flat. It was
punched from Duralumin sheet 0.25mm in thickness, laid between two
lapped steel blocks and ﬁubjected to a load of some fifty tons in an

*

hydraulic press. It was then annealed for several hours at a
temperature of 450°C between the same lapped blocks under a load of
approximately 20kg.' Subsequent measurements with an engineer's
micrometer capable o% discerning differences of Lless than 10—3cm
failed to show any variations in thickness.

Experiments with diaphragms of several thicknesses loaded with a
range of weights had shown that a lower spring rating madg for greater
sensitivity. Changes of mass. on the other hand. were not néarly so
important. Accordingly; the diaphragm finally chosen for use had eight
holes of 1cm ?iameter punched on a circle surrounding the central
region which radiated into the cavity. Apart from lowering the spring
rating they also diminished the gas loading on the diaphragm due to
the pockets of gas in the transducer housing - in particular the gas
between the outer region of the diaphragm and the flange at the base
of the bore, which, it will be recalled from section 4.3, adds a
constant term to the impedance of the transducer., and so Léwers its
sensitivity. |

It ‘'was not possible to check the flatness of the diaphragm in situ,
but it was felt that it could not possibly be distorted .after this
preparation. The flat clamping copper surfaces and the comparatively
greater contraction of the dfaphragm on cooling would also help to

remove distortion had it occurred.

The unclamped diameter of the diaphragm was four times that of the



- 154 -
cavity. Had it been clamped at the edge of the cavity (see figure
2.7(b)) it would have suffered from the drawbacks outlined in section
4.3. Furthermore., the;e would have been insufficient space on the rear
face to accommodate the driv%ng coil and accelerometer which both:
require to be situated well in from.the edge of the diaphragm to
function to the best advantage.

The driving coil was .wound on a perforated paper former. the
purpose of the perforations being to prevent standing waves occurring

in the gap between the rear face of the diaphragm and the pole piece

. of the permanent hagnet. It was earthed at a centre tap and driven by

a floating drive voltage. It was hoped that the resulting symmetry in

the drive circuit would inhibit interference between the driving
current and the accelerometer circuit. Every care was taken to ensure
that the coil uasvéligned centrally'in the gap of the permanent magnet
assembly. Using a cryogenic varnish, it was stuck to the diaphragm in

a specially constructed jig which held it central and kept it

”‘perfectly circular. The diaphragm itself was exactly located by a
" brass ring encircling the two copper clamping faces. Another jig was
T ‘made which tightly fitted the gap in the permanent magnet assembly.

- The securing screws of the assembly were loosened, the jig inserted . -

and the screws retightened. The assembly as a whole was centralised by

. being accurately placed in the copper housing which had the lower

clamping ring machined on its upper face.

The accelerometer was a small Llead zirconate titanate (P2T)

'synthetic piezoelectric element in the form of a cylinder. Supplied by

. the Brush Clevite Company., it had been poled axially to form the

piezoelectric designated as "type 5A" and was plated on its end faces.
It was loaded with a 4g disc of brass which also functioned as an
electrical screen. The accelerometer assembly was glued together with

cryogenic varnish and attached to the disphragm in the same way.
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Leads to both accelerometer and coil were tightly twisted - and Lled
away through screeﬁs of hypodermic ;ubing to pass through separate
Stycast seals in the base of the transducer housing. They were then
immediately rescreened and-taken out of the cryostat through separate

tubes and vacuum seals.

5.1.3 The Optical Interferometer.

The design of the optical interferometer is shown in Figure 5.3 and
the situation of the low temperature components - already discussed -
in Figure 5.1. The beam splitter providing the optical fiducial is
located at some distance from the transducer diaphragm whose position
it represents. But since the whole instrument is maintained at the
same constant temperatures, this is of no consequence.lThe same applies
to the cube corner reflector moving at constant separation from the
acoustically reflecting face of the piston. In this configuration
there is approximately zero optical path for maximum acoustic path.
Should the optical path increase to half the length of the cavity of
the laser which is used. the outpuf of the interferometer would be
expected to fall owing to interference between the closely spaced
wave lengths in the spectrum of the laser Llight. This calls for the use
of a laser with a cavity at least twice as long as the maximum
L facdustic cavity length. Alternatively., a more sophisticated laser with'

: only a single line could be employed. or a more elaborate

" interferometer which could function either side of zero optical path. . °

In this case a ImW helium-neon laser supplied by Spectra~Physics Ltd.
" was used with a cavity about '27cm long. An external méénet Was
supplied to polarise the beam.

Having used a cube corner for the full reflector, the only
‘alignment required uithfn the cryostat was that of the beam splitter.
This was achieved gimply by ensuring that the.mating faces of the beam
splitter plate and the upper cavity against which it was held were

*
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true. It was with this in mind that Wood's metal solder was employed
for assembly and sealing rather than the neater and cleaner crushed
indium technique. With the latter changes of alignment unavoidably
occur as the indium wire is brushed‘betﬁéen the mating surfaces.

The laser was mounted on an adjustable bench hinged about the point
where its beam impinged upon the semi-refléctor which diverted half
the Llight down into the cryostat. A single screw was used to tilt the

bench until two beams of light re-emerged. The Llaser could then be
'positioned exactly so that the emergent beams were parallel and also
coplanar with the lasér beam. By adjusting the small room temperature
reflector the two beams could be superimposed and aligned in the same
direction. They would then interfere. Once aligned. only occasional
small adjustments were made. The stability of the optical
interferometer was ensured by hanging the .cryostat from a thick
stainless steel optical table, itself supported on a heavy iron frame.
All wvacuum pumps were mechanically isolated from the frame with the

aid of dampers and anti-vibration mountings both on the pumps and in

~ the vacuum lines.

The Llight entered and left the cryostat through the moving tube
which also served to raise and lower the piston. The beams were about
2 or 3 mm in diameter and the tube was 11.7mm internal diameter which
enabled vthem to be kept well separated from each other and from the
walls of the tube. At its room temperature end it was sealed’ with ah
optical window, and at its lower end was the cryogenic vacuum tight
optical window welded onto a graded glass seal on a thin Covar tube.
It was felt to be necessary to evacuate the moving tube in case gas )
convection or oscillation occurred over the large thermal gradient and
made the optical interferometer unstable. Some consideration was also
given to sealing the two cold components of the interferometer in a

vacuum for the same reason. Howeverr, with the present type of
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interferometer. this would have required a complex system of thin
bellows to Llink the stationary beam splitter plate with the moving
tube and piston. Such a system would almost certainly have been
unreliable and so the %dea was rejected. In fact such optical
instability did occur as will be explaiﬁed. and reduced the maximum
pressure at which it was possible to operate the thermometer. A more
satisfactory method would have been to provide two separate evacuated
tubes into the instrument. One. being stationary. would descend to the
fiducial. and the other, much as in the present instrument. would move
with the reflector on the piston. However: no interruption of its
vacuum to accomodate a stationary beam splitter would be necessary.

The window. in any case. was the cause of considerable difficulty.

Atteﬁpts were made to glue optical flats into thin swaged copper.

'tubes. Several 6? these.functioned for a period of time, and then.
failed, even though all of them had beeﬁ shock tested by plunging into
liquid nitrogen man? times whilst being monitored for leaks with a
mass spectrometer. It seems that the wusual resins available in a
cryogenic laboratory are prone to crystallisation after prolonged
thermal cycling. The problem with welding optical windows onto graded
glass seals: on the other hand, is that they become'optically
unsatisfactory. However, after making several - all of a diameter
larger than that required for optical purposes - one was obtained with
a sufficiently good central region for optical interferometry. This
has now been in use.for some time.

The two sets of fringes obtained from the optical intérferometer
were in approximate quadrature since the fiducial beam in output;1
(see Figure 5.3) has had four reflections compared to the three in
- output 2. Both outputs were monitored by solar cells as was the

intensity of the laser. After attenuation to the mean level of the

fringe signals. the latter signal was subtracted from them to



- 159 - ,
compensate for any variation in laser intensity. The resultant signals
were then amplified through d.c. amplifiers and subsequently used to
trigger a bi-directional counter giving two counts for every fringe.
The wavelength of the Light.was 6.3299x10-scg in vacuo, thus giving a
precision of approximately 1.58x10-scm' in a length measurement. A
small correction was made to the wavelength to account for the
refractive index of the fhermometric helium which filled the optical
interferometer. The density of the gas was calculated from a
preliminary (and 'aluays sufficiently accurate) value of its

temperature. Using the law of Gladstone and Dale:

M- L e : | (g.1.2)

it was possible to correct the refractive indexﬂ};. at STP for the

prevailing conditions. The correction was of the order P/T parts in
2 .

10 at a pressure of P N/m and.a temperature of TK.

5.2 Control and Measurement of Temperature and Pressure.

5.2.1 The Cryostat.

The cryostat was supplied by the British Oxygen Company and was of
conventional modern design. The whole assembly hung from the optical
bench and could be taken apart layer by layer as shown in Figures 5.4
to 5.8. The outer 'layer was a standard British Oxygen Company
stainless steel dewar modified so that the internal vacuum - usually
common to the air/liquid nitrogen wall and the liquid nitrogenlliqu%d
helium wall - could be split into two to facilitate precooling. This
dewar could be disconnected from its vacuum lines and lowered on
extensible springs from the optical bench against which it sealed to
reveal the vacuum can in which the acoustic interferometer and

radiation shield were suspended. Two vacuum lines also carrying the
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various electrical 'leads descended to the can from the optical bench
above as did the large central tube within which the evacuated light
tube moved. Three copper radiation baffles cooled by the gas boiIing
off from the liquid helium bath preventgd room temperature radiation
from the optical bench falling upon the can. This method of insulating
the bath from above is preferable to the older and much more
complicated .technique of inserting another vacuum above the bath as,
well as around it.

To operate the system it first had to be precooled. A few hundred
N/m2 pressure of air was let into the nitrogen/helium vacuum wall as
thermal exchange gas, and the helium bath was filled with helium gas
at atmospheric pressure. Helium exchange gas was Slso let into the
interferometer vacuum can at low pressure. The Lligquid nitrogen bath
was then filled and the interferometer gradually cdoled to
approximately 80K over a period of about 36 hours. Liquid heliuﬁ could
then be transferred into the helium bath until it covered the vacuum
can to a depth of up to 30cm - sufficient for almost 48 hours
.‘*operation under the most favourable conditions. If care was taken to
ensure that the liquid Llevel did not fall below the bottom of the
interferometer vacuum can, it was a matter of minutes to top up the
bath in the mornings so that a velocity measurement could be taken in
the afternoon and evening. After transferring the ligquid helium. ‘the:
helium exchange gas was evacuated from arqund the interferometer and
~ the temperature and pressure controlling systems for the
interférometer and its charge‘of thermometric gas could be switched
. on. The exchange gas .in' the nitrogen/helium wall, being air.
solidified immediately the Lliquid helium transfer was initiated so
that there was no need to evécuate this space.

The simple design of this cryostat ensured complete reliability

except on two occasions when the only demountable vacuum seal in the
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system leaked at low';emperatures. This was a crushed indium wire seal
on the flange of the interferometer vacuum can which probably leaked
because it was not tightened sufficiently. However, éhe whole sttem

may now be considered to be entirely reliable.

5.2.2 Temperature Measurement and Control.

Three four—-lead germanium resistance thermometers were inserted
into the walls of the interferometer so that they would be in thermal

contact with the thermometric gas (see Figure 5.1). All had been

. calibrated at the normal bojiling point of helium to within less than

1mK and carried the NBS acoustic scale. NBS-65, of Plumb and Cataland.
The latter calibration was obtained through a comparison with a
thermometer sent to the NPL from the NBS and originally calibrated
against a resisfance thermometer taken directly from thgir high
frequency acoustic thermometer. Our comparison depended upon.transfer
via a computed fit and is therefore only accurate to + or - 2mK. Plumb

and Catalands it will be recalled.  found that their temperature was

. 10mK above that defined on the 7-58 and T-62 vapour pressure scales at

the normal boiling point of helium. This Qas subsequently confirmed by
Rodgers et al.[48] to with{n 3mK and by Cetas and Swenson[13]. Cetas
and Swenson using a magnetic thermometer calibrafed against 'the old
platinum resistance thermometer scale, NBS-55 (see Figure 1.1),
between 20 anq 30K/find the vapour pressure scale value too Llow by

6.7mK with a similar precision so that this result, too. would seem to

.confirm a figure in the order of 10mK. We have found our NBS=65

calibration to be 8mK (+ or -2mK) high relative to T-58 and .T-62 at
this point which is compatible with the other measurements.

In an experimental measurement of velocity the interferometer was
brought to a temperature within several mK of the required temperature
(always a fixed point for the work done to date). The vaiues of;

velocity thus obtained were subsequently corrected to their exact
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boiling point values using the gradient of the resistance-temperature
. curve for 'the germanium resistance thermometer. Thermometer
resistances at temperatures other than the normal boiling point of
helium were only known roughly for these thermometers. but when the
need arose one was replaced by another célibrated thermometer., or. on
one occasion, corrections to the velocities were made in retrospect
when a calibrated thermometer subsequently became available. Errors
introduced by uncertainties in the reproduction of the true fixed
point temperature will be dealt with when the results themselves are
discussed.

The temperature of the interferometer was controlled by a fourth
germqnium resistor = a two lead element this time - which formed an
arm of an equal ratio a.c. Wheatstone bridge. The in—phase component
of the' out-of-balance signal from the bridge was selected bi'a phase
sensitive detector whose output was used to control the current in a
heater on the interferometer. Since the heater necessarily maintained
the interferometer at a higher temperature than the ambient cpolant
bath- the latter had to be pumped slightly below its normal boiling ‘
point when measuring velocities at 4.2K. The controlling temperature
was set by adjusting the resistance of another bridge arm and the
quadrature component Sf the bridge output was nulled manually by a
parallel variable capacitance. The lead to the controlling germanium.
sensor was of 1mm thick Karma wire as was a compensating lead in the
other side of the bridge. Both electrical returns were via the
cryostat itself thus enabling one side of the sensor to be soldered to
the interferometer for good thermal contact.

With this controller temperatures could usually be held constant to
better than + or -0.5mK for the duration of a measurement at 4.2K. At

20K they seldom varied by more than + or -2mK. However, these small

drifts in temperature are easily corrected for. The velocity is
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calculated from the positions of the first and last resonances which
are recorded at th; initial and final temperatures respectively._if
there is a driff of AT, ;it may .easily “be shown that an error in

" measured velocity occurs of

DAc = ¢ N AT | (5.2.1)

where N 1is the order of the Llast peak (usually five for our

'

instrument). Accordingly the error in measured temperature will be

*

AT Ac =_ N AT (5.2.2)

Thus if a rough value of AT is obtained from the monitored resistance
thermometers this is easily corrected for.

5.2.3 Pressure Measurement and Control.

It was necessary that the pressure of the thermometric gas was held
sufficiently constant for the duration of a velocity measurement.
" However. it became unstable above a certain value which was quitg well
defined for any givén temperature; It appeared that gas convection
took place within the annular region between the stainless steel

supporting tube and the tube moving within it. (*1) The situation was

(1) A similar problem was encountered by Plumb and Cataland (see

Reference 24). It would seem to be bad practice to use this
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greatly improved by windiﬁg nylon cord around the inner tube so that
the direct path of the gas was almost entirely obstructed whilst
allowing it impeded access to the interferometer via a helical path.
Nevertheless, it was not possible to operate the instrument much above
, \ ;
; 0.3 of an atmosphere .at the boiling point of helium or about 1
atmosphere at thé hydrogen boiling point. The onset of this  pressure
- inétabilitylwés'accompanied by a marked deterioration in the stabilify
of the temperature of the interferometer and. at the same time., an’
‘increase in the power required to maintain it at the chosen isotherm
temperature. The stability of the optical interferometer was also
adversely affected as has already been mentioned.
. However, this problem has not greatly diminished the effectiveness
of the instrument since it remains sensitive down to much lower
pressures than these. In any case it 1is the lowest points on an
isotherm that are the most valuable since‘they narrow the range of
extrapolation to zero pressure. Their comparatively Llarge boundary
layer corrections are not necessarily any more problematical than
smaller corrections at a greater distance from the intercept.
The pressure was controlled by a Tegas Instruments pressure

controller. This functioned by bleeding helium in or out of the system

through servo controlled needle valves. The necessary controlling

annulus to take the thermometric gas down to the interferometer
- probably because it will be denser in the region passing
through the helium bath than in the warmer interferometer below.
It is suggested that in any future instrument a tube is provided
which descends past the interferometer and rises to it from .
beneath or else that the descending tube should be vacuum
insulated from its room temperature end right dowﬁ to the

interferometer.
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signél was supplied from a quartz spiral Bourdon tube gauge from the
same manufacturer. In the absence of the aforementioned instability.
pressures could nearly always be held constant to within + or -SN/m2
for the duration of a measurément - about three hours.

The pressure of thé thermometric gas wés measured and frequently
checked using a recently calibrated Kew pattern mercury barometer, the ~
usual corrections to standard temperature and gravity being made.
Pressure measurements are estimated to be accurate to + or -SN/m2
which represents onl§ a very small part of the total error in a final
value of isotherm temperature.

5.3 The Modus Operandi and Tests on the System.

5.3.1 The Measurement of Velocity.

The velocity measurement itself consisted of taking values of the
amplitude of vibration of the transducer as a function of .acoustic
path so that a resonance curve of the form shown in Figure 2.3 could
be constructed. The amplitude was pbtained in arbitrary units by
measuring the the r.m.s. voltage from the PZT accelerometer. It was
amplified by a high impedance low noise differential amplifier. passed
through' a tuned filter (both from AIM Ltd.) and then fed to a Dynamco
a.c. to d.c. converter. This device enabled the r.m.s. voltage to be
determined directly in terms of its heating effect on a vacuum
thermojunction by providing a d.c. output voltage which was

’continuously adjusted to have the same heating effect. This was then

f.meaéured by a digital voltmeter from the same. manufacturer reading
* from 0 to 1.9999. A full analysis of the‘performance of fhis ﬁeaSuring
'sysiem will be‘given in the next section.

Each time a value of the accelerometer voltage was recorded so was
~the value of the acoustic path. The acoustic reflector was initial[y
brought down to the transducer and the optical counter zeroed. It was

then raised and held at about four hundred positions on the resonance
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curve whilst readings were taken. Both numbers‘were punched onto paper
tape, one 1immediately after the other. Between the movement of the
piston and the pecording of fhe points sufficient time was allowed to
elapse to enable pressure and temperature equilibrium to bé achieved.
But since the movement on the resonances was generally only some ten
or twenty wave lengths of Light."this took only a few seconds. The
density of points between resonances was low since the curve varied
only gradually, but the resonances themselves were covered much more -
fully. Prior to a run a rough plot of the resonance curve was obtained
on a graphical x-y plotter. This was retraced during the run propef.
and enabled one to see where the greatest point densities were
required. Generally, the procedure was the same for all points on all
velocity 1isotherms except in one respect. In the earlier readings the
values of the maxima and minima of the resonance curve que found
simply by searching for the extreme values on the digital voltmeter by.
moving the piston. up and down. Later. points were taken over the
maxima and minima and fitted with a low order polynomial fit whose
peak . gave the values adopted for the maxima and minima in the
calculation on the impedance circles. The method finally adopted was
to take points with a very close spacing over the peaks and merely to
select the greatest and the least. There seems to be no difference in’
the quality of the answers obtained in the three different ways which
is why the last method. being the simplest, was adopted. An examplé of
. a resonance taken at 20K is shown in Figure 5.9.

The driving current was obtained directly from the floating .output
of a frequency standard. This was of the frequency synthesising type
suppl%éd by the company of Schlumbe?ger and claims an'accuracy better':'
than one part in 10 . It was used with an output impedan;e set to 600
ohms driving the tr#nsducer symmetrically through two 330 ohm

resistances - a method which ensured that the driving current was
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4
constant to at least one part in 10 . The desired operating frequency
was dialled digit’ by digit: each digit locking onto the internal
frequency standard. This value of _frequency was used in"* the
calculation of the velocitf.

The experimental curves 'were plofﬁgd on the NPL's computer
controlled graph plotter and an occasional point was removed if it was
found that that it léy well off an otherwise smooth curve. The data
was then processed by computer rather than by manually drawing
impedance circles as described in sections 2.1 and 4.1. However., the
programme was an exact reformulation of the- graphical procedure in
terms of coordinaté geometry and so, in principle, introduced nothing
new. The data was split up into segments of  resonances and
anti-resqnances (i.e. the slowly changing parts of the curve between
the resonance peaks) and fitted with orthogonal polynomial fits.
Values of Z were then calculated for each impedance circle from the
anti—resonanc:s either side of each resonance together with values of
Z and Z followed by a first approximation of Z . This enabled

MAX MIN RES

the 'six points closest to resonance on each peak to be selected and
refitted with a low order orthogonal polynomial so that L and dl/dz
could be accurately calculated. From the latter value z:sabsorption
coefficient could be calculated for' each resonance. -Absorption
~coefficients were also calculated from the half widths of the
resonances and, as will be shown in Section 5.3.3. generallf appeared
to be more self consistent. The average of these was used to calculate

the boundary layer correction to the velocity as expLa1ned in section

4.1.

it
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5.3.2 Tests on the Accelerometer.

The first test to be performed on the accelerometer was to check
that it did « indeed. yield impedance circles as expected. The signal
from the accelerometer was 'amplified and split into in-phase and
quadrature components with respect tb the driving current (or the
driving force). fhis was achieved by using a phase sensitive detector
from AIM 'Ltd. The d..c. outputs wer; fed to the terminals of an x-y
graph plotter so that mechanical impedance -~ or - rather admittance -

circles could be drawn‘directly.

V) £ ! (5.3.1)
Zy+ ZW)

The origin of the admittance plane was found by disconnecting the
acceleroﬁéter input and marking the paper where the pen came to rest.
This point represented a situation where no vibration was possible
even with a finite driving force i. e. infinite impedance or zero
admittance.

A,similar'test was carried out using the voltage across the driving
coil instead of the accelerometer voltage so that another set of

circles could be obtained - electrical impedance circles this time.

VW) L _Z_CO‘L' + ! '(5.3.2)
L+ L)

Two potential Lleads going down into the crydstat to the driving coil
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had been provided for this purpose in case the accelerometer technique
had proved unsatisfactory in'practice. This enabled us to ensure that
our direct mechanical “impedance”™ measurements were qualitatively
similar to the electrical impedance measﬁrements which constitute tpe
raw data in the conventional and well eétablished method of operating
such an interferometer. The two sets of circles are shown in figure
5.10 and indicate cfearly that. whatever the strict interpretation of
the circles may be, they may still be regarded as impedance circles
for our purposes since the true point of resonance will be obtained by
exactly ﬁhe same procedures that have already been described with
regard to mechanical 1impedance circles proper. The only point for
careful consideration arises with the calculation of absorption
coefficients where the wrong sign will be obtained unless the slope of
"2" is correcily expressed at resonance. Accordingly we shall feel
free to talk of the various distances on the diagrams as repbesenting
the same quantities‘ as they did in figure 2.2 = in particular, the
distance of the circles from the origin will be taken to be a measure
of Z although., from equations 5.3.1 and 2 it will be apparent that it
is nlt.

The short distance of the accelerometer circles from éhe origin
compared to their diameters shows that.the newer method is the more
sensitive one. The greater ratio of Z to Z (1) in the case of the
electrical measurements 1is the reZult gf the purely electrical
impedance of the device being included in its total measured
impedance. This effect wés predicted in section 4.3 and\leads to a
loss of sensitivity in the detection of the position of resonance and
hence in the measurement of velocity. Since the purely electrical
component of the transducer impedance remains the same at increasingly

lower pressures, the instrument tends to become less sensitive at the -

lower end of the isotherms where the effect is least welcome. However,
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\ -

272 VD) = 3.19
T e . -

Electrical Impedance

Circles

Z /2 (A2) = 1,06
- T 6

Accelerometer Mechanical

Admittance Circles

Figure 5.10

A Comparison of the Accelerometer Technique for Detecting

Resonance with the Conventional Technique.
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the purely mechanical contribution to Z in either type of impedance
diagram may be expected to fall to somz extent due to the fact that
_the internal gas loading of the transducer (;hat due to the pockets of
gas behind the diaphragm fof example) falls at lower pressures in the
same way that 2Z (l) does. Thus the' impedances tend to remain of
comparable size evgn at low pressures in the Ecceler?meter method.

The poor quality of the circles (i. e. their ovality) was traced to
a phase error in the circuitry responsible for resolving the input
voltage into in-phase and quadrature components. It can be seen that
it is similar for both types of measurement. The quality achieved in
this sort of application using the type of phase sensitive detector
commercially available is not likely to be significantly better than
‘this. Lengthy investigations with an accurate impedance bridge would
be required for exact plotting of the circles. However, this was
considered to be an adequate demonstration that the accelerometer
signal was behaving in a qualitatively similar way to the electrically
measured impedance. only with greater sensitivity as expected.

Simple tests were also carried out at room temperature on the
accelerometer leads to ensure that fhere was no serious interference
from the driving current in accordance with the criteria of Section
A74.3. bDummy leads in physical., but not electrical, contact with the
accelerometer were substituted for the normal leads and “‘the
accelerometer was short circuited and earthed. The interference-
voltages were then read on an oscilloscope and compared to the normal
accelerometer signal obtained under similar conditions. The results‘
are shown in Table 5.1 where it can be seen that the interference
voltages are hardly ever in excess of ‘IO“3 of the signal from the
interferometer and alyays less than one per cent. Since the smaller

voltages could not be read very easily. an upper limit to the signal

to noise ratio had to be calculated from the smallest visible



Interference in the ‘Acceleroneter

Freguency

(kHz)

2.0

4.0

6.0

8.0

10.0
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TABLE 5.1

Driving Coil.

Accelerometer
Sianal

(Vp=-p)
0.28
0.05
0.04

0,07

0.02

'

=5

Noise in
Leads
{(Vp=~p)

-5
7x10

-5
<<5x10

-5
<<5x10

-5
<<5x10

=5
<<5x10

LN

Leads from the

Sianal to

. Noise Ratio

3
4x10

3
>>1x10

2
>>3x10

3
>>1x10

2
>>4x10

N. B. 5x10 was the smallest readable voltage '
although smaller voltages could be seen.
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interference voltage so that the figuré. as written, will almost
certainly be pessimistic. But, in any case. they represent an entirely
negligible error when substituted into equation 4.3.19.

The linearity of the PZT accelerometer and its é;sociated circuitry
was tested by plotting the amplified outpﬁt signal against the current
passing through the transducer coil. Block diagrams of the
accelerometer circuit and the drive circuit. both described in the
previous section. are shown in Figure 5.11: In the Llatter circuit a
transformer has been added across one of the 330 ohm series
resistances in order to isolate it from the voltmeter whicp would
otherwise earth one end of it. The voltmeter used was in fact the a.c.
to d.c. converter and associated digital voltmeter which also served
to measure the amplitude of the accelerometer signal.

Like the circle tests. these were carried out at the normal boiling
point of helium—4 at a pressure of 16690N/m2 in the acous;ic cavity
and a driving frequency of .3.3kHz. Measured values of the driving
current in terms of the voltage dropped across the series resistor and
output signal are shown in Table 5.2, and their ratio plotted as a
‘function of the former in Figure 5.12. It can be seen that above an
output reading on the digita} voltmeter of 0.1500 the system is linear "
to better than one per cent. In practice voltages read are always
greater than &kam 0.1500 under these conditions,so it is felt that
this figure represents the linearity achieved in an actual temperature
measurement. The linearity of the driving current measurements should
be considerably be§ter (about 0.07 per cent,which is the linearity for
the converter specified by the manufacturer).

However, even if non-linearities were far worse than this, it
should still not affect measured temperatureé. This is because on

extrapolation of measured velocity to zero pressure the range of the

voltages measured becomes increasingly small compared to the voltage



330 ohms

____.;AA/V\ Transducer
Frequency I ' ‘37 Drive Coil
, P ,
Standard 330 ohms c?%
' T
3
Ay
m e
1
I S a.c. d.c.
P2T
Acce lermtr.% ’ Converter
T .
Digital
Low Noise Tuned Ampr, Voltmeter
Qifftl. Ampr,

Figure 5,11

Circuits for Accelerometer Linearity Tests,
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TABLE 5.2

The Linearity of the Accelérometer.

Current " Accelerometer Ratio
Sianal

0.0522 . 0.1353 3.549
0.0754 0.2740 3.632
0.0929 0.3412 3,672
0.1265 0.4702 3.716
0.1510 0,.5635 3.732
0.1760 0.6575 z,736
0.2003 0.7485 3,737
0.,2258 0.8472 3.752
0.2497 0.9350 4 3.744
00,2754 1.0373 3.768
0.3184 1.1972 3.760

0.3186 1.1972 3.758
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Accelerometer Signal/Drive Current

Transducer Vqlocity/briving Force

Oor

o ‘ dDrive Current
Or

Driving Force

0.1 o 0.2

Figure 5,12

The Linearity of the Accelerometer.

0.3
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characteristic of the impedance, Z . Consequently non-linearities in
T
the system are removed by extrapolation just like gas imperfections.

_ 5.3.3 Tests on the Boundary Layer Corrections.

'In view of the aforementfoned suspicion of the orthodox frequency
dependence of the boundary layer effect'of order 1/2. it was decided.
as suggested in Chapter III. that it should He testgg experimentally.
Accordingly several vélocity and absorption coefficient measurements
were taken at the same temperature and pressure. but at varying
frequencies. The results are shown 1in Table 5.3. At the lower
frequencies, the reactance of the transducer appeared to become
somewhat small leading to resonances of a fair degree of symmetry
reminiscent of those characteristic of a quartz crystal transducer.
Thus the true point of resonance lay close to the peak so that its
‘exact location was difficult since the height of the resonance curve
becomes rather insensitive to changes in cavity length under these
conditions. The situation is further complicated because small amounts
of noise or a small scatter on the points becomes more serious when
the curve becomes flatter. Absorption coefficients were calculated
both from the slopes of the resonance curves at resonance and from the
Half widths of the resonances. It can be seen that the Llatter values
are more self consistent and so it has been decided to use these for
the calculation of the boundary layer corrections. Their super{érity
is most in evidence at the low frequencies where the symmetry of the
resonances makes the measurement of the slope at resonance harder., if
anything, than the location of the resonance itself. This>€s because
the slope near the maxima varies considerably with position and also
because, even when the exact position of resonance is correctly
defined, noise can seriously change the slope of a fit put through a

mere six points (see Section 5.3.1). At higher frequencies when the

slope of the curve is very steep at resonance, it can be seen that the
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TABLE 5.3

Tests on the Frequency Dépendence of the Boundary Layer Effect.

f ‘ Date
(kHz)
1.5 27704771
29/710/71
04/11/71
@9
04711771
(I
'Mean: '

Std. Error:

1.75  25/06/71
&3}
08/07/71
20/07/71
| M-ean:

Std. Error:

2.05 ° 15/706/71

Mean:
std. Error:

N

Ax10
(from
slope)
(/cm)

1.125
1.176
1.110
1.262
1.545
0.894
1.318
0.942

1.171
0.064

1.135
5.095
1.668
1.117

1.202.

2.888

2.184
0.587

1.306
1.287
1.257

1.283
0.012

3
Ax10
(from
h/wdth)
(/ecm)

1.153
1.158
1.058
1.151
1.259
1.099
1.158
1.155

1.149
0.019

1.296
1.550
1.233
1.119
1.086
1.167

1.288
0.060

1.270
1.276
1.267

1.271
0.001

c ¢

(meas’'d) corr'd for

at b. p. b. layer
(cm/s) Cem/s)

(velocity not
successfully taken)
(11957.6)

11954.5

(11957.1)

11953.5

€(11960.4)

11956.4

11954.8
0.7
11972.2

- (11952.4)

11950.7
(11956.4)
11951.5
(11956.5)

. 11950.7

11951.0
0.4
11967.7

(119604)
11957.6

11971.7

continuedeeecee.
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2.25 25/06/71 1.320 1.376 (11960. 4)
a1y 1.358 1.397

1.376 . 1.346 11958.0
Mean: 1.351 1.373
Std. Error: 0.013 0.012
11971.9
2.50 24/06/71 1.398 1.412  ° (11959.9)
11.464 1.382
1.454 1.414 11956.8
Mean: : 1.438 1.403
Std. Error: . - 0.017 .- 0.009
) : . 11969.6
3.0 07/07/71 1.661 "1.677 . (11961.9)
. 2.995 1.739 :
1.742 1.624
1.625 1.801 11958.3
Mean: 2.006 1.710
Std. Error: 0.286 0.033
. 11971.0
3.3 10/01/71 1.739 1.742 (11952.3)
1.669 1.645
1.676 1.780 ’
1.770 2.636% 11959.1
Mean: 1.714 1.951Cuse 1.723)
Std. Error: 0.021 0.200
11971.0

* These values are rejected as being spurious since
they are more than three standard deviations from the mean
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two absorption coefficients agree very well when the occasional
spurious point has been removed. Spurious points have been marked in
Table 5.2 and the justification for each rejection is that the value
rejected compares badly .with the remaining values taken at the same
frequency. Because of the prevalence of.such points at the two lowest
frequencies (1.5 and 1.75kH2) and because of the large scatter .in the
raW velocity measuremehts they have be;n repeated several times. The
mean of the better answers has been taken and treated as a single
point. In our judgement the weight dese}ved by these two averaged
points is more nearly comparable to that merited by the higher
frequency points. and so all points will be treated equally withodt.
we feel, unduly overrating the importance of any one measurement
relative to another. Had all the low frequency measurements been
employed as indivfdual points in the curve fitting investigations
about to be described. then a seriously misleading influence would
-have been exerted on the functions being fitted to the points.

It was assumed that

-~

)R
]
B >
=t
Pl=
—

(5.3.3)

and log & was fitted with a straight line as a function of log f so
10 , N 10
that

J‘

103 { }""P\LOﬂ f (5~?>.Lﬂ

"

‘!03,0‘*

thus enabling p to be obtained from the slope of the fit. It was found
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that |
' p = 0.519 + or - Q.066(std. error)
where the standard-error has been quof;d. We feel that, unless éne is
prepared to consider value§ for p which are not simple fractions. fhis
shows that the orthodox frequency depen&énce for the boundary Llayer
absorption coefficient is correct., and certainly that an order of 3/2
is'not applicable to our instrument. The lat£er conclusion is further
reinforced by a plot of the absorption coefficient aéainst the square
root of the frequency. Here we find that a polynomial fit to the
points of order three has a somewhat larger standa;d deviation than a
linear fit. A value of
A= 0.211 + or - 0,027(std. error)
was calculated from the slope of the linear fit which compares very
well with the theoretical value of 0.198 caiculated from such rougﬂ
values of the transport properties of helium gas that were.évailable'
for this temperature and pressure. If:. in addition to the seven
experimental points of o\ and f1/2. we include the origin we obtain a
better value still: '
A = 0.201 + or - 0.009(std. error)
The Llatter step 1is quite legitimate since, whatever the
frequency dependence of the boundary layer effect. we may assume that
absorption losses will disappear at‘zero frequency where the particle
veloci£y at any point in the gas, and so the rate of working. will be
zero too. 1In any case, it was found with the first fit that the line
passed by the origin well within a distance given by the stéﬁdard
error of the intercept. The results of these fits are shown in Tables
5.4 and 5.
In order to assess the dependence of measured velocity upon

frequency. the velocities were fitted against the reciprocal of the

square root of the frequency with Llinear, quadratic and cubic
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TABLE 5.4

Linear Fit of the Logarithm of the Measured Absorption
Coefficients as a Function of the Logarithm of the

Frequencies.
Log f Log Log Residuals
10 10 10
Data Data calc'd
3.17609 . =2.93968 =-2.94528 -0.00560
3.24304 -2.89008 -2.91055 =0.02047
3.31175 =-2.89585 -2.87490 +0.02095
3.35218 =-2.86233 =-2.85393 +0.00840
3.39794 —2.85294 -2.83019 +0.02273
© 3.47712 -2.76700 -2.78911 -0.02211
3.51851 =2.76371 =2.76764 -0.00392

Result:

Constant Term = =4.59301 + or - 0.22280(std. error)
Linear Coefft. = +0.51879 + or - 0.06640(std. error)

Standard Deviation of Points = 0.0199
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TABLE 5.5

Polynomial Fits of the Measured Absorption Coefficients
as a Function of the Square Root, of the Frequency.

Linear Fig: . ‘
3 3 3
vf Ax10 ax10 Resdls. x10 Resdls.
5 5
x10 x10
Data Data Calc'd from 7 pts. Calc’'d from 8 pts.

WHz) (/cm) (/cm) (/cm) (/cm) (/cm)

0 0 =0.01003 =-0.01003
38.7928  1.14900  1.12630 -2.26983 1.14407 -0.49292
41.8330 1.28800 1.22428 -6.37160 1.23654 -5.14584
45.2769 1.27100 1.33303  +6.20257 1.33917 +6.81665
47.4342 1.37300 1.40114  +2.81404 1.40345  +3,04498
50.0000 1.40300 1.48216  +7.91565 1.47991 +7.69087
54.7723  1.71000 1,63284 -7.71599 1.62212 -8.78836
57.4456 1.72300 1.71725 -0.57484 1.70178 -2.12203

Result for seven point fit:
Constant Term = =(0.96590 + or = 1.92451(std. error)) x10-4
Linear Coefft. = +(3.15749 + or -'0.39821(std. error)) x‘IO-s
Standard Deviation of Points = 6.55)(10.5

The Standard Deviations for the quadratic and cubic fits are.
) -5 -5 .
6.03x10 and 6.95x70 respectively.

Result for eight point fit: .
-5
Constant Term = =(1.00334 + or — 5.78865(std. error)) x10

-5
Linear Coefft. = +(2.97988 + or - 0.12804(std. error)) x10

-5
Standard Deviation of Points = 6.11x10

The Standard Devfations for the quadratic and cubic fits are
-5 -5
6.44x10 and 6.06x10 respectively.
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polynomials. It was found once more that the standard deviation of the
fit deteriorated a little on raising its order to two or three. Again,
the lack of improvement in the fit with the cubic polynomial suggested
that no dependeﬁce on the 3/2th power of the frequency was preéent in
- . the measured velocities. A value for A o% 0.208 + or - 0.082(sta.
error) which is in very good agreement with the values calculated from
the absorption coefficients was obtained from the linear fit using
equation 4.1.2, and the value of the intercept, interpreted as the
value of the velocity at infinite frequency (when the boundary Llayer
error in the velocity is zero), was
Ceo = 11971.4 + or - 5.9(std. error) cm/s

'Reference to Figure 5.13 shows that all the corrected velocities lie
wi;hin one standard‘error‘bar of this value as would be expected. This
Qalue was subtracted from the meésured values of wvelocity. and the ;

following form for the frequency dependence was assumed:’

Ac JCP (5.3.5)

Co = C
’ L
Lbr*

A straight line fit of log (g;gn) against log f was then carried out

10 10
as before:

Loy lc,.- c)

11
-
o
(e
)
et
‘F
1
Aoy nn’
-‘-
e
—

so that the order of the frequency dependence could be obtained. It

was found that

p = -0.483 + or = 0.172(std. error)
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Figqure 5.13
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The Boundary Layer Correction as a Function of Frequency.
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which again 1is a satisfactory answer from the point of view of the
orthodox thebry showing that our initial assumption that the frequency
dependence was of order one half was self consistent. However. this
answer suffers from the rather inaccurate value obtained for Coo and
so it was decided to investigate a fit of the corrected velocities
against the reciprocal of the square root of the frequency to ensure
that they were constant to within the statistical error of the‘fif.
Corrections were made to the measured velocities from equation 4.1.3

2 )
d ¢ (5.3.7)
w

Ac

1

_and we obtained

c 11971.6 + or - 5.0(std. error)

- (39.977 + or - 235.865(std. error))/fw2
This function was chosen to represent any frequency dependence that
might remain in the purportedly corrected velocities because it was
assumed that such errors would in any case vanish at: higher
frequencies where the boundary layer effect becomes negligible. It can
be seen that the magnitude of the remaining - frequency dependence ‘is
far less than one standard error and so may well be of purely
statistical origin. Furthermore, at the highest frequency (3.3kH2)
where temperature measurements are made it amounts to only 58 parts
per million in the velocity equivalent to approximately 0.5mK which is
virtually negligible, and far Lless than the uncertainty in the

frequency independent term (+ or - 2.3mK). The details of the last

three fits are given in Tables 5.6 to 8.
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TABLE 5.6

Polynomial'Fits of the Measured Velocity as a
Function of the Reciprocal of the Square Root of the

Frequency.
Linear Fit:
100 /W f c c Residuals
Data Data calc'd
(/WHz) (cm/s) (cm/s) {(cm/s)
2.58199 11954.8 11953.3 -1.5
2.39046  11951.0 11954.7 +3.6
2.20863 11957.6 11955.9 -1.7
2.10819 11958.0 11956.6 -1.4
2.00000 11956.8 11957.4 +0.6
1.82574 11958.4 11958.6 +0.2
1.74078  11959.1 11959.2 +0.1

Result of Linear Fit:

Constant Term = 11971.4 + or - 5.9(std. error)
Linear Coefft. = -699.866 + or = 276.634(std. error)

Standard Deviation of Points = 2.03

The standard deviations for the quadratic and cubic fits are

both 2.27.
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TABLE 5.7

Polynomial Fits of the Logarithm of the Estimated
Boundary Layer Velocity Error as a Function of
the Logarithm of the Frequency.

Linear Fit:

Log f log ¢ Log ¢ Residuals .
10 10 10 '
Data Data Cale'd

3.17609  1.22011  1.25218 +0.032
3.24304 1.30963  1.21987 -0.090
3.31175 1.13988  1.18671 +0.047
3.35218  1.12710 1.16720 +0.040
3.39794 © 1.16435  1.14512 - -0.019
3.47712  1.113%94  1.10690 -0.007
3.51851 1.08991  1.08693 =0.003

Result of Linear Fit:

2.78499 + or - 0.57752(std. error)
~0.48261 + or - 0.17210(std. error)

Constant Term
Linear Coefft.

Standard Deviation of Points = 0.0516

The standard deviations for the duadratic and cuBic fits are
0.0576 and 0.0627 respectively.
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TABLE 5.8

A Linear Fit of the Corrected Velocity as a
Function of the Reciprocal of the Square
Root of the Frequency.

100/ f c c Residuals
Data Data Calc'd .
(WH2) (cm/s) (em/s) (cm/s)
2.58199 11972.2 11970.6 -1.6
2.39046  11967.7  11970.7 +3.0
2.20863 11971.7 11970.8 =-0.9
2.10819 11971.9 11970.8 -1.1
2.00000 11969.7 11970.8 +1.1
1.82574 11971.3  11970.9 -0.4

1.74078 11971.0  11970.9 =-0.1

|

Result of Linear Fits

Constant Term = 11971.6 + or = 5.0(std. error)
Linear Coefft. = =39.9768 + or - 235.865(std. error)

. Standard Deviation ofVPoints =1.73
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5.3.4 Tests on the Measured Diameters of the Impedance Circles.

Fundamental to the whole treatment of the raw data is the
assumption of Section 4.1 that the circle diameters are of the form

given by

! (5.3.8)
~ aN+b

D

N

1]

1f this is not true then it will certainly be impossible to measure
the boundary layer corrections in the way we had hoped and, depending
upon the reason for the discrepancy, it may not be possible to
calculate the exact position of resonance as outlined in Section 2.1.
In order to demonstrate that our assumption was, in fact, correct,
the first eight isotherm points taken at the normal boiling point of
helium (see next chapter) were investigated. The reciprocals "of the
diameters of the circles (obtained by subtracting Z from 2 ) were
' MIN MAX
plotted against the order of resonance, N, to ensure that straight
lines were obtained. The diameters are given in Table 5.9 together
with the pressure at which they were taken, and their reciprocals are
plotted in Figure 5.14. As may be seen they confirm the predicted
linear relationship very closely with the exceptﬁon of the last point
at the lowest pressure which is due to an error in the - reading of
2 . We have rejected this point and calculated the velocity from the
f?igt four resonances alone. The quality of the agreement suggests
that in future we might use such plots to correct each ‘impedance
circle diameter = especially the first and last - in order to smooth
out the scatter in the measured diameters. The slopes »and intercepts

are used to calculate the values of a and b and the ratio de as

deécribed.
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TABLE 5.9

Feasured Impedance Circle Diameters as a
Function of the Order of Resonance.

Pressure Date N D

2
N/m
8470 10/01/71 0.9320
0.6956
0.5424
0.4586

WD

10700 17/701/71 1.1894
0.8904
0.6976
0.5896

0.5116

Vi W -

12510 13/01/71 1.5580 -
1.1310
0.8918
0.7404

0.6492

i W -

15940 11/701/71 1.9554
1.4486
1.1292
0.9318

0.8206

Vi uln-—-

19700 15701/71 2.6830
1.9284
1.4800
1.2060

1.0478

Vis W -

3.9232
2.8080
2.1478
1.7206
1.4688

23260 09/01/71

0 I YIUR XN

26660 08/01/71 5.9616
4.1362
3.2154
2.5330

2.0662

VPP UWN-
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5.3.5 Testing the Coupling of the Transducer to the Cavity.

At the end of Section 4.7 it was suggested that the mean position
of the diaphragm might be shifted in order to 1investigate any
unexpected effect there might be due to the gap (0.25mm) separating it
from the mouth of the cavity. The shift was to be achieved by passing
a direct cprrent through the driving coil superimposed upon the usual
alternating driving current. .

Simple investigations with a diaphragm at room temperature using a
dial gauge micrometer and some small weights had shown that it had a
spring rating of approximately one ten thousandth of an inch per gram
weight loading. However: the applicability‘of this figure to the cold
diaphragm mounted in situ is of some doubt. It was estimated that if
it did apply., the gap could be closed with a current of some 250mA
through the coil wh{ch. it was felt. could lead.to serious pﬁqblems of
temperature control i1 the coil resistange began to increase du€’ its
warming up. But, in any case. the,restoring force of the diapnragm was
far from linear over this diséance and so no serious attempt was made
to use a current of tﬁis magnitude since it would still not close the
gap. The best that could be achieved without causing serious
instability was a current of 30mA which was reversed to give an
estimated total shift of (very roughly indeed) 0.06mm equivalent to
1/4 of the gap.

Measurements made with this current flowing through the coil
yielded the following answers for velocities when corrected to the
n.b.p. of helium4

11959.8 cm/s

(3]
I

and

c 11958.4 cm/s
which shows that in a rather ill defined test no effect was observable

which exceeded the normal scatter expected in two such measurements
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(Cf the scatter amongst the velocity measurements of Section 5.3.4).
The circuit ;mployed for superimposing the direct current upon the
alternating drive current i§ shown in Figure 5.15.

It is conceded that the limitations of this test are such as to
guarantee no more than the absence of an error of the mosf unlikely
magnitude. Had it been possible. an attempt would have been made to
operate the\ diaghragm so that it almost touched the mouth of the
cavity at the limit of its +traverse since it 1is only in such a
situation (where the gap is reduced to a distance comparablelto the

\\amplitude of vibration and to the boundary layer thicknes§) that any
effect might have ‘been expected to show. However. we are content to
assume that the gap is of no consequence for the reasons given in
Section 4.3 and also because, if there were any effect, it would be
expected to manifest itself as as a real or complex ﬁefLection
coefficient which, irrespective of size, is cancelled out by using a

variable path'cavity.

-y
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" CHAPTER VI

EXPERIMENTAL RESULTS

o

'Three acoustic isotherms have been plotted at the normal boiling
point of helium-4 and at the triple point and the normal boiling point
of equilibrium hydrogen. -The thermodynamié temp?ratures of these
points have been evaluated from isotherm intercepts as described in
Séction 1.2 and rough values of the second virial coefficients have
been obtained from the gradients of the isotherms. On making ‘certain
simplifying assumptions as to the form of the temperature dependence
of the virial coefffcients it is possible to calculate the approximate
pressure dependence of the principal specific heats of heliumé at
these temperatures.

6.1 The Normal Boiling Point of Helium—4.

Thirteen measurements of the velocity of sound with changing
pressure have been made at the normal boiling point of helium-4 at a
frequency a little below the first cut off frequency of the cavity.

) Absorption coefficients have also been measured so that the boundary
layer corrections can be calculated. The results of these measurements
are shown in Table 6.1 together with the various corrections that have

been made.
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TABLE 6.1

Isotherm Data at the Normal Boiling Point of‘HeLium-A.

|

‘ , 3
\ Pressure =~ Date  dx10 c c
- (Meas'd) Corr'd for
at b.p. b. layer

N/m ) (em) Cem/s)  Cem/s)

8470 10/701/71 1.723 (11952.3)
- 11959.17 11971.0

10700 17701/71 1.412 (11919.1)
11926.9 11936.6

12510 13701771 1.352 (11894.8)

11901.7 11911.0

14100 23/06/71 1.287 (11882.3)
11880.9 11889.7

14500 ° 08/06/71 1.310 -€11882.7)
11877.9 11886.8

15940 11/01/71  1.201 (11845.1)
11852.5 11860.6

18010 14706/71 1.221 €(11829.1)
11826.0 11834.2

19700 15/701/71  1.129 (11788.0)
’ 11795.1 11802.7

21600 16/06/71 1.073 (11770.4)
11768.8 11775.9

23260 09/01/71 1.056 (11732.6)
11740.1 11747.1

25010 17706771 1.013 (11719.4)
, 11717.1 11723.8

26660 08/01/71 1.004 €(11679.9)
11687.5 11694.1

29890 19701/71 0.865 (11628.0)
11635.9 11641.5

N.B. All measurements were made at a frequency of 3.3kHz
exactly. and absorption coefficients have been calculated from
the half widths of the resonances.
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-

6.1.1 Reproduction of the Isotherm Temperature

We have already mentioned in Section 5.2.2 that the 1interferometer
carried three'germanium resistance thermometers all calibrated at the
normal boiling point of heL%um-4. Their calibration was effected by
mounting them in blose fitting wellé in the outer wall of a small
copper vapour pressure bulb, good thermal contact being ensured by
smearing them with conducting grease beforehand. A thin-walled
stainless steel tube left the bulb and was connected to a mercury
Barometer so that the vapour pressure of the ligquid helium which was
condensed into the bulb could be measured. This vapour pressure tube'
was vacuum jacketed up to its room temperature end so that cold spots
could not ocecur on its walls - especially at the surface of the liquid
helium bath in which it was immersed. Fourteen readings‘of resistance
were taken at pressures in the neighbourhood of one atmosphere. These
resistances were then fitted with a quadratic polynomial so that the
exact normal boiling point resistance (i.e. the resistance at a vapour
pressure of 101325 N/mz) could be calculated. Using the gradient of
this resistance—pressure curve and the éradient of . the
pressu}e-temperature curve as given by the secondary scale T-58, a
rough value of the resistance-temperature gradient could be calculated
for each thermometer. This value was sufficiently accurate for us to
"be able to calculate how far from the true boiling point a velocity
measurement might be made. and thus enabled the appropriate correction
'to‘Ee added to or subtracted from the measured velocity to bring it'to
its exact boiling point value. | ‘

.Following 6ur remarks in Section 1.1 on the neceséary independencé
of a “primary” temperature measurement., it might be objected that the
use of the scale T-58 was not available to us - even for the purposes

of making a small correction — if we wished to maintain our claim to

be doing primary thermometry. However, the gradient of vapour pressure
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with temperature in T-58 is obtained directly from the

Clausius-Clapeyron equation:

dP = L : (6.1.1)
dT TA4AV '

*

where L is the latent heat of evaporation of the liquid and AV the
cérresponding increase in volume. Our rough uncorrected acoustic
temperature is sufficiently accurate for a value .of T whilst L and AV
may be measured without assigning a thermodynamic temperature to the’
boiling point. Thus‘ this procedure requires only that the rough
initial acoustic value and the value assigned on T-58 are sufficiently
close to give dP/AT to the necessary degree of approximation. This
was always the cése. the actual difference Being much smaller than the
greatest tolerable difference. Thus the use of the scale T-58 is
justified by our acoustic thermometry rather than presupposed by it{
One thermometer was always used to make the correction to the
normal boiling point and the remaining two were used to check that no
change had occurred in its calibration (on the assumption that an
identical c¢hange 1in 1two thermometers would not occur). -Resistance
measurements on all three were taken at the start and the finish of
each scan of the resonance curve. These values coincided closely”with
the temperature of the thermometric gas -as the first and last
‘resonances were traversed - temperatures. which might be slightly
different. To corréct for this a small velocity correction \was made
from equation 5.2.1 to bring the measured velocity to the value which
would have been obtained had the instrument remained | at the
temperature at which the first resonance was traversed. It was this
value of velocity which was subsequently corrected to "the normal

boiling point value.
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These corrections do not require that any temperature drift remaihs
uniform since the velocity of sound is calculated solely from the
positions of the first and last resonances. The positions of the
intermediate points of résonance are calculated in order to evaluate
the absorption coefficients which are a%fected only to a negligible
extent by small changes in temperature.

ALl reéist;;ces Qere measured with a Diesselhorst d.c.
‘potentiometer which, on recent calibration, has been shown to be more
than accurate enough for our purposes. If the worst possible
combination  of decade errors 1is supposed to have occurrgd at this
temperature. then it would only amount to a temperature error of 0.2mK
at the most. (*x1) This i1s exceedingly unlikely. however, aéd S0 we
shall count it as three \standard errors. The three  four-lead
-resistance thefmometers were connected in series together with two
calibrated four-lead standard resistors of 100 and 1000 ohms nominal
resistance. Thus the'same current could be passed through all of them
and the resistances of the germanium thermometers could therefore be
calculated from the ratios of the voltages measured across their
. potential leads to the voltages measured across the potential leads of
the standard resistors. The current was drawn from a current source of
the optically stabilised type and was reversed so that the effect of

small thermal voltages could be accounted for by taking the mean of{

(1) This figure of 0.2mK for the potentiometer errors is likely
to be overly pessimistic, in fact, since its most significant
decades were set to the same values both for calibration and
during the acoustic measurements. The remaining decades varied
for each of the fourteen calibration points and for each of the
thirteen isotherm points so that the errors would be expected to

average out to a large extent.
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the measured voltages obtained before and after reversing the current.
This was standard practice for resistance measurements at all isotherm
temperatures.

The estimate of the maximum possible error in the reproductfon of
the normal boiling point is + or = 1.HmK (couqted as three standard
errors again). This figure is obtained from the previous figure of
0.2mK for potentiometer errors to which we add firstly 0.4mK which‘is
thought to be the maximum conceivable error which could arise from the
head of helium vapour in the cold part of the vapour pressure tube in
the calibrating instrument. This head of vapour would lead to too low
a barometer reading at the true boiLiné point and so the estimateé
boiling point resistance would correspond to a slightly higher ‘
temperature where the measured vapour pressure would have risen to one
" atmosphere. On cbmparing the thhée resistance thermometers lgng after
work was completed at thfs temperature, it was found that they all
agreed to within 0.7mK, and that two of them agreed to within 0.2mK.
the “working” thermometer being one of them. Since the working
thermometer agreed so closely with one of the others it is a plausible
" assumption that this pair represent very closely the true boiling
point calibration whilst the third thermometer is sL%ghtly in error.
It has therefore been decided to use the working thermometer
calibration and to assign it a maximum error of 1mK'which we count as
three standard errors once more. This generously embraces all three
values and accords well with the general experience that in the
absence of a drastic change of calibration, these thermometers are
stable to within this figure. Thqs combining this error with the’
previous errors of 0.2mK and 0.4mK by taking the root of their summed
squares, we obtain an overall three standard error bar of 1.1mK or a
standard error of 0.4mK. The greatest care was taken to ensuré that

the germanium thermometers were in good thermal contact with the
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copper into which they were inserted both in the vapour pressure bulb
during calibration and in the interferometer. In the former they were
jn direct contact with the liquid of the bath as was the vepour
pressure bulb and so no femperature difference would be expected. In
the interferometer, on the other hand, there was a danger of thermal
conduction via the electrical leads into or out of the germanium
"chip”™ within its'sheath. To avoid this the Lleads were carefully
varnished down to the copper body of the interferometer before
reaching the resistance thermometers to "thermally anchor”™ them to the
operating temperature of the interferometer (see Figure 5.1). A
considerable Llength of wire. approximately one metre, was then
suspended in the vacuum and anchored.again at the temperature of the
coolant bath by being wound on a copper bobbin in thermal contact with
the bath. It was felt that these precautions precluded the possibility
of the thermometers being at any temperature other than that of the

interferometer. co

6.1.2 The Boundary Layer Corrections at the NBP of Helium—é4.

The measured values of the absorption ' coefficients are given in
Table 6.1 and plotted as a function of pressure in Figure 6.1 where
the theoretical curve (derived from the Kirchhoff-Helmholtz
expression) is also shown. Additional points have been calculated from
the absorption coefficients taken at lower frequencies for the purpose
of confirming the theory of the boundary layer (see Section 5.3.3).
These were converted to the appropriate value foq a frequency of
3.3kHz by multiplying by the sguare root of the ratio of the
frequencies e.g. by (3300/2050)‘”2 for the absorption coefficient
measured at 2.050kHz. It can be seen that they are compatible with the

values taken at 3.3kHz and. furthermore, that all values seem to

confirm those predicted theoretically.

¢
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Figure 6.1

Measured Absorption Coefficients at the NBP of Helium—4.
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6.1.3 The Isotherm at the NBP of Helium—4.

The squares of the measured velocities, both before and after
correction for the boundary Llayer, are piotted in Figure 6.2 as a
function of pressure. It can.be seen that a significant _curvature‘
toQards lower values becomes apparen{ at pressures above about
18kN/m2. Thus fitting a straight line to this data would be expected
to yield an excessive value for the intercept leading to an

overestimate for the normal boiling pdint of helium. If a quadratic is

fitted to the points, on the other hand, then, provided that the

curvature 1is attributable solely to the existence of a quadratic term

as in the acoustic virial expansion. the correct intercept should be

obtained. However, if the curvature is of a slightly different form
attributable to small effects which are not dependent on the square of
the pressure. or if the curvature arises ffom an unfortunate and
) statistically improbable. but nevertheless possible, distribution of
points. then an incorrect answer will be obtained. In order to avoid
these possibilities. it 1is advisable to fit a straight line to the
lower portion of the isotherm if it can be shown to be linear. and to
abandon the higher points. In fact straight lines have been fitted to
progressively fewer and fewer points starting with all thirteen and
finishing with the three at the Llowest pressures. The resulting
intercepts with their standard error bars are shown in Figure 6.3
together with comparable results using quadratic fits. As expected the
value of the intercept for the linear fits decreases as the range of
pressure is lowered, appears to become roughly constant for between
four and seven experimental points and then rises erratically due.
presumably. to the short range of the data compared to the range of
the extrapolation and to the small number of points. Because of this
we have decided to adopt the answer for the normal boiling point

obtained from the linear fit to the first seven data points giving:
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The Isotherm at the NBP of Helium—4.
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T(intercept) = 4.2218K + or - 2.5mK(std. error)
%ull details of this fit are given in Table 6.2 where it can be seen
that the linear fit has a smaller standard deviation than a quadratic
fit to the same points ~ (the latter giving a consistent answers
however, as would be expected). The value obtained from a quadratic
fit to all the data would be:

T(intercept) = 4.2177 + or — 3.8mK(std. error)

which differs by 4.1mK from the answer we have adopted. In fact this
difference is almost accommodated by a single standard error bar in ’
the Llatter answer and .so may be considered to be compatible.
Nevertheless we still prefer the answer based on the low pressure data
both for the reasons given above .and also because the standard
deviation of the Llinear seven point fit is slightly lower than the
standard deviation of the quadratic fit to all the data. This shows
that the data at low pressures is better represented, if only
marginally, by a straight line than is dll the data by the quadratic,
details of which are given in.Table 6.3.

Our final answer for the normal boiling point of helium=4 will be '
given when we have accounted for the only remaining (known) systematic
errors = those contributing to the standard error of 0.4mK in the
reproduction of the correct isotherm temperature and that due to the
standard error of 45 ppm in the gas constant (equivalent to 0.2mK).
Taking the square root of the sum of the squares of these ahd the
statistical standard error in the intercept, we obtgin:

NBP of helium—4 = 4.2218 + or - 2.5mK(std. error)
the systematic errors making a negligible contribution to the total

error due to thg comparatively large random error.



- 213 - ‘ )

TABLE 6.2

Polynomial Fits to the Low Pressure Data at the
Normal Boiling Point of Helium-4.

Linear Fit:
2 -8 2 -8
Pressure ¢ x10 ¢ x10 Residuals
_44
(Data) (Data) (Cale’'d) x10
2 2 2 2

(N/m ) (cm/s) (cm/s) (cm/s)

8470 1.43305  1.43276 -2.9
10700 1.42482  1.42518 +3.5
12510 1.41872  1.41901 +3.0
14100 1.41365 1.41361 -0.4
14500 1.41296  1.41224 . =7.2
15940 11.40674  1.40735 +6.1
18010 "1.40048  1.40028 -2.1

Result of Linear Fit:
. ‘ 8
. Constant Term = (1.46161 + or - 0.00088(std. error)) x10
Linear Coefft. = =340.5 + or - 6.3(std.error)
4
Standard Deviation of points = 4.99x10

The standard deviations for the quadratic and cubic fits are
5.45x104 and 6.12x104 respectively., and the corresponding
intercepts are (1.46319 + or = 0.00385(std. error))x108 and
1.4?264x108. '



- 214 -

TABLE 6.3

Polynomial Fits to ALl the Data at the
Normal Boiling Point of Helium—4.

Quadratic Fit:

2 -8 2 - -8
Pressure c¢ x10 ¢ x10 Residuals
-4
(Data) (Data) (Calc'd) X710
2 2 2 2

(N/m ) {cm/s) (cm/s) (cm/s)

8470 {.43305 1.43280
10700 1.42482  1.42529

+

12510 1.41872 1.41909 +3.
14100 1.41365  1.41358 -0.
14500 1.41296 1.41217 ~-7.
15940 1.40674  1.40712 +3.
18010 1.40048  1.39972

19700 1.39304  1.39362 +5.

21600 1.38672  1.38666
23260 1.37994  1.38052
25010 1.37449  1.37393
26660 1.36752  1.36767
29890 1.35525 1.35521

+

[
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+

Result of Quadratic Fit:

8
Constant Term = (1.46019 + or - 0.00133(std. error)) x10
Linear Coefft. = =-312.0 + or - 14.9(std. error))
-3
Quadratic Coefft. = =(1.3 + or = 0.4(std. error)d x10
4

Standard Deviation of Points = 5.27x10

The standard deviations for the Llinear and cubic fits are
. ?.35x104 and 5.55x104 respectively, and the corresponding
intercepts are (1.46442 + or - 0;00063(gtd. error))x168 and
1.45976x108.
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6.2 The Triple Point of Hydrogen.

Nine measurements of the velocity of.sound and acoustic absorption
coefficients have been taken at the triple point of hydrogen in
exactly the same way as before. The data is shown in Table 6.4.

6.2.1 Reproduction of the Isotherm Temperature.

A platinum resistance thermoyeter was available at the NPL whose
resi;tance‘had been measured at the triple point of hydrogen in one of -
our fixed point apparatuses. A germanium thermometer was calibrated
against this and exchanged ~for one of the three already in the
intérferometer.‘ Comparisons wWith the remaining two were immediately
made so that any subsequent changes in any of the thermometers could
be detected. It was estimated that the overall uncertainty in the
reproduced temperature attributable to these calibrations was + or -
0.6mK which. again; we count as three standard errors. Unfoétunately.
however., when checking this calibrated resistance thermometef after
the measurements were completed it was found to have changed by a
small amount (about 3mK) since the caLiSration. This change must have
occurred before comparison with the other two thermometers since all
three remained in agreement throughout the time they were in use. and
since a corresponding discrepancy was subsequently noticed iﬁ
measurements of their helium boiling point resistances made before its
removal from the cryostat. Consequently. it was decided to recalibrate
all our resistance thermometers against a standard platinum resistance
thermometer in a comparison cryostat. This showed that a small
correction amounting to 3.3mK needed to be subtracted from our final
answer. Given this correction our estimated uncertainty in the
thermometer calibrations remains at 0.6mK. Combining this figure with
an uncertainty of 0.75mK due to the maximum possible potentioﬁeter

error, we obtain a figure of 1.0mK for the overall error in the

reproduced isotherm temperature or an estimated standard error of
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TABLE 6.4 ‘

Isotherm Data at the Triple Point of Hydrogen.

3
Pressure Date Ax10 c c
(Meas'd) Corr'd for
at b.p. b. Llayer
2
(N/m ) (/cm) (cm/s) (cm/s)

10050 25/05/71 3.214 (21821.8)
21824.4 21865.0

10120 20/05/71 3.252 (21820.8)
' 21823.0 21864.1

20080 21/05/71 2.301 (21831.2)

(I 21833.9 21863.0
30060 21/05/71 1.849 (21836.4)

aan 21839.1 21862.5
39980 22/05/71 1.635 (21840.0)

21842.4 21863.1
50170 19/05/71 1.430 (21845.0)

21847.3 21865.4
59970 22/06/71 1.364 (21846.5)

21849.2 21866.5
64770 01/07/71 1.224 (21844.6)

21848.9 21864.4
69990 21/06/71  1.162 (21850.4)

21852.1 21866.8

N.B. ALl measurements have been made at a frequency of 6.0kHz
exactly, and absorption coefficients have been calculated from
the half widths of the resonances.
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0.3mK. As before corrections for small drifts and conversions to the
exact boiling point were made to the measured velocity.

The gradient for the resistance - temperature relation for this
thermometer which was required for these corrections was obtained from
a rough prior calibration in agreem;nt Wwith IPTS-68 and T-58. The
justification for its use on this occasion is that, in retrospect., the
caLibratioﬂ was confirmed to a sufficient degree of accurécy by
acoustic measurements at 4.2K, 13.81K and 20.28K. Had this not been
the case the calibration would have had to be corrected to achieve
agreement with the uncorrected‘acoustic measurements. It would have
then yielded a sufficiently accuréte value for the gradient to make
the corrections. Thus the temperatures finally arrived at are
independent of any errors 1in the initial calibration and so our
thermometry may étill claim to be truly primary.

6.2.2 The Boundary Layer Corrections at the Triple Point of Hfdrogen.

_ The measured absorption coefficients are plotted in Figure 6.4 as a
function of pressure together with values calculated theofetically.
Again it can be seen that there is good agreement between them.

6.2.3 The Isotherm at the Triple Point of Hydrogen.

The isotherm at the triple point of hydrogen is plotted 1in Figure
6.5. This time the -curvature present in the previous isotherm at
higher pressures is no longer visible. However, the standard deviation
of a quadratic fit is marginally lower than that of th; linear fit as
may be seen from Table 6.5. But the points are more randomly
distributed about the line in the linear fit and so we shall adopt the
answer given by the linear intercept. As for the low pressure data at
4.2K we find, as we should, that the linear and quadratic intercepts
are statistically compatible.

The data at this temperature is of a better quality than that

obtained at the helium boiling point having a standard error on the
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" Measured Absorption Coefficients at the Triple Point of Hydrogen.



- 219 -

2 -8 2
¢ x 10 (em/s)
4,79 [~
+
= + .
4.78 + T F
4,77 |
® Uncorrected Values
+ Corrected for Boundary
4,76 |~ Layer
2
Pressure (kN/m )
4.75 f | ' |
0 ‘ 20 40 60

Figure 6.5

The Isotherm at the Triple Point of Hydrogen.
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TABLE 6.5

Polynomial Fits to the Data at the
Triple Point of Hydrogen.

Linear Fit:

2 -8 2 =8

Pressure ¢ x10 ¢ x10 Residuals
-4
(Data) (Data) (Calc'd) x10
2 2 2 2

(N/m ) (em/s) {cm/s) (em/s)

10050 4,78078  4.78009

-6.9
10120 4.78039  4.78009 -3.0
20080 4.77991  4.78026 +3.5
30060 4.77969  4.78042 +7.3
39980 4.77995  4.78059 +6.4
50170 4.78096  4.78076 -2.0
59970 4.78144  4.78092 -5.2
64770 4.78052  4.78100 +4.8
69990 4.78157  4.78108 -4.9

Result of Linear Fit:
8
Constant Term = (4.77993 + or - 0.00040(std. error)) x10
Linear Coefft. = 1.65 + or = 0.89(std. error)
: 4
Standard Deviation = 5.86x10

The standard deviations for the quadratic and cubic fits are
4 4
4.77x10 and 4.28x10 respectively., and the corresponding
8
intercepts (4,78096 + or - 0.00058(std. error))x10 and
8
4.78233%x10 . The linear intercept has been chosen since the
standard deviations are comparable and the signs of the
residuals are slightly more randomly distributed.
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intercept which is smaller even 1in absolute terms, and much less
relative to the value of the intercept. This may seem surprising in
view of tha fact that there are approximately the same number of
points and similar standard deviations for the two isotherms (the 4.2X
standard deviation! beine the Lower): The reason for this is alyost
certainly that whilst the maximum densities are comparable. the
pressure range of the present isotherm is-about six times the distance
té be extrapolated whilst the comparable figure on the 4.2K isotherm
is about oﬁe. The temperature corresponding to the linear intercept is
given by:
T(intercept) = 13.8066K + or - 1.2mK(std. error)
To obtain our final answer we subtract the retrospective temperature
correction of 3.3mK and combine the systematic errors with the random
errors as before by taking the root of the summed squares of the
standard errors from every source (the standard error due to the gas
constant being 0.6mK at this temperature). Thus we have:
Triple Poinf of Hydrogen = 13.8033 + or - 1.7mK{(std. error)

The comparable answer for the quadratic fit would 13.8063K with a

total standard error of 1.9mK.

6.3 The Normal Boiling Point of Equilibrium‘Hydrqgen.

Ten measurements of velocities and ebsorption coefficients have

been made at this temperature. They are tabulated as before in Table

6.6.
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TABLE 6.6

" Isotherm Data at the Normal Boiling Point
of Equilibrium Hydrogen.

Pressure Date o x1 03
2
(N/m ) (/cm)
10170 18/05/71 4.072
20240 01/03/71 3.059
30020 02/03/71 2.541
40330 24702771 2.019
49740  09/03/71 1.633
50040 03/03/71 1.874
60030 10/03/71 1.470
69920 11/03/71 1.570
80090 25/02/71 1.287
97790 28/02/71 1.330

N.B. ALl
exactly, and ali absorption

2

pressure of 60030 N/m have been calculated from the half widths
An excessively low value (0.000902/cm) was

of the resonances.
' 2
at 60030N/m

it was

cbtained for that
uncertain, and so

coefficients

c
(Meas'd)
at b.p.

(cm/s)

(26478.0)
26429.4
(26477.4)
26467.9
(26469.9)
26482.2

(26497.2)

26494.2
(26496.9)
26509.1
(26485.7)
26510.2
(26518.6)
26521.2
(26520.9)
26534.0
(26524.0)
26543.7
(26563.2)
26569.5

reasons

c
Corr’'d for
b. Llayer

(cm/s)

26492.1
26515.0
26521.2
26525.3
26534.3
26539.1
26543.9-
26558.3
26563.6
26590.1

measurements have been made at a freguency of 7.25kHz
except that

at

which

theoretical value

remain
evaluated from the gradient
resonance which agrees better with the
with the other data (see Figure 6.6).
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6.3.1 Reproduction of the Isotherm Temperature.

At the time these measurements were made no resistance therpometer
calibration was available to enable us to reproduce the exact iéotherm
temperature. Instead: it was necessary to rely on a rough calibration
on one of our existing three germanium thermometers. Subsequently,
when an exact calibration became available., we were able to transfer
it onto thié thermometer and to make the necessary corrections to the
measured velocities to allow for drift and to bring them to their true
boiling point values. However. the same germanium thermometer was used
for this purpose as was used at the triple point of hydrogen. and so
an additional correction of 1.7mK has to be subtracted from our final
answer as before.

The total uncertainty in the final reproduction 1in the iéotherm

temperature is + or - 4mK which, as usual, is counted as three

standard 2rrors.

6.3.2 The Boundary Layer Corrections at the NBP of Equilibrium
Hydrogen.

The measured absorption coefficients are plotted against isotherm
pressure in Figure 6.6 together with a plot of values calculated from
the Kirchhoff-Helmholtz formula. Unfortunately they seem to have 'a
larger scatter about the theoretical curve than in the previous caées
whfch is particularly regrettable at this temperature because of the
correspondingly higher correctioné. These amount to about 100mK at the
lowest pressures. However, large residuals close to the intercept are
not necessarily any more problematic than smaller residuals some
distance away. This would seem to be the case in the present isotherm
where the standard error in the intercept is much smaller than these

residuals as will be seen in the following section.
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Figure 6.6

Measured Absorption Coefficients at the NBP of Equilibrium Hydrogen.
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6.3.3 The Isotherm at +he Normal Boiling Point of Equilibrium

Rydrogen. .

Values of the square of the acoustic velocity both before and after
ccrrection for the boundary layer are shown in Figure 6.7 pLottea
against bpressure. Given the large scatters the isotherm would appear
to be linear. but with the small number of points availaole it 1is
possible that a considerable unresolved curvature exists. Were this
the case, there could be a large error in the intercept. However, the
isotherm appears to be linear in its central and upper regionsvwhich.
given the form of the acoustic virial expansion, wculd suggest that it
would remain linzar down to the intercept. The evidence obtained from
fitting the isotherm certainly does not suggest otherwise, the L{near
fit having a smaller standard deviation then the quadratic.

The details of the fits are given in Table 6.7. Adcpting {he value
obtained from the linear intercept, we have:

Tlintercept) = 20.2643K + or = 4.9mK(std. error)
Taking from this thelretrospective temperature correction of 1.7mK and
allowing for a standard error of 1.4mK in the reproduction of the
jsctherm temperature and 1.0mK due to the wuncertainty in the gas

coenstant, it becomes:

NBP of Equilibrium Hydrogen = 20.263K + or = 5mK{std. error)
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Figure 6.7

The Isotherm at the NBP of Eguilibrium Hydrogen.
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TABLE 6.7

" Polynomial Fits to the Data at the Normal
Boiling Point of Equilibrium Hydrogen.

Linear Fit:
2 -8 2 -8
Pressure ¢ x10 ¢ x10 Residuals
. =5
(Data) (Data) (Calc’'d) x10
2 2 2 2

(N/m > (cm/s) (cm/s) (em/s)

+

10179 7.01831 7.02107
20240 7.03045  7.02646
30020 7.03374  7.03168
40330 *7.03592  7.03720
49740 7.0406%  7.04223
50040 - 7.04324  7.04239
60030 7.04579  7.04773
69920 7.05343  7.05302
80090 7.05625 7.05846
97790 7.07033  7.06792

+ 1
. .

+

.

+

+

|

NN O 2Ol
.

PO OVIWN- O

Result of Linear Fit:
8
Constant Term = (7.01563 + or - 0.00170(std. error)) x10
Linear Coefft. = 53.5 + or - 3.0(std. error)
s
,Standard Deviation of Points = 2.43x10

The ‘standard déviations for the quadratic and cubic fits are
2.53x105 and 2.10x10s respectively and the corresponding
intercepts are (7.01707 + or - 0.00301(std. error))x10 8and
?.010‘19x108
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6.4 The Second Virial Coefficient.

Another piece of evidence that suggests straight Llines should be
fit4ed to our isotherm data is afforded by the slopes of these lines.

It will be recalled from section 1.3 that if the second virial

.

coefficient, B(T)., of a pressure-volume expansion is of the form a+b/T
as past measurements would often -suggest. then the second acoustic
virial coefficient, A (T), is also. Consequently, if our values of

1

A (M lie on a straight Lline when plotted eagainst reciprocal
1

temperature, then there is further reason to be confident that. the
tinear slopes, and therefore the Linea; fits., were the correct ones.
Such a plot is shoun in Figure 6.8 where it can be seen that our fhree
points lie very close to a straight Line.‘In each case the residual is
less than two standard errors in the gradient obtained from the fit.

Calculating values of a and b from equation 1.3.10 we obtain:

a = 18.63 + or - O.30(std. error)

b =419.0 + or - 3.5(std. error)

These values lie close to those obtained by other workers some of

which are listed in Table 6.9.
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Figure 6.8

Measured Values of the Second Acoustic Virial Coefficient.
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TABLE 6.8

A Linear Fit of A (T) against 1/T.
1

10/T A M A (T) Residuals
1 1
(Data) (Data) (Cale'd)

0.49349  +53.4730 +51.8372 -1.64
0.72429  +1.65355 +3.51893 & +1.87
2.36870  -340.494 -340.724 ~0.23

Result:

Constant Term = 155.1 + or - 2.5(std. error)
Linear Coefft. = -2093.5 + or ~ 17.2(std. error)

Standard Deviation of Points = 2.49

. 2 2 =2
N.B. T 1is expressed in K and A (T) in em s /Np . To obtain a

1
3
and b in cm /mole, multiply the constant term and, the Llinear

coefficient by 0.1 and substitute them into equations 1.3.10 for
d and e respectively.

s e g e E o,



- 231 -

6.5 The Principal Specific Heats of Helium-4 and their Ratio.

Provided that care is taken not to extend our results beyond the
pressure ranges within which our disotherms are Llinear. we may

approximate in equations 1.4.2 and 1.4.4 obtaining:

e = Cp - Mc“{;- wm_n_% '
Cy RT v

1
=
(e}
-
1
o
o>
)
_‘
Ny’
<)
Nz’
P
O~
Uy
-

and

Co-Cy = Af1+ 24BN P (e5.2)
R T :

Putting B(T)=a+b/T we have

& = Mc { %(a+hF>P§ 0;{;—»_&_(&4«5/‘?)?}

RT RT ;
(6.6.3)
and
Co-Cy = R%if—&b ’P§ (6.5.4)
a
| RT

giving
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M
1

b2 Co - Cv - 3R§a-1bjigyhgja+aﬂﬁ@,
" =

o -1 R

(14

——narmer

bl g\+_g;g?§ ‘

a t RT
. Gy Y+au?§ (655
o] RT .

]
/
f

where the zero éubscript, refers to the 1ideal gas value of the

subsbripted variable. C , (C -C ) and o have been calculated using the
. v p v
values of a and b given in the last section. Their values have been

plotted 1in Figures 6.9 to 6.11. Clearly such values much be treated
with care since they are based on values of a and b which are derived

by fitting a straight Lline to only three points. two of which are

o b

rather close to each other.

¢

6.6 Conclusions

There is nothing to be said in conclusion which has not already
been said, but it may be useful to draw together our main results. For
the three measured temperatures we found:

NBP of Helium=4 = 4.2218K + or - 2.5mK(std. error)
Triple Point of Hydrogen = 13.8033K + or -~ 1.7mK(std. error)
NBP of Equilibrium Hydrogen = 20.263K + or - 5mK(std. error)

and for the second virial coefficient of helium~4 the following

temperature dependence was calculated: ‘

B(T) = 18.63 - 419/T

From the considerations of Chapters II to IV and from the
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Measured Values of the Ratio of the Principal Specific Heats.
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Measured Values of the Difference of the Principal Specific

Heats.
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Measured Values of the Principal Specific Heat at Constant

Volume.
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investigations of Chapter V into the boundary layer effect, it would
seem that. in the absence of hidden systematic errors, these
temperatures are true thermodynamic temperatures. This belief is
further supported by the agreement which exists between these resulté
and those oF the! most recent priméry gas thermometry and .the
ultrasonic thermometry of Plumb and Cataland both of which depend on
the circumvention of eﬁtirety different types of systematic error. The
values obtained by these other two methods are given in Table 6.9.

The only possible systematic error which we feel might be present
in our work arises from the possibility that the wrong type of curves
have been fitted to our isotherm data. The only way in which this can
be checked is by accumulating further experimental data = 1in
particular at the lowest pressures on the isbtherms at 4.2K and 20.3K.
It can easily be seen that in the latter case. for example, removal of
the lowest point would suggest quite strongly that the apbropriate
function to fit to the points is a quadratic whose‘intercept would be
higher than the qurrently adopted linear intercept by some tens of
mKs. For this reason we feel that the results reported here should be
regarded as being preliminary. >However, it does seem that these
investigations have shown that. as a primary technique. low frequencf
acoustic thermometry is capable of providing information every bit as
useful as that obtainable from ultrasonic thermometry., and spmewhat

better than has been obtained in the past at low frequencies.
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TABLE 6.9

Comparable Results from Other'Techniques.

Existing values of the three isotherm temperatures:

Present Work Ultrasonic Thermometry Gas Thermometry
K) (K)=* , (K) %%
20.263 +- 0.005 20.265 [22] 20.2746 + 0.0004

20.285 [48,49]
13.8033 + 0.0017

4.2218 + 0.0025 4,225 [24] 4.2240 + 0.0003

* Errors have not been assessed by Plumb and Cataland for their
ultrasonic thermometry so that it is impossible to check for
consistency when their results lie outside our three standard
. error bar. '
*% These are some preliminary results of K. H. Berry obtained at
the NPL. We.believe them to be the best values available from
primary gas thermometry.

Existing values of a and b:

a b Source Method
18.6 + 0.3 -419.0 +- 3.5 Present work l.f. acstc.
17 -385 (511 prmy. gas
20 =408 [521] prmy. gas
22 += 4 =433 +— 22 [25] l.f. acstc.
19.8 +- 6.3 441 +- 3 . [24] ultrasonic

a and b for the last four cases were calculated by Rogers et al.
£501
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APPENDIX 1.1

Proof of Equation 1.3.3 Relating B(T) and B'(T).

The density and pressure expansions for the product PV are

PV

B

a
nRTEl%’B(T)}_’L + C(T)(_r_\_) 4 .- }'(1-3.}) |
SV Y}

and

PV - nRT%H— a'(r)?%C‘h)'@ﬂ---% (i.3.2) .

respectively. From equation 1.3.1

P = RT {.f_x_. -a—B’Lﬂ.(_%\!}_)&*b c(ﬂ(_a_)i---} (A1)

so that from equation 1.3;2



At sufficiently

egpproximately
PV =
and
PV =

N ,
o epfa)e cfn ]

Y Y Y7

p p - 4 3 -
+c'al ,‘_&%—%(L\_)%- C(L_>+ 5
v v Y _

(A-2) |

low pressures equations 1.3.1 and A.2 become

ART § b+ B(T)_‘_‘_} (A.3)

\%

nRT {a + B'(T)RT_LL_} (A-y)

Y

where second order and smaller terms in P and n/V have been ignored.

Thus

B(T) -

BYUTYRT (.3.3)
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APPENDIX 1.2

Proof of Equation 1.3.4 Relating C(T) and C'(T).

Knowing the relation between B(M) and' B*(T), 1t 1s possible to
calculate the relation between C(T) and C'(T). Substituting for B' in

equation A.2 from equation 1.3.3 we ohtain

PV = nRT{1+B(T)n +(BQ(T)+C'(T)R9“T1V.9_)Q§--~1
1 Y | Wi

(4.5)

Thus by comparison with equation 1.3.1

(™) ={C(T)—B“”L(T)g/R‘Q‘TaL (.3.h)
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APPENDIX 1.3

Proof of Equation 1.3.5 Relating A (T) and B(T).
1

We have

2 . 1‘ k
¢ = 3"5) - AT+ AMP AP G4
5

and
L
(_EL’&E__) = = (v/n) (a@\
(a@ ) M DV)S
: 2 )
= -(V/n) S (.a'P\ (A7)
%q ' (:V 55\J'/'r

the second equality arising because

(59, - <=9, (h-2)

It may also be shown that



2
o= Lp - |~T{3‘P)/(DP\} {A.9)
Cy C \OT A \oV
so that
ca a 2 , a -
c = T (V n‘;!a?‘) - (v M(B’PE (a.10)
Mo C, bex v M \oV/g

which may be evaluated from the equation of state if it is remembered

that -

' \Y
C. = 3R T 1 da P dVv {4.4)
v i : ~goo (.E)fi-a )\/ .. l

Thus from equations 1.3.3, A.10 and A.11
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, - a
¢ = SRT;1* l—;use- B TAB +4 T 428 | »
i 2 3 aT 15 &7 v
3 {: 3. C + 36 € &C + 2 “E’zzﬁfl(: + 4 Egzl
5 5 T

where terms of the same order in n/V have been collected together and

where o 1is the ratio of the principal specific heats of an ideal
0

gas. By comparing this with the acoustic density expansion:

G s AT + AT+ ngmm%.. (.3.8)
A Y :

:
we obtain the following expression for the coefficient. A (T):
1

A'(TY = 4B(T) +1 T A8 + 1 d*8(D)  {Au3)
3 A&T s dT°

The corresponding expression for ,the second acoustic virial
coefficient in the pressure expansion is easily obtained from this by

expressing A (T) in terms of A" (T). This 1is done as it was in
1 1
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appendices 1.1 and 2 for the virial coefficients of gas thermometry
i.e. by substituting for the pressure terms in the pressure viral
expansion to obtain an expansion in terms of n/V which may be compared

to the original density expansion. We thus obtain

e

A (T)Y = A(TIRT

and

A, (T) = A BEIRT +ALMRETY  (Ran)

so that we find

R((M = & g&B(T) + 4y dB(T) + & dzB(T)%
' M 3 JdT 15 AT

(1.3.5)
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APPENDIX 1.4

Proof of Equation 1.3.6 Relating A (T) to B(T) and C(T).
2 -

The required relationship follows directly from equations A.12 and

A:14. to give equation 1.3.6.
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APPENDIX 2.1.

Proof that the Zeros. X . of Equation 2.2.18 are Real. -
mn

It has often been shown that

J'rT(oLﬂ T (B7) v = -
{fsT (&)Jm(ﬁ) & T () m(B)}i (A15)

cLa‘ ﬁ&

where L fﬁ) If (5 is the complex conjugate of o we may write instead:

fT J— (dt) Jo (o('f) A< =

_x { Ton (r) A To (T4) = T Lr) e Tm (otv)}
d*-Z* d+ ot

Assuming that if

L Tnldse) = 0 (A-16)

then
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a J_m(:(*'\ = O (B .
Cdr

also, we have in this situation

JT T (e) T (L v de

J (df)j&(if)

(&v)dv 4 O

11}
C—-—-q

(n.18)

Thus o cannot be complex. However, it may still be imaginary since the
denominator of equation A.15 vanishes in this case. But, expanding J

m
in an infinite series. gives

Antm—
4T = 2 ™ e
dX e n‘(n_‘,m)' &

m-

()6 2O e

(X =1Y) ' (A.14)

so that d| being neither complex nor purely imaginary must be real.

[}
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APPENDIX 2.2

Proof of the Equivalence of Several Criteria for Resonance
at Sufficiently High Frequencies and the Effect of Higher

Modes on the Measured Absorption Coefficient.

It will be shown that the same values of | at resonance are

obtained when (a) Z (1) is entirely real, (b) The real part of Z (1)
G G
is greatest or (c) the power dissipated is greatest .povided that the

frequency is sufficiently high.
Condition (a)

From equation 2.2.24 it can be seen that this requires

DL GuXwd) = 0 (a20)

—

Now from equation 2.2.36

};; 2;‘ Gon Ko (L)

E;. 2. Gun  sin 2kmd (n.21)
n
CO‘Sh adm'\_l - Co0S thn‘-‘.
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But at high frequencies d& and k are roughly constant for the
first few values of m andm: whichmgre expected to correspond to those
modes of high ?mplitude which are unlikely to be resolved. Thus we may
foé practical purposes canbel the denominators 1in equation A.21 to

'

give

2':.:. Z‘; Gmq 30 ARemnd =0 - (A-2a)

‘

It will now be shown that this same criterion for resonance is

obtained in cases (b) and (¢).
Condition (b}

~ Again. equation 2.2.24 enables this condition to be interpreted

into the following cohstraint on L:

EL- 2‘2 Clmn’me('l) = 2 E C‘n‘m - Romn ('Q) =0 (Q.l'ﬁ)
db ™ | m n o4

Now

_CL RM(J) = Slclmn ((.D'&‘\ Admu @ — CoS a.hmné "aUQmwﬂ Smﬁ{nné)
d&

(COSh. limni - Cos thn’j )&
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i
( Cosh ddmad — Cos ARema & )

where we have retained only terms of second order of smallness. there

being none greater in the immediate vicinity of the resonance. As

before the denominator can be cancelled together with the factor

4h k which is also approximately constant with changing m and n for
mn mn

the same reasons. This leads to the same condition on |l at ‘resonance

as was obtained in the previous situation.
Condition (¢)

It may immediately be seen from equation 2.2.40 that this condition
leads to the same equation for | at resonance as have the last two
conditions.

At somewhat lower frequencies where o and kK may no Llonger be

' mn mn

considered to be exactly equal for the various different values of m

and n. the conditions
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L Lo Gun - sinaRued - o (A.25)

Cosh 2dmnd = WA AR pn d

and

EZ: C;mn sin LRuud = O - (A.26)
m n

(cmku.u-l - cos 2Rma d )9\

are no longer equivalent. In such a case the denominators of equations
2.2.46 and 2.2.52 will no longer 9be raised to the pow;r two if
resonance is defined by criterion (a)._It may easily be shown that the
requirement for the ‘equivalence of these criteria of resonance is. in
fact, equation 2.2.47:’ .

Ao 2 Aoe > (L-&n)  (2i2)

stating that the mnth resonance is far from being resolved.
Higher Modes and the Measured Absorption Coefficient.
The effect of higher modes upon the measured absorption coefficient

may also be calculated easily at frequencies high enough to satisfy

equation 2.2.47. At the observed resonance
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But

Rmn(L) = O(rm\i - [} (A9.8‘
o+ BE (Lt oo deo

under the approximations already used at these frequencies. Thus

W@ = LZ Gon ()

At somewhat Llower frequencies when equation 2.2.47 no longer holds

goods but when the higher modes still remain unresolved. this becomes

\;/(;(JL) = 7;; Z;; c;;&n. - (i};3Cﬁ
0(00 ‘-Qoo

It might at first be supposed that both these expressions  would lead

to errors in the evaluation of the absorption coefficient since the
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equivalent ideal expression would be

W(\‘(i\ = C‘OO (9.-31)
doo doo

However., in order to evaluate Jd . independent evaluation of their
00 .
numerators is required. These values might be obtained from the

corresponding values of W (l) at antiresonance which are
G

L Goun

n

-

Wo () = L1 Guadad 2 Lood L

H

(r.32)

for the first two cases where higher modes are present, or’

“,;/q Ly = C\oo OLOQ \J A. (FLSS)

in the ideal case. Thus a correct value of | may be calculated from

. 00
medsured values of 2,2.6 & and 2:2:@ ld at sufficiently high
) m D mn 00 mn m 00
frequencies as for the ideal case. In the case of the Llower

frequencies, on the other hand. a fractional increase in A of
00
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ol

21 Gran _
2 Glnn

31 P

will be found. This might betray the presence of higher modes if
adequate data is available to enable a reliable value of the true
absorption coefficient to be calculated from equation 2.1.16. For
example, if we take the case of Table 2.5 where a/b=1 (i.e. a stiff
driven diaphragm of the same diameter as the cavity) we may derivé

from equation 2.2.52 the following amplitudes G :
mn

mn G X G’
mn mn mn
00 1.00 0.00 0.94
01 0.66 7.01 0.56
02 0.04 10.17 0.01

Here we have assumed that the 02th mode is virtually resolved so that

A ={-l . This occurs at a frequency of approximately 1MHz for a
00 02 .

cavity of 2cm diameter filled with helium-4 gas at a temperature of

4.2K and a pressure of one atmosphere. Thus
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»|-

d 1. %0 OLO = 1. 046 loo

1.51

showing a 6 per cent increase in the measured value of the absorption
coefficient'over the correct value. Unfortunately, however., much of
thé information on the transport coefficients of gases is of uncertain
accuracy, and so an effect of this size may not be a sufficiently
pronounced indication of the presence of higher modes to enable a
definite conclusion to be reached. Fﬁrthermore. there is no guarantee
that the spectrum of this example is relevant to any given practi;al
case where, for example. one single higher mode may predbminate thus
leading to a change in the measured veloéity' but to no vi;ible change
in the measured absorption coefficient at all. Consequently measured
valuesl of absorption coefficients cannot be relied upon to check oﬁ

the absence of errors attributable to higher modes.
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year.
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A low frequency ecoustic thermometer for the r&nge 2 - 20 XK.

+

by
A.R. Colclough, National Physical ,laboratory,
Teddington, Middlesex, United Kingdom.

Abstract '

A low frequency acoustic thermometer for the liquid helium range is
described which incorporates several novel features designed to eliminate
the difficulties commonly encountered with this technique. Boundary iqyer
errors which are particularly troublesome at low frequencies have been corrected
for experimentally reather than by using the apparently unreliable corrections
of Kirchhoff, Helmholtz et al. Increased sensitivity has been achieved with
a method of detecting the resonances which is independent of the purely
electrical impedance of the transducer used to excite the interferometer
cavity. Acoustic paths are measured with an optical interferometer operating
under isothermal conditions inside the cnyoétat.

Acoustic isotherms at the normal boiling points of helium=4 and equilibrium
hydrogeﬁ have been plotted to yield thermodynamic temperatures which are in
fair agreement with the high frequency work of Plumb and Cataland.



A low frequency acoustic thermometer for the range 2 - 20 K
by
A, R. Colclough
National Physical Laboratory, Teddington, Middlesex, United Kingdom

Introduction

In recent years a number of interferometric investigations into the
propagation of sound in helium gas have been made with a view to measuring
thermodynamic temperatures in the range 2-20 K.1—12 Two methods seem %o
have emerged: the use of high frequencies with the attendant risk of an
ill-defined wave field1’2’7-11 and low frequency methods5-5’12 where this
problem is avoided at the expense of incurring difficulties with boundary
layer effects for which reliable theoretical corrections may not easily be
made. At the moment, however, there seems to be no detailed low frequency
temperature scale to compare with the high frequency scale of Plumb and
Catalend.'® It was in answer to this need that the National Physical
Laboratory designed and constructed a low frequency acoustic thermometer and
undertook an examination of the systematic errors characteristic of low
" frequency acoustic interferometry. The aegree of self-consistency achieved
in the measurements made so far leads us to believe that the systematic
errors have been successfully corrected for and the agreement reached
between our preliminary results and the aforementioned ultrasonic work tends

to support this view.

1. The design of the instrument

13

The instrument which is to be described more fully elsewhere ~ is
essentially a variable-path cylindrical acoustic interferometer (Fig. 1)
operated at some constant frequency below its first characteristic cut~off
frequency so that only plane waves may propagate in the cavity.14’15 As a
result of the low frequencies used, the boundary layer causes a sizable
decrease in the measured velocity of sound relative to the value in the-
unbounded fluid.16_20 There is also an increase in the acoustic absorptian
coefficient brought about by the same mechanism. By measuring the acoustic
absorption coefficient, however, it is possible to calculate the correction
to the velocit&. This enables one to avoid the use of the theorstical
corrections of Kirchhoff, Helmholtz, Thiesen et al. which have often been

,found to be unreliable.
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Figqure 1
The Acoustic Interferometer.

A - Stycast Seals. B = Permanent Magnet Assembly. C & D = Electrical
Lead Screens. E = PZT Accelerometer. F = Transducer Diaphragm, G =
Acoustic Cavity, H = Piston Reflector, I - Germanium Resistance
Thermometers. J = Cube-Corner Reflector, K - Pushrods, L = Beam Splitter,
M - Gimbals, N -~ Optical Window, O —= Bearing., P ='Upper Chamber, Q -
Moving Tube, R = Radiation Shield, S = Temperature Controlling Sensor.

T - Thermal Anchoring Grooves (with heater), U = 4.2K Thermal Anchoring
Groovesy V = Vacuum Cane. W = Central Supporging Tube, Y - Laser Beams.
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Conventionally resonance in the interferometer cavity is detected

either by using a microphone to monitor the acoustic pressure or by
‘ measuring the electrical impedance of the transducer used to excite the cavity
which is modified by the mechanical loading of the gas.21‘2’+ The latter
method has the advantage of simplicity, but the mechanical impedance o? the
system may not be coupled very strongly to the electrical impedance of', the
device and will, in any case, be masked to some extent by that constituent
of the electrical impedance which is purely electrical in origin. Tor this
reason it was decided to measure the mechanical impedance of the loaded
transducer directly. ' .

A small lead zirconate titanate (PZT) piezoelectric accelerometer was
attached to the rear face of the moving coil driven diaphragm which served
as the transducer. At constant frequency the amplitude of the voltage from
the accelerometer gave the velocity amplitude of the diaphragm in arbitrary
units. By dividing the driving force of the diaphragm by this quantity the
mechanical impedance of the system is obtained. Since the driving force
is constant at constant current, the impedance in arbitrary units may
be obtained simply by taking the reciprccal of the voltage amplitude. This
method enabled scund velocities to be measured at considerably lowexr
pressures than would otherwise be possible.

The separation of the various positions of resonance from which the
acoustic wavelength is calculated (and hence the velocity of sound) was
measured using a laser interferometer situated within the acoustic inter—
ferometer unit itself. The wavelength of sound is therefore measured in
terms of the accurately known wavelength'of light from a laser. This has
the advantage over the conventional pushrod and micrometer method where
acoustic paths are measured from outside the cryostat in that it does not

suffer from the indeterminate thermal contractions in the pushrod.

-2,  Experimental procedurey

‘The normal boiling points of equilibrium hydrogen and helium-4 were
realised by controlling the température of the interferometer at values
which closely reproduced the calibrated boiling point resistances on three
"germanium.resistance thermometers which were in thermal contact with it.
Subsequent corrections of the measured velocities to their exact boiling

point values were made from a rough prior calibration of these thermometers.

' It was estimated that the final value of velocity which was calculated
corresponded to a temperature within ¥ 1,4 mK of the boiling point of helium-4

or within £ J oK at the hydrogen point. In quoting our final results these
errors have been taken to be equal to three standard errors.
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The interferometer was suspended in a vacuum can immersed in the
liquid helium bath of a conventional liquid helium cryostat. For the 4.2 K
isotherm the liquid coolant was pumped to a temperature slightly below its
normal boiling point so that the interferometer itself could be brought to
the exact boiling point by means of an electrical heater. It was, of course,
unnecessary to pump the bath at the higher isotherm temperature. The heater
current was controlled using an'equal ratio a.c. Theatstone bridge one arm
.of which was a two lead germanium sensor mounted close to the heater on the
interferometer. Using this controller temperatures were held constant to
within I 0.5 mK at the lower point and seldom varied‘by more than & 2 mK
at the hydrogen point. ’

The pressure of the thermometric gas was controlled by a pressure
controller from Texas Instruments Ltd., This device functioned by bleeding
helium in or out of the interferometer through servo-operated nesdle valves.
These were driven by an out-of-balance signal from a quartz spiral bourdon
gauge supplied by the same manufacturer. Pressures could be held constant
" to within & 5N m - for the duration of a measurement (about three hours )
and were measured and constantly monitored with a recently calibrated Kew
pattern mercury barometer. The accuracy achieved in the measurement was
about X 5N ﬂ_z which represented an entirely negligible error in the
final values of isotherm temperature.

At the highest frequency which could be used without exceeding the
first cut-off frequency it was possible to accommodate five resonances in
the cavity when fully extended. The resonances were scanned and about four
hundred readings of the accelerometer voltage (and hence impedance) were
taken at various points, together with the corresponding readings of acoustic
path from the optical interferometer. This resonance curve was subsequently
analysed by plotting impedance circles for each resonance which enabled the
exact points of resonance to be determined to within several parts in 104
of the acoustic cut-off wavelength (approximately 3.4 cm with a cavity radius
of 1 cm). All other things being equal, temperatures may be calculated.to
twice the fractional error in the final value obtained for the velocity or
wavelength of sound. ,

It is also possible to calculate from the resonance curve the reflection
coefficients for the ends of the cavity and the Acoustic absorption
coefficient, o(_, which is almost entirely attributable to the boundary
layer at these frequencies. Thus, taking the fractional error in the
measured valocity, v , to be &v/¢) where () is the angular frequency of

the sound, it is then possible to make a measured correction to the velocity
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for the effect of the boundary layer. The validity of this correction depends
on the assumption that the absorption coefficient is directly proportional to
the square root of the frequency whilst the velocity correction varies inversely
with it. Tests made at two frequencies at the helium point indicate that this
is in fact the case. The ratio of the two measured absorption coefficients

was equal to the square root of the ratio of the corresponding frequencies

within therlimits of accuracy achieved. Furthermore, the corrected velocities
were equal to within the general reproducibility of velocity measurements made
‘at the same frequencyt No such tests were made at 20 X, but the corrected
velocities were found to lie randomly about a straight line whereas the
uncorrected velocities showed a distinet curvature. We feel confident, there-
fore, that the systematic errors attributable to the boundary layer have been
correctly'assessed.

3. Experimental results

The values of the normal boiling points of helium-4 and equilibrium
hydrogen which are presented are to be regarded as provisional pending the
‘accumulation of sufficient data to define the shape of the isotherms more
closely. Nevertheless, it is already clear from the results now available
that their self-consistency is‘of a high enough order to justify confidence
in the instrument. ( .

Measured and corrected values of the velocity of sound.at the normal
boiling point of helium-4 are given in Table I together with the measured
absorﬁtion coefficients and the frequencies at which they were obtained.

The isotherm is plotted in fig. 2 where uncorrected values of the velocity

are also included to show the general effect of the boundary layer on measured
temperature. The two lowest points on the isotherm were the points taken at
the two frequencies as described above. It can be seen that the point taken
at the lower frequency has a correspondingly higher boundary layer correction
as expectéd. ' '

Straight line, quadratic and cubic polynomial representations of the data
were tried and it was found that the quadratic fit was best, but not greafiy
superior to the linear fit. Details of the straight line and quadratic fits
are given in Table II. It can be seen'that the two answers for the boiling
point differ by 4.6 mK - a difference easily covered by twice the sum of the
purely statistical standard errors in the individual answers. Unfortunately,
however, it is impossible to make a rational choice of one value in prefereﬁce
to the other. The improvement observed on raising the order of fit to two

might be attributable to a curvature in the points brought about by the
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TABLE I

Showing Results at the Normal Boiling Point of Helium-4

g

Measured Square of
Pres?“re geisu?:d Frequency |Absorption $°§re?:ed Corrected
2 oY Y. iz Coefficient | 0™ | Velocity
ms ~1 ms - 2 =2
m m s
84,70 119.592 3.3 .1850 | 119,720 14,332,9
8:.80 119,486 1.5 .1220 119,671 14321 .1
10700 119.274 3.3 1430 119,372 1h249.7
12520 119,018 3.3 L1460 119.118 14,189.1
15930 118,517 3,3 .1270 118,603 14,.066,7
19700 117.961 3.3 .1190 118,041 13933.7
23290 117.401 3.3 .1170 117.479 13801,3-
26630 116,880 3.3 .1380 116.971 13682.2
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Vo? = 14622 m®s™®
Figure 2

The Isotherm at the NBP of Helium-4.
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TABLE II *
Showing Details of the fit to the Isotherm

at the Normal Boiling Point of Helium-4

2 _oR
VO =50 T
where R 1is the gas constant
' 2 2
(8.3143 x 103), o= Cp/bv = 5/3 V2 =V 2. ap V2 =V "+ ap + bp
o ~ o
and M is the molecular weight
of He-4 (4.00260)
RMS deviation of Vz m2 8-2 3.7 3.1
Equivalent temperature mK ' 1.1 0.9
2 4 2 =2 + +

vo - standard error m" s 14,630 = 4 L6114 = 11
Equivalent tgnperatur%
I standard error K 4.2258 2 0.0011 4.2212 £ 0,0033

a - 0035525 - .0033276

-8

b - 6,5988 x 10
Mean value of two boiling points +
+ 4.2235 - ,0018
- standard error K

x See Addendum
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physical properties of the thermometric gas. Or - equally likely on the present
evidence - it could be brought about by the random distribution of points about
‘what may transpire to be a straight line on further investigation. Accordingly
the mean of the two answers has been adopted until the question can be settled.
The compounded standard error in the mean is 1.8 mK. To this statistical error
must be added any other source of systematic error which has not been accounted
for, in particular the error due to the uncertainty in the reproduction of the
boiling point and that due to the uncertainty in the gas constant. The former
is taken to be ¥ 0.4 mK and the standard error in the gas constant 45 parts in
106 which is equivalent to ¥ 0.2 K in the final answer. Thus for the normal
boiling point of helium-i4 we have:

T(n. b. p. helium-4) = 4.2235 K £ 1,9 oK
where we have quoted the total estimated standard error.

The experimental results for the normal beiling point of equilibrium hydrogen
are given in Table III and the isotherm is plotted in fig. 3. It can be seen
that the boundary layer corrections are considerably greater in this isotherm
than in the previous one ‘ae to the lower gas densities at the higher. temperature.
However, in terms of a fractional error they are roughly comparable. For this
isotherm no improvement was observed on increasing the order of fit to two, and
30 a linear representation of the data could be unambiguously chosen. Assessing
the errors in the same way as before we find

T(n. b. p. e-hydrogen) = 20.265 K + 5 mK.
Full details of the linear fit to the data are given in table IV,

4. Conclusions .

. A thermodynamic temperature of 4.2235 K for the normal boiling point of

helium-4 indicates that the helium-4 vapour pressure scale, T58’ assigns it a

value (4.215 K) which is too low by 8.5 mK. This is almost equal to the discrepancy o

found by Plumb and Cataland using their high frequency instrument.m . @_n_ﬂ_(
- An early estimate of their38 of the normal boiling point of equilibrium

hydrogen gave the value as 20.265 K with a reproducibility equivalent to 7K

in the measured velocities. Later. measuremen‘t:s‘10 at the slightly lower - o

temperature of 20.0 K indicated that their acoustic temperature exceeded o

temperatures measured on the scale NBS-5572 (defined only to * 10 mK) by |

approximately 3 mK. This scale yields a value of 20.271 25 for the normal

boiling point of equilibrium hydrogen indicating a rough value only of 20.274 K

for the acoustic estimate which must be considered entirely compatible with the

earlier measurement. ‘

'

- A e e G dan = as ma e W e ae e - o e e e S e E e s ws e - s ex e ® 4 am e e w wm o w

* See Addendum



Showing the Results at the Normal Boiling

Point of Equilibrium Hydrogen

Measured Measured | oo o teq | Square of
preswe | WOIoTy | Paeney | Borermiien) VU | Sty
New m.t.v,-.1 o m3-1 2 3-2
10170 264,294 7.25 4072 264,921 70183,
2021,0 26l 679 7.25 .3059 265,150 70304, 5
30020 26,822 7.25 . 25,1 265,212 | 70337.4
40330 2614942 7425 .2094 265.253 | 70359.2
49740 265,091 7.25 1633 265.343 70406.5'
50040 265,102 7.25 J87h | 265,391 70432,k

- 60030 265,212 7.25 LLT70 265,439 | T70457.9
69920 * | 265,340 - 7125 .1570 265,583 705343
80090 265437 | 7.25 .1287 265,636 | 70562,5
97790 © | 265,695 | 7.25 .1330 - | 265,901 | 70703.3
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' + Corrected for Boundary
Layer

® Uncorrected Values

2
Pressure (kN/m )

0 20 40 60 - 8 . 100

Figure 3

The Isotherm at the NBP of Equilibrium Hydrogen.:
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TABLE IV

Showing Details of the Fit to the Isotherm at the

Normal Boiling Point of Equilibrium Hydrogen

‘ v2=ch

o “ W T

where R is the gas constamt (8.31434 x 10°),

Linear Fit

o= Qr_/Cv = 5/3 and M is the molecular weight Ve = 02 + ap
of He-4 (4.,00260)

RMS deviation of V2 el 3—2, 1.7 .,
Equivalent temperature mK 6.3

2

Vo z standard error m2 3-2

Equivalent temperature I standard erz"or K

70156.3 £ 17,0
20,2643 % 0,0049

0,00534730

A small correction of 1,7 mK is subtracted from the value

20,2643 K to allow for a calibration error of the germanium

resistance thermometers at this point,

20,2626 K ¥ 1,,9 mK for the NBP of e-hydrogen.

Thus we have

‘

a -
Ny
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A second exact determination was reported in 1967 giving a value of

26,27

20.285 K, This value, in company with values arrived at by other

workers using gas thermometry, was used in the determination of the value,

20,28 K adopted for the corresponding primary fixed point on the

International Practical Temperature Scale (1968), 28,23

It is,
unfortunately, impossible to say whether or not this most recent result 'is
compatible with our own value since it lies outside our three standard
error ‘bar and we are unaware of its associated error, knowledge of which is
necessary to resolve the matter,

It. is felt that the tests carried out on the boundary layer at 4,2 K
together with the excellent agreement; reached with the high frequency work
of Plumb and Cataland lends considerable support to our claim to have
measured the true thermodynamic boiling point of helium~l. N

A sim:i:lar conclusion follows for the normal boiling point of ethil;i.brium
hydrogen., Whilst no tests on the boundai'y layer’ corrections have been made
at this temperature there is no reason ‘to suppose that any new problems
would arise which are not visible at the lower te:;lperature. Furthermore,
it can be seen from the isotherm that the corrected velocities are linear

whilst the uncorrected velocities lie on a distinct curve which, as

- expected, falls away increasingly rapidly at the lower gas pressures,
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ADDENDUM

Further measurements have been made at the NBP of helium~4 since this
paper was submitted to the Symposium. making a present totel of 13 isotherm
points in e;.ll. A definite curvature has become 'visible above a pressure
of about 18 kN/n2. Fitting & straight line to the lower (linear) part of
the isotherm has produced an impfoved value of 4.2218 K T 2,5 mK ( standard
error), A compatible answer was obtained by 'fitting a quadratic polynomial
to the whole isotherm,

In addition a value of 13,8033 K % 1.7 mK (standard error) has been'
obtained for the triple point of hydrogen, This was obtained from &
linear fit to nine isotherm points between 10 and 70 P{/mz.

Very full investigations have now been carried out on the boundary
layer effect at 4,2 K, and it has been found to behave exactly as predicted
theoretically both qualitatively and quantitatively.

Summarising our best current values we have, therefore,

NBP of Helium-4

4L.2218 K £ 2,5 mk (standard errqr)

Triple Point of Hydrogen

13,8033 = 1,7 uK ( standard error)

NBP 'of Equilibrium Hydrogen = 20,263 = 5 mK ( standard error)
Further work is to be carried out on the¢se isotherms and so these results

are still to be regarded as being preliminary,

o
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National Physical Laboratory, Teddington, Middlesex
Summary

The form of the high order modes in a cylindrical acoustic interferometer is deduced,
together with equations relating their amplitudes to the way in which the transducer
vibrates. Tt is then possiblc to calculate the shape and shift in position of the resonance
peaks in the interferometer, and the resulting error in a velocity of sound or absorption
cocfficient mecasurement. The theory is illustrated by an analysis of the likely performance
of a common type of instrumenmt, and its general bearing on interferomcter design is

- discussed.

Modes plus élevés en interféromélric acoustique
Sommaire :

On donne la forme des modes d’ordre €levé dans un interférométre acoustique cylindri-
que cn méme temps que des équations établissant le rapport de leurs amplitudes suivant
la fagon dont vibre Ic transducteur. Il est alors possible de calculer la forme et la varia-
tion en position des pointes de résonance dans l'interférométre et U'crreur résultante dans
la vitesse du son ou la mesure du coefficient d’absorption. La théoric est illustrée par

- Panalyse d’une performance vraisemblable d’un type commun d'instrument et on discute

son comportement général sur le dispositif interférométrique. ..

Héohere Moden bei akustischer Interferometrie

Zusammenfassung

Es wurden die Form der Moden héherer Ordnung in einem zylindrischen akustischen
Interferometer und Gleichungen fiir ihre Amplituden, wie sie der Wandler produziert,
abgeleitet. Es ist dann mdglich, die Gestalt und dic Verschiebung der Resonanzpeaks im
Interferometer und den sich daraus ergebenden Fehler bei Schaligeschwindigkeits- und
Absorptionskoeffizientenmessungen zu berechnen. Dic Theorie wird an Hand ciner Analysc
der wahrscheinlichen Arbeitsweise eines iiblichen Instrumententyps dargestellt. Ferner wird

ihre allgemeine Bedeutung fiir die Interferometerkonstruktion diskuticrt.

1. Introduction

It is well known that apart from plane wave mo-
des more complicated acoustic modes can be pro-
pagated down cylindrical tubes, Each of these higher
modes can be shown to have a unique phase velocity
which is higher than that of the plane wave mode,
and a characteristic cut-off frequency below which
it is severely attenuated. Often workers with the
acoustic interferometer have used frequencies well
above many of these cut-off frequencies, and have
observed “satellite” peaks corresponding to reso-
nances of the higher modes (BELL [1]). When un-
resolved these parasitic resonances can lead to er-
rors in measuring the velocity of sound due to the
increased phase velocities of their parent modes.

Measured values of absorption coefficients are also -

too- high because of interference between the plane
wave resonance peak and those of the higher modes
(KRASNOOSHKIN [2], BELL [1]). '
. The purpose of this paper is to show how the
amplitudes of the higher modes may be calculated
from a knowledge of the way in which the trans-
ducer in the interferometer vibrates. Knowing this,
it is possible to predict the shape of the resonance

peaks and to assess the error in the positions of their
maxima. This theory enables the likely performan.
ces of alternative transducer designs to be compar-
ed, and might be used to correct experimental Te-
sults when other methods of dealing with the prob-
lem are not applicable.

.

2. The form of the high order modes

In order to establish the form of the high order
modes we follow a method similar to that used by
KRASNOOSHKIN [2], except that we shall allow for
the angular dependence of the modes as well as
for their radial dependence. It is assumed that a
velocity potential

D'(r,D,z,0) %4’(r, B}, z) et n
exists such that .
vng(r"ﬂ’z) +a(2)0 ¢(730’Z)=0 (2)

where agy =Xy —iag is the complex wavenumber’
for propagation in the unbounded medium at an
angular frequency, . Thus ay is the free gas ab-
sarption coefficient of sound whilst i= (—1)&
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The relevant boundary conditions for an inter-
ferometer of radius b and length { (Fig. 1) are:

3%

oz =0,

2=0
!

(3)

=1

Fig. 1. The acoustic interferometer. The length of the
cavity, I, may be changed by moving the piston,

D(r, P 2) =D(r,7+27,2), (4)
o
'"ar— r-b=0’ (5)
@(r,?, z) must not be infinite 6) -
and , ' y
-9 _ amr,g) &) @
z PR 4

where F(r,8#) is the amplitude distribulion over
the face of the transducer. Using the first four of
these boundary conditions and assuming a solution
of the form:

D(r,9,2) =R() O Z(z)  (8)

for eq. (2), its solution separates to give the follow-
ing expression for the m n-th mode:

an(r!’l?, z) =-’m(anr/b) X

X (Amncos mO +Bypasinm ¥) cosamn 2

9)

where m, n=0, 1, 2,... and 4, and B,,, are con-
stants determining the amplitude of the m n-th mode.
Xmn is the (n+1)-th root (always real) of:

dn(X)
dX

where J,, is a BESSEL function of order m of the
first kind and —a? and —m? are the respective z
and ¢ separation constants of .eq. (2). From eq.
(10) it can be seen that for every value of X, there
is a unique value of a, @p,y which is to be inter-
preted as the complex wavenumber of the m n-th
mode. Some values of X, are given in Table I, and
the corresponding values of a a,, are obtainable
from:

=0

X=blodo-ant (10) .

amn =50 — (Xmafb)? (11)
whose real and imaginary parts, kn, and —a,q,
respectively, are given by: B
Ko =3 (ko —ao— (Xynnfb)2 + ((Kfo —

~ago — (Xmaf0))2 +4 0o ki)™  (12)
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Table 1.
Valucs of Xomp .
‘ n
m i ™ M
Fol 12 ]3[4 ]s
4 1 '
o o |as3! 7001017 |1332] 1647 -
1 | 184 | 533 | 85 1L7)
2] 305 | 670 | 9971317
3 1420 | 80l 1137 1454
and A = g Kool kmn « (13)

Values of k%, and a, are plotted in Fig. 2 for a
plane wave mode wavelength of 0.1 cm with gy =

T 0 2.8
60 . o 24
50 \\ 20

1 W0 \\ 16 T

ke 30 \ 12 ey,
20 \ 0.8
- y
10 . /L 04
% 0 24 0 w0 0 &0 %

Kon/b—>
Fig. 2. Variation of %y and aon with Xoa/b (ap0=0.1,
kop=62.83).

=0.1 and b =1 cm. The phase velocity, v,y , of the

m n-th mode is given by:
‘vmn=w/kmn=w'zmn/2-"t (14)

where A,,, is the wavelength of the m n-th mode. The
cut-off frequency, fmn, of the mn-th mode is the
frequency at which the wavenumber, a,,, would
become purely imaginary if a5 =0, It is given by:

fmn':vooan/Z“b- (15) E

3. The general solution and the amplitudes
of the high order modes

‘The general solution of eq. (2) will be a linear
superposition of the m n-th modes. At the face of the
transducer it is given by:
qj(""”l) = z z -,m(anr/b) (Amn cos m'l?'l'

4 BppsinmP) cosap,l. (16)

Ap;')lying the last boundary condition, eq. (7),
we obtain:
F(r,9) = == 5 3t Jn(Xmn 7/b) (Amncosm 9 +
EWm n , .
+Bpysinm ) sinap, i (17

]
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= 2 gy Aon sin ao'u” rJo(Xox r/b) Jo(Xon r[b) dr

1()) n

which after applying the followmg orthogonality
relations:

I=0fr/o(Xokr/b) /o(Xo" T/b) dr=0 if n+k (20)

and

. b ’ 2
1= 0f:r/% (Xox r/b) dr.= 5’2— B (Xo) if n=k (21)

becomes:

iow %
7 b® agn J5(Xon) sinag, !

o«

b o2

X J frlo(Xonr/b)F(r,?) drd® (22)
o 0 .

AOu =

" after rearranging and changing the subscript & to n.

The amplitude of the 0 n-th mode is given by | 4p, |
and, in particular, the amplitude of the plane wave
(00-th) mode is given by | Ayg] for which

Ig(XDn) =1.

In order to find 4,.» (where it is understood that
m>0) eq. (17) is multiplied by cos j & with j=0,

- 1,2,... and integrated with respect to ¥ from 0

to 2m:

2x
Jcosj'ﬂF(r,ﬂ) dd =

= ,::J Samls(Xinr/b) dpsinanl. (23)

Multiplying eq. (23) by rJ (X r/b) with k=0,
1, 2,... and integrating with respect to re. from 0
to b it becomes

.g g rJy(Xp rfb) cos j & F(r, 9) dr d9 = )

b
= i:; S ajn Ajnsin ajn lof r 1i(Xpe r/b) 1;(Xju r[b) dr

which on applying the following orthogonality rela-
tions:

K=°}TII(X”‘ r/b) I,(Xj,.r/b) dr=0if n:#k (25)
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On intcgrating this with respect to ¢ from 0 to and
2 szt it becomes: 6
ox 24 . Kaofr/}' (X;kr/b) dr= (26)
I F(I‘, 19) dif = '{i; Z Qon /0 (Xo,. I‘/b) Ao,, sin Qon l. b2 . .
’ " (18) =5 A=F/X) J§ (Xp) it n=k
. Now multiplying by r Jo(Xox r/b) where =0, 1, gives:
- 2,... and integrating with respect to.r from 0 to b o
we have Amn 10 oA
b o D 1 bz amn(l - m?'/an) I (an) Sm amnl
T _ b 2 ‘
{ f r Jo(Xox r/b) F(r, 9) drdf = (19) X f Jrin(Xnar/b) cosm®d F(r,d) drdd  (27)
0 0

after rearranging and changing the subscripts j and
k to m and n respectively.
Similarly, it can be shown that:

B, 2im '
X b' amn(l mo/an) I (an) Sm amn
b 2x
OI (J) J (X an r/b) sinm? F(r,?) drd®. (28)

So lhal if F(r,9) is known the amplitude of the
m n-th mode may be calculated from

lAmn+an | M
From egs. (16), (22), (27) and (28) it is now

_possible to write a completely defined expression for

the velocity potential at the face of the transducer.
In its preferred form it becomes:

(b(r,'l? l) = 2 Z (Kmn +iamn) Im(an r/b) X (29)

m n

X (Cran 08 m? + D,y sinm #) coth(ap, +1 lx,,.,.) l

where
’ w
Con= S Be 08, ¥ ) T2 (o)
b 2x
x [ Srho(Xonr/b)F(r,0) drdi},  (30)
Co — 2w ‘
- O B (R + o) (L= mK En) 75 (Km)
b 22

xof oJ’r],,.(X,,.,, r/b) cosm & F(r,d) drd?® (31)

and

2w AV
thz(k n +amn) (1-~ mzlxmn) Im (an)

Xof 0J’r!,,.(X,,,,. r/b) sinm 9 F(r,9) drdd. (32)

Dyn

4. The shape of the resonance peaks

Egs. (29) to (32) enable the shape of the re-
sonance peaks lo be determined in terms of the
power dissipated in the cavity. The power, 7 (i),
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is given by:
¥l)=

’l ha] -
fr Re("(l)) Re(p(l)) drdd (33)
where .,':-'(l) and p(l) are respectively the particle
velocity and the excess pressure at the face of the
transducer. From the definition of F(r,?):

§() =i F(r,9) e (34)
so that . -
Re(i(])) = —w F(r,9) sinwt.  (35)

The prcssure at the transducer may be obtained

from:
,.\
. P =eg, B 9,1) (6
so thal, since Gy < kpa for aH cases of practical
interest,
Re(P(l)) =—=-0w Z kan]m(an"/b) X
m n

X (Coancos D +Dppsinm B) (Ppa(l) sinew e+
+Qma(l) cos ) (37)

' where Ppa(l) and Quma{l) are respectively the real
and imaginary parts of coth(amy, +i%,.,) I given by:

sinh 2 a,,, {
cosh2a,,,l —cos2 kil

Pon(l) = (38)

and
sin2k,., 1
cosh2ap,,l—cos2 byl ”

So, substituting eqs. (33) and (37) in eq. (33)
~and performing a time average:

W(l) = z z F,,,,,P,,,,,(l)

m n

an (l) =

(40)
where, if a,,, s again taken to be small in compari-
son with kp,

0 VUpn @

;I b“(l mz/X%m) ]m (an)
b
f

[

’ an’=

(41)
7 Jm(Xmar/b)cosm @ F(r,9) dr d9)2 +

°%g- o-.ﬂm

:f I (Xmn r/b) si‘n m 3 F(r,?) dr d$)?)
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when m>0, and
(42)

In order to illustrate the use of eqs. (40) to (42),
the peak shapes for an ideal transducer exccuting
perfect piston-like vibrations will be derived and
compared with those produced by a stiff diaphragm
driven, say, by a moving eoil, Often transducers of
the latter type have a diameter larger than that of
the cavity in order to approximate to the ideal by
diminishing the curvature of the diaphragm at the
extreme positions of its vibration.

For the ideal case we put:

F(f’,'{?) =Eo

where &, is a constant. All the amplitudes, F,.,, for
which m>0 are zero since the ¥ integrals of eq.
(42) vanish. Similarly Fy, is zero when n>0 be-
cause of the r inlegral in eq. (41). So, as would
be expected, only the plane wave amplitude, Fyq, is
finite. In units of 7o w? $3b2/2_ kgo it 4s given by:

Fop=1. (44)

The peak shapes for this case are shown in Fig. 3
where ay, has been taken to be 0.1. Since no high
order modes have been excited the peak maxima al- -
ways fall on a position for which l=s1,,/2 where
s=0,1,2,.

To approxnmale to the amplitude dlsmbuhon of
the stiff diaphragm we choose:

F(r,d) = & e™ri@=r) 0<5r<a (45)

where a is the.radius of the diaphragm. This ensures
that F(r,?) is zero at the edge of the diaphragm
where it is clamped and that 3F(r,")/Orl,., is
also zero to allow for the stiflness of the diaphragm.
In order to consider how the performance of the in-
strument is affected by changing the diameter of the
diaphragm, peak shapes will be calculated for

alb=1 alb=4.

Fou=1 Fyn as defined above when m=0.

for

and

The two eases are shown in Fig. 4.
For the same reason that was given in the ideal
case, Fy, vanishes when m > 0. But now the ampli-

4

400 - 4
T 1st peak 100 thpeak 200 th peak
200 2 N
g ]
0 0
Aw 2o 19940 50400 WA,  A0Ag,  L0IAg
b 2 4 4 . &

Fig.3. Peak profiles for ideal transducer.
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~5 Table I1.
Casel: afb=1 i Amplitudes of the 0nth modes for a stiff diaphragm.
Pislon Transducer n boalb ! Fon
=0 1l N
0 4 | 5332
e . 4 i 0002
2 L4 1 0000
! 3 . 4 0 0000
a=4b 4 } 4 | 0.000
. ; s 4 1 o000
i b o ¢ 1 !~ 1ooo
Case2: afb=4 - . 1 ? 1 i 1 | 0.658
Pistan Transducer 2 i 1 : 0.013
prs 301 1 002
4 11 0600
5 1 | 0600
=1 '

Fig. 4. The interferometers arc shown with small and
large diaphragms. The latter may be expected
to approximate to the ideal.

tudes, Fy,, are no longer generally zero as may be
seen from Table II where they are expressed in
units of Fgy when a=0>b. The resulting peak shapes
are shown in Figs. 5 and 6 for cases 1 and 2 respec-
tively. It can be seen that the case where a/b =4
approximates so well to the ideal case that there is
no discernible difference in the peak shapes (the
change in scale merely reflecling the change in

. units). The case for which a/b=1, however, has

two parasitic modes, the 01-th and the 02-th, which

. cause severe distortion of the peaks. A marked asym-

metry can be seen by the 100-th peak and by the

~ 200-th peak the 01-th que is virtually resolved. In

practice, though, it is unlikely that a transducer
could be made which would be sensitive enough to
respond lo these distortions so that the presence of
the higher modes might go unsuspected. This would
result in an error of several parts in 10000 in a
velocity of sound measurement and about 7% in 2, .

In the cases considered there has been no ¢ de--
pendence in the amplitude of vibration of the trans.
ducer. Consequently F,,, has always vanished when
m>0. But were this not the case the peaks could be
further complicated by the presence of m-th modes.
Furthermore, the functions chosen for F(r, 19) have
been concisely expressible, whereas in practice it
may well have to be expanded as a series of ortho-
gonal functions of r and ¢ (preferably the m n-th
modes).

400p——— — 4
B Istpeak 100 th peek
- A /'*\ 200 th peak
’ Izoo 2 AQ /

e 02 - 02

01\ T

0 VA : 0 - Z
}.ﬂ. ! -a-_og 199Loo 502.00, 3991400 1001‘-00 l‘012.oo
4 2 "4 4 4
Fig:5. Peak profiles for afb=1.
15t peak 400 th peak
1000 10 i
I 200 3h peak e
!E 500 5 / \ — <
) 0 0
A g 19945 5040 Wi  M004g  401Ag
% 2 A % : A

Fig. 6. Peak profiles for a/b=4.
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5. ITigher modes and interferometer design

It is clear from the last example that if accurate
acoustic measurements are to be made, it is neces-
sary to know what effect high order modes are
having on the performance of one’s instrument.

Of several ways of dealing with the problem, the
simplest and most effective is to work below the cut-
off frequency of the Ol-th mode. Since only the
plane wave mode can then be propagated it will be
certain that all resonances are pure plane wave re-

_sonances. This is a satisfactory ;imethod if velocities
_alone are to be measured. Bul, in order to examine
enough peaks to enable absorption cocfficients to be

measured, a very long interferometer might be re-
quired. A sufficient number of peaks must be tra.
versed to enable a measurable decrease in their
height, to be observed. So quite apart from the in-

crease in wavelength brought about by operating .

at low frequencies, allowance must be made for the
diminished rate of decrease in peak height brought
about by the dependence of ay on the square of the
frequency. Thus at low frequencics there are two
factor working to increase the length of the cavily
required. And as a consequence problems of tem-
perature uniformity in the tube and mechanical
alignment of the transducer and piston may become
troublesome,

Secondly an attempt could be made to detect the
presence of unwanted modes by using an inter-

mediate frequency and a cavity of sufficient length .

to resolve a significant 01-th mode resonance (and
therefore any other significant resonance) . But, apart
from any problems of temperature uniformity and
mechanical alighment which might arise, there re-
mains the problem of designing a sufficiently sensi-
tive transducer capable of responding to deformities
in the smallest peaks. In practice this is likely to
require the use of a quartz crystal since other clec-
tromechanical devices, even when driven on reso-
nance, have too large an impedance compared to
the small changes in gas impedance whidh are to be
measured.

Thirdly, a measurement might be made of F(r, ?)
with a view to applying the preceding theory to cor-
rect the positions and heights of the resonance
peaks. Such a measurement would have to be done
in situ if it was to be of any value since trans-
ducers tend to be sensitive to the smallest changes
in their immediate environment. This would almost
certainly involve an optical experiment on the trans-
ducer so that its amplitude of vibration would have
to be large compared to the wavelength of light. The
amplitude would be limited by the maximum toler-
able power input 1o the cavity. But, since the power
radiated into the cavity is proportional to the squa-

HIGHER MODES IN ACOUSTIC INTERFEROMETRY
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4
. res of the amplitude and frequency of the trans-
ducer, this implies a maximum frequency for any
given amplitude. For some interferometers it might
be the case that, in order to obtain a measurable
amplitude of vibration, the driving frequency of the

" transducer would have to be lowered 1o a value

which again introduces problems in the measure-
ment of absorphon cocfficicnts.

There is also another problem associated with the
precise application of the preceding theory arising
out' of the “tube cffect”., When measured in tubes,
velocities are found to be less than the free gas velo-
cities of sound at the same frequency, and. absorp-
tion coefficients are in excess of their free gas val-

. ues too. This arises oul of wall effects due to the
viscosity of the gas and the relatively high thermal
conductivity of the walls of the cavity. Unfortunatcly
to try and take them into account from first prin-
ciples produces a mathematically intractablc prob-
lem, but there do exist corrcctions to allow for them,
The corrections, given by the Kircuuorr-Hrim-
HOLTZ equations, are fully discussed in a paper by
WEesTon [3], but it suffices to say here that they
arc large at low frequencies and in cavities of small
bore, and small at high frequencies and in cavities
of large bore. The difficulty arises because they are
only relevant to the plane wave mode, so that it is
not possible to tell cxacily to what extent the phase
velocities of the higher modes are altered by wall
effects. It may be supposed, however, that the tube
effect becomes increasingly unimportant for all mo-
des as frequency and cavity bore increase, so the
preceding theory may be expected to apply under
these conditions. And,' even at low frequencies, an
optical experiment could provide useful confirmation
that a well designed transducer was approximating
to the ideal in which case the question of the phase
velocities of the higher modes would not arise. )

A more practical solulion 1o the problem would
seem to be to design a transducer which, according -
to the above theory, would be unlikely to excite un-
wanled mades and then to operate it below the first
cut-ofl frequency. If it is then necessary to observe
a’larger number of pcaks (to measure absorption
coefficients) the frequency may be increased and a
check made that velocities measured at the new fre-
quency are compatible with those measured below
the first cut-off frequency. This procedyre should be .
quite satisfactory so long as all measurements are
carried out at low enough frequencies to avoid prob-
lems associated with velocity dispersion.
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NOTATIONAL GLOSSARY

a p21; a figs.2.6 and 2.7; a pp125,136; a p87; a p91; « ‘
n

A pp46,84; area of transducer face; A p88; A' p85; A p50; A

mn n
p101;A + A + A+ A" + ... acoustic virial coeffts. pp15.16;

0 1 2 o
b p21; b fig. 2.1; b pp125.135; b p91;
n
Be B' virial coeffts. p19; B adiabtc. blk. modls.; B isothl. blk.
S , T
modls.; B pS0; B p102;
mn n
¢ velocity of sound; ¢ + ¢ principal specfc. hts./unit mass; ¢ p50;
p Vv mn
C . C principal specfc. hts./mole; C p102;
.p Vv . n ,
d p22; .
D p102;
n
e p22;
f frequency;
CF p111;
n

G subscript signifying gas in cavity; G p150; G p104;

i imaginary unit;
J Bessel function of first kind;
k wavenumber; _
K thermal conductivity; modified Bessel function of second kind;
l length of acoustic cavity;
2
m subscript for mnth mode (-m 1is separation const. for azimuthal
variable p45); ‘
M molecular weight;
subscript for mnth mode (see equn. 2 2. 19), n number of moles;
order of resonance;
acoustic (excess) pressure;
pressure; ‘ ‘

vo =3

2'.
' q complex wavenumber of mnth mode (-q 1is axial separation constant

p45) q P92; q p101; qa . pl02;
v t 1in en 3n

r radial cyl. coord.;
R gas const.. resistance or real refln. coefft., p44;
t p126;
T thdc. temp.. subscript signifying transducer,
v particle velocity;
V voltage; V p88;
W power; W heat flux;
X Cartesian coord.;

X reactance, X pl101; X p47;
n mn
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y'Cartesian coord.;
Y Bessel function of second kind; Y p102;
n

z Cartesian or axial cyl. coord.; z + 2 p74;
' R T

Z phb; Z p102;
n

ok absorption coefft./unit length
p124;
complex acoustic refln. coefft.;
§ Kronecker & ; p110;
half width of mnth resonance;
mn .
p7?7;

bulk viscosity;
2> layer viscosity; D pp86,87;
1 2

azimuthal cyl. coord.; p79;

p44,89; :

acoustic wavelength;

refractive index;

« ¥ kinematic .layer viscosity; vV p88
1 2

¥ @0 Gw mp

89; ‘
particle displacement;

density; : ,
ratio of principal specfc. hts., ¢ /¢ ;
. p Vv
velocity potential; o
p51;

p79;

p91; -

angular frequency;

g €Rg8 'qfnuwu

-
’

Y thermal diff
3

usivity.,
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