MEMS-based Nanospray Ionisation Mass Spectrometer

Steven Wright¹, Richard R.A. Syms²*, Richard Moseley¹, Guodong Hong¹,
Shane O’Prey¹, William E. Boxford¹, Neil Dash¹ and Peter Edwards¹

Abstract

An electrospray ionisation mass spectrometer (ESI-MS) whose main components are all fabricated using silicon microelectromechanical systems (MEMS) techniques is demonstrated for the first time. The ion source consists of a microengineered alignment bench containing a V-groove mounting for a nanospray capillary, an ion extraction electrode, and a pneumatic nebuliser. The vacuum interface consists of two plates, each carrying a 50 µm diameter capillary, that are selectively etched and bonded together to provide a differentially pumped internal cavity. The quadrupole filter consists of a microfabricated frame that provides mountings for stainless steel rods measuring 650 µm in diameter and 30 mm in length. Two different quadrupoles are compared: a first-generation bonded silicon device, and a second-generation silicon-on-glass device with a Brubaker prefilter. Differential pumping of a MEMS component is demonstrated for the first time, atmospheric pressure ionisation and ion transfer into vacuum are characterised, ESI-MS operation is demonstrated and spectra are presented for a variety of compounds.

KEYWORDS: Mass spectrometry, Electrospray, Quadrupole filter, MEMS
1Microsaic Systems Ltd., Unit 2, GMS House, Boundary Road, Woking, Surrey, GU21 5BX, UK

2EEE Dept., Imperial College, Exhibition Road, London SW7 2AZ, UK

*Corresponding Author

TEL +44-207-594-6203 FAX +44-207-594-6308 email r.syms@imperial.ac.uk
1. **Introduction**

Over 25 years have passed since an electrospray ionisation (ESI) source was first coupled to a quadrupole mass spectrometer (MS) by Yamashita and Fenn [1]. Since then, ESI-MS has become a workhorse of analytical chemistry, allowing analytes to be ionised at atmospheric pressure with little fragmentation and passed into a vacuum system for analysis.

Conventional ESI sources employ spray tips with an internal diameter (ID) of \(\approx 100 \) µm [2]. In order to establish a Taylor cone and maintain stable emission of charged droplets, minimum flow rates of 0.5 - 5 µL min\(^{-1}\) and voltages of 2.5 - 4 kV are used. However, it has been convincingly demonstrated that high sensitivity and stable emission can be achieved at much lower flow rates and voltages using spray tips with IDs of \(\approx 5 \) µm, and silica nanospray capillaries with a range of coatings have become widely available [3-8]. Unfortunately, while these are inexpensive, operator expertise and costly positioning apparatus are often required for stable and reproducible performance.

Electrosprayed ions are passed into a low-pressure chamber via a vacuum interface. The simplest interface is a single orifice or capillary that allows gas and entrained ions to pass directly into the vacuum chamber. Clearly, the orifice must be small enough or the pumps large enough to ensure that the pressure is consistent with mass analysis. However, the susceptibility of very small orifices to clogging and the inconvenience of large pumps led to this approach being abandoned. Modern instruments employ one or more stages of
differential pumping. Larger orifices can be tolerated since only a fraction of the flow is transmitted to the vacuum chamber, while the majority of the gas load can be pumped away at higher pressure using more modest pumps.

The effective transfer of ions and molecules from atmospheric pressure into vacuum involves a shock-free supersonic expansion, whose principles have been applied to many different applications and dimensional scales. Work on rocket engines during and immediately after the Second World War led to an early understanding of flow in Laval nozzles [9, 10]. Following a suggestion by Kantrowitz and Grey, supersonic expansion was adopted for use in intense molecular beam sources (see e.g. [11-17] and summaries in [18, 19]) and then later for high-speed wind tunnels used for high-speed aircraft testing [20]. Similar methods were then applied to inductively coupled plasma mass spectrometers [21-26] and ESI-MS systems [1, 27-31]. In each case, many of the details of the complex shock phenomena involved have been verified by visual observation of flow patterns [13, 24, 26] or pressure measurements [25].

Multi-stage expansion conveys several benefits. Firstly, beam collimation may be improved through a transfer of thermal energy to kinetic energy in the free jet expansion that occurs as gas and ions emerge from an orifice into a region of lower pressure. The expansion is terminated by a normal shock known as a Mach disc; however, an intense, collimated beam can be transmitted to the next stage by using a skimmer to pierce the Mach disc. Secondly, there is an opportunity in each stage to improve the ion density, by using ion optical elements such as quadrupole ion guides [32, 33], wire ion guides [34,
35], stacked ring ion guides [36, 37] or electrostatic discriminators [38] to transfer ions while neutrals are pumped away. Reviews of ESI-MS interfaces can be found in [39, 40].

Relentless commercial development led to many improvements in sensitivity, ease of use and functionality. However, most modern ESI-MS instruments are still based on expensive, precision-machined components, and vacuum systems requiring large pumps. Increasingly, a different approach to the manufacture of components for mass spectrometry is being pursued through the use of microelectromechanical systems (MEMS) technology.

The strongest interest has been in the integration of nanospray tips with microfluidic systems such as capillary electrophoresis separators [41-45], which gives a direct analytical benefit in terms of reduced peak broadening. Most chip-based nano-ESI sources provide in-plane emission from closed channels, but variants emitting from surfaces or open channels exist [46-49], and emission can take place from 1-D in-plane or 2-D out-of-plane arrays [50-53]. Additional features such as pneumatic nebulizers have been incorporated to enhance emission [44, 54, 55]. Reviews of lab-on-a-chip nanoelectrospray sources can be found in [56-59].

The more difficult problem of miniaturising mass filters has also been addressed, and interest is increasing rapidly as performance improves. Most common filter types have been fabricated using MEMS techniques. These include crossed-field [60-62] and travelling wave [63-65] filters, time-of-flight analyzers [66-69], cylindrical ion traps [70-
75] and linear [76-80] ion traps. However, quadrupole filters have so far offered the best performance, in terms of mass range and mass resolution. In the earliest example, the rods were held in grooves created by crystal plane etching of bulk silicon [81, 82]. Although basic operation was demonstrated, resolution and mass range were both limited. A more successful filter, with a mass range of m/z = 400 and a resolution of m/Δm = 80 at 10% peak height, was developed by Microsaic Systems [83, 84] and used in complete benchtop systems [85]. The rods were supported in a silicon frame, fabricated by deep reactive ion etching (DRIE) of bonded silicon-on-insulator (BSOI) material. Using a similar approach, but with an out-of-plane geometry, a mass range of m/z = 614 and an estimated resolution of m/Δm ≈ 13 at 10% peak height was demonstrated at MIT [86]. Recently, a new silicon-on-glass design from Microsaic Systems incorporating a pre-filter achieved a mass range of m/z = 1200 and a resolution of m/Δm ≈ 150 at 10% peak height [87]. Other approaches include the use of DRIE [88, 89] and rapid prototyping [90, 91] to form electrodes. Reviews of MEMS mass filters can be found in [92-95].

Vacuum interfaces are conspicuously absent from the list of components that have been realised in microfabricated form. As a result, the potential impact of miniaturisation on the overall size of ESI-MS systems has been limited. In this paper, we introduce a low-cost vacuum interface constructed using silicon technology. We do not attempt to tackle the complicated problem of skimmer fabrication, but instead show how a simple, differentially pumped interface may be constructed. We then use it in conjunction with a MEMS nanospray ionisation source and two different MEMS quadrupole filters to demonstrate a complete ESI-MS system in which all the ion source, ion transmission and
mass filtering components are fabricated as silicon devices. The overall design of an ESI-MS system is first reviewed in Section 2. The MEMS ESI-MS system and construction of all silicon-based components is described in Section 3. Operation of the MEMS ESI-MS system is demonstrated in Section 4, and the performance of the two mass filters is compared. Conclusions are drawn in Section 5.
2. **ESI-MS systems**

In this Section, we briefly review the design of conventional ESI-MS systems, the operation of vacuum interfaces and the issues accompanying interface miniaturisation.

ESI-MS system overview

Figure 1a shows the main components of a conventional ESI-MS system. The source is a nanospray capillary, which derives its input from (for example) a liquid chromatograph or capillary electrophoresis separator. Spray is generated at atmospheric pressure using a voltage applied between the analyte and the input to the mass spectrometer, which draws in ions through a sampling cone. Various methods are used to reduce the flow of neutrals and protect the system from large droplets and salt contamination, including the use of off-axis spray, a curtain gas, and dogleg or Z-shaped internal ion paths. Desolvation may be promoted by heating sections of the ion path. The space between the sampling cone and the skimmer is held at intermediate pressure by a high-capacity pump. In this region, ion optical components may be placed to concentrate ions (generally, by collision focusing) so that these are preferentially passed into the high vacuum chamber. The mass analyser may be one of the many types in common use, including (as shown here) a quadrupole filter.

Figure 2 shows a conventional vacuum interface, which uses supersonic expansion to increase the average axial velocity of molecules and entrained ions. The process operates
by trading thermal energy for kinetic energy, so the gas cools as it accelerates. The expected improvement in centreline flux over a simple effusive source (for equal orifice flows) is $\gamma M^2/2 + 3/2$. Here $\gamma = C_P/C_V$ is the ratio of the specific heats at constant pressure and constant volume, and M is the Mach number, the ratio of the velocity to the local speed of sound. Since M may be 10 - 20, the potential improvement is very significant.

Full understanding of the gas dynamics problem requires the solution of the Navier-Stokes equations for compressible flow in three dimensions. Until recently, this task was beyond existing computers. Analysis was therefore carried out using simpler theory and formulae with a good fit to available data. Pressure, temperature, density and flow velocity are simply linked by the rules of adiabatic processes. Using these, it can be shown that a rising velocity is only obtained in a converging channel up to a speed of Mach 1. Above Mach 1, further increases in velocity are only obtained in a diverging nozzle, which then emits a supersonic jet. Other phenomena such as shock waves occur. Normal shocks are generated by rapid changes in pressure, and oblique shocks by changes in boundaries or obstacles. Flow patterns are disturbed by oblique shocks, which in extreme cases scatter the flow.

Vacuum interface operation

Free jet expansion is a limiting case of a convergent-divergent nozzle, in which the diverging section is omitted. The gas is initially stationary at atmospheric pressure P_0, and discharges into a chamber at an intermediate pressure P_1. Entering the orifice, the flow
converges and accelerates, reaching Mach 1 near the exit. Leaving the orifice, it diverges. The pressure, density and temperature decrease, and the Mach number increases.

Combining adiabatic relations with the continuity equation, it can be shown (see e.g. [19]) that M varies downstream as \(M \approx A \left(\frac{x}{D} \right)^{-\frac{1}{\gamma - 1}} \). Here \(x \) is the axial position, \(D \) is the orifice diameter and \(A = \left\{ \frac{\gamma + 1}{\gamma - 1} \right\}^{\frac{\gamma + 1}{\gamma - 1}} \) is a constant whose value is \(\approx 3 \). Similarly, it can be shown that the local pressure is related to the Mach number as \(\frac{P}{P_0} \approx \left(\frac{\gamma - 1}{M} \right)^{\frac{\gamma}{2}} \). Consequently, the pressure must drop as the Mach number increases, generally below \(P_i \). However, sooner or later, a transition must be made to \(P_i \), and this adjustment is made via shock waves. Extending from the orifice, the waves form a complex pattern of oblique shocks known as a shock barrel, which terminates in a normal shock known as a Mach disc. The pressure ratio across the normal shock is \(\frac{P_i}{P_0} \approx 2 \frac{M^2}{\gamma + 1} \) and the Mach number at the shock is \(M = B \left(\frac{P_i}{P_0} \right)^{\frac{1}{\gamma - 1}} \). Here \(B = \left\{ \frac{2 \gamma}{\gamma + 1} \right\}^{\frac{1}{\gamma - 1}} \left\{ \frac{2}{\gamma - 1} \right\}^{\frac{1}{2}} \). Combining these results, the position \(x_M \) of the Mach disc may then be found as \(x_M/D = C \left(\frac{P_i}{P_0} \right)^{-\frac{1}{2}} \). Here \(C = (A/B)^{\frac{1}{\gamma - 1}} \) is a constant whose value is \(\approx 0.7 \). The expansion should ideally be continued into the low-pressure chamber without loss in velocity. To achieve this, the Mach disc is pierced with a sharp, conical orifice or skimmer. With careful design, the skimmer can attach a conical oblique shock that links the outer flow to the Mach disc, while allowing a shock-free expansion of the inner flow into the vacuum chamber. In most systems, the main constraint is that the intermediate pump has sufficient capacity to pull the Mach disc back to the skimmer, when a large increase in ion flux is obtained.

Miniaturisation
Dimensional scaling implies that a reduction in the input orifice size D can allow shorter interface lengths x_M for the same pressure ratio P_I/P_0. Since the maximum flow rate is $Q \approx 0.44 \, a_0 D^2 \, m^3/s$ where a_0 is the sound velocity at atmospheric pressure, a reduction in D should allow smaller interfaces pumped by lower capacity pumps. However, several points deserve consideration. Firstly, for a given ion density in the spray plume, the ion signal is proportional to Q and hence the sensitivity will be correspondingly decreased. Secondly, the presence of a viscous boundary layer will be more significant with smaller orifices, and consequently it may be difficult to achieve sonic speed at the entrance to the intermediate chamber. In this case, the expansion will be subsonic, losing the desired sensitivity enhancement. Thirdly, the difficulties of constructing a vacuum-tight interface with an optimally shaped skimmer using MEMS processes are formidable. Here, we therefore adopt the simpler approach of using a capillary outlet, which is unlikely to provide a shock-free second-stage expansion. Despite this, we show that recognisable and readily interpreted ESI-MS spectra can be obtained.
In this Section, we introduce the MEMS-based ESI-MS system and give a brief overview of component fabrication and functionality.

System overview

Figure 1b shows the MEMS-based ESI-MS system demonstrated here. No attempt has been made to produce a fully integrated system, although this is clearly the eventual aim, and all experiments required additional test equipment. The MEMS components used (here shown in grey) are a nanospray ion source, a vacuum interface and a quadrupole mass filter. The vacuum chamber, pumps, valves, and gauges are all conventional. However, this approach allows ion generation, ion introduction and mass filtering all to be carried out using batch-fabricated silicon devices that are packaged as interchangeable modules.

Nanospray ion source

The source is a nanospray ion gun, previously described in [55]. The gun is constructed from two dies, fabricated using a silicon-on-plastic technology that forms a set of discrete Si parts on an SU-8 epoxy resist base. Figure 3 shows the overall arrangement. The SU-8 is photopatterned to define the overall die outline and an inlet for a nebuliser gas. The silicon layer is etched twice, firstly using crystal plane etching to form a V-groove mount.
for a nanospray capillary and other orifices, and secondly using DRIE to define an ion extraction electrode and the flow channel for a coaxial pneumatic nebuliser.

Base-plate and top-plate dies are fabricated together, on 100 mm diameter bulk silicon wafers. KOH etching is first used to form V-grooves in the front side, using an oxide surface mask. The wafer is then turned over, and the rear side is coated with a 300 µm thick layer of SU-8, which is exposed and developed to form the patterned plastic base. The wafer is turned over again, and a Cr/Au layer is deposited over the grooved surface. This layer is patterned with the electrode layout by wet etching, using electrically deposited Shipley Eagle photoresist. A Single-Chamber Multiplex inductively coupled plasma etcher (Surface Technology Systems, Newport, Wales) operating a cyclic etch based on SF₆ and C₄F₈ (the Bosch process) is then used to transfer the electrodes into the silicon, using the Au as a hard mask and as a subsequent contact layer. After processing, the parts are snapped out of the wafer. Base-plate and top-plate dies are stacked together to form an optical bench that holds the capillary in precise alignment with the ion extraction electrode. Figure 4a shows a SEM view of a base-plate with a nanospray capillary mounted in the V-groove, and Figure 4b shows an optical microscope view of a unit with the top-plate now in place. The assembly is mounted on a small printed circuit board, and electrical connections are made to the electrodes.

MEMS vacuum interface
The vacuum interface is constructed from two silicon dies attached to a stainless steel flange. Figure 5 shows the overall arrangement. The outer die carries features defining an input capillary, an intermediate chamber and an internal electrostatic lens, while the inner die carries an output capillary, flow channels and gas ports. The flange incorporates conventionally machined channels for pumping that link to threads for connectors. The die size was initially 12 mm x 8 mm, but was later increased to 15 mm x 11 mm in order to accommodate a larger rim.

The outer die is formed from a BSOI wafer, consisting of a 500 µm thick device layer, a 4 µm thick oxide interlayer and a 500 µm thick substrate. The device layer (1) is first patterned and etched three times using oxide and photoresist hard masks, to form a recess of 500 µm diameter and 300 µm depth, a contact via, an input capillary and the die outline. The wafer is then turned over, and the substrate (2) is etched down to the oxide interlayer to define a 500 µm diameter chamber beneath the capillary, bounded by an electrostatic lens, whose contact is brought through the device layer. The oxide is then removed in buffered HF, and both sides of the wafer are coated with 200 nm sputter-deposited Au, using 45 nm Cr for adhesion. Figure 6a shows a SEM view of the inside of the outer die near the input capillary showing the electrostatic lens.

The inner die is also formed from a BSOI wafer, with similar layer thickness. The device layer (3) is first patterned and etched three times to define a 50-100 µm diameter output capillary surrounded with a deep recess, flow channels, pumping ports and the die outline. To allow a large pressure difference, internal pillars are used to support the
channels, except in regions immediately below the lens and its contact. The substrate (4) is then etched to form extensions of the pumping ports and an enlarged exit. After etching, the wafer is sputter-metallised with Cr and Au on both sides. Figure 6b a SEM view of the inside of the inner die, showing the output capillary at the centre, the gas ports on either side and supporting pillars (which are removed near the top to provide space for the lens contact). The inner die is then coated with a 1 µm thick layer of Ni (which acts as a diffusion barrier) and a 10 µm thick layer of Sn (which acts as a solder) by electroplating, taking care to protect the capillary using photoresist.

The two dies are attached to a vacuum flange, whose outer surface is also sputter-coated with Cr/Au and then coated with Ni and Sn by electroplating. Mechanical jigs are used to align the dies over the pumping and venting ports, and the Sn solder is reflowed by heating at 280° in forming gas (15% H₂, 85% N₂) to form gas-tight seals. Finally, wirebonds are attached. Since layers 2, 3 and 4 are electrically connected, only layer 1 and the lens can be independently controlled. The output capillary is approximately x = 800 µm downstream of the start of the jet expansion. Assuming a capillary diameter of D = 50 µm, the Mach disc extends as far as the exit capillary when x_M/D = 16.

MEMS quadrupole mass filters

Two previously-demonstrated MEMS quadrupole mass filters were evaluated. The first is a simple quadrupole fabricated using bonded silicon-on-insulator material [83, 84]. The second is a quadrupole with a Brubaker prefilter (the use of which can improve ion
transmission, especially in small devices) fabricated using silicon-on-glass [87]. Each type of filter is constructed from two stacked, microfabricated dies, each carrying two of the four electrodes required in a quadrupole. Figure 7a compares their construction.

The upper diagram shows the arrangement of a bonded silicon die, which for 30 mm long electrodes measures $\approx 35 \text{ mm} \times 6 \text{ mm}$. Both silicon layers are structured using DRIE to form electrodes and rod mounts, and the oxide interlayer provides electrical isolation between the different electrodes. For 650 μm diameter electrodes, a device layer thickness of $\approx 105 \mu\text{m}$ is used, together with a substrate thickness of 400 μm and an oxide interlayer thickness of 2 μm. The substrate is first etched to form in-plane alignment features and retaining springs for a pair of cylindrical electrodes. The device layer is then etched twice, to form out-of-plane rod alignment features, together with ion optical elements at the entrance and exit of the filter. A three-element electrostatic lens is used at the input, and a single aperture at the output.

The lower diagram shows the arrangement of a silicon-on-glass die, which has similar dimensions. Here silicon parts that have been structured using DRIE are anodically bonded to a glass substrate, which then provides improved electrical isolation. The electrode rods are now arranged in two sections, with a 4 mm long prefilter preceding the 30 mm long main filter. The electrodes are now rigidly attached to silicon mounting blocks. However, to avoid deformation by thermal expansion mismatch between the electrode rods and the substrate, suspended spring mountings are provided for the main filter electrodes.
To construct a complete filter, two dies are stacked together back-to-back so that the quadrupole geometry is formed. In the bonded silicon device, the features etched into the device layers also form sets of entrance and exit electrodes containing central pupils. These pupils are, however, both rectangular and relatively small, and significantly limit ion transmission [84]. The assembly is then attached to a small printed circuit board, and wire-bond connections are made to the electrode contacts. In each case, stainless steel electrode rods are inserted into each die in appropriate locations. Electrodes are inserted after assembly in the bonded silicon device, and before assembly in the silicon-on-glass device. Figure 7b shows completed mass filters of each type.
4. **Experimental results**

In this section, we describe the performance of the nanospray ion source, the transmission of ions and partitioning of the gas flow by the vacuum interface, and the acquisition of mass spectra using the two different quadrupole mass filters.

Nanospray ion generation

Operation of the MEMS nanospray source was demonstrated using Silica Tapertip capillaries with an outside diameter of 320 µm and an inside diameter of 15 µm (New Objective, Woburn, MA). The nanospray source was movable in all three directions, but motion of the nanospray capillary was restricted to preset axial adjustment. A solution of 75% water, 20% methanol, and 5% acetic acid was supplied at flow rates in the range 1 – 40 µL/hr (17 - 670 nL/min) using a syringe pump (100-CE, KD Scientific Holliston, USA). Nebulising gas (N₂) was introduced to the plenum chamber through a conduit in the aluminium enclosure and a mating hole in the PCB submount. A flow controller was used to set the flow in the range 2-5 L/min.

Spray was generated using a voltage applied by a custom DC power supply between the capillary and the ion extraction electrode, with the polarity arranged for positive ion production. The on-chip electrode allows a stable ion stream to be generated without a mass spectrometer inlet being present. Electrical isolation is excellent, and the technology can support an on-chip voltage up to ≈ 1.5 kV. However, much lower voltages are
typically required for optimum performance. Using an axial separation of \(\approx 500 \, \mu \text{m} \), the threshold voltage and the operating voltage are \(\approx 700 \, \text{V} \) and \(\approx 850 \, \text{V} \), respectively. The precise mechanical alignment between the capillary and electrode ensures that these voltages are repeatable. Figure 8a shows how the total ion current typically varies with applied voltage, using measurements averaged over a 1 minute period. A range of liquid flow rates were used, with an axial separation of 450 \(\mu \text{m} \) between the capillary and ion extraction electrode. In each case, the voltage rises rapidly from a threshold voltage that depends mainly on the capillary ID and flow rate. Figure 8b shows the corresponding variation of total ion current with flow rate, at different set voltages, which shows that the current rises quasi linearly with flow rate until the onset of jet instability. Below this point, the spray was highly stable, and many hours of operation could be obtained without blockage or other failure.

Gas load partitioning

Characterisation of the MEMS vacuum interface was performed using a 6 L stainless steel vacuum chamber pumped by a 250 L/s turbomolecular pump (TV-301 Navigator, Varian S.P.A., Torino, Italy) through a 100 mm diameter port. Two ISO 200 flanges were used as the end plates of the cylindrical section chamber. One was machined with a central aperture counterbored to receive a gasket and the vacuum interface flange, while the other was used for access during experiment set-up. A full range pressure gauge (Pfeiffer Vacuum, Asslar, Germany) and two electrical feed-through flanges were mounted on ports distributed around the waist of the chamber.
Figure 9a shows the nanospray unit in front of the vacuum chamber. The MEMS component is at the front of the module. To the rear, a metal union connects the spray tip to the supply capillary, and is also used to establish a connection to the HV supply when non-conductive tips are used. The MEMS vacuum interface is at the centre of the figure, below an elbow joint that connects the flange to the pumping line. Channels within the flange connect to the pumping ports in the MEMS interface. In later versions, the MEMS vacuum interfaces were mounted on small metal tabs that were more easily interchanged. Vacuum integrity was verified before use by immersing the interface in water, and checking for leaks other than through the inlet and exit capillaries when a positive gas pressure was applied via the pumping line.

A Pirani gauge (MicroPirani 925C, MKS Instruments, Boulder, CO) was used to monitor the pressure in the pumping line. However, due to the low conductance of the pumping ports in the MEMS interface, this is not necessarily an accurate measure of the pressure in the internal cavity. Either a 4.8 L/min diaphragm pump (N84.4 ANDC, KNF Neuberger, Freiburg, Germany) or a 110 L/min scroll pump (SH-110, Varian, Lexington, MA) were used to pump the interface. The base pressures achieved in the vacuum manifold were 15 Torr and 2 Torr, respectively. A throttling valve or a variable air bleed close to the pump was used to vary the pressure as necessary.

The gas flow into the analysis chamber is dictated by the speed of the selected pump and the maximum tolerable operating pressure. It is the purpose of the vacuum interface to
partition the total gas flow passing through the inlet from atmosphere. The
turbomolecular pump used with the test system is relatively large and as a result, a
substantial fraction of the total gas load can be allowed into the analysis chamber.
However, the development of a complete, miniaturised ESI-MS system would
undoubtedly require a significantly smaller high vacuum pump and removal of much
more of the gas load at the intermediate stage.

The range of gas load partitioning that can be achieved by the MEMS vacuum interface
was characterised by measuring the pressure in the analysis chamber as the interface
pumping speed was gradually decreased (either by throttling the pump or by increasing
the air bleed). Rather than plot the analysis chamber pressure, which depends on the
speed of the turbomolecular pump, the volumetric gas flow into the analysis chamber
(calculated by multiplying the measured pressure in the chamber by the known pumping
speed) has been plotted against intermediate stage pressure in Figure 9b. A quasi-
linear relationship is observed, except at low intermediate pressures when the flow levels off at
a value of 0.3 sccm (standard cubic centimetres per minute). If the inlet capillary is
blocked with a rubber pad, the flow into the analysis chamber immediately drops from
0.3 to 0.07 sccm, indicating that most of this residual gas load is due to flow through the
inlet, rather than leaks and out-gassing.

The design of the MEMS interface is simple, and its internal cavity is very small.
Nevertheless, this component is effective in partitioning the gas flow through the inlet.
Despite the brittle nature of silicon, there was no difficulty sustaining a pressure
difference between atmosphere on one side of the vacuum interface and high vacuum on the other. Although vacuum packaged silicon devices have been available for many years, this result represents the first demonstration of a differentially pumped MEMS component.

As the ultimate goal of this work is to produce a miniaturised, integrated instrument, some consideration of the possible pumping arrangements is worthwhile. Several small, light-weight diaphragm and rotary vane pumps that would be suitable for pumping the interface are commercially available. These would typically be able to achieve an intermediate stage pressure of 5-30 Torr. If the intermediate stage pressure were 15 Torr, for example, a turbo pump with a pumping speed of approximately 16 L/s would be able to maintain the analysis chamber at 1×10^{-3} Torr. Many modern turbo pumps incorporate multiple drag stages that allow foreline pressures as high as 30 Torr. Consequently, another small diaphragm or rotary vane pump would be suitable as the backing pump for the turbo pump.

Ion transfer into vacuum

Ion transmission into the HV analysis chamber was monitored by a channeltron electron multiplier (Magnum, Photonis USA Inc, Sturbridge, MA) mounted behind a 4 mm aperture in an aluminium plate, ≈ 5 cm from the vacuum interface. Pulses from the channeltron were filtered using a discriminator and counted for periods ranging from 30 ms to 10 s. Each pulse is initiated when a cascade of secondary electrons is generated by
the collision of a charged particle with surface of the channeltron input horn. However, the measured count rate cannot be equated directly to ion flux entering the chamber, as the detection efficiency of the channeltron is significantly less than unity. Not all the ions striking the input result in a pulse that can be counted, and it cannot be guaranteed that all of the ions are scavenged by the high voltage applied to its input. Consequently, several measurements at high intermediate stage pressure were repeated with the channeltron and its shield replaced by a large Faraday plate, biased at -18 V to attract ions entering the vacuum chamber. The absolute ion transmission was determined by dividing the drain current measured with a picoameter (Keithley 6485, Keithley Instruments Inc., Cleveland, OH) by the elementary charge, which was then used to calibrate the data obtained with the channeltron.

The calibration procedure assumes that there are no multiply charged ions present (a doubly charged ion, for example, would register as a single pulse when detected by the channeltron, but would contribute two elementary charges to the current flowing from the Faraday plate). This assumption is supported by an investigation of water cluster ions with a wide range of masses, formed by spraying acidic aqueous solutions, which has shown that only singly charged cluster ions are produced [96].

Figure 10a shows the variation of absolute ion transmission with the intermediate chamber pressure. At intermediate pressures in the range 2-350 Torr, the ion transmission approximately reflects the gas flow into the analysis chamber. Given that the ions are entrained in the gas flow, and all the components of the vacuum interface are held at 0 V,
it might be anticipated that the concentration of ions passing into the analysis chamber would be constant. However, this is evidently not the case. Whereas the gas flow varies by two orders of magnitude, the ion transmission varies by six orders. The absolute ion concentration can be calculated by dividing the ion transmission by the gas flow, as shown in Figure 10b together with the approximate concentration of ions in the spray plume (calculated using the spray current and the nebulising gas flow). The maximum ion concentration entering the analysis chamber is 2% of the concentration in the spray plume. Neutralisation on the metallised walls of the inlet and exit capillaries and the internal structures within the MEMS interface is likely to be responsible for this depletion of the ion concentration. However, collisions with the walls are less likely at higher pressures when the mean free path is short and flow through the interface is dominated by viscous drag. As the pressure in the intermediate stage is reduced, the mean free path increases, and collisions with the walls become more likely.

Ion concentration using internal optics

This interpretation is reinforced by the behaviour observed when a voltage was applied to the internal lens contained in the MEMS vacuum interface. Figure 11 shows the variation of ion transmission with bias (incremented in 1 V steps), at two different intermediate pressures (1.8 Torr and 6.8 Torr). At the lower pressure, the ion transmission increases from a negligible value at 0 V to over 20,000 ions/s at +80 V. Focussing is also seen at higher pressure, but there is only a three-fold enhancement over the value at 0 V. The optimum bias voltage was determined for intermediate pressures in the range 2-50 Torr,
and the corresponding ion transmission measurements are plotted in Figures 10a and 10b. At low pressures, the free jet expansion extends far into the internal cavity, and ions that would otherwise be lost through collisions with the walls can be focused into the exit capillary. As the intermediate pressure increases, electrostatic focusing becomes less effective, since the free jet expansion retracts towards the inlet and the mean free path in the stagnant gas reduces.

Above approximately 380 Torr, the ion transmission levels off, and then actually decreases. This behaviour is in excellent agreement with the transition from choked flow to pressure dependent flow in the inlet capillary, which occurs at a pressure $P_i = P_0 \left\{\frac{2}{\gamma} \right\}^{\gamma\left(\gamma-1\right)} \left(\approx 400 \text{ Torr for } \gamma = \frac{7}{5}\right)$. At higher intermediate pressures, the flow of gas and entrained ions becomes proportional to the pressure difference across the inlet capillary.

ESI-MS using a simple quadrupole

To demonstrate ESI-MS, the free standing channeltron was removed from the vacuum chamber and replaced with a bespoke alignment jig containing a MEMS quadrupole filter with an input aperture plate and a channeltron detector. The quadrupole filter was operated at 6.5 MHz, biased at 0 V, and driven with ramped DC and AC voltages whose relative values were chosen to place the scan line near the tip of the first stability zone. To improve ion coupling, the vacuum interface was biased at +10-20 V, which accelerates the ions towards the mass filter and thereby reduces the angular divergence of the beam.
A possible complication of the experimental setup is that large charged droplets are able to follow straight line trajectories from the nanospray capillary tip directly into the input of the channeltron, as the nanospray source, vacuum interface apertures, mass filter, and channeltron detector are all positioned along the same common axis. However, the background ion count observed when recording spectra is always very low, indicating that droplets are not present.

Figure 12a shows a mass spectrum recorded while spraying a solution of 75% water, 20% methanol, and 5% acetic acid. Multiple scans were averaged to improve the signal-to-noise ratio, and the total acquisition period for each data point was 0.795 s. The interval between each data point is 0.2 m/z units. Three well-known series of singly charged cluster ions can be identified [1, 96], although several of the peaks can only be seen clearly on expansion of the vertical axis. The prominent series at m/z = 37, 55, 73, 91, 109, and 127 correspond to \([n(H_2O)+H]^+\). A minor series at m/z = 51, 69, 87, 105, and 123 corresponds to \([n(H_2O)+CH_3OH+H]^+\), and a further minor series at m/z=59, 77, 95, 113, and 131 can be assigned as \([n(H_2O)+Na]^+\). Such sodium ion adducts arise from trace impurities in the solvent, and are frequently observed in ESI-MS spectra.

A solution of water, methanol, and acetic acid was chosen for initial testing primarily because the yield of ions is likely to be high. However, of equal importance is the propensity for water cluster ion formation, as the distribution of these clusters helps to characterise the nanospray ion source and any processes occurring in the vacuum.
interface. In general, cluster ion formation is undesirable. Large clusters can lie beyond the mass range of the analyzer, whereas smaller clusters complicate the mass spectrum. Incomplete desolvation in the spray plume is not usually a concern, as a high flow rate of nebulising gas, which is often heated, ensures efficient desolvation in conventional, pneumatically assisted electrospray. In some instruments, off-axis sampling of the spray plume helps to preferentially select lighter, more completely desolvated ions. The lower flow rates used in nanospray result in a smaller initial droplet size, and desolvation is consequently achieved more readily. Of greater concern is condensation of ions and free solvent molecules during the initial adiabatic, free jet expansion into the first vacuum stage. Typically, this can be reduced by using a gas curtain or counter flow of nitrogen to prevent neutral solvent molecules from passing through the inlet aperture. Heating the inlet aperture also reduces the likelihood that the cooling during expansion will be sufficient to allow condensation with any remaining solvent molecules.

Despite on-axis sampling and the absence of heating, a curtain gas, or a counter flow of nitrogen, only small clusters can be identified in Figure 12a. The highest mass ion contains seven water molecules and the most prominent ion contains just five. It is not clear whether these clusters result from incomplete desolvation in the spray plume, or from condensation during the first expansion. This result is in stark contrast to the spectrum reported by Ledman and Fox [96]. These authors used a high solvent flow rate, low drying gas flow rate, low source temperature, and omitted any counter-flow gas to promote water cluster ion formation. As a result, they were able to observe an extensive series of clusters up to m/z = 1900. The limited series of peaks seen here suggests firstly,
that efficient desolvation is achieved by the nanospray ion source, and secondly, that any larger clusters formed in the initial expansion are reheated by scattering before passing into the analysis chamber.

It is unlikely that the mass filter suffers from any mass discrimination that would abruptly terminate the cluster series at \(m/z = 131 \). Previous work with an electron impact ion source has shown that mass spectra with the correct cracking pattern intensities in the range \(m/z = 0-400 \) can be recorded using the MEMS mass filter [83, 84].

Figure 12b shows a mass spectrum recorded while spraying a solution of 150 \(\mu g/ml \) tetrabutylammonium hydroxide (TBAH) in a 50 : 50 mixture of methanol and water. Again, a relatively high ion yield is expected, as TBAH is a strong base and almost completely ionised in solution. This spectrum was acquired using a relatively low U/V value and a total signal acquisition period of 0.405 s per data point. A single peak at \(m/z = 242 \), corresponding to the tetrabutylammonium ion, can be seen. There is no evidence of impurities or fragmentation products. These results demonstrate that mass spectra can be obtained using embryonic MEMS components, even when many of the precautions commonly taken to improve spectral quality are omitted.

ESI-MS using a quadrupole with a prefilter

Exchanging the simple bonded silicon quadrupole with the second-generation silicon-on-glass device, which incorporated a prefilter, yielded significant improvement in the signal level, mass resolution and mass range. This enhanced performance allowed analysis of
analytes that are more challenging than TBAH. Figure 13a shows a mass spectrum recorded while spraying a solution of 1 mg/ml acetaminophen (Paracetamol) in a 50 : 50 mixture of acetonitrile and water with 0.1 % formic acid. Multiple scans were averaged, and the total signal acquisition period per data point was 0.225 s. The molecular ion can be identified at m/z = 152. Additionally, there are smaller peaks at m/z = 170 and m/z = 174, corresponding to H₂O and Na⁺ adducts, respectively. A mass spectrum recorded while spraying a solution of 1 mg/ml reserpine in a 50 : 50 mixture of acetonitrile and water with 0.1 % formic acid is shown in Figure 13b. In this case, the acquisition period was 0.309 s per data point, and the molecular ion can be identified at m/z = 609.

For comparison with the earlier results, a spectrum of TBAH was also recorded, using an acquisition period of 0.15 s per data point. This data is shown in Figure 14a, together with a spectrum recorded using a commercial ESI-MS system that has been re-scaled for comparison (Figure 14b). The resolution achieved with the silicon-on-glass quadrupole (m/Δm = 270 at FWHM) is clearly much higher than that achieved with the bonded silicon device, and compares favourably with the performance of the commercial system in that the spectra are qualitatively very similar. It is important to point out, however, that the commercial instrument is able to maintain unit resolution at high mass, and delivers a much higher signal level. While the first and second isotope peaks are not completely resolved in Figure 14a, they can nevertheless be identified as distinct shoulders.
5. **Conclusions**

We have demonstrated a nanospray ionisation mass spectrometer system whose ion source, vacuum interface and mass filter are all constructed as separate silicon MEMS. Clearly, further work is required to improve sensitivity, mass range and mass resolution. However, even the relatively simple components used in these initial experiments have allowed readily interpretable mass spectra to be obtained. It has been demonstrated that performance enhancements can follow from systematic improvements to each MEMS component (for example, by using a quadrupole filter equipped with a Brubaker pre-filter). The use of microfabrication technology allows key features such as precise mechanical alignment, complex electrode arrangements and vacuum seals to be achieved on a small scale at low cost. As a result, the components are compact, batch-fabricated, interchangeable and potentially disposable. This demonstration represents a further step in the miniaturisation of mass spectrometers using MEMS.

6. **Acknowledgements**

The authors are indebted to Merck & Co., Pfizer Inc., and GlaxoSmithKline Plc. for their technical and financial assistance, and to the DTI for support under the Advanced Technology project IONCHIP. The contributions of Mr A. Finlay, Mr A. Malcolm, Mr.
M.-A. Schwab, Dr H. Zou, Dr M. Bardwell, and Dr A. Lipson are also gratefully acknowledged.
References

33. B. C. Cha, M. Blades and D. J. Douglas, “An interface with a linear quadrupole ion

41. R. Ramsey and J. Ramsey, “Generating electrospray from microchip devices using

49. B. Legrand, A.E. Ashcroft, L. Buchaillot and S. Arscott, “SOI-based nanoelectrospray emitter tips for mass spectrometry: a coupled MEMS and

65. J. Hauschild, E. Wapelhorst and J. Müller, “The novel synchronous ion shield mass

81. R. R. A. Syms, T. J. Tate, M. M. Ahmad and S. Taylor, "Design of a

88. K. Cheung, L. F. Velasquez-Garcia and A. I. Akinwande, “First principles optimization of mass produced microscaled linear quadrupoles for operation in

8. **Figures**

1. Electrospray ionisation mass spectrometry (ESI-MS) systems implemented using a) conventional and b) microelectromechanical systems (MEMS) components (highlighted in grey). Each system consists of a nanospray source operating at atmospheric pressure, a differentially pumped interface and a quadrupole mass filter and ion detector contained in a vacuum chamber.

2. Free jet expansion in a conventional vacuum interface. The grey shaded parts indicate the ion sampling orifice and the skimmer cone. The lines indicate gas flow and the formation of a barrel shock in the intermediate chamber, terminated by a Mach disc anchored on the skimmer. D is the diameter of the input capillary; x_M is the distance to the Mach disc.

3. Overall construction of MEMS nanospray ion source, consisting of a nanospray capillary mounted between two silicon MEMS parts that combine together form ion extraction electrodes and gas flow channels for a concentric nebuliser.

4. a) Scanning electron microscope (SEM) image of the bottom plate of the nanospray ion source, showing a nanospray capillary mounted in an alignment V-groove on a silicon chip in front of the lower half of an ion extraction electrode. b) Photograph of the completed source with the top-plate in place, when the electrode halves have been combined together.

5. Overall construction of MEMS vacuum interface. The upper diagram shows the component parts, and the lower diagram a complete interface after assembly by stacking. The numbers indicate different layers of silicon; 1 and 2 are device and
handle layers in the outer die, 3 and 4 are device and handle layers in the inner die.

6. SEM images of the MEMS vacuum interface showing a) the internal lens at the centre of the outer die, and b) the support pillars, pumping ports and output capillary within the recess defined in the inner die.

7. a) Die layouts and b) complete filters in bonded silicon-on-insulator (BSOI) (upper) and silicon-on-glass (lower). Each device consists of two stacked, microfabricated dies that each provide mounting frames for half of the rods required in a complete quadrupole. The layouts show the method of rod mounting, while the photographs show the filters mounted on small PCBs.

8. Variation of electrosprayed ion current with a) voltage, for different flow rates and b) flow rate, at different voltages, for MEMS nanospray source with 15 µm ID Silica Tapertip capillary.

9. a) Nanospray ion source positioned in front of the vacuum interface. A protective cover that would normally conceal the source has been removed. The nanospray chip may be seen immediately in front of a union that connects the analyte feed capillary to the nanospray tip. b) Variation of the gas flow into the analysis chamber with intermediate stage pressure.

10. a) Variation of the ion transmission into the analysis chamber with intermediate stage pressure. b) Variation of the ion concentration in the gas flow with intermediate stage pressure, compared with the approximate concentration in the spray plume.

11. Response of the ion transmission to the bias applied to the vacuum interface internal lens at intermediate stage pressures of 1.8 Torr and 6.8 Torr.

12. a) ESI-MS spectrum of a solution of 75% water, 20% methanol, and 5% acetic acid.
The prominent peaks correspond to \([n(H_2O) + H]^+\). b) ESI-MS spectrum of a solution of 150 µg/ml tetrabutylammonium hydroxide (TBAH) in a 50 : 50 mixture of methanol and water.

13. ESI-MS spectrum of a) acetaminophen (Paracetamol) and b) reserpine obtained using the silicon-on-glass quadrupole.

14. Mass spectra of TBAH near the tetrabutylammonium molecular ion peak obtained using a) the MEMS ESI-MS system with a silicon-on-glass quadrupole and b) a Waters ZQ ESI-MS.
Figure 1.

Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.