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Abstract 

This paper presents measurements, using the surface force balance (SFB), of the normal and 
shear forces in aqueous solutions between polyelectrolyte layers grown directly on mica 
substrates (grafted-from). The grafting-from was via surface-initiated atom transfer radical 
polymerization (surface-initiated ATRP) using a positively-charged methacrylate monomer. X-
ray reflectometry measurements confim the successful formation of polyelectrolyte layers by 
this method. Surface-inititated ATRP has the advantages that the polymer chains can be 
strongly grafted to the substrate, and that high grafting densities should be achievable. 
Measured normal forces in water showed a long-range repulsion arising from an electrical 
double layer that extended beyond the polyelectrolyte layers, and a stronger, shorter-range 
repulsion when the polyelectrolyte brushes were in contact. Swollen layer thicknesses were in 
the range 15 – 40 nm. Upon addition of ~10-2 M – 10-1 M sodium nitrate, screening effects 
reduced the electrical double layer force to an undetectable level. Shear force measurements in 
pure water were performed, and the measured friction may arise from polymer chains bridging 
between the surfaces. 
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Introduction 
Measurements of the frictional forces between neutral polymer brushes have shown them to 

have remarkable lubricating properties 1-4. These properties have been attributed to the very 

limited interpenetration between opposing polymer brushes even at quite high compressions 

suggested by some theoretical studies 5-7. Additionally, it has been suggested that polymer 

brushes may play lubricating roles in certain biological contexts where cells bearing surface-

grafted polymers side past one another, such as in articular cartilage 8 and at the ocular surface 

9-12. Most relevant studies of polymer friction were carried out on neutral polymer brushes 2, 13-

16, with a few recent exceptions 17-20. However, since surface-active biological polymers are 

typically electrically charged, biological lubrication would be better modeled by studying 

polyelectrolyte brushes. The presence of electrical charge could influence the friction by two 

mechanisms: firstly, electrical charge affects brush structure and may reduce the degree of 

interpenetration between opposing brushes 21, and secondly it has been suggested that bound 

hydration layers around charged groups can have a lubricating effect 22, 23. 

Some previous surface force balance (SFB) studies of polyelectrolyte brushes have used 

brushes formed from diblock copolymers 17, 24-26. In particular, the friction between 

polyelectrolyte brushes has been studied using a system of diblock copolymers adsorbed to a 

hydrophobized mica surface via a hydrophobic block, with a block bearing negatively-charged 

carboxylate groups forming the brush 17. At moderate compressions the friction coefficient 

between such brushes was lower than that between either neutral polymer brushes or layers of 

adsorbed polyelectrolyte at comparable volume fractions. However, the brush was not stable 

under shear at high compressions, due to the relatively weak nature of the physical bonds 

between the diblocks and the surface. This is a disadvantage of most brushes formed from 

diblock copolymers, although this problem has recently been addressed by Liberelle and 

Giasson, who measured the friction between polyelectrolyte brushes formed from diblock 

copolymers, where the hydrophobic anchoring blocks were entangled with a preexisting 
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polymer layer, giving a stronger bond to the mica surface 20. A second disadvantage, which 

applies not only to diblock copolymers but to any method whereby brushes are formed by self-

assembly from preexisting polymers in solution – so-called grafting-to approaches – is that the 

maximum brush density that can be produced by grafting-to is kinetically limited 27-29.  This 

limitation arises from the fact that for a new chain to join the brush, its surface-active part must 

diffuse through the energy barrier created by the preexisting partially-formed brush. The 

magnitude of this barrier increases progressively with increasing brush density, so that the 

formation of high density brushes can take an impracticably long time. 

Polymer layers that are synthesized directly from the surface – so-called grafted-from layers 

– can avoid both the above disadvantages of diblock copolymer layers; high density layers that 

are strongly grafted to the surface can be produced 30. Polymer layers that are synthesized from 

the surface are typically produced by first functionalizing the substrate with a self-assembled 

coating of small molecules bearing polymerization initiator groups. The functionalized 

substrate is then incubated in a solution of monomer, and polymer chains grow out from the 

initiator sites. The polymer layer will be as strongly bound to the surface as the self-assembled 

monolayer on which it is grown, and the polymer layer density is not strongly kinetically 

limited, as only small monomer (and maybe catalyst) molecules need to diffuse through the 

partially formed polymer layer. 

In this paper, we synthesized grafted-from polyelectrolyte layers from a surface using atom 

transfer radical polymerization (ATRP), which has become popular for the synthesis of 

polymers with complex, well-defined architectures (for an introduction see Matyjazewski 31). 

ATRP is a method of carrying out free radical polymerization that minimizes unwanted 

reactions between adjacent chains and thus allows good molecular weight control. ATRP was 

first used to synthesize brushes by Ejaz et al. 32; for reviews of recent work, see Pyun et al. 33 

Edmondson et al. 34, Rühe et al. 35 and Ballauff and Borisov 36. Due to the versatility of ATRP, 

the experimental method described in this paper should be readily adaptable to permit SFB 
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studies of polymers that have been synthesized from a surface with a wide variety of 

functionalities and architectures.  

In order to synthesize a polymer brush by ATRP, it is necessary to first anchor molecules 

bearing initiator functional groups to the surface. For silicon oxide surfaces, an initiator 

molecule bearing a trifunctional silane has been used to form a self-assembled monolayer that 

is stabilized both by covalent bonding to the surface and by crosslinking 37. Indeed, this 

method has been used to perform an SFB experiment using neutral polymer brushes on a glass 

substrate 38. The traditional mica substrate for SFB is, however, preferable, since it can readily 

be cleaved into symmetric sheets for more accurate separation measurements. Stable silane 

monolayers can be formed on mica that has been pretreated with a water plasma to introduce 

pendant –OH bonds 39.  This method has been used in the context of SFB experiments to 

hydrophobize mica surfaces 39-41 and its plausibility as a method of covalently anchoring large 

molecules has been demonstrated in a study of protein immobilization 42. The covalent 

attachment of a silane-functionalized ATRP initiator to water plasma-treated mica surfaces, 

and the growth of a polymer layer from the surface, has recently been reported 43. In this paper, 

we have anchored trifunctional silane ATRP initiator molecules to a water plasma-treated mica 

surface as a prelude to synthesizing polyelectrolyte layers from that surface for SFB 

experiments. The polyelectrolyte layer was synthesized using the well-known acrylate ATRP 

method, and the monomer, 2-(methacryoyloxy)ethyl]trimethylammonium chloride (METAC) 

(structure in figure 1a), consists of a methacrylate to which a strong electrolyte group in the 

form of a quaternary ammonium chloride has been attached, so that the polymer chains are 

strongly positively charged in water. We have performed SFB measurements of normal and 

shear forces between the polyelectrolyte layers, characterizing the repulsive forces between the 

surfaces, the hysteresis when the surfaces are brought together and pulled apart, and the 

frictional force between the surfaces at high compressions. 
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The poly(METAC) layers used in this study differ from the classical idea of a 

polyelectrolyte brush, in that the positively-charged polyelectrolyte chains are likely to 

experience both electrostatic and hydrophobic attractions to the initiator-coated substrate 

surface (the latter arising from surface attachment of hydrophobic groups on the chain 

backbone), which may well retain some of the negative charge of the original mica. However, 

the normal forces between the polyelectrolyte layers strongly resemble those between brushes 

where there is no polyelectrolyte-surface attraction (see ‘Results and Discussion’). This may 

be understood with reference to the theoretical work of Zhulina et al. 44, who found that, for 

sufficiently large amounts of polyelectrolyte per unit area, polyelectrolyte molecules end-

grafted to oppositely-charged surfaces form a two-layer structure, with some polyelectrolyte 

adsorbed tightly to the surface, reversing the effective surface charge. The remaining 

polyelectrolyte chains stretch away from the now effectively like-charged surface, forming a 

classical polyelectrolyte brush. Surface-grown poly(METAC) layers have recently been 

observed to form such  two-layer structures in neutron reflectometry studies carried out using 

initiator-coated sapphire substrates which were hydrophobic (although not negatively charged) 

45. 

The normal forces between polyelectrolyte layers that adopt two-layer structures as 

postulated by Zhulina et al. should be similar to those between polyelectrolyte brushes on 

nonattractive surfaces, with the addition of a force arising when the compression of the brush 

layer causes additional polyelectrolyte molecules to adsorb to the surface, which will be 

hysteretic except at long timescales. It will be seen below that the normal forces between the 

poly(METAC) layers in this study do indeed show some hysteresis, the magnitude of which is 

however much less than that of the total repulsive force, so that it is appropriate to a first 

approximation to model the normal forces using theoretical ideas developed for non-adsorbing 

polyelectrolyte brushes. In contrast, it will be seen that polyelectrolyte-substrate attractions 

may have a dominant effect on the shear forces between the poly(METAC) layers. In the 
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remainder of this paper, we will refer to the surface-grown poly(METAC) layers as ‘brushes’, 

but the likelihood of attractive polymer-substrate interactions should be borne in mind. 

Experimental section 

Surface-grown polyelectrolyte layers 

Initiator-functionalization of mica surfaces 
Mica substrates were prepared for polyelectrolyte brush growth by functionalization with 

initiator groups, as follows. Freshly-cleaved mica surfaces were treated with an Ar/H2O plasma 

for 2 mins at 6.8 W radio frequency power (Harrick Basic Plasma Cleaner, Harrick Scientific 

Coorporation, Pleasantville, N.Y., U.S.A.), to introduce –OH groups to the mica surface and 

thus enable covalent attachment of methoxysilane molecules 37, 43. The mica surfaces were then 

reacted with silane initiator in the vapor phase, to avoid the possibility of surface 

contamination by polymerized particles that exists when silane layers are deposited from 

solution (shown by unpublished atomic force microscopy studies of (3-

aminopropyl)trimethoxysilane monolayers on silica substrates). The surfaces were placed in a 

2 l vacuum dessicator that also contained a beaker containing a solution of silane initiator, 3-

trimethoxysilylpropyl-2-bromo-2-methylpropionate (structure in figure 1b, 0.25 g) in 

anhydrous hexane. Silane initiator (custom synthesized by Gelest Inc., Morrisville, P.A., 

U.S.A.) was supplied as a liquid in 0.25 g aliquots in flame-sealed glass ampoules, 

refrigerated, and used within one year of receipt; no cloudiness was visible in these aliquots, 

suggesting that these precautions against silane polymerization were successful. The dessicator 

was pumped out for 5 minutes (Divac 0.6L pump with PTFE diaphragm from Leybold 

Vacuum, Germany, pump minimum  pressure ≤ 8 mbar), sealed for a chosen incubation time 

which was 1 hour in the case of the SFB experiments and then vented. 

Atom transfer radical polymerization (ATRP) 
 [2-(methacryoyloxy)ethyl]trimethylammonium chloride (METAC, structure in figure 1a) 

can be polymerized using the copper/2,2’-dipyridine catalyst system commonly used for 
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acrylate ATRP. The polymerization protocol used in this study was based on that of Osborne et 

al. 46 However, this protocol uses a methanol-water mixture, which attacks the Shell Epon-

1004 glue that is traditionally used in aqueous mica SFB experiments, as the reaction solvent; 

it was therefore desirable to use a pure water solvent. Naive implementation of the procedure 

of Osborne et al 46 with a pure water solvent resulted in a brush that terminated almost 

immediately, and could not thus be grown to a significant thickness (as measured using 

ellipsometry in ambient air (Picometer Elliposometer, Beaglehole Instruments, Wellington, 

New Zealand) on a dry brush grown on an initiated silicon wafer). This result was to be 

expected, since ATRP in aqueous solution in the absence of alcohols tends to become rapid 

and uncontrolled, due to the instability of the controlling copper complexes 47. In order to 

counteract this effect, a large excess of deactivating copper (II) chloride was used, and N,N'-

Bis[2-(dimethylamino)ethyl]-N,N'-dimethylethane-1,2-diamine (HMTETA) was used as the 

ligand to solubilize the copper ions, rather than the 2,2’-dipyridine used by Osborne et al. 46. 

Under these conditions, a brush of satisfactory thickness, as used in the SFB experiments could 

be grown in 15 minutes, giving the additional benefit that the polymerization could be carried 

out under ambient air rather than under an inert atmosphere, since termination due to ambient 

oxygen did not have time to occur. 

The detailed procedure for brush growth in SFB experiments was as follows. METAC 

solution (75 g of 75 wt.-% in water, Sigma-Aldrich U.K.) was mixed with 75 ml ultrapure 

water (purified by a Rios 5 – Gradient A10 system, Millipore Corp., Billarica, M.A., U.S.A.). 

Aqueous sodium hydroxide and hydrochloric acid were added dropwise to adjust the solution 

to pH 8.00 ± 0.15 (determined by using a pH meter to measure removed aliquots). To 50 ml of 

the resulting solution was added HMTETA (0.5 ml), copper (I) chloride (anhydrous, 0.036 g) 

and copper (II) chloride (anhydrous, 0.22 g), giving a molar copper (I) chloride to copper (II) 

chloride ratio of 2:9. The solution was stirred for around 15 minutes, then the initiator-

functionalized mica surface was incubated in it for 15 minutes. The mica (mounted on its 
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cylindrical lenses) was then removed, rinsed with ultrapure water, and immediately returned to 

the SFB and submerged in water. 

Samples for X-ray reflectometry measurements were prepared in a similar way, although on 

larger mica sheets rather than lens-mounted surfaces, but were blown dry with dry N2 

immediately after being rinsed with ultrapure water. 

Specular X-ray reflectometry 
Laboratory-based X-ray reflectometry (Bruker D8 Advance Reflectometer, Bruker AXS 

Inc., Madison, W.I., U.S.A., with a home-built sample stage, Cu Kα X-rays) was used to 

characterize ‘dry’ poly(METAC) brushes prepared as above. Film thicknesses were 

determined by fitting the reflectivity as a function of momentum transfer θ
λ
π 2sin4

=q , where 

λ is the X-ray wavelength and θ is the angle between the X-ray beam and the plane of the 

surface, using the Parratt algorithm 48 (Parrat32 software, Hahn-Meitner Institute, Berlin, 

Germany 49). Clear Kiessig (interference) fringes were observed, giving confidence in the 

values obtained. 

Surface force balance (SFB) 
The SFB technique has been described in detail elsewhere 50. Briefly, two pieces of mica of 

identical thickness in the range 1-5 µm and about 1 cm × 1 cm in area are half-silvered on one 

side, glued (Epon-1004 epoxy resin from Shell U.K., Ltd.) – silver side down – onto 

transparent silica cylindrical lenses and placed in the SFB, facing each other with their 

cylindrical axes crossed. The distance between the two silver layers is measured using white 

light multiple beam interference, and the distance, D, between the mica front surfaces can be 

inferred from this after calibration of the mica thickness. In this paper, the distance resolution 

was about ± 0.5 nm; resolution as high as ± (0.1 – 0.2) nm can be obtained if required. The 

purpose of the SFB is to measure the interaction force as a function of surface separation, D. 

The surfaces can be driven together or apart, using a mechanical drive or a piezoelectric 
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crystal. One surface is mounted on a spring: the deflection of the spring gives the normal force 

between the two surfaces. The normal force resolution depends on the spring constant, and was 

typically ± 0.1 µN.  The measured normal force between the two cylindrical mica surfaces, 

F(D), can be related to the interaction free energy per unit area between two parallel plates, 

W(D), via the Derjaguin approximation 51 

)()(2)( 2/1
21 DWRRDF π= ,        (1) 

where R1, R2 are the radii of curvature of the crossed cylinders. 

In addition to normal force measurements, we will also present measurements of the shear 

force between the surfaces. A sectored piezoelectric crystal is used to drive the top surface, 

which is connected to the SFB housing via a lateral spring, in a direction parallel to the bottom 

surface, which cannot move laterally. If there is a shear force between the surfaces, the lateral 

spring deflects, and this deflection is measured by an airgap capacitor (Accumeasure, MTI 

Instruments Inc., Albany, N.Y., U.S.A.). The shear force is the product of the measured 

deflection with the known spring constant of the lateral spring. The shear force resolution is 

limited by mechanical noise, and in this paper was around ± 4 µN. (A resolution as good as  ± 

20 nN can be obtained optimally by reducing mechanical noise and using digital signal 

filtering 52.) 

Procedure 
To ensure freedom from particulate contamination, all preparations were carried out in a 

laminar flow cabinet. Glassware was cleaned using a mixture of hydrogen peroxide and 

sulfuric acid in roughly 1:3 ratio, rinsed with ultrapure water then ethanol, and blown dry with 

N2. Stainless steel parts, and the PTFE tubes used to inject fluids into the SFB, were incubated 

in 30% nitric acid at 60-80 ºC for around half an hour before being similarly rinsed and dried. 

Gas-tight syringes (Hamilton Company, Reno, N.V., U.S.A.) used for fluid injection were 

cleaned with a Tipcleaner (BioForce Nanosciences Inc., Ames, I.A., U.S.A.) 
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The mica pieces used in this study were obtained by cutting the cleaved mica with a heated 

platinum wire. It has been observed that this method can contaminate the surfaces with 

platinum nanoparticles 53, however in this study the mica was always held upstream of the 

platinum wire in the laminar flow. This method of cutting has been shown to produce surfaces 

that are free from platinum nanoparticles, except very near the edges where the surfaces are not 

used 54, and to produce results in SFB experiments that are identical to those produced using 

mica prepared without hot wire cutting 55. 

Immediately after the mica surfaces had been glued to the silica lenses, they were mounted 

in the SFB and brought into contact in dry air to establish that they were free from 

contamination and to determine the zero of surface separation. The surfaces were then 

dismounted, surface functionalization was carried out, and the surfaces were remounted in the 

SFB, whereupon measurements were carried out. This procedure introduced an error of 

typically ± 0.5 nm into the zero of surface separation, since it was difficult to control precisely 

the relative orientation of the mica sheets on remounting. 

Results and discussion 

Characterization of initiator layer and brush growth 
Figure 2a shows the X-ray reflectivity, R, as a function of momentum transfer, q, from a 

silane-initiator-functionalized mica substrate. Due to the presence of a visible Kiessig fringe 

arising from interference between reflection at the top and bottom interfaces, the thickness of 

the initiator layer can be determined as described in the ‘Experimental section’. This gives a 

value of 10.5 ± 1.0 Å, consistent with the structure of the initiator molecule 56.  

When poly(METAC) layers were grown on initiator-functionalized mica substrates and then 

blown dry, their X-ray reflectivity profiles showed Kiessig fringes whose spacing was much 

lower than for an initiator-only substrate (figure 2b shows a typical example), confirming that 

poly(METAC) growth had occurred. The layer thickness can be used to determine the amount 

of poly(METAC) per unit area, Γpoly, since the poly(METAC) layers are likely to contain 
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around 86% water, as deduced from neutron reflectometry measurements on a similar 

poly(METAC) layer  on a sapphire substrate 45. The measured X-ray reflectometry profiles 

also confirmed that mica substrates were uniformly covered by the poly(METAC) layers, since 

the electron density values obtained by fitting were equal within the scatter to that expected for 

a continuous film of poly(METAC) and water, rather than the lower value that would have 

been given by an incomplete layer. 

As a control experiment to confirm that the observed layers were indeed formed by ATRP, a 

sample was prepared using a much higher ratio of copper (II) to copper (I) than usual, with the 

aim of almost completely suppressing polymer growth by ATRP, while leaving other 

conditions unchanged 57. The layer thickness, including the initiator layer, was reduced in the 

case of high copper (II) to 14.5 ± 2 Å (Γpoly = 0.06 ± 0.03 mg/m2), compared to 95 ± 10 Å (Γpoly 

= 1.20 ± 0.15 mg/m2) for the same conditions but using the usual copper (I) to copper (II) ratio. 

This confirms that the observed layer formation occurs by ATRP of poly(METAC). 

Using similar X-ray reflectometry measurements, we were able to determine how the amount 

of poly(METAC) varied with the conditions under which the mica was initiator-functionalized. 

Two otherwise identical samples were prepared with (d = 270 ± 10 Å, Γpoly = 3.65 ± 0.15 

mg/m2) and without (d = 85  ± 10 Å, Γpoly = 1.05 ± 0.15 mg/m2) Ar/H2O plasma treatment; the 

much greater thickness of the former layer shows that Ar/H2O plasma treatment has a 

beneficial effect on the coverage and/or stability of the silane initiator layer. This could be due 

to covalent bonding of silane molecules to surface –OH groups introduced by the plasma 39. 

The dependence of poly(METAC) layer thickness on the incubation time in the silane 

initiator/hexane vapour, tinc, was also examined (figure 2c, polymerization conditions identical 

for all three samples). The dry poly(METAC) layer thickness increased with the incubation 

time, presumably because the coverage of silane initiator on the surface increased, but did not 

reach a plateau before at least 30 hours, suggesting that the silane initiator layer takes at least 

this long to reach saturated coverage. 
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For the SFB experiments, we chose an incubation time of 1 hour (Γpoly = 0.53 ± 0.14 mg/m2, 

from the data of figure 2c) in the hope that using this quite low polymer grafting density would 

enable the observation of a regime where the counterions to a polyelectrolyte brush are not 

fully confined within the brush. It will be seen below that we did indeed observe such a 

regime. 

Control experiments 
In order to characterize the polyelectrolyte layer synthesis procedure, forces in water 

between plasma-treated mica surfaces and between silane-initiated mica surfaces were 

measured using the SFB. Figure 3a shows the normal forces in pure water between mica 

surfaces that were treated with an Ar/H2O plasma as described in the ‘Experimental section’. 

The surfaces experienced a long range repulsion consistent with the presence of an electrical 

double layer force between the surfaces, which can be fitted with the linearized Poisson-

Boltzmann equation 51,58 

( D
Tk

eTk
RDF

B

B κ
ψ

κ
ρπ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= exp

4
tanh

128
/)( 020 ) ,      (2) 

where F(D) is the force, R is the radius of curvature,  kB is the Boltzmann constant, ρ0 is the 

background number density of 1:1 electrolyte, ψ0 is the surface potential (assumed constant), 

and 1−κ is the Debye length, defined by 59 

Tk
e

B0

2
02 2

εε
ρ

κ = .           (3) 

The obtained fitting parameters are ψ0 = 130 mV and ρ0 = 3 × 10-5 M. The value of ρ0 is 

within the range of literature values reported for SFB experiments in nominally ultrapure 

water, and may arise from residual ions leached from the glassware and dissolved carbon 

dioxide from the air 54. When the surfaces were brought close together (  nm), they 

jumped spontaneously into adhesive contact, with an interfacial energy γ ≥ 3.2 mJ/m2 

(calculated from the pull-off force, Fpulloff, using the Johnson-Kendall-Roberts (JKR) theory 51, 

3
07+

−≤D
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Raccording to which / 3pulloffFγ π= ). The values of ψ0 and γ are similar to those typically 

observed for mica that has not been plasma treated 17, 60, 61, showing that the charge and 

roughness of the mica surface have not been significantly altered by the plasma treatment. 

Shear forces between plasma treated surfaces were measured during the jump in to adhesive 

contact, and showed no significant coupling between the mica surfaces prior to adhesive 

contact. 

Figure 3b shows normal forces between mica surfaces that had been coated with silane 

initiator following plasma treatment (mica-vapor reaction time 1 hour). The surfaces 

experienced a long-range exponentially decaying repulsion presumably arising from an 

electrical double layer,  with a decay length corresponding to a plausible background 1:1 

electrolyte concentration of 4 × 10-5 M, followed by a jump into adhesive contact. The jump 

indicates that the surfaces were free from contamination. The presence of the electrical double 

layer force indicates that the mica surface retained some negative charge after the silanization 

process. 

Normal forces in pure water 
The measured normal forces in water between mica surfaces bearing poly(METAC) brushes 

are shown in figure 4, with 4a, 4b and 4c representing results from different experiments and 

contact positions. A typical force profile from figure 4a is shown on figures 4b and 4c; it can 

be seen that similar results were obtained across different contact positions and experiments, 

showing that the surface functionalization and brush growth procedures produced largely 

homogeneous and reproducible surfaces. The force profiles show a long-range exponentially-

decaying force which may be attributed to an electrical double layer interaction, since it has an 

appropriate decay length (corresponding to a background 1:1 electrolyte concentration of order 

10-5 M), and disappears on the addition of 10-2 M 1:1 electrolyte (see below). Exponential fits 

to this electrical double layer force are shown by the solid and dotted lines in figure 4. At 

smaller surface separations there is a more rapidly-increasing force, which may be attributed to 

 



the compression of the poly(METAC) brushes, after they have come into contact and which 

we will refer to as the ‘steric’ force.  

The forces between polyelectrolyte brushes have been modeled theoretically 24, 62, 63. Pincus 

62 describes two limiting regimes for brushes in pure water: the osmotic regime, where the 

brush is sufficiently dense and highly-charged that all its counterions are confined within it, 

and the so-called Pincus regime, which occurs for less dense or less highly-charged brushes, 

where the counterions extend far beyond the brush, with the counterion decay length away 

from the surface being much greater than the brush height. The presence of significant long 

range electrical double layer forces in figure 4 shows that the counterions in our system 

extended some way beyond the brush, so that our system shows an important qualitative 

feature of the Pincus regime. However, the full conditions for the Pincus regime are not 

fulfilled since the measured Debye length is only about twice the brush height, and the 

quantitative predictions associated with this regime will therefore not apply. 

Importantly, the measured electrical double layer repulsion can be shown to have arisen from 

the electrical charge of the poly(METAC) layers, and not from any residual charge on the mica 

surfaces. This is because the magnitude of the measured electrical double layer force is too 

large for the force to have arisen from repulsion between charged planes situated at the mica 

surfaces. It can be seen from equation (2) that, if the electrical double layer force between two 

charged surfaces separated by a distance D is written )exp(/)( DARDF κ−= , then the 

prefactor A cannot exceed a value κρπ /128 0max TkA B= . Since, for the data of figure 4, A > 

Amax, the electrical double layer force must arise from repulsion between electrical charges that 

lie above the mica surface, i.e. from the electrical charge on the polyelectrolyte. We can 

estimate the position of a nominal plane of charge, although the real charge on the 

polyelectrolyte is, of course, not located in a single plane. Assuming Tke B40 >>ψ , the 

nominal planes of charge can be shown to be located a distance ( ) ( )maxarg /ln2/1 AAL ech κδ =  

above each mica surface. The data of figure 4 give an average value of δLcharge = 22 ± 14 nm, 

15

 



which is less than the polyelectrolyte layer thickness as measured by the onset of the steric 

forces, further confirming our identification of the electrical double layer force with the charge 

on the polyelectrolyte. 

To attempt to determine the structure of the brushes studied, the fitted long range 

exponential forces, extrapolated back to the apparent onset of the steric forces, were subtracted 

from the measured forces, leaving the steric forces. The steric forces thus determined are 

shown in figure 5. It can be seen that the steric force increases rapidly from an onset distance 

of around 60 ± 10 nm, which may be taken to be twice the height of the polyelectrolyte layers. 

The hysteresis between approaching and receding curves is small in comparison to the total 

normal force, showing that any attractive forces between the extended polymer chains and the 

substrate surface are small in comparison with the repulsive force. This indicates that the 

poly(METAC) layer is better thought of as a polyelectrolyte brush than as a layer of adsorbed 

polymer. The small hysteresis that does occur could arise from bridging effects due to the 

partial adsorption of polymer molecules to the opposite surfaces during interpenetration of the 

polymer layers, or from the compression-induced adsorption of polymer molecules to their 

own anchoring surfaces. The significant observed shear forces (see “Shear forces” below) 

indicate that at least part of the normal force hysteresis is likely to derive from bridging effects. 

In order to obtain a greater understanding of the data of figure 5, we can compare them with 

a simple scaling model of polyelectrolyte brushes, first developed by Pincus 62. This model 

assumes that brush behaviour is determined by the balance of the osmotic pressure due to 

trapped counterions, which tends to swell the brush, with the entropic elasticity of the polymer 

chains, which tends to shrink it. The interaction free energy between the surfaces, W(D), is 

then given by , where ( )∫ +≅
2/

0

)()(2)(
D

L
elosm LfLfdLDW ( ) TkLsNf Bosm

2/α≅  is the osmotic 

force and ( ) TksNaLf Bel
22/≅ is the elastic force, where L is the brush height, s is the spacing 

between adjacent anchored chain ends, N is the  degree of polymerization, a is the Kuhn step 
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length, α is the fraction of monomers that are charged and the symbol ≅  means equal to within 

an unknown prefactor of order unity (see Balastre et al. for a detailed discussion 24). The 

parameter L0 is the uncompressed height of a brush that contains all its counterions, and is 

given by 24 . Using the Derjaguin approximation (1), the force between two 

opposing brushes on curved surfaces is: 

NaL 2/1
0 α≅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

02
/)(

L
DBgRDF ,         (4) 

where ( ) xxxg ln1)( 2
2

1 γγ −−= , where γ1, γ2 are constants of order unity, and 

. 2/2 sTNkB Bπα= TkB Bπ2/ is equal to within an order of magnitude to the number of 

charged monomers per unit area. γ1, γ2 can in theory each take any value of order unity, 

however, equation (4) is unphysical unless γ2 ≥ 2γ1 (see appendix). 

The solid lines in figure 5 show fits to the measured steric forces using equation (4). Only 

force profiles measured with the surfaces approaching one another were used for the fitting. In 

making the fits, emphasis was placed on fitting the data between F/R = 1 mN/m and 10 mN/m. 

The average value of L0, obtained from this fitting was 30 ± 8 nm. 

We estimate the polydispersity in our polyelectrolyte layer from literature values to be in 

range Mn/Mw = 1.2 – 1.5 33. Such a polydispersity should lead to a slower decay of the steric 

force at high distances than predicted by the scaling model, due to the tendency of longer 

polymer chains to extend further away from the substrate surface. It can be seen from figure 5 

that this expected deviation of the scaling theory fits away from the measured data does indeed 

occur.  

Fitting with the scaling theory gives values of L0, and of B, which can be used to collapse all 

force profiles onto a single curve, confirming their common shape. 

Defining , , equation (4) can be writtenBRFy /)/(= 02/ LDx = )(xgy = , with g(x) defined as 

before. Figure 6 shows the approaching steric force profiles from figure 5, plotted as (F/R)/B 
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versus D/2L0, and also shows a plot of equation )(xgy = . It can be seen that this scaling 

process does indeed collapse all force profiles onto a common curve. 

We now estimate the degree of polymerization, N, and the spacing between adjacent 

polymer chain anchor points, s, from the value of L0 obtained from fitting and the total amount 

of polymer per unit area obtained from X-ray measurements on the dry brush (see “Dry brush 

characterization”). From the scaling theory expression  64, we obtain N = 120 ± 30 

and s = 9 ± 2.5 nm, estimating the Kuhn step length a from literature light scattering data. 

Recalling that L0 = 30 ± 8 nm, this estimate is consistent with the idea that adjacent polymer 

chains are overlapping, and the system is indeed in a brush-like, rather than a mushroom-like 

regime. 

NaL 2/1
0 α≅

Normal forces with added electrolyte 
We now describe measurements of the normal forces between mica surfaces bearing 

poly(METAC) brushes in aqueous solutions of sodium nitrate. Nitrate ions were used as these 

are known to screen the charges, but do not introduce counterion-specific effects such as have 

been observed in some other systems 30, 65-67. After the normal force profiles in pure water 

shown in figure 4b had been measured, some of the water was removed from the SFB and 

replaced with an aqueous solution of sodium nitrate, giving an overall concentration of sodium 

nitrate in the SFB of  M. Normal force profiles were then measured. 

Subsequently, the procedure was repeated using a more concentrated solution, raising the 

concentration to  M. 

23.0
2.0 1050.1 −+

− ×

118.0
14.0 1022.1 −+

− ×

The measured normal force profiles in 1.50 × 10-2 M and 1.22 × 10-1 M solutions were 

essentially identical, and are shown in figure 7. The long-range force that was present in pure 

water was not visible in these profiles, as can be seen by comparaison with the representative 

pure water force profile shown (dashed line in figure 7, data from figure 4a). This helps to 

confirm that the long-range force in pure water arose from an electrical double layer, since 
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electrical double layer forces fall off rapidly with distance at such high electrolyte 

concentrations, as can be seen from equations (2) and (3). 

Figure 7 also shows the steric forces in pure water at the same contact position as the 

electrolyte measurements (data from figure 5a, shown by hatched area between dotted lines to 

allow for scatter). The forces in electrolyte solution are lower than the steric forces in pure 

water for any given surface separation, D, down to roughly D = 5 – 10 nm. This suggests that 

the brush has contracted on the addition of electrolyte, which is in accordance with theoretical 

expectations, since the range of electrostatic interactions decreases due to screening effects at 

high electrolyte concentrations, and with previous observations 24, 30, 68, 69. The observed 

contraction is greater in the outer part of the brush. This is as expected, since the outer part of 

the brush must have a lower density of monomers and thus of counterions, and strong 

contraction is predicted to occur only when the electrolyte concentration is equal to or greater 

than the counterion concentration  62. No significant further contraction is observable following 

the increase of the electrolyte concentration from ~10-2 M to ~10-1 M. 

Shear forces 
Shear force measurements were carried out immediately after the first approaching normal 

force profile shown in figure 4b with the surfaces still close together. A typical shear force 

trace is shown in figure 8. The top surface is moved parallel to the bottom surface, so that the 

lateral displacement of the top surface follows a triangular wave. When the displacement is 

small, the bottom surface is rigidly coupled to the top surface and so moves along with it, 

deflecting the SFB lateral springs (see ‘Experimental section’), in response to the shear force 

between the surfaces. When this force becomes great enough, the surfaces begin to slide past 

one another, during which time the shear force is constant; the value of this constant force is 

known as the ‘sliding friction’, Fs. When the direction of the applied motion is reversed, the 

process repeats itself. 
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Figure 9a shows the sliding friction as a function of the applied shear rate , 

where vappl is the applied speed of lateral motion of the top surface, and D = 3 ± 1 nm 

throughout these measurements. The measured forces are of order 10 µN, and increase slowly 

with the shear rate. These frictional forces could plausibly arise from bridging between the 

surfaces, arising from the adhesive forces between the surfaces the presence of which is 

suggested by the observed hysteresis in the normal force profiles (see ‘Normal forces in pure 

water’). These adhesive forces are likely to be electrostatic attractions between the 

poly(METAC) and the oppositely-charged surface and/or hydrophobic attractions between the 

silane initiator surface and the poly(METAC) backbone. The sliding shear stress is of order 104 

Pa; this was estimated by using the Hertz model of nonadhesive contact between elastic bodies 

to estimate the contact area, and assuming an elastic modulus for the mica-glue combination of 

order 109 Pa 70. 

Dvappl /=
•

γ

The increase in shear force at increased applied shear rate can be understood, if the forces do 

arise from bridging, by considering the ‘breaking’ of a bridge by desorption of the polymer 

chain from the opposite surface as a stochastic event that, in the absence of an applied shear 

stress, would require a potential barrier to be overcome by thermal fluctuations. The 

application of a shear stress reduces the potential barrier for bridge breaking, and thus reduces 

the typical timescale on which it occurs. The faster the surfaces are slid past one another, the 

shorter the timescale on which bridges must be broken, and so the higher the shear stress, in 

accordance with figure 9. Similar ideas have been pursued quantitatively, giving an expression 

for the shear force of the form 71 . Figure 9b shows a log-linear plot of 

shear force vs. shear rate, with a fit to this equation. The measured shear forces are consistent 

with this model, helping to confirm that bridging may indeed be the explanation for the 

observed friction. 

γ&lnXWFshear +=

Despite bridging effects, the polyelectrolyte layers still provided some lubricating effect at 

high surface separations. Subsequent measurements (not shown) suggest that the shear force 
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was below readily detectable levels (i.e. below about 1 µN) down to around D = 30-40 nm, 

significantly after the brushes came into contact (D = 60 – 70 nm). The shear force is in 

general likely to be highly dependent on the grafting density of the polyelectrolyte layer. 

One of the original aims of this investigation was to produce brush-like polyelectrolyte 

layers that were sufficiently strongly bound to the mica surface to allow SFB studies of friction 

at high compression; it can be seen from the measurements just described that this has been 

achieved. The subsequently measured normal force profiles (figure 4a) confirm that no 

significant amounts of polymer were removed from the surface as a result of shearing at high 

compressions, since the normal forces at high compressions, which are a good indicator of the 

amount of polymer on the surfaces, were similar before and after shearing. It is thus clear that 

the surface-grown polyelectrolyte brushes described in this paper represent a qualitative 

improvement in terms of mechanical stability on the diblock brushes used in a previous study 

of polyelectrolyte brush friction 17. 

Conclusions 
We have measured normal and shear forces between mica surfaces bearing polyelectrolyte 

layers that were synthesized from the surface by ATRP.  

Normal force measurements revealed a long-range electrical double-layer force, and a 

shorter-range steric force that could be fitted with the Pincus theory 24, 62.  Upon addition of 

sodium nitrate at concentrations of up to 10-1 M, screening effects reduced the long-range 

electrical double layer force to an undetectable level. 

Measurements of shear forces between the polyelectrolyte layers showed sliding friction 

with sliding shear stresses of order 104 Pa. These frictional forces could plausibly arise from 

the presence in our system of adhesive bridging forces between the surfaces in our system, 

which is suggested by a slight hysteresis in the normal force profiles. The poly(METAC) 

layers withstood shear at high compressions without large amounts of polymer being removed 
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from the surface, emphasizing the potential advantages of polyelectrolyte layers that have been 

synthesized from the surface. 
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Appendix: Scaling prefactors in equation (4) 
 

This appendix describes why equation (4) 24, 
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,         (A.1) 

where 

( ) xxxg ln1)( 2
2

1 γγ −−= ,         (A.2) 

results in physically meaningful forms for F(D) only when 12 2γγ ≥ . (Recall that γ1 and γ2 can 

in theory take any value of order unity.) 

For F(D) to be physical, g(x) must fall monotonically to zero at , when the brushes 

disengage from each other. The value of g(x) for  is not important, as in this regime, the 

force is zero and is no longer given by equation (A.1). Note that g(x) has been deliberately 

constructed so that g(x=1) is equal to zero for all values of γ1 and γ2. However, it turns out that 

for certain values of γ1 and γ2, g(x) does not monotonically decrease for x < 1. 

1=x

1>x

As g(x) is the sum of a monotonically increasing and a monotonically decreasing function, it 

must have a single stationary point. Since g(x) is large and positive in the limits  and 0→x

∞→x , the single stationary point must be a minimum. There are then three possible 
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scenarios, depending on the values of γ1 and γ2. Let x be the value of x when g(x) is at a 

minimum. If 1<x , then  has a root for 0)( =xg 1<x , as well as the omnipresent root at 

. If 1=x 1=x , then  has two repeated roots at 0)( =xg 1=x . Finally, if 1>x , then g(x) has a 

root at  and one at  only. The first two of these scenarios are physically acceptable, 

whilst the scenario 

1=x 1>x

0<x  is not, since g(x) falls unphysically to zero and beyond for 1<x . To 

obtain a physically acceptable g(x), we must thus choose γ1 and γ2 such that 1≥x . 

Setting ( ) 0==xxdxdg , we find that 

1

2

2γ
γ

=x            (A.3) 

so that to obtain 1>x , we require 

12 2γγ ≥ .           (A.4) 
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Figure 1. The structures of a) [2-(methacryoyloxy)ethyl]trimethylammonium chloride 

(METAC) (polymerization is about the C=C double bond) b) 3-trimethoxysilylpropyl-2-

bromo-2-methylpropionate (silane initiator). 
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Figure 2. a) X-ray reflectivity from a silane initiator-functionalized mica surface: reflectivity, 

R, vs. momentum transfer, q. b) X-ray reflectivity from a mica surface on which a 

poly(METAC) brush has been grown from a silane initiator layer. Kiessig fringe are visible in 

both cases. c) The effect of the incubation time, tinc, of the mica in the silane initiator/hexane 

vapour on the polymer layer ‘dry’ thickness, d, measured using X-ray reflectometry. Error bars 

represent the uncertainty in the fitting. The point at around 15 hours is derived from the 

reflectivity profile shown in (b). 
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Figure 3. SFB control experiments. a) Normal forces in water between mica surfaces that have 

been treated with an Ar/H2O plasma. Filled ( , , , , , , , ) and open ( , , , , ) 

symbols respectively indicate force profiles measured at two different contact positions. The 

solid line shows a fit to equation (2), with ψ0 = 130 mV and κ given by equation (3) with ρ0 = 3 

× 10-5 M. b) Normal forces in water between mica surfaces bearing a silane initiator layer. 

Symbols show measured force profiles, in chronological order: , , . The solid line shows 

an exponential fit with the slope κ given by equation (3) with ρ0 = 4 × 10-5 M.  Insets show the 

same force profiles as the main graphs, on linear scales, so that the jump into adhesive contact 

can be seen. Inset to a): the measured lower limit on the magnitude of the pull-off force was 30 

mN/m, marked by the solid line. 
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Figure 4. Normal forces in water between surface-grown poly(METAC) brushes. Filled 

symbols show approaching and open symbols receding force profiles, from different contact 

positions within a given experiment (a), b)) and from a second experiment (c)) Symbols show 

measured force profiles in chronological order for each sub-figure: a) , , , , , , , , 

, b) , , , , , ,  c) , , , , , , , . Solid lines show fits to equation (2) with 

the following values: a) κ -1 =  nm, giving ρ0 = 2.5 ± 0.3 × 10-5 M, b) κ -1 =   nm, 

giving ρ0 = 2.0 ± 0.3 × 10-5 M, c) κ -1 =  nm, giving ρ0 =  × 10-5 M. Dotted lines 
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show extrapolations of fits below D = 2δLcharge as a guide to the eye. Dashed lines in b) and c) 

show a typical force profile from (a) for comparison (  from (a)). 
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Figure 5. ‘Steric’ normal forces between mica surfaces bearing surface-grown poly(METAC) 

brushes. Symbols show the same force profiles as in figure 4, but with the long-range electrical 

double layer force removed as described in the text. The indicated errors arise from the 

uncertainty in the force onset distance. The solid line show fits to equation (4), with γ1  = 0.75, 

γ2 = 1.50 and: a) B = 3.5 mN/m, 2L0 = 60 nm, b) B = 7.0 mN/m, 2L0 = 76 nm, c) B = 9.0 
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mN/m, 2L0 = 46 nm. The electrical double layer force was fitted and subtracted separately for 

each measured force profile. 
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Figure 6. ‘Steric’ normal forces in water between mica surfaces bearing surface-grown 

poly(METAC) brushes, plotted in terms of the dimensionless variables (F/R) / P and D / 2L0, 

where P and L0 were determined for each experiment or contact position by the fits shown in 

figure 5. ‘Steric’ force profiles from different experiments and contact positions are thus 

collapsed onto a universal curve. Approaching force profiles are shown, with data taken from 

figure 5a) , , , , , , , 5b) #, *, ×, +, 5c) , , , ,  . The solid line is a plot of 

as described in the text, with γ1 = 0.75, γ2 = 1.50. )(xgy =
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Figure 7. Normal forces between surface-grown poly(METAC) brushes in electrolyte 

solutions.  Filled symbols show approaching and open symbols receding force profiles, 

measured in  M (23.0
2.0 105.1 −+

− × , , , , , , , , ) and  M (118.0
14.0 1022.1 −+

− × , , , , 

, , ) aqueous solutions of sodium nitrate. For comparison, the dashed line (----) shows a 

normal force profile in pure water (  from figure 4a) and the hatched area between dotted lines 

(····) shows the approximate area within which the steric force profiles lie (figure 5a) (all force 

profiles shown were measured at the same contact position). 
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Figure 8. Typical shear forces in water between mica surfaces bearing surface-grown 

poly(METAC) brushes, measured immediately after the first approaching normal force profile 

shown in figure 4b, at D = 3 ± 1 nm. a) The applied relative displacement of the surfaces (right 

axis): a triangular wave with peak to peak distance 0.5 µm. b) The resultant shear force (left 

axis). The magnitude of the sliding friction between the surfaces is given by the plateau height 

Fs. The timescale is the same in a) and b). 
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Figure 9. Sliding friction in water as a function of shear rate for mica surfaces bearing surface-

grown poly(METAC) brushes. Measurements taken at D = 3 ± 1 nm, measured immediately 

after the first approaching normal force profile shown in figure 4b with Fs determined as 

shown in figure 8. The same data are plotted on a) linear-linear and b) log-linear axes. The 

solid line in b) shows a theoretical fit as described in the text. 
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