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Abstract 

 

In the standard approach for simulating fluid-structure interaction problems the solution 

of the set of equations for solids provides the three displacement components while the 

solution of equations for fluids provides the three velocity components and pressure. In 

the present paper a novel reformulation of the elastodynamic equations for Hookean 

solids is proposed so that they contain the same unknowns as the Navier-Stokes 

equations, namely velocities and pressure. A separate equation for pressure correction is 

derived from the constitutive equation of the solid material. The system of equations for 

both media is discretised using the same method (finite volume on collocated grids) and 

the same iterative technique (SIMPLE algorithm) is employed for the pressure-velocity 

coupling. With this approach, the continuity of the velocity field at the interface is 

automatically satisfied. A special pressure correction procedure that enforces the 

compatibility of stresses at the interface is also developed. The new method is employed 

for the prediction of pressure wave propagation in an elastic tube. Computations were 

carried out with different meshes and time steps and compared with available analytic 

solutions as well as with numerical results obtained using the Flügge equations that 

describe the deformation of thin shells. For all cases examined the method showed very 

good performance. 

 

Keywords: flow-structure interaction, finite volume method, SIMPLE algorithm, 

elastodynamic equations, flexible tube, pressure wave propagation. 
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1. Introduction 

 Fluid-structure interaction (FSI) is encountered in many areas of engineering 

(aerospace, civil or mechanical) as well as other scientific disciplines including 

medicine, biomechanics etc.   FSI analysis becomes crucial when the deformation of a 

fluid boundary, for example a vessel wall, can not be neglected. During this interaction, 

the pressure and the viscous stresses of the fluid act on the solid boundary and lead to 

structural deformations, which in turn affect the fluid flow and consequently the 

velocities, pressure and viscous stresses of the fluid. Thus the response of the system 

can only be determined if the coupled problem is solved. In the case of liquids, which 

are almost incompressible, even a small structural deformation can have a significant 

effect. For example, in the case of blood flow in arteries, which are extremely flexible, 

the wave speed is 200 times slower than in an equivalent rigid tube.  

 In the standard approach for simulating fluid-structure interaction problems, the 

solids equation are solved for the three components of displacement while the fluids 

equations provide the three velocity components and pressure. In this approach, the 

pressure and viscous stresses become the boundary conditions for the solid equations. 

These are then solved and from the calculated displacements a new computational 

domain is obtained in which the fluid equations are solved again. This is the 

fundamental concept of the so-called “partitioned” methods [1-5]. There are various 

approaches regarding the degree of coupling i.e. how often and when information is 

transferred from one medium to the other. For example in an implicitly (or fully) 

coupled approach, the exchange of information is repeated until both sets of equations 

converge to within a prescribed tolerance and only then is the procedure advanced to the 

next time step. 

 “Monolithic” approaches, in which the two components are discretised and 
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solved simultaneously, have also been developed. They employ almost exclusively the 

finite element method and rely on the solution of a large coupled system of equations 

with unknowns the velocity, pressure and displacement. For example, Bazilevs et al [6] 

solve the coupled system (obtained with Newton’s method) iteratively with the GMRES 

procedure and simple diagonal scaling. Heil [7] examines the performance of other 

preconditioning techniques.  Tezduyar et al [8] discuss the pros and cons of three 

coupling techniques (block-iterative, quasi-direct and direct coupling). 

 In order to derive a unified approach for fluid-structure interaction problems, 

two issues need to be resolved: common discretisation method and common solution 

algorithm. “Partitioned” methods usually employ the finite element method for solids 

and the finite volume method for fluids. “Monolithic” methods use almost exclusively 

the finite element method, as already mentioned.  

 Both discretisation methods have a common starting equation but differ on how 

the integration of this equation in the domain is carried out [9]. The Galerkin finite 

element method sets the weighting functions equal to the shape functions over a control 

volume and zero outside. This leads to volume integrals that are computed using an 

appropriate quadrature rule. The method is very well established, has sound 

mathematical formulation and has been used very successfully for structural as well as 

flow problems [10-12].  On the other hand, in the finite volume method, the weighting 

functions take the value of unity over a control volume and zero outside. This 

transforms the volume integrals to surface integrals and makes the method conservative 

i.e. the flux through a face shared by two adjacent control volumes is the same for both 

volumes [13]. This property makes the method very attractive for fluid flow and heat 

transfer simulations.  It is still the most widely used method in the CFD community [14] 

but it has also been employed successfully for structural analysis problems. For 
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example, a finite volume approach with non-orthogonal cells for two-dimensional plane 

elastostatic problems is proposed in [15].  The method was later extended to handle 

incompressible materials in a formulation that includes displacement and pressure as 

independent variables [16]. Discretisation of the elastic solid mechanics equations in 

three dimensions on an unstructured grid using this method is presented in [13]. Fallah 

et al [17] extended the method to large deformations and showed that the results are 

comparable with the finite element method. 

 The solution algorithm is also usually different for the two media. The 

elastodynamic equations most often are solved implicitly i.e. the discretised equations 

are cast in matrix form with unknowns the three components of the displacement vector. 

A conjugate gradient solver with preconditioning is then employed for the solution of 

the linear system. On the other hand, the Navier-Stokes equations are typically solved 

using a pressure-correction method in a segregated manner i.e. each equation is solved 

separately for one unknown (for example a velocity component or pressure). The 

segregated solution method can naturally handle non-linearities and is by far the 

preferred method in computational fluid dynamics.  It has also been used for structural 

analysis problems. For example Demirdžic et al [18] used the finite volume method and 

a segregated solution algorithm coupled with multigrid acceleration to derive 

benchmark solutions for 3 cases. In [19] a discretisation practice was proposed that 

provides rapid convergence for a segregated solution method. 

 In the context of fluid-structure interaction, several investigators have combined 

the finite volume method and the segregated solution approach. For example 

Greeshields et al [20] solved separately the solid equations for displacements and the 

fluid equations for velocity and pressure. The motion of the interface was accounted for 

but they reported convergence problems when the modulus of elasticity of the solid was 
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much smaller to the bulk modulus of the fluid.  Ivankovic et al [21] used a very similar 

method to study the blood flow through an atherosclerotic artery but the mesh was fixed 

and did not observe stability problems. Greenshields and Weller [22] derived a velocity-

pressure formulation to solve a set of momentum and continuity equations that governs 

both fluid and solid, with velocity and pressure being the unknown variables for both 

media. A phase function is used to differentiate between them while the equations are 

discretised and solved in a single domain. Karac [23] used both a displacement-

velocity-pressure as well as a velocity-pressure formulation to study the drop impact of 

fluid-filled polyethylene containers.  

 The main objective of the paper is to develop a novel velocity-pressure 

formulation and solution method for fluid structure interaction problems. The equation 

for pressure in fluids is derived from the continuity equation (as it is customary) while 

for solids is derived from the constitutive equation of the solid material. The governing 

partial differential equations are solved using the same discretisation method and 

solution algorithm (finite volume and SIMPLE algorithm respectively). The paper is 

organised as follows: the first part (sections 2-5) deals with solids only (new 

reformulation of the equations in terms of velocity and pressure, associated boundary 

conditions and numerical solution method). The second part (section 6) deals with the 

coupling between fluid and structure and more specifically presents a novel pressure 

correction methodology that enforces the compatibility of stresses (force balance) at the 

interface. Results from the application of the method to wave propagation in a flexible 

tube are presented in section 7 while in the final section 8 the main contributions and 

findings of the paper are summarized. 
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2. Conservation equations for continuous media 

 The following set of equations describe continuous media and are thus valid for 

both solids and fluids [24-25]: 

Continuity equation (mass conservation) 

0
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U
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

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      (1) 

Momentum equations (Newton’s second law of motion in 3 Cartesian directions) 
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In the above equations   is the density, iU  the velocity component in direction i and 

ij the components of the stress tensor. This paper is concerned with small 

displacements only and therefore these equations are written in an Eulerian reference 

frame. The assumption of small deformations also simplifies the numerical simulations 

because the computational mesh remains fixed. For larger deformations an arbitrary 

Langrangian-Eulerian approach is necessary in which the fluid and structure meshes 

move, following the deformation of the solid. 

 The aforementioned partial differential equations, which are valid for both 

media as already mentioned, are expressed in terms of fluid and structure velocities. The 

difference lies in the constitutive relation for the stress tensor  . In fluids it is expressed 

in terms of the rate of strain tensor (i.e. velocities) and pressure, while in solids it is a 

function of the strain tensor (i.e. displacements).  More specifically, for a linear, viscous 

(or Newtonian) fluid, the elements of the stress tensor ij  are given by: 
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where   is the laminar viscosity of the fluid and p  the pressure. For incompressible 

flow 0
x

U

k

k 



(due to the continuity equation) and the first term inside the parenthesis 

on the right hand side contains only pressure. Substituting this expression to equation 

(2) the well known Navier-Stokes equations are obtained.  

 For a linear, isotropic, elastic solid, the generalized Hooke’s law is 

ijijvij  2        (4) 

 

where  and  are the two Lamé coefficients and the strain tensor   is defined by: 
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where iD  are the components of the displacement vector in Cartesian coordinates. In 

equation 4, v  is called dilatation and is equal to the trace of the tensor   (or the 

divergence of the displacement vector) i.e.  

k

k
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where tr(.) is the trace operator. The Lamé coefficients are related to the Young’s 

modulus (E) and the Poisson ratio () with the following expressions: 
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Substituting 5-6 into equation 4 we get: 
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Equations 4 and 8 are not general as they can not be used for incompressible solids for 

which 5.0 . The reason is that the Lamé coefficient  tends to infinity and the 
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dilatation tends to 0 so their product 
k

k

x

D




 that appears on the right hand side of the 

previous equation is indeterminable. This leads to the node-locking problem for 

incompressible solid materials [10-11]. Note that there are many practical applications 

involving incompressible materials, for example wave propagation in human arteries 

[26]. This problem is resolved by treating solid pressure as a separate unknown variable.  

In solid mechanics pressure is defined as  

 332211
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Using the definition of the bulk modulus K,  




d

dp

V/dV
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K       (10) 

it can be easily shown that pressure is related to dilatation v  by: 

vKp         (11) 

The bulk modulus K  is related to the Lamé coefficients by 

)21(33
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Introducing pressure into the constitutive equation 8 we get: 
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This expression is valid for both compressible and incompressible solids because all the 

variables have now finite values and therefore this form is very convenient for the 

development of a general algorithm. Note also the similarity between the two 

constitutive expressions for the stress tensor for fluids and solids (i.e. equations 3 and 

13).   

 The additional unknown (pressure) is obtained from the following equation: 
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which is a rearranged form of equation 11. However in 14, both terms p
K

1
and 

i

i
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D
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have finite values when 5.0  (and therefore K ). For incompressible materials 

pressure must be extracted from the equation 
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 It can be seen therefore that the role of pressure for incompressible solids is to 

drive the divergence of the displacement field to 0. This is very similar to the role of 

pressure for incompressible fluids; it drives the divergence of the velocity field to zero. 

Note also that equation 15 does not contain pressure as unknown, so it must be 

extracted. This is analogous to the problem of obtaining pressure from the continuity 

equation in incompressible fluids. The developed approach can be directly applied to 

incompressible solids as will be shown later. 

 Substituting equation 13 into equation 2, after some algebra and assuming that 

the Lamé coefficients are constant we get:  
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Equation 16 is in a very useful form since it can be used for either compressible or 

incompressible solids and all terms have finite values. For incompressible solids 

1
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K
 and   remains finite. For small displacements, the 

convection term 
j
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x
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is very small compared to the transient term and is usually 

neglected. However, in the following sections, this term will be retained as it is 

important for the fluid equations. Equation 16 is supplemented by equation 14 as well as 
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the relationship between displacements and solid velocities. Therefore, the following 

system of equations describes the solid dynamics mathematically: 
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 The solid velocity is the time derivative of displacement and this is expressed 

mathematically with equation 17(b). The corresponding system for a weakly 

compressible fluid is: 
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where the definition of the bulk modulus of the fluid K was used to express the time 

derivative 
t


 in the continuity equation 1 in terms of pressure as 
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For incompressible solids, system 17 reduces to  
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while the corresponding system for an incompressible flow with constant viscosity   is:  
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
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 The similarity between systems 19 and 20 is obvious.  Systems 17 and 18 are 

also similar; the difference lies in the constant coefficient of the pressure gradient term 

and the rest of the terms in the right hand side. However, this is not a major problem 

since these terms are generally treated as a source in the discretised form. Although the 

forms are similar, one should not forget that the system of equations for solids is energy 

conserving (i.e. there is no mechanism for energy dissipation). For fluids on the other 

hand, the viscous terms are energy dissipating. 

 

3. A velocity-pressure formulation for solids 

 Since the two conservation laws for continuous media (equations 1 and 2) are 

written in terms of velocities, it makes sense to use velocities as dependent variables for 

both solids and fluids. Such an approach has an additional advantage for fluid-structure 

interaction problems, namely the continuity of velocity field at the interface is satisfied 

automatically.  

 Equation 17(a) contains already velocity and pressure in the left and right hand 

sides respectively. However, the second term on the right hand side is the Laplacian of 

displacement. Also 17(c) contains the divergence of displacement. The presence of 

displacement in 17(a,c) is not a major problem, because it is linked with velocity 

through 17(b). The system of the two equations 17(a,b) can be integrated in time with 

any time advancement method.  In the present paper the second order trapezoidal rule 

(Crank Nicolson scheme) was selected for the time advancement between time instants 

(k) and (k+1) i.e.   



 13 

 







































































































)c(0
x

D
p

K

1

)b(UU
2

1

t

DD

)a(
x

D

x

p

K3
1

2

1

x

D

x

p

K3
1

2

1

x

UU

t

UU

i

)1k(

i)1k(

)1k(

i

)k(

i

)k(

i

)1k(

i

2

j

)k(

i

2

i

)k(

2

j

)1k(

i

2

i

)1k(

j

)1k(

i

)1k(

j
)k(

i

)1k(

i












 (21) 

 Any time integration scheme could have been selected. Since the convection 

term is usually very small, temporal accuracy for this term is not important and 

therefore it is evaluated implicitly at time instant (k+1). Solving equation 21(b) for 
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iD  and substituting in 21(a,c) the following system of equations that contains as 

unknowns )1k(
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 Apart from the pressure gradient and velocity Laplacian term at time instant 

(k+1), the rest of the terms in the right hand side of 22(a) as well as all the terms in the 

right hand side of 22(b) are known from the previous time step (k). This is the final set 

of equations for solids that must be solved iteratively to obtain )1k(

iU   and )1k(p  .  

 It must be noted at this point that several papers in the literature [27-30] as well 

as the book of LeVeque [31] describe how the hyperbolic system of elastodynamic 

equations can be written in terms of velocities and stresses. In the 3D case there are nine 

unknowns, namely the three velocity components and the 6 independent components of 

the stress tensor (or equivalently the 6 strain components as there is a linear and 
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invertible stress-strain relationship for Hookean solids). Displacements themselves do 

not appear in the above systems as they have been converted to velocities by taking the 

time derivative of the constitutive stress-strain relationship. The resulting system is then 

solved using standard techniques suitable for hyperbolic systems such Godunov-type 

schemes or the method of characteristics. From the velocities, the displacements are 

then evaluated by integration. This is an elegant approach but it leads to a system with a 

large number of equations (9 for the 3D case) but also most importantly such an 

approach can not be easily coupled with the Navier-Stokes equations that describe the 

motion of fluids. The reason is that the stresses in Newtonian fluids are uniquely 

determined by the velocities and only one additional variable, pressure. This means that 

if the aforementioned formulations for solids are used to solve a coupled fluid-structure 

interaction problem, some variables (velocities) will be evaluated in the whole domain, 

but from the rest of the variables, others will be evaluated in fluid domain  (pressure) 

and others in the solid domain (6 stress or strain components). There is no doubt that 

such approach can work but it can be quite cumbersome. Using the present approach, all 

four variables will be evaluated in the whole domain. Greenshields and Weller [22] 

have also proposed a velocity-pressure approach but the formulation of the momentum 

equation is different and pressure is extracted from the general continuity equation. 

 

4. Boundary conditions for the velocity-pressure equations. 

Having derived the system of partial differential equations that must be solved, the next 

step is the formulation of boundary conditions using velocities and pressure. There are 

two general types of boundary conditions for solids: prescribed displacement and 

prescribed traction. The implementation of these conditions for the momentum and 

pressure equations is described in the following sections: 
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4.1 Prescribed displacement at the boundary 

The velocity at the boundary is obtained simply by differentiating with respect to time 

the prescribed displacement. This velocity can be used as Dirichlet condition for the 

numerical solution of equation 22(a). The correct value of displacement is also used for 

the evaluation of the terms of the right hand side of 22(a,b).  

 

4.2 Prescribed traction at the boundary 

Suppose that the prescribed traction is if . Then the force balance at the boundary is: 

ijij fn        (23) 

where jn  are the components of the unit vector normal to the boundary and pointing 

outwards. Substituting equation 13 for ij  we get: 
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This is a vector equation. Projecting this equation to the boundary normal vector n


 (i.e. 

taking the dot product with n


), we obtain: 
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which after some algebra and employing equations 12 and 14 becomes: 

ii
n fn

n

D
2p

K





 


     (26) 

where iin nDD   is the displacement in the direction normal to the boundary and 

n


denotes derivative in that direction. Note that this equation can also be derived 

directly from 4 if both i and j are in the n


 direction. The ratio 







1

3

K
 i.e. remains 
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finite so equation 26 is applicable for both compressible and incompressible solids. This 

is an equation that implicitly links the pressure and the normal component of 

displacement at the interface and will provide the boundary condition for the pressure 

equation as will be explained in the next section.  

 Two more scalar equations can be obtained by taking the dot product of equation 

24 with tangential vectors 1  and 2 .  For example for vector 1  we get: 

i1

1

n f
D

n

D

i

1 






















    (27) 

where 
i1 1iDD   is the tangential component of displacement at the boundary in the 

direction 1 .  Again this equation could have been obtained directly from 4. A similar 

equation can be obtained for 2 . Note that these equations do not contain pressure. They 

are used for the evaluation of 
21

D,D   at the boundary.  From the values of 
21

D,D,Dn   

the displacement components in the Cartesian directions iD  can be easily evaluated. 

 

5. Discretisation and solution algorithm.  

The next step is the selection of discretisation and solution method of the reformulated 

set of partial differential equations that describe the solid behaviour. The selected 

discretisation method is the finite volume method while for the iterative solution of 

equations the SIMPLE algorithm is employed. This combination has been used 

successfully for decades in Computational Fluid Dynamics [14].  In fluid mechanics, the 

algorithm is employed to extract a pressure correction equation from the continuity 

equation. It will be used here to derive a pressure correction equation from 22(b). 
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In the following equations the time step indicator (k+1) is dropped on the understanding 

that the unknown variables iU and p refer to this time step. The discretised momentum 

equations 22(a) can be written as: 

V
x

p

K3
1

2

1
SUAUA

nb
i

Unb,i

U

nbP,i

U

P i

ii 



 








    (28) 

where P denotes the centroid of the control volume around which the equation is 

discretised and nb denotes the neighbouring points. 
iUS contains all the source terms 

(such as contributions from the previous time step (k) and non-orthogonality terms etc) 

apart from the contribution of the pressure gradient term that appears explicitly in the 

semi-discretised form 
ix

p




. Equations 28 are solved using a pressure field p* which 

generally will not be the correct one (it will be correct only at convergence within one 

time step) and therefore the resulting velocities ( *

iU ) will not satisfy the discretised 

form of equation 22(b). So pressures and face velocities need to be corrected according 

to 

n

*

nn

*

UUU

ppp




       (29) 

and these corrected values should satisfy the equation:  

   m
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PP SAUUV
t
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2
 







   (30) 

where V  the volume of the computational cell. The term mS  on the right hand side is 

equal to  









fface
f

nnm AUAD
t

2
S 




 and is known from the previous time step (k).  

In the previous equations iin nUU   and iin nDD   are the velocity and displacement 
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components normal to the face. The face velocities *

nU  in equation 30 are evaluated 

using the Rhie and Chow [35] interpolation method: 



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   (31) 

where an overbar denotes interpolation between the values of the centroids on either 

side of the face and 
 
n


is the discrete approximation of the first order derivative 

normal to the boundary. The velocity corrections nU   are related to pressure 

corrections pwith (for details in the case of fluids see [14, 32]): 

n
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
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     (32) 

Assuming that the mesh is orthogonal and the distance between the centroids P and nb 

is  , nU   can be written as:   



 Pnb
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1
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

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
     (33) 

Extensions for non-orthogonal meshes are straightforward [33]. Substituting equation 

33 into 30 the following equation for pressure correction is obtained 
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

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
  (34) 

The pressure, face velocities and face displacements are then corrected and the updated 

fields are used in the solution of the momentum equations in the next iteration. The face 

displacements nD  are calculated from 21(b) using the face velocity values i.e.  

  tUU
2

1
DD n

)k(

n

)k(

nn      (35) 
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5.1 Implementation of boundary conditions 

Within the context of the algorithm described above, the implementation of the 

prescribed displacement boundary condition is straightforward. However, the 

implementation of the prescribed traction boundary condition (equation 23) is more 

involved. The component normal to the boundary (equation 26) will be used to derive a 

Dirichlet boundary condition for the pressure correction equation. The boundary 

pressure ( *

bp ) and normal displacement ( *

nD ) must be corrected so as to satisfy equation 

26 i.e.  

ii
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    (36) 

Using equation 35, the displacement correction nD  is evaluated from the pressure 

correction as: 
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Substitution of the above equation in 36 yields an implicit equation that involves the 2
nd

 

order derivative of pressure correction at the boundary. The discretised form of this 

equation must then be solved for bp . However, approximation of higher order 

derivatives at boundaries is complicated especially in unstructured non-orthogonal 

meshes and solution for bp  would result in a quite complicated expression. So it was 

decided to ignore the correction term 
n

Dn



 
 and obtain bp  instead from: 
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    (38) 

It must be noted that this type of approximation is very similar to the one employed by 

SIMPLE algorithm for the derivation of face velocity corrections (equation 32) as 

explained in [32]. In fact the PISO algorithm [34] was invented in order to remove this 
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deficiency of SIMPLE.  Of course, a PISO-like approach can be used here as well and a 

second pressure correction equation can be derived that accounts for the neglected 

terms. It is important to stress that this approximation does not affect the final solution; 

it affects only the convergence rate. When the code has converged, all the corrections 

are zero and the equations are satisfied by the “starred” variables exactly.  Solving for 

bp  we have:  
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    (39) 

This is a Dirichlet condition for the boundary face value of pressure correction in 

equation 34.  The derivative 
n

D*

n




 at the boundary is evaluated using a first order 

backward approximation. 

 

 

6. Application to fluid-structure interaction problems. 

The method is now ready to apply for the simulation of fluid-structure interaction 

problems. Two conditions must be satisfied at the interface: The solid and fluid velocity 

components are equal  

jfjs UU         (40) 

and the total traction on the solid is due to the fluid pressure and viscous forces i.e. 

equation 23 becomes 

jsijijfjsij n)tp(n         (41) 
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t  is the viscous stress tensor and the vector sn


 

is shown in figure 1. The incorporation of these conditions on the discretised 

momentum and pressure correction equations is explained below.  
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6.1. Momentum equations 

 The first condition is automatically satisfied because velocity is a common 

variable for both media. Since the velocity field is continuous, the integration of the 

fluid and solid momentum equations in the F and S cells respectively presents no 

difficulty.  For example the convection term 
j

ij

x

UU




is integrated as usual and any 

discretisation scheme can be used to approximate the face velocity (upwind, central, a 

bounded combination etc). The evaluation of the convective velocity is examined later 

because it is related directly to the calculation of pressure. It must be mentioned here 

that the diffusion term of the Navier-Stokes 
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solids equations are evaluated separately in the corresponding cells. In other words the 

value of   and 
2

t 
in the centroids F and S respectively are not interpolated to find a 

value at the interface. The integration of the diffusive terms in the moving wall gives the 

shear stress, which for laminar flows can be evaluated directly or if the flow is turbulent 

a wall function can be used.  It is therefore very easy to incorporate and test new ideas 

for improved wall functions in the context of deforming walls. 

6.2 Pressure correction equations 

 The second condition (equation 41) will be used to derive an expression that 

links the pressure corrections on either side of the interface using the methodology 

presented in section 5.1. Taking the dot product of this equation with the normal vector 

sn


 we have 
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where fs p,p  are the pressures on the solid and fluid side of the interface (see figure 1 

for the notation).  

 The two pressures fs p,p  are not equal i.e. there is a pressure jump.  This can be 

made clearer with the aid of a simple example. Assume a circular cylinder subjected to 

internal gas pressure pf  while the external pressure is 0. The internal radius of the 

cylinder is ri and its thickness is h, as shown in figure 2. The gas inside the cylinder is at 

rest so only the pressure force is acting on the internal cylinder wall. The cylinder has 

its axial end faces fixed i.e. the problem is plain strain. For this static case the analytic 

solution for all the stress components (i.e. radial, circumferential and axial) is known 

[25].  Using the definition of pressure for solids (equation 9) the value of ps at the 

interface is evaluated from these stresses to be:  
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It is obvious that fs pp   and the pressure difference increases the thinner the cylinder 

is. Note also that the solid pressure is constant i.e. does not depend on the radius r. Of 

course, the normal stress (radial) is continuous. In fact, in order to obtain the analytic 

solution the boundary conditions firr p)r(   and 0)hr( irr   that express 

mathematically the continuity of radial stresses are employed. And of course this is 

exactly what equation 42 signifies in a more general setting.  

The pressure and displacements must be corrected to satisfy this equation i.e.  
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Neglecting the contribution of the correction of normal displacement as before, we get 
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The right hand side of this equation is known. This expression provides the link 

between the pressure corrections on either side of the interface. Furthermore assuming 

that the pressure corrections at the boundary point (f) and the nearby centroid (F) on the 

fluid side are equal i.e. Ff pp   equation 45 can be solved for sp  
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 is known. This equation (which is the 

equivalent of 39 for fluid-structure interaction problems) will be used now to couple the 

pressure correction equations on the two sides together. For the evaluation of the 

interface normal velocity, the interpolation scheme proposed in [35] is used.  However, 

due to pressure discontinuity at the interface, this scheme is applied on the solid side 

only i.e.   
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  and nU is evaluated from linear extrapolation from the 

interior of the solid domain. In this way, derivatives of pressure across a discontinuity 

are avoided.  

 The pressure correction equation for the solid cell S next to the interface (see 

figure 1) is: 

   m

ffaces
ofrest

fii

*

i

s

S

s

Ss
si

*

iS
S

*

S

S

S SAnUUADU
pp

nUV
t

pp

K

2
 
















 











  (48) 



 24 

Substituting sp from 46 and after some algebra we find that the discretised equation for 

pressure correction for cell S can be put on the form 
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for the fluid cell F next to the interface (see figure 1) is 
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(50) 

Substituting sp from 46 and after some algebra the discretised equation for pressure 

correction for the fluid cell F can be put on the form 
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7. Results and discussion  

 The method described in the previous sections was implemented in an in-house 

three dimensional, fully unstructured, finite-volume code that solves for the three 

Cartesian components of velocity and pressure. The code has been used in the past to 

model successfully a variety of complex flow patterns [36-38]. For the fluid cells the 

equation set 18 was solved while for solids the system 22. For the convection terms the 
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2
nd

 order central differencing scheme was used. In order to accommodate the 

aforementioned pressure jump, the two media were detached at their interface and 

different values of pressure were stored at the fluid side and the solid side. Of course, 

the velocities and pressure corrections were solved simultaneously resulting in a 

strongly coupled velocity-pressure formulation for both media.  

 The method was applied to simulate the pressure wave propagation in an 

axisymmetric elastic tube. This is a standard problem that has been studied theoretically 

to a great extent (Atabek [39] among many others).  However, the available analytic 

solutions for the displacement (radial and axial) and pressure are available on the 

frequency domain and are based on many simplified assumptions such as linearity of 

fluids equations, membrane equations for the solid wall etc.  It was therefore decided to 

compare the results with the solution of the Flügge equations that account for the axial 

as well as bending stiffness of a thin shell. Details about the Flügge equations, the 

associated boundary conditions for the problem examined and their numerical solution 

are provided in Appendix A.  More details on the assumptions employed for their 

derivation can be found in the book of Flügge [40]. These equations were coupled with 

the Navier-Stokes equations written in polar coordinates and were solved together using 

a separate in-house code.   

 The material properties for the solid and fluid component are shown in table 1.  

The fluid properties correspond to blood and were taken from Pedley [26].  The values 

of E and  corresponding to human vessel walls are 10
6
 and 0.5 respectively. A much 

higher value of E (2.2x10
10

) was also examined in order to investigate the behaviour of 

the method for stiffer walls.  The coordinate system employed as well as the basic 

dimensions and boundary conditions are shown in figure 3. The thickness of the tube is 

chosen deliberately to be small (1/20th of the tube radious) so that the theory of thin 
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shells can be applied. Computational details for the cases examined are provided in 

table 2.  The pressure (in Pa) at the inlet increases linearly with time until a specified 

time instant T i.e.  

 

 











Tt1000

Tt
T

t
1000

pinl     (52) 

The value of T (ramp time) is shown in table 2. Calculations with T=0 were also carried 

out to investigate the robustness of the method. The outlet pressure remained constant 

and equal to 0.   

 The computational domain was a slice of 5
o
 thickness with symmetry conditions 

on the two x-y planes.  A zoomed-in isometric view of the three meshes examined close 

to the top boundary is depicted in figure 4. 

 For the values of E and  equal to 10
6
Pa and 0.3 respectively, the Flügge 

equations were solved twice using the same computational conditions (i.e. fluid mesh 

and time step) that were employed for the general solution method for cases 3 and 5, as 

shown in table 2. The results were almost identical and so the curves labelled “Flügge 

equations” for those values of E and  were obtained using the coarse mesh 120x39 

(case 3). 

 The variation of centreline pressure along the length of the pipe at 5 time 

instants is shown in figure 5.  There are small differences between the predictions of the 

two meshes and the general agreement (especially for the fine mesh, case 5) with the 

Flügge equations is very good. Note that the peak pressure is higher compared to the 

maximum inlet pressure and this is predicted by both approaches. The speed of pressure 

wave propagation can be estimated by evaluating the distance travelled by the half-

height of the maximum inlet pressure, i.e. 500Pa within a specified time interval. The 

propagation velocity in 4 successive time intervals of duration 2ms from 2ms-10ms is 
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found to be: 3.98m/s, 4.57m/s, 4.87m/s, 4.79m/s. The results with the Flügge equations 

are almost identical. It can be seen that the wave speed varies with the distance from the 

boundary end, which aggress with the theoretical finding of [41] for a semi-infinite 

tube. The smaller speed, especially in the first interval, might also be attributed to the 

linear increase of pressure with time at the inlet (equation 52).  

 For a tube of infinite length, one dimensional analysis [42] yields the following 

formula for the wave speed:  
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where fK  is the bulk modulus of the liquid, D is the internal pipe diameter and fc  is a 

factor that accounts for the axial stress waves in the pipe wall:  
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 This expression is valid for a pipe allowed to expand or contract freely in its 

radial and axial directions with stress waves travelling in the pipe wall material in 

addition to the pressure waves propagating in the liquid [42]. The theoretically predicted 

value is 5.0m/s which agree very well (4% error or less) with the predicted values in the 

last two subintervals i.e. away from the inlet boundary where the pipe is free to deform 

in the axial as well as radial directions.  

 Contour plots of pressure for the 5 time instants are shown in figure 6. The 

pressure wave propagation is clearly seen as well as the areas of maximum pressure 

close to the wall behind the front.  The pressure gradient induces an axial velocity at the 

inlet of the tube, whose variation along the centreline is shown in figure 7. The 

predictions between the present approach and the one using the Flügge equations are 
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almost identical. Superimposed is a horizontal line that represents the analytic 

expression from one dimensional analysis 







f

p
V  that gives a value of 0.20m/s.  It 

is clear that when the pressure wave has fully developed after 2ms this value is closely 

approximated.  

 The variation of the radial displacement along the length of the tube for various 

meshes and time steps is presented in figure 8. The results for cases 1 and 2 (coarsest 

mesh) are shown only for the t=10ms to avoid cluttering up the figure. Clearly this mesh 

does not provide a grid-independent solution. The other two meshes provide results that 

are almost identical. Superimposed on the graph is the static radial displacement for a 

plain strain problem 

 
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(where ri is the internal radius of the pipe) 

which gives a value of 0.19mm. When the pressure pulse has propagated inside the pipe 

the value of radial displacement at the entrance approaches this value with good 

accuracy. Comparison between the Flügge equations using the finest mesh is shown in 

figure 9. There is excellent matching at the wave front where the radial displacement is 

smooth but in the wake of (i.e. behind) the front there are small differences in the 

maxima and minima between the two sets of results. These can be attributed to the 

assumptions inherent in the derivation of the Flügge equations as explained in the book 

of Flügge (1960). Calculations were also performed with membrane equations (obtained 

by setting 0  in equations A1, A2 in the Appendix A). The results (not shown here) 

again match very well in the area of smooth variation while behind the front the 

agreement with the present methodology was poorer compared to the Flügge equations. 

This is expected since close to the boundary the bending stiffness becomes important.  
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Figure 10 shows comparison of the axial displacement and again there is fairly good 

agreement between the two sets of results.   

 Calculations were also performed for an incompressible solid. A value of 

Poisson ratio equal to 0.5 exactly was used and the code converged is each time step 

without any stability problems. Comparison of pressure distribution for this case is 

shown in figure 11.  The quality of matching between the two sets of results is similar as 

before.  

 In order to check the robustness of the method and code developed a calculation 

was carried out with the value of the ramp time T=0 (case 7 in table 2). Again the solid 

was incompressible.  The convergence rate for this calculation at t=6ms is shown in 

figure 12. The underelaxation factors for both velocities and pressure were equal to 0.6 

an no attempt was made to optimise them. The normalised residuals (which include both 

fluid and solid cells) drop by more than 6 orders of magnitude within about 20 iterations 

and the convergence is smooth and monotonous.  

 For all cases examined so far, the wave propagation velocity is determined by 

the compliance of the tube because Kf>>E. A final calculation (case 8 in table 2) was 

performed with a much stiffer wall (4 orders of magnitude larger modulus of elasticity), 

so both the compressibility of the liquid and the elasticity of the tube contribute to the 

wave speed. The pressure was recorded again at 5 time instances at intervals of 0.02ms 

i.e from 0-0.1ms. The predicted wave speeds were 620m/s, 625m/s, 628m/s, 623m/s, 

and match to within 3% the analytic solution (646m/s).   

 The previous results demonstrate the accuracy and the good performance of the 

proposed method. There is much scope for further development, for example by 

including large deformations, other constitutive equations for the solid material or by 

improving the convergence rate using a PISO-like approach. An advantage is that it can 
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be easily incorporated into existing CFD finite-volume codes as it is based on existing 

code philosophy and enlarge the range of problems that can be tackled without 

simplifying assumptions. The results presented in this paper deal only with laminar 

flows but extension to turbulent flows is straightforward. In this way, novel turbulence 

modelling ideas in the context of RANS or LES or novel wall functions can be tested in 

complex cases with moving boundaries where the deformation is determined by the 

solution of the flow field itself.  

 

 

8. Conclusions 

The paper presented a novel fully-coupled approach for modelling fluid-structure 

interaction problems for linear, elastic materials. It is based on a novel velocity-pressure 

formulation for both media and employs the same pressure-correction algorithm for the 

numerical solution of the set of partial differential equations. The method was applied to 

model the wave propagation in a flexible tube and comparison with existing analytic 

solutions or numerical results using the Flügge equations for a variety of cases showed 

very good performance. There is ample scope for the further development of the method 

to include large deformation, other materials and flow conditions.  

. 
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Appendix A: The Flügge equations and their numerical solution. 

The equations of Flügge (1960) extend the basic membrane equations by accounting for 

the bending stiffness of thin shells. For axisymmetric conditions, the axial and radial 

momentum equations are  
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In the above equations, a  is the radius of the middle surface, u is its axial displacement, 

w its radial displacement (positive along increasing radius) and h the thickness of the 

shell. The terms that account for flexural rigidity (bending stiffness) are the ones 

multiplied by the parameter  . For 0  the equations reduce to the membrane 

equations used widely for the theoretical analysis of pulse propagation in flexible tubes. 

The value of the radial displacement velocity 












t

w
 is used as boundary condition for 

the solution of the Navier-Stokes and continuity equations in axisymmetric coordinates.   

The boundary condition for equation A1 is 

0u         (A4) 
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on either end of the solid domain. Since the equation A2 is 4
th

 order, 2 boundary 

conditions are needed at each end.  For the sliding edge, these conditions are 

0w

uw




      (A5) 

The first expresses mathematically the fact that the shear stress is 0 and the second that 

rotation is prevented.   

The above equations were discretised using the finite difference method. Standard 

central difference approximations were employed to approximate the 2
nd

, 3
rd

 and 4
th

 

order derivatives at the interior of the domain [43] i.e. for values of i=2…ni-1 (see 

figure A1).  The standard expressions for uniform mesh were modified close to the 

boundaries to account for the varying distances between the points.  
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Figure A1. Sketch of computational domain and auxiliary points at the ends. 

 

The implementation of the boundary condition A4 for the left end of the domain is 

straightforward: 

0u1        (A6) 

However A5 is more involved. The 3
rd

 order derivative was discretised at point i=1 with 

the help of the auxiliary point i=0, located a distance x/2 on the left of point 1 i.e. 
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symmetrical to point 2. For the 2
nd

 order derivative a forward approximation was used. 

Taking into account the different distances between the various points the discretised 

form of equations A5 is: 
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The value of 0w  can be evaluated from the second of A7 therefore we have: 
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in which A6 was used. This equation provides an implicit expression for 1w which is 

used as Dirichlet boundary condition: 
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The treatment of the right boundary is identical.
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Figure captions 

Figure 1 Two cells on either side of the interface. 

Figure 2 A cylinder subjected to internal gas pressure 

Figure 3 Sketch of the computational domain with basic dimensions (in mm) and 

boundary conditions. 

Figure 4 Isometric views of the 3 meshes zoomed-in at the top boundary. 

Figure 5 Variation of centreline pressure at 5 time instants. 

Figure 6 Pressure contours at 5 time instants. 

Figure 7 Variation of centreline axial velocity at 5 time instants. 

Figure 8  Predicted radial displacement with various meshes and time steps (Cases 1-5). 

Figure 9  Predicted radial displacement and comparison with Flügge equations. 

Figure 10 Predicted axial displacement and comparison with Flügge equations. 

Figure 11 Predicted pressure distribution and comparison with Flügge equations for an 

incompressible solid. 

Figure 12 Convergence history for case 7. 
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Table 1. Physical properties of the solid and fluid materials 

 

  Solid properties  

Modulus of Elasticity (Pa) 10
6
, 2.2x10

10
 

Poisson ratio (-) 0.3, 0.5 

Density (Kg/m
3
) 1000 

Fluid properties 

Dynamic viscosity (Ns/m
2
) 0.004 

Density (Kg/m
3
) 1000 

Bulk modulus (Pa) 2.2x10
9
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Table 2. Computational details for the cases examined. A tick “” in the “Solution of 

the Flügge equations” column for a particular case signifies that these equations were 

also solved using the same computational conditions (i.e. fluid mesh size and  time 

step) employed in the general solution method for that case. 

 

Case 

number 

Mesh size 

 *sf nxnxny   

t (s) Ramp 

Time (s) 

Poisson 

ratio 

Modulus of 

elasticity (Pa) 

Solution of 

Flügge equations 

1 60x(19+5) 2x10
-5

 2x10
-3

 0.3 10
6
 - 

2 60x(19+5) 4x10
-6

 2x10
-3

 0.3 10
6
 - 

3 120x(39+10) 4x10
-6

 2x10
-3

 0.3 10
6
  

4 120x(39+10) 10
-6

 2x10
-3

 0.3 10
6
 - 

5 180x(59+10) 10
-6

 2x10
-3

 0.3 10
6
  

6 120x(39+10) 10
-6

 2x10
-3

 0.5 10
6
  

7 120x(39+10) 10
-6

 0 0.5 10
6
 - 

8 120x(39+10) 10
-7

 2x10
-5

 0.3 2.2x10
10

 - 

 

  
*
ny is the number of cells in the y direction and sf nx,nx are the number of cells in the 

x direction for the fluid and solid medium respectively. 
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Figure 1 Two cells on either side of the interface.  
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Figure 2 A cylinder subjected to internal gas pressure



 42 

Inlet pressure

0.5

10

0utlet pressure

Zero traction

boundary

x

y

Sliding 

boundary

Sliding 

boundary

100

Inlet pressure

0.5

10

0utlet pressure

Zero traction

boundary

x

y

Sliding 

boundary

Sliding 

boundary

100

 

Figure 3 Sketch of the computational domain with basic dimensions (in mm) and 

boundary conditions. 
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(a) Mesh 60x(19+5) 

 
(b) Mesh 120x(39+10) 

 
(c) Mesh 180x(59+10) 

Figure 4 Isometric views of the 3 meshes zoomed-in at the top boundary. 
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Figure 5 Variation of centreline pressure at 5 time instants.  
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Figure 6 Pressure contours at 5 time instants. 
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Figure 7 Variation of centreline axial velocity at 5 time instants. 
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Figure 8  Predicted radial displacement with various meshes and time steps (Cases 1-5). 
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Figure 9  Predicted radial displacement and comparison with Flügge equations. 
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Figure 10 Predicted axial displacement and comparison with Flügge equations. 
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Figure 11 Predicted pressure distribution and comparison with Flügge equations for an 

incompressible solid. 
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Figure 12 Convergence history for case 7. 


