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Web based computerised auctions are increasingly present in the Internet. We can imagine that
in the future this trend will actually be extended to situations where virtual buyer and seller
agents will conduct automated transactions across the network, and that large sectors of the
economy may be strucured in this manner. The purpose of this paper is to model automated

bidders and sellers which interact through a network. We model the bidding process as a random
arrival process while the price attained by a good is modelled as a discrete random variable.
We obtain analytical solutions allowing us to compute the income from a single auction, or the
income per unit time from a repeated sequence of auctions. A variety of single auction models
are studied, including English and Vickrey auctions, and the income per unit time is derived as
a function of other parameters including the rate of arrival of bids, the seller’s decision time, the
value of the good, and the “rest time” of the seller between successive auctions. We illustrate the

results via numerical examples. We also introduce a model for networked auctions where bidders
can circulate among a set of interconnected auctions which we call the “mobile bidder model
(MBM)”. We obtain an analytical solution for the MBM under the assumption,which we call the
“active bidders assumption”, that activities that are internal to an auction (bids and sales) are

much more frequent than changes that occur in the number of bidders at each auction.
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1. INTRODUCTION

Auctions of different types have long been an important element of market based
economics [Milgrom and Weber 1982] since the bidding and selling process can be
formally specified and run in a timely fashion so that neither the bidders nor sellers
are indefinitely held up. When a seller accepts a bid, it is implicitly rejecting other
offers and making it known; the remaining bidders can then turn their attention
to other opportunities to purchase a similar good. Very often the seller accepts a
bid based on the fact that the corresponding offer is either the highest bid that
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has been made, or in some cases it may choose one that is close to the highest bid
in some reasonable sense, for instance when other factors are also to be taken into
account.

Web based computerised auctions are increasingly present in the Internet. We
can imagine that in the future this trend will be even more prevalent when virtual
buyer and seller agents will conduct automated transactions across the world, so
that large sectors of the economy may be strucured in this manner. The impor-
tance of auctions increases as much of the economy becomes virtual and network
based, because through their formal algorithmic structure auctions are particularly
amenable to Internet based implementations. Links between different markets,
commodities or neighbouring markets can also lead to complex interconnected auc-
tions and bidding strategies [Shehory ; 2002; David et al. 2005].

Although we naturally think of auctions as being related to economic activity,
they are also used for decision making in resource allocation, for instance to re-
quest and receive network services or for physical resources in computer systems
and networks such as buffer space or bandwidth. Auctions are an example of
Computational Mechanisms [Das et al. 2003] which are studied as tools for the
coordination of agent based systems.

In this paper we study auctions to which bidders’ offers arrive sequentially at
random time intervals. Successive bids are increasing in value, but the seller may
not know the current market value of the good. The seller’s problem is therefore
to decide when it accepts a bid. Thus after each new bid, the seller may wait for
a “decision delay or time” to determine whether to accept the offer. If a new bid
arrives before that time expires, then the process is repeated for this new bid; at
the end of the decision time, if a new bid has not arrived, the seller sells his good
to the buyer who has so far made the most recent and therefore highest bid. After
selling the good, the seller rests for a some time before initiating a new auction.
This rest period can represent a technical delay in restarting an auction: in the
case of a fully automated system everything would take place at “computer system
times”, i.e. milliseconds rather than human level times. In other cases the rest time
may represent a delay in determining whether another good is available for sale.
The case when this rest time is zero is also discussed (see Comment 2 in Section
2.2).

A related question which has received some attention is the “Secretary, or Sultan’s
Dowry, Problem” introduced by Martin Gardner in his column on mathematical
recreations in the magazine Scientific American in 1960. The problem is to select
the best candidate from a sequence of applicants, where the quality of the suc-
cessive candidates are random variables. The decider has to select one candidate
without the possibility of changing his/her mind, so that a candidate who has been
turned down cannot be reconsidered, and once a candidate is selected or accepted
the selection process stops and further candidates are not considered. The known
optimal solution [Chow et al. 1964; Finch 2003] results in the recruitment of a can-
didate whose quality is close to the maximum, and the probability that it results
in selecting the best candidate is obtained. In the auction models we study, succes-
sive bids have increasing values, contrary to the secretary problem where successive
candidates have variable values. In the auction model although it is nice to sell a
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good for a high price, but it may be more important to take decisions so that the
income per unit time is maximised, contrary to the secretary problem where the
person that is hired stays “forever” and therefore must have the highest possible
value. Analysis of auctions where bidders arrive, have a private valuation, and
depart if they have not been allocated the good can be found in [Hajiaghayi et al.
2004]. Another related model [Guo 2002] has bidders which arrive in discrete time
steps, while the seller instantaneously accepts or declines a bid; in the latter case
the bidder immediately disappears; it leads to an optimal stopping time problem
and it is solved analytically.

The purpose of this paper is to model automated bidders and sellers which inter-
act through a network. We model the bidding process as a random arrival process
while the price attained by a good is modelled as a discrete random variable. We
obtain analytical solutions allowing us to compute the income from a single auc-
tion, or the income per unit time from a repeated sequence of auctions. A variety
of single auction models are studied, including English and Vickrey auctions, and
the income per unit time is derived as a function of other parameters including
the rate of arrival of bids, the seller’s decision time, the value of the good, and the
“rest time” of the seller between successive auctions. We illustrate the results via
numerical examples. We also introduce a model for networked auctions where bid-
ders can circulate among a set of interconnected auctions which we call the “mobile
bidder model (MBM)”. We obtain an analytical solution for the MBM under the
assumption,which we call the “active bidders assumption”, that activities that are
internal to an auction (bids and sales) are much more frequent than changes that
occur in the number of bidders at each auction.

Of course, human buyers and sellers in auction systems are rational agents who
pursue some possibly self-interested agenda; for instance one would not expect that
a seller’s objective is to minimise his or her income and give goods at the lowest
possible price that just covers the manufacturing cost of a good, although this may
indeed be an objective in certain contexts. Similarly, we would expect bidders to
find ways to drive away the conmpetition (for instance by moving the price to a level
where competitors remove themselves from the competition), but yet they would
try to purchase a good at the lowest possible price. This kind of “rationality” would
also carry over to automated buyers and sellers where programmed computer based
rules would try to mimic the self-interest or rationality of the agents.

In this paper we do not try to model the internal workings of the agents through
the complex behavioural rules or reactions that they may have, though we do not
exclude such representations in our future work, for instance through the use of
machine learning or neural networks which may be used by bidders and sellers to
pursue specific rational objectives. However we do include some elements of rational
or self-interested behaviour, although this is limited to some collective, i.e. common
to all behaviours, rather than individual properties.

The rate at which bidders make their bids is itself a representation of how en-
thusiastic the community of bidders may be. The notion of “value” or valuation,
discussed in Section 2 and used throughout the paper, is one representation of this
rationality, since the assumption is that when the most recent bid has attained
or exceeded the value V , then another bidder will not make a new bid; we assume
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that V is a random variable with a common distribution function. Another element
that models some level of rationality among bidders is the “state dependent bid-
ding rate” introduced in Section 2.6, where we show how the model can be analysed
when the rate at which bids arrive depends on the level that the most recent bid
has attained. This can be applied to the case, for instance, where bids arrive at a
slower rate as the value of the most recent bid increases, although it may be used for
any dependence between the bidding rate and the attained bid price. Throughout
this work we consider that the time it takes the seller to take a decision to sell is a
the main tool it has to express its rationality; here again, in future work we plan to
investigate adaptive approaches based on on-line observation of other parameters
of the market.

In the following two sections we will study single auction models. The fourth
section of the paper is devoted to networked auctions where bidders are allowed to
move among N auctions that sell one or several types of goods. The last section
presents conclusions and some open questions.

2. AN AUCTION WITH UNIT INCREMENTS

We first analyse an auction in which bidders increase their offers in unit increments.
We assume that bids arrive to the seller one at a time, according to a Poisson process
of rate λ so that the average time that will elapse between successive bids is λ−1.
If a bid is not accepted by the seller, then the next bid will increment the value
of the offer by 1 as long as the value V of the good for the buyers has not been
reached. However the buyers will stop bidding and incrementing the offer when the
most recent bid has reached the value V that the bidders associate with it.

We assume that the seller does not know the value V that buyers associate with
the good, or that it makes no use of historical data about it. In any case our
asssumption is that the seller just relies on its ongoing observation about whether
a new bid arrives. Thus after each bid, the seller waits for some random “decision
time” to determine whether to accept the offer. If a new bid arrives before that
time expires, then the process is repeated for this new bid. However if a new bid
does not arrive before this time expires, then the seller accepts the current bid. Of
course, if the seller accepts the offer too quickly, then the price he will be getting
may be low with respect to the price that he would have gotten had he been more
patient. On the other hand, if the buyer waits a long time before accepting an offer
he may ultimately get the highest possible price (which is V ), but at the expense
of wasting a lot of time. Note that if bidders are parsimonious and only bid up to
some price R = V − h, where h ≥ 0 and represents the savings that the buyers
hope to make on the price they pay, then we are back to dealing with an equivalent
model where instead of V we use the random variable R. Note here that both V
and h may be a random variable.

We may also have a situation where a bidder places a “time-out” on his offer
so that the bid is withdrawn if the seller does not accept it before the time-out
expires; however this case is not considered here, nor do we study cases where the
seller varies the minimum sale price as a means to improve its income or accelerate
the sale process. On the other hand, we study how the seller should choose this
“decision time” so as to maximise his expected income over many successive sales,
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assuming that the value V is a random variable. Thus we will examine the relation
between the average value of this random “decision time” and the other parameters
of this system assuming that similar sales take place repeatedly after a “rest period”
that follows after each individual auction.

Another case which follows closely from the analysis in this section is when we
consider that multiple units of the good are being sold at each auction. If the
number of units sold at each successive auction are independent and identically
distributed random variables, all the analysis we develop here follows through very
directly to this case.

2.1 The mathematical model

Assume that after each bid, the seller waits for an exponentially distributed time of
parameter d to accept the bid. Since the exponential distribution has the memory-
less property, with this assumption the potential buyers cannot use their ongoing
observations of the seller to determine when it will decide to accept an offer, since
the remaining decision time at any point in time has the same distribution as the
initial decision time right after a bid is made. If a new bid arrives, then the process
is repeated. Furthermore assume that after a bid is accepted, the auction has a ran-
dom “rest time” of average value R, which is again modelled via an exponentially
distributed time of rate r = R−1.

The auction repeats itself an infinite number of times, and all random variables
and processes that we discuss are assumed to be independent from each other in each
of the successive auctions, although they will always have the same distribution. In
particular, the value V of the good beyond sold will be the random variable Vi for
the i− th successive auction, i = 1, 2, ... , with common distribution function p(v).

Thus for any of the auctions in the sequence, we model this system as a continuous
time Markov chain {Xt : t ≥ 0} with state space {0, 1, ... , v, A1, ... AV }, where V
is itself a random variable (so that we are dealing with a doubly stochastic process).

Let {t1, t2, ... tn, ...} be the sequence of instants when the successive auctions
begin. Then:

—Xtn
= 0 corresponds to the value of the state when the n− th auction begins,

—The state Xtn+t = l, for t > 0 and 1 ≤ l ≤ v, corresponds to the case at time
tn + t during the n− th auction (tn + t < tn+1) where l bids have been received
so that the offered price has reached the value l, while

—Xt = Al, t > 0, is the state at time tn +t during the n−th auction (tn+t < tn+1)
where the bid has been accepted at the price l.

Clearly, the transition rate from state l to l+ 1, 1 ≤ l ≤ v− 1, is λ. The transition
rate from state l for 1 ≤ l ≤ v to state Al is d, and the transition rate from any
state Al to state 0 is r.

In this model we assume that the good will be sold in each successive auction, and
the main question is then to evaluate the income per unit time that the auctions
generate for the seller.
Pv(.) denotes the stationary probability distribution of the Markov chain with

state space {0, 1, ... , v, A1, ... , Av}, where we assume that V has a fixed value v.
We will call this the reduced Markov chain, and denote by π(l, v) the probability
that the price that is obtained is l given that the value of the good is v.
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The average rest time after the bid is accepted is the time spent in any of the
states Al, 1 ≤ l ≤ v; it is identical (and given by r−1) for each auction. Thus π(l, v)
is the probability that the reduced Markov chain is in state Al given that it is in
one of the states {A1, ... , Av}, hence:

π(l, v) =
Pv(Al)∑v

i=1 Pv(Ai)
, 1 ≤ l ≤ v. (1)

Assuming that the value of the good is a constant v, we can write the equations
satisfied by the stationary probabilities Pv(.) as follows:

Pv(l)(λ+ d) = λPv(l − 1), 1 ≤ l ≤ v − 1, (2)

Pv(0)λ = r

v∑

l=1

Pv(Al), (3)

Pv(v)d = λPv(v − 1),

Pv(Al)r = dPv(l), for 1 ≤ l ≤ v,

1 = Pv(0) +

v∑

l=1

[Pv(l) + Pv(Al)].

If we write ρ = λ
λ+d

, after some calculations these equations yield:

Pv(l) = ρlPv(0), 1 ≤ l ≤ v − 1, (4)

Pv(v) =
λ

d
ρv−1Pv(0),

Pv(Al)r = dPv(l), 1 ≤ l ≤ v,

Pv(0) =
rd

rλ+ λd+ rd
.

As a consequence we can see that

v∑

l=1

Pv(l) =
λ

d
Pv(0), (5)

resulting in:

π(l, v) =
d

λ
ρl, 1 ≤ l ≤ v − 1, (6)

π(v, v) = ρv−1. (7)

2.2 Expected income

Using the probabilities π(l, v) we can compute the expected income from a single
auction for a good whose value is v directly as:

Iv =

v∑

l=1

lπ(l, v), (8)

= vρv−1 +
1 − vρv−1 + (v − 1)ρv

1 − ρ
,

=
1 − ρv

1 − ρ
.
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so that the expected price brought by the auction is

I =
1 − E[ρV ]

1 − ρ
(9)

Comment 1 The formula (9) is very convenient because it says that average price
of the good is formed by the probability distribution V of the value that the bidders
place on the good (and not just on the average of the value), and also by the bidding
and selling rates.

Note that the total average time A that the auction lasts is the average time it
takes for a bid to be accepted, plus the rest time of average value r−1, and is simply
the total average time between two successive entries into state 0. Since the average
time spent in state 0 in each auction is λ−1, we use (5) to obtain:

Pv(0) =
λ−1

A
, (10)

A =
1

Pv(0)λ
, (11)

=
1

λ
+
r + d

rd
, (12)

which comes out to be independent of v the value of the good. The average income
per unit time brought by this auction is then Φv = Iv/A or

Φv =
λr(λ+ d)

λr + λd+ rd
(1 − ρv). (13)

A simple reality check on the results obtained can be conducted as follows:

—Consider equation (13), and suppose that v = +∞ so that the buyers do not have
an upper bound on the price they are willing to offer; as a result the auction will
be stopped by the seller’s own decision to accept a bid. Furthermore, suppose
that the seller is very anxious to make money so that there is no rest period, i.e.
r → +∞. In that case we can easily see that the income per unit time is simply
λ or, in some sense, the rate at which the bidders add money to the offer.

—From (9) with v = +∞ we see that the price that is obtained at an auction is

I+∞ = 1 +
λ

d
, (14)

which makes sense because the price will be at least one, to which we should add
the effect of any additional bids that may occur during the decision time. Thus
the seller will always receive a price which is less than 1 + λ/d.

We can also readily obtain the average income per unit time Φ for the auction as
a whole, under the assumption that the value of the good being sold is a random
variable V with probability distribution {p(v)}. We then have:

Φ =
λr(λ+ d)

λr + λd+ rd
[1 − E[ρV ]], (15)

where E[xV ] =
∑∞

v=0 p(v)x
v is the generating function associated with the proba-

bility distribution {p(v)}.

ACM Journal Name, Vol. 2, No. 3, 11 2006.



8 · Erol Gelenbe

Comment 2 When we compare the formulas (9) and (15) we clearly see that if
we use the decision rate d to maximise income or income-per-unit time will lead
to different results. However if the auction is “very busy” selling all the time, i.e.
r → ∞, we see that their ratio only depends on λ and d so that the best choice of
d will be the same for this case:

limr→∞ [
I

Φ
] =

λ+ d

λd
(16)

Of course, in the case r → ∞ there is no rest period, and the seller is always busy
running an auction.

2.3 A numerical example

It is interesting to observe how Φ varies as a function of d, as shown in the numerical
examples of Figure 1. We select the value V of the good to be uniformly distributed
between 80 and 120, we set r = 1 to normalise the remaining parameters, and plot
the income per unit time against the decision rate d for different values of the arrival
rate of the bids λ.

We see clearly that there is indeed an “optimum” value of d which differs for
each set of parameters and which maximises the income from the auction. Thus
the seller can adjust his/her “patience” so that the rate of income is maximised.
We also see that faster decisions (greater d) need to be made when the rate at
which bids are made is higher. The curves show that there is some optimum value

d

4

3

5

1

0.0

6

2

0
0.50.30.1 0.2 0.4

Fig. 1. Income per unit time versus the rate d at which decisions are made, for different values
of the rate at which bids arrive ranging from 8 (top) to 2 (bottom). The value is uniformly

distributed between 80 and 100. If the decision time is large (d less than 0.1), the income per unit
time can drop significantly.

of d that will maximise the seller’s income. Furthermore, when λ is large we can
afford to be less careful about waiting for some best value of the average decision
time, and we can make decisions quite quickly (d large).
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2.4 Increments of arbitrary size

In the previous analysis we “make believe” that prices take integer values and bid
increments are of unit size. This simplified model leads to more general results
quite directly. Suppose that the successive values of the bids in an auction are
denoted by Bi > 0, i = 1, 2 ... The increments are now X1 = B1 > 0 and
Xi+1 = Bi+1 −Bi for i ≥ 1. The random variable V that we have previously used
can now be interpreted as the number of bids received during an auction, with
probability distribution P (V = v) = p(v). If the Bi are random variables too, then
BV is a random variable representing the income that the auction will bring. Let
B̄i be the expected (average) value of the i−th bid. We first note that the expected
income from the auction now is:

I =
∞∑

v=0

p(v)
v∑

l=1

B̄lπ(l, v). (17)

If the increments have a common average value X̄ then B̄l = lX̄, we have:

I =

∞∑

v=0

p(v)

v∑

l=1

lX̄π(l, v). (18)

and the analysis reduces to the earlier case so that using (9) we obtain:

I = X̄
1 − ρv

1 − ρ
, (19)

Φ = X̄
λr(λ+ d)

λr + λd+ rd
[1 − E[ρV ]]. (20)

2.5 The rate at which bids arrive

It is also of interest to study the effect of “repeated bids” which include bids being
made from previously unsuccesful bidders as well as from new bidders. Thus for a
given auction, bids arrive at a total rate λ and this differs from the rate γ, at which
bids are made for the first time by individual bidders, because a given bidder who
is outbid by someone else may try again. In this section we discuss how γ and λ
are related. Let α be the stationary probability that a given auction is active, and
(1 − α) be the probability that it is at rest before the next auction begins. During
the rest period, we assume that bids are not made to this particular auction since
bidders are aware that the auction is not open.

We know that out of Φ bids per unit time, only one will be successful and therefore
the corresponding bidder will not return to the auction since he has been able to
buy the good. Thus the probability that a bid is unsuccessful is (Φ − 1)/Φ. Thus
when the auction is open, the rate at which bids arrive is:

λ = γ + λp
Φ − 1

Φ
, (21)

= γ
1

(1 − p) + p
Φ

. (22)

where p is the probability that an unsuccessful bidder will try again with a new
(and higher) bid. Thus the rate at which bids are made will in general be much
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larger than the rate at which bidders arrive to the auction: λ >> γ. Furthermore,
equations (22) and (15) tell us that the actual rate of bids depends on the number
of bids that are made, and vice-versa. This analysis is illustrated in Figure 2 where
we see that for low values of γ the income per unit time from the auction is just not
“taking off”, and when some threshold is exceeded it attains much higher values.
It can also be seen that when γ is large, λ will grow linearly as a function of γ

0.5

2

Gamma

3.02.52.01.5

 

1.0

4

3

1

0

Fig. 2. Income per unit time (Phi) versus the rate Gamma at which bidders arrive. Here d=0.1,
p=0.7 and r=1.

because Φ will be larger and will therefore have less impact on the value of λ as
shown in expression (22).

2.6 State dependent arrival rate

Assume now that the arrival rate of bids λi depends on the price that the most
recent bid has reached, which is an example of the bidders’ rationality, and simi-
larly let the decision rate di depend on the price that is being considered by the
seller which is again an example of rational choice. The analysis only requires a
minor modification in the previously studied model when the value of the good is
a constant v:

Pv(l)(λl + dl) = λl−1Pv(l − 1), 1 ≤ l ≤ v − 1, (23)

Pv(0)λ0 = r

v∑

l=1

Pv(Al), (24)

Pv(v)dv = λv−1Pv(v − 1), (25)

Pv(Al)r = dlPv(l), for 1 ≤ l ≤ v, (26)

1 = Pv(0) +

v∑

l=1

[Pv(l) + Pv(Al)]. (27)
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If we write ρi = λi−1

λi+di
, we obtain:

Pv(l) = Pv(0)Πl
i=1ρi, 1 ≤ l ≤ v − 1, (28)

Pv(v) = Pv(0)
λv−1

dv

Πv−1
i=1 ρi, (29)

Pv(Al)r = dlPv(l), for 1 ≤ l ≤ v. (30)

Comment 3 Note that the state dependent model also reflects some form of ratio-
nal behaviour on the part of bidders who decide to bid at the auction depending on
what the price of the most recent bid is. Thus one would expect that the bid rate
might in some cases drop as the price increases, or yet in others we may discover
and increase of the rate and then a decrease, since buyers often are more attracted
by goods whose price may relate to the value they associate with the good. Thus
we may imagine that λi+1 > λi if Prob[i > V ] is larger than 0.f , while the opposite
would happen if Prob[i ≤ V ] is higher.

3. VARIATIONS ON THE SINGLE AUCTION MODEL

Many other variations and generalisations of the basic models that were discussed
earlier can be considered. For instance, one case that we have not considered is
when each successive bid is required to exceed a certain minimum value. We will
not detail this case in this paper.

Another interesting case we now analyse is the “Vickrey” auction where the
highest bidder is selected but the good is sold at the second highest price price
[McAfee and McMillan 1987], except for the first bid which (if accepted) will be
accepted at its offered value. By applying the previous approach to a Vickrey
auction, the expected income Iν

v it will bring for a good of value v becomes:

Iν
v =

v∑

l=2

(l − 1)π(l, v) + π(1, v), (31)

=
1 − ρv

1 − ρ
− 1 +

d

λ
ρ, (32)

= ρ[
1 − ρv−1

1 − ρ
+
d

λ
], (33)

The average income per unit time is then Φν
v = Iν

v /A, leading to the average income
per unit time Φν for the Vickrey auction when the value of the good being sold is
a random variable V with probability distribution {p(v)}, and using the fact that
the average duration of each auction is the same as in the “English” case, we have:

Φν =
λrd

rd+ λ(r + d)
[(1 − ρ) +

λ

d
− (1 +

λ

d
)E[ρV ]]. (34)

Numerical examples that compare the ordinary English auction with a Vickrey
auction are shown below, indicating that the optimum incomes per unit time are
quite close in both cases.
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Fig. 3. Income per unit time versus the rate d at which decisions are made for the English and
Vickrey auction with unit increments. The value of the good is uniformly distributed between 80

and 100, and the arrival rate of bids arrive is 4 (top) and 2 (bottom).

3.1 An English auction with a seller reservation price

Most auctions will start with a seller’s reservation price, call it s. If no bid is made
for at least that price by the seller’s decision time, then the auction ends without a
sale. This case was not considered in the previous analysis in which the seller may
wait indefinitely for the initial bid with s = 1.

Here we will denote by Pv(A0) the probability that the seller stops the auction
because a bid with a price of at least s has not been received. When this happens,
the auction “rests” for some time of average value r−1 and then restarts. In this
case it is also normal to consider that the rate at which bids are made is a function
of this threshold price, call it λs. Of course, unless the value v that buyers associate
with the good is at least s, this auction will never result in a sale. Therefore we
will take v ≥ s.

The equations satisfied by the state probabilities now become:

Pv(l)(λs + d) = λsPv(l − 1), s < l ≤ v − 1 (35)

Pv(s)(λs + d) = λsPv(0),

Pv(0)(λs + d) = r

v∑

l=s

Pv(Al) + rPv(A0),

Pv(v)d = λsPv(v − 1),

Pv(Al) =
d

r
Pv(l), s ≤ l ≤ v, l = 0,

Pv(0) + Pv(A0) +

v∑

l=s

[Pv(l) + Pv(Al)] = 1. (36)
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If we set ρ = λs/(λs + d) we obtain:

Pv(l) = ρl−s+1Pv(0), s ≤ l ≤ v − 1, (37)

Pv(v) =
λs

d
ρv−sPv(0),

Pv(Al) =
d

r
Pv(l), s ≤ l ≤ v, or l = 0,

Pv(0) =
rd

(λs + d)(r + d)
.

We are also interested in the probability that the price obtained is l given that
the value of the good is v, with v ≥ s. In that case we will have:

π(l, v) =
Pv(Al)

Pv(A0) +
∑v

i=s Pv(Al)
, s ≤ l ≤ v, l = 0, (38)

π(l, v) =
d

d+ λs

ρl−s+1, s ≤ l ≤ v − 1, (39)

= ρv−s+1, l = v,

=
d

d+ λs

, l = 0,

so that the income from a single auction for a good whose value is v ≤ s is now:

Iv = ρ[s+
λs

d
(1 − ρv−s)] (40)

The numerical results in Figure 4 show that having a seller reservation price can

2.0
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1.2

3.2

4.0

0.8
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d

MinSale_S=10%*Vmean     

English                 

Fig. 4. Income per unit time versus the rate d at which decisions are made for an auction without
a seller reservation price (lower curve), and for one where it is 10 (curve above). In both cases
bids arrive at rate λ = 2. The value V is uniformly distributed between 80 and 100. The seller

reservation price has the effect of greatly improving the income per unit time, even though some
of the auctions may end without a sale.
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yield much higher income per unit time, provided that decisions are taken faster
(larger d) than in an auction without it.

3.2 A deterministic model and heuristic rule

Consider an auction that begins at time t = 0 with successive bids arriving at
0 ≤ a1 ≤ a2 ≤ ... . Let αn+1 = an+1 − an. The Xn > 0, n ≥ 1 are the increments
that successive bids offer so that the value of the n − th bid is Bn =

∑n

i=1Xi.
Suppose the seller decides to accept the nth bid at time an +Dn provided no new
bid arrives by that time. If Wn is the total wait time of the nth bidder, we see that:

Wn = αn+1, if Dn > αn+1, (41)

= Dn, otherwise.

since a bidder may leave the bidding process, if he so wishes, as soon as a higher
bid is made.

We can also study how a decision may be made by the seller who is observing
the successive bids. We may expect that the nth increment Xn will depend on
the previous bid Bn−1, so that as time goes by at some point the bidding price
has reached a high enough value, but the relative increase in the bid has somehow
reached a point of diminishing returns. If the seller is interested in the income per
unit time, he may well decide to accept the k + 1th offer if:

Bk

ak

>
Bk−1

ak−1
, and (42)

Bk+1

ak+1
<

Bk

ak

.

Equivalently, he accepts the zth bid where:

z = inf{n :
Xn

Bn−1
<

αn

an−1
}, (43)

when the relative increase in the value of the bid is less than the relative increase
in the time that the seller waits for the bid.

4. NETWORKED AUCTIONS

We complete this “tour d’horizon” of new probabilistic auction models by showing
how these models can be extended to the case where many English auctions are
being conducted by different sellers, and bidders can move different auctions to try
to make a purchase. Although we are imagining that all these auctions are selling
the same type of good, the analysis would be similar if the networked system would
include auctions for different types of goods. Then consider N auctions which are
running concurrently, and let

n(t) = (n1(t), ... , nN (t)) (44)

be the vector representing the number of potential bidders ni(t) at the ith auction
at time t ≥ 0, while the vector

k(t) = (k1(t), .. , kN (t)) (45)
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denotes the price currently attained by the most recent bids at the N auctions, and
ki(t) is the price that the ith auctions have reached at time t, so that the state of
the system as a whole is the pair of vectors (n(t), k(t)), which will have the following
constraints:

—If ki(t) > 0, this means that there is at least one current bid at auction i; as
a consequence we must have ni(t) > 0 as well since there must be at least one
potential customer present.

—If ni(t) = 0 then ki(t) = 0, while if ki(t) = 0 then we may have any value
ni(t) ≥ 0.

—If ni(t) > 0 it is possible that no bid has yet been received at auction i or that
the most recent bid has been accepted and the successful bidder has returned to
the set of other bids, so that we may have ki(t) = 0.

We introduce the Mobile Bidder Model (MBM) where any bidder, except for the
one who has made the most recent bid and is waiting for a response from the seller,
is allowed to move at any time from one auction to another one. Of course, all
other bidders are also allowed to make a bid. Bidders who leave one auction can
either go to another one or they can depart from the auction system as a whole.
In this model, the mobility of bidders will be represented by a Markov chain with
transition probabilities P (i, j) where i ∈ {1, .. N} and j ∈ {1, .. N,D}, where D
denotes the departure point of a bidder from the system, so that

N∑

j=1

P (i, j) + P (i,D) = 1, (46)

for any i = 1, ... N . Furthermore, bidders join auction i from the “outside world”
according to a Poisson process.

The MBM is represented as follows, where we denote by y the number of bidders
and by x the level attained by the bid:

—Bidders arrive from the “outside world” to the ith auction according to a Poisson
process of rate γi.

—The rate of departure from auction i of a bidder, except for the one that has made
the current highest bid, is µi ≥ 0 so that with probability µi∆t+ o(∆t) any one
bidder leaves the auction in the time interval [t, t+ ∆t[. If there is currently no
outsanding bid, all bidders can depart. Thus the rate of departure is a function
of (y, x) as follows:

µi(y, x) = (y − 1)µi, x > 0, (47)

µi(y, 0) = yµi. (48)

A bidder departing from auction i will head to auction j, or to the outside of the
network if j = D, with probability P (i, j), where j ∈ {1, ... N,D}.

—The value of the good being sold at auction i is the random variable Vi which is
independent of other quantities in the system, and its probability distribution is
pi(v) = Prob[Vi = v], and let ψi,x = Prob[x < Vi] with ψi,0 = 1. New bids will
stop being made when the most recent bid has attained the value of the good.
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Thus the rate at which bidders at auction i make bids is a function of (y,x) as
follows:

βi(y, x) = (y − 1)βiψi,x x > 0, (49)

βi(y, 0) = βiy.

where βi > 0. Again for any individual bidder we assume exponentially distrib-
uted bidding times, independent of others’ bids and of the same bidder’s previous
bids.

—Finally, the rate at which a bid is accepted at auction i is δi, and the bid accep-
tance times are independent and identically distributed random variables. When
a bid is accepted at auction i the successful bidder joins the set of bidders at the
same auction, and auction i starts again with all the bidders. Notice that the
most recently winning bidder’s behaviour henceforth is the same as that of the
other bidders.

Comment 4 The MBM includes several aspects which represent choices made by
the potential bidders. These include γi which is the rate at which bidders first
choose to visit the ith auction, Vi the random variable representing the value of
the good at auction i as perceived by the bidders, βi the rate at which bidders at
auctioon i make bids, µi the rate at which a potential bidder at auction i chooses to
leave that auction, and finally P (i, j) the probability that a bidder leaving auction
i then chooses to go to auction j. All of these quantities can represent rational
choices based on the trust that a bidder can place on the different auctions, or on
the quality of the goods that are being sold. However at this point we do not assume
that these quantities depend on the instantaneous state of all of the auctions, e.g.
the price currently attained and the number of bidders that are present at each
of the auctions. These additional aspects of rational choice will be discussed in
Section 4.2.

4.1 Deriving the system equations

With these assumptions, {(n(t), k(t)), t ≥ 0} is a continuous time, discrete state-
space Markov chain [Medhi 1994]. We denote its probability distribution by p(n, k, t) =
Prob[n(t) = n, k(t) = k] for some given initial condition at t = 0.

Let us introduce the following notation. ei will denote the n−vector all of whose
elements are zero, except for the ith element which is +1, and let n+

i = n + ei,
n−i = n−ei provided that ni > 0, n+−

ij = n+ei−ej provided that nj > 0. Similarly

k+
i = k + ei and k−i = k − ei provided that ki > 0.
The Chapman-Kolmogorov (C-K) equations for the system are:

dp(n, k, t)

dt
=

N∑

i=1

{ γip(n
−
i , k, t)1[ni > 0] (50)

+ βi(ni − 1)ψi(ki − 1)p(n, k−i , t)1[ni > 0, ki ≥ 2]

+ βiψi,0nip(n, k
−
i , t)1[ki = 1] (51)

+ µiP (i,D)p(n+
i , k, t)(ni1[ki > 0] + (ni + 1)1[ki = 0])
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+

N∑

j=1

µiniP (i, j)p(n+−
ij , k, t)1[nj > 0, ki > 0]

+

N∑

j=1

µi(ni + 1)P (i, j)p(n+−
ij , k, t)1[ki = 0]

+

∞∑

x=1

δip(n, k + xei)1[ki = 0]1[ni > 0] }

−

N∑

i=1

{γi + [(δi + µi(ni − 1))1[ni > 0, ki > 0]

+ βiψi(ki)(ni − 1)]1[ni > 0, ki > 0]

+ (βini + µini)[ni > 0, ki = 0] }p(n, k, t)

Note that the term beginning with δi in the 7-th line of the equation corresponds
to the transitions which occur when bids are accepted, while the last three lines
correspond to the rates of the events that do not take place. Now define:

p(n, t) =
N∑

i=1

∑

ki≥0

p(n, k, t), (52)

p(n, ki = 0, t) =

N∑

j=1,j 6=i

∑

kj≥0

p(n, k, t)1[ki = 0],

and sum the equation (51) over all vectors k to obtain:

dp(n, t)

dt
=

N∑

i=1

{ γip(n
−
i , t)1[ni > 0] (53)

+ µiniP (i,D)p(n+
i , t) (54)

+ µiP (i,D)p(n+
i , k, t)1[ki = 0]

+

∞∑

ki=1

N∑

j=1,j 6=i

∞∑

kj=0

βi(ni − 1)ψi(ki)p(n, k, t)1[ni > 0]

+ βinip(n, k, t)1[ki = 0]1[ni > 0]

+

N∑

j=1

[µiniP (i, j)p(n+−
ij , t)1[nj > 0]

+ µiP (i, j)p(n+−
ij , k, t)1[ki = 0]1[nj > 0]]

+ δi[p(n, t) − p(n, k, t)1[ki = 0]]1[ni > 0] }

−

N∑

i=1

{γip(n, t)

+ δi[p(n, t) − p(n, k, t)1[ki = 0]]1[ni > 0]

+ µi(ni − 1)[p(n, t) − p(n, k, t)1[ki = 0]]1[ni > 0]
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+

∞∑

ki=1

N∑

j=1,j 6=i

∞∑

kj=0

βiψ(ki)(ni − 1)p(n, k, t)1[ni > 0]

+ (µi + βi)nip(n, k, t)1[ki = 0]}

=

N∑

i=1

{ γip(n
−
i , t)1[ni > 0]

+ µiniP (i,D)p(n+
i , t) (55)

+ µiP (i,D)p(n+
i , k, t)1[ki = 0]

+

N∑

j=1

[µiniP (i, j)p(n+−
ij , t)1[nj > 0]

+ µiP (i, j)p(n+−
ij , k)1[ki = 0]1[nj > 0]]}

−

N∑

i=1

{(γi + µi(ni − 1)1[ni > 0])p(n, t)}

After grouping terms which correspond to states with ki = 0 we obtain:

dp(n, t)

dt
=

N∑

i=1

{γip(n
−
i , t)1[ni > 0] (56)

+ µiniP (i,D)p(n+
i , t) (57)

+

N∑

j=1

[µiniP (i, j)p(n+−
ij , t)1[nj > 0]

+

N∑

i=1

{ − (γi + µi(ni − 1)1[ni > 0])p(n, t)

+ µiP (i,D)p(n+
i , k, t)1[ki = 0]

+

N∑

j=1

µiniP (i, j)p(n+−
ij , ki = 0, t)1[nj > 0]

− µip(n, ki = 0, t)1[ni > 0]}

4.2 Approximate stationary solution of the MBM when bidders are very active

Under the Active Bidders Assumption (ABA), we suppose that that

p(n, k, t)1[ki = 0] << p(n, t) if ni > 0, (58)

i.e., for any (n, k) such that ni > 0 and ki = 0. We are thus assuming that the
probability that there are no bids when there is at least one bidder at an auction
is very small compared to the overall probability of the same state. The equations
(57) then become:

dp(n, t)

dt
≈

N∑

i=1

{ γip(n
−
i , t)1[ni > 0] (59)

+ µiniP (i,D)p(n+
i , t) (60)
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+

N∑

j=1

[µiniP (i, j)p(n+−
ij , t)1[nj > 0]

− [ γi + µi(ni − 1)]p(n, t)1[ni > 0]}

Result 1 The stationary solution of equations (57) for the MBM under the ABA

are obtained by setting dp(n,t)
dt

= 0 for all ni > 0 in (60) and is given by:

p(n) ≈

N∏

i=1

e−Ui

Ui

Uni

i

(ni − 1)!
(61)

where Ui = Λi

µi
and the Λi are the solution of the system of linear equations:

Λi = γi +

N∑

j=1

ΛjP (j, i), i = 1, ... , N (62)

Furthermore, in steady state the average number of bidders at the ith auction is
given by < ni > ≈ [1 + Ui].

Proof The proof is direct by substitution of (61) in (60) which yields:

0 ≈

N∑

i=1

{γiµi

ni − 1

Λi

+ µiniP (i,D)
Λi

µini

(63)

+

N∑

j=1

µiniP (i, j)
µj(nj − 1)Λi

Λjµini

− γi − µi(ni − 1)}

≈

N∑

i=1

{γiµi

ni − 1

Λi

+ P (i,D)Λi +

N∑

j=1

P (i, j)
µj(nj − 1)Λi

Λj

− γi − µi(ni − 1)}

Using (62), and with P (i,D) = 1 −
∑N

j=1 P (i, j) so that

N∑

i=1

ΛiP (i,D) =

N∑

i=1

γi, (64)

we write

0 ≈

N∑

i=1

{γiµi

ni − 1

Λi

+

N∑

j=1

µj(nj − 1)(λj − γj)

λj

− µi(ni − 1)} (65)

where the right-hand-side is zero. Finally note that e−Ui/Ui is the normalising
constant that guarantees that the sum of the probabilities equals one. Thus <
ni >≈ [1 + Ui] is obtained from

< ni >≈
e−Ui

Ui

∞∑

x=1

x
Ux

i

(x− 1)!
(66)
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4.3 The solution when bids and sales are very frequent

In this section we will consider the case when bidding and selling occurs more
frequently than the bidders’ moving between auction centres and into our out of
the auction centre.Thus we will consider the case where for all i = 1, ... , N ,

Λi, µi << δi, βiψi,ki
(67)

which also implies that γi << δi, βiψi,ki
. Considering the solution for:

p(n, k) = lim
t→∞

p(n, k, t), (68)

and starting with (51) expressed in steady-state:

N∑

i=1

{ γip(n
−
i , k)1[ni > 0] (69)

+ βi(ni − 1)ψi(ki − 1)p(n, k−i )1[ni > 0, ki ≥ 2]

+ βiψi,0nip(n, k
−
i )1[ki = 1] (70)

+ µiP (i,D)p(n+
i , k)(ni1[ki > 0] + (ni + 1)1[ki = 0])

+

N∑

j=1

µiniP (i, j)p(n+−
ij , k)1[nj > 0, ki > 0]

+

N∑

j=1

µi(ni + 1)P (i, j)p(n+−
ij , k)1[ki = 0]

+

∞∑

x=1

δip(n, k + xei)1[ki = 0]1[ni > 0] }

=

N∑

i=1

{γi + [(δi + µi(ni − 1))1[ni > 0, ki > 0]

+ βiψi,ki
(ni − 1)]1[ni > 0, ki > 0]

+ (βini + µini)1[ni > 0, ki = 0] }p(n, k)

we remove terms which are relatively small due to the condition (67) to obtain:

N∑

i=1

{ βi(ni − 1)ψi,ki−1p(n, k
−
i )1[ni > 0, ki ≥ 2] (71)

+ βiψi,0nip(n, k
−
i )1[ki = 1] +

∞∑

x=1

δip(n, k + xei)1[ki = 0]1[ni > 0] }

=

N∑

i=1

{[(δi + µi(ni − 1))1[ni > 0, ki > 0]

+ βiψi,ki
(ni − 1)]1[ni > 0, ki > 0]

+ βini1[ni > 0, ki = 0] }p(n, k)

and then write p(n, k) = p(k|n)p(n) and divide both sides by p(n) to obtain:

N∑

i=1

{ βi(ni − 1)ψi,ki−1p(k
−
i |n)1[ni > 0, ki ≥ 2] (72)
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+ βiψi,0nip(k
−
i |n)1[ki = 1] +

∞∑

x=1

δip(k + xei|n)1[ki = 0]1[ni > 0] }

≈

N∑

i=1

{[(δi + µi(ni − 1))1[ni > 0, ki > 0]

+βiψi,ki
(ni − 1)]1[ni > 0, ki > 0] + βini1[ni > 0, ki = 0] }p(k|n)

As an immediate consequence we have:

Result 2 The solution p(k|n) for ni > 0 and ki > 0, i = 1, ... N to (73) is given
by:

p(k|n) ≈
N∏

i=1

pi(ki|ni), where (73)

pi(ki|ni) = pi(0|ni)

ki∏

l=1

[
βiψi,l−1(ni − 1)

γi + βiψi,l(ni − 1)
(74)

and

pi(0|ni) = [1 +

∞∑

ki=1

ki∏

l=1

[
βiψi,l−1(ni − 1)

γi + βiψi,l(ni − 1)
]−1. (75)

where we have used the fact that the conditional probabilities sum to one.

Proof The proof is straightforward, and is based on substituting (74) in the equa-
tions (73). Note also that pi(0|0) = 1.

Finally, we can write the steady-state solution under the ABA when bids and
sales are frequent using (74) as:

p(n, k) ≈ p(k|n)p(n) (76)

≈
N∏

i=1

e−Ui

Ui

Uni

i

(ni − 1)!
p(0|ni)

ki∏

l=1

[
βiψi,l−1(ni − 1)

γi + βiψi,l(ni − 1)
(77)

An important property of these approximate solutions is that they have “product
form”. This means that once we have solved the traffic equations (62) which allow us
to compute the rate at which bidders arrive to each of the auctions, we can obtain
the marginal probability distributions for any of the auction centres separately,
while the overall joint probability distribution is obtained from the product of thes
emarginal distributions.

5. CONCLUSIONS AND FURTHER WORK

Computerised auctions are common in the Internet as part of the web based econ-
omy, and we may imagine that this trend will extend to a large part of the world’s
economy. Various enterprises may then be conducting their business based on a
networked system of automated and networked purchasing and sales centres which
will be dealing in goods, parts for manufacturing industries, transportation services
and other services that enterprises may need.
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In this paper we consider auctions with “automated” bidders and sellers, where
bidders arrive to auctions according to some random process, and where the time it
takes a seller to make a decision is also modelled as a random variable. We analyse
such systems to obtain closed form expressions for their steady state behaviour as
a function of different system paramaters. In particular we consider metrics such
as the sale price reached by a good in an auction, and the income per unit time
that the seller obtains from repeated sales of the same good to differet buyers. We
also consider the impact of the time that it takes a seller to reach its decision on
the metrics of interest.

After considering a single auction, we turn to a network of N auctions where
buyers can circulate among a set of auctions. We suggest a mathematical model
for such a system which includes both the number of buyers and the price attained
by the good, at each of the N auctions. An approximate analytical solution is
obtained under the assumption that buyers are quite active, so that their bidding
rates are significantly higher than the rate at which they move among the different
auctions. It is seen that this analytical solution has “product form” which allows us
to compute the probabilistic properties of each of the individual auctions separately,
and then obtain the joint probability distribution for the number of bidders and the
value attained by a good, from these separately calculated marginal distributions.

Some aspects concerning rationality and preferences expressed by bidders are
also modelled in the case when N auctions operate the same network, as discussed
in Section 4. Thus the rate µi at which a bidder leaves one auction i can depend
on the auction itself when, for instance, some auctions are less attractive than
others. Similarly, newly arriving bidders may initially choose some auction i more
or less frequently than other auctions through the specific arrival rate γi; thus if

γ =
∑N

i=1, the quantity γi/γ is the probability that a newly arriving bidder first
chooses auction i. The probabilities P (i, j) express the fact that bidders may have
some preferences in the way they successively visit different auctions, and they
represent the preferences observed about the bidders’ collective behaviour. For
instance, certain auctions may have a higher quality level for the goods they sell,
or (as is discussed in Section 4.1), the bidders may go to auctions that are busier or
less busy, or to those where the sale price is generally lower; these are all instances
of rational behaviour which can be modeled in the context we describe. Also the
probabilities P (i, j) may depend on the congestion observed at different auction
centers, in which case we might take:

P (i, j) = c
1/ < ni >∑N

i=1
1/ < ni >

, 0 < c < 1, (78)

which represents the situation where bidders may tend to visit auctions which
are less busy, as in the “sensible decision” algorithms studied in [Gelenbe 2003].
Similarly, we may consider cases where bidders are more likely to go to auctions
where prices are lowetr. Of course exactly the opposite may also happen, when
buyers are attracted by the crowds they see, creating even more congestion and
competition for themselves, or when they are attracted to more expensive goods
which are perceived to be of better quality.

We also allow distinct “values” to be attributed to goods at different auctions in
the networked case, representing the fact that the formation by the bidder of an
opinion about value may depend on where the bidder is. In this paper we do not
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examine optimum rules of bidder behaviour, but optimisation studies can indeed
use the analysis that we present as a starting point as we have done in several
examples that are given in the text.

Many interesting questions and generalisations can be considered and will be the
subject of future work. First of all, the analysis we have presented leads naturally to
problems of optimisation and estimation. One can study how the different system
parameters, such as arrival rates of bids or decision rates of sellers, can be rationally
used to optimise the benefit of the different parties involved. In the networked
case, future work can study how prices evolve when buyers are attracted by lower
prices, or how value changes when value formation results from observed prices.
Furthermore one can study how decisions can be taken when such parameters are
observed and estimated rather than known in advance.

More broadly speaking, future work will investigate how buyers’ interests can
be best served by examining the opportunities offered by the large number of auc-
tions which populate the Internet, and how the buyers can automatically navigate
through these auctions in order to maximise their benefit.
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