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Abstract--This paper shows that conic programming is an
effective tool to solve robust power system stabilizer (PSS) design
problems, namely coordinated gain tuning and coordinated phase
and gain tuning. Design robustness is achieved by simultaneously
considering several operating scenarios. The method is
implemented through a sequence of conic programming runs that
define a multivariable root locus along which the eigenvalues
move. Specifically, the eigenvalues corresponding to the unstable
and poorly damped modes are moved to a conic sector in the left
half of the s-plane, whereas the eigenvalues corresponding to the
well damped modes are constrained to stay within the boundaries
of this conic sector. At each step of the solution, the PSS design
parameters are restricted in a trust-region such that the
computation of the eigenvalue shift based on the residue method
holds valid. The proposed method is demonstrated on a 68-bus
test system with 9 different operating conditions. Comparisons
are carried out between conic programming implementations for
PSS coordinated gain tuning and for simultaneous tuning of gain
and phase characteristics.

Index Terms-- Controller design, coordinated design,
multivariable systems, nonlinear programming, optimization
methods, power system stabilizers, robust control, small-signal
stability.

NOMENCLATURE

F (s) Block of the k™ PSS transfer function with unknown

design parameters
G, (s) Transfer function of the k™ PSS with unity gain

H,(s) Transfer function of the £ PSS

H_(s) i™ component in the summation of H +(8)
¢,(s) Torsional filter block of the k" PSS

N,  Number of unstable and poorly damped modes
N,  Number of well damped modes

N, Number of cases or operating scenarios
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Number of PSSs

Residue associated with the /™ eigenvalue and k™ PSS

o

Complex frequency
Lag time constant of the k™ PSS

Washout time constant

N N

Euclidean distance of the /™ eigenvalue shift

~

Projection of ¢, on the real axis

Z Projection of ¢, on the imaginary axis

u,(t) Output of the k™ PSS as a function of time
. i™ design parameter of the £ PSS

R(.) Real part of a complex number

3(.) Imaginary part of a complex number

4 ™ eigenvalue with nonnegative imaginary part
=-a,+io,

p Trust-region limit

S Boundary damping ratio = cos @

' Target damping ratio = cos 6§’

Ao, (¢) Speed deviation of the k™ machine as a function of
time

A Incremental change in a quantity

c Superscript/subscript denoting the case number

of* Superscript denoting the current/optimal value

. Normalized value of a quantity

I. INTRODUCTION

OWER system stabilizers are the most cost effective

controls for damping electromechanical oscillations [1].
They act through the generator's voltage regulator and ideally
produce a component of electrical torque on the rotor which is
in phase with speed deviations over a wide range of
frequencies of oscillation. The basic structure of the PSS
comprises a gain, phase compensation blocks, a washout filter,
and output limiters. With speed or frequency used as PSS
inputs, a torsional filter is also commonly used. The PSS
design problem therefore calls for coordinating the parameters
of the different stabilizers so that the damping of the system's
electromechanical modes is increased. An important issue in
the design of controllers is robustness, i.e. the controller
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should achieve the desired damping over a wide range of
system operating conditions.

The power systems literature reports several methods for
PSS tuning and coordination with electronic controls such as
flexible AC transmission system (FACTS) devices. The gain
and phase compensation approach [2] is one of the most
widely adopted methods for designing system controls.
Reference [3] shows that for a PSS with speed input, the phase
compensation block should be designed to compensate the
phase lag between the automatic voltage regulator reference
voltage and the electrical torque of the generator with the
generator angle held constant. Early research has suggested
that the classical gain and phase compensation approach is
applicable to robust PSS design. This is based on the
observation that the torque-reference automatic voltage
regulator transfer function remains essentially invariant over a
wide range of conditions encountered in the operation of the
system [4]. The gains of the different controllers are
subsequently chosen to achieve the desired damping level. The
coordinated gain tuning method has been recently
demonstrated using linear programming [5], [6], Newton-
Raphson method [7], and nonlinear least squares based
multivariable root following technique for multiple operating
scenarios [8]. References [9] and [10] show that linear and
quadratic programming approaches can be employed for the
coordinated gain and phase tuning of the various PSSs. In [9],
[10] the objective has been set to minimize the summation of
controllers' magnitudes at typical frequencies of oscillation.
Robustness in controller design has been also approached
through the normalized eigenvalue distance minimization
method [11], [12]. This method maintains acceptable
performance over different operating conditions by minimizing
the maximum normalized distance. Another technique to
obtain stability robustness is through norm optimization
formulations that are minimized using algorithms for linear
matrix inequalities [13]. Search based methods, such as
genetic algorithms [14], [15], [16], have been also proposed
for robust PSS design. A comprehensive review of coordinated
PSS design methods appears in [17].

Although PSS tuning is primarily targeted at damping
electromechanical modes, the arbitrary setting of eigenvalue
locations corresponding to these modes may adversely affect
the system's control modes [15]. This paper proposes an
approach for tuning PSS parameters such that both the
electromechanical and control modes are well damped. It is
applicable to both coordinated PSS gain and coordinated PSS
gain and phase tuning. The approach incrementally shifts the
eigenvalues corresponding to the unstable and poorly damped
modes to a conic sector in the left half of the s-plane whilst
prohibiting the eigenvalues originally in this sector from
leaving it. The coordination of the eigenvalue movement is
achieved via a conic programming method that successively
reduces the distance between the current and optimal
eigenvalue locations. At each iteration, the conic program is
formulated based on residues that give the sensitivity of an
eigenvalue due to feedback with a PSS transfer function [1].

2

The validity of the eigenvalue shifting approximation as
predicted by the sensitivity information is maintained
throughout the solution process by employing a trust-region
technique, i.e. the PSS parameter increments are restricted in a
region such that the sensitivity information remains valid. The

controller robustness is addressed by simultaneously
considering, within the conic quadratic programming
framework, the eigenvalue locations corresponding to

scenarios under normal conditions or contingencies. Although
this increases the size of the conic quadratic program, a
solution can still be efficiently obtained. In fact, conic
quadratic problems are convex and can be solved by
polynomial-time interior-point methods at basically the same
computational complexity as linear programming problems of
similar size [18].

The rest of this paper is organized as follows. Section II
presents the motivation of the method as an optimization based
multivariable root locus following technique [19]. Section III
reviews the shift of eigenvalues as a function of the PSS
parameter changes. The proposed conic programming
approach for coordinated gain tuning is introduced in section
IV. The extension of the method for coordinated gain and
phase tuning is outlined in section V. Section VI includes
numerical results on the 68-bus test system. The paper is
concluded in section VII with directions for future research.

II. MOTIVATION: MULTIVARIABLE ROOT LOCUS FOLLOWING
TECHNIQUE

The proposed method is motivated by the root locus
approach, which is one of the most intuitive techniques for
controller coordinated gain tuning. Assume that the power
system dynamic model for a given operating condition has
been put into state-space form. With the PSS phase
characteristic tuned to approximately match the ideal phase
lead, the root locus for a specific PSS is used to identify the
gain that gives sufficient damping to the modes of interest. The
stabilizers are designed sequentially, i.e. a designed PSS is
treated as the only control loop that is open in a multivariable
system in which all other PSSs are operating in closed loop.
Because a PSS may increase the stability of some modes at the
expense of reducing the damping of others, some stabilizers
may require more than one pass through the tuning algorithm
to reach a compromise between the design parameter values.

If /1(1’. is an eigenvalue on the root locus, then the movement

of this eigenvalue due to a sufficiently small change in the PSS
gain can be approximated by the movement along the straight

line tangent to the locus at 13 [20]. The slope of this tangent

line can be derived from residue information [1]. In fact, the
sensitivity information is not limited to the change of one PSS
gain, but can be generalized to simultaneously include
different controllers. The aim of this work is to propose a
sequential conic programming method to incrementally adjust
the PSS gains. This can be done by coordinating the movement
of the eigenvalues that define different generalized root loci
corresponding to different operating conditions. The
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generalized root loci are dependent on the design method [19].
The conic program uses sensitivity information and Euclidean
distance minimization to direct the generalized root loci into
satisfactory regions of the eigenvalue space. An extension for
coordinated tuning of both the phase leads and gains of the
PSSs is also proposed. Related work appears in [5]-[10].

III. EIGENVALUE SENSITIVITY TO DYNAMIC FEEDBACK
Let H,(s) fork=1,...,Ngdenote the transfer function of

the k™ PSS with speed input

sT
w S
1+sT 9:(5)

()
_ xk2s2 + X8 +x ST, )
(1+sT,)"  1+sT, Pite

where (x,,,%,,,X,,) are the parameters of the k" PSS to be

Hy(s) = F(s)

tuned, 7, is a given PSS lag time constant, 7, is the washout
time constant, ¢, (s)is the torsional filter transfer function if
available, and N is the number of stabilizers. Equation (1)

can be rewritten as

H,(s) :zxkini(S) 2
where
1 sT,
HkO(S)_ml'f'STW ?,.(5) 3)
Hy (s)=sH,,(s) “4)
H,,(s)= sszO(s). %)

The shift in the /™ eigenvalue A; due to its sensitivity to

dynamic feedback through the PSS transfer functions in (1) is
given by [1], [17]

Ng 2
A=A+ Axr H (X) (6)

k=1 i=0

where
/”t(; = current location of the /™ eigenvalue

ry = residue associated with the ™ eigenvalue and £ PSS

Ax,, =X, — x;;= incremental change in PSS parameters.

Equation (6) is applicable for the simultaneous tuning of the

i
3
s
-7
Bt

Fig. 1: Conic sector.
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PSS gain and phase. In the gain coordination approach, the
phase lead characteristic is specified independently and (6)
reduces to

Ny
A=A+ ; Axi o1, G (A)) 7
where H,(s)=x,,G,(s) . ®)

IV. CONIC PROGRAMMING APPROACH FOR COORDINATED
GAIN TUNING
A. Incremental Eigenvalue Shifting
Let ¢ =cos @ denote the damping ratio corresponding to the
boundaries of the conic sector in Fig. 1. A mode whose
damping ratio is less than ¢ can have its eigenvalue
incrementally moved into the conic sector by adjusting the
PSS gain x,, to successively reduce the Euclidean distance

between the original and optimal eigenvalue locations in the s-
plane. Let A, denote an eigenvalue with nonnegative

imaginary part corresponding to a mode whose damping is to
be improved. The incremental Euclidean distance
minimization can be cast as the following quadratic cone
program

minimize 7; subject to Q)

1,2ty +1; (10)
Ny

by =R =A) =3 R0, G, () Ay (1)
k=1
* s

1y =3(4; _ﬂvg)_zs(rjka(l(;))Axko (12)
k=1

Xpo +Ax, 20, [Ax,|<p, k=1..,N, (13)

where R(.) and 3(.) respectively denote the operators that

yield the real and imaginary parts of a complex quantity, o is
the trust-region limit, and A, =—a;+i'w;is the optimal
eigenvalue (i’ is the complex imaginary unit). The real part of

A;, —a,, is a design variable and the imaginary part is

o, =tan(cos ' ¢, a;>0. (14)
The target damping ratio ¢'is chosen to be slightly greater
than ¢ so that whilst approaching this target, the eigenvalue
will end up being inside the conic sector of damping ratio ¢ .
The specification of the optimal eigenvalue in the vicinity of
the conic sector boundary ensures that the eigenvalue travels a
minimum distance on the generalized root locus to be located
within the conic sector. Based on the current residue
information, the solution of the quadratic conic program yields
the PSS parameters that produce an incremental movement of
the eigenvalue along this locus.

In practice, N, different unstable and poorly damped modes
need to have their damping improved. The objective would
therefore require minimizing the sum of eigenvalue Euclidean
distances
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N,
minimize ZI ; subject to (15)
Jj=1
(10)-(12), (14) for j =1,...,N and (13).
In addition, throughout the eigenvalue shifting process, the
well-damped modes are constrained not to leave the conic
sector by enforcing the following constraints for j=1,...,N,,

where N, is the number of well damped modes

NS
() + 3 30 Gy () A, <
k=1

. (16)
—tan 0{9&(4‘;) +Y R(r,G, (ﬂ(}))Axko}
S(ﬁ(;) + i 3(r Gy (ﬂ(,)' DAY, =
k=1 . a17)
tan 9{9{(/12) +> R, G (2] ))Axko}
KAL) + im(rjkck (A))Ax,, <0. (18)

In the above equations, /13. denotes the current value of an

eigenvalue with nonnegative imaginary part corresponding to a
well damped mode. Equations (16) and (17) prohibit 4, from

crossing the conic sector's upper and lower boundaries shown
as solid lines in Fig. 1, whereas (18) keeps the real part of the
eigenvalue negative.

B. Sequential Conic Programming Algorithm

The incremental eigenvalue shifting algorithm for PSS
design solves a sequence of conic quadratic programs so that
the eigenvalues of the unstable and poorly damped modes are
shifted into the conic sector. Throughout the shifting process,
the constraints in (16)-(18) are enforced. The eigenvalue
shifting algorithm is described below.

Assume that G, (s)in (8) is specified. The user has to also
choose the algorithm parameters: p, ¢, and ¢'. Initially,
X, =0.

Step 1: Form the linear state-space equations for a given
operating condition.

Step 2: Compute the system eigenvalues. The zero eigenvalues
that are attributed to modeling assumptions are neglected.

Step 3: Compute the damping ratio corresponding to each of
the system modes. If all damping ratios are greater than ¢,

print the solution and terminate the run.

Step 4: For each eigenvalue identified in step 2, compute the
residues associated with the feedback of the PSS outputs to
their inputs.

Step S: Solve the conic quadratic program given by (10)-(18)
to determine Ax,, for k=1,...,Ng.

Step 6: Update the current values of x,,by the corresponding

increments in step 5.
Step 7: Update the state-space representation due to PSS

4

feedback and go to step 2.

The above algorithm has been programmed in MATLAB.
Some of the steps were implemented with the help of existing
toolboxes or routines. Specifically, the computations in steps
1, 4 , and 7 are implemented via the Power System Toolbox
[21] and its associated state-space objects. The conic program
in step 5 is solved using SEDUMI [22].

It is interesting to note that unlike [5], [6], [9], [10], the
above eigenvalue shifting algorithm does not require defining
rectangular strips in the s-plane to constrain the locus of
eigenvalue movement into the conic sector. As noted in [6],
inappropriate choices of the amount of left eigenvalue shift
and the corresponding width of the rectangular strip may result
in an infeasible linear programming problem.

C. Extension to Robust PSS Design

The sequential conic approach for PSS design can be
readily extended to account for multiple operating conditions.
The resulting PSS design is termed robust because all system
modes are guaranteed to remain well damped under each of
the system operating conditions. Within the framework of the
sequential conic programming approach, this would require
minimizing the total sum of eigenvalue Euclidean distances
(15) for all the operating cases, i.e.

N, N¢
minimize Z Z £ (19)

c=l j=1
where ¢ denotes the operating condition (case #) and N, is the

total number of cases. The feasible region for robust PSS
design is formed of:

1. Constraints on the eigenvalue shifting of unstable and
poorly damped modes (10)-(12) and (14) repeated for
c=1,.,N_, ie., all variables indexed with the eigenvalue

number ;j are re-indexed with both j and the case number c.
2. Constraints restricting the eigenvalue movement of well
damped modes (16)-(18) repeated for ¢ =1,..., N, .

3. Constraints on the PSS incremental coefficient change (13).
The sequential conic programming approach would be

applicable to robust PSS design with the understanding that the

computations in steps 1-4 and 7 are repeated for ¢ =1,..., N, .

c

The above conic program is solved in step 5.

V. COORDINATED GAIN AND PHASE TUNING

Although the gain and phase compensation design approach
is one of the most accepted techniques for PSS design, [9] and
[10] have shown that there may be some benefit from the
concurrent tuning of gain and phase. Reference [10] presents
PSS designs corresponding to different operating conditions of
the 39-bus New England test system, however, the different
conditions are not considered simultaneously to yield a single
robust PSS design. In fact, [6] shows that designing controllers
for what may be perceived as the most stressed operating
condition may result in unstable or poorly damped modes in
other operating conditions.
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This section extends the sequential conic programming
approach to the coordinated tuning of the phase compensation
blocks and gains of the various PSSs under different operating
conditions. The requirement in this case is to obtain the values
of (x,4,%1,%,) for k=1,..., N by using (6) instead of (7) in
the conic programming implementation. The quadratic cone
program for incremental eigenvalue shifting is therefore

N, N,
minimize Z z ¢; subject to (20)

=1 j=1

l.for c=1,...,N, and j =1,...,N;

€2 (15 +(65)? @1)

Ny 2
ly =R = 240 = 2 X ROH (B )A, (22)
=1 i=0
* Ns, 2
1y = S = 25) = 2. 2 S H g (B DA, (23)
=1 i=0
Ao=—a,+i'w,, a, >0, o, =tan(cos ' ¢a, . (24)

2.for c=1,...,N, and j=1,...,N;

N, 2
S+ 2 2 S Hy (B ))Ax, <
k=1 i=0
v (25)
—tan 6’{‘3(}&,) + 2 R H (2, ))Axk,}
k=1 i=0
Ny 2
A+ DY (G H o (4,)Axy, 2
k=1 i=0
. (26)
tan e{m(ﬁ&) +2 > RO Hy, (130))Axk,}
k=1 i=0
Ng 2
R+ DD R H o (A,))Ax,, 0. (27)
k=1 i=0
3.for k=1,...,N; andi=0,1,2
Xp+Ax, 20, |Ax [ < p. (28)

In addition to constraints (21)-(28), a PSS phase lead
characteristic is included by restricting the locations of the
compensator's zeros. Towards this end, define

s=sT, 29)
_ X4
X = (30)
XoTy
= Xia
X, = 31
" xkOTk2 Gh

then F,(s) in (1) can be written in normalized form with a
double pole at s =—1:
X8+ X5 +1
(1+5)
Following [9], assume that F,(s)

F (5)=xy (32)

is formed of two

conventional lead-lag blocks such that the distance between
each real zero-pole pair is at most one decade. This condition
is equivalent to the following constraints on the real zeros of
F(5)

IEEE PES Transactions on Power Systems
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_ " —
X1 +ka1 4X;, <-0.1 (33)
2%
B xkl 4 ’?;1 B 4)_‘k2
— >-1. (34)
2x,,

The condition of the zeros being real is

Xy 224X, . (35
Equations (33) and (34) can be simplified into linear inequality
constraints

10x,, —X,, <100 (36)

Xy — X, <1. 37
Constraints (35)-(37) define the non-convex feasible region
bounded by the solid lines in Fig. 2. To yield a convex region,

the right hand side of (35) is replaced by the equation of the
tangent to the curve

%0 2 XL, + %0 [FL (38)

where X, is the abscissa at the point of tangency. In terms of
the PSS incremental variables (Ax,,,Ax,;,Ax,,), the feasible
region constraints formed by (36)-(38) reduce to
—-1007}Ax,, +10T,Ax,, — Ax,, <
1007 x), — 10T, x}, + x},
=T Ay + T AX,, — Axy, <Tx) —Tox) + x5 (40)
- E/iz TszxkO + TkAxkl —Ax, )_‘112 2
vflszxfo - Tkx/?l + x/?z/\/ Xi2
Equation (41) is initialized with X, =30.25 so that the

resulting triangular shaped region in Fig. 2 occupies the
absolute maximum possible portion of the non-convex feasible
region. However, as the PSS parameters are updated within the
sequential algorithm, the tangency point is chosen as the
current value of X,, given by (31).

(39)

(41)

The sequential conic programming algorithm for
coordinated gain and phase tuning is summarized below.
Initially, x,, =x,, =x,, =0and X, =30.25.

Step 1: Form the linear state-space equations for each
operating condition.

Step 2: Compute the system eigenvalues for each operating
condition. The zero eigenvalues that are attributed to

20

s

5
-

0 Zb 4‘0 Sb éO 100
2
XX QT
Fig. 2: Feasible region of PSS zeros.
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modeling assumptions are neglected.

Step 3: Compute the damping ratio corresponding to each of
the system modes in all operating conditions. If all damping
ratios are greater than ¢, print the solution and terminate the

run.
Step 4: For each eigenvalue identified in step 2, compute the
residues associated with the feedback of the PSS outputs to
their inputs.

Step 5: Solve the conic quadratic program given by (20)-(28)
and (39)-(41) to determine (Ax,,,Ax,,,Ax,,) for k=1,...,Ng.

Step 6: Update the current values of (x,x;,,X,,)by the

corresponding increments in step 5 and set X;, = X,, .

Step 7: Update the state-space representation due to PSS
feedback in each operating condition and go to step 2.

VI. NUMERICAL RESULTS

Numerical testing is carried out on a 16 machine, 68-bus
test system which is a reduced order equivalent of the
interconnected New England Test System (NETS) and the
New York Power System (NYPS). This test system consists of
five geographical areas, two of which are represented by
generator groups in the NETS and the NYPS, with the
remaining three represented by equivalent generator models.
There are three transfer corridors between NETS and NYPS
connecting buses #60-#61, #53-#54, and #27-#53. Each of the
corridors has double circuit tie-lines and the tie-line power
exchange between the NETS and the NYPS is 700 MW at
steady-state. The machines are represented by the sub-transient
model. The power flow and machine dynamic data are given in
[17]. Each generator is assumed to be equipped with a power
system stabilizer and a static excitation system with a time
constant 7, =0.05 s and a moderate gain given by T, /2T, [8],

[10], where T, is the generator d-axis open-circuit transient
time constant.

The program parameters utilized in the test cases are
p =1 (trust-region parameter) and ¢'=1.1¢ (target damping
ratio). The (boundary) damping ratio ¢ takes the values 5%,

10%, and 15%. Table I shows 9 operating conditions in the
model bank, eight of which appear in [17]. Case #1 is the base
case with 700 MW power flow through the tie-lines and a
constant impedance (CI) load model. Cases #2 through #5
model the outage of one of the tie-lines between buses #53-
#54, #60-#61, and #27-#53, respectively. Cases #6 and #7
correspond to a change in the tie-line flows. Cases #7 and #8
are combinations of constant current (CC), constant power
(CP), and CI load models. Case #9 represents the outage of
two tie-lines, one between buses #53-#54 and the other
between buses #60-#61. Fig. 3 shows a map of the open loop
eigenvalues for the nine operating conditions in Table I. Only
the eigenvalues having their real part greater than -3.5 are
shown. The figure also shows the 5%, 10%, and 15% damping
ratio lines.

The 16 power system stabilizers are assumed to initially

6

have typical speed measurement parameters with a washout
time constant of 10 s and one decade between the real zero-
pole pair:

(1+0.1s)*>  10s

H.(5)= x5 (1+0.01s)* 1+10s boote (42)
TABLEI
OPERATING CONDITIONS USED IN THE MODEL BANK
Case | Tie-Line Outage of Line | Type of Load
# Flow (MW)
1 700 no outage CI
2 700 53-54 CI
3 700 60-61 CI
4 700 27-53 CI
5 100 no outage CI
6 900 no outage CI
7 700 no outage 50% CI & 50% CC
8 700 no outage 50% CI & 50% CP
9 700 53-54 & 60-61 CI
TABLE I
COORDINATED GAIN TUNING RESULTS: X,
Damping Ratio
Gen. % k 5% 10% 15% 5%+
1 5.9215 11.0000 12.0000 8.4391
2 5.7433 11.0000 20.0000 8.1869
3 8.4054 11.0000 20.0000 8.2405
4 5.6164 8.9814 18.0000 10.4377
5 2.4691 5.9285 18.0000 -
6 6.5232 9.0000 17.1509 10.4231
7 6.6665 9.0000 16.0000 10.4314
8 5.1740 7.0000 7.7852 9.7371
9 8.3673 10.7715 20.0000 8.5032
10 5.5730 11.0000 14.0000 9.7994
11 5.5812 10.7487 16.0000 6.2819
12 6.5455 11.0000 14.6971 5.8405
13 4.7390 11.0000 20.0000 5.5037
14 4.7813 11.0000 20.0000 10.6409
15 0.0000 11.0000 20.0000 -
16 3.8643 11.0000 20.0000 -
TABLE III
COORDINATED GAIN AND PHASE TUNING RESULTS — DAMPING RATIO = 10%
Gen. # k o Xt N2 1. VO
1 10.9994 2.1999 0.1100 0.1000 0.1000
2 10.9998 2.2000 0.1100 0.1000 0.1000
3 10.9998 2.2000 0.1100 0.1000 0.1000
4 6.9996 1.3999 0.0700 0.1000 0.1000
5 5.6675 0.9106 0.0344 0.1000 0.0607
6 8.9996 1.7999 0.0900 0.1000 0.1000
7 8.9995 1.4932 0.0593 0.1000 0.0659
8 8.1203 1.6241 0.0812 0.1000 0.1000
9 10.9998 2.2000 0.1100 0.1000 0.1000
10 10.9998 2.2000 0.1100 0.1000 0.1000
11 10.9973 2.1995 0.1100 0.1000 0.1000
12 10.9997 2.1999 0.1100 0.1000 0.1000
13 10.9992 2.1998 0.1100 0.1000 0.1000
14 10.9992 2.1998 0.1100 0.1000 0.1000
15 10.9989 2.1998 0.1100 0.1000 0.1000
16 10.9994 2.1999 0.1100 0.1000 0.1000
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1 The coordinated gain tuning approach in section IV is used
2 with three values of the damping ratio to yield the PSS gains in
3 Table II. It is interesting to note that for a damping ratio of
g 5%, the program chooses not to have a PSS installed on
6 machine #15 and assigns very low gains for the PSSs at
7 machines #5 and #16. A more practical solution of coordinated
8 gain tuning is given in the rightmost column of Table II
9 (marked with a star sign) where the machines #5, #15, and #16
10 are not equipped with PSSs. Fig. 3 also shows the
11 corresponding closed loop eigenvalues where it is seen that the
12 15% damping ratio is achieved for all operating cases. For
13 illustration, Fig. 4 shows the generalized root locus for case
14 #1. The root locus is traced by the increase of the PSS gains as
15 given by the conic quadratic program solution, from zero up to
16 their coordinated design values. It demonstrates the agreement
17 in the values of the points on the locus obtained from the
18 sensitivity equation (7) and from direct eigenvalue
19 computation of the updated state-space representation. This
20 agreement has been also observed in the loci of cases #2
21 through #9 and is expected because of the use of the trust-
gg region technique. The design exercise was repeated with
24 (X495 X4>X;,) treated as variables for k=1,...,16. In this
25 design, the known PSS parameters in (1) are assumed to be
26 T,=10s and 7, =0.01s. The sequential conic programming
gg approach of section V gives the closed loop eigenvalue map in
Fig. 5. Table III shows the PSS design parameters and lead
29 time constants for a damping ratio of 10 %. It is important to
g? note that in practice no more than two digits are needed for the
32 parameter values in Tables II and III. The corresponding
33 generalized root locus for case #1 is shown in Fig. 6 and also
34 validates the accuracy of the locus following method with
35 three variable parameters per PSS.
36 In practice, any linear stabilizer design needs to be checked
37 for robustness under different operating conditions by using a
38 transient stability simulation. The results of two simulations,
39 each executed for 30 s, are presented herein for the PSS design
40 in Table III. In simulation #1, one of the tie-lines between
41 buses #60-#61 is assumed to be out of service and a three-
42 phase fault at bus #53 is simulated for 70 ms in one of the tie-
43 lines between bus #53 and bus #54. The fault is cleared by the
44 removal of the faulted circuit. The variations of the machine
45 angles are computed with respect to machine #15 [11]. The
46 relative angle variation of one machine from each group is
47 plotted in Fig. 7 for the first 10 s of the simulation. It is clear
jg that the oscillations settle down due to the PSS action.
50 Simulation #2 models a 5% step increase in the voltage
51 reference of the excitation system of machine #1. The
52 corresponding angular variation plots are shown in Fig. 8. In
53 both simulations, the upper and lower output limits of each
54 power system stabilizer are set to 0.15 pu and -0.1 pu,
55 respectively. For illustration, Figure 9 shows the output of the
56 PSSs at machines #1, #13, #14, and #16 in simulation #1.
57 To investigate the possible advantage of coordinated gain
58 and phase tuning as opposed to the coordinated gain tuning
59 method, measures of the control effort and performance are
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compared for each of the two above time-domain simulations.
The control effort is measured in terms of the PSS output
u, (¢) as [12]

16 t=30s
CE=Y j (u, (1)) dr . (43)
k=l =0
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The performance is gauged by two indices that reflect the
settling time ( P/,) and overshoot ( PI,) as a function of the

machine speed deviation Aw, (f) [16]

16 1=30s

PLL=Y J(zAmk () dt (44)
Pl = i/:TEAwk(t))zdt . (45)

The values of the indices (43)-(45) are shown in Tables IV and
V for simulations #1 and #2, respectively. The results suggest
that both methods perform well in terms of damping
oscillations with comparable control effort. This is explained
by the suitability of the chosen phase characteristic in the
coordinated gain tuning approach.

Table VI shows the computational effort of the sequential
conic programming approach, i.e. the number of eigenvalue

8
TABLE IV
CONTROL EFFORT& PERFORMANCE INDICES — SIMULATION #1
Damp. Coordinated Gain Coordinated Gain & Phase
Ratio Tuning Tuning
CE PI PI, CE PL PI
w/o PSS | - 3.38 2.12E3 - 3.378 2.12E3
5% SA47TE-3 | 5.52E-5 | 8.11E-3 | 4.04E-3 | S45E-5 | 6.70E-3
10% 1.24E-2 | 3.26E-5 | 3.46E-3 | 1.24E-2 | 3.28E-5 | 3.47E-3
15% 2.11E-2 | 2.35E-5 | 1.66E-3 | 2.09E-2 | 2.25E-5 | 147E-3
TABLE V

CONTROL EFFORT& PERFORMANCE INDICES — SIMULATION #2

Damp. Coordinated Gain Coordinated Gain & Phase
Ratio Tuning Tuning
CE PL PI, CE PL PL
w/oPSS | - 1.19 6.49E2 - 1.19 6.49E2
5% 3.93E-4 | 8.16E-5 | 3.60E-2 | 3.99E-4 | 6.67E-5 [ 2.95E-2
10% 4.84E-4 | 3.16E-5 | 1.42E-2 | 4.83E-4 | 3.17E-5 | 1.43E-2
15% 6.36E-4 | 1.40E-5 | 6.36E-3 | 7.03E-4 | 1.21E-5 [ 5.53E-3
TABLE VI

COMPARING COMPUTATIONAL PERFORMANCES OF GAIN AND PHASE-GAIN
COORDINATED AND ROBUST PSS DESIGN

Coordinated Gain Coordinated Gain & Phase
Damp. Tuning Tuning
Ratio ) time (s . time (s
iter. conic ( t)otal iter. conic ( t)otal
5% 10 30 99 9 301 373
10% 12 34 120 12 278 386
15% 21 61 211 25 631 845

shifting iterations (iter.), the computational time for solving the
conic programs, and the total computation time. In all cases,
the iterations are less than 25 and are completed within 4
minutes for coordinated gain tuning and 14 minutes for phase-
gain coordinated tuning. The computational times were
recorded on an Intel® Core™2 Duo Processor T5300 (1.73
GHz) PC with 1 GB RAM. By increasing the trust-region limit
p, the sequential conic programming approach would require a
lower number of eigenvalue shifting iterations. However, a
large value of p would compromise the accuracy of the
eigenvalue shift given by (6) and (7).

The coordinated PSS tuning method can be employed for
the stabilization of large-scale power systems. In this case, the
computation of eigenvalues would require the use of sparse
eigensolution algorithms [23], [24].

VII. CONCLUSION

This paper presented a sequential conic programming
implementation of a multivariable root locus following
technique for robust PSS design. A trust-region is employed to
ensure the validity of the conic programming solution. This
solution directs the locus of eigenvalues corresponding to
unstable and poorly damped modes to a satisfactory region in
the s-plane. The technique is demonstrated on problems
involving coordinated gain tuning and coordinated gain and
phase tuning with different operating scenarios. An important
conclusion of this work is that the coordinated gain strategy, in
which the phase compensation is carried out individually and
in a previous stage, produces solutions that are practically as
good as those obtained by coordinated gain and phase tuning.
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This conclusion comes in support of the claims made by [8]
that coordinated gain tuning usually suffices for practical
power system applications. The sequential conic programming
approach is very generic. It can be easily extended to design
robust damping by FACTS devices such as static VAr
compensators and thyristor controlled series capacitors. We
are currently working on sequential conic programming based
coordinated design of PSSs and FACTS devices to effectively
damp local and inter-area modes. Application to large scale
power system models will follow next with the use of sparse
eigensolution methods and state of the art conic solvers which
have been made recently available.
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