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1 Abstract

An explicit state-space approach is presented for solving the super-optimal Nehari-extension problem. The

approach is based on the all-pass dilation technique developed in [JL93] which offers considerable advantages

compared to traditional methods relying on a diagonalisation procedure via a Schmidt pair of the Hankel

operator associated with the problem. As a result, all derivations presented in this work rely only on simple

linear-algebraic arguments. Further, when the simple structure of the one-block problem is taken into account,

this approach leads to a detailed and complete state-space analysis which clearly illustrates the structure of

the optimal solution and allows for the removal of all technical assumptions (minimality, multiplicity of largest

Hankel singular value, positive-definiteness of the solutions of certain Riccati equations) made in previous work

[LHG89],[HLG93]. The advantages of the approach are illustrated with a numerical example. Finally, the paper

presents a short survey of super-optimization, the various techniques developed for its solution and some of its

applications in the area of modern robust control.

Keywords: super-optimal Nehari-extension problems, Hankel operator, all-pass dilations, H∞ - optimal

control, maximally robust stabilization.

2 Notation

Here we define the main notation used in the paper. Additional notation is introduced in subsequent sections

as needed. All systems considered in this paper are assumed linear, time invariant and finite dimensional. Let

Rp×m(s) denote the space of proper p×m rational matrix functions in s with real coefficients. Associated with

P ∈ Rp×m(s) of McMillan degree n is a state-space realization:

P = C(sI −A)−1B +D

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. For P ∈ R(s)p×m let P (s)∼ := P ′(−s) denotes

the para-hermitian conjugate of P . Throughout the paper we distinguish transfer matrices by making use of

bold lettering which shall imply the s dependence. Let P be partitioned in 2 × 2 sub-blocks P ij , i = {1, 2},
j = {1, 2}. Then a state space realization of P can be written as:

P :=

(
P 11 P 12

P 21 P 22

)
s
=

 A B1 B2

C1 D11 D12

C2 D21 D22


and

P ij = Ci(sI −A)−1Bj +Dij

is a state-space realization of P ij . A lower linear fractional transformation of P and K is defined as

Fl(P ,K) = P 11 + P 12K(I − P 22K)−1P 21
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where K is of dimension m× p if P 22 has dimension p×m and the indicated inverse exists. Similarly we define

the upper linear fractional transformation of P and K as:

Fu(P ,K) = P 22 + P 21K(I − P 11K)−1P 12

for a compatible partitioning of P with K and provided that the indicated inverse exists.

The spaces RL2 consist of all real-rational matrix functions G(s) which are square-integrable on the imaginary

axis, i.e. whose L2 norm:

∥G∥2 =

√
1

2π

∫ ∞

−∞
trace(G∗(jω)G(jω))dω

is finite. This coincides with the space of all strictly proper real-rational matrix functions which are analytic on

the imaginary axis. Similarly, RH2 (RH⊥
2 ) denotes the spaces of all strictly proper real-rational transfer matrix

functions which are analytic in closed right-half complex plane (closed left-half complex plane), respectively. We

let ∥·∥2 stand simultaneously for the L2-norm, the H2-norm or the H⊥
2 -norm (for G belonging to the appropriate

space). RH2 and RH⊥
2 are subspaces of RL2 and we define P+ and P− to be the orthogonal projections from

RL2 to RH2 and RH⊥
2 , respectively.

The space RL∞ consists of all proper real-rational transfer matrix functions which are analytic on the imaginary

axis. RH+
∞ and RH−

∞ are the subspaces of RL∞ consisting of all real-rational proper matrix functions which

are analytic in the closed right-half plane and closed left-half plane, respectively. Thus RL∞ = RH+
∞ ⊕RH−

∞

where ⊕ denotes direct sum of subspaces. The norm ∥ · ∥∞ denotes either the L∞-norm of a function in L∞

or the H∞-norm of a function in H+
∞, depending on context. RH∞(k) is the subset of RL∞ consisting of all

functions with no more than k poles in the right-half plane. If Γ is an operator, then Γ∗ denotes its adjoint and

∥Γ∥ denotes its induced norm. Here we make use of the induced norm of the Hankel operator with symbol G

defined in section 3.1, which will also be denoted as σ1(ΓG) or as ∥G∥H , where σ1 denotes the largest singular

value of ΓG. A square matrix function G ∈ RL∞ is called γ-allpass if GG∼ = G∼G = γ2I. A square all-pass

function with γ = 1 is called inner if it lies in RH+
∞ and anti-inner if it lies in RH−

∞.

Let Fm×n be the set of matrices with elements in field F . In this context the field will be either the set of

real numbers R or the set of complex numbers C. Here by C+ (C−) we shall denote the set of complex numbers

which are analytic in the open right (left) half plane. For a matrix A ∈ Fm×n its transpose is denoted by A′.

Further, we define R(A) to be the range of A and N (A) the null-space (kernel) of A, respectively. R(A) and

N (A) are subspaces of Fm and Fn, respectively, whose corresponding dimensions are denoted as rank(A) and

null(A). For a square matrix A, λ(A) denotes the spectrum of A, i.e. the set of its eigenvalues λi(A), and ρ(A)

is the spectral radius of A.

The acronyms ARE, CIF, LFT, LTI and SODP stand for algebraic Riccati equation, complementary inner

factorization, linear fractional transformation, linear time-invariant and super-optimal distance problem,

respectively.

3 Introduction

In Nehari approximation problems we seek

inf
Q∈H+, p×m

∞

∥R+Q∥∞ (1)

where R ∈ RLp×m
∞ (or R ∈ RH−, p×m

∞ without loss of generality). Throughout this paper we study the matrix

case min(p,m) > 1. Further, depending on the kind of application Q may be further constrained to have a zero

block row and/or column. Then the problem is said to be a two-block or a four-block distance problem. In this

work only one-block problems are considered, where no further constraints on Q are imposed.
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By introducing the new notation s∞1 (R) = ∥R∥∞ the approximation problem posed in (1) can be rewritten as:

s1(R) := inf
Q∈H+, p×m

∞

s∞1 (R+Q) (2)

where s1(R) will be referred to as the optimal level of R. The set of all optimal approximations of R is defined

by

S1(R) := {Q ∈ H+, p×m
∞ : s∞1 (R+Q) = s1} (3)

Note that s1(R) := σ1(ΓR∼), the Hankel norm of R∼. Since, in general, the solution of this problem is not

unique, we can define a stronger version of optimality, by requiring that the sequence of the suprema (taken

over ω ∈ R∪{∞}) of all singular values of the “error” system (R+Q)(jω) is minimized lexicographically. This

stronger version of the problem was first proposed by Young and was defined as super-optimization. The main

motivation, arising from esthetic considerations, was to restore uniqueness to the solution of the matrix Nehari

problem, by showing in [You86] the existence of a unique super-optimal approximation Qsup. Nevertheless, in

the present work and also others (e.g. [PF85], [KHJ07]) it is argued that super-optimization fits naturally within

the modern robust control-theoretic framework, and can be used to define hierarchical optimization problems

in which additional performance and stability objectives can be addressed [PF85], [GHJ00].

Given G ∈ RLp×m
∞ , the Hankel operator with symbol G is defined as:

ΓG : H⊥,m
2 → Hp

2, ΓGf̂ := (P+MG)f̂ = P+(Gf̂) for f̂ ∈ H⊥,m
2

where MG denotes the multiplication operator. Since G ∈ RLp×m
∞ is analytic on a vertical strip containing the

imaginary axis, we can define its two-sided Laplace transform, g(t) ∈ lp×m
2 (−∞,∞), containing both causal and

anti-causal parts. Here l2(−∞,∞) denotes the space of all square-integrable functions with support (∞,∞).

The equivalent definition of the Hankel operator in the time-domain is:

Γg : lm2 (−∞, 0] → lp2[0,∞), (Γgf)(t) = P+(g ∗ f), for f(t) ∈ lm2 (−∞, 0]

where ∗ denotes convolution. Define σ2
i (ΓG) = λi(ΓgΓ

∗
g) = λi(PQ). Here the σi(ΓG)’s (denoted simply as

σi) are the singular values of ΓG (Hankel singular values of G) and P and Q are the controllability and

observability gramians of the system (A,B,C) which satisfy the Lyapunov equations AP + PA′ + BB′ = 0

and A′Q + QA + C ′C = 0 respectively. Let these be ordered as σ1 = . . . = σr > σr+1 ≥ . . . ≥ σn > 0 where

n is the McMillan degree of G. Then, σ1 = ∥ΓG∥ is the Hankel norm of G. Next, let ui(t) ∈ lm2 (−∞, 0],

ui(t) ̸= 0, be an eigenvector of Γ∗
gΓg corresponding to the eigenvalue σ2

i . Then Γ∗
gΓgui = σ2

i ui. Define

vi = (1/σi)Γgui ∈ lp2 [0,∞). Then the pair (ui, vi) satisfies Γgui = σivi and Γ∗
gvi = σiui and is called a Schmidt

pair of ΓG. Thus ui(t) = σ−1
i B′e−A′tQxi ∈ lm2 (−∞, 0] and vi(t) = CeAtxi ∈ lp2 [0,∞). Let {u1, u2, . . . , ur}

and {v1, v2, . . . , vr} be a collection of r (≤ n) linearly independent eigenvectors of Γ∗
gΓg and ΓgΓ

∗
g, respectively,

corresponding to the eigenvalue σ2
1 . Then [GL95],[ZDG96]:

U(t) =
[
u1 . . . ur

]
(t) = σ−1

1 B′e−A′tQ
[
x1 . . . xr

]
∈ lm×r

2 (−∞, 0]

and

V (t) =
[
v1 . . . vr

]
(t) = CeAt

[
x1 . . . xr

]
∈ lp×r

2 [0,∞)

Taking the (bilateral) Laplace transform shows that

U = −B′(sI +A′)−1Ξ ∈ RH⊥,m×r
2 , Ξ = σ−1

1 Q
[
x1 x2 . . . xr

]
and

V = C(sI −A)−1Θ ∈ Hp×r
2 , Θ =

[
x1 x2 . . . xr

]
Next, we invoke Nehari’s theorem:
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Theorem 3.1.

inf
Q∈H−

∞

∥G+Q∥∞ = ∥ΓG∥ = σ1 (4)

Proof. The theorem was first proved in [Neh57] for the case of SISO discrete-time systems. See [Fra87], [Glo84],

[Pel03] for the complete proof of the multivariable case.

Remark 3.1. In Theorem 3.1, G need not be minimal. See for example [Glo89] and [JL93], where minimality

is not assumed.

It can be shown that the infimum in (4) is attained; further [Glo89]:

rank[U ] = rank[V ] := l ≤ min(p,m, r) (5)

and

(G+Q)U = σ1V (6)

for every (optimal) Q which achieves the infimum in (4). Equation (6) may be used to show that in the scalar

case the optimal Nehari extension is unique and is given by Q = G+ σ1V /U . In the matrix case the equation

has been used to derive the parametrization of all optimal solutions of the Nehari extension problem [Glo89],

and has also inspired most methods used to solve the super-optimal distance problem, typically based on the

construction of all-pass diagonalising transformations of G+Q using U and V .

3.1 Statement of the problem

A formal definition of the problem follows. Let R ∈ RH−,p×m
∞ . Then, define

s∞i (R) := sup
ω∈R

σi[R(jω)], i = 1, 2, . . . ,min(p,m).

If p and m are both greater than 1, then we define recursively the first and subsequent super-optimal levels of

R as

si(R) := inf
Q∈Si−1(R)

s∞i (R+Q) i = 1, 2, . . . ,min(p,m) (7)

and the set of all i-th level super-optimal approximations of R as

Si(R) := {Q ∈ Si−1(R) : s∞i (R+Q) = si(R)} i = 1, 2, . . . ,min(p,m).

In other words, we seek among all super-optimal approximations at the (i− 1)-th level Si−1(R) a set for which

si(R) is minimized (it turns out that the infimum in (7) is always attained). This set is not a singleton in general

(apart from the case of i = min(p,m)), but forms a subset of all (i− 1)-th level super-optimal approximations

of R, Si−1(R). Note that for i = 1, (7) is taken to be a Nehari extension problem and hence we define

S0(R) := H+, p×m
∞ . Due to the lexicographic nature of the problem, it is clear that every element of Si(R) is

also an element of Si−1(R), i.e. that the super-optimal approximation sets nest as:

S0(R) ⊇ S1(R) ⊇ . . . ⊇ Si(R) ⊇ . . . ⊇ Smin(p,m)(R)

The super-optimal approximation problem ([SODP]) considered in this paper can be formally defined as follows:

Problem 3.1. [SODP]. Given an R ∈ RH−, p×m
∞ , find the (unique) matrix-function Qsup ∈ H+, p×m

∞ which

minimizes the sequence

s∞(R+Q) = (s∞1 (R+Q), s∞2 (R+Q), . . . , s∞k (R+Q))

with respect to the lexicographic ordering, where k = min(p,m).
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The approach followed here involves the reduction of the lexicographic minimization into a hierarchy of ordinary

H∞-optimization (Nehari-extension) problems of progressively reduced input-output dimensions, whose solution

is well known in the literature [Glo84], [Glo89], [ZDG96], [GL95]. In particular, for the case of i = 2 in (7), two

all-pass system matrices V ∼ and W are constructed (depending on R) which diagonalise every optimal “error

system” R+Q, Q ∈ S1(R), i.e.

V ∼(R+Q)W =

(
s1(R)α 0

0 R̂+Q

)

Denoting the multiplicities of distinct super-optimal levels by l1, l2, . . . , lk (i.e. l1 + l2 + · · · + lk = min(p,m))

we have that R̂ ∈ RH−,(p−l1)×(m−l1)
∞ , Q ∈ RH+,(p−l1)×(m−l1)

∞ , l1 ≥ 1. Note that α is anti-inner of dimension

l1×l1; also α and R̂ are fixed (i.e. they do not depend on Q ∈ S1(R)). It is further shown that ∥R̂
∼
∥H < s1(R)

and that as Q varies over S1(R), Q varies over the set of all s1(R) sub-optimal Nehari approximations of R̂,

i.e. over the set

S(R̂, s1(R)) := {Ψ ∈ H+ (p−l1)×(m−l1)
∞ : ∥R̂+Ψ∥∞ ≤ s1(R)}

Thus (in the generic case l1 = 1),

sl1+1(R) = inf
Q∈S1(R)

s∞l1+1(V
∼(R+Q)W ) = inf

Q∈S(R̂,s1(R))

s∞1 (R̂+Q)

and so in this case (as all optimal Nehari approximations of R̂ are also s1(R)-suboptimal)

sl1+1(R) = s1(R̂)

A recursive application of this procedure generates all super-optimal levels.

The super-optimal distance problem has been proposed in the context of H∞-optimal control as a means of

restoring uniqueness to the optimal controller in the multivariable case. Although the key theoretical and

computational aspects of the linear H∞ theory have been resolved (while the theory has even been extended

to more general settings), the choice of the “best” optimal controller is still an open problem. Note that, in

this respect, most solution techniques, including those based on Linear Matrix Inequalities [CSC97], [IS94], are

essentially suboptimal in nature and do not differentiate between different near-optimal solutions). In cases

where strong directionality information is available in the model of the disturbance signal (which must be

rejected) or the uncertainty model of the plant (which must be robustly stabilized), the super-optimal solution

may offer important advantages, apart from mathematical elegance in restoring uniqueness.

3.2 Overview

The paper considers the super-optimal Nehari-extension problem for real-rational continuous-time systems. All

results are established via simple linear algebraic methods. The main steps of the algorithm are first developed

purely at a transfer-function level, although this construction is subsequently supported via a detailed state-

space analysis in order to develop efficient numerical algorithms for the solution of the problem. The main

features of our approach and the contribution of the work are briefly described below:

• We remove all main assumptions made in previous state-space based solutions to the problem. Specifically:

(i) The realization of the system which is approximated (R) is not assumed to be minimal or balanced;

(ii) The largest Hankel singular value of R is here assumed to have arbitrary multiplicity; and (iii)

no assumption is made about the invertibility of the controllability and observability gramians of certain

realizations arising at intermediate steps of the algorithm; in previous work, these conditions were assumed

to facilitate the state-space analysis of the algorithm and (unnecessarily) qualified the derived degree bound

of the super-optimal approximation [LHG89].
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• We have investigated pathological non-generic cases related to Hankel singular value multiplicities and the

degree of the optimal solution. This allows for the development of algorithms with improved numerical

properties.

• The all-pass dilation approach [JL93] adopted here provides conceptual and computational advantages over

existing methods, e.g. [TGP88], [Kwa86], [LHG89]. The starting point of these methods is invariably the

diagonalisation of the Nehari optimal solution set with the help of the Schmidt-pair of the Hankel operator

associated with the problem, which is in fact conceptually and computationally redundant. The present

construction is entirely based on the properties of the dilated system. This simplifies the exposition and

allows us to keep the argument entirely at the transfer function level, although a state-space construction

is also developed in parallel for computational purposes.

• The structure of the Nehari approximation (“one-block”) problem is exploited to develop a concrete state-

space implementation of the algorithm which relies on the duality between two spectral factorization-type

Riccati equations and their their corresponding Hamiltonians. The analysis is used to derive degree bounds

of the super-optimal approximation and establish certain interlacing inequalities between super-optimal

levels and Hankel singular values [LHG88], [LHG89] without imposing unnecessary assumptions.

• The paper briefly discusses applications of super-optimization in control theory. Early references report

applications in the areas of disturbance rejection [Kwa86], robust stabilization [KN89], [Nym95] and

hierarchical H∞ design [HJ98a], [HJW97]. Applications of super-optimization in the areas of robust

stabilization and structured-singular value approximations can be found in [GHJ00] and [JHMG06].

3.3 Brief survey of literature

The first published results in super-optimization can be found in [You86] and are based on operator theoretic

methods. In subsequent years, linear-algebraic algorithms for the real-rational problem appeared in a series

of papers [PF85], [PTG89], [TGP88], [LHG88], [LHG89], [GTP90], [TGPA90]. These all relied on state-space

methods and addressed the problem both in continuous and discrete-time settings. A parallel approach using

a polynomial framework was developed in references [Kwa86], [KN89]. Investigations on cancellation analysis,

degree-bounds and “interlacing inequalities” between Hankel singular values and super-optimal levels can be

found in [LHG88], [LHG89] and [Pel03]. Generalizations of super-optimization to the two-block and four-block

problems were first reported in [GTP89], [Nym94] and [JL93]. Reference [GTP89] follows the early state-space

approach for solving the two-block H∞ problem, by reducing it to an equivalent one-block problem via a spectral

and an inner-outer factorization. In contrast, the approach of [Nym94] is based on the “equalization-principle”,

widely used in early H∞ polynomial methods [Kwa86], while [JL93] relies on a state-space all-pass dilation

technique, proposed in [GLD+91] for solving the general-distance H∞ problem. An interesting state-feedback

approach based on Riccati inequalities, in the spirit of recent LMI developments, can be found in [Foo04].

Extensions of super-optimization to the Hankel-norm approximation (AAK) problem, originating with the

work of [PY96], [Tre95] were further developed in an algorithmic state-space setting in [HLG93] and [HJ98b].

Despite its similarity to its Nehari counterpart, the super-optimal Hankel-norm problem is considerably more

intricate; it is known that in pathological cases, even uniqueness of the super-optimal approximation can be

lost [Tre95],[HJ98b], which was the original motivating factor for introducing super-optimization.

Applications of super-optimization in control theory were first reported in the areas of disturbance rejection

[Kwa86] and robust stabilization [Nym95]. The stronger version of optimality resulting from super-optimal

approximations has been used in [Hal93], [HJW97], [HJ98a], [DH98] to address hierarchical optimization

problems in an H∞ or mixed-norm setting. In [Nym99] a multidirectional gap-metric is defined for multivariable

systems under gap and coprime-factor perturbations using super-optimization ideas. In [Gom95] an inverse-

robust stabilization problem is addressed: Given a super-optimal controller, determine the set of plants which it

stabilizes. Reference [GHJ00] applies super-optimization techniques in the area of maximal robust-stabilization
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of LTI systems under additive perturbations: Explicit expressions for the improved robust stability radius

are derived by imposing structure on the perturbation set via a uniform frequency constraint in the most-

critical direction which is identified. The method is also used in [GHJ00], [JHMG06] to derive an upper bound

on the structured singular value for multivariable systems in the case of complex structured block-diagonal

perturbations, which is tighter than the convex upper bound provided by the “D-iteration”. In this context, the

multiplicity of the largest Hankel singular value becomes a crucial consideration, which motivates the detailed

analysis of the general problem presented in this paper. An overview of these results and extensions to the case

of normalized coprime-factor uncertainty models will be reported in a future publication.

4 The 1-block Super-Optimal Distance Problem

The approach for solving the SODP adopted in this paper is based on all-pass dilation techniques. First the

system to be approximated, R, is embedded in an all-pass system H of higher dimensions (note that R is taken

to lie in H−
∞ for compatibility with the existing H∞ optimal-control literature). This acts as a “generator”

of the optimal solution set of the Nehari extension problem, as all solutions can be obtained via a LFT of H

with the ball of H∞ of radius s−1
1 (i.e. the set of all stable s−1

1 -contractions) [Glo89]. Next, a sub-block of

the optimal generator H is dilated to define a new square all-pass system H, of lower dimensions compared

to those of H. Exploiting the all-pass nature of H and H and the fact that they share a common block, two

diagonalizing transformations of H can be defined from certain sub-blocks of H and H. The diagonalization is

analogous to the partial singular-value decomposition of constant matrices and makes the minimization of the

second super-optimal level transparent. First, the general solution of the optimal Nehari-extension problem is

given under minimal assumptions:

Theorem 4.1 (Optimal Nehari approximation). Consider R ∈ RH−, p×m
∞ with realization R

s
=(A,B,C, 0)

where λ(A) ⊂ C+. Then there exists Qa ∈ RH+,(p+m−l)×(p+m−l)
∞ such that all Q ∈ H+, p×m

∞ which satisfy

∥R+Q∥∞ = ∥R∼∥H = s1 (Nehari optimal approximations of R) are given by

Q = Fl(Qa, s
−1
1 BH(p−l)×(m−l)

∞ )

where r denotes the multiplicity of the largest Hankel singular value of R∼, l is defined in (5), and

Qa :=

(
Q11 Q12

Q21 Q22

)
s
=

 Aq Bq1 Bq2

Cq1 D11 D12

Cq2 D21 0

 (8)

The corresponding “error” system is given by

H :=

(
H11 H12

H21 H22

)
=

(
R+Q11 Q12

Q21 Q22

)

s
=


A 0 B 0

0 Aq Bq1 Bq2

C Cq1 D11 D12

0 Cq2 D21 0

 s
= :

[
AH BH

CH DH

]
(9)

where ∥H22∥∞ < s1 and Qij ∈ H+
∞, for i, j ∈ {1, 2}. Further, HH∼ = H∼H = s21I and the following set of

equations is satisfied
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PHQH = QHPH = s21I

DHD′
H = D′

HDH = s21I

A′
HQH +QHAH + C ′

HCH = 0

AHPH + PHA′
H +BHB′

H = 0

D′
HCH +B′

HQH = 0

DHB′
H + CHPH = 0

(10)

Here PH and QH are the gramians of the realization of H given in (10).

Proof. The proof is constructive. See [Glo84] in which explicit state-space realisation of Qa is given. See also

[JL93] and [GLD+91] for a more general setting.

Remark 4.1. The realization of R need not be assumed minimal. However, we require that λ(A) ⊂ C+.
If R has McMillan degree n, it can be shown [Glo89] that Qa given in (8) has degree n − r; in addition,

σi(Qa) = σi+r(R
∼), i = 1, 2, . . . , n− r [Glo89], [GL95].

Remark 4.2. The integer parameter l which is used to define the input and output dimension of Q22 is the

normal rank of the Laplace transform of the matrix formed by the r Schmidt vectors of ΓR∼ corresponding to

σ1, defined in equation (5). In the notation of Theorem 4.1 R∼ = (−A′, C ′,−B′) and hence U and V are given

as

U = −C(sI −A)−1Ξ ∈ RH⊥,m×r
2 , Ξ = σ−1

1 P
[
x1 x2 . . . xr

]
and

V = −B′(sI +A′)−1Θ ∈ Hp×r
2 , Θ =

[
x1 x2 . . . xr

]
where P and Q are the controllability and observability matrices of R

s
=(A,B,C) and the xi’s are r linearly

independent eigenvectors of QP corresponding to the eigenvalue σ2
1. In particular, if (A,B,C) is balanced,

P = Q = −diag(σ1Ir,Σ2), and thus Ξ = −Er and Θ = σ2
1Er (where Er denotes the first r-columns of the n×n

unit matrix), so that U = C(sI −A)−1Er ∈ H⊥
2 and V = −s21B

′(sI +A′)−1Er ∈ H2. Thus,

rankR(s)U
∼ ≥ lim

s→∞
[sU∼] = rank (CEr)

and

rankR(s)V ≥ lim
s→∞

[sV ] = rank (E′
rB)

It is shown in [Glo89] that these two inequalities are actually equalities; further, the normal ranks of U and V

are equal, since Rank (CEr) = Rank (E′
rB), as can be verified by the equality E′

rC
′CEr = E′

rBB′Er, which

follows easily from the all-pass equations (10). Thus l ≤ min(p,m, r) and l can be easily determined from the

balanced realization of R.

Remark 4.3. In the present work, the gramians of H are not considered to be balanced. The above set of

equations is known as the set of “all-pass” equations. Partitioning conformally with (8), these can be written in
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full (for easy future reference) as:

(i)

[
P1 P3

P ′
3 P2

][
Q1 Q3

Q′
3 Q2

]
=

[
s21I 0

0 s21I

]

(ii)

[
D11 D12

D21 0

][
D′

11 D′
21

D′
12 0

]
=

[
s21I 0

0 s21I

]
=

[
D′

11 D′
21

D′
12 0

][
D11 D12

D21 0

]

(iii)

[
A′ 0

0 A′
q

][
Q1 Q3

Q′
3 Q2

]
+

[
Q1 Q3

Q′
3 Q2

][
A 0

0 Aq

]
+

[
C ′ 0

C ′
q1 C ′

q2

][
C Cq1

0 Cq2

]
= 0

(iv)

[
A 0

0 Aq

][
P1 P3

P ′
3 P2

]
+

[
P1 P3

P ′
3 P2

][
A′ 0

0 A′
q

]
+

[
B 0

Bq1 Bq2

][
B′ B′

q1

0 B′
q2

]
= 0

(v)

[
D′

11 D′
21

D′
12 0

][
C Cq1

0 Cq2

]
+

[
B′ B′

q1

0 B′
q2

][
Q1 Q3

Q′
3 Q2

]
= 0

(vi)

[
D11 D12

D21 0

][
B′ B′

q1

0 B′
q2

]
+

[
C Cq1

0 Cq2

][
P1 P3

P ′
3 P2

]
= 0

(11)

In the following, keeping H22 = Q22 ∈ H+,(m−l)×(p−l)
∞ (with ∥Q22∥ < s1 from Theorem 4.1), we construct

an s1-allpass matrix function H, corresponding to a new system R̂ ∈ H−, (p−l)×(m−l)
∞ defined from its (1, 1)

block. It is shown that H acts as a s1-suboptimal Nehari generator of R̂, i.e. that the LFT of H with the

s−1
1 -ball of H∞ generates the set {Ψ ∈ H∞ : ∥R̂+Ψ∥ ≤ s1}. Using this structure, it is possible to construct all

level-two super-optimal approximations of R, which lie inside the set of all optimal approximations, Q, of R.

By choosing all Q inside the subset, the corresponding “error” systems R +Q will now minimize the first as

well as the second singular values of R (for l = 1), i.e. this subset defines the super-optimal approximations of

R with respect to the first two levels. The method can be repeated using a recursive procedure until all degrees

of freedom have been exhausted.

The construction of H is based on the following proposition, first stated at a transfer function level. A state-

space construction of H follows, proving that it acts as an s1-suboptimal Nehari generator of the anti-stable

projection of its (1, 1) block.

Proposition 4.1. Let H22 be defined in 4.1. Recall ∥H22∥∞ < s1; then,

1. There exists a square transfer matrix H21 ∈ RH∞ such that H21H
∼
21 = s21I−H22H

∼
22 and H

−1

21 ∈ RH∞.

2. There exists a square transfer matrix H12 ∈ RH∞ such that H
∼
12H12 = s21I−H∼

22H22 and H
−1

12 ∈ RH∞.

3. The system

H =

(
H11 H12

H21 H22

)
:=

(
−H12H

∼
22H

∼
21 H12

H21 H22

)
is in RL∞ and is s1-allpass. Further, let −H12H

∼
22H

∼
21 = R̂+Q11 where R̂ ∈ RH−

∞ and Q11 ∈ RH+
∞.

Then ∥R̂
∼
∥H < s1.

Proof. For parts (1) and (2) see [ZDG96], Corollary 13.22. The proof follows from a detailed construction

involving elements from the theory of algebraic Riccati equations and spectral factorization, which is briefly

discussed in the following section. The proof that H is in L∞ and is s1-allpass follows from [Glo84] and can

be verified directly by showing that HH
∼
= s21I. Finally, to show that ∥R̂

∼
∥H < s1, note that since H12 (or

H21) is a unit of H∞ and H is s1-allpass, then ∥H11∥∞ < s1. Write H11 = R̂ + Q11 where R̂ ∈ H−
∞ and

Q11 ∈ H+
∞. Then, using Nehari’s theorem

∥R̂
∼
∥H = inf

X∈H−
∞

∥R̂
∼
+X∥∞ ≤ ∥R̂

∼
+Q

∼
11∥∞ = ∥H∼

11∥∞ < s1

which completes the proof.
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Remark 4.4. Since s1 = σ1(R
∼) the inequality of part (3.) implies that σ1(R̂

∼
) < σ1(R

∼). As shown later

in this section this can be strengthened to σ1(R̂
∼
) < σr+1(R

∼), where r is the multiplicity of the largest Hankel

singular value of R∼.

A detailed state-space construction of H and its properties are given in Theorem 4.2 below.

Theorem 4.2. Consider

H22 = Q22
s
=

[
Aq Bq2

Cq2 0

]
∈ H+,(m−l)×(p−l)

∞ , ∥Q22∥∞ < s1

defined in Theorem 4.1. Then there exist unique stabilizing solutions P 2 and Q2 to the following algebraic

Riccati equations:

AqP 2 + P 2A
′
q +Bq2B

′
q2 + s−2

1 P 2C
′
q2Cq2P 2 = 0

A′
qQ2 +Q2Aq + C ′

q2Cq2 + s−2
1 Q2Bq2B

′
q2Q2 = 0

(12)

respectively. Define:

R := Q2P 2 − s21I (13)

Then R is non-singular. Further, there exists a Qa ∈ H+,(p+m−2l)×(p+m−2l)
∞ with realization

Qa :=

(
Q11 Q12

Q21 Q22

)
s
=

 Aq Bq1 Bq2

Cq1 0 s1I

Cq2 s1I 0

 (14)

where

Cq1 = −s−1
1 B′

q2Q2, Bq1 = −s−1
1 P 2C

′
q2 (15)

so that Q = Fl(Qa, s
−1
1 BH(p−l)×(m−l)

∞ ) is the set of all s1−suboptimal Nehari extensions of a system

R̂ ∈ H−,(p−l)×(m−l)
∞ defined as:

R̂
s
=

[
Â B̂

Ĉ 0

]
(16)

in which

Â = −(Aq + s−2
1 P 2C

′
q2Cq2)

′, B̂ = −s−1
1 C ′

q2, Ĉ = s−1
1 B′

q2R (17)

The corresponding “error system”

H = R̂a +Qa =

(
R̂ 0

0 0

)
+

(
Q11 Q12

Q21 Q22

)
(18)

is s1-allpass and has a realization

H :=

(
H11 H12

H21 H22

)
=

(
R̂+Q11 Q12

Q21 Q22

)

s
=

[
AH BH

CH DH

]
s
=


Â 0 B̂ 0

0 Aq Bq1 Bq2

Ĉ Cq1 0 s1I

0 Cq2 s1I 0

 (19)

which satisfies the following set of all-pass equations:

A′
H
QH +QHAH + C ′

H
CH = 0

AHPH + PHA′
H
+BHB′

H
= 0

D′
H
CH +B′

H
QH = 0

DHB′
H
+ CHP ′

H
= 0

DHD′
H

= D′
H
DH = s21I

PHQH = QHPH = s21I

(20)
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in which QH and PH are the gramians of the realization of H given in (19).

Proof. The proof is based on [Glo84]; see also [JL93] and [GLD+91] for a more general setting. Here we outline

the sequence of logical arguments. The existence of solutions of the two Riccati equations (12) follows from

standard theory of spectral factorization and the bounded real-lemma (see Lemma 4.1 in the next section) and

relies on the fact that ∥Q22∥∞ < s1. Details and additional properties of the two solutions are included in

the following section. Since the two stabilising solutions are chosen, Â defined in equation (17) is anti-stable

and thus R̂ ∈ H−
∞. Systems Qa and R̂ correspond to the stable and anti-stable projections of H given in

Proposition 4.1 which also shows that H is s1-all pass. For a state-space based proof one needs to verify the

all-pass equations given in (20) and expanded in (21) below; this is straightforward using the realizations given

in Theorem 4.1 and the two Riccati equations (12). To show that R is non-singular, first note that P 2 and

Q2 are the controllability and observability gramians, respectively, of the realization of Qa given in equation

(14), so that σ2
1(Qa) = λmax(P 2Q2). A standard argument (e.g. see the early part of the proof of Theorem

4.4 which does not rely on any state-space arguments) shows that σ1(Qa) ≤ σr+1(R̂
∼
) < σ1(R

∼) = s1. Thus

ρ(P 2Q2) < s21 and thus R is nonsingular. Finally, the fact thatQa generates all s1-suboptimal Nehari extensions

of R̂ follows from the inertia properties of A and Â and the all-pass nature of H [Glo84]; the proof reduces

to showing that the invariant zeros of the realizations of Q12 (or Q21) given in (19) lie in the open right-half

plane, which follows readily by a simple calculation using the fact that λ(Â) ⊂ C+.

Remark 4.5. Expanding the compact form of the all-pass equations given in Theorem 4.2 we get

(i)

[
Â′ 0

0 A′
q

][
Q1 −R

′

−R Q2

]
+

[
Q1 −R

′

−R Q2

][
Â 0

0 Aq

]
+

[
Ĉ ′ 0

C
′
q1 C ′

q2

][
Ĉ Cq1

0 Cq2

]
= 0

(ii)

[
Â 0

0 Aq

][
P̂1 I

I P 2

]
+

[
P̂1 I

I P 2

][
Â′ 0

0 A′
q

]
+

[
B̂ 0

Bq1 Bq2

][
B̂′ B

′
q1

0 B′
q2

]
= 0

(iii)

[
0 s1I

s1I 0

][
Ĉ Cq1

0 Cq2

]
+

[
B̂′ B

′
q1

0 B′
q2

][
Q1 −R

′

−R Q2

]
= 0

(iv)

[
0 s1I

s1I 0

][
B̂′ B

′
q1

0 B′
q2

]
+

[
Ĉ Cq1

0 Cq2

][
P̂1 I

I P 2

]
= 0

(v)

[
Q2R

−′
I

I P 2

][
P 2R −R

′

−R Q2

]
=

[
s21I 0

0 s21I

]

(21)

where P̂1 = Q2R
−′

and Q1 = P 2R.

The following theorem constructs a diagonalising transformation of H and solves the level-two SODP.

Theorem 4.3. Let H and H be as defined in Theorems 4.1 and 4.2, respectively. Then

∥R∼∥H = s1(R) = s2(R) = . . . = sl(R) > sl+1(R) = ∥R̂
∼
∥H

Further,

S1(R) = S2(R) = . . . = Sl(R) = Fl(Qa, s
2
1 BH(p−l)×(m−l)

∞ )

and

Sl+1(R) = Fl[Qa,Fu(Qa

−1
,S1(R̂))] ⊆ S1(R)

where Qa and Qa are defined in Theorems 4.1 and 4.2.

Proof. We adapt the proof of [JL93] Theorem 3 to our setting. First note that since HH∼ = H∼H = s21I and

HH
∼
= H

∼
H = s21I, it follows that

H11H
∼
21 = −H21H

∼
22, H11 = −H12H

∼
22H

−∼
21 , (22)
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H21H
∼
21 = s21I −H22H

∼
22 = H21H

∼
21 (23)

and

H
∼
12H12 = s21I −H∼

22H22 = H∼
12H12 (24)

Define

V ⊥ := H12H
−1

12 and W⊥ := H∼
21H

−∼
21 (25)

Then (23) implies that

V ∼
⊥V ⊥ = Ip−l and W∼

⊥W⊥ = Im−l (26)

It can be readily verified from a state-space calculation (see next section) that V ⊥ ∈ H+,(p−l)×p
∞ and

W⊥ ∈ H−,(m−l)×m
∞ . Thus there exist complementary inner and co-inner factors, respectively, such that

V :=
(

v V ⊥

)
∈ H+, p×p

∞ and W :=
(

w W⊥

)
∈ H−, m×m

∞

are square-inner and square anti-inner, respectively [ZDG96], [GL95]. Thus, using (22) and the definitions (25),

we obtain

V ∼
⊥H12 = H

−∼
12 H∼

12H12 = H
−∼
12 H

∼
12H12 = H12

H21W⊥ = H21H
∼
21H

−∼
21 = H21H

∼
21H

−∼
21 = H21

(27)

and

V ∼
⊥H11W⊥ = V ∼

⊥H11H
∼
21H

−∼
21 = −V ∼

⊥H12H
∼
22H

−∼
21 = −H12H

∼
22H

−∼
21 = H11 (28)

It follows that(
V ∼ 0

0 I

)(
H11 H12

H21 H22

)(
W 0

0 I

)
=

 v∼H11w v∼H11W⊥ v∼H12

V ∼
⊥H11w H11 H12

H21w H21 H22

 (29)

Now, since V and W are all-pass and H is s1-allpass, the system on the RHS of equation (29) is s1-allpass.

But since H is also s1-allpass (Theorem 4.2), we have that v∼H11W⊥ = 0, v∼H12 = 0, V ∼
⊥H11w = 0,

H21w = 0, and v∼H11w is s1-allpass and can be written as v∼H11w = s1α, for some l × l all-pass matrix-

function α (generically l = 1 and hence α is scalar). Taking linear fractional transformations with the set

s−1
1 BH(p−l)×(m−l)

∞ and using the results of Theorem 4.2 and Theorem 4.1 shows that:

V ∼[Fl(H, s−1
1 BH(p−l)×(m−l)

∞ )]W =

(
s1α 0

0 Fl(H, s−1
1 BH(p−l)×(m−l)

∞ )

)
(30)

or equivalently,

V ∼[R+ S1(R)]W =

(
s1α 0

0 R̂+ S(R̂, s1)

)
(31)

Since α ∈ RLl×l
∞ and is all-pass (in fact anti-inner as shown in the next section), it follows that:

∥R∼∥H = s1(R) = s2(R) = . . . = sl(R) > sl+1(R) = ∥R̂
∼
∥H

and

S1(R) = S2(R) = . . . = Sl(R) = Fl(Qa, s
−1
1 BH(p−l)×(m−l)

∞ )

which is the set of all optimal Nehari extensions of R. Further, since all optimal Nehari extensions of R̂ are

also s1-suboptimal extensions of R̂, i.e. S1(R̂) ⊆ S(R̂, s1), it follows that

sl+1(R) = s1(R̂) = ∥R∼∥H
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and

R+ S2(R) =
(
v V ⊥

)(s1α 0

0 R̂+ S1(R̂)

)(
w∼

W∼
⊥

)

=
(
v V ⊥

)(s1α 0

0 R̂+Q

)(
w∼

W∼
⊥

)
+
(
v V ⊥

)(0 0

0 S1(R̂)−Q

)(
w∼

W∼
⊥

)
= R+Q11 + V ⊥(S1(R̂)−Q)W∼

⊥

(32)

by observing that

V ∼H11W =

(
s1α 0

0 H11

)
⇒ R+Q11 = V

(
s1α 0

0 R̂+Q11

)
W∼

Using the definitions of of V ⊥ and W∼
⊥ in (25) and cancelling R from both sides of equation (32), we can write:

S2(R) = Q11 +Q12Q
−1

12 (S1(R̂)−Q)Q
−1

21 Q21 =: Fl(K,S1(R̂))

where

K :=

(
Q11 −Q12Q

−1

12 Q11Q
−1

21 Q21 Q12Q
−1

12

Q
−1

21 Q21 0

)
= Fl(Qa,Qa

−1
)

This completes the proof.

The following Theorem establishes bounds on the super-optimal levels. The proof is similar to a parallel result

in [LHG89], but the assumption involving the multiplicity of the largest Hankel singular value of R∼ is removed.

Theorem 4.4 (Super-optimal level bounds). The (l+1)-th super-optimal level is bounded above by the (r+1)-th

Hankel singular value of R∼, i.e.

σ1(R̂
∼
) = sl+1(R) ≤ σr+1(R

∼) < s1(R) = s2(R) = . . . = sl(R) = σ1(R
∼)

Proof. The proof follows from the following sequence of inequalities:

σi+r(R
∼) = σi(Qa) i = 1, 2, . . . , n− r

= inf
Ψ∈H−

∞(i−1)
∥Qa +Ψ∥∞

= inf
Ψ∈H−

∞(i−1)
∥R+Qa +Ψ∥∞

≥ inf
Ψ∈H−

∞(i−1)

∥∥∥∥∥
(
V ∼

⊥ 0

0 I

)
(R+Qa +Ψ)

(
W⊥ 0

0 I

)∥∥∥∥∥
∞

≥ inf
Ψ̂∈H−

∞(i−1)

∥R̂a +Qa + Ψ̂∥∞

≥ inf
Ψ̂∈H−

∞(i−1)

∥Qa + Ψ̂∥∞

= σi(Qa)

The first equality follows from Theorem 4.1. The second equality is a statement of the AAK Theorem [Glo89],

while the third equality holds since R ∈ H−
∞ and can be absorbed in Ψ. The first inequality follows from the

fact that V ⊥ and W⊥ are contractive, while the second inequality follows from Theorem 4.3 and the fact that

V ∼
⊥ and W⊥ are both in RH−

∞. Finally, the third inequality follows from the fact that R̂ ∈ RH−
∞, while the

last equality is a restatement of the AAK Theorem.

Setting i = 1 in the above inequality shows that σr+1(R
∼) ≥ σ1(Qa). Now, using (21), it follows that

σ2
i (R̂

∼
) = λi(P̂1Q1) = λi(Q2R

−′
P 2R) = λi(Q2P 2) = σ2

i (Qa)

and so R̂
∼

and Qa have identical Hankel singular values. In particular, sl+1(R) = σ1(R̂
∼
) ≤ σr+1(R

∼) using

the result of Theorem 4.3.
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Remark 4.6. The result of Theorem 4.4 may be propagated to establish upper bounds for the subsequent super-

optimal levels si(R), i > l + 1.

Remark 4.7. The early part of the proof (which does not rely on any state-space based arguments) may be used

to show that σ1(Qa) ≤ σr+1(R
∼) < σ1(R

∼) = s1, from which it follows immediately that R defined in Theorem

4.2 is non-singular.

4.1 State-space analysis

In this section we develop a state-space analysis of the solution to the super-optimal distance problem. This

can be used to define an algorithm for constructing the super-optimal approximation based on standard linear-

algebraic routines and analysing its complexity. We start by summarizing the results of the section and explain

briefly how they are related to the solution of the super-optimal distance problem outlined in the previous section:

First, some background material is briefly presented related to algebraic Riccati equations, Hamiltonean matrices

and the solution of the spectral factorization problem. This, together with the “Bounded Real Lemma” (Lemma

4.1) is used to establish the existence (and various properties) of the solutions of two Lyapunov equations (P2

and Q2) and two Algebraic Riccati Equations (P̄2 and Q̄2) needed in the construction of the optimal and

suboptimal generators in Theorem 4.1 and 4.2 (Propositions 4.2 and 4.3). In particular, Proposition 4.3 proves

that the two inner matrices V⊥ and W∼
⊥ used to diagonalize the set of all optimal approximations have identical

poles which leads to significant simplifications in the subsequent state-space construction. Proposition 4.4 and

Corollary 4.1 give concrete realisations of these two transformations and their inner complements (see Theorem

4.3). Propositions 4.5 and 4.6 establish some technical results used in the construction of the super-optimal

approximation in Theorem 4.3 (Proposition 4.7). Parts of the state-space construction in this section are long

and tedious and for this reason certain details in the proofs have been omitted.

Let A, Q and R be real n-by-n matrices with Q and R symmetric. The Algebraic Riccati equation (ARE) is the

matrix equation:

A′X +XA+XRX +Q = 0

Associated with this equation, the Hamiltonian matrix is defined as:

H :=

[
A R

−Q −A′

]
∈ R2n×2n

Introduce the matrix:

J :=

[
0 −In

In 0

]
Then J ′ = J−1 or J2 = −In. It follows easily that J−1HJ = −JHJ = −H ′ and hence the spectrum of H is

symmetric with respect to the imaginary axis. A solution of the ARE is called stabilizing if the matrix A+RX

is stable (i.e. λ(A + RX) ⊂ C−) and in this case we write H ∈ dom(Ric). Note that if a stabilising solution

exists then it is unique and in this case H has no eigenvalues on the imaginary axis. For necessary and sufficient

conditions for the existence of a stabilizing solution see [ZDG96], [Kim97] and [Fra87].

We start our state-space analysis by quoting the following well-known result (“Bounded-real lemma”):

Lemma 4.1. Let G ∈ RH∞ with G = C(sI − A)−1B and assume that (A,B) and (C,A) are stabilisable and

detectable, respectively. Then, the following conditions are equivalent:

1. ∥G∥∞ < γ

2. The Hamiltonian H =

[
A γ−2BB′

−C ′C A′

]
has no pure imaginary eigenvalues

3. H ∈ dom(Ric)
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Proof. 1 ⇔ 2. See [ZDG96], Lemma 4.7. 2 ⇔ 3. See [ZDG96], Theorem 13.6.

As an immediate consequence of the above Lemma we get the following result:

Proposition 4.2. The algebraic Riccati equations (12) (Theorem 4.2) have (unique) positive-semidefinite

stabilising solutions P 2 and Q2 respectively.

Proof. Since Aq is asymptotically stable, the conditions of stabilizability and detectability of Lemma 4.1 are

trivially satisfied. Further, the fact that ∥Q22∥∞ < s1 (see Theorem 4.1) shows that the two Hamiltonians

associated with equations (12) are free of imaginary axis eigenvalues and that (unique) stabilizing solutions P 2

and Q2 to these two equations exist. The fact that P 2 ≥ 0 and Q2 ≥ 0 follows from [ZDG96].

Our next result shows that the two Riccati equations (12) are intimately related.

Proposition 4.3. Let P 2 be the stabilizing solution of Ric1:

AqP 2 + P 2A
′
q + s−2

1 P 2C
′
q2Cq2P 2 +Bq2B

′
q2 = 0

so that λ(Aq + s−2
1 P 2C

′
q2Cq2) ⊂ C− and its associated Hamiltonian

H1 =

[
A′

q s−2
1 C ′

q2Cq2

−Bq2B
′
q2 −Aq

]
(33)

Let also Q2 be the stabilizing solution of Ric2:

A′
qQ2 +Q2Aq + s−2

1 Q2Bq2B
′
q2Q2 + C ′

q2Cq2 = 0

so that λ(Aq + s−2
1 Bq2B

′
q2Q2) ⊂ C− and its associated Hamiltonian

H2 =

[
Aq s−2

1 Bq2B
′
q2

−C ′
q2Cq2 −A′

q

]
(34)

Then H1 and H2 have identical spectra. In particular there exist a similarity transformation R
′
so that

(Aq + s−2
1 P 2C

′
q2Cq2) = R

′
(Aq + s−2

1 Bq2B
′
q2Q2)(R

′
)−1 (35)

where R is defined (13).

Proof. Take

T =

[
0 s−1

1 I

s1I 0

]
=

[
0 I

I 0

][
s1I 0

0 s−1
1 I

]
Note that T = T−1. Then by inspection the first claim is true. Define

TP :=

[
I 0

−P 2 I

]
⇒ T−1

P =

[
I 0

P 2 I

]

and observe that[
I 0

−P 2 I

][
A′

q s−2
1 C ′

q2Cq2

−Bq2B
′
q2 −Aq

][
I 0

P 2 I

]
=

[
A′

q + s−2
1 C ′

q2Cq2P 2 s−2
1 C ′

q2Cq2

0 −(Aq + s−2
1 P 2C

′
q2Cq2)

]
=: Ĥ1

Similarly, define

TQ :=

[
I 0

−Q2 I

]
⇒ T−1

Q =

[
I 0

Q2 I

]
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so that[
I 0

−Q2 I

][
Aq s−2

1 Bq2B
′
q2

−C ′
q2Cq2 −A′

q

][
I 0

Q2 I

]
=

[
Aq + s−2

1 Bq2B
′
q2Q2 s−2

1 Bq2B
′
q2

0 −(A′
q + s−2

1 Q2Bq2B
′
q2)

]
=: Ĥ2

Summarizing,

H1 = −TH2T
−1, Ĥ1 = TPH1T

−1
P and Ĥ2 = TQH2T

−1
Q

Using these three equations:

Ĥ1(TPTT
−1
Q ) = −(TPTT

−1
Q )Ĥ2 (36)

with:

TPTT
−1
Q =

[
I 0

−P 2 I

][
0 s−1

1 I

s1I 0

][
I 0

Q2 I

]
= s−1

1

[
Q2 I

−R
′ −P 2

]
and

TQT
−1T−1

P =

[
I 0

−Q2 I

][
0 s−1

1 I

s1I 0

][
I 0

P 2 I

]
= s−1

1

[
P 2 I

−R −Q2

]
Writing equation (36) in full:[

A′
q + s−2

1 C ′
q2Cq2P 2 s−2

1 C ′
q2Cq2

0 −(Aq + s−2
1 P 2C

′
q2Cq2)

][
Q2 I

−R
′ −P 2

]

=

[
−Q2 −I

R
′

P 2

][
Aq + s−2

1 Bq2B
′
q2Q2 s−2

1 Bq2B
′
q2

0 −(Aq + s−2
1 Q2Bq2B

′
q2)

]

From the (2, 1) partition of the above equation, we have (Aq + s−2
1 P 2C

′
q2Cq2)R

′
= R

′
(Aq + s−2

1 Bq2B
′
q2Q2). So,

(Aq + s−2
1 P 2C

′
q2Cq2) = R

′
(Aq + s−2

1 Bq2B
′
q2Q2)(R

′
)−1

which proves the second claim.

Remark 4.8. Note that this proposition implies that the “A” matrices of the state space realizations of V ⊥

and W⊥ have the same spectrum.

Proposition 4.4. Define

V ⊥ := H12H
−1

12 and W⊥ := H∼
21H

−∼
21

Then, V ⊥ and W∼
⊥ have, the following realizations:

V ⊥
s
=

[
Aq − s−1

1 Bq2Cq1 s−1
1 Bq2

Cq1 − s−1
1 D12Cq1 s−1

1 D12

]

and

W∼
⊥

s
=

[
Aq − s−1

1 Bq1Cq2 Bq1 − s−1
1 Bq1D21

s−1
1 Cq2 s−1

1 D21

]
with corresponding controllability and observability gramians:

Yv = −(R
′
)−1P 2, Xv = Q2 −Q2

Yw = P2 − P 2, Xw = −P̂1.

In particular, the following matrix inequalities hold: P2 ≥ P 2 and Q2 ≥ Q2.

Proof. This follows through a long and tedious sequence of straightforward state-space manipulations which are

omitted.
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V ⊥ and W∼
⊥ constructed in proposition 4.4 are parts of inner matrix functions. Theorem 4.3 relies on the

construction of two inner complements v and w∼ so that
(
v V ⊥

)
and

(
w∼

W∼
⊥

)
are square inner. To find

realizations for v and w, we can apply Lemma 13.31 from [ZDG96] which uses the gramians of the realizations

of V ⊥ and W∼
⊥. This is outlined next, together with concrete realizations of v and w∼.

Corollary 4.1. Let V ⊥,W
∼
⊥ be as defined in proposition 4.4. Then there exists a complementary inner factor

of v and a complementary co-inner factor of w, respectively, such that

V :=
(
v V ⊥

)
, W :=

(
w∼

W∼
⊥

)

are square inner. Further, V ∈ RH−, p×p
∞ and W ∈ RH+, m×m

∞ . Concrete realizations of v∼ and w are given

as:

v∼ s
=

[
−A′

q − s−2
1 Q2Bq2B

′
q2 C ′

q1 + s−2
1 Q2Bq2D

′
12

(D⊥
12)

′Cq1(Q2 −Q2)
† (D⊥

12)
′

]
and

w
s
=

[
−A′

q − s−2
1 C ′

q2Cq2P 2 (P 2 − P2)
†Bq1D

⊥
21

−B′
q1 − s−2

1 D′
21Cq2P 2 D⊥

21

]
respectively.

Proof. This follows immediately from Lemma 13.31 in [ZDG96].

Remark 4.9. The pair (v, w) as constructed in corollary 4.1 forms a scaled Schmidt pair corresponding to the

largest Hankel singular value of R∼.

In the final part of this section we develop a state space realisation of the allpass system α defined in the proof

of Theorem 4.3 and show that it is anti-inner. The proof is based on a lengthy state space calculation and

numerous pole-zero cancellations. We first need the following two results.

Proposition 4.5. Let Q, P be the observability and the controllability gramians, respectively, of a system having

state space realization G
s
=(A,B,C). Then, (i) N (Q) ⊆ N (C) and (ii) N (P ) ⊆ N (B′).

Proof. (i) Let ξ
o
∈ Ker(Q), ξ

o
̸= 0. Then, Qξo = 0. Consider the Lyapunov equation:

A′Q+QA+ C ′C = 0 ⇒ ξ′o(A
′Q+QA+ C ′C)ξo = 0 ⇒ Cξo = 0

and hence N (Q) ⊆ N (C). A similar argument proves part (ii).

Proposition 4.6. In previously defined notation:

(i)
[
I − (Q2 −Q2)

†(Q2 −Q2)
]
C ′

q1D
⊥
12 = 0, and

(ii)
[
I − (P 2 − P2)

†(P 2 − P2)
]
Bq1D

⊥
21 = 0.

Proof. (i) First note that from Proposition 4.4 (Q2−Q2) is the observability gramian of (Aq+s−2
1 Bq2Bq2Q2, Cq1+

s−2
1 D12B

′
q2Q2). It follows, using Proposition 4.5 that N [Q2 − Q2] ⊆ N [Cq1 + s−2

1 D12B
′
q2Q2], or equiva-

lently, R[C ′
q1 + s−2

1 Q2Bq2D
′
12] ⊆ R[Q2 −Q2]. Thus,

R[(C ′
q1 + s−2

1 Q2Bq2D
′
12)D

⊥
12] = R[C ′

q1D
⊥
12] ⊆ R[C ′

q1 + s−2
1 Q2Bq2D

′
12]

and hence R[C ′
q1D

⊥
12] ⊆ R[Q2−Q2]. The result now follows on noting that

[
I − (Q2 −Q2)

†(Q2 −Q2)
]
projects

orthogonally onto N [Q2 −Q2]. Part (ii) follows dually on noting that P2 − P 2 is the controllability gramian of

the realization of W∼
⊥ given in Proposition 4.4.
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Proposition 4.7. The s1-allpass system s1α ∈ RLl×l
∞ defined in the proof of Theorem 4.3 can be written as a

parallel system interconnection s1α = α1 +α2,

s1α
s
=

 A 0 Bα1

0 −A′
q − s−2

1 C ′
q2Cq2P 2 Bα2

Cα1 Cα2 (D⊥
12)

′D11D
⊥
21


in which

Bα1 := BD⊥
21 + P3(P 2 − P2)

†Bq1D
⊥
21

Bα2 := (P 2 − P2)
†Bq1D

⊥
21

Cα1 := −(D⊥
12)

′Cq1(Q2 −Q2)
†Q′

3 + (D⊥
12)

′C

Cα2 := −(D⊥
12)

′Cq1(Q2 −Q2)
†R

In particular, α ∈ H−, l×l
∞ and deg(α) ≤ 2n− r.

Proof. The proof follows a sequence of detailed state-space calculations and is omitted.

5 Numerical Example

Consider R ∈ RH−,2×2
∞ with state-space realization:

R
s
=

 A11 A12 B1

A21 A22 B2

C1 C2 0

 :=


1 1 3

√
10

5(1+ϱ)

√
10
5

2
√
10
5

3 4 6
√
10

5(1+ϱ)
2
√
10
5

4
√
10
5

3
√
10

5(1+ϱ)
6
√
10

5(1+ϱ)
1
ϱ 1 1

√
10
5

2
√
10
5 1 0 0

2
√
10
5

4
√
10
5 1 0 0


in which 0 < ϱ < 1. It can be easily verified that this realization is minimal and balanced with gramians

Σ = diag(1, 1, ϱ). Here, the multiplicity on the largest Hankel singular value is r = 2 and l = rank(B1) =

rank(C1) = 1 < r. This is a pathological case, as discussed in Remark 4.2. The generator of all optimal Nehari

extensions of R is computed as [Glo89]:

Qa =

(
Q11 Q12

Q21 Q22

)
s
=

 Aq Bq1 Bq2

Cq1 D11 D12

Cq2 D21 0


where,

Aq =
ϱ2 − (9/5)ϱ+ 1

ϱ(ϱ2 − 1)
, Bq1 =

1

5(1− ϱ2)

[
5ϱ− 3 5ϱ− 6

]
, Bq2 =

1√
5(1− ϱ2)

and

Cq1 =

[
5ϱ−3

5
5ϱ−6

5

]
, Cq2 =

1√
5
, D =

[
D11 D12

D21 0

]
=


0.2 0.4 − 2√

5

0.4 0.8 1√
5

− 2√
5

1√
5

0


The generator of all optimal approximations, Qa, (see Theorem 4.1) is:

Qa ==
1

s+ 5ϱ2−9ϱ+5
5ϱ(1−ϱ2)


0.2s− 25ϱ3−25ϱ2+5

25ϱ(ϱ2−1) 0.4s− 25ϱ3−35ϱ2+10
25ϱ(ϱ2−1) − 2√

5
s− 5ϱ2−15ϱ+10

5
√
5ϱ(ϱ2−1)

0.4s− 25ϱ3−35ϱ2+10
25ϱ(ϱ2−1) 0.8s− 25ϱ3−40ϱ2+20

25ϱ(ϱ2−1)
1√
5
s− 10ϱ2−15ϱ+5

5
√
5ϱ(ϱ2−1)

− 2√
5
s− 5ϱ2−15ϱ+10

5
√
5ϱ(ϱ2−1)

1√
5
s− 10ϱ2−15ϱ+5

5
√
5ϱ(ϱ2−1)

ϱ
5ϱ(1−ϱ2)


and hence:

Q22 = Cq2(sI −Aq)
−1Bq2 =

ϱ
5ϱ(1−ϱ2)

s+ ϱ2−(9/5)ϱ+1
ϱ(1−ϱ2)
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Using the “all-pass” equations given in (11), we obtain the gramians as:

P =

[
P1 P3

P ′
3 P2

]
=


−1 0 0 0

0 −1 0 0

0 0 −ϱ 1

0 0 1 ϱ
1−ϱ2


and

Q =

[
Q1 Q3

Q′
3 Q2

]
=


−1 0 0 0

0 −1 0 0

0 0 −ϱ 1− ϱ2

0 0 1− ϱ2 ϱ(1− ϱ2)


respectively. The solution of the ARE’s in (12) reduces to the solution of the two quadratics:

P̄ 2
2 +

2(5ϱ2 − 9ϱ+ 5)

ϱ(ϱ2 − 1)
P̄2 +

1

(ϱ2 − 1)2
= 0

and

Q̄2
2 +

2(5ϱ2 − 9ϱ+ 5)(ϱ2 − 1)

ϱ
Q̄2 + (ϱ2 − 1)2 = 0.

and hence:

P̄2 =
1

ϱ(1− ϱ2)

{
5ϱ2 − 9ϱ+ 5±

√
(5ϱ2 − 9ϱ+ 5)2 − ϱ2

}
and

Q̄2 =
1− ϱ2

ϱ

{
5ϱ2 − 9ϱ+ 5±

√
(5ϱ2 − 9ϱ+ 5)2 − ϱ2

}
respectively. Using Proposition 4.1 and equation (14) (Theorem 4.2) we obtain:

Qa =

(
Q11 Q12

Q21 Q22

)
=

1

s+ 5ϱ2−9ϱ+5
5ϱ(1−ϱ2)


(
5ϱ2−9ϱ+5−

√
(5ϱ2−9ϱ+5)2−ϱ2

)2

5ϱ2(1−ϱ2) s+

√
(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

s+

√
(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)
ϱ

5ϱ(1−ϱ2)


The realisation of R̂ (equation (17), Theorem 4.2) is:

R̂ =

ϱ2−
(
5ϱ2−9ϱ+5−

√
(5ϱ2−9ϱ+5)2−ϱ2

)2

5ϱ2(1−ϱ2)

s−
√

(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

The second super-optimal level of R is the Hankel norm of R̂, i.e.

s2(R) = s1(R̂) =

ϱ2−
(
5ϱ2−9ϱ+5−

√
(5ϱ2−9ϱ+5)2−ϱ2

)2

5ϱ2(1−ϱ2)

2 ·
√

(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

Note also that the (unique) Nehari extension of R̂ is constant and hence

R̂+ s2(R) = s2 ·
s+

√
(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

s−
√

(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

=: s2β

Next, construct:

V ⊥ =


− 2√

5
s− 5ϱ2−15ϱ+10

5
√

5ϱ(ϱ2−1)

s+

√
(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

1√
5
s− 10ϱ2−15ϱ+5

5
√

5ϱ(ϱ2−1)

s+

√
(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

 = (W∼
⊥)

′
and v∼ = w =

(
− 1√

5
s+ 10ϱ2−15ϱ+5

5
√

5ϱ(ϱ2−1)

s−
√

(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

− 2√
5
s− 5ϱ2−15ϱ+10

5
√

5ϱ(ϱ2−1)

s−
√

(5ϱ2−9ϱ+5)2−ϱ2

5ϱ(1−ϱ2)

)
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Using equation (32) and specializing to the case ϱ = 0.7, we obtain the super-optimal Nehari extension of R as:

Qsopt = Q11 − V ⊥(Q11 − s2(R))W∼
⊥ =

1

s+ 0.5112

(
0.47153(s+ 0.5165) 0.26424(s+ 0.6258)

0.26424(s+ 0.6258) 0.86788(s+ 0.933)

)

Note finally that V ∼(R + Qsopt)W = diag(s1α, s2β) with α and β all-pass so that s∞1 (R + Qsopt) = 1 and

s∞2 (R+Qsopt) = 0.3394
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Figure 1: Plot of singular values of R+ Qsopt.

6 Conclusion

By means of conclusions we summarize the main contributions of this work:

• We have presented an explicit solution to the 1-block (Nehari) SODP which is easily implementable using

state-space techniques. All assumptions made in previous work (minimal realization of the system which

is approximated, non-repeated largest singular value of the associated Hankel operator, invertibility of

certain gramians arising at intermediate steps of the algorithm) have been removed.

• The solution methodology is based on all-pass dilation techniques [JL93] and provides considerable

conceptual and numerical simplifications compared to existing methods. In particular, the diagonalisation

of the optimal solution set, normally carried out via the Schmidt pair of the Hankel operator associated

with the problem now relies exclusively on the the generators of all optimal and suboptimal solutions,

constructed directly from the data of the problem. As a result, all preliminary steps requiring a sequence

of Schmidt vector scalings are completely avoided and related technical issues do not arise.

• By exploiting the simple structure of the problem and the intimate relation between the stabilising

solutions of two algebraic Riccati equations, a detailed state-space analysis of the algorithm is developed

and bounds on the complexity of the super-optimal solution are obtained. This approach can also be used

to illuminate various pathological and non-generic problems, and also the structure and complexity of the

super-optimal solution

• We have briefly discussed applications of super-optimization in the areas of robust control. Additional

applications will be reported in planned future publications.

20



References

[CSC97] P. Gahinet C. Scherer and M. Chilali, Multiobjective output feedback control via lmi optimization,

IEEE TRANSACTIONS ON AUTOMATIC CONTRO 42 (1997), no. 7, 896–811.

[DH98] R. Davies and G. D. Halikias,H∞/H2 hierarchical control: the 2-block problem, International Journal

of Control 70(6) (1998), 965–1017.

[Foo04] Y.K. Foo, Strengthened H∞ control via state feedback: A majorization approach using algebraic

riccati inequalities, IEEE Transactions on Automatic Control 49 (2004), no. 5, 824–827.

[Fra87] Bruce A. Francis, A Course in H∞ Control Theory, Lecture Notes in Control and Information

Sciences, vol. 88, Springer-Verlag, New York, 1987.

[GHJ00] S. K. Gungah, G. D. Halikias, and I. M. Jaimoukha, Maximally robust controllers for multivariable

systems, SIAM journal of Control and Optimization 38 (2000), no. 6, 1805–1829.

[GL95] M. Green and D. J. N. Limebeer, Linear Robust Control, Information and System Sciences Series,

Prentice-Hall, Englewood, 1995.

[GLD+91] K. Glover, D. J. N. Limebeer, J. C. Doyle, E. M. Kasenally, and M. G. Safonov, A characterization

of all solutions to the four block general distance problem, SIAM journal of Control and Optimization

29 (1991), no. 2, 283–324.

[Glo84] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L∞

error bounds, International Journal of Control 39 (1984), 1115–1193.

[Glo89] , A tutorial on Hankel norm-approximation, ch. From Data to Model, pp. 26–48, Springer-

Verlag, New York, 1989.

[Gom95] A. Gombani, On the Schmidt pairs of multivariable Hankel operators and robust control, Linear

Algebra and its Applications 223/224 (1995), 243–265.

[GTP89] Da-Wei Gu, Mi-Ching Tsai, and I. Postlethwaite, An algorithm for super-optimal H∞ design: The

two-block case, Automatica 25 (1989), no. 2, 215–221.

[GTP90] , A frame approach to the H∞ superoptimal solution, IEEE Transactions on Automatic

Control 35 (1990), no. 7, 829–835.

[Hal93] G. D. Halikias, An affine parametrisation of all one-block H-infinity optimal matrix interpolating

functions, International Journal of Control 57 (1993), 1421–1441.

[HJ98a] G. D. Halikias and I. M. Jaimoukha, Hierarchical optimisation in H∞, IEEE Transactions on

Automatic Control 43(8) (1998), 1123–1128.

[HJ98b] G. D. Halikias and I.M. Jaimoukha, The two-block superoptimal AAK problem, Mathematics of

Control, Signals and Systems 11 (1998), 244–264.

[HJW97] G. D. Halikias, I. M. Jaimoukha, and D. A. Wilson, A numerical solution to the matrix H∞/H2

optimal control problem, International Journal of Robust and Nonlinear Control 7 (1997), 711–726.

[HLG93] G. D. Halikias, D. J. N. Limebeer, and K. Glover, A state-space algorithm for the super-optimal

Hankel-norm approximation problem, SIAM journal of Control and Optimization 31 (1993), no. 4,

960–982.

[IS94] T. Iwasaki and R. E. Skelton, All controllers for the general control problem: Lmi existence conditions

and state space formula, Automatica 30 (1994), 1307–1317.

21



[JHMG06] I. M. Jaimoukha, G. D. Halikias, U. Malik, and S. K. Gungah, On the gap between the complex

structured singular value and its convex upper bound, SIAM journal of Control and Optimization 45

(2006), no. 4, 1251–1278.

[JL93] I. M. Jaimoukha and D. J. N. Limebeer, A state-space algorithm for the solution of the two-block

superoptimal problem, SIAM journal of Control and Optimization 31 (1993), no. 5, 1115–1134.

[KHJ07] J. Kiskiras, G.D. Halikias, and I.M. Jaimoukha, Robust stabilization of multivariable systems under

coprime factor perturbations: Directionality and super-optimization, European Control Conference

(July 2007).

[Kim97] Hidenori Kimura, Chain-scattering approach to H∞-control, Systems & Control: Foundations &

Applications, Birkhäuser, Boston, 1997.
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