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The amplification of enstrophy is explored using cinematographic stereoscopic particle
image velocimetry data. The enstrophy production rate is investigated by observation
of the statistical tendency of the vorticity vector (ω) to align with the eigenvectors
of the rate of strain tensor (ei ). Previous studies have shown that ω preferentially
aligns with the intermediate strain-rate eigenvector (e2) and is arbitrarily aligned
with the extensive strain-rate eigenvector (e1). This study shows, however, that the
nature of enstrophy amplification, whether it is positive (enstrophy production) or
negative (enstrophy destruction), is dictated by the alignment between ω and e1.
Parallel alignment leads to enstrophy production (ωiSijωj > 0), whereas perpendicular
alignment leads to enstrophy destruction (ωiSijωj < 0). In this way, the arbitrary
alignment between ω and e1 is the summation of the effects of enstrophy producing
and enstrophy destroying regions. The structure of enstrophy production is also
examined with regards to the intermediate strain-rate eigenvalue, s2. Enstrophy
producing regions are found to be topologically ‘sheet-forming’, due to an extensive
(positive) value of s2 in these regions, whereas enstrophy destroying regions are
found to be ‘spotty’. Strong enstrophy producing regions are observed to occur in
areas of strong local swirling as well as in highly dissipative regions. Instantaneous
visualizations, produced from the volume of data created by Taylor’s hypothesis,
reveal that these ‘sheet-like’ strong enstrophy producing regions encompass the high
enstrophy, strongly swirling ‘worms’. These ‘worms’ induce high local strain fields
leading to the formation of dissipation ‘sheets’, thereby revealing enstrophy production
to be a complex interaction between rotation and strain – the skew-symmetric and
symmetric components of the velocity gradient tensor, respectively.

1. Introduction
There is a great interest in examining the rate of strain tensor (Sij ) and rotation
tensor (Ωij ) fields, which are respectively the symmetric and skew symmetric parts
of the velocity gradient tensor (Dij = ∂ui/∂xj ). The relation between the strain rate
and the rotation tends to be strongly non-local and may be only weakly correlated
(Tsinober 2000). Also, kinetic energy dissipation, the ‘end result’ of the energy cascade,
is directly associated with strain and not rotation. Importantly, however, vortex
stretching/compression is essentially a process of the interaction between strain and
rotation (Tsinober 2000; Hamlington, Schumacher & Dahm 2008). So important
is this interaction that it has been described as ‘intrinsic to the very nature of

† Email address for correspondence: o.buxton07@imperial.ac.uk



484 O. R. H. Buxton and B. Ganapathisubramani

three-dimensional turbulence’ (Tennekes & Lumley 1972; Bermejo-Moreno, Pullin &
Horiuti 2009). Both rate of strain and rotation appear in the equations governing
the dynamics of each other, suggesting that the effects of the two fields cannot
be decoupled. Equations (1.1) and (1.2) illustrate this fact. The strain-rate tensor
(Sij ) features in the production term of the equation governing enstrophy dynamics,
enstrophy being the scalar counterpart to rotation, and enstrophy appears in the
equation governing the strain-rate tensor’s dynamics as

1

2

Dω2

Dt
= ωiSijωj + νωi∇2ωi, (1.1)

1

2

D(SijSij )

Dt
= −SijSjkSki − 1

4
ωiSijωj − Sij

∂2p

∂xi∂xj

+ νSij ∇2Sij . (1.2)

Turbulence, by its very nature, is multi-scaled with a general view that large
eddies break up into smaller eddies, transferring turbulent kinetic energy along
the energy cascade until viscous effects dominate and this energy is dissipated at
the smallest scales (Richardson 1926; Batchelor & Townsend 1949; Kolmogorov
1962). In order to study the phenomenology of fine-scale turbulence, it is imperative
to have a spatial resolution that is sufficiently high to resolve the flow down to
these dissipative scales. Much of the earlier work pertaining to small-scale turbulent
motions compared statistical estimates, such as probability density functions (p.d.f.s),
skewness and flatness of gradient quantities such as enstrophy and dissipation (the
scalar counterparts to rotation and strain, respectively). A review of such work
can be found in the work of Sreenivasan & Antonia (1997). Statistical analysis of
the small scales will not, however, reveal the instantaneous geometrical structure
of the enstrophy and dissipation fields. In order to reveal this instantaneous
topology, three-dimensional velocity and velocity gradient information is required.
This three-dimensional information has become available through direct numerical
simulation (DNS) studies (Siggia 1981; Kerr 1985; She, Jackson & Orszang 1990;
Vincent & Meneguzzi 1991; Jiménez et al. 1993; Vincent & Meneguzzi 1994;
da Silva & Pereira 2008). Hot wire probes (Kholmyansky, Tsinober & Yorish 2001),
holographic particle image velocimetry (PIV) (Zhang, Tao & Katz 1997; Tao, Katz
& Meneveau 2002) and cinematographic stereoscopic PIV (Matsuda & Sakakibara
2005; Ganapathisubramani, Lakshminarasimhan & Clemens 2007, 2008) have also
been employed, recently, to gather this three-dimensional velocity and velocity gradient
data experimentally.

The topological evolution of a fluid element is characterized by the eigenvalues (si)
of the rate of strain tensor (Sij ) (Betchov 1956). The eigenvalues s1 and s3 correspond
to the extensive and compressive strain rates, respectively, i.e. s1 > 0, s3 < 0, whereas
s2, the intermediate eigenvalue, can be either extensive or compressive, bounded
by the values of s1 and s3 such that s1 >s2 > s3. Continuity (∇ · u =0) demands
s1 + s2 + s3 = 0. The fact that the intermediate strain rate can be either extensive
(positive) or compressive (negative) suggests that it will determine the nature of
the topological evolution of a particular fluid element. Elements for which there
are two orthogonal extensive strain rates (s1, s2 > 0) acting in conjunction with the
orthogonal compressive strain rate tend to form ‘sheet-like’ structures. By contrast,
elements for which there are two orthogonal compressive strain rates (s2, s3 < 0)
acting in conjunction with the orthogonal extensive strain rate tend to form ‘tube-
like’ topology.
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A large proportion of the work with good spatial resolution, investigating the
small scales of turbulence, has focused on the structure and geometry of regions
of high enstrophy. By isolating regions of intense enstrophy, using various vortex
identification methods as described by Jeong & Hussain (1995) and Chakraborty,
Balachandar & Adrian (2005), several studies have shown strongly swirling structures
to be ‘tube/worm-like’ (Kerr 1985; Ashurst et al. 1987; Vincent & Meneguzzi 1991;
Jiménez et al. 1993). These ‘worms’ have been shown to have characteristic diameters
on the order of 10 η, where η is the Kolmogorov length scale, and have been shown to
extend up to 40 η in length (Ganapathisubramani et al. 2008). These ‘worms’ had been
thought to be embedded in a ‘random sea’ of structureless weak vorticity, which has
been considered to be nearly Gaussian (Jiménez et al. 1993). Ruetsch & Maxey (1991)
showed that within this ‘random sea’ there exist regions of intensely dissipating fluid
that tend to surround the high enstrophy ‘worms’ and are topologically ‘sheet-like’. A
clearer picture of the ‘random sea’ is now emerging suggesting that it is not entirely
random and is organized into distinct structures of its own (Tsinober, Shtilman &
Vaisburd 1997). Regions of weaker enstrophy have also been found to be far more
dynamically important in turbulence than was previously thought, especially with
regard to nonlinear processes such as strain and enstrophy production (Tsinober
1998; Tsinober, Ortenberg & Shtilman 1999).

It can be seen that (1.1), describing enstrophy dynamics, consists of a vortex
stretching term (ωiSijωj ) and a viscous dissipation term. The ωiSijωj term describes
the effects of local amplification of enstrophy by vortex filament stretching (an inviscid
mechanism) and the νωi∇2ωi term represents the spread of vorticity due to viscosity
(Morton 1984). Moreover, the enstrophy amplification term is the scalar product
of the vorticity vector with the vortex stretching vector (W = Sijωj ). Taylor (1938)
first showed that 〈ωiSijωj 〉 > 0, that is to say, on average, enstrophy production
(vortex stretching) prevails over enstrophy destruction (vortex compression). This
has subsequently been shown both numerically (Betchov 1975) and experimentally
(Tsinober, Kit & Dracos 1992). The magnitude of the enstrophy production term,
which can be used as a measure of nonlinearity (Tsinober et al. 1999), is (Betchov
1956)

ωiSijωj = ω2si(êi · ω̂)2, (1.3)

where êi and ω̂ are the normalized strain-rate eigenvectors (corresponding to si)
and vorticity vector, respectively. The importance of the interaction between rotation
and straining is exemplified by the fact that (nonlinear) enstrophy production is
determined by the cosines of the alignment angle between the vorticity vector and the
principal axes of the rate of strain tensor.

The preponderance of the vorticity vector to be aligned with the intermediate strain-
rate eigenvector was first observed by Ashurst et al. (1987) and subsequently confirmed
by several other studies (e.g. Tsinober et al. 1992; Tanahashi, Iwase & Miyauchi 2001;
Mullin & Dahm 2006). Jiménez (1992) offers an explanation for this by using a two-
dimensional argument. Andreotti (1997) showed that the tendency for the vorticity
vector to align with the intermediate strain-rate eigenvector is a result of the crossover
of the eigenvalues. This led to the development of an alternative reordering of the
eigenvalues in which the eigenvalue with the corresponding eigenvector that is most
closely aligned with the vorticity vector is denoted σz, with the largest of the two
remaining eigenvalues denoted σ+ and the smallest one denoted as σ− (Andreotti 1997;
Nomura & Post 1998; Horiuti 2001). However, in the current study, the eigenvalues
would have more physical meaning when arranged by magnitude as it would be
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clear that the corresponding eigenvector would be compressive, extensive or alternate.
This information is far more difficult to present when the eigenvalues are reordered
according to the preferential alignment with the vorticity vector. Although most
regions show a preference for the vorticity vector to align with the intermediate strain-
rate eigenvector, Tsinober et al. (1997) and Kholmyansky et al. (2001) observed that
regions in which the vorticity vector is aligned to the extensive strain-rate eigenvector
make the largest contribution to the enstrophy production. Hamlington et al. (2008)
examined the alignment between the vorticity vector and the strain-rate eigenvectors
and stated that whilst the vorticity vector is preferentially aligned to the intermediate
eigenvector of the local strain rate, it tends to align with the extensive eigenvector of
the non-local strain rate. However, the overall p.d.f. for the alignment between the
vorticity vector and the extensive strain-rate eigenvector is flat, indicating an arbitrary
alignment between the two vectors (e.g. Ashurst et al. 1987).

More recently, Buxton & Ganapathisubramani (2009) examined the alignment
between the eigenvectors of the rate of strain tensor (ei ) and the ‘swirling eigenvector’
(vr). The ‘swirling eigenvector’ is defined as the real eigenvector of the velocity
gradient tensor (Dij = ∂ui/∂xj ), when Dij has a real and complex conjugate pair
of eigenvalues and corresponding eigenvectors. When this is the case, the local
streamlines are spiralling/swirling in nature with the magnitude of the imaginary part
of the complex conjugate pair of eigenvalues (λci) characterizing the local swirling
strength and the real eigenvector defining the axis of swirling (Zhou et al. 1999). The
study observed that whilst the vorticity vector did indeed preferentially align with
the intermediate strain-rate eigenvector (e2), vr instead tended to align with e1, the
extensive strain-rate eigenvector.

This study aims to investigate the nonlinear enstrophy production term (ωiSijωj ) in
the turbulent far field of an axisymmetric turbulent jet. Cinematographic stereoscopic
PIV data is used as the basis for this investigation. Particular emphasis is given to
comparing enstrophy production in swirling (λci > 0) and straining (λci = 0) regions,
by means of examining the alignment of the eigenvectors of the rate of strain tensor
(ei ) with the vorticity vector (ω).

2. Experimental facility and techniques
The data used in this study was obtained by Ganapathisubramani et al. (2007) at
the University of Texas, Austin, USA. The axisymmetric jet exhausted into a mild
co-flow of air from a pipe of circular cross-section (diameter D = 26 mm), located at
the centre of the co-flow facility. Tsurikov (2003), who developed the experimental
facility, acquired velocity profiles using hot-film probes and documented the presence
of a fully developed pipe flow at the jet axis. The spectra at the centreline indicated
a −5/3 spectrum and had no dominant frequency. The jet velocity was U0 = 3 m s−1

and the co-flow velocity was U∞ = 0.15m s−1. The boundary layer on the outside
of the jet, due to the co-flow, was laminar with an estimated thickness of 11 mm
near the jet exit. Additional details regarding design and construction of the flow
facility and qualification of the flow field at the jet exit (i.e. axisymmetry of the jet,
mean velocity profiles, turbulence intensities, etc.) are presented by Tsurikov (2003).
Cinematographic stereoscopic PIV measurements were performed in the ‘end view’
plane (x2–x3) at a downstream axial location of x1 = 32D (Note that in this study, x1

is the axial direction and x2 and x3 are the two orthogonal radial directions). The seed
particles were illuminated by a laser sheet of thickness ≈1 mm and the scattered light
was captured by two CMOS cameras in stereoscopic arrangement oriented at an angle
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of 30◦ to the axis of the jet. Cinematographic images were captured for a duration of
1 s, corresponding to a total of 2000 frames and 2 GB of data for each experimental
run. The vector fields were computed by correlating successive particle images in the
movie sequence (Δt =500 μs, since the frequency of image acquisition was 2 kHz). The
resulting vectors from each camera were then combined to compute all three velocity
components. The final interrogation region was 16 × 16 pixels with 50 % overlap. A
maximum pixel displacement with a magnitude of approximately seven pixels was
observed for each camera. The resolution of the resulting stereoscopic vector fields
is approximately 3 η × 3 η (1.35 × 1.35 mm2) and successive vectors are separated by
1.5 η (due to 50 % overlap). The total field size is 160 η × 160 η (76 × 76 mm2). Due
to intrinsic uncertainties associated with performing stereoscopic PIV measurements,
the velocity field was not divergence free (i.e. ∇ · u 	= 0). The divergence error is in
line with other experimental studies and is characterized and discussed further by
Ganapathisubramani et al. (2007).

The relevant length scales at the measurement location are: jet half-
width (δ1/2) = 126 mm, Taylor microscale (λ) = 13.8 mm and Kolmogorov scale
(η) = 0.45 mm. The Kolmogorov scale is defined as η = (ν3/〈ε〉)1/4, where ν is the
kinematic viscosity and 〈ε〉 is the mean rate of dissipation which was calculated from
the experimental data. The Reynolds number based on jet exit velocity and diameter
is ReD = 5100 and the Reynolds number based on Taylor microscale is Reλ ≈ 150.

Taylor’s hypothesis, with a convection velocity equal to the local mean axial
velocity u1(x2, x3) (u1, u2 and u3 are the velocity components along the x1, x2 and x3

directions respectively), was utilized to reconstruct a quasi-instantaneous space–time
volume of this filtered data in order to produce three-dimensional flow visualizations.
The convection velocity (i.e. the mean axial velocity) varies over the x2–x3 plane
and consequently the axial coordinates are different for different regions of the jet.
Additional information regarding the experimental setup and validation are given by
Ganapathisubramani et al. (2007, 2008).

3. Statistical results
A p.d.f. for the enstrophy production rate, ωiSijωj , is presented in figure 1. This data,
and all subsequent data, are non-dimensionalized by the suitable combination of ν

and η, where ν is the kinematic viscosity and η is the Kolmogorov length scale. The
general consensus in the literature (Taylor 1938; Tennekes & Lumley 1972 amongst
others) is that vortex stretching (ωiSijωj > 0) is favoured over vortex compression
(ωiSijωj < 0) in high-Reynolds-number flows. This is borne out in the figure, which
shows that there is a significant peak just above zero. Additionally, the positive tail of
the p.d.f. is ‘fatter’ than the negative one indicating further that enstrophy production
is favoured over enstrophy destruction in turbulent flows resulting in a positive mean
value of 〈ωiSijωj 〉 = 0.07(ν/η2)3. The shape of this p.d.f. agrees well with the dual
plane stereo PIV study of Mullin & Dahm (2006).

Equation (1.3) illustrates the importance to the overall enstrophy production rate
of the alignment of the vorticity vector to the strain-rate tensor eigenvectors. Figure 2
shows p.d.f.s for the cosines of the alignment angle between the rate of strain tensor
eigenvectors and the vorticity vector. In order to distinguish between swirling and
straining regions, the discriminant of the characteristic equation for the eigenvalues
of the velocity gradient tensor (see (3.1)), D, is employed. When D is positive, the
eigenvalues are complex and the streamlines are locally swirling (Zhou et al. 1999)
and the quantity λci =

√
D is used as a measure of the local swirling strength. When
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Figure 1. Probability density function (p.d.f.) for the enstrophy production rate (ωiSijωj )

normalized by (ν/η2)3, where ν is the kinematic viscosity and η is the Kolmogorov length scale.
Note that the ordinate axis is logarithmic.
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Figure 2. Probability density functions (p.d.f.s) of cosine of the alignment angle between the
eigenvectors of the rate of strain tensor (ei ) and the vorticity vector (ω). The solid lines are
p.d.f.s constructed from regions for which λci = 0, i.e. there is no local swirling and the dashed
lines are for λci > 0, i.e. local swirling is present.

D is negative (real eigenvalues only), there is no local swirling present (straining only)
and λci is set to zero. In the data presented here, regions with a non-zero value of λci ,
hence swirling regions, accounted for 62 % of the volume investigated. Over all these
regions, for which there was a local swirl defined, the mean value 〈λci〉 =21.1 s−1. The
solid lines of figure 2 are p.d.f.s constructed from all regions for which there is no
local swirling defined (λci = 0) and the dashed lines are constructed from regions for
which there is a local swirl defined (λci > 0). The tendency for ω to preferentially align
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with the intermediate strain-rate eigenvector (e2) can be observed from the peak in
both the straining and swirling p.d.f.s at |ê2 · ω̂| =1, in agreement with the literature.
Additionally, the tendency for ω to be perpendicular to the compressive strain-rate
eigenvector (peaks at |ê3 · ω̂| =0) and arbitrarily aligned with the extensive strain-rate
eigenvector (flat p.d.f.s for |ê1 · ω̂|) can be observed in figure 2. The tendency for ω

to align with e2 and to be perpendicular to e3 is exaggerated (higher peak in solid
line p.d.f. values) for straining regions as opposed to swirling regions. A slight peak
in the solid line p.d.f. suggests that there is a slight preference for ω to align with e1

in straining regions.
The effects of vorticity–strain-rate eigenvector alignment upon enstrophy production

rate can be further examined by categorizing the regions using the second and third
invariants of the characteristic equation for the eigenvalues of Dij , the velocity
gradient tensor. This characteristic equation is given by

λ3 + Pλ2 + Qλ + R = 0. (3.1)

The second invariant, Q, can be written as (1/2) (‖Ωij ‖2−‖Sij ‖2) for an incompressible
flow and can be used as a vortex identification criterion as it illustrates the local excess
of rotation over strain rate (Chakraborty et al. 2005). P and R are the first and third
invariants and are defined as ∇ · u (= 0 for an incompressible flow) and −det(Dij ),
respectively. The study of Chong, Perry & Cantwell (1990) used a Q–R plane as
a means of characterizing different flow behaviour. Figure 3 shows a joint p.d.f.
between Q and R. Dashed lines mark R =0 and D = 0 (where D is the discriminant
of the characteristic equation (3.1)) in order to split the data into four sectors. The
Q–R plane has been shown to unambiguously determine the local topology of the
fluid motion (Martı́n et al. 1998). In P–Q–R space, the equation for the surface that
separates purely real from complex roots is (Chong et al. 1990)

27R2 + (4P 3 − 18PQ)R + (4Q3 − P 2Q2) = 0. (3.2)

In a completely divergence-free flow (∇ · u = 0 i.e. P = 0), the equation for D is
given by D = Q3 + (27/4)R2. Regions for D > 0 are thus swirling, whereas points for
which D < 0 are straining only (Perry & Chong 1994). Due to the limitations of the
experimental techniques used to gather the data, the velocity field is not completely
divergence free (hence P 	= 0). This leads to some purely real solutions (straining only)
for D > 0 and complex solutions (swirling) for D < 0 (see Ganapathisubramani et al.
(2008) for more details on limitations of the experimental technique). The four sectors
are defined as D > 0; R > 0 (S1 for brevity), D < 0; R > 0 (S2), D < 0; R < 0 (S3) and
D > 0; R < 0 (S4). The p.d.f.s for the alignment tendencies of the extensive (e1) and
intermediate (e2) strain-rate eigenvectors with ω in the four sectors are presented
beneath the Q–R plot.

The largest of the sectors is S4, accounting for 37 % of the total volume. This sector
is dominated by swirling with 96 % of the volume within S4 exhibiting local swirling,
for which the mean value is 〈λci〉S4 = 1.16〈λci〉. The sector S4 is also responsible for
a large proportion of the total enstrophy production rate 〈ωiSijωj 〉S4 = 2.44〈ωiSijωj 〉,
with 93 % of the constituent volume having a positive value of ωiSijωj . The alignment
p.d.f. for S4 shows that there is a large peak at |ê1 · ω̂| = 1 (the solid line p.d.f.)
indicating that the vorticity vector aligns with the extensive strain-rate eigenvector in
S4. This strong alignment with the extensive strain-rate eigenvector (relative to S1
and S2) encourages vortex stretching and hence enstrophy production.
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Figure 3. Joint p.d.f. between Q and R, the second and third invariants of the characteristic
equation for the eigenvalues of the velocity gradient tensor, normalized by the second and
third powers of ν/η2, respectively. The outer contour is at level 70 and the inner contour is at
level 700. The spacing between adjacent contour levels is 70. The dashed lines mark R = 0 and
D = Q3 + (27/4)R2 = 0 (D is the discriminant of the characteristic equation). Below the Q–R
plot are p.d.f.s illustrating the alignment tendencies (|êi · ω̂|) of ω with e1 (solid lines) and e2

(dashed lines) in the four sectors marked on the joint p.d.f.

The p.d.f. for sector S3 also shows a peak at |ê1 · ω̂| = 1, illustrating a tendency
for the vorticity vector to align with the extensive strain-rate eigenvector. This sector
shows a moderate positive enstrophy production rate (〈ωiSijωj 〉S3 = 0.54〈ωiSijωj 〉);
this is smaller than 〈ωiSijωj 〉 due to the fact that 35 % of points within S3 possess
negative values of ωiSijωj . S3 is a sector that is dominated by straining regions, with
93 % of the regions exhibiting no local swirling. This sector is comprised of only
10 % of the total volume.

Note that S2 is another sector that is dominated by straining regions (D < 0) with
92 % of the constituent points exhibiting no local swirling. The mean enstrophy
production rate is also moderate, 〈ωiSijωj 〉S2 = 0.69〈ωiSijωj 〉, with a slightly greater
proportion of points (80 %) displaying positive ωiSijωj than S3. This sector accounts
for 24 % of the overall volume.
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Sector (S) Proportion of total volume (%) 〈ωiSijωj 〉S/〈ωiSijωj 〉 〈λci〉S/〈λci〉

S1 29 −0.40 0.47
S2 24 0.69 N/A
S3 10 0.54 N/A
S4 37 2.44 1.16

Table 1. Summary of mean enstrophy production rates (〈ωiSijωj 〉S) and mean swirling
strength (〈λci〉S) for the four sectors of the Q–R plane of figure 3.
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Figure 4. (a) Probability density function (p.d.f.) of cosine of alignment angle between the
extensive strain-rate eigenvector (e1) and the vorticity vector (ω) for enstrophy producing
(ωiSijωj > 0) and enstrophy destroying (ωiSijωj < 0) regions. (b) Probability density function
(p.d.f.) of cosine of alignment angle between the intermediate strain-rate eigenvector (e2) and
ω for enstrophy producing and enstrophy destroying regions.

Note that S1 is a weakly swirling region with 83 % of the constituent volume
exhibiting local swirling. The mean swirling strength is 〈λci〉S1 = 0.47〈λci〉. It is the
only sector for which the mean rate of enstrophy production is negative (enstrophy
destruction), with 〈ωiSijωj 〉S1 = −0.40〈ωiSijωj 〉, with 61 % of the constituent points
having ωiSijωj < 0. The alignment p.d.f. for S1 shows a strong peak at |ê1 · ω̂| =0
indicating that the vorticity vector tends to be perpendicular to the extensive strain-
rate eigenvector, in stark contrast to the vortex stretching sectors S3 and S4. Also
note that S1 is the second largest sector by constituent volume, accounting for 29 %
of the total number. The salient properties of all four sectors are summarized in
table 1.

Several general observations can be made from figure 3. It can be seen that the e2–ω

alignment p.d.f.s are qualitatively and quantitatively similar for all four sectors. By
contrast, the e1–ω alignment p.d.f.s can be seen to vary significantly both qualitatively
and quantitatively. The p.d.f.s of S3 and S4 are completely different in shape to that
of S1 (a peak for the two vectors being perpendicular) and S2 (a flat p.d.f. indicating
arbitrary alignment). It can thus be concluded that the alignment between the vorticity
vector and the extensive strain-rate eigenvector is crucial in determining whether the
amplification of enstrophy is positive (parallel) or negative (perpendicular). The role
of the alignment between the intermediate strain-rate eigenvector and the vorticity
vector is of much less significance. This can be seen in figure 4 that shows that e1–ω
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Figure 5. (a) Joint p.d.f. between local swirling strength (λci) and the logarithm of the
normalized enstrophy production rate (ωiSijωj ) for regions in which this term is positive
(enstrophy production). The outer contour level is 0.045 and the inner contour level is 0.45.
The separation between successive contour levels is 0.045. (b) Joint p.d.f. between λci and the
logarithm of the magnitude of ωiSijωj for regions in which this term is negative (enstrophy
destruction). The outer contour is at level 0.06 and the inner contour is at level 0.6. The
separation between successive contour levels is 0.06. The dashed lines in both figures illustrate
the mean value of local swirling strength, 〈λci〉 = 21.1 s−1.

alignment p.d.f.s are completely different for ωiSijωj > 0 and ωiSijωj < 0. The p.d.f.
for vortex stretching points (i.e. ωiSijωj > 0) shows a clear peak for parallel alignment
between e1 and ω, whereas the vortex compression p.d.f. shows a peak when the two
vectors are perpendicular. The ‘traditionally’ flat p.d.f. for e1–ω alignment (shown in
figure 2) can thus be seen to be the summation of the distinctly different alignment
behaviour of vortex stretching and vortex compression regions. By contrast, the
p.d.f.s of e2–ω alignment shown in figure 4(b) are qualitatively similar for both vortex
stretching and vortex compression regions, albeit with a more arbitrary alignment
(lower peak value) for the ωiSijωj < 0 case.

Although sectors S2, S3 and S4 favour enstrophy production over destruction, S4
has a much larger mean enstrophy production rate than the other two sectors. Of
these three sectors, S4 predominantly contains swirling regions, whereas S2 and S3 are
dominated by straining regions. Figure 5(a) shows a joint p.d.f. between the logarithm
of ωiSijωj and the local swirling strength (λci) constructed from regions for which
ωiSijωj > 0, i.e. enstrophy producing regions. The dashed line on the figure illustrates
the mean local swirling rate, 〈λci〉. Of the enstrophy producing regions (ωiSijωj > 0),
36 % are weakly swirling (0 < λci < 〈λci〉) and 40 % are straining (λci = 0). However,
the weakly swirling and straining regions account for only 18 % and 21 % of the
total enstrophy production (positive ωiSijωj ), respectively. Strongly swirling regions
(λci > 〈λci〉), whilst accounting for only 24 % of the volume, contribute 61 % of the
total enstrophy production rate. This is further supported by the fact that the joint
p.d.f. contours slope towards higher ωiSijωj for higher λci , suggesting that higher
enstrophy production rates are associated with higher local swirling. This clearly
mirrors the finding that S4, the most strongly swirling sector in the Q–R plane, is
also the sector with the highest enstrophy production rate.

Figure 5(b) shows the joint p.d.f. between the logarithm of the magnitude of ωiSijωj

and λci constructed from regions for which ωiSijωj < 0, i.e. enstrophy destroying
regions. It can be seen that the inner most contours do not slope as steeply towards
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Figure 6. (a) Joint p.d.f. between the intermediate strain rate (s2) and the logarithm of the
enstrophy production rate (ωiSijωj ) for regions in which this term was positive (enstrophy
production). The outer contour is at level 0.22 and the inner contour is at level 2.2. The
separation between successive contour levels is 0.22. (b) Joint p.d.f. between s2 and the
logarithm of the magnitude of ωiSijωj for regions in which this term was negative (enstrophy
destruction). The outer contour is at level 0.25 and the inner contour is at level 2.5. The
separation between successive contour levels is 0.25.

high λci with increasing enstrophy destruction rate as the contours of the joint p.d.f.
in figure 5(a) do for increasing enstrophy production rate. This is illustrated by
the steeper tangent to the joint p.d.f. in figure 5(a) than that of figure 5(b). In
addition, the contours do not extend as far into high values of λci as those of the
enstrophy production joint p.d.f. in figure 5(a). This figure thus mirrors the finding
that enstrophy destruction (ωiSijωj < 0) is predominantly observed in weakly swirling
regions, such as those found in S1.

Figure 6(a) shows the joint p.d.f. between the intermediate strain rate (s2) and
the logarithm of the enstrophy production rate (ωiSijωj ) for regions in which this
term was positive (i.e. enstrophy production). Due to the fact that s2 can be either
extensive or compressive, it determines whether a fluid element will tend to form
‘sheet-like’ (s2 > 0) or ‘tube-like’ topology (s2 < 0). It can be seen that the contours
of the joint p.d.f. in figure 6(a) extend further in the positive s2 domain than the
negative s2 domain, and that they slope towards positive s2 for more strong vortex
stretching regions, suggesting that intensely vortex stretching regions coincide with
positive s2. It can therefore be concluded that enstrophy producing regions tend to
be ‘sheet-forming’ (as shown by Betchov 1956), particularly so for strong enstrophy
producing (vortex stretching) regions.

Figure 6(b) shows the joint p.d.f. between s2 and the logarithm of the magnitude
of ωiSijωj for regions in which this term was negative (i.e. enstrophy destruction).
The contours of the p.d.f. extend approximately the same distance in the positive and
negative s2 domains, in contrast to those of figure 6(a). Additionally, the degree to
which the contours in figure 6(b) extend in either direction is significantly smaller than
that in figure 6(a). This suggests that enstrophy destroying regions on the whole tend
to be a combination of weakly ‘sheet-forming’ and weakly ‘tube-forming’ topologies.
It can thus be concluded that enstrophy producing regions have a more distinct
tendency to form uniform (‘sheet-like’) topologies, due to the strong skew to positive
s2 of the joint p.d.f. of figure 6(a), than enstrophy destroying regions which do not
have a clear ‘sheet-forming’ or ‘tube-forming’ tendency.
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Figure 7. (a) Joint p.d.f. between the normalized dissipation rate (ε) and the logarithm of
the enstrophy production rate (ωiSijωj ) for regions in which this term was positive (enstrophy
production). The outer contour is at level 0.065 and the inner contour is at level 0.65. The
separation between successive contour levels is 0.065. (b) Joint p.d.f. between ε and the
logarithm of the magnitude of ωiSijωj for regions in which this term was negative (enstrophy
destruction). The outer contour is at level 0.085 and the inner contour is at level 0.85. The
separation between successive contour levels is 0.085.

Figures 5 and 6 show that strong enstrophy producing regions tend to be ‘sheet-
forming’ and swirling. Previous studies have shown that regions of intense kinetic
energy dissipation rate are observed as ‘sheet-like’ structures that surround the high
enstrophy ‘worms’ (for example see Ganapathisubramani et al. 2008). Therefore the
relationship between enstrophy producing and enstrophy destroying regions with
respect to the kinetic energy dissipation rate is explored. Figure 7(a) shows the
joint p.d.f. between the logarithm of ωiSijωj and the kinetic energy dissipation rate
(ε) for regions in which ωiSijωj > 0. The kinetic energy dissipation rate is non-
dimensionalized by the mean, 〈ε〉 = ν3/η4 = 0.085 m2 s−3. The contours are observed
to slope towards higher ε for higher ωiSijωj . This is in contrast with the contours of
the joint p.d.f. between ε and the logarithm of the magnitude of ωiSijωj of figure 7(b).
It can be seen that the shape of the joint p.d.f. in figure 7(b) is more round with a
significantly reduced tendency for the contours to slope towards higher ε for higher
enstrophy destruction rates. The contours also extend to much higher ε for the
enstrophy producing joint p.d.f. than for the enstrophy destroying joint p.d.f. It can
thus be stated that there is a tendency for highly enstrophy producing regions to
coincide with intensely kinetic energy dissipating regions as observed by Tsinober
et al. (1997), Tsinober (1998) and Gulitski et al. (2007). This is not the case for
enstrophy destroying regions, which tend to be found in regions for which the kinetic
energy dissipation rate is only moderate.

Andreotti (1997) developed a method whereby vortex sheets, such as those that
surround ‘worms’, can be educed directly. Horiuti & Takagi (2005) stated that the
most prominent characteristic feature of a vortex sheet is that the strain rate and
the vorticity are highly correlated and their magnitudes comparably large. This
correlation between strain rate and vorticity is one of the key reasons for positive
enstrophy amplification to take place within these vortex sheets. The method uses an
eigenvalue ([Aij ]+) of the second-order velocity gradient tensor, Aij = (SikΩkj +SjkΩki),
which is a term contained in the decomposition of the Reynolds stress tensor using
the nonlinear model (Horiuti 2003). It can be shown that [Aij ]+ can be approximated
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Figure 8. (a) Joint p.d.f. between [Aij ]+ and the logarithm of the enstrophy production rate
(ωiSijωj ) for regions in which this term was positive (enstrophy production). The outer contour
is at level 0.3 and the inner contour is at level 3. The separation between successive contour
levels is 0.3. (b) Joint p.d.f. between [Aij ]+ and the logarithm of the magnitude of ωiSijωj for
regions in which this term was negative (enstrophy destruction). The outer contour is at level
0.45 and the inner contour is at level 4.5. The separation between successive contour levels is
0.45.

as [Aij ]+ � +
√

(1/2)AijAji in practice (Horiuti & Takagi 2005). Figure 8(a) shows
the joint p.d.f. between the logarithm of ωiSijωj and [Aij ]+ for regions in which
ωiSijωj > 0. Qualitatively, this joint p.d.f. is similar to that of figure 7(a) with the
contours sloping towards higher [Aij ]+ for higher ωiSijωj . This reinforces the statistical
observation that enstrophy production is focused in vortex sheets. The shape of this
joint p.d.f. is again in contrast with that of figure 8(b), which shows the joint p.d.f.
between [Aij ]+ and the logarithm of the magnitude of ωiSijωj for regions of enstrophy
destruction. Again, the contrast between these two figures is similar to that for figure 7
thereby reinforcing the finding that strong enstrophy producing regions tend to be
found in more distinct vortex sheets than enstrophy destroying regions do.

Statistical results indicate the tendencies of the amplification of enstrophy to be
‘sheet-forming’ for vortex stretching regions but with no preference to form either
‘tube-like’ or ‘sheet-like’ topology for vortex compressing regions. High rates of
enstrophy production (vortex stretching) are also observed to tend to coincide with
strong swirling, as well as highly dissipative, regions of the flow. The three-dimensional
nature of the stereoscopic PIV data allows a quasi-instantaneous volume of data to
be created using Taylor’s hypothesis, thereby allowing the statistical findings to be
compared to instantaneous visualizations of the flow. These comparisons are presented
in the next section.

4. Instantaneous results
Figure 9(a) shows instantaneous isosurfaces of regions of strong vortex stretching
(ωiSijωj = 4 × 105 s−3 = 0.96(ν/η2)3). Just under 2 % of the total data exceed this
ωiSijωj threshold, yet they account for 23 % of the total enstrophy production
rate (ωiSijωj > 0). Taylor’s hypothesis is used to produce the volume displayed in
figures 9(a) and (b) from 200 instantaneous PIV frames; see Ganapathisubramani
et al. (2007, 2008) for further details on volume reconstruction. The figure shows
that regions of intense vortex stretching appear to be, on the whole, topologically
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Figure 9. (a) Isosurfaces of enstrophy production rate, ωiSijωj = 4 × 105 s−3 = 0.96(ν/η2)3. (b)

A close-up from a different perspective of the isosurfaces of ωiSijωj = 4 × 105 s−3 within the
black rectangle shown in (a). Taylor’s hypothesis was used to construct the volume from 200
instantaneous PIV frames. The axes are scaled by the Kolmogorov length scale, η.
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Figure 10. (a) An individual example of a sheet of ωiSijωj . (b) The same sheet of enstrophy

production rate from (a) shown with isosurfaces of [Aij ]+ = 1.43(ν/η2)2.

‘sheet-like’. Visualizing these isosurfaces from other perspective directions, such as
figure 9(b), reinforces this point. An example of a ‘sheet-like’ structure of enstrophy
production rate is presented in figure 10(a). This instantaneous observation is also
consistent with the statistical findings presented in figure 6(a). The joint p.d.f. in
figure 6(a) shows that strong enstrophy producing regions are particularly likely to
coincide with an extensive intermediate strain rate and thus tend to be topologically
‘sheet-forming’. The figure also shows, however, that a smaller proportion of strong
enstrophy production regions have a negative value of s2, hence topologically ‘tube-
forming’ regions of enstrophy production also exist. It should be noted that whilst
s2 characterizes the topology forming tendencies of a fluid element, it does not
necessarily describe the instantaneous topology of a turbulent structure. However, if
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Figure 11. (a) Isosurfaces of enstrophy production rate, ωiSijωj = −1.5 × 105 s−3 =

−0.36(ν/η2)3. (b) A close-up from a different perspective of the isosurfaces of ωiSijωj =

−1.5 × 105 s−3 within the black rectangle shown in (a). Taylor’s hypothesis was used to
construct the volume from 200 instantaneous PIV frames. The axes are scaled by the
Kolmogorov length scale, η.

it is assumed that fluid elements evolve according to the strain field that they are
subjected to, it is reasonable to expect that an element subjected to two extensive strain
rates for a period of time will be instantaneously ‘sheet-like’ and an element subjected
to two compressive strain rates will be ‘tube-like’. It should also be noted that the
statistical results in § 3 are derived from point-wise statistics, whereas the visualizations
presented in § 4 are finite objects. Nevertheless, figure 9 shows predominantly ‘sheet-
like’ structures with a few ‘tube-like’ structures, which is consistent with the statistical
results of figure 6. This is due to the fact that the statistical results are generated from
exactly the same data as those used to generate the instantaneous visualizations.

By contrast, figure 11(a) shows that isosurfaces of strong vortex compression
(ωiSijωj = −1.5 × 105 s−3 = −0.36(ν/η2)3) are ‘spottier’ than the vortex stretching
isosurfaces of figure 9, where ‘spotty’ means displaying a spatial coherence over a much
smaller scale in all directions. Again, this observation is reinforced by the different
perspective of the same isosurfaces presented in figure 11(b). This instantaneous
observation is also consistent with the statistical finding in figure 6(b) which shows
that vortex compressing regions are a combination of weakly ‘sheet-forming’ and
‘tube-forming’ topologies.

Figure 12(a) shows intense swirling regions, in black (λci = 75 s−1 = 3.55〈λci〉),
together with the isosurfaces of intense vortex stretching regions from figure 9(a), in
white. The figure clearly reveals the ‘tube-like’ nature of the high enstrophy, intensely
swirling structures, consistent with other studies in the literature, for example Jiménez
et al. (1993). The strongly swirling regions are situated within the regions of strong
vortex stretching. However, the intense vortex stretching regions are not exclusive
to the intense swirling regions. In fact, the vortex stretching regions do not just
coincide with the swirling ‘tubes/worms’ but extend out into the areas surrounding the
‘worms’. This instantaneous observation is again consistent with the statistical findings.
Figure 5 shows that the more intensely vortex stretching regions exhibit an increasingly
strong local swirling strength. The vortex stretching (ωiSijωj ) threshold value used to
construct the visualizations of figure 9 is only exceeded by just under 2 % of the total
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Figure 12. (a) Isosurfaces of ωiSijωj = 0.96(ν/η2)3 (white) and λci =75 s−1 = 3.55〈λci〉 (black).

(b) A close-up from a different perspective of the isosurfaces of ωiSijωj = 0.96(ν/η2)3 (white)
and λci =3.55〈λci〉 (black) within the black rectangle shown in (a). Taylor’s hypothesis was
used to construct the volume from 200 instantaneous PIV frames. The axes are scaled by the
Kolmogorov length scale, η.

volume, yet this accounts for 23 % of the total enstrophy production rate. Of these
intensely vortex stretching regions, 86 % exhibit local swirling, of which the mean
value is 2.40〈λci〉. Figure 9, in conjunction with the statistical results, thus gives us a
picture of intensely vortex stretching regions. These tend to be ‘sheet-like’ in nature
and encompass the intensely swirling ‘worms’ that are extensively mentioned in the
literature.

The literature also describes regions of strong dissipation as ‘sheet-like’ structures
that surround the high enstrophy swirling ‘worms’ of figure 12, suggesting that they are
likely to coincide with enstrophy producing regions. This can be observed in figure 13,
which illustrates isosurfaces of intense kinetic energy dissipation (ε = 2.86(ν3/η4)) in
black, and the isosurfaces of intense vortex stretching of figure 9, in white. The two
sets of isosurfaces are observed to be in close proximity to each other from both the
perspectives of figures 13(a) and 13(b). Again, this is consistent with the statistical
results of figure 7 that shows that intensely vortex stretching regions also tend to
be highly dissipative. This is not a surprising result. Regions of intense enstrophy
production require a strong extensive strain field, as do dissipative regions since
dissipation is a strain-related phenomenon. High enstrophy ‘worms’ induce such a
strain field in their local surroundings encouraging vortex stretching. This is further
backed up by figure 10(b) which shows a typical sheet of enstrophy production along
with isosurfaces of [Aij ]+ = 1.43(ν/η2)2. This quantity picks out vortex sheets in which
rotation and strain are of comparable magnitude, such as in the vortex sheets that
surround high enstrophy ‘worms’. The figure clearly shows that enstrophy production
sheets tend to coincide with vortex sheets, which is a result that is consistent with the
statistical findings presented in figure 8.

5. Conclusions
Cinematographic stereoscopic PIV data is used to examine the characteristics of
enstrophy production by observing the alignment tendencies between the vorticity
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Figure 13. (a) Isosurfaces of ωiSijωj = 0.96(ν/η2)3 (white) and ε =2.86(ν3/η4) (black).

(b) A close-up from a different perspective of the isosurfaces of ωiSijωj = 0.96(ν/η2)3 (white)

and ε = 2.86(ν3/η4) (black) within the black rectangle shown in (a). Taylor’s hypothesis was
used to construct the volume form 200 instantaneous PIV frames. The axes are scaled by the
Kolmogorov length scale, η.

vector (ω) and the eigenvectors of the rate of strain tensor (ei ). The preferential
alignment between the intermediate strain-rate eigenvector (e2) and the vorticity
vector, as reported extensively in the literature since the work of Ashurst et al. (1987),
is confirmed. However, it is found that purely straining regions have a stronger
alignment than swirling ones do. The alignment between ω and the intermediate
and compressive strain-rate eigenvectors for swirling regions is more arbitrary than
for straining regions. The p.d.f.s for the alignment between ω and e1 are both flat
indicating that the alignment between these two vectors is arbitrary, but in fact it is the
‘average’ of qualitatively different behaviour in enstrophy producing and enstrophy
destroying regions.

Positive values of the enstrophy production rate, ωiSijωj , are known to be favoured
over negative ones (vortex compressing), and this is highlighted by the ‘fatter’ positive
tail of the p.d.f. in figure 1. A joint p.d.f. was constructed between the second (Q)
and third (R) invariants of the characteristic equation for the eigenvalues of Dij ,
which is subsequently divided into four sectors defined by the sign of R and D, the
discriminant of the characteristic equation. The sector for which D > 0 and R < 0
(S4) has a significantly greater mean enstrophy production rate than any of the other
sectors. This sector is primarily comprised of strongly swirling regions, suggesting
that although straining regions can be responsible for enstrophy production (S3), the
highest enstrophy production rates are found in the presence of swirling. This finding
is further supported by the joint p.d.f. in figure 5(a).

The alignment between ω and e1 is observed to be of the greatest significance
to the enstrophy production rate. Whilst the e2–ω alignment p.d.f.s for the four
sectors of figure 3 are all qualitatively similar, those for the e1–ω alignment are
fundamentally different. The p.d.f. for S1, for which the mean value of ωiSijωj

is negative, shows that the vorticity vector is preferentially perpendicular to the
extensive strain-rate eigenvector, whereas S3 and S4, for which ωiSijωj is positive,
show the two vectors to be preferentially aligned. The p.d.f.s of figure 4 illustrate this
fact, showing that negative values of ωiSijωj favour perpendicular alignment between
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e1 and ω, whereas positive values of ωiSijωj favour parallel alignment between e1 and
ω. It can thus be said that the flat p.d.f. for the overall alignment between e1 and ω

is the summation of the parallel alignment behaviour of enstrophy producing regions
and the perpendicular alignment behaviour of enstrophy destroying regions.

Instantaneous visualizations of large ωiSijωj show that strong enstrophy producing
regions are topologically ‘sheet-like’ and encompass the ‘tubes’/‘worms’ of intensely
swirling high enstrophy structures. They extend into the surroundings of the high
enstrophy ‘worms’ and hence also tend to be observed in close proximity to intensely
dissipative regions, which have previously been shown to form ‘sheet-like’ structures
that surround the high enstrophy ‘worms’ (Ganapathisubramani et al. 2008). This is
backed up by the fact that enstrophy production regions are observed to coincide with
the eigenvalue of the second-order velocity gradient tensor, [Aij ]+, which identifies
vortex sheets. All of these observations are consistent with the findings of the statistical
results, which show a tendency for intensely enstrophy producing regions to be
swirling and ‘sheet-forming’ due to their positive intermediate strain rate (s2). By
contrast, strong vortex compression regions tend to be ‘spotty’, with a less distinct
structure. This is also in keeping with the statistical results, which show that vortex
compression regions have no preference for positive or negative s2.
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