
A Computational Group Theoretic Symmetry

Reduction Package for the SPIN Model Checker

Alastair F. Donaldson⋆ and Alice Miller⋆⋆

Department of Computing Science
University of Glasgow, 17 Lilybank Gardens,

Glasgow, Scotland, G12 8QQ.
{ally,alice}@dcs.gla.ac.uk

Abstract. Symmetry reduced model checking is hindered by two prob-
lems: how to identify state space symmetry when systems are not fully
symmetric, and how to determine equivalence of states during search.
We present TopSPIN, a fully automatic symmetry reduction package for
the SPIN model checker. TopSPIN uses the GAP computational algebra
system to effectively detect state space symmetry from the associated
Promela specification, and to choose an efficient symmetry reduction
strategy by classifying automorphism groups as a disjoint/wreath prod-
uct of subgroups. We present encouraging experimental results for a va-
riety of Promela examples.

1 Introduction

Model checking concurrent systems comprised of replicated components can po-
tentially be made easier by exploiting symmetries of a model of the system, in-
duced by the replication. If such component symmetries can be identified before
search then the model checking algorithm can be modified to consider a single
state from each equivalence class of symmetric states. This results in reduced
space requirements for verification by model checking.

However, symmetry reduction can only speed up model checking if an efficient
procedure is available to determine whether or not a given state is equivalent
to a previously reached state. A common approach to solving this problem for
explicit state model checking is, given a total ordering on states and a symmetry
group G, to convert a state s to min[s]G—the smallest state in the equivalence
class of s under G—before it is stored. Thus efficient algorithms are required to
compute min[s]G. This is the constructive orbit problem, which has been proved
to be NP-hard [4]. Current implementations of symmetry reduction techniques
for explicit state model checking, such as SymmSpin [2], are limited to dealing
with full symmetry between components of a concurrent system—both symmetry
detection and on-the-fly representative computation are easy for this special case.

⋆ Supported by the Carnegie Trust for the Universities of Scotland.
⋆⋆ Partially funded by The Universitiy of Glasgow John Robertson Bequest, award

number JR05/14.

In previous work we proposed a framework for the automatic detection of
arbitrary structural symmetry, with an implementation for the Promela speci-
fication language [6]. In this paper we present TopSPIN, a symmetry reduction
package for the SPIN model checker which uses exact and approximate strategies
for dealing with such arbitrary symmetries. The tool draws on theory and tech-
nology from computational group theory to efficiently compute equivalence class
representatives. In particular, the GAP computational algebra system [10] is used
both for symmetry detection, and for classifying an arbitrary group based on its
structure as a direct/wreath product of basic subgroups, so that an appropriate
symmetry reduction strategy may be chosen. For groups which cannot be clas-
sified in this way, TopSPIN uses an approximate symmetry reduction strategy
based on hillclimbing local search, which is sub-optimal in terms of memory re-
quirements but fast and safe. We present experimental results which demonstrate
the effectiveness of our techniques. TopSPIN, together with Promela code for the
specifications described in Sect. 5, can be found on our website [7]. Throughout
the paper, we assume some basic knowledge of group theory.

2 Background and Notation

SPIN [11] is the bespoke model checker for the Promela specification language,
and provides several reasoning mechanisms: assertion checking, acceptance and
progress states and cycle detection, and satisfaction of temporal properties, ex-
pressed in linear temporal logic (LTL). SPIN translates each component defined
in a Promela specification into a finite automaton and then computes the asyn-
chronous interleaving product of these automata to obtain the global behavious
of the concurrent system. This interleaving product is essentially a Kripke struc-
ture M = (S, so, R, L), where S is a finite set of states with initial state s0,
R ⊆ S×S a total transition relation, and L : S → 2AP a labelling function. The
set AP of atomic propositions refer to the values of local and global variables,
and contents of buffered channels.

A bijection α : S → S which satisfies, for all (s, t) ∈ R, (α(s), α(t)) ∈ R, is an
automorphism or symmetry of M, and all such symmetries form a group Aut(M)
under composition of mappings. If a subgroup G of Aut(M) is known in advance
then model checking can be performed over a quotient Kripke structure, MG,
typically smaller than the original [12]. Kripke structure automorphisms induced
by symmetry between components of the concurrent system, i.e. bijections of
the component index set which give rise to automorphisms when lifted to act
component-wise on states, are called component symmetries [9]. In this work we
restrict our attention to component symmetries. If G ≤ Aut(M) and s ∈ S, then
[s]G = {α(s) : α ∈ G} is the orbit of s under G.

3 An Overview of TopSPIN

In order to check properties of a Promela specification, SPIN first converts the
specification into a C source file, pan.c, which is then compiled into an exe-

cutable verifier. The state space thus generated is then searched. If the prop-
erty being checked is proved to be false, a counterexample is given. TopSPIN

follows the approach used by the SymmSpin symmetry reduction package [2],
where pan.c is generated as usual by SPIN, and then converted to a new file,
sympan.c, which includes algorithms for symmetry reduction. With TopSPIN

because we allow for arbitrary system topologies, symmetry must be detected
before sympan.c can be generated. This is illustrated in Fig. 1.

First, the static channel diagram (SCD) of the Promela specification is ex-
tracted by the SymmExtractor tool [6]. The SCD is a graphical representation of
potential communication between components of the specification. The group of
symmetries of the SCD, Aut(SCD), is computed using the saucy tool [5], which
we have extended to handle directed graphs. The generators of Aut(SCD) are
checked against the Promela specification for validity (an assurance that they
induce symmetries of the underlying state space). TopSPIN uses GAP to com-
pute, from the set of valid generators, the largest group G ≤ Aut(SCD) which
can be safely used for symmetry-reduced model checking. GAP is then used to
classify the structure of G in order to choose an efficient symmetry reduction
strategy. The chosen strategy is merged with pan.c to form sympan.c, which
can be compiled and executed as usual.

Fig. 1. The symmetry reduction process.

4 Symmetry Reduction Strategies

We refer to processes and channels of a Promela specification as components,
and restrict our attention to Promela specifications with a fixed number of com-
ponents. Throughout, we assume that G ≤ Sn is a nontrivial symmetry group
for a Promela specification consisting of n components. In this section we outline

various strategies which TopSPIN uses to compute min[s]G for a state s and an
arbitrary group G. An appropriate strategy for G is chosen based on analysis of
the structure of G before search. Note that, during verification, the C function
memcmp provides a total ordering on states.

4.1 The Strategies

Enumeration If G is a relatively small group (|G| < 100 say) then for a state
s, min[s]G can be computed by enumerating the elements of G, and returning
min{α(s) : α ∈ G}. TopSPIN implements this approach with two optimisations,
applied simultaneously. As the operation of applying a transposition to a state is
less expensive than that of applying an arbitrary permutation, a group element
α is expressed as a product of transpositions and α(s) is computed by applying
these transpositions to s in order. TopSPIN uses a stabiliser chain to enumerate
the elements of G. Given a stabiliser chain G = G(1) ≥ G(2) ≥ · · · ≥ G(k) = {id}
for some k > 1, every element of G can be uniquely expressed as a product
uk−1uk−2 . . . u1, where, for 1 ≤ i < k, ui is a representative of a coset of G(i+1)

in G(i) [3]. Thus each α ∈ G need not be applied to a state s from scratch:
partial images of s under the coset representatives may be re-used.
Minimising Sets Using terminology from [9], a group H is said to be nice if
there is a small set X ⊆ H such that t = min[s]H iff α(t) ≥ t ∀α ∈ X . If H is
nice with respect to a subset X then we call X a minimising set for H . Given
a minimising set X for G, the element min[s]G can be computed by setting
t = s, and applying elements of X to t until a fixpoint is reached. TopSPIN

uses this symmetry reduction strategy in cases where G is isomorphic to a fully
symmetric group Sm, for some m ≤ n, which simultaneously permutes several
disjoint subsets of {1, 2, . . . , n}. (Such groups occur commonly in practice, e.g.
a set of processes may have associated channels, so that any permutation of the
processes must also permute the associated channels.) In this case, let αi,j denote
the permutation which simultaneously transposes the ith and jth elements of
each subset. If G is generated by the set X = {σj,k : 1 ≤ j < k ≤ m} then it
can be shown that X is a minimising set for G, and |X | is quadratic in n even
though G may be very large. If TopSPIN detects that G is isomorphic to Sm for
some m ≤ n then it attempts to construct a minimising set of the above form.
Disjoint Products If G is the disjoint product of subgroups H1, H2, . . . , Hk

for some k > 1 then min[s]G = min[. . .min[min[s]H1
]H2

. . .]Hk
[4]. TopSPIN

constructs an equivalence relation on the generators of G to detect whether G

is a disjoint product. The approach is very efficient, but not complete—it does
not guarantee detection of the finest decomposition of G as a disjoint product.
However, we have found it to work well in practice.
Wreath Products If G is a wreath product H ≀ K of two subgroups H and
K then G contains r copies of H for some r ≥ 1, denoted H1, H2, . . . , Hr,
which each permute elements within a distinct “block” of components of the
specification, and K permutes the blocks. In this case, it can be shown that
min[s]G = min[min[. . .min[min[s]H1

]H2
. . .]Hr

]K [4]. If reduction strategies can
be found for H and K, then analogous strategies to that for H can easily be

obtained for each Hi, and min[s]G can be computed by applying the strategy
for each Hi, followed by the strategy for K. To efficiently detect a wreath prod-
uct decomposition for G, TopSPIN identifies candidate blocks by using GAP to
compute non-trivial block systems for G. Corresponding groups H and K are
derived for the candidate blocks, and a check is made to see whether or not G

is the wreath product of these groups.
Local Search If none of the above strategies are applicable then, since enu-
meration is very expensive, it may be infeasible to compute min[s]G. TopSPIN

implements an approximate symmetry reduction strategy based on hillclimbing
local search using the group generators, which does not guarantee unique repre-
sentatives, but is safe to use when model checking as it guarantees storage of at
least one state per equivalence class. Though not as space-efficient as enumera-
tion, this strategy can work considerably faster.

4.2 Choosing a Reduction Strategy

TopSPIN uses a top-down recursive algorithm to choose a symmetry reduction
strategy for an arbitrary group G with respect to a set of n components. If G is
isomorphic to a cyclic group and |G| ≤ n, or to a dihedral group and |G| ≤ 2n,
then the enumeration strategy is selected. If |G| is isomorphic to the group Sm

for some m ≤ n then TopSPIN attempts to construct a minimising set for G of
the form described above, so that the minimising set strategy can be chosen.
If G can be shown to decompose as a product of subgroups then a composite
strategy is obtained by choosing a strategy for each subgroup. Otherwise, the
local search strategy is chosen. In order to compare strategies it is possible to
select the strategy used (rather than let TopSPIN choose the most efficient).

5 Experimental Results

Table 1 gives experimental results applying our techniques to three families of
Promela specifications. For each specification, we give the number of model states
without symmetry reduction (orig), with full symmetry reduction (red), and
using the strategy chosen by TopSPIN (best). If the latter two are equal, ‘=’
appears for the TopSPIN strategy. The use of state compression, provided by
SPIN, is indicated by the number of states in italics. For each strategy (basic

for enumeration without the optimisations described in Sect. 4.1, enum for op-
timised enumeration, and best for the strategy chosen by TopSPIN), and when
symmetry reduction is not applied (orig), we give the time taken for verification
(in seconds). Verification attempts which exceeded available resources, or did not
terminate within 5 hours, are indicated by ‘-’. All experiments were performed
on a PC with a 2.4GHz Intel Xeon processor, 3Gb of available main memory,
running SPIN version 4.2.3. The first family of specifications model flow of control
in a three-tiered architecture consisting of a database, a layer of p servers, and a
layer of pq clients, where q clients are connected to each server (a D-S-C system).
Here models exhibit wreath product symmetry: there is full symmetry between

system config. states time |G| states time time states time

orig orig red basic enum best best

D-S-C 2/3 103105 5 72 2656 7 4 = 2

D-S-C 2/4 1.1× 10
6 37 1152 5012 276 108 = 2

D-S-C 3/3 2.54×107 4156 1296 50396 4228 1689 = 19

D-S-C 3/4 - - 82944 130348 - - = 104

R-C 3,3 16768 0.2 36 1501 0.9 0.3 = 0.1

R-C 4,4 199018 2 576 3826 57 19 = 0.4

R-C 5,5 2.2× 10
6 42 14400 8212 4358 1234 = 2

R-C 4,4,4 2.39× 10
7 1587 13824 84377 - 12029 = 17

R-C 5,5,5 - - 1728000 254091 - - = 115

HC 3d 13181 0.3 48 308 0.6 0.3 468 0.2

HC 4d 380537 18 384 1240 58 34 6986 13

HC 5d 9.6×106 2965 3840 3907 7442 5241 90442 946

Table 1. Experimental results for various configurations of the three-tiered (D-S-C),
resource allocator (R-C) and hypercube (HC) specifications

the q clients in each block, and the blocks of clients, with their associated servers,
are interchangeable. A configuration with p servers and q clients per server is de-
noted p/q. The second family of specifications model a resource allocator process
which controls access to a resource by a competing set of prioritised clients (an
R-C system). Models of these specifications exhibit disjoint product symmetry:
there is full symmetry between each set of clients with the same priority level.
A configuration with pi clients of priority level i is denoted p1, p2, . . . , pk, where
k is the number of priority levels. Finally, we consider specifications modelling
message routing in an n-dimensional hypercube network (an HC system). The
symmetry group here is isomorphic to the group of geometrical symmetries of an
n-dimensional hypercube, which cannot be decomposed as a disjoint or wreath
product of subgroups, and thus must be handled using either the enumeration

or local search strategies. An n-dimensional hypercube specification is denoted
nd. For all specifications, we verify deadlock freedom, and check the satisfaction
of basic safety properties expressed using assertions.

In all cases, the basic enumeration strategy is significantly slower than the
optimised enumeration strategy, which is in turn slower than the strategies cho-
sen by TopSPIN. For hypercube configurations, TopSPIN chooses the local search
strategy, which requires storage of more states than the enumeration strategy,
but still results in a greatly reduced state space.

6 Related and Future Work

The SymmSpin symmetry reduction package avoids the problem of automatic
symmetry detection by requiring symmetries to be specified using scalarsets,
an approach proposed in [12]. Scalarsets can only specify full symmetry between
identical components, thus the three-tiered architecture and hypercube examples

of Sect. 5 could not be handled by SymmSpin. Multiple scalarset types could
be used to specify symmetry between clients with the same priority level in the
resource allocator example, but the automatic approach to symmetry detection
provided by TopSPIN is clearly preferrable.

Automatic symmetry detection by static channel diagram analysis is similar
to an approach for deriving symmetry in a shared variable model of comunication
[4]. However, this approach is not directly applicable to the specification language
of a mainstream model checker such as SPIN. Certain classes of groups for which
orbit representatives can be efficiently computed are also presented in [4]. We
extend this work by providing techniques to automatically determine whether a
group belongs to one of these classes.

Future work includes extending TopSPIN to allow symmetry-reduced verifi-
cation of LTL properties under weak fairness, as described in [1]. This will in-
volve combining strategies for representative computation with the nested depth
first search algorithm employed by SPIN [11]. The notion of virtual symmetry is
suggested in [8] to deal with systems which are “almost” symmetric. The sym-
metry detection techniques which TopSPIN uses could potentially be extended
to handle virtual symmetry, allowing state-space reductions for examples with
less symmetry than those which we present.

References

1. D. Bosnacki. A light-weight algorithm for model checking with symmetry reduction
and weak fairness. In SPIN’03, LNCS 2648, pages 89–103. Springer, 2003.

2. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. International Journal

on Software Tools for Technology Transfer, 4(1):65–80, 2002.
3. G. Butler. Fundamental Algorithms for Permutation Groups, volume 559 of LNCS.

Springer-Verlag, 1991.
4. E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reductions in model

checking. In CAV’98, LNCS 1427, pages 147–158. Springer, 1998.
5. P.T. Darga, M.H. Liffiton, K.A. Sakallah, and I.L. Markov. Exploiting structure in

symmetry detection for CNF. In DAC’04, pages 530–534. ACM Press, 2004.
6. A. F. Donaldson and A. Miller. Automatic symmetry detection for model checking

using computational group theory. In FM’05, LNCS 3582, pages 418–496. Springer,
2005.

7. A. F. Donaldson and A. Miller. TopSPIN Website:
http://www.dcs.gla.ac.uk/people/personal/ally/topspin/.

8. E.A. Emerson, J. Havlicek, and R.J. Trefler. Virtual symmetry reduction. In
LICS’00, pages 121–131. IEEE Computer Society Press, 2000.

9. E.A. Emerson and T. Wahl. Dynamic symmetry reduction. In TACAS’05, LNCS
3440, pages 382–396. Springer, 2005.

10. The Gap Group. GAP–Groups, Algorithms, and Programming, Version 4.4; 2006.
http://www.gap-system.org.

11. G.J. Holzmann The SPIN model checker: primer and reference manual. Addison
Wesley, 2003.

12. C. Ip and D. Dill. Better verification through symmetry Formal Methods in System

Design, 9:41–75, 1996.

