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Abstract—The precision used in an algorithm affects the error platforms, the effect of fine-tuning an algorithm takingoint
and performance of individual computations, the memory usage account precision has been examined in several areas gangin

and the potential parallelism for a fixed hardware budget. fqm DSPp [4], [5] to control theory [6], with the latter paper
This paper describes a new method to determine the minimum i f . f h ’ fact f 36
p_recision requir_ed to meet a gi_ven error _specificat_ion for an algo_- reporting periormance gams 0, up _0 alac or- 9 :
rithm that consists of the basic algebraic operations. Using this ~ Unfortunately, such fine-tuning is often difficult because

approach, it is possible to significantly reduce the computational Simulation-based methods cannot guarantee the given error
word-length in comparison to existing methods, and this can estimate and there are no known methods that can tractably
lead to superior hardware designs. We demonstrate the proposed 5|cylate tight bounds for the error or range of any variable

procedure on an iteration of the conjugate gradient algorithm, o . . .
achieving proofs of bounds that can translate to global word- within an algorithm, given that they are affected by bothuinp

length savings ranging from a few bits to proving the existence fanges and finite precision effects. Consequently, awalyti
of ranges that must otherwise be assumed to be unbounded whentools to estimate this error tradeoff quality of bounds for

using competing approaches. We also achieve comparable boundsexecution time, and the existing methods currently lie at th
to recent literature in a small fraction of the execution time, with oy treme of this spectrum.
greater scalability. This paper describes a new method which we show to be
Index Terms—Numerical Analysis, Performance Analysis and capable of calculating bounds on the range or relative error
Design Aids, Algorithms implemented in hardware, Optimization.  ¢4r 4 variable in an algorithm consisting of the basic algébr
operations(® € {+, —,*, /}) that are, in general, tighter in
comparison to traditional methods at the cost of execution
|. INTRODUCTION time and scalability for large algorithms, and bounds that a
UMBER systems are usually restricted to some finiteomparable to more recent literature in an execution time
precision, and as a result, rounding will often occur sihat is orders of magnitude smaller. The motivation for the
as to represent values using the chosen number system. Wiiiistis on floating-point hardware is partially due to the tre¢a
the error introduced by the rounding of any single value magck of existing work discussing word-length optimisation
be small, over the course of an algorithm the accumulation fofr floating-point designs in comparison to fixed-point, and
these errors can cause a significant deviation from the raimipartially due to the recent trends showing that floatingipoi
result, and this could impact issues such as the convergedesigns are becoming highly efficient in hardware [7], ared th
of a computation. growing collection of publications of floating-point cugto
Given that these rounding errors are dependent on thardware implementations [8], [9]. We note, however, that
precision used in the number system, users will often useh® background theory and heuristic described in this work
higher precision than necessary to avoid problems regultioould easily adapted to word-length optimisation for fixed-
from the accumulation of round-off error. However, it igoint designs by using a different model of error.
important to have a method to quantify the precision necgssa We also note that this tool could be of value in proving
given that an increase in precision will imply a decrease idhether it is safe to move to single precision for use on -alter
the performance of the hardware, an increase in the dagtive hardware accelerators, such as GPUs, but the eelativ
movement and an increase in memory use. As an examp#&gk of control over the precision in these devices, except
recent figures for the difference in performance, in terms ef a coarse level, leads us to present results here for FPGA
peak theoretical FLOPs, between single and double precisi@rchitecture. This paper elaborates on previous work by the
is approximately a factor of 1 to 2 for a CPU [1], 9 forauthors published in [10] with a more detailed descriptibn o
a graphics processing unit (GPU) [2] and 14 for the IBNthe search heuristic, several new tests to illustrate thiews
Cell multiprocessor [3]. As well as this performance hite thcontributions of this work, as well as new comparisons agjain
memory use doubles when moving from single to doubkxisting literature, and a broader discussion of its pédéfudr
precision, and any data transfer will take twice as long. ~ word-length optimisation and limitations. A summary of the
For hardware platforms such as FPGAs or ASICs, the choig#in contributions of this work are as follows:
of precision will affect far more factors: the silicon arefyck » the description a new method, based upon a result from
speed, latency, memory use and data transfer. These factors real algebra, to find provable bounds for any variables
especially silicon area which has implications on the piaén within a sizeable computational kernel given input data
for parallelism, can have a great impact on performancet Asi ranges and a precision specification,
is possible to use a number system with any precision on these results demonstrating that applying our approach to an



example (the conjugate gradient algorithm) generally To calculate true bounds for general algorithms, tradétilyn
leads to tighter bounds which translate to global wordhere have only been two main analytical approaches: iaterv
length reductions in comparison to traditional analyticalrithmetic (1A) [20] or affine arithmetic (AA) [21]. InterVa
approaches, arithmetic represents every value as lying within someruate

« results that demonstrate our approach can calculdig,zs|, wherez; and z, are the lower and upper bounds
bounds which are comparable to a sophisticated existirgspectively. The intervals are then propagated through th
solver for range analysis [11]-[13], in a small fraction oEomputation according to basic rules, given in (1), which

the compute time, calculate at each stage the new worst case bound. In order to
« a discussion of the limitations of our approach and itsreate safe bounds, the intervals will also have to be odtiywar
scalability relative to existing approaches. rounded to the nearest number representable in the chosen

This paper is organised as follows. It first discusses inidet@Umber system at each stage.
the current literature regarding the methods that are used t
calculate error bounds for use in word-length optimisation[z1; z2] + [y1;y2] = [z1+y1; 72 + y2]

in Section Il. The new approach, along with a description[z;zs] — [y1;y2] = [#1 — y2; T2 — y1] (@)
of the source of floating-point error and a general methodz,; 2s] x [y1; Y] = [min (z1y1, T2y1, T1y2, T2y2) ;

to represent this error using polynomials, as well as some max (2191, T2y1, T1Y2, T22)]

relevant background theory, is then put forward in Sectlan | undefined if 0 € [yi; 12
Section IV discusses the methods to test the results, which [1; 2] fmin (Ll o) LZ) othervvise:

are then shown in the following section, Section V. Finally, [y1: 2] = Y1l v2? i’ vz )’

Section VI discusses the conclusions of this work and its max ( {1, 5L, 52 52

Y1’ y2’ y1’ y2
limitations that must be addressed in the future. . ) )
However, interval arithmetic suffers from the so-called

dependency problem, where if the same variable is used
twice, information is lost. A trivial example is the follong:

Due to the potential benefits on silicon area, clock speed diod a variablexz which lies in the intervalz;, z2], perform
power that can be obtained by optimising the precision us#te operationz — 2. The interval should be0,0], but the
throughout a circuit, there exists a large amount of liteeat result using interval arithmetic would He; — 2o, 2o — z1].
focused upon word-length optimisation, summaries of whic®everal simple examples can demonstrate how this problem
can be found in [14], [15], as well as optimisation strated@ may cause bounds that are significantly wider than the tighte
create mixed fixed and floating point precision designs [13punds [22]. As a result of these problems, there is an
and a class of work in practical tools for precision analysactive community of researchers mbust computingwho
[16]. One fundamental aspect of these solvers is that thksve developed ways to mitigate this problem. One approach
require a method which can both validate that overflow wils to attempt to modify algorithms to make them ‘interval
not occur for a chosen word-length and calculate the camtthmetic friendly’ at the cost of computational complgxi
of the chosen word-length in terms of the error observed a1 average case numerical robustness [23]. However, whilst
the final computational result. It is interesting that despihe such approaches are useful to obtain reliable proofs uging |
wealth of optimisation strategies, only a handful of methodhe modifications to the algorithm do not necessarily improv
to perform this function. For comparative purposes, thesige true numerical stability, instead the modificationsgim
methods: simulation, interval arithmetic, affine arithimeand reduce the sensitivity to which 1A bounds this error. Idgall
more recently, satisfiability modulo theories, will be ededited is preferable to find proofs of tighter bounds for the unmedifi
in this section. Our approach is not based on any of thealgorithm, unless it can be proven that the numerical pregser
schemes, but rather on results from real algebra which will lof the modified algorithm have been improved.
introduced in Section lII. For this reason, some methods that reduce dependencies

The most straightforward way to estimate an error is througthilst avoiding modifying the algorithm should be mentidne
simulation. The aim of any simulation-based approach is e first of these uses Taylor models with interval remainder
find the inputs which will cause the extreme ranges of tHmunds [24]. This method represents any function over a set
data set. Unfortunately, the size of the search space for tfebounded variables by a Taylor model of orderZ),, and
inputs will generally be too large to explore exhaustivelyd an interval remainder term that bounds the remaining higher
hence the simulation will either require random sampling afrder terms in the Taylor seriek,. Operations on functions in
the input data space [17], statistical profiling [18] or bedzh this form(7,,+1,) are initially performed symbolically, before
upon a representative training data set [5], [6]. Howevéilsty using interval arithmetic to evaluate any of the resultentns
the quality of the estimate can be improved by increasing tivevolving the interval remainders and using an appropriate
size of the training set or the search time, in either case, timethod to bound the new terms that are of degree greater
estimate does not form a bound because corner cases cathba p, such as the Lagrange remainder [25]. After repeating
missed. We also note that while it is possible to use methottiés process throughout an algorithm, the bounds for thé fina
to avoid precision errora posterioriat run-time, at a cost of function could be found by applying interval arithmetic teet
execution time [19], our goal is to calculate bouralpriori symbolic variables of this function and adding the interval
so as to design hardware with the minimum precision. remainder bound. This method also has the advantage of being

Il. BACKGROUND



able to handle complex functions such as division, sindpneos This run-time issue limits the SMT approach to consider
and logarithms by using Taylor formulas, but unfortunatlg only the so called ‘range analysis’ problem which involves
complexity of computing the Taylor series approximation foensuring that over the range of input data, there is sufficien
these functions grows exponentially jn Furthermore, whilst dynamic range to prevent overflow. However, when optimising
propagating the variables symbolically may reduce theceffevord-lengths, determining the range as a result of the sput
of the dependency problem as it allows cancellations, tla fins only a part of the problem; it is also important to perform
polynomial is likely to still involve many dependencies antprecision analysis’, which is typically described as ey
must still be bounded using interval arithmetic, and angnter that the error at the output, caused by the use of a finite
involving the interval remainder bounds will still sufferom precision, lies below a threshold. As such, several of the
the dependency problem in the same way as interval aritbmedptimisation strategies do perform range analysis as a first
in its traditional form. To illustrate this point, one cannsider step before precision analysis [15], but these are all tadge
that interval arithmetic in its traditional form is equiealt to towards DSP systems which do not include division. However,
Taylor models wherep = 0. The second tool based uporwe argue that for a word-length optimiser targeted towards
reducing the number dependencies works by converting thegeneral algorithm, these two problems cannot be viewed
interval constraints throughout an algorithm into logipedpo- independently because the range can be heavily affectdteby t
sitions and attempting to remove dependencies by perfgrmiarrors caused by the use of finite precision. This is typjcall
standard logical manipulations internally before finallyding because these errors may cause a divisor to approach aboser t
the tightest bounds for which these propositions still holgero than under infinite precision, resulting in a largergen
according to the rules of interval arithmetic [26]. Howeveis  such effects will be seen in Section V-A. Combining range
important to note that whilst both these approaches mayceed@nd precision analysis in a single word-length optimiser ca
the number of dependencies, they do not necessarily remdiverefore be seen as an added benefit of our approach because
all dependencies. This means that since both approaches thallows us to choose the minimum exponent width that will
require interval arithmetic to find the final bounds, they argpan the desired range and ensure that the hardware will not
both still subject to the limitations of interval arithmetiand overflow and also use less silicon area.
hence they will often fail to find the tightest bounds. This work describes a new general analytical approach

Affine arithmetic is a method which mitigates the deperwhich can provide provable bounds. It is argued in this paper
dency problem. It works by representing every variable in dhat this method can achieve significantly tighter bound th
affine form given by (2) consisting of a known central valuboth interval and affine arithmetic, while running signifitg
(zo), coefficients of known valuex() and noise symbols() faster, with better scalability, than the SMT approach.
that are only known to lie in the intervéh1, 1]:

[1l. PROPOSEDALGORITHM

T =120+ T1€1 4 Toes + ... + Tnen. (2) The aim of this work is, for a given floating-point precision,
to find bounds on the value of any chosen variable within an
Affine arithmetic then performs all operations on these coef|gorithm, and hence bound the worst case computatiorad err
ficients, ensuring the result is also in affine form. The peabl jnduced. The suggested method to achieve this consists-of se
with affine arithmetic is that many functions, including el era| stages. The first stage involves creating a polynoroial f
multiplication, are not affine and hence approximations tmughe variable of interest, a function of new bounded varisble
be made. Methods to perform these approximations can traggh representing round-off errors introduced after aifipec
the size of the error for computational complexity [27], but operation. This polynomial is then simplified into a canaihic
all cases, there will still be a widening of the derived bagindform, from which bounds for the extrema of the polynomial
Given the limitations of interval and affine arithmeticcan be found algorithmically. An optional final stage ext®nd
recently, a new approach has been published which u$Rg approach for polynomials to rational functions, allogyi
Satisfiability-Modulo Theories (SMT) [11]-[13] to refineeth 3| algorithms consisting of the basic operatéss, —, , /} to
bounds given by interval or affine arithmetic by searchingafo pe automatically analysed.
set of inputs breaking the bounds, using a Satisfiabilityesol  Notation: To formalise the discussion of the method, some
This bound is iteratively refined depending upon the resuligmple notation is used. We consider polynomialsuitvari-
of this test, using a binary search method. The main problegBless,, 45, ..., §,,. We use the notatiod* for a term, which
with this approach is that conditions the SAT solver checks a product of the variables raised to some integer powgrs (3
within the inner loop of this method are created by propagati where X is a vector collecting the exponents (4). We denote

constraints using interval arithmetic and splitting the@ut py |A| the degreeof the term, given by (5).
intervals to improve the bounds [28]. Though interval siplg

can significantly improve bounds, using a basic approach of §* = gMglz gin )

applying ns splits to every variable of a problem consisting A= (A An) w;]er;)\- enN )

of n variables, the number of intervals to be evaluated grows 1”""}\|" ' N 4 Z+ N ’ 5)
= A1 n-.

O(n?), ensuring this approach is not scalable in its current
form. This issue in general limits the use of global optirtia A monomial is defined as a term multiplied by some real
strategies which use interval analysis because they algo reoefficient,i.e. c6*, and a polynomial is the sum of one or
on interval splitting to obtain tighter bounds [29]. more monomials.



Finally, to allow a formal description in the following solutions forf’(d) = 0 for a general multivariate polynomial
sections, in this work the terms in a polynomial are ordereid. also NP-hard. Alternatively, an approach such as finding
o* < 6 denotes thad* precedess*, according to degree zeros by Bernstein Polynomials, has been shown to have

lexicographical order, as described in (6) [30]. computational complexity ofO(npm*!) for a polynomial
of order p consisting ofn variables [32]. As a result, we
| < |Al focus on finding a computationally tractable lower bound
M < A And { or . . . &lower < Yiower and upper boundupper > Yupper-
|1l = Al andJi(ps < Ai andvj <i(u; = A;)) In this work, a new approach is taken to find bounds where

(6) . N .
Viower — Viower aNAYypper — Yupper are as small as possible.

Here we first describe the background theory, which is based

A. Creating a Polynomial Representation of Potential Ranggpon a result from real algebra discovered by Handelmaer, aft
It can be shown that for a real valug the closest radix-2 which a new heuristic based upon this theory is proposed.

floating-point approximatior: of « can be expressed as in (7
[31], wheren is the number of mantissa bits used (referre i . . .
to as the precision), provided there is no underflow (no € corr:lpact set of I|_near mequa_lltle§; > 0, e 5§ =
our approach could easily be extended to support any radix € R"lgi(x) = 0}, if and only if p has a Handelman
by changing this equation). As mentioned in the backgrouﬁapresentanormf the form(9).
section, our approach can ensure underflow will not occur. It
is similarly possible to specify that the radix-2 floatingiput
result of any scalar operatiof® € {+, —,x, /}) is bounded S
as in (8), provided the exponent is sufficiently large to siben p=2 c]ld
range of the result. Operations complying with IEEE staddar
arithmetic exhibit this behaviour.

heorem 1 ( [33]). A polynomialp(z) is non-negative over

)
a€eN” i=1

where each,, is a hon-negative constant

andN is the set of natural numbers

S 9N

— T=allth) (I91] < A, whereA = 275). (1) This theorem can be applied to find lower and upper

2Oy =(z0y)(1+d). ®)  pounds to satisfyiower < f(8) < Aupper by considering

In our approach, a simple compiler takes input pseudo codi@t we are trying to show that the functiori$d) — Jiower
and applies this model of floating-point error on the resu®d Yupper — f(8) are non-negative over the compact set of
of every computation throughout an algorithm such thatyeveinequalities specifying the bounds ah given in (10). By
output variable can be represented by a single polynomil in Theorem 1, this is equivalent to showinf§d) — 4iower has
the error variables, as shown for a simple example in Tabled.Handelman representation of the form (11), or similarly
We currently focus on straight-line code algorithms cairggs  Satisfying (12) for the upper bound. We note the number of
of {+,—,%,/} operators, meaning that we unroll any loopg;onstants:,, in the summation in (9) is unbounded because the
which is a reasonable approach for real-time computatibtandelman representation is only guaranteed to converge as
where the loop bounds are known. Any conditional statemerif number ot vectors tends to infinity [33]. However, when
do not directly affect our bounds procedure if they do natsing this theory to search for bounds, a practical approach

operate on any of the rounded variables. to find such a representation, such as linear programming,
restricts the number of constants to a finite amount [34], at
TABLE | the cost of potentially not finding the optimal bound.

CONSTRUCTION OF POLYNOMIALS

T,y are inputs

A is the error bound determined by the precision, so that

0:] < A S={6 e R"|Vi(A = 6; > 0) A (A+46 >0)}. (10)
Pseudo Code Polynomial Representation of Variable Value n

a=xvy, a=ay(l+01) FB) = Fower = > cap[(A =) (A+8)". (11)
b = a*a; b = (zy(1+61))*(1 + 62) a, BENT X NP i=1

c=b-a ¢ = [(zy(1 +61))*(1 + 82) — ay(1 + 61)](1 + d3)

Jupper = FB) = > cap [ [(A=6)%(A+8)". (12)
o, BENT X N™ i=1

B. Minimising the polynomial I : . .
For our purposes, it will be easier to work with a generalised

Given a polynomial representing the value of a variable, §8qjon of the Handelman representation that we propose,

in Table I, f(8), we want to findypuer = infis,<a f(8),  given in (13), which we refer to as @eneralised Handelman
the lower bound on the variable or function of intent, a”aepresentatiomGHR).

Yupper = SUP|s,|<a f(8). Unfortunately this is a non-convex

optimisation problem, which is NP-hard, meaning tradiélon Theorem 2. A polynomial pys,- is non-negative over the
approaches are unsuitable. For example, calculus style apmpact setS, defined in(10), if and only if py,,. can be

proaches towards bounding a polynomial of orderby represented by aeneralised Handelman Representatain
searching for turning points are unsuitable because finttieg the form(13).



2) Finding GHRs: Unfortunately, in general it is difficult
n B o N o to find GHRs to satisfy equations (14) and (15) and ensure
ponr =D ¢ [ [(AMel — ghudyis (il ghti) s, that the calculated bounds f6f,u.e, and4,,,. are as tight
e =t as possible. The existing method of computing Handelman
Representations is to use linear programming [34]. This is
achieved by setting the objective to eithefin(§;uwer) OF
Proof: max(Jupper), @and creating a single linear constraint for each
=: If pgn is non-negative over the compactmonomial inpower_ghr OF Pupper_gnr» 10 Match the corre-
set S, then it has a Handelman representatiosponding monomial in the desired polynomjal The linear
by choosing p; ; i, it also has a GHR. program would then be able to calculate all the values for
<! If pgnr has a GHR, then because any individughe variablesc;, and the desired boungl. It is important to
variable ¢; is bounded by|d;] < A, any term can also note at this stage that using this method, it is impossible to
be bounded over the sef, |§*| < A}, This means guarantee the global minimum will be found, since Handel-
AR 4+ §* > 0 and A — §* > 0, and because; > 0, it man representations are only guaranteed to converge to the
holds thatp,., > 0, i.e. non-negative over the sét m global optimum as the maximum order tends to infinity [34].
Using this theorem, if we can find GHRs to satisfy (14Yherefore, in order to ensure we get a result in tractable,tim
and (15), then the left-hand side is non-negative over the & must first restrict the maximum order fpg;, to some
of inequalities (10), and from this a guaranteed boundWadlo value p. However, whilst choosing this value of will trade
execution for quality of bounds, the value @fust be greater
F(8) = Atower = Diower_ghr- (14) than or equal to the degree $fin order to satisfy (14) or (15).
Aupper — (8) = Dupper_ghr- (15) Upon formulating a linear program using this method, the

1) E le:In ord d h f this th scalability quickly becomes a significant problem. For an
) =xample:1n order to _emonstratezt e use of this t eor¥irbitrary polynomialf of order p consisting ofn variables,
we will consider the functionf(d,) = 07 — 0; over the set

the number constraints i$”*") and variables is(”}>").
rtlearly, whilst this is efficient for small problems, the esiz
¥ the linear program quickly grows too large for existing
?g’lear programming tools. For example, consider a problem
c3nsisting of approximately. = 30 variables where the
maximum order off is restricted tg = 6. This would consist

of almost 2 million constraints and over 90 million variadhle
Which is unsolvable using current LP solvers.

Due to this limitation of linear programming, in this work
we propose a new heuristic which is guaranteed to terminate
- . . . at the same time as aiming to find practically useful bounds.
minimum lies .atéllz 1/2, leaving the maximum to be where 3) Our approach: The proposed algorithm to bound a
01 = —1/2; this gives the range of (61) to be[~1/4,3/4].  ,ovnomial is based upon finding GHRs to satisfy equations
In comparison, interval arithmetic is unable to calculdte t(14) and (15), similar to the earlier example. To achieve
optimal lower bound, as shown in (16). this, we first expresg(d) in a canonical form, as a sum of
monomials in which each term appears at most once. In order

where eachu; ; is an arbitrary integer vector. (13)

and eactc;, i, j, ;.5 is a non-negative constant.

arguments. We will then demonstrate that IA is unable
calculate the same bounds, before finally showing that GH
can be used to prove the ideal bounds.

Using calculus to calculate bounds ff5;) = 62 — 1, we
know that because this is a convex function, the minimu
will lie where the derivativef’(6;) = 0 and the maximum
will lie at one of the extremes of the range &f. Thus by
differentiating f(é;) to get f'(6;) = 2§, — 1, we find the

1 € [=1/2,1/2] (16) to demonstrate this step, consider the earlier example from
= 01 €[0,1/4] Table I; the polynomial representation for the variablén
=087 — 81 € [~1/2,3/4] this example can be expanded into the polynomial (19) when

To find bounds using the theory presented in this sectidifdlecting the variablé;, since the worst case value of this

we want to search for GHRS to satisfy (14) and (15). Two sudgriable is trivially known to lie at the extremes.

GHRs areplower_ghr = (1/2 - 61)2 andpupper_ghr = (1/2 -

51)(1/2 + 61) + (1/2 + 61). After equating these respective ~ /(8) = —ay(ay B 12) ;my(ZQacyQ— 1)é1 _szy?s? (19)

functions, as shown in (17) and (18), we fifRg e, = —1/4 —x7y 01 — 227y 0102 — 27y 6102

andyupper = 3/4. Finally, by Theorem 2, we now know that  After this expansion, it is possible to ‘cancel’ each indivi

f(01) = (=1/4) = 0 and 3/4 — f(d1) > 0 or that—1/4 < yal monomial from the left hand side of equations (14) and

f(01) < 3/4, thus recovering the optimal bounds. (15), using a polynomial of the form (20), and we then note

that the sum of polynomials created in this fashion would be

81 — 61 — Fower = (1/2—=61)>  (17) a GHR. After cancelling all the monomials, we would be left

61 — 61 — Aower = 1/4 — 61 + 07 with a constant from which the bourigl,.e, @and¥,pper could
Frower = —1/4 be derived in a similar fashion to the earlier example.
Aupper — (01 — 01) = (1/2 = 61)(1/2+ 61) + (1/2+61)  (18) .
Aupper — 01 + 01 = 1/4 — 6? +1/2 EZ h(8) = c [J(Alrsl — g#a)s (Als] 4 §#s )P (20)
Yupper =

j=1



TABLE I
EXAMPLE POLYNOMIALS OF THE FORM (13) TO CANCEL THE MONOMIAL —x2y25f62 FROM f.

Approach Number 1 2 3 4
w= E[LOO)L [0,1]) n= 2[21700)]» [0, 1) w= ((EJ%OO)L [0,1]) n= EJZ 1]
. a = (0, a = (2, a = (0, o =
Handelman Coefficients 8= (2.1) 8=(0.1) B=(1.1) B=1
C:(E2y2 c:w2y2 c:a:2y2 C:I2y2
Polynomial 22yZ (A + 01)2(A + 02) 22y% (A — 01)2(A + 02) 222 (AT +02)(A + 02) | 22y° (A £ 625,)
wy(zy — 1 — ayA®) wy(zy — 1 — 2yA®) wy(vy — 1 — 2yA?) wy(zy — 1 — 2yA®)
Iwg(%ﬁ/ - i 5 gwyﬁ)él ixg(%ﬁ/ - i ;r) ;zyﬁal Iwg(gﬁ/ - 225)15 Izggzy - 1)
i -y - 2 -y - 2 'y - 2 T Y 02
New Polymomialy +1 | 221 — a)2 Ta?y? (1 - M) HOCIRIINT Ta?y?o?
+222y% (1 — A)51 52 +222y% (1 4+ A)61 62 +222y%681 65 +2224%61 65

The complexity of this approach is that there are marallows the user to trade execution time for the quality of the
monomials inf(d) to cancel, and many ways to cancel anpound, and is discussed in more detail in Section V-C.
given monomial using polynomials of the form (20). For exam- Choosing SignsHaving chosen the terms that will be used
ple, consider again the polynomial given in (19), Tablelust to create the polynomial, the next stage chooses the sidpes. T
trates several possible choices of these polynomials thdtic signs are chosen to reduce as many of the chosen low order
be used to cancel the highest order monomiaty267d,) monomials as possible, as well as the original highest order
from this example. Our proposed heuristic attempts to materm to ensure algorithm termination. For example, froml@ab
the best choices of these polynomials. It is based on the id&af 22y < 1, the second approach would be best as it would
that whilst canceling a high order monomial, it is possibldecrease the coefficient of the monomia) whereas the first
to reduce the coefficients of lower order monomials at thepproach would increase this coefficient.
same time, as shown in Table II; this will result in tighter Choosing the initial multiplier. The final stage involves
bounds than cancelling each monomial independently. larora&choosing the initial multiplierc for the polynomialh. This
to ensure termination, detailed in Section 1lI-C, the h&lizi is a scalar chosen to be as large as possible whilst ensuring
selects the highest order monomials and chooses polyrmmihiat when the polynomial is added §§ no coefficient inf
to remove the higher order monomials in such a way thahanges sign. This ensures that at least one coefficient gets
they also reduce the absolute value of the coefficient of loweancelled at every iteration of the algorithm.
order monomials. The overall heuristic is formally given in
Figure 1; the rest of this section gives a high level dis@mssiC. Algorithm Termination

of the rationale behind the various stages of the heuristic. At each iteration of the loop in Figure 1, a polynomials

Selecting Cancellation Terms.The first stage involves formed which reduces the absolute value of the coefficient of
choosing which lower order monomials are suitable to libe highest order monomial ifi. The minimum reduction is
modified at the same time as attempting to cancel a highiatermined by, as defined in Figure 1, which is a function of
order monomial. Even for the simple example given in (19)erms present in botli andh. After the update, the term from
the choice of cancellation terms will always depend upon thiewhich determines this minimum reduction value is removed
input. If 2zy > 1, the first approach from Table Il would be thefrom f. The algorithm then repeats the process.
best of the four approaches as it would decrease the dgrm Termination is guaranteed because at each iteration of the
towards zero. On the other handify = 1 the third approach loop, the absolute value of the coefficient of the higheseprd
would be the best of the four as the tesmmwould already be monomial inf is reduced by a factay, which is a function of
zero and hence the first two approaches would create a ribw absolute values of the coefficients of monomialg iand
monomialdy, which is a low order monomial that would havethe cancellation polynomiail, and no higher order monomials
to be later removed. Thus the heuristic searches for nam-zare created. If new lower order terms are created, the value
monomials inf whose product will equal the desired highepf ¢ to remove these whilst cancelling the same high order
order term. It performs this search initially looking to ki term will be the same as the value @fwhich created them,

a set using lower order terms as these are the most desiraniebecause does does not decrease, eventually the highest
terms to reduce, and uses higher order terms if necessary.order monomial will be cancelled, ensuring termination.

Selecting a Subset of Cancellation Termi§.we were to o
create a monomial which reduces all the terms selected fn Division
the previous stage, the size of the canonical representafio Because Theorem 2 only applies to polynomials, the above
the form (20) grows exponentially in the number of termsnethod cannot be directly applied to algorithms includiig-d
As a result, a tuning factor has been added which checkssibn. However, we note that any computation which consists
the number of terms found from the previous stage exceedsfathe basic operator§+, —,*, /} can be converted into a
user chosen maximumu. If the number of terms exceeds thigational function by first applying the multiplicative mdduf
maximum, a subset of: terms from the previous stage areerror and then performing simple algebraic manipulation, a
chosen, and a single extra high order term is added to ensexample of such manipulation is shown in (21); we can then
the desired monomial still gets cancelled. This tuningdactperform an iterative refinement to calculate a bound.



Algorithm ~ = BoundPoly(g, A) e . . - ~
/I BoundPoly takes a polynomigl in the formal vector variablé, and a real E. Combmlng Handelman representations with existing ap

/I bound A on the absolute value of each eleméntl < i < n). proaches to bound error
I 1t et lower bound op(6) valid overs € [—A, +A]™. . ) . . .
retuns a lower bound 0p(3) valid overd € [~4, +4] The main benefit of our approach is that it can take into

Setf = —g account dependencies between variables within a polynomia
while f is not constant . . . . . .
Find greatest monomial iff: c& when calculating bounds, unlike interval arithmetic. ®inc

affine arithmetic (when bounding non-affine terms), Taylor

/I Selecting C llation T . . . . g
O o g Zencelation ferms series with remainder bounds (when bounding the final poly-

Set degree = 0;

repzat nomial as well as high order terms and any actions with the

egree++; . . . .

Using a greedy search algorithm find a $etvhere each element is a remamder bou.nds_), anq g|0ba| .optlmlsanon methOd'S gsmg
monomial of the forma; 6% in f such that (lettings = |S): interval analysis, including the inner loop of SMT (inside

it e iI2sl < degree) the HySAT solver), are all dependent upon interval arith-
metic to some degree, replacing interval arithmetic by our

/I Selecting a Subset of Cancellation Terms approach within these methods could potentially improwe th

' (Zo?mn;)subseS’CS of the m lexicographically lowest monomials i final bounds, albeit at the cost of increased execution time.
Add an extra monomiata* / [1|%] 6*i to 5 to However, as affine arithmetic and Taylor series with remaind

o Plete the cover bounds control the scalability by controlling the size oé th
Let §" = S polynomial, the size of this increase in execution time wloul

Letn’ = |51 also be controlled. Furthermore, a combined method would be

/L/ect:r;%%sizg iigr;;ico - et - able to handle_ non—polynomigl functions sych as squaresroot

Modiy the sign of thisgﬁgnf;igl%fi;;ng‘f’“"m'a : and exponentials. However, in the remainder of this paper,
S = 5" U {|dlsgn(c)IT" T sg(a;)67} \ {d6P}. we have decided to focus on the algorithm described in this

for (each monomiah; 6> in S’) section so as to quantify its benefits and limitations diyect
Create a new polynomigl; = (A*i! —sg(a,)5™%) with the existing methods.

/I Choosing the initial multiplier

Createl, — H?;l i IV. TESTING METHODOLOGY

tet C be the set of terms present both fnand inf. = In order to characterise the performance of this work, it has

f?rai?icl?- ‘?éigec’n&';f et he comesponding coeficient I and be been compared over several tests using a variety methods. Th

Formg = min(|i/lhs]) test cases are those described in the comparative works [11]
g ompUeS = A ah [12], [27] as well as an iteration of the conjugate gradient
Sety = —f. algorithm [35] applied to a ‘toy’ matrix of order two (the

operations given in Figure 2); the interest behind the ahoic

of the conjugate gradient algorithm is to demonstrate our

approach can be applied to an example of a real algorithm

that is used in finding the solution to a system of linear
61 6164 equations. Though it is acknowledged that for such a small

02+ 03/04 0204+ 03 (1) matrix order, the conjugate gradient algorithm is unlikedy

be used, it is large in terms of total operations compared to

2 results reported in [11], [12], [27], and it provides mpie

real example on the effects of limited precision computetio

Fig. 1. Cancellation Algorithm.

Assuming the rational representing the range of the cho
variable is of the forrn/d, wheren andd are polynomials,

then we need to Show/d > Fioue inside the compact set of as well the highlighting the scalability issues. The inpiais

[ [ -Wri —dA > I

mtgnt. _Ford >0, th'? CQUId be re written as Biower 2 0, the test are shown in Figure 2, these are chosen to ensure the
which is a polynomial inequality. The previous approach “Afatrix is symmetric positive definite, a property required f
then attempt to find a GHR fot — d4;,w..; If @ representation y P » @ property req

. . . h nvergen f th nj radient algorithm, whil
is found for a value of;,.,.-, We tighten the valué;, ¢, if it the convergence o ¢ € co Jugate'g adient algorithm, whils
. > . the input vector is specified as an interval to demonstrage th
fails then one can loosen the val§ig,,.... A similar approach . )
algorithm can calculate bounds dependent upon input ranges
can be taken for the upper bound.

L . . o nd finite precision. As mentioned in Section Il, the tesesas
In order to minimise this search time, this is performe?

as a binary search with the initial range given by equatiorr1Om the comparative works are based on the range analysis

(22), where the ranges af andd are found using the original problem as opposed to the effects of finite precision, but

: : h re incl monstr. h r roach is al
method on the numerator and denominator polynomials alo;leese are included to demonsrate that our approach is also

Using this range also has the added benefit of checking r tpllcable to this problem and performs well in comparison.

. . then illustrate the greater scalability of our approach
the denominator does not include the zero value. Note that If_.. gre Y app .
. . relative to these comparative works by demonstrating that i
the denominator does contain a zero not cancelled by a zefg .. . . L .
. L can still find bounds when adding finite precision effects to
in the numerator, then no such bound exists in any case.

these problems.

The methods to which our work is compared help to
Ao Ao A determine where our approach lies within a hierarchy ofrerro
Mmin Tmas Tmaz Mmin )y bounds, given in Figure 3, where the higher the relativererro

‘ the worse the bound.

[min(nm,in Nmaz Mmaz Mmin )7 (22)

maX( ) ) )
dmaz dmzn dma:c dmzn



A= ( 1025  —9.75 > = ( 0 ) be ( [10.25 10.75] ) for every precision. Instead, this is approximated by Monte
—9.75 1025 7 o [9-259.75] Carlo simulation using the MPFR multiple precision floating
library [36] (distancec). However, one must note that such
Z; - Z; 8 ;‘ﬂ:j“;gl/aden 88 an approach no longer returns a provable bound, and the
r = b 3) Tro = auds (19) difference between our approach and this bound is a function
T3 = ba ] 1 =2z1 + o0 (20) of three factors: the quality of our calculated bound, the-si
gn—“ —nn () T2 = L2 T2 (21 ulation time, and the accuracy of the standard multipheati
n_t2 = T1T2 (6) re1 = aqi (22) . . . .
Snew = On_t1 + Onsz (7) ri2 = 0go (23) model of floating-point error. The model of error used in this
qu = Andi (8 T =71 =T (24) work, and throughout the numerical analysis literatureinis
de2 fij? 82)) 22 :j25* T2 gg; practice a conservative approximation because eacis a
Zii - Az;d; (11) 62{27: riry (27) function of the input variables, but this information istioas
@ = qu+ g2 (12) dn_ta =Tar2 (28) an example, multiplying any value by any power of two will be
‘fdijﬁ?j;l 83’3 %";«wé:ei’;—gll: On_t2 gg; error free in the absence of overflow or underflow. Therefore
g2 = da * g2 (15) di = Bd; ? (31) there will exist a distancd between the ideal bound and the
Qden = 0td_t1 + aa_g2 (16) dy = Bdy (32) best any approach using this model of error could possibly
Fig. 2. Pseudo Code for one iteration of the conjugate gnadiggorithm achieve. As SU(_:h' we are most mtereSt?d to find out h,OW far
on a 2x2 matrix to solvedz = b. our approach differs from the best possible bound achievabl

using the model of floating-point error generally used in
numerical analysis literature (distaneg Unfortunately, as
Derived Bounds has been discussed in Section IlI, finding the best bound
— — — Ideal Bound T . . L .
...... Simulated Values under the multiplicative model of floating-point error ifves
polynomial optimisation, which is NP-hard. Thereforesttoo

is approximated under our test labelled ‘Random sampling
over poly’, where we apply Monte Carlo simulation over the
relevant ranges for all the variables to the polynomial we
created which bounds the range or relative error of the tresul

4 Relative Error

Existing Approaches

Our Approach
JL (distancef). It should be noted that if distangiecan be shown
*L -|- 1 - Best Bound under Mult. Model to be small, this will imply our approach lies close to the
{517 Simulated Value under Mult. Model optimal bound achievable (since it is knowna priori that
° f > e > 0). Finally, distancec is also reported, so as to
—_x_|_+1_ BestBound gain an approximate estimate of the appropriateness of the
.............. - Simulated Value using MPFR multiplicative model of error. As botla and f are simulated

values, it cannot be guaranteed that f, but if ¢ is much
‘ _ larger thanf, it is likely to be a result of the conservative
Fig. 3. Hierarchy of Error Bounds. nature of the multiplicative model.

The initial aim of our results is to demonstrate that our

approach is better than existing analytical methods thaige As our approach consists of several stages, the main stages

of which are creating a simplified polynomial and finding a

bounds (d|stance_ from Figure 3?)' To Fh's e_nd, We Combarg,und for this polynomial using Handelman representations
our approach against Interval Arithmetic, Affine arithroethnd 10 help quantify the contribution of each of these stages, we

Taylor models with interval remaind_er bounds restricted t((:)ompare the result of bounding the polynomial in canonical
1st, .2nd and 3rd order where p_ossmle. The reason we foFm by applying interval arithmetic against our full appot.
restricted to these small orders is that the Taylor model fefne should note that for algorithms which do not include
inversion is found accordln_g 0 (23), Whe_zféJT(_f(a:)) s the division, the test of bounding the simplified polynomialngi
range off(z) calculated using interval arithmetic, and when terval arithmetic is comparable to applying Taylor madel
large multivariate polynomial is raised to a high power when

. 4 . approach without any intermediate bounding of higher order
calculating (7, + 1,,)*, the number of monomials grows too : : . . _
/ . . terms, which would give the tightest bound achievable using
large to compute in a reasonable execution time.

Taylor models. For algorithms which do involve division,rou
test which bounds the simplified polynomial using interval
arithmetic simply bounds the numerator and denominator
polynomial separately and performs interval arithmetic on
(23)  these two results instead of using the approximation giwen b

It is also desirable to find out how far our approach lie@3). This however remains an interesting test as it allosvou
from the ideal bound (as shown by distarigeUnfortunately, focus on quantifying how our method of applying Handelman
finding the ideal bound is computationally intractable, fior representations to bound a rational function can find tighte
would involve calculating the potential values of everyigate bounds than any approach that is fundamentally based upon
and from these values determining the worst case error lasgerval arithmetic.

1 - (=D TUINT((T, + 1,))""

AR DUl ¢ (A




107“ —*—Interval Arithmetic
V. RESULTS oA
A. Analysis on our approach on an iteration of the 2x2 il |“siewimes ]
. . . | ——IA on simplified poly
Conjugate Gradient Algorithm |2 our Approach
| andom sampling over poly

10k | —&—MPFR Libraries

1) The effects of finite precision on rangé&igure 4(a)
highlights the effect precision has on the conjugate gmdie&%’ )
algorithm and the quality with which our approach can chars "
acterise this effect. It shows how the bounds on the range |
of the variabled, after an iteration of the conjugate gradient
algorithm (operation 31 from Figure 2) changes as a function |
of the precision, for the tests mentioned in Section IV. On

these graphs, the vertical dotted lines illustrate the eslof ®" " Bound on Floating Point Error (&)
precision for realisable word-lengthgg. the difference in  (a) Bounds on the range of the variable (operation 31 from Figure 2).
word-length between any two adjacent dotted lines is one bit s
. . . .po . 10" g~ =& 1st Order TwIR
It is clear to see there is a significant difference between th BaywANG

10" & | ——1A on simplified poly

ranges computed by all the analytic approaches, as welleas th o
simulation estimates, in comparison to interval arithmet == :
comparison to other approaches, our approach generally find *

the tightest bounds, the exception being when the precision{:
very small where affine arithmetic and Taylor series methods. «
can calculate bounds where our approach fails. This is lsecau  «'
in these cases, bounds for the error variables are propattio -
to the bounds on the input ranges, so the first order approx-
imation of division retains most of the information, whesea | | P | | L | L
our heuristic struggles without such a simplification. " Bound on Floating Point Error (4)

(b) Bound on relative error of CG ‘Residuat; (operation 24 from Figure
2) is the nominal ‘residual’, whilst; is the residual taking into account
floating-point error.

2

10'

10

TABLE Il
RESOURCEUSAGE, MAX FREQUENCY AND LATENCY OF CONJUGATE
GRADIENT IMPLEMENTATIONS

10 T T
Method Precision | Slices | Frequency| Latency Wl . Ic?u?";\:;f;g:d o ¢ R ]
(# bits) (MHz) (cycles) <D> ae;ns;r:i;:rxggng over poly o
Our Approach 7 1663 367 161 s ]
Affine Arithmetic 8 1710 | 360 165 A ?
3rd Order Taylor 9 1923 350 169 510 F E
IA on Simplified Poly 9 1923 350 169 i
2nd Order Taylor 10 1964 314 173 210 +
IEEE Single Precision | 23 5587 286 277 5 x
IEEE Double Precision| 52 15672 | 143 425 o s s s ¥ o 3
1st Order Taylor 00 00 N/A N/A ol 8 ¢ 558888 g ° 1
1A [e's) 00 N/A N/A +
& 8

TABLE IV WE s s bk M 1

COMPARISON OF EXECUTION TIMES TO COMPUTE RANGE O#; AND - , , \ \

20 25

RELATIVE ERROR OFr; FOR A GIVEN PRECISION. Operation within GG Pseudo—code

(c) Growth in Relative error throughout a CG iteration. Gytiems corre-

Method Average time to | Average time to dt d de in Fi 2

compute range of| compute relative Spond 1o pseudo code In Figure .

dy (S) error of ry (S)

Inti I Arithmeti 0.003 0.003 . . . . .
:ﬁ?nr;a,_\,itumz?clc 3.7 35 Fig. 4. Range and Relative error results for various opamatin Conjugate
Taylor Model of 1st Order 5.3 8.26 Gradient example.
Taylor Model of 2nd Order 48 53
Taylor Model of 3rd Order 3700 N/A
Our approach (set-up time) 3660 150 . L. . . .
Our approach (each iterative refinemerjf) 2100 35 performing optimisation for a given bound on range using all

approaches targeting a desired rangéasf. In this test, these

It is also interesting to note that this graph demonstratégures are post place and route results where the floating
that both stages of our approach provide significant benefitsint components are generated using Xilinx Coregen [37].
towards obtaining a better bound, for performing intervitha From this table, our approach can achieve a reduction in
metic on the simplified polynomial is significantly betteath slices in comparison to optimising the design using therothe
interval arithmetic in the traditional sense, whilst boimgd approaches, and significantly larger savings in comparison
the simplified polynomial using Handelman representationsing full IEEE single or double precision arithmetic. Isal
improves this bound even further. demonstrates the design would run at a faster frequency and

In order to view how these results translate to actuah iteration would complete in fewer cycles by performing th
hardware savings on a FPGA, Table Il shows the numbeptimisation.
of slices required, the latency, and the maximum frequency2) The effect of finite precision on relative erroEigure
achievable when using single or double precision units,yor d(b) demonstrates the bound on relative error. This figure
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clearly demonstrates that the relative error decreasels wafpplied to a polynomial consisting of approximately 2 roitli
precision, and that our algorithm is capable of tracking thmonomials. The execution time of our approach is more
relationship well, unlike all the other methods operating ocomparable to Taylor models of higher orders firstly because
the original code. The reason the other approaches canti@y retain many more monomials and secondly because the
track this relationship is that almost all of the relativeoer time to compute the approximation for division is large.
terms will be of second order or greater because they will be awhile the execution time for computing the relative error in
function of the input variables multiplied by some finite gire Table IV appears much smaller, we cannot bound a variable
sion error. However interval arithmetic retains no infotima further through the conjugate gradient algorithm becabse t
about the polynomial, whilst affine arithmetic arithmetiglyo function representing relative error is much larger in degr
retains first order information and approximates higheemsd and number of monomials than the associated polynomial
and the tests using Taylor models only retain first and secorepbresenting range. To explain this, let us describe thamam
order information. As a result, the bounds reported will bealue of the rational function by/d, and the rational function
based on approximations of higher order terms, and thdseluding floating-point error by%/d. Using this notation, for
approximations must be treated independently, thereftire the graph in Figure 4(a), we find the bounds of the rational
dependencies are lost. In contrast, by retaining all theriné- function 7./d for the upper and lower bounds, whereas when
tion throughout forming the polynomial, as shown by applyinfinding the relative error in Figure 4(b), we find bounds of the
interval arithmetic on the simplified polynomial, it is pésie rational function[(7/d) — (n/d)]/(n/d) or (Ad — dn)/(nd).
to obtain better bounds, whilst the benefit of our approach With this larger function, the squaring operation (openat27
handling dependencies within the polynomial using Handef Figure 2) results in a polynomial that is too large to cotepu
man representations results in even tighter bounds. in tractable time. This additional complexity also affecther

3) Finite precision effects throughout an algorithnFig- approaches, notably the computationig{r, ) takes too long
ure 4(c) demonstrates how the error as a result of usiagd too much memory to compute using a 3rd order Taylor
a chosen finite precision grows throughout the conjugaé@proximation. Note, however, that the size of this benchkma
gradient algorithm. The abscissa represents the opeiiatthe is still significantly greater than those reported in [11]3]
algorithm, corresponding to the line numbers given in Fegur
This demonstrates that as the number of dependencies gr%w,
the relative error grows, along with the difficulty to bound .
this error. This graph also highlights some of the deficiesici 5
of simulation methods: at several points, the relativereiso
high for both the simulation methods, but undefined using the, *
two analytical approaches. Upon further inspection, it ban g
shown that over the specified input range, the denominator inﬁzzf
the relative error ternfnd) can legitimately include zero, asa £
result of input ranges. This demonstrates the limitatiothef )
simulation approach.

4) Execution time of our approach on Conjugate Gradient: o=
It should however be mentioned that analysing bounds on the v weines wsiner seoinez osines st
range of the variablé, or d2. (lines 31 or 32) and thel relatllve (a) Comparison vs AA. Range widths found for the benchmarksgusi
error for the value; or r, (lines 24 or 25) after one iteration our approach and AA are normalised with respect to the ‘idealiies
was as far through the conjugate gradient algorithm that oustated in [27].
approach could calculate bounds in a reasonable amount of | "
time. The times for all approaches to calculate the polyagmi ¢ [ ™ ]
calculated as an average over many test runs on an Intel
Xeon E5345, are given in Table IV. In this table, because theg
conjugate gradient algorithm includes division, our apigio i
requires the iterative refinement mentioned in SectiorDIlI-
so we have separated the computation time for our approac
into two stages: set-up time - the time to calculate theahiti
bounds to perform the iterative refinement, and the time for
each iterative refinement. As many iterative refinements are ° @ @ © ® © @ @ ® ® = = n = @ 2
required to calculate the bounds for each point on the graph, —=* R e ‘
this is as far through the algorithm that we could calculata i (1) comparison vs SMT. Range widths found for the benchmarksgus
reasonable time, especially given the scalability issulilw  our approach and AA are normalised with respect to the valizedsin
will be discussed in Section V-D. In comparison to interval [12] [13-
arithmetic and affine arithmetic our approach is signifisantrig. 5. Range comparison against published methods.
longer as these approaches significantly limit the number of
monomials in the polynomial, allowing a faster solution emd Figures 5(a) and 5(b) show the performance relative to the
in contrast, when finding the range df, our heuristic was approaches given in related works, with the actual valuesgi

Range analysis vs other works

Il Basic AA
i

Ral

Normali

- o owm

mitch  maty  thump  gpf

3|

Normalised R:
-

2|




TABLE VI

TABLE V EXECUTION TIME OF OUR APPROACH ANDNUMBER OF
COMPARISON OFOUR APPROACH VSAA USING CHEBYSHEV APPROXIMATIONS APPROACH27]. MONOMIALS FORAA BENCHMARKS [27].
Infinite Precision Infinite Precision
Basic AA AA with Chebyshev Approx SIA Our Monte Carlo Ideal Time using Time using Number of Monomials
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper AA (ms) Our Approach (ms)
Poly Approx -0.0541 0.865 0 0.6931 0 0.8108 0 0.6932 0.0003 0.6929 0 0.6931 Poly Approx 232 20
B - Spline 0 -0.13 0.17 -0.05 0.17 -0.125 0.1667 0 0.1667 0 0.1664 0 0.1667 B - Spline 0 85.8 176 4
B - Spline 1 -0.33 1.29 -0.05 0.98 0.0417 0.9167 0.1667 0.6667 0.1667 0.6667 | 0.1667 0.6667 B - Spline 1 94.0 143 4
B - Spline 2 -0.21 1.17 -0.02 0.89 0.0417 0.9167 0.1667 0.6667 0.1667 0.6667 | 0.1667 0.6667 B - Spline 2 95.1 149 4
B - Spline 3 -0.17 0.13 -0.17 0.05 -0.1667 0.125 -0.1667 0 -0.1666 0| -0.1667 0 B - Spline 3 83.5 173 4
sgf -9803 9525 9793 9487 -9821 9671 9765 9487 -9301 8874 9453 9303 sgf 1288.9 370 10
iru -95000 128000 -95000 128000 |  -148350 152450 -91390 124160 -53581 87743 | -55100 87900 iru 1327.2.9 186 11
rand -192 192 -192 192 -256 256 -192 128 | -29.2096 36.432 -36 64 rand 4139 304 9
mitch 223 881 223 881 -1087 1121 719 641 -7.9817 525.5058 -8 641 mitch 764.8 209 10
maty -4800 100000 -4800 100000 | -100000 100000 -4800 100000 0.2 9487.4 0 100000 maty 288.4 124 3
thump -60000 1000000 -60000 1000000 |  -1065400 1065400 62400 1001200 0 930990 0 940000 thump 627.3 287 5
gpf | -1.2E+08 1.19E+08 | -1.2E+08 1.13E+08 | -8416264 8417464 | -7261200 7098000 0 1013500 3 957000 gpf 2545.8 300 45
rat | -2.1E+08 3.3E+11 | -2.1E+08 3.3E+11 | -3.3E+11 3.34E+11| -6.1E+08 3.34E+11 0 3.32E+11 -1.03 3.3E+11 rat 1053.2 227 6
With Finite Precision . = 27 10) With Finite Precision . = 27 10)
Our SIA Monte Carlo Time using Time using Number of Monomials
Lower Upper Lower Upper Lower Upper AA (ms) Our Approach (ms)
Poly Approx -0.00331 0.814183 “1E-04 0.696197 | 0.000556 0.694708 N/A 2588 1280
B-Spline 0 | -0.12598 0.167646 | -2.8E-17 0.167646 |  3.8E-11 0.167066 N/A 214 8
B-Splinel | 0.036691 0.921643|  0.16325 0.668954 | 0.166967 0.667602 N/A 722 624
B-Spline2 | 0.036689 0.921644| 0.166341 0.671402|  0.16681 0.668224 N/A 525 304
B-Spline 3 | -0.16683 0.125163| -0.16683 1.39E-17 | -0.16645 -4.7E-15 N/A 466 128
sgf -9930.96 9780.957 | -9949.73 9608.532 | -9245.45 8817.592 N/A 184527 11738
iru -149425 153520.6 | -91996.1 124927.5 | -54465.3 87326.63 N/A 6378 4440
rand -258.259 258.2588 |  -193.41 242.08 | -33.5023 32.21554 N/A 22133 4608
mitch -1095.63 1129.625| -716.476 664.7615 | -7.97463 538.1909 N/A 9379 2786
maty -10034.4 10034.42 | -4814.08 10034.42 | 0.298266 9870.291 N/A 285 40
thump | -1072698 1072698 63759 1069686 |  2.09488 937919.5 N/A 551 224
gpf N/A N/A N/A N/A N/A N/A N/A N/A N/A
rat | -3.4E+11 3.37E+11| -9.4E+08 3.37E+11 | 2234.393 3.31E+11 N/A 4767 1080
TABLE VIl
TABLE VI EXECUTION TIME OF OUR APPROACH ANDNUMBER OF MONOMIALS FOR
COMPARISON OFOUR APPROACH VSSAT MODULO THEORY APPROACH[11], [12]. SMT BENCHMARKS [11].
Infinite Precision [ Infinite Precision
AA SIA Our SAT Mod Time using SMT Approach (ms)| Time using Our Approach (ms)| Number of Monomials
Lower Upper Lower Upper Lower Upper Lower Upper
Doppler g1 313 362 313 362 313 362 313 362 Doppler g1 ~100000 118 2
Doppler g2 -473252 7228000 -473252 7228000 6268 7228000 6267 7228000 Doppler g2 ~100000 148 4
Doppler q3 213 462 213.4 461.4 213 461.4 213 462 Doppler g3 ~100000 116 3
Doppler g4 25363 212890 14790 212890 45539 212890 45539 212890 Doppler g4 ~100000 176 6
Doppler g5 -80 229 -32.0034 488.7892 0.0339 137.6386 0 138 Doppler g5 ~100000 3000 10
Rational q1 125 250125 -249875 250125 125 250125 124 250126 Rational g1 ~100000 121 2
Rational g2 1 10001 -9999 10001 1 10001 0 10002 Rational g2 ~100000 124 2
Rational g3 -20000 20000 -20000 20000 -20000 20000 -20001 20001 Rational g3 ~100000 114 1
Rational g4 | -2.5E+07 1E+08 -1E+08 1E+08 1 1E+08 0 1E+08 Rational g4 ~100000 189 3
Rational z1 -250 369 FAIL FAIL 25.01 125 24 126 Rational z1 ~100000 4000 4
Rational z2 FAIL FAIL FAIL FAIL FAIL FAIL -67 67 Rational z2 ~~100000 N/A N/A
Newton z1 | -1250360 1170360 FAIL FAIL -3615080 3405080 | -1205361 1135361 Newton z1 ~100000 171 7
Newton z2 -5753 35769 FAIL FAIL -2.57E+04 3.58E+04 1 35769 Newton z2 ~100000 142 6
Newton z3 FAIL FAIL FAIL FAIL FAIL FAIL -39 38 Newton z3 ~100000 N/A N/A
Newton z FAIL FAIL FAIL FAIL FAIL FAIL -69 72 Newton z ~100000 NIA N/A
With Finite Precision & = 2~ 10) With Finite Precision & = 2~ 10)
SIA Our Monte Carlo Time using Time using Number of Monomials
Lower Upper Lower Upper Lower Upper SMT Approach (ms) Our Approach (ms)
Doppler g1 | 313.0177 361.7823| 313.0764 361.7823| 313.1927 361.5274 N/A 165 8
Doppler g2 -487963 7242711 | 5903.514 7242711 7154.64 7183615 N/A 292 32
Doppler g3 | 212.5668 462.2332| 212.8682 462.2332| 218.0062 460.9534 N/A 203 18
Doppler g4 13809.32 213868.2| 45261.52 213868.2| 48330.72 208073.4 N/A 576 216
Doppler g5 -35.848 524.992 0.032124 138.6192| 0.088272 127.0179 N/A 31000 280
Rational q1 -250608 250858.3 124.8779 250858.3| 125.0591 250134.7 N/A 238 10
Rational g2 -10018.5 10020.54 |  0.999023 10020.54|  1.00445 9999.922 N/A 189 6
Rational 3 -20019.5 20019.53 -20019.5 20019.53| -19968.4 19980.35 N/A 145 2
Rational q4 -1E+08 1.01E+08 0.997073 1.01E+08| 1.000176 99690820 N/A 314 36
Rational z1 | -25.0639 25.05885 | 24.91244 126.8 | 24.94171 124.9827 N/A 13000 26
Rational z2 FAIL FAIL FAIL FAIL FAIL FAIL N/A N/A N/A
Newton z1 | -2487036 2507516 |  -2487057 2227621 | -2395376 2164654 N/A 691 29
Newton z2 292243 292307.4 -200614 292307.4| -139.109 275900.8 N/A 517 8
Newton z3 FAIL FAIL FAIL FAIL FAIL FAIL N/A N/A N/A
Newton z FAIL FAIL FAIL FAIL FAIL FAIL N/A NIA N/A
1 1 Exact times not reported, but all benchmark times of ord@sli [11], [12].

T
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in Tables V and VII. In Figure 5(a), the ranges for the various K
approaches are normalised against what is quoted as tHe idea
range given in [27]. It is interesting to note that in many E
of the test cases our approach matches the ideal, and in all
but one our approach is superior to the other methods. As |
these examples do not include any finite precision effects,”
this difference is not a function of the model of error, rathe
the fact that our approach does not perform well in this onew 5
case demonstrates that our heuristic does not always find the
best Handelman representation. This is a likely to be atesul . * ‘ ‘ ‘ ‘ ‘ ‘ ‘
of targeting our heuristic mainly towards minimising finite ~° ' ® MaxNumbér of Cancellation Polynomials ~ © ©
precision errors as opposed to range analysis. Once ag@iflaverage Execution Time to Compute update of ‘m’ Canceltafolyno-
this graph also illustrates that both stages in our algarithmials.

have significant effects on the final quality of the bound,
since simply applying the first stage to create the polynbmiaz
and using interval arithmetic on this polynomial can give;
comparable results to the existing methods for many of thg
benchmarks, whilst applying the second stage improves the
bound further. It is also important to note at this stage #tla %‘0‘
the test cases in Figure 5(a) and some in Figure 5(b) are ondy

for polynomials, and hence the results for interval arithme 3
on the simplified polynomial are equivalent to the best ong
could achieve using Taylor models without any intermediaté
bounding of higher order terms, and this demonstrates how® 2
our approach outperforms this .meﬂ.](.)d' Finally, t.he .rando(%]) Average Distance From ‘Tightest’ Calculated Bound foodict of ‘m’
sampling of values ob on the simplified polynomial is in- =3, efation Polynomials.

cluded to show that the difference between simulation aad th

best possible bound (distance (c-b) from Figure 3) existh eVFig. 6. C_%rapt)s ‘Illustrating the effect of changing the nunmddfeCancellation
for these simple examples consisting of only three vargbld °Ynomiais (m).

This helps to emphasise that the bounds found in the cogugat

gradient analysis are very accurate, given that they coasis

up to 25 variables for the polynomial minimised in Figure)4(ajs incjyded both to provide data for future works to compare

ln. Figﬁre 5(0), th.e vqrious app;roacrr:_ei are norr;r;_a_lis«ﬁgi, as well as to demonstrate how finite precision can affect
against t ehranlges given in I[ll], [1 ]:_Wl'C given su 'CLer_]such bounds. It also shows the benefit of this approach over
run time, should be optimal. Interestingly, our approac fhose given in the comparative works seeing as ours is fag mor

some cases gives slightly superior results. This is likelye 8 505 apje a5 it can find a solution over many more variables in

result of the fact the SMT is a refinement process which is pgz tape time: most values are still calculated within dnexls
tentially time consuming and hence the refinement stops onge,

) S ms (on a standard desktop with an Intel Core2Duo E6850
at a given level of accuracy. On the other hand, it is |mpcnrta£

10° £

3 4 5 6 ] 7 8 9
Max Number of Cancellation Polynomials

earlier, along with the addition of finite precision effeciis

hat i d ; rocessor), as seen in Tables VI and VIII. Though there are
to note that in some cases SMT does outperform our approdgfl,q \a1ues that take significantly longer (up to half a nejut

to the extent that in some cases our work gives unboundgtlse are due to the iterative refinement to compute bounds

results, whereas SMT solver returns bounds. Furthermofg, qiision, with the number of iterations of the algorithm
our approach either outperforms or is equivalent to aﬁ"l?roportional to the desired precision of the bound.
arithmetic in all but two of these benchmarks. Similarly he t

previous example, this is a limitation of the method at figdin
the best Handelman representation, and whilst achievitigrbe
bounds is possible, it would require a more sophisticated The choice of the number of cancellation terms, the value of
search for Handelman representations, which will be tinie variable in’ in Figure 1, has been chosen experimentally.
consuming. However, it should be mentioned that our solveigures 6(a) and 6(b) show how the execution time and error
calculates these values within a hundreds of millisecoads, respectively change withm. This section discusses how they
shown in Tables VI and VIII, whereas in [12], the results fowere used to select a value ofi’.
each value are reported as around the order of 100 secondBhe execution times plotted in Figure 6(a) are the average
on a comparable machine. Furthermore, one should also nidtee to compute the variablesh, ¢ and f from Figure 1, as
that our approach could be used as an input to the SMTe rest of the execution time should be independent of the
solver, which uses initial estimates based on interval fineaf variable m. The growth in execution time, as can be seen
arithmetic, to decrease the time to find a good solution.  in Figure 6(a), is approximately exponential in. This is

1) Benchmark tests in finite precisiofables V and VIl expected given that the number of monomial&ie- [T, j;)
give a list of various results over the benchmarks mentionedworst case exponential im, and this means the number of

C. Choosing the maximum number of cancellation terms
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computations to choose the valgend perform the update of N
f will also grow exponentially. The deviations from the line ;| o
of best fit are likely to be caused by the fact thdt< m,

as opposed to exactly equal ta, changing the number of o} . /
computations for some iterations. The computation time fpr /

m = 1 is so low because this is a special case in that it it / 3

equivalent to performing interval arithmetic on the expaoshd /

polynomial, which is significantly faster. Finally, one std “f

note that the choice ofn can also impact the number of - ‘ ‘ ‘

iterations of the algorithm, but this is hard to quantify for ™ 1o Number o Monomials 1o 1
practical examples as it is highly dependent upon the input

polynomial. Fig. 7. Execution Time growth with Number of Monomials.

P

Because it is impractical to calculate ideal bounds, in iord _
to gain an insight into the quality of the GHR asincreases, |, ¥~ Vector Product(z)
the algorithm in Figure 1 is applied to a polynomial withfor i=1ton
various values ofn and the difference is calculated betweefy,s =/
the bound for each value of. and the tightest bound out
of all the tested values ofn returned for that polynomial. Fig. 8. Pseudo code to calculate the product of vector elesnent
This process is then repeated over several polynomials to
obtain an average, which is plotted in Figure 6(b). From
this figure, it is clear that whenn = 1, the result is polynomial representing the result of any operation is mult
significantly worse, demonstrating again the value of apgly plied by the function(1 + ¢;), according to the multiplicative
our procedure as opposed to performing interval arithneetic model of error used throughout the numerical analysisaliter
the polynomial. However, forn > 3, the quality of the best ture, doubling the number of monomials in the representatio
bound is unclear, as seen in Figure 6(b). This demonstra¢es ffor example, the floating-point error model for an algorithm
intricacies involved in choosing the best GHRs. Our algonit consisting of a series of floating-point multiplicationsy a
was based upon the idea of reducing the coefficients of lone¥ample pseudo code for which is shown in Figure 8, will
order monomials at the same time as cancelling higher ord@ve a polynomial representation as in (24); the number of
monomials. Whemn is larger, it will create more monomials monomials in this polynomial, when expanded into canonical
and these can potentially reduce more lower order monomiderm, is exponential im.
but whilst the algorithm is designed to attempt to choose
these terms to reduce the coefficients of the monomials in 2102 Tr (1 + 61) (1 4 82)...(1 + 65) (24)
f, it is not guaranteed, indeed it is even possible to create . i i
some unwanted higher order monomials that are products of {OWever, in many algorithms, this worst case does not

the lower order monomials. However, more importantly, whe®ccur firstly because results are often not accumulatetgusi
m is large, many of these terms created/irwill be very a single variable throughout the course of the algorithna, an

small as they will be multiplied byA raised to high powers, secondly because it is highly likely that a large amount of

meaning that forn > 3, it is expected that there will be little c@ncellation will occur.
quantifiable gain in quality of result, and since the exexuti
time grows exponentially withn, the choice ofin = 3 would VI. CONCLUSION
appear to be ideal in practice. This paper has demonstrated a heuristic, based upon a result
from real algebra, that can be used to find analytical bounds f
any value within an algorithm. We have demonstrated that our
approach takes into account dependencies within a polyalomi
Figure 7 demonstrates how the execution time of owepresenting the range of a variable when calculating bsund
heuristic to bound the polynomial grows with the number @nd this can not only lead to much better bounds than a
monomials in the polynomiay. It is clear from this graph naive implementation of interval arithmetic, but also more
that execution time grows at a steady rate with the numbswophisticated techniques such as affine arithmetic or Taylo
of monomials. The rate of growth is slightly super-lineaseries with remainder bounds.
which is a result of typically creating a GHR for each term Whilst this research has shown a high degree of utility, there
and the complexity of creating a GHR increasing for higheire several limitations that would benefit from further essé.
degree monomials and the polynomials with more monomial$iese include scalability, highlighted in Section V-D, irop-
containing more higher degree monomials. ing the heuristic to obtain better Handelman represemistio
However, whilst the execution time is only slightly superdiscussed in Section V-B, as well as extending the method to
linear in the number of monomials used for the canonichbhndle non-polynomial functions such as square roots and ex
polynomial representation, the number of monomials grovp®nentials. However, as mentioned in Section IlI-E, we doul
significantly faster. This is because in order to correctiyrid create a combined approach which uses polynomial simplifi-
the error introduced by the use of floating point precisitwe, t cation or polynomial models for complex functions througho

D. Scalability of our approach
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the algorithm, such as those used for affine arithmetic olofay[15] D.-U. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, and Gon-
models with interval remainder bounds, which replaces any

intermediate or final bounding by interval arithmetic withro

approach when bounding any resultant polynomial to addrgss
these issues and improve the overall bounds. Similarlg, thi
could be integrated within a global optimisation framework
that uses interval analysis as an additional tool to improye]

bounds.

The Handelman representation is just one special case[lgj

fidf

‘theorems of alternatives’ in which real algebraic geomédr

rich. In particular, the proposed approach can be seen a

search over a particular form of Positivstellensatz reifoia

[38], an insight which could lead to further sophisticatefo]

algorithms developed in this field.
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