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We investigate a recently developed approach [P. L. Silvestrelli, Phys. Rev. Lett. 100, 053002 (2008);
J. Phys. Chem. A 113, 5224 (2009)] that uses maximally localized Wannier functions to evaluate the
van der Waals contribution to the total energy of a system calculated with density-functional theory.
We test it on a set of atomic and molecular dimers of increasing complexity (argon, methane, ethene,
benzene, phthalocyanine, and copper phthalocyanine) and demonstrate that the method, as originally
proposed, has a number of shortcomings that hamper its predictive power. In order to overcome these
problems, we have developed and implemented a number of improvements to the method and show
that these modifications give rise to calculated binding energies and equilibrium geometries that are
in closer agreement to results of quantum-chemical coupled-cluster calculations. © 2011 American

Institute of Physics. [doi:10.1063/1.3647912]

I. INTRODUCTION

Local and semi-local exchange-correlation functionals
used in density-functional theory>* (DFT) cannot account
for the effect of long-ranged dispersion, or van der Waals
(vdW), interactions. Dispersion interactions are crucial for
weakly bound systems, particularly where no covalent or
ionic bonding is present, and often dominate intermolecular
binding energies and equilibrium geometries. Incorporating
vdW interactions in DFT remains a challenging task and a
wide variety of methods have been developed, approach-
ing the problem from many different perspectives.’”'* In
this work we focus on the method recently proposed by
Silvestrelli,"-? which has been applied to various systems'*!7
and implemented in a number of modern electronic structure
codes.'® ! This approach uses maximally localized Wannier
functions®® (MLWFs) as a means of decomposing the
electronic density of the system into a set of localized but
overlapping fragments, which may then be used to calculate
a vdW correction to the DFT total energy by considering
pairwise interactions between density fragments as derived
by Andersson, Langreth, and Lundqvist’ (ALL).

In this paper, we explore the parameters and approxima-
tions involved in Silvestrelli’s method and improve its results
where possible by modifying various aspects of the method.
We apply the method and our proposed modifications to a se-
ries of test systems, then to two more challenging systems, a
phthalocyanine and a copper phthalocyanine dimer. We thus
demonstrate that although this method can offer an easily im-
plementable and computationally efficient way of calculating
the dispersion correction to the energy with the possibility
of improved accuracy (once some modifications are applied
to it), it is largely dependent on a number of parameters and
choices one can make.
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The remainder of the paper is organized as follows: in
Sec. II we recap the necessary background theory relating to
MLWEFs and Silvestrelli’s method; in Sec. III we highlight
some of the problems with the method as it stands, and de-
scribe our improvements; in Sec. IV we then present and dis-
cuss results for vdW-corrected total energies and equilibrium
geometries obtained by applying these methods to a series of
dimer systems and compare to quantum chemical coupled-
cluster and semi-empirical vdW (DFT + D) approaches; fi-
nally, in Sec. V we draw our conclusions.

Il. THEORETICAL BACKGROUND

A. Maximally localized Wannier functions

Wannier functions®' are orthogonal localized functions

that span the same space as the eigenstates of a single parti-
cle Hamiltonian. Consider the set of N,.. occupied (valence)
eigenstates {|u,,)} of a molecule. The total energy is invariant
with respect to unitary transformations among the eigenstates

Noce

[wa) =Y Uit (1)

m=1

If the unitary matrix U is chosen such that the resulting Nocc
orbitals {w,(r)} minimize their total quadratic spread, given
by

Q=) ((walr’|w,) — (wulrlw,)?) =Y (), —F2)
n (2)

then they are said to be maximally localized Wannier
functions.?’ Each MLWF is characterized by a value for its
quadratic spread, S,f, and its centre, T,,.

In the construction of MLWFs it is sometimes useful to
consider not only the valence manifold but also a range of un-
occupied eigenstates above the Fermi level—often those con-
stituting the anti-bonding counterparts to the valence states.
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This not only allows the MLWFs to be more localized*>2* but
can also restore symmetries that would otherwise be broken
arbitrarily through the construction of MLWFs for the valence
manifold only.

In order to do so, one defines an outer energy win-
dow, Eyin, consisting of Nyi, > Ny states, from which
one may extract an optimal Ng;s-dimensional subspace (Nyi,
> Ngis > Nocc) using the disentanglement approach described
in Ref. 24,

Nyin

D Upnlup), 3)

p=1

) =

where U% is a rectangular Ny, X Ng unitary matrix. N
MLWFs may then be localized by suitable rotation of the op-
timal subspace in the usual manner:

Nuis

dlS Z Upn |Mopl 4)

or in terms of the Bloch states:

Niis Nwin

wet) =" " UpaUpilup) (5)

m=1 p=I

Furthermore, an inner, or frozen, energy window may be de-
fined if one wishes to make certain that a range of low-lying
eigenstates are included unchanged in the optimal subspace,
for example, the occupied states. Algorithms for determining
MLWFs from the eigenstates obtained from electronic struc-
ture calculations are implemented within the WANNIER90
software package.”’
The single-particle density operator is given by

Noce

p= 7 lun)unl. (©)

It can also be written in terms of the N, fully occupied
valence MLWFs, |w,) or equivalently in terms of a larger
set of Nys disentangled MLWFs, |wsis), that span the occu-
pied subspace, which can be guaranteed by using a suitable
frozen/inner window in the disentanglement procedure, and
that have occupancies f7,

p= lw(wyl, (7)

— Z fk[ dlb dls” (8)

where we have substituted Eq. (1) and Eq. (5), respectively,
into Eq. (6), and where the occupancies are given by

Noce  Nais

fE=3"3" UnUSUs U, 9)

p=1lm,s=1
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We can write the density as a sum of diagonal (/ = k) and
off-diagonal (I # k) terms,

Nis Nuis

p) =Y firlwm) + > frwiimwde),
=1 I#m
= pp(r) + pon(r). (10)

It is important to note that in this form, pp(r) alone in-
tegrates to the number of valence electrons N,, because the
mutual orthogonality of the MLWFs ensures f pop(r)dr =0

In the case of considering MLWFs obtained from the
manifold of occupied states only (N4is = Nocc), the occupancy
matrix is simply the identity matrix, fi; = 8y, and the charge
density in terms of the MLWFs is simply given by

Noce

p(r) =Y Jw,(0)]”. (11)

n=1

It is worth noting that in the case of spin-degenerate systems,
the occupancies must be scaled by a factor of 2.

We have adapted the WANNIER90 code to calculate the
occupation matrices, and can choose to make a diagonal ap-
proximation to the density by retaining only the first term
of Eq. (10). The effect of approximating the true density
with the diagonal approximation will be discussed later in
Sec. IV I in the context of the improvements, described in
Sec. I1I, to Silvestrelli’s method.

B. Silvestrelli’s method

Silvestrelli’s approach!? is based on the Andersson,
Langreth, and Lundqvist’ expression for the vdW energy
in terms of pairwise interactions between density fragments
pa(r) and pi(r’), separated by a distance r,;,

Eww = — Zgn,(rnz) 6 : (12)

n>l Tl

where g,(r,y) is a damping function? which screens the un-
physical divergence of Eq. (12) at short range, and
Vo)

Con = 4(4m )3/2/ / Vo + /o)’

in atomic units. It should be noted that these expressions are
only strictly valid in the limit of non-overlapping density frag-
ments. There are various forms for the damping function?®-?’
that might have a slight short-range effect but should not af-
fect the long-range behaviour of the vdW energies. Here we
chose to use the damping function as proposed in the original
paper by Silvestrelli.!

Now, in accord with Eq. (11), the MLWFs obtained from
the valence orbitals of a system provide a localized decom-
position of the electronic charge density, such that p,(r)
= |w,(r)|?, so that Eq. (13) becomes

13)

wa()[Jwy ()]

o r
ont = 3271%/ /|< / Jwn (O] + Jwi ()]
(14)
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where r. is a suitably chosen cutoff radius obtained by equat-
ing the length scale for density change to the electron gas
screening length;? we will revisit this point later.

In order to make the calculation of the integrals more
tractable, the charge density is approximated by replacing
each MLWF w,(r) with a hydrogenic s-orbital that has the
same centre r, and spread S, as the MLWEF, and whose
analytic form is given by

33/4
NE

which, on substitution into Eq. (14) and after some algebra,
gives

e—\glr—f'n\/sn7 (15)

wl(r) =

3/2 3
Cont = 553 F(S1. 5. (16)
where
Ye x2y’e *e~
F(S,,,S)_/ dx/ dy>—2° ° (17)
: e /B te

B = (S./S)¥?, x. = \/§rc/S,,, and y. = \/ng’/Sl. Whereas
evaluating Eq. (14) using the true MLWFs requires a com-
putationally demanding six-dimensional numerical integra-
tion, Eq. (17) may be evaluated easily since it is only a
two-dimensional integral that depends solely on the MLWF
spreads and centres, not their detailed shapes or orientations.

We note that in the case of a spin-degenerate system,
since every MLWEF is doubly occupied, the density of each
fragment must be multiplied by a factor of 2 and, therefore,
the Cg,y integral in Eq. (14) must be scaled by a factor of V2.

lll. IMPROVEMENTS TO SILVESTRELLI'S METHOD

The approximations that go into the method described in
Sec. II B will clearly not always hold, and the need to examine
them is clear. In this section, we introduce our enhancements
to the method that address possible drawbacks.

A. Partly occupied Wannier functions

Using a manifold of eigenstates that includes but is larger
than the subspace spanned by just the valence states results in
partly occupied MLWFs that are generally more localized and
that better reflect the symmetries of the system, as opposed to
MLWFs obtained by rotation of the valence subspace only,
which arbitrarily break the symmetry (we will demonstrate
examples of this phenomenon in Sec. IV).

In order to account for the partial occupancy of the
MLWFs, we make a slight modification to Silvestrelli’s ap-
proach, explicitly introducing occupancies in the definition of
the Cg, integral; since in the diagonal approximation, the den-
sity of each fragment is now given by p,(r) = f,» |w, (r)|?, the
expression for F(S,, S;) in Eq. (17) becomes

FS S)—/xvdx/ycd Xyere?
R e N M E TN

(18)
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FIG. 1. Partly occupied p-like orbital on ethene molecule. In the method
described here, each of the two lobes, upper (red) and lower (blue), is replaced
by an s-orbital and considered a separate fragment.

where the f," are given by Eq. (9). We will see in Sec. IV that
this seemmgly simple idea can give rise to a marked improve-
ment in the accuracy of the method.

B. Modification to describe p-like states

MLWFs describing only the valence manifold often take
the form of well-localized functions centred on a bond be-
tween two atoms, and are thus reasonably well described by
the approximation of replacing them with a suitable s-orbital.
When anti-bonding states are included in the construction of
the MLWFs, the resulting orbitals have more atomic-orbital
character. This is demonstrated by the atom-centred p-like
MLWF shown in Fig. 1. It is clear that the density associ-
ated with such an MLWF will not be very well represented
by a single s-like function at its centre. In order to approx-
imate p-like orbitals appropriately when calculating Cs, one
could imagine using a suitably oriented analytic expression
for a hydrogenic p-orbital, for example, a canonical p.-orbital
given by

30%/4r cos 6 30°Prcost s
/327 §3/2

which has been normalized such that its quadratic spread is
(p|(r — F)?|p,) = S2. As a consequence of the explicit an-
gular dependence, using this function in Eq. (14) would give
rise to four-dimensional integrals for which analytic solutions
are not readily available. Numerical evaluation of these inte-
grals, for realistic systems, would be prohibitively computa-
tionally expensive. We solve this problem by identifying the
p-like MLWFs in the system and replacing them with the hy-
drogenic form given in Eq. (19). Then, we further approxi-
mate each lobe (lower and upper) of this p-like orbital with
two separate hydrogenic s-orbitals of the form of Eq. (15). In
order to do so, for each of the upper (+) and lower (—) lobes
of the orbital, it is necessary to know the spread Sy and centre
r., given by

[e9) /2 2
5% = / / / r* p2(r) sin0drdode, (20)
0 0 0

p(r) = (19)
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oo pm/2 p2w
fo=r % / / f r? cos 6 p2(r)sin0drdode i,
0 0 0

21
which, after some algebra, simplifies to
78
S =——+, (22)
+ 872
_ 158
Fp = —_— (23)

where r and $ are the original centre and spread, respectively,
of the true MLWE. These expressions may be easily general-
ized to arbitrary orientations of the symmetry axis of a p-like
state by rotating the offset vectors (F1 — F) accordingly.

Thus, we have developed a formalism whereby the
charge density due to MLWFs with p-like character can
be represented by a pair of s-like hydrogenic orbitals with
appropriate centres and spreads. In Sec. IV we will show
how this works in practice for calculating vdW energy
corrections.

In the relatively simple systems studied in this paper, the
p-like orbitals are easily distinguished from other orbitals by
their partial occupancies, given by Eq. (9), which are typically
closer to 0.5 rather than 1. Alternatively, and especially for
structurally more complex systems, the shape of each MLWF
could be characterized using the efficient method described
in Appendix A of Ref. 28 as another means of automating the
procedure of identifying p-like functions.

C. Symmetry considerations

Minimizing the total spread 2 with respect to the
elements of the unitary matrix U, and thus producing
MLWFs, has the effect of picking from the space of all pos-
sible unitary matrices one which produces the most local-
ized Wannier functions accessible through optimization from
a chosen initial guess. This is often enough to uniquely de-
termine the MLWFs. In some cases, however, it does not
give rise to a unique choice, even if the optimization proce-
dure is perfect. For example, the atomic positions and elec-
tron density of the system may possess certain symmetry el-
ements, such as rotations about a particular axis. Then there
will exist a number of equally valid and degenerate represen-
tations of the MLWFs and their centres, which give the same
spread, and are related by symmetry. The minimization pro-
cedure breaks the symmetry by choosing one of these rep-
resentations; in other words there will be a degree of arbi-
trariness in the final MLWFs. It is clear from Eq. (12) that
any degree of non-uniqueness of the centres will cause an
undesirable variability of the vdW energy calculated in Sil-
vestrelli’s method. This is indeed what we observe in some of
the examples below. Moving away from a description of the
MLWFs using the valence states only, and towards using
partly occupied MLWFs that include anti-bonding states and
which retain the symmetries of the system, enables us to over-
come these problems, as we demonstrate below.

J. Chem. Phys. 135, 154105 (2011)

IV. APPLICATIONS
A. Calculation details

For the application of Silvestrelli’s method to the
following dimer systems we used the Quantum Espresso
(QE) package'® to perform the ground-state DFT calcu-
lations, and WANNIER90 (Ref. 25) to obtain the centres
and spreads of the MLWFs. Our results are compared to
both the semi-empirical DFT 4+ D method*>" as imple-
mented in QE, which is expected to give good asymptotic
behaviour, and a wavefunction-based coupled-cluster ap-
proach, CCSD(T), which is considered the “gold-standard”
of quantum chemistry.

The Perdew-Burke-Ernzerhof (PBE) (Ref. 31)
generalized-gradient approximation for exchange and
correlation, except in the case of argon where the revPBE
(Ref. 32) functional was used; norm-conserving pseudopo-
tentials, and I'-point sampling of the Brillouin zone were
used throughout. We note that we have chosen to use revPBE
for the argon system since PBE produces significant binding
in rare gas dimers as it overestimates the long-range part of
the exchange contribution.'>3%34 For all the other systems
we studied in this paper, however, PBE does not cause
spurious binding and would therefore normally be considered
an appropriate functional. A plane-wave basis set cut-off
energy of 80 Ry was used in all calculations with QE except
for the case of the phthalocyanine and copper phthalocyanine
where a 50 Ry energy cutoff was used. For the dimers
of argon, methane, ethene, phthalocyanine, and copper
phthalocyanine, cubic simulation cells of length 15.87 A,
15.87 A, 21.16 A, and 23.81 A, respectively, were used. For
the dimers of benzene, a hexagonal cell with a = 15.87 A
and ¢ = 31.75 A was used.

For all the systems, the choice of energy windows
when using the disentanglement procedure in WANNIER90
for our modified method was as follows: inner (frozen)
energy windows were chosen to include all the valence
states; outer energy windows ranged from the lowest
eigenvalue of the system, €p, to a maximum of Ey;,
= eLumo + a(€gomo — €0), where egomo is the energy of the
highest occupied valence Kohn-Sham (KS) state and eymo
is the energy of the lowest unoccupied KS state. The factor o
= 0.4 was chosen to scale down the valence energy band-
width, used to estimate the energy difference required above
the LUMO when including anti-bonding states. We discuss
the sensitivity of the method to this factor in Sec. IV J.

B. Argon

We will first investigate the severity of the aforemen-
tioned issues relating to symmetry, by considering the case
of an argon dimer. Optimization of the MLWFs describing
a single argon atom produces four doubly occupied MLWFs
arranged tetrahedrally around the atom. Due to spherical sym-
metry, the orientation of these MLWFs with respect to a
given coordinate system is arbitrary for an isolated atom and
the final MLWFs obtained will depend on the initial guess
used. In the dimer, this arbitrariness is removed, at least in
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FIG. 2. Illustration of three of the many possible configurations of MLWF
centres (small pink spheres) for the two argon atoms (large blue spheres) in
the fragment method.

Aligned

Anti-aligned 1

principle, since the spherical symmetry is broken by the pres-
ence of the other atom at a specific orientation. At large sepa-
rations, this is not in practice necessarily the case: the electron
density overlap between the Ar atoms is vanishingly small,
since the wavefunctions decay exponentially away from the
atom. Therefore, to within attainable numerical precision, the
orientation of the MLWFs on each atom is uncorrelated with
the orientation of the other atom: the MLWFs can be freely
rotated with respect to the atom without affecting the total
spread. Note, however, that since the vdW energy only de-
cays as R, its value is influenced by the orientation of the
MLWEF centres (and hence their separation) out to distances
beyond which the calculated spread (and thus the optimized
MLWEF orientation) has ceased to be sensitive to separation.

This dependence can be investigated in a two-atom sys-
tem by fixing the relative orientations of the MLWF centres
between the two atoms in the dimer. This is achieved by first
calculating the MLWF centres for a single atom of argon
and then translating and rotating these centres to the second
argon atom with various choices of alignment. We will
refer to this approach as the fragment method. In this
method, we calculate the dispersion correction to the en-
ergy for a dimer system using various possible arrange-
ments of MLWF centres on the other atom. Three pos-
sible high-symmetry choices are shown in Fig. 2. For
each of these orientations, Fig. 3 (top) shows the bind-
ing energy of the Ar dimer as the separation of the atoms
varies. We see that there is considerable displacement of the
curves, and the binding energy and the equilibrium sepa-
ration change according to the alignment chosen by up to
0.04 kcal/mol and 0.08 A, respectively.

In contrast to this fragment approach, in Fig. 3 (bottom)
we show the binding energy as calculated with the normal ap-
proach of using the optimized MLWFs of the entire dimer sys-
tem. However, here we have used varying initial guesses cor-
responding to the set of possible alignments shown in Fig. 2.

J. Chem. Phys. 135, 154105 (2011)
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FIG. 3. Binding energy versus interatomic separation for the argon dimer,
for varying relative orientations of the MLWF centres surrounding each atom
(see Fig. 2). (Top panel) Results obtained using the fragment method, in
which the MLWF centres are calculated for a lone Ar atom and then trans-
lated and rotated to the second Ar atom. (Bottom panel) Results obtained
using the true MLWF centres with various initial guesses for their positions.
The curve labelled “continuous” is obtained by using the MLWF centres from
a configuration at small separation as the initial guess for the centres at larger
separations. In this way, the discontinuities in the curve are avoided and a
unique curve is obtained (see text for details).

We see that at small separations, the MLWF centres always
converge to the same positions, regardless of the initial guess,
and the binding energy curve is nearly independent of the
choice of initial guess (~1072 kcal/mol variation).

At larger separation, however, the spread minimization
is insufficiently sensitive to the relative orientation of the
MLWFs on different atoms, and does not necessarily alter it
from the initial guess, resulting in several different possible
results depending on the initial orientation of the centres. If
a random initial guess is chosen, then the energy varies dis-
continuously, as a function of separation, within the bounds
imposed by the limiting cases described using the fragment
method. This is because the MLWF centres converge to differ-
ent orientations depending on their starting positions (curve
labelled “random” in Fig. 3 (bottom)).

In order to avoid this problem of non-uniqueness of bind-
ing energy curves, a random initial guess is used first for
a configuration at small separation, in the knowledge that
the result will be independent of the guess used. Then the
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FIG. 4. Illustration of the methane dimer. Carbon atoms are shown by the
large spheres (grey), hydrogen by the small spheres (white), and the valence
MLWEF centres are shown by the small, darker spheres located on the bonds
(pink).

centres computed at the previous, smaller separation are used
as the initial guess for the calculation at a larger separation. In
this manner, a unique continuous curve is obtained (labelled
“continuous” in Fig. 3 (bottom)). This is the approach that we
adopt for all subsequent calculations in this paper.

From the continuous curve, we obtain 3.97 A for the
equilibrium separation and —0.28 kcal/mol for the binding
energy. This is in good agreement with the coupled cluster
CCSD(T) calculations of Ref. 35, which give 3.78 A and
—0.28 kcal/mol, respectively, whereas revPBE without dis-
persion corrections gives 4.62 A and —0.04 kcal/mol.

C. Methane

The methane dimer is a straightforward application of the
Silvestrelli method: the positions of the MLWF centres, which
lie on the four tetrahedral C—H bonds of each CH4 molecule
(see Fig. 4), obey the same symmetries as the atomic posi-
tions, so there exists no arbitrariness of orientation.

In Fig. 5, we compare to the results of both DFT + D
and CCSD(T) calculations. Our geometries and CCSD(T) re-
sults were drawn from the benchmark energy and geometry
database (BEGDB).?¢

The accuracy of Silvestrelli’s method in the case of the
methane dimer is good compared to CCSD(T): the former
gives an equilibrium separation of 3.66 A and binding energy
of —0.69 kcal/mol, and the latter 3.72 A and —0.53 kcal/mol,
respectively. DFT + D is in somewhat worse agreement with
CCSD(T), yielding 3.54 A and —0.76 kcal/mol, respectively.

D. Ethene

‘We now turn our attention to the ethene dimer, which in-
cludes a C—C double bond. Again we will compare results
for the original and modified methods against CCSD(T) and
DFT + D results. We have again used the geometries for each
molecule taken from the BEGDB.

J. Chem. Phys. 135, 154105 (2011)
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* CCSD(T) I

-0.80

Interdimer distance (A)

FIG. 5. Binding energy curves for the methane dimer with various methods.

To use Silvestrelli’s original method in this case, we
include only the valence manifold in the creation of the
MLWFs, giving six MLWFSs per molecule arranged as shown
in Fig. 6 (left). In our modified method we use seven MLWFs
per molecule, with p-like, partly occupied orbitals on each
carbon atom (Fig. 6 (right)).

As seen in Fig. 7, neither the original Silvestrelli method
(blue squares) nor DFT + D (red diamonds) reproduce the
CCSD(T) values very accurately. By expanding the manifold
of eigenstates used in the construction of the MLWFs and
applying our modified method to include partial MLWF oc-
cupancies and splitting of the p-like functions (see Sec. III),
we find an excellent agreement (black circles) with the
CCSD(T) equilibrium values of 3.72 A for the separation and
—1.51 kcal/mol for the binding energy; our method gives
373 A and —1.60 kcal/mol, respectively; Silvestrelli’s

J J

FIG. 6. Colours as in Fig. 4. (Left) Ethene dimer with six MLWFs per
molecule. (Right) Ethene dimer with seven MLWFs per molecule. The cen-
tres of the p-like MLWFs are placed on the carbon atoms, but here we show
the centres of the individual lobes of these p-like orbitals as calculated by our
method.
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FIG. 7. Binding energy for an ethene dimer with various methods.

method gives 3.83 A and —1.69 kcal/mol; DFT + D yields
3.55 A and —2.04 kcal/mol.

E. Benzene

For benzene, the valence states can be represented by 15
doubly occupied Wannier functions. The MLWF optimiza-
tion procedure in this case therefore breaks the D¢, sym-
metry of the benzene ring: the end result is that there are
three C—C “double” bonds and three C—C “single” bonds in
the MLWEF representation. Those alternating double and sin-
gle C—C bonds represent a delocalized w-bond around the
ring. The double bonds are represented by two centres located
above and below the plane of the molecule, while the single
bonds are represented by one centre on the bond. When two
molecules are put in proximity (see Fig. 8) and the vdW en-
ergy is calculated by Silvestrelli’s method, the breaking of the
symmetry affects the vdW energy in an arbitrary manner, de-
pendent on how the two rings are aligned (i.e., whether the
pairs of double bonds in adjacent molecules are aligned or

J. Chem. Phys. 135, 154105 (2011)

TABLE I. Equilibrium distances in A for the benzene dimers in the three
configurations (Fig. 8) using the various methods. For all DFT calculations
the PBE functional was used.

Method S PD T

Silvestrelli (15 MLWFs) 4,01 3.78 5.06
This work (18 MLWFs) 3.89 3.55 4.88
Semi-empirical DFT + D 3.93 3.58 4.89
CCSD(T) (Janowski and Pulay’7) 3.92 3.53 4.99

anti-aligned). This alignment is defined by where the initial
guesses for the centres of the Wannier functions are placed.

The case of the benzene dimer therefore illustrates again
the need to include the unoccupied anti-bonding states in the
construction of the MLWFs: doing so increases the number
of MLWFs to 18 and introduces partial occupancies, but re-
stores the D¢, symmetry of the system and also localizes the
MLWFs more. This then makes the vdW contribution inde-
pendent of the initial guess for the Wannier function centres.

We applied our implementation of the original
Silvestrelli’s method (with 15 MLWFs), and then our
modified method (with 18 MLWFs, partial occupancies and
splitting of p-like states) to determine the binding energy
as a function of displacement for three types of displace-
ment (labelled S, PD, and T, illustrated in Fig. 8 of one of
the molecules in the benzene dimer. We compare this to
DFT + D and to the CCSD(T) calculations of Ref. 37. We
note that we used the same bond lengths for C—C and C—H as
Ref. 37 to within two decimal places, to construct perfectly
symmetric benzene rings for our calculations.

The binding energy curves for the various meth-
ods for the three configurations are shown in Fig. 9.
Silvestrelli’s method (blue squares) does not agree very well
with CCSD(T) calculations, overestimating equilibrium dis-
tances by 0.07-0.25 A (Table I) and overestimating binding
energies by 0.28-1.25 kcal/mol (Table II). In particular, the
dispersion curve obtained from Silvestrelli’s method does not
agree asymptotically with the DFT + D curve (red diamonds).

FIG. 8. The three configurations used for the benzene dimer calculations: S (vertical displacement), PD (vertical and lateral displacement) and T (vertical
displacement plus rotation in plane of one molecule), and the valence MLWF centres in each case (depicted by the small, darker spheres located on or close to

bonds (pink)).
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FIG. 9. Binding energy (kcal/mol) curves for the various methods for the
benzene dimer in the S, PD, and T configurations (top, middle, and bot-
tom, respectively). For the S configuration we also show the curve using
18 MLWFs per molecule if no p-splitting is used; in this case the
method overbinds. CCSD(T) benchmark values are from Janowski and
Pulay.?’

TABLE II. Binding energies (kcal/mol) at equilibrium geometry for the
benzene dimers in the three configurations (Fig. 8) using the various methods.
For all DFT calculations the PBE functional was used.

Method S PD T

Silvestrelli (15 MLWFs) —2.85 —-3.23 —2.85
This work (18 MLWFs) —1.47 —2.31 —2.64
Semi-empirical DFT 4+ D —1.38 -2.11 —-2.87
CCSD(T) (Janowski and Pulay>7) —1.60 —2.55 —2.57

J. Chem. Phys. 135, 154105 (2011)

FIG. 10. (Top) Phthalocyanine (H,Pc) molecule and its valence MLWF cen-
tres. Hydrogen atoms are shown by small white spheres, carbon atoms by
large grey spheres, and nitrogen atoms by large, darker spheres (blue). The
MLWEF centres are shown by the small, darker spheres (pink). Using only
the valence MLWFs does not give a satisfactory description of the system
since it yields a lone MLWF of unphysically large spread (shown by a large
sphere (yellow), labelled by the letter L). (Bottom) HoPc molecule and its
112 MLWEF centres, now including anti-bonding states. With this representa-
tion all the D,j, symmetry of the ring is restored and a better chemical picture
is given. There are s-like orbitals on every bond and the non-hydrogenated
nitrogens, and p-like partly occupied orbitals on every carbon the two hydro-
genated nitrogens (not shown here as these are located inside the correspond-
ing atoms).

In the T configuration Silvestrelli’s method performs better
in terms of equilibrium distance, binding energy, and asymp-
totics as it can be seen in Fig. 9 (bottom).

For the S configuration we also show the binding curve
obtained if the anti-bonding states are included in the con-
struction of the MLWFs, but splitting of the p-like states is not
used (orange crosses); it is clear that in this case the method
does not perform well, as replacing a p-like orbital by an s-
orbital is a very poor approximation.

Our full modified method, including both the larger man-
ifold and the splitting of p-like states (black circles in Fig. 9),
on the other hand, has excellent agreement in terms of equi-
librium distances and binding energies with the DFT 4+ D
curves and the CCSD(T) values, for all three configurations,
to within 0.05 A and 0.33 kcal/mol (Tables I and 1); the
asymptotic behaviour of the energy is also better captured.
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F. H.Pc and CuPc

To examine the difficulties encountered applying
these methods to larger systems, we have investigated the
phthalocyanine (H,Pc) dimer in the simplest configuration
(S vertically displaced) first by applying Silvestrelli’s method
and then by applying our modifications it, and comparing
the binding energy curve to one obtained using DFT + D.
The optimized MLWEF centres for a single H,Pc are shown in
Fig. 10 (top). We see that as with the benzene molecule, there
are alternating single and double MWLF centres on the C—C
bonds of the six-membered rings, representing delocalized
m-bonds. We also find, however, that using only the 93
valence MLWFs (186 valence electrons) is problematic, as
a good representation of the electronic density of the system
cannot be obtained in this way since this breaks the symmetry
of the system, but most importantly it yields one lone MLWF
of unrealistically large spread (~2.5 A) located some distance
from any atoms (Fig. 10 (top)). This is due to the fact that
an odd number (93 MLWFs) is incompatible with the D,
symmetry of the molecule.

Using a larger and even number of MLWFs (112 per
molecule) we can restore this D,;, symmetry of the molecule
(Fig. 10 (bottom)) and represent the electronic density of the
system in a way more compatible with its chemistry. When
anti-bonding states are included, it is important to make a
chemically intuitive initial guess for the centres and forms of
the MLWFs. We make initial guesses as follows: we place
p-like orbitals on the carbon atoms and s-like orbitals on ev-
ery bond and p-like orbitals on the hydrogenated nitrogens as
well as two s-like orbitals on every non-hydrogenated nitro-
gen atom. In this way, we have partly occupied MLWFs that
represent the 372 valence electrons of the dimer. The binding
energy curves obtained by using this representation and our
modifications to Silvestrelli’s method are shown in Fig. 11
and compared to DFT 4 D. The binding energy obtained
from our method is —23.63 kcal/mol and the equilibrium dis-
tance 3.58 10\; with DFT + D we obtain —18.91 kcal/mol and
3.68 A. As for benzene, we see very good agreement with
DFT + D; these values roughly agree with the stacking dis-

DFT-PBE
&< Semi-empirical DFT+D

& This work (224 MLWFs)

Binding energy (kcal/mol)

Interdimer distance (A)

FIG. 11. Binding energy curves for HyPc dimer in the S configuration (ver-
tically displaced) versus intermolecular distance obtained with the various
methods.

J. Chem. Phys. 135, 154105 (2011)

tance of crystalline H,Pc (around 3.2-3.4 A).3® Silvestrelli’s
original method severely overbinds the dimer (giving a bind-
ing energy of —41 kcal/mol) because of the unphysically large
spread of the lone MLWF that appears in the valence repre-
sentation. This is due to the strong dependence of the vdW
energy on the spreads (Eq. (16)).

In the case of CuPc dimer (vertically displaced S con-
figuration) we again do not use the valence manifold of
390 MLWFs per dimer (195 MLWFs per molecule: 98 spin
up and 97 spin down), but instead use a larger manifold of
MLWFs. We note that the dimer configuration used here does
not correspond to any phases in which CuPc is observed in
experiments, but was used for illustrative purposes as it is the
simplest arrangement. This is a spin-polarized system, so a
different set of MLWFs is required for spin up/down elec-
trons, yielding a total of 234 singly occupied MLWFs per
molecule (117 for every spin channel). There are 10 d-like
MLWFs (five for every spin channel) centred on each cop-
per atom, and s-like MLWFs on bonds and nitrogens. The
MLWEFs corresponding to spin up and spin down electrons
have essentially the same centres for the same bonds or atoms
(Fig. 12).

In such cases, where some Wannier functions centres are
very closely centred, it would be incorrect to consider them
as separate fragments since this would violate the fundamen-
tal assumption of the ALL method, that it is valid for non-
overlapping fragments only. This can be understood from the
fact that Eq. (13) is strongly non-linear, so adding the con-
tributions of overlapping density fragments does not give the
same result as summing the densities beforehand. As a result,
Silvestrelli’s method severely overbinds the dimer (~—108
kcal/mol), demonstrating that the method breaks down for
overlapping fragments.

We alleviate this problem by amalgamating all the cen-
tres and spreads of the closely placed MLWFs (in this case
the d-like MLWFs on Cu) into one MLWF with a centre and
spread given by the arithmetic mean of the closely placed

FIG. 12. Copper phthalocyanine (CuPc) molecule and its 234 MLWF cen-
tres, again including anti-bonding states. Colours as in Fig. 10, with copper
shown by the large brown sphere in the centre. There are s-symmetry MLWFs
on every bond and atom except for copper, p-like MLWFs on the carbons, and
5 d-symmetry MLWFs on the copper atom. Now there are no p-like orbitals
on any nitrogen atom as for HyPc.
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TABLE III. Effective intermolecular Cs coefficients. Dispersion-corrected
MP2 (MP2 4+ AvdW) and reference values are drawn from Ref. 40. For the
argon and methane dimers, our approach is identical to the original method of
Silvestrelli. The differences between the values reported in the first column
(Silvestrelli) and those in Ref. 2 are attributable to the different calculational
details such as choice of exchange and correlation functional, simulation cell
size and plane-wave energy cutoff.

Binding energy (kcal/mol)

PN I ISP P OO O A A P .

Interdimer distance (A)

FIG. 13. Binding energy curves for the CuPc dimer in the S configuration
(vertically displaced) obtained using the various methods.

MLWFs, and occupancies given by the sum of the separate
MLWFs. The criterion for amalgamating MLWFs can be au-
tomated such that MLWFs less than a particular threshold dis-
tance apart are combined. In our case, we used a value of
0.1 A for this threshold, which had the desired effect of
including the d-like orbitals on Cu in the amalgamation
procedure, while leaving all other MLWFs in the system
unaffected.

In Fig. 13 we compare the binding energy curves
obtained using DFT + D to our modified method (now
including the amalgamation of closely overlapping MLWFs)
using a larger manifold of 468 MLWFs per dimer. This
gives much more sensible results, with a binding energy of
—27.22 kcal/mol and an equilibrium separation of 3.57
A, in fair agreement with DFT + D, which gives —22.21
kcal/mol and 3.63 A, respectively. These values are in
reasonable agreement with those for H,Pc (as obtained using
our method above), and also with those obtained with other
methods for other metal phthalocyanines (NiPc and MgPc
calculated with the TS-vdW scheme in Ref. 39 using the PBE
functional).

G. Intermolecular Cg coefficients

It is expedient to define effective intermolecular C¢ coef-
ficients,

1
Ceerr = 5 > Cou. (24)

n,l

where only intermolecular terms are summed over, i.e., n and /
correspond to MLWFs on different molecules, and the factor
of 1/2 accounts for double counting. In Table III, we com-
pare our values to those of the original method of Silvestrelli,
benchmark dispersion-corrected MP2 calculations (MP2
+ AvdW) and reference results obtained using the dipole os-
cillator strength distribution (DOSD) approach, given in the
database of Ref. 40.

As previously discussed in Ref. 2, comparison with ref-
erence values is made somewhat difficult by the fact that they

Co (Epal)
System Silvestrelli ~ This work  MP2 + AvdW  Pseudo-DOSD
Argon 924 924 76.1 64.3
Methane 99.1 99.1 119 130
Ethene 275 220 328 300
Benzene S 2727 1288 2364 1723
Benzene PD 2727 1284 2364 1723
Benzene T 2769 1262 2364 1723

are obtained by fitting to experimental data and hence also
include higher order terms (Cs, Cy) in an effective manner.
Taking the reference values as a benchmark, it can be
seen from Table III that, for the systems under consider-
ation, there is no clear or systematic improvement in cal-
culated effective Cg coefficients with our modifications to
Silvestrelli’s approach as compared to Silvestrelli’s original
approach: in the case of ethene the original method compares
more favourably, while in the case of the benzene dimers our
approach performs much better. In spite of this, however, it is
worth noting that our approach (as shown earlier) significantly
improves the values obtained for equilibrium separations and
binding energies, as compared to CCSD(T), for all systems
considered for which we have access to CCSD(T) results.

H. Sensitivity to cutoff radius r.

The sensitivity of the binding energy on the cutoff radius
r. in Eq. (16) was tested on the S configuration of the benzene
dimer with 18 MLWFs per molecule (Fig. 14). Even small
changes of 1% in the cutoff radius result in significant changes
in the binding energy curves, with the binding energy and
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FIG. 14. Binding energy curve for the benzene dimer in the S configura-
tion for various values of . using our modified method with 18 MLWFs per
molecule.
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equilibrium distance varying by 6%—8% and 0.2%-0.8%, re-
spectively. For larger changes in r., the method breaks down,
as the energy changes are unphysically large. Although the
cutoff radius is physically justified,” this strong dependence
of the vdW correction on it is a weakness of the method.

I. Approximations to the density

In the original method of Silvestrelli, the KS density is
approximated by replacing all real MLWFs with hydrogenic
s wavefunctions w (r) given by Eq. (15); for the purpose of
calculating the C¢ coefficients, the electronic charge density
of the system is, therefore, effectively approximated as

Noce
) =" [wHm)]. (25)

n=1
In the modified method presented here, in which the
MLWFs are constructed using a manifold of the KS states just
beyond the occupied orbitals, there are two levels of approx-
imation to the charge density. First, the off-diagonal compo-
nent pop(r) is neglected from Eq. (10) and, second, the “hy-
drogenic” approximation of the original approach is applied,
whereby the disentangled Wannier functions, wgis(r), are re-
placed by hydrogenic orbitals, w/(r), of the same centre and
spread. In our method, therefore, the density is approximated

as

2 (26)

N
pais®) = Y fulwl (r)
n=1

where N is now the total number of fragments, after the split-
ting of p-like orbitals or amalgamation of co-centric MLWFs
has been performed. We consider each of these approxima-
tions in turn for a typical system, the benzene molecule.

The XCRYSDEN (Ref. 41) package was used to generate
the isosurface plots referred to in this section.

In Fig. 15 we show density isosurface plots for the KS
density p(r) (left) and the off-diagonal density pop(r) (right),
which emphasises that the latter is uniformly small in mag-
nitude, comprising only a small fraction of the total density
(~5%—1%), as a result of the exponential localization of the
MLWFs.

-0.130
0078
=0.026
0.026
0.078
0.130

-2.40
=144
-0.48

0.48
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=[]

FIG. 15. Density profile on a plane parallel to a C—C bond (xz-plane) in
a benzene molecule. (Left) The original Kohn-Sham density p(r) from the
plane-wave DFT calculation. (Right) The off-diagonal component pop(r) of
the density (see Eq. (10)) when a disentangled manifold is used to construct
Ngis = 18 MLWFs. Note the much-reduced scale compared to that of the
total density. The units are A=3.
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EOOC=EE

FIG. 16. Density difference isosurface plots showing the difference p(r)
— ps(r) between the KS density and the approximate “hydrogenic” density
of the original Silvestrelli approach (Eq. (25)). (Left) Cross section through a
“single” bond. (Right) Cross section through a “double” bond.

In Fig. 16 we show the difference between the KS density
p(r) and the “hydrogenic” approximation ps(r) of the origi-
nal Silvestrelli method (Eq. (25)) for two of the C—C bonds in
benzene: on the left a “single” bond; on the right a “double”
bond. These two bonds only differ because of the symmetry-
breaking inherent in the MLWF construction when just the va-
lence states are used. We see that the density associated with
the r-bond is not well represented in either case.

Finally, in Fig. 17, we show the difference between the
KS density p(r) and that of our modified method pg4is(r)
(Eq. (26)) with 18 MLWFs obtained by disentanglement from
a larger manifold. The left-hand plot is without splitting the
p-like states, and the right-hand plot is with splitting the p-
like states (as described in Sec. III).

We see that while this introduces small regions where
the density differs significantly (right at the MLWF centres),
everywhere else it is overall an improvement, producing a
better representation of the density compared to the original
Silvestrelli’s method, especially in the case of p-splitting.

In summary, discarding the off-diagonal component of
the density (in the case of disentangled MLWFs) is a relatively
minor approximation, and has a considerably smaller effect
than approximating the density in various ways using hydro-
genic orbitals, the latter being inherent to both our approach
and the original approach of Silvestrelli. The maximum dif-
ference between the KS density p(r) and the density in our

FIG. 17. Density difference isosurface plots, on the same plane as in Fig. 15,
showing the difference p(r) — pgis(r) between the KS density and the “hy-
drogenic” density of our method when a disentangled set of MLWFs is used
(Eq. (26)). (Left) Without splitting of p-like states. (Right) With splitting of
p-like states into two s-like states. The mean difference with the KS den-
sity compared to the original Silvestrelli’s method is reduced overall for both
cases, but even more in the case of p-splitting.
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FIG. 18. Binding energy curve for the benzene dimer in the S configura-
tion for various values of « using our modified method with 18 MLWFs per
molecule.

method is reduced by ~23% and the minimum difference by
~5%, compared to the difference between the KS density and
the density in Silvestrelli’s method.

J. Sensitivity to energy window E;,

To use our modifications to Silvestrelli’s method, the dis-
entanglement procedure has to be used in the construction
of Wannier functions, as outlined in Sec. II A. Because in-
cluding ever more high-energy plane-wave states inevitably
allows extra variational freedom in the construction of the
MLWFs, we find that the precise values of the MLWF spreads
are sensitive to the outer energy window used for the disen-
tanglement. Specifically as E\, is increased, the MLWFs be-
come more localized (their spreads decrease). As a result, the
vdW energy is also affected by the choice of Eyj;y.

In this work we have chosen throughout to estimate an
appropriate energy window using

Ewin = €Lumo + a(enomo — €o), (27

where o is a factor used to scale the valence energy band-
width. This is motivated by the idea that to enable us to restore
the symmetry, we need to include the anti-bonding counter-
parts to the valence states, without including too large a num-
ber of irrelevant higher lying unbound states. Equation (27) is
an attempt to estimate the range of energies spanned by these
anti-bonding states. In Fig. 18 we show the dependence of the
vdW binding energy curves for the benzene dimer in the S
configuration on «. While there is considerable variation for
too small «, we find that for values beyond 0.4, the curves
vary only a rather small amount with «. As long as a value
of « around this value is chosen, it should yield reasonable
results, suggesting the extra degree of empiricism introduced
by this procedure is relatively limited in scale. The value of «
was set to 0.4 in all the other calculations in this work.

V. CONCLUSION

We conclude that Silvestrelli’s method is computation-
ally efficient and very easy to implement for small systems

J. Chem. Phys. 135, 154105 (2011)

where initial guesses for the Wannier centres can be specified.
However, there is a very strong dependence of the calculated
vdW energy on the position and spread of the Wannier cen-
tres, and these are not always as unique as one might hope.
Symmetry breaking, often induced by considering only the
valence manifold in the construction of the MLWFs, may in-
troduce arbitrary dependence on initial guesses in a way that
significantly affect the vdW energy. We have shown that arbi-
trarily broken symmetries may often be restored by increasing
the number of Wannier functions used and generating them
with a suitably chosen range of the conduction states as well
as the valence states. This necessitates the inclusion of oc-
cupancies in the formalism. We note that in cases where no
symmetries are restored when we use more MLWFs, as in the
example of ethene, it is the better localization of the MLWFs
that may be responsible for improved vdW energies, since
the method is based on pairwise summation of well-separated
fragments.

Particularly, in cases with a larger number of Wannier
functions, we have shown that the approximation implicit
in replacing the true Wannier functions with hydrogenic
s-orbitals may not always yield an accurate representation
of the electronic density, and have shown how in cases
where there is p-like symmetry, it is better to substitute
the p-symmetry functions with two s-like functions. By
considering the problems associated with applying these
adapted methods to larger systems such as H,Pc and CuPc,
we have demonstrated that the approach is not necessarily a
good candidate for studying larger systems, where specifying
initial guesses for a large number of non-trivial MLWFs may
be difficult; chemical insight for the form of these higher
lying states has to be employed, but becomes more difficult
for even larger systems. In the case of copper phthalocyanine,
we showed that MLWFs that are centred effectively at the
same point (such as the five d-like MLWFs on each Cu atom)
cannot be treated as separate fragments of density; they
should instead be amalgamated into one fragment of density
of an averaged centre and spread and summed occupancies.
The reason for this is that the method is valid only in the limit
of well-separated fragments. Finally, we have demonstrated
that there is also a strong dependence of the vdW energy on
the cutoff radius used in the integral of Eq. (16), and although
the value used is justified on physical grounds, it nevertheless
represents something of an adjustable parameter with consid-
erable influence on the results obtained. Overall, we conclude
that while Silvestrelli’s method suffers from several draw-
backs, it can be made rather accurate once modifications are
applied to it (albeit with the introduction of further empirical
character); these improvements, and Silvestrelli’s method in
general, however, may be less suitable for more structurally
complex, large-scale systems, for which alternative methods
that are more fully ab initio may be desirable.
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