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High Internal Phase Emulsions (HIPEs) are important for a wide range of applications in the 

food, cosmetic, pharmaceutical and petroleum industries.[1] If the continuous phase is 

polymerizable, HIPEs can be used as templates[2] for the synthesis of highly porous polymers 

with potential applications as low weight structures or scaffolds in tissue engineering.[3] HIPEs 

are characterized by a minimum internal phase volume ratio of 0.74[2] but Lissant first defined 

this minimum as 0.7.[4] HIPEs consisting of a continuous organic phase and an internal 

aqueous phase (w/o emulsion), are commonly stabilized by large amounts of surfactants.[5] 

Particle-stabilized emulsions also known as Pickering-emulsions have recently attracted much 

interest.[6] Unlike surfactants, particles irreversibly adsorb at the interface of emulsions due to 

their high energy of attachment which makes them good emulsifiers.[7] The ability of particles 

to adsorb at the interface between the two phases is primarily dependent on the wettability of 

the particles.[8] Hydrophilic particles such as metal oxides tend to stabilize o/w emulsion while 

hydrophobic particles such as carbon tend to stabilize w/o emulsions.[9] Nevertheless, it is 

possible to modify the wettability of particles by adsorbing surfactant molecules onto the 

particle surfaces[10] or by silanation.[11] 

All reports on particle-stabilized emulsions deal with emulsions having internal phase levels 

elow 70 vol.-%. Kralchevsky et al.[12] developed a thermodynamic model, which predicts that 
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particle-stabilized emulsions will phase invert above internal phase volume fractions of 0.5 but 

added that experimentally, phase inversion is observed at volume fractions of 0.7 due to kinetic 

factors. Binks et al.[11] further stated that particle stabilized emulsions phase invert between 

volume fractions of 0.65 and 0.7 meaning the majority phase becomes the continuous phase.  

We report on the stabilization of Pickering-HIPEs with volume fractions up to 0.92, using 

silica nanoparticles (SP), which have been hydrophobized by adsorption of oleic acid (OA) in 

order to use them as emulsifier for w/o HIPEs. We studied the influence of the particle 

concentration on the emulsion stability, the droplet size and the upper limit of the internal 

phase volume fraction within the emulsion. Furthermore, we polymerized the Pickering-HIPEs 

to produce highly porous poly-Pickering-HIPEs (PPH).  

Hydrophilic SP (20-100 nm in diameter) were functionalized by adsorption of OA. The OA 

content of the functionalized SP was determined by TGA to be 3.5 wt.-%. Binks and 

Lumsdon[11] prepared w/o emulsions via a high energy emulsification method using 

dichlorodimethylsilane hydrophobized SP and observed a catastrophic inversion of the 

emulsions from w/o to o/w at internal phase levels between 60 and 70 vol.-%. The question of 

interest here is if OA functionalized SP will act as a mechanical barrier to phase inversion of 

HIPEs if the HIPEs are produced simply by stirring. 

In order to answer this question we prepared HIPEs 1 - 4 containing styrene/poly(ethylene 

glycol) dimethacrylate (PEGDMA; 1:1 by vol.) as oil phase and 70, 75, 80 and 85 vol.-% 

internal aqueous phase, respectively, using 1 wt.-% functionalized SP with respect to the 

monomers. The aqueous phase contained 0.27 M CaCl2.2H2O. The emulsification was carried 

out under gentle stirring at 400 rpm. It is worth noticing that neither oleic acid nor unmodified 

SP alone nor a combination of free oleic acid and SP are suited to stabilize w/o emulsions as 
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control experiments revealed.† The appearance of the HIPEs 1 – 4 after 24 h is shown in Figure 

1. HIPE 1 experienced significant sedimentation. HIPE 2 had only an ultra thin layer of the oil 

phase above the sedimented emulsion whereas HIPEs 3 and 4, which possess even higher 

internal phase volumes, were stable against sedimentation. This trend can be attributed to the 

compressed packing of droplets at higher internal phase volumes. The deformed droplets[13] in 

the HIPEs (Figure 3) and particle layer surrounding the droplet ensures the emulsion is 

mechanically stabilized against sedimentation. These results show that the functionalized SP 

are suited to stabilize HIPEs and prove contrary to previous reports[6] that Pickering HIPEs (> 

85 vol.-%) can be made. Increasing the internal phase volume to 90 vol.-% resulted in phase 

separation of the HIPE most likely due to the lack of sufficient number of particles (1 wt.-% 

with respect to the monomers but less monomers, therefore, less particles if compared to a 85 

vol.-% HIPE) required to act as a mechanical barrier to droplet coalescence. To test our 

hypothesis, we increased the particle concentration and determined the upper limit of the 

internal phase volume within our Pickering-HIPEs (Figure 2). 2 wt.-% functionalized SP are 

sufficient to prepare a 90 vol.-% HIPE (5), while 4 wt.-% functionalized SP allow to stabilize a 

90 vol.-% (6) as well as 92 vol.-% HIPE (7). However, only a 90 vol.-% HIPE (8) could be 

made using 5 wt.-% functionalized SP. Further addition of water to HIPE 8 resulted in a highly 

viscous emulsion surrounded by water (Figure 2). The increase in viscosity of the HIPE with 

increasing SP concentration may be attributed to a combined effect of the increasing particle-

particle interaction (causing a 3d network of particles to form in the continuous phase),[11] 

which leads to a significant increase of the organic phase viscosity, and an increasing number 

of droplets, and hence droplet contact.  

                                                 
† Please see supplementary information for more details 
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1 mol.-% AIBN (with respect to the monomers) was added to the organic phase of the HIPEs 

to initiate free radical polymerization. The skeleton densities (SD) and foam densities (FD) of 

the PPHs were measured (Table 1). The porosities of PPHs 1 and 2 confirm that the emulsion 

templates experienced some degree of sedimentation as porosities of the PPHs are higher than 

the initial internal phase volume of HIPE 1 and 2. The porosities of the other PPHs are 

identical (within error) to the internal phase volume of the HIPE templates. The SD increases 

with increasing particle concentration while the FD reduces with increasing internal phase 

volume of the HIPEs. This suggests that the SP are incorporated into the polymer matrix.  

Microscope images of HIPEs 5 and 6 were taken 10 min after the emulsions were prepared. 

Figures 3a, c show that droplet sizes of HIPE 5 and 6 are 400 - 700 μm and 250 - 500 μm in 

diameter, respectively, which demonstrates that the droplet size reduces with increasing SP 

concentration. Since poly-Pickering-HIPEs are a replica of the emulsion templates at gel point 

of the polymerization, it is not surprising that the pore sizes of PPHs 5 and 6 determined from 

SEM images were with 300 - 700 μm and 200 - 450 μm in diameter, respectively (Figures 3b, 

d), identical within error to the droplets in the emulsion.  

 

Table 1. Emulsion compositions, porosity and density of the PPHs. 

Sample 
ID 

Internal phase 
volume  
[vol.-%]  

Amount of functionalized 
SP useda)  
[wt.-%]  

Porosityb) 
[%] 

SDc)  

[g/cm3] 
FDd)  
[g/cm3] 

1 70 1 74 1.178  0.302 
2 75 1 77 1.185  0.273 
3 80 1 80 1.187  0.235 
4 85 1 84 1.215  0.190 
5 90 2 87 1.198  0.158 
6 90 4 89 1.285  0.144 
7 92 4 90 1.316  0.131 
8 90 5 - - -

a) With respect to the continuous phase; b) Value ± 2; c) Value ± 0.002; d) Value ± 0.022 
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We show that stable Pickering-HIPEs with up to 92 vol.-% internal phase can be prepared 

using functionalized SP and a low energy emulsification method, i.e. simple stirring. The 

functionalized SP act as a mechanical barrier and prevent droplet coalescence and phase 

inversion in Pickering-HIPEs. This means it is now possible to prepare Pickering-HIPEs, 

which can be used as templates for the manufacturing of highly porous polymer foams if the 

continuous phase consists of suitable monomers. This route was previously only assessable 

with surfactant stabilized HIPEs. Our method allows for the preparation of tailor-made closed-

celled poly-Pickering-HIPEs.  

 

Experimental section 

1g of SP were suspended in a 1: 2 molar mixture of chloroform and OA, stirred for 3 h 

and precipitated from solution with methanol. Excess OA was removed by repeated re-

suspending of SP in chloroform and precipitation in methanol prior to drying at 120°C. 

The OA content of functionalized SP was determined by TGA (TA Q500) in air. 

Styrene and PEGDMA were purified by filtration through basic and neutral Al2O3. The 

continuous emulsion phase was prepared by homogenizing the functionalized SP in equal 

volumes of styrene and PEGDMA. The internal aqueous phase was added drop wise to 

the organic phase under gentle stirring at 400 rpm for 5 min. HIPEs were transferred into 

falcon tubes and polymerized at 70°C for 24 h. PPHs were dried at 120°C for 24 h in 

vacuum. SEM images of Au coated PPHs were taken with a Jeol JSM-5610 LV. Images 

of the HIPEs were taken with an optical microscope (Olympus BX51M). The SD of PPHs 

was determined using Accupyc 1330 and FD using Geopyc 1360.  
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Figure 1. Photograph of HIPEs 1-4 stabilized by 1 wt.-% functionalized SP after 24 h and at 

20°C. 
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Figure 2. Upper limit of the internal phase volume as function of SP concentration used to 

stabilize the HIPEs.  
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Figure 3. Optical microscope images of HIPE 5 (a) and 6 (c) and SEM images of PPH 5 (b) 

and 6 (d). 

 
 
 


