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Abstract

Imaging in clinical oncology trials provides a wealth of information that contributes to the drug devel-

opment process, especially in early phase studies. This paper focuses on kinetic modeling in DCE-MRI,

inspired by mixed-effects models that are frequently used in the analysis of clinical trials. Instead of

summarizing each scanning session as a single kinetic parameter – such as median Ktrans across all voxels

in the tumor ROI – we propose to analyze all voxel time courses from all scans and across all subjects

simultaneously in a single model. The kinetic parameters from the usual non-linear regression model are

decomposed into unique components associated with factors from the longitudinal study; e.g., treatment,

patient and voxel effects. A Bayesian hierarchical model provides the framework in order to construct a

data model, a parameter model, as well as prior distributions. The posterior distribution of the kinetic

parameters is estimated using Markov chain Monte Carlo (MCMC) methods. Hypothesis testing at the

study level for an overall treatment effect is straightforward and the patient- and voxel-level parame-

ters capture random effects that provide additional information at various levels of resolution to allow a

thorough evaluation of the clinical trial. The proposed method is validated with a breast cancer study,

where the subjects were imaged before and after two cycles of chemotherapy, demonstrating the clinical

potential of this method to longitudinal oncology studies.
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1 Introduction

Assessing the efficacy of cancer treatments using in vivo imaging is shifting from qualitative techniques

to quantitative imaging methods that characterize biologically relevant properties of tumor tissue. The

use of model-free or heuristic measures, such as the initial area under the Gadolinium curve (IAUGC), or

fully quantitative measures, such as the kinetic parameters from a compartmental model, are relatively

well understood in the analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)

(1; 2; 3). Analysis of an oncology imaging trial is usually achieved by applying statistical summaries, such

as the mean or median, to the parameters of interest derived from tissue regions of interest (ROIs). That

is, enhancing (tumor) voxels are identified from the DCE-MRI data for each scan across all subjects and

those voxels are represented by a single parameter; e.g., Ktrans from quantitative analysis and IAUGC90

from a heuristic analysis. Hypothesis testing, either parametric or non-parametric, may then be applied

to the derived statistics in order to assess the effects of treatment.

Applying statistical summaries to the kinetic parameter maps from DCE-MRI however discards a

substantial amount of information contained in the contrast agent concentration time curves (CTCs) at

each voxel, essentially abstracting thousands of observations in space and time to a single number per

scan per subject. We believe that there is a wealth of potential information by retaining the collection of

CTCs across all subjects and scans, at the same time acknowledging the fact that not all CTCs are the

same and not all patients are the same.

This paper proposes a Bayesian hierarchical model to analyze all tumor CTCs across all patients

and scans in a given study simultaneously based on the concept of a mixed-effects model. Mixed-effects

models are well established in the statistical community and have found widespread applications in, for

example, agriculture, economics, geophysics and the analysis of clinical trials (4; 5). Previous examples of

mixed-effects models in neuroimaging primarily exist for functional MRI studies (6; 7; 8). Mixed-effects

models extend the concept of traditional linear or non-linear models by combining both fixed effects and

random effects in the same model. More generally, mixed-effects models are most often used to describe

relationships between the measured response and explanatory variables in data that are grouped according

to one or more factors. Fixed effects denote parameters that are associated with an entire population

and random effects denote parameters which are associated with random samples from a population. For

example, the drug or radiation therapy given in a trial is a fixed effect, whereas patients are inherently

random because they are sampled from the general population. By acknowledging the fact that some

parameters are associated with random samples from a population, the results from a mixed-effects model R1.5

may be generalized beyond the collection of subjects used in the specific clinical trial.

Bayesian methods are used here in the construction and estimation of the generalized additive model

(9; 10) that is associated with each kinetic parameter in the non-linear model of the CTCs. Similar

to mixed-effects models in a maximum likelihood setting the variances associated with the fixed effects

are chosen to be constant, but the variance terms associated with the random effects are given prior

distributions. This leads to a shrinkage estimation of the random effects so that they are pushed towards
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zero (11). The fixed effects in the model explain as much variance as possible, whereas the random effects

capture variability that cannot be explained by the fixed effects.

Formulation of a Bayesian hierarchical model is typically achieved in three stages: the data model, the

parameter model and the prior distributions (12; 13). The data model reflects our knowledge of the CTCs

at the voxel level using the class of compartmental models (14; 15; 16) with a standard arterial input

function (AIF) taken from the literature (17; 18; 19). The parameter model describes how parameters R1.1

from the compartmental model are associated with important factors of the clinical trial. At this stage

we decompose the kinetic parameters into treatment, patient and voxel effects. We acknowledge that

this decomposition will depend on the specific features unique to the clinical trial design. Following from

Bayesian theory all parameters are regarded as random variables with pre-specified (prior) distributions.

This includes the parameters for the fixed as well as the random effects in the model. Choices have been

made in the construction of the Bayesian hierarchical model in order to utilize efficient sampling methods

wherever possible, and therefore reduce the computational burden.

The output from the Bayesian hierarchical model not only answers the basic question from a DCE-

MRI oncology study (i.e., did the treatment reduce Ktrans?) but also provides information about various

aspects of the study through the decomposition of the kinetic parameters. Posterior estimates for Ktrans

and kep are available to inspect the treatment effect for each subject, averaged over the tumor region of

interest, for potential comparison with clinical endpoints. Estimates at the voxel level are also available

which allow one to separate spatial heterogeneity within a single region of interest with uncertainty in the

kinetic parameters due to a poor model fit. Estimates at the patient level may be used to compare imaging

biomarkers (kinetic parameters) with clinical endpoints, such as clinical response or clinical benefit. The

breast cancer study analyzed here illustrates the potential of this methodology by interrogating the output

from the hierarchical model at several levels.

2 Bayesian Hierarchical Model

Bayesian methods rely on the specification of prior distributions p(θ), that express our information

about the unknown parameters θ before any measurements are taken, and combine this information

with empirical evidence from direct observations in order to estimate those parameters. To assess the

model parameters after observing the data, the posterior distribution p(θ |Y) is computed, where θ is

the vector of all unknown parameters and Y is the vector of observations. The posterior distribution of

the parameter vector θ is obtained by applying Bayes’ theorem

p(θ |Y) =
p(θ) ℓ(Y |θ)∫

p(θ∗) ℓ(Y |θ∗) dθ∗ , (1)

where ℓ(Y |θ) denotes the likelihood function of Y and p(θ) the product of all a priori probability

distribution functions. One can think of the posterior as an update to the prior distribution, our beliefs,

on θ after measuring a process – producing a mixture of previous knowledge and experimental data.

Examples of such Bayesian methodology in neuroimaging exists for functional MRI (20; 21) and also
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diffusion tensor imaging (22).

The following sections introduce the key components in the Bayesian hierarchical model: the data

model, the parameter model and the prior distributions. Each stage of the model development has been

tailored to the analysis of a longitudinal cancer treatment study with two time points. Figure 1 provides a

schematic overview of the proposed Bayesian Hierarchical Model (BHM). The three model stages are the

rows and the columns represent the “resolution” of the parameters. The kinetic parameters of interest

Ktrans and kep are decomposed into global (study-wide), subject and voxel effects through the BHM,

while vp is simply estimated for each voxel without further decomposition. The measurement error term

is independent of the specific parameter model and involves both prior and hyperprior distributions. A

standard compartmental model is used to describe the concentration time curves observed at each voxel.

A generalized additive model (23) is proposed to decompose the kinetic parameters into factors that

are relevant to the design of the longitudinal study. Finally, the prior distributions, including necessary

hyperparameters, are specified on all factors of the parameter model (these terms will be explained in

detail subsequently). These prior distributions are relatively flat, reflecting a lack of knowledge concerning

the parameter, but also incorporate biological knowledge, such as a transfer rate must be non-negative,

or statistical knowledge, for example a variance must be non-negative.

2.1 Data Model

A hierarchical Bayesian framework is used to model the contrast agent concentration time curve (CTC)

of all voxels (24). Let Y = [Y (t1), Y (t2), . . . , Y (tT )]T denote the CTC associated with a single voxel

observed at T time points determined by the image acquisition protocol. The CTC is assumed to follow

a standard compartment model (19)

Ct(t) = vpCp(t) + Cp(t) ⊗ Ktrans exp(−t kep), (2)

where ⊗ denotes the convolution operator, Ktrans represents the transfer rate from plasma to extracellular

extravascular space (EES) per minute, kep the rate constant between EES and blood plasma per minute

and vp the vascular space fraction. The choice of model for the CTC depends on the scientific goals of the

study. Replacing Eq. [2] with a more or less complicated model is straightforward in our model-building R1.2

framework. The vector of observations Y may therefore be thought of as noisy measurements of the true

contrast agent concentration Ct(t), sampled at the discrete values t1, t2, . . . , tT to produce the vector

Ct = [Ct(t1), Ct(t2), . . . , Ct(tT )]T, given as a realization of a multivariate Normal distribution

Y ∼ NT

(
Ct, σ

2IT

)
, (3)

where the notation Y ∼ NT (µ, Σ) means that the random variable Y comes from a multivariate Normal

distribution of dimension T with a mean vector µ and covariance matrix Σ.

We assume a common arterial input function (AIF), taken from the literature for all patients in the

study, and use a bi-exponential function (15)

Cp(t) = D[a1 exp(m1t) + a2 exp(m2t)], (4)

5



where a1 = 24.0 kg/l, a2 = 6.20 kg/l, m1 = 3.00 min−1 and m2 = 0.016 min−1 are inspired by the work

of Fritz-Hansen et al. (18). A Bayesian implementation of the compartmental model above has been

previously proposed by Schmid et al. (25).

2.2 Parameter Model

The pharmacokinetic parameters from the data model are defined at every tumor voxel across all subjects

and scans. We assume a priori that the distribution of the random variables Ktrans and kep in the tumor

are patient-specific and are changed by treatment in a similar way. Therefore a generalized additive model

is used where the log-transformed kinetic parameters ψ1 = ln(Ktrans) and ψ2 = ln(kep) are expressed

as a linear combination of fixed- and random-effects associated with identifiable factors in the study.

In addition to restricting both parameters to be positive, the log transform is appealing in this context

because individual terms in the additive model may be interpreted as a percentage change from baseline.

We assume that the distribution of the vascular fraction vp will not be modified by the treatment, but

individual vp values are allowed to change at the voxel level. Let i = 1, . . . , I denote the scans acquired

and let j = 1, . . . , J denote the patients, so that nij denotes the number of tumor voxels for patient j at

scan i, measured at T time points.

The factor of interest when measuring a change in the kinetic parameters (Ktrans or kep) is the

treatment effect, or the difference between pre- and post-treatment visits in the study investigated here.

It is necessary to model the fact that substantial variability exists across patients in the study and between

the voxels in each region of interest (ROI) that describes the enhancing region in the dynamic acquisition.

Hence, the model for ln(Ktrans) is given by

ψijk1 = α1 + β1xi + γj1 + δj1xi + ϵijk1, for all i, j, k, (5)

where k denotes a unique voxel in the tumor ROI and

xi =

⎧
⎨

⎩
0 scan i = 1 (pre-treatment);

1 scan i = 2 (post-treatment).
(6)

The parameter α1 is the factor of ln(Ktrans) associated with the baseline scan and β1 is the treatment

effect (since it is only associated with the post-treatment acquisition). For the clinical study analyzed

here, the treatment effect for Ktrans, as quantified via β1, is the key parameter of interest. A formal

hypothesis test will be performed on β1 in order to detect a significant reduction in Ktrans between the

pre- and post-treatment scans.

The parameters α1 and β1 are regarded as fixed effects (the global column of Figure 1), and thus do

not vary between patients in the study. In the Bayesian framework, a marginal posterior distribution will

be available for each parameter. The parameter γj1 is the effect of patient j on ln(Ktrans) and δj1 is the

interaction between patient j and treatment. Although the parameters α1 and β1 summarize information

for the baseline and treatment effects of Ktrans across all subjects in the study, the parameters γj1 and

δj1 allow the estimate of Ktrans to adapt to the baseline and treatment effects observed for each subject.
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These parameters are random effects since each patient is assumed to be drawn from a larger population

of patients suffering from this condition (the subject column of Figure 1). Finally, the parameter ϵijk1 is

the random effect of voxel k in scan i of patient j on ln(Ktrans). The voxel effect models the fact that

each voxel in the tumor volume is drawn from a distribution that describes the ideal tumor voxel (the

voxel column of Figure 1). The combination of fixed and random effects in a single model is commonly

referred to as a mixed-effects model (9).

Using matrix notation, we can combine the generalized additive model across both kinetic parameters,

ln Ktrans and ln kep, such that

ψijk = Zi

⎡

⎣ φ

θj

⎤

⎦+ ϵijk (7)

Xi =

⎡

⎣ 1 xi 0 0

0 0 1 xi

⎤

⎦ ; Zi = [Xi Xi]; φ =

⎡

⎢⎢⎢⎢⎢⎢⎣

α1

β1

α2

β2

⎤

⎥⎥⎥⎥⎥⎥⎦
; θj =

⎡

⎢⎢⎢⎢⎢⎢⎣

γj1

δj1

γj2

δj2

⎤

⎥⎥⎥⎥⎥⎥⎦
; ϵijk =

⎡

⎣ ϵijk1

ϵijk2

⎤

⎦ (8)

The scan-specific covariates in the model are captured in Zi, the fixed effects are in φ, the patient-

specific random effects are in θj and the voxel-specific random effects are in ϵijk. The model formulation

in Eq. [7] can be adapted in order to incorporate additional covariates or a greater number of scans (e.g.,

in a longitudinal study).

2.3 Prior Distributions

In the Bayesian framework prior distributions with unknown variances are used to model the ran- R1.3

dom effects (26). We use vector notation to denote the patient-specific random effects such that γ =

[γ11, γ21, . . . , γJ1, γ12, . . . , γJ2]T and δ = [δ11, δ21, . . . , δJ1, δ12, . . . , δJ2]T, where we have dropped the ki-

netic parameter subscript to simplify the notation. We use multivariate Gaussian distributions to char-

acterize the prior distributions of the patient-specific random effects; i.e.,

γ ∼ N2J

(
0, diag

(
τ 2

γ

))
, (9)

δ ∼ N2J

(
0, diag

(
τ 2

δ

))
, (10)

where τ 2
γ and τ 2

δ are vectors of the same length and indexed as γ and δ, respectively. The voxel-specific

random-effect vectors are given unique prior distributions by scan, patient and parameter, so that each

vector is given by ϵijl = [ϵij1l, ϵij2l, · · · , ϵijnij l]T. We use a multivariate Gaussian prior distribution

ϵijl ∼ Nnij

(
0, τ2

ϵ;ijlInij

)
, (11)

where nij is the number of voxels in the region of interest of scan i of patient j, and τ2
ϵ;ijl is an unknown

variance associated with scan i, patient j and kinetic parameter l. Since the variances are unknown
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parameters, they must have their own prior distributions which are given by

τ 2
γ

iid∼ IG(a, b), (12)

τ 2
δ

iid∼ IG(a, b), (13)

τ 2
ϵ

iid∼ IG(c, d), (14)

where a = b = c = 1, d = 10−5, and IG(·, ·) denotes the inverse Gamma distribution (27). Note, the

notation X iid∼ F means that all random variables Xi in the vector X are independently and identically

distributed from the distribution F . The inverse Gamma distribution is known as a conjugate prior for

the Normal distribution (12); i.e., the posterior distribution of γ given the variance τ2
γ and all other

parameters (known as the full conditional distribution) is again a multivariate Gaussian distribution (see

the Appendix for further details). For the fixed effects we use uniform priors so that the prior distribution

does not contain any relevant information, denoted by

p(αl) = p(βl) = constant for l = 1, 2. (15)

Note, the prior distributions on α and β are improper (not a valid probability distribution), but this is

not a problem since the full conditional distributions for both parameters are valid distributions (see the

Appendix).

The prior distributions on the coefficients in the generalized additive model have been chosen so that

as much variance in the data as possible is explained by the fixed effects α and β – as no prior information

is used for those parameters. Variability which cannot be explained by the fixed effects will be covered

by the random effects γ and δ. For these parameters an additional prior distribution (hyperprior) on the

variance of the parameters is defined which leads to a shrinkage of those effects; that is, the parameters are

pushed towards zero and therefore do not cover variance explained by the fixed effects. Any additional

variance is explained by the voxel effects. Fig. 2 shows the prior probability density function for the

patient-specific effects, exp(γ) and exp(δ), and for the voxel effect exp(ϵ). The figure shows that the R1.7

prior distribution on the voxel effects is quite informative and does a priori not allow the voxel effect to

deviate much from baseline and patient specific effect. The patient-specific effects are less informative,

being stochastically restricted to the typical range of values for Ktrans and kep in breast cancer (28; 25).

The prior probability density function of α and β however can not be drawn, as both priors are uniform.

It is worth noting, that the prior distribution of ψ is also flat; i.e., there is no prior information on

log(Ktrans) and log(kep).

For the vascular space fraction we impose a relatively flat prior

vp;ijk
iid∼ B(e, f), for all i, j, k, (16)

with e = 1 and f = 19, where B(e, f) denotes the Beta distribution (29), so that the a priori expected

value of vp is e/(e + f) = 0.05. The Bayesian hierarchical model is complete by specifying a prior

distribution for the variance of the observational error in Eq. [3], with one variance parameter per scan

per patient,

σ2
ij

iid∼ IG(g, h) for all i, j, (17)
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where g = 1 and h = 10−2. Note, the prior specification depends on the patient and scanning session but

is assumed to be the same across voxels.

3 Materials and Methods

3.1 Data acquisition

The first twelve patients from a previously reported breast cancer study are included in the analysis

(30; 25). Data were provided by the Paul Strickland Scanner Centre (PSSC) at Mount Vernon Hospital,

Northwood, UK. Each patient underwent a DCE-MRI study before and after two cycles of chemotherapy

(5-fluorouracil, epirubicin and cyclophosphamide). Six of these patients were identified as pathological

responders after receiving six cycles of chemotherapy, the others were non-responders.

For the calculation of T1 values, we used a two-point measurement with calibration curves as described

in (31; 32). The T1 values are computed as ratio of a T1-weighted fast low-angle shot (FLASH) image and

a proton density weighted (PDw) FLASH image. The imaging parameters of the T1-weighted FLASH

images were TR = 11 ms, TE = 4.7 ms, α = 35◦, and the parameters of the PDw FLASH images were

TR = 350 ms, TE = 4.7 ms, α = 6◦. Field of view was the same for all scans, 260 × 260 × 8 mm

per slice, so voxel dimensions were 1.016 × 1.016 × 8 mm. A scan consists of three sequential slices of

256 × 256 voxels and one slice placed in the contra lateral breast as control, which we do not use for

our analysis. A total of 40 to 50 acquisitions were acquired, with one acquisition each 11.9 seconds. A

dose of D = 0.1 mmol per kg body weight of Gd-DTPA was injected after the fourth scan using a power

injector with 4 ml/s with a 20 ml saline flush also at 4 ml/s. The first four scans, before contrast, were

used to compute T10 as the average of the T1 values of these images. Data from this study were acquired

in accordance with the recommendation given by (33). Informed consent was obtained from all patients.

Regions of interest (ROIs) were drawn manually by an expert radiologist on a scan-by-scan basis

using anatomical images and subtraction images from the dynamic data to define tumor voxels in pre-

and post-treatment scans.

3.2 Parameter Estimation via MCMC

The proposed Bayesian hierarchical model produces a joint posterior distribution of all parameters by

combining the data model (also known as the likelihood function), the parameter model and the prior

models (also known as the prior distributions), via Bayes theorem, Eq. [1]. Samples from the posterior

distribution may be assessed via Markov chain Monte Carlo (MCMC) (34). Samples from the joint poste-

rior distribution are used to obtain additional information on the accuracy and precision of the estimates.

For example, the standard error of the posterior distribution is the observational error. Statistics of

interest (e.g., the mean, median, quantiles, etc.) may be derived from the posterior distribution so that

not only point estimates but also confidence intervals are readily available for all parameters.

Implementation of the MCMC algorithm involved 25,000 iterations being drawn from the posterior
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distribution after an initial burn-in phase. To reduce computer storage, every 10th sample was used, pro-

ducing a total of 2500 samples to describe the posterior distribution. The sampling rate was determined

by visual inspection of the sample autocorrelation function. The burn-in phase involved 10,000 iterations;

after this the algorithm was judged to have converged to the invariant distribution and produce samples R1.4

from the posterior distribution that are independent from the initial starting conditions. The length of

the burn-in phase was determined by visual inspection of the sampled parameters. The analysis of the R1.11

full study took approximately 48 hours.

The global parameter φ and patient-specific parameters θj were drawn en bloc in Gaussian Gibbs

steps (35), and hyperparameters were drawn in independent Gamma Gibbs steps (technical details may

be found in the Appendix). Metropolis-Hastings steps with random walk proposals were necessary for

the voxel-specific random effects and vascular space fraction. The algorithm was tuned to an acceptance

rate of 30-50% (36). Summary statistics were computed from the samples of the posterior distribution

to provide point estimates of the parameters from the generalized additive model. Empirical standard

errors, along with sample quantiles, were used to characterize the precision of the parameter estimates.

4 Results

All parameter estimates are derived from the posterior distribution using Bayes theorem. Hence, a

sampling distribution for each parameter value has been built up from which we produce a point estimate

via the median of the sample and also credible intervals (Bayesian confidence intervals) by using the

quantiles from their sampling distributions.

How the individual parameters from the generalized additive model coalesce to fit the observed con-

trast agent concentration time curve is illustrated, at the voxel level, in Figure 3. The observed CTCs

for two voxels from three subjects, one voxel at baseline and one voxel after treatment, are plotted along

with three fitted curves. The best estimate from the Bayesian hierarchical model at a specific voxel is

provided by the solid lines in each plot. That is, all parameters from the generalized additive model in

Eq. [7] are used in the parameter model in order to fit the data model. These curves are very similar

to, but not exactly the same as, model fits from the standard non-linear regression method used in the

quantitative analysis of DCE-MRI data (25). Removing the voxel-specific term from the model produces

a fitted curve that is associated with patient and treatment effects, but not the specific voxel, and are

plotted as dashed lines in Figure 3. Given the presence of inter-voxel heterogeneity in the tumor ROI,

the dashed lines may or may not fit the observed data at a given voxel very well but they do represent

the best (in the sense of a posterior median) fit to all voxels in the tumor ROI for a given patient at a

single scan time point. Going back one more level in the generalized additive model and removing the

patient effect leaves a fitted curve associated with the baseline and post-treatment scans (i.e., two curves

that summarize the overall treatment effect) given by the dotted lines. The top row of Figure 3 contains

voxels from three subjects before treatment so the dotted lines are identical and represent the best (in the

sense of a posterior median) fit to all pre-treatment voxels across all subjects. The bottom row contains
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voxels from the same subjects after treatment and the dotted line is the best fit to all post-treatment

voxels.

Figure 4 shows the posterior distributions of pre-treatment (baseline) Ktrans and post-treatment

Ktrans. That is, the posterior samples were transformed via exp(α1) and exp(α1 + β1), respectively. For

ease of comparison between the two posterior distributions a smoothed version of each histogram, known

as a kernel density estimate (37) is displayed. The posterior median of Ktrans at baseline is 0.205, and

the posterior median of Ktrans after treatment is 0.156. Credible intervals for Ktrans, that cover 95% of

the posterior distribution, are [0.186, 0.234] at baseline and [0.121, 0.198] after treatment. That is, the

true value of Ktrans lies in the interval [0.186, 0.234] with posterior probability 0.95 at baseline and in

[0.121, 0.198] with posterior probability 0.95 after treatment.

The density estimates in Figure 4 are unimodal and indicate an overall decrease in Ktrans after

treatment. In order to test for a treatment effect on Ktrans, specifically a reduction in Ktrans in the

second acquisition compared to the first, we construct the hypothesis

H0 : β1 > 0 versus H1 : β1 ≤ 0, (18)

using the treatment effect from the parameter model in Eq. [7] and calculate the posterior probability

of β1 exceeding zero. From the results of the MCMC simulation, the null hypothesis is rejected with

p = 0.001.

When the generalized additive model was introduced previously the fact that the parameter Ktrans

and the covariates are linked through a logarithmic transform leads to the interpretation of individual

covariates in the parameter model as percentage changes from baseline instead of absolute changes. For

the treatment effect this translates into a 100% · |0.7659 − 1| = 23.3% median reduction in Ktrans from

baseline, where the sign determines whether the change is associated with an increase or decrease.

Figure 5 shows the patient-specific posterior distributions for pre-treatment Ktrans, given by exp(α1 +

γj1) for j = 1, . . . , 12, and post-treatment Ktrans, given by exp(α1 +β1 +γj1 + δj1) for j = 1, . . . , 12. The

clinical responders are grouped in the first two columns of Figure 5 and the clinical non-responders are

in the third and fourth columns. The same range for x-axis [0, 0.45] was used in all plots of Ktrans for

comparison. In general the decrease in Ktrans observed in the clinical responders is greater than the clinical

non-responders, but this is not absolute. For example, patient 12 shows only a small decrease in Ktrans

post-treatment and patient 6 shows an increase in Ktrans after treatment, but both are clinical responders

after additional chemotherapy. The interpretation of the treatment effect as a percentage change from

baseline helps to quantify the results in Figure 5. The median percentage change in Ktrans for subject j

is obtained via 100% · | exp(β̂1 + δ̂j1) − 1|, where the sign determines whether an increase or decrease

occurred. For example, patient 1 (pathological responder) experienced a 100% · |0.7684 − 1| = 23.2%

median reduction in Ktrans which is very similar to the overall treatment effect. This is definitely not the

norm as patient 9 experienced a 100% · |0.4285 − 1| = 57.2% median reduction in Ktrans and patient 6

experienced a 100% · |1.0817− 1| = 8.17% median increase in Ktrans, both were pathological responders.

Figure 6 shows the voxel-specific median posterior for pre- and post-treatment Ktrans. The clinical
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responders are grouped in the first two columns and the clinical non-responders are in the third and

fourth columns (identical to Fig. 5). The range for the x-axis was restricted to [0, 1] in all plots for

comparison. Given the number of samples from the posterior distribution across all voxels, the median

value of exp(α1 + γj1 + ϵ1jk1) for j = 1, . . . , 12; k = 1, . . . , n1j and exp(α1 + β1 + γj1 + δj1 + ϵ2jk1) for

j = 1, . . . , 12; k = 1, . . . , n2j across the 2500 samples, for each voxel k, was computed to summarize the

voxel effect. The resulting histograms for the voxel effect have been summarized by a kernel density

estimate. Most voxel-level distributions of median Ktrans show a substantial change in shape after

treatment, although this is more apparent in the responders compared to the non-responders.

It is interesting to note the extent of changes in the shape of these distributions across the different

subjects. For example, patient 11 is characterized by a tumor with two distinct modes in estimated

Ktrans at baseline and a single mode after treatment. Looking at the statistical images of the median

posterior Ktrans at baseline the tumor ROI for patient 11 includes a substantial number of non-enhancing

voxels, in addition to those with reasonable Ktrans values, that are contributing to the bi-modal appear-

ance of the posterior distribution. The post-treatment tumor ROI is similar in size (i.e., number of

voxels), but the vast majority of voxels do not appear to be enhancing as measured by Ktrans. Hence,

a single mode is present in the posterior distribution. This variability, due to ROI definition, has been

previously documented (38). The distributions of median Ktrans for patient 8 show the reverse effect,

albeit much more subtle than patient 11, where the post-treatment distribution of median Ktrans appears

to be bimodal but still spans a similar range of values. The statistical images of median Ktrans indicate

a tumor ROI with a highly perfused rim and substantial non-enhancing core at baseline, contributing to

the relatively wide histogram in Fig. 6. The post-treatment images have a greatly reduced tumor ROI

with a mixture of enhancing and non-enhancing voxels. Looking at the statistical images of the median

posterior Ktrans for this patient, the difference between pre- and post-treatment is likely to be due to

tumor compaction and the removal of dead cells caused by chemotherapy. Such large effects in tumor size

are well documented in chemotherapy of breast cancer. In addition to the biological explanation, some

of the perceived difference may be attributed to the visualization technique used. The close proximity

of multiple peaks in the smoothed histogram of Ktrans makes it difficult to draw firm conclusions since a

slightly wider smoothing kernel could eliminate this apparent feature and produce a broad single peak.

5 Discussion

Information is obtained at multiple levels during an imaging study in the clinical trial setting. The

main scientific question of interest is usually, was there a treatment effect? This key hypothesis test

drives study design by influencing critical experimental design parameters such as power and sample

size. However, information at other levels, such as the patient or voxel level, can provide insight into

much more subtle features concerning patients, tumors and the treatment effect. Patient variability with

application to predicting clinical response and tumor heterogeneity, as measured by voxel-wise properties

of the pharmacokinetic model, are just two examples of so-called secondary endpoints.
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The Bayesian hierarchical model presented here was developed to test the hypothesis of a treatment

effect for an imaging study while acknowledging known sources of uncertainty; e.g., patients and voxels.

This is similar to the approach taken in standard analysis methods for clinical trials where fixed and

random effects are identified in the model (5). The specification of such fixed and random effects allows

the results from the study to be applicable beyond the patient population recruited for a specific study.

The results from all levels of the Bayesian hierarchical model have been presented using smoothed

histograms in order to convey information regarding the posterior distributions of the parameter esti-

mates. When interpreting the voxel-level results, spatial information (such as the spatial pattern of the

parameter estimate and the size of the tumor ROI) are lost in such a statistical summary. It is important

to also view the statistical images overlayed on suitable anatomical image in order to provide physiological

explanations for the observed shapes of the voxel-level posterior distributions. Even when drawn by an

experienced radiologist the tumor ROIs may substantially influence the quantitative results.

5.1 Comparison with Nonlinear Regression

A standard analysis was performed on the ROIs, using nonlinear regression to estimate the kinetic

parameters in the compartmental model over all voxels independently, and the median Ktrans values

have been summarized in Table 1. A non-parametric test (one-sided Wilcoxon signed rank test) was

performed to test that the difference between the median values was greater than zero; i.e., the treatment

did not reduce Ktrans across all subjects. The null hypothesis was rejected at a borderline significance

level (p = 0.055). Given the small sample size, N1 = 6 responders and N2 = 6 non-responders, this

is an impressive result and there is obviously a reasonable difference in Ktrans between the two groups.

Fig. 7 shows the kernel density estimates of Ktrans for each ROI, before and after treatment, using a

voxel-wise nonlinear regression analysis. That is, the compartmental model in Eq. [2] was fitted to each

voxel independently using the Levenberg-Marquardt optimization procedure. The empirical distributions

observed for each patient are extremely similar to those obtained in the BHM, Fig. 6. This is to be

expected given the relatively flat priors that were imposed on the kinetic parameters (25). The only R1.10

difference between Figs. 6 and 7 is the method of kinetic parameter estimation – Bayesian versus non-

linear regression.

While the voxel-wise results from the Bayesian and regression methods are very similar, and thus

provide a check on the consistency of the Bayesian model fitting procedure, the advantages of the Bayesian

hierarchical model are clear through the coefficients from the generalized additive model in Eq. [7]. The

regression analysis can only summarize the study through Table 1, but the BHM allows one to isolate

and interrogate specific effects, at the study or patient or voxel level, through the generalized additive

model. Examples of such interrogations have been presented here in Figures 4 and 5, but the possibilities

for such model summaries are only limited by the construction of the parameter model and design of the

clinical trial.
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5.2 Prior assumptions

Bayesian models rely on a priori beliefs about the model and parameters, expressed as prior distributions.

When combined with observed data, these beliefs are updated to reflect both sources of information. In

general, the use of relatively flat (uninformative) prior distributions produces a parameter estimates with

similar characteristics to those obtained from maximum-likelihood estimation, and hence similar results

overall. In the proposed Bayesian hierarchical model our prior beliefs are based on a mixed-effect model

and follow suggestions in the Bayesian mixed-effect literature (26) and in kinetic modelling in DCE-

MRI (28; 25). The baseline and treatment effect are modelled as fixed effects, and thus uniform priors

are used for those parameters. The patient-specific effects and the voxel-specific effect are modelled as

mixed effects, where a Gaussian distribution with zero mean and unknown variance is used. This is

also known as shrinkage prior, as it shifts the parameters towards zero. The so-called hyperprior on

the unknown variance terms in these prior distributions determines how much variability is accumulated

by the fixed effects versus the random effects. Hence, the hyperpriors are chosen so that the baseline

and treatment effects explain as much variability as possible. The patient-specific effects accumulate

variability not explained by baseline and treatment and the voxel effect accumulates variability not

explained by baseline, treatment or the patient-specific effects. The prior on the voxel effects is quite R1.10

informative and ensures that these effects are only used when the fixed effects, and the patient-specific

effects, are unable to model the observed concentration time curve; i.e., the information contained in

the MR measurements must overcome the relatively strong prior specification. Fig. 8 depicts prior and R1.9

posterior distribution of patient-specific and voxel effects. As previously mentioned the prior distribution

on the voxel effects is informative, but the posterior distributions differ substantially from the prior and

hence are driven by the observed data. For the patient-specific effects, the prior is less informative and

again the information contained in the observed data produce posterior distributions with low variance

that differ from the prior.

Specification of the hyperpriors was determined by a sensitivity analysis. For example, with an inverse

Gamma prior, with parameters a = b = 0.01, on the variance of the γ and δ parameters the algorithm

does not show any treatment effect. The patient-treatment interaction term accumulates too much of

the variability, as the hyperprior is too conservative. The model was found to be insensitive to changes

in the specification of the hyperprior on ϵ, where values of d between 10−3 and 10−6 were found not to

impact the results.

The mixed-effect model is built on top of a standard compartmental model used in DCE-MRI, and

we use the logarithms of Ktrans and kep in the specification. This transformation not only ensures

positive values for both parameters, but also allows the assumption that the transformed values are

Gaussian distributed (25). Hence, we can use a generalized additive model on those parameters. The

vascular fraction vp takes on values between zero and one, and hence we use a Beta distribution, with

hyperparameters e and f , such that the expected value of vp is 0.05. This value is appropriate for the

data involved in this study and in fact the model is relatively insensitive to the specification of this

particular prior distribution. A Beta distribution with e = f = 1 (i.e., a uniform distribution on [0, 1])
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does not change the results of the model. For the observational model, we use a Gaussian distribution

with unknown variance.

We did not use prior information to impose a specific relationship between Ktrans and kep; e.g., R1.12

Ktrans < kep. From a modelling point of view, the compartmental model is a rough approximation to the

physical system that is being investigated via DCE-MRI. At least two layers of abstraction sit between

the biological truth and what is measured in DCE-MRI as inferred via a parametric model: the data

acquired via MRI are imperfect measurements of the biological system because of the interaction between

physics and biology in the measurement process; and the fact that the “extended Kety model” is a gross

approximation to the underlying system. Hence, the kinetic parameters obtained from the extended

Kety model are relatively far removed from the biological processes and we feel it would be too restrictive

to enforce strict relationships between them in the BHM. In the results from the BHM on 12 subjects

presented here, we found that Ktrans was larger than kep in less than 1.5% of all voxels analyzed. These

were typically located at the edge of the tumor ROI, where perfusion characteristics often cause errors

in parameter estimation (2).

The signal intensity in magnitude MR images is known to be Rician, and approximately Gaussian for

moderate signal-to-noise values, but the distribution of the error of the contrast agent concentration is

a non-linear transformation of the observed signal intensities and, to the best of our knowledge, is not

known analytically. However, for positive values of contrast agent concentration in tissue a Gaussian

distribution seems appropriate. The hyperprior was determined by sensitivity analysis, and the model

was not found to be sensitive to changes in the specification of this hyperprior.

5.3 Modifications and Extensions

In this paper a generalized additive model was constructed for the kinetic parameters (Ktrans and kep)

in a compartmental model of a DCE-MRI oncology study. The model can easily be modified for other R1.6

kinetic parameters of interest; e.g., if the variable of interest in a study is the volume fraction of the EES

(ve = Ktrans/kep) or vp, which was handled as nuisance parameter in the study investigated here. The

framework can also be applied to other kinetic models (39; 40).

This model incorporated two scanning sessions, and all subjects, to asses the treatment effect. The

modeling framework is easily extended to handle additional covariates or scanning sessions. For example,

a dose-ranging study design could be incorporated into the additive model where the treatment effect

can be expressed as a function of the dose. Additional scans over time would enable the assessment of

temporal dependence on treatment and provide information about the reliability of the data by potentially

reducing the amount of uncertainty in the parameter estimates.

Another possible extension of this model would be to include the spatial information of adjacent voxels.

In the current implementation of the Bayesian hierarchical model all voxels from one region of interest

(tumor) were treated as spatially independent. Since voxel borders are arbitrary and do not represent

physiological boundaries between different tissue types, it is likely that neighboring voxels share similar

perfusion characteristics. This fact has been taken advantage of in the context of Bayesian modeling of
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individual scans from a DCE-MRI study (25). The inclusion of a neighborhood structure in the modeling

process would reduce the uncertainty in estimation and provide more reliable estimates of the kinetic

parameters.
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A Appendix

A.1 Full conditional distributions

In each iteration of the MCMC (Markov chain Monte Carlo) algorithm, a random sample from the

marginal posterior distribution for all parameters is drawn. This is performed by sampling from the

conditional posterior distribution of one or more parameters given all other parameters and the data.

Hence, the full conditional distributions must be computed. The full conditional is denoted by θ | ·, where

θ is the parameter and · denotes all other parameters and the data. If the full conditional takes the from

of a standard distribution, one can sample directly form this distribution; this is known as the Gibbs

sampler (34). If the full conditional is not a standard distribution, then a Metropolis-Hastings sampler

must be constructed.

In the proposed Bayesian hierarchical model all full conditionals are from standard distributions due

to the use of conjugate prior distributions, except for the voxel effect and vp. Let ξl = (αl, βl, γl, δl)

denote the vector of length P = I(J +1) associated with all parameters in the generalized additive model,

except the voxel effect, for a specific kinetic parameter. The full conditional of ξl is a multivariate Normal

distribution given by

ξl | · ∼ NP

(
V−1m,V−1

)
,

m = [m1, . . . , mP ]T,

mp =
2∑

i=1

J∑

j=1

(
τ−2
ϵ;ij

nij∑

k=1

wijpψijkl

)
for p = 1, . . . , P ,

V = WTΛW + diag (0, 0, τ−2
γ;1l, . . . , τ

−2
γ;Jl, τ

−2
δ;1l, . . . , τ

−2
δ;Jl),

where W is a I(J + 1)×P matrix indicating which covariate should be included in the parameter model,

Eq. [7], and Λ is a diagonal matrix with elements nijτϵ;ij . The vector ξl is drawn in one block from a

multivariate Normal distribution with an efficient block-sampling algorithm (41).

The full conditional distribution of the voxel effect ϵijkl is a non-standard distribution. For computa-

tional reasons it is more convenient to sample from ψijkl rather than from ϵijkl, where the full conditional
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distribution of ψijkl is given by

p(ψijkl | ·) ∝ exp

(
− 1

2τ2
ϵ;ijk

ψ2
ijkl −

1
2σ2

ij

(
Yijkl − Ŷijkl

)2
)

. (19)

Note, Ŷijkl is the estimated contrast agent concentration curve given by the estimated model parameters

in ψ̂ijkl. Samples from this distribution are obtained using a Metropolis-Hastings step.

The full conditionals of all variance parameters are inverse Gamma distributions, which are given by

τ2
γ | · iid∼ IG

(
a + 1/2, b + γ2

jl

)
, (20)

τ2
δ | · iid∼ IG

(
a + 1/2, b + δ2

jl

)
, (21)

τ2
ϵ | · iid∼ IG

⎧
⎪⎨

⎪⎩
c +

1
2

I∑

i=1

J∑

j=1

nij , d +
1
2

I∑

i=1

J∑

j=1

nij∑

k=1

⎛

⎝Zi

⎡

⎣ φ

θj

⎤

⎦− ψijkl

⎞

⎠
2
⎫
⎪⎬

⎪⎭
. (22)

Hence, the variance parameters can be drawn independently using a Gibbs sampler.
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Figure Captions

1. Schematic overview of the Bayesian hierarchical model for the observed contrast agent concentration

time curves.

2. Prior probability density functions for patient-specific effects exp(γ) and exp(δ) (top) and voxel R1.7

effects exp(ϵ) (bottom). The prior for the patient-specific effects allows a deviation from the baseline

kinetic parameters in a range of biologically meaningful values. The prior distribution for the voxel

effects only permits small deviations from the baseline.

3. Contrast concentration time curves (CTCs) for pre- and post-treatment scans in three different

subjects. Solid lines indicate the voxel-specific fit to the CTC, dashed lines the combined patient-

and treatment-specific CTCs, and dotted lines the global pre- and post-treatment median CTCs

for the entire study.

4. Samples from the marginal posterior distributions of Ktrans at the study level. At pre-treatment

Ktrans is given by exp(α1) and at post-treatment Ktrans is given by exp(α1 + β1).

5. Samples from the marginal posterior distributions of Ktrans at the patient level. At pre-treatment

Ktrans is given by exp(α1 + γj1) for patient j and at post-treatment Ktrans is given by exp(α1 +

β1 + γj1 + δj1) for patient j.

6. Smoothed histograms summarizing the values of the posterior median Ktrans at the voxel level.

At pre-treatment Ktrans is given by exp(α1 + γj1 + ϵ1jk1) for scan 1, patient j and voxel k. At

post-treatment Ktrans is given by exp(α1 + β1 + γ1j + δ1j + ϵ12jk) for scan 2, patient j and voxel k.

The x-axis has been restricted to [0, 1] for visualization.

7. Smoothed histograms summarizing the values of Ktrans from voxel-wise non-linear regression anal-

ysis. The x-axis has been restricted to [0, 1] for visualization.

8. Prior (bold line) and posterior (thin lines) probability density functions for patient-specific effects R1.9

γ (top) and voxel effects ϵ (bottom). For the voxel-specific effects, 25 random voxels from the

pre-treatment scan of patient 2 have been displayed.
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Table 1: Median Ktrans values from the standard analysis (R = responder, NR = non-responder).

Patient ID 1 2 3 4 5 6 7 8 9 10 11 12

pathological R R R NR NR R NR NR R NR NR R

pre 0.208 0.355 0.255 0.230 0.199 0.154 0.264 0.198 0.305 0.267 0.432 0.174

post 0.161 0.120 0.031 0.245 0.208 0.173 0.327 0.223 0.122 0.221 0.111 0.113
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