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Abstract

We develop a domain-theoretic computational model for multi-variable differential calculus, which
for the first time gives rise to data types for piecewise differentiable or more generally Lipschitz func-
tions, by constructing an effectively given continuous Scott domain for real-valued Lipschitz functions
on finite dimensional Euclidean spaces. The model for real-valued Lipschitz functions of n variables is
built as a sub-domain of the product of two domains by tupling together consistent information about
locally Lipschitz functions and their differential properties as given by their L-derivative or equivalently
Clarke gradient, which has values given by non-empty, convex and compact subsets of Rn. To obtain a
computationally practical framework, the derivative information is approximated by the best fit compact
hyper-rectangles in R

n. In this case, we show that consistency of the function and derivative information
can be decided by reducing it to a linear programming problem. This provides an algorithm to check
consistency on the rational basis elements of the domain, implying that the domain can be equipped with
an effective structure and giving a computable framework for multi-variable differential calculus. We
also develop a domain-theoretic, interval-valued, notion of line integral and show that if a Scott contin-
uous function, representing a non-empty, convex and compact valued vector field, is integrable, then its
interval-valued integral over any closed piecewise C1 path contains zero. In the case that the derivative
information is given in terms of compact hyper-rectangles, we use techniques from the theory of mini-
mal surfaces to deduce the converse result: a hyper-rectangular valued vector field is integrable if its
interval-valued line integral over any piecewise C1 path contains zero. This gives a domain-theoretic
extension of the fundamental theorem of path integration. Finally, we construct the least and the greatest
piecewise linear functions obtained from a pair of function and hype-rectangular derivative information.
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When the pair is consistent, this provides the least and greatest maps to witness consistency.

1. Introduction

We develop a domain-theoretic computational model for multi-variable differential calculus, which
for the first time gives rise to data types for real-valued Lipschitz or piecewise differentiable maps on
finite dimensional Euclidean spaces. This extends the corresponding result in [14] for dimension n = 1
to higher dimensions n > 1. While many of the properties of the domain of Lipschitz functions on R

have been extended, as in [11], even to infinite dimensional Banach spaces, constructing an effective
structure for the domain in the finite dimensional case n > 1 has been a challenge.

The model is a continuous Scott domain for Lipschitz functions of n variables. It allows us to deal
with Lipschitz or piecewise differentiable functions in a recursion theoretic setting, and is thus funda-
mental for applications in computational geometry, geometric modelling, ordinary and partial differen-
tial equations and other fields of computational mathematics. The overall aim of the framework is to
synthesize differential calculus and computer science, which are two major pillars of modern science
and technology.

The set of real-valued Lipschitz functions defined in a region in R
n has very useful closure and conver-

gence properties which make it a suitable set of maps for computation. Lipschitz maps are in particular
closed under taking min, max and absolute value which are essential operations in nearly all areas of
scientific computation and CAD. We also have developed a notion of finitary derivative for Lipschitz
maps which leads to a practical model of computation. As in dimension one, the basic idea of the model,
for a finite dimensional Euclidean space R

n or for an infinite dimensional Banach space X , is to collect
together the local differential properties of the function by developing a generalization of the concept of
Lipschitz constant to a non-empty, convex and compact set-valued Lipschitz constant in R

n in the finite
dimensional case and a non-empty, convex and weak* compact set-valued Lipschitz constant in the dual
X∗ for the infinite dimensional case. The collection of these local differential properties are then used
to define the Lipschitz or L-derivative of a function.

The L-derivative is in fact closely related to Clarke’s gradient, which is a key tool in nonsmooth
analysis, control theory and optimisation theory [8, 9] and is defined by using the generalized directional
derivative based on taking the limit superior of the rate of change of the function along a given direction.
It has been shown in [11] that the L-derivative and the Clarke’s gradient coincide in finite dimensions.
The Clarke gradient extends the classical derivative to Lipschitz maps, in the sense that the Clarke
gradient of any C1 map coincides with the classical derivative. In dimension one for example, the
Clarke gradient of the absolute value function at zero is the interval [−1, 1], and similarly one can derive
the Clarke gradient of a piecewise C1 function at a point of non-differentiability as the compact interval
obtained by taking the left and right limits of the derivative at that point.

Using the collection of the local differential properties that define the L-derivative, we also obtain the
set of primitives of a Scott continuous, non-empty, convex and compact (respectively, weak* compact)
set-valued vector field in R

n (respectively, in X∗). This leads to an extended Fundamental Theorem of
Calculus for set-valued derivatives, which was shown first for dimension one [14] and then for infinite
dimensions [11]. The Fundamental Theorem is used here, in the finite dimensional case, to construct the
domain of Lipschitz functions as a sub-domain of the product of the space of interval-valued functions
of n variables and the space of L-derivatives of Lipschitz functions of n variables which take non-empty,
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Figure 1. Two examples of consistent function and derivative approximations

convex compact sets as values. Geometrically, the first component of such a pair serves as an approxi-
mation of the function value, and the second component simultaneously approximates the L-derivative
or all n partial derivatives. We call such a pair consistent if there exists a Lipschitz function which is
approximated by the first component, and whose L-derivative or derivative information is approximated
by the second component of the pair.

Each step function that approximates the function value is represented by a finite set of pairs (ai, bi)i∈I
where ai ⊆ R

n is a rational hyper-rectangle and bi ⊆ R is a compact interval such that bi and bj have
non-empty intersection whenever this is the case for the interiors of ai and aj . Similarly, approximations
of the n partial derivatives are given as finite sets of pairs (ai, bi)i∈I where the ai are as above but the bj
are now compact rational polyhedra.

We specifically focus on the special but important case where the derivative information is always a
compact hyper-rectangle with sides parallel to the coordinate planes. In fact, we can always approxi-
mate the derivative information in this setting by replacing the non-empty compact convex set with the
smallest such hyper-rectangle that contains it. This approach is consistent with interval analysis [24] in
that each partial derivative would be a compact interval. It will result in some loss of information but
will greatly simplify the framework and provides a practical setting for implementation.

In fact, in the case that the derivative information is given by compact hyper-rectangles with faces
parallel to the coordinate planes for a consistent pair, as we will show in this paper, there is always a
piecewise linear witness for consistency. In addition, there are a least and a greatest piecewise linear
functions which satisfy the function and the partial derivative constraints, both witness to consistency.

Figure 1 shows two examples of consistent tuples for n = 2 and in each case the least and greatest
functions consistent with the derivative constraints are drawn. In the first case, on the left, there is
a single hyper-rectangle for function approximation and the derivative approximations in the x and y
directions over the whole domain of the function are given respectively by the constant intervals [n,N ]
and [m,M ] with n,m > 0. In the second case, on the right, there are two intersecting hyper-rectangles
for the function approximation and the derivative approximations are the constant intervals [0, 0] and
[m,M ] with m > 0.

A main question now is whether consistency of a pair of step functions containing function and deriva-
tive information is actually decidable. This problem can be addressed directly or alternatively broken
in two parts: (i) first decide whether the derivative information is integrable, and, in case the answer is
positive, (ii) decide whether there is an integral which is consistent with the function information. For
n = 1, where, as in the classical setting, the derivative information is always integrable, it was shown
in [14] that consistency is decidable and in [13], a linear algorithm was presented (linear in the number
of pairs in the two step functions) which decides the consistency in this case.

For n ≥ 2, as in classical multi-variable calculus, a Scott continuous function of type R
n → CR

n,
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where CR
n is the domain of non-empty, compact and convex subsets of Rn ordered by reverse inclusion,

may fail to be integrable.
The first main result of the paper is to tackle directly, i.e. without breaking the problem into two

as above, the question whether consistency is decidable on basis elements. Given any convex compact
polygon C ⊂ R

n, we define a finitely generated associated cone centred at the origin in R
n+1 which has

the following property: the graph of any function of type Rn → R that vanishes at the origin, and whose
L-derivative is locally bounded by C, will be locally contained in the associated cone.

We then show that consistency of function and derivative approximations when the latter is provided
by compact hyper-rectangles can be established algebraically by reducing the problem of consistency to
a linear programming problem: we impose a hyperrectangular grid on the domain of definition of the
function where in each grid sub-hyperrectangle both the function and the derivative approximations are
constant and then use the cones associated with the constant derivative values to check consistency of
function and derivative information along all coordinate axes. This reduces the question of consistency
of the function and hyper-rectangular derivative approximation to whether a finite collection of rational
semi-hyperplanes in R

n+1 has non-empty intersection. Since the latter question is equivalent to the
consistency of the constraints in a linear programming problem, it follows that consistency of basis
elements in our domain is decidable in this case. Given that this check succeeds, one can construct a
witness for consistency by linearly interpolating between solutions of the linear programming problem.
As a special case, this also shows that the question of integrability of a hyper-rectangular-valued step
function is decidable.

The decidability of consistency of basis elements in this case leads to an effective structure for the
domain of real-valued Lipschitz functions of several variables allowing us to enumerate the countable
set of computable Lipschitz maps and that of computable functionals defined on this domain. It also
enables us to construct increasingly finer approximations for a desired multivariable Lipschitz function
by ensuring that at each stage our construction is sound, in the sense that it is a possible approximation
to the desired function. Such a situation arises in CAD where one seeks to use piecewise linear surfaces
to approximate a given map.

In the next part of the paper, we derive a domain-theoretic generalization of Green’s theorem, also
called the fundamental theorem of path integration, for a vector field to be a gradient, i.e., to be an exact
differential. Recall that, in the classical setting, a continuous vector field is the gradient of a differentiable
function if and only if the path integral of the vector field over any closed smooth path vanishes [22,
pages 286-291].

With this goal in mind, we first introduce a domain-theoretic notion of line integration, developed
here for the general framework, which defines the line integral as an interval valued function. Then we
prove that if a Scott continuous compact convex valued function is integrable, i.e., if there is a Lipschitz
map whose Clarke gradient is bounded by the Scott continuous function, then its path integral over any
closed piecewise C1 path is an interval that contains zero.

The converse is far more conceptually and technically involved to establish. We use techniques from
the theory of minimal surfaces to show that if the line integral of a Scott continuous hyper-rectangular
valued function over any piecewise C1 closed path contains zero then the Scott continuous function
is integrable with two canonical witnesses (up to a constant) that respectively maximise the lower line
integral and minimise the upper line integral from a given point. Thus, we have a domain-theoretic
generalization of Green’s theorem: a necessary and sufficient condition for a Scott continuous hyper-
rectangular valued function to be integrable is that zero must be contained in the line integral of the
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function with respect to any closed piecewise C1 path in its domain of definition.
Finally, we construct the least and the greatest piecewise linear functions obtained from a pair of

hyper-rectangular valued step functions, representing function and derivative approximation in which
the derivative part is assumed to be integrable. These surfaces are obtained respectively by patching
together, at a finite number of points given by the function information, the minimal and the maximal
witnesses for the integrability of the derivative information. Furthermore, the least and greatest surfaces
can be effectively constructed. If consistency holds, then any witness for consistency will lie between
the least and the greatest surface.

1.1. Related Work

The domain for real-valued Lipschitz functions has led to applications in solving initial value prob-
lems [13, 19, 15, 17] and in developing a denotational semantics for hybrid automata [18]. The domain
for the Lipschitz functions on finite dimensional Euclidean spaces has been used to develop domain-
theoretic inverse and implicit function theorems for Lipschitz functions [16]. The L-derivative has en-
abled us to define the weak topology on locally Lipschitz maps which has been shown to be coarser
than the Lipschitz norm topology [12]. The L-derivative has also been used to develop a typed Lambda
calculus, an extension of PCF with real numbers, equipped with a derivative operator [10], which gives
a denotational semantics for algorithmic differentiation [21].

We have already pointed out the related work of Clarke [8] and the equivalence of the L-derivative and
the Clarke in finite dimensional Euclidean spaces. In a series of papers, Borwein and his collaborators
have studied various properties of the Clarke gradient and developed new related notions [4, 5, 6]. In
particular, given a weak* upper semi-continuous map g that is non-empty, convex and weak* compact
set-valued from a Banach space to the space of subsets of its dual, a g-Lipschitz map is defined as one
whose Clarke gradient at every point is contained in the set value of g at that point. In finite dimensions,
the set of g-Lipschitz maps is precisely the set of primitives of g, a result which is a direct consequence
of the equivalence of the L-derivative and Clarke gradient. Whereas in the domain-theoretic setting
the generalized differential properties are used to develop the notion of primitives and the extended
Fundamental Theorem of Calculus is then deduced as a proposition, in the work of Borwein et al. the
g-Lipschitz maps are defined precisely by using the relation that expresses the Fundamental Theorem of
Calculus. In addition, we also mention the necessary and sufficient condition given by Borwein et al. [6]
for the integrability of a Scott continuous function defined on a connected open set, a condition which is
based on the existence of a measurable subset and a measurable selection.

In computable analysis, Pour-El and Richards [25] relate the computability of a function with the
computability of its derivative. The scheme employed in particular by Weihrauch [29] leads to partially
defined representations, but there is no general result on decidability. Interval analysis [24] also pro-
vides a framework for verified numerical computation. In this context, differentiation is performed by
symbolic techniques [26] in contrast to our sequence of approximations of the functions.

In [7], a more recent application of domain theory in differential calculus, in the context of viscosity
solutions of Hamiltonian equations, is introduced which uses the strong derivative. This notion is not
directly related to our work here since, as shown in [23, Proposition 1.9], there are Lipschitz functions
defined on the unit interval which have a non-point valued Clarke gradient, equivalently, L-derivative at
every point and are not strongly differentiable at any point.
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1.2. Notations and terminology

We assume the reader is familiar with elements of domain theory and multivariable differential calcu-
lus. Some basic knowledge of linear programming is also used to deduce the decidability of consistency.
We use the standard notions of domain theory as in [1, 20]. We write R for the set of real numbers and
IR = {[a, b] | a ≤ b ∈ R} ∪ {R} for the interval domain, i.e. the set of compact, nonempty intervals,
equipped with a least element ⊥ = R, ordered by reverse inclusion. It has a canonical basis consisting
of all compact intervals with rational end points augmented with ⊥. We write a non-bottom element
v ∈ IR as v = [v−, v+]. As usual, we identify any real number x ∈ R with the singleton {x} ⊂ R so
that we identify the set of maximal elements of IR as R.

We will also consider the (smash) product domain IR
n consisting of all non-empty compact hyper-

rectangles with faces parallel to the standard coordinate planes ordered with reverse inclusion and aug-
mented with the whole space R

n as the bottom element. It has a canonical basis consisting of all its
rational (compact) hyper-rectangles and the bottom element. We denote the continuous Scott domain
of the nonempty, compact and convex subsets of Rn, taken together with R

n as the bottom element and
ordered by reverse inclusion, by CR

n. We will use a canonical basis of CR
n, consisting of rational

convex compact polyhedra together with the set Rn as the bottom element.
For an open subset U ⊂ R

n, let C0(U) be the function space of all continuous functions of type
U → R. We will also use domains of function spaces of the form (U → D) where D is a countably
based continuous dcpo, which is either IR, IRn or CR

n in this paper. Thus, (U → D) consists of Scott
continuous functions partially ordered pointwise by the order inherited from D. For convenience, we
write D0(U) = U → IR. A function f ∈ D0(U) is given by a pair of respectively lower and upper
semi-continuous functions f−, f+ : U → R with f(x) = [f−(x), f+(x)] when f(x) 
= ⊥ for all x ∈ U .
Recall that given an open subset a ⊂ U and an element b ∈ D, the single step function bχa : X → D is
defined as (bχa)(x) = b if x ∈ a and ⊥ otherwise, where we have used the notation in [20]. Single-step
functions are continuous with respect to the Scott topology. Any finite set of single-step functions that
are bounded in the function space U → D has a least upper bound, called a step function; the set of step
functions provides a basis for the continuous Scott domain U → D. This basis in turn gives a countable
and canonical basis of rational step functions for U → D, where D = IR, IRn or CR

n, generated by
single-step functions of the form bχa where a is a rational open hyper-rectangle with faces parallel to
the coordinate hyper-planes of Rn and b is a rational interval for D = IR, a rational hyper-rectangle
for D = IR

n and a rational compact convex polyhedron in R
n for D = CR

n. Finally, in our list of
domain-theoretic terminology, the set of elements above an element c in a domain is denoted by ↑ c.

We use standard operations of interval arithmetic [24], which extend the usual operations such as
addition and multiplication of numbers by pointwise application to sets of points. There are two such
operations we specifically use in this paper. Let ‖x‖ =

√∑n
i=1 x

2
i be the standard Euclidean norm

of x = (x1, · · · , xn) ∈ R
n. Then the Euclidean norm is extended pointwise to b ∈ CR

n by ‖b‖ =
max{‖x‖ : x ∈ b}. We will also consider the extension − · − : CR

n × R
n → IR of the scalar product

which is defined pointwise b · x = {y · x : y ∈ b}.
Recall that the directional derivative of a map f : U ⊂ R

n → R at x ∈ U , in the direction u 
= 0
when it exists, is defined as

f ′(x; u) = lim
h→0+

f(x+ hu)− f(x)

h
.

Recall also that the derivative of f at x ∈ U , when it exists, is defined as the linear map T : Rn → R
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with
lim

‖x−y‖→0

|f(x)− f(y)− T (x− y)|

‖x− y‖
= 0.

The linear map T is denoted by f ′(x). Let ∇f denote the gradient of f , when it exists, i.e.,

(∇f)i(x) =
∂f

∂xi
(x) =

limx′

i→xi

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

xi − x′
i

,

for 1 ≤ i ≤ n. Recall that if the derivative exists at a point then the gradient also exists at that point and
has the same value. We will reserve the notation Lf exclusively in this paper for the L-derivative of f
which will be introduced later. The interior of a set A ⊂ R

n is denoted by A◦ and its closure by cl(A).
We next define the generalized (Clarke) gradient of a function [8, Chapter 2] and explain its properties.

Let U ⊂ X be an open subset of a Banach space X and let f : U → R be Lipschitz near x ∈ U and
v ∈ X . The generalized directional derivative of f at x in the direction of v is

f ◦(x; v) = lim sup
y→x t↓0

f(y + tv)− f(y)

t
.

Let us denote by X∗ the dual of X , i.e. the set of real-valued continuous linear functions on X . We
consider X∗ with its weak* topology, i.e., the weakest topology on X∗ in which for any x ∈ X the map
f �→ f(x) : X∗ → R is continuous.

The generalized gradient of f at x, denoted by ∂f(x) is the subset of X∗ given by

{A ∈ X∗ : f ◦(x; v) ≥ A(v) for all v ∈ X}.

It is shown in [8, page 27] that

• ∂f(x) is a non-empty, convex, weak* compact subset of X∗.

• For v ∈ X , we have:
f ◦(x; v) = max{A(v) : A ∈ ∂f(x)}.

When X is finite dimensional, say X = R
n, there is a simpler characterization of the generalized

gradient. In this case, by Rademacher’s theorem [9, page 148], a locally Lipschitz map f : U ⊂ R
n → R

is Fréchet differentiable almost everywhere with respect to the Lebesgue measure. If Ωf is the nullset
where f fails to be differentiable then:

∂f(x) = Co{lim f ′(xi) : xi → x, xi /∈ Ωf}, (1)

where Co(S) is the convex hull of a subset S ⊂ R
n [8, page 63]. The above expression is interpreted

as follows. Consider all sequences (xi)i≥0, with xi /∈ Ωf , for i ≥ 0, which converge to x such that
limi→∞ f ′(xi) exists. Then the generalized gradient is the convex hull of all such limits. Note that,
in the above definition, since f is locally Lipschitz at x, it is differentiable almost everywhere in a
neighbourhood of x and thus there are plenty of sequences (xm)m≥0 such that limm→∞ xm = x and
limm→∞ f ′(xm) exists.
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2. Domain for Lipschitz Functions

This section reviews the necessary background on the L-derivative and the domain of Lipschitz maps,
specialised to finite dimensions, from [11] to which we also refer for all proofs. The local differential
properties of a function are formalised in the domain-theoretic framework by the notion of a set-valued
Lipschitz constant. Assume U ⊂ R

n is an open subset.

Definition 2.1. The continuous function f : U → R has a non-empty, convex and compact set-valued
Lipschitz constant b ∈ CR

n in an open subset a ⊂ U if for all x, y ∈ a we have: b·(x−y) � f(x)−f(y).
The single-step tie δ(a, b) ⊆ C0(U) of a with b is the collection of all partial functions f on U with
a ⊂ dom(f) ⊂ U in C0(U) which have b as a non-empty convex compact set-valued Lipschitz constant
in a.

Note that, as stated in the introduction, we have used the extension of the scalar product to subsets of
R

n and identified in the above definition the real number f(x)− f(y) with the singleton {f(x)− f(y)}.
For example, if n = 2 and b = b1 × b2 ⊆ R

2, the information relation above reduces to b1(x1 − y1) +
b2(x2−y2) � f(x)−f(y). For a single-step tie δ(a, b), one can think of b as the non-empty compact-set
Lipschitz constant for the family of functions in δ(a, b). The classical Lipschitz constant for f would
simply be k = ‖b‖ ≥ 0. By generalizing the concept of a Lipschitz constant in this way, one is able to
obtain essential information about the differential properties of the function. In particular, if f ∈ δ(a, b)
for a 
= ∅ and b 
= ⊥, then f(x) is maximal for each x ∈ a and the induced function f : a → R is
Lipschitz: for all x, y ∈ a we have |f(x) − f(y)| ≤ ‖b‖‖x − y‖. For f ∈ C1(U), the following three
conditions are shown to be equivalent in [11]: (i) f ∈ δ(a, b), (ii) ∀z ∈ a. f ′(z) ∈ b and (iii) a ↘ b � f ′.
For the rest of this section, we assume we are in dimension n ≥ 2 and for convenience we write C0 for
C0(U).

Definition 2.2. A step tie of C0 is any finite intersection
⋂

i∈I δ(ai, bi) ⊂ C0, where I is a finite indexing
set. A tie of C0 is any intersection Δ =

⋂
i∈I δ(ai, bi) ⊂ C0, for an arbitrary indexing set I . The domain

of a non-empty tie Δ is defined as dom(Δ) =
⋃

i∈I{ai | bi 
= ⊥}.

A non-empty step tie with rational intervals gives us a family of functions with a finite set of consistent
differential properties, and a non-empty general tie gives a family of functions with a consistent set of
differential properties. Recall that a function f : U → R defined on the open set U ⊆ R

n is locally
Lipschitz if it is Lipschitz in a neighbourhood of any point in U . If Δ ⊂ C0 is a tie and f ∈ Δ, then
f(x) is maximal for x ∈ dom(Δ) and f is locally Lipschitz on dom(Δ).

We now collect some simple properties of step ties, which we will use later and refer to [11] for proofs.
For any indexing set I , the family of step functions (biχai)i∈I is consistent if

⋂
i∈I δ(ai, bi) 
= ∅. One

important corollary of this is that consistency of a family of step functions can be determined from the
associated ties in a finitary manner: The family (biχai)i∈I is consistent if for any finite subfamily J ⊆ I
we have

⋂
i∈J δ(ai, bi) 
= ∅.

Let (T 1(U),⊇) be the dcpo of ties of C0 ordered by reverse inclusion. We are finally in a position
to define the set of primitives of a Scott continuous function; in fact now we can do more and define a
continuous functional as follows:

Definition 2.3. The primitive map
∫

: (U → CR
n) → T 1(U) is defined by

∫
(g) =

⋂
i∈I δ(ai, bi),

where g = supi∈I biχai . We usually write
∫
(f) as

∫
f and call it the set of primitives of f .
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The primitive map is well-defined, onto and continuous. For n ≥ 2, as we are assuming here, the
primitive map will have the empty tie in its range, a situation which does not occur for n = 1.

Example 2.4. Let g ∈ [0, 1]2 → CR
2 be given by

g = (g1, g2) = (λx1.λx2.1, λx1.λx2.x1).

Then ∂g1
∂x2

= 0 
= 1 = ∂g2
∂x1

, and it will follow that
∫
g = ∅.

Therefore, we have the following important notion in dimensions n ≥ 2.

Definition 2.5. A map g ∈ U → CR
n is said to be integrable if

∫
g 
= ∅.

Given a continuous function f : U → R, the relation f ∈ δ(a, b) provides, as we have seen, finitary
information about the local differential properties of f . By collecting all such local information, we
obtain the complete differential properties of f , namely its derivative.

Definition 2.6. The derivative of a continuous function f : U → R is the map

Lf =
⊔

f∈δ(a,b)

bχa : U → CR
n.

We have the following properties, which are established in [11] for the case of arbitrary (possibly
infinite) dimension.

Theorem 2.7. (i) Lf is well-defined and Scott continuous.

(ii) If f ∈ C1(U) then Lf = f ′.

(iii) f ∈ δ(a, b) iff bχa � Lf .

(iv) If f is differentiable at x ∈ U , then f ′(x) ∈ Lf(x).

We also obtain the generalization of Theorem 2.7(iii) to ties, which provides a duality between the
domain-theoretic derivative and integral and can be considered as a variant of the Fundamental Theorem
of Calculus:

Corollary 2.8. f ∈
∫
g iff g � Lf .

Moreover, we have the fundamental result:

Theorem 2.9. [11, Corollary 8.2] In finite dimensional Euclidean spaces, the L-derivative coincides
with the Clarke gradient.

The set of primitive maps of g is closely related to the notion of g-Lipschitz functions due to Borwein
et al. [6] defined as follows; we restrict to finite dimensions. Let g ∈ (U → CR

n) be Scott continuous.
Then, the set of g-Lipschitz maps is defined in terms of the Clarke gradient ∂f of locally Lipschitz
functions as

χg = {f : U → R : f is locally Lipschitz and ∂f(x) ⊂ g(x) for all x ∈ U}.
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By the equivalence of the Clarke gradient and the L-derivative in finite dimensions (Theorem 2.9), it
follows immediately from Corollary 2.8 that χg =

∫
g.

A domain for locally Lipschitz functions and for C1(U) is constructed as follows. The idea is to
use D0(U) to represent the function and U → CR

n to represent the differential properties (partial
derivatives) of the function. Consider the consistency relation

Cons ⊂ D0(U)× (U → CR
n),

defined by (f, g) ∈ Cons if ↑f ∩
∫
g 
= ∅. For a consistent (f, g), we think of f as the function part or

the function approximation and g as the derivative part or the derivative approximation. We will show
that the consistency relation is Scott closed.

Proposition 2.10. Let g ∈ U → CR
n and (fi)i∈I be a non-empty family of functions fi : dom(g) → R

with fi ∈
∫
g for all i ∈ I . If h1 = inf i∈I fi is real-valued (i.e., if the family {fi : i ∈ I} is non-empty

and bounded below) then h1 ∈
∫
g. Similarly, if h2 = supi∈I fi is real-valued (i.e., if the family is

non-empty and bounded above), then h2 ∈
∫
g.

In later sections, we will consider piecewise linear paths in dom(g); it is convenient to work with a
connected component O of dom(g) as we will do in the following. Let R(U) be the set of partial maps
of U into the extended real line R ∪ {∞,−∞}. Consider the two dcpos (R(U),≤) and (R(U),≥) with
pointwise ordering inherited from the extended real line. Define the maps s : D0(O)× (U → CR

n) →
(R(U),≤) and t : D0(O)× (U → CR

n) → (R(U),≥) by

s : (f, g) �→ inf{h : dom(g) → R | h ∈

∫
g & h ≥ f−}

t : (f, g) �→ sup{h : dom(g) → R | h ∈

∫
g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are ∞ and −∞, respectively.
Note that if O∩dom(f) = ∅, then s(f, g)(x) = −∞ and t(f, g)(x) = ∞ for x ∈ O. In words, s(f, g) is
the least primitive map of g that is greater than the lower part of f , whereas t(f, g) is greatest primitive
map of g less that the upper part of f . It then follows that the following three conditions are equivalent:
(i) (f, g) ∈ Cons, (ii) s(f, g) ≤ t(f, g) and (iii) There exists a locally Lipschitz function h : dom(g) → R

with g � Lh and f � h on dom(g).
Moreover, the maps s and t are Scott continuous and the relation Cons is Scott closed. We can sum

up the situation for a consistent pair of function and derivative information.

Corollary 2.11. Let (f, g) ∈ Cons. Then in each connected componentO of the domain of definition of g
which intersects the domain of definition of f , there exist two locally Lipschitz functions s(f, g) : O → R

and t(f, g) : O → R such that s(f, g), t(f, g) ∈ ↑f ∩
∫
g and for each u ∈ ↑f ∩

∫
g, we have

s(f, g)(x) ≤ u(x) ≤ t(f, g)(x) for all x ∈ O.

The central notion of this paper is now presented as follows:

Definition 2.12. The domain of locally Lipschitz functions on U with non-empty, convex and compact
derivatives is given by

D1(U) = {(f, g) ∈ D0(U)× (U → CR
n) : (f, g) ∈ Cons}

10



and the domain of locally Lipschitz functions on U with rectangular derivative is the space

D1
R(U) = {(f, g) ∈ D0(U)× (U → IR

n) : (f, g) ∈ Cons}

where U ⊂ R
n is an arbitrary open subset.

Both posets D1(U) and D1
R(U) are continuous Scott domains, i.e. bounded complete countably based

continuous dcpos and the inclusion i : D1
R(U) → D1(U) is Scott-continuous. If L(U) and C1(U) denote

the collection of real-valued locally Lipschitz functions and continuously differentiable functions on U
respectively, we have the maps

Γ : L(U) → D1
R(U) defined by Γ(f) = (f,Lf)

Γ1 : C
1(U) → D1

R(U) defined by Γ1(f) = (f, f ′).

We note that Γ1 and i◦Γ1 are continuous injections of C1(U), equipped with the C1 norm topology, into
the set of maximal elements of D1

R(U) and D1(U), respectively. In [12], the weakest topology on L(U)
is defined as the coarsest topology that makes the map Γ continuous. With respect to this topology on
L(U), the map Γ and i ◦ Γ are embeddings (where Lf 
= ⊥ for all x).

The difference between D1(U) and D1
R(U) is mainly one of taste and the problem at hand. Theoreti-

cally, D1(U) provides a much more fine grained approximation of values of the L-derivative. However,
working with D1

R(U), which entails some loss of information, is conceptually easier and computationally
more practical as derivative values are represented by compact rectangles rather than non-empty, convex
and compact sets. We now proceed to show that D1

R(U) can be equipped with an effective structure,
thus paving the way for a computational and domain theoretic analysis of differentiable functions.

3. Effective Structure for D1

R
(U)

We show in this section that D1
R(U), which uses hyper-rectangles as derivative information, can be

equipped with an effective structure by proving that consistency of the derivative and function informa-
tion is decidable for it. We will however present a general framework, allowing us to deal with convex
and compact polyhedra as derivative information, which can be used to study the consistency in D1(U)
as well. This we think is justified in particular because the general setting is not more conceptually
or technically involved and thus we do not gain much by restricting it to hyper-rectangles. The gen-
eral setting is also used to show, by providing a counter-example, why our solution for decidability of
consistency in the hyper-rectangular case does not work in the more general domain D1(U).

We assume in the sequel that U = (0, 1)n is the open unit cube which permits us to focus on effective
structures for differentiable functions (we can also take U to be the closed unit cube [0, 1]n). As explained
in the introduction, we take the canonical countable bases of IR, IRn and CR

n consisting of non-empty
compact rational intervals, compact hyper-rectangles and non-empty rational compact convex polyhedra
respectively. These three bases respectively generate canonical bases of (U → IR), (U → IR

n) and
(U → CR

n) consisting of step functions made up of rational single-step functions with values of the
three different kinds above and defined on rational open hyper-rectangles in U as open sets.

We now introduce the main concept required in our framework for investigating consistency of func-
tion and derivative information. Recall that a set C ⊆ R

n is called a cone with vertex at the origin if
x ∈ C implies rx ∈ C for all r ≥ 0. The set −C = {−x : x ∈ C} is the mirror cone of C. For any

11



w ∈ R
n, the set C + w = {x + w : x ∈ C} is the cone C transported to w. A cone C ⊂ R

n is finitely
generated by the vectors k1, k2, · · · , km if

C = {
m∑
j=1

rjkj : rj ≥ 0, j = 1, . . . , m}.

Let b ∈ CR
n be any non-empty convex compact subset of Rn.

Definition 3.1. The upper b surface through the origin is defined by Ub : R
n → R with Ub(x) = (b ·x)+.

Similarly, the lower b surface through the origin is defined as Lb : R
n → R with Lb(x) = (b · x)−, for

any vector x ∈ R
n. The b-cone centred at the origin is the cone Cb in R

n+1 bounded by the lower and
upper b-surfaces through the origin.

In fact, Ub is the support function of the compact convex set b [27, 3] in a finite dimensional Euclidean
space and is a bounded convex function; it is thus Lipschitz [8, Proposition 2.2.6]. Note that Lb(x) =
−Ub(−x); see Figure 2 in which x has been chosen as a unit vector so that v · x is simply the projection
of v along the vector x, i.e., the distance from the origin of orthogonal projection of v into x. For
example, for the unit n-dimensional closed unit disc, b = D1(0), we have UD1(0)(x) = ‖x‖ whereas
LD1(0)(x) = −‖x‖. The D1(0)-cone CD1(0) at the origin is then given by

{(x, y) ∈ R
n × R : −‖x‖ ≤ y ≤ ‖x‖}.

For convex functions, the directional derivative exists at each point for each direction and coincides with
the corresponding generalised directional derivative. This implies that the Clarke gradient at each point
is the convex closure of all the directional derivatives at that point. [8, 2.3.4 and 2.3.6]. Moreover, the
directional derivative of the support function Ub at a point x in the direction of u 
= 0 is given by

U ′
b(x; u) = Ub∩H(x)(u), (2)

where H(x) = {y ∈ R
n : y · x = Ub(x)} [28, page 40]. This means that Ub is differentiable at x if and

only if b ∩H(x) is a singleton. It is now straightforward to conclude the following results.

Proposition 3.2. For all x ∈ R
n we have (LLb)(x) � b and (LUb)(x) � b, and (LLb)(0) = (LUb)(0) =

b.

From now on, assume that b is a non-empty convex compact polyhedron in R
n. Let v be a vertex of

b formed by the intersection of, say, i faces D1, D2, · · · , Di of b and let kj be the outer unit normal to
Dj for 1 ≤ j ≤ i. The vertex v ∈ b induces an associated cone Pv(b) in R

n centered at the origin and
finitely generated by the i vectors kj for 1 ≤ j ≤ i. When the polyhedron b is clear from the context,
we write Pv(b) simply as Pv. For any two different vertices v and w of b, the interiors of the two cones
Pv(b) and Pw(b) are disjoint and the n-dimensional space R

n is the union of the cones associated to all
the vertices of b. It follows from Equation (2) that Ub is differentiable for any x ∈ P ◦

v with U ′
b(x) = v,

which implies Ub(x) = v · x. Figure 2 illustrates an example in R
2 with b a triangle. The three vertices

vi of b induce the three associated cones Pvi , for 1 ≤ i ≤ 3. On the left, two horizontal cross sections of
the lower surface Lb of the cone Cb have been depicted as the two dashed triangles with Lb(x) = c1 and
Lb(x) = c2 for two constants c1 > c2 > 0.
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Figure 2. The associated cones of the three vertices of a triangle b and a unit vector x. Two horizontal
sections of the lower surface Lb are depicted on the left.

In the language of convex analysis, the faces Dj for 1 ≤ j ≤ i are the extremal support hyper-planes
for the boundary point v of the convex set b. Furthermore, the mirror cone −Pv is finitely generated
by the vectors −kj for 1 ≤ j ≤ i and R

n is the union, with disjoint interiors, of all cones −Pv for all
vertices v of b. For any x ∈ −Pv we have (b · x)− = v · x. Summarising we have:

Proposition 3.3. We have Ub(x) = v · x for x ∈ Pv and Lb(x) = v · x for x ∈ −Pv .

Consider now the two restrictions Ub�Pv
: Pv → R and Lb�−Pv

: −Pv → R of the upper and lower
surfaces of Cb through the origin respectively.

Proposition 3.4. The graph of the restrictions Ub�Pv
and Lb�−Pv

are finitely generated cones and the two
graphs are mirror cones.

Proof. We claim that the graph of Ub�Pv
is finitely generated by the i vectors

(kj, Ub(kj)) = (kj , v · kj) ∈ R
n × R

for j = 1, . . . , i. In fact, any vector in Pv is of the form
∑i

j=1 rjkj . Since Ub(
∑i

j=1 rjkj) = v ·

(
∑i

j=1 rjkj), any vector in the graph of Ub�Pv
is of the form

(
i∑

j=1

rjkj , Ub(
i∑

j=1

rjkj)) = (
i∑

j=1

rjkj, (v ·
i∑

j=1

rjkj)) =
i∑

j=1

rj(kj, v · kj)

as required. A dual argument shows that the graph of Lb�−Pv
is finitely generated by the i vectors

(−kj,−v · kj) ∈ R
n × R for j = 1, . . . , i. Since for any x ∈ Pv we have −x ∈ −Pv with (x, Ub(x)) =

(x, v · x) = −(−x,−v · x) = −(−x, Lb(−x)), it follows that the graphs of Ub�Pv
and Lb�−Pv

are mirror
cones.
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Putting the graphs of Ub�Pv
(respectively Ub�−Pv

) together for all vertices v of b we obtain:

Corollary 3.5. The graph of Ub and Lb are mirror cones of each other and each is the union of finitely
generated cones with generators that are computed from b and the normal vectors to the faces of b.

It now follows that if b is a rational polyhedron and (x, y) ∈ R
n×R is a point with rational coordinates,

then the inequalities Lb(x) ≤ y ≤ Ub(x) are decidable. Since we have Cb = {(x, y) ∈ R
n×R : Lb(x) ≤

y ≤ Ub(x)}, we obtain:

Corollary 3.6. For a rational polyhedron b, the membership predicate of the b-cone is decidable for
rational points.

We now explain the framework to study consistency when n = 2 as the general case for n > 2
is similar. We impose a grid (p0, . . . , pk) × (q0, . . . , ql) on the unit square U such that the function
approximation given by the step function f : U → IR and the derivative approximation given by the
step function g : U → CR

n are constant respectively with values cij ∈ IR and bij ∈ CR
n inside

every subrectangle (pi, pi+1)× (qj , qj+1), for i = 0, . . . , k − 1 and j = 0, . . . , l− 1, defined by adjacent
grid points. Note that if cij = ⊥ or bij = ⊥ then f or g are undefined in the subrectangle and their
contribution can be ignored in the following analysis.

If the pair of step functions (f, g) ∈ (U → IR)× (U → CR
n) is consistent then we can find values

hi,j ∈ R at all the grid points (pi, qj) for i = 0, . . . , k and j = 0, . . . , l such that for i = 0, . . . , k− 1 and
j = 0, . . . , l − 1 they satisfy the following two conditions:

C(i) c−ij ≤ hs,t ≤ c+ij for s = i, i+ 1 and t = j, j + 1,

C(ii) the cone Cbij transported to any of the four points

((pi, qj), hij), ((pi+1, qj), hi+1,j), ((pi, qj+1), hi,j+1), ((pi+1, qj+1), hi+1,j+1),

contains all the other three points as well (i.e., each of the four cones must contain all the four
points).

In fact, if f and g are consistent with a Lipschitz witness h : U → R, then we put hi,j = h((pi, qj))
which indeed must satisfy conditionC(i) above. Furthermore, since bij � (Lh)(x) for all x ∈ (pi, pi+1)×
(qj, qj+1), it follows that ((ps, qt), hs,t) ∈ Cbij + ((pu, qv), hu,v) for s, u = i, i + 1 and t, v = j, j + 1,
since h goes through all the four values at the corners of the subrectangle.

Next we look at the converse of the above result. Suppose there exist real numbers hij , for i = 0, . . . , k
and j = 0, . . . , l, such that conditions C(i) and C(ii) above hold. Consider the piecewise linear function

h : U → R (3)

defined as follows:

W(i) In the triangle with vertices (pi, qj), (pi, qj+1) and (pi+1, qj), the map h linearly interpolates be-
tween the values hij , hi,j+1 and hi+1,j at these vertices respectively.

W(ii) In the triangle with vertices (pi+1, qj+1), (pi, qj+1) and (pi+1, qj), the map h linearly interpolates
between the values hi+1,j+1, hi,j+1 and hi+1,j at these vertices respectively.
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Proposition 3.7. Given a pair of step functions (f, g) ∈ (U → IR) × (U → IR
n), if there exist real

numbers hij , for i = 0, . . . , k and j = 0, . . . , l, such that conditions C(i) and C(ii) above hold, then the
piecewise linear map h defined in Equation (3) satisfyingW(i) and W(ii) is a witness of consistency of
(f, g).

Proof. By C(i), the map h satisfies the function information. To check that it also satisfies the deriva-
tive information, let bij = b1ij × b2ij for compact intervals b1ij , b

2
ij ∈ IR. Since by C(ii), the cone Cbij

transported to ((pi, qj), hij) contains ((pi+1, qj), hi+1,j) and ((pi, qj+1), hi,j+1), we have:

hi+1,j − hi,j ∈ b · ((pi+1, qj)− (pi, qj)) = b1ij(pi+1 − pi),

hi,j+1 − hi,j ∈ b · ((pi, qj+1)− (pi, qj)) = b2ij(qj+1 − qj).

By division we obtain:

c :=

(
hi+1,j − hi,j

pi+1 − pi
,
hi,j+1 − hi,j

qj+1 − qj

)
∈ b1ij × b2ij = bij .

Since for h restricted to the interior of the triangle with vertices (pi, qj), (pi, qj+1) and (pi+1, qj), we have
h′ = c, it follows that Lh(x) = {h′(x)} = {c} ⊂ bij for x in the interior of this triangle. Similarly,
Lh(x) = {h′(x)} = {c} ⊂ bij in the interior of the the triangle with vertices (pi+1, qj+1), (pi, qj+1) and
(pi+1, qj). By Scott continuity of Lh we have Lh(x) � g(x) for all x ∈ U , including at the boundary
points of the triangles.

Note that the witness function h can alternatively be constructed by interpolating the values given at
the vertices of the two other triangles, i.e., one with vertices (pi, qj), (pi, qj+1) and (pi+1, qj+1), and the
other with vertices (pi, qj), (pi+1, qj) and (pi+1, qj+1).

Corollary 3.8. A pair (f, g) ∈ (U → IR)× (U → IR
n) is consistent iff we can find values hi,j ∈ R at

grid points such that C(i) and C(ii) ae satisfied.

Since as basis elements, f and g are given in terms of rational numbers, the question of consistency
is then reduced to solving a finite set of inequalities with rational coefficients for the (k + 1) × (l + 1)
unknowns hi,j for i = 0, . . . , k and j = 0, . . . , l, i.e., the intersection of a finite set of half-spaces, which
is decidable; it in fact represents the set of constraints for a linear programming problem.

For n > 2, the same result holds by considering a similar grid in the unit cube U in R
n with sub-

hyperrectangles in which the f and g values are constant. In order to find the witness for consistency
when 2n real values are given for the vertices of each sub-hyperrectangle satisfying the containment
condition for the corresponding transported cone, we choose any partition of each sub-hyperrectangle
into the union of n-simplexes with disjoint interiors.

Corollary 3.9. The predicate Cons is decidable on the basis elements of (U → IR)× (U → IR
n).

We have therefore proved:

Corollary 3.10. The domain D1
R(U) can be given an effective structure.
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We also note that given a rational step function g : U → IR
n, we can determine if g is integrable

by dropping condition C(i) and deciding if there exists h : U → R satisfying condition C(ii). Thus we
have:
Corollary 3.11. The integrability of a basis element of (U → IR

n) is decidable.
Finally, we note that in the more general case when (f, g) ∈ (U → IR) × (U → CR

n) and the
two conditions C(i) and C(ii) for some hij values on the grid points are satisfied, the map h defined in
Equation (3) with W(i) and W(ii) does not necessarily give a witness for consistency. For example take
b = [(0, 0), (2, 1)], the closed line segment from the origin to the point (2, 1) in the plane, and consider
the three points (0, 0, 0), (1, 0, 1) and (0, 1, 0). Then we can easily check that the b-cone transported to
each of the three points contains the other two. However, the plane f through the three points (0, 0, 0),
(1, 0, 1) and (0, 1, 0) is given by f(x, y) = x with f ′ = (1, 0) /∈ b = [(0, 0), (2, 1)]. Thus, the question
of decidability of consistency remains open in this more general framework.

4. Interval-valued Line Integration

In this section, we extend the classical theory of line integration to interval-valued vector fields and
use it to derive, in this section and the next, an extension of the fundamental theorem of path integration
to the domain-theoretic setting. We will use it to show in Section 6 that for step functions f ∈ D0(U)
and g ∈ U → IR

n, the maps s(f, g) and t(f, g), as in Corollary 2.11, will be piecewise linear, which
can be effectively obtained when f and g are rational step functions.

Let g ∈ U → CR
n be a rational step function. Since IR

n ⊂ CR
n, we will use the following notions

also for g ∈ U → IR
n. Recall that a crescent is the intersection of an open set and a closed set. The

domain dom(g) of g is partitioned into a finite set of disjoint crescents {Cj : j ∈ I}, in each of which the
value of g is constant as a non-empty compact and convex set; they are called the associated crescents,
or simply the crescents of g, which play a main part in the framework for deciding integrability as we
will see later in this section. Each associated crescent has boundaries parallel to the coordinate planes
and these boundaries intersect at points, which are called the corners of the crescent.

In Figure 3, an example of a step function g is given with its associated crescents, the interval in each
crescent gives the value of g in that crescent. A solid line on the boundary of a crescent indicates that
the boundary is in the crescent, whereas a broken line indicates that it is not.
Remark 4.1. We have the adjacency property of the values of a step function g as follows. By the Scott
continuity of g at a point x of the boundary of any number of crescents, it follows that g(x) � g(y) for
y in any of of the neighbouring crescents of x. If fact, for any b � g(x) there exists a neighbourhood
N of x for which b � g(y) for y ∈ N and our claim follows. Since g(x) is itself the value of g at the
crescent to which x belongs, it follows that g(x) = �i∈Ici where {ci : i ∈ I} is the set of values of g in
the neighbouring crescents of x. In particular, if x is on the boundary of precisely two crescents, then
the constant values c1 and c2 of the two crescents satisfy c1 � c2 or c2 � c1.

A path in a connected region O ⊂ R
n is a continuous map p : [0, 1] → O with endpoints p(0) and

p(1). We say p is piecewise C1, if p′ exists and is continuous except for a finite number of points at
which the left and right derivatives of p exist and are limits of p′ from left and right respectively. The
space P (O) of piecewise C1 paths in the region O ⊂ R

n is equipped with the C1 norm:

‖p‖ = max{max
r∈[0,1]

‖p(r)‖, sup
p′(r) exists

‖p′(r)‖}. (4)
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Figure 3. Crescents of a step function

A path p is non-self-intersecting if p(r) = p(r′) for r < r′ implies r = 0 and r′ = 1. We will be mainly
concerned with the subset P0(O) ⊂ P (O) of piecewise linear paths in this paper. For these paths, there
exists a strictly increasing finite sequence of points (ri)0≤i≤k for some k ∈ N with 0 = r0 < r1 <
· · · rk−1 < rk = 1 such that p is linear in [ri, ri+1] for 0 ≤ i ≤ k − 1. The points p(ri) for i = 0, · · · , k,
are said to be the nodes of p; the nodes p(ri) for i = 1, · · · , k − 1 are called the inner nodes. The line
segment {p(r) : ri ≤ r ≤ ri+1} is denoted by p([ri, ri+1]). If p(0) = p(1), the path is said to be closed.
We also use the notation pi := p(ri) for the nodes of the path p in the rest of the paper. A simple path in
a region O ⊂ R

n is a non-self-intersecting piecewise C1 map.
Recall that given a vector field F : O → R

n in a region O ⊂ R
n and a piecewise C1 path p : [0, 1] →

O, the line integral of F with respect to p from 0 to w ∈ [0, 1] is defined as
∫ w

0
F (p(r)) · p′(r) dr, when

the integral exists. Here, u · v =
∑n

i=1 uivi denotes the usual scalar product of two vectors u, v ∈ R
n.

Before introducing the interval-valued line integral, we derive some technical properties. For any
A ∈ CR

n and δ > 0, we consider the open set Aδ = {x ∈ R
n : d(x,A) < δ} ⊂ R

n, where d(x,A) is
the minimum distance from the point x to A.

Lemma 4.2. The map − · − : Rn ×CR
n → IR given by r · A = {r · x : x ∈ A} is Scott continuous.

Proof. Assume r ∈ R
n and A ∈ CR

n. Suppose ε > 0 is given and consider the open ball B(r, δ)
centered at r and of radius δ = min(1, ε/2(M + 1)) with M = sup{‖r‖ : r ∈ A}. Let B ∈ CR

n with
B ⊂ Aε/2(‖r‖+1). For any x ∈ B, take y ∈ A with |x − y| ≤ ε/2(‖r‖ + 1). Then, for any s ∈ B(r, δ),
we have: s · x = s · x− s · y + s · y − r · y + r · y = s · (x− y) + (s− r) · y + r · y < ε/2 + ε/2 + r · y
and thus s · x < r · y + ε ≤ (r ·A)+ + ε and it follows that (s ·B)+ < (r ·A)+ + ε. Similarly, we have:
(s ·B)− > (r ·A)− − ε.

Corollary 4.3. For a Scott continuous g : U → CR
n, where U ⊂ R

n is an open set, and a piecewise
C1 path p : [0, 1] → U , the map t �→ g(p(t)) · p′(t) : [0, 1] → IR is Scott continuous.
Corollary 4.4. For any piecewise C1 path p ∈ P (U), the map g �→ λt.g(p(t)) · p′(t) : (U → CR

n) →
D0(U) is Scott continuous.

Note that in Corollaries 4.3 and 4.4 we have g(p(t)) · p′(t) = ⊥ at the finite number of points t
where p′(t) is undefined. We now define the notion of line integral of the compact-convex polyhedron
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valued Scott continuous function g ∈ U → CR
n with respect to any piecewise C1 path from y to x in a

connected component of dom(g).

Definition 4.5. Given g ∈ U → CR
n and a piecewise C1 path p ∈ P (U) with image in the domain of

g the line integral of g over p is defined as:
∫
p[0,1]

g(r) dr =

[
L

∫
p[0,1]

g(r) dr,U

∫
p[0,1]

g(r) dr

]
(5)

where the lower integral and the upper integral of g over p are respectively given by

L

∫
p[0,1]

g(r) dr =

∫ 1

0

(g(p(r)) · p′(r))− dr,

U

∫
p[0,1]

g(r) dr =

∫ 1

0

(g(p(r)) · p′(r))+ dr.

Note that since λt.(g(p(t)) · p′(t))+ and λt.(g(p(t)) · p′(t))− are, by Corollary 4.3, respectively upper
and lower semi-continuous functions, the Lebesgue integrals in the above definition exist. In dealing
with line integrals as above, we always assume implicitly that the piecewise C1 path p lies in the domain
of the function g. We sometimes write

∫
p
g(r) dr for

∫
p[0,1]

g(r) dr. Furthermore, when the path p from
p(0) = y to p(1) = x is clear from the context, we sometimes write

∫
p[0,1]

g(r) dr =

∫ x

y

g(r) dr,

to emphasise the dependence of the integral on y and x for the given path. In addition, we sometimes
write the path p from y to x as py or px to emphasise its initial or end points.

Proposition 4.6. Given p ∈ P (U), the map
∫
p[0,1]

: (U → CR
n) → IR is Scott continuous.

Proof. It is easy to see that
∫
p[0,1]

is monotonic. If g = supi≥0 gi is the supremum of an increasing chain
of maps gi ∈ (U → CR

n) for i ≥ 0 and p lies in the domain of gi for all i ≥ 0, then by Corollary 4.4
and Lebesgue’s monotone convergence theorem it follows that supi≥0 L

∫
p[0,1]

gi(r) dr = L
∫
p[0,1]

g(r) dr

and inf i≥0 U
∫
p[0,1]

gi(r) dr = U
∫
p[0,1]

g(r) dr.

Remark 4.7. The interval-valued line integral
∫
p[0,1]

g(p(t))·p′(t) dt for a step function g ∈ (U → CR
n)

and a piecewise linear path p is easy to compute. Consider a straight line segment p : [a, b] → C with
p(t) = p(a) + (t − a)(p(b) − p(a))/(b − a), and thus p′(t) = (p(b) − p(a))/(b − a) ∈ R

n, for
t ∈ (a, b) ⊂ [0, 1], contained in an associated crescent C of g with value K ∈ CR

n, say. We have:

L

∫
p[a,b]

g(t) dt =

∫ b

a

(p′(t) ·K)− dt =
(b− a)((p(b)− p(a)) ·K)−

b− a
= ((p(b)− p(a)) ·K)−.

U

∫
p[a,b]

g(t) dt =

∫ b

a

(p′(t) ·K)+ dt =
(b− a)((p(b)− p(a)) ·K)+

b− a
= ((p(b)− p(a)) ·K)+.
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Thus we conclude:
∫
p[a,b]

g(t) dt = (p(b)− p(a)) ·K = {(p(b)− p(a)) · x : x ∈ K} = [m,M ],

with m and M respectively the least and greatest values of (p(b)− p(a)) · x for x ∈ K:

m = min
x∈K

{(p(b)− p(a)) · x} = (p(b)− p(a)) · u M = max
x∈K

{(p(b)− p(a)) · x} = (p(b)− p(a)) · v,

where u and v are two points on the boundary of K. In fact, u can be taken to be any point of the
boundary of K where the hyper-plane with outer normal p(b)− p(a) touches K whereas v can be taken
to be any point of the boundary of K where the hyper-plane with outer normal −(p(b) − p(a)) touches
K. In the case that K is a compact convex polyhedron we have p(b)−p(a) ∈ −Pu and p(b)−p(a) ∈ Pv

as in Proposition 3.3.

A simple property of the lower and upper integrals is given in the following.

Proposition 4.8. Given a single-step function g = bχa ∈ U → CR
n and a straight line segment

p ∈ P0(a) from the fixed point p(0) = y to the point p(1) = x, the L-derivatives with respect to x of the
lower and upper integrals satisfy:

g(x) � LL(

∫ x

y

g(r) dr), g(x) � LU(

∫ x

y

g(r) dr)

Proof. We shall prove the property for the upper integral as the case for the lower integral is entirely
similar. We can assume b is a convex, compact polyhedron as the general case follows from this by
Proposition 4.6 since any convex, compact subset is the intersection of a shrinking sequence of convex,
compact polyhedra. Then, for fixed y, we have:

f(x) := U(
∫ x

y
g(r) dr)

= ((x− y) · b)+

= (x− y) · v

where (x − y) ∈ Pv, by Proposition 3.3, for some vertex v ∈ b. Assume now that x − y is not
perpendicular to any of the faces of b. Then, for u in a small neighbourhood of x we have: f ′(u) = v.
It follows from Equation (1) and the equivalence of the L-derivative and the Clarke gradient in finite
dimensional Euclidean spaces (Theorem 2.9), that Lf(x) = {v} � b. By Scott continuity it follows that
Lf(x) � b for any x ∈ a.

5. Fundamental Theorem of Path Integration

Recall the fundamental theorem of path integration, a classical result in multi-variable differential
calculus:

Theorem 5.1. [22, 2] Let O be an open, connected set in R
n, and let G : O → R

n be a continuous
vector field. Then the following two conditions are equivalent.

• There is a differentiable function F : O → R such that G = F ′.
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• The line integrals of G over closed, piecewise C1 curves in O are zero.

We note that one can replace C1 curves with piecewise linear curves in the above theorem, since every
C1 curve can be obtained as the C1 limit of a sequence of piecewise linear curves. In this section, we
will develop a domain-theoretic extension of the fundamental theorem of path integration, but first we
will point out a related result in this area.

Borwein et al. [6] give a necessary and sufficient condition for a Scott continuous function g : O →
CR

n where O ⊂ R
n is a non-empty open connected subset to be integrable (see also [5, Theorem 8]).

We will now explain their condition.
The line integral of a measurable map f : O → R

n on the line segment [a, b] ⊂ O is given by the
Lebesgue integral:

∫
[a,b]

f(z) · dz :=

1∫
0

f(tb+ (1− t)a) · (b− a) dt.

The line integral of f on a piecewise linear path P in U is simply the sum of its line integrals on the line
segments of P . For any fixed ε > 0, an ordered collection of line segments P (ε) = {[ai, bi] : 1 ≤ i ≤ n}
is an ε-path from a to b provided:

‖a− a1‖+
n−1∑
i=1

‖ai+1 − bi‖+ ‖bn − b‖ < ε.

Such a path is closed if a = b. For a Borel subset E ⊂ O, an ε-path P (ε) is an E-admissible ε-path from
a to b if λ({t ∈ [0, 1] : tbi + (1− t)ai /∈ E}) = 0 for 1 ≤ i ≤ n− 1, where λ is the Lebesgue measure.
Line integrals on an ε-path are defined similarly as above.

Theorem 5.2. [6, Theorem 8] Let U be a non-empty open connected subset of Rn and let g : U → CR
n

be a bounded Scott continuous map. Then g is integrable if and only if there exists a Borel set E ⊂ U
with λ(U \ E) = 0 and a measurable selection f : E → R

n of g so that limε→0+
∫
P (ε)

f(z) dz = 0,
where P (ε) is any closed E-admissible ε-path in U .

The existence of a measurable selection as above is in general non-decidable. We have already shown
in Corollary 3.9 that for a rational step function g ∈ (U → IR

n) integrability is a decidable predicate.
In this section, we will derive an alternative necessary and sufficient condition for the integrability of
a Scott continuous function g : U → IR

n, which is the domain-theoretic counterpart for the classical
condition that the line integral over closed piecewise C1 paths be zero.

We now introduce the main concept in the domain-theoretic generalization of the fundamental theo-
rem of path integration for the integrability of a vector field.

Definition 5.3. Given g ∈ (U → CR
n) and a closed simple path p in a connected component of dom(g),

we say that g satisfies the zero-containment loop condition for p if

0 ∈

∫
p[0,1]

g(r) dr.

We say that g ∈ (U → CR
n) satisfies the zero-containment loop condition if it satisfies the zero-

containment loop condition for any closed simple path p in any connected component of dom(g).
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Figure 4. Failure of zero-containment loop condition: g1 (left) and g2 (right)

We note that if g is a step function then in the zero-containment loop condition above, it suffices to
consider piecewise linear closed simple paths. In fact, it can be easily shown that the integral of a step
function with respect to a piecewise C1 path is the limit of integrals of the step function over a sequence
of piecewise linear paths that converge in the C1 norm (Equation (4)) to the piecewise C1 path.

If g only takes point (maximal) values, then the zero-containment loop condition is simply the standard
condition for g to be a gradient i.e., the line integral of g vanishes on any closed path. Figure 4 gives an
example of rectangular valued step function g = (g1, g2) ∈ U → IR

2, with dom(g) = ((0, 3)× (0, 3)) \
([1, 2]× [1, 2]) which does not satisfy the zero-containment loop condition. The values of g1 (left) and
g2 (right) are given for each of the four single-step functions. Denote the dashed path by p; it has nodes
at p(0) = p(1) = (1/2, 1/2), p(1/4) = (5/2, 1/2), p(1/2) = (5/2, 5/2) and p(3/4) = (1/2, 5/2). A
simple calculation shows that

p′(r) =

⎧⎪⎪⎨
⎪⎪⎩

(8, 0) 0 < r < 1/4
(0, 8) 1/4 < r < 1/2
(−8, 0) 1/2 < r < 1/4
(0,−8) 3/4 < r < 1

Thus, evaluating the line integral for the four parts of the path, we obtain:

L
∫
p[0, 1

4
]
g(r)dr = L

∫
p[ 1

4
, 1
2
]
g(r)dr = L

∫
p[ 1

2
, 3
4
]
g(r)dr = L

∫
p[ 3

4
,1]
g(r)dr = 2

Summing the contributions from the four parts above, the lower line integral of g over p then gives a
strictly positive value:

L
∫
p[0,1]

g(r)dr = 8.

In the proof of the following theorem we invoke the mean value theorem for the Clarke gradient due
to Lebourg, which we state here for finite dimensional Euclidean spaces where the Clarke gradient and
the L-derivative coincide:

Theorem 5.4. [8, Theorem 2.37] Let x, y ∈ R
n and assume the line segment between them is in the

domain of a real-valued Lipschitz function h. Then there exists a point u in the open interval between x
and y such that h(y)− h(x) ∈ (Lh(u)) · (y − x).
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Theorem 5.5. Suppose g � Lh for a Scott continuous function g ∈ (U → CR
n) and a Lipschitz map

h : dom(g) → R. Then for any piecewise C1 path p from y to x in a connected component of dom(g) we
have h(x)− h(y) ∈

∫
p[0,1]

g(r) dr.

Proof. By Proposition 4.6, we only need to prove the result for a step function g, in which case we can
also take the path p to be piecewise linear. By introducing additional inner nodes if required, we can also
assume that the interior of each line segment p([ri−1, ri]) of p, with 1 ≤ i ≤ k − 1, lies in a crescent of
g with a constant value Ki say. By Lebourg’s mean value property (Theorem 5.4), there exists ui in the
interior of p([ri−1, ri]) such that

h(p(ri))−h(p(ri−1)) ∈ (Lh(ui))·(p(ri)−p(ri−1)) � g(ui)·(p(ri)−p(ri−1)) = Ki·(p(ri)−p(ri−1)) =

∫ ri

ri−1

g(r) dr.

Adding the above relations for i = 1, · · · , k, we obtain the result.

Recall that g ∈ (U → CR
n) is called integrable if

∫
g 
= ∅. The following corollary is an extension of

Green’s Theorem also called the Gradient Theorem in classical differential calculus [22, 2].

Corollary 5.6. Suppose g ∈ (U → CR
n) is an integrable function. Then g satisfies the zero-containment

loop condition.

Proof. Assume h ∈
∫
g and thus, by Corollary 2.8,

g � Lh. (6)

Take any closed piecewise linear path p in a connected component O of dom(g) and put x = y = p(0)
in Theorem 5.5.

We are now ready to introduce a key concept of this paper. Note that any step function g can be
extended to the boundary of dom(g) by the lower and upper semi continuity of g−i and g+i respectively
for 1 ≤ i ≤ n. For a step function g ∈ (U → CR

n) and x, y ∈ cl(O), where y is regarded as the
parameter and x as the variable, we put

Vg(x, y) = sup{L

∫
p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x},

Wg(x, y) = inf{U

∫
p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x}.

Corollary 5.7. Suppose g � Lh for a step function g ∈ (U → CR
n) and a Lipschitz map h : dom(g) →

R. Then for any piecewise linear path from y to x in a connected component of g we have:

Vg(x, y) ≤ h(x)− h(y) ≤ Wg(x, y).

Proof. This follows immediately from Theorem 5.5 by taking the supremum, respectively the infimum,
of the values of the lower integrals, respectively the upper integrals, over all piecewise linear paths from
y to x.
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Figure 5. Crescents of a step function (left); the corners and their coaxial points (right)

From now on, i.e., for the rest of this paper, we will restrict ourselves to hyper-rectangular valued
derivative information. We will show that if

g = (g1, . . . , gn) ∈ (U → IR
n)

satisfies the zero-containment loop condition, then it is integrable. Let O be a connected component of
dom(g) for the rest of this paper. We adopt the following convention.

Remark 5.8. If two crescents have a common boundary, we consider their common boundary as in-
finitesimally separated so that they have distinct boundaries. This means that a line segment of a piece-
wise linear simple path on a common boundary of two different crescents is always regarded as the limit
of a sequence of parallel segments contained on one side of this boundary. In the two dimensional case
n = 2, this means that the same edge on the boundary of two crescents can represent two different line
segments, i.e., one in each crescent.

Definition 5.9. Let O be a connected component of the domain of a step function g ∈ (U → IR
n). We

say that any orthogonal projection of a point x ∈ cl(O) to any m-dimensional boundary of a crescent in
O (for 1 ≤ m ≤ n− 1) is a coaxial point of x.

Clearly, each point has a finite number of coaxial points. In Figure 5, the coaxial points of the corners
of the crescents of the step function in Figure 3, reproduced on the left, are illustrated on the picture on
the right. We collect a few technical results before we are able to prove the equivalence of integrability
and the zero-containment loop condition. Our first challenge is to show that there are actually paths
which respectively attain the lower and the upper integrals of g from y to x.

We consider O as the disjoint union of a set of crescents generated by open hyper-rectangles in R
n. In

this section, we take this set of crescents precisely as the crescents on which g has constant value. (In the
next section we will refine these crescents with those of dom(f).) Let EO denote the set of vertices of the
crescents of O. Given a finite set of points x1, . . . , xt, we denote by HO(x1, . . . , xt), the coarsest hyper-
rectangular partition that includes as vertices the points in EO ∪{x1, . . . , xt} and all their coaxial points.
Let EO(x1, . . . , xt) denote the set of all corners of the hyper-rectangles in HO(x1, . . . , xt). Denote the
hyper-rectangles in HO(x, y) by Ri where i ∈ I for some finite indexing set I . Suppose that Ki ∈ IR

n

is the (constant) value of g on Ri for i ∈ I .
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Next, consider a vector z ∈ R
n. Then for each coordinate index k = 1, · · · , n we have zk ≷ 0 where

≷ stands for ≥ or ≤. This gives at most 2n possible direction types for z, each of which we can represent
by the finite sequence s = s1s2 · · · sn where sk ∈ {−,+} according to the sign of zk. Note that by our
formulation, for zk = 0 we have both sk = + and sk = −. Also observe that if z is direction type s then
−z has the direction type −s where (−s)k = −sk with the usual multiplication of signs ±.

If K ∈ IR
n, we say a vertex v of K has type s ∈ {+,−}n if z := v − y has type s for some y ∈ K,

and we write v = K(s). If the interior of K is non-empty then each vertex of K will have a unique
corner type. It is now easy to see the following simple proposition which gives, in the case of rectangular
derivative, the complete description of the more general results in Proposition 3.3.

Proposition 5.10. If z has direction type s then the two vertices, K(s) and K(−s), of K of corner types
s and −s respectively satisfy: (K · z)+ = K(s) · z and (K · z)− = K(−s) · z.

The first lemma shows that if g satisfies the zero-containment loop condition, then, given x, y ∈ cl(O),
the supremum of lower path integrals from x to y is always attained for a simple piecewise linear path
whose nodes are in the set EO(x, y).

Lemma 5.11. Suppose the step function g satisfies the zero-containment loop condition. If x, y ∈ cl(O),
then

sup{L

∫
q

g(r)dr | q piecewise linear path in O from x to y}

is attained for a simple piecewise linear path with nodes in the set EO(x, y). The dual property holds
for the infimum of upper integrals.

Proof. We show that every piecewise linear path p with nodes

p0, . . . , pj−1, pj , pj+1, . . . , pl

from x = p0 to y = pl can be modified to a piecewise linear path q, also from x to y such that

(i) q is simple (i.e., non-intersecting);

(ii) the nodes of q are in EO(x, y);

(iii) L
∫
q
g(r)dr ≥ L

∫
p
g(r)dr.

First note that by the zero-containment loop condition, if we remove any loop from p then the lower
integral will increase, i.e., condition (iii) will be satisfied. We can therefore remove all loops from p,
which means that we can assume our path is simple, i.e., (i) is established. Next, suppose that p is
a simple piecewise linear path in O with nodes x = p0, . . . , pl = y. We may assume without loss
of generality that each open line segment (pj−1, pj) lies within a single hyper-rectangle Rij ⊆ O of
HO(x, y); note that Rij for j = 1, . . . , l are not necessarily distinct. By Remark 4.7, we have:

L

∫
p

g(r)dr =
l∑

j=1

(Kij · (pj − pj−1))
− =

l∑
j=1

min
x∈Kij

x · (pj − pj−1). (7)

We consider two steps to ensure that condition (ii) is met. First we remove all inner nodes that are in
the interior of the hyper-rectangles Ri for i ∈ I . Suppose that for some j with 1 ≤ j ≤ l − 1, the node
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pj is in the interior of the hyper-rectangle Rij . By our assumption above, it follows that (pj−1, pj) and
(pj, pj+1) are both contained in Rij . Since for any two vectors a, b ∈ R

n we have (Kij · a) + (Kij · b) ⊃
Kij · (a+ b), it follows that (Kij · (pj −pj−1))+ (Kij · (pj+1−pj)) ⊃ Kij · (pj+1−pj−1), which implies
that (Kij · (pj+1 − pj−1))

− + (Kij · (pj+1 − pj)))
− ≤ (Kij · (pj+1 − pj−1))

−. Thus, by removing the
node pj from our simple piecewise linear path p, we obtain a new simple piecewise linear path q with
consecutive nodes x = p(0) = p0, . . . , pj−1, pj+1, . . . , pl = p(1) = y with L

∫
q
g(r)dr ≥ L

∫
p
g(r)dr.

By repeatedly removing inner nodes that are in the interior of the hyper-rectangles Ri for i ∈ I , we can
assume that for any simple piecewise linear path p there is a simple piecewise linear path q that satisfies
(iii) and has its inner nodes at the boundaries of the hyper-rectangles of HO(x, y).

Our final step is then to show that a simple piecewise linear path whose nodes are at the boundaries
of Ri’s can be replaced with one whose nodes are all in EO(x, y), i.e., at the vertices of Ri for i ∈ I .
Assume therefore that p has its nodes pj for 1 ≤ j ≤ l on the boundaries of the hyper-rectangles Ri.
For any node pj on a co-dimension one boundary hyper-plane of some Ri, the coordinates pjk with
1 ≤ k ≤ n have maximum and minimum values as determined by the given boundary hyper-plane of
Ri. Consider the segment of p from pj−1 to pj which by our assumption lies in Rij . Let sj ∈ {−,+}n

be the direction type of pj − pj−1. Then, by Proposition 5.10, we have:

min
x∈Kij

x · (pj − pj−1) = Kij (−sj) · (pj − pj−1).

Thus, from Equation (7), we can write the lower integral for path p as:

L

∫
p

g(r)dr =

l∑
j=1

min
x∈Kij

x · (pj − pj−1) =
l∑

j=1

Kij (−sj) · (pj − pj−1) =

−Ki1(−s1) · p0 +Kil(−sl) · pl +
l−1∑
j=1

(Kij (−sj)−Kij+1
(−sj+1)) · pj.

We consider the lower integral L
∫
p
g(r)dr over the path p above as the objective function of a linear

programming problem, with variables pj (j = 1, . . . l − 1) and constraints given by the position of each
pj on a given boundary of Rij together with the minimum and maximum values this boundary imposes
on the coordinates of pj . We note that the vertices of the convex polytope that represents the domain of
the objective function are given by the points in EO(x, y). In fact, the conditions p(j−1)k − pjk ≷ 0 do
not give rise to new extremal points of the domain of the objective function. For, if at least one of the
coordinates p(j−1)k and pjk, for some k = 1, · · · , n, is constant for the two boundaries of Rij on which
p(j−1)k and pjk lie, then one or the other of the inequalities p(j−1)k−pjk ≷ 0 is satisfied, otherwise if both
p(j−1)k and pjk are non-constant for the two boundaries, then p(j−1)k and pjk will have the same range of
values [m,M ] say and the two inequalities p(j−1)k − pjk ≷ 0 would correspond to the two right angled
triangles with vertices (m,m), (m,M), (M,M) and (m,m), (M,m), (M,M), which correspond to the
kth coordinates of two corners of Ri. Thus, for a given set of values sj ∈ {−,+}n with 1 ≤ j ≤ l
for l sequences of ±, each of length n, the supremum of the lower integral is attained, by basic linear
programming, for a value of each pj at a vertex of the hyper-rectangle Rij for 1 ≤ j ≤ l. Since there
are a finite number (in fact 2nl) of such sets of sequences of length n, it follows that the supremum of
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the lower integral is attained for a path going through the vertices of the hyper-rectangles in HO(x, y),
which completes the proof.

We note that the proof of Lemma 5.11 crucially uses the fact that the set of coaxial points of a given
point is finite and is closed under taking coaxial points. This clearly holds under the assumption we have
in this section, i.e., the values of the derivative information g are hyper-rectangles with faces parallel
to the coordinate planes. In the case that g takes values as non-empty compact and convex rational
polyhedra, we do not know if in general a given point gives rise to a finite set closed under taking
coaxial points.

Corollary 5.12. Suppose the path p ∈ P0(U) from y to x satisfies Vg(x, y) = L
∫
p[0,1]

g(r) dr. Then for
any point z = p(r0) with r0 ∈ [0, 1] we have

Vg(z, y) = L

∫
p[0,r0]

g(r) dr, Vg(x, z) = L

∫
p[r0,1]

g(r) dr, Vg(x, y) = Vg(x, z) + Vg(z, y) (8)

A similar result holds for Wg.

Proof. Suppose the first equality in Equation 8 does not hold. Then if q is the path from y to z that
attains the lower integral of g, we can concatenate q with the second segment of p, i.e., from r = r0 to
r = 1, to get a new path from y to x which has a greater value for its lower integral than p : [0, 1] → U .
This gives a contradiction and hence the first equality holds. Similarly the second equality holds. The
third is simply the additivity of the line integral.

Corollary 5.13. Let O be a connected component of step function g ∈ (U → IR
n). If g � g0, then for

any x, y ∈ cl(O) we have Vg(x, y) ≤ Vg0(x, y) ≤ Wg0(x, y) ≤ Wg(x, y).

Proof. Suppose p attains L
∫
p[0,1]

g dr = Vg(x, y). By the definition of Vg0(x, y) and monotonicity of path
integration (Proposition 4.4), we obtain: Vg(x, y) ≤ Vg0(x, y). Similarly for the upper integrals.

We now need a technical lemma to proceed. Fix y ∈ cl(O) and let x and z be in the interior R◦ of
the same hyper-rectangle R of HO(y) (which is a coarser partition than HO(x, y)). Consider any path px

from y to x with l + 1 nodes y = px0 , p
x
1 , . . . , p

x
l = x in EO(x, y). Then, there exists a path pz from y to

z also with l + 1 nodes y = pz0, p
z
1, . . . , p

z
l = z in EO(z, y) such that

• for each i = 1, . . . , l − 1 either pxi = pzi ∈ EO(y), or pxi and pzi are coaxial points of x and z
respectively that lie on the same face of a hyper-rectangle in HO(y), and

• for 0 ≤ i ≤ l the two line segments pxi , pxi+1 and pzi , p
z
i+1 belong to the same hyper-rectangle in

HO(y).

The second condition ensures that in case pxi , p
x
i+1 and pzi , p

z
i+1 are both on the boundary of some cres-

cents, then they would be considered infinitesimally contained in the same crescent of g. We say that the
two paths px and pz have the same type for x, z ∈ R◦.

Lemma 5.14. For a step function g, the line integral
∫
px
g(r) dr depends linearly on the coordinates of

x ∈ R◦ when the type of px is unchanged.
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Proof. Suppose the two paths px and pz, with x, z ∈ R◦, have the same type each having l + 1 nodes.
Then their jth segments from pj−1 to pj (for each j = 1, . . . , l) lie in the same hyperrectangle in HO(y)
of constant g value Kij say. We have,

L

∫
px
g(r)dr =

l∑
j=1

(Kij · (p
x
j − pxj−1))

− =
l∑

j=1

min
u∈Kij

u · (pxj − pxj−1).

L

∫
pz
g(r)dr =

l∑
j=1

(Kij · (p
z
j − pzj−1))

− =
l∑

j=1

min
u∈Kij

u · (pzj − pzj−1).

Since pxj − pxj−1 and pzj − pzj−1 belong to the same orthant in R
n, we obtain:

L

∫
px
g(r)dr =

l∑
j=1

uj · (p
x
j − pxj−1).

L

∫
pz
g(r)dr =

l∑
j=1

uj · (p
z
j − pzj−1),

where −(pxj − pxj−1),−(pzj − pzj−1) ∈ Puj
, and thus,

L

∫
pz
g(r)dr− L

∫
px
g(r)dr = (z − x) · ul +

l−1∑
j=1

(uj − uj+1) · (p
z
j − pxj ). (9)

Since the two paths are of the same type, for j = 1, . . . , l − 1 either pxj = pzj ∈ EO(y), thus making
no contribution to Equation (9) or pxi and pzi are coaxial points of x and z respectively, which depend
linearly on n − 1 coordinates of x and z respectively. It follows that

∫
px
g dr depends linearly on x as

this point varies in R◦ while the type of the path is unchanged.

For a given step function g ∈ (U → IR
n) with a connected componentO, the maps λp ∈ P0(O).L

∫
p
g(r) dr

and λp ∈ P0(O).U
∫
p
g(r) dr are not in general continuous with respect respect to theC1 norm on P0(O),

as it is easy to verify by considering a path consisting of a single line segment that coincides with the
boundary of two crescents with different values. However, the maps Vg(·, y),Wg(·, y) giving the lower
and upper integrals from the point y respectively are continuous:

Proposition 5.15. If the step function g satisfies the zero-containment loop condition, then, for all y ∈
cl(O), the two maps given by Vg(·, y),Wg(·, y) : cl(O) → R are continuous, piecewise linear and satisfy
Vg(y, y) = Wg(y, y) = 0.

Proof. Fix y ∈ cl(O), and consider a path px from y to x as this point varies in the interior of a hyperrect-
angle R of HO(y), while the type of px remains unchanged. By Lemma 5.14, the integral L

∫
px
g(r) dr

depends linearly on the coordinates of x ∈ R◦. Thus, we obtain for x ∈ R◦ a finite set of paths px with
px(0) = y and px(1) = x, of all possible types, such that the mapping λx.L

∫
px
g(r) dr is a continuous

piecewise linear surface. Therefore the map Vg(·, y), which is locally the maximum of a finite number
of continuous piecewise linear local surfaces is itself a continuous piecewise linear surface.
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In order to show that Vg(y, y) = 0, we note that the trivial constant path p with constant value y is
a piecewise linear simple path from y to y with L

∫
p[0,1]

g(r) dr = 0. By the zero-containment loop
condition, any other closed piecewise linear simple path q from y to y satisfies L

∫
q
g(r) dr ≤ 0 and thus

Vg(y, y) = L
∫
p[0,1]

g(r) dr = 0. The statement for the upper line integral is entirely dual.

The importance of the maps Vg(·, y) and Wg(·, y), for a fixed y ∈ cl(O), lies in the fact that their
derivatives provide a refinement of g.

Proposition 5.16. If the step function g satisfies the zero-containment loop condition, then the maps
Vg(·, y) and Wg(·, y) satisfy

g(x) � LVg(x, y) and g(x) � LWg(x, y)

for all y ∈ cl(O).

Proof. We prove that g � LVg(·, y), as the statement concerning the upper line integral is entirely
analogous. We can assume that x is in the interior of a crescent C of g with constant value K, since
the general case then follows by Scott continuity. Thus, there exists a small a > 0 such that the closed
n-dimensional open ball Ba(x) of radius a and center x lies in the interior C◦. Denote the boundary of
this disk by Sa(x). For any z ∈ Sa(x) and u ∈ Ba(x), we have: Vg(u, y) ≥ Vg(z, y) + Vg(u, z) since
any pair of piecewise linear paths p1 (from y to z) and p2 (from z to u) gives rise, by concatenation, to a
piecewise linear path (p1 followed by p2) from y to u. Moreover,

Vg(u, y) = sup{Vg(z, y) + Vg(u, z) : z ∈ Sa(x)}, (10)

since Vg(u, y) is the maximum value of the lower path integral over all piecewise linear paths from y to
u and any path p0 as such will intersect Sa(x) at some point z and thus gives rise to a piecewise linear
path p1 from y to z and a piecewise linear path p2 from z to u. Now for fixed y and fixed z ∈ Sa(x), the
map λu.Vg(z, y) + Vg(u, z), by Proposition 4.8, satisfies

g � L(λu.Vg(z, y) + Vg(u, z))

since Vg(z, y) is a constant and u ∈ Ba(x). Thus by Proposition 2.10 applied to the family of maps on
the right hand side of Equation (10), we have g(u) � λu ∈ Ba(x).LVg(u, y). Since u ∈ Ba(x) is an
arbitrary point, by letting u = x we obtain g � LVg(·, y) and the proof is complete.

Corollary 5.17. A step function g ∈ (U → IR
n) is integrable iff it satisfies the zero-containment loop

condition.

Proof. Corollary 5.6 gives the left to right implication. In the other direction, if g satisfies the zero-
containment loop condition, then Propositions 5.15 and 5.16 imply that in any connected component
O ⊂ dom(g) the maps Vg(·, y) and Wg(·, y), for any y ∈ O, are both witness to the integrability of
g.

Corollary 5.18. The zero-containment loop condition is decidable for a basis element of (U → IR
n).

Proof. This follows from Corollary 3.11 and Corollary 5.17.
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We can also extend Corollary 5.17 to the following result, which can be regarded as the extension of
the fundamental theorem of path integration to Scott continuous rectangular-valued vector fields.

Theorem 5.19. A function g ∈ (U → IR
n) is integrable iff it satisfies the zero-containment loop

condition.

Proof. The left to right direction was shown in Corollary 5.6. Suppose that g satisfies the zero-containment
loop condition. Since U → IR

n is a continuous Scott domain, we have g = supi≥0 gi where (gi)i≥0 is
an increasing sequence of step functions. Then by the monotonicity of line integration each gi also sat-
isfies the zero-containment loop condition and is thus integrable by Corollary 5.17. Since (gi)i≥0 is an
increasing sequence of integrable functions, by Corollary 5.13 we have for any fixed y ∈ cl(O):

· · · , Vgi(·, y) ≤ Vgi+1
(·, y) ≤ · · · ≤ Wgi+1

(·, y) ≤ Wgi(·, y) ≤ · · · ,

whenever y ∈ cl(dom(gi)) for i ≥ 0. Moreover, we have:

gi � LVgi(·, y) and gi � LWgi(·, y).

Let hy = supi≥0Vgi(·, y). Then hy : O → R is real-valued and thus by Proposition 2.10, we have
gi � Lhy for each i ≥ 0. It follows that g � Lhy and thus g is integrable.

6. Construction of Least and Greatest Consistency Witness

In this section, we will explicitly construct s(f, g) and t(f, g), for step functions f ∈ (U → IR) and
g ∈ (U → IR

n), which will be piecewise linear functions and would respectively be the least and the
greatest witness for consistency when (f, g) is indeed consistent. These results extend those in [14] to
higher dimensions. Let x and y be in the same connected component O of dom(g) with O∩dom(f) 
= ∅.

Theorem 6.1. The maps Vg(·, y),Wg(·, y) : cl(O) → R are respectively the least and the greatest
continuous maps L,G : cl(O) → R with L(y) = 0 and G(y) = 0 such that g � LL and g � LG.

Proof. Consider any function F : cl(O) → R with F (y) = 0 and g � LF . By Corollary 5.7, we obtain
F (x)− F (y) ≥ Vg(x, y), i.e., F (x) ≥ Vg(x, y) for all x ∈ cl(O) → R. We conclude that L = Vg(·, y).
The case for G is similar.

Let S(f,g)(x, y) = Vg(x, y) + limf−(y).

Corollary 6.2. Let O be a connected component of dom(g) with non-empty intersection with dom(f).
For x ∈ O, we have:

s(f, g)(x) = sup
y∈O∩dom(f)

S(f,g)(x, y). (11)

Proof. By Theorem 6.1, the map hy = λx.S(f,g)(x, y) is the least function with hy(y) = limf−(y) such
that g � Lhy. By definition, s(f, g) is precisely the upper envelope of hy for y ∈ O ∩ dom(f).
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Proposition 6.3. Let O be a connected component of dom(g) with non-empty intersection with dom(f).
There exist a finite number of points y0, y1, . . . , yi ∈ cl(O ∩ dom(f)) with

s(f, g)(x) = max{S(f,g)(x, yj) : j = 0, 1, . . . , i}

for x ∈ O.

Proof. Consider O as the disjoint union of the crescents in O \ dom(f) and the intersection of crescents
of O and dom(f). For a fixed x ∈ O, consider any piecewise linear path py from y to x ∈ O with
nodes at points in the set EO(x, y). Suppose y belongs to a hyper-rectangle R of the coarser partition
HO(x). Since the integral

∫
py
g(r) dr depends, for a fixed type of py, continuously on y and since, by

Lemma 5.14, it depends linearly on the coordinates of y ∈ R◦, it follows that the maximum value of the
path integral will be reached for y at a corner of R. On the other hand, for fixed x, the value of Vg(x, y)
is attained by a piecewise linear path py from y to x with nodes at points in the set EO(x, y). Thus, the
maximum value of Vg(x, y) for y ∈ R is reached for y in a corner of R and thus some point in EO(x).
Since f− is constant in the interior of each crescent in O, it also follows that the maximum value of limf−

in R is always attained at the corners of R. Therefore, s(f, g)(x) = max{S(f, g)(x, y) : y ∈ EO(x)}
which completes the proof.

Results dual to those above are obtained for t(f, g) as follows. We put T(f,g)(x, y) = Wg(x, y) +
limf+(y). Then, for x ∈ O, we have

t(f, g)(x) = inf
y∈O∩dom(f)

T(f,g)(x, y),

and there exist y0, y1, . . . , yi ∈ cl(O ∩ dom(f)) with

t(f, g)(x) = min{T(f,g)(x, yj) : j = 0, 1, . . . , i}

We can therefore conclude:

Corollary 6.4. If O is a connected component of dom(g) with non-empty intersection with dom(f), then
s(f, g) and t(f, g) are piecewise linear maps in O, which are respectively the least and the greatest
consistency witnesses in O when (f, g) is a consistent pair.

7. Concluding remarks

We have proved the decidability of consistency in the construction of the domain of real-valued multi-
variable Lipschitz maps with hyper-rectangular valued L-derivative or Clarke gradient which ensures
that this domain can be given an effective structure. We have also extended the celebrated Gradient
theorem of differential calculus to the domain-theoretic setting in the case of Lipschitz maps with hyper-
rectangular valued L-derivative and used it to obtain the least and the greatest maps that satisfy the
constraints of a consistent pair of step functions.

The question still remains if consistency is decidable for a pair of rational step functions (f, g) ∈
(U → IR) × (U → CR

n) and if the results on the zero-containment loop condition as a necessary
and sufficient condition for integrability, and the construction of the least and the greatest witness for
consistency can be extended from the rectangular valued derivative g : O → IR

n, to the more general
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case of compact, convex valued derivative of the form g : O → CR
n. These will be addressed in future

work.
The results in this paper lay the groundwork for developing domain-theoretic computational models

in vector calculus, differential geometry and differential topology as well as in complex analysis, all
based on the class of locally Lipschitz maps which have appropriate closure and differential properties.
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