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Abstract

We show that the Scott topology induces a topology for reddied Lips-
chitz maps on Banach spaces which we call the L-topology.tité weakest
topology with respect to which the L-derivative operatas, asecond or-
der functional which maps the space of Lipschitz functiarie the function
space of non-empty weak* compact and convex valued mapgpegiiwith
the Scott topology, is continuous. For finite dimensionatligiean spaces,
where the L-derivative and the Clarke gradient coincidepvevide a simple
characterisation of the basic open subsets of the L-togdloterms of ties
or primitive maps of functions. We use this to verify that théopology is
strictly coarser than the well-known Lipschitz norm topgyo A complete
metric on Lipschitz maps is constructed that is induced ley Hausdorff
distance, providing a topology that is strictly finer thae thrtopology but
strictly coarser than the Lipschitz norm topology. We themnealop a funda-
mental theorem of calculus of second order in finite dimemsghowing that
the continuous integral operator from the continuous Sdothain of non-
empty convex and compact valued functions to the continSaa$t domain
of ties is inverse to the continuous operator induced by tuetivative. We
finally show that in dimension one the L-derivative operasasnto and that
it is a computable functional.
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Mathematical subject codes:03D80, 26A24, 06B35, 54E55.



1 The case for Lipschitz maps in computation

Real-valued Lipschitz maps on Euclidean spaces have a nmuvhliendamental
properties that make them into a suitable class of functiom@svariety of contexts
with wide applications in pure and applied mathematics. these, they are the
appropriate choice of functions in many different areasarhputation.

Closed under composition and sitting between the class miramus func-
tions and those of continuously differentiable functiohgschitz maps contain
the important class of piecewise polynomial functions, ckhare widely used in
geometric modelling, approximation and interpolation anel supported in Mat-
Lab [8]. They are uniformly continuous and have much betteaiiant properties
than differentiable maps as they are closed under the fuedtimin and max
operations. Lipschitz maps with uniformly bounded Lipszhionstants are also
closed under convergence with respect to the sup norm. lthdéary and appli-
cation of ordinary differential equations, Lipschitz mappresent the most funda-
mental class of maps in view of their basic and essentialijaited property that
a Lipschitz vector field ilR™ has a unique solution in the initial value problem [7].

In a more theoretical direction, Lipschitz maps are, by Raagher’s theorem,
differentiable almost everywhere on finite dimensional li€igan spaces [6, page
148], and by Kirszbraun theorem [25, page 202], enjoy th@alds property that
they can be extended from any subset of a Hilbert space tolibwspace with the
same Lipschitz constant. Lipschitz maps are at the verydation of non-linear
functional analysis [2] and have been the subject of a hugedwing research in
the theory of manifolds including Riemannian surfaces afitlefront of develop-
ment of mathematics in relation to theoretical physics [3].

In recent years a new notion of derivative for Lipschitz mbhps emerged that
extends the classical (Fréchet) derivative for contirslpdifferentiable functions
and is moreover always defined and continuous with respaghéd is in fact the
Scott topology on a domain. The Scott topology [1, 26], wiiels proved to be an
essential tool in the theory of computation, has now founevaarea of application
in mathematical analysis.

In 1980’s, motivated by applications in non-smooth analysptimisation and
control theory, Frank Clarke developed a set-valued divivdor real-valued Lip-
schitz maps on Euclidean spaces, which is now called th&€tmadient [5]. On
finite dimensional Euclidean spaces, the Clarke gradiestnoa-empty compact
and convex subsets of the Euclidean space as its valuesx&uopée, the absolute
value function, which is not classically differentiablezaro, is a Lipschitz map
that has Clarke gradieift-1, 1] at zero.

Itis of great interest to computer science that the Clarkeligint of a Lipschitz
map is upper semi-continuous as a function, i.e., it is ooiotiis with respect to the



upper topology on the hyperspace of the non-empty compattanvex subsets
of the Euclidean space. In finite dimensions, the upper tapoktoincides with
the Scott topology on the hyperspace when it is ordered lgrsevinclusion (i.e.,
its specialisation order). It is however unknown if on infendimensional Banach
spaces the Clarke gradient, which takes non-empty weak’pactrand convex
subsets of the dual of the Banach space as its values, reBeotiscontinuous.

Despite the central place Lipschitz maps occupy in manydiras of compu-
tation as well as in pure and applied mathematics, they hat/gat been a subject
of study in computable analysis to the extent that no mentiohnipschitz maps
can be found in the standard texts in computable analysis3i&1

In [16], a domain-theoretic derivative was introduced fealrvalued func-
tions of the real line, which was later extended to higheratisions [17, 13] and
shown to be mathematically equivalent to the Clarke gradiefinite dimensional
spaces [13]. The L-derivative, as the domain-theoretiozdéive is now called, has
a number of distinct features compared with the Clarke gradi

(i) The L-derivativeL f of a Lipschitz mapf is constructed using finitary dif-
ferential properties off that allow a natural way of approximating the L-
derivative using domain theory.

(i) The domain-theoretic setting provides a fundamertabtem of calculus for
Lipschitz maps, a duality between primitive maps and thedekivatives,
that extends the classical theorem in calculus for contislyodifferentiable
functions to Lipschitz maps.

(i) The L-derivative gives rise to a continuous Scott demeith an effective
structure for real-valued Lipschitz maps on finite dimenailoEuclidean
spaces.

(iv) For Lipschitz maps on infinite dimensional Banach sgatiee L-derivative
remains Scott continuous, a result not known to hold for ttek@ deriva-
tive.

This work has led to a domain-theoretic framework for savinitial value
problems [15, 22, 18, 20] including the use of the “rectaagul-derivative in the
second order Euler method [17], a domain-theoretic franmkewbthe implicit and
inverse function theorem for Lipschitz functions [19] andemotational semantics
for hybrid systems [21].

Two fundamental and related questions arise:

(1) What is the appropriate topology on the space of Lipgamiaps in compu-
tation?



(2) Can we obtain a second order typed Fundamental Theor€alofilus with
a continuous derivative operator and a corresponding rwaatis integral op-
erator as inverses of each other?

We use two different methods, one classical and one dorhainrétic, to tackle
and answer the first question:

(i) We obtain the weakest (i.e., the initial) topology on #pace of Lipschitz
functions that makes the L-derivative operator, which ntapsspace of Lip-
schitz functions into the function space of non-empty cochjgad convex
valued maps equipped with its Scott topology, a continuaastfonal. This
is similar to characterising th€'! topology on continuously differentiable
real-valued maps as the weakest topology that makes theicadh&réchet
derivative operator continuous as a second order fundtiottais also in
tune with the way some of the fundamental topologies, sutheasubspace
topology, the weak topology of a normed vector space and tgakivtopol-
ogy on its dual are defined.

(i) We obtain the topology on the space of Lipschitz mapg thakes the in-
sertion of these maps onto the set of maximal elements of dheach for
Lipschitz maps a topological embedding. This is in line watmstructing
computational models for classical spaces in mathemal2s48] by em-
bedding them into the set of maximal elements of suitableadosn

These two approaches lead to an identical result: the Soptidgy, both
on the hyperspace in (i) and on the domain of Lipschitz map@)imbove, in-
duces a topology for maps, called the D-topology, whosersatgion with the
C° norm topology provides a new topology, called the L-topgldgr Lipschitz
maps. We show that for Lipschitz maps on finite dimensionalliBean spaces,
the L-topology is strictly coarser than the well-known Lépgz norm topology
for real-valued Lipschitz maps, which we now describe. Giamy metric space
(X,d), the collection Lig X, d) of bounded real-valued Lipschitz functions an
is equipped with itdipschitz norm| - ||.;,, defined as

[ fllzip = N1+ 11 lla (1)

where||f|| = sup{|f(z)| : « € X'} is the sup norm and

1flla = sup{[f(z) = f(y)l/d(z,y) : 2,y € X,z # y}.

If (X,d) is complete then so is the Lipschitz norm [33].
The relationship between these topologies is depictedeimlidigram below:
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In the finite dimensional case, we derive an elementary cleniaation of the
basic open subsets of the L-topology in terms of ties or pimeimaps. This is used
to prove that the L-topology is strictly coarser than thedapitz norm topology.
In the one dimensional case, we further prove a density lefomapschitz maps
which we use to show that the basic open subsets of the Lagpalre regular.

Using the Hausdorff distance between non-empty compactessitof finite
dimensional Euclidean spaces, we also construct a commpietec for Lipschitz
maps which induces a topology strictly finer than the L-toggland strictly coarser
than the Lipschitz norm topology.

Next, we verify that in finite dimensions the domain-themrstructure of the
space of non-empty compact and convex valued maps is pegsafter restricting
to integrable maps and also after identifying maps that bnest everywhere the
same. This enables us to derive, for the first time using doereory, a second
order typed fundamental theorem of calculus showing thatirkegral operation
and the induced L-derivative operation are continuousrge&of each other.

Finally, in dimension one, we are able to show that the Lvditie operator
is onto, a result which we use to prove that the L-derivatssa computable func-
tional.

In [4], a more recent application of domain theory in diffetial calculus, in
the context of viscosity solutions of Hamiltonian equasipis introduced which
uses what is called th&trong derivative This notion is not directly related to our
work here since, as we will see, there are Lipschitz funetiauhich have a non-
point valued Clarke gradient, equivalently, L-derivatateevery point and are not
strongly differentiable at any point.



2 Lipschitz derivative

In this section we establish our notation, review the elemefithe domain-theoretic
differential calculus that we need here and extend a numibkeyoresults previ-
ously only known in dimension one to higher dimensions théitlve required in
this paper.

We consider continuous maps of type U — R whereU C R" is an open
subset. The set of all such functions is denoted®y— R). The choice olU as
an open subset makes the extension of our results to infimtersgional Banach
spaces smooth and uniform. But for finite dimensional spagesan also choose
U to be a regular compact subset suclitas]”.

By a domain we mean a directed complete partial order (ddpe)assume the
reader is familiar with the elements of domain theory, intigatar the way-below
relation, continuous Scott domains, as well as the Scottamgon topologies [1,
35, 26]. In particular, we recall that in any continuous dom& with a basis
B C D, subsets of the forz = {y : z < y}, wherexz € B form a collection of
basic Scott open sets.

Let (C(R"), C) denote the domain of all non-empty convex and compact sub-
sets ofR"™, augmented with a least element denotedlhyordered by reverse in-
clusion. The maximal elements are singleton $etsfor = € R"; for convenience
we write any maximal elemedt:} simply asz. The dcpo(C(R™), C) is a contin-
uous Scott domain as it is a continuous retract [1] of the uppaceU(R"), the
set of non-empty compact subsetsiSf ordered by reverse inclusion, which is a
continuous Scott domain [11]. In fact, the convex hull ntap U(R") — U(R")
that takes any non-empty compact subset to its convex halldsott continuous
map withC(RR™) as its image. When = 1, the dcpoC(R) is simply the domain
IR of the non-empty compact intervals &fordered by reverse inclusion.

The left and right end points of any non-empty bounded irlertvC R is
denoted by~ andct respectively. Thus, a non-empty compact intervat R
is written in terms of its ends points as= [¢™, c¢t]. For any topological space
Y, a Scott continuous functiofi : Y — IR is characterized by a lower and an
upper semi-continuous functiong,”, f* : Y — R respectively, withf(z) =
[f~(z), fT(2)]; we write f = [f, fT]. The scalar product of vectors &, i.e.,
the map— - — : R" x R” — Rwithz -y = Y " | 2,yn, is extended to a map
——: C(R") x R™ — IR with b - r = {z - 7|z € b}. The Euclidean nornjjz||
of z € R™ is given by||z|| = /= - z. For a subsetl of a topological space, CH),
A°, A€ denote the closure, interior and complementdofespectively. IfA is a
subset of a metric spac®’, d) then for anyt > 0 we denote theé-neighbourhood
of Aby A, ={x €Y :3ye A d(z,y) <t}

For a topological spac&’, we denote its lattice of open subsets &yY).



Given a dcpaD with bottom L, the single-step functiohy, : Y — D, where
a € O(Y) is an open set antdl € D, is defined a$y,(z) = bif x € a and L
otherwise. Thedomain dom(f), of a Scott continuous functiofi : Y — D is
given by dontf) = {z € Y : f(x) # L}. SinceU with its Euclidean topology
is a locally compact Hausdorff space, its lattice of opensetgis continuous.
It follows by [26, Proposition 11-420(iv)] (equivalentlyrdm [24]) that the space
(U — C(R™)) of all Scott continuous functions ordered pointwise is atitmous
Scott domain and any € (U — C(R")) can be expressed as the supremum of
single-step functions way-below it. = sup{bx, : bx. < g}. Lubs of finite and
consistent sets of such single-step functions form a basigf — C(R")). Note
that here we use the standard notation for step functionsring of characteristic
functions as in [26].

Any single step function of typ& — C(R"™) defines a family of maps of type
U — R as follows [13]. We sayf € (U — R) hasan interval Lipschitz constant
b € C(R™) in a convex relatively compact open subget U if for all z,y € a
we haved- (x —y) C f(z) — f(y), i.e., f(x) — f(y) € b- (x —y). Thesingle tie
of by,, denoted by (by,), is the collection of all real-valued continuous functions
f onU that have an interval Lipschitz constanin a. Note that in our previous
work the notatiord(a, b) was used instead 6{bx, ). The new notation emphasises
more explicitly the connection between a single-tie anch#sociated single-step
function, which is more convenient for expressing the rassof this paper. If
f € d(bxa) then f is Lipschitz ina with Lipschitz constant suf|z|| : =z € b} and
the same is true for the extension by continuity to Cla).

A tie is any intersection of single-ties. For any indexing sethe family of
single-step functionsb;x,, )icr is bounded iNU — C(R™)) if (;c; 6(bixa;) #
() [13, Proposition 3.9]. Moreover, #fup;cr bixa, T sup;e.s bixq,, then we have [13,
Corollary 3.12]:

ﬂ 6(biXai) 2 m 5(bixai)‘
icl icJ

It follows that any non-empty tie\ = (1,_; d(b;x4,) is uniquely associated with
the Scott continuous function = sup,c; bix,, and we writeA = §(g). There-
fore, §(g) is a family of Lipschitz functions whose local Lipschitz perties are
expressible by single-ties provided by the single-stegtions belowg. We note
thatd(g) is always non-empty for = 1 but can be the empty set in higher dimen-
sionsn > 1. In [17, Section 6], an example of a step functigifior dimension
n = 2 is given withj(g) the empty set. A functiog € (U — C(R")) is called
integrableif 5(g) # 0.

Let (T(U), D) be the partial order of ties of continuous functions of type—
R ordered by reverse inclusion. The set of L-primitives of atScontinuous



function is precisely the tie associated with it. Tih@rimitive mapis defined by

[+ (U—=CR") — T(U)
f = 0(f).

The set/ f is the collection of thé.-primitivesof f and the mapf is continuous
with respect to the Scott topologies 66f — C(R"™)) andT(U). In this paper,
it is convenient to usé(g), whenevery is a step function, i.e. the lub of a finite
bounded set of single-step functions, and {isefor a general Scott continuous
function.

The interval Lipschitz constants for a map provide us wiHatal differential
properties, which can be collected to define its global @#xe. TheLipschitz
derivativeor theL-derivativeof a continuous functiorf : U — R is accordingly
defined as the Scott continuous map

Lf:U — C(R"), 2

given by
Lf =sup{bxq: f € d(bxa)}- 3

Example 2.1 The b-cone Letv € a C U, r € R and letb be any non-empty
convex and compact subsetBf. We construct two functiong®, f : « — R
with f“(v) = fY(v) = r andLf%(v) = Lf'(v) = b. The graphs off* and f!
are respectively the upper and lower parts of a conR’iri! , called theb-cone
with vertex at(v, r), denoted byK}(v,r). Forn = 1, we haveb = [b—,b"] and
Ky (v, ) is simply the cone with vertefw, ) € R? generated by the two lines with
slopeb™ andb™. For example, wheh = [—1,1] andz = r = 0, then theb-cone
is given by the two lines with slopes1 and1 through the origin corresponding
to the two functionsf* = Az.|z| and f! = A\z. — |z|. Forn > 1, let P" be
the hyperplane iiR™*! that is perpendicular t®", passes througtw,r) and is
parallel with the unit vector. € R™. ThenP, intersectsk, (v, r) in the hyper-line
that stands at angkerctan((b - u)™) with theR™ hyperplane.

2.1 Infinite dimensional case

The L-derivative can be extended to real-valued functiomsaoy Banach space
X [13]; we will briefly sketch the way this is done here. LétC X be any open
subset ofX. We consider the differential properties of continuous s16pU — R
with respect to the norm topology oK. The L-derivative off at any point inU
where the function is locally Lipschitz will be a non-emptgnvex and weak*
compact subset of the dual spaké. Let C(X*) denote the dcpo of such subsets



ordered by reverse inclusion. Then the notion of tie of a fiom¢ which we have
seen in the finite dimensional caB®, can be extended to any Scott continuous
functiong : U — C(X™) that is expressible as the lub of step functions. These
functions form a sub-dcpU —, C(X*)) of (U — C(X™*)) which includes all
classical functions that map any point &fto a singleton point, i.e. a maximal
point, of C(X™). Ties of functions are then used to define the L-derivativargf
continuous maff : U — R as

Lf:U — C(X*)

with its values given byCf = sup{bx, : f € d(bxs)} as in Equation 3. Itis
shown in [13] thatl f is Scott continuous.

Note that since the L-derivative can be extended to infiriireedsional Banach
spaces, it can be applied to functionals of higher order syoh agU — R) — R.
In fact, if U C X is an open subset of a Banach spatethen the function space
(U — R) of continuous functions of typ& — R, equipped with the operator
norm, forms a Banach space and therefore the L-derivatiweelsdefined and
Scott continuous on functionals of tyg& — R) — R or, inductively, of higher

types.

2.2 Clarke’s gradient

LetU C X be, asinthe previous subsection, an open subset of the BapaceX
and letf : U — R be locally Lipschitz. Theyeneralized directional derivativi®,
Chapter 2] off atz in the direction ofv is

fo(l’; ’U) — limsup f(y + t’U) B f(y) )
y—x t|0 t

(4)

Thegeneralized gradiendf f atx, denoted by f () is the subset oK * given by
{Ae X*: f(z;v) > A(v) forallv € X}.
It is shown in [5, page 27] that
e O0f(x)is anon-empty, convex, weak* compact subseXof
e Forv € X, we have:

fo(z;v) = max{A(v) : A€ df(x)}. (5)

There is an alternative characterization of the genemlgradient whernX is finite
dimensional, sa)X = R", which uses the following result known as Rademacher’s
Theorem. Let/ C R"™ be an open subset.
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Theorem 2.2 (Rademachej [6, page 148] Iff : U — R is Lipschitz, then it is
differentiable almost everywhere and is equal to the irglegf its derivative.

If €2 is the nullset where the Lipschitz mg@p U — R fails to be differentiable
then:

of (x) = Coflim f'(z;) : @ — x, x; & Qf}, (6)

where CdS) is the convex hull of a subsét C R"™ [5, page 63]. The above
expression is interpreted as follows. Consider all sege®qc;);>o, With z; ¢
Qy, for i > 0, which converge tac such that the limitf’(x;) exists. Then the
generalized gradient is the convex hull of all such limitsot&that, in the above
definition, sincef is locally Lipschitz atz, it is differentiable almost everywhere
in a neighbourhood af and thus there are plenty of sequen¢es;>( such that
lim; oo z; = x andlim; ., f'(z;) exists.

It is not known if the L-derivative in the infinite dimensidnease coincides
with the Clarke gradient or if the Clarke gradient is Scottimuous in the infinite
dimensional case. In finite dimensions, however, the faligwvas shown in [13,
Corollary 8.2]:

Proposition 2.3 In finite dimensional Euclidean spaces, the L-derivativie@des
with the Clarke gradient.

In [4], the strong derivativeof a functionf : U — R" is introduced, wheré/ c
R™ is a locally compact and dense subset & the extended real line. The
function f is said to be strongly differentiable atif there exists a linear operator
L : R™ — R" such that for alu, v € U,

f(u) — f(v) = L(u—v) +r(u,v) where lim

The operatol, if it exists, is unique and is called the strong derivatiVe:oThere
are Lipschitz functions of typé0,1] — [0,1]| which have a non-point valued
Clarke gradient (equivalently L-derivative) with

lim infM =0 and  lim supM =1,
HJ;ZZ)Z u—"v uz,L'L;é—{)cc u—v

ateverypointz € [0,1] (see [30, Proposition 1.9] and Section 5 below) and are
thus not strongly differentiable at any point|[0f 1].
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2.3 Properties of ties
The first order typed Fundamental Theorem of Calculus (FT&jvben the L-
derivative and primitives gives us the relation [13]:

f6/9<=>ggﬁf- )

It is an extension of the classical version of the FTC. In,famta continuous real-
valued functiory, we havef € [ giff fisC! with f’ = g wheref’ is the classical
(Fréchet) derivative of.

The following notions and results generalise those for disien one in [16].
We define the function

r: (U — C(R") — (U? — IR) (8)
with the lower and upper parts ofg) : U? — IR for g € (U — C(R")) given by

)du [z,y] C dom(g)
otherwise

(T(g))i C(z,y) — { Jf_[gc7y}(9 v

wherev = ﬁ for  # y andp is the one dimensional Lebesgue measure on

the line segment
[yl ={te+ (1 —-t)y:0<t <1} 9)
Note that, by the monotone convergence theorem, themmafcott continuous.

Lemma 2.4 Supposé: : U — R andh’/(x) exists for some € U, thenh/(x) €
L(h)(x).

Proof We havel(h)(z) = sup{b: f € d(bx,) &z € a}. Buth € §(bx,) and
x € aimply A/ (z) € b, and the result follows]

Lemma 2.5 Leta be a convex open subsetléfandb € C(R"™). If for almost all
x € awe havel/(x) € b, thenL(h) 3 by,.

Proof By Rademacher’s theorem 2.2, for any path connectiagdy we have:
/w B (z)-dz=h(z) — h(y).
Y
In particular, for the path : [0, 1] — [y, z] with z(t) = y + t(z — y) we have:
) =0 = [ Wiy + e =) e - ) € o).
Hence,h € 6(bx,) and the result followd]
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Corollary 2.6 Supposgy € (U — C(R™)) andh € (U — R). If for almost all
x € dom(g) we haveh/'(x) € g(z), thenLh 1 g.

Proposition 2.7 (i) h € [ g iff
Va,y € U.(r(9))” (z,y) < h(y) — h(z) < (r(9)" (z,y)
(i) If gis anintegrable map, then the two functiong (r(g))~ (z, y) andy.(r(g)) " (z, y)
are respectively the least and greatest functidns [ g with h(z) = 0.
(iii) The following two conditions are equivalent:

(@) g1 C g2 a.e.,i.e.gi(x) C go(x) for almost allx € U with respect to
then-dimensional Lebesgue measureldn

(0) 7(g1) E 7(g2)-

(iv) The equivalent conditions (a) and (b) in (iii) imply:

©) [912 [ g
(v) If g2 is integrable then (c) in (iv) above implies (a) and (b) in)(ii
Proof (i) Supposeh € [g¢. ThenCh J g andh/(z) € (Lh)(z) for a.e. z €

dom(g). By Rademacher’s theorem, integrating along the line segfey| (de-
fined in Equation 9), we get:

[ g auzi) —n@ < [ (@)t du.
[z,y] [z,y]

as required. On the other hand, suppose the above two ingegiabld. Forz # y,
lety =z +towithv = (y — z)/(||ly — =||) andt = ||y — z||. Then

e @ 9" h@+t0) = h(@) _ Sy (0 9)" A
t - t - t '
By Rademacher’'s theorem agaih,has Fréchet derivative almost everywhere.
Therefore, taking the limiy — x we obtain for almost alt € U

(v-g) (z) <v-M(z) < (v-g)"(2).

Sincew is an arbitrary unit vector, it follows that for almost alle U we have:
h'(x) € g(x). By corollary 2.6, we geLh J g as required.

(ii) This follows directly from ().

(iii) (@)=-(b). This follows from monotonicity of.
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(b)=(a). Fromr(g1)(z,y) C r(g2)(z,y) we obtain:

/ (91 'v)_dué/ (92 -v)~ du
[z,y] [z.y]

/ (g1 -v)"dp 2/ (g2-v) " dp.

[2,y] [2,y]

Thus, for almost all: € [z,y] with respect to the one-dimensional Lebesgue
measure on the line segmdnt y] we have the two inequalitieg; - v) " (z) <
(g2-v)~(2) and(gy - v)T(2) > (g2 - v) " (2). Fix the unit vectow. Then by Frobe-
nius theoren{g; -v)~ () < (g2-v)~(2) and(gy -v)T(2) > (g2 -v) ™ (z) for almost

all z € U with respect to the:-dimensional Lebesgue measure. Finally, by using
Frobenius theorem with spherical integration we obtgaifx) C g2(z) for almost
allzeU.

(iv) (a)=(c). Fromg; C ¢, a.e. we obtaim(g;) C r(g2). Thus by (i) we obtain
he [giif he [go

(v) This follows from (i).

2.4 Lipschitz Domain and computability

In [12], adomain-theoretic computational model a classical spac¥ is defined
to be a domairD with a topological embedding (i.e., a continuous and opgrtin
tion) of X into a subset of maximal elements Bfequipped with its relative Scott
topology. For a countably based locally compact Hausdpete, the upper space
(the collection of the non-empty compact subsets of theespadered by reverse
inclusion) was proposed as a proto-type model. In this @s@ the case of the
domain of formal balls [14] for a complete separable metpace (Polish space),
the computational model is an-continuous domain. In these two instances, the
embedding is actually onto the set of maximal elements oftimtinuous domain
under consideration. However, there are important clasksction spaces with
an embedding into a proper subset of the maximal elementscoh@énuous do-
main. A basic example is the embedding of the spdeel] — R) of C° func-
tions into the set of maximal elements @0, 1] — IR). For example, the map

f:10,1] — IR with
0 z<0
T 1 >0,

[0,1] z=0

is a maximal element (fi0, 1] — IR), which is not in the image of the embedding
E : ([0,1] — R) — ([0,1] — IR) given byg — Ax.{g(x)}. For the case when
the embedding is onto the set of maximal elements, Lawsen $aiowed that an
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w-continuous domain is a computational model for a Polisltspt the relative
Scott topology and the relative Lawson topology coincidé®the set of maximal
elements. [28, 29].

The Scott continuous domaiR™(U) for real-valued Lipschitz maps on an
open subset/ C R" is the set of pairf,g) € (U — IR) x (U — C(R"))
that areconsistenti.e., for which there exists a Lipschitz map: U — R with
f E handg C Lh; see [13]. Fom = 1, it was shown in [16] that consistency
on the basis consisting of step functions given by rationehipers is decidable,
implying that D"™(U) can be given an effective structure. A similar result was
given in [17] forn > 1 in the case of the “rectangular” L-derivative of a function
h : U — R, whose values, for a fixed coordinate system, at each pgirt U is
the smallest hyper-rectangle Ri* that contains the non-empty compact and con-
vex set(Lh)(zg). The proofs for the special case of “rectangular’ L-derxat
in [17] can be extended to show that consistency is decidable > 1, giving
an effective structure foD™(U) in the finite dimensional case. Equipped with an
effective structure, the domaib™(U) provides an enumeration of the computable
pairs(f,Lf) € D™(U). Thus, the notions of a computable map and a computable
L-derivative are inseparable in this context and are buithiw the domain of Lip-
schitz maps.

3 Weak Topology for Lipschitz maps

In this section we derive a new topology for Lipschitz mapthasveakest topology
that makes the the L-derivative operator continuous.

We note that th&’! topology on the space of continuously differentiable func-
tions can be characterised as the weakest topology thatstlagelassical Fréchet
derivative operation continuous. In fact, &% (U) andC'(U) be, respectively, the
Banach spaces of continuous functions and continuouslgreliftiable functions
on an open subsét C R™. Consider the pairing map

(1d, %) L CUU) = COU) x (U — R

where Id is the identity function anglg is the Fréchet derivative operation, i.e.
(Id, %)(f) = (f, f). TheC' norm topology onC'(U) is precisely the weakest
topology such that the above pairing function is continuous

The above observations lead us naturally to a concrete sehem to define
the weak topology for Lipschitz maps. Instead of the claddicéchet derivative,
we will use the L-derivative. We therefore define the L-taqmyl on the collection
(U — R), of real-valued continuous functions @h to be the weakest topology
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on (U — R) such that the pairing map
(1d,£): (U —-R) — (U—-R) x (U—C(X"))

with f — (f, Lf) is continuous, where the function spaéé — R) in the range
of the pairing function above is equipped with & norm topology andU —
C(X™)) is equipped with its Scott topology.

Let theD-topologyon (U — R) be the weakest topology such that

L:(U—-R)— (U—C(X"))

is continuous. Note that the D-topology, like tjpe ||; norm topology in the def-
inition of the Lipschitz norm topology - || in Equation 1, is noffp as any two
functions differing by a constant always belong to the samepbn sets. The
L-topology, however, is the intersection (i.e. join) of th€ topology and the D-
topology on(U — R) and is thus Hausdorff.

Since the L-derivative of & function coincides with its Fréchet derivative, it
follows that theC'! topology onC'(U) is precisely the relative L-topology for the
subspac&(U).

The L-topology has also a domain-theoretic charactedradis follows. The
domainD(U) for real-valued Lipschitz maps is the subdomain of the iast
pairs of elements iU —; R) x (U —s C(X™)), whereU C X is an open subset
and X is R™ or an infinite dimensional Banach space.

Proposition 3.1 The L-topology orfU — R) is precisely the topology that makes
the insertion map
f=(fLf):(U—R)— D)

a topological embedding with respect to the Scott topolagy>oU ), i.e., the L-
topology is the topology that makéXU') a computational model.

Proof We first note that for eacli € (U — R), the pair(f, Lf) € D(U) is max-
imal [13, Proposition 5.8] and that the insertion map is anerie. Next we note
that the function spac@/ — R), equipped with its sup norm, is homeomorphic
with the subset of maximal elements(@f — IR), equipped with its relative Scott
topology, under the correspondente— A\z.{f(z)}; see [16, Theorem 2.2]. The
statement that the L-topology is the weakest topology thetes the L-derivative
L:f—(f,Lf): (U — R)x (U — C(X*)) continuous is equivalent to the
assertion that the insertion map is continuous and thati ispen mag.]
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4 L-topology in finite dimensions
When X = R", the pairing map reduces to:
(1d,£): (U - R) — D"(U)

whereD"(U) C (U — R) x (U — C(R™)) is a continuous Scott domain. Since
the space of Lipschitz maps equipped with the L-topologyrézigely the set of
maximal elements oD"(U), it follows that this space is a Polish space, i.e., a
separable completely metrizable topological space [28piEr V-6].

Corollary 4.1 In finite dimensions, the L-topology admits a complete metri

Furthermore, the L-topology has an elementary charaet#is in terms of
ties of functions: the D-topology has a basis consistingutisets of the form
5(g) := L~ 1(1g) for any step functiory € (U — C(R™)) with g # 0.

We note that ifg = sup,c; bixa;, for a finite indexing setl, then g =
Mier T(bixa;). Since, by FTC (Equation 7)(bx,) = £~ (1(bxa)), it follows that

92

d(bxa) C 6(bx,) and more generally for any step functigre (U — C(R")):

3(g) C d(g). (10)

The countable collection of step functions of the fdri_, .. (bix4,) Where,
for 1 < i < m, the subset; is the interior of a convex rational polyhedron whereas
the subseb; is the closed hull of a rational convex polyhedron, providesuntable
basis of the Scott topology of/ — C(R")). Since theC® norm topology is
second countable, it follows that the D-topology and thssnitersection with the
C° norm topology are both second countable.

In this section and in Section 7, closure and interior of stdare meant to be
with respect to the L-topology.

Proposition 4.2 Any tie is closed in the L-topology.

Proof Since a tie is an intersection of single-ties, it is sufficienshow the state-
ment for a single-tiej(bx,). Since the L-topology is second countable, it suffices
to prove the closure property for sequences. (fe};>o be a sequence if(by,)
which converges to a functiofi: U — R in the L-topology and thus in particular
in theC° norm topology. Then, for each> 0, we haveb-(z—y) C f;(z)— fi(y).
From the compactness of (x — y), we conclude by taking the limit that for all
x,y € awe haved - (x —y) C f(x) — f(y) as required

From Equation 10, we conclude:
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Corollary 4.3 If g is a step function, then: G§) C d(g).

Corollary 4.4 The L-topology is the weakest topology (@h — R) such that the
pairing map

(1d,£) : (U —-R) — (U —R) x (U— C(R"))

is continuous, where the function spdéé — R) in the range of the pairing func-
tion above is equipped with itS° norm topology andU — C(R")) is equipped
with its Lawson topology.

Proof The Scott topology o(lU — C(R")) is refined by the Lawson topology by
taking Tg as sub-basic closed subsets for all step functipnBut £~ (Tbx,) =
d(bx,) is closed in the L-topology by Corollary 7.4]

We say that the way-below relation in a continuous domiaiis meet-stable if
r < yandzr < zimply x < y Mz for all z, y andz in the domain. For example,
the continuous Scott domafi(R™) is meet-stable, a property which follows easily
from the characterization of the way-below relation givenb < B iff B° C A.
Similarly, the latticeO(U) of open subsets of any open $&tC R" is meet-stable.

Proposition 4.5 [1, Theorem 4.2.18.] The lattice of Scott open sets of anyt Sco
continuous domain (more generally of any F-S domain) is reidte.

It is easy to check thab is meet-stable if the meet-stability relation holds for
the elements of a basis closed under binary meet. In faghosepthe meet-stability
relation holds for such a basis andlet y andx < z. By the interpolation prop-
erty of the way-below relation in a continuous domain we cad basis elements
b;forl <i <4suchthatr < b; < by < yandz < b3 < by < z. Then we
havexr C by M bg with by M by < by andby M bg < by. By assumption, it follows
thatb, M bg < by M by from which we obtainz <« y M z.

Definition 4.6 We say an element of a continuous Scott domaib is regular if
x=inf{y : z < y}.

For example, inC(R™) the regular elements are precisely those subsets that are
regular as compact subsets Rf. It follows that C(R™) has a countable basis

of regular elements (consisting for example of :altlimensional rational convex
polyhedra regarded as compact subsets). Similarly, apyfstetion of typell —
C(R™) whose values are regular elements@fR"™) is a regular element of the
function spacdU — C(R"™)) and this function space has a basis of regular step
functions. The next result furnishes a connection betwbemiay-below relations

on a continuous Scott domain and its lattice of open subsets.
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Proposition 4.7 Leta andb be two elements in any continuous Scott dormain
(i) We havela < Thif b < a.

(i) SupposeD is meet-stable and is regular. Therb < a if Ta < 1.

Proof (i) Supposeb < a and assuméb C Uier Oi where(O;);¢; is a directed
set of open subsets. It follows that theré is I with a € O; and thusfa C O; as
required.

(ii) Supposefa < 1b. We havelb = [J{Tc : b < c} where the collection of
open subset§fec : b < ¢} is directed sinceD is meet-stable. Thus for somes R
we havefa C Tc. By the regularity ofa, we obtainb < ¢ C inf{z : c < 2} C
inf{z : a < 2} = a, as required]

If D is a continuous Scott domain aidis a topological space with a continuous
lattice of open sets, then, as we have already pointed aufutiction spacé¢y —
D) is a continuous Scott domain [26, Proposition 11-420(ivjurthermore, we
have:

Proposition 4.8 SupposeD is a continuous Scott domain andis a topological
space with a meet-stable continuous lattice of open sets.ULe Y be open,
seDandf € (Y — D). Thensyo < fiff O < f~1(1s).

Proof [24, Proposition 5]C

Proposition 4.9 If D is a continuous Scott domain andis a topological space
with a meet-stable continuous lattice of open sets, thefutingtion spac&” — D
is meet-stable.

Proof By the remark after Proposition 4.5, it is sufficient to cheble meet-
stability condition for step functions, which form a basistlee function space.
LetO C Y beopens € Dandf,g € (Y — D) with syo < f andsyo < g.
Then, by Proposition 4.8, we have < f~1(Ts) andO < g~!({s). Thus, by
meet-stability ofO(Y'), we haveO < f~1(1s) Ng~1(Ts) = (fMg)~1(Ts). It
follows, by Proposition 4.8 again, thago < f M g, from which the result fol-
lows.

Corollary 4.10 For any open subsdt C R", the function spaceU — C(R"))
is meet-stable.

Corollary 4.10 will be used to prove the computability of thelerivative operator
in Section 9 (Proposition 9.5). We now proceed to obtain gkmharacterization
of the basic open subsets of the L-topology.
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Lemma 4.11 Let D be a continuous Scott domain with a meet-stable way-below
relation andY a topological space such th&(Y") is a meet-stable continuous
lattice. Then for any open setC Y ands € D we have

Tlsxa) = J{1(txs) ra < b&s <t} = [ J{T(txe) s a < b&s <t}

Proof We show the first equality from which the second follows gasibince
O(Y) is a meet-stable continuous lattice abds a continuous Scott domain, we
have, from Proposition 4.8, the following relation:

sxa < f = a< f7(1s) (11)

Thus,a < b & s < timplies T(txy) C T(sxq)- It remains to show the reverse
inclusion. Let(sx,) < f. Then, sinceD is a continuous domain, there exists a
step functiorsup;; s;x4;, wherel is a finite indexing set, with

5Xa K SUP SiXae; < f.
il

Fromsx, < sup{sixa, : 1 <1i <m}, by Equation 11, we get
a <K U{ﬂ aj s < sups;}.
JCI jeJ =

Since the way-below relation iy is meet-stable, we have

s < inf {sups; : s < sups;}.
JCI jeg jeJ

Lets’ € D be such that < s’ < infjcr{sup,c;s;j : s < sup;e;s;}- Also let
a’ be an open subset &f with

a<ad < U{ﬂ aj s << sups;}.
JCI jeJ J€J

Then we havey, < s’y < f, which completes the proofl

Since finite intersection distributes over arbitrary unia@ can conclude with
the same assumptions ®hand D:

Corollary 4.12 For any step functiog € (Y — D) we have:

g = U{Th : g < h step function}

= J{Th: g < h step function}.
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These results now translate to basic L-open subsets, mgvédsimple characteri-
zation of these subsets.

Corollary 4.13 We have for any step functign: U — CR", we have:
(i) 4(g) = U{6(h) : g < h step function}.
(i) 3(g) = U{d(h) : g < h step function}.

Proof SinceO(U) andC(R") are, by the remark preceding Proposition 4.5, re-
spectively a meet-stable continuous lattice and a meblestantinuous Scott do-
main, the two equalities in Corollary4.12 hold, to which wiply the inverse map
L1 t obtain the required results]

5 L-topology and Lipschitz norm

Recall the definition of the Lipschitz norm in Section 1. Inittndimensions we
can show the following:

Theorem 5.1 The L-topology is coarser than the Lipschitz norm topolagfriite
dimensions.

Proof Let f € &(bx,) for some single-step functioby, € (U — C(R™)). We
will find a neighbourhood of in the Lipschitz norm topology that is contained in

v

d(bxa). We havef € §(dx.) for somea < c andb < d. Thus,
fx) = fly) ed- (x-y), (12)

for all z,y € Cl(c). Lete be such thab < e < d. Then there exists > 0 such
thatd; C e. (Recall that4, is thet-neighbourhood of a set.) It follows that for
all z,y € cwith x # y we have

(d : (l‘ - y))tHx—yH Ce- ('I‘ - y) (13)
Consider any Lipschitz mapwith || f — h||z, < t. Then, we have:
[(h(z) = h(y)) — (f(x) = F(y)] = [(h(z) = f(x)) = (h(y) — f(y)| <tz —yl,

forallz,y € Cl(c). Itfollows, by Equations 12 and 13, thiatz) —h(y) € e-(z—y)
and thush € d(ex.) C d(bxa). O

Next, we show that the L-topology is strictly coarser thaa tipschitz norm
topology in finite dimensions. We recall the following natirom classical mea-
sure theory.

20



Definition 5.2 A measurable subset C [0, 1] is splitting if for any interval I C
[0, 1] of length4(7) > 0 we have:0 < u(AxN1I) < ¢(I), wherep is the Lebesgue
measure.

It is well-known that splitting sets exist; see [27]. M is splitting andf =
Az, fox x4 du, then the Clarke gradient (equivalently the L-derivatiie)easily
seen to have constant vali@ 1], i.e., 0f(z) = [0,1] for all z € [0,1]. [30,
Proposition 1.9]).

Proposition 5.3 The L-topology is strictly coarser than the Lipschitz noopdl-
ogy in finite dimensions.

Proof It is sufficient to prove the proposition in dimension one,,iwe assume
U =[0,1] c R. LetA c [0,1] be a splitting set and lef = \z. [ xadpu,
which is Lipschitz withL f = Az. [0, 1]. We claim that there is no open subset of
the L-topology which containg and is contained in the open ball with cenjfe
and radiusl /2 with respect to the Lipschitz norm. Lete (([0,1] — IR) be any
step function withCf € Tg. Letc € dom(g) ande > 0 be small enough so that
[c,c+¢] C dom(g). PutD = A\ (¢,d) andf. = Ax. [} x4 du. Then, we have
Lf.(z) =[0,1]xp, Lf. € g andf. — f in the sup norm as — 0. But for any

e > 0, we have

|[f(x) = fe(z) = (f(¢) = fe(0))] |f(z) — f(o)]

sup = sup ———=— =1,
c<z<d Tr—=c c<z<d r—=c

and thus| f — fe|lzip > 1, which proves the claim.

6 Hausdorff induced metric for Lipschitz maps

In this section, we derive a complete metric on Lipschitz smap(U — R)
induced from the Hausdorff metric and show that it is styidther than the L-
topology and strictly coarser than the Lipschitz norm taggl Recall that, given
any Hausdorff spacé, the Vietoris topology on the Vietoris spadé(X), i.e.,
the space of non-empty compact subsetX phas basic open subsets of the form
000 N (Ni<i<m ©Oi WhereO; C R" (i = 0,--- ,m) are open and’ € 0(O)

if C ¢ O whereasC € 0O if CNO # (. If X is locally compact then so is
V(X), and the way-below relation on the basic open subsef¥(M (X)) satisfy:
O00N(Ny<icm 00:) < OOLN (N <i<m QO iff Oy < OLfori=0,--- ,m.In
this case, the partial ord¢V (X), D) is a continuous Scott domain with the pro-
viso that it has no bottom element. The Lawson topology hemectdes with the
Vietoris topology. ForX = R™ we will always use a basis of convex and relatively
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compact open subsets f@f'. Let C*(R") denote the domaiC(R") without its
bottom element.

The Vietoris topology on the Vietoris space of any metriccgpes equivalent
to the topology induced by the Hausdorff metric which we denloy dy, i.e.,
dyg(Cy,C9) is the Hausdorff distance between two non-empty, compédrieta
on X [34, Theorem 7.4.3]. This gives a metric topology on the fiomcspace
(U — C*(R™)), by puttingd}; (f, 9) = sup,cy du(f(z), g(z)). Since the metric
dg is complete, it follows that the function space metfjg is also complete [10,
Theorem 2.6].

Lemma 6.1 Supposek C C*(R") is compact with respect to the Lawson topol-
ogy. Then, the uniot.., C C R" is compact with respect to the Euclidean
topology.

Proof We will show that any sequende;,),,>o in o< C C R™ has a conver-
gent subsequence. Lét, € K be such that,, € C,, for m > 0. Then the
sequence&’, in the compact sek” has a convergent subsequeli¢g, — D € K
with dg (Cy;, D) — 0 as as — oo. Thus, for each, there exists; € D with
d(xm,;,yi) < du(Cn,, D). SinceD C R™ is compact, there is a subsequence
vi, — y € D ast — oo and it follows thatr,,,, — y and the proof is completé.

Proposition 6.2 The function space metri¢;,; is strictly finer than the Lawson
topology on(U — C™*(R")).

Proof Suppose thaf € (U — C*(R")) andf € Ts N (N;c;(195)°), which
is a basic open subset of the Lawson topology for step fumgtiocand g; with
j € J, whereJ is a finite indexing set. Assume = sup,¢; s; for a finite set
of single-step functions; = b;xo,. Then,s; < f and, by Proposition 4.8, we
haveO; < f~!(7b;) for eachi € I. Thus, the closur®; is compact and, by the
continuity of £, the setf[O;] C 1b; ¢ CT(R") is compact with respect to the
Lawson topology. By Lemma 6.1, the 6t = [ J{C : C € f[O;]} C (b;)° C R"
is compact and thus there exists> 0 such that(C;)., C (b;)°. It follows that
for e = min{e; : i € I} we haveh € Tsif d%;(f,h) < e. On the other hand, for
j € J, there exists:; € U such thatf(z;) ¢ 1g;(x;), i.e., f(z;)\g;(z;) # 0. Let
d; = inf{d : f(z;) C (g;(x;))s}. Thend(f,h) < & impliesh(z;)\ g;(z;) # 0
and hencev € (1g;)¢. Putd = min{e, d; : j € J}. Thend*(f,h) < d implies
helsn (Njes(195)¢), which shows that thej, metric topology is finer than the
Lawson topology. Next we show that thig, metric topology is strictly finer than
the Lawson topology. Consider the constant functior= Az. [0,1]. We claim
that there is no Lawson open subset which contains the garfstactions and is
contained in thel}; ball of centreh and radiusl /2 with respect to thel}; metric.
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Let 4 be in the basic Lawson open sefo N (;<;<,,(1g:)¢, with step functions
gi € (U — IR) for 0 < i < m. Then there are points; € U with [0, 1] IZ g;(=;)
for1 <i <m. Let[c,d] C U\ {x; : 1 <i<m}andputf = |0,1]xp, where
D =U\ (c,d). Then,f € T90 N Ny<icm(T9:)° butdy (f,h) = 1.0

We note also that for any compact subgetC U the d*-metric topology on
(V. — C(R™)) will be equivalent to the compact-open topology of the fiorct
space as an instance of a general result on metrics for aimspaces [10, pages
269-270].

For Lipschitz maps, g : U — R, we now define a metric.

Definition 6.3 The induced Hausdorff metrion Lipschitz functions is given by
by dr:
dr(f,9) = max(|[f — gl du (Lf, Lg)).

Theorem 6.4 The induced Hausdorff metric is complete on the space othifrs
maps.

Proof Let (f;)i>o be a Cauchy sequence of Lipschitz maps with respect to the L-
metric. Thus,(f;):>0 and(Lf;)i>o are Cauchy sequences with respect tode
norm topology and?}; respectively. Letim; ., f; = f in the C° norm topology
andlim; .., Lf; = g in the dj; metric. Since the convergence is uniforhjs
continuous. We will now show that = £ f by using Proposition 6.2 which tells
us that thelx ; metric topology is finer than the Lawson topology (@h — CR"™).
Supposéy, < g. Then, asfby, is Lawson open, there exisié such that for all

i > N we haveby, < Lf;, which impliesb - (x — y) T f;(x) — f;(y) for all
x,y € a. Taking the limiti — oo, we haveb - (x —y) C f(x) — f(y) for all
x,y € a. It follows thatby, C Lf and thusy C L f. To show the reverse relation,
assuméey, < Lf. Then there exista <« ¢ andb <« d such thatdy,. <« Lf.
Thus, f € §(c,d) and in particular we havef(x) — f(y) € d- (x — y) for all
x,y € Cl(a). So, for the compact sétf (x) — f(y) : =,y € Cl(a)}, we have:

{f(z) = f(y) - x,y € Cl(a)} C
d-{x—y:2z,y€Cla)} Cb° -{x—y:x,y € Clla)}.

Sinceb® - {x — y : z,y € Cl(a)} is an open interval and we have the convergence
fi — fintheC® norm topology and thus uniformly, there exists an intelyep 0
such that forali > N and for allz, y € Cl(a) we havef;(x)— fi(y) € b°-(x—y).

In particular for alli > N we havef; € §(bx,), i.e.,bxqs T Lf;. SinceT(bx,)

is closed in the Vietoris (Lawson) topology adf; — g in the finerd;; metric
topology, we obtairby, C g. We conclude thaL f C g which completes the
proof. [
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We now compare thé;-metric topology with the L-topology.

Proposition 6.5 Thed;, metric topology on Lipschitz functiori$ — R is strictly
finer than the L-topology.

Proof That thed; metric topology is finer the L-topology follows immediately
from Proposition 6.2. To show that it is strictly finer, ldtC [0, 1] be a splitting
set (Definition 5.2), and lef = )\a:.fox x4 dp, which is Lipschitz withLf =
Az. [0, 1]. We claim that there is no open subset of the L-topology whimttains

f and is contained in the open ball with cenffeand radiusl /2 with respect to
the d;, metric. Letg € (U — C(R")) be any step function witi f € 1g.
Let c € dom(g) ande > 0 be small enough so that,c + ¢] C dom(g). Put
D = A\ (¢,d) and fe = Az. [ xadp. Then, we haveCf(z) = [0,1]xp,
Lf. € Tgandf. — f inthe sup norm as — 0T. But for anye > 0, we have
dy; (f, fe) = 1 which proves the claini]

Next we compare the induced Hausdorff metfic with the Lipschitz norm.
Recall that any convex subsdt C R" is the intersection of the half-spaces that
contain it, i.e.){S : A C S, for a half-spaces}. Itis also easy to show:

Lemma 6.6 For any convex subset C R", we have: A, = ({S. : A C
S, S ahalf-space.

Proposition 6.7 The Lipschitz norm topology is finer than the induced Haui$dor
metric topology.

Proof Let f : U — R be Lipschitz and let > 0 be given. We will show that the
open ball around’ of radiuse /2 with respect to the Lipschitz norm is contained in
the open ball aroung of radiuse with respect to thel;, metric. In fact, suppose

\f —9gllLip < €/2. The,||f —g|| <e/2and|f —glla < €/2,i.€.,

o 0) = 0) = U) — )] _ 1)
Ty [z =yl

Letv € R™ be any unit vector. By Equations 4 5, for any Lipschitz miapl — R
we have: h . h
v - Lh(x) = limsup y+to) - (y)
y—x t|0 t
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On the other hand, using Equation 14, we obtain:

t —
Jim sup 9(y +tv) — g(y)
y—x t|0 t

— limsup (g(y +tv) — fly +tv)) — (9() — F(v)) n fly+tv) — f(y)

y—x t|0 t t

< sup |(f(x) —g(x)) = (f(y) — 9(y))| 4 limsup fly+tv) — f(y)
Ty “T - y‘ y—z t|0 t

< £+ limsup fly+tv) — f(y)

y—x t|0 t

Thus,v - Lg(x) < e+ v - Lf(z)and similarly,v - Lf(z) < e+ v - Lg(x) for any
unit vectorv € R". By Lemma 6.6, it follows thadl}; (Lg, Lf) < € as required]

Finally, we will show that the induced Hausdorff mettlg is strictly coarser
than the Lipschitz norm topology. This requires some priglary work.

We construct below a one-parameter family of Lipschitz mgps[0,1] — R
for k € [0, 2] such thatC f(z) = [0, 1] for all = € [0, 1] with the property that, as
k /1, we havef, — f; in thedy metric topology but not in the Lipschitz norm
topology.

Fork € [0,2], we let f, = Az. [ x4, du Wherey is the Lebesgue measure
and the measurable séy; is splitting with u(Ay) = k/2.

The setA; can be constructed as the countable union of a double farhily o
Cantor sets that are obtained in a sequence of stages. ¥hef, these Cantor
sets will have positive Lebesgue measure.

We first adopt the following uniform scheme, similar to theswuction of the
standard Cantor set, to construct a Cantor set of Lebesgasures > 0 in a
compact interval of length > 0 with » > s. In the first stage the symmetrically
placed middle open interval of length — s)/3 is removed, then in the remaining
left and right closed intervals, the two middle open intésv@ach of length{r —
s)/9, and so on. The total Lebesgue measure of the countable setmaofved
intervals is thusz%(1+ 2 + 5 +---) = r — s. Thus the Cantor set has Lebesgue
measure: — (r — s) = s.

Now we use our uniform scheme to construfgt. In the first stage, a Cantor
set of measuré /4 is constructed orj0, 1]. Therefore, the first middle interval,
denoted byC, to be removed has lengtit — £)/3, the next two middle intervals
to be removed, denoted ByC' and RC, are in the remaining two intervals and
R on the left and right respectively and have each lerigth %)/9, and so on.

Then in each previously removed interval a new Cantor sebimsttucted so
that the total measure of the countable union of the new Caets isk/8. This
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is done by constructing a Cantor set of measyfes in C', then constructing two
Cantor sets each of measurg4 x 16) (i.e. with total measurg/32) in the left and
the right middle intervals, nameliC and RC', then constructing four Cantor sets
each of measurg/(4 x 64) (i.e, with total measuré/64) in the middle intervals
LLC,LRC,RLC, RRC of LL, LR, RL, RR respectively, and so on.

The procedure is then repeated ad infinitum so that a Cant® senstructed
in any previously removed interval. The sé&f will be the countable union of the
countable unions of Cantor sets constructed at each stdgeseTCantor sets are
dense in[0, 1]: any non-trivial subinterval of0, 1] contains one of these Cantor
sets. We also have(4;) = £+ £+ £ ... = £ sothat0 < pu(4;) < 1for
k€ (0,2).

- L—><—C—><— R—>

|| | || |J !
||_|_ LcC LR lcrccc RL RC
B e =

(1-k/4)/3 RR

Our labelling scheme for the intervals in the above consitvads an instance of

a general method in symbolic dynamics [9]. For a giker |0, 2], we represent
each point of0, 1] by an infinite sequence df, C, R, denoting the position of the
the point on the Left, Center or Right interval at each stdgmnstruction process,
i.e., puttingE = {L,C, R}, we have a surjectiof;, : ¥ — [0, 1] that takes any
sequence to a point {0, 1]. As each new interval is a contracting affine image of
a previous interval, it follows that fos € ¥“, we havePy(s) = A(s) + B(s)k
whereA, B : ¥ — [0,1].

Furthermore, by constructiorfy, (z) = i x4, du is the sum of the Lebesgue
measure of the Cantor sets constructeddirz). Since the Lebesgue measure of
each such Cantor set is a multiple of we have: fx(Px(s)) = D(s)k where
D : ¥ — [0,1]. Note that for allz € [0, 1], we have:fy(z) = 0 (each Cantor set
constructed in this case has Lebesgue measure zero) whfgfeas= x (the sum
of the Lebesgue measures of all constructed Cantor s@islihis 1).

Lemma 6.8 For all £ € (0,2) andx € [0, 1], we have:L(f;)(x) = [0, 1].
Proof This is an instance of [30, Proposition 1.8].

It follows that for eacht € [0.2], the mapf;. is Lipschitz with Lipschitz con-
stantl.
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Lemma 6.9 We havef, — fi, in the induced Hausdorff metri€;, ask " ko, for
anykg € (0,2].

Proof SinceLf;, = [0, 1] for anyk € (0, 2), it follows trivially that £ f, — L f,
in thed* metric ask  ky. Thus it remains to show thdf, — fx, in the sup norm
ask /' ko. We will show that for any fixed: € [0, 1], the functionk — fi(z) is
strictly increasing withk and thatfy (x) — fi,(x) pointwise ask  ko. Sincefy,
is continuous for alk € [0, 2], the result will then follow a well known result in
analysis [32, see 7.13]. Singg, being Lipschitz, is continuous for eaghe |0, 2],

it suffices to show the above two properties for a dense swfget1]. To show
that fi, (z) < fi,(x) for ki < ko, we consider the dense subget : ¢t € ¥*},
wherez, := Py, (tRL“). Since for each fixed € [0, 1], the mapf;, is increasing
and fork; < ko by construction we havé), (tRL¥) < Py, (tRL*), we obtain:

Fi, () = fu, (Pe, (RL¥)) = D(tRL¥)ky < D(tRL)ks

= fk2(Pk2(tRLw)) < ka(Pkl (tRLw)) = fk2(xt)7

which proves the first assertion. For the second assertiencomsider the dense
subset{y; : t € ¥*}, wherey; := P, (tLR*). Since fork < ko we have
P,(tLR¥) < Py, (tLR“), we obtain:

D(tLR*)k < fr(yt) < fro(y:e) = D(tLR)ko,

and it follows thatfy (v:) — fx,(y:) ask " ko, which proves the second assertion,
completing the proof]

Finally, we can show thaf;, /~ f; in the Lipschitz norm topology as — 1.

Proposition 6.10 There exists no open set of tHg metric topology around the
map fi, as constructed above, that is contained in the open{lfall ||| f — f1| zip <
1} of unit radius with respect to the Lipschitz norm aroufid i.e., thed; metric
topology is strictly coarser than the Lipschitz norm tompio

Proof Consider the familyf, constructed above fot € [0,1]. For any non-
negativek < 1, the mapgr, = f1 — fx, being the difference of two Lipschitz
maps, is Lipschitz and is differentiable almost everywheith g, = f' — f,
almost everywhere. Sincg| and f, are, almost everywhere, equal {0, and
x4, respectively, they take valuésand1 almost everywhere. Thug has values
—1, 0 or 1 almost everywhere. Buj, cannot take valu® almost everywhere,
since this would imply thay, would be constant with constant valyg(0) =
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f1(0) = fx(0) = 0, giving f, = £ which contradictsf; (1) = 1/2 # k/2 = f,(1).
Thus, sincey,(0) = 0 for all k € [0, 2], we have:

sup gk (z) — gr(y)] > sup gk ()]

TF£Y |1‘ - y| x#0 T

> 1,

and thus||gx||z;p > 1 forall k& € [0,1). Thereforeg, 4 0 ask — ko, which
completes the prodf]

7 L-topology in dimension one

In dimension oner{ = 1), we assume, for convenience, that the domaic R
of our continuous functions itU — R), is a compact interval. We are able
to show here that a basic L-open sub&@t) is the interior (with respect to the
L-topology) of the associated ti&g). Recall that in dimension one, any Scott
continuous functiory € (U — IR) is integrable, i.e., there exists € | g with
g C Lh. Infact, itis shown in [16, section 6] that given any lowemse&ontinuous
functionu : U — R there exists a least functioffu, g) : dom(g) — R such that
u < s(u,g) andg C Ls(u,g). Furthermore, ify : U — IR is a step function and
u is the lower part of a step function of typé — IR, thens(u, g) is a piecewise
linear map in each connected componeng;afee [15, Section 3]. In the following
we deduce that whemis fixed, the least functior(u, g) will depend continuously
on g with respect to the metric induced on step functions by theddarff metric.
Recall that our basis elements for the L-topology are giveterms of step
functionsg with T¢ # (). This means that if two adjacent intervals in da@ each
with a constant value fog, have a common boundary point then the intersection
of their corresponding values will have non-empty interidihus, the connected
components of the closure @bm(g)) have disjoint closures. Dealing with these
connected components separately,(lét—" IR) be the collection of step func-
tionsg € (U — IR) with Tg # 0 such that GQldom(g)) has a single connected
component and dofg) N dom(u) # 0. Forg = [¢7,g"] € (U —" IR), let

S(u,g) :UxU—R

u(y) + [ g (B)dt x>y
IS B B R
Let P, be the partition of the interval dofm) U dom(u) obtained as the common

refinement of the partition induced by the step funcijaand that by the piecewise
constant map. such that in each interval iR the values ofy and« are constant
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(note that forg these values are non-empty compact intervals and: fibrey are
real numbers). Then, as in [15], we have:

s(u, g) = A\x.

max{u(x)} U {limsup S(u, g)(x,y) : z € P, ndom(u)}.
y—z
Consider(U —* IR) with the partial distance function induced from the Haus-
dorff metric onIR, namely:d(g1,g2) = sup{dg(g1(x), g2(x)) : x € dom(g1) N
dom(g)} and consider the partial maps i — R with their partial sup norm:

I f1 = foll = sup{|fi(z) — fo(z)| : € dom(f1) N dom(f3)}. We then have:

Lemma 7.1 The functions
() g Spug : (U —"IR) — (U? — R)
(i) g S@g) : (U—"IR) — (U —R)

are continuous with respect to partial distance @h —* IR) and the partial sup
norm on(U? — R).

Proof Note that isg™ is lower semi-continuous and the Lebesgue integrals in the
definition of S(u, g) depend continuously og~. Also, the finite set?, changes
continuously with respect to the Hausdorff metricgashanges continuously with
respect to the partial distance ¢fi —* IR). The result follows as(u, g) is the
minimum of a finite number of functions that vary continugusiith ¢. (]

In order to obtain the regularity results of this section, meed the following
density lemma.

Lemma 7.2 (Density Lemma) Let f € 6(g), with step functiory € (U — IR)
and lete > 0 be given. Then there exists a step functioand a functionk with
g < handk € §(h) suchthatl| f — k|| < e.

Proof Consider the open region formed by the graphg-¢f and f —e. We regard

f as an element of the function spade— IR of all Scott continuous functions
from U to IR ordered by pointwise reverse inclusion. Since this fumcspace

is a continuous Scott domairf, will be the lub of an increasing sequence of step
functions: f = sup;~( u;. We haveim;_, uj —u,; = 0, and thus there exists>

0 such that” —u; < ¢/3. For simplicity we let: := u; . Consider the decreasing
sequence of step functiong; /,,,))m>n for a positiveN such that every value of

g has length greater tha2y N. For the sake of a more convenient notation, we
putg,, := gpm forall m > N. Now by Lemma 7.15(u,g,,)) — s(u,g)
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with respect to the sup norm on the space of continuous fumgtionig) — R.
Let M > 0 be such thain > M implies ||s(u,g,,) — s(u,g)|| < €/3. Thus,
forall m > M, we haveg < §,, C Ls(u,g,,) andf —€/3 < u < s(u,g,,).
Furthermore,s(u,g,,) < s(u,g) +¢€/3 < f+¢/3, i.e. forallm > M and all

x € dom(g) we have: f(z) — €/3 < s(u,7,,)(z) < f(z)+ ¢/3. It remains to
show that there exists: > M such that we havés(u,g,,)(x) — f(x)| < e for

x € dom(g,,) \ dom(g). If Cl(dom(g)) = U then we putk := s(u,g,,) and

h = G- Then, sinces(u,g,;) € 0(7g,,), the proof is complete. Otherwise, at
least one of(dom(g,,,))~, (dom(g))~] or [((dom(g))*, (dom(g,,,)) "] will be non-
empty. LetM, be such that forn > M, both these intervals are non-empty if
such M exists or one of the two otherwise. Singas continuous and defined on
the compact sef;, = [(dom(g,, )~ (dom(g))~] U [((dom(g))*, (dom(g,,,))*],
there exists @ > 0 such thal f(z) — f(y)| < ¢/31f |x —y| < tforz,y € Cp,.
Then, there existd/, > M; such thatm > M, implies donfg)); C dom(g,,, ).
Fix m > M. Note thats(u, g,,,) is made up of line segments with slope bounded
by the upper and lower values gf If A > 0 is an upper bound for the maximum
of the absolute value of these, thpttu,g,,)(z) — s(u,7,,)(y)| < Alx — y| for
z,y € Cp,. Thus,|s(u,7g,,)(x) — s(u,7,,)(y)| < €/3if |r —y| < ¢/(34). Now
letg,, = Gy, | (dom(g))./34)- Then,s(u,gy,) € §(g;,). Putk := s(u,g,,) and

h :=7g;,. have forx € C,,:

where we have two cases: we use= (dom(g))~ if z € [(dom(g},))~, (dom(g))~]
and we use:y = (dom(g))" if = € [(dom(g))*, (dom(g},))"]. O

Proposition 7.3 For any step functio € (U — IR) we have:d(g) c CI(3(g)).

Proof Supposef € §(g). We show that any basic L-open set containjfyill
intersectg(g). Letf € S(go) for some step functiogy and consider any open ball
O¢(f) of radiuse > 0, aroundf in the sup norm iU — R). Then,f € §(g1)
for someg; with g9 < ¢1. Thus,Lf 3 gandLf 3 g;. Putgs := g U g1.
Thenf € 6(g2). By Lemma 7.2, there exists a step functibmvith go < h and

k e (U— R)with ||f — k|| < eandk € 6(h). Thus,gy < h andg < h and we
have:3(g) N d(go) N Oc(f) # 0 as required

Recalling Corollary 4.3, we have now all together proved.

Corollary 7.4 For any step functioy € (U — IR) we have:d(g) = CI((g)).
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Proposition 7.5 For any step function € (U — IR) we have:i°(g) = 4(g).

Proof Sinced(g) = Cl(5(g)), we already know thai®(g) D d(g). To show the
converse, letff € §°(g), i.e., there exists a step functignsuch thatf € §(h) C

d(g). The latter relation implies, by Corollary 4.13(i), that Bny % with h < k we

haved(k) C 8(g). It follows thath 3 g. On the other hang € §(h) implies there
exists a step functioh with h < k andf € (k). Thus,f € 6(k) € &(h) C 4(g),

where the latter relation follows from Corollary 4.13(iil

Corollary 7.6 The basic open and closed subsgtg) and 4(g) are regular open
and closed sets respectively.

The results of this section can be extended, with some etfweny finite dimen-
sionn > 1, by using properties of the L-derivative which extend thimsfl7] for
the “rectangular” derivative.

8 Fundamental Theorem of Calculus

Recall the Fundamental Theorem of Calculus of the first ond&quation 7. In
this section we develop the FTC of second order in finite dsi@ral Euclidean
spaces by constructing continuous second order typedratieg and differential
operators that are inverses of each other.

Throughout this section, we considgr — C(R")) with its Scott topology.
Since we will be dealing with the primitive maps of functian§U — C(R")), we
will identify maps that are almost everywhere equal in thisdtion space. We say
fyg € (U — C(R™)) are equivalent and writ¢ = g if f = g a.e., i.e.iff(z) =
g(x) for almost allz € U with respect to the:-dimensional Lebesgue measure on
U. We denote the equivalence classfdby E(f). The set of equivalence classes
is partially ordered by definind’(f) C E(g) if f C g a.e. Itis easy to check
that this partial order of equivalence classes, which wetehy(U —. C(R")),
is directed complete and the ma&p: (U — C(R")) — (U —. C(R")), which
takes a map to its equivalence class is Scott continuous.

Proposition 8.1 Any equivalence class of maps has a lulfih— C(R")) which
is in the same class.

Proof Consider an equivalence clag f). We claim that it has a lub. Since
(U — C(R™)) is a continuous Scott domain, it is sufficient to show thaff) is
a bounded set; this follows if we prove that any finite set ops £(f) has a
lub. In fact, we show that any two members Bf f) have a lub inE(f), from
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which the claim follows. Leyy = f and for the sake of a contradiction, suppose
f(x) N g(z) = 0 for somex € U. Then, by the Scott continuity of and g,
there would exist an open neighbourhoodxathat is mapped by andg to two
disjoint open subsets containinx) and g(x) respectively. But this contradicts
the assumption that = g a.e. It remains to show thatip F(f) € E(f). Since
E(f) is adirected set, by the Scott continuity of the magf Equation 8, we have
r(sup E(f)) = r(f). From proposition 2.7(iii), we obtairkup F(f) = f a.e.d

Let ' : (U —. C(R")) — (U — C(R")) be the map which takes any equiva-
lence clas€(f) to its lub, i.e. F(E(f)) = sup E(f). We have the following.

Proposition 8.2 The pair(F, E) is a continuous section-retraction pair, witfi o
E 11d,i.e., itis a continuous insertion-closure operation.

Corollary 8.3 The dcpo(U —. C(R™)) is a continuous Scott domain and
preserves the way-below relation.

Proof By [1, Theorem 3.14 and Proposition 3.1.14].

Thus, (U —. C(R™)) is, by identifying it with its image under the map, in
effect a continuous Scott sub-domain (@f — C(R"™)). We know thatf = g
a.e. implies that/ f = [ g, therefore elements of the same class have the same
primitive maps. We conclude that taking quotients underettpaivalence relation
of equality almost everywhere preserves the domain-thiestucture. Therefore,
we adapt the same convention as in classical measure thémnewnaps that are
almost everywhere equal are identified. This means that fremon we implicitly
considerg € (U — C(R™)) as an equivalence class of maps and all relations
between maps are assumed to be between their equivalerssestlaTherefore
f = g means thaf andg are in the same equivalence class. ife= g a.e.
To deal with the primitive maps ofU — C(R"™)), we still need to restrict
to a smaller subdomain, namely that of the integrable maps, if € (U —
C(R™)) with [ f # 0. The integrable maps ¢t/ — C(R")) form a Scott closed
subset, and thus a continuous Scott subdomai/of~ C(R")) [17]. By taking
retraction under the restrictions 6fand 7', we obtain the Scott continuous domain
of equivalence classes of integrable maps which we denot& by:; C(R™)).
LetT™(U) be the dcpo of non-empty ties. Define

L:T*(U) — (U —; C(R™))

by £(A) = inf{Lh : h € A}.
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Proposition 8.4 The integral map[ : (U —; C(R")) — T*(U) and L are
inverses of each other.

Let C?(U) denote the set of integrable® real-valued vector fields of type
U — R" on the open subséf C R" equipped with the subspace’ topology.
Let {C1(U)} be the equivalence classes of real-vald&dmaps onU under the
equivalence relatiorf = g if f — g is a constant real number. Thef(0(U)}
inherits theC!' norm topology. LetZ; andZ, be respectively the insertion of
{CY(U)} andC?(U) into the maximal elements of the continuous Scott domains
T7*(U) and (U —; C(R™)). These insertions are topological embeddings with
respect to the Scott topology on the two continuous Scottaiiasn

ér{clwﬂ»
(Cllopy—— ~ ~ TTT=00(0)
Jicow)
Il IO
L

TU)—/—— T (U—=iCR)

J

Corollary 8.5 Second order typed FTC The Scott continuous map and i
furnish an isomorphism between the Scott continuous da@rfainties and L-
derivatives, extending the Fundamental Theorem of Cadcaftsecond order via
the topological embeddingg andZ, to Lipschitz maps.

9 L-derivative in dimension one

In this section, we show that in dimension one the L-derveadiperatorC : ([0, 1] —
R) — ([0,1] — IR) is onto and use this to show that the function sp@ffe 1] —

R) — (]0,1] — IR)) of Scott continuous functionals from the function space
([0,1] — R), equipped with its D-topology, to the function sp&ad@ 1] — IR)),
equipped with its Scott topology, is a continuous Scott damdoen it is partially
ordered by pointwise ordering of functionals. We will thérow that this domain
can be given an effective structure and that, with respestith an effective struc-
ture, the L-derivative is a computable functional.

Theorem 9.1 The L-derivative operator is onto in dimension one.
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Proof Letg = [¢7,9"] € ([0,1] — IR)), whereg—,¢" : [0,1] — R are respec-
tively lower and upper semi-continuous. L&tC [0, 1] be a splitting subset, and
puth = g~ xs + g (1 — xs). Thenh is measurable and we defiffe [0,1] — R
for eachz € [0,1] by the Lebesgue integrgl(z) = [ h(t)dt. Sincef is Lip-
schitz, by Rademacher’s Theorem 2f2s differentiable almost everywhere with
respect to the Lebesgue measure and for aimost al[0, 1] we have:

1N _ ~(x) resS
f@) = =) —{ 7o) s [01\ S

Since in finite dimensions, the L-derivative and the Clarkadient coincide, it
follows by Equation 6 that f = ¢ as requiredlJ

Let ([0, 1] —z R) be the set of Lipschitz maps equipped with the L-topology.
Next we show that the D-topology on the function spéiGe— R) has a meet-
stable continuous lattice of open sets. This follows froneraegal result as follows.

Proposition 9.2 Let Z be a topological space; a set andF' : Y — Z a surjec-
tion. If Y is equipped with the weakest topolo@yY") which maked" continuous,
thenO(Y') and O(Z) are isomorphic as lattices.

Proof By the definition of the weakest topology the m&p! : O(D) — O(Y),
which preserves arbitrary intersections and unions, ie.0Bincef’ is a surjection,
F~lis also one to one. Thus the latti€¥Y") is isomorphic withO(Z). O

Corollary 9.3 The function spacéU/ — R) equipped with the D-topology has a
meet-stable continuous lattice of open sets.

Proof By Theorem 9.1, the L-derivativé : ([0, 1] — R) — ([0,1] — IR) is onto
and the function spadg0, 1] — IR) is a continuous Scott domain and thus has a
continuous lattice of open subsets. Furthermore, thiedais, by Proposition 4.5,
meet-stable. Therefore, by Proposition 9.2, the latticep#n subsets of the D-
topology is continuous and meet-statilé.

Corollary 9.4 The function spacé([0,1] — R) — ([0,1] — IR)) of Scott con-
tinuous functionals from the function spa@e, 1] — R), equipped with its D-
topology, to the function spadg), 1] — IR)), equipped with its Scott topology,
is a continuous Scott domain when it is partially ordered binfwise ordering of
functionals.

Proof This follows from [26, Proposition 11-420(iv)], since thattice of open sub-
sets of the D-topology of[0, 1] — R) is continuous and sincg0, 1] — IR) is a
continuous Scott domaii
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We now construct an effective structure on the function spg6, 1] — R) —
([0,1] — IR)) which is induced from the following effective structure @f, 1] —
IR). We start with an effective countable ba#ig of IR consisting of the regular
(i.e., non-trivial) compact rational intervals @ This leads to an effective count-
able basis3; for ([0,1] — IR) as follows: An element oB; is a step function
s = sup;er bixo,, wherel is a finite indexing set, such that; C R is a rational
open intervalp; is an element o5y for each: € I and the values of are regular
compact subsets, i.€.), ; b; is aregular compact interval whene\@;e] 0; # 0.
Hence, elements d#; are regular as in Definition 4.6. Frofy, we immediately
obtain an effective countable badfs, of the D-topology on([0,1] — R), with
By = {£7!(s) : s € Bi}. Finally, we obtain an effective countable basig of
(([0,1] — R) — (]0,1] — IR)) consisting of step functions made from single-
step functions of the formyo whereO € B, ands € B;. It is easy to see that
the restrictions to the basi8; of the partial ordei= and the way-below relation
< of (([0,1] — R) — (]0,1] — IR)) are both decidable. By taking effective
enumerations of5y, B; andB,, we obtain an effective enumeration Bf. Thus,
we equip(([0, 1] — R) — ([0, 1] — IR)) with an effective structure.

We will now show that theC operator as an element of the effectively given
continuous Scott domaif([0,1] — R) — ([0,1] — IR)) is computable. For
this, we need to prove that with respect to an effective ematios ( f;);>( of the
basisB; the set{i : f; < L} is recursively enumerable [23, Definition 2]. We
will actually prove more and show that the above set is regeyse., the relation
fi < L is decidable.

Proposition 9.5 For any elemeny of the basis33, the relationf <« L is decid-
able.

Proof We havef = sup,.; g; where eacly; is a single-step function anflis a
finite indexing set. Thenf <« Liff Vi € I.g; < £ and it is sufficient to prove
that the latter relation is decidable. Now each single-fieption g; is of the form
txo wheret € By andO € By with, say,0 = £~1(1s) for somes € B;. We
have:

X1ty < L <<= L '(1s)< £ (ft) By Proposition 4.8

= Ts < 1t SinceL is onto
= 1< s By Cor. 4.10, regularity o
and Prop. 4.7(ii)

Assumes = sup;¢;bjxo; andt = supici brxo,- Then, we have < s iff
Vk € K.byxo, < supje;bjxo, iff (by Proposition 4.8 againyk € K.O) <
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U;jes{0) : by < bs}. Since the relatio)y, < (J;c,{0; : by < b;} is decid-
able, it follows that the relatiomxﬁfl(Ts) < L is decidable and hencé < L is
decidable[]

Corollary 9.6 The L-derivative operator is a computable functional oftyf0, 1] —
R) — ([0,1] — IR).O

Note that to prove the above main result of this section, theetivity of £ was
the only tool used in this section that has only been proved furn = 1. All
other properties we used were valid for any finite dimension 1.

10 Further work and open problems

We list here three open questions: (i) Is the L-derivativerafor onto for finite
dimensions: > 17? If so, all the results in Section 9 would extend to highettdini
dimensions, i.e., the L-derivative would be a computabtefional. (i) How can
the Scott topology orfU — C(X*)) and thus the L-topology be characterised
for Lipschitz maps on an infinite dimensional Banach sp&¢e Can any of the
results in finite dimension be extended to infinite dimenstoriiii) Can one con-
struct a simple complete metric for the L-topology by usihg Hausdorff metric
to compare L-derivatives?
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