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By considering the task of finding the shortest walk
through a Network, we find an algorithm for which
the run time is not as O(2n), with n being the
number of nodes, but instead scales with the number
of nodes in a coarsened network. This coarsened
network has a number of nodes related to the number
of dense regions in the original graph. Since we
exploit a form of local community detection as a
preprocessing, this work gives support to the project
of developing heuristic algorithms for detecting dense
regions in networks: preprocessing of this kind can
accelerate optimization tasks on networks. Our work
also suggests a class of empirical conjectures for
how structural features of efficient networked systems
might scale with system size.

1. Introduction

(a) Networks and communities
The past decade has seen a widespread appreciation
that networks in Nature have a structure which makes
them poorly modelled as samples from the more
traditional random graph ensembles [1]. A feature of
many real networks is that a marked modular (or
community) structure is present [2–6], where a network
community is a subset of nodes with relatively dense
connections within the subset but sparse connections

2014 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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to the rest of the network. Though algorithms for detecting communities are actively constructed
in physics, mathematics, engineering and computer science, the reason for detecting these dense
regions is not always articulated. Studies of empirical graphs suggest that nodes in the same
community tend to have similar properties in the world and thus community detection can
help us, for example, assign functional labels to uncharacterized nodes [2,3]. In this paper, we
investigate how community detection can also help simplify problems on graphs.

Even though community detection tasks can be hard [7,8] experience with greedy algorithms
suggests that plausible solutions can be found quickly for networks with a pronounced
community structure (though, of course, sub-optimal solutions need to be treated with care
[9]) [2,3]. Recent theoretical work in network physics and computer science also suggests that
for certain types of graphs, community detection need not be costly [10–13]. It is also the case
that a marked community structure is present in many empirical networks and that networks
with similar functions appear to have similar community structure [4–6]. It is possible that this
similarity occurs because community structure constrains dynamics on the graphs. Indeed it has
been found that particular choices of dynamics on networks can in turn correspond to particular
methods for detecting communities in graphs [14]. The literature asking why the networks we
observe in the world are modular is substantial [15,16]: one might speculate that assembly rules
for real networks are such as to simplify either optimization tasks or dynamics on them and so
in turn this leads to a pronounced community structure. The notion that networks in nature are
often optimized for transport is an established part of theoretical biological physics (e.g. [17,18]).

(b) Parametrized complexity
Weakly coupled to the stream of empirically motivated networks literature is recent work in

computational complexity called parametrized complexity, or fixed parameter tractability [19,20].
The concerns of this vibrant field are common to the empirical interests of the network research
community: how do (parametrized) constraints on graph structure simplify problems on graphs?
Researchers in empirical studies of networks ask: how are real-world networks simple? Asking
whether some hard problems are simple on empirical graphs is thus natural. In the following,
though we use recent work from parametrized complexity, we will not be providing algorithms
that have computational cost scaling in polynomial time with network size; instead we will show
that a problem scaling like 2n (n is the number of nodes in the graph) can be converted into one
which scales like ≤ 2ñ but where we can suggest ñ � n by relating ñ to (a local version of) the
number of communities in the graph.

(c) Hamiltonian walk and communities
Motivated by the above observations, we ask whether a particular problem, Hamiltonian Walk,

HAMWALK (an NP-hard task1) is simpler on networks with pronounced community structure.
We define a Hamiltonian Walk as a shortest closed walk on a graph which visits every node
at least once2 [22,23]. The study of self-avoiding walks on lattices and fractals is an established
area of probability and statistical physics and modifications which allow limited self-crossings
have been considered [24,25]; problems of this kind are of broad relevance to understanding
percolation and polymer phenomena. We note, of course, that the interface between problems
in computational complexity and statistical physics is now a lively one [26,27].

We hypothesize that partitioning graphs into communities, coarsening the graphs to yield
smaller graphs with nodes representing entire communities [28], and then solving problems
on the coarsened graph and on the individual communities of the full graph in combination,
might lead to significant computational speed-ups for some real graphs and appropriately chosen
optimization tasks (figure 1). We hope to exploit the fact, noted above, that empirical networks
often have pronounced community structure and finding this structure need not be hard.

1It is straightforward to recast HAMWALK as a travelling salesman problem which can be solved in time O(2n) [21].

2A Hamiltonian walk sometimes means alternatively a covering walk which is strictly self-avoiding.
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Figure 1. Community detection can be fast if pronounced communities are present [10–12]. Solutions to optimization problems
on the coarsened graph can sometimes be converted into solutions for the full graph.

For real networks, this hypothesis could be converted into a class of heuristic algorithms for
solving optimization problems. It thus seems desirable to see whether the preceding intuition can
be expressed mathematically: is there a class of (crudely) realistic graphs for which HAMWALK
has a runtime scaling which is provably less than the O(2n) bound that can currently be achieved
(see footnote 1)? We believe this both motivates further work in providing tighter runtime
bounds for more realistic graphs, justifies the development of appropriate heuristic optimization
algorithms and makes a connection between parametrized complexity and network empirics:
making explicit the notion that the modular network structure we observe in Nature could help
simplify tasks for networked systems.

2. Solving Hamiltonian walk by graph coarsening

(a) A local clustering algorithm
Lokshtanov & Marx [10] study the runtime of finding partitions of networks into clusters (disjoint
sets of nodes) where each cluster, Ci (for all i), has (i) a total number of links connected to nodes
not in Ci that is ≤ δ (call this the degree of Ci) and (ii) the number of pairs of nodes in Ci between
which there is no link is ≤ μ. This bears some resemblance to the local community detection in
[29] and seeks to identify sets of densely connected nodes (μ small) which are isolated from other
such sets (δ small). If δ is treated as a fixed input then, remarkably, this problem can be solved in
randomized time 2O(μ)nO(1). Similarly, if μ is held fixed then the run time is 2O(δ)nO(1) [10].

(b) Special cases
We first run an algorithm that detects all clusters in graph, G, with degree ≤ δ and ≤ μ missing
links [10]. In the simple case when δ = 2 and μ = 0, a naive solution is as follows. Define a
coarsened version of G, G′, in which, for each cluster taken consecutively (the order is irrelevant),
all nodes of the cluster are removed and substituted for a single node, called a cluster-node, which
is connected to the nodes (≤2 nodes) to which the cluster was previously connected. We then
solve HAMWALK on G′ using the Held-Karp algorithm (see footnote 1) [21] and obtain a walk
(in G′) as a result. We finally expand this walk to become a walk in G simply by a replacement of
every cluster-node by its original cluster of G and quickly computing appropriate paths through
the clique (note that μ = 0 so this task is simple). It is a standard exercise to check the obtained
walk is indeed a Hamiltonian walk of G. The intuition behind is that sets of nodes which are
strongly isolated from the rest of the graph (like in the case of δ = 2) allow marked simplifications
of problems on the graph. This provokes the question that we consider in the following: does this
intuition hold for richer classes of graphs, with more general δ and μ?
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Figure 2. (a) Graph G, where {b, c, d, e} is a clique. (b) Coarsened graph G′ where clique {b, c, d, e} is replaced by
cluster-node x. (c,d) a further example of original graph G and coarsened graph G′.

Unfortunately, unlike the previous case, not all solutions to HAMWALK(G′) can be easily
modified to make solutions to HAMWALK(G). Consider the graph G and its coarsened graph G′
in figure 2a,b. Both W′

1 = (a, x, f , g, h, x, i, j, a) and W′
2 = (a, j, f , g, h, j, i, x, a) are Hamiltonian walks of

G′. Here, W′
1 can be expandable to a Hamiltonian walk of G just by replacing the first occurrence of

x with b and the second occurrence of x with c, d, e, namely to obtain W1 = (a, b, f , g, h, c, d, e, i, j, a)
(a cycle, hence optimal in size). However, applying such local expansions on W′

2 will not be as
successful (not a cycle, because of multiple occurrence of j, hence, longer walk than before).

Given the above one might conclude that a careful counting of the number of times that
each cluster-node is visited will help us extend, simply, our walks on G′ to walks on G. In the
preceding example W′

1 visits x twice, whereas W′
2 visits x only once, so it could be that the

number of visits to the cluster-node x is important. However, graphs exist which allow two
solutions to HAMWALK(G′) which visit cluster-nodes the same number of times but which do
not both allow a simple expansion to a solution for G (e.g. figure 2c,d). In G′ (figure 2d), both W′

1 =
(a, b, c, d, x, i, j, k, l, a, m, n, p, x, a) and W′

2 = (a, b, c, d, x, i, j, k, l, i, x, p, n, m, a) are Hamiltonian walks of
G′ visiting cluster-node x twice. W′

1 can be locally expanded to a Hamiltonian walk of G by
replacing the first occurrence of x with e, h and the second occurrence of x with f , g: W1 =
(a, b, c, d, e, h, i, j, k, l, a, m, n, p, f , g, a) is a Hamiltonian walk of G. One can check that W′

2 cannot
be expanded to a Hamiltonian walk of G only by replacing occurrences of x with vertices from
{e, f , g, h} (the edge (h, i) must be traversed twice).

(c) Solving HAMWALK with parameters δ andμ

We now consider the case when δ and μ are unspecified positive integers, we proceed as follows.
Each ith cluster, Ci, will contain a set of shell nodes, Si, which are defined as being in Ci and either
have a link to a node which is not in Ci, or lack a link to a node which is in Ci. When |Ci| > 2 · |Si|,
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we define another set of nodes, called second shell nodes, Ti, which are taken randomly from
Ci \ Si so that |Si| = |Ti| (|Si| ≤ δ + 2μ). We call nodes which are in each detected cluster but which
are neither shell nodes nor second shell nodes, good bulk nodes, GBi = Ci \ Si \ Ti. GBi is thus a
clique; it is this simple structure we will exploit in the following. The set Ti is a device which will
help simplify our proof.

We now define a coarsened version of G, G′, in which, for each cluster with degree ≤ δ, and at
most μ missing links and |Ci| > 2 · |Si|, all nodes in the good bulk are removed and substituted
for a single node, called the coarsened good bulk node, bi, which is connected to all of the shell
and second shell nodes in the cluster. We will later discuss coarsened walks: a walk on G is
coarsened to a walk on G′ by identifying consecutive (or single) walker visits to nodes in GBi
and substituting them for single visits to the coarsened good bulk node bi.

The outline of our proof is as follows: we create a coarsened graph, G′, in which all nodes
in each clique GBi are represented as single node bi and all other nodes are left untouched. We
solve HAMWALK by a standard method on the coarsened graph. We show that, because of the
simplicity of the cliques GBi and, noting the properties of the shell and second shell, that this walk
can be converted into a solution to HAMWALK on the original graph in a time polynomial in n.
The use of the two shells will allow us to avoid problems identified in the examples above.

Claim 1: any Hamiltonian walk of G′ can, with resources polynomial in network size, be
converted to a Hamiltonian walk of G′ that visits every coarsened good bulk node once and
only once.

Proof of Claim 1. It is easy to check whether a Hamiltonian walk of G′ visits every coarsened
good bulk node once and only once. If this is not the case, we can repeatedly perform the
following substitutions. Call b one of the coarsened good bulk nodes which is visited more than
once. Consider any walk with a second visit to b: it is either of the form (A) sibsi or sibsj i �= j, where
si and sj are nodes in the shell of the cluster to which b belongs, or (B) tibti or tibtj i �= j, where ti
and tj are second shell nodes, or (C) sibtj (or tibsj), where si is a shell node and tj a second shell
node. Now we can obtain another closed walk that still visits every node of G′ at least once, b
included, as follows: (A) replace sibsi by si, or replace sibsj by sitsj, where t is any node from the
second shell; (B) replace tibti by ti, or replace tibtj by titj and (C) replace sibtj by sitj. In all cases,
the length of the modified walk is not increased, that is, if the original is a Hamiltonian walk then
the modified walk is still a Hamiltonian walk of G′. �

Given any Hamiltonian walk of G′, we can thus obtain a Hamiltonian walk of G′ having the
property described in Claim 1. Denote its length by wG′ . We can un-coarsen the walk into a walk on
G by locally extending using a greedy approach at every good bulk node. What Claim 1 implies is
that the extended walk has length wG′ + ∑

i(|GBi| − 1) (by exploiting the clique structure of GBi).
Clearly, wG′ + ∑

i(|GBi| − 1) ≥ wG, where wG is the length of Hamiltonian walks of G. Now, if this
were an equality, we would have shown the following.

Main claim: any solution to HAMWALK(G′) can, with resources polynomial in network size,
be converted into solutions of HAMWALK(G).

Claim 2: there is always a Hamiltonian walk of G which, when coarsened to a walk on G′, visits
coarsened good bulk nodes once and only once.

The Main claim is true provided that Claim 2 is true. This is because it would imply that wG′ +
∑

i(|GBi| − 1) is equal to wG (pick the Hamiltonian walk given by Claim 2; consider its coarsening
on G′ whose length has to be wG − ∑

i(|GBi| − 1); but this is also a closed walk of G′ that visits
every node of G′ at least once and thus is of length ≥ wG′ . We know from Claim 1 that wG′ +
∑

i(|GBi| − 1) ≥ wG and hence the Main claim follows).

Proof of Claim 2. Clusters are pairwise independent, so that we will only give a proof for Claim 2
with respect to a particular cluster C, with set of shell nodes S, set of second shell nodes T and
set of good bulk nodes GB. Among the Hamiltonian walks of G, consider one that makes distinct
visits to nodes in GB the least number of times (a distinct visit to GB is a part of a walk containing
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a contiguous sequence of nodes in GB immediately preceded and followed by a visit to nodes not
in GB). By contradiction suppose this walk contains repeated distinct visits to GB. Consider visits
to T ∪ GB: because nodes outside C can connect to T ∪ GB only via the shell S, such a visit has
to be of the form siwsj, where si and sj are shell nodes and w a walk in T ∪ GB. Denote by p the
number of times T ∪ GB is visited: some thought shows that p is no greater than |S| and hence not
greater than |T|. Now replace the first p − 1 visits to T ∪ GB keeping the same shell nodes but the
walk in T ∪ GB is substituted for a random (chosen without reuse) second shell node: for instance,
siwsj is substituted for sitksj with some tk ∈ T. Denote the last visit to T ∪ GB by skusl (this includes
the p = 1 case) and substitute it for skvsl, where v contains all nodes in T ∪ GB (except for those
of T that have been used for the p − 1 previous visits) and v visits all nodes of GB contiguously.
We now consider the result of these substitutions: clearly, this is still a closed walk that visits
every node of G at least once, furthermore, it has the same length (or less) as the original walk
before substitutions. In other words, we have obtained a Hamiltonian walk of G, but one that
visits nodes in GB only once: a contradiction. �

(d) Algorithm solving HAMWALK
Given μ and δ (where either μ or δ, but not both, might be a function of n) take G on n nodes
and create the graph G′ using [10]. In the case that μ is fixed this takes a time nO(1)2O(δ) [10].
Calculate the matrix of shortest paths for G′, and use the Held-Karp algorithm to find a solution
to HAMWALK(G′) [21]. Convert it into one having the property described in Claim 1. Locally
extend this to a walk in G using a greedy substitution at every coarsened good bulk node. Return
the latter as a solution to HAMWALK(G). Runtime: 2(2δ+4μ+1)nc+n′ + nO(1)2O(δ) where nc is the
number of clusters with degree ≤ δ, at most μ missing links, and |C| > 2 · |S| and n′ is the number
of nodes which are not in clusters with |C| > 2 · |S| (note |S| ≤ δ + 2μ).

(e) A note on clique-width
Clique-width is a quantity which has proved very popular in the area of parametrized complexity:
it is related to a natural approach to assembling a graph [30]. We first define clique-width and
then note some implications of our work (thereby illustrating its relevance in parametrized
complexity). We suppose a k-graph has nodes with labels from the set {1, 2, . . . , k}. We define
a seed k-graph with one node and a label from this set. The clique-width of a graph G is the
smallest integer k such that G can be composed by repeated use of four simple operations:
(i) generate: make a seed k-graph labelled by i, (ii) disjoint union: two distinct graphs are treated
as disconnected components of the same graph, (iii) combine: linking all nodes with label j with
nodes labelled i, (iv) relabel: all indices i replaced with j. This protocol can generate graphs
which contain cliques. In this paper, clique-width can be connected to the case where there are no
missing links inside the cliques identified (μ = 0). In this case, it can be proved fairly easily that
the clique-width of the graph is ≤ k = (δnc + n′) and a corresponding protocol for constructing
the graph using the above four operations can be provided (this witness protocol, demonstrating
that the bound can be met, is called a k-expression). Given this protocol, a number of Monadic
Second Order Logic (MSOL) problems can be solved (see [31] and the numerous MSOL problems
therein) including the classic problem ‘Minimum Dominating Set’ [32] in a time 2O(δnc+n′). This
last follows from the recent observation that, given a k-expression for clique-width k, Minimum
Dominating Set can be solved in a time 22k [33]. Thus, our result for HAMWALK can be extended
to other problems.

3. Discussion and conclusion
We have proved that it is possible to solve HAMWALK in time 2(2δ+4μ+1)nc+n′ + nO(1)2O(δ). Some
care is required in the interpretation of this runtime. While δ and μ are parameters of the algorithm
(with forms which can be specified independent of the graph) by contrast nc is a feature of
the graph for a given δ and μ. Despite this, one can hope to construct graphs which have a
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given, nc, n′, δ and μ. To help the interpretation of this result, we thus consider the following
graph family: every node is inside one and only one of nc clusters such that for each cluster,
μ is constant, 2O(δ) = nO(1), ncδ ≤ O(1) log n (for this family n′ = 0) and each cluster is of size
|C| > 2(δ + 2μ). This is a graph family composed of dense clusters in which links between the
clusters and missing links inside the clusters are proportionately rare (an equivalent family with
the roles of μ and δ reversed could also be considered): as graphs increase in size the number of
clusters is relatively slow growing. HAMWALK can be solved on this family in time nO(1) (if the
values of μ and δ are not known in advance, finding appropriate choices only yields a polynomial
time overhead). In the intuitive case with μ and δ both constant, the number of clusters increases
as the logarithm of the number of nodes. Our abstract complexity based argument can be used
to inspire a class of empirical conjectures about optimal growing networks in Nature. Suppose
that, in order to thrive, a network in the world has to solve HAMWALK on itself efficiently
for larger and larger system sizes. Given the above, we might thus hypothesize that, if we
have observations of the system at a variety of network sizes, we will find that the number
of communities would increase like the logarithm of the number of nodes. While few natural
systems are likely optimized to solve HAMWALK, this form of reasoning might allow us to
relate the system-size scaling of structural features to the tasks networked-systems are optimized
to solve. Why natural networks might show modular structure is a canonical question; beyond
conjectured roles for communities like helping networked systems to control their dynamics, or
to be more evolvable [15,16], we have provided a concrete setting in which community structure
helps simplify optimization tasks: while the presence of modular structure might typically be
seen as a signature of purely local, module-level, computations it could also be a signature of an
efficient approach to global optimization.

The family specified above was selected to share some similarities with real networks, while
remaining mathematically tractable: many real networks do have sets of densely connected nodes
which are relatively isolated from the rest of the network. In the preceding proof, we apparently
exploited the clique structure of the good bulk and second shell; we note that this is not a
necessary condition for our basic proof structure to work and, at least, small numbers of missing
links can be tolerated within the good bulk. Widening our results to less constrained classes of
graphs, and so to alternative definitions of communities, is a natural extension of our work. The
bound, δ, gives some indication of the modular nature of the graph: for graphs with appropriately
small δ the clusters are more isolated from each other and it is easier to solve HAMWALK; for
appropriately small μ again HAMWALK is easier to solve. If n′ � n, indicating a graph with
many nodes inside clusters, then again it is much easier to solve HAMWALK. The bound we
proved is by construction: it might be possible to solve HAMWALK in faster time. We obtained
our bound on HAMWALK by coarsening the graph on n nodes and solving problems on the
reduced version. It is known that empirical networks have hierarchical community structure:
dense regions embedded inside others. Authors have considered renormalization approaches
to such networks [28]. How this hierarchical structure simplifies problems on graphs, and how
repeated coarsenings of the full graph might help is open. In this setting, not only does modular
structure constrain dynamics on graphs, but it can also simplify problems on graphs. Many
practical optimization problems are posed on real graphs with modular structure. The preceding
gives, by a proof for a simple class of graphs, a hint that some of the optimization problems we are
interested in might allow heuristics which run in time scaling with the number of communities
(and parametrizations of their isolation) rather than the number of nodes: this gives a justification
for the exercise of developing community detection algorithms.
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