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Abstract

We show that the Scott topology induces a topology for real-valued Lips-
chitz maps on Banach spaces which we call the L-topology. It is the weakest
topology with respect to which the L-derivative operator, as a second or-
der functional which maps the space of Lipschitz functions into the function
space of non-empty weak* compact and convex valued maps equipped with
the Scott topology, is continuous. For finite dimensional Euclidean spaces,
where the L-derivative and the Clarke gradient coincide, weprovide a simple
characterisation of the basic open subsets of the L-topology in terms of ties
or primitive maps of functions. We use this to verify that theL-topology is
strictly coarser than the well-known Lipschitz norm topology. A complete
metric on Lipschitz maps is constructed that is induced by the Hausdorff
distance, providing a topology that is strictly finer than the L-topology but
strictly coarser than the Lipschitz norm topology. We then develop a funda-
mental theorem of calculus of second order in finite dimensions showing that
the continuous integral operator from the continuous Scottdomain of non-
empty convex and compact valued functions to the continuousScott domain
of ties is inverse to the continuous operator induced by the L-derivative. We
finally show that in dimension one the L-derivative operatoris onto and that
it is a computable functional.

Key Words: Domain theory, Clarke gradient, Weakest topology, Second order
functionals, Hausdorff metric, Fundamental Theorem of Calculus.
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1 The case for Lipschitz maps in computation

Real-valued Lipschitz maps on Euclidean spaces have a number of fundamental
properties that make them into a suitable class of functionsin a variety of contexts
with wide applications in pure and applied mathematics. Forthese, they are the
appropriate choice of functions in many different areas of computation.

Closed under composition and sitting between the class of continuous func-
tions and those of continuously differentiable functions,Lipschitz maps contain
the important class of piecewise polynomial functions, which are widely used in
geometric modelling, approximation and interpolation andare supported in Mat-
Lab [8]. They are uniformly continuous and have much better invariant properties
than differentiable maps as they are closed under the fundamentalmin andmax
operations. Lipschitz maps with uniformly bounded Lipschitz constants are also
closed under convergence with respect to the sup norm. In thetheory and appli-
cation of ordinary differential equations, Lipschitz mapsrepresent the most funda-
mental class of maps in view of their basic and essentially unrivalled property that
a Lipschitz vector field inRn has a unique solution in the initial value problem [7].

In a more theoretical direction, Lipschitz maps are, by Rademacher’s theorem,
differentiable almost everywhere on finite dimensional Euclidean spaces [6, page
148], and by Kirszbraun theorem [25, page 202], enjoy the desirable property that
they can be extended from any subset of a Hilbert space to the whole space with the
same Lipschitz constant. Lipschitz maps are at the very foundation of non-linear
functional analysis [2] and have been the subject of a hugelygrowing research in
the theory of manifolds including Riemannian surfaces at the forefront of develop-
ment of mathematics in relation to theoretical physics [3].

In recent years a new notion of derivative for Lipschitz mapshas emerged that
extends the classical (Fréchet) derivative for continuously differentiable functions
and is moreover always defined and continuous with respect towhat is in fact the
Scott topology on a domain. The Scott topology [1, 26], whichhas proved to be an
essential tool in the theory of computation, has now found a new area of application
in mathematical analysis.

In 1980’s, motivated by applications in non-smooth analysis, optimisation and
control theory, Frank Clarke developed a set-valued derivative for real-valued Lip-
schitz maps on Euclidean spaces, which is now called the Clarke gradient [5]. On
finite dimensional Euclidean spaces, the Clarke gradient has non-empty compact
and convex subsets of the Euclidean space as its values. For example, the absolute
value function, which is not classically differentiable atzero, is a Lipschitz map
that has Clarke gradient[−1, 1] at zero.

It is of great interest to computer science that the Clarke gradient of a Lipschitz
map is upper semi-continuous as a function, i.e., it is continuous with respect to the
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upper topology on the hyperspace of the non-empty compact and convex subsets
of the Euclidean space. In finite dimensions, the upper topology coincides with
the Scott topology on the hyperspace when it is ordered by reverse inclusion (i.e.,
its specialisation order). It is however unknown if on infinite dimensional Banach
spaces the Clarke gradient, which takes non-empty weak* compact and convex
subsets of the dual of the Banach space as its values, remainsScott continuous.

Despite the central place Lipschitz maps occupy in many branches of compu-
tation as well as in pure and applied mathematics, they have not yet been a subject
of study in computable analysis to the extent that no mentionof Lipschitz maps
can be found in the standard texts in computable analysis [31, 36].

In [16], a domain-theoretic derivative was introduced for real-valued func-
tions of the real line, which was later extended to higher dimensions [17, 13] and
shown to be mathematically equivalent to the Clarke gradient in finite dimensional
spaces [13]. The L-derivative, as the domain-theoretic derivative is now called, has
a number of distinct features compared with the Clarke gradient:

(i) The L-derivativeLf of a Lipschitz mapf is constructed using finitary dif-
ferential properties off that allow a natural way of approximating the L-
derivative using domain theory.

(ii) The domain-theoretic setting provides a fundamental theorem of calculus for
Lipschitz maps, a duality between primitive maps and their L-derivatives,
that extends the classical theorem in calculus for continuously differentiable
functions to Lipschitz maps.

(iii) The L-derivative gives rise to a continuous Scott domain with an effective
structure for real-valued Lipschitz maps on finite dimensional Euclidean
spaces.

(iv) For Lipschitz maps on infinite dimensional Banach spaces, the L-derivative
remains Scott continuous, a result not known to hold for the Clarke deriva-
tive.

This work has led to a domain-theoretic framework for solving initial value
problems [15, 22, 18, 20] including the use of the “rectangular” L-derivative in the
second order Euler method [17], a domain-theoretic framework of the implicit and
inverse function theorem for Lipschitz functions [19] and adenotational semantics
for hybrid systems [21].

Two fundamental and related questions arise:

(1) What is the appropriate topology on the space of Lipschitz maps in compu-
tation?
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(2) Can we obtain a second order typed Fundamental Theorem ofCalculus with
a continuous derivative operator and a corresponding continuous integral op-
erator as inverses of each other?

We use two different methods, one classical and one domain-theoretic, to tackle
and answer the first question:

(i) We obtain the weakest (i.e., the initial) topology on thespace of Lipschitz
functions that makes the L-derivative operator, which mapsthe space of Lip-
schitz functions into the function space of non-empty compact and convex
valued maps equipped with its Scott topology, a continuous functional. This
is similar to characterising theC1 topology on continuously differentiable
real-valued maps as the weakest topology that makes the classical Fréchet
derivative operator continuous as a second order functional. It is also in
tune with the way some of the fundamental topologies, such asthe subspace
topology, the weak topology of a normed vector space and the weak* topol-
ogy on its dual are defined.

(ii) We obtain the topology on the space of Lipschitz maps that makes the in-
sertion of these maps onto the set of maximal elements of the domain for
Lipschitz maps a topological embedding. This is in line withconstructing
computational models for classical spaces in mathematics [12, 28] by em-
bedding them into the set of maximal elements of suitable domains.

These two approaches lead to an identical result: the Scott topology, both
on the hyperspace in (i) and on the domain of Lipschitz maps in(ii) above, in-
duces a topology for maps, called the D-topology, whose intersection with the
C0 norm topology provides a new topology, called the L-topology, for Lipschitz
maps. We show that for Lipschitz maps on finite dimensional Euclidean spaces,
the L-topology is strictly coarser than the well-known Lipschitz norm topology
for real-valued Lipschitz maps, which we now describe. Given any metric space
(X, d), the collection Lip(X, d) of bounded real-valued Lipschitz functions onX
is equipped with itsLipschitz norm‖ · ‖Lip defined as

‖f‖Lip = ‖f‖ + ‖f‖d (1)

where‖f‖ = sup{|f(x)| : x ∈ X} is the sup norm and

‖f‖d = sup{|f(x) − f(y)|/d(x, y) : x, y ∈ X,x 6= y}.

If (X, d) is complete then so is the Lipschitz norm [33].
The relationship between these topologies is depicted in the diagram below:
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C1 topology

Lipschitz norm topology

OO

L-topology

OO

C0 topology
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D-topology
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In the finite dimensional case, we derive an elementary characterisation of the
basic open subsets of the L-topology in terms of ties or primitive maps. This is used
to prove that the L-topology is strictly coarser than the Lipschitz norm topology.
In the one dimensional case, we further prove a density lemmafor Lipschitz maps
which we use to show that the basic open subsets of the L-topology are regular.

Using the Hausdorff distance between non-empty compact subsets of finite
dimensional Euclidean spaces, we also construct a completemetric for Lipschitz
maps which induces a topology strictly finer than the L-topology and strictly coarser
than the Lipschitz norm topology.

Next, we verify that in finite dimensions the domain-theoretic structure of the
space of non-empty compact and convex valued maps is preserved after restricting
to integrable maps and also after identifying maps that are almost everywhere the
same. This enables us to derive, for the first time using domain theory, a second
order typed fundamental theorem of calculus showing that the integral operation
and the induced L-derivative operation are continuous inverses of each other.

Finally, in dimension one, we are able to show that the L-derivative operator
is onto, a result which we use to prove that the L-derivative is a computable func-
tional.

In [4], a more recent application of domain theory in differential calculus, in
the context of viscosity solutions of Hamiltonian equations, is introduced which
uses what is called thestrong derivative. This notion is not directly related to our
work here since, as we will see, there are Lipschitz functions which have a non-
point valued Clarke gradient, equivalently, L-derivativeat every point and are not
strongly differentiable at any point.
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2 Lipschitz derivative

In this section we establish our notation, review the elements of the domain-theoretic
differential calculus that we need here and extend a number of key results previ-
ously only known in dimension one to higher dimensions that will be required in
this paper.

We consider continuous maps of typef : U → R whereU ⊂ R
n is an open

subset. The set of all such functions is denoted by(U → R). The choice ofU as
an open subset makes the extension of our results to infinite dimensional Banach
spaces smooth and uniform. But for finite dimensional spaces, we can also choose
U to be a regular compact subset such as[0, 1]n.

By a domain we mean a directed complete partial order (dcpo).We assume the
reader is familiar with the elements of domain theory, in particular the way-below
relation, continuous Scott domains, as well as the Scott andLawson topologies [1,
35, 26]. In particular, we recall that in any continuous domain D with a basis
B ⊂ D, subsets of the form↑↑x = {y : x ≪ y}, wherex ∈ B form a collection of
basic Scott open sets.

Let (C(Rn),⊑) denote the domain of all non-empty convex and compact sub-
sets ofRn, augmented with a least element denoted by⊥, ordered by reverse in-
clusion. The maximal elements are singleton sets{x} for x ∈ R

n; for convenience
we write any maximal element{x} simply asx. The dcpo(C(Rn),⊑) is a contin-
uous Scott domain as it is a continuous retract [1] of the upper spaceU(Rn), the
set of non-empty compact subsets ofR

n ordered by reverse inclusion, which is a
continuous Scott domain [11]. In fact, the convex hull mapH : U(Rn) → U(Rn)
that takes any non-empty compact subset to its convex hull isa Scott continuous
map withC(Rn) as its image. Whenn = 1, the dcpoC(R) is simply the domain
IR of the non-empty compact intervals ofR ordered by reverse inclusion.

The left and right end points of any non-empty bounded interval c ⊂ R is
denoted byc− andc+ respectively. Thus, a non-empty compact intervalc ⊂ R

is written in terms of its ends points asc = [c−, c+]. For any topological space
Y , a Scott continuous functionf : Y → IR is characterized by a lower and an
upper semi-continuous functions,f−, f+ : Y → R respectively, withf(x) =
[f−(x), f+(x)]; we writef = [f−, f+]. The scalar product of vectors inRn, i.e.,
the map− · − : R

n × R
n → R with x · y =

∑n
i=1 xnyn, is extended to a map

− · − : C(Rn) × R
n → IR with b · r = {z · r|z ∈ b}. The Euclidean norm‖z‖

of z ∈ R
n is given by‖z‖ =

√
z · z. For a subsetA of a topological space, Cl(A),

A◦, Ac denote the closure, interior and complement ofA respectively. IfA is a
subset of a metric space(Y, d) then for anyt > 0 we denote thet-neighbourhood
of A by At = {x ∈ Y : ∃y ∈ A. d(x, y) < t}.

For a topological spaceY , we denote its lattice of open subsets byO(Y ).
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Given a dcpoD with bottom⊥, the single-step functionbχa : Y → D, where
a ∈ O(Y ) is an open set andb ∈ D, is defined asbχa(x) = b if x ∈ a and⊥
otherwise. Thedomain, dom(f), of a Scott continuous functionf : Y → D is
given by dom(f) = {x ∈ Y : f(x) 6= ⊥}. SinceU with its Euclidean topology
is a locally compact Hausdorff space, its lattice of open subsets is continuous.
It follows by [26, Proposition II-420(iv)] (equivalently from [24]) that the space
(U → C(Rn)) of all Scott continuous functions ordered pointwise is a continuous
Scott domain and anyg ∈ (U → C(Rn)) can be expressed as the supremum of
single-step functions way-below it:g = sup{bχa : bχa ≪ g}. Lubs of finite and
consistent sets of such single-step functions form a basis for (U → C(Rn)). Note
that here we use the standard notation for step functions in terms of characteristic
functions as in [26].

Any single step function of typeU → C(Rn) defines a family of maps of type
U → R as follows [13]. We sayf ∈ (U → R) hasan interval Lipschitz constant
b ∈ C(Rn) in a convex relatively compact open subseta ⊂ U if for all x, y ∈ a
we have:b · (x− y) ⊑ f(x)− f(y), i.e.,f(x)− f(y) ∈ b · (x− y). Thesingle tie
of bχa, denoted byδ(bχa), is the collection of all real-valued continuous functions
f on U that have an interval Lipschitz constantb in a. Note that in our previous
work the notationδ(a, b) was used instead ofδ(bχa). The new notation emphasises
more explicitly the connection between a single-tie and itsassociated single-step
function, which is more convenient for expressing the results of this paper. If
f ∈ δ(bχa) thenf is Lipschitz ina with Lipschitz constant sup{‖z‖ : z ∈ b} and
the same is true for the extension off by continuity to Cl(a).

A tie is any intersection of single-ties. For any indexing setI, the family of
single-step functions(biχai

)i∈I is bounded in(U → C(Rn)) if
⋂

i∈I δ(biχai
) 6=

∅ [13, Proposition 3.9]. Moreover, ifsupi∈I biχai
⊑ supi∈J biχai

, then we have [13,
Corollary 3.12]:

⋂

i∈I

δ(biχai
) ⊇

⋂

i∈J

δ(biχai
).

It follows that any non-empty tie∆ =
⋂

i∈I δ(biχai
) is uniquely associated with

the Scott continuous functiong = supi∈I biχai
and we write∆ = δ(g). There-

fore, δ(g) is a family of Lipschitz functions whose local Lipschitz properties are
expressible by single-ties provided by the single-step functions belowg. We note
thatδ(g) is always non-empty forn = 1 but can be the empty set in higher dimen-
sionsn > 1. In [17, Section 6], an example of a step functiong for dimension
n = 2 is given withδ(g) the empty set. A functiong ∈ (U → C(Rn)) is called
integrableif δ(g) 6= ∅.

Let (T(U),⊇) be the partial order of ties of continuous functions of typeU →
R ordered by reverse inclusion. The set of L-primitives of a Scott continuous
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function is precisely the tie associated with it. TheL-primitive mapis defined by
∫

: (U → C(Rn)) → T(U)
f 7→ δ(f).

The set
∫

f is the collection of theL-primitivesof f and the map
∫

is continuous
with respect to the Scott topologies on(U → C(Rn)) andT(U). In this paper,
it is convenient to useδ(g), wheneverg is a step function, i.e. the lub of a finite
bounded set of single-step functions, and use

∫

g for a general Scott continuous
function.

The interval Lipschitz constants for a map provide us with its local differential
properties, which can be collected to define its global derivative. TheLipschitz
derivativeor theL-derivativeof a continuous functionf : U → R is accordingly
defined as the Scott continuous map

Lf : U → C(Rn), (2)

given by
Lf = sup{bχa : f ∈ δ(bχa)}. (3)

Example 2.1 The b-cone. Let v ∈ a ⊂ U , r ∈ R and letb be any non-empty
convex and compact subset ofR

n. We construct two functionsfu, f l : a → R

with fu(v) = f l(v) = r andLfu(v) = Lf l(v) = b. The graphs offu andf l

are respectively the upper and lower parts of a cone inR
n+1 , called theb-cone

with vertex at(v, r), denoted byKb(v, r). For n = 1, we haveb = [b−, b+] and
Kb(v, r) is simply the cone with vertex(v, r) ∈ R

2 generated by the two lines with
slopeb− andb+. For example, whenb = [−1, 1] andx = r = 0, then theb-cone
is given by the two lines with slopes−1 and1 through the origin corresponding
to the two functionsfu = λx.|x| andf l = λx. − |x|. For n > 1, let Pn

u be
the hyperplane inRn+1 that is perpendicular toRn, passes through(v, r) and is
parallel with the unit vectoru ∈ R

n. ThenPn
u intersectsKb(v, r) in the hyper-line

that stands at anglearctan((b · u)+) with theR
n hyperplane.

2.1 Infinite dimensional case

The L-derivative can be extended to real-valued functions on any Banach space
X [13]; we will briefly sketch the way this is done here. LetU ⊂ X be any open
subset ofX. We consider the differential properties of continuous mapsf : U → R

with respect to the norm topology onX. The L-derivative off at any point inU
where the function is locally Lipschitz will be a non-empty,convex and weak*
compact subset of the dual spaceX∗. Let C(X∗) denote the dcpo of such subsets
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ordered by reverse inclusion. Then the notion of tie of a function, which we have
seen in the finite dimensional caseR

n, can be extended to any Scott continuous
function g : U → C(X∗) that is expressible as the lub of step functions. These
functions form a sub-dcpo(U →s C(X∗)) of (U → C(X∗)) which includes all
classical functions that map any point ofU to a singleton point, i.e. a maximal
point, ofC(X∗). Ties of functions are then used to define the L-derivative ofany
continuous mapf : U → R as

Lf : U → C(X∗)

with its values given byLf = sup{bχa : f ∈ δ(bχa)} as in Equation 3. It is
shown in [13] thatLf is Scott continuous.

Note that since the L-derivative can be extended to infinite dimensional Banach
spaces, it can be applied to functionals of higher order typesuch as(U → R) → R.
In fact, if U ⊂ X is an open subset of a Banach spaceX, then the function space
(U → R) of continuous functions of typeU → R, equipped with the operator
norm, forms a Banach space and therefore the L-derivative iswell-defined and
Scott continuous on functionals of type(U → R) → R or, inductively, of higher
types.

2.2 Clarke’s gradient

LetU ⊂ X be, as in the previous subsection, an open subset of the Banach spaceX
and letf : U → R be locally Lipschitz. Thegeneralized directional derivative[5,
Chapter 2] off atx in the direction ofv is

f◦(x; v) = lim sup
y→x t↓0

f(y + tv) − f(y)

t
. (4)

Thegeneralized gradientof f atx, denoted by∂f(x) is the subset ofX∗ given by

{A ∈ X∗ : f◦(x; v) ≥ A(v) for all v ∈ X}.

It is shown in [5, page 27] that

• ∂f(x) is a non-empty, convex, weak* compact subset ofX∗.

• Forv ∈ X, we have:

f◦(x; v) = max{A(v) : A ∈ ∂f(x)}. (5)

There is an alternative characterization of the generalized gradient whenX is finite
dimensional, sayX = R

n, which uses the following result known as Rademacher’s
Theorem. LetU ⊂ R

n be an open subset.
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Theorem 2.2 (Rademacher) [6, page 148] Iff : U → R is Lipschitz, then it is
differentiable almost everywhere and is equal to the integral of its derivative.

If Ωf is the nullset where the Lipschitz mapf : U → R fails to be differentiable
then:

∂f(x) = Co{lim f ′(xi) : xi → x, xi /∈ Ωf}, (6)

where Co(S) is the convex hull of a subsetS ⊂ R
n [5, page 63]. The above

expression is interpreted as follows. Consider all sequences (xi)i≥0, with xi /∈
Ωf , for i ≥ 0, which converge tox such that the limitf ′(xi) exists. Then the
generalized gradient is the convex hull of all such limits. Note that, in the above
definition, sincef is locally Lipschitz atx, it is differentiable almost everywhere
in a neighbourhood ofx and thus there are plenty of sequences(xi)i≥0 such that
limi→∞ xi = x andlimi→∞ f ′(xi) exists.

It is not known if the L-derivative in the infinite dimensional case coincides
with the Clarke gradient or if the Clarke gradient is Scott continuous in the infinite
dimensional case. In finite dimensions, however, the following was shown in [13,
Corollary 8.2]:

Proposition 2.3 In finite dimensional Euclidean spaces, the L-derivative coincides
with the Clarke gradient.

In [4], the strong derivativeof a functionf : U → R
n

is introduced, whereU ⊂
R

m is a locally compact and dense subset andR is the extended real line. The
functionf is said to be strongly differentiable atx if there exists a linear operator
L : R

m → R
n such that for allu, v ∈ U ,

f(u) − f(v) = L(u − v) + r(u, v) where lim
u,v→x

u 6=v

‖r(u, v)‖
‖u − v‖ = 0.

The operatorL, if it exists, is unique and is called the strong derivative of x. There
are Lipschitz functions of type[0, 1] → [0, 1]| which have a non-point valued
Clarke gradient (equivalently L-derivative) with

lim inf
u,v→x

u 6=v

f(u) − f(v)

u − v
= 0 and lim sup

u,v→x

u 6=v

f(u) − f(v)

u − v
= 1,

at everypoint x ∈ [0, 1] (see [30, Proposition 1.9] and Section 5 below) and are
thus not strongly differentiable at any point of[0, 1].
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2.3 Properties of ties

The first order typed Fundamental Theorem of Calculus (FTC) between the L-
derivative and primitives gives us the relation [13]:

f ∈
∫

g ⇐⇒ g ⊑ Lf. (7)

It is an extension of the classical version of the FTC. In fact, for a continuous real-
valued functiong, we havef ∈

∫

g iff f is C1 with f ′ = g wheref ′ is the classical
(Fréchet) derivative off .

The following notions and results generalise those for dimension one in [16].
We define the function

r : (U → C(Rn)) → (U2 → IR) (8)

with the lower and upper parts ofr(g) : U2 → IR for g ∈ (U → C(Rn)) given by

(r(g))± : (x, y) 7→
{

∫

[x,y](g · v)±dµ [x, y] ⊂ dom(g)

⊥ otherwise

wherev = y−x
‖y−x‖ for x 6= y andµ is the one dimensional Lebesgue measure on

the line segment
[x, y] = {tx + (1 − t)y : 0 ≤ t ≤ 1}. (9)

Note that, by the monotone convergence theorem, the mapr is Scott continuous.

Lemma 2.4 Supposeh : U → R andh′(x) exists for somex ∈ U , thenh′(x) ∈
L(h)(x).

Proof We haveL(h)(x) = sup{b : f ∈ δ(bχa)& x ∈ a}. But h ∈ δ(bχa) and
x ∈ a imply h′(x) ∈ b, and the result follows.�

Lemma 2.5 Leta be a convex open subset ofU andb ∈ C(Rn). If for almost all
x ∈ a we haveh′(x) ∈ b, thenL(h) ⊒ bχa.

Proof By Rademacher’s theorem 2.2, for any path connectingx andy we have:
∫ x

y
h′(z) · d z = h(x) − h(y).

In particular, for the pathz : [0, 1] → [y, x] with z(t) = y + t(x − y) we have:

h(x) − h(y) =

∫ 1

0
h′(y + t(x − y)) · (x − y) dt ∈ b · (x − y).

Hence,h ∈ δ(bχa) and the result follows.�
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Corollary 2.6 Supposeg ∈ (U → C(Rn)) andh ∈ (U → R). If for almost all
x ∈ dom(g) we haveh′(x) ∈ g(x), thenLh ⊒ g.

Proposition 2.7 (i) h ∈
∫

g iff

∀x, y ∈ U. (r(g))−(x, y) ≤ h(y) − h(x) ≤ (r(g))+(x, y)

(ii) If g is an integrable map, then the two functionsλy.(r(g))−(x, y) andλy.(r(g))+(x, y)
are respectively the least and greatest functionsh ∈

∫

g with h(x) = 0.

(iii) The following two conditions are equivalent:

(a) g1 ⊑ g2 a.e., i.e.,g1(x) ⊑ g2(x) for almost allx ∈ U with respect to
then-dimensional Lebesgue measure onU .

(b) r(g1) ⊑ r(g2).

(iv) The equivalent conditions (a) and (b) in (iii) imply:

(c)
∫

g1 ⊇
∫

g2.

(v) If g2 is integrable then (c) in (iv) above implies (a) and (b) in (iii).

Proof (i) Supposeh ∈
∫

g. ThenLh ⊒ g andh′(x) ∈ (Lh)(x) for a.e. x ∈
dom(g). By Rademacher’s theorem, integrating along the line segment [x, y] (de-
fined in Equation 9), we get:

∫

[x,y]
(v · g)− dµ ≤ h(y) − h(x) ≤

∫

[x,y]
(v · g)+ dµ,

as required. On the other hand, suppose the above two inequalities hold. Forx 6= y,
let y = x + tv with v = (y − x)/(‖y − x‖) andt = ‖y − x‖. Then

∫

[x,y](v · g)− dµ

t
≤ h(x + tv) − h(x)

t
≤

∫

[x,y](v · g)+ dµ

t
.

By Rademacher’s theorem again,h has Fréchet derivative almost everywhere.
Therefore, taking the limity → x we obtain for almost allx ∈ U :

(v · g)−(x) ≤ v · h′(x) ≤ (v · g)+(x).

Sincev is an arbitrary unit vector, it follows that for almost allx ∈ U we have:
h′(x) ∈ g(x). By corollary 2.6, we getLh ⊒ g as required.
(ii) This follows directly from (i).
(iii) (a)⇒(b). This follows from monotonicity ofr.
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(b)⇒(a). Fromr(g1)(x, y) ⊑ r(g2)(x, y) we obtain:
∫

[x,y]
(g1 · v)− dµ ≤

∫

[x,y]
(g2 · v)− dµ

∫

[x,y]
(g1 · v)+ dµ ≥

∫

[x,y]
(g2 · v)+ dµ.

Thus, for almost allz ∈ [x, y] with respect to the one-dimensional Lebesgue
measure on the line segment[x, y] we have the two inequalities:(g1 · v)−(z) ≤
(g2 · v)−(z) and(g1 · v)+(z) ≥ (g2 · v)+(z). Fix the unit vectorv. Then by Frobe-
nius theorem(g1 ·v)−(z) ≤ (g2 ·v)−(z) and(g1 ·v)+(z) ≥ (g2 ·v)+(z) for almost
all z ∈ U with respect to then-dimensional Lebesgue measure. Finally, by using
Frobenius theorem with spherical integration we obtaing1(z) ⊑ g2(z) for almost
all z ∈ U .
(iv) (a)⇒(c). Fromg1 ⊑ g2 a.e. we obtainr(g1) ⊑ r(g2). Thus by (i) we obtain
h ∈

∫

g1 if h ∈
∫

g2.
(v) This follows from (i).�

2.4 Lipschitz Domain and computability

In [12], adomain-theoretic computational modelfor a classical spaceX is defined
to be a domainD with a topological embedding (i.e., a continuous and open injec-
tion) of X into a subset of maximal elements ofD equipped with its relative Scott
topology. For a countably based locally compact Hausdorff space, the upper space
(the collection of the non-empty compact subsets of the space ordered by reverse
inclusion) was proposed as a proto-type model. In this case,as in the case of the
domain of formal balls [14] for a complete separable metric space (Polish space),
the computational model is anω-continuous domain. In these two instances, the
embedding is actually onto the set of maximal elements of thecontinuous domain
under consideration. However, there are important classesof function spaces with
an embedding into a proper subset of the maximal elements of acontinuous do-
main. A basic example is the embedding of the space([0, 1] → R) of C0 func-
tions into the set of maximal elements of([0, 1] → IR). For example, the map
f : [0, 1] → IR with

x 7→







0 x < 0
1 x > 0

[0,1] x = 0
,

is a maximal element of([0, 1] → IR), which is not in the image of the embedding
E : ([0, 1] → R) → ([0, 1] → IR) given byg 7→ λx. {g(x)}. For the case when
the embedding is onto the set of maximal elements, Lawson later showed that an
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ω-continuous domain is a computational model for a Polish space iff the relative
Scott topology and the relative Lawson topology coincide onits the set of maximal
elements. [28, 29].

The Scott continuous domainDn(U) for real-valued Lipschitz maps on an
open subsetU ⊂ R

n is the set of pairs(f, g) ∈ (U → IR) × (U → C(Rn))
that areconsistent, i.e., for which there exists a Lipschitz maph : U → R with
f ⊑ h andg ⊑ Lh; see [13]. Forn = 1, it was shown in [16] that consistency
on the basis consisting of step functions given by rational numbers is decidable,
implying that Dn(U) can be given an effective structure. A similar result was
given in [17] forn > 1 in the case of the “rectangular” L-derivative of a function
h : U → R, whose values, for a fixed coordinate system, at each pointx0 ∈ U is
the smallest hyper-rectangle inRn that contains the non-empty compact and con-
vex set(Lh)(x0). The proofs for the special case of “rectangular” L-derivative
in [17] can be extended to show that consistency is decidablefor n > 1, giving
an effective structure forDn(U) in the finite dimensional case. Equipped with an
effective structure, the domainDn(U) provides an enumeration of the computable
pairs(f,Lf) ∈ Dn(U). Thus, the notions of a computable map and a computable
L-derivative are inseparable in this context and are built within the domain of Lip-
schitz maps.

3 Weak Topology for Lipschitz maps

In this section we derive a new topology for Lipschitz maps asthe weakest topology
that makes the the L-derivative operator continuous.

We note that theC1 topology on the space of continuously differentiable func-
tions can be characterised as the weakest topology that makes the classical Fréchet
derivative operation continuous. In fact, letC0(U) andC1(U) be, respectively, the
Banach spaces of continuous functions and continuously differentiable functions
on an open subsetU ⊂ R

n. Consider the pairing map

(Id,
d

dx
) : C1(U) → C0(U) × (U → R

n)

where Id is the identity function andddx is the Fréchet derivative operation, i.e.
(Id, d

dx)(f) = (f, f ′). TheC1 norm topology onC1(U) is precisely the weakest
topology such that the above pairing function is continuous.

The above observations lead us naturally to a concrete scheme how to define
the weak topology for Lipschitz maps. Instead of the classical Fréchet derivative,
we will use the L-derivative. We therefore define the L-topology on the collection
(U → R), of real-valued continuous functions onU , to be the weakest topology
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on (U → R) such that the pairing map

(Id,L) : (U → R) → (U → R) × (U → C(X∗))

with f 7→ (f,Lf) is continuous, where the function space(U → R) in the range
of the pairing function above is equipped with itsC0 norm topology and(U →
C(X∗)) is equipped with its Scott topology.

Let theD-topologyon (U → R) be the weakest topology such that

L : (U → R) → (U → C(X∗))

is continuous. Note that the D-topology, like the‖ · ‖d norm topology in the def-
inition of the Lipschitz norm topology‖ · ‖L in Equation 1, is notT0 as any two
functions differing by a constant always belong to the same D-open sets. The
L-topology, however, is the intersection (i.e. join) of theC0 topology and the D-
topology on(U → R) and is thus Hausdorff.

Since the L-derivative of aC1 function coincides with its Fréchet derivative, it
follows that theC1 topology onC1(U) is precisely the relative L-topology for the
subspaceC1(U).

The L-topology has also a domain-theoretic characterization as follows. The
domainD(U) for real-valued Lipschitz maps is the subdomain of the consistent
pairs of elements in(U →s R)× (U →s C(X∗)), whereU ⊂ X is an open subset
andX is R

n or an infinite dimensional Banach space.

Proposition 3.1 The L-topology on(U → R) is precisely the topology that makes
the insertion map

f 7→ (f,Lf) : (U → R) → D(U)

a topological embedding with respect to the Scott topology on D(U), i.e., the L-
topology is the topology that makesD(U) a computational model.

Proof We first note that for eachf ∈ (U → R), the pair(f,Lf) ∈ D(U) is max-
imal [13, Proposition 5.8] and that the insertion map is one to one. Next we note
that the function space(U → R), equipped with its sup norm, is homeomorphic
with the subset of maximal elements of(U → IR), equipped with its relative Scott
topology, under the correspondencef 7→ λx.{f(x)}; see [16, Theorem 2.2]. The
statement that the L-topology is the weakest topology that makes the L-derivative
L : f 7→ (f,Lf) : (U → R) × (U → C(X∗)) continuous is equivalent to the
assertion that the insertion map is continuous and that it isan open map.�
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4 L-topology in finite dimensions

WhenX = R
n, the pairing map reduces to:

(Id,L) : (U → R) → Dn(U)

whereDn(U) ⊂ (U → R) × (U → C(Rn)) is a continuous Scott domain. Since
the space of Lipschitz maps equipped with the L-topology is precisely the set of
maximal elements ofDn(U), it follows that this space is a Polish space, i.e., a
separable completely metrizable topological space [26, chapter V-6].

Corollary 4.1 In finite dimensions, the L-topology admits a complete metric.

Furthermore, the L-topology has an elementary characterisation in terms of
ties of functions: the D-topology has a basis consisting of subsets of the form
δ̆(g) := L−1(↑↑g) for any step functiong ∈ (U → C(Rn)) with ↑↑g 6= ∅.

We note that ifg = supi∈I biχai
, for a finite indexing setI, then ↑↑g =

⋂

i∈I
↑↑(biχai). Since, by FTC (Equation 7),δ(bχa) = L−1(↑(bχa)), it follows that

δ̆(bχa) ⊂ δ(bχa) and more generally for any step functiong ∈ (U → C(Rn)):

δ̆(g) ⊂ δ(g). (10)

The countable collection of step functions of the form
⋃

1≤i≤m(biχai
) where,

for 1 ≤ i ≤ m, the subsetai is the interior of a convex rational polyhedron whereas
the subsetbi is the closed hull of a rational convex polyhedron, providesa countable
basis of the Scott topology on(U → C(Rn)). Since theC0 norm topology is
second countable, it follows that the D-topology and thus its intersection with the
C0 norm topology are both second countable.

In this section and in Section 7, closure and interior of subsets are meant to be
with respect to the L-topology.

Proposition 4.2 Any tie is closed in the L-topology.

Proof Since a tie is an intersection of single-ties, it is sufficient to show the state-
ment for a single-tieδ(bχa). Since the L-topology is second countable, it suffices
to prove the closure property for sequences. Let(fi)i≥0 be a sequence inδ(bχa)
which converges to a functionf : U → R in the L-topology and thus in particular
in theC0 norm topology. Then, for eachi ≥ 0, we have:b·(x−y) ⊑ fi(x)−fi(y).
From the compactness ofb · (x − y), we conclude by taking the limit that for all
x, y ∈ a we have:b · (x − y) ⊑ f(x) − f(y) as required.�

From Equation 10, we conclude:
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Corollary 4.3 If g is a step function, then: Cl(ğ) ⊂ δ(g).

Corollary 4.4 The L-topology is the weakest topology on(U → R) such that the
pairing map

(Id,L) : (U → R) → (U → R) × (U → C(Rn))

is continuous, where the function space(U → R) in the range of the pairing func-
tion above is equipped with itsC0 norm topology and(U → C(Rn)) is equipped
with its Lawson topology.

Proof The Scott topology on(U → C(Rn)) is refined by the Lawson topology by
taking ↑g as sub-basic closed subsets for all step functionsg. But L−1(↑bχa) =
δ(bχa) is closed in the L-topology by Corollary 7.4.�

We say that the way-below relation in a continuous domainD is meet-stable if
x ≪ y andx ≪ z imply x ≪ y ⊓ z for all x, y andz in the domain. For example,
the continuous Scott domainC(Rn) is meet-stable, a property which follows easily
from the characterization of the way-below relation given by A ≪ B iff B◦ ⊂ A.
Similarly, the latticeO(U) of open subsets of any open setU ⊂ R

n is meet-stable.

Proposition 4.5 [1, Theorem 4.2.18.] The lattice of Scott open sets of any Scott
continuous domain (more generally of any F-S domain) is meet-stable.

It is easy to check thatD is meet-stable if the meet-stability relation holds for
the elements of a basis closed under binary meet. In fact, suppose the meet-stability
relation holds for such a basis and letx ≪ y andx ≪ z. By the interpolation prop-
erty of the way-below relation in a continuous domain we can find basis elements
bi for 1 ≤ i ≤ 4 such thatx ≪ b1 ≪ b2 ≪ y andx ≪ b3 ≪ b4 ≪ z. Then we
havex ⊑ b1 ⊓ b3 with b1 ⊓ b3 ≪ b2 andb1 ⊓ b3 ≪ b4. By assumption, it follows
thatb1 ⊓ b3 ≪ b2 ⊓ b4 from which we obtain:x ≪ y ⊓ z.

Definition 4.6 We say an elementx of a continuous Scott domainD is regular if
x = inf{y : x ≪ y}.

For example, inC(Rn) the regular elements are precisely those subsets that are
regular as compact subsets ofR

n. It follows that C(Rn) has a countable basis
of regular elements (consisting for example of alln-dimensional rational convex
polyhedra regarded as compact subsets). Similarly, any step function of typeU →
C(Rn) whose values are regular elements ofC(Rn) is a regular element of the
function space(U → C(Rn)) and this function space has a basis of regular step
functions. The next result furnishes a connection between the way-below relations
on a continuous Scott domain and its lattice of open subsets.
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Proposition 4.7 Leta andb be two elements in any continuous Scott domainD.

(i) We have:↑↑a ≪ ↑↑b if b ≪ a.

(ii) SupposeD is meet-stable anda is regular. Thenb ≪ a if ↑↑a ≪ ↑↑b.

Proof (i) Supposeb ≪ a and assume↑↑b ⊆ ⋃

i∈I Oi where(Oi)i∈I is a directed
set of open subsets. It follows that there isi ∈ I with a ∈ Oi and thus↑↑a ⊆ Oi as
required.

(ii) Suppose↑↑a ≪ ↑↑b. We have↑↑b =
⋃{↑↑c : b ≪ c} where the collection of

open subsets{↑↑c : b ≪ c} is directed sinceD is meet-stable. Thus for somec ∈ R
we have↑↑a ⊂ ↑↑c. By the regularity ofa, we obtainb ≪ c ⊑ inf{x : c ≪ x} ⊑
inf{x : a ≪ x} = a, as required.�

If D is a continuous Scott domain andY is a topological space with a continuous
lattice of open sets, then, as we have already pointed out, the function space(Y →
D) is a continuous Scott domain [26, Proposition II-420(iv)].Furthermore, we
have:

Proposition 4.8 SupposeD is a continuous Scott domain andY is a topological
space with a meet-stable continuous lattice of open sets. Let U ⊂ Y be open,
s ∈ D andf ∈ (Y → D). ThensχO ≪ f iff O ≪ f−1(↑↑s).

Proof [24, Proposition 5].�

Proposition 4.9 If D is a continuous Scott domain andY is a topological space
with a meet-stable continuous lattice of open sets, then thefunction spaceY → D
is meet-stable.

Proof By the remark after Proposition 4.5, it is sufficient to checkthe meet-
stability condition for step functions, which form a basis of the function space.
Let O ⊂ Y be open,s ∈ D andf, g ∈ (Y → D) with sχO ≪ f andsχO ≪ g.
Then, by Proposition 4.8, we haveO ≪ f−1(↑↑s) andO ≪ g−1(↑↑s). Thus, by
meet-stability ofO(Y ), we haveO ≪ f−1(↑↑s) ∩ g−1(↑↑s) = (f ⊓ g)−1(↑↑s). It
follows, by Proposition 4.8 again, thatsχO ≪ f ⊓ g, from which the result fol-
lows.�

Corollary 4.10 For any open subsetU ⊂ R
n, the function space(U → C(Rn))

is meet-stable.

Corollary 4.10 will be used to prove the computability of theL-derivative operator
in Section 9 (Proposition 9.5). We now proceed to obtain a simple characterization
of the basic open subsets of the L-topology.
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Lemma 4.11 Let D be a continuous Scott domain with a meet-stable way-below
relation andY a topological space such thatO(Y ) is a meet-stable continuous
lattice. Then for any open seta ⊂ Y ands ∈ D we have

↑↑(sχa) =
⋃

{↑(tχb) : a ≪ b& s ≪ t} =
⋃

{↑↑(tχb) : a ≪ b& s ≪ t}.

Proof We show the first equality from which the second follows easily. Since
O(Y ) is a meet-stable continuous lattice andD is a continuous Scott domain, we
have, from Proposition 4.8, the following relation:

sχa ≪ f ⇐⇒ a ≪ f−1(↑↑s) (11)

Thus,a ≪ b & s ≪ t implies↑(tχb) ⊂ ↑↑(sχa). It remains to show the reverse
inclusion. Let(sχa) ≪ f . Then, sinceD is a continuous domain, there exists a
step functionsupi∈I siχai

, whereI is a finite indexing set, with

sχa ≪ sup
i∈I

siχai
≪ f.

Fromsχa ≪ sup{siχai
: 1 ≤ i ≤ m}, by Equation 11, we get

a ≪
⋃

J⊂I

{
⋂

j∈J

aj : s ≪ sup
j∈J

sj}.

Since the way-below relation inD is meet-stable, we have

s ≪ inf
J⊂I

{sup
j∈J

sj : s ≪ sup
j∈J

sj}.

Let s′ ∈ D be such thats ≪ s′ ≪ infJ⊂I{supj∈J sj : s ≪ supj∈J sj}. Also let
a′ be an open subset ofY with

a ≪ a′ ≪
⋃

J⊂I

{
⋂

j∈J

aj : s ≪ sup
j∈J

sj}.

Then we havesχa ≪ s′χa′ ≪ f , which completes the proof.�

Since finite intersection distributes over arbitrary union, we can conclude with
the same assumptions onY andD:

Corollary 4.12 For any step functiong ∈ (Y → D) we have:

↑↑g =
⋃

{↑h : g ≪ h step function}

=
⋃

{↑↑h : g ≪ h step function}.
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These results now translate to basic L-open subsets, providing a simple characteri-
zation of these subsets.

Corollary 4.13 We have for any step functiong : U → CR
n, we have:

(i) δ̆(g) =
⋃{δ(h) : g ≪ h step function}.

(ii) δ̆(g) =
⋃{δ̆(h) : g ≪ h step function}.

Proof SinceO(U) andC(Rn) are, by the remark preceding Proposition 4.5, re-
spectively a meet-stable continuous lattice and a meet-stable continuous Scott do-
main, the two equalities in Corollary4.12 hold, to which we apply the inverse map
L−1 t obtain the required results.�

5 L-topology and Lipschitz norm

Recall the definition of the Lipschitz norm in Section 1. In finite dimensions we
can show the following:

Theorem 5.1 The L-topology is coarser than the Lipschitz norm topology in finite
dimensions.

Proof Let f ∈ δ̆(bχa) for some single-step functionbχa ∈ (U → C(Rn)). We
will find a neighbourhood off in the Lipschitz norm topology that is contained in
δ̆(bχa). We havef ∈ δ(dχc) for somea ≪ c andb ≪ d. Thus,

f(x) − f(y) ∈ d · (x − y), (12)

for all x, y ∈ Cl(c). Let e be such thatb ≪ e ≪ d. Then there existst > 0 such
thatdt ⊂ e. (Recall thatAt is thet-neighbourhood of a setA.) It follows that for
all x, y ∈ c with x 6= y we have

(d · (x − y))t‖x−y‖ ⊂ e · (x − y). (13)

Consider any Lipschitz maph with ‖f − h‖L < t. Then, we have:

|(h(x) − h(y)) − (f(x) − f(y))| = |(h(x) − f(x)) − (h(y) − f(y)| ≤ t|x − y|,

for all x, y ∈ Cl(c). It follows, by Equations 12 and 13, thath(x)−h(y) ∈ e·(x−y)
and thush ∈ δ(eχc) ⊂ δ̆(bχa). �

Next, we show that the L-topology is strictly coarser than the Lipschitz norm
topology in finite dimensions. We recall the following notion from classical mea-
sure theory.
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Definition 5.2 A measurable subsetA ⊂ [0, 1] is splitting if for any intervalI ⊂
[0, 1] of lengthℓ(I) > 0 we have:0 < µ(Ak ∩ I) < ℓ(I), whereµ is the Lebesgue
measure.

It is well-known that splitting sets exist; see [27]. IfA is splitting andf =
λx.

∫ x
0 χA dµ, then the Clarke gradient (equivalently the L-derivative)is easily

seen to have constant value[0, 1], i.e., ∂f(x) = [0, 1] for all x ∈ [0, 1]. [30,
Proposition 1.9]).

Proposition 5.3 The L-topology is strictly coarser than the Lipschitz norm topol-
ogy in finite dimensions.

Proof It is sufficient to prove the proposition in dimension one, i.e., we assume
U = [0, 1] ⊂ R. Let A ⊂ [0, 1] be a splitting set and letf = λx.

∫ x
0 χA dµ,

which is Lipschitz withLf = λx. [0, 1]. We claim that there is no open subset of
the L-topology which containsf and is contained in the open ball with centref
and radius1/2 with respect to the Lipschitz norm. Letg ∈ (([0, 1] → IR) be any
step function withLf ∈ ↑↑g. Let c ∈ dom(g) andǫ > 0 be small enough so that
[c, c + ǫ] ⊂ dom(g). PutD = A \ (c, d) andfǫ = λx.

∫ x
0 χA dµ. Then, we have

Lfǫ(x) = [0, 1]χD , Lfǫ ∈ ↑↑g andfǫ → f in the sup norm asǫ → 0+. But for any
ǫ > 0, we have

sup
c<x<d

|f(x) − fǫ(x) − (f(c) − fǫ(c))|
x − c

= sup
c<x<d

|f(x) − f(c)|
x − c

= 1,

and thus‖f − fǫ‖Lip ≥ 1, which proves the claim.

6 Hausdorff induced metric for Lipschitz maps

In this section, we derive a complete metric on Lipschitz maps in (U → R)
induced from the Hausdorff metric and show that it is strictly finer than the L-
topology and strictly coarser than the Lipschitz norm topology. Recall that, given
any Hausdorff spaceX, the Vietoris topology on the Vietoris spaceV(X), i.e.,
the space of non-empty compact subsets ofX, has basic open subsets of the form
�O0 ∩ ⋂

1≤i≤m ♦Oi whereOi ⊂ R
n (i = 0, · · · ,m) are open andC ∈ �(O)

if C ⊂ O whereasC ∈ ♦O if C ∩ O 6= ∅. If X is locally compact then so is
V(X), and the way-below relation on the basic open subsets inO(V(X)) satisfy:
�O0∩(

⋂

1≤i≤m ♦Oi) ≪ �O′
0∩(

⋂

1≤i≤m ♦O′
i) iff Oi ≪ O′

i for i = 0, · · · ,m. In
this case, the partial order(V(X),⊃) is a continuous Scott domain with the pro-
viso that it has no bottom element. The Lawson topology here coincides with the
Vietoris topology. ForX = R

n we will always use a basis of convex and relatively
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compact open subsets forR
n. Let C+(Rn) denote the domainC(Rn) without its

bottom element.
The Vietoris topology on the Vietoris space of any metric space is equivalent

to the topology induced by the Hausdorff metric which we denote by dH , i.e.,
dH(C1, C2) is the Hausdorff distance between two non-empty, compact subsets
on X [34, Theorem 7.4.3]. This gives a metric topology on the function space
(U → C

+(Rn)), by puttingd∗H(f, g) = supx∈U dH(f(x), g(x)). Since the metric
dH is complete, it follows that the function space metricd∗H is also complete [10,
Theorem 2.6].

Lemma 6.1 SupposeK ⊂ C
+(Rn) is compact with respect to the Lawson topol-

ogy. Then, the union
⋃

C∈K C ⊂ R
n is compact with respect to the Euclidean

topology.

Proof We will show that any sequence(xm)m≥0 in
⋃

C∈K C ⊂ R
n has a conver-

gent subsequence. LetCm ∈ K be such thatxm ∈ Cm for m ≥ 0. Then the
sequenceCm in the compact setK has a convergent subsequenceCmi

→ D ∈ K
with dH(Cmi

,D) → 0 as asi → ∞. Thus, for eachi, there existsyi ∈ D with
d(xmi

, yi) ≤ dH(Cmi
,D). SinceD ⊂ R

n is compact, there is a subsequence
yit → y ∈ D ast → ∞ and it follows thatxmit

→ y and the proof is complete.�

Proposition 6.2 The function space metricd∗H is strictly finer than the Lawson
topology on(U → C

+(Rn)).

Proof Suppose thatf ∈ (U → C
+(Rn)) andf ∈ ↑↑s ∩ (

⋂

j∈J(↑gj)
c), which

is a basic open subset of the Lawson topology for step functions s and gj with
j ∈ J , whereJ is a finite indexing set. Assumes = supi∈I si for a finite set
of single-step functionssi = biχOi

. Then,si ≪ f and, by Proposition 4.8, we
haveOi ≪ f−1(↑↑bi) for eachi ∈ I. Thus, the closureOi is compact and, by the
continuity of f , the setf [Oi] ⊂ ↑↑bi ⊂ C

+(Rn) is compact with respect to the
Lawson topology. By Lemma 6.1, the setCi =

⋃{C : C ∈ f [Oi]} ⊂ (bi)
◦ ⊂ R

n

is compact and thus there existsǫi > 0 such that(Ci)ǫi
⊂ (bi)

◦. It follows that
for ǫ = min{ǫi : i ∈ I} we haveh ∈ ↑↑s if d∗H(f, h) < ǫ. On the other hand, for
j ∈ J , there existsxj ∈ U such thatf(xj) /∈ ↑gj(xj), i.e.,f(xj)\gj(xj) 6= ∅. Let
δj = inf{δ : f(xj) ⊂ (gj(xj))δ}. Thend∗(f, h) < δ impliesh(xj) \ gj(xj) 6= ∅
and henceh ∈ (↑gj)

c. Putδ = min{ǫ, δj : j ∈ J}. Thend∗(f, h) < δ implies
h ∈ ↑↑s ∩ (

⋂

j∈J(↑gj)
c), which shows that thed∗H metric topology is finer than the

Lawson topology. Next we show that thed∗H metric topology is strictly finer than
the Lawson topology. Consider the constant functionh = λx. [0, 1]. We claim
that there is no Lawson open subset which contains the constant functionh and is
contained in thed∗H ball of centreh and radius1/2 with respect to thed∗H metric.
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Let h be in the basic Lawson open set↑↑g0 ∩ ⋂

1≤i≤m(↑gi)
c, with step functions

gi ∈ (U → IR) for 0 ≤ i ≤ m. Then there are pointsxi ∈ U with [0, 1] ⊑6 gi(xi)
for 1 ≤ i ≤ m. Let [c, d] ⊂ U \ {xi : 1 ≤ i ≤ m} and putf = [0, 1]χD , where
D = U \ (c, d). Then,f ∈ ↑↑g0 ∩

⋂

1≤i≤m(↑gi)
c butd∗H(f, h) = 1. �

We note also that for any compact subsetV ⊂ U the d∗-metric topology on
(V → C(Rn)) will be equivalent to the compact-open topology of the function
space as an instance of a general result on metrics for function spaces [10, pages
269-270].

For Lipschitz mapsf, g : U → R, we now define a metric.

Definition 6.3 The induced Hausdorff metricon Lipschitz functions is given by
by dL:

dL(f, g) = max(‖f − g‖, d∗H (Lf,Lg)).

Theorem 6.4 The induced Hausdorff metric is complete on the space of Lipschitz
maps.

Proof Let (fi)i≥0 be a Cauchy sequence of Lipschitz maps with respect to the L-
metric. Thus,(fi)i≥0 and(Lfi)i≥0 are Cauchy sequences with respect to theC0

norm topology andd∗H respectively. Letlimi→∞ fi = f in theC0 norm topology
and limi→∞ Lfi = g in the d∗H metric. Since the convergence is uniform,f is
continuous. We will now show thatg = Lf by using Proposition 6.2 which tells
us that thed∗H metric topology is finer than the Lawson topology on(U → CR

n).
Supposebχa ≪ g. Then, as↑↑bχa is Lawson open, there existsN such that for all
i ≥ N we havebχa ≪ Lfi, which impliesb · (x − y) ⊑ fi(x) − fi(y) for all
x, y ∈ a. Taking the limiti → ∞, we haveb · (x − y) ⊑ f(x) − f(y) for all
x, y ∈ a. It follows thatbχa ⊑ Lf and thusg ⊑ Lf . To show the reverse relation,
assumebχa ≪ Lf . Then there existsa ≪ c andb ≪ d such thatdχc ≪ Lf .
Thus,f ∈ δ(c, d) and in particular we have:f(x) − f(y) ∈ d · (x − y) for all
x, y ∈ Cl(a). So, for the compact set{f(x) − f(y) : x, y ∈ Cl(a)}, we have:

{f(x) − f(y) : x, y ∈ Cl(a)} ⊂

d · {x − y : x, y ∈ Cl(a)} ⊂ b◦ · {x − y : x, y ∈ Cl(a)}.
Sinceb◦ · {x − y : x, y ∈ Cl(a)} is an open interval and we have the convergence
fi → f in theC0 norm topology and thus uniformly, there exists an integerN ≥ 0
such that for alli ≥ N and for allx, y ∈ Cl(a) we havefi(x)−fi(y) ∈ b◦ ·(x−y).
In particular for alli ≥ N we havefi ∈ δ(bχa), i.e., bχa ⊑ Lfi. Since↑(bχa)
is closed in the Vietoris (Lawson) topology andLfi → g in the finerd∗H metric
topology, we obtainbχa ⊑ g. We conclude thatLf ⊑ g which completes the
proof.�
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We now compare thedL-metric topology with the L-topology.

Proposition 6.5 ThedL metric topology on Lipschitz functionsU → R is strictly
finer than the L-topology.

Proof That thedL metric topology is finer the L-topology follows immediately
from Proposition 6.2. To show that it is strictly finer, letA ⊂ [0, 1] be a splitting
set (Definition 5.2), and letf = λx.

∫ x
0 χA dµ, which is Lipschitz withLf =

λx. [0, 1]. We claim that there is no open subset of the L-topology whichcontains
f and is contained in the open ball with centref and radius1/2 with respect to
the dL metric. Let g ∈ (U → C(Rn)) be any step function withLf ∈ ↑↑g.
Let c ∈ dom(g) and ǫ > 0 be small enough so that[c, c + ǫ] ⊂ dom(g). Put
D = A \ (c, d) and fǫ = λx.

∫ x
0 χA dµ. Then, we haveLfǫ(x) = [0, 1]χD,

Lfǫ ∈ ↑↑g andfǫ → f in the sup norm asǫ → 0+. But for anyǫ > 0, we have
d∗H(f, fǫ) = 1 which proves the claim.�

Next we compare the induced Hausdorff metricdL with the Lipschitz norm.
Recall that any convex subsetA ⊂ R

n is the intersection of the half-spaces that
contain it, i.e.,

⋂{S : A ⊂ S, for a half-spaceS}. It is also easy to show:

Lemma 6.6 For any convex subsetA ⊂ R
n, we have: Aǫ =

⋂{Sǫ : A ⊂
S, S a half-space}.

Proposition 6.7 The Lipschitz norm topology is finer than the induced Hausdorff
metric topology.

Proof Let f : U → R be Lipschitz and letǫ > 0 be given. We will show that the
open ball aroundf of radiusǫ/2 with respect to the Lipschitz norm is contained in
the open ball aroundf of radiusǫ with respect to thedL metric. In fact, suppose
‖f − g‖Lip < ǫ/2. The,‖f − g‖ < ǫ/2 and‖f − g‖d < ǫ/2, i.e.,

sup
x 6=y

|(f(x) − g(x)) − (f(y) − g(y))|
|x − y| < ǫ/2. (14)

Let v ∈ R
n be any unit vector. By Equations 4 5, for any Lipschitz maph : U → R

we have:

v · Lh(x) = lim sup
y→x t↓0

h(y + tv) − h(y)

t
.
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On the other hand, using Equation 14, we obtain:

lim sup
y→x t↓0

g(y + tv) − g(y)

t

= lim sup
y→x t↓0

(g(y + tv) − f(y + tv)) − (g(y) − f(y))

t
+

f(y + tv) − f(y)

t

≤ sup
x 6=y

|(f(x) − g(x)) − (f(y) − g(y))|
|x − y| + lim sup

y→x t↓0

f(y + tv) − f(y)

t

< ǫ
2 + lim sup

y→x t↓0

f(y + tv) − f(y)

t

Thus,v · Lg(x) < ǫ + v · Lf(x) and similarly,v · Lf(x) < ǫ + v · Lg(x) for any
unit vectorv ∈ R

n. By Lemma 6.6, it follows thatd∗H(Lg,Lf) < ǫ as required.�

Finally, we will show that the induced Hausdorff metricdL is strictly coarser
than the Lipschitz norm topology. This requires some preliminary work.

We construct below a one-parameter family of Lipschitz mapsfk : [0, 1] → R

for k ∈ [0, 2] such thatLfk(x) = [0, 1] for all x ∈ [0, 1] with the property that, as
k ր 1, we havefk → f1 in thedL metric topology but not in the Lipschitz norm
topology.

For k ∈ [0, 2], we letfk = λx.
∫ x
0 χAk

dµ whereµ is the Lebesgue measure
and the measurable setAk is splitting withµ(Ak) = k/2.

The setAk can be constructed as the countable union of a double family of
Cantor sets that are obtained in a sequence of stages. Whenk > 0, these Cantor
sets will have positive Lebesgue measure.

We first adopt the following uniform scheme, similar to the construction of the
standard Cantor set, to construct a Cantor set of Lebesgue measures ≥ 0 in a
compact interval of lengthr > 0 with r ≥ s. In the first stage the symmetrically
placed middle open interval of length(r − s)/3 is removed, then in the remaining
left and right closed intervals, the two middle open intervals each of length(r −
s)/9, and so on. The total Lebesgue measure of the countable set ofremoved
intervals is thusr−s

3 (1 + 2
3 + 4

9 + · · · ) = r − s. Thus the Cantor set has Lebesgue
measurer − (r − s) = s.

Now we use our uniform scheme to constructAk. In the first stage, a Cantor
set of measurek/4 is constructed on[0, 1]. Therefore, the first middle interval,
denoted byC, to be removed has length(1 − k

4 )/3, the next two middle intervals
to be removed, denoted byLC andRC, are in the remaining two intervalsL and
R on the left and right respectively and have each length(1 − k

4 )/9, and so on.
Then in each previously removed interval a new Cantor set is constructed so

that the total measure of the countable union of the new Cantor sets isk/8. This
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is done by constructing a Cantor set of measurek/16 in C, then constructing two
Cantor sets each of measurek/(4×16) (i.e. with total measurek/32) in the left and
the right middle intervals, namelyLC andRC, then constructing four Cantor sets
each of measurek/(4 × 64) (i.e, with total measurek/64) in the middle intervals
LLC,LRC,RLC,RRC of LL,LR,RL,RR respectively, and so on.

The procedure is then repeated ad infinitum so that a Cantor set is constructed
in any previously removed interval. The setAk will be the countable union of the
countable unions of Cantor sets constructed at each stage. These Cantor sets are
dense in[0, 1]: any non-trivial subinterval of[0, 1] contains one of these Cantor
sets. We also haveµ(Ak) = k

4 + k
8 + k

16 · · · = k
2 , so that0 < µ(Ak) < 1 for

k ∈ (0, 2).

  

   

   L C                   R

  LR       CR  CC  CL        RL     RC      RRLL       LC
ω

 RRL  k  (1−  /4)/3

Our labelling scheme for the intervals in the above construction is an instance of
a general method in symbolic dynamics [9]. For a givenk ∈ [0, 2], we represent
each point of[0, 1] by an infinite sequence ofL,C,R, denoting the position of the
the point on the Left, Center or Right interval at each stage of construction process,
i.e., puttingΣ = {L,C,R}, we have a surjectionPk : Σω → [0, 1] that takes any
sequence to a point in[0, 1]. As each new interval is a contracting affine image of
a previous interval, it follows that fors ∈ Σω, we havePk(s) = A(s) + B(s)k
whereA,B : Σω → [0, 1].

Furthermore, by construction,fk(x) =
∫ x
0 χAk

dµ is the sum of the Lebesgue
measure of the Cantor sets constructed in[0, x). Since the Lebesgue measure of
each such Cantor set is a multiple ofk, we have: fk(Pk(s)) = D(s)k where
D : Σω → [0, 1]. Note that for allx ∈ [0, 1], we have:f0(x) = 0 (each Cantor set
constructed in this case has Lebesgue measure zero) whereasf2(x) = x (the sum
of the Lebesgue measures of all constructed Cantor sets in[0, 1] is 1).

Lemma 6.8 For all k ∈ (0, 2) andx ∈ [0, 1], we have:L(fk)(x) = [0, 1].

Proof This is an instance of [30, Proposition 1.9].�

It follows that for eachk ∈ [0.2], the mapfk is Lipschitz with Lipschitz con-
stant1.
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Lemma 6.9 We havefk → fk0 in the induced Hausdorff metricdL ask ր k0, for
anyk0 ∈ (0, 2].

Proof SinceLfk = [0, 1] for anyk ∈ (0, 2), it follows trivially that Lfk → Lfk0

in thed∗ metric ask ր k0. Thus it remains to show thatfk → fk0 in the sup norm
ask ր k0. We will show that for any fixedx ∈ [0, 1], the functionk 7→ fk(x) is
strictly increasing withk and thatfk(x) → fk0(x) pointwise ask ր k0. Sincefk

is continuous for allk ∈ [0, 2], the result will then follow a well known result in
analysis [32, see 7.13]. Sincefk, being Lipschitz, is continuous for eachk ∈ [0, 2],
it suffices to show the above two properties for a dense subsetof [0, 1]. To show
that fk1(x) < fk2(x) for k1 < k2, we consider the dense subset{xt : t ∈ Σ∗},
wherext := Pk1(tRLω). Since for each fixedk ∈ [0, 1], the mapfk is increasing
and fork1 < k2 by construction we havePk2(tRLω) < Pk1(tRLω), we obtain:

fk1(xt) = fk1(Pk1(tRLω)) = D(tRLω)k1 < D(tRLω)k2

= fk2(Pk2(tRLω)) < fk2(Pk1(tRLω)) = fk2(xt),

which proves the first assertion. For the second assertion, we consider the dense
subset{yt : t ∈ Σ∗}, whereyt := Pk0(tLRω). Since fork ≤ k0 we have
Pk(tLRω) ≤ Pk0(tLRω), we obtain:

D(tLRω)k ≤ fk(yt) ≤ fk0(yt) = D(tLRω)k0,

and it follows thatfk(yt) → fk0(yt) ask ր k0, which proves the second assertion,
completing the proof.�

Finally, we can show thatfk →6 f1 in the Lipschitz norm topology ask → 1−.

Proposition 6.10 There exists no open set of thedL metric topology around the
mapf1, as constructed above, that is contained in the open ball{f : ‖|f−f1‖Lip <
1} of unit radius with respect to the Lipschitz norm aroundf1, i.e., thedL metric
topology is strictly coarser than the Lipschitz norm topology.

Proof Consider the familyfk constructed above fork ∈ [0, 1]. For any non-
negativek < 1, the mapgk = f1 − fk, being the difference of two Lipschitz
maps, is Lipschitz and is differentiable almost everywherewith g′k = f ′ − f ′

k

almost everywhere. Sincef ′
1 and f ′

k are, almost everywhere, equal toχA1 and
χAk

respectively, they take values0 and1 almost everywhere. Thusg′k has values
−1, 0 or 1 almost everywhere. Butg′k cannot take value0 almost everywhere,
since this would imply thatgk would be constant with constant valuegk(0) =
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f1(0)−fk(0) = 0, giving f1 = fk which contradictsf1(1) = 1/2 6= k/2 = fk(1).
Thus, sincegk(0) = 0 for all k ∈ [0, 2], we have:

sup
x 6=y

|gk(x) − gk(y)|
|x − y| ≥ sup

x 6=0

|gk(x)|
x

≥ 1,

and thus‖gk‖Lip ≥ 1 for all k ∈ [0, 1). Thereforegk →6 0 ask → k0, which
completes the proof�

7 L-topology in dimension one

In dimension one (n = 1), we assume, for convenience, that the domainU ⊂ R

of our continuous functions in(U → R), is a compact interval. We are able
to show here that a basic L-open subsetδ̆(g) is the interior (with respect to the
L-topology) of the associated tieδ(g). Recall that in dimension one, any Scott
continuous functiong ∈ (U → IR) is integrable, i.e., there existsh ∈

∫

g with
g ⊑ Lh. In fact, it is shown in [16, section 6] that given any lower semi-continuous
functionu : U → R there exists a least functions(u, g) : dom(g) → R such that
u ≤ s(u, g) andg ⊑ Ls(u, g). Furthermore, ifg : U → IR is a step function and
u is the lower part of a step function of typeU → IR, thens(u, g) is a piecewise
linear map in each connected component ofg; see [15, Section 3]. In the following
we deduce that whenu is fixed, the least functions(u, g) will depend continuously
on g with respect to the metric induced on step functions by the Hausdorff metric.

Recall that our basis elements for the L-topology are given in terms of step
functionsg with ↑↑g 6= ∅. This means that if two adjacent intervals in dom(g), each
with a constant value forg, have a common boundary point then the intersection
of their corresponding values will have non-empty interior. Thus, the connected
components of the closure Cl(dom(g)) have disjoint closures. Dealing with these
connected components separately, let(U →u

IR) be the collection of step func-
tions g ∈ (U → IR) with ↑↑g 6= ∅ such that Cl(dom(g)) has a single connected
component and dom(g) ∩ dom(u) 6= ∅. Forg = [g−, g+] ∈ (U →u

IR), let

S(u, g) : U × U → R

(x, y) 7→
{

u(y) +
∫ x
y g−(t) dt x ≥ y

u(y) −
∫ y
x g+(t) dt x < y

Let Pg be the partition of the interval dom(g) ∪ dom(u) obtained as the common
refinement of the partition induced by the step functiong and that by the piecewise
constant mapu such that in each interval inP the values ofg andu are constant
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(note that forg these values are non-empty compact intervals and foru they are
real numbers). Then, as in [15], we have:

s(u, g) = λx.

max{u(x)} ∪ {lim sup
y→z

S(u, g)(x, y) : z ∈ Pg ∩ dom(u)}.

Consider(U →u
IR) with the partial distance function induced from the Haus-

dorff metric onIR, namely:d(g1, g2) = sup{dH(g1(x), g2(x)) : x ∈ dom(g1) ∩
dom(g2)} and consider the partial maps inU2 → R with their partial sup norm:
‖f1 − f2‖ = sup{|f1(x) − f2(x)| : x ∈ dom(f1) ∩ dom(f2)}. We then have:

Lemma 7.1 The functions

(i) g 7→ S(u,g) : (U →u
IR) → (U2 → R)

(ii) g 7→ s(u,g) : (U →u
IR) → (U → R)

are continuous with respect to partial distance on(U →u
IR) and the partial sup

norm on(U2 → R).

Proof Note that isg− is lower semi-continuous and the Lebesgue integrals in the
definition ofS(u, g) depend continuously ong−. Also, the finite setPg changes
continuously with respect to the Hausdorff metric asg changes continuously with
respect to the partial distance on(U →u

IR). The result follows ass(u, g) is the
minimum of a finite number of functions that vary continuously with g. �

In order to obtain the regularity results of this section, weneed the following
density lemma.

Lemma 7.2 (Density Lemma) Let f ∈ δ(g), with step functiong ∈ (U → IR)
and letǫ > 0 be given. Then there exists a step functionh and a functionk with
g ≪ h andk ∈ δ(h) such that‖f − k‖ < ǫ.

Proof Consider the open region formed by the graphs off +ǫ andf−ǫ. We regard
f as an element of the function spaceU → IR of all Scott continuous functions
from U to IR ordered by pointwise reverse inclusion. Since this function space
is a continuous Scott domain,f will be the lub of an increasing sequence of step
functions:f = supi≥0 ui. We havelimi→∞ u+

i −u−
i = 0, and thus there existsi ≥

0 such thatu+
i −u−

i < ǫ/3. For simplicity we letu := u−
i . Consider the decreasing

sequence of step functions(g[1/m]))m≥N for a positiveN such that every value of
g has length greater than2/N . For the sake of a more convenient notation, we
put gm := g[1/m] for all m ≥ N . Now by Lemma 7.1,s(u, gm)) → s(u, g)
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with respect to the sup norm on the space of continuous functions dom(g) → R.
Let M > 0 be such thatm ≥ M implies ‖s(u, gm) − s(u, g)‖ < ǫ/3. Thus,
for all m ≥ M , we haveg ≪ gm ⊑ Ls(u, gm) andf − ǫ/3 < u ≤ s(u, gm).
Furthermore,s(u, gm) < s(u, g) + ǫ/3 ≤ f + ǫ/3, i.e. for all m ≥ M and all
x ∈ dom(g) we have:f(x) − ǫ/3 < s(u, gm)(x) < f(x) + ǫ/3. It remains to
show that there existsm ≥ M such that we have|s(u, gm)(x) − f(x)| < ǫ for
x ∈ dom(gm) \ dom(g). If Cl(dom(g)) = U then we putk := s(u, gM ) and
h := gM . Then, sinces(u, gM ) ∈ δ(gM ), the proof is complete. Otherwise, at
least one of[(dom(gm))−, (dom(g))−] or [((dom(g))+, (dom(gm))+] will be non-
empty. LetM1, be such that form ≥ M1 both these intervals are non-empty if
suchM1 exists or one of the two otherwise. Sincef is continuous and defined on
the compact setCm := [(dom(gm))−, (dom(g))−] ∪ [((dom(g))+, (dom(gm))+],
there exists at > 0 such that|f(x) − f(y)| < ǫ/3 if |x − y| < t for x, y ∈ Cm.
Then, there existsM2 ≥ M1 such thatm ≥ M2 implies dom(g))t ⊂ dom(gm).
Fix m ≥ M2. Note thats(u, gm) is made up of line segments with slope bounded
by the upper and lower values ofg. If A > 0 is an upper bound for the maximum
of the absolute value of these, then|s(u, gm)(x) − s(u, gm)(y)| ≤ A|x − y| for
x, y ∈ Cm. Thus,|s(u, gm)(x) − s(u, gm)(y)| < ǫ/3 if |x − y| < ǫ/(3A). Now
let g∗m = gm ↾ (dom(g))ǫ/(3A). Then,s(u, g∗m) ∈ δ(g∗m). Putk := s(u, g∗m) and
h := g∗m. have forx ∈ Cm:

|f(x) − k(x)| ≤
|f(x) − f(x0)| + |f(x0) − k(x0)| + |k(x0) − k(x)|

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ,

where we have two cases: we usex0 = (dom(g))− if x ∈ [(dom(g∗m))−, (dom(g))−]
and we usex0 = (dom(g))+ if x ∈ [(dom(g))+, (dom(g∗m))+]. �

Proposition 7.3 For any step functiong ∈ (U → IR) we have:δ(g) ⊂ Cl(δ̆(g)).

Proof Supposef ∈ δ(g). We show that any basic L-open set containingf will
intersect̆δ(g). Let f ∈ δ̆(g0) for some step functiong0 and consider any open ball
Oǫ(f) of radiusǫ > 0, aroundf in the sup norm in(U → R). Then,f ∈ δ(g1)
for someg1 with g0 ≪ g1. Thus,Lf ⊒ g andLf ⊒ g1. Put g2 := g ⊔ g1.
Thenf ∈ δ(g2). By Lemma 7.2, there exists a step functionh with g2 ≪ h and
k ∈ (U → R) with ‖f − k‖ < ǫ andk ∈ δ(h). Thus,g0 ≪ h andg ≪ h and we
have:δ̆(g) ∩ δ̆(g0) ∩ Oǫ(f) 6= ∅ as required.�

Recalling Corollary 4.3, we have now all together proved.

Corollary 7.4 For any step functiong ∈ (U → IR) we have:δ(g) = Cl(δ̆(g)).
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Proposition 7.5 For any step functiong ∈ (U → IR) we have:δ◦(g) = δ̆(g).

Proof Sinceδ(g) = Cl(δ̆(g)), we already know thatδ◦(g) ⊃ δ̆(g). To show the
converse, letf ∈ δ◦(g), i.e., there exists a step functionh such thatf ∈ δ̆(h) ⊂
δ(g). The latter relation implies, by Corollary 4.13(i), that for anyk with h ≪ k we
haveδ(k) ⊂ δ(g). It follows thath ⊒ g. On the other handf ∈ δ̆(h) implies there
exists a step functionk with h ≪ k andf ∈ δ(k). Thus,f ∈ δ(k) ⊂ δ̆(h) ⊂ δ̆(g),
where the latter relation follows from Corollary 4.13(ii).�

Corollary 7.6 The basic open and closed subsetsδ̆(g) andδ(g) are regular open
and closed sets respectively.

The results of this section can be extended, with some effort, to any finite dimen-
sionn > 1, by using properties of the L-derivative which extend thosein [17] for
the “rectangular” derivative.

8 Fundamental Theorem of Calculus

Recall the Fundamental Theorem of Calculus of the first orderin Equation 7. In
this section we develop the FTC of second order in finite dimensional Euclidean
spaces by constructing continuous second order typed integration and differential
operators that are inverses of each other.

Throughout this section, we consider(U → C(Rn)) with its Scott topology.
Since we will be dealing with the primitive maps of functionsin (U → C(Rn)), we
will identify maps that are almost everywhere equal in this function space. We say
f, g ∈ (U → C(Rn)) are equivalent and writef ≡ g if f = g a.e., i.e. iff(x) =
g(x) for almost allx ∈ U with respect to then-dimensional Lebesgue measure on
U . We denote the equivalence class off by E(f). The set of equivalence classes
is partially ordered by definingE(f) ⊑ E(g) if f ⊑ g a.e. It is easy to check
that this partial order of equivalence classes, which we denote by(U →c C(Rn)),
is directed complete and the mapE : (U → C(Rn)) → (U →c C(Rn)), which
takes a map to its equivalence class is Scott continuous.

Proposition 8.1 Any equivalence class of maps has a lub in(U → C(Rn)) which
is in the same class.

Proof Consider an equivalence classE(f). We claim that it has a lub. Since
(U → C(Rn)) is a continuous Scott domain, it is sufficient to show thatE(f) is
a bounded set; this follows if we prove that any finite set of maps inE(f) has a
lub. In fact, we show that any two members ofE(f) have a lub inE(f), from
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which the claim follows. Letg ≡ f and for the sake of a contradiction, suppose
f(x) ∩ g(x) = ∅ for somex ∈ U . Then, by the Scott continuity off and g,
there would exist an open neighbourhood ofx that is mapped byf andg to two
disjoint open subsets containingf(x) andg(x) respectively. But this contradicts
the assumption thatf = g a.e. It remains to show thatsupE(f) ∈ E(f). Since
E(f) is a directed set, by the Scott continuity of the mapr of Equation 8, we have
r(supE(f)) = r(f). From proposition 2.7(iii), we obtain:supE(f) = f a.e.�

Let F : (U →c C(Rn)) → (U → C(Rn)) be the map which takes any equiva-
lence classE(f) to its lub, i.e.F (E(f)) = supE(f). We have the following.

Proposition 8.2 The pair(F,E) is a continuous section-retraction pair, withF ◦
E ⊒ Id, i.e., it is a continuous insertion-closure operation.

Corollary 8.3 The dcpo(U →c C(Rn)) is a continuous Scott domain andE
preserves the way-below relation.

Proof By [1, Theorem 3.14 and Proposition 3.1.14].�

Thus, (U →c C(Rn)) is, by identifying it with its image under the mapF , in
effect a continuous Scott sub-domain of(U → C(Rn)). We know thatf = g
a.e. implies that

∫

f =
∫

g, therefore elements of the same class have the same
primitive maps. We conclude that taking quotients under theequivalence relation
of equality almost everywhere preserves the domain-theoretic structure. Therefore,
we adapt the same convention as in classical measure theory where maps that are
almost everywhere equal are identified. This means that fromnow on we implicitly
considerg ∈ (U → C(Rn)) as an equivalence class of maps and all relations
between maps are assumed to be between their equivalence classes. Therefore
f = g means thatf andg are in the same equivalence class. i.e.,f = g a.e.

To deal with the primitive maps of(U → C(Rn)), we still need to restrict
to a smaller subdomain, namely that of the integrable maps, i.e. f ∈ (U →
C(Rn)) with

∫

f 6= ∅. The integrable maps of(U → C(Rn)) form a Scott closed
subset, and thus a continuous Scott subdomain of(U → C(Rn)) [17]. By taking
retraction under the restrictions ofE andF , we obtain the Scott continuous domain
of equivalence classes of integrable maps which we denote by(U →i C(Rn)).

Let T ∗(U) be the dcpo of non-empty ties. Define

L̂ : T ∗(U) → (U →i C(Rn))

by L̂(∆) = inf{Lh : h ∈ ∆}.
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Proposition 8.4 The integral map
∫

: (U →i C(Rn)) → T ∗(U) and L̂ are
inverses of each other.

Let C0
i (U) denote the set of integrableC0 real-valued vector fields of type

U → R
n on the open subsetU ⊂ R

n equipped with the subspaceC0 topology.
Let {C1(U)} be the equivalence classes of real-valuedC1 maps onU under the
equivalence relationf ⋍ g if f − g is a constant real number. Then,{C1(U)}
inherits theC1 norm topology. LetI1 and I0 be respectively the insertion of
{C1(U)} andC0

i (U) into the maximal elements of the continuous Scott domains
T ∗(U) and (U →i C(Rn)). These insertions are topological embeddings with
respect to the Scott topology on the two continuous Scott domains.

{C1(U)}
L̂

↾{C1(U)}

--

I1

��

C0
i (U)

R

↾C0
i
(U)

mm

I0

��
T ∗(U)

L̂ ..
(U →i C(Rn))

R

mm

Corollary 8.5 Second order typed FTC The Scott continuous mapŝL and
∫

furnish an isomorphism between the Scott continuous domains for ties and L-
derivatives, extending the Fundamental Theorem of Calculus of second order via
the topological embeddingsI1 andI0 to Lipschitz maps.

9 L-derivative in dimension one

In this section, we show that in dimension one the L-derivative operatorL : ([0, 1] →
R) → ([0, 1] → IR) is onto and use this to show that the function space(([0, 1] →
R) → ([0, 1] → IR)) of Scott continuous functionals from the function space
([0, 1] → R), equipped with its D-topology, to the function space([0, 1] → IR)),
equipped with its Scott topology, is a continuous Scott domain when it is partially
ordered by pointwise ordering of functionals. We will then show that this domain
can be given an effective structure and that, with respect tosuch an effective struc-
ture, the L-derivative is a computable functional.

Theorem 9.1 The L-derivative operator is onto in dimension one.
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Proof Let g = [g−, g+] ∈ ([0, 1] → IR)), whereg−, g+ : [0, 1] → R are respec-
tively lower and upper semi-continuous. LetS ⊂ [0, 1] be a splitting subset, and
put h = g−χS + g+(1 − χS). Thenh is measurable and we definef : [0, 1] → R

for eachx ∈ [0, 1] by the Lebesgue integralf(x) =
∫ x
0 h(t) dt. Sincef is Lip-

schitz, by Rademacher’s Theorem 2.2,f is differentiable almost everywhere with
respect to the Lebesgue measure and for almost allx ∈ [0, 1] we have:

f ′(x) = h(x) =

{

g−(x) x ∈ S
g+(x) x ∈ [0, 1] \ S.

Since in finite dimensions, the L-derivative and the Clarke gradient coincide, it
follows by Equation 6 thatLf = g as required.�

Let ([0, 1] →L R) be the set of Lipschitz maps equipped with the L-topology.
Next we show that the D-topology on the function space(U → R) has a meet-

stable continuous lattice of open sets. This follows from a general result as follows.

Proposition 9.2 Let Z be a topological space,Y a set andF : Y → Z a surjec-
tion. If Y is equipped with the weakest topologyO(Y ) which makesF continuous,
thenO(Y ) andO(Z) are isomorphic as lattices.

Proof By the definition of the weakest topology the mapF−1 : O(D) → O(Y ),
which preserves arbitrary intersections and unions, is onto. SinceF is a surjection,
F−1 is also one to one. Thus the latticeO(Y ) is isomorphic withO(Z). �

Corollary 9.3 The function space(U → R) equipped with the D-topology has a
meet-stable continuous lattice of open sets.

Proof By Theorem 9.1, the L-derivativeL : ([0, 1] → R) → ([0, 1] → IR) is onto
and the function space([0, 1] → IR) is a continuous Scott domain and thus has a
continuous lattice of open subsets. Furthermore, this lattice is, by Proposition 4.5,
meet-stable. Therefore, by Proposition 9.2, the lattice ofopen subsets of the D-
topology is continuous and meet-stable.�

Corollary 9.4 The function space(([0, 1] → R) → ([0, 1] → IR)) of Scott con-
tinuous functionals from the function space([0, 1] → R), equipped with its D-
topology, to the function space([0, 1] → IR)), equipped with its Scott topology,
is a continuous Scott domain when it is partially ordered by pointwise ordering of
functionals.

Proof This follows from [26, Proposition II-420(iv)], since the lattice of open sub-
sets of the D-topology on([0, 1] → R) is continuous and since([0, 1] → IR) is a
continuous Scott domain.�
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We now construct an effective structure on the function space (([0, 1] → R) →
([0, 1] → IR)) which is induced from the following effective structure on([0, 1] →
IR). We start with an effective countable basisB0 of IR consisting of the regular
(i.e., non-trivial) compact rational intervals onR. This leads to an effective count-
able basisB1 for ([0, 1] → IR) as follows: An element ofB1 is a step function
s = supi∈I biχOi

, whereI is a finite indexing set, such thatOi ⊂ R is a rational
open interval,bi is an element ofB0 for eachi ∈ I and the values ofs are regular
compact subsets, i.e.,

⋂

i∈J bi is a regular compact interval whenever
⋂

j∈J Oj 6= ∅.
Hence, elements ofB1 are regular as in Definition 4.6. FromB1, we immediately
obtain an effective countable basisB2, of theD-topology on([0, 1] → R), with
B2 = {L−1(s) : s ∈ B1}. Finally, we obtain an effective countable basisB3 of
(([0, 1] → R) → ([0, 1] → IR)) consisting of step functions made from single-
step functions of the formsχO whereO ∈ B2 ands ∈ B1. It is easy to see that
the restrictions to the basisB3 of the partial order⊑ and the way-below relation
≪ of (([0, 1] → R) → ([0, 1] → IR)) are both decidable. By taking effective
enumerations ofB0, B1 andB2, we obtain an effective enumeration ofB3. Thus,
we equip(([0, 1] → R) → ([0, 1] → IR)) with an effective structure.

We will now show that theL operator as an element of the effectively given
continuous Scott domain(([0, 1] → R) → ([0, 1] → IR)) is computable. For
this, we need to prove that with respect to an effective enumeration (fi)i≥0 of the
basisB3 the set{i : fi ≪ L} is recursively enumerable [23, Definition 2]. We
will actually prove more and show that the above set is recursive, i.e., the relation
fi ≪ L is decidable.

Proposition 9.5 For any elementf of the basisB3, the relationf ≪ L is decid-
able.

Proof We havef = supi∈I gi where eachgi is a single-step function andI is a
finite indexing set. Then,f ≪ L iff ∀i ∈ I. gi ≪ L and it is sufficient to prove
that the latter relation is decidable. Now each single-stepfunctiongi is of the form
tχO wheret ∈ B1 andO ∈ B2 with, say,O = L−1(↑↑s) for somes ∈ B1. We
have:

tχ
L−1(↑↑s)

≪ L ⇐⇒ L−1(↑↑s) ≪ L−1(↑↑t) By Proposition 4.8

⇐⇒ ↑↑s ≪ ↑↑t SinceL is onto
⇐⇒ t ≪ s By Cor. 4.10, regularity ofs

and Prop. 4.7(ii)

Assumes = supj∈J bjχOj
and t = supk∈K bkχOk

. Then, we havet ≪ s iff
∀k ∈ K. bkχOk

≪ supj∈J bjχOj
iff (by Proposition 4.8 again)∀k ∈ K.Ok ≪
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⋃

j∈J{Oj : bk ≪ bj}. Since the relationOk ≪ ⋃

j∈J{Oj : bk ≪ bj} is decid-
able, it follows that the relationtχ

L−1(↑↑s)
≪ L is decidable and hencef ≪ L is

decidable.�

Corollary 9.6 The L-derivative operator is a computable functional of type: ([0, 1] →
R) → ([0, 1] → IR).�

Note that to prove the above main result of this section, the surjectivity of L was
the only tool used in this section that has only been proved here for n = 1. All
other properties we used were valid for any finite dimensionn ≥ 1.

10 Further work and open problems

We list here three open questions: (i) Is the L-derivative operator onto for finite
dimensionsn > 1? If so, all the results in Section 9 would extend to higher finite
dimensions, i.e., the L-derivative would be a computable functional. (ii) How can
the Scott topology on(U → C(X∗)) and thus the L-topology be characterised
for Lipschitz maps on an infinite dimensional Banach spaceX? Can any of the
results in finite dimension be extended to infinite dimensions? (iii) Can one con-
struct a simple complete metric for the L-topology by using the Hausdorff metric
to compare L-derivatives?
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