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1 Introduction

Recent work developed a generic computational framework for addressing mixed-
integer quadratically-constrained quadratic programs (MIQCQP) to ε-global opti-
mality [1–3]. The Global Mixed-Integer Quadratic Optimizer, GloMIQO, a software
implementation of the framework, (1) reformulates user input, (2) detects special
mathematical structure, and (3) uses a branch-and-cut global optimization algorithm
to deterministically solve the MIQCQP.

Expanding the framework, this paper considers mixed-integer signomial opti-
mization problems (MISO). MISO was originally proposed when convex posyno-
mial geometric programs could not model important engineering applications [4–7].
Signomial functions are nonconvex in general; the seminal paper of Maranas and
Floudas [8] introduced the first global signomial optimization algorithm. Interesting
domains of MISO include: synthesizing heat exchanger networks [9, 10]; planning in
a petrochemical production network [11]; finding the global minimum energy con-
figuration of microclusters [12, 13]; designing heat-integrated nonsharp distillation
sequences [14]; synthesizing complex nonisothermal reactor networks [15]; optimiz-
ing product portfolio selection [16, 17]; designing metabolic and signal transduction
networks [18, 19]; designing a thermochemical-based process superstructure convert-
ing biomass, coal, and natural gas to liquid fuels [20].

This manuscript contextualizes a computational framework for MISO with re-
spect to previous work in Section 2, describes the algorithmic components in Section
3, introduces a test suite highly relevant to engineering in Section 4, validates the
framework in Section 5, and concludes in Section 6. The primary contribution is to
integrate existing ideas into an algorithmic framework for globally optimizing MISO.
The novel components: flattening an expression tree; introducing additional noncon-
vex terms to interlink expressions; specializing relaxation strategies to the current
tree node are strategies for meaningfully interconnecting the various algorithms. An
implementation is publicly available within the MINLP solver ANTIGONE [21].

2 Problem Definition and Literature Review

We define MISO as:

min
S0
∑

s=1
c0,s · f0,s(x)+ xT ·Q0 · x+a0 · x

s.t. bL
m ≤

Sm
∑

s=1
cm,s · fm,s(x)+ xT ·Qm · x+am · x≤ bU

m ∀ m ∈ {1, . . . , M}

x ∈ RC×{0, 1}B×ZI

(MISO)
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where C, B, I, and M represent the number of continuous variables, binary variables,
integer variables, and constraints, respectively; recall that setting bL

m = bU
m yields an

equality equation. We assume that it is possible to infer finite bounds
[
xL

i , xU
i
]

on
the variables participating in nonconvex terms and that a relaxation of MISO can
be formulated as a bounded MILP. The quadratic and linear terms are defined on
continuous, binary, and/or integer variables. The signomial terms fm,s(x) are defined
only on the continuous variables:

fm,s(x) =
C

∏
c=1

xpsm,c
c : x ∈ RC (1)

where the powers psm,c are constant real numbers. Simplifying interval analysis, we
assume that each variable xi raised to a noninteger power is nonnegative. Finally, we
explicitly admit absolute values |xi| into the formulation because addressing MISO

implicitly encompasses absolute values (i.e., we reformulate
√

x2
i into the equivalent

convex term |xi| [22]).

The computational framework for MISO global optimization represents a selec-
tion of algorithms. For a broader perspective on the range of global optimization
methods, we refer the reader to the reviews of Floudas and co-workers [23–25] and
to a variety of texts [26–31]. The software implementation of the MISO global opti-
mization framework addresses a class of mixed-integer nonlinear programs (MINLP).
We briefly mention several code bases; complete treatment of numerical optimization
software is in the review of Bussieck and Vigerske [32].

GloMIQO [1–3] and ANTIGONE [21] are the numerical optimization code bases
most similar to the current work; this framework encompasses and extends GloMIQO
and is publically available within ANTIGONE (beginning GAMS 24.1). GloMIQO
and this framework are equivalent when there are no signomial terms in MISO (cm,s =

0 ∀ s, m). Other relevant codes include αBB [27, 33–36]; BARON [31, 37, 38];
Couenne [39, 40]; LINDO [41, 42]; SCIP [43–47]; and SGO [48–51]. Observe that
αBB, ANTIGONE, BARON, Couenne, LINDO, SCIP, and SGO all admit more func-
tional forms than this computational framework; as with GloMIQO, our focus is care-
ful analysis of special mathematical structure for specific problem classes.

Like GloMIQO, the initial components in the algorithmic framework involve re-
formulating user input. Two complementary reformulation strategies are: construct-
ing an operator-based factorable programming tree [37, 39, 47, 52, 53] and dividing
nonconvex expressions into terms that are addressed individually [33–36, 51]. The
advantage of the vertical, expression tree data structure is that graph transversal tech-
niques are easily exploited to generate tight convex underestimators and infer vari-
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able bounds based on tree relationships [39, 47, 53]. The complementary horizontal,
term-based data structures easily admit multivariable relaxations that are specifically
designed for particular functional forms. For example, beyond the convex, bilinear,
trilinear, fractional, fractional trilinear, univariate concave, and general nonconvex
terms as introduced by Adjiman et al. [33, 34], underestimators have been introduced
or improved for: fractional terms [31, 36, 54]; trilinear terms [55, 56]; quadrilinear
terms [57]; odd degree monomials [58]; signomial terms [8, 48, 50]; low-dimensional
edge-concave terms [59–62]; submodular functions [63]; and interesting products
[36, 64–67].

Operator- and term-based strategies are mutually reinforcing [68, 69]. Gatzke et
al. [69] combine vertical, operator-based data structures with horizontal, term-based
data structures; the tree-flattening operations in Section 3.1.1 represent an alterna-
tive integration of operator- and term-based strategies. Flattening without integrating
term-based convexifications is equivalent to product dissaggregation [31, 70]; these
reformulations could conceivably tighten convex underestimators even if we were
limited to operator-based relaxations.

As in GloMIQO, the framework for MISO detects and exploits special mathemat-
ical structure. Beyond identifying individual functional forms, the Reformulation-
Linearization Technique (RLT) is a strategy that effectively interlinks variables, non-
linear terms, and equations [30, 71–76]. The GloMIQO RLT implementation iden-
tifies all variable/inequality equation and equation/equation products that do not in-
troduce new bilinear terms into the model formulation [1]; GloMIQO 2.0 will even
add nonconvex bilinear terms to the problem formulation to increase the number of
variable/equality equation products [3]. Depending on the product, GloMIQO may
directly add the RLT equation to the model formulation, dynamically introduce the
equation as a cutting plane, or use the equation in a bounds-updating strategy. The
MISO framework generalizes the GloMIQO RLT strategies; we automatically add
nonconvex terms to interlink higher-order terms and dynamically integrate the result-
ing RLT equations into the branch-and-cut tree.

A major design choice for relaxing nonconvex functions is alternatively using
auxiliary variables to represent nonlinear terms [31, 37–39, 47, 53, 69] or exclusively
employing underestimators that do not introduce additional variables [33, 34, 51, 52,
77]. Mitsos et al. [77] document advantages to each approach. This computational
framework for MISO follows the former tactic and introduces auxiliary variables
because of the importance it places on an adaptive RLT implementation. It is easiest to
establish RLT interconnections between the variables, nonlinear terms, and equations
in MISO with auxiliary variables.
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The branch-and-cut global optimization phase of this global optimization frame-
work for MISO is largely analogous to GloMIQO except that the range of functional
forms is significantly broader. GloMIQO uses the special structure elucidated in the
detection phase to generate tight convex relaxations, dynamically add separating cuts,
partition the search space, bound the variables, and find feasible solutions [1, 3].

3 Global Optimization Framework for MISO

This section outlines the structure of the global optimization framework for MISO.
The major components of the framework are: reformulation (§3.1), special math-
ematical structure detection (§3.2), and branch-and-cut global optimization (§3.3).
The proposed framework expands and extends GloMIQO [1–3]; we therefore limit
the discussion to additional algorithmic components.

3.1 Reformulating User Input

The transformation strategies couple vertical, operator-based and horizontal, term-
based data structures. The following sections describe the reformulation steps of flat-
tening the expression tree and adding nonconvex terms for advanced RLT equations.

3.1.1 Flattening the expression tree

Smith and Pantelides [53] describe how a nonlinear function:

1/
(
0.1+(x1−4)2 +(x2−4)× (

√
x3−1)

)
(2)

can be reformulated into a binary expression tree using a diagram similar to Figure
1(a). They further explain how the binary expression tree is, in practice, reformulated
into the Figure 1(b) factorable programming tree where an auxiliary variable is in-
troduced for every operator except addition and subtraction. Factorable programming
trees are often used in global optimization code bases [31, 37–39, 47, 53, 69, 77].

Adjiman et al. [33, 34] describe an alternative method of addressing nonlinear
expressions by splitting each function into a sum of terms that are individually un-
derestimated. The αBB methodology adapts its approach to the special mathematical
structure of each nonconvex term; the ideologically similar SGO algorithm underes-
timates individual terms with a special emphasis on signomial forms [48–51].

The MISO framework transforms a factorable programming tree into a flattened
expression tree to capitalize on the development of tight convex underestimators for
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(a) Binary Expression Tree (b) Factorable Programming Tree (c) Flattened Expression Tree

Fig. 1: (a) A binary tree represents algebraic expressions; (b) A factorable program-
ming tree uses operator-based relaxations [53]; (c) Transformation to a flattened ex-
pression tree allows access to term-based underestimators; Convex form (x1−4)2 is
not expanded.

specific classes of nonlinear terms (e.g., [8, 31, 36, 48, 50, 54–67]). This hybrid ap-
proach reformulates towards multivariable terms with specialized underestimators
while maintaining a tree-like representation of powers that cannot be distributed and
convex operators that can be exploited by dynamic cut generation. The framework
flattens the tree using the following steps:

1. Expanding Products:
(
x1− x0.5

2
)
·
(
x2 + x3

3
)
=⇒ x1 · x2 + x1 · x3

3− x1.5
2 − x0.5

2 · x3
3

As illustrated in Example 3.1.1.1, product expansion exposes additional terms
that may be individually underestimated using special structure analysis. The
MISO framework also expands products for the purpose of creating a web of
interconnections between many individual terms (Section 3.1.2).

2. Expanding Integer Powers: (x1−2)3 =⇒ x3
1−6 · x2

1 +12 · x1−8
Expansion operations are applied to nonconvex integer powers; the framework
preserves convex terms for better dynamic cut generation (§3.3.2). Figure 1(c)
illustrates that the framework automatically replaces (x1− 4)2 with an auxiliary
variable rather than expanding it to x2

1− 8 · x1 + 16. A look-ahead function de-
termines the convexity/concavity of a term; (x1− 4)2 would be expanded if, for
example, Expression (2) participated in the objective of a maximization problem.

3. Distributing Noninteger Powers
(
16 · x1 · x8

2
)0.25

=⇒ 2 · x0.25
1 · x2

2

The framework only distributes noninteger powers when the power participates in
a nonconvex direction. We do not distribute noninteger powers if more than one
component inside the parenthesis can be negative; this is to avoid initializing a
tree with multiple root nodes (e.g., distributing (x1 · x2)

0.5 ; x1, x2 ∈ [−1, 1] would
require an added rule that the variables are either both positive or both negative).
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When the framework deconvolutes terms with nested powers, it coincidentally
tracks the variable bound rules associated with powers. For example,

√
x2

i is re-

placed with |xi| but
(√

xi
)2 is equivalent to xi with the additional condition xi ≥ 0.

As discussed in the introduction, the framework assumes that only nonnegative
numbers can be raised to noninteger powers; therefore

(
x3

i
)1/3 reformulates to xi

with the additional condition that xi ≥ 0.

Example 3.1.1.1: Consider the classical Goldstein and Price [78, 79] test problem:

min
(

1+(x1 + x2 +1)2 ·
(
19−14 · x1 +3 · x2

1−14 · x2 +6 · x1 · x2 +3 · x2
2
))

·
(

30+(2 · x1−3 · x2)
2 ·
(
18−32 · x1 +12 · x2

1 +48 · x2−36 · x1 · x2 +27 · x2
2
))

s.t. x1; x2 ∈ [−2, 2]

A factorable programming tree representing Goldstein and Price [78, 79] is three
layers deep; a flattened expression tree is two layers deep. The MISO framework
deduces that both (x1 + x2 +1)2 and (2 · x1−3 · x2)

2 participate in a convex direction;
it therefore introduces two auxiliary variables x3 = x1 +x2 +1 and x4 = 2 ·x1−3 ·x2:

min
(
1+ x2

3 ·
(
19−14 · x1 +3 · x2

1−14 · x2 +6 · x1 · x2 +3 · x2
2
))

·
(
30+ x2

4 ·
(
18−32 · x1 +12 · x2

1 +48 · x2−36 · x1 · x2 +27 · x2
2
))

s.t. x3 = x1 + x2 +1
x4 = 2 · x1−3 · x2

x1; x2 ∈ [−2, 2] ; x3; x4 ∈ R

The framework then distributes x2
3 and x2

4 and multiplies the two remaining products:

min −420 · x1 · x2
3 +180 · x1 · x2 · x2

3 − 32 · x1 · x2
4 −800 · x1 · x2 · x2

3 · x2
4

+318 · x1 · x2
2 · x2

3 · x2
4−860 · x1 · x2

3 · x2
4 − 36 · x1 · x2 · x2

4 + 54 · x1 · x3
2 · x2

3 · x2
4

+ 90 · x2
1 · x2

3 + 12 · x2
1 · x2

4 +288 · x2
1 · x2 · x2

3 · x2
4− 99 · x2

1 · x2
2 · x2

3 · x2
4

+730 · x2
1 · x2

3 · x2
4 −264 · x3

1 · x2
3 · x2

4 − 36 · x3
1 · x2 · x2

3 · x2
4 + 36 · x4

1 · x2
3 · x2

4

−420 · x2 · x2
3 + 48 · x2 · x2

4 +660 · x2 · x2
3 · x2

4 + 90 · x2
2 · x2

3

+ 27 · x2
2 · x2

4 −105 · x2
2 · x2

3 · x2
4 −234 · x3

2 · x2
3 · x2

4 + 81 · x4
2 · x2

3 · x2
4

+342 · x2
3 · x2

4 +570 · x2
3 + 18 · x2

4 + 30
s.t. x3 = x1 + x2 +1

x4 = 2 · x1−3 · x2

x1; x2 ∈ [−2, 2] ; x3; x4 ∈ R

Each of the 25 signomial and 2 convex quadratic terms are underestimated individu-
ally using special structure analysis. The terms are also tied together using a dynamic
RLT implementation (§3.2.1).
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Table 1: Goldstein and Price [78, 79] case study (known global solution: 3)

Solver Version Root Node Objective

Framework -1.491e+07 3.0000e+00
BARON 12.3.3 -8.397e+08 3.0000e+00
LINDO 8.0 -8.788e+08 3.0000e+00
SCIP 3.0 -8.498e+05 2.9999e+00

Termination Criteria: Gap = 100×
(

UB−LB
|LB|

)
= 1×10−4%

Goldstein and Price [78, 79] is a simple test case used to demonstrate the effect
of flattening the expression tree. Table 1 delineates the root node relaxation for each
solver and the objective at the global optimum; Couenne 0.4 is excluded because it
has significant numerical trouble. The root node relaxation of the MISO framework
is roughly 50 times tighter than either BARON 12.3.3 or LINDO 8.0; this difference
is a direct consequence of reformulation.

3.1.2 Adding Nonconvex Terms for Advanced RLT

The reformulations described in Section 3.1.1 expose multivariable nonconvex terms
that may have specially-designed underestimators, but the transformations introduce
two weaknesses that need to be addressed:

– Expanding the terms may discard relationships between expressions; these inter-
connections are typically used to generate tight underestimators and infer tighter
variable bounds [39, 47, 53].

– The convex hull of terms with one or two variables is often known [36, 52, 54, 58],
but terms with many variables may be subject to weaker relaxations.

To ameliorate these two weaknesses while preserving the strength of reformulating
towards flattened terms, the reformulation stage of the MISO framework introduces
nonconvex terms that the special mathematical structure detection phase will later use
to tie together the terms; the objective is to create a web of interconnections between
the terms and thereby reinforce the relaxation strength.

For each of the nonlinear terms in the reformulated model, the MISO framework
checks to see if the convex hull of the term is known. If it is not, then the framework
checks to see if the term can be written as the product of two terms or a term and
a variable. If not, then the framework introduces two smaller terms. The framework
continues introducing terms until either (1) the term is the product of existing terms
or variables or (2) the convex hull of the term is known.
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For example, in the minlp.org problem GMA ethanol model CH [80, 81],
there are seven signomial terms with nonnegative variables natural to the model for-
mulation; all seven participate in both a convex and concave direction:

f1(x) = x0.05
3 · x0.533

4 · x−0.0822
5 · x12; f2(x) = x−0.234

2 · x6; f3(x) = x0.746
1 · x0.0243

5 · x7;
f4(x) = x0.732

2 · x−0.394
5 · x8; f5(x) = x8.61

2 · x9; f6(x) = x0.616
3 · x0.131

5 · x10;
f7(x) = x0.05

3 · x0.533
4 · x−0.0822

5 · x11.

The MISO framework detects that f3 and f6 are edge-concave (so the convex hull
is vertex polyhedral and easy to calculate) and f2 and f5 are edge-convex (so the
concave hull is vertex polyhedral and easy to calculate). For the remaining under- and
over-estimators, the framework uses the exponential transformation [8, 48, 50]. But
exponential transformation-based relaxations do not produce the convex hull and may
be less effective than other relaxations. To reinforce the exponential transformation,
the framework introduces signomial terms until every term is either the product of
two other terms or the convex hull is known:

f8(x) = x−0.0822
5 ; f9(x) = x0.05

3 · x0.533
4 · x12; f10(x) = x−0.234

2 ; f11(x) = x0.0243
5 ;

f12(x) = x0.746
1 · x7; f13(x) = x−0.394

5 ; f14(x) = x0.732
2 · x8; f15(x) = x8.61

2 ;
f16(x) = x0.131

5 ; f17(x) = x0.616
3 · x10; f18(x) = x0.05

3 · x0.533
4 · x11; f19(x) = x0.533

4 ;
f20(x) = x0.05

3 · x12; f21(x) = x0.746
1 ; f22(x) = x0.732

2 ; f23(x) = x0.616
3 ;

f24(x) = x0.05
3 · x11; f25(x) = x0.05

3 .

The 18 new signomial terms and the seven original terms create a web of interconnec-
tions with a total of 54 possible RLT equations. The terms f9, f12, f14, f17, f18, f20, f24

are edge-convex but need exponential transformation overestimators. The remaining
terms are convex in one direction and concave in the other. The reinforcing expo-
nential transformation, convex hulls, and RLT equations allow the MISO framework
to solve GMA ethanol model CH [80, 81] to a relative optimality tolerance of
1×10−4% in 1.1 CPU s.

3.2 Elucidating Special Mathematical Structure

After reformulation, the MISO framework detects special mathematical structure in
the transformed problem. This section describes the components of finding RLT equa-
tions (§3.2.1), recognizing second-order structure (§3.2.2), and establishing underes-
timators for the branch-and-cut global optimization phase (§3.2.2).



10 Ruth Misener, Christodoulos A. Floudas

3.2.1 Detecting Reformulation Linearization Technique (RLT) Equations

To generate RLT equations [30, 71–76], the framework considers all possible prod-
ucts of variables, nonlinear terms, and equations as shown in Appendix Appendix
A. Nonconvex terms may have been added to the model in the reformulation phase
(§3.1.2; [3]). No additional nonlinear terms are added in this step; the framework
only identifies RLT equations with redundant nonlinear terms in the special structure
detection phase.

Equivalently to GloMIQO [1, 3], the MISO framework adds equality equation/variable
and equality equation/nonlinear term products directly to the model formulation. The
other RLT equations are stored separately, updated at each node and used for dynamic
cut generation (§3.3.2) and variable bounding (§3.3.3). Returning to the Goldstein and
Price [78, 79] example developed in Section 3.1.1, the MISO framework finds 252
nonlinear term/variable and nonlinear term/nonlinear term products (e.g., nonlinear
terms x2

1 ·x2
4 and x2

3 have product x2
1 ·x2

3 ·x2
4 that is a third nonlinear term in the model).

The strategy of finding and using all possible RLT equations is useful even for the
very large MISO in GlobalLib, MINLPLib, and minlp.org. The C++ software im-
plementation of the MISO framework uses an array of effective programming strate-
gies to expedite the detection and initialization of the RLT equations. For example,
the framework partitions the nonlinearly-participating terms into disjoint sets before
looking for the RLT equations; there is no reason to try multiplying a variable x1 by
a nonlinear term x2 · x3 if we have previously established that x1 never interacts with
x2 or x3 in the model. In the case of instance johnall in MINLPLib (194 vari-
ables; 193 equations; 296 nonlinear terms after reformulation), the MISO framework
finishes its preprocessing in approximately 9 CPU seconds; this includes the time to
find and initialize the 15,859 possible RLT equations.

3.2.2 Recognizing Second-Order Structure: Convexity/Concavity and

Edge-Convexity/Edge-Concavity

Two important second-order properties are convexity/concavity and edge-concavity/edge-
convexity; the MISO framework looks for each of these four properties in each sig-
nomial term of the transformed model. Observe that the sign of the coefficients mul-
tiplying the signomial terms and the type of equation where the term participates
(i.e., objective function, inequality, and equality) govern whether the static relaxations
(§3.2.3) and dynamic cutting planes (§3.3.2) query the convex and edge-concave un-
derestimators or the concave and edge-convex overestimators (or both).

3.2.2.1 Recognizing Convexity and Concavity
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Convexity and concavity permits easy generation of a cutting plane at any point x̂:

fs(x)≥ fs(x̂)+ f ′s(x) · (x− x̂) (convex)
fs(x)≤ fs(x̂)+ f ′s(x) · (x− x̂) (concave)

For univariate terms, the framework detects the following:

1. xa
1; a ∈ Z+; a mod 2 = 0 =⇒ convex term

2. xa
1; a ∈ Z−; a mod 2 = 0 =⇒ convex when x1 ≥ 0; concave when x1 ≤ 0

3. xa
1; a ∈ Z ; a mod 2 = 1 =⇒ convex when x1 ≥ 0; concave when x1 ≤ 0

4. xa
1; a ∈ (0, 1) =⇒ concave term (x1 ≥ 0 by Section 1 assumptions)

5. xa
1; a 6∈ Z ; a > 1 or a < 0 =⇒ convex term (x1 ≥ 0 by Section 1 assumptions)

The MISO framework detects convexity in product xa
1 · xb

2 using the conditions of
Maranas and Floudas [36] as documented in Appendix Appendix B. Using the anal-
ysis of univariate terms and Theorems Appendix B.1-3, the MISO framework uses
initial variable bounds to label each term according to whether it is always convex,
sometimes convex, or never convex; if the term is sometimes convex, the MISO
framework records the convexity domain (symmetric analysis for concavity). This
information is used in the branch-and-cut phase (§3.3.1, §3.3.2).

3.2.2.2 Recognizing Edge-Convexity and Edge-Concavity

While elucidating convexity/concavity regions allows the MISO framework to ex-
ploit gradient-based relaxations, detecting edge-concavity/edge-convexity allows the
framework to develop vertex polyhedral underestimators. The following discussion
of edge-concavity/edge-concavity is based on results of Tardella [60–62] and Meyer
and Floudas [59]; our previous work specialized edge-concavity for both low- and
high-dimensional aggregations of quadratic expressions [2, 3].

Definition 3.2.2.1 [61]: Let D = {d1, . . . , dk} be a set of vectors such that for each
edge E of a polyhedron P, D contains a vector parallel to E. Function f (x1, . . . , xn)

is edge-concave on P if and only if it is concave on all segments in P that are parallel
to an edge of P.

Tardella [60] proved that edge-concave functions admit a vertex polyhedral en-
velope and observed that for the special case of twice-continuously differentiable
function f : Rn 7→ R defined on a box P ≡

[
xL, xU

]
, the edge-concave definition is

equivalent to [61]:

∂ 2 f
∂x2

i
≤ 0 ∀ i = 1, . . . , n. (3)
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For each signomial term, the MISO framework analyzes diagonal elements of the in-
terval Hessian ([hii] ∈ [H] that bound all Hessian values of f on the domain [xL

1 ,x
U
1 ]×

. . .× [xL
n ,x

U
n ]) with respect to Equation (3) and finds whether each element on the

diagonal of the interval Hessian is: nonpositive; spanning 0; positive. The signomial
term is: always edge-concave if [hii]≤ 0 ∀ i; sometimes edge-concave if [hii] is either
nonpositive or spanning 0 for all i; never edge-concave if ∃ i such that [hii]> 0.

These calculations are performed using the Boost interval arithmetic library [82,
83]. Although interval arithmetic typically overestimates the range of a function,
there is no range overestimation in finding the edge-concavity properties of a single
signomial term because (1) variables are repeated at most once and (2) the interval
arithmetic library contains special functions including: powers; squares; roots; in-
verses. If the signomial term is sometimes edge-concave, the framework records the
relevant domain and applies locally-valid cuts at relevant nodes of the branch-and-cut
tree (Section 3.3.2). Symmetric analysis is performed for edge-convexity.

3.2.3 Establishing underestimators

Beyond the domains of convexity/concavity and edge-convexity/edge-concavity de-
scribed in Section 3.2.2, the current framework implementation recognizes absolute
values, odd monomials [58] and products of two convex functions [36]. The under-
estimating exponential transformation is applied when the variables participating in
the signomial term are on a positive domain [8, 48, 50]; the current implementation
does not shift the domain for negative variable values as in Maranas and Floudas [8].

Specialized underestimators have been designed for a variety of functional forms
(e.g., [8, 31, 36, 48, 50, 54–67]). One advantage of the flattening transformations is
that it exposes a variety of multivariable terms; flexible software design allows easy
integration of new relaxations corresponding to further research advances. The C++
implementation of the MISO framework has an object-oriented structure with spe-
cialized term types inheriting from more general terms; polymorphism automatically
applies the most specific relaxation to each term based on current variable bounds.

Consider the term |xi| as an example of the way the framework specializes itself.
In the most general case, the framework introduces variables x+i , x−i , and yi to model
the MILP representation of |xi|:

|xi| =⇒


|xi|= x+i + x−i ; x−i ≤ |xi|U · (1− yi);

xi = x+i − x−i ; x+i ≤ |xi|U · yi;

x+i ; x−i ≥ 0; yi ∈ {0, 1} .

(4)
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The MISO framework uses the MILP representation of |xi| (i.e., Equation 4) rather
than the convex relaxation (i.e., |xi| ≥ xi; |xi| ≥ −xi; |xi| ≤

|xU
i |−|x

L
i |

xU
i −xL

i
·
(
xi− xL

i
)
+ |xL

i |);
this moves the complexity of addressing nonconvex absolute values to the MILP
solver. The auxiliary binary variable yi is only needed when xi can be either positive
or negative and the |xi| term participates in a concave direction (e.g., if there is a
term −2 · |xi| in the objective function of a minimization problem). In cases where
|xi| only participates in a convex direction (e.g., only with a positive coefficient in
the objective function of a minimization problem), the binary variable yi is discarded
and Equation (4) reduces to the LP reformulation of |xi|. In regions of the branch-
and-cut tree where xi ≥ 0, |xi| reduces to x+i . The special mathematical structure
detection phase identifies which underestimators will be useful during the branch-
and-cut phase; the least complex underestimator is applied at each node (§3.3.1).

3.3 Branch-and-cut Global Optimization

After the reformulation and special structure detection phases, the MISO framework
initiates a branch-and-cut global optimization algorithm that generates tight con-
vex underestimators (§3.3.1), dynamically generates separating hyperplanes (§3.3.2),
bounds the variables, branches on the search space, and finds feasible solutions (§3.3.3).

3.3.1 Generating tight underestimators

As in GloMIQO, the framework generates an MILP relaxation of the MISO problem
at each node of the branch-and-cut tree; Smith and Pantelides [53] discuss trade-offs
associated with this strategy. The special mathematical structure phase has already
detected (using the sign of the coefficients and the sense of the equations) which terms
require overestimators, underestimators, or both. When an underestimator (overesti-
mator) is nonlinear and convex (concave), the framework linearizes the relaxation
using gradient-based cuts at the vertices and center of the term domain; the linearized
relaxation will later be updated with cutting planes (§3.3.2).

When a term of four or fewer dimensions has an edge-concave (edge-convex)
underestimator (overestimator), all facets are directly added to the relaxation us-
ing an extension of the Meyer and Floudas [59] algorithm developed for GloMIQO
2.0 [3]. Like GloMIQO, the MISO framework generalizes the diagonal-to-diagonal
and diagonal-to-corner dominance tests of Meyer and Floudas [59] to many dimen-
sions [3]. These dominance tests weed out candidate facets from entering the ex-
pensive Rikun [84] validation test. The edge-concave facet generation differs from
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the GloMIQO implementation only in deducing dominance relationships that discard
possible facets. For general terms, the edge-concave facet generator has to consider
dominance relationships on every face of the cube while GloMIQO (for the special
case of bilinear terms) reduces the number of dominance tests by inferring that one
projection sufficiently captures the others [3].

Cafieri et al. [57] and Belotti et al. [85] recently showed the relative advantages
of quadrilinear term relaxations based on varying applications of associativity (e.g.,
(x1 · x2 · x3) · x4 and ((x1 · x2) · x3) · x4). This work diverges from theirs by directly
adding all (up to 28) facets of the convex hull to the relaxation for terms of dimension
four or fewer; Example 3.3.1.1 shows the result of this design choice [86].

Example 3.3.1.1: The Hartree-Fock Problem instance beryllium [86]:

min −15.73426 · c2
12−15.73426 · c2

11 +0.5721648 · c12 · c22 · c2
21 +1.56814504 · c2

12 · c11 · c21

+1.56814504 · c2
11 · c12 · c22−7.7290488 · c11 · c21−7.7290488 · c12 · c22−4.204318 · c2

21

−4.204318 · c2
22 +2.2988306 · c4

11 +4.5976612 · c2
11 · c2

12−1.329488452 · c11 · c21 · c12 · c22

+0.8353663 · c2
21 · c2

22 +0.41768315 · c4
21 +0.41768315 · c4

22 +2.124875442 · c2
11 · c2

22

+2.124875442 · c2
12 · c2

21 +1.460131216 · c2
12 · c2

22 +0.5721648 · c11 · c3
21 +0.5721648 · c12 · c3

22

+0.5721648 · c11 · c21 · c2
22 +1.56814504 · c3

12 · c22 +1.460131216 · c2
11 · c2

21 +1.56814504 · c3
11 · c21

+2.2988306 · c4
12

s.t. c2
11 + c2

21 +2 ·0.259517 · c11 · c21 = 1; c2
21 + c2

22 +2 ·0.259517 · c12 · c22 = 1
c11 · c12 + c21 · c22 +0.259517 · (c11 · c22 + c21 · c12) = 0
c11; c12; c21; c22 ∈ [−2, 1]

has 19 signomial terms and a root node relaxation of−1.141×102 when all facets of
the convex envelopes for quadrilinear terms are introduced and the interlinking RLT
equations are excluded; when we switch to directly adding facets only for dimensions
three or fewer, the root node relaxation drops to−1.164×102. In this example there is
roughly a 2% difference in relaxation strength between using the convex hull of the
quadrilinear term and recursively applying relaxations; the MISO framework takes
the more computationally expensive option in return for the stronger relaxation.

3.3.2 Dynamically generating separating hyperplanes

The MISO framework convexifies the MILP relaxation of the MISO to an LP and
solves the LP. Cutting planes then tighten the LP relaxation; cuts are added until the
objective of the LP no longer improves. The cuts added at this phase:

– tighten individual terms; these cuts are for gradient-based nonlinear convex (con-
cave) underestimators (overestimators) or vertex-based edge-concave (edge-convex)
facets from terms with five or more variables;

– improve relaxation of bilinear term aggregates; equivalent to GloMIQO 2.0 [3];
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– integrate the violated RLT equations identified in Section 3.2.1
– introduce previously-generated cuts that are violated at the current relaxation so-

lution; each node can access the locally-valid cuts generated by its ancestors and
any of the globally-valid cuts.

After cuts are no longer improving the LP objective, the framework activates the
integrality constraints and solves the MILP relaxation. Dynamic cut generation is
used for the first few levels of the branch-and-cut tree; in later levels of the tree, parent
nodes may deactivate dynamic cut generation in their children. The MISO framework
distinguishes between globally and locally valid cuts. A globally valid cut generated
at node n can be applied to any node of the branch-and-cut tree; a locally valid cut
generated at node n can be applied to any descendent node.

3.3.3 Other Global Optimization Considerations

The branching and bounding strategies are nearly identical to GloMIQO [1–3]. The
reliability branching implementation extends the error analysis rule in GloMIQO [1,
39, 87] from the discrepancy between the auxiliary variable representing a quadratic
term (ŵxx

i, j) and the true term value at the current feasible point (x̂i · x̂ j) to the discrep-
ancy corresponding to both the quadratic and signomial terms:

argmax
i

[
∑

j

∣∣ŵxx
i, j− x̂i · x̂ j

∣∣+ ∑
si∈S

∣∣ f̂si(x)− fsi(x̂)
∣∣]

where si represents the signomial terms incorporating the variable xi, f̂si(x) is the
value of the auxiliary variable representing the signomial term, and fsi(x̂) is the non-
linear term substituted with the variable values at the current feasible point.

The variable bounding scheme addresses more functional forms but it is otherwise
identical to GloMIQO [1]. The code base uses the Boost interval arithmetic library
[82, 83] for validated interval arithmetic; this increases the reliability of the software.
Although GloMIQO became somewhat slower on problem classes including compu-
tational geometry after integrating the Boost interval arithmetic library, the reliability
on problem classes such as the periodic scheduling of multi-purpose batch plants and
water distribution network (Tables S8 and S11 in the online supplementary material;
http://helios.princeton.edu/ANTIGONE/MISOSupp.pdf) improved
dramatically. At this writing, there is no way for a user to manually switch off the
validated interval arithmetic.
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Table 2: MISO Test Suite of 257 Problems

Problem Class # Cases Discrete Source

minlp.org

Belgian Chocolate Problem 4 X [88, 89]
Cascading Tanks 8 X [90]
Cyclic Scheduling and Control 1 X [91]
Distillation Sep. Sequences 1 X [92–95]
Heat Exchanger Networks 3 X [96, 97]
Metabolic Networks 2 X [80, 81]
Multi-Product Batch Plants 2 X [98–100]
Periodic Scheduling 13 X [101, 102]
Supply Chain Design 2 X [103, 104]
Three-Echelon Supply Chain 8 X [105–107]
Unit Commitment 2 X [108, 109]
Water Distribution Network 8 X [110, 111]
Water Treatment Network 6 X [112–115]

Test Libraries

GLOBALLib 82 [79, 116]
MINLPLib 90 X [79, 117]
MacMOOPLib 4
AMPL Book Lib 7 [118]
Bonmin Test Set 10 X [119, 120]

Lit Problems 4 [121]

Like GloMIQO, the MISO framework uses every MILP relaxation solution to
multistart a local NLP solver (default CONOPT; alternative SNOPT). The only dif-
ferences are three strategies to get better quality solutions; the MISO framework:

– disallows starting points at regions of discontinuity (e.g., the framework will per-
turb x̂1 =−b/a away from its relaxation solution if there is a term 1/(a · x1 +b);

– freezes variables if their current value is feasible but at a point with an infinite
derivative (e.g., if the MILP relaxation sets x̂1 = 0 and there is a term x0.7

1 , the
framework locks the variable value);

– removes redundant RLT equations from the model formulation before starting
the NLP solver; redundant equality equations are unnecessarily difficult for local
NLP codes [22, pp 56].

4 Definition of the MISO Test Suite

Table 2 outlines the MISO test suite; which are available on the ANTIGONE website
(http://helios.princeton.edu/ANTIGONE/MISOSupp.pdf). It includes
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257 problems with signomial components; test cases with only quadratic and bilin-
ear terms are excluded from the analysis because we want to demonstrate the new
MISO framework. Tables in the supplementary material analyze the size of each of
the problems.

4.1 Test Suite Definition: 60 minlp.org Problems

The minlp.org test set is challenging; all 60 problems are less than 5 years old and
industrially relevant. The 60 problems are outlined in Table 2 & S1 – S13.

4.2 Test Suite Definition: 82 GLOBAL Lib Problems

The 82 GLOBALLib [79, 116] test cases represent all the sufficiently bounded MISO
problems with a non-quadratic component (i.e., at least one solver was able to de-
terministically infer variable bounds). The models and their sizes are documented
in Table S14 (online supplementary material). The MISO framework is additionally
validated for the following eight unbounded problems not in the 257 set: ex4 1 5;
ex8 1 3; ex8 1 4; ex8 1 5; ex8 3 6; ex8 3 10; ex8 6 1; ship.

4.3 Test Suite Definition: 100 MINLP Library Problems

The 90 MINLPLib [79, 117] and 10 Bonmin Test Set [119, 120] problems are all
bounded signomial test cases with a non-quadratic component; excluded is the un-
bounded minlphix. Tables S15 and S18 in the supplementary material document
these problems.

4.4 Test Suite Definition: 19 Other Problems

The remaining set of problems is from a variety of sources. There are 4 test cases from
MacMOOPLib (http://wiki.mcs.anl.gov/leyffer/index.php/MacMOOP;
http://www.gamsworld.org/performance/macmoop/macmooplib.htm)
documented in Table S16. The 7 AMPL Book Lib Problems (http://www.ampl.
com/EXAMPLES/index.html; http://www.gamsworld.org/performance/
amplbook/amplbooklib.htm) are documented in Table S17.

Yanjun et al. [121] solve the final 4 test cases analytically and find globally opti-
mal points at singularities (e.g., x̂ = 0 when 1/x is one term in a constraint). To elimi-
nate the numerically-unmanageable points, the test problems have been reformulated



18 Ruth Misener, Christodoulos A. Floudas

so that all variables are bounded below by 10−3 rather than by 0 as in their original
version. The modeling files are documented in Table S19. The MISO framework is
also validated with transpl2 in the AMPL Book Library and ytz 1 from Yanjun
et al. [121], but these are unbounded problems where time profiles are irrelevant.

5 Testing the Framework

The C++ implementation interfaces with CPLEX 12.5 for the MILP relaxations,
CONOPT 3 [22] for the local NLP solves, LAPACK [122] for solving systems of
equations and Boost [82, 83] for validated interval arithmetic. The code is linked
to GAMS via an adaptation of GAMSLinks [40, 123] and is publicly available as a
subset of the MINLP solver ANTIGONE [21].

To test the performance of the MISO framework, we compared the 257 test prob-
lems outlined in Table 2 against several state-of-the-art global optimization solvers:
BARON 12.3.3 [38], Couenne 0.4 [39], LINDO 8.0 [41, 42], and SCIP 3.0 [47]. All
of the solvers are subject to active development; we have used the latest version of
each solver available to us as of July 2013 (GAMS 24.1.2).

We ran each of the 5 ·257 = 1285 computational experiments under 4 termination
criteria: (1) a relative optimality gap ε = UB−LB

|LB| ≤ 1× 10−6 = 1× 10−4%; (2) an
absolute optimality gap ε = UB− LB = 1× 10−6; (3) a 7200 s time limit; (4) an
iteration limit of 9 · 109. No other parameters were altered from default. Following
the recommendation of Dolan and Moré [124], each of the 5 solvers addressed a
test problem successively so as minimize the effect of fluctuating machine load. We
performed our computational studies running 64 bit Linux on an Intel Xeon X5650
2.67 GHz processor with 24 GB RAM.

We considered the 257 test cases outlined in Table 2. After solving each of the 257
test cases using GAMS, a Perl script asserted the feasibility of the solution returned
by each solver. Instances where solvers returned infeasible points but claimed they
were ε-global optimum points, local optimum points, or integer feasible points were
automatically relabeled as failures (fl). Dashes (–) in columns LB and UB of Tables
S20 – S27 in the online supplementary material indicates a benign failure (the solver
chose to terminate based on numerical instability or other internal issue and did not
return a solution to the user).

Comparisons between the solvers are based on performance profiles [124]:

tp,s ≡ Performance metric (e.g., time in seconds) for problem p by technique s ∈ S

rp,s ≡
tp,s

min
{

tp,s′ : s′ ∈ S
}
∀ p ∈ P

; s ∈ S
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(a) Time s: Log2 Scale (b) Remaining Gap at 7200 s: Log2 Scale

Fig. 2: 257 Complete Test Suite: Performance Profile (a) compares the CPU time
for all 257 test cases; Profile (b) diagrams the percent gap at 7200 s

ρs(τ) =
1
np

size
{

p ∈ P : rp,s ≤ τ
}

The logarithmic plots in this paper, which diagram ρs (log10 (τ)) as a function of
log10 (τ), were generated using the GAMS Performance Tools with options: colselect;
useobjest; bnd=1e-4; gaptol=1e-4 (PTOOLS 1.1; www.gamsworld.org/
performance/paver/; accessed 11 March 2013). Each of the Figures 2 – 5 has
a subfigure (a) and (b). Subfigures (a) are the output of PTOOLS using solver re-
ported time as a resource measurement and the objest option to enforce an ob-
jective gap of 10−4. Subfigures (b) use the colselect command (and switch off
useobjest); this allows us to compare the solvers with respect to their optimality
gap at termination (100 · UB−LB

|LB| ); this column in the GAMS trace file was created
with the same Perl script that asserts feasibility of the solution. Note that the perfor-
mance profiles in Figures 2 – 5 are only representative of problems with well-defined
bounds; the MISO framework is further validated with unbounded problems.

5.1 Results of the Computational Study

Tables S20 – S27 give the results of the computational study; Figure 2 summarizes
the computational results with a performance profile of the entire test suite. Sections
5.2 – 5.5 detail the individual test sets.
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Table 3: minlp.org: Results of ruiz concbased [115]

Time (s) Gap LB UB

MISO Framework 7 1.000e-04 -3.483e+05 -3.483e+05
BARON 12.3.3 168 1.000e-04 -3.483e+05 -3.483e+05
LINDO 8.0 762 1.000e-04 -3.483e+05 -3.483e+05
SCIP 3.0 9 1.000e-04 -3.483e+05 -3.483e+05

Gap ≡ 100 ·
(

UB−LB
|LB|

)
; Termination Criteria: Gap = 1×10−4% or Time = 7200 s

(a) Time s: Log2 Scale (b) Remaining Gap at 7200 s: Log2 Scale

Fig. 3: 60 minlp.org Test Cases: Performance Profile (a) compares the CPU time
for 60 problems from minlp.org; Profile (b) diagrams the percent gap at 7200 s

5.2 Computational Results: 60 minlp.org Problems

The MISO framework is particularly strong on the 60 minlp.org test cases; re-
sults of the computational study are given in Tables S20 – S21 and Figure 3. Table 3
uses ruiz concbased as a representative example from this test set; this is a wa-
ter network problem with a concave cost function that the MISO framework solves
in approximately 7 seconds. After the reformulation stage, ruiz concbased has
115 bilinear and 5 univariate concave terms. The strong performance on this test
problem is largely an outcome of the MISO framework reducing to GloMIQO in
the case of quadratic problems; the complexity of this problem is in the 115 bilinear
terms. Couenne 0.4 is not included in Table 3; it fails the post-processing feasibility
tests. Another set of examples where the MISO framework does very well is the MTG
and STG periodic scheduling problems [101, 102]; these are large, poorly-scaled test
cases (size up to: 310 continuous variables; 384 discrete variables; 388 constraints;
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Table 4: MINLPLib: Results of cecil 13 [79, 117]

Time (s) % Gap LB UB

MISO Framework 209 1.000e-04 -1.157e+05 -1.157e+05
BARON 12.3.3 – 9.219e-02 -1.158e+05 -1.157e+05
Couenne 0.4 – 5.254e+00 -1.216e+05 -1.156e+05
LINDO 8.0 – 1.475e+00 -1.174e+05 -1.157e+05
SCIP 3.0 – 1.625e+00 -1.175e+05 -1.156e+05

Gap ≡ 100 ·
(

UB−LB
|LB|

)
; Termination Criteria: Gap = 1×10−4% or Time = 7200 s

(a) Time s: Log2 Scale (b) Remaining Gap at 7200 s: Log2 Scale

Fig. 4: 100 MINLP Library Cases: Performance Profile (a) compares the CPU time
for 100 problems from MINLPLib and the Bonmin Test Set; Profile (b) diagrams the
percent gap at 7200 s

166 nonlinear terms; variables ranging from order 1 to order 106 in many equations).
Of the solvers, only the MISO framework is able to reliably generate high-quality
solutions for MTG and STG.

5.3 Computational Results: 100 MINLP Library Problems

Computational results for the 100 MINLP library problems from MINLPLib and the
Bonmin test set are in Tables S22 – S23 and Figure 4. Table 4 presents cecil 13

as an example from MINLPLib; the MISO framework is able to close the gap in
approximately 3 minutes while the remaining solvers do not converge in 2 hours; this
is a result of the MISO framework finding 34 nonlinear term / equality equation RLT
products that it directly adds to the model formulation.
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Table 5: GLOBALLib: Results of ex7 2 3 [79, 116]

Time (s) % Gap LB UB

MISO Framework 2906 1.000e-04 7.049e+03 7.049e+03
BARON 12.3.3 – 2.357e+02 2.100e+03 7.049e+03
Couenne 0.4 – 2.354e+02 2.102e+03 7.049e+03
LINDO 8.0 – 2.357e+02 2.100e+03 7.049e+03
SCIP 3.0 – 2.357e+02 2.100e+03 7.049e+03

Gap ≡ 100 ·
(

UB−LB
|LB|

)
; Termination Criteria: Gap = 1×10−4% or Time = 7200 s

(a) Time s: Log2 Scale (b) Remaining Gap at 7200 s: Log2 Scale

Fig. 5: 82 GLOBALLib Cases: Performance Profile (a) compares the CPU time for
82 problems from GLOBALLib; Profile (b) diagrams the percent gap at 7200 s

5.4 Computational Results: 82 GLOBAL Lib Problems

Tables S24 and S25 and Figure 5 give results for the 82 GLOBAL Lib Problems. For
test case ex7 2 3, Table 5 gives the solution bounds for each of the five solvers after
two hours; observe that the MISO framework has closed the gap using the 40 RLT
equations interlinking the terms. All other solvers terminate at a gap which is 6 orders
of magnitude larger.

5.5 Computational Results: 19 Other Problems

Computational results for the final 19 problems are in Tables S26 – S27. The strong
performance of the 5 steelpl cases in the AMPL Library is a result of automati-
cally reformulating

√
x2

i to |xi|.
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6 Conclusions

This manuscript introduces a framework for globally optimizing MISO that builds
on the core GloMIQO strategies of (1) reformulating user input, (2) detecting spe-
cial mathematical structure, and (3) globally optimizing via branch-and-cut. New ad-
vances include: reformulating towards special functional forms; adding nonconvex
terms to interlink expressions; integrating a dynamic implementation of RLT into the
branch-and-cut tree; designing underestimators that specialize themselves according
to the spot in the branch-and-bound tree. Computational results show that the frame-
work is a powerful tool for globally optimizing MISO; the framework compares fa-
vorably to state-of-the-art solvers. The strong performance is especially noticeable in
the minlp.org test set.
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83. Brönnimann, H., Melquiond, G., Pion, S.: The design of the Boost interval arith-
metic library. Theoretical Computer Science 351, 111–118 (2006)

84. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob.
Optim. 10, 425 – 437 (1997)

85. Belotti, P., Cafieri, S., Lee, J., Liberti, L., Miller, A.: On the composition of
convex envelopes for quadrilinear terms. In: A. Chinchuluun, P.M. Pardalos,
R. Enkhbat, E.N. Pistikopoulos (eds.) Optimization, Simulation, and Control,
Springer Optimization and Its Applications, vol. 76, pp. 1–16. Springer New
York (2013)

86. Liberti, L., Lavor, C., Maculan, N., Nascimento, M.: Reformulation in mathe-
matical programming: an application to quantum chemistry. Discrete Applied
Mathematics 157(6), 1309–1318 (2009)

87. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett.
33(1), 42–54 (2005)

88. Chang, Y.J., Sahinidis, N.V.: Global optimization in stabilizing controller de-
sign. J. Glob. Optim. 38, 509–526 (2007)

89. Chang, Y.J., Sahinidis, N.V.: Stabilizing controller design and the belgian
chocolate problem (2009). Available from CyberInfrastructure for MINLP at:
www.minlp.org/library/problem/index.php?i=57

90. Gopalakrishnan, A., Biegler, L.: MINLP and MPCC formulations for the cas-
cading tanks problem (2011). Available from CyberInfrastructure for MINLP
at: www.minlp.org/library/problem/index.php?i=140

91. Flores-Tlacuahuac, A., Grossmann, I.E.: Simultaneous cyclic scheduling and
control of a multiproduct cstr (2009). Available from CyberInfrastructure for
MINLP at: www.minlp.org/library/problem/index.php?i=71

92. Caballero, J.A., Grossmann, I.E.: Generalized disjunctive programming model
for the optimal synthesis of thermally linked distillation columns. Ind. Eng.
Chem. Res. 40(10), 2260–2274 (2001)

93. Caballero, J.A., Grossmann, I.E.: Design of distillation sequences: From con-
ventional to fully thermally coupled distillation systems. Comput. Chem. Eng.



A Framework for Globally Optimizing Mixed-Integer Signomial Programs 29

28(11), 2307 – 2329 (2004)
94. Caballero, J.A., Grossmann, I.E.: Structural considerations and modeling in the

synthesis of heat integrated thermally coupled distillation sequences. Ind. Eng.
Chem. Res. 45(25), 8454–8474 (2006)

95. Caballero, J.A., Grossmann, I.E.: Optimal separation sequences based
on distillation: From conventional to fully thermally coupled sys-
tems (2009). Available from CyberInfrastructure for MINLP at:
www.minlp.org/library/problem/index.php?i=69

96. Escobar, M., Grossmann, I.E.: Mixed-integer nonlinear programming
models for optimal simultaneous synthesis of heat exchangers net-
work (2010). Available from CyberInfrastructure for MINLP at:
www.minlp.org/library/problem/index.php?i=93

97. Yee, T.F., Grossmann, I.E.: Simultaneous optimization models for heat integra-
tionII. Heat exchanger network synthesis. Comput. Chem. Eng. 14(10), 1165 –
1184 (1990)

98. Grossmann, I.E., Sargent, R.W.H.: Optimum design of multipurpose chemical
plants. Ind. Eng. Chem. Process Des. Dev. 18(2), 343–348 (1979)

99. Kocis, G.R., Grossmann, I.E.: Global optimization of nonconvex mixed-integer
nonlinear programming (MINLP) problems in process synthesis. Ind. Eng.
Chem. Res. 27(8), 1407–1421 (1988)

100. You, F., Grossmann, I.E.: Mixed-integer nonlinear program-
ming models for the optimal design of multi-product batch
plant (2009). Available from CyberInfrastructure for MINLP at:
www.minlp.org/library/problem/index.php?i=48

101. Castro, P., Novais, A.: Optimal periodic scheduling of multistage continuous
plants with single and multiple time grid formulations. Ind. Eng. Chem. Res.
46(11), 3669–3683 (2007)

102. Castro, P., Novais, A.: Periodic scheduling of continuous multiprod-
uct plants (2009). Available from CyberInfrastructure for MINLP at:
www.minlp.org/library/problem/index.php?i=34

103. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and
algorithms for large-scale supply chain design with stochastic inventory man-
agement. Ind. Eng. Chem. Res. 47(20), 7802–7817 (2008)

104. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models
and algorithms for supply chain design with stochastic inventory man-
agement (2009). Available from CyberInfrastructure for MINLP at:
www.minlp.org/library/problem/index.php?i=30

105. Nyberg, A., Grossmann, I.E., Westerlund, T.: The optimal design of
a three-echelon supply chain with inventories under uncertainty (2012).
Available from CyberInfrastructure for MINLP [www.minlp.org, a
collaboration of Carnegie Mellon University and IBM Research] at:
www.minlp.org/library/problem/index.php?i=157

106. Nyberg, A., Grossmann, I.E., Westerlund, T.: An efficient reformulation of the
multiechelon stochastic inventory system with uncertain demands. AIChE J.
59(1), 23–28 (2013)



30 Ruth Misener, Christodoulos A. Floudas

107. You, F., Grossmann, I.E.: Integrated multi-echelon supply chain design with
inventories under uncertainty: Minlp models, computational strategies. AIChE
Journal 56(2), 419–440 (2010)

108. Niknam, T., Khodaei, A., Fallahi, F.: A new decomposition approach for the
thermal unit commitment problem. Applied Energy 86(9), 1667 – 1674 (2009)

109. Zondervan, E., Grossmann, I.E.: A deterministic security constrained unit com-
mitment model (2009). Available from CyberInfrastructure for MINLP at:
www.minlp.org/library/problem/index.php?i=41

110. Bragalli, C., DAmbrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design
of water distribution networks: a practical MINLP approach. Optim. Eng. 13,
219–246 (2012)

111. D’Ambrosio, C., Bragalli, C., Lee, J., Lodi, A., Toth, P.: Optimal design of water
distribution networks (2011). Available from CyberInfrastructure for MINLP
at: www.minlp.org/library/problem/index.php?i=134
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framework for convex mixed integer nonlinear programs. Discrete Optimiza-
tion 5(2), 186 – 204 (2008)

120. Sawaya, N.W.: Reformulations, relaxations and cutting planes for generalized
disjunctive programming. PhD in Chemical Engineering, Carnegie Mellon Uni-
versity (2006)

121. Yanjun, W., Tao, L., Zhian, L.: A general algorithm for solving generalized
geometric programming with nonpositive degree of difficulty. Computational
Optimization and Applications 44, 139–158 (2009)

122. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LA-



A Framework for Globally Optimizing Mixed-Integer Signomial Programs 31

PACK Users’ Guide, third edn. Society for Industrial and Applied Mathematics
(1999)

123. Vigerske, S.: COIN-OR/GAMSLinks. https://projects.coin-or.
org/GAMSlinks/ (2011)
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Appendix A Reformulation Linearization Technique (RLT) Equations

The equations in this section are presented in factored form for clarity, but the MISO framework addresses
them in expanded form. The RLT equations are updated throughout the branch-and-cut tree; any upper
bound on a variable or a nonlinear term represents the upper bound at the current tree node.

Equation/Variable products may generate as many as as four RLT equations (an equation with only
one inequality bound produces two RLT equations; equality equations produce exactly one RLT equation):(
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∀ m ∈ {1, . . . , M}; i ∈C×B× I

Nonlinear Term/Variable products introduce four RLT equations; s ∈ {1, . . . , S} denotes a list of the
quadratic, bilinear, and signomial terms:
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Equation/Nonlinear Term products may generate up to four RLT equations; s ∈ {1, . . . , S} represents a
list of the quadratic, bilinear, and signomial terms:(
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Nonlinear Term/Nonlinear Term products result in up to four RLT equations:

(
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fs(x)− fs(x)LO) · ( fs′ (x)− fs′ (x)LO)≥ 0 ∀ s, s′ ∈ {1, . . . , S}
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Appendix B Recognizing Convexity and Concavity

The MISO framework detects convexity in product xa
1 · xb

2 using the conditions of Maranas and Floudas
[36]. Repeating their results without proof:
Theorem Appendix B.1 [36]: If one of the following conditions holds for the product xa

1 · xb
2:

1. x1, x2 ≥ 0
2. a, b ∈ Z; a mod 2 = 0; b mod 2 = 0
3. a, b ∈ Z; a mod 2 = 1; b mod 2 = 1; x1 · x2 ≥ 0
4. a, b ∈ Z; a mod 2 = 1; b mod 2 = 0; x1 ≥ 0 (symmetrically a mod 2 = 0; b mod 2 = 1; x2 ≥ 0)

Then xa
1 · xb

2 is convex if at least two of the following are true: a ≤ 0; b ≤ 0; 1− a− b ≤ 0. The term is
concave if a, b≥ 0 and a+b≤ 1. 2

Theorem Appendix B.2 [36]: If one of the following conditions holds for the product xa
1 · xb

2:

1. a, b ∈ Z; a mod 2 = 1; b mod 2 = 1; x1 · x2 ≤ 0
2. a, b ∈ Z; a mod 2 = 1; b mod 2 = 0; x1 ≤ 0 (symmetrically a mod 2 = 0; b mod 2 = 1; x2 ≤ 0)

Then xa
1 · xb

2 is concave if at least two of the following are true: a≤ 0; b≤ 0; 1−a−b≤ 0. 2

For general signomial terms, the MISO framework recognizes convexity/concavity on positive do-
mains:

Theorem Appendix B.3 [36]: Signomial term
C
∏

c=1
xps,c

c : x ∈ RC
+ is convex if:

1. ps,c ≤ 0 ∀ c = {1, . . . ,C}

or
2. ∃ c′ such that ps,c′ ≥ 1− ∑

c6=c′
ps,c and ps,c ≤ 0 ∀ c 6= c′; c = {1, . . . ,C}

and concave if ps,c ≥ 0 ∀ c = {1, . . . ,C}; ∑
c

ps,c ≤ 1. 2


