
Co-design of Hardware and Algorithms for Real-time Optimization

Eric C. Kerrigan

Abstract— It is difficult or impossible to separate the per-
formance of an optimization solver from the architecture of
the computing system on which the algorithm is implemented.
This is particularly true if measurements from a physical system
are used to update and solve a sequence of mathematical opti-
mization problems in real-time, such as in control, automation,
signal processing and machine learning. In these real-time op-
timization applications the designer has to trade off computing
time, space and energy against each other, while satisfying
constraints on the performance and robustness of the resulting
cyber-physical system. This paper is an informal introduction to
the issues involved when designing the computing hardware and
a real-time optimization algorithm at the same time, which can
result in systems with efficiencies and performances that are
unachievable when designing the sub-systems independently.
The co-design process can, in principle, be formulated as a
sequence of uncertain and non-smooth optimization problems.
In other words, optimizers might be used to design optimizers.
Before this can become a reality, new systems theory and
numerical methods will have to be developed to solve these
co-design problems effectively and reliably.

I. DO YOU WANT SOME GOLD?

Imagine I were to give you 50 g of gold and a list of
unsorted numbers. You can keep some of the gold by using
a pen and paper to add up these numbers, but you have to
return 10 g to me for every minute that you do not have the
answer. It takes me just under ten minutes to complete this
exercise, so you are unlikely to keep any of the gold if you
did this on your own. The good news is that your friends can
help you, but you have to share the prize amongst yourselves.

Suppose that you are as fast as me at adding up numbers
and that you will share the prize equally. If you were to get
only one friend to help, then you might be able to complete
the task in under five minutes and take home 5 g each, after
having returned 40 g to me. If you were to get nine friends
to help, then all ten of you might be able to complete the
task in just under one minute, each still only taking home
5 g of gold from the pot of 50 g.

There is an optimal number of friends if you want to
maximize your individual winnings. If only four friends help,
then the five of you might be able to finish in just under two
minutes and take home 8 g each from the remaining 40 g.

Would you modify your strategy if you knew that all the
numbers were in a small range, e.g. from 1 to 5? Is it easier
to count the different types of numbers than adding up each
in turn? What would you do if the numbers were sorted?

Think of the strategy in which you split tasks amongst
friends as the algorithm and your team members as the

The author is with the Department of Electrical & Electronic Engineering
and Department of Aeronautics, Imperial College London, Exhibition Road,
London SW7 2AZ, United Kingdom, e.kerrigan@imperial.ac.uk

computing hardware. The amount of gold that each of us
holds are the states of a dynamical system that change with
time and is a function of the size and strategy of your team.

If you understand this example, then you appreciate why
the performance of an algorithm is a function of the com-
puting hardware. You are likely to agree that it is important
to design the algorithm and hardware at the same time, that
there are trade-offs to be made and that hardware-algorithm
co-design can be formulated as an optimization problem. You
probably also understand that if there is a physical system,
which affects computations or vice versa, then it may not be
sensible to design the computing system without taking into
account how the physical system evolves in time.

This paper is tutorial in nature and introduces the issues
that a co-designer has to face when using mathematical opti-
mization to solve control, signal processing, automation and
machine learning problems in real-time. The development
is relatively informal, with a small amount of mathematical
detail to partially cater for the technician, and is mostly a
collection of problems, ideas and food for thought. There
are no references to books or papers, because it is easy to
find introductory texts to most of the topics mentioned below
and the aim is not to provide a review of solutions. This
is instead an attempt at stimulating discussion and research.
Co-design for real-time optimization is still young and many
fundamental problems remain to be defined.

II. DIFFICULT DECISIONS

Time does not stop and data is always uncertain. Scientists,
engineers, economists, sociologists, business managers and
policymakers are regularly faced with having to decide what,
where, when and how accurate to measure, store, compute
and communicate.

The full potential of computing systems to solve real-
world problems can be realized only by co-design, where
the algorithm is designed at the same time as the computing
hardware, while also assessing the impact this design has on
the application for which the computation was intended. This
is particularly true when control, signal processing, automa-
tion and machine learning algorithms are to be deployed on
embedded, distributed and safety-critical systems.

An open question is how best to co-design for real-time
optimization applications, in which a sequence of mathe-
matical optimization problems is updated with data obtained
from a physical system and decisions are made based on
solutions to these optimization problems. The results from
these decisions are often also fed back into the physical
system, either directly or indirectly, thereby affecting the
behavior of the overall cyber-physical system. Real-time



optimization is used to solve a variety of problems across
a huge range of temporal and spatial scales, from nano-
positioning devices to power systems and the climate.

There is always a large number of options available for
hardware-algorithm co-design. Choices for the computing
hardware include:
• Processor: Microcontroller, DSP, GPU, FPGA, PLC or

multi-core general-purpose processor?
• Communication: WiFi, Bluetooth, Ethernet or ZigBee?
• Storage: DRAM, SRAM, HDD, SSD or DVD?

A non-exhaustive list of choices for the mathematical opti-
mization algorithm includes the following:
• Interior point or active set?
• Gradient-based or derivative-free?
• First-order or second-order method?
• Exact or inexact solutions to equations?
• Deterministic or stochastic?
• Direct or iterative linear solver?
• Large and sparse or small and dense matrices?

The granularity of a decision could also have a significant
effect on overall performance. For example, should the
parallelization be at the bit-level or higher and how much
error can be tolerated within each loop of the algorithm?

III. COMPUTING RESOURCES ARE FINITE

Computing systems are composed of processing, storage
and communication sub-systems:
• Processing: This includes low-level arithmetic units,

such as multipliers and adders, to higher-level units,
such as microprocessors, servers and data centres.

• Storage: Data and computations need to be stored, either
permanently or temporarily, in units that include on-chip
registers, off-chip memory or external drives.

• Communication: The processing units need to commu-
nicate with each other and the storage sub-systems via
wired or wireless networks. This can range from fast on-
chip buses to relatively slow and distributed networks.

It is therefore important to take into account the fact that
computing takes time, consumes energy and occupies space:
• Time: In real-time applications a physical system con-

tinues to evolve while the computation is carried out.
The timing of a computation is therefore critical in
determining the usefulness of a result. For example, a
computation can arrive too soon1 or too late when con-
trolling the ignition in an internal combustion engine.

• Energy: Energy is consumed and heat is dissipated
every time a transistor switches state, data is stored or
transmitted. In many applications the electrical energy
or power required by the computing system is the key
driving factor during design, e.g. in energy-harvesting
wireless sensor networks and big data centres.

• Space: This is the physical space and weight of the
computing sub-systems, e.g. amount of semiconductor,

1Computations that arrive too early may need to be stored in a buffer,
therefore complicating the design, increasing cost and wasting energy.

Algorithm 1 Sequential addition
s← x1
i← 2
while i≤ n do

s← s+ xi
i← i+1

end while

cabling and transmitter/receiver size. Faster and more
accurate computations require many large processing
units, memory and communication interconnections. A
big, expensive supercomputer can solve more compli-
cated problems than a small, cheap microcontroller.

In most applications, the above three physical resources
not only have to be traded off against each other, but
also the performance, robustness and cost of the overall
cyber-physical system. For example, it might be possible to
(i) speed up a computation by parallelizing an algorithm
at the expense of using more processors, (ii) reduce the
energy consumption of the computation by decreasing the
power supply voltage and processor clock speed, thereby
increasing the latency with a subsequent deterioration in
system performance and robustness, or (iii) reduce the silicon
area by using arithmetic units with fewer bits, but having to
take more iterations of an algorithm in order to guarantee
that numerical errors are within acceptable limits.

A co-designer therefore has to understand how best to map
an algorithm to processing, storage and communication sub-
systems in order to meet constraints on time, space, energy,
cost, performance and robustness.

IV. TRADE-OFFS HAVE TO BE MADE WHEN ADDING

Consider, as an example, the problem of computing the
sum s := ∑

n
i=1 xi of the components of a vector of integers

x := (x1, . . . ,xn). There is clearly a large number of algo-
rithms and computer architectures that could be designed to
solve this problem, each requiring different amounts of time,
energy and space.

It is easy to produce a design that adds all numbers
sequentially, as in Algorithm 1, with only one scalar adder.
Using this algorithm, it follows that the result will be
available after n−1 iterations of the while loop.

Suppose now that p scalar adder units are available. Based
on Algorithm 2, a computing system can be designed that
significantly reduces the time taken to compute s by adding
up to p pairs of scalars in parallel during each iteration of
the while loop. It is possible to show that the result will
be stored in the variable s after only dlog2 ne iterations if
p≥ bn/2c and after

r(n, p) := bn/pc−1+ dlog2(p+nmod p)e

iterations if p < bn/2c, where d·e and b·c denote the ceiling
and floor operators, respectively. If there is only one scalar
adder, i.e. p = 1, then r(n,1) = n−1 iterations of the while
loop will be executed, as with Algorithm 1.



Algorithm 2 Parallel addition
s← x
i← n
while i > 1 do

`←min{bi/2c, p}
q← (s1, . . . ,s`)+(s`+1, . . . ,s2`) using ` adders
s← (q,s2`+1, . . . ,si)
i← i− `

end while

0 5 10 15 20 25 30 35

2

4

6

8

10

maximum number of scalar adders

sp
ee

du
p

Fig. 1. Speedup of parallel addition as a function of the maximum number
of scalar adders p when adding n = 64 numbers.

It is not obvious from Algorithm 1 whether it is possible
to make efficient use of parallel architectures, whereas this
is much clearer in Algorithm 2. It is therefore essential to
consider how best to describe an algorithm in order to allow
for efficient use of computing resources and to be able to
compute the fundamental limits of performance.

Suppose we wish to compute the speedup r(n,1)/r(n, p) in
completing all iterations of the while loop in Algorithm 2 as
the number of adders increases. For simplicity, assume that
each iteration takes the same amount of time. Figure 1 shows
that the speedup, as a function of p, is less than linear due to
diminishing returns with increasing p. The figure shows that
the maximum speedup for n= 64 is attained when p= 32 and
r(n, p) = dlog2 ne= 6. Note also that the speedup is constant
over a relatively large interval, i.e. 16≤ p≤ 31. This kind of
analysis is therefore very useful to predict how best to trade
off space against time so that resources are not wasted.

A very important observation to make is that the energy
consumed during the computation can be decreased by
increasing the number of adders. This is because the time
taken to compute the solution can decrease sufficiently fast
relative to the additional energy consumed per iteration.
Energy efficiency is very important in many applications,
ranging from small, embedded computing systems to large,
distributed super-computing systems.

Suppose that the energy consumed by the while loop in
Algorithm 2 can be approximated by a function of the form

E(n, p) :=
r(n,p)

∑
k=1

(
α`

β

k + γ

)
,

where `k is the number of scalar adders used at the kth

iteration. The constant γ > 0 is the energy consumed by all

0 5 10 15 20 25 30 35

−20

0

20

40

maximum number of scalar adders

en
er

gy
sa

vi
ng

[%
] γ/α = 0.5

γ/α = 1
γ/α = 2

Fig. 2. Energy saved for parallel addition as a function of the maximum
number of scalar adders p for different values of γ/α if n = 64 and β = 1.2

H(c)

C(c)

P
z

v
y

w

e
u

Fig. 3. Cyber-physical system H(c) with the inputs and outputs of the
physical sub-system P and computing sub-system C(c).

arithmetic and logical units that do not scale with the number
of adders. The term α`

β

k represents the energy consumed by
a single scalar addition during the kth iteration, where the
constant α > 0 is a function of the geometry and material
used to construct the adders. The exponent β is larger than 1
in practice, because the time and space taken by some of the
computations and circuitry scale nonlinearly with `k.

Figure 2 is a plot of the percentage energy saved 100[1−
E(n, p)/E(n,1)] as a function of p for different values of γ/α

if n= 64 and β = 1.2. The energy consumption first improves
as p increases and reaches an optimal value for some value
of p before gradually worsening. Note also that the relative
energy saving improves as γ/α increases. Figures 1 and 2
clearly demonstrate that there is a trade-off between time,
space and energy when adding up a set of numbers.

For many problems it is important to also include the
communication network and memory architecture in the
space-time-energy analysis. There is considerable scope here
for creative solutions and this is therefore left as an exercise.

V. OPTIMIZING IN REAL-TIME WITH UNCERTAIN DATA

Real-time optimization is challenging, because it involves
solving a sequence of optimization problems that are func-
tions of the measurements and dynamics of a physical
system, both of which are uncertain. The computing system,
which solves the sequence of optimization problems, is also
an uncertain dynamical system. The physical system affects
the computations and/or vice versa, therefore it is important
to consider the behavior of the overall cyber-physical system
when designing the algorithm and computing architecture.

Suppose that, as in Figure 3, we have a physical, causal



dynamical system

P : (u,w) 7→ (y,z)

with measured output y : R→ Y and manipulated/control
input u : R→ U . The output z : R→Z includes variables
that we wish to estimate, optimize, regulate or constrain.
The input w : R→ W represents unknowns, which include
measurement noise, disturbances, time-varying references,
parameter uncertainties and unmodelled dynamics.

In real-time optimization, the problems that need to be
solved at various time instants are typically in the form

θ
∗(d) ∈ argmin

θ
{V (θ ,d) | (θ ,d) ∈ A}, (1)

where θ ∗(d) is a vector or function to be computed, V is
a given cost function, A is a given set and d is some given
data. The data d includes current or past measurements and
the solution θ ∗(d) can include estimates of z. In many appli-
cations, part of the solution θ ∗(d) is fed back to the physical
system in order to update u. The data d also often includes
the current time, results from previous computations, a model
of the physical system and an uncertainty model.

The result returned by the computing system is often
inaccurate, e.g. due to finite precision arithmetic errors, early
termination of the algorithm or because the optimization
problem is non-convex and the solver could only compute a
locally optimal point. It follows that the computing system,
which contains the optimization solver, is a strictly causal
dynamical system

C(c) : (y,e) 7→ (u,v),

where the input e : R→ E represents computational errors
and the output v : R→ V contains results of computations,
including estimates of the accuracy and precision of these
computations. The variable c contains the design parameters
and choices that need to be made for the algorithm and
hardware, e.g. in Section IV we had c := p.

A good designer would evaluate the performance of an al-
gorithm and computing architecture by including the physical
system in the analysis. The aim of co-design is therefore to
choose c such that the combined cyber-physical system

H(c) : (w,e) 7→ (z,v)

satisfies given constraints on performance, robustness, stabil-
ity and cost.

VI. MORE DIFFICULT DECISIONS

There is considerable freedom in the choice of what to
include in the design variable c. In addition to the choices
listed in Section II, below is a small selection of items that
can have a significant impact on the final design:
• Hardware:

– Allocated cost, space, weight, energy and power.
– Number of processors, cores or arithmetic units.
– Memory architecture, including latency and size.
– Communication architecture, including quantiza-

tion and bandwidth.

– Measurement and actuation architecture, including
quantization and sampling, e.g. time-triggered (pe-
riod or aperiodic) or event-triggered.

– Pipeline depth for trading off throughput against
latency, energy and space.

– Number representation, e.g. fixed point or floating
point, including number of bits.

– Processor clock frequency and supply voltage.
• Algorithm:

– Precision, accuracy and termination tolerance, e.g.
when computing gradients, solving linear equations
or evaluating the sub-optimality of an iterate.

– Number of iterations for each loop.
– Parameters for computing step length.
– Scaling of data and preconditioning of matrices.
– Amount of measurements to store.
– Amount of computations to store.
– Complexity of the physical model, e.g. model order,

sparsity, delays, nonlinearities, coordinate system.
– Length of past and future time horizons for esti-

mating or predicting the physical system response.
– Coarseness of the discretization when approximat-

ing solutions to differential equations.
– Strategy for scheduling computing tasks and re-

sources, including communication protocol.
Co-design is complicated by the fact that, though some of

the items listed above are continuous variables, e.g. sample
period or time horizon, many design variables are discrete.

VII. UNCERTAINTY AS BOTH ENEMY AND FRIEND

In the examples above we have assumed that no numerical
errors were introduced during each addition and that the data
was accurate. As mentioned in Section V, it is always the
case in practice that the data is uncertain and errors are
introduced during computations.

If data is uncertain then it is possible to destabilize or
degrade the system performance if care is not taken during
the computation. The natural response for most is therefore
to treat uncertainty as a problem, rather than seeing this as an
opportunity to design efficient systems, as discussed below.

The accuracy, precision and timeliness of a computation
can be traded off against each other — an approximate
answer today might be preferable over an accurate answer
tomorrow, when there may no longer be any gold left. When
is it necessary to compute with 16 significant digits when
the data is only measured to 3 significant digits?

The problem therefore becomes really interesting if one
has to decide on the number representation and sequence of
operations in order to provide guarantees on accuracy and
precision. Prior information on the data can also be used to
develop deterministic and stochastic algorithms that can be
terminated at any time with an estimate of the result and
associated error, which reduces upon further iteration.

A. Mistakes are Allowed

Consider again the problem of winning some gold by
adding up a list of numbers and suppose now that an incorrect



answer is acceptable. Upon receiving an answer I will work
out the percentage error and ask you to return to me the same
percentage of gold left in the pot. It is up to you to decide
how much you want to trade off accuracy against time and
the amount of gold your team takes home.

Would you add up small numbers first or start with the
large numbers? What would you do if the numbers were
correct to only two significant digits? I cannot expect you to
give me an accurate answer, but would accept an estimate
with bounds on the error.

Clearly, it is possible to add uncertain numbers in a
structured list in significantly less time, compared to when
there is no uncertainty, the list has no structure and errors
are unacceptable.

B. Exploiting Uncertainty in Real-time Optimization

The above example suggests that uncertainty can be
exploited when wishing to design an efficient computing
system. However, it is not always clear how best to do this
for real-time optimization.

The most important observation to make for real-time
optimization is that there is feedback. Measurements y of the
physical system are used to correct for errors by updating
the data d of the sequence of optimization problems. In
control and automation applications the solution θ ∗(d) is
used to update the manipulated/control input u. In signal
processing and machine learning applications the aim is to
produce estimates of variables for which measurements are
unavailable or noisy — this can be modeled by u containing
the estimates and z the errors in the estimates, which are
minimized or constrained via real-time optimization.

The control theory literature contains many fundamental
concepts, such as the gap metric, to understand what impact
uncertainty and feedback has on a system. Control theory
can be used to exploit and justify the fact that a model for
designing a feedback algorithm is not necessarily a good
model for open-loop simulation and vice versa. For example,
linearized and reduced-order models can be used to decrease
the computational effort required, while improving system
performance and robustness, even if the actual physical
system is nonlinear and infinite dimensional.

Experts on sampled-data control and digital signal pro-
cessing appreciate that accuracy and time can be traded
off against performance and robustness. Judged from the
perspective of the interconnected cyber-physical system, it
might be better to use computationally efficient algorithms
with feedback at a high rate, compared to using advanced
algorithms with feedback at a slow rate. If the computation
takes too long, disturbances might drive the system too far
from the prediction for the computed result to be useful.

In real-time optimization, the explicit use of feedback
principles to co-design efficient algorithms and hardware is
not always exploited to its fullest potential. In many cases the
performance of an algorithm or efficiency of the hardware
implementation are treated as separate problems without
referring back to the intended use of the computation. The
performance of the computing system should instead be

assessed on the behavior of the interconnected cyber-physical
system. Though there has been some research in this area,
there is considerable scope for fundamental contributions,
especially with regards co-design.

Feedback is perhaps the only systematic method for
dealing with uncertainty. Real-time optimization without
feedback is not real-time optimization.

C. Known Unknowns

Feedback should not be used if it is not clear what
the uncertainties are. Feedback should not be used if the
only reason is to reduce computational effort. Feedback can
destabilize an open-loop stable system or inject noise where
there is none. Real-time optimization should therefore be
used only if it is being used to address uncertainties and
ideally only if there is a supporting theory to understand
how feedback affects performance and robustness.

Feedback theory for linear dynamical systems with linear
algorithms is reasonably mature, but this is not the case for
real-time optimization algorithms, which are nonlinear and
iterative. Though great strides have recently been made to
develop such a theory, much remains to be done.

The literature on robust control and robust optimization,
where both deterministic and stochastic uncertainty models
and algorithms have been developed, contain many ideas
that are relevant to real-time optimization. The lessons to
be learnt from these fields are arguably that:

1) there is always a trade-off between system perfor-
mance, robustness and computational resources, and

2) models of the physical system and uncertainties are
always just that and nothing more.

As Rumsfeld would say: in any robust design there are
known knowns, known unknowns and unknown unknowns.

VIII. CO-DESIGN AS MULTI-OBJECTIVE OPTIMIZATION

Traditionally, co-design is done in a manual or ad-hoc
fashion, where design parameters are ‘tuned’. However, there
is an increasing amount of research aimed at developing
methods that will make co-design automatic and systematic.

Computing resources, such as time, space and energy,
have to be traded off not just against each other, but also
against the performance and robustness of the combined
cyber-physical system, as illustrated in Figure 4. There is
seldom just a single cost function that the designer has to
optimize. Furthermore, in practice the assessment criteria are
most naturally posed as a set of constraints and it is not
known at the start whether these can be satisfied.

As with most engineering design tasks, hardware-
algorithm co-design can therefore be formulated as a se-
quence of constrained, multi-objective optimization prob-
lems, where each problem can be written in the form

min
c
{F(H(c),c) | (H(c),c) ∈ G}, (2)

where F is a vector of operators and G is a set that captures
constraints on the design parameters c and behavior of the
cyber-physical system H(c). This formalism can capture both



pe
rf

or
m

an
ce

lim
it

pe
rf

or
m

an
ce

co
ns

tr
ai

nt

computational constraint

Pareto frontier

co
m

pu
tin

g
re

so
ur

ce
s

performance cost

Fig. 4. Illustration of trade-offs in co-design, where the goal is to minimize
computational resources and some cost function of the system performance,
subject to given constraints. The set of acceptable solutions are on the subset
of the Pareto frontier below the computational constraint and to the left of
the performance constraint.

deterministic and stochastic assumptions on the uncertain-
ties (w,e), as well as deterministic and stochastic criteria
on the outputs (z,v). The question is how best to formulate
the sequence of F and G for certain classes of real-time
optimization applications and how to solve these co-design
problems reliably and effectively.

IX. SOLVING CO-DESIGN PROBLEMS

The main technical challenge in formulating co-design
problems is to merge abstractions from the physical world
with computer science. The study of physical systems is
based on differential or difference equations, continuous
mathematics and analog data, whereas the study of comput-
ing systems is based on logic operations, discrete mathemat-
ics and digital data. Unless care is taken, gradient-based opti-
mization solvers might not be suitable for solving co-design
problems, due to the interaction between the continuous and
discrete dynamics.

Recall the equations for the number of iterations and
energy used by Algorithm 2. Because of the floor and ceiling
operators, r and E are non-smooth functions, even if n and
p are allowed to be real-valued. Many of the functions
in hardware-algorithm co-design are non-smooth or can be
modeled as smooth functions with noise, hence approximat-
ing gradients with finite differences can be unreliable.

Co-design for real-time optimization is further compli-
cated by the fact that the solution to the optimization prob-
lem (1) is, in general, a non-smooth function of the data d.
This is true even if the cost function V is linear or quadratic
and (θ ,d) has to satisfy linear inequality constraints.

Added into the bag of challenges is the fact that there are
uncertainties (w,e). The optimization problem (2) is therefore
an uncertain, non-smooth, mixed-integer problem. Ouch.

Since the design parameter c contains both continuous
and discrete variables, the most natural way to formulate
the co-design problem (2) is as a mixed-integer nonlinear
programming problem, which can potentially be solved using
gradient-based solvers. For some applications it might be

possible to model all details, including derivatives for the
cost and constraint functions. However, in practice this is
not as easy as it sounds.

A design based on analytically-derived cost and constraint
functions can only give an approximate answer and neglects
many other aspects. In practice, electronic design automation
tools are used in conjunction with high fidelity software-
in-the-loop and hardware-in-the-loop tests when refining,
validating and prototyping the design. These simulations
and experiments can be very costly and time-consuming.
Furthermore, obtaining analytical expressions for the cost
and constraint functions, including their derivatives, is often
an impossible task due to limitations in the code or hardware.

There has recently been considerable activity in the fields
of derivate-free optimization and optimal experiment design.
The research in these areas is partially motivated by challeng-
ing multi-disciplinary design optimization problems, where
analytical derivatives and function values are difficult, ex-
pensive or impossible to obtain, as well as highly uncertain.
Derivative-free methods use the function values at a set of
points to determine the next point without approximating
the gradient. The fields of derivative-free optimization and
optimal experiment design might therefore provide effective
methods for solving certain classes of hardware-algorithm
co-design problems, especially in the later stages.

X. TAKE-HOME MESSAGE

Computing resources, such as time, energy and space, have
to be traded off against each other in order to design an
efficient real-time optimizer. Because time does not stop and
there are uncertainties in both the physical and computing
system, a given design has to be assessed based on the
behavior of the interconnected cyber-physical system. Feed-
back can be used at every level of the design in order to
not only reduce computational resources, but also improve
system performance and robustness.

Hardware-algorithm co-design can be formulated as a
sequence of constrained multi-objective optimization prob-
lems. However, these are very difficult to solve using off-
the-shelf gradient-based solvers, due to the the uncertain
hybrid dynamics of the cyber-physical system. Mathematical
analysis, coupled with mixed-integer and non-smooth opti-
mization solvers, could be a good starting point to compute
fundamental limits and narrow down the set of possible
designs and degrees of freedom. The design might be refined,
validated and prototyped while applying techniques from
derivative-free optimization and optimal experiment design.

Much research remains to be done in the co-design arena.
Though the degrees of freedom, relative importance of objec-
tives and constraints and details are application-dependent,
many of the fundamental principles and techniques to be
developed could be made to be generic, if care is taken.

ACKNOWLEDGMENTS

I would like to thank George Constantinides, Andrea
Suardi and Juan Jerez for many interesting discussions on
digital computation and co-design.


