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A cochlear-bone wave can yield a hearing
sensation as well as otoacoustic emission
Tatjana Tchumatchenko1 & Tobias Reichenbach2

A hearing sensation arises when the elastic basilar membrane inside the cochlea vibrates.

The basilar membrane is typically set into motion through airborne sound that displaces the

middle ear and induces a pressure difference across the membrane. A second, alternative

pathway exists, however: stimulation of the cochlear bone vibrates the basilar membrane as

well. This pathway, referred to as bone conduction, is increasingly used in headphones that

bypass the ear canal and the middle ear. Furthermore, otoacoustic emissions, sounds

generated inside the cochlea and emitted therefrom, may not involve the usual wave on the

basilar membrane, suggesting that additional cochlear structures are involved in their

propagation. Here we describe a novel propagation mode within the cochlea that emerges

through deformation of the cochlear bone. Through a mathematical and computational

approach we demonstrate that this propagation mode can explain bone conduction as well as

numerous properties of otoacoustic emissions.
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T
he mammalian cochlea is an intricate device that acts as a
spatial frequency separator1–4. Airborne sound vibrates the
middle ear and evokes a pressure signal at the base of the

fluid-filled inner ear (Fig. 1). The pressure oscillation then
propagates as a surface wave on the basilar membrane, an elastic
structure that separates two fluid-filled compartments in the
cochlea. Different frequency components become spatially
separated because, through changes in its material properties,
the basilar membrane is tuned to a range of frequencies that
systematically vary between the apical and the basal end. A
segment of the basilar membrane near the base resonates at a
high frequency, and segments from further apical positions
resonate at successively lower frequencies. The wave on the
basilar membrane elicited by a single frequency greatly increases
in amplitude upon approaching its resonant position, beyond
which it sharply declines2,4. A tonotopic map emerges in which
high frequencies are detected near the base and low frequencies
near the apex of the cochlea.

The basilar-membrane waves produced by different frequen-
cies, however, do not simply superpose linearly. Instead, the
basilar membrane at a given cochlear position responds
nonlinearly to forcing near the resonant frequency of that
location3,4. The nonlinearity arises from mechanical activity of
hair cells that reside on the basilar membrane. These cells can
produce mechanical forces that greatly amplify weak stimuli;
large vibrations are amplified less. The relation between the
amplitude of the applied force and the resulting vibration is hence
compressively nonlinear, and indicates that each basilar-
membrane segment operates near a dynamic instability (Hopf
bifurcation)5–7.

The nonlinear response of the basilar membrane produces
distortion when multiple pure tones are presented simulta-
neously8–11. As an example, a cubic nonlinearity yields a response
at frequencies such as 2f1� f2 or 2f2� f1 when stimulated at two
frequencies f1 and f2. Such distortion products indeed arise
prominently in the cochlea. As they can not only be measured as
basilar-membrane vibration but also with a microphone placed in
the ear canal, they must be emitted from the cochlea into the ear
canal. One accordingly refers to these tones as distortion-product
otoacoustic emissions.

For a given frequency, the peak of the travelling wave is
relatively sharp, with a longitudinal extent of only B0.5 mm
(refs 3,4). The cubic distortion frequencies 2f1� f2 or 2f2� f1, for
instance, are therefore only created at a significant amplitude

when the two primaries f1 and f2 are sufficiently close, such that
the corresponding peak regions overlap. The distortion hence
arises from a narrow cochlear region from which it must
propagate back to the base to cause a sound signal in the ear
canal.

How the backward propagation occurs is currently intensely
debated. Experiments show that distortion-product otoacoustic
emissions consist of two components that differ in the temporal
delay between their generation and the resulting emission in the
ear canal12,13. One component has a long delay of a few
milliseconds, whereas the delay of the other component is much
shorter. The delay is measured through the change in phase of an
emission upon altering the primary frequencies.

Some theoretical studies have suggested that both components
emerge through waves on the basilar membrane that propagate
backward from their generation site to the cochlear base14–16.
Measurements of the intracochlear pressures as well as the
cochlear microphonic potential support such reverse basilar-
membrane waves17,18. Recent experimental measurements that
have directly recorded the waves propagating along the
membrane, however, only found forward-travelling waves, both
at the primary frequencies as well as at the distortions19–21.
Moreover, the stapes appear to vibrate at the distortion signal
before the basilar membrane.

Recently we have proposed that the long-delay component of a
distortion-product otoacoustic emission arises through waves on
Reissner’s membrane, another elastic membrane within the
cochlea that extends in parallel to the basilar membrane from
the cochlear base to the apex22. Our theoretical and numerical
considerations show that short surface waves can propagate along
Reissner’s membrane, and that those waves can be created
through the cochlear active process. Laser-interferometric
measurements performed by ourselves have confirmed that
such waves on Reissner’s membrane exist and can arise from
distortion on the basilar membrane.

As waves on Reissner’s membrane have relatively short
wavelengths, below 0.5 mm for frequencies above a few kHz,
such backward-propagating waves have slow speeds of a few
metre per second. Distortion products emerging through those
waves yield accordingly delays of a few milliseconds when
propagating from their generation region to the middle ear.

How the short-delay component of an otoacoustic emission
emerges, if not through backward waves on the basilar
membrane, remains elusive. It has been suggested that compres-
sional waves may transport a distortion signal within the
cochlea19–21. Indeed, such waves can propagate in the cochlear
fluids at large wavelengths and speeds. Because they involve no
pressure difference across the basilar membrane and hence no
membrane vibration, however, they cannot be produced by hair-
cell forces acting on the membrane. Instead, their generation
would require the active process to produces local volume
changes, which have not yet been detected.

The mechanism of signal transmission in bone conduction
remain similarly elusive. Bone conduction refers to our ability of
hearing auditory signals through vibration of the cochlear bone,
even in the absence of a functional middle ear23. Already one of
the pioneers of hearing research, Békésy24 conducted experiments
in which he showed that the hearing sensation that is produced
through bone conduction can be cancelled by stimulating the ear
by an identical, but airborne, signal when its amplitude and phase
are chosen carefully. Bone conduction hence appears to elicit the
same basilar-membrane wave as is produced by airborne sound.
This way of stimulating the ear is now increasingly used for
constructing bone-conduction headphones, such as in the novel
Google Glass device, that vibrate the cochlear bone and do not
obstruct the ear canal. Such headphones allow to listen to
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Figure 1 | Anatomy of the ear. (a) Sound causes a pressure vibration p3 in

the ear canal and a motion of the ear drum (area Aa). The middle ear’s

ossicles, namely the mallus of length la, incus of length lw, and stapes

convey the motion to the inner ear, or cochlea, to vibrate the oval window

(area Aow) and the round window (area Arw). The pressures p1 in the scala

tympani and p2 in the scala vestibuli change accordingly. (b) A transverse

section of the inner ear shows the basilar membrane separating two

chambers of cross-sectional area A1 and A2. Vibration of the membrane
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circumference, lead to area changes a1 and a2.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5160

2 NATURE COMMUNICATIONS | 5:4160 | DOI: 10.1038/ncomms5160 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


environmental sound and, for example, additional information
such as navigational directions that are inaudible to others.
Despite the increasing use of this technology, we lack an
understanding of how the cochlear bone vibration leads to
basilar-membrane waves and hence the hearing sensation.

Early studies by Békésy24 as well as Herzog and Krainz25

suggested that the cochlear bone may not just vibrate
homogeneously but deform under sound vibration. If the
basilar membrane was not positioned in the middle of the
cochlea, bone deformation could deflect the membrane and
hence elicit the well-known basilar-membrane wave.

In this article we employ a cochlear model to show that
deformation of the bone produces a wave that travels along the
cochlea. Through mathematical and numerical methods we find
that the deformation of the cochlear bone can evoke a traveling
wave on the basilar membrane as well, and hence elicit a hearing
sensation. We also show that otoacoustic emissions can emerge
from the inner ear through the cochlear-bone wave. These
emissions then have short delays of less than one millisecond, as
observed for one component of otoacoustic emissions.

Results
Fluid dynamics. We start from a one-dimensional model of the
inner ear (Fig. 1, model parameters are given in Table 1). The
basilar membrane extends in the longitudinal x direction and
delineates two chambers. The one below the membrane is the
scala tympani. We denote a pressure deviation therein from the
resting pressure by p1, a longitudinal fluid flow by j1 and the
cross-sectional area by A1. The upper chamber comprises the
scala media and scala vestibuli; this chamber’s pressure deviation
is p2, its longitudinal fluid flow j2 and its cross-sectional area A2.

The longitudinal fluid flows in the upper and lower chamber
carry momenta of rqtj1 and rqtj2, respectively, which must result
from a longitudinal pressure gradient in that chamber:

r@t j1 ¼ �A1@xp1;
r@t j2 ¼ �A2@xp2:

ð1Þ

Here r denotes the fluid density. The continuity equation states
that a gradient in the longitudinal fluid flow of either chamber

can only arise from a temporal change in the chamber’s
cross-sectional area or from a change in the fluid’s density r1/2.
We denote by a1 and a2 the area change in the lower and the
upper chamber, respectively. The total cross-sectional area of the
respective chamber is A1/2þ a1/2. We then find

@xj1þ @ta1þ A1
r1
@tr1 ¼ 0;

@xj2þ @ta2þ A2
r2
@tr2 ¼ 0:

ð2Þ

A deviation in the fluid’s density from its resting value r0 is
caused by a change in pressure through the fluid’s compressibility
k: qtr1/2¼ r0kqtp1/2.

The cross-sectional area of either cochlear chamber can change
because of basilar-membrane vibration (Fig. 1b). We assume that
the membrane’s cross-section deforms parabolically, with a
midpoint velocity Vbm that is defined such that an upward
membrane motion yields a positive velocity (Methods). This motion
hence expands the lower chamber and shrinks the upper one:

@ta1 ¼ � @ta2 ¼
2
3
� wbm � Vbm; ð3Þ

in which wbm denotes the membrane’s width. In the following
we consider a sound signal at a single angular frequency o.
Pressure vibration occurs at that same frequency, and we make an
ansatz in which it propagates longitudinally with a wave vector k
and an amplitude ~p1=2:

p1=2 ¼ ~p1=2eiot� ikx þ c:c: ð4Þ
Here c.c. denotes the complex conjugate. Similarly, the basilar-

membrane velocity oscillates at frequency o and propagates
longitudinally, it can hence be written as:

Vbm ¼ ~Vbmeiot� ikx þ c:c: ð5Þ
We can now relate the difference of the pressure amplitudes

across the basilar membrane to the vibrational amplitude that it
evokes:

~p1� ~p2 ¼ Zbm � ~Vbm: ð6Þ
The coefficient Zbm denotes the local acoustic impedance of the

membrane, which in general depends on the frequency of

Table 1 | Model parameters.

Quantity Description Value Citation

Aow Area of the oval window 2.3 mm2 1,27

Arw Area of the round window 2Aow
27

Aa Area of the tympanic membrane 35Aow
1

A1/A2 Area ratio between the two cochlear chambers 0.42 28

A2þA1¼ const Total area of the two cochlear chambers 1,200 mm3 1

lw Incus length 4� 10� 3 m 1

la Mallus length 1.15 lw
1

r Cochlear fluid density 1000 kg m� 3 1

rair Air density 1.2 kg mm� 3 1

h Thickness of the cochlear bone 0.01� 10� 3 m 1

v Poisson ratio of cochlear bone 0.3 1,26

E Young’s modulus of the cochlear bone 27.8� 109 kg m s� 2 1,26,30

R Average radius of a cochlear chamber 6� 10�4 m 1

w0 Elliptical deformation of a cochlear chamber 1� 10�4 m 1

A Strength of the nonlinear membrane response 5� 1023

wbm(x) Width of the basilar membrane 10�6 (100þ400x) m 1,22

Abm(x) Area of a basilar-membrane segment wbm(x)�8mm 2,22

K(x) Stiffness of the basilar membrane f0(x)/f0(0) N m� 1 2,22

f0(x) Resonant frequency of the basilar membrane 30� 103� e� logð30�103=5Þx Hz 2,22

m(x) Mass of the basilar membrane K(x)/(2pf0(x))2 2,22

m(x) Drag coefficient of the basilar membrane wbm(x)�0.015 N s m� 2 2,22

Zbm(x) Basilar membrane impedance 1
AbmðxÞ

� iKðxÞ
o þmðxÞþ iomðxÞ

h i
2,22
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stimulation (Table 1). The equation (1) of momentum together
with the equation (2) of continuity and equations (3) and (6) for
the basilar-membrane velocity yield the well-known cochlear
waves that propagate along the basilar membrane.

Here, we also include the possibility that the cochlear bone
around the upper and lower chamber can be deformed through
the intra-chamber pressure. Two types of deformation of a given
cross-section are conceivable. First, the circumference of a cross-
section may change. This requires compressibility of the
chamber’s wall. Second, the circumference may remain constant
but the shape of the cross-section may vary. As the elastic
modulus of bone is high, the first type of deformation has a much
higher impedance than the second26,27. We hence only consider a
deformation of the second type.

Which change in cross-sectional area results from a deforma-
tion that leaves the circumference constant? Let us approximate
each chamber’s cross-section by an ellipse-like shape that is
deformed under internal pressure (Fig. 1b and section on the
linear-response coefficient C (Methods)). As a pressure change
produces an equal force at every angle, no deformation can result
when the cross section is circular. However, an asymmetric
ellipse-like object that lacks rotational symmetry will deform
under a pressure change. The impedance associated with this
deformation has been studied in the literature26. Specifically, a
decreasing internal pressure will increase the asphericity of the
ellipse-like shape because, at constant circumference, the area is
the smaller the more aspherical it is. Conversely, an enhanced
pressure will tend to increase the cross-sectional area, which will
hence deform towards a circle. For small deformations as we
consider here, the area change depends linearly on the pressure
deviation. The total change a1/2 of the cross-sectional area of the
upper respectively the lower chamber is hence the sum of one
contribution from the membrane deflection and another
contribution from the bone deformation:ea1 ¼ � 2i

3o�wbm�~VbmþC�~p1;ea2 ¼ 2i
3o�wbm�~VbmþC�~p2:

ð7Þ

C is a linear-response coefficient that we assume to be identical
for both chambers. Its value can be derived by considering the
elastic deformation of a tube (section on the linear-response
coefficient C (Methods) as well as refs 26,28–30) and is given by

C ¼ 4pð1� n2Þ
E

R3w2
0

h3
: ð8Þ

Here, E denotes the Young’s modulus of the cochlear bone, v
the Poisson ratio, h the thickness of the cochlear bone, R the
average radius of a chamber and w0 the (approximately elliptical)
deformation of the cross-sectional shape (see Table 1).

The fluid-momentum equation (1) with the continuity
equation (2) as well as equations (6) and (7) for area and
membrane vibration yield the matrix equation

k2 ~p1

~p2

� �
¼M ~p1

~p2

� �
ð9Þ

with the 2� 2 matrix

M¼ �or0

2iwbm
3A1Zbm

� oC
A1
�ok � 2iwbm

3A1Zbm

� 2iwbm
3A2Zbm

2iwbm
3A2Zbm

� oC
A2
�ok

 !
: ð10Þ

The possible wave vectors k hence follow from the eigenvalues
of the matrix M. The eigenvectors describe how the pressures
in the upper and lower chamber relate to each other in the
corresponding wave mode.

The eigenvalues and eigenvectors can be readily interpreted,
as the different terms in the matrix M are of different orders
of magnitude: |wbm/(A1/2Zbm)|44|oC/A1/2|44ok. The basilar

membrane is significantly floppier than the cochlear bone, and
yields a dominating contribution in the matrix M. The effect of
the fluid’s compressibility is negligible. In the following sections
we hence regard the fluid as incompressible.

As the matrix equation (9) has two degrees of freedom, there
exist two eigenvectors that correspond to two distinct wave
modes (Fig. 2). First, one eigenvector involves opposite pressures
in the two chambers, A2~p1 ¼ �A1~p2, and yields a wave vector

kbm ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2irowbm

3Zbm

1
A1
þ 1

A2

� �s
: ð11Þ

This wave vector does not involve deformation of the cochlear
bone. Instead, it follows from the basilar-membrane impedance
Zbm alone and yields the well-known basilar-membrane wave.

As the basilar-membrane impedance varies longitudinally, the
wave’s amplitude changes as well. A Wentzel–Kramers–Brillouin
(WKB) approximation can be applied and reveals that the local
wave vector still follows from Equation (11), whereas the pressure
amplitude is proportional to the inverse square root of the wave
vector (Methods).

Second, and most important for our study here, the other
eigenvector, ~p2 ¼ ~p1, involves pressures in both chambers that are
equal at any given longitudinal location. The corresponding wave
accordingly does not deflect the basilar membrane. It solely
evokes deformation of the cochlear bone that propagates at a
wave vector kcb:

kcb ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ro2C
A1þA2

s
: ð12Þ

We refer to this mode as the cochlear-bone wave. As the
impedance of the cochlear bone remains approximately constant
between the cochlear base and apex, this wave’s amplitude
remains constant as well and we do not need to employ the WKB
approximation. The wavelength is the longer the larger the
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Figure 2 | Basilar-membrane and cochlear-bone wave. Two independent

propagation modes, the basilar-membrane wave and the cochlear-bone

wave, exist in a cochlea with a deformable bone. (a) Deformation of the

cochlear bone propagates longitudinally as a wave that elicits, at a given

location, identical pressure changes in both chambers and hence no

vibration of the basilar membrane. (b) The basilar-membrane wave is

evoked by a pressure difference across it. Because of the pressure changes

in each chamber, this wave is accompanied by deformation of the cochlear

bone.
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impedance of the cochlear bone. As this impedance is relatively
high it yields a comparatively long wavelength, on the order of a
few millimetres to a few centimetres, and accordingly a
propagation speed that exceeds that of the basilar-membrane
wave. Notably, the wavelength of the cochlear-bone wave is still
substantially below that of a compressive fluid wave, which
reflects the above finding that the fluid compressibility plays a
negligible role.

Although the basilar-membrane and the cochlear-bone wave
are clearly distinct, with one wave depending only on the basilar-
membrane impedance and the other wave solely on the
impedance of the cochlear bone, they couple in two intriguing
ways. One type of coupling becomes important for otoacoustic
emissions and the other for bone conduction.

As the first type of coupling, a force that acts on the basilar
membrane can elicit the cochlear-bone wave. This unexpected
effect becomes clear when we recall that a displacement of the
basilar membrane increases the pressure in one chamber but
decreases it in the other by the same amount, ~p1 ¼ � ~p2. Such
displacement can elicit a wave on the basilar membrane that
involves opposite pressures, A2~p1 ¼ �A1~p2. In an asymmetric
cochlea, with A1aA2, the pressure changes evoked by basilar-
membrane motion do not fully match those involved in the
basilar-membrane wave. A force that acts on the basilar
membrane must hence, besides the basilar-membrane wave,
stimulate a second degree of freedom: the wave on the cochlear
bone. As otoacoustic emissions arise from the activity of hair cells
on the basilar membrane, they can hence excite a cochlear-bone
wave and thus propagate out of the cochlea. Below we show this
mechanism in detail for the case of distortion-product otoacoustic
emissions.

In the second, in a sense reverse way of coupling, stimulation of
the cochlear bone can elicit a basilar-membrane wave. Assume
that, at a certain longitudinal location, both cochlear chambers

change their area by the same amount due to forcing. As the
cross-sectional areas of both chambers are, in general, different,
such forcing produces different pressures in the two chambers
and hence a displacement of the basilar membrane. This
mechanism can yield bone conduction as we show below.

Distortion products. Distortion products are combination
tones that the cochlea produces when it encounters multiple
frequencies. As a prominent example, when stimulated by two
close frequencies f1 and f2, in which f1 is smaller than f2 by
convention, the inner ear yields emissions at cubic distortion
frequencies such as 2f1� f2 and 2f2� f1.

This distortion is produced by a nonlinearity on the basilar
membrane. Indeed, close to its resonant position, the linear
response (equation (6)) of the basilar membrane is supplemented
by a cubic nonlinearity that originates in the amplification
provided by hair cells:

~p1� ~p2 ¼ Zbm ~Vbmþ 3AgV3
bm ð13Þ

in which A is a coefficient. Distortion arising for the Fourier
transform of the cubic nonlinearity can be written as the

convolution of Fourier coefficients: gV3
bm ¼ ~Vbm�~Vbm�~Vbm, which

yields mixing in the frequency domain.
To solve the nonlinear equation (13), we first compute Green’s

functions, that is, pressures ~pG
1=2ðx; x0;oÞ that result from a single

force at position x0:

~pG
1 ðx; x0;oÞ� ~pG

2 ðx; x0;oÞ ¼ Zbm ~Vbmþ pFcosðotÞdðx� x0Þ:
ð14Þ

Using techniques from complex analysis, we obtain an
analytical solution for these Green’s functions (Methods). The
solution consists of two waves modes, the basilar-membrane wave
as well as the wave on the cochlear bone. The latter is excited
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when the cochlear chambers are asymmetric, A1aA2. In this case,
the nonlinear basilar-membrane response accordingly produces
not only a basilar-membrane wave but also a cochlear-bone wave.

Within each wave mode, two distinct waves emerge. First, one
wave travels backward from the generation site x0 to the stapes.
The second wave moves forward to the apex. Although it may
undergo reflection at the apex, we ignore this forward-travelling
wave in the following and only consider the wave that travels
backward.

As the cochlear nonlinearity extends over a certain region near
the peaks of the primary frequencies, many such waves are
produced and add up to yield the net distortion product.
Mathematically, this follows from integrating the Green’s
functions (equation (14)) together with the nonlinear inhomo-

geneity gV3
bm, which yields the solution to the inhomogeneous

differential equation (13):

~p1=2ðx;oÞ ¼
3A
pF

Z L

0
dx0~pG

1=2ðx; x0;oÞgV3
bmðx0;oÞ: ð15Þ

What happens to the backward-travelling waves, the one in
the basilar-membrane and the other in the cochlear-bone mode?
Part of the energy that they carry will be emitted into the ear
canal. The remainder will be reflected off the middle ear and
produce forward-travelling waves. One such wave will propagate
on the basilar membrane, and the other as cochlear-bone
deformation.

The reflection of the backward-propagating waves off the
middle ear can be quantified by considering the action of the
middle ear (Methods). Indeed, the middle ear acts as an
impedance transformer that matches the impedance of an
incoming sound to that of the basilar-membrane wave. An
incoming sound is hence largely transmitted to basilar-membrane
motion, without much reflection at the middle ear. Reversely,
a backward-propagating basilar-membrane wave is effectively
transmitted to a sound wave, and not much reflection occurs. A
backward-propagating cochlear-bone wave, in contrast, will be
much less transmitted because its impedance differs from the
basilar-membrane wave and is not matched by the middle ear.
Considerable reflection then occurs and produces forward-
travelling waves, in particular, a wave on the basilar membrane.

Three basilar-membrane waves hence propagate at the
distortion frequency (Fig. 3a). First, a forward-travelling wave is
generated by the basilar-membrane’s nonlinearity. This wave
is predominantly created in the region where the primary
frequencies overlap. As the contributions from this region differ

in phase, they partly cancel, and the wave has an amplitude peak
at the point of maximal generation. For the lower sideband
distortion frequency 2f1� f2 that we consider here, the wave then
travels further apical and experiences a second peak near its
resonant position.

Second, the nonlinear basilar-membrane response creates a
backward-propagating wave as well. As for the forward-travelling
wave, the contributions to this wave from different cochlear
locations partly annihilate each other, and the amplitude of this
wave is largest at the point of maximal generation. The wave
cannot be created apical to the resonant position of the upper
primary frequency, f2, such that no backward wave arises there.

Third, a reflected forward-travelling wave arises from the
reflection of the reverse basilar-membrane and the cochlear-bone
wave. This wave’s amplitude behaves as the usual basilar-
membrane wave: its amplitude increases until it reaches its
resonant position, beyond which it sharply diminishes.

The first and third component superimpose to yield the net
forward-travelling wave on the basilar membrane. Can that wave
have a larger amplitude than the reverse basilar-membrane wave
and hence conceal its existence?.

Our numerical simulations show that the answer depends on
the ratio of the primary frequencies as well as, potentially, on the
cochlear location (Fig. 3b). When the primary frequencies are
sufficiently apart, the reverse wave can blanket the forward-
propagating waves. Close primary frequencies, however,
yield a net forward-travelling wave that exceeds the backward-
propagating one at all cochlear locations.

In order to intuitively understand these results, we recall that
the distortion is generated within an extended cochlear region,
namely where the peaks of the primary-frequency waves
significantly overlap. The phase of the distortion changes with
location, and the produced reverse-propagating waves hence
experience significant destructive interference. This destructive
interference is the stronger the faster the phase changes, and
hence the smaller the wavelength is. Generation close to the peak
region, where the basilar-membrane wavelength is short, yields
accordingly more destructive interference. Similarly, because the
cochlear-bone wave has a comparably long wavelength, its
generation comes with less destructive interference than that of
the basilar-membrane wave.

As the basilar-membrane waves of closer primary frequencies
overlap stronger, they produce more destructive interference in the
generated, reverse basilar-membrane wave. In relation to the latter
the produced backward-travelling cochlear-bone wave is therefore
stronger and yields accordingly a stronger reflection. Part of that
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Figure 4 | Basilar-membrane excitation through cochlear-bone compression. (a) Deformation of the cochlear chambers at different location x, illustrated

by the numbered vertical arrows, can deflect the basilar membrane. The inset schematically shows the compressive stimulation of the cochlear bone;

cochlear bone linear response C¼6.86.10� 13 m2 Pa� 1. (b) The maximal basilar-membrane deflection depends on the material properties of the cochlear

bone. A larger linear-response coefficient of the bone implies a smaller bone impedance, which then is closer to that of the basilar membrane and yields a

greater basilar-membrane deflection. (c) The maximal basilar-membrane deflection depends on the ratio A1/A2 of the cross-sectional areas A1 and A2 of

the two chambers. The membrane displacement vanishes in a symmetric cochlea (A1/A2¼ 1) and grows with increasing asymmetry (A1ooA2).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5160

6 NATURE COMMUNICATIONS | 5:4160 | DOI: 10.1038/ncomms5160 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


reflection is a forward-travelling basilar-membrane wave that
hence blankets the reverse wave on the basilar membrane.

Bone conduction. Deformation of the cochlear bone can elicit
basilar-membrane waves and hence a hearing sensation. Similar
to our calculations regarding distortion-product otoacoustic
emissions, we quantify this effect through computing Green’s
functions, that is, the pressure waves that result from deforming
the cochlear bone at a single longitudinal location x0 (Methods).
Specifically, we consider a deformation of the cochlear bone such
that the cross-sectional area of the upper chamber vibrates in
phase with that of the lower chamber, and with the same
amplitude.

The Green’s functions show that four waves emerge from such
stimulations: two cochlear-bone waves, travelling basally and
apically from the stimulation site, and two basilar-membrane
waves, also propagating backward and forward. The basilar-
membrane waves are hereby only excited if the two chambers
differ in their cross-sectional area, A1aA2. In a hypothetical
symmetric inner ear, in which the areas are equal, deformation of
the cochlear bone would not elicit basilar-membrane waves, as
had already been remarked by Békésy24.

We are interested in the basilar-membrane waves because they
elicit the hearing sensation. Apical to the stimulation point, we
find a forward-travelling wave that peaks close to its resonant
position and resembles the standard, middle-ear-evoked waves
for all stimulation points (Fig. 4a). Basal to the stimulation point
we obtain a backward-travelling wave that decays in amplitude as
it travels towards the base. The amplitude of the elicited basilar-
membrane wave depends on the stimulation position along the
cochlea: it increases for more basal stimulation. The shape of the
produced wave is, however, largely independent of the location of
stimulation. Compressive stimulation of an extended region of
the cochlear bone generates a superposition of the waves elicited
by point stimulation. The extent of the stimulation region governs
the amplitude but not the spatial profile of the basilar-membrane
motion.

The amplitude of the elicited basilar-membrane motion
depends on the impedance of the cochlear bone as compared
with the membrane’s (Fig. 4b). The impedance associated to bone
deformation is generally higher than that of the basilar
membrane. The smaller the bone’s impedance, the more similar
it becomes to that of the membrane. Deformation of the cochlear
bone then couples stronger to the basilar-membrane wave and
produces a larger amplitude.

The asymmetry between the two cochlear chambers, measured
through the ratio A1/A2 of their cross-sectional areas, is another
important factor in this mechanism as stated above (Fig. 4c). In a
symmetric cochlea, deformation of the cochlear bone does not
produce a deflection of the basilar membrane. In a real cochlea,
however, the cross-sectional areas of both chambers differ. The
evoked basilar-membrane vibration is the stronger the larger the
asymmetry is.

Discussion
Our results show that deformation of the cochlear bone can play a
critical role in sound perception as well as in the propagation of
otoacoustic emissions. Deformation of the cochlear bone can
yield a fast wave, in addition to the much-studied slow basilar-
membrane wave. As the cochlea is asymmetric—the cross-
sectional areas of both chambers differ—the two modes couple to
each other.

A force that acts on the basilar membrane, such as the one
produced by the activity of hair cells, elicits not only a wave on
the membrane but a wave on the cochlear bone as well. We have

shown how distortion on the basilar membrane can accordingly
produce an otoacoustic emission that emerges from the inner ear
through propagating from its generation site back to the stapes as
cochlear-bone deformation. As the wavelength of the cochear-
bone mode is relatively long, of the order of a centimetre and
hence comparable to the dimensions of the inner ear, the
temporal delay of this emission is small: the backward-
propagating wave reaches the middle ear quickly. This mechan-
ism can hence underlie the short-delay component of an
otoacoustic emission.

Previously, it has been suggested that the nonlinear distortion
produced by basilar-membrane vibration can launch a compres-
sive fluid wave that propagates back to the stapes19–21. Our
computations show that, when the cochlear bone is deformable,
this wave involves not only the compression of the fluid but also
deformation of the cochlear chambers. In fact, the latter effect
dominates because the impedance associated to deformation of
the cochlear bone is much less than that associated to
compression of the fluid (equation (10)). The wave accordingly
has a significantly shorter wavelength than an ordinary
compressive fluid wave.

The distortion in the cochlea also produces a reverse wave on
the basilar membrane. Why has this component not been
detected in recent laser-interferometric experiments?

Our modelling reveals that a sizable portion of the backward-
travelling wave on the cochlear bone becomes reflected at the
middle ear and propagates forward to the cochlear apex, both as a
wave on the basilar membrane and as a cochlear-bone wave. We
have quantified the magnitude of the reflected, forward-travelling
basilar-membrane wave. As close primary frequencies are
typically used in experiments, the forward wave can have a
significantly higher amplitude than the reverse basilar-membrane
wave. Experiments will then only detect the forward-travelling
wave. The stapes will accordingly vibrate before the basilar
membrane, because the main component of basilar-membrane
vibration arises from reflection at the stapes and hence occurs at a
certain temporal delay. This delay has been measured in recent
experiments19.

Our study shows that the backward-propagating basilar-
membrane wave may dominate when the primary frequencies
are sufficiently far apart. It will be interesting to see whether this
reverse wave can indeed be experimentally measured or whether
its amplitude is too tiny, because distortion at far primary
frequencies is small.

The one-dimensional model that we have employed
cannot account for the drop in pressure near the peak of the
basilar-membrane wave when deviating vertically from the
membrane. This pressure drop may alter the coupling to
the cochlear-bone wave, which may be interesting for future
studies.

Stimulation of the cochlear bone—as elicited by bone-
conduction headphones, for instance—can produce a basilar-
membrane wave and accordingly yield a hearing sensation. We
have calculated the vibration of the basilar membrane and how it
varies longitudinally. Our results show a basilar-membrane wave
that closely resembles the wave that emerges from airborne
sound. The amplitude is the stronger the larger the difference in
the cross-sectional areas of the two cochlear chambers. It also
depends on the material properties of the cochlear bone. For
realistic parameter values the amplitude of the membrane
vibration corresponds to the experimentally-observed magnitude
of bone conduction.

The increasing development and usage of bone-conduction
headphones such as in the Google glass device and other
commercial applications points to a need for a conceptual
understanding of the underlying biophysics. We hope that the
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results we presented here help to clarify the mechanisms
involved in bone conduction, and to further advance its
application.

Methods
Parabolic deflection of the basilar membrane. We assume that each transverse
segment of the basilar membrane deflects parabolically. The membrane’s width is
wbm, and we choose a transverse coordinate y such that y¼ �wbm/2 and y¼wbm/2
denote the points where the membrane segment is anchored in bone. The
membrane velocity V(y, t) is then

Vðy; tÞ ¼ 4Vbm

w2
bm

y� wbm

2

� �
yþ wbm

2

� �
; ð16Þ

in which Vbm is the maximal basilar-membrane velocity (at its midpoint y¼ 0).
The temporal changes qta1 and qta2 of the cochlear chambers’ cross-sectional

areas are then as follows:

@ta1 ¼ � @ta2 ¼
Z wbm

2

� wbm
2

dyVðy; tÞ; ð17Þ

which yields equation (3).

Linear-response coefficient C. We consider a tube subject to radial pressure.
The tube’s wall is assumed to be incompressible and elastic such that the
circumference of a cross-section of the tube remains constant under
deformation.

We assume that the cross-section of the tube is approximately elliptical, with a
wall distance r0 from the midpoint that depends on the central angle f through
r0(f)¼Rþw0 cos(2f) (ref. 26). The variable w0 hence measures the deviation of
the cross-sectional shape from a circle, and the variable R denotes the average wall
distance.

A change p in the internal radial pressure leads to a deformation r(f) that
we describe through a variable w: r(f)¼Rþw cos(2f). The magnitude of the
change dw¼w�w0 is derived in equations (7–18) in the study by Timoshenko
and Gere26:

dw ¼ � w0p
pcr � p

; with pcr ¼
E

4ð1� n2Þ
h3

R3
: ð18Þ

Here, E denotes the Young’s modulus of the cochlear bone, v the Poisson ratio
and h the thickness of the cochlear bone.

A small pressure change p elicits an approximately proportional change dw:

dw � 4ð1� n2Þ
E

R3w0

h3
p: ð19Þ

A small change dw in the variable w leads, in turn, to a small area change. The
area Acs of a cross-section can be computed from r(f) as

Acs ¼
1
2

Z 2p

0
r2df: ð20Þ

The area change a follows, to first order in the change dw, as

a ¼ @Acs

@w
dw ¼ 1

2

Z 2p

0
2r
@r
@w

dwdf ¼ pw0dw: ð21Þ

The small pressure change p hence induces an area change according to a¼Cp,
with the coefficient

C ¼ 4pð1� n2Þ
E

R3w2
0

h3
: ð22Þ

The latter is the linear-response coefficient that we employ in Equation (7).

Spatial impedance variation and WKB approximation. The impedance of the
basilar membrane varies systematically along the cochlea. The basilar-membrane
wave accordingly changes its wavelength as it propagates from the base towards its
resonant position. The change of the wavelength and the amplitude can be cap-
tured by the WKB approximation, which starts from the following ansatz for the
pressures2:

p1=2 ¼ ~p1=2ðxÞeiot�F1=2ðxÞ þ c:c: ð23Þ
To fulfil the wave equation the amplitudes ~p1=2ðxÞ and phases F1/2(x) have to

obey

@2
x ~p1=2ðxÞþ 2i@x~p1=2ðxÞ@xF1=2ðxÞ� ~p1=2ðxÞ½@xF1=2ðxÞ�2 þ i~p1=2ðxÞ@2

xF1=2ðxÞ

¼ � ~p1=2ðxÞkðxÞ2:
ð24Þ

The real part @2
x ~p1=2ðxÞþ ~p1=2ðxÞfkðxÞ2 � ½@xF1=2ðxÞ�2g ¼ 0 implies

that F1=2ðxÞ ¼ �
R x

0 kðx0Þdx0. The imaginary part, 2@x~p1=2ðxÞ@xFðxÞ
þ ~p1=2ðxÞ@2

xFðxÞ ¼ 0, leads to ~p1=2ðxÞ ¼ fi=
ffiffiffiffiffiffiffiffiffi
kðxÞ

p
.

Green’s functions. Green’s functions are pressures that result from point-wise
stimulation at x0 along the cochlea at frequency o. Two types of Green’s functions
are important in our study. The first type, pressures ~pG

1=2ðx j x0;oÞ, reflects
stimulation of the basilar membrane. The second type, pressures ~pW

1=2ðx j x0;oÞ,
arise from stimulating the cochlear bone.

We start with computing the Green’s functions that result from a point force
acting on the basilar membrane. Such a force appears in the the boundary
condition (equation (14)). We make the ansatz

~pG
1 ðx j x0;oÞ ¼

R1
�1 dkG1ðkÞeiot� ikðx� x0Þ;

~pG
2 ðx j x0;oÞ ¼

R1
�1 dkG2ðkÞeiot� ikðx� x0Þ; ð25Þ

with the wave-vector-dependent coefficients G1(k) and G2(k). Using fluid-
momentum equation (1) with the continuity equation (2) as well as
equations (7) and (14)) we obtain two coupled ordinary differential equations,

� ior 2wbm
3ZbmðxÞ G1ðkÞ�G2ðkÞ� pF

2p

� �
þ iocG1ðkÞ

n o
¼ A1k2G1ðkÞ;

ior 2wbm
3ZbmðxÞ G1ðkÞ�G2ðkÞ� pF

2p

� �
� iocG2ðkÞ

n o
¼ A2k2G2ðkÞ:

ð26Þ

The coefficients G1(k) and G2(k) are defined as follows:

G1ðkÞ ¼ iopFrðA2 k2 � co2rÞwbm

3A1A2pZbmðxÞLðkÞ ;

G2ðkÞ ¼ iopFrð�A1k2 þ co2rÞwbm

3A1A2pZbmðxÞLðkÞ :
ð27Þ

Here we have used the abbreviation L(k)¼ [2ior(F1þ F2)wbmþ 3F1F2Zbm(x)]/
[3A1A2Zbm(x)] with F1/2¼A1/2k2� co2r. The dispersion relation L(k)¼ 0 has been
derived from the eigenvalues of the matrix M equation (10).

The Green’s functions for bone stimulation can be derived analogously. Assume
that both cochlear chambers, at a certain longitudinal location x0, are sinusoidally
compressed and expanded:

ga1=2 ¼
2i

3o
wbm ~Vbm þC½~p1=2 þ pF cosðotÞdðx� x0Þ� ð28Þ

We make the following ansatz for the Greens functions:

~pW
1 ðx j x0;oÞ ¼

R1
�1 dkW1ðkÞeiot� ikðx� x0Þ;

~pW
2 ðx j x0;oÞ ¼

R1
�1 dkW2ðkÞeiot� ikðx� x0Þ;

ð29Þ

which yields the amplitude equations

�ior 2obm
3Zbm
ðpW

1 � pW
2 Þþ icoðp1 þ pF

2pÞ
h i

¼ A1k2p1

ior 2obm
3Zbm
ðpW

1 � pW
2 Þ� cioðp2 þ pF

2pÞ
h i

¼ A2k2p2:
ð30Þ

The solutions are

W1ðkÞ ¼ co2pFr½4iorwbm þ 3A2k2 ZbmðxÞ� 3co2rZbmðxÞ�
6A1A2pZbmðxÞLðkÞ ;

W2ðkÞ ¼ co2 pFr½4iorwbm þ 3A1k2ZbmðxÞ� 3co2rZbmðxÞ�
6A1A2pZbmðxÞLðkÞ :

ð31Þ

with L(k) as given above. In the symmetric case of equal chamber areas,
A1¼A2, we obtain W1(k)¼W2(k). No basilar-membrane displacement then arises,
because the pressures in both chambers are equal.

When attempting to compute the integral in the ansatz for the Green’s
functions (equations (25) and (29)), we encounter a problem: the integrand has a
singularity at the wave vectors k for which L(k)¼ 0, that is, at those wave vectors
that obey the dispersion relation. However, we can employ the residue theorem of
complex analysis to compute the integrals. Indeed, for propagation apical of the
generation site, that is at a location xox0, we can close the contour in the upper-
half plane because the integrand there is exponentially suppressed. The integral
then only involves a contribution from the poles in the upper-half plane. In the
case of basilar-membrane stimulation, we obtain a contribution proportional to
½@kW � 1

1=2 ðkÞ�
� 1. The pressures p1/2(� kbm, o, x0) represent the pressures of the

basilar membrane mode in the two chambers

p1ð� kbm; o; x0Þ ¼ 2pi
ffiffiffiffiffiffiffiffiffiffiffi
kbmðx0Þ
p ffiffiffiffiffiffiffiffiffiffi

kbmðxÞ
p @

@k W1ðkÞ� 1	 
� 1jk¼� kbmðx0Þ �e
i
R x0

x
kbmðxÞdxþ iot þ c:c:;

p2ð�kbm; o; x0Þ ¼ 2pi
ffiffiffiffiffiffiffiffiffiffiffi
kbmðx0Þ
p ffiffiffiffiffiffiffiffiffiffi

kbmðxÞ
p @

@k W2ðkÞ� 1	 
� 1jk¼� kbmðx0Þ �e
i
R x0

x
kbmðxÞdxþ iot þ c:c:

ð32Þ
Analogous results can be obtained for the cochlear-bone wave with kcb(x).
In the opposite case, for a cochlear location basal to the generation site, x4x0,

the integration path can be closed in the lower-half plane.

Middle ear pressure transformation. The three ossicles of the middle
ear—malleus, incus and stapes—connect the ear drum to the oval window. Sound
is accordingly transmitted from the ear canal to the cochlea, and can analogously
be re-emitted from the cochlea into the ear canal. How can these transfers be
quantified?

Denote by Aa and Aow the area of the tympanic membrane with respect to the
oval window, and by la and lw the length of the mallus with respect to the incus
(Fig. 1). The pressure in the ear canal is p3, it acts on the tympanic membrane and
produces an angular momentum laAap3. The pressure p2 in the upper cochlear

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5160

8 NATURE COMMUNICATIONS | 5:4160 | DOI: 10.1038/ncomms5160 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


chamber yields an angular momentum lwAowp2, which must match the first one:

laAap3 ¼ lwAowp2: ð33Þ
A second equation results from the fluid flows in the ear canal as well as in the

upper cochlear chamber, j3 and j2, which must yield an equal angular deflection of
the middle-ear bones:

j3

laAa
¼ j2

lwAow
: ð34Þ

Finally, the pressure p1 in the lower cochlear chamber creates a fluid flow j1 at
the round window that depends on its impedance Zrw

30:

p1 ¼ Zrwj1: ð35Þ
These three equations act as boundary conditions to the wave equations and

allow to compute the extent to which a wave reaching the middle ear, either from
the ear canal or from within the cochlea, is transmitted or reflected.

We first illustrate how this computation works by considering airborne sound
travelling through the ear canal towards the tympanic membrane, with a wave
vector ks ¼ o

ffiffiffiffiffiffiffiffiffiffi
rairk
p

in which rair and k are the air’s density with respect to
compressibility. Part of this wave will be reflected, such that the pressure in the ear
canal is the sum of a forward- and a backward-travelling sound wave:

p3 ¼ ~p3;f eiot� iks x þ ~p3;beiotþ iks x : ð36Þ
Within the cochlea, forward-travelling waves on the basilar membrane (wave

vector kbm) as well as on the cochlear bone (wave vector kcb) will be elicited:

p1=2 ¼ ~p1=2;bmeiot� ikbmx þ ~p1=2;cbeiot� ikcb x : ð37Þ
The associated fluid flows at the middle ear can be obtained from equation (1)

in which the cross-sectional areas are substituted by the corresponding membrane
areas, namely the ones of the tympanic membrane, round and oval window. The
boundary equations (33–35) can then be solved for the amplitudes of the wave
components:

~p3;b ¼ ~p3;f
½Aow kl2

wrðHor�Arw K2 ZrwÞþAa l2
arairð�K1orþArw Hkbmkcb ZrwÞ�

Aow kl2
wrðHor�Arw K2 ZrwÞþAa l2

arairðK1or�Arw Hkbmkcb ZrwÞ ;

~p2;bm ¼ ~p3;f
2Aa A1kla lwrðor�Arw kcb ZrwÞ

Aow kl2
wrðHor�Arw K2ZrwÞþAa l2

arairðK1or�Arw Hkbmkcb ZrwÞ ;

~p2;cb ¼ ~p3;f
2Aa A2 kla lwrðor�Arw kbmZrwÞ

Aow kl2
wrðHor�Arw K2 ZrwÞþAa l2

arairðK1or�Arw Hkbm kcb ZrwÞ :

ð38Þ

Here we have employed the following abbreviations: K1¼A1kbmþA2kcb,
K2¼A2kbmþA1kcb, H¼A1þA2.

The middle ear matches impedances such that most of the energy of the sound
wave is transmitted to the basilar-membrane wave. We employ this criterion to
determine the impedance of the round window. Requiring that the incoming sound
wave is not reflected at the middle ear but instead fully transmitted into the
cochlea, we obtain the impedance of the round window as:

Zrw ¼
orðAowHkl2

wr�AaK1l2
arairÞ

ArwðAowkK2l2
wr�AaHkbmkcbl2

arairÞ
: ð39Þ

Next, we consider how a distortion signal emerges from the cochlea through a
cochlear-bone wave. To this end we compute how much of a backward cochlear-
bone wave, as generated from distortion, is transmitted as a sound wave into the
ear canal, and how much is reflected as forward-travelling wave in the cochlea
(potentially both in the cochlear-bone and in the basilar-membrane mode). We
hence start from the following ansatz

p1=2 ¼ ~p1=2;cb;beiotþ ikcb x þ ~p1=2;cb;f eiot� ikcb x þ ~p1=2;bmeiot� ikbm x; p3 ¼ ~p3eiotþ iks x ;

ð40Þ
in which ~p1=2;cb;b is the amplitude of the backward-propagating bone wave, ~p1=2;cb;f
the amplitude of the forward-travelling cochlear-bone wave, ~p1=2;bm the amplitude
of the forward-propagating basilar-membrane wave and ~p3 the amplitude of
the emitted sound wave. From equations (1) and (33–35) we compute those
amplitudes as:

~p3 ¼ ~p2;cb;b
4Aa Aow HA2kkcb l2

a l2
wrrairðor�kbm BÞ2

½Aowkl2
wrðHor�K2BÞþAa l2

arairðK1or�Hkbmkcb BÞ�2 ;

~p2;bm ¼ ~p2;cb;b
4AaA1A2kkcb la lwr2ðor�kbm BÞðAa l2

aorair þAowkl2
w BÞ

½Aowkl2
wrðHor�K2BÞþAa l2

arairðK1or�Hkbmkcb BÞ�2 ;

~p2cb;f ¼ � ~p2;cb;b
2Aa A2kla lwrðor� kbmBÞ½Aa l2

arairðK3orþHkbmkcb BÞþAow kl2
wrðHorþK4 BÞ�

½Aowkl2
wrðHor�K2BÞþAa l2

arairðK1or�Hkbmkcb BÞ�2 :

ð41Þ
In addition to the abbreviations introduced above, we have used the following:

B¼ArwZrw, K3¼A1kbm�A2kcb, K4¼A1kcb�A2kbm, Ks¼ kbmþ kcb, and
Kd¼ kbmþ kcb.
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