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A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of
degeneracy is outlined. It has possible applications in inertial confinement fusion and
astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution
function, and scattering is via a Pauli blocked binary collision approximation. The algo-
rithm is tested against degenerate electron–ion equilibration, and the degenerate resistiv-
ity transport coefficient from unmagnetised first order transport theory. The code is
applied to the cold fuel shell and alpha particle equilibration problem of inertial confine-
ment fusion.

� 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

The degenerate Monte Carlo algorithm is based on the binary collision approximation Monte Carlo code of Takizuka and
Abe [1], which randomly pairs particles in close proximity and scatters them with Coulomb collisions, each one of which
conserves energy and momentum. Apart from conservation, the greatest strength of this approach is the ability to work with
any distribution function, especially those which depart appreciably from a Maxwell–Boltzmann distribution - it has been
used, for instance, to reproduce and study the Langdon distribution [2,3]. It has been extended several times [4,5], and
we offer an extension to degenerate plasmas.

Modelling degenerate plasmas is of interest in inertial confinement fusion, during compression of the cold fuel and cap-
sule shell [6,7], and in astrophysical situations such as white dwarf stars [8]. Relevant inertial confinement fusion problems
are degenerate thermal equilibration and the stopping of high energy ions by degenerate electrons. The yield is particularly
sensitive to electron–ion equilibration, with simulations of direct-drive implosions showing a �10% difference across several
different models of temperature relaxation [9]. Examples of equilibration are presented for a range of degeneracies. There are
potential applications in transport theory, and we show that the degenerate resistivity transport coefficient is reproduced for
1st order unmagnetised transport theory.

The algorithm allows the modelling of plasmas of arbitrary degeneracy under the binary collision approximation. It uses a
numerical interpolation of the inverse cumulative density function of the Fermi–Dirac distribution to initialise simulation
particles, and collisions are subject to Pauli blocking. It is not appropriate in the limit of very strong coupling because the
plasma theory which the Monte Carlo code is based on breaks down. The strong coupling limit corresponds to ln KK 3, with
ln K the Coulomb logarithm [10]. The code is designed for ln K > 3 in collisional plasmas with a non-negligible level of
degeneracy. It is noted that Monte Carlo techniques with degenerate capabilities have been developed for studying transport
in semi-conductors [11] but no such method exists for fully-ionised plasmas. Some of the techniques described are poten-
tially applicable to other types of codes, for example, Particle-In-Cell (PIC) codes.
ribution,
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2. Degenerate plasmas

This discussion is with respect to degenerate electrons but the process is the same for any fermion. Applying the anti-
commutation relation for identical fermions to free electrons gives rise to the Fermi–Dirac distribution [12];
f ðEÞdE ¼ 2með Þ3=2

2ne�h
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E
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dE
expf E
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� gg þ 1
where g is the degeneracy parameter. f ðEÞdE is normalised to 1, and the equation
Z
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defines g as a function of ne and Te. The occupancy function is the measure of the proportion of states occupied at energy E,
and is given by
foðEÞ ¼
1

expf E
Te
� gg þ 1

¼ f ðEÞ=gðEÞ ð2Þ
where gðEÞdE ¼ 2með Þ3=2
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dE is the density of states between E and Eþ dE. g�!�1 corresponds to the classical limit in

which the distribution function becomes a Maxwell–Boltzmann distribution. g�!1 is the fully degenerate limit in which the
all of the particles are at energies below or equal to the Fermi energy, EF , and the occupancy function becomes a step function
gðEÞ ¼ 1; E 6 EF ; gðEÞ ¼ 0; E > EF
where
EF ¼
�h2

2me
3p2ne
� �2=3
is the Fermi energy. For a non-Maxwellian distribution, temperature and average energy no longer satisfy Te ¼ 2
3 hEi. In the

case of the Fermi–Dirac distribution, particles retain an energy even in the Te�!0 limit as lower energy states have limited
capacity and become fully occupied, so that remaining particles occupy energy states higher than the ground state. In the
zero temperature limit,
g�! EF

Te
and g�!1 ð3Þ
There are many choices for the Coulomb logarithm for electron–ion equilibration in a degenerate plasma [13,14,10]. The
code does not explicitly require a particular Coulomb logarithm, and any could be used in the algorithm, as long as they in-
clude degeneracy effects. Degenerate modifications are necessary, because of the disparity between temperature and aver-
age energy, and the potential for degenerate plasmas to occur at high density. We use Gericke, Murrillo and Schlanges’
Coulomb logarithm number 6 [10] but, due to the possibility of encountering the Te�!0 limit, we replace Te by the ‘effective’

temperature defined by T 0e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

F þ T2
e

q
where TF is the Fermi temperature. This is the same approximation as used by several

other authors including Brown and Haines [15], and Brysk, Campbell and Hammerling [16] who demonstrated that it
matches Salpeter’s [17] relation, where the Te�!0 limit is avoided by multiplying by a factor I1=2ðgÞ=I01=2ðgÞ, to within 5%
for any g. IjðgÞ is the jth complete Fermi–Dirac integral. This gives,
ln Kie ¼
1
2

ln 1þ b2
M

b2
m;ie

" #
for an electron and i an ion, with ‘M’ denoting ‘maximum’, and ‘m’ ‘minimum’ in the impact parameters. The maximum is
given by
b2
M ¼ k2

D þ r2
ion
where rion ¼ 4p
P

ionsni=3
� ��1=3 is the inter-ion distance [17] and kD is the Debye length, while the minimum is given by
b2
m;ie ¼ k2

dB þ b2
?

where
kdB ¼
�h
2

1ffiffiffiffiffiffiffiffiffiffiffi
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q

is the de Broglie wavelength of the electrons, and represents their closest distance of approach to ions in the quantum
mechanical limit, and
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b? ¼
eqi

4p�0

1
T 0e
is the classical closest distance of approach for electron–ion centre-of-mass scattering through p=2 with qi the charge of ion
species i.

3. Description of the method

The Monte Carlo code is adapted to include Pauli blocking and the ability to initialise species with Fermi–Dirac distribu-
tions if required, as well as generating Maxwell–Boltzmann distributions. Maxwellian distributions are initialised using the
computationally efficient Box-Muller transform [18]. For distributions which are everywhere integrable, the probability den-
sity function (or distribution function) can be integrated to the cumulative density function

R x
0 f ðx0Þdx0 ¼ FðxÞ and the cumu-

lative density function normalised such that Fð0Þ ¼ 0 and limx!1FðxÞ ¼ 1. The cumulative density function is inverted:
F�1ðuÞ ¼ x; u 2 ð0;1Þ
This represents a parametrisation of the real number line between 0 and 1 into the space of the variable. Randomly gener-
ated values of u, uniformly distributed and in the domain of F�1ðuÞ, generate values of x that occur with frequencies deter-
mined by the original probability density function.

The Fermi–Dirac distribution is not integrable so this process cannot be done analytically, and numerical methods of cal-
culating the inverse cumulative distribution function must be used. Numerical computations of energy values for initialising
particles employ Hörmann and Leydold’s algorithm [19]. It requires evaluations of f ðEÞ; FðEÞ and initial boundary conditions.
The domain of F�1ðuÞ is split into equally spaced sub-intervals and a cubic Hermite polynomial HiðuÞ is used to interpolate
values of E given u, with FðEÞi 6 u 6 FðEÞiþ1. Cubic Hermite polynomials have advantages over other methods of interpolation
of the same order because they are a local approximation, rather than a global one: if any interval does not reach the required
level of approximation to the inverse cumulative distribution function, new points can be inserted locally without recom-
puting all interpolation points. Another advantage is that there is a relatively simple algorithm, which terminates if f ðEÞ
is continuous, that can guarantee the monotonicity of HiðuÞ 8 i by creating new interpolation points [20]. Linear interpolation
is also guaranteed to be monotonically increasing, but the number of points required for the same level of approximation to
F�1ðuÞ is generally reduced by an order of magnitude or more by using cubic interpolation [19]. For the entire interpolation
process, the maximal acceptable error
�u ¼ max
u2 ui ;uiþ1½ �

jFðHiðuÞÞ � uj
can be specified, and intervals are split until this is satisfied for every i. The end result is a table of values of
ui ¼ FðxiÞ; xi; f ðxiÞ½ �.

With the creation of the table, values of u can be generated and the appropriately distributed values of E found. An in-
dexed search is used to speed up the process of selecting an appropriate E for the given value of u [21]. Components of veloc-
ity must also be selected. For an isotropic distribution of velocities, each energy can be thought of as defining a value of the
radius of a sphere in velocity space, and randomly choosing a point on a 2-sphere, then scaling the values by v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=me

p
,

gives the components of each particle’s velocity:
vx ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

cos /

vy ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

sin /

vz ¼ vr
where r 2 ½�1;1� and / 2 ½0;2pÞ.
Initialised Fermi–Dirac distributions relax to Maxwell–Boltzmann distributions without Pauli blocking. To prevent this,

all processes which lead to a change in a simulation particle’s energy, such as scattering or acceleration by an electric field,
must be subject to Pauli blocking. The blocking process must prevent electrons being scattering into an energy state E if that
state is already occupied. The occupancy function, Eq. (2), is the measure of the proportion of states occupied at energy E.
foðEÞ takes values between 0 and 1 and, from the point of view of Monte Carlo simulation, indicates whether a particular
energy changing process should be blocked or not. The probability of accepting a change in electron energy to final energy
E0 should be P ¼ 1� foðE0Þ so that fully occupied states admit no more particles. This is consistent with the ð1� f0ðE0ÞÞ factor
in the effective cross-section in Eq. (15) of Brysk’s derivation of degenerate stopping and equilibration rates [22], and also in
Eq. (7.1) of Brown and Singleton’s Boltzmann collision operator with Fermi–Dirac statistics [14], which relaxes distributions
to Fermi–Dirac distribution functions. The probability of accepting a new energy state is dependent on the degeneracy, so
that the classical limit of g! �1; f oðE

0Þ ! 08E0 is reproduced. Fig. 1 shows a Fermi–Dirac distribution generated by the
code at the start of a simulation, and its associated occupancy function.

To perform the Pauli blocking on changes in particle energy such that the final energy is E0, the Monte Carlo simulation
generates a random number R and uses the following procedure



Fig. 1. The degenerate Monte Carlo algorithm producing a 0D3V Fermi–Dirac distribution of electrons, for Te ¼ 100 eV, ne ¼ 8� 1031m�3 and g ¼ 4:2. It is
shown against Maxwell–Boltzmann and Fermi–Dirac distributions with the same parameters. There is good agreement between the analytic, and
numerically generated, Fermi–Dirac distributions. INSET: The occupation function sampled from the simulation distribution function.

Fig. 2.
Maxwe
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For R 2 ð0;1Þ and E0
Block the change if R < foðE0Þ;
accept the change if R > foðE0Þ:

�
ð4Þ
For two-body processes, such as fermion-fermion scattering, this has a natural extension; with final energies E01 and E02, if,
R < foðE01Þ þ foðE02Þ � foðE01ÞfoðE02Þ
is true then the process is Pauli blocked. foðE0Þ ¼ 08E0 for non-degenerate particles.
Simulations on an initial Fermi–Dirac distribution, Fig. 2, show that including the Pauli blocking algorithm maintains the

distribution function, Fig. 3.
The average electron energy is recorded from the Monte Carlo simulation. However, diagnosing the electron temperature

and degeneracy parameter from the average energy is non-trivial. The method employed is to calculate the probability den-
sity function from simulation, fMCðEiÞdE, in a number of bins. Then Te, and therefore g by Eq. (1), can be varied until the root
sum of square differences between the simulation distribution and the Fermi–Dirac distribution is minimised. The root sum
of squares is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

fMCðEiÞdE� f ðEi; Te;gÞdEð Þ2
s

An electron distribution generated by the code and initialised with ne ¼ 1033m�3; Te ¼ 0:47 keV and g ¼ 4:7. It is shown against the analytical
ll–Boltzmann and Fermi–Dirac distributions with the same parameters.



Fig. 3. The distributions from Fig. 2 after 0.16 fs. The numerical simulation with Pauli blocking (top) matches the analytical Fermi–Dirac distribution with
the same parameters, but the run with the Pauli blocking disabled (bottom) has relaxed to a Maxwell–Boltzmann distribution.
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A golden section search [23] is used for the minimisation of the root sum square, and calculation of Te. Initial guesses of
T� � Te and bounding values TMax and TMin are required for the golden section search, where TMin < T� < TMax. As
hEi ¼ 3
ffiffiffiffi
p
p

8
Te

ne

2meTeð Þ3=2

�h3p2
I3=2 gð Þ ð5Þ
where limg!�1hEi ¼ 3
2 Te, and limg!1hEi ¼ 3

5 EF ,
T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hEi=3ð Þ2 � 2Ef =5
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q

is used as the initial guess, with TMax and TMin given, for example, by T� � 10% respectively.

4. Tests

The rate of electron–ion temperature equilibration is given by
dTi

dt
¼
X

i

mieðTe � TiÞ ð6Þ
where i denotes an ion species. Spitzer’s equilibration rate [24] fails for weakly to strongly degenerate plasmas. Brysk [22]
derived an equilibration formula appropriate for degenerate conditions in which Ti=mi 	 Te=me;
mie ¼
8
3

qie
4p�0

� �2 m2
e ln Kie

pmi�h
3 1þ e�gð Þ

ð7Þ
Fig. 4 compares the non-degenerate rate, the degenerate rate, and the degenerate Monte Carlo algorithm for a range of
degeneracies, with varying initial temperatures and densities.

The numerical equilibration rate to non-degenerate equilibration rate ratio for g ¼ 8:1 is omitted as the non-degenerate
electron temperature never reached 90% of the final temperature. This is because it is implicitly assumed that Te ¼ 2

3 hEie in
the non-degenerate rate. The total energy in the degenerate case is higher though, as degenerate particles retain an energy
even in the Te ! 0 limit. In scenarios where g drops over time, Eq. (5) forces Te to rise for fixed hEie. In a situation with
Ti;0 > Te;0, this means that the classical Te;f may never reach the same, or a fraction of the same, value as in the degenerate
case. An extreme case illustrates this more clearly; initial temperatures of two species, ions and electrons, with Ti;0 
 Te;0

give a classical end temperature of Tf ¼ ðTi;0 þ Te;0Þ=2 � Ti;0=2 for both electrons and ions. But if Te;0 	 TF 	 Ti;0, where TF

is the Fermi temperature, and the ions provide enough energy to force the electron distribution to become Maxwellian,
the end temperature will be Tf � ðTi;0 þ TFÞ=2 > Ti;0=2. The g ¼ 8:1 data point has a lower Ti;0=Te;0 ratio than that at the high-
est g plotted, but TF=Ti;0 is higher so the disparity in final temperatures between the classical and degenerate cases is
expected.

The agreement between the degenerate equilibration rate and the degenerate Monte Carlo equilibration rate is good for a
range of initial values of the degeneracy, but does show variation. The origin of this variability is the inherent noisiness of
Monte Carlo simulations (as only a finite number of particles can be simulated), but in general the models agree, and the



Fig. 4. Equilibration with a range of starting electron and deuterium temperatures and densities, classified by initial electron degeneracy, g. The ratios
shown are of the time taken to reach 90% of the final temperature as given by numerical simulation. Ratio A is of the degenerate Monte Carlo equilibration
rate to the degenerate equilibration rate. Ratio B is of the degenerate numerical equilibration rate to the non-degenerate equilibration rate. The numerical
equilibration rate to non-degenerate equilibration rate ratio for g ¼ 8:1 is omitted as the non-degenerate electron temperature never reached 90% of the
final temperature.
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mean ratio across all of the equilibrations is 1.03. There is a slight upward trend in Ratio A, that is the ratio of the time taken
to reach 90% of the final temperature of the Monte Carlo algorithm relative to theory as governed by Eq. (6). This slight trend
is probably partly due to small errors in diagnosing Te from the Monte Carlo simulation, and partly due to evaluation of (6). In
the degenerate theory, computation of new values of Te and g using dhEie

dt from (6) self-consistently is non-trivial, and there are
leading order corrections to (7) which are of relative size � Time=Temi. All of these are sources of error which are worse at
high degeneracy, but which affect the time taken to reach equilibration only slightly for regimes of physical interest.

As a further verification of the algorithm, we reproduce degenerate resistivities from un-magnetised transport theory,
assuming isotropic temperature and pressure. Restricting the current density to the x direction, the resistivity of the plasma
is given by q ¼ Ex=Jx. First order transport theory [25,26] gives the resistivity without electron–electron collisions (known as
the Lorentz limit), as
q ¼ 3meni
ln Kie

e2

�qie
4p�0me

� �2 Z 1

0

@f
@v v6dv

� 	�1

ð8Þ
For a Maxwell–Boltzmann distribution, there is an analytical expression:
qMB ¼
�qie
4p�0

� �2 ffiffiffiffiffiffi
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16e2
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ne
ln Kie

2p
Te

� �3=2

ð9Þ
A similar process gives the Fermi–Dirac equivalent, qFD, with fFDðvÞ ¼ f ðEÞdE=4pd3v , though no analytical form of the expres-
sion exists as far as we are aware. It is calculated numerically for comparison with the Monte Carlo algorithm.

The resistivity transport coefficient, a, is defined by
ðeneÞ2E ¼ a � j
In the un-magnetised B ¼ 0 case, only the ak ¼ a?ðB ¼ 0Þ component of the expansion of a remains, and is often expressed as
the dimensionless quantity
ac
k ¼ ak

s
mene
where
s�1 ¼ 4
ffiffiffiffiffiffiffi
2p
p

ni ln Kie

3
ffiffiffiffiffiffi
me
p

T3=2
e

qie
4p�0

� �2
is the reciprocal of the mean electron–ion collision time.
Fig. 5 shows that a numerically calculated qFD based on Eq. (8) is reproduced by the algorithm in the degenerate regime.

qM is given by Eq. (9) [26]. In both simulation and evaluation of Eq. (8), Pauli blocking of the acceleration by the electric field,
and electron–electron collisions are ignored.



Fig. 5. ac
k given by the Monte Carlo algorithm against ac

k Maxwell–Boltzmann and Fermi–Dirac distributions according to Eq. (9), with the same Te.
Electron–electron collisions are omitted, Z ¼ 12, and there is no blocking of the acceleration by the applied electric field. The initial degeneracy is g ¼ 2:5.
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5. Results

Finally, we present an application of the code in a regime in which other equilibration rates are not applicable. There are
situations in inertial confinement fusion in which the validity condition of Eq. (7) is violated, for instance in the interaction
between a population of fusion produced alpha particles and a background of cold, dense electrons. It is also inappropriate in
this instance because the distribution of fusion produced alpha particles is highly non-Maxwellian. The algorithm as de-
scribed is capable of modelling both of these features. Fig. 6 shows a situation with parameters approximately similar to
inertial confinement fusion; an isotropic flux of monoenergetic fusion produced alpha particles interacting with a cold fuel
shell of deuterium, tritium and electrons. At the start of the simulation, Ta=ma > Te=me, and g ¼ 3:2. The evolution of g is
shown in Fig. 8. The trajectory through temperature is different according to the numerical simulation and the degenerate
equilibration rate, but the numerical simulation is a more accurate representation of the physics involved in the deposition
of energy by alpha particles. For comparison, the numerical simulation is also shown against the non-degenerate equilibra-
tion rate in Fig. 7 . The non-degenerate rate predicts a significantly lower Te throughout the simulation, despite the degen-
eracy of the numerical simulation being negative for much of the simulation time.

We have presented an algorithm for carrying out calculations on degenerate plasmas using an extension of the well-
established binary collision approximation Monte Carlo method. It creates and sustains Fermi–Dirac distributions, gives
Fig. 6. An equilibration scenario with parameters approximately similar to inertial confinement fusion; starting temperatures of electrons, deuterium and
tritium are T ¼ 12:5 eV, the density is nD ¼ nT ¼ 1:2� 1030m�3;na ¼ nD=10 and ne ¼ 2:6� 1030m�3. a particles have an initial energy of 3.54 MeV. Only
electrons and deuterons are shown. The analytical model is that of the degenerate equilibration rate given by Eq. (7). The evolution of the simulation g over
time is shown in Fig. 8.



Fig. 7. Numerical simulation of Fig. 6 shown against Spitzer’s non-degenerate equilibration rate [24].

Fig. 8. The degeneracy parameter of the numerical simulation in Figs. 6 and 7 over time from an initial value of g ¼ 3:2.
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degenerate electron–ion equilibration times and stopping powers, and succesfully reproduces the degenerate resistivity
transport coefficient for unmagnetised first order transport theory.

We thank the EPSRC for funding this research.
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