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Abstract

We establish asymptotic normality of weighted sums of linear processes with general
triangular array weights and when the innovations in the linear process are martingale
differences. The results are obtained under minimal conditions on the weights and
innovations. We also obtain weak convergence of weighted partial sum processes. The
results are applicable to linear processes that have short or long memory or exhibit
seasonal long memory behavior. In particular, they are applicable to GARCH and
ARCH(∞) models and to their squares. They are also useful in deriving asymptotic
normality of kernel type estimators of a nonparametric regression function with short
or long memory moving average errors.

1 Introduction

Numerous inference procedures in statistics and econometrics are based on the sums

Sn =
n∑
j=1

Xj, Wn =
n∑
j=1

znjXj

of a linear process {Xj}, where {znj, 1 ≤ j ≤ n} is an array of known real numbers. In

this paper we focuss on deriving asymptotic distributions of Sn and Wn. In addition, the

weak convergence property of the corresponding partial sum processes is also discussed. The

linear process is assumed to be a moving average with martingale differences innovations,

and may exhibit short or long range dependence. It will be shown that {Var(Tn)}−1/2(Tn −
ETn), with Tn = Sn or Wn, converges weakly to a normal distribution under easily verifiable

minimal assumptions on weights and innovations. In particular, these assumptions are valid

for nonlinear squared ARCH process where innovations are conditionally heteroscedastic

martingale differences. The proofs use central limit theorem for martingale differences.

Numerous testing procedures, e.g. testing for unit root, CUSUM change-point detection

and KPSS test for stationarity are based on the weak convergence of the partial sum process

S[nt], 0 ≤ t ≤ 1 to a Gaussian process, and, in particular, require verification of the CLT for

Sn. The CLT for weighted sums Wn, in turn, is used in kernel estimation and in spectral

analysis, e.g. obtaining asymptotic normality of the discrete Fourier transforms of {Xj}.
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It is thus of interest to provide easy to use CLTs and invariance principles for the above

statistics.

The book of Ibragimov and Linnik (1971) contains a number of useful results on clas-

sical asymptotic theory of weekly dependent random variables. Davydov (1970) obtained

weak convergence result for the partial sum process of linear processes with i.i.d. innovations

whereas Phillips and Solo (1992) developed CLT and invariance principles for sums of linear

processes based on Beveridge-Nelson decomposition. Peligrad and Utev (2006) extended

Ibragimov and Linnik (1971, Theorem 18.6.5) for linear processes with innovations follow-

ing a more general dependence framework. Gordin (1969) introduced a general method for

proving central limit theorems for stationary processes using martingale approximation. In

the case of short memory, his method gives the same result as the Beveridge-Nelson decom-

position. Wu and Woodroofe (2004) obtained a CLT for the sums of stationary and ergodic

sequences using martingale approximation method. Merlevède, Peligrad and Utev (2006)

provide a further survey of some recent results on CLT and its weak invariance principle for

stationary processes.

Section 2 deals with asymptotic normality of Sn and Wn, whereas in Section 3 we discuss

weak convergence of the corresponding partial sum processes. Section 4 contains examples

and applications, while Section 5 includes simulations. In the sequel, all limits are taken

as n → ∞, unless specified otherwise, →p and →D, respectively, denote the convergence in

probability and in distribution, Z = {0,±1,±2, · · · }, andNk(µ,Σ) denotes the k-dimensional

normal distribution with mean vector µ and covariance matrix Σ, k ≥ 1. We write N for

N1. For any two sequences of real numbers, an bn, an ∼ bn means an/bn → 1.

2 CLT for weighted sums

In this section we consider asymptotic normality of the sums Sn and Wn when {Xj} is a

moving average process

Xj =
∞∑
k=0

akζj−k =

j∑
k=−∞

aj−kζk, j ∈ Z,
∞∑
k=0

a2
k <∞.(2.1)

Here, (ζj,Fj), j ∈ Z is a martingale difference sequence (m.d.s.) with constant variance,

where Fj := σ-field{ζi, i ≤ j}, j ∈ Z, i.e., E(ζj|Fj−1) = 0, Eζ2
j = σ2

ζ <∞, j ∈ Z.

The existing literature on asymptotic distributions of the sums of Xj’s often assumes that

{ζj} ∼ IID(0, σ2
ζ ), i.e., the innovations ζj, j ∈ Z are i.i.d. r.v.’s with zero mean and finite and

positive variance σ2
ζ . Several papers establish a CLT for Sn under the weaker assumption

where {ζj} is a stationary ergodic m.d.s. In some applications even this assumption is too

restrictive.

Let Vj := E(ζ2
j |Fj−1) be the conditional variance of {ζj}, and γV (j, k) := Cov(Vj, Vk),
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j, k ∈ Z stand for covariance function of Vj’s. To allow for broader applications we make the

following

Assumption 2.1 {(ζj,Fj), j ∈ Z} is a m.d.s. of r.v.’s such that Eζ2
j = σ2

ζ , for all j ∈ Z,

(a) maxj EV
2
j <∞,

(b) ∆K := max|j−k|≥K |γV (j, k)| → 0, as K →∞,

(c) maxj∈ZEζ
2
j I(|ζj| > K)→ 0, as K →∞.

First, we discuss the asymptotic normality of Sn. Theorem 18.6.5 of Ibragimov and

Linnik (1971) gives a CLT for Sn in the case of i.i.d. innovations under general conditions.

Theorem 2.1 below extends it to m.d. innovations and shows that any rate of divergence

Var(Sn)→∞ of the variance guaranties the CLT. Peligrad and Utev (2006, Proposition 4)

proved this result when {ζj} is a stationary and ergodic m.d.s. For clarity, we provide a brief

proof based on the ideas of these works.

Note that if {Xj} is a zero-mean Gaussian process, then (Var(Sn))−1/2Sn =D N (0, 1) for

all n ≥ 1, and the question about the asymptotic distribution of Sn reduces to finding the

asymptotics of the Var(Sn).

Theorem 2.1 Suppose {Xj} is a linear process (2.1) where {ζj} is either a stationary and

ergodic m.d.s., or satisfies Assumption 2.1. Then

σ2
n := Var(Sn)→∞,

implies

σ−1
n Sn →D N (0, 1).(2.2)

Proof. For simplicity of notation, set ak = 0, k = −1,−2, . . . in (2.1), and let cnj =

σ−1
n

∑n
k=max(j,1) ak−j = σ−1

n

∑n
k=1 ak−j, j ∈ Z. Without loss of generality, assume σ2

ζ = 1.

Then,

σ−1
n Sn =

n∑
j=−∞

cnjζj, σ−2
n Var(Sn) =

n∑
j=−∞

c2
nj = 1, ∀n ≥ 1.(2.3)

Next we show

(2.4)
n∑

j=−∞

(cnj − cn,j−1)2 = o(1), cn := sup
j≤n
|cnj| = o(1),

which together with Lemma 2.1 below implies (2.2).

To prove (2.4), note that for any s ≤ n, t = 1, 2, . . . ,

s∑
j=s−t

c2
nj =

s∑
j=s−t

(
cn,j−1 + (cnj − cn,j−1)

)2

,

c2
n,s = c2

n,s−t−1 + 2
s∑

j=s−t

cn,j−1(cnj − cn,j−1) +
s∑

j=s−t

(cnj − cn,j−1)2.
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Because
∑

j≤n c
2
n,j = 1, then for every s ∈ Z and n ≥ 1, limt→∞ c

2
n,s−t−1 = 0. Since t is

arbitrary, take the limit t→∞ and use the Cauchy-Schwarz inequality, to obtain

c2
n,s = 2

s∑
j=−∞

cn,j−1(cnj − cn,j−1) +
s∑

j=−∞

(cnj − cn,j−1)2(2.5)

≤ 2(
n∑

j=−∞

c2
nj)

1/2Bn +B2
n ≤ 2Bn +B2

n,

where Bn :=
{∑

j∈Z(cnj−cn,j−1)2
}1/2

does not depend on s. Since by definition cnj−cn,j−1 =

σ−1
n (a1−j − an−j+1),

B2
n ≤ 4σ−2

n

∞∑
j=0

a2
j = o(1),

because σ2
n →∞ and

∑∞
j=0 a

2
j <∞, proving (2.4). 2

Remark 2.1 The approach of Beveridge-Nelson decomposition used in Phillips and Solo

(1992, Theorem 3.15) allows one to obtain the CLT for a linear process {Xj} with ak’s

satisfying
∑∞

k=0 k
2a2
k < ∞, and ζj being a uniformly integrable m.d.s. and satisfying

n−1
∑n

k=1E[ζ2
k |Fk−1] → σ2

ζ a.s. In contrast, Theorem 2.1 gives the same result under much

weaker condition on ak’s.

Compared to Proposition 4 of Peligrad and Utev (2006), the above Theorem 2.1 carries

more explanatory character demonstrating simple technical tools for the proof of such CLT

and relaxing the assumption of stationarity and ergodicity on the m.d.s. {ζj}.

The next lemma provides some sufficient conditions for the CLT of the weighted sums of

m.d.s. with the weights being a triangular array of real numbers.

Lemma 2.1 Suppose Sn =
∑n

j=−∞ dnjζj, n ≥ 1, where {ζj} is a standardized m.d.s., and

{dnj} are such that Var(Sn) =
∑n

j=−∞ d
2
nj = 1, for all n ≥ 1.

(i) In addition, if {ζj} satisfies Assumption 2.1 and

dn := sup
j≤n
|dnj| = o(1),(2.6)

then

Sn →D N (0, 1).(2.7)

(ii) In addition, if {ζj} is stationary ergodic and∑
j≤n

(dnj − dn,j−1)2 = o(1),(2.8)

then (2.6) and (2.7) hold.
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Proof. Since
∑n

j=−∞ d
2
nj = 1, for a fixed n ≥ 1 we can choose M = M(n)→∞ such that

−M−1∑
j=−∞

d2
nj ≤ 1/ log(n), n ≥ 1.(2.9)

Write

Sn =
−M−1∑
j=−∞

dnjζj +
n∑

j=−M

dnjζj =: sn,1 + sn,2, say.

Then Es2
n,1 =

∑−M−1
j=−∞ d2

nj ≤ 1/ log(n) → 0 implies sn,1 = op(1). To prove (2.7), it remains

to show

sn,2 →D N (0, 1).(2.10)

We consider cases (i) and (ii) separately.

Case (i). To show (2.10), by the CLT for m.d.s., see Hall and Heyde (1980, Corollary 3.1),

it suffices to check the following two conditions:

n∑
j=−M

d2
njE[ζ2

j |Fj−1]→p 1,(2.11)

n∑
j=−M

E
[
|dnjζj|2I(|dnjζj| ≥ δ)|Fj−1

]
→p 0, ∀δ > 0.(2.12)

Let qn :=
∑n

j=−M d2
njVj denote the left hand side of (2.11). We shall show that

Eqn → 1, Var(qn)→ 0,

which yields E(qn−1)2 → 0 and, together with the Chebyshev’s inequality, will imply (2.11).

The first claim follows from EVj = Eζ2
j = 1, (2.9) and

∑n
j=−∞ d

2
nj = 1. To prove the second

claim, set K = K(n) = [1/dn]. By the Hölders inequality,

Var(qn) =
n∑

j,k=−M

d2
njd

2
nkγV (j, k) ≤

n∑
j,k=−M : |j−k|>K

[· · · ] +
n∑

j,k=−M : |j−k|≤K

[· · · ]

≤ ∆K

( n∑
j=−∞

d2
nj

)2

+ d2
n

n∑
j=−M

d2
nj

∑
k:|j−k|≤K

{|γV (j, j)γV (k, k)|}1/2

≤ ∆K + ∆0(2K + 1)d2
n → 0,

by where ∆0 := maxj∈ZEV
2
j < ∞, by Assumption 2.1(a,b) and (2.6), which completes the

proof of (2.11).
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To prove (2.12), note that the expected value of the l.h.s. of (2.14) is bounded above by

n∑
j=−M

d2
njE(ζ2

j I(|ζj| ≥ d−1
n δ) ≤ max

j
E(ζ2

j I(|ζj| ≥ d−1
n δ)→ 0,

by Assumption 2.1(c) and (2.6), which together with the Markov inequality implies (2.12),

and also completes the proof of the lemma.

Case (ii). The proof of (2.10) combines arguments used in the proofs of Peligrad and Utev

(1997, Theorem 2.1; 2006, Proposition 4). Let Xnj := dnjζj, −M ≤ j ≤ n. By Hall and

Heyde (1980, Theorem 3.2) to prove (2.10), it suffices to verify (a) max−M≤j≤n |Xnj| →p 0,

(b)
∑n

j=−M X2
nj →p 1 and (c) Emax−M≤j≤nX

2
nj = O(1).

First, we show that (2.8) implies (2.6). To see this, use the bound analogous to (2.5),

which does not depend on any particular form of cnj, to obtain d2
n,s ≤ 2Bn +B2

n, where now

Bn :=
{∑

j∈Z(dnj − dn,j−1)2
}1/2

. Hence, (2.8) implies dn → 0.

Now, claims (a) and (c) follow because for any ε > 0,

E
n∑

j=−M

(dnjζj)
2I(|dnjζj| ≥ ε)] ≤ E[ζ2

1I(|ζ1| ≥ d−1
n ε)

n∑
j=−∞

d2
nj → 0.

To show (b), we need to verify

n∑
j=−M

d2
njζ

2
j →p 1.(2.13)

Letting k ≥ 1, write

n∑
j=−M

d2
njζ

2
j =

n∑
j=−M

d2
nj +

n∑
j=−M

d2
nj{ζ2

j − k−1

k∑
l=1

ζ2
j+l}

+
n∑

j=−M

d2
nj{k−1

k∑
l=1

ζ2
j+l − 1} =: qn1 + qn2 + qn3.

In view of (2.9), qn1 =
∑n

j=−∞ d
2
nj +O(1/ log n)→ 1. Since Eζ2

j = 1, then

E|qn2| ≤ k−1E
∣∣∣ n∑
j=−M

kd2
njζ

2
j −

k∑
l=1

n+l∑
j=−M+l

d2
n,j−lζ

2
j

∣∣∣
≤ k−1

n∑
j=−∞

|kd2
nj − d2

n,j−1 − · · · − d2
n,j−k|E[ζ2

j ] + dnE[ζ2
n+1 + · · ·+ ζ2

n+k + ζ2
−M ]

≤ k

n∑
j=−∞

|d2
nj − d2

n,j−1|+ (k + 1)d2
n → 0,
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because
∑n

j=−∞ |d2
nj − d2

n,j−1| ≤ (
∑n

j=−∞(dnj − dn,j−1)2)1/2(2
∑n

j=−∞ d
2
nj)

1/2 → 0, by (2.8).

Finally, since {ζj} is stationary and ergodic, by the Ergodic Theorem; see e.g. Stout

(1974, Corollary 3.5.2), E
∣∣k−1

∑k
l=1 ζ

2
j+l−Eζ2

1

∣∣ = E
∣∣k−1

∑k
l=1 ζ

2
l −1

∣∣→ 0, k →∞, and thus

E|qn3| ≤ o(1)
∑n

j=−∞ d
2
nj = o(1), which implies (2.13) and completes the proof. 2

Remark 2.2 Note that the above lemma clearly includes the case of {ζj} ∼ IID(0, 1).

Furthermore, it gives a generalization of Theorem V.1.2.1 of Hájek and Šidák (1967) where

dnj = 0, j ≤ 0 and {ζj} ∼ IID(0, 1). If ζj ∼ IID(0, 1), assumption (2.6) implies the

weak Lindeberg condition, see Hall and Heyde (1980, p. 53), and is minimal. Indeed, let

Sn =
∑n

j=1 dnjζj, dnj =
(
1 + cn−α

)−j
n−α, c > 0. If α > 0, then max1≤j≤n |dnj| = o(1)

and the CLT holds, as also shown in Phillips and Magdalinos (2007). However, if α = 0,

then max1≤j≤n |dnj| = (1 + c)−1, (2.6) does not hold and Sn →D

∑∞
j=1(1 + c)−jζj, which

is Gaussian only if {ζj} is Gaussian, as pointed out in Anderson (1959). Peligrad and

Utev (1997, Theorem 2.1) derived Lemma 2.1, requiring instead of Assumption 2.1 that the

m.d.s. {ζj} be a pairwise mixing sequence. In their Example 2.1 they showed that (2.6) and

stationarity and ergodicity of m.d.s. alone are not sufficient for the CLT.

The next corollary provides a straightforward generalization of Lemma 2.1 to a two-sided

moving average of m.d.s., while the result for weighted sums of a stationary ergodic process

stated in Proposition 2.1 is useful in various applications.

Corollary 2.1 Suppose Sn =
∑∞

j=−∞ dnjζj, n ≥ 1, where {ζj} is a m.d.s., and {dnj} are

such that
∑

j∈Z d
2
nj = 1.

(i) In addition, if {ζj} satisfies Assumption 2.1 and maxj∈Z |dnj| = o(1), then Sn →D

N (0, σ2
ζ ).

(ii) In addition, if {ζj} is stationary ergodic and
∑

j∈Z(dnj − dn,j−1)2 = o(1), then Sn →D

N (0, σ2
ζ ), and ∑

j∈Z

d2
njζ

2
j = Eζ2

1 + op(1).(2.14)

Proposition 2.1 Suppose Sn =
∑n

j=n znjηj, n ≥ 1, where {ηj} is a stationary ergodic

sequence, E|η1| <∞, and {znj} are such that

n∑
j=2

|znj − zn,j−1|+ |zn1| = o(
n∑
j=1

|znj|).(2.15)

Then

n∑
j=1

znjηj = Eη1

( n∑
j=1

znj
)

+ op(
n∑
j=1

|znj|).(2.16)
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Proof. Since |znj| ≤
∑j

j=2 |znj−zn,j−1|+|zn1|, j = 2, · · · , n, then by (2.15), max1≤j≤n |znj| =
o(
∑n

j=1 |znj|), and (2.16) follows by the same argument as in the proof of (2.13). 2

Weighted sums. We now turn to the asymptotic normality of Wn. Let znj, j, n ≥ 1 be

an array of real numbers, and consider the weighted sums

Wn =
n∑
j=1

znjXj.(2.17)

The following theorem gives three sufficient (non-equivalent) conditions for the verifi-

cation of the CLT for Wn for different types of weights znj. Subsequently, they will be

strengthened in Proposition 2.2 for easy verification. Here, σ2
n := Var(Wn).

Theorem 2.2 Suppose {Xj} is a linear process (2.1) with m.d. innovations {ζj}. Suppose

the weights {znj} in Wn, {aj} and {ζj} in (2.1) satisfy one of the following three conditions:

(i) m.d.s. {ζj} satisfies Assumption 2.1,

max1≤j≤n |znj| = o(σn), and
∑n

j=1 z
2
nj ≤ Cσ2

n.

(ii) m.d.s. {ζj} satisfies Assumption 2.1,

max1≤j≤n |znj| = o(σn), and
∑∞

j=0 |aj| <∞.

(iii) m.d.s. {ζj} is either stationary and ergodic, or satisfies Assumption 2.1, and

|zn1|+ |znn|+
∑n

j=2 |znj − zn,j−1| = o(σn).

Then,

σ−1
n Wn →D N (0, 1).(2.18)

Proof. Similarly as in (2.3), set ak = 0, k < 0, and let dnj := σ−1
n

∑n
k=max(j,1) znkak−j ≡

σ−1
n

∑n
k=1 znkak−j, j ∈ Z. Then

σ−1
n Wn =

n∑
j=−∞

dnjζj.(2.19)

Recall Var(σ−1
n Wn) =

∑n
j=−∞ d

2
njv

2
j = 1. We will verify that in cases (i) and (ii), dnj’s satisfy

(2.6), whereas in case (iii) (2.8) holds, which by Lemma 2.1 proves (2.18).

Case (i). Clearly, here Kn := σn/max1≤j≤n |znj| → ∞ and

|dnj| ≤ σ−1
n

n∑
k=1

|znkak−j|I(|k − j| ≥ Kn)

+σ−1
n

n∑
k=1

|znkak−j|I(|k − j| < Kn) := qn,1j + qn,2j, say.
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By the Cauchy-Schwarz inequality,

qn,1j ≤ σ−1
n

( n∑
k=1

z2
nk

)1/2
( n∑
k=1

a2
k−jI(|k − j| ≥ Kn)

)1/2

≤ C
n∑

i≥Kn

a2
i ,

qn,2j ≤ σ−1
n max

1≤k≤n
|znk|

n∑
k=1

|ak−j|I(|k − j| < Kn)

≤ K−1
n (2Kn)1/2

( ∞∑
i=0

a2
i

)1/2

≤ CK−1/2
n , ∀ j ≤ n.

Hence, assumption (i) and
∑∞

i=0 a
2
i <∞ yield

max
j≤n
|dnj| ≤ C

( n∑
i≥Kn

a2
i +K−1/2

n

)
→ 0,

thereby proving (2.6).

Case (ii): Here, (2.6) follows because

max
1≤j≤n

|dnj| ≤ σ−1
n max

1≤j≤n
|znj|

∞∑
l=0

|al| ≤ Cσ−1
n max

1≤j≤n
|znj|.

Case (iii). To verify (2.8), define for simplicity zn0 = zn,n+1 = 0. Then one can write

dnj − dn,j−1 = σ−1
n

n∑
k=1

znk(ak−j − ak+1−j) = σ−1
n

n+1∑
k=1

(znk − zn,k−1)ak−j.

Hence,

∑
j∈Z

(dnj − dn,j−1)2 = σ−2
n

n+1∑
k,s=1

(znk − zn,k−1)(zns − zn,s−1)
∑
j∈Z

ak−jas−j

≤ σ−2
n

n+1∑
k,s=1

|znk − zn,k−1||zns − zn,s−1|
∞∑
j=0

a2
j

≤ Cσ−2
n

(
|zn1 + |znn|+

n∑
k=2

|znk − zn,k−1|
)2

→ 0,

by condition (iii) of the proposition. This completes the proof of the theorem. 2

Remark 2.3 Assumption (ii) of Theorem 2.2 can be applied in case of short and negative

memory linear processes {Xj} that satisfy
∑∞

j=0 |aj| <∞, whereas condition (i) is useful in

the case when {Xj} has long or short memory. Condition on znj in (iii) is stronger than in

(i) but allows m.d.s. {ζj} to be stationary and ergodic, which is especially tractable.
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Remark 2.4 The CLT results of this paper can be applied to the sumWn of a non-stationary

process {Xj} for which the first differences Yj := Xj−Xj−1 form a linear process, by rewriting

Wn =
∑n

j=1 znjXj =
∑n

k=1{
∑n

j=k znj}Yk + X0

∑n
j=1 znj. This reduces the problem to the

CLT for the weighed sum Wn of Yj’s with weights z′nk :=
∑n

j=k znj.

In applications, the verification of conditions for asymptotic normality of Wn in Theorem

2.2 often reduces to analyzing the asymptotic behavior of the variance σ2
n ≡ Var(Wn) =∑n

j,k=1 znjγX(j − k)znk, since the remaining conditions on weights znj are usually easy to

verify. In the next proposition we provide stronger sufficient conditions in terms of the

spectral density f of {Xj} and weights znj for analyzing the asymptotic behavior of σ2
n and

validating the conditions of Theorem 2.2. In particular, condition (2.20) on weights is mild

and satisfied in most of the applications. Part a) requires f to be only continuous at 0,

with no restrictions on f at higher frequencies. It is satisfied by spectral densities of ARMA

and seasonal GARMA models. Part b) allows the spectral density to be unbounded at the

origin, i.e. to have long memory. Part c) focuses on the case when f is bounded away

from 0 in the whole spectrum, which includes the case of long memory and seasonal long

memory models; see, e.g., Granger and Joyeux (1980), Hosking (1981) and Gray, Zhang and

Woodward (1989). Parts (a) and (b) are applicable when m.d.s. {ζj} is stationary and

ergodic.

Proposition 2.2 Let {Xj}, znj, and Wn be as in (2.1) and (2.17). Assume that m.d.s. {ζj}
is either stationary and ergodic, or satisfies Assumption 2.1. Then the following holds.

(a) Suppose f(u)→ f(0), u→ 0, 0 < f(0) <∞, and

|zn1|+ |znn|+
n∑
j=2

|znj − zn,j−1| = o
(( n∑

j=1

z2
nj

)1/2
)
.(2.20)

Then

Var(Wn) ∼ 2πf(0)
n∑
j=1

z2
nj.(2.21)

Moreover, the conditions of Theorem 2.2(iii) are satisfied, and CLT (2.18) holds.

(b) If f(u) ≥ c > 0, |u| ≤ u0, for some c > 0 and u0 > 0, and (2.20) holds, then the

conditions of Theorem 2.2(iii) are satisfied, and CLT (2.18) holds.

(c) Suppose Assumption 2.1 is satisfied, there exists c > 0 such that f(u) ≥ c > 0, u ∈ Π,

and

max
1≤j≤n

|znj| = o
(( n∑

j=1

z2
nj

)1/2
)
.(2.22)

Then the conditions of Theorem 2.2(i) are satisfied, and CLT (2.18) holds.
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Proof. (a) Let G(u) :=
∑n

j=1 e
−ijuznj, u ∈ Π. Since γX(k) =

∫
Π
eikuf(u) du, then

σ2
n =

n∑
j,k=1

znjγX(j − k)znk =

∫
Π

f(u)|G(u)|2du(2.23)

= 2πf(0)
n∑
j=1

z2
nj + in, in := σ2

n − 2πf(0)
n∑
j=1

z2
nj.

It remains to show that

in =
∣∣σ2
n − 2πf(0)

n∑
j=1

z2
nj

∣∣ = o(
n∑
j=1

z2
nj),(2.24)

which proves (2.21), and together with (2.20) verifies condition (iii) Theorem 2.2 and thus

(2.18).

Verification of (2.24) is based on two facts∫
Π

|G(u)|2du = 2π
n∑
j=1

z2
nj, sup

|u|≤π
|uG(u)| = o

( n∑
j=1

z2
nj

)
,(2.25)

shown below. We proceed as follows. Let ε > 0. Choose δ > 0, such that sup0≤u≤δ |f(u) −
f(0)| ≤ ε. Then by (2.25),

in ≤
∫
|u|≤π
|f(u)− f(0)||G(u)|2du

≤ ε

∫
|u|≤δ
|G(u)|2du+

∫
δ<|u|≤π

|f(u)− f(0)|δ−2|uG(u)|2du

≤ ε2π
n∑
j=1

z2
nj + o

( n∑
j=1

z2
nj

) ∫
δ<|u|≤π

|f(u)− f(0)|du

≤ ε2π
n∑
j=1

z2
nj + o

( n∑
j=1

z2
nj

)
,

since
∫
|u|≤π f(u)du = Eζ2

j = σ2
ζ and f(0) <∞, which yields (2.24).

To show the first claim of (2.25), use
∫

Π
eisudu = 0 for s 6= 0, to obtain∫

Π

|G(u)|2du =

∫
Π

n∑
j,k=1

ei(j−k)uznjznkdu = 2π
n∑
j=1

z2
nj.

To show the second claim, use summation by parts, to write

G(u) =
n−1∑
j=1

(

j∑
l=1

e−ilu)(znj − zn,j+1) + znn

n∑
l=1

e−ilu.

11



For j = 1, · · · , n, one can bound∣∣∣ j∑
l=1

eilu
∣∣∣ =

∣∣∣sin(ju/2)

sin(u/2)

∣∣∣ ≤ | sin(nu/2)|−1 ≤ πu−1, |u| ≤ π.

Therefore, |uG(u)| ≤ π
(∑n−1

j=1 |znj − zn,j+1| + |znn|
)

= o
(∑n

j=1 z
2
nj

)
, by (2.20), which com-

pletes the proof of (2.25) and the part (a) of the proposition.

(b) By assumption of the proposition and (2.25),

σ2
n =

∫
Π

f(u)|G(u)|2du ≥ c

∫
|u|≤u0

|G(u)|2du

= c
{∫
|u|≤u0

|G(u)|2du−
∫
u0<|u|≤π

|G(u)|2du
}

= c 2π(1 + o(1))
n∑
j=1

z2
nj.

This together with (2.20) verifies (iii) of Theorem 2.2 which implies (2.18).

(c) Assumption f(u) ≥ c > 0 thus implies

σ2
n ≥ c

∫
Π

|G(u)|2du = 2π c
n∑
j=1

z2
nj,(2.26)

which together with (2.22) yields (i) of Theorem 2.2 which implies (2.18) and completes the

proof of the proposition. 2

Remark 2.5 Proposition 2.2 verifies the CLT for “smooth” weights znj and stationary and

ergodic m.d.s. {ζj}, e.g., in Corollary 4.4 below, it is shown that (2.20) holds for kernel

weights znj = K((nx−j)/(nb)) in nonparametric regression setups. As long as f is continuous

at zero, (2.20) yields the asymptotic behavior of the variance (2.21) and the asymptotic

normality of Wn.

If (2.20) does not hold, Theorem2.2(i, ii) may be applied. For instance, alternating

weights znj = (−1)j = e±iπj do not satisfy (2.20), but Theorem 2.2(i) is applicable. Indeed,

maxj |znj| = 1 and
∑n

j=1 z
2
nj = n. In addition, if f(u) → f(π) > 0, u → π, then, letting

Dn(u) :=
∑n

l=1 e
ilu,

Var(Wn) =
n∑

j,k=1

znjγX(j − k)znk =

∫
Π

|Dn(u+ π)|2f(u)du

=

∫ π

0

f(u− π)|Dn(u)|2du+

∫ 0

−π
f(u+ π)|Dn(u)|2du

= f(π)

∫ π

−π
|Dn(u)|2du+ o(n) = 2πf(π)n+ o(n),

using f(−π) = f(π), similarly as in the proof of (2.21). This shows the applicability of

Theorem 2.2(i), and hence the CLT for Wn. Note that here (2.21) for Var(Wn) does not

hold.
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The following proposition, that is valid for any short memory covariance-stationary pro-

cess {Xj}, provides an upper bound for Var(Wn) and analyzes its asymptotic behavior.

Proposition 2.3 Let {Xj} be a covariance-stationary process with zero mean, finite vari-

ance and covariance function γ such that∑
k∈Z

|γ(k)| <∞.(2.27)

Let Wn be as in (2.17) with znj satisfy conditions (2.20) and (2.22). Then,

( n∑
j=1

z2
nj

)−1
Var(Wn) ≤

∑
k∈Z

|γ(k)|,(2.28)

( n∑
j=1

z2
nj

)−1
Var(Wn) → σ2 :=

∑
k∈Z

γ(k).

Proof. Under (2.27),

f(u) = (2π)−1
∑
k∈Z

e−ikuγ(k) ≤ (2π)−1
∑
k∈Z

|γ(k)| <∞, u ∈ Π,

f(u) → f(0) = (2π)−1
∑
k∈Z

γ(k) = (2π)−1σ2, u→ 0.

Thus, by (2.23) and (2.25),

Var(Wn) =

∫
Π

f(u)|G(u)|2du ≤ sup
u∈Π

f(u)

∫
Π

|G(u)|2du

=
∑
k∈Z

|γ(k)|
n∑
j=1

z2
nj,

which proves the first bound of (2.28). The proof of the second bound is the same as that

of (2.21). This completes the proof of proposition. 2

The following result is a multivariate generalization of Theorem 2.2.

Theorem 2.3 Let z
(i)
n,j, i = 1, · · · , k be k arrays of real weights, and {Xj} is a linear process

(2.1) with m.d.s. {ζj}. Assume that sums W
(i)
n :=

∑n
j=1 z

(i)
n,jXj and (σ

(i)
n )2 := Var(W

(i)
n ),

i = 1, . . . , k satisfy one of conditions (a) or (b).

(a) {ζj} is stationary and ergodic, and each sum W
(i)
n , i = 1, . . . , k satisfies condition (iii)

of Theorem 2.2.

(b) {ζj} satisfies Assumption 2.1 and each sum W
(i)
n , i = 1, . . . , k, satisfies one of the

conditions of (i) -(iii) of Theorem 2.2.
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Let for some (positive definite) matrix Σ,(
Cov(W (i)

n /σ(i)
n , W

(j)
n /σ(j)

n )
)
i,j=1,...,k

→ Σ.(2.29)

Then (
W (1)
n /σ(1)

n , . . . ,W (k)
n /σ(k)

n

)
→D Nk(0,Σ).(2.30)

Proof. Similarly as in (2.19), write

S(i)
n := W (i)

n /σ(i)
n =

n∑
j=−∞

d
(i)
njζj, i = 1, · · · , k.

To prove (2.30), in view of the Cramér-Wold device, it suffices to show that for every a =

(a1, . . . , ak) ∈ Rk,

Sn := a1S
(1)
n + · · ·+ akS

(k)
n →D N(0, aΣaT ).(2.31)

Write Sn =
∑n

j=−∞ dnjζj where dnj = a1d
(1)
nj + · · ·+ akd

(k)
nj . Condition (2.29) implies that

Var(Sn) = Eζ2
1

n∑
j=−∞

d2
nj → aΣaT .

Assume that m.d.s. satisfies Assumption 2.1. As seen in the proof of Theorem 2.2, any one

of the conditions (i), (ii) or (iii) assures that sup−∞<j≤n |d
(i)
nj | → 0, i = 1, · · · , k, which yields

sup−∞<j≤n |dnj| → 0. Hence coefficients dnj of Sn satisfy assumptions of Lemma 2.1 which

implies (2.31).

Assume that m.d.s. is stationary ergotic. In the proof of Theorem 2.2, it was shown

that condition (iii) yields
∑
−∞<j≤n(d

(i)
nj − d

(i)
n,j−1)2 → 0, i = 1, · · · , k. Consequently,∑

−∞<j≤n(dnj − dn,j−1)2 → 0, and (2.31) follows by Lemma 2.1. 2

3 Weak convergence of partial sum processes

A number of econometric applications require the weak convergence of a suitably standard-

ized partial sums process Sn(τ) =
∑[nτ ]

j=1 Xj, τ > 0 to some limit process S(τ), 0 ≤ τ ≤ 1.

Observe that for each n, Sn(τ), 0 ≤ τ ≤ 1, is a step function in τ , belonging to the Skorokhod

functional space D[0, 1].

From Billingsley (1968), we recall that a sequence of stochastic processes {Zn(·)}, n ≥ 1

in D[0, 1] is said to converge weakly to a stochastic process Z(·) ∈ C[0, 1], and we write

Zn ⇒ Z, if every finite dimensional distribution of {Zn(·)} converges to that of Z(·) and if

{Zn(·)} is tight with respect to the uniform metric, see also Pollard (1984). The uniform
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topology is stronger than the Skorokhod J1-topology, and the verification of tightness in the

uniform metric is relatively easier.

Using the arguments in Section 12 and Theorem 15.5, p. 127 of Billingsley (1968), see

also Pollard (1984, ch. V.1, Theorem 3), one can show that a sufficient condition for tightness

of {Zn} is the following: There exists a sequence of non-decreasing right continuous functions

Fn on [0, 1] that are uniformly bounded and converge uniformly to a continuous function F

such that for some β > 1, γ > 0, and ∀ 0 ≤ s < t ≤ 1,

E|Zn(t)− Zn(s)|γ ≤ C[Fn(t)− Fn(s)]β, ∀n ≥ 1,(3.1)

where C may depend on γ, but not on s, t and n.

Now, let Sn = Sn(1) and σ2
n := Var(Sn). Our goal here is to establish the weak con-

vergence of {σ−1
n Sn(·)}. For this purpose we need to establish that its finite dimensional

distributions converge to those of the limit process, denoted by →fdd, and that the process

is tight in uniform metric. We first focus on the finite dimensional convergence.

According to Lamperti Theorem (1962), if

{σ−1
n Sn(τ)} →fdd {S(τ)},(3.2)

then for some H ∈ (0, 1) and a positive slowly varying function L,

σ2
n = Var(Sn) = n2HL(n).(3.3)

In most applications

σ2
n = Var(Sn) ∼ s2n2H →∞, for some 0 < H < 1,(3.4)

where 0 < s2 <∞ is the long-run variance of Sn.

In the case of a linear process {Xj} of (2.1), with m.d. stationary and ergodic innovations

{ζj}, (3.4) is also sufficient for (3.2).

The limits in this section will be described by the fractional Brownian motion (fBm),

BH(τ), 0 ≤ τ ≤ 1, with parameter 0 < H < 1, which is a Gaussian process with the mean

EBH(t) ≡ 0, and covariance function

rH(s, t) :=
1

2

{
|s|2H + |t|2H − |s− t|2H

}
, 0 ≤ s, t ≤ 1.(3.5)

Note that if H = 1/2, then B1/2 = B is Brownian motion. The convergence of the finite

dimensional distributions of σ−1
n Sn(τ), 0 ≤ τ ≤ 1 is established in the following

Proposition 3.1 Suppose {Xj} is a linear process (2.1) with the m.d.s. {ζj} being either

stationary and ergodic, or satisfying Assumption 2.1, and that (3.4) holds.

Then,

{σ−1
n Sn(τ)}τ>0 →fdd {BH(τ)}τ>0,(3.6)

where BH is the fBm with parameter H.
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Proof. Let Tn(τ) := σ−1
n Sn(τ). Assumption (3.4) implies that for any 0 < τ < 1,

Var(Tn(τ)) =
Var(Sn(τ))

Var(Sn)
=

(nτ)2H(1 + o(1))

n2H(1 + o(1))
→ τ 2H ,

and hence,

Cov(Tn(t), Tn(s)) = (1/2){Var(Tn(t)) + Var(Tn(s))− Var
(
Tn(t)− Tn(s)

)
}(3.7)

→ rH(t, s), ∀ 0 < s < t,

where rH is as in (3.5). In view of the Cramér-Wold device, it suffices to show that

∀ a1, . . . , ak ∈ R, t1, . . . , tk > 0 and k ≥ 1, Sn = a1Sn([nt1]) + · · ·+ akSn([ntk]) satisfy

σ−1
n Sn →D S := a1BH(t1) + · · ·+ akBH(tk).

By (3.7), Var(Sn)→∞, and the rest of the proof repeats the lines of proof of Theorem 2.1.

The following proposition is a simplified version of the result obtained by Taqqu (1975).

It shows that long memory of the summands {Xj} a priori guarantees the tightness of the

normalized partial sum process. It does not require {Xj} to be a linear process.

Proposition 3.2 Let {Xj} be a second order stationary process satisfying (3.4), with an

1/2 < H < 1. Then, σ−1
n Sn(·) is tight w.r.t. uniform metric. In addition, if σ−1

n Sn →fdd S,

where S(u), 0 ≤ u ≤ 1 is a stochastic process, then,

σ−1
n Sn(·)⇒ S(·), in D[0, 1] and uniform metric.(3.8)

Proof. To check tightness, we shall verify (3.1) for the process Tn(t) := σ−1
n Sn(t). Let

Fn(t) := [nt]/n, F (t) := t, 0 ≤ t ≤ 1. Observe that supt |Fn(t) − F (t)| → 0 and F is

continuous on [0, 1]. By covariance stationarity of the increments,

E|Tn(t)− Tn(s)|2 = E
(
σ−1
n

[nt]−[ns]∑
j=1

Xj

)2

(3.9)

=
( [nt]− [ns]

n

)2H (1 + o(1))

(1 + o(1))
≤ C

( [nt]− [ns]

n

)2H

= C [Fn(t)− Fn(s)]2H ,

for some δ > 0. Since β := 2H > 1, this verifies (3.1) for the Tn process with γ = 2 and

completes the proof.

The following lemma, where Sn = Sn(1), gives a useful bound for moments of the sums

of a linear process with m.d. innovations and is useful in proving the tightness of the process

{Tn(t)} in the cases of short and negative memory processes {Xj}. It extends the well-known

Burkholder-Rosenthal inequality for martingales and some other inequalities involving m.d.s.

of Dharmadhikari, Fabian and Jogdeo (1968, Theorem) and Borovskikh and Korolyuk (1997,

Chapter 3).
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Lemma 3.1 Let {Xj} be a linear process (2.1) with m.d. innovations {ζj}, such that Eζ2
j =

σ2
ζ for all j, and δ := maxj E|ζj|p <∞, for some p ≥ 2. Then

E|Sn|p ≤ c
(
ES2

n

)p/2
, ∀n ≥ 1,(3.10)

where c > 0 depends only on p and δ.

Proof. Setting dnj =
∑n

k=max(j,1) ak−j, write Sn =
∑n

j=−∞ dnjζj. Because Eζ2
j = σ2

ζ , ES
2
n =

σ2
ζ

∑n
j=−∞ d

2
nj <∞ and by Lemma 3.2 below,

E|Sn|p = E
∣∣∣ n∑
j=−∞

dnjζj

∣∣∣p ≤ C max
j
E|ζj|p

( n∑
j=−∞

d2
nj

)p/2
= c
(
ES2

n

)p/2
,

where c = C maxj E|ζj|p/σpζ does not depend on n. 2

Lemma 3.2 Let p ≥ 2 and {Yj,Fj, 1 ≤ j ≤ n} be a m.d.s. with maxj E|Yj|p < ∞. Then,

for every n ≥ 1,

E
∣∣∣ n∑
j=1

Yj

∣∣∣p ≤ Cp

( n∑
j=1

(E|Yj|p)2/p
)p/2

, p > 2,(3.11)

with a constant Cp > 0 depending only on p.

The inequality (3.11) remains valid also for n =∞.

Proof. Let n < ∞. For p ≥ 2, by the Burkholder-Rosenthal’s inequality (see Hall and

Heyde (1980), p. 24),

E
∣∣∣ n∑
j=1

Yj

∣∣∣p ≤ Cp

[ n∑
j=1

E|Yj|p + E
( n∑
j=1

E[Y 2
j |Fj−1]

)p/2]
.(3.12)

Recall the fact that for any real numbers a, b, and for 0 < α ≤ 1, |a + b|α ≤ |a|α + |b|α.

Apply this fact with α = 2/p ≤ 1 to obtain( n∑
j=1

E|Yj|p
)2/p

≤
n∑
j=1

(
E|Yj|p

)2/p
.(3.13)

To bound the second term on the r.h.s. of (3.12), first use the Cauchy–Schwarz inequality

for the conditional expectation with p/2 ≥ 1, to obtain E[Y 2
j |Fj−1] ≤ (E[|Yj|p|Fj−1])2/p,

1 ≤ j ≤ n. Next, by Minkowski inequality for any r.v.’s X and Y,

(E|X + Y |r)1/r ≤ (E|X|r)1/r + (E|Y |r)1/r, r ≥ 1.
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These facts in turn imply

E
(∑n

j=1E[Y 2
j |Fj−1]

)p/2
≤ E

(∑n
j=1(E[|Yj|p|Fj−1])2/p

)p/2
≤

(∑n
j=1

(
E|Yj|p

)2/p
)p/2

,

which together with (3.13) and (3.12) proves (3.11).

Consider now the case of an infinite sum. Let p ≥ 2. We claim

E
∣∣∣ ∞∑
j=1

Yj

∣∣∣p ≤ Cp

( ∞∑
j=1

(E|Yj|p)2/p
)p/2

.(3.14)

This inequality is trivially true if the r.h.s. of (3.14) is infinite. Assume it is finite. By (3.11),

for any 1 < m ≤ n <∞,

E
∣∣∣ n∑
j=m

Yj

∣∣∣p ≤ Cp

( n∑
j=m

(E|Yj|p)2/p
)p/2
→ 0, m, n→∞.

Hence, by the Cauchy convergence criterion,
∑∞

j=1 Yj converges in Lp norm, and

E
∣∣∣ ∞∑
j=n+1

Yj

∣∣∣p → 0.

Next, by the Minkowski inequality and (3.11),

E1/p
∣∣∣ ∞∑
j=1

Yj

∣∣∣p ≤ E1/p
∣∣∣ n∑
j=1

Yj

∣∣∣p + E1/p
∣∣∣ ∞∑
j=n+1

Yj

∣∣∣p
≤ Cp

( n∑
j=1

(E|Yj|p)2/p
)p/2

+ E1/p
∣∣∣ ∞∑
j=n+1

Yj

∣∣∣p.
Claim (3.14) now is proved upon taking limit as n→∞ in this bound. 2

We are now ready to state and prove the following weak convergence result.

Theorem 3.1 Assume that the m.d.s. {ζj} in the linear process {Xj} is either stationary

and ergodic, or satisfies Assumption 2.1. Suppose that Sn satisfies (3.4) with 0 < H < 1.

For 0 < H ≤ 1/2, assume, in addition, that maxj E|ζj|p <∞, for some p > 1/H. Then,

σ−1
n Sn(·)⇒ BH(·), in D[0, 1] and uniform metric,(3.15)

where BH is a fBm.

Proof. Proposition 3.1 implies the finite dimensional convergence. To prove tightness we

shall use (3.10). For H ≤ 1/2, by (3.10) and (3.9),

E|Tn(t)− Tn(s)|p ≤ c[E(Tn(t)− Tn(s))2]p/2 ≤ c
∣∣Fn(t)− Fn(s)

∣∣Hp.
This verifies (3.1) for the Tn process with γ = p, β = Hp > 1. For H > 1/2, (3.15) follows

from Proposition 3.2. This completes the proof. 2
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Remark 3.1 A functional CLT for partial sums process of a short memory linear process

{Xj} of (2.1) with m.d. innovations and aj’s such that
∑∞

j=0 j|aj| < ∞, was established

in Phillips and Solo (1992), and for more general stationary processes in Peligrad and Utev

(2005).

4 Applications

In this section we shall illustrate the usefulness of the above results in some important

models. In Subsection 4.1 these results are shown to be applicable to ARCH and stochastic

volatility processes, and the sample ACF of a m.d.s. Subsection 4.2 discusses applications

to parametric and non-parametric regression models.

4.1 Conditionally heteroscedastic processes

ARCH process. An important example of a stationary and ergodic m.d.s. is an ARCH(∞)

process, where

ζj ≡ rj = εjσj, σ2
j = b0 +

∞∑
k=1

bkr
2
j−k, j ∈ Z, {εj} ∼ IID(0, 1),(4.1)

b0 > 0, bk ≥ 0, k ≥ 1,
∞∑
k=1

bk < 1.

This process was introduced by Robinson (1991). It includes the parametric ARCH and

GARCH models of Engle (1982) and Bollerslev (1996). Obviously, {rj} is a m.d.s. E[rj|Fj−1] =

0, Vj = E[r2
j |Fj−1] = σ2

j , and the equations in (4.1) have a unique second order stationary

solution; see e.g., Giraitis, Leipus and Kokoszka (2000). Since rj = φ(εj, εj−1,εj−2, · · · ),
where φ is a measurable function, by Theorem 3.5.8 of Stout (1974), rj is stationary and

ergodic.

Squared ARCH process. A centered squared ARCH process

Xj = r2
j − Er2

j ,

with rj as in (4.1) and satisfying E1/2(ε4
0)
∑∞

k=1 bk < 1, has a unique fourth order stationary

solution, see, e.g., Giraitis, Leipus and Surgailis (2007), and is covered by the set up in (2.1).

Indeed, by (4.1),

Xj =
∞∑
k=1

bkXj−k + ηj, ηj = (ε2
j − 1)σ2

j ,(4.2)
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where {ηj} is a m.d.s. with E[ηj|Fj−1] = 0, Vj = E[η2
j |Fj−1] = Var(ε2

0)σ4
j and Eη2

0 < ∞.
Again, since ηj = φ(εj, εj−1,εj−2, · · · ), where φ is a measurable function, {ηj} is a stationary

and ergodic process.

By Proposition 4.1, under some additional conditions, {rj} and {ηj} satisfy Assumption

2.1. Hence, the results for the sums Sn and weighted sums Wn of this paper are applicable

also to a centered squared ARCH process (4.2), and to a linear process (2.1) with ARCH

innovations ζj = rj of (4.1).

Proposition 4.1 Let rj be as in (4.1), and ηj as in (4.2). Then,

(i) {rj} and {ηj} are stationary and ergodic m.d.s.

(ii) rj satisfies Assumption 2.1, if E1/2(ε4
0)
∑∞

k=1 bk < 1.

(iii) ηj satisfies Assumption 2.1, if E1/4(ε8
0)
∑∞

k=1 bk < 1.

Proof. Claim (i) was proved above, just before the statement of this proposition.

(ii) First we verify Assumption 2.1(a) for Vj = σ2
j = E[ζ2

j |Fj−1]. Recursion (4.1) yields

Volterra expansion of σ2
j , see, e.g., Giraitis, Leipus and Kokoszka (2000):

σ2
j ≡ b0(1 +

∞∑
k=1

hk,j), hk,j :=
∞∑

s1,...,sk=1

bs1 . . . bsk
ε2
j−s1 . . . ε

2
j−s1−···−sk

, j ∈ Z.(4.3)

To show Emaxj σ
4
j < ∞, let B =

∑∞
s=1 bs. Since bj’s are non-negative and εj’s are i.i.d.

r.v.’s, by the Cauchy-Schwarz inequality (C-S)

Eh2
k,j ≤

∞∑
s1,...,sk=1

∞∑
t1,...,tk=1

bs1 . . . bsk
bt1 . . . btk(4.4)

×{E[(ε2
j−s1 . . . ε

2
j−s1−···−sk

)2]}1/2{E[(ε2
j−t1 . . . ε

2
j−t1−···−tk)2]}1/2

=
( ∞∑
s1,...,sk=1

bs1 . . . bsk

)2

(Eε4
0)k = (B2Eε4

0)k.

Use this bound, C-S, and BE1/2ε4
0 < 1 of assumption (ii), to obtain

E[hk,jhp,j] ≤ (E[h2
k,j]E[h2

p,j])
1/2 ≤ (BE1/2[ε4

0])k+p,

Eσ4
j ≤ 2b2

0

(
1 + E(

∞∑
k=1

hk,j)
2
)
≤ 2b2

0

(
1 + {

∞∑
k=1

(BE1/2[ε4
0])k}2

)
<∞,(4.5)

which verifies Assumption 2.1(a).

To verify Assumption 2.1(b) we approximate σ2
j by m-dependent r.v.’s as follows. For

m ≥ 1, define

σ2
mj = b0(1 +

∞∑
k=1

hm,k,j), hm,k,j :=
m∑

s1,...,sk=1

bs1 . . . bsk
ε2
j−s1 . . . ε

2
j−s1−···−sk

.(4.6)
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Then σ2
mj, j ∈ Z is a stationary m-dependent process, Eσ4

mj ≤ Eσ4
j <∞, and for |t−j| > m,

Cov(σ2
mt, σ

2
mj) = 0. We will show that for |t− j| > m,

max
j
E(σ2

j − σ2
mj)

2 ≤ δm → 0, m→∞.(4.7)

The latter with the bound |Cov(X, Y )| ≤ (EX2EY 2)1/2 and (4.5) implies

|Cov(σ2
t , σ

2
j )| =

∣∣∣Cov(σ2
mt, σ

2
mj) + Cov(σ2

t − σ2
mt, σ

2
mj) + Cov(σ2

mt, σ
2
j − σ2

mj)(4.8)

+ Cov(σ2
t − σ2

mt, σ
2
j − σ2

mj)
∣∣∣

≤ C(δ1/2
m + δm)→ 0, m→∞,

which proves Assumption 2.1(b) with K = m. To verify (4.7), notice that bj ≥ 0 implies

hk,j ≥ hm,k,j. Hence, with Bm :=
∑m

s=1 bs and b̄s = bsI(1 ≤ s ≤ m), as in (4.4),

E(hk,j − hm,k,j)2 =
( ∞∑
s1,··· ,sk=1

(bs1 · · · bsk
− b̄s1 · · · b̄sk

)ε2
j−s1 . . . ε

2
j−s1−···−sk

)2

(4.9)

≤
( ∞∑
s1,··· ,sk=1

{bs1 · · · bsk
− b̄s1 · · · b̄sk

}
)2

(Eε4
0)k

= (Bk −Bk
m)2(Eε4

0)k.

Next, since 0 < Bm ≤ B, by the mean value theorem, Bk−Bk
m ≤ kBk−1(B−Bm) ≤ kBkδ̄m,

where δ̄m := (B −Bm)/B → 0, as m→∞. Hence, as in (4.5),

E(σ2
j − σ2

mj)
2 = b2

0E
( ∞∑
k=1

{hk,j − hm,k,j}
)2

(4.10)

≤ b2
0

( ∞∑
k=1

k(BE1/2[ε4
0])k
)2 × δ̄2

m = Cδ̄2
m → 0, m→∞,

which proves (4.7).

Assumption 2.1(c) follows by Markov inequality noting that Er4
j = Eε4

1Eσ
4
1 <∞.

(iii) Here Vj = σ4
jVar(ε2

0) = E[η2
j |Fj−1]. Thus verifying Assumption 2.1(a) is equivalent

to proving maxj Eσ
8
j < ∞. Towards this goal, first note that by the Hölder inequality and

by arguing as for (4.4), Eh4
k,j ≤ B4k(Eε8

0)k. Together with assumption BE1/4[ε8
0] < 1, this

bound yields

E[hk1,j · · ·hk4,j] ≤ (E[h4
k1,j

] · · ·E[h4
k4,j

])1/4 ≤ (BE1/4[ε8
0])k1+···+k4 ,(4.11)

Eσ8
j ≤ 4b4

0

(
1 + E(

∞∑
k=1

hk,j)
4
)
≤ 4b4

0

(
1 + {

∞∑
k=1

(BE1/4[ε8
0])k}4

)
<∞.
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To verify Assumption 2.1(b), we again use approximating m-dependent variables σ2
mj, (4.6).

We show that for |t− j| > m,

max
j
E(σ4

j − σ4
mj)

2 ≤ δm → 0, m→∞,(4.12)

which together with (4.11), as in (4.8), implies that

|Cov(σ4
t , σ

4
j )| =

∣∣∣Cov(σ4
mt, σ

4
mj) + Cov(σ4

t − σ4
mt, σ

4
mj) + Cov(σ4

mt, σ
4
j − σ4

mj)

+Cov(σ4
t − σ4

mt, σ
4
j − σ4

mj)
∣∣∣ ≤ C(δ1/2

m + δm)→ 0, m→∞.

Finally, to prove (4.12), use Hölder inequality, similarly as in (4.9) and (4.10), to obtain

E(hk,j − hm,k,j)4 ≤
( ∞∑
s1,··· ,sk=1

bs1 · · · bsk
−

m∑
s1,··· ,sk=1

bs1 · · · bsk

)4
(Eε8

0)k

≤ (Bk −Bk
m)4(Eε8

0)k ≤ (Eε8
0)kk4B4kδ̄4

m,

E(σ2
j − σ2

mj)
4 ≤ b4

0E
( ∞∑
k=1

{hk,j − hm,k,j}
)4

≤ b4
0

( ∞∑
k=1

k(BE1/4[ε8
0])k
)4 × δ̄4

m = Cδ̄4
m → 0, m→∞,

because BE1/4[ε8
0] < 1 by assumption (iii), where δ̄m = (B − Bm)/B → 0. This together

with (4.11) and σ2
mj ≤ σ2

j implies

E(σ4
j − σ4

mj)
2 ≤ E[(σ2

j − σ2
mj)

2(σ2
j + σ2

mj)
2]

≤ E[(σ2
j − σ2

mj)
24σ4

j ] ≤ (E[(σ2
j − σ2

mj)
4)1/24(Eσ8

j )
1/2 ≤ Cδ̄2

m → 0 m→∞,

which proves (4.12) and completes verification of Assumption 2.1(b).

Assumption 2.1(c) follows by Markov inequality noting that Eη4
j ≤ CEε8

1Eσ
8
1 < ∞,

which completes the proof of the proposition. 2

Stochastic volatility m.d. processes. By a stochastic volatility model one usually

understands a stationary process ζj, j ∈ Z of the form

ζj = εjσj, εj ∼ IID(0, 1), j ∈ Z,

where the (volatility) process σj > 0 is a function of the past information up to time j − 1.

Let Fj−1 be the σ-field generated by past innovations εs, s ≤ j − 1, and Eσ2
j < ∞. Then

E[ζj|Fj−1] = 0, σ2
j = Var(ζj|Fj−1), and {ζj} is a white noise process, which by Theorem

3.5.8 of Stout (1974) is also stationary and ergodic.

It is often assumed that the volatility process σj = h(ηj), j ∈ Z is a nonlinear function

of a stationary Gaussian or linear process {ηj}, see e.g. Robinson (2001). The choice of
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h(ηj) = exp(ηj) includes the Exponential Generalized ARCH (EGARCH) model, proposed

by Nelson (1991). A related class of stochastic volatility models with long memory in {σj}
was introduced and studied in Breidt, Crato and de Lima (1998), Harvey (1998), and Sur-

gailis and Viano (2002). As a rule, the volatility process Vj ≡ σ2
j in these models is a

stationary process with autocovariances decaying to zero, and thus satisfies Assumption 2.1.

Sample ACF. Let {ζj} be a stationary and ergodic m.d.s. such that σ2
ζ = Eζ2

0 < ∞.

Consider the sample autocorrelation ρ̂k = γ̂k/γ̂0, k ≥ 1 where γ̂k = n−1
∑n

j=k+1(ζj−ζ̄)(ζj−k−
ζ̄) and ζ̄ = n−1

∑n
j=1 ζj. It is well known that in the case of i.i.d. random variables,√

nρ̂k →D N (0, 1) and (
√
nρ̂1, · · · ,

√
nρ̂k) →D N (0, I) where the limit is a vector of k

independent standard normal variables. These results are widely used for testing for the

absence of correlation, see e.g. Brockwell and Davis (1991). The next proposition shows

that, in general, this asymptotic normality result is true only for i.i.d. sequences.

Let Ω be m×m matrix with (j, k)th element ωj,k = E[ζ2
1ζ1−jζ1−k]/σ

4
ζ .

Proposition 4.2 Let {ζj} be a stationary and ergodic m.d.s. with σ2
ζ := Eζ2

0 < ∞ such

that E[ζ2
1ζ

2
1−k] <∞, for k = 1, · · · ,m, where m is a given positive integer. Then

(
√
nρ̂1, · · · ,

√
nρ̂m) →D Nm(0,Ω).(4.13)

In particular, (4.13) holds in case of ARCH process ζj = rj of (4.1), such that E1/2(ε4
0)
∑∞

k=1 bk <

1. If in addition, Eε3
j = 0, then Ω is diagonal with ωk,k ≥ 1, k = 1, · · · ,m.

Proof. Let 1 ≤ k ≤ m. Under the given assumptions, by Stout (1974, Theorem 3.5.8),

ξj = ζjζj−k is a stationary and ergodic m.d.s., and Eξ2
0 < ∞. Thus, by Theorem 2.1,

ζ̄ = Op(n
−1/2), n−1/2

∑n
j=k+1 ζjζj−k →D N (0, Eξ2

0), while by ergodicity of ζ2
j , γ̂0 →p Eζ

2
0 .

Hence
√
nρ̂k = (σ2

ζ )
−1n−1/2

∑n
j=k+1 ζjζj−k +O(n−1/2)→ N (0, ωk,k).

To prove (4.13), let ξ
(k)
j = ζjζj−k , k = 1, · · · ,m. Then for any real numbers c1, · · · , cm,

ηj := c1ξ
(1)
j +· · ·+cmξ(m)

j is a stationary ergodic m.d.s., with Eη2
j = σ2

η := c2
1ω1,1+· · ·+c2

mωm,m.

Let Sn :=
∑n

j=m+1 ηj. Then ES2
n = σ2

ηn → ∞, and by Theorem 2.1, n−1/2Sn →D N (0, σ2
η),

which by the Cramer-Wold device implies the claim of (4.13).

In case of ARCH process rj, (4.1) and (4.3) imply ωk,k ≥ 1, and show that Ω is diagonal

if, in addition, Eε3
j = 0. 2

Remark 4.1 Proposition 4.2 shows that for the ARCH m.d.s. (4.1), the limit limit variance

of
√
nρ̂k, as the rule, is greater than one, and so the 95% confidence band for ρk = 0 is wider

than in i.i.d. case. Moreover, the limit matrix Ω may be non-diagonal, unless the distribution

of εj in (4.1) is symmetric.
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4.2 Regression models

In this section we discuss application of the above results for obtaining asymptotic normality

of least squares (LS) estimators in parametric regression models and kernel type estimators

in non-parametric regression models.

But first we verify the above conditions for asymptotic normality Sn and weak conver-

gence of the partial sum process {Sn(τ), 0 ≤ τ ≤ 1} of a linear process {Xj} of (2.1) in

some typical cases.

Let γ(j), j = 0, 1, 2, · · · denote the autocovariance function of {Xj} and f its spectral

density. Note that γ(j) := Cov(Xj, X0) = σ2
ζ

∑∞
k=0 akak+j, j = 0, 1, 2, · · · . Consider the

following assumption in terms of f .

f(u) ∼ c|u|−2d, u→ 0, |d| < 1/2, c > 0.(4.14)

In terms of γ(j), consider the following condition:∑
j∈Z

|γ(j)| < ∞, σ2 :=
∑
j∈Z

γ(j) > 0, for d = 0,(4.15)

γ(j) ∼ cγ|j|−1+2d, 0 < d < 1/2,

γ(j) ∼ cγ|j|−1+2d,
∑
j∈Z

γ(j) = 0, −1/2 < d < 0,

where cγ 6= 0. The cases d = 0, 0 < d < 1/2 and −1/2 < d < 0 define short, long and

negative memory of the process {Xj}.

Corollary 4.1 Let {Xj} be a linear process (2.1) with stationary and ergodic m.d. innova-

tions {ζj} satisfying (4.14) or (4.15) with some |d| < 1/2. Then,

σ2
n ∼ s2n1/2+d, n−1/2−dSn →D N (0, s2),(4.16)

where

s2 = 2πf(0), d = 0; s2 = cf

∫
R

sin2(u/2)

(u/2)2
|u|−2ddu, 0 < |d| < 1/2, under (4.14),

s2 =
∑
k∈Z

γ(k), d = 0; s2 = cγ/(d(1 + 2d)), 0 < |d| < 1/2, under (4.15).

In addition, if for −1/2 < d ≤ 0, E|ζ0|p <∞, for some p > 1/(1/2 + d), then

n−1/2−dSn(·)⇒ sB1/2+d(·),(4.17)

in D[0, 1] and uniform metric.
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Proof. The claim about σ2
n in (4.16) under (4.14) or (4.15) is known. Together with Theorem

2.1 and Proposition 3.1, it proves the second claim in (4.16) and (4.17). 2

Recall also the following known relationship between the weights ak and γ(j) when {Xj}
is a linear process (2.1) with stationary m.d. innovations. If

ak ∼ ca|k|−1+d, 0 < d < 1/2,

= ca|k|−1+d(1 +O(k−1)), −1/2 < d < 0,

where ca 6= 0, then γ(k) satisfies (4.15) with cγ = σ2
ζc

2
aB(d, 1− 2d), where B(·, ·) is the beta

function.

If
∑∞

k=0 |ak| <∞ and
∑∞

k=0 ak 6= 0 then

∞∑
k=0

|γ(k)| < ∞,
∞∑
k=0

γ(k) = σ2
ζ

( ∞∑
k=0

ak

)2

> 0.

LS estimation. Let {Xj} be a linear process with memory parameter 0 ≤ d < 1/2.

Consider the simple parametric regression model where for some β ∈ R, Yj = znjβ + Xj.

A problem of interest is to obtain asymptotic distribution of the least square estimator

β̂ =
∑n

j=1 znjYj/
∑n

j=1 z
2
nj of β. Suppose

znj = g(j/n), j = 1, · · · , n,(4.18)

where g is a continuous real valued function on [0, 1]. Moreover, in the short memory case

where d = 0, assume that the covariance function γ of {Xj} satisfies

∞∑
k=0

|γ(k)| <∞,
∑
k∈Z

γ(k) > 0.(4.19)

In the long memory case 0 < d < 1/2, assume

γ(k) ∼ cγ|k|−1+2d, k →∞.(4.20)

Now, note that β̂ − β =
∑n

j=1 znjXj/
∑n

j=1 z
2
nj =: Wn/

∑n
j=1 z

2
nj. Define

v2
D :=

∫ 1

0

g2(u)du
(∑
k∈Z

γ(k)
)
, d = 0,

:= cγ

∫ 1

0

∫ 1

0

g(u)g(v)|u− v|−1+2ddudv, 0 < d < 1/2,

τ 2
d := v2

d/
( ∫ 1

0

g2(u)du
)2
.

The following corollary gives limiting distribution of β̂.
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Corollary 4.2 Suppose the linear process {Xj} of (2.1) with stationary and ergodic m.d.

innovations {ζj} satisfies (4.19) or (4.20), and znj’s are as in (4.18). Then, with Wn :=∑n
j=1 znjXj,

n−1/2−dWn →D N (0, v2
d), n1/2−d(β̂ − β)→D N (0, τ 2

d ), 0 ≤ d < 1/2.(4.21)

Proof. The second claim in (4.21) follows from the first claim and the fact that
∑n

j=1 z
2
nj/n→∫ 1

0
g2(u)du, which is assured by the continuity of g. To prove the first claim in (4.21), we

shall verify condition (i) of Theorem 2.2. Let σ2
n := Var(Wn) =

∑n
j,k=1 znjznkγ(j − k). We

shall prove that

n−1−2dσ2
n → v2

d, ∀ 0 ≤ d < 1/2.(4.22)

Then σ2
n ∼ v2

dn
1+2d, which implies

∑n
j=1 z

2
nj = O(σ2

n) and max1≤k≤n |znk| ≤ sup0≤u≤1 |g(u)| =
o(σn), thereby verifying condition (i) of Theorem 2.2 for Wn.

We now prove (4.22). Suppose d = 0. Then,

n−1

n∑
j,k=1: |j−k|>K

|znjznkγ(j − k)| ≤ sup
0≤u≤1

|g(u)|2
n∑

|s|>K

|γ(s)| → 0, K →∞,

whereas for any |i| ≤ K, n−1
∑n

k=1 zn,k+iznkγ(i)→
∫ 1

0
g2(u)du. Whence,

lim
K→∞

lim
n→∞

n∑
j,k=1: |j−k|≤K

znjznkγ(j − k) =

∫ 1

0

g2(u)du lim
K→∞

∑
|i|≤K

γ(i) = v2
0,

which proves σ2
n → v2

0.

Next, consider the case 0 < d < 1/2. Here, (4.18), (4.20), change of variables and the

dominated convergence theorem yield

n−1−2dσ2
n = n−1−2d

n∑
k,j=1

znjzn,kγX(j − k)

= n−1−2dcγ

n∑
k,j=1:k 6=j

g(
j

n
)g(

k

n
)|j − k|−1+2d + o(1)

→ cγ

∫ 1

0

∫ 1

0

g(u)g(v)|u− v|−1+2ddudv = v2
d.

This completes the proof of (4.22) and the corollary. 2

A non-stationary process. As another application of Theorem 2.2, consider the

weighted sum Vn :=
∑n

j=1 znjYj of a non-stationary unit root process Yj :=
∑j

s=1Xs,

j = 1, 2, · · · . Set ψ(u) =
∫ 1

u
g(v)dv, 0 ≤ u ≤ 1. Also define,

v̄2
d :=

∫ 1

0

ψ2(u)du
(∑
k∈Z

γ(k)
)
, d = 0,

:= cγ

∫ 1

0

∫ 1

0

ψ(u)ψ(v)|u− v|−1+2ddudv, 0 < d < 1/2.
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In view of Remark 2.4, the proof of the following corollary is similar to that of Corollary 4.2.

Corollary 4.3 Suppose the linear process {Xj} of (2.1) with stationary and ergodic m.d.s.

{ζj} satisfies (4.19) or (4.20) and znj are as in (4.18). Then, n−3/2−dVn →D N (0, v̄2
d).

Nonparametric regression. We shall now show the usefulness of Theorem 2.2 in

deriving limiting distribution of a kernel type estimator of the regression function µ in the

nonparametric regression model Yj = µ(j/n) +Xj, when errors Xj may have long memory.

Let K be a density kernel on R with ‖K‖2
2 :=

∫
RK

2(v)dv <∞, and b ≡ bn be a sequence of

window widths. A kernel type estimator of µ(x) is given by

µ̂n(x) := K−1
nx

n∑
j=1

K(
nx− j
nb

)Yj, Knx :=
n∑
j=1

K(
nx− j
nb

).

Note, that as n→∞, Knx ∼ nb
∫

RK(u)du = nb, for all 0 < x < 1. Let

µ̄n(x) := K−1
nx

n∑
j=1

K(
nx− j
nb

)µ(
j

n
), Dn(x) := µ̂n(x)− µ̄n(x) = K−1

nx

n∑
j=1

K(
nx− j
nb

)Xj.

Then, µ̂n(x)−µ(x) = Dn(x)+µ̄n(x)−µ(x). Typically the bias term µ̄n(x)−µ(x) is negligible

compared to Dn(x) and asymptotic distribution of µ̂n(x) − µ(x) is determined by that of

Dn(x). Fix an x ∈ (0, 1) and let

znj := K−1
nxK(

x− nj
nb

).(4.23)

Then, clearly Dn(x) is like a Wn. Define

τ 2
d,K := ‖K‖2

2

∑
k∈Z

γ(k), d = 0,

:= cγ

∫ 1

0

∫ 1

0

K(u)K(v)|u− v|−1+2ddudv, 0 < d < 1/2.

We have

Corollary 4.4 Suppose the linear process {Xj} of (2.1) with stationary and ergodic m.d.s.

{ζj} satisfies (4.19) or (4.20). In addition, suppose b→ 0, nb→∞, and K is a continuous

density on R with
∫

RK
2(v)dv <∞.

Then, for every 0 < x < 1, and 0 ≤ d < 1/2,

(nb)1−2dVar(Dn(x))→ τ 2
d,K , n1/2−dDn(x)→D N (0, τ 2

d,K).(4.24)

Proof. With σ2
n := Var(Dn(x)) and znj as in (4.23),

(nb)1−2dσ2
n ∼ (nb)−1−2d

n∑
i=1

n∑
j=1

K(
nx− i
nb

)K(
nx− j
nb

)γ(i− j)
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A routine argument shows that continuity of K with ‖K‖2
2 <∞ implies (nb)1−2dσ2

n → τ 2
d,K ,

∀ 0 ≤ d < 1/2, and (nb)
∑n

j=1 z
2
nj ∼ (nb)−1

∑n
j=1K

2
(
(x − (j/n))/b

)
→ ‖K‖2

2. These facts

together yield σn ∼ τd,K(nb)−2d, σ−2
n

∑n
j=1 z

2
nj = O((nb)−2d) = O(1) and max1≤j≤n σ

−1
n |znj| =

O((nb)−1/2−d) = o(1), verify condition (i) of Theorem 2.2, and hence the corollary. 2

Dickey-Fuller distributions and their fractional versions. The results of Sec-

tion 3 also imply a number of existing findings that are widely used in the econometric

literature. Dickey and Fuller (1979, 1981) derived the distributions of the normalized au-

toregressive coefficient and the t-ratio, when the generating process has a unit root. Phillips

(1987) described their limits in terms of functionals of Brownian motion, while Abadir (1993,

1995) obtained the explicit expressions for their density and distribution functions. More

recently, Dolado, Gonzalo, and Mayoral (2002) generalized the Dickey-Fuller tests to allow

for fractional roots in the null hypothesis to be tested. Their limiting distribution results on

pp.1969–1070 can be extended by means of our Proposition 3.1 to the case of m.d. innova-

tions instead of just i.i.d. ones, except that they use a different type of fractional Brownian

motion; see Marinucci and Robinson (1999).

5 Simulations

In this Section we examine the small sample performance of some of the above asymptotic

results. We will consider three different experiments, all of them based on a sample size

n = 500 and 10, 000 replications.

ARFIMA-ARCH. We start from the case where Xj in (2.1) is ARFIMA(1, d, 0) model

with the AR parameter r = 0.8 and m.d. innovations ζj generated as ARCH(1) process:

ζj = εjσj, εj ∼ N (0, 1),(5.1)

σ2
j = α0 + α1ζ

2
j−1, j = 1, · · · , n.

We take α0 = 0.2, α1 = 0.8, so that the Eζ2
j = 1. We simulated the cases d = 0.1, 0.2, 0.3, 0.4,

which gave qualitatively similar results. For the sake of brevity, we report the results for

d = 0.3 only. We analyze the asymptotic normality of the suitably standardized sums

Wn =
n∑
j=1

znjXj, Vn =
n∑
j=1

znjYj,

where Yj =
∑j

s=1Xs, with the weights znj = (j/n)2 + cos(j/n), j = 1, 2, · · · , n. Var(Wn)

and Var(Vn) are estimated by the Monte Carlo variances. We then plot a kernel estimate of

the densities of V̂ar(Wn)−1/2Wn and V̂ar(Vn)−1/2Vn using a Gaussian kernel with bandwidth

b chosen according the Silverman’s (1986) rule, bn = (4/3)1/5n−1/5, and superimpose the

standard normal density. The results for ARFIMA(1, 0.3, 0), r = 0.8 process {Xj} with
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ARCH(1) innovations in Figure 1 show a very close resemblance between the solid line

representing the kernel density estimate and the dashed line representing N (0, 1) density.

Figure 1: Panel (a): Kernel density of V̂ar(Wn)−1/2Wn. Panel (b): Kernel density of
V̂ar(Vn)−1/2Vn.

AR-ARCH. Next we analyze asymptotic normality of Wn and Vn in the case of AR(1)

process Xj = ρXj−1 + ζj, j ∈ Z, with ρ = 0.6 and ARCH(1) errors ζj as in (5.1). The

results in Figure 2 show that the kernel density estimate of V̂ar(Wn)−1/2Wn seems to have

less probability mass close to the mean than the N (0, 1) density and is slightly positively

skewed.

Figure 2: Panel (a): Kernel density estimate of V̂ar(Wn)−1/2Wn. Panel (b): Kernel density
estimate of V̂ar(Vn)−1/2Vn.
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Nonparametric regression. To illustrate the fit of normal approximation in nonparametric

estimation we use the following regression model Yj = µ(j/n)+Xj, j = 1, · · · , n, where Xj’s

follow an ARFIMA(1, 0.3, 0)-ARCH(1) process with AR parameter r = 0.8 generated as in

(5.1). We set µ(j/n) = (j/n)2 + cos(j/n) and µ(x) is estimated at x = 1/4 by a kernel type

estimator

µ̂n(x) =

∑n
j=1 K(nx−j

nb
)Yj∑n

j=1 K(nx−j
nb

)
,

using a Gaussian kernel and setting b = n−1/4(4/3)1/5SD(J), where SD(J) is the standard

deviation of the regressor J = j/n, j = 1, 2, . . . , n. Var(µ̂n(x)) is estimated by the Monte

Carlo variance. Figure 3 shows close fit of the estimated density of V̂ar(µ̂n(x))−1/2(µ̂n(x)−
µ(x)) and the standard normal density.

Figure 3: Kernel density of V̂ar(µ̂n(x))−1/2(µ̂n(x) − µ(x)) (solid line), N (0, 1) density (dashed
line).

30



Acknowledgements. The authors would like to thank Donatas Surgailis for providing

part (iii) of Theorem 2.2, Lemma 3.1, and other useful comments, and to the Editor and the

three reviewers for their constructive suggestions.

References

Abadir, K.M. (1993). The limiting distribution of the autocorrelation coefficient under a

unit root. Annals of Statistics, 21, 1058 – 1070.

Abadir, K.M. (1995). The limiting distribution of the t ratio under a unit root. Econometric

Theory, 11, 775–793.

Anderson, T.W. (1959). On Asymptotic Distributions of Estimates of Parameters of

Stochastic Difference Equations. Ann. Math. Statist., 30, 676–687.

Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons, Inc., New

York.

Bollerslev, T. (1988). On the correlation structure for the generalized autoregressive con-

ditional heteroskedastic process, J. Time Ser. Anal., 9, 121–131.

Borovskikh, Yu. V., and Korolyuk, V. S. (1997). Martingale Approximation, VSP, Utrecht.

Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods (2nd ed.).

Springer Series in Statistics. Springer-Verlag, New York.

Crato, N. and de Lima, P.J.F. (1994). Long-range dependence in the conditional variance

of stock returns. Econ. Lett., 45, 281–285.

Davydov, Y.A. (1970). The invariance principle for stationary processes. Theor. Probab.

Appl., 15, 487–498.

Dharmadhikari, S. W., Fabian, V. and Jogdeo, K. (1968). Bounds on the moments of

martingales Ann. Math. Statist., 39, 1719–1723.

Dickey, D.A., and Fuller, W.A. (1979). Distribution of estimators of autoregressive time

series with a unit root. Journal of the American Statistical Association, 74, 427 – 431.

Dickey, D.A. and Fuller, W.A. (1981). Likelihood ratio statistics for autoregressive time

series with a unit root. Econometrica, 49, 1057–1072.

Dolado, J.J., Gonzalo, J. and Mayoral, L. (2002). A fractional Dickey-Fuller test for unit

roots. Econometrica, 70, 1963 – 2006.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation. Econometrica, 50, 987–1008.

Giraitis, L., Kokoszka, P., Leipus, R. (2000). Stationary ARCH models: dependence struc-

ture and central limit theorems. Econometric Theory, 16, 3–22.

31



Giraitis, R. Leipus and D. Surgailis. (2007). Recent advances in ARCH modelling. In: G.

Teyssiere and A.P. Kirman, Editors, Long Memory in Economics, Springer, 3-38.

Gordin, M. I. (1969). The central limit theorem for stationary processes. Soviet Math.

Dokl., 10, 1174–1176.

Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models

and fractional differencing. J. Time Series Anal., 1, 15–29.

Gray, H.L., Zhang, N.-F., and Woodward, W.A. (1989). On generalized fractional processes.

J. Time Series Anal., 10, 233–257.
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