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Abstract—The precision used in an algorithm affects the error
and performance of individual computations, the memory usage
and the potential parallelism for a fixed hardware budget.
This paper describes a new method to determine the minimum
precision required to meet a given error specification for an algo-
rithm that consists of the basic algebraic operations. Using this
approach, it is possible to significantly reduce the computational
word-length in comparison to existing methods, and this can
lead to superior hardware designs. We demonstrate the proposed
procedure on an iteration of the conjugate gradient algorithm,
achieving proofs of bounds that can translate to global word-
length savings ranging from a few bits to proving the existence
of ranges that must otherwise be assumed to be unbounded when
using competing approaches. We also achieve comparable bounds
to recent literature in a small fraction of the execution time, with
greater scalability.

Index Terms—Numerical Analysis, Performance Analysis and
Design Aids, Algorithms implemented in hardware, Optimization.

I. I NTRODUCTION

NUMBER systems are usually restricted to some finite
precision, and as a result, rounding will often occur so

as to represent values using the chosen number system. Whilst
the error introduced by the rounding of any single value may
be small, over the course of an algorithm the accumulation of
these errors can cause a significant deviation from the nominal
result, and this could impact issues such as the convergence
of a computation.

Given that these rounding errors are dependent on the
precision used in the number system, users will often use a
higher precision than necessary to avoid problems resulting
from the accumulation of round-off error. However, it is
important to have a method to quantify the precision necessary,
given that an increase in precision will imply a decrease in
the performance of the hardware, an increase in the data
movement and an increase in memory use. As an example,
recent figures for the difference in performance, in terms of
peak theoretical FLOPs, between single and double precision
is approximately a factor of 1 to 2 for a CPU [1], 9 for
a graphics processing unit (GPU) [2] and 14 for the IBM
Cell multiprocessor [3]. As well as this performance hit, the
memory use doubles when moving from single to double
precision, and any data transfer will take twice as long.

For hardware platforms such as FPGAs or ASICs, the choice
of precision will affect far more factors: the silicon area,clock
speed, latency, memory use and data transfer. These factors,
especially silicon area which has implications on the potential
for parallelism, can have a great impact on performance. As it
is possible to use a number system with any precision on these

platforms, the effect of fine-tuning an algorithm taking into
account precision has been examined in several areas ranging
from DSP [4], [5] to control theory [6], with the latter paper
reporting performance gains of up to a factor of 36.

Unfortunately, such fine-tuning is often difficult because
simulation-based methods cannot guarantee the given error
estimate and there are no known methods that can tractably
calculate tight bounds for the error or range of any variable
within an algorithm, given that they are affected by both input
ranges and finite precision effects. Consequently, analytical
tools to estimate this error tradeoff quality of bounds for
execution time, and the existing methods currently lie at the
extreme of this spectrum.

This paper describes a new method which we show to be
capable of calculating bounds on the range or relative error
for a variable in an algorithm consisting of the basic algebraic
operations(⊙ ∈ {+,−, ∗, /}) that are, in general, tighter in
comparison to traditional methods at the cost of execution
time and scalability for large algorithms, and bounds that are
comparable to more recent literature in an execution time
that is orders of magnitude smaller. The motivation for the
focus on floating-point hardware is partially due to the relative
lack of existing work discussing word-length optimisation
for floating-point designs in comparison to fixed-point, and
partially due to the recent trends showing that floating-point
designs are becoming highly efficient in hardware [7], and the
growing collection of publications of floating-point custom
hardware implementations [8], [9]. We note, however, that
the background theory and heuristic described in this work
could easily adapted to word-length optimisation for fixed-
point designs by using a different model of error.

We also note that this tool could be of value in proving
whether it is safe to move to single precision for use on alter-
native hardware accelerators, such as GPUs, but the relative
lack of control over the precision in these devices, except
at a coarse level, leads us to present results here for FPGA
architecture. This paper elaborates on previous work by the
authors published in [10] with a more detailed description of
the search heuristic, several new tests to illustrate the various
contributions of this work, as well as new comparisons against
existing literature, and a broader discussion of its potential for
word-length optimisation and limitations. A summary of the
main contributions of this work are as follows:

• the description a new method, based upon a result from
real algebra, to find provable bounds for any variables
within a sizeable computational kernel given input data
ranges and a precision specification,

• results demonstrating that applying our approach to an
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example (the conjugate gradient algorithm) generally
leads to tighter bounds which translate to global word-
length reductions in comparison to traditional analytical
approaches,

• results that demonstrate our approach can calculate
bounds which are comparable to a sophisticated existing
solver for range analysis [11]–[13], in a small fraction of
the compute time,

• a discussion of the limitations of our approach and its
scalability relative to existing approaches.

This paper is organised as follows. It first discusses in detail
the current literature regarding the methods that are used to
calculate error bounds for use in word-length optimisation
in Section II. The new approach, along with a description
of the source of floating-point error and a general method
to represent this error using polynomials, as well as some
relevant background theory, is then put forward in Section III.
Section IV discusses the methods to test the results, which
are then shown in the following section, Section V. Finally,
Section VI discusses the conclusions of this work and its
limitations that must be addressed in the future.

II. BACKGROUND

Due to the potential benefits on silicon area, clock speed and
power that can be obtained by optimising the precision used
throughout a circuit, there exists a large amount of literature
focused upon word-length optimisation, summaries of which
can be found in [14], [15], as well as optimisation strategies to
create mixed fixed and floating point precision designs [13],
and a class of work in practical tools for precision analysis
[16]. One fundamental aspect of these solvers is that they
require a method which can both validate that overflow will
not occur for a chosen word-length and calculate the cost
of the chosen word-length in terms of the error observed in
the final computational result. It is interesting that despite the
wealth of optimisation strategies, only a handful of methods
to perform this function. For comparative purposes, these
methods: simulation, interval arithmetic, affine arithmetic, and
more recently, satisfiability modulo theories, will be elaborated
in this section. Our approach is not based on any of these
schemes, but rather on results from real algebra which will be
introduced in Section III.

The most straightforward way to estimate an error is through
simulation. The aim of any simulation-based approach is to
find the inputs which will cause the extreme ranges of the
data set. Unfortunately, the size of the search space for the
inputs will generally be too large to explore exhaustively,and
hence the simulation will either require random sampling of
the input data space [17], statistical profiling [18] or be based
upon a representative training data set [5], [6]. However, whilst
the quality of the estimate can be improved by increasing the
size of the training set or the search time, in either case, the
estimate does not form a bound because corner cases can be
missed. We also note that while it is possible to use methods
to avoid precision errorsa posterioriat run-time, at a cost of
execution time [19], our goal is to calculate boundsa priori
so as to design hardware with the minimum precision.

To calculate true bounds for general algorithms, traditionally
there have only been two main analytical approaches: interval
arithmetic (IA) [20] or affine arithmetic (AA) [21]. Interval
arithmetic represents every value as lying within some interval
[x1, x2], wherex1 and x2 are the lower and upper bounds
respectively. The intervals are then propagated through the
computation according to basic rules, given in (1), which
calculate at each stage the new worst case bound. In order to
create safe bounds, the intervals will also have to be outwardly
rounded to the nearest number representable in the chosen
number system at each stage.

[x1;x2] + [y1; y2] = [x1+y1;x2 + y2]

[x1;x2]− [y1; y2] = [x1 − y2;x2 − y1] (1)

[x1;x2]× [y1; y2] = [min (x1y1, x2y1, x1y2, x2y2) ;

max (x1y1, x2y1, x1y2, x2y2)]
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=
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However, interval arithmetic suffers from the so-called
dependency problem, where if the same variable is used
twice, information is lost. A trivial example is the following:
for a variablex which lies in the interval[x1, x2], perform
the operationx − x. The interval should be[0, 0], but the
result using interval arithmetic would be[x1 − x2, x2 − x1].
Several simple examples can demonstrate how this problem
may cause bounds that are significantly wider than the tightest
bounds [22]. As a result of these problems, there is an
active community of researchers inrobust computingwho
have developed ways to mitigate this problem. One approach
is to attempt to modify algorithms to make them ‘interval
arithmetic friendly’ at the cost of computational complexity
or average case numerical robustness [23]. However, whilst
such approaches are useful to obtain reliable proofs using IA,
the modifications to the algorithm do not necessarily improve
the true numerical stability, instead the modifications simply
reduce the sensitivity to which IA bounds this error. Ideally, it
is preferable to find proofs of tighter bounds for the unmodified
algorithm, unless it can be proven that the numerical properties
of the modified algorithm have been improved.

For this reason, some methods that reduce dependencies
whilst avoiding modifying the algorithm should be mentioned.
The first of these uses Taylor models with interval remainder
bounds [24]. This method represents any function over a set
of bounded variables by a Taylor model of orderρ, Tρ, and
an interval remainder term that bounds the remaining higher
order terms in the Taylor series,Iρ. Operations on functions in
this form(Tρ+Iρ) are initially performed symbolically, before
using interval arithmetic to evaluate any of the resultant terms
involving the interval remainders and using an appropriate
method to bound the new terms that are of degree greater
thanρ, such as the Lagrange remainder [25]. After repeating
this process throughout an algorithm, the bounds for the final
function could be found by applying interval arithmetic to the
symbolic variables of this function and adding the interval
remainder bound. This method also has the advantage of being
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able to handle complex functions such as division, sine, cosine
and logarithms by using Taylor formulas, but unfortunately, the
complexity of computing the Taylor series approximation for
these functions grows exponentially inρ. Furthermore, whilst
propagating the variables symbolically may reduce the effect
of the dependency problem as it allows cancellations, the final
polynomial is likely to still involve many dependencies and
must still be bounded using interval arithmetic, and any terms
involving the interval remainder bounds will still suffer from
the dependency problem in the same way as interval arithmetic
in its traditional form. To illustrate this point, one can consider
that interval arithmetic in its traditional form is equivalent to
Taylor models whereρ = 0. The second tool based upon
reducing the number dependencies works by converting the
interval constraints throughout an algorithm into logicalpropo-
sitions and attempting to remove dependencies by performing
standard logical manipulations internally before finally finding
the tightest bounds for which these propositions still hold
according to the rules of interval arithmetic [26]. However, it is
important to note that whilst both these approaches may reduce
the number of dependencies, they do not necessarily remove
all dependencies. This means that since both approaches then
require interval arithmetic to find the final bounds, they are
both still subject to the limitations of interval arithmetic, and
hence they will often fail to find the tightest bounds.

Affine arithmetic is a method which mitigates the depen-
dency problem. It works by representing every variable in an
affine form given by (2) consisting of a known central value
(x0), coefficients of known value (xi) and noise symbols (ǫi)
that are only known to lie in the interval[−1, 1]:

x = x0 + x1ǫ1 + x2ǫ2 + ...+ xnǫn. (2)

Affine arithmetic then performs all operations on these coef-
ficients, ensuring the result is also in affine form. The problem
with affine arithmetic is that many functions, including general
multiplication, are not affine and hence approximations must
be made. Methods to perform these approximations can trade
the size of the error for computational complexity [27], butin
all cases, there will still be a widening of the derived bounds.

Given the limitations of interval and affine arithmetic,
recently, a new approach has been published which uses
Satisfiability-Modulo Theories (SMT) [11]–[13] to refine the
bounds given by interval or affine arithmetic by searching for a
set of inputs breaking the bounds, using a Satisfiability solver.
This bound is iteratively refined depending upon the results
of this test, using a binary search method. The main problem
with this approach is that conditions the SAT solver checks
within the inner loop of this method are created by propagating
constraints using interval arithmetic and splitting the input
intervals to improve the bounds [28]. Though interval splitting
can significantly improve bounds, using a basic approach of
applying ns splits to every variable of a problem consisting
of n variables, the number of intervals to be evaluated grows
O(nn

s ), ensuring this approach is not scalable in its current
form. This issue in general limits the use of global optimisation
strategies which use interval analysis because they also rely
on interval splitting to obtain tighter bounds [29].

This run-time issue limits the SMT approach to consider
only the so called ‘range analysis’ problem which involves
ensuring that over the range of input data, there is sufficient
dynamic range to prevent overflow. However, when optimising
word-lengths, determining the range as a result of the inputs
is only a part of the problem; it is also important to perform
‘precision analysis’, which is typically described as ensuring
that the error at the output, caused by the use of a finite
precision, lies below a threshold. As such, several of the
optimisation strategies do perform range analysis as a first
step before precision analysis [15], but these are all targeted
towards DSP systems which do not include division. However,
we argue that for a word-length optimiser targeted towards
a general algorithm, these two problems cannot be viewed
independently because the range can be heavily affected by the
errors caused by the use of finite precision. This is typically
because these errors may cause a divisor to approach closer to
zero than under infinite precision, resulting in a larger range;
such effects will be seen in Section V-A. Combining range
and precision analysis in a single word-length optimiser can
therefore be seen as an added benefit of our approach because
it allows us to choose the minimum exponent width that will
span the desired range and ensure that the hardware will not
overflow and also use less silicon area.

This work describes a new general analytical approach
which can provide provable bounds. It is argued in this paper
that this method can achieve significantly tighter bounds than
both interval and affine arithmetic, while running significantly
faster, with better scalability, than the SMT approach.

III. PROPOSEDALGORITHM

The aim of this work is, for a given floating-point precision,
to find bounds on the value of any chosen variable within an
algorithm, and hence bound the worst case computational error
induced. The suggested method to achieve this consists of sev-
eral stages. The first stage involves creating a polynomial for
the variable of interest, a function of new bounded variables,
each representing round-off errors introduced after a specific
operation. This polynomial is then simplified into a canonical
form, from which bounds for the extrema of the polynomial
can be found algorithmically. An optional final stage extends
the approach for polynomials to rational functions, allowing
all algorithms consisting of the basic operators{+,−, ∗, /} to
be automatically analysed.

Notation: To formalise the discussion of the method, some
simple notation is used. We consider polynomials inn vari-
ablesδ1, δ2, ..., δn. We use the notationδλ for a term, which
is a product of the variables raised to some integer powers (3),
whereλ is a vector collecting the exponents (4). We denote
by |λ| the degreeof the term, given by (5).

δ
λ = δλ1

1 δλ2

2 ...δλn
n . (3)

λ = (λ1, ..., λn),whereλi ∈ N. (4)

|λ| = λ1 + ...+ λn. (5)

A monomial is defined as a term multiplied by some real
coefficient, i.e. cδλ, and a polynomial is the sum of one or
more monomials.
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Finally, to allow a formal description in the following
sections, in this work the terms in a polynomial are ordered.
δµ < δλ denotes thatδµ precedesδλ, according to degree
lexicographical order, as described in (6) [30].

δ
µ < δ

λ ⇔







|µ| < |λ|,
or

|µ| = |λ| and∃i(µi < λi and∀j < i(µj = λj))
(6)

A. Creating a Polynomial Representation of Potential Range

It can be shown that for a real valuex, the closest radix-2
floating-point approximation̂x of x can be expressed as in (7)
[31], whereη is the number of mantissa bits used (referred
to as the precision), provided there is no underflow (note
our approach could easily be extended to support any radix
by changing this equation). As mentioned in the background
section, our approach can ensure underflow will not occur. It
is similarly possible to specify that the radix-2 floating-point
result of any scalar operation(⊙ ∈ {+,−, ∗, /}) is bounded
as in (8), provided the exponent is sufficiently large to spanthe
range of the result. Operations complying with IEEE standard
arithmetic exhibit this behaviour.

x̂ = x(1 + δ1) (|δ1| ≤ ∆,where∆ = 2−η). (7)

x̂⊙ y = (x⊙ y)(1 + δ1). (8)

In our approach, a simple compiler takes input pseudo code
and applies this model of floating-point error on the result
of every computation throughout an algorithm such that every
output variable can be represented by a single polynomial inall
the error variables, as shown for a simple example in Table I.
We currently focus on straight-line code algorithms consisting
of {+,−, ∗, /} operators, meaning that we unroll any loops,
which is a reasonable approach for real-time computation
where the loop bounds are known. Any conditional statements
do not directly affect our bounds procedure if they do not
operate on any of the rounded variables.

TABLE I
CONSTRUCTION OF POLYNOMIALS

x, y are inputs
∆ is the error bound determined by the precision, so that
|δi| ≤ ∆
Pseudo Code Polynomial Representation of Variable Value
a = x*y; a = xy(1 + δ1)
b = a*a; b = (xy(1 + δ1))2(1 + δ2)
c = b-a; c = [(xy(1 + δ1))2(1 + δ2)− xy(1 + δ1)](1 + δ3)

B. Minimising the polynomial

Given a polynomial representing the value of a variable, as
in Table I, f(δ), we want to findγlower = inf |δi|≤∆ f(δ),
the lower bound on the variable or function of intent, and
γupper = sup|δi|≤∆ f(δ). Unfortunately this is a non-convex
optimisation problem, which is NP-hard, meaning traditional
approaches are unsuitable. For example, calculus style ap-
proaches towards bounding a polynomial of orderρ by
searching for turning points are unsuitable because findingthe

solutions forf ′(δ) = 0 for a general multivariate polynomial
is also NP-hard. Alternatively, an approach such as finding
zeros by Bernstein Polynomials, has been shown to have
computational complexity ofO(nρn+1) for a polynomial
of order ρ consisting ofn variables [32]. As a result, we
focus on finding a computationally tractable lower bound
γ̂lower ≤ γlower and upper bound̂γupper ≥ γupper.

In this work, a new approach is taken to find bounds where
γlower − γ̂lower and γ̂upper − γupper are as small as possible.
Here we first describe the background theory, which is based
upon a result from real algebra discovered by Handelman, after
which a new heuristic based upon this theory is proposed.

Theorem 1 ( [33]). A polynomialp(x) is non-negative over
the compact set of linear inequalitiesgi ≥ 0, i.e. S =
{x ∈ Rn|gi(x) ≥ 0}, if and only if p has a Handelman
representationof the form(9).

p =
∑

α∈Nn

cα

n
∏

i=1

gαi
i , (9)

where eachcα is a non-negative constant

andN is the set of natural numbers.

This theorem can be applied to find lower and upper
bounds to satisfŷγlower ≤ f(δ) ≤ γ̂upper by considering
that we are trying to show that the functionsf(δ) − γ̂lower

and γ̂upper − f(δ) are non-negative over the compact set of
inequalities specifying the bounds onδ given in (10). By
Theorem 1, this is equivalent to showingf(δ) − γ̂lower has
a Handelman representation of the form (11), or similarly
satisfying (12) for the upper bound. We note the number of
constantscα in the summation in (9) is unbounded because the
Handelman representation is only guaranteed to converge as
the number ofα vectors tends to infinity [33]. However, when
using this theory to search for bounds, a practical approach
to find such a representation, such as linear programming,
restricts the number of constants to a finite amount [34], at
the cost of potentially not finding the optimal bound.

S = {δ ∈ R
n|∀i(∆− δi ≥ 0) ∧ (∆ + δi ≥ 0)}. (10)

f(δ)− γ̂lower =
∑

α,β∈Nn×Nn

cα,β

n
∏

i=1

(∆− δi)
αi(∆ + δi)

βi . (11)

γ̂upper − f(δ) =
∑

α,β∈Nn×Nn

cα,β

n
∏

i=1

(∆− δi)
αi(∆ + δi)

βi . (12)

For our purposes, it will be easier to work with a generalised
version of the Handelman representation that we propose,
given in (13), which we refer to as aGeneralised Handelman
Representation(GHR).

Theorem 2. A polynomial pghr is non-negative over the
compact setS, defined in(10), if and only if pghr can be
represented by aGeneralised Handelman Representationof
the form(13).
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pghr =
∑

j∈N

cj

n
∏

i=1

(∆|µi,j | − δ
µi,j )αi,j (∆|µi,j | + δ

µi,j )βi,j ,

where eachµi,j is an arbitrary integer vector. (13)

and eachcj , αi,j , βi,j is a non-negative constant.

Proof:
⇒: If pghr is non-negative over the compact
set S, then it has a Handelman representation;
by choosing µi,j = i, it also has a GHR.
⇐: If pghr has a GHR, then because any individual
variable δi is bounded by|δi| ≤ ∆, any term can also
be bounded over the setS, |δλ| ≤ ∆|λ|. This means
∆|λ| + δλ ≥ 0 and∆|λ| − δλ ≥ 0, and becauseci ≥ 0, it
holds thatpghr ≥ 0, i.e. non-negative over the setS.

Using this theorem, if we can find GHRs to satisfy (14)
and (15), then the left-hand side is non-negative over the set
of inequalities (10), and from this a guaranteed bound follows.

f(δ)− γ̂lower = plower ghr. (14)

γ̂upper − f(δ) = pupper ghr. (15)

1) Example:In order to demonstrate the use of this theory,
we will consider the functionf(δ1) = δ21 − δ1 over the set
|δ1| ≤ 1/2. For this simple function of one variable, we can
first derive lower and upper bounds using familiar calculus
arguments. We will then demonstrate that IA is unable to
calculate the same bounds, before finally showing that GHRs
can be used to prove the ideal bounds.

Using calculus to calculate bounds off(δ1) = δ21 − δ1, we
know that because this is a convex function, the minimum
will lie where the derivativef ′(δ1) = 0 and the maximum
will lie at one of the extremes of the range ofδ1. Thus by
differentiating f(δ1) to get f ′(δ1) = 2δ1 − 1, we find the
minimum lies atδ1 = 1/2, leaving the maximum to be where
δ1 = −1/2; this gives the range off(δ1) to be [−1/4, 3/4].
In comparison, interval arithmetic is unable to calculate the
optimal lower bound, as shown in (16).

δ1 ∈ [−1/2, 1/2] (16)

⇒ δ21 ∈ [0, 1/4]

⇒ δ21 − δ1 ∈ [−1/2, 3/4]

To find bounds using the theory presented in this section,
we want to search for GHRs to satisfy (14) and (15). Two such
GHRs areplower ghr = (1/2− δ1)

2 andpupper ghr = (1/2−
δ1)(1/2 + δ1) + (1/2 + δ1). After equating these respective
functions, as shown in (17) and (18), we findγ̂lower = −1/4
and γ̂upper = 3/4. Finally, by Theorem 2, we now know that
f(δ1) − (−1/4) ≥ 0 and 3/4 − f(δ1) ≥ 0 or that−1/4 ≤
f(δ1) ≤ 3/4, thus recovering the optimal bounds.

δ21 − δ1 − γ̂lower = (1/2− δ1)
2 (17)

δ21 − δ1 − γ̂lower = 1/4− δ1 + δ21

γ̂lower = −1/4

γ̂upper − (δ21 − δ1) = (1/2− δ1)(1/2 + δ1) + (1/2 + δ1) (18)

γ̂upper − δ21 + δ1 = 1/4− δ21 + 1/2 + δ1

γ̂upper = 3/4

2) Finding GHRs: Unfortunately, in general it is difficult
to find GHRs to satisfy equations (14) and (15) and ensure
that the calculated bounds for̂γlower and γ̂upper are as tight
as possible. The existing method of computing Handelman
Representations is to use linear programming [34]. This is
achieved by setting the objective to eithermin(γ̂lower) or
max(γ̂upper), and creating a single linear constraint for each
monomial in plower ghr or pupper ghr, to match the corre-
sponding monomial in the desired polynomialf . The linear
program would then be able to calculate all the values for
the variablescj , and the desired boundγ. It is important to
note at this stage that using this method, it is impossible to
guarantee the global minimum will be found, since Handel-
man representations are only guaranteed to converge to the
global optimum as the maximum order tends to infinity [34].
Therefore, in order to ensure we get a result in tractable time,
we must first restrict the maximum order forpghr to some
value ρ. However, whilst choosing this value ofρ will trade
execution for quality of bounds, the value ofρ must be greater
than or equal to the degree off in order to satisfy (14) or (15).

Upon formulating a linear program using this method, the
scalability quickly becomes a significant problem. For an
arbitrary polynomialf of order ρ consisting ofn variables,
the number constraints is

(

ρ+n
n

)

and variables is
(

ρ+2n
2n

)

.
Clearly, whilst this is efficient for small problems, the size
of the linear program quickly grows too large for existing
linear programming tools. For example, consider a problem
consisting of approximatelyn = 30 variables where the
maximum order off is restricted toρ = 6. This would consist
of almost 2 million constraints and over 90 million variables,
which is unsolvable using current LP solvers.

Due to this limitation of linear programming, in this work
we propose a new heuristic which is guaranteed to terminate
at the same time as aiming to find practically useful bounds.

3) Our approach: The proposed algorithm to bound a
polynomial is based upon finding GHRs to satisfy equations
(14) and (15), similar to the earlier example. To achieve
this, we first expressf(δ) in a canonical form, as a sum of
monomials in which each term appears at most once. In order
to demonstrate this step, consider the earlier example from
Table I; the polynomial representation for the variablec in
this example can be expanded into the polynomial (19) when
neglecting the variableδ3, since the worst case value of this
variable is trivially known to lie at the extremes.

f(δ) = −xy(xy − 1)− xy(2xy − 1)δ1 − x2y2δ2 (19)

−x2y2δ21 − 2x2y2δ1δ2 − x2y2δ21δ2

After this expansion, it is possible to ‘cancel’ each individ-
ual monomial from the left hand side of equations (14) and
(15), using a polynomial of the form (20), and we then note
that the sum of polynomials created in this fashion would be
a GHR. After cancelling all the monomials, we would be left
with a constant from which the bound̂γlower andγ̂upper could
be derived in a similar fashion to the earlier example.

h(δ) = c

n
∏

j=1

(∆|µj | − δ
µj )αj (∆|µj | + δ

µj )βj . (20)
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TABLE II
EXAMPLE POLYNOMIALS OF THE FORM (13) TO CANCEL THE MONOMIAL −x2y2δ2

1
δ2 FROM f .

Approach Number 1 2 3 4

Handelman Coefficients

µ = ([1, 0], [0, 1]) µ = ([1, 0], [0, 1]) µ = ([2, 0], [0, 1]) µ = [2, 1]
α = (0, 0) α = (2, 0) α = (0, 0) α = 0
β = (2, 1) β = (0, 1) β = (1, 1) β = 1
c = x2y2 c = x2y2 c = x2y2 c = x2y2

Polynomialh x2y2(∆ + δ1)
2(∆ + δ2) x2y2(∆ − δ1)

2(∆ + δ2) x2y2(∆2 + δ2
1
)(∆ + δ2) x2y2(∆3 + δ2

1
δ2)

New Polynomialf + h

xy(xy − 1 − xy∆3) xy(xy − 1 − xy∆3) xy(xy − 1 − xy∆3) xy(xy − 1 − xy∆3)
+xy(2xy − 1 − 2xy∆2)δ1 +xy(2xy − 1 + 2xy∆2)δ1 +xy(2xy − 1)δ1 +xy(2xy − 1)δ1
+x2y2(1 − ∆2)δ2 +x2y2(1 − ∆2)δ2 +x2y2(1 − ∆2)δ2 +x2y2δ2
+x2y2(1 − ∆)δ2

1
+x2y2(1 − ∆)δ2

1
+x2y2(1 − ∆)δ2

1
+x2y2δ2

1

+2x2y2(1 − ∆)δ1δ2 +2x2y2(1 + ∆)δ1δ2 +2x2y2δ1δ2 +2x2y2δ1δ2
+0δ2

1
δ2 +0δ2

1
δ2 +0δ2

1
δ2 +0δ2

1
δ2

The complexity of this approach is that there are many
monomials inf(δ) to cancel, and many ways to cancel any
given monomial using polynomials of the form (20). For exam-
ple, consider again the polynomial given in (19), Table II illus-
trates several possible choices of these polynomials that could
be used to cancel the highest order monomial (−x2y2δ21δ2)
from this example. Our proposed heuristic attempts to make
the best choices of these polynomials. It is based on the idea
that whilst canceling a high order monomial, it is possible
to reduce the coefficients of lower order monomials at the
same time, as shown in Table II; this will result in tighter
bounds than cancelling each monomial independently. In order
to ensure termination, detailed in Section III-C, the heuristic
selects the highest order monomials and chooses polynomials
to remove the higher order monomials in such a way that
they also reduce the absolute value of the coefficient of lower
order monomials. The overall heuristic is formally given in
Figure 1; the rest of this section gives a high level discussion
of the rationale behind the various stages of the heuristic.

Selecting Cancellation Terms.The first stage involves
choosing which lower order monomials are suitable to be
modified at the same time as attempting to cancel a higher
order monomial. Even for the simple example given in (19),
the choice of cancellation terms will always depend upon the
input. If 2xy > 1, the first approach from Table II would be the
best of the four approaches as it would decrease the termδ1
towards zero. On the other hand, if2xy = 1 the third approach
would be the best of the four as the termδ1 would already be
zero and hence the first two approaches would create a new
monomialδ1, which is a low order monomial that would have
to be later removed. Thus the heuristic searches for non-zero
monomials inf whose product will equal the desired higher
order term. It performs this search initially looking to build
a set using lower order terms as these are the most desirable
terms to reduce, and uses higher order terms if necessary.

Selecting a Subset of Cancellation Terms.If we were to
create a monomial which reduces all the terms selected in
the previous stage, the size of the canonical representation of
the form (20) grows exponentially in the number of terms.
As a result, a tuning factor has been added which checks if
the number of terms found from the previous stage exceeds a
user chosen maximumm. If the number of terms exceeds this
maximum, a subset ofm terms from the previous stage are
chosen, and a single extra high order term is added to ensure
the desired monomial still gets cancelled. This tuning factor

allows the user to trade execution time for the quality of the
bound, and is discussed in more detail in Section V-C.

Choosing Signs.Having chosen the terms that will be used
to create the polynomial, the next stage chooses the signs. The
signs are chosen to reduce as many of the chosen low order
monomials as possible, as well as the original highest order
term to ensure algorithm termination. For example, from Table
II, if 2xy < 1, the second approach would be best as it would
decrease the coefficient of the monomialδ1, whereas the first
approach would increase this coefficient.

Choosing the initial multiplier. The final stage involves
choosing the initial multiplierc for the polynomialh. This
is a scalar chosen to be as large as possible whilst ensuring
that when the polynomial is added tof , no coefficient inf
changes sign. This ensures that at least one coefficient gets
cancelled at every iteration of the algorithm.

C. Algorithm Termination

At each iteration of the loop in Figure 1, a polynomialh is
formed which reduces the absolute value of the coefficient of
the highest order monomial inf . The minimum reduction is
determined byq, as defined in Figure 1, which is a function of
terms present in bothf andh. After the update, the term from
f which determines this minimum reduction value is removed
from f . The algorithm then repeats the process.

Termination is guaranteed because at each iteration of the
loop, the absolute value of the coefficient of the highest order
monomial inf is reduced by a factorq, which is a function of
the absolute values of the coefficients of monomials inf and
the cancellation polynomialh, and no higher order monomials
are created. If new lower order terms are created, the value
of q to remove these whilst cancelling the same high order
term will be the same as the value ofq which created them,
so becauseq does does not decrease, eventually the highest
order monomial will be cancelled, ensuring termination.

D. Division

Because Theorem 2 only applies to polynomials, the above
method cannot be directly applied to algorithms including divi-
sion. However, we note that any computation which consists
of the basic operators{+,−, ∗, /} can be converted into a
rational function by first applying the multiplicative model of
error and then performing simple algebraic manipulation, an
example of such manipulation is shown in (21); we can then
perform an iterative refinement to calculate a bound.
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Algorithm γ = BoundPoly(g,∆)
// BoundPoly takes a polynomialg in the formal vector variableδ, and a real
// bound∆ on the absolute value of each elementδi(1 ≤ i ≤ n).
// It returns a lower bound ong(δ) valid overδ ∈ [−∆,+∆]n.

Setf = −g
while f is not constant

Find greatest monomial inf : cδµ

// Selecting Cancellation Terms
Set degree = 0;
repeat

degree++;
Using a greedy search algorithm find a setS where each element is a
monomial of the formaiδ

λi in f such that (lettingn = |S|):
(
∑n

i=1
λi = µ) ∧ ∀i(|λi| ≤ degree)

until (S is nonempty)

// Selecting a Subset of Cancellation Terms
if (n > m)

Form a subsetS′⊂S of them lexicographically lowest monomials inS

Add an extra monomialcδµ/
∏|S′|

i=1
δλi to S′ to

complete the cover
else

Let S′ = S
Let n′ = |S′|

// Choosing Signs
Let dδβ be the lexicographically greatest monomial inS′.
Modify the sign of this monomial by setting:

S′ = S′ ∪ {|d|sgn(c)Πn′−1

i=1
sgn(ai)δ

β} \ {dδβ}.
for (each monomialaiδ

λi in S′)
Create a new polynomialji = (∆|λi|−sgn(ai)δ

λi )

// Choosing the initial multiplier

Createh =
∏n′

i=1
ji

Let C be the set of terms present both inf and inh.
For each termδρi in C, let the corresponding coefficient inf andh be
fi andhi respectively.
Form q = min

i
(|fi|/|hi|)

Computef = f + qh
end
Set γ̂ = −f .

Fig. 1. Cancellation Algorithm.

δ1
δ2 + δ3/δ4

=
δ1δ4

δ2δ4 + δ3
. (21)

Assuming the rational representing the range of the chosen
variable is of the formn/d, wheren andd are polynomials,
then we need to shown/d ≥ γ̂lower inside the compact set of
intent. Ford > 0, this could be re-written asn−dγ̂lower ≥ 0,
which is a polynomial inequality. The previous approach can
then attempt to find a GHR forn−dγ̂lower; if a representation
is found for a value of̂γlower, we tighten the valuêγlower, if it
fails then one can loosen the valueγ̂lower. A similar approach
can be taken for the upper bound.

In order to minimise this search time, this is performed
as a binary search with the initial range given by equation
(22), where the ranges ofn andd are found using the original
method on the numerator and denominator polynomials alone.
Using this range also has the added benefit of checking that
the denominator does not include the zero value. Note that if
the denominator does contain a zero not cancelled by a zero
in the numerator, then no such bound exists in any case.

[min(
nmin

dmax

,
nmax

dmin

,
nmax

dmax

,
nmin

dmin

), (22)

max(
nmin

dmax

,
nmax

dmin

,
nmax

dmax

,
nmin

dmin

)].

E. Combining Handelman representations with existing ap-
proaches to bound error

The main benefit of our approach is that it can take into
account dependencies between variables within a polynomial
when calculating bounds, unlike interval arithmetic. Since
affine arithmetic (when bounding non-affine terms), Taylor
series with remainder bounds (when bounding the final poly-
nomial as well as high order terms and any actions with the
remainder bounds), and global optimisation methods using
interval analysis, including the inner loop of SMT (inside
the HySAT solver), are all dependent upon interval arith-
metic to some degree, replacing interval arithmetic by our
approach within these methods could potentially improve the
final bounds, albeit at the cost of increased execution time.
However, as affine arithmetic and Taylor series with remainder
bounds control the scalability by controlling the size of the
polynomial, the size of this increase in execution time would
also be controlled. Furthermore, a combined method would be
able to handle non-polynomial functions such as square roots
and exponentials. However, in the remainder of this paper,
we have decided to focus on the algorithm described in this
section so as to quantify its benefits and limitations directly
with the existing methods.

IV. T ESTING METHODOLOGY

In order to characterise the performance of this work, it has
been compared over several tests using a variety methods. The
test cases are those described in the comparative works [11],
[12], [27] as well as an iteration of the conjugate gradient
algorithm [35] applied to a ‘toy’ matrix of order two (the
operations given in Figure 2); the interest behind the choice
of the conjugate gradient algorithm is to demonstrate our
approach can be applied to an example of a real algorithm
that is used in finding the solution to a system of linear
equations. Though it is acknowledged that for such a small
matrix order, the conjugate gradient algorithm is unlikelyto
be used, it is large in terms of total operations compared to
the results reported in [11], [12], [27], and it provides a simple
real example on the effects of limited precision computations
as well the highlighting the scalability issues. The inputsfor
the test are shown in Figure 2, these are chosen to ensure the
matrix is symmetric positive definite, a property required for
the convergence of the conjugate gradient algorithm, whilst
the input vector is specified as an interval to demonstrate the
algorithm can calculate bounds dependent upon input ranges
and finite precision. As mentioned in Section II, the test cases
from the comparative works are based on the range analysis
problem as opposed to the effects of finite precision, but
these are included to demonstrate that our approach is also
applicable to this problem and performs well in comparison.
We then illustrate the greater scalability of our approach
relative to these comparative works by demonstrating that it
can still find bounds when adding finite precision effects to
these problems.

The methods to which our work is compared help to
determine where our approach lies within a hierarchy of error
bounds, given in Figure 3, where the higher the relative error
the worse the bound.
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A =

(

10.25 −9.75
−9.75 10.25

)

, x =

(

0
0

)

, b ∈

(

[10.25 10.75]
[9.25 9.75]

)

d1 = b1 (1)
d2 = b2 (2)
r1 = b1 (3)
r2 = b2 (4)
δn t1 = r1r1 (5)
δn t2 = r1r2 (6)
δnew = δn t1 + δn t2 (7)
qt1 = A11d1 (8)
qt2 = A12d2 (9)
qt3 = A21d1 (10)
qt4 = A22d2 (11)
q1 = qt1 + qt2 (12)
q2 = qt3 + qt4 (13)
αd t1 = d1 ∗ q1 (14)
αd t2 = d2 ∗ q2 (15)
αden = αd t1 + αd t2 (16)

α = δnew/αden (17)
xt1 = αd1 (18)
xt2 = αd2 (19)
x1 = x1 + xt1 (20)
x2 = x2 + xt2 (21)
rt1 = αq1 (22)
rt2 = αq2 (23)
r1 = r1 − rt1 (24)
r2 = r2 − rt2 (25)
δold = δnew (26)
δn t1 = r1r1 (27)
δn t2 = r2r2 (28)
δnew = δn t1 + δn t2 (29)
β = δnew/δold (30)
d1 = βd1 (31)
d2 = βd2 (32)

Fig. 2. Pseudo Code for one iteration of the conjugate gradient algorithm
on a 2x2 matrix to solveAx = b.

Fig. 3. Hierarchy of Error Bounds.

The initial aim of our results is to demonstrate that our
approach is better than existing analytical methods that provide
bounds (distancea from Figure 3). To this end, we compare
our approach against Interval Arithmetic, Affine arithmetic and
Taylor models with interval remainder bounds restricted to
1st, 2nd and 3rd order where possible. The reason we are
restricted to these small orders is that the Taylor model for
inversion is found according to (23), whereINT (f(x)) is the
range off(x) calculated using interval arithmetic, and when a
large multivariate polynomial is raised to a high power when
calculating(Tρ + Iρ)

i, the number of monomials grows too
large to compute in a reasonable execution time.

1

(Tρ + Iρ)
=

ρ
∑

i=0

(−1)i(Tρ + Iρ)
i +

(−1)ρ+1INT ((Tρ + Iρ))
ρ+1

INT ((Tρ + Iρ))ρ+2
.

(23)

It is also desirable to find out how far our approach lies
from the ideal bound (as shown by distanceb). Unfortunately,
finding the ideal bound is computationally intractable, forit
would involve calculating the potential values of every variable
and from these values determining the worst case error loss

for every precision. Instead, this is approximated by Monte
Carlo simulation using the MPFR multiple precision floating
library [36] (distancec). However, one must note that such
an approach no longer returns a provable bound, and the
difference between our approach and this bound is a function
of three factors: the quality of our calculated bound, the sim-
ulation time, and the accuracy of the standard multiplicative
model of floating-point error. The model of error used in this
work, and throughout the numerical analysis literature, isin
practice a conservative approximation because eachδi is a
function of the input variables, but this information is lost; as
an example, multiplying any value by any power of two will be
error free in the absence of overflow or underflow. Therefore
there will exist a distanced between the ideal bound and the
best any approach using this model of error could possibly
achieve. As such, we are most interested to find out how far
our approach differs from the best possible bound achievable
using the model of floating-point error generally used in
numerical analysis literature (distancee). Unfortunately, as
has been discussed in Section II, finding the best bound
under the multiplicative model of floating-point error involves
polynomial optimisation, which is NP-hard. Therefore, this too
is approximated under our test labelled ‘Random sampling
over poly’, where we apply Monte Carlo simulation over the
relevant ranges for all the variables to the polynomial we
created which bounds the range or relative error of the result
(distancef ). It should be noted that if distancef can be shown
to be small, this will imply our approach lies close to the
optimal bound achievablee (since it is knowna priori that
f ≥ e ≥ 0). Finally, distancec is also reported, so as to
gain an approximate estimate of the appropriateness of the
multiplicative model of error. As bothc and f are simulated
values, it cannot be guaranteed thatc ≥ f , but if c is much
larger thanf , it is likely to be a result of the conservative
nature of the multiplicative model.

As our approach consists of several stages, the main stages
of which are creating a simplified polynomial and finding a
bound for this polynomial using Handelman representations,
to help quantify the contribution of each of these stages, we
compare the result of bounding the polynomial in canonical
form by applying interval arithmetic against our full approach.
One should note that for algorithms which do not include
division, the test of bounding the simplified polynomial using
interval arithmetic is comparable to applying Taylor models
approach without any intermediate bounding of higher order
terms, which would give the tightest bound achievable using
Taylor models. For algorithms which do involve division, our
test which bounds the simplified polynomial using interval
arithmetic simply bounds the numerator and denominator
polynomial separately and performs interval arithmetic on
these two results instead of using the approximation given by
(23). This however remains an interesting test as it allows us to
focus on quantifying how our method of applying Handelman
representations to bound a rational function can find tighter
bounds than any approach that is fundamentally based upon
interval arithmetic.
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V. RESULTS

A. Analysis on our approach on an iteration of the 2x2
Conjugate Gradient Algorithm

1) The effects of finite precision on range:Figure 4(a)
highlights the effect precision has on the conjugate gradient
algorithm and the quality with which our approach can char-
acterise this effect. It shows how the bounds on the range
of the variabled1 after an iteration of the conjugate gradient
algorithm (operation 31 from Figure 2) changes as a function
of the precision, for the tests mentioned in Section IV. On
these graphs, the vertical dotted lines illustrate the values of
precision for realisable word-lengths,i.e. the difference in
word-length between any two adjacent dotted lines is one bit.
It is clear to see there is a significant difference between the
ranges computed by all the analytic approaches, as well as the
simulation estimates, in comparison to interval arithmetic. In
comparison to other approaches, our approach generally finds
the tightest bounds, the exception being when the precisionis
very small where affine arithmetic and Taylor series methods
can calculate bounds where our approach fails. This is because
in these cases, bounds for the error variables are proportional
to the bounds on the input ranges, so the first order approx-
imation of division retains most of the information, whereas
our heuristic struggles without such a simplification.

TABLE III
RESOURCEUSAGE, MAX FREQUENCY AND LATENCY OF CONJUGATE

GRADIENT IMPLEMENTATIONS

Method Precision Slices Frequency Latency
(# bits) (MHz) (cycles)

Our Approach 7 1663 367 161
Affine Arithmetic 8 1710 360 165
3rd Order Taylor 9 1923 350 169
IA on Simplified Poly 9 1923 350 169
2nd Order Taylor 10 1964 314 173
IEEE Single Precision 23 5587 286 277
IEEE Double Precision 52 15672 143 425
1st Order Taylor ∞ ∞ N/A N/A
IA ∞ ∞ N/A N/A

TABLE IV
COMPARISON OF EXECUTION TIMES TO COMPUTE RANGE OFd1 AND

RELATIVE ERROR OFr1 FOR A GIVEN PRECISION.

Method Average time to Average time to
compute range of compute relative

d1 (s) error of r1 (s)
Interval Arithmetic 0.003 0.003
Affine Arithmetic 3.7 3.5
Taylor Model of 1st Order 5.3 8.26
Taylor Model of 2nd Order 48 53
Taylor Model of 3rd Order 3700 N/A
Our approach (set-up time) 3660 150
Our approach (each iterative refinement) 2100 35

It is also interesting to note that this graph demonstrates
that both stages of our approach provide significant benefits
towards obtaining a better bound, for performing interval arith-
metic on the simplified polynomial is significantly better than
interval arithmetic in the traditional sense, whilst bounding
the simplified polynomial using Handelman representations
improves this bound even further.

In order to view how these results translate to actual
hardware savings on a FPGA, Table III shows the number
of slices required, the latency, and the maximum frequency
achievable when using single or double precision units, or by

(a) Bounds on the range of the variabled1 (operation 31 from Figure 2).

(b) Bound on relative error of CG ‘Residual’.r1 (operation 24 from Figure
2) is the nominal ‘residual’, whilst̂r1 is the residual taking into account
floating-point error.

(c) Growth in Relative error throughout a CG iteration. Operations corre-
spond to pseudo code in Figure 2.

Fig. 4. Range and Relative error results for various operations in Conjugate
Gradient example.

performing optimisation for a given bound on range using all
approaches targeting a desired range of600. In this test, these
figures are post place and route results where the floating
point components are generated using Xilinx Coregen [37].
From this table, our approach can achieve a reduction in
slices in comparison to optimising the design using the other
approaches, and significantly larger savings in comparisonto
using full IEEE single or double precision arithmetic. It also
demonstrates the design would run at a faster frequency and
an iteration would complete in fewer cycles by performing the
optimisation.

2) The effect of finite precision on relative error:Figure
4(b) demonstrates the bound on relative error. This figure
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clearly demonstrates that the relative error decreases with
precision, and that our algorithm is capable of tracking this
relationship well, unlike all the other methods operating on
the original code. The reason the other approaches cannot
track this relationship is that almost all of the relative error
terms will be of second order or greater because they will be a
function of the input variables multiplied by some finite preci-
sion error. However interval arithmetic retains no information
about the polynomial, whilst affine arithmetic arithmetic only
retains first order information and approximates higher orders,
and the tests using Taylor models only retain first and second
order information. As a result, the bounds reported will be
based on approximations of higher order terms, and these
approximations must be treated independently, therefore all
dependencies are lost. In contrast, by retaining all the informa-
tion throughout forming the polynomial, as shown by applying
interval arithmetic on the simplified polynomial, it is possible
to obtain better bounds, whilst the benefit of our approach in
handling dependencies within the polynomial using Handel-
man representations results in even tighter bounds.

3) Finite precision effects throughout an algorithm:Fig-
ure 4(c) demonstrates how the error as a result of using
a chosen finite precision grows throughout the conjugate
gradient algorithm. The abscissa represents the operationin the
algorithm, corresponding to the line numbers given in Figure 2.
This demonstrates that as the number of dependencies grow,
the relative error grows, along with the difficulty to bound
this error. This graph also highlights some of the deficiencies
of simulation methods: at several points, the relative error is
high for both the simulation methods, but undefined using the
two analytical approaches. Upon further inspection, it canbe
shown that over the specified input range, the denominator in
the relative error term(nd̂) can legitimately include zero, as a
result of input ranges. This demonstrates the limitation ofthe
simulation approach.

4) Execution time of our approach on Conjugate Gradient:
It should however be mentioned that analysing bounds on the
range of the variabled1 or d2 (lines 31 or 32) and the relative
error for the valuer1 or r2 (lines 24 or 25) after one iteration
was as far through the conjugate gradient algorithm that our
approach could calculate bounds in a reasonable amount of
time. The times for all approaches to calculate the polynomial,
calculated as an average over many test runs on an Intel
Xeon E5345, are given in Table IV. In this table, because the
conjugate gradient algorithm includes division, our approach
requires the iterative refinement mentioned in Section III-D,
so we have separated the computation time for our approach
into two stages: set-up time - the time to calculate the initial
bounds to perform the iterative refinement, and the time for
each iterative refinement. As many iterative refinements are
required to calculate the bounds for each point on the graph,
this is as far through the algorithm that we could calculate in a
reasonable time, especially given the scalability issues which
will be discussed in Section V-D. In comparison to interval
arithmetic and affine arithmetic our approach is significantly
longer as these approaches significantly limit the number of
monomials in the polynomial, allowing a faster solution, where
in contrast, when finding the range ofd1, our heuristic was

applied to a polynomial consisting of approximately 2 million
monomials. The execution time of our approach is more
comparable to Taylor models of higher orders firstly because
they retain many more monomials and secondly because the
time to compute the approximation for division is large.

While the execution time for computing the relative error in
Table IV appears much smaller, we cannot bound a variable
further through the conjugate gradient algorithm because the
function representing relative error is much larger in degree
and number of monomials than the associated polynomial
representing range. To explain this, let us describe the nominal
value of the rational function byn/d, and the rational function
including floating-point error bŷn/d̂. Using this notation, for
the graph in Figure 4(a), we find the bounds of the rational
function n̂/d̂ for the upper and lower bounds, whereas when
finding the relative error in Figure 4(b), we find bounds of the
rational function[(n̂/d̂) − (n/d)]/(n/d) or (n̂d − d̂n)/(nd̂).
With this larger function, the squaring operation (operation 27
in Figure 2) results in a polynomial that is too large to compute
in tractable time. This additional complexity also affectsother
approaches, notably the computation of1/(r̂1) takes too long
and too much memory to compute using a 3rd order Taylor
approximation. Note, however, that the size of this benchmark
is still significantly greater than those reported in [11]–[13].

B. Range analysis vs other works

(a) Comparison vs AA. Range widths found for the benchmarks using
our approach and AA are normalised with respect to the ‘ideal’values
stated in [27].

(b) Comparison vs SMT. Range widths found for the benchmarks using
our approach and AA are normalised with respect to the values stated in
[12], [13].

Fig. 5. Range comparison against published methods.

Figures 5(a) and 5(b) show the performance relative to the
approaches given in related works, with the actual values given
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TABLE V
COMPARISON OFOUR APPROACH VSAA USING CHEBYSHEV APPROXIMATIONS APPROACH[27].

Infinite Precision
Basic AA AA with Chebyshev Approx SIA Our Monte Carlo Ideal

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
Poly Approx -0.0541 0.865 0 0.6931 0 0.8108 0 0.6932 0.0003 0.6929 0 0.6931
B - Spline 0 -0.13 0.17 -0.05 0.17 -0.125 0.1667 0 0.1667 0 0.1664 0 0.1667
B - Spline 1 -0.33 1.29 -0.05 0.98 0.0417 0.9167 0.1667 0.6667 0.1667 0.6667 0.1667 0.6667
B - Spline 2 -0.21 1.17 -0.02 0.89 0.0417 0.9167 0.1667 0.6667 0.1667 0.6667 0.1667 0.6667
B - Spline 3 -0.17 0.13 -0.17 0.05 -0.1667 0.125 -0.1667 0 -0.1666 0 -0.1667 0

sgf -9803 9525 -9793 9487 -9821 9671 -9765 9487 -9301 8874 -9453 9303
iru -95000 128000 -95000 128000 -148350 152450 -91390 124160 -53581 87743 -55100 87900

rand -192 192 -192 192 -256 256 -192 128 -29.2096 36.432 -36 64
mitch -223 881 -223 881 -1087 1121 -719 641 -7.9817 525.5058 -8 641
maty -4800 100000 -4800 100000 -100000 100000 -4800 100000 0.2 9487.4 0 100000

thump -60000 1000000 -60000 1000000 -1065400 1065400 -62400 1001200 0 930990 0 940000
gpf -1.2E+08 1.19E+08 -1.2E+08 1.13E+08 -8416264 8417464 -7261200 7098000 0 1013500 3 957000
rat -2.1E+08 3.3E+11 -2.1E+08 3.3E+11 -3.3E+11 3.34E+11 -6.1E+08 3.34E+11 0 3.32E+11 -1.03 3.3E+11

With Finite Precision (∆ = 2
−10)

Our SIA Monte Carlo
Lower Upper Lower Upper Lower Upper

Poly Approx -0.00331 0.814183 -1E-04 0.696197 0.000556 0.694708
B - Spline 0 -0.12598 0.167646 -2.8E-17 0.167646 3.8E-11 0.167066
B - Spline 1 0.036691 0.921643 0.16325 0.668954 0.166967 0.667602
B - Spline 2 0.036689 0.921644 0.166341 0.671402 0.16681 0.668224
B - Spline 3 -0.16683 0.125163 -0.16683 1.39E-17 -0.16645 -4.7E-15

sgf -9930.96 9780.957 -9949.73 9608.532 -9245.45 8817.592
iru -149425 153520.6 -91996.1 124927.5 -54465.3 87326.63

rand -258.259 258.2588 -193.41 242.08 -33.5023 32.21554
mitch -1095.63 1129.625 -716.476 664.7615 -7.97463 538.1909
maty -10034.4 10034.42 -4814.08 10034.42 0.298266 9870.291

thump -1072698 1072698 -63759 1069686 2.09488 937919.5
gpf N/A N/A N/A N/A N/A N/A
rat -3.4E+11 3.37E+11 -9.4E+08 3.37E+11 2234.393 3.31E+11

TABLE VI
EXECUTION TIME OF OUR APPROACH ANDNUMBER OF

MONOMIALS FOR AA B ENCHMARKS [27].

Infinite Precision
Time using Time using Number of Monomials

AA (ms) Our Approach (ms)
Poly Approx 232 20
B - Spline 0 85.8 176 4
B - Spline 1 94.0 143 4
B - Spline 2 95.1 149 4
B - Spline 3 83.5 173 4

sgf 1288.9 370 10
iru 1327.2.9 186 11

rand 413.9 304 9
mitch 764.8 209 10
maty 288.4 124 3

thump 627.3 287 5
gpf 2545.8 300 45
rat 1053.2 227 6

With Finite Precision (∆ = 2
−10)

Time using Time using Number of Monomials
AA (ms) Our Approach (ms)

N/A 2588 1280
N/A 214 8
N/A 722 624
N/A 525 304
N/A 466 128
N/A 184527 11738
N/A 6378 4440
N/A 22133 4608
N/A 9379 2786
N/A 285 40
N/A 551 224
N/A N/A N/A
N/A 4767 1080

TABLE VII
COMPARISON OFOUR APPROACH VSSAT MODULO THEORY APPROACH[11], [12].

Infinite Precision
AA SIA Our SAT Mod

Lower Upper Lower Upper Lower Upper Lower Upper
Doppler q1 313 362 313 362 313 362 313 362
Doppler q2 -473252 7228000 -473252 7228000 6268 7228000 6267 7228000
Doppler q3 213 462 213.4 461.4 213 461.4 213 462
Doppler q4 25363 212890 14790 212890 45539 212890 45539 212890
Doppler q5 -80 229 -32.0034 488.7892 0.0339 137.6386 0 138
Rational q1 125 250125 -249875 250125 125 250125 124 250126
Rational q2 1 10001 -9999 10001 1 10001 0 10002
Rational q3 -20000 20000 -20000 20000 -20000 20000 -20001 20001
Rational q4 -2.5E+07 1E+08 -1E+08 1E+08 1 1E+08 0 1E+08
Rational z1 -250 369 FAIL FAIL 25.01 125 24 126
Rational z2 FAIL FAIL FAIL FAIL FAIL FAIL -67 67
Newton z1 -1250360 1170360 FAIL FAIL -3615080 3405080 -1205361 1135361
Newton z2 -5753 35769 FAIL FAIL -2.57E+04 3.58E+04 1 35769
Newton z3 FAIL FAIL FAIL FAIL FAIL FAIL -39 38
Newton z FAIL FAIL FAIL FAIL FAIL FAIL -69 72

With Finite Precision (∆ = 2
−10)

SIA Our Monte Carlo
Lower Upper Lower Upper Lower Upper

Doppler q1 313.0177 361.7823 313.0764 361.7823 313.1927 361.5274
Doppler q2 -487963 7242711 5903.514 7242711 7154.64 7183615
Doppler q3 212.5668 462.2332 212.8682 462.2332 218.0062 460.9534
Doppler q4 13809.32 213868.2 45261.52 213868.2 48330.72 208073.4
Doppler q5 -35.848 524.992 0.032124 138.6192 0.088272 127.0179
Rational q1 -250608 250858.3 124.8779 250858.3 125.0591 250134.7
Rational q2 -10018.5 10020.54 0.999023 10020.54 1.00445 9999.922
Rational q3 -20019.5 20019.53 -20019.5 20019.53 -19968.4 19980.35
Rational q4 -1E+08 1.01E+08 0.997073 1.01E+08 1.000176 99690820
Rational z1 -25.0639 25.05885 24.91244 126.8 24.94171 124.9827
Rational z2 FAIL FAIL FAIL FAIL FAIL FAIL
Newton z1 -2487036 2507516 -2487057 2227621 -2395376 2164654
Newton z2 -292243 292307.4 -200614 292307.4 -139.109 275900.8
Newton z3 FAIL FAIL FAIL FAIL FAIL FAIL
Newton z FAIL FAIL FAIL FAIL FAIL FAIL

1

TABLE VIII
EXECUTION TIME OF OUR APPROACH ANDNUMBER OF MONOMIALS FOR

SMT BENCHMARKS [11].
Infinite Precision

Time using SMT Approach (ms) Time using Our Approach (ms) Number of Monomials

Doppler q1 ∼100000 118 2
Doppler q2 ∼100000 148 4
Doppler q3 ∼100000 116 3
Doppler q4 ∼100000 176 6
Doppler q5 ∼100000 3000 10
Rational q1 ∼100000 121 2
Rational q2 ∼100000 124 2
Rational q3 ∼100000 114 1
Rational q4 ∼100000 189 3
Rational z1 ∼100000 4000 4
Rational z2 ∼100000 N/A N/A
Newton z1 ∼100000 171 7
Newton z2 ∼100000 142 6
Newton z3 ∼100000 N/A N/A
Newton z ∼100000 N/A N/A

With Finite Precision (∆ = 2
−10)

Time using Time using Number of Monomials
SMT Approach (ms) Our Approach (ms)

N/A 165 8
N/A 292 32
N/A 203 18
N/A 576 216
N/A 31000 280
N/A 238 10
N/A 189 6
N/A 145 2
N/A 314 36
N/A 13000 26
N/A N/A N/A
N/A 691 29
N/A 517 8
N/A N/A N/A
N/A N/A N/A

1 Exact times not reported, but all benchmark times of order 100s in [11], [12].
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in Tables V and VII. In Figure 5(a), the ranges for the various
approaches are normalised against what is quoted as the ideal
range given in [27]. It is interesting to note that in many
of the test cases our approach matches the ideal, and in all
but one our approach is superior to the other methods. As
these examples do not include any finite precision effects,
this difference is not a function of the model of error, rather
the fact that our approach does not perform well in this one
case demonstrates that our heuristic does not always find the
best Handelman representation. This is a likely to be a result
of targeting our heuristic mainly towards minimising finite
precision errors as opposed to range analysis. Once again,
this graph also illustrates that both stages in our algorithm
have significant effects on the final quality of the bound,
since simply applying the first stage to create the polynomial
and using interval arithmetic on this polynomial can give
comparable results to the existing methods for many of the
benchmarks, whilst applying the second stage improves the
bound further. It is also important to note at this stage thatall
the test cases in Figure 5(a) and some in Figure 5(b) are only
for polynomials, and hence the results for interval arithmetic
on the simplified polynomial are equivalent to the best one
could achieve using Taylor models without any intermediate
bounding of higher order terms, and this demonstrates how
our approach outperforms this method. Finally, the random
sampling of values ofδ on the simplified polynomial is in-
cluded to show that the difference between simulation and the
best possible bound (distance (c-b) from Figure 3) exists even
for these simple examples consisting of only three variables.
This helps to emphasise that the bounds found in the conjugate
gradient analysis are very accurate, given that they consist of
up to 25 variables for the polynomial minimised in Figure 4(a).

In Figure 5(b), the various approaches are normalised
against the ranges given in [11], [12], which given sufficient
run time, should be optimal. Interestingly, our approach in
some cases gives slightly superior results. This is likely to be a
result of the fact the SMT is a refinement process which is po-
tentially time consuming and hence the refinement stops once
at a given level of accuracy. On the other hand, it is important
to note that in some cases SMT does outperform our approach
to the extent that in some cases our work gives unbounded
results, whereas SMT solver returns bounds. Furthermore,
our approach either outperforms or is equivalent to affine
arithmetic in all but two of these benchmarks. Similarly to the
previous example, this is a limitation of the method at finding
the best Handelman representation, and whilst achieving better
bounds is possible, it would require a more sophisticated
search for Handelman representations, which will be time
consuming. However, it should be mentioned that our solver
calculates these values within a hundreds of milliseconds,as
shown in Tables VI and VIII, whereas in [12], the results for
each value are reported as around the order of 100 seconds
on a comparable machine. Furthermore, one should also note
that our approach could be used as an input to the SMT
solver, which uses initial estimates based on interval or affine
arithmetic, to decrease the time to find a good solution.

1) Benchmark tests in finite precision:Tables V and VII
give a list of various results over the benchmarks mentioned

(a) Average Execution Time to Compute update of ‘m’ Cancellation Polyno-
mials.

(b) Average Distance From ‘Tightest’ Calculated Bound for Product of ‘m’
Cancellation Polynomials.

Fig. 6. Graphs Illustrating the effect of changing the numberof Cancellation
Polynomials (‘m’).

earlier, along with the addition of finite precision effects. This
is included both to provide data for future works to compare
to, as well as to demonstrate how finite precision can affect
such bounds. It also shows the benefit of this approach over
those given in the comparative works seeing as ours is far more
scalable as it can find a solution over many more variables in
tractable time: most values are still calculated within hundreds
of ms (on a standard desktop with an Intel Core2Duo E6850
processor), as seen in Tables VI and VIII. Though there are
some values that take significantly longer (up to half a minute),
these are due to the iterative refinement to compute bounds
for division, with the number of iterations of the algorithm
proportional to the desired precision of the bound.

C. Choosing the maximum number of cancellation terms

The choice of the number of cancellation terms, the value of
the variable ‘m’ in Figure 1, has been chosen experimentally.
Figures 6(a) and 6(b) show how the execution time and error
respectively change withm. This section discusses how they
were used to select a value of ‘m’.

The execution times plotted in Figure 6(a) are the average
time to compute the variablesj, h, q andf from Figure 1, as
the rest of the execution time should be independent of the
variable m. The growth in execution time, as can be seen
in Figure 6(a), is approximately exponential inm. This is
expected given that the number of monomials inh(=

∏n′

i=1 ji)
is worst case exponential inm, and this means the number of
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computations to choose the valueq and perform the update of
f will also grow exponentially. The deviations from the line
of best fit are likely to be caused by the fact thatn′ ≤ m,
as opposed to exactly equal tom, changing the number of
computations for some iterations. The computation time for
m = 1 is so low because this is a special case in that it is
equivalent to performing interval arithmetic on the expanded
polynomial, which is significantly faster. Finally, one should
note that the choice ofm can also impact the number of
iterations of the algorithm, but this is hard to quantify for
practical examples as it is highly dependent upon the input
polynomial.

Because it is impractical to calculate ideal bounds, in order
to gain an insight into the quality of the GHR asm increases,
the algorithm in Figure 1 is applied to a polynomial with
various values ofm and the difference is calculated between
the bound for each value ofm and the tightest bound out
of all the tested values ofm returned for that polynomial.
This process is then repeated over several polynomials to
obtain an average, which is plotted in Figure 6(b). From
this figure, it is clear that whenm = 1, the result is
significantly worse, demonstrating again the value of applying
our procedure as opposed to performing interval arithmeticon
the polynomial. However, form ≥ 3, the quality of the best
bound is unclear, as seen in Figure 6(b). This demonstrates the
intricacies involved in choosing the best GHRs. Our algorithm
was based upon the idea of reducing the coefficients of lower
order monomials at the same time as cancelling higher order
monomials. Whenm is larger, it will create more monomials
and these can potentially reduce more lower order monomials,
but whilst the algorithm is designed to attempt to choose
these terms to reduce the coefficients of the monomials in
f , it is not guaranteed, indeed it is even possible to create
some unwanted higher order monomials that are products of
the lower order monomials. However, more importantly, when
m is large, many of these terms created inh will be very
small as they will be multiplied by∆ raised to high powers,
meaning that form > 3, it is expected that there will be little
quantifiable gain in quality of result, and since the execution
time grows exponentially withm, the choice ofm = 3 would
appear to be ideal in practice.

D. Scalability of our approach

Figure 7 demonstrates how the execution time of our
heuristic to bound the polynomial grows with the number of
monomials in the polynomialg. It is clear from this graph
that execution time grows at a steady rate with the number
of monomials. The rate of growth is slightly super-linear,
which is a result of typically creating a GHR for each term
and the complexity of creating a GHR increasing for higher
degree monomials and the polynomials with more monomials
containing more higher degree monomials.

However, whilst the execution time is only slightly super-
linear in the number of monomials used for the canonical
polynomial representation, the number of monomials grows
significantly faster. This is because in order to correctly bound
the error introduced by the use of floating point precision, the

Fig. 7. Execution Time growth with Number of Monomials.

Algorithm y = V ectorProduct(x)
y=1;
for i=1 to n

y = y*x[i];
end

Fig. 8. Pseudo code to calculate the product of vector elements.

polynomial representing the result of any operation is multi-
plied by the function(1 + δi), according to the multiplicative
model of error used throughout the numerical analysis litera-
ture, doubling the number of monomials in the representation.
For example, the floating-point error model for an algorithm
consisting of a series of floating-point multiplications, an
example pseudo code for which is shown in Figure 8, will
have a polynomial representation as in (24); the number of
monomials in this polynomial, when expanded into canonical
form, is exponential inn.

x1x2....xn(1 + δ1)(1 + δ2)...(1 + δn) (24)

However, in many algorithms, this worst case does not
occur, firstly because results are often not accumulated using
a single variable throughout the course of the algorithm, and
secondly because it is highly likely that a large amount of
cancellation will occur.

VI. CONCLUSION

This paper has demonstrated a heuristic, based upon a result
from real algebra, that can be used to find analytical bounds for
any value within an algorithm. We have demonstrated that our
approach takes into account dependencies within a polynomial
representing the range of a variable when calculating bounds,
and this can not only lead to much better bounds than a
näıve implementation of interval arithmetic, but also more
sophisticated techniques such as affine arithmetic or Taylor
series with remainder bounds.

Whilst this research has shown a high degree of utility, there
are several limitations that would benefit from further research.
These include scalability, highlighted in Section V-D, improv-
ing the heuristic to obtain better Handelman representations,
discussed in Section V-B, as well as extending the method to
handle non-polynomial functions such as square roots and ex-
ponentials. However, as mentioned in Section III-E, we could
create a combined approach which uses polynomial simplifi-
cation or polynomial models for complex functions throughout



14

the algorithm, such as those used for affine arithmetic or Taylor
models with interval remainder bounds, which replaces any
intermediate or final bounding by interval arithmetic with our
approach when bounding any resultant polynomial to address
these issues and improve the overall bounds. Similarly, this
could be integrated within a global optimisation framework
that uses interval analysis as an additional tool to improve
bounds.

The Handelman representation is just one special case of
‘theorems of alternatives’ in which real algebraic geometry is
rich. In particular, the proposed approach can be seen as a
search over a particular form of Positivstellensatz refutation
[38], an insight which could lead to further sophisticated
algorithms developed in this field.
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