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tWe develop tra
table semide�nite programming (SDP) based approximations for distributionallyrobust individual and joint 
han
e 
onstraints, assuming that only the �rst- and se
ond-order mo-ments as well as the support of the un
ertain parameters are given. It is known that robust 
han
e
onstraints 
an be 
onservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR)
onstraints. We �rst prove that this approximation is exa
t for robust individual 
han
e 
onstraintswith 
on
ave or (not ne
essarily 
on
ave) quadrati
 
onstraint fun
tions, and we demonstrate thatthe Worst-Case CVaR 
an be 
omputed e�
iently for these 
lasses of 
onstraint fun
tions. Next, westudy the Worst-Case CVaR approximation for joint 
han
e 
onstraints. This approximation a�ordsintuitive dual interpretations and is provably tighter than two popular ben
hmark approximations.The tightness depends on a set of s
aling parameters, whi
h 
an be tuned via a sequential 
onvexoptimization algorithm. We show that the approximation be
omes essentially exa
t when the s
alingparameters are 
hosen optimally and that the Worst-Case CVaR 
an be evaluated e�
iently if thes
aling parameters are kept 
onstant. We evaluate our joint 
han
e 
onstraint approximation in the
ontext of a dynami
 water reservoir 
ontrol problem and numeri
ally demonstrate its superiorityover the two ben
hmark approximations.1 Introdu
tionA large 
lass of de
ision problems in engineering and �nan
e 
an be formulated as 
han
e 
onstrainedprograms of the form
minimize

x∈Rn

cTx

subject to Q

(

ai(ξ̃)Tx ≤ bi(ξ̃) ∀i = 1, . . . , m
)

≥ 1− ǫ

x ∈ X ,

(1)where x ∈ Rn is the de
ision ve
tor, X ⊆ Rn is a 
onvex 
losed set that 
an be represented by semidef-inite 
onstraints, and c ∈ Rn is a 
ost ve
tor. Without mu
h loss of generality, we assume that c isdeterministi
. The 
han
e 
onstraint in (1) requires a set of m un
ertainty-a�e
ted inequalities to bejointly satis�ed with a probability of at least 1 − ǫ, where ǫ ∈ (0, 1) is a desired safety fa
tor spe
i�ed
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by the modeler. The un
ertain 
onstraint 
oe�
ients ai(ξ̃) ∈ Rn and bi(ξ̃) ∈ R, i = 1, . . . , m, dependa�nely on a random ve
tor ξ̃ ∈ Rk, whose distribution Q is assumed to be known. We thus have
ai(ξ̃) = a0

i +

k
∑

j=1

a
j
i ξ̃j and bi(ξ̃) = b0

i +

k
∑

j=1

bj
i ξ̃j .For ease of notation we introdu
e auxiliary fun
tions yj

i : Rn → R, whi
h are de�ned through
yj

i (x) = (aj
i )

Tx− bj
i , i = 1, . . . , n, j = 0, . . . , k.These fun
tions enable us to rewrite the 
han
e 
onstraint in problem (1) as

Q

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ, (2)where yi(x) = [y1
i (x), . . . , yk

i (x)]T is a�ne in x for i = 1, . . . , m. By 
onvention, (2) is referred to as anindividual or joint 
han
e 
onstraint if m = 1 or m > 1, respe
tively. Chan
e 
onstrained programs were�rst dis
ussed by Charnes et al. [8℄, Miller and Wagner [18℄ and Prékopa [23℄. Although they have beenstudied for a long time, they have not found wide appli
ation in pra
ti
e due to the following reasons.Firstly, 
omputing the optimal solution of a 
han
e 
onstrained program is notoriously di�
ult. Infa
t, even 
he
king the feasibility of a �xed de
ision x requires the 
omputation of a multi-dimensionalintegral, whi
h be
omes in
reasingly di�
ult as the dimension k of the random ve
tor ξ̃ in
reases.Furthermore, even though the inequalities in the 
han
e 
onstraint (2) are bia�ne in x and ξ̃, thefeasible set of problem (1) is typi
ally non
onvex and sometimes even dis
onne
ted.Se
ondly, in order to evaluate the 
han
e 
onstraint (2), full and a

urate information about theprobability distribution Q of the random ve
tor ξ̃ is required. However, in many pra
ti
al situations Qmust be estimated from histori
al data and is therefore itself un
ertain. Typi
ally, one has only partialinformation about Q, e.g. about its moments or its support. Repla
ing the unknown distribution Qin (1) by an estimate Q̂ 
orrupted by measurement errors may lead to over-optimisti
 solutions whi
hoften fail to satisfy the 
han
e 
onstraint under the true distribution Q.In a few spe
ial 
ases 
han
e 
onstraints 
an be reformulated as tra
table 
onvex 
onstraints. Forexample, it is known that if the random ve
tor ξ̃ follows a Gaussian distribution and ǫ ≤ 0.5, thenan individual 
han
e 
onstraint 
an be equivalently expressed as a single se
ond-order 
one 
onstraint.In this 
ase, the 
han
e 
onstrained problem be
omes a tra
table se
ond-order 
one program (SOCP),whi
h 
an be solved in polynomial time, see Alizadeh and Goldfarb [1℄. More generally, Cala�ore and ElGhaoui [6℄ have shown that for ǫ ≤ 0.5 individual 
han
e 
onstraints 
an be 
onverted to se
ond-order
one 
onstraints whenever the random ve
tor ξ̃ is governed by a radial distribution. Tra
tability resultsfor joint 
han
e 
onstraints are even more s
ar
e. In a seminal paper, Prékopa [23℄ has shown thatjoint 
han
e 
onstraints are 
onvex when only the right-hand side 
oe�
ients bi(ξ̃) are un
ertain andfollow a log-
on
ave distribution. However, under generi
 distributions, 
han
e 
onstrained programs2



are 
omputationally intra
table. Indeed, Shapiro and Nemirovski [20℄ point out that 
omputing theprobability of a weighted sum of uniformly distributed variables being nonpositive is already NP-hard.Re
ently, Cala�ore and Campi [5℄ as well as Luedtke and Ahmed [17℄ have proposed to repla
e the
han
e 
onstraint (2) by a pointwise 
onstraint that must hold at a �nite number of sample points drawnrandomly from the distribution Q. A similar approa
h was suggested by Erdo�gan and Iyengar [12℄.The advantage of this Monte Carlo approa
h is that no stru
tural assumptions about Q are needed andthat the resulting approximate problem is 
onvex. Cala�ore and Campi [5℄ showed that one requires
O(n/ǫ) samples to guarantee that a solution of the approximate problem is feasible in the original 
han
e
onstrained program. However, this implies that it may be 
omputationally prohibitive to solve largeproblems or to solve problems for whi
h a small violation probability ǫ is required.A natural way to immunize the 
han
e 
onstraint (2) against un
ertainty in the probability distribu-tion is to adopt a distributionally robust approa
h. To this end, let P denote the set of all probabilitydistributions on Rk that are 
onsistent with the known properties of Q, su
h as its �rst and se
ondmoments and/or its support. Consider now the following ambiguous or distributionally robust 
han
e
onstraint.

inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ (3)It is easily veri�ed that whenever x satis�es (3) and Q ∈ P , then x also satis�es the 
han
e 
onstraint (2)under the true probability distribution Q. Repla
ing the 
han
e 
onstraint (2) with its distributionallyrobust 
ounterpart (3) yields the following distributionally robust 
han
e 
onstrained program
minimize

x∈Rn
cTx

subject to inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ

x ∈ X ,

(4)whi
h 
onstitutes a 
onservative approximation for problem (1) in the sense that it has the same obje
tivefun
tion but a smaller feasible set.A 
ommon method to simplify the distributionally robust joint 
han
e 
onstraint (3), whi
h looks evenless tra
table than (2), is to de
ompose it into m individual 
han
e 
onstraints by using Bonferroni'sinequality. Indeed, by ensuring that the total sum of violation probabilities of the individual 
han
e
onstraints does not ex
eed ǫ, the feasibility of the joint 
han
e 
onstraint is guaranteed. Nemirovskiand Shapiro [20℄ propose to divide the overall violation probability ǫ equally among the m individual
han
e 
onstraints. However, the Bonferroni inequality is not ne
essarily tight, and the 
orrespondingde
omposition 
ould therefore be over-
onservative. In fa
t, for positively 
orrelated 
onstraint fun
tions,the quality of the approximation is known to de
rease as m in
reases [9℄. Consequently, the Bonferronimethod may result in a poor approximation for problems with joint 
han
e 
onstraints that involve manyinequalities.A re
ent attempt to improve on the Bonferroni approximation is due to Chen et al. [9℄. They �rst3



elaborate a 
onvex 
onservative approximation for a joint 
han
e 
onstraint in terms of a Worst-CaseConditional Value-at-Risk (CVaR) 
onstraint. Then, they rely on a 
lassi
al inequality in order statisti
sto determine a tra
table 
onservative approximation for the Worst-Case CVaR and show that the result-ing approximation for the joint 
han
e 
onstraint ne
essarily outperforms the Bonferroni approximation.An attra
tive feature of this method is that the arising approximate 
onstraints are se
ond-order 
oni
representable. However, the employed probabilisti
 inequality is not ne
essarily tight, whi
h may againrender the approximation over-
onservative.The prin
ipal aim of this paper is to develop new tools and models for approximating robust indi-vidual and joint 
han
e 
onstraints under the assumption that only the �rst- and se
ond-order momentsas well as the support of the random ve
tor ξ̃ are known. We embra
e the modern approa
h to approxi-mate robust 
han
e 
onstraints by Worst-Case CVaR 
onstraints, but in 
ontrast to the state-of-the-artmethods des
ribed above, we �nd exa
t semide�nite programming (SDP) reformulations of the Worst-Case CVaR whi
h do not rely on potentially loose probabilisti
 inequalities. These reformulations arefa
ilitated by the theory of moment problems and by 
oni
 duality arguments. We prove that the CVaRapproximation is in fa
t exa
t for individual 
han
e 
onstraints whose 
onstraint fun
tions are either 
on-
ave or (possibly non
on
ave) quadrati
 in ξ and for joint 
han
e 
onstraints whose 
onstraint fun
tionsdepend linearly on ξ. We also demonstrate that robust individual 
han
e 
onstraints have manifestlytra
table SDP representations in most 
ases in whi
h the CVaR approximation is exa
t.The main 
ontributions of this paper 
an be summarized as follows:(1) In Se
tion 2 we review and extend existing approximations for distributionally robust individual
han
e 
onstraints and prove that a robust individual 
han
e 
onstraint is equivalent to a tra
tableWorst-Case CVaR 
onstraint if the underlying 
onstraint fun
tion is either 
on
ave or (possiblynon
on
ave) quadrati
 in ξ. We also demonstrate that this equivalen
e 
an fail to hold even if the
onstraint fun
tion is 
onvex and pie
ewise linear in ξ.(2) In Se
tion 3 we develop a new tra
table CVaR approximation for robust joint 
han
e 
onstraintsand prove that this approximation 
onsistently outperforms the state-of-the-art methods des
ribedabove. We show that the approximation quality is 
ontrolled by a set of s
aling parameters and thatthe CVaR approximation be
omes essentially exa
t if the s
aling parameters are 
hosen optimally.We also present an intuitive dual interpretation for the CVaR approximation in this 
ase.(3) In Se
tion 4 we analyze the performan
e of the new joint 
han
e 
onstraint approximation whenapplied to a dynami
 water reservoir 
ontrol problem.Notation. We use lower-
ase bold fa
e letters to denote ve
tors and upper-
ase bold fa
e letters todenote matri
es. The spa
e of symmetri
 matri
es of dimension n is denoted by Sn. For any two matri
es
X,Y ∈ Sn, we let 〈X,Y〉 = Tr(XY) be the tra
e s
alar produ
t, while the relation X < Y (X ≻ Y)implies that X−Y is positive semide�nite (positive de�nite). Random variables are always representedby symbols with tildes, while their realizations are denoted by the same symbols without tildes. For4



x ∈ R, we de�ne x+ = max{x, 0}.2 Distributionally Robust Individual Chan
e ConstraintsIt is known that robust individual 
han
e 
onstraints 
an be 
onservatively approximated by Worst-Case CVaR 
onstraints. In this se
tion, we �rst show how the theory of moment problems 
an beused to reformulate these Worst-Case CVaR 
onstraints in terms of tra
table semide�nite 
onstraints.Subsequently, we prove that the Worst-Case CVaR 
onstraints are in fa
t equivalent to the underlyingrobust 
han
e 
onstraints for a large 
lass of 
onstraint fun
tions.Distributional Assumptions. In the remainder of this paper we let µ ∈ Rk be the mean ve
torand Σ ∈ Sk be the 
ovarian
e matrix of the random ve
tor ξ̃ under the true distribution Q. Thus, weimpli
itly assume that Q has �nite se
ond-order moments. Without loss of generality we also assumethat Σ ≻ 0. Furthermore, we let P denote the set of all probability distributions on Rk that have thesame �rst- and se
ond-order moments as Q. For notational simpli
ity, we let
Ω =





Σ + µµT µ

µT 1



be the se
ond-order moment matrix of ξ̃.2.1 The Worst-Case CVaR ApproximationFor m = 1, (3) redu
es to a distributionally robust individual 
han
e 
onstraint
inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ, (5)whose feasible set is denoted by
X ICC =

{

x ∈ Rn : inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ

}

.In the remainder of this se
tion we will demonstrate that X ICC has a manifestly tra
table representationin terms of Linear Matrix Inequalities (LMIs). To this end, we �rst re
all the de�nition of CVaR due toRo
kafellar and Uryasev [24℄. For a given measurable loss fun
tion L : Rk → R, probability distribution
P on Rk, and toleran
e ǫ ∈ (0, 1), the CVaR at level ǫ with respe
t to P is de�ned as

P-CVaRǫ(L(ξ̃)) = inf
β∈R

{

β +
1

ǫ
EP

(

(L(ξ̃)− β)+
)

}

, (6)where EP(·) denotes expe
tation with respe
t to P. CVaR essentially evaluates the 
onditional expe
ta-tion of loss above the (1 − ǫ)-quantile of the loss distribution. It 
an be shown that CVaR represents a5




onvex fun
tional of the random variable L(ξ̃).CVaR 
an be used to 
onstru
t 
onvex approximations for 
han
e 
onstraints. Indeed, it is wellknown that
P

(

L(ξ̃) ≤ P-CVaRǫ(L(ξ̃))
)

≥ 1− ǫfor any measurable loss fun
tion L, see, e.g., Ben-Tal et al. [3, �4.3.3℄. Thus, P-CVaRǫ(L(ξ̃)) ≤ 0 issu�
ient to imply P(L(ξ̃) ≤ 0) ≥ 1 − ǫ. As this impli
ation holds for any probability distribution andloss fun
tion, we 
on
lude that
sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

≤ 0 =⇒ inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ. (7)Thus, the Worst-Case CVaR 
onstraint on the left hand side 
onstitutes a 
onservative approximationfor the distributionally robust 
han
e 
onstraint on the right hand side of (7). The above dis
ussionmotivates us to de�ne the feasible set
ZICC =

{

x ∈ Rn : sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

≤ 0

}

, (8)and the impli
ation (7) gives rise to the following elementary result.Proposition 2.1 The feasible set ZICC 
onstitutes a 
onservative approximation for X ICC, that is,
ZICC ⊆ X ICC.We will now show that ZICC has a tra
table representation in terms of LMIs.Theorem 2.1 The feasible set ZICC 
an be written as

ZICC =































x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

M < 0, β + 1
ǫ 〈Ω,M〉 ≤ 0,

M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0































.Proof: By using (6), the Worst-Case CVaR in (8) 
an be expressed as
sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

= sup
P∈P

inf
β∈R

{

β +
1

ǫ
EP

(

(y0(x) + y(x)Tξ̃ − β)+
)

}

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

(y0(x) + y(x)Tξ̃ − β)+
)

}

, (9)where the inter
hange of the maximization and minimization operations is justi�ed by a sto
hasti
 saddlepoint theorem due to Shapiro and Kleywegt [26℄, see also Delage and Ye [11℄ or Natarajan et al. [19℄. Wenow show that the Worst-Case CVaR (9) of some �xed de
ision x ∈ Rn 
an be 
omputed by solving a
6



tra
table SDP. To this end, we �rst derive an SDP reformulation of the worst-
ase expe
tation problem
sup
P∈P

EP

(

(y0(x) + y(x)Tξ̃ − β)+
)

,whi
h 
an be identi�ed as the subordinate maximization problem in (9). Lemma A.1 in the Appendixenables us to reformulate this worst-
ase expe
tation problem as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ y0(x) + y(x)Tξ − β ∀ξ ∈ Rk.
(10)Note that the semi-in�nite 
onstraint in (10) 
an be written as the following LMI.





ξ

1





T

M−





0 1
2y(x)

1
2y(x)T y0(x)− β













ξ

1



 ≥ 0 ∀ξ ∈ Rk ⇐⇒ M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0This in turn allows us to reformulate the worst-
ase expe
tation problem as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0, M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0.
(11)By repla
ing the subordinate worst-
ase expe
tation problem in (9) by (11), we obtain

sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

= inf β + 1
ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0,

(12)and thus the 
laim follows.2.2 Exa
tness of the Worst-Case CVaR ApproximationSo far we have shown that the feasible set ZICC de�ned in terms of a Worst-Case CVaR 
onstraint 
on-stitutes a tra
table 
onservative approximation for X ICC. We now demonstrate that this approximationis in fa
t exa
t, that is, we show that the impli
ation (7) is in fa
t an equivalen
e. We �rst re
all thenonlinear Farkas Lemma as well as the S-lemma, whi
h are 
ru
ial ingredients for the proof of this result.We refer to Pólik and Terlaky [22℄ for a derivation and an in-depth survey of the S-lemma as well as areview of the Farkas Lemma.Lemma 2.1 (Farkas Lemma) Let f0, . . . , fp : Rk → R be 
onvex fun
tions, and assume that thereexists a stri
tly feasible point ξ̄ with fi(ξ̄) < 0, i = 1, . . . , p. Then, f0(ξ) ≥ 0 for all ξ with fi(ξ) ≤ 0,7



i = 1, . . . , p, if and only if there exist 
onstants τi ≥ 0 su
h that
f0(ξ) +

p
∑

i=1

τifi(ξ) ≥ 0 ∀ξ ∈ Rk.Lemma 2.2 (S-lemma) Let fi(ξ) = ξTAiξ with Ai ∈ Sn be quadrati
 fun
tions of ξ ∈ Rn for i =

0, . . . , p. Then, f0(ξ) ≥ 0 for all ξ with fi(ξ) ≤ 0, i = 1, . . . , p, if there exist 
onstants τi ≥ 0 su
h that
A0 +

p
∑

i=1

τiAi < 0.For p = 1, the 
onverse impli
ation holds if there exists a stri
tly feasible point ξ̄ with f1(ξ̄) < 0.Theorem 2.2 Let L : Rk → R be a 
ontinuous loss fun
tion that is either(i) 
on
ave in ξ, or(ii) (possibly non
on
ave) quadrati
 in ξ.Then, the following equivalen
e holds.
sup
P∈P

P-CVaRǫ

(

L(ξ̃)
)

≤ 0 ⇐⇒ inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥ 1− ǫ (13)Proof: Consider the Worst-Case Value-at-Risk of the loss fun
tion L, whi
h is de�ned asWC-VaRǫ(L(ξ̃)) = inf
γ∈R

{

γ : inf
P∈P

P

(

L(ξ̃) ≤ γ
)

≥ 1− ǫ

}

. (14)By de�nition, the WC-VaR is indeed equal to the (1−ǫ)-quantile of L(ξ̃) evaluated under some worst-
asedistribution in P . We �rst show that the following equivalen
e holds.
inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥ 1− ǫ ⇐⇒ WC-VaRǫ

(

L(ξ̃)
)

≤ 0 (15)Indeed, if the left hand side of (15) is satis�ed, then γ = 0 is feasible in (14), whi
h implies thatWC-VaRǫ(L(ξ̃)) ≤ 0. To see that the 
onverse impli
ation holds as well, we note that for any �xed
P ∈ P , the mapping γ 7→ P(L(ξ̃) ≤ γ) is upper semi-
ontinuous, see [21℄. Thus, the related mapping
γ 7→ inf

P∈P
P(L(ξ̃) ≤ γ) is also upper semi-
ontinuous. If WC-VaRǫ(L(ξ̃)) ≤ 0, there exists a sequen
e

{γn}n∈N that 
onverges to zero and is feasible in (14), whi
h implies
inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥ lim sup
n→∞

inf
P∈P

P

(

L(ξ̃) ≤ γn

)

≥ 1− ǫ.Thus, (15) follows.
8



To prove the postulated equivalen
e (13), it is now su�
ient to show that
sup
P∈P

P-CVaRǫ

(

L(ξ̃)
)

= WC-VaRǫ

(

L(ξ̃)
)

.Note that (14) 
an be rewritten asWC-VaRǫ(L(ξ̃)) = inf
γ∈R

{

γ : sup
P∈P

P

(

L(ξ̃) > γ
)

≤ ǫ

}

. (16)We pro
eed by simplifying the subordinate worst-
ase probability problem sup
P∈P

P(L(ξ̃) > γ), whi
h, byLemma A.2 in the Appendix, 
an be expressed as
inf

M∈Sk+1

{

〈Ω,M〉 : M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ : γ − L(ξ) < 0
}

. (17)We will now argue that for all but one value of γ problem (17) is equivalent to
inf 〈Ω,M〉

s. t. M ∈ Sk+1, τ ∈ R, M < 0, τ ≥ 0
[

ξT 1
]

M
[

ξT 1
]T

− 1 + τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk.

(18)For ease of exposition, we de�ne h = inf
ξ∈Rk

γ − L(ξ). The equivalen
e of (17) and (18) is proved 
aseby 
ase. Assume �rst that h < 0. Then, the stri
t inequality in the parameter range of the semi-in�nite 
onstraint in (17) 
an be repla
ed by a weak inequality without a�e
ting its optimal value. Theequivalen
e then follows from the Farkas Lemma (when L(ξ) is 
on
ave in ξ) or from the S-lemma (when
L(ξ) is quadrati
 in ξ). Assume next that h > 0. Then, the semi-in�nite 
onstraint in (17) be
omesredundant and, sin
e Ω ≻ 0, the optimal solution of (17) is given by M = 0 with a 
orrespondingoptimal value of 0. The optimal value of problem (18) is also equal to 0. Indeed, by 
hoosing τ = 1/h,the semi-in�nite 
onstraint in (18) is satis�ed for any M < 0. Finally, note that (17) and (18) may bedi�erent for h = 0.Sin
e (17) and (18) are equivalent for all but one value of γ and sin
e their optimal values arenonin
reasing in γ, we 
an express WC-VaRǫ(L(ξ̃)) in (16) asWC-VaRǫ(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ ǫ, M < 0, τ ≥ 0
[

ξT 1
]

M
[

ξT 1
]T

− 1 + τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk.

(19)It 
an easily be shown that 〈Ω,M〉 ≥ 1 for any feasible solution of (19) with vanishing τ -
omponent.However, sin
e ǫ < 1, this is in 
on�i
t with the 
onstraint 〈Ω,M〉 ≤ ǫ. We thus 
on
lude that nofeasible point 
an have a vanishing τ -
omponent. This allows us to divide the semi-in�nite 
onstraint in9



problem (19) by τ . Subsequently we perform variable substitutions in whi
h we repla
e τ by 1/τ and Mby M/τ . This yields the following reformulation of problem (19).WC-VaRǫ(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R

1
ǫ 〈Ω,M〉 ≤ τ, M < 0, τ ≥ 0
[

ξT 1
]

M
[

ξT 1
]T

− τ + γ − L(ξ) ≥ 0 ∀ξ ∈ RkNote that, sin
e Ω ≻ 0 and M < 0, we have 1
ǫ 〈Ω,M〉 ≥ 0. This allows us to remove the redundantnonnegativity 
onstraint on τ . We now introdu
e a new de
ision variable β = γ − τ , whi
h allows us toeliminate γ. WC-VaRǫ(L(ξ̃)) = inf β + τ

s. t. M ∈ Sk+1, τ ∈ R, β ∈ R

1
ǫ 〈Ω,M〉 ≤ τ, M < 0
[

ξT 1
]

M
[

ξT 1
]T

+ β − L(ξ) ≥ 0 ∀ξ ∈ RkNote that at optimality τ = 1
ǫ 〈Ω,M〉, whi
h �nally allows us to express WC-VaRǫ(L(ξ̃)) asWC-VaRǫ(L(ξ̃)) = inf β + 1

ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R, M < 0
[

ξT 1
]

M
[

ξT 1
]T

+ β − L(ξ) ≥ 0 ∀ξ ∈ Rk.

(20)Re
all now that by Lemma A.1 we have
sup
P∈P

P-CVaRǫ

(

L(ξ̃)
)

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

(L(ξ̃)− β)+
)

}

= inf β + 1
ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R, M < 0
[

ξT 1
]

M
[

ξT 1
]T

+ β − L(ξ) ≥ 0 ∀ξ ∈ Rk,whi
h is 
learly equivalent to (20). This observation 
ompletes the proof.Corollary 2.1 The following equivalen
e holds
sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

≤ 0 ⇐⇒ inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ,whi
h implies that ZICC = X ICC.Proof: The 
laim follows immediately from Theorem 2.2 by observing that L(ξ) = y0(x) + y(x)Tξ islinear (and therefore 
on
ave) in ξ. 10



In the following example we demonstrate that the equivalen
e (13) 
an fail to hold even if the lossfun
tion L is 
onvex and pie
ewise linear in ξ.Example 2.1 Let ξ̃ be a s
alar random variable with mean µ = 0 and standard deviation σ = 1.Moreover, let P be the set of all probability distributions on R 
onsistent with the given mean andstandard deviation. Consider now the loss fun
tion L(ξ) = max{ξ−1, 4ξ−4}, and note that L is stri
tlyin
reasing and 
onvex in ξ. In parti
ular, L is neither 
on
ave nor quadrati
 and thus falls outsidethe s
ope of Theorem 2.2. We now show that for this parti
ular L the Worst-Case CVaR 
onstraint
sup
P∈P

P-CVaR 1
2
(L(ξ̃)) ≤ 0 is violated even though the distributionally robust individual 
han
e 
onstraint

inf
P∈P

P(L(ξ̃) ≤ 0) ≥ 1/2 is satis�ed. To this end, we note that the Cheby
hev inequality P(ξ̃ − µ ≥ κσ) ≤

1/(1 + κ2) for κ = 1 implies
sup
P∈P

P

(

ξ̃ ≥ 1
)

≤
1

2
⇐⇒ sup

P∈P

P

(

L(ξ̃) ≥ L(1) = 0
)

≤
1

2

=⇒ sup
P∈P

P

(

L(ξ̃) > 0
)

≤
1

2

⇐⇒ inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥
1

2
,where the �rst equivalen
e follows from the monotoni
ity of L. Assume now that the true distribution

Q of ξ̃ is dis
rete and de�ned through Q(ξ̃ = −2) = 1/8, Q(ξ̃ = 0) = 3/4, and Q(ξ̃ = 2) = 1/8. It iseasy to verify that Q ∈ P and that Q-CVaR 1
2
(L(ξ̃)) = 0.25. Thus, sup

P∈P

P-CVaR 1
2
(L(ξ̃)) ≥ 0.25 > 0. Wetherefore 
on
lude that the Worst-Case CVaR 
onstraint is not equivalent to the robust 
han
e 
onstraint.2.3 Tra
tability of the Worst-Case CVaR ApproximationWe have already seen that Worst-Case CVaR 
onstraints are equivalent to distributionally robust 
han
e
onstraints when the loss fun
tion is 
ontinuous and either 
on
ave or quadrati
 in ξ. We now provethat the Worst-Case CVaR 
an also be 
omputed e�
iently for these 
lasses of loss fun
tions.Theorem 2.3 Assume that L : Rk → R is either(i) 
on
ave pie
ewise a�ne in ξ with a �nite number of pie
es or(ii) (possibly non
on
ave) quadrati
 in ξ.Then, sup

P∈P

P-CVaRǫ(L(ξ̃)) 
an be 
omputed e�
iently as the optimal value of a tra
table SDP.Proof: Assume that (i) holds and that L(ξ̃) = mini=1,...,l{ai + bT
i ξ̃} for some ai ∈ R and bi ∈ Rk,

i = 1, . . . , l. Then, the Worst-Case CVaR is representable as
inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

min
i=1,...,l

{ai + bT
i ξ̃} − β

]+
)}

. (21)11



By Lemma A.1, the subordinate worst-
ase expe
tation problem in (21) 
an be rewritten as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ min
i=1,...,l

{ai + bT
i ξ} − β ∀ξ ∈ Rk.

(22)Noting that
min

i=1,...,l
{ai + bT

i ξ} = min
λ∈∆

l
∑

i=1

λi(ai + bT
i ξ),where ∆ = {λ ∈ Rl :

∑l
i=1 λi = 1, λ ≥ 0} denotes the probability simplex in Rl, we 
an use te
hniquesdeveloped in [4, Theorem 2.1℄ to reexpress the semi-in�nite 
onstraint in (22) as
[

ξT 1
]

M
[

ξT 1
]T

−min
λ∈∆

l
∑

i=1

λi(ai + bT
i ξ) + β ≥ 0 ∀ξ ∈ Rk

⇐⇒ min
ξ∈Rk

max
λ∈∆

{

[

ξT 1
]

M
[

ξT 1
]T

−
l
∑

i=1

λi(ai + bT
i ξ) + β

}

≥ 0

⇐⇒ max
λ∈∆

min
ξ∈Rk

{

[

ξT 1
]

M
[

ξT 1
]T

−
l
∑

i=1

λi(ai + bT
i ξ) + β

}

≥ 0

⇐⇒ min
ξ∈Rk

{

[

ξT 1
]

M
[

ξT 1
]T

−
l
∑

i=1

λi(ai + bT
i ξ) + β

}

≥ 0, λ ∈ ∆

⇐⇒ M−





0
∑l

i=1
λi

2 bi

∑l
i=1

λi

2 bT

i

∑l
i=1 λiai − β



 < 0, λ ∈ ∆.The se
ond equivalen
e in the above expression follows from the 
lassi
al saddle point theorem. Thus,the Worst-Case CVaR (21) 
an be rewritten as the optimal value of the following tra
table SDP.
inf β + 1

ǫ 〈Ω,M〉

s. t. β ∈ R, M ∈ Sk+1, λ ∈ Rl

M < 0, M−





0
∑l

i=1
λi

2 bi

∑l
i=1

λi

2 bT

i

∑l
i=1 λiai − β



 < 0, λ ∈ ∆

(23)Assume now that (ii) holds and that L(ξ) = ξTQξ + qTξ + q0 for some Q ∈ Sk, q ∈ Rk, and q0 ∈ R.In this 
ase we have
sup
P∈P

P-CVaRǫ(L(ξ̃)) = inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

ξ̃TQξ̃ + ξ̃Tq + q0 − β
]+
)}

. (24)As usual, we �rst �nd an SDP reformulation of the subordinate worst-
ase expe
tation problem in (24).
12



By Lemma A.1, this problem 
an be rewritten as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ ξTQξ + ξTq + q0 − β ∀ξ ∈ Rk.
(25)Note that the semi-in�nite 
onstraint in (25) is equivalent to





ξ

1





T

M−





Q 1
2q

1
2qT q0 − β













ξ

1



 ≥ 0 ∀ξ ∈ Rk ⇐⇒ M−





Q 1
2q

1
2qT q0 − β



 < 0,whi
h enables us to rewrite the Worst-Case CVaR (24) as the optimal value of
inf β + 1

ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





Q 1
2q

1
2qT q0 − β



 < 0,whi
h is indeed a tra
table SDP.Remark If the loss fun
tion is 
on
ave but not pie
ewise a�ne, the Worst-Case CVaR 
an sometimesstill be evaluated e�
iently, though not by solving an expli
it SDP. Indeed, the Worst-Case CVaR
an be 
omputed in polynomial time with an ellipsoid method if L(ξ) is 
on
ave and if, for any ξ ∈

Rk, one 
an evaluate both L(ξ) as well as a super-gradient ∇ξL(ξ) in polynomial time. This is animmediate 
onsequen
e of a result on the 
omputation of worst-
ase expe
tations by Delage and Ye [11,Proposition 2℄.3 Distributionally Robust Joint Chan
e ConstraintsWe de�ne the feasible set X JCC of the distributionally robust joint 
han
e 
onstraint (3) as
X JCC =

{

x ∈ Rn : inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ

}

.The aim of this se
tion is to investigate the stru
ture of X JCC and to elaborate tra
table 
onservativeapproximations. We �rst review two existing approximations and dis
uss their bene�ts and short
omings.
13



3.1 The Bonferroni ApproximationA popular approximation for X JCC is based on Bonferroni's inequality. Note that the robust joint 
han
e
onstraint (3) is equivalent to
inf
P∈P

P

(

m
⋂

i=1

{

y0
i (x) + yi(x)Tξ̃ ≤ 0

}

)

≥ 1− ǫ ⇐⇒ sup
P∈P

P

(

m
⋃

i=1

{

y0
i (x) + yi(x)Tξ̃ > 0

}

)

≤ ǫ.Furthermore, Bonferroni's inequality implies that
P

(

m
⋃

i=1

{

y0
i (x) + yi(x)Tξ̃ > 0

}

)

≤
m
∑

i=1

P

(

y0
i (x) + yi(x)Tξ̃ > 0

)

∀P ∈ P .For any ve
tor of safety fa
tors ǫ ∈ E = {ǫ ∈ Rm
+ :

∑m
i=1 ǫi ≤ ǫ}, the system of distributionally robustindividual 
han
e 
onstraints

inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0

)

≥ 1− ǫi ∀i = 1, . . . , m (26)represents a 
onservative approximation for the distributionally robust joint 
han
e 
onstraint (3). ByTheorem 2.1, we 
an reformulate ea
h of the individual 
han
e 
onstraints in (26) in terms of tra
tableLMIs. In fa
t, we 
an further redu
e these LMIs to SOCP 
onstraints, but this further simpli�
ation isirrelevant for our purposes. Thus, for any ǫ ∈ E , the assertion that x ∈ ZJCCB (ǫ), where
ZJCCB (ǫ) =































x ∈ Rn :

∃(βi,Mi) ∈ R× Sk+1 ∀i = 1, . . . , m,

Mi < 0, βi + 1
ǫi
〈Ω,Mi〉 ≤ 0 ∀i = 1, . . . , m,

Mi −





0 1
2yi(x)

1
2yi(x)T y0

i (x)− βi



 < 0 ∀i = 1, . . . , m































,is a su�
ient 
ondition to guarantee that x satis�es the original distributionally robust joint 
han
e
onstraint (3). The above arguments 
ulminate in the following result.Theorem 3.1 (Bonferroni Approximation) For any ǫ ∈ E we have ZJCCB (ǫ) ⊆ X JCC.A major short
oming of the Bonferroni approximation is that the approximation quality depends
riti
ally on the 
hoi
e of ǫ ∈ E . Unfortunately, the problem of �nding the best ǫ ∈ E for a generi

han
e 
onstrained problem of type (4) is non
onvex and believed to be intra
table [20℄. As a result, inmost appli
ations of Bonferroni's inequality the �risk budget� ǫ is equally divided among the m individual
han
e 
onstraints in (26) by setting ǫi = ǫ/m for i = 1, . . . , m. This approa
h was �rst advo
ated byNemirovski and Shapiro [20℄.The Bonferroni approximation 
an be overly 
onservative even if ǫ ∈ E is 
hosen optimally. Thefollowing example, whi
h is adapted from Chen et al. [9℄, highlights this short
oming.14



Example 3.1 Assume that the inequalities in the 
han
e 
onstraint (3) are perfe
tly positively 
orrelatedin the sense that
y0

i (x) = δiŷ
0(x) and yi(x) = δiŷ(x)for some a�ne fun
tions ŷ0 : Rn → R and ŷ : Rn → Rk and for some �xed 
onstants δi > 0 for

i = 1, . . . , m. In this 
ase, it 
an readily be seen that the joint 
han
e 
onstraint (3) is equivalent to therobust individual 
han
e 
onstraint
inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ. (27)Thus, the least 
onservative 
hoi
e for ǫi whi
h guarantees that (26) implies (3) is ǫi = ǫ for i = 1, . . . , m.However, this means that the ǫi sum to mǫ instead of ǫ as required by the Bonferroni approximation.In fa
t, the optimal 
hoi
e for ǫ ∈ E is ǫi = ǫ/m for i = 1, . . . , m. This example demonstrates that thequality of the Bonferroni approximation diminishes as m in
reases if the inequalities in the joint 
han
e
onstraint are positively 
orrelated.3.2 Approximation by Chen, Sim, Sun and TeoIn order to mitigate the potential over-
onservatism of the Bonferroni approximation, Chen et al. [9℄proposed an approximation based on a di�erent inequality from probability theory. The starting pointis the observation that the joint 
han
e 
onstraint (3) 
an be reformulated as
inf
P∈P

P

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

≤ 0

)

≥ 1− ǫ (28)for any ve
tor of stri
tly positive s
aling parameters α ∈ A = {α ∈ Rm : α > 0}. Note that the 
hoi
eof α ∈ A does not a�e
t the feasible region of the 
han
e 
onstraint (28). Although these s
alingparameters are seemingly unne
essary, it turns out that they 
an be tuned to improve the approximationto be developed below. Chen et al. [9℄ note that (28) represents a distributionally robust individual
han
e 
onstraint, whi
h 
an be 
onservatively approximated by a Worst-Case CVaR 
onstraint. Thus,for any α ∈ A, the requirement
x ∈ ZJCC(α) =

{

x ∈ Rn : sup
P∈P

CVaRǫ

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

)

≤ 0

} (29)implies that x ∈ X JCC, see Proposition 2.1. It is important to note that, in 
ontrast to the 
han
e
onstraint (28), the Worst-Case CVaR 
onstraint x ∈ ZJCC(α) does depend on the 
hoi
e of α ∈ A.Thus, the Worst-Case CVaR 
onstraint in (29) is not equivalent to the robust 
han
e 
onstraint (28)sin
e the max fun
tion in (28) is 
onvex pie
ewise linear, see also Theorem 2.2 and Example 2.1.The following theorem due to Chen et al. [9℄ relies on a 
lassi
al result in order statisti
s and providesa tra
table SOCP-based 
onservative approximation for ZJCC(α).15



Theorem 3.2 (Approximation by Chen et al.) For any α ∈ A we have ZJCCU (α) ⊆ ZJCC(α) ⊆

X JCC where ZJCCU (α) = {x ∈ Rn : Ĵ (x, α) ≤ 0} and
Ĵ (x, α) = min

w0∈R,w∈Rk

{

min
β∈R

[

β +
1

ǫ
π
(

w0 − β, w
)

]

+
1

ǫ

[

m
∑

i=1

π
(

αiy
0
i (x)− w0, αiyi(x)−w

)

]}

,where
π
(

z0, z
)

=
1

2

(

z0 + µTz
)

+
1

2

∥

∥

∥

(

z0 + µTz, Σ1/2z
)∥

∥

∥

2Note that, sin
e the feasible set ZJCCU (α) 
onstitutes a tra
table 
onservative approximation for X JCCfor any α ∈ A, the union ⋃α∈A
ZJCCU (α) still 
onstitutes a 
onservative approximation for X JCC. Chenet al. [9℄ prove also that their approximation is tighter than the Bonferroni approximation by showingthat ZJCCB (ǫ) ⊆

⋃

α∈A
ZJCCU (α) for all ǫ ∈ E . Unfortunately, similar to the Bonferroni approa
h, theapproximation by Chen et al. depends 
riti
ally on the 
hoi
e of α, while the problem of �nding the best

α ∈ A for a generi
 
han
e 
onstrained program of the type (4) is non
onvex and therefore believed tobe intra
table.3.3 The Worst-Case CVaR ApproximationBoth approximations dis
ussed so far rely on inequalities from probability theory, whi
h are not ne
es-sarily tight. In this se
tion we show that the set ZJCC(α) has in fa
t an exa
t tra
table representationin terms of LMIs and therefore promises to provide a tight 
onvex approximation for X JCC.Theorem 3.3 For any �xed x ∈ Rn and α ∈ A, we have
ZJCC(α) =































x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0,

M−





0 1
2αiyi(x)

1
2αiy

T

i αiy
0
i (x)− β



 < 0 ∀i = 1, . . . , m































. (30)Proof: We note that the 
onstraint x ∈ ZJCC(α) is equivalent to J (x, α) ≤ 0, where
J (x, α) = sup

P∈P

CVaRǫ

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

)

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

− β

]+
)} (31)denotes the Worst-Case CVaR. As in Se
tion 2, the �rst step towards a tra
table reformulation of J (x, α)is to solve the worst-
ase expe
tation problem

sup
P∈P

EP

(

[

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

− β

]+
)

. (32)16



For any �xed x ∈ X , β ∈ R, and α ∈ A, Lemma A.1 enables us to reformulate (32) as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

− β ∀ξ ∈ Rk.
(33)We emphasize that (33) represents a lossless reformulation of the worst-
ase expe
tation problem (32).The semi-in�nite 
onstraint in (33) 
an be expanded into m simpler semi-in�nite 
onstraints of the form

[

ξT 1
]

M
[

ξT 1
]T

≥ αi

(

y0
i (x) + yi(x)Tξ

)

− β ∀ξ ∈ Rk, i = 1, . . . , m,whi
h 
an be equivalently expressed as the following system of LMIs.
M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , mWe 
an therefore reformulate the worst-
ase expe
tation problem (32) as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0, M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m.
(34)Substituting (34) into (31) yields

J (x, α) = inf β +
1

ǫ
〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m,

(35)
and thus the 
laim follows.Theorem 3.3 establishes that ZJCC(α) has an exa
t representation in terms of LMIs. We have alreadyseen in Se
tion 3.2 that ZJCC(α) ⊆ X JCC for all α ∈ A and that ZJCCU (α) ⊆ ZJCC(α), see Theorem 3.2.Thus, ZJCC(α) 
onstitutes a tra
table 
onservative approximation for X JCC whi
h is at least as tight as
ZJCCU (α).Re
all from Se
tion 3.2 that ZJCCB (ǫ) ⊆

⋃

α∈A
ZJCCU (α) for all ǫ ∈ E . Moreover, we have ZJCCU (α) ⊆

ZJCC(α) ⊂ X JCC for all α ∈ A. This allows us to 
on
lude that our new approximation is at least astight as the two state-of-the-art approximations dis
ussed above.Remark 3.1 In 
ontrast to the 
lassi
al Bonferroni approximation, the Worst-Case CVaR approxima-tion behaves reasonably in situations in whi
h the m inequalities in the 
han
e 
onstraint (3) are posi-tively 
orrelated. Indeed, by 
hoosing αi := 1/δi > 0 for all i = 1, . . . , m in Example 3.1, the 
onstraint17



x ∈ ZJCC(α) is equivalent to
∃β ∈ R, M ∈ Sk+1 : β +

1

ǫ
〈Ω,M〉 ≤ 0, M < 0, M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0,whi
h 
an easily be identi�ed as the SDP reformulation of the individual 
han
e 
onstraint (27). Thisimplies that ZJCC(α) = X ICC for all α ∈ A in Example 3.1, see also Theorem 2.1. Thus, by 
hoosing
α appropriately, our method 
an provide tight approximations for distributionally robust joint 
han
e
onstraints, even in situations when the m inequalities are positively 
orrelated.3.4 Dual Interpretation of the Worst-Case CVaR ApproximationIn this se
tion we explore a di�erent way to �nd a tra
table 
onservative approximation for the 
han
e
onstraint (3). Subsequently, we will prove that this approximation is equivalent to the Worst-CaseCVaR approximation.Consider again the robust individual 
han
e 
onstraint (28) whi
h is equivalent to the robust joint
han
e 
onstraint (3) for any �xed α ∈ A. Instead of approximating (28) by a Worst-Case CVaR
onstraint, we 
an approximate the max-fun
tion in the 
han
e 
onstraint (28) by a quadrati
 majorantof the form q(ξ) = ξTQξ + ξTq + q0 that satis�es

q(ξ) ≥ max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ

)}

∀ξ ∈ Rk,

⇐⇒ q(ξ) ≥ αi

(

y0
i (x) + yi(x)Tξ

)

∀ξ ∈ Rk, i = 1, . . . , m.

(36)Repla
ing the max fun
tion in (28) by q(ξ) yields the distributionally robust (individual) quadrati

han
e 
onstraint
inf
P∈P

P

(

ξ̃TQξ̃ + ξ̃Tq + q0 ≤ 0
)

≥ 1− ǫ. (37)For further argumentation, we de�ne
ZJCCQ (α) =







x ∈ Rn :
∃Q ∈ Sk, q ∈ Rk, q0 ∈ R su
h that
q(ξ) = ξTQξ + ξTq + q0 satis�es (36) and (37)  . (38)Proposition 3.1 For any �xed α ∈ A the feasible set ZJCCQ (α) 
onstitutes a 
onservative approximationfor X JCC, that is, ZJCCQ (α) ⊆ X JCC.Proof: Note that any x feasible in (28) is also feasible in (38) sin
e

P

(

ξ̃TQξ̃ + ξ̃Tq + q0 ≤ 0
)

≤ P

(

max
i=1,...,m

{

αi(y
0
i (x) + yi(x)Tξ̃)

}

≤ 0

)

∀P ∈ P .Sin
e x is feasible in (28) if and only if x ∈ X JCC, the 
laim follows.18



Theorem 3.4 For any �xed x ∈ Rn and α ∈ A we have
ZJCCQ (α) =











































x ∈ Rn :

∃Q ∈ Sk, q ∈ Rk, q0 ∈ R, β ∈ R, M ∈ Sk+1,

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0, M−





Q 1
2q

1
2qT q0 − β



 < 0,





Q 1
2 (q − αiyi(x))

1
2 (q − αiyi(x))T q0 − αiy

0
i (x)



 < 0 ∀i = 1, . . . , m











































.

Proof: Note that the 
onstraints in (36) are equivalent to




Q 1
2 (q − αiyi(x))

1
2 (q − αiyi(x))T q0 − αiy

0
i (x)



 < 0 ∀i = 1, . . . , m.Moreover, by Theorem 2.2, the robust quadrati
 
han
e 
onstraint (37) is equivalent to the Worst-CaseCVaR 
onstraint
sup
P∈P

P-CVaR(ξ̃TQξ̃ + ξ̃Tq + q0
)

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

ξ̃TQξ̃ + ξ̃Tq + q0 − β
]+
)}

≤ 0. (39)By the proof of part (ii) in Theorem 2.3, we know that (39) 
an be written as
0 ≥ inf β + 1

ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





Q 1
2q

1
2qT q0 − β



 < 0.Thus, the 
laim follows.In the following theorem we show that the approximate feasible set ZJCCQ (α) is equivalent to theset ZJCC(α) found in Se
tion 3.3. This implies that the approximation of a distributionally robustjoint 
han
e 
onstraint by a Worst-Case CVaR 
onstraint is equivalent to the approximation of the maxfun
tion implied by the joint 
han
e 
onstraint by a quadrati
 majorant. Note that both approximationsdepend of the 
hoi
e of the s
aling parameters α.Theorem 3.5 For any α ∈ A we have ZJCCQ (α) = ZJCC(α).Proof: By de�ning the 
ombined variable
Y =





Q 1
2q

1
2qT q0



 ,
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the set ZJCCQ (α) 
an be rewritten as
ZJCCQ (α) =































x ∈ Rn :

∃Y ∈ Sk, β ∈ R, M ∈ Sk+1,

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0

M +





0 0

0T β



 < Y <





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)



 ∀i = 1, . . . , m































,It is easy to see that Y may be eliminated from the above representation of ZJCCQ (α) by rewriting thelast 
onstraint group as
M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m.This observation establishes the postulated equivalen
e.3.5 Exa
tness of the Worst-Case CVaR ApproximationSo far we have shown that, for any �xed α ∈ A, the feasible set ZJCC(α) 
onstitutes a tra
table 
on-servative approximation for X JCC. This implies that the union ZJCC =
⋃

α∈S
ZJCC(α) still 
onstitutesa 
onservative approximation for X JCC. We now demonstrate that this improved approximation isessentially exa
t. To this end, we introdu
e the feasible set

X JCC
◦ =

{

x ∈ Rn : sup
P∈P

P

(

m
⋂

i=1

{

y0
i (x) + yi(x)Tξ̃ < 0

}

)

≥ 1− ǫ

}
orresponding to a stri
t version of the joint 
han
e 
onstraint.Theorem 3.6 The Worst-Case CVaR approximation is essentially exa
t if α is treated as a de
isionvariable. Formally, we have X JCC
◦ ⊆ ZJCC ⊆ X JCC.Proof: The theorem 
an be proved by invoking a Chebyshev-type bound for the worst-
ase probabilityof a random ve
tor to lie in the interse
tion of a set of quadrati
 (or, a fortiori, linear) inequalities, seeVandenberghe et al. [28℄. To keep this paper self-
ontained, we provide here an elementary proof whi
his reminis
ent of the exa
tness proof in Se
tion 3.5.The se
ond in
lusion follows immediately from the known 
onservativeness of the CVaR approxima-tion. Therefore, it is su�
ient to prove the �rst in
lusion. By using similar arguments as in Se
tion 3.1,we 
an rewrite X JCC

◦ as
X JCC

◦ =

{

x ∈ Rn : sup
P∈P

P

(

m
⋃

i=1

{

y0
i (x) + yi(x)Tξ̃ ≥ 0

}

)

≤ ǫ

}

.
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By Lemma A.2 in the Appendix we may thus 
on
lude that
X JCC

◦ =







x ∈ Rn :
∃M ∈ Sk+1, 〈Ω,M〉 ≤ ǫ, M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ ∈
⋃m

i=1

{

y0
i (x) + yi(x)Tξ ≥ 0

}







.The semi-in�nite 
onstraint in the above representation of X JCC
◦ 
an be reexpressed as

[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ : y0
i (x) + yi(x)Tξ ≥ 0, ∀i = 1, . . . , m,whi
h, by the S-lemma, is equivalent to

∃α ≥ 0, M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x) + 1



 < 0 ∀i = 1, . . . , m.Thus, the feasible set X JCC
◦ 
an be written as

X JCC
◦ =































x ∈ Rn :

∃M ∈ Sk+1, α ∈ Rm,

〈Ω,M〉 ≤ ǫ, M < 0, α > 0,

M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x) + 1



 < 0 ∀i = 1, . . . , m































. (40)Note that we require here without loss of generality that α is stri
tly positive. Indeed, it 
an be shownthat no feasible α has any vanishing 
omponents. By Theorem 3.3, we have
ZJCC =































x ∈ Rn :

∃β ∈ R, M ∈ Sk+1, α ∈ A

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0,

M−





0 1
2αiyi(x)

1
2αiy

T

i αiy
0
i (x)− β



 < 0 ∀i = 1, . . . , m































. (41)It is now 
lear that X JCC
◦ ⊆ ZJCC sin
e we are free to set β = −1 in (41) and sin
e −1 + 1

ǫ 〈Ω,M〉 ≤ 0is equivalent to 〈Ω,M〉 ≤ ǫ. This observation 
ompletes the proof.Remark 3.2 Note that ZJCC = X JCC for m = 1; see Corollary 2.1. In general, however, both in
lusionsin Theorem 3.6 
an be stri
t. If there is no degenerate 
onstraint fun
tion with (y0
i (x), yi(x)T)T = 0

∀x ∈ Rn, then N =
⋃m

i=1

{

x ∈ Rn : (y0
i (x), yi(x)T)T = 0

} 
onstitutes a Lebesgue null set as it is a �niteunion of stri
t a�ne subspa
es of Rn. By using similar arguments as in the proof of Theorem 3.6 one
an show that X JCC\X JCC
◦ ⊆ N , whi
h implies that X JCC and X JCC

◦ di�er at most by a Lebesgue nullset for well-spe
i�ed 
han
e 
onstraints.Theorem 3.6 implies that the original joint 
han
e 
onstrained program
minimize
x∈X∩X JCC cTx21



and its Worst-Case CVaR approximation
minimize

x∈X∩Z
JCC(α)

α∈A

cTx (42)attain the same optimal value ex
ept in degenerate 
ases. Unfortunately, optimizing jointly over x ∈

X ∩ ZJCC(α) and α ∈ A in (42) involves Bilinear Matrix Inequalities (BMIs). It is known that generi
BMI 
onstrained problems are NP-hard, see [27℄. Similar non
onvexities arise also in the approxima-tions dis
ussed in Se
tions 3.1 and 3.2, whi
h underlines the general per
eption that problems withdistributionally robust joint 
han
e 
onstraints are hard to solve.Re
all, however, that for any �xed α ∈ A, the set ZJCC(α) is representable in terms of tra
table LMI
onstraints involving the auxiliary variables β and M. In parti
ular, the 
onstraints in (41) are 
onvexin β,M, and x for any �xed α, and 
onvex in α for any �xed β,M, and x. In Se
tion 3.7 we will usethis property to propose an algorithm for solving (42) approximately.3.6 Inje
ting Support InformationIn many pra
ti
al appli
ations the support of the (true) distribution Q of ξ̃ is known to be a stri
t subsetof Rk. Disregarding this information in the de�nition of P 
an result in unne
essarily 
onservative robust
han
e 
onstraints. In this se
tion we brie�y outline how support information 
an be used to tightenrobust joint 
han
e 
onstraints and their approximations developed in Se
tion 3. To this end, we �rstrevise our distributional assumptions.Distributional Assumptions. The random ve
tor ξ̃ has a distribution Q with mean ve
tor µ and
ovarian
e matrix Σ ≻ 0. We assume that Q is supported on Ξ = {ξ ∈ Rk : [ξT 1]Wi[ξ
T 1]T ≤ 0 ∀i =

1, . . . , l}, where Wi ∈ Sk+1 for all i = 1, . . . , l.1 Thus, we have Q(ξ̃ ∈ Ξ) = 1. We de�ne PΞ as the set ofall probability distributions supported on Ξ that have the same �rst- and se
ond-order moments as Q.In this se
tion we are interested in tra
table 
onservative approximations for the feasible set
X JCC

Ξ =

{

x ∈ Rn : inf
P∈PΞ

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ

}

.As before, we study approximate feasible sets of the form
ZJCC

Ξ (α) =

{

x ∈ Rn : sup
P∈PΞ

CVaRǫ

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

)

≤ 0

}for α ∈ A. By using similar arguments as in Se
tion 2.1, one 
an show that ZJCC
Ξ (α) ⊆ X JCC

Ξ for all
α ∈ A. However, the sets ZJCC

Ξ (α) have no longer an exa
t representation in terms of LMIs. Instead,they need to be 
onservatively approximated.1Note that every �nite interse
tion of half-spa
es and ellipsoids in Rk is representable as a set of the form Ξ.22



Theorem 3.7 For any �xed α ∈ A, we have YJCCΞ (α) ⊆ ZJCC
Ξ (α) ⊆ X JCC

Ξ , where YJCCΞ (α) has thefollowing tra
table reformulation in terms of LMIs.
YJCCΞ (α) =











































x ∈ Rn :

∃M ∈ Sk+1, β ∈ R, τi ∈ Rl,

β + 1
ǫ 〈Ω,M〉 ≤ 0, τi ≥ 0 ∀i = 0, . . . , m

M +
∑l

j=1 τ0,jWj < 0

M +
∑l

j=1 τi,jWj −





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m











































. (43)
Furthermore, for l = 1, we have YJCCΞ (α) = ZJCC

Ξ (α).Proof: The proof widely parallels the proof of Theorem 3.3. The only di�eren
e is that Rk is repla
edby Ξ and that we use the S-lemma to approximate (for l > 1) or reformulate (for l = 1) the semi-in�nite
onstraints over Ξ by LMI 
onstraints.Remark 3.3 While ZJCC(α) is exa
tly representable in terms of LMIs in the absen
e of support infor-mation, Theorem 3.7 only provides a 
onservative LMI approximation for ZJCC
Ξ (α). Nevertheless, it iseasily veri�ed that ZJCC(α) ⊆ YJCCΞ (α) and therefore YJCCΞ (α) 
onstitutes a better approximation for

ZJCC
Ξ (α) than ZJCC(α). In fa
t, by setting τi = 0 for all i = 0, . . . , m, (43) redu
es to (35).Remark 3.4 Support information 
an also be used in a straightforward way to tighten the approxima-tions dis
ussed in Se
tions 3.1 and 3.2.3.7 Optimizing over the S
aling ParametersBy Theorem 3.6, the original distributionally robust 
han
e 
onstrained program (4) 
an be written as

minimize
x∈Rn,α∈A

cTx

subject to J (x, α) ≤ 0

x ∈ X ,

(44)where the Worst-Case CVaR fun
tional J (x, α) is de�ned as in (31). Unfortunately, as dis
ussed inSe
tion 3.3, J (x, α) is merely bi
onvex, but not jointly 
onvex in x and α. Thus, optimization prob-lem (44) is non
onvex. By Theorem 3.3, however, the problem be
omes 
onvex and tra
table when thevalues of the s
aling parameters α are frozen.For the further argumentation we de�ne the set Ā = {α : α ≥ δe}, where e denotes the ve
tor ofones and δ > 0 represents a small toleran
e, whi
h we set to 10−7. Note that, unlike A, the set Ā is
23




losed. Consider now the following optimization model where α ∈ Ā is �xed.
min
x∈Rn

cTx

s. t. J (x, α) ≤ 0

x ∈ X

(45)We emphasize again that by Theorem 3.3 (45) is equivalent to a tra
table SDP and that any x feasiblein (45) is also feasible in the original 
han
e 
onstrained problem (4). In the remainder of this se
tion wedevelop an algorithm that repeatedly solves (45) while systemati
ally improving the s
aling parameters
α. The main idea of this approa
h, whi
h is inspired by [9℄, is to minimize J (x, α) over α ∈ Ā with theaim of enlarging the feasible region of problem (45) and thereby improving the obje
tive value. To thisend, we introdu
e the following optimization model whi
h depends parametri
ally on x ∈ X .

min
α∈Rm

J (x, α)

s. t. α ∈ Ā

(46)Theorem 3.3 implies that (46) 
an also be expressed as a tra
table SDP.Assume that x∗ is an optimal solution of problem (45) for a given α ∈ Ā. By the feasibility of x∗in (45) we know that J (x∗, α) ≤ 0. Keeping x∗ �xed, we then solve problem (46) to obtain the optimals
aling parameters α∗ 
orresponding to x∗. By 
onstru
tion, we �nd
J (x∗, α∗) ≤ J (x∗, α) ≤ 0. (47)The above inequalities imply that the optimal obje
tive value of problem (45) with input α∗ must notex
eed cTx∗. Therefore, by solving the problems (45) and (46) in alternation, we obtain a sequen
e ofmonotoni
ally de
reasing obje
tive values. This motivates the following algorithm, whi
h relies on theavailability of an initial feasible solution xinit for problem (45).Algorithm 3.1 Sequential Convex Optimization Pro
edure1. Initialization. Let xinit be some feasible solution of problem (45). Set the 
urrent solution to

x0 ← xinit, the 
urrent obje
tive value to f0 ← cTx0, and the iteration 
ounter to t← 1.2. S
aling Parameter Optimization. Solve problem (46) with input xt−1 and let α∗ denote anoptimal set of s
aling parameters. Set αt ← α∗.3. De
ision Optimization. Solve problem (45) with input αt and let x∗ denote an optimal solution.Set xt ← x∗ and f t ← cTxt.4. Termination. If (f t− f t−1)/|f t−1| ≤ γ (where γ is a given small toleran
e), output xt and stop.Otherwise, set t← t + 1 and go ba
k to Step 2.24



Theorem 3.8 Assume that xinit is feasible in problem (45) for some α ∈ Ā. Then, the sequen
e ofobje
tive values {f t} generated by Algorithm 3.1 is monotoni
ally de
reasing. If the set X is bounded,then the sequen
e {xt} is also bounded, while the sequen
e {f t} 
onverges to a �nite limit.Proof: By the inequality (47), an update of the s
aling parameters from αt−1 to αt in Step 2 of thealgorithm preserves the feasibility of xt−1 in problem (45). This guarantees that the sequen
e of obje
tivevalues {f t} is monotoni
ally de
reasing. Furthermore, it is readily seen that the solution sequen
e {xt} isbounded if the feasible set X is bounded. Sin
e (45) has a 
ontinuous obje
tive fun
tion, the monotoni
ityof the obje
tive value sequen
e implies that {f t} has a �nite limit.Remark 3.5 Algorithm 3.1 
an also be used in the presen
e of support information as dis
ussed inSe
tion 3.6. In this 
ase, the Worst-Case CVaR fun
tional J (x, α) has to be rede�ned in the obvious way.Algorithm 3.1 
an further be used in the 
ontext of the approximation by Chen et al., see Se
tion 3.2. Inthis 
ase, J (x, α) is repla
ed by its 
onservative approximation Ĵ (x, α) de�ned in Theorem 3.2. Detailsare omitted for brevity of exposition.We emphasize that Algorithm 3.1 does not ne
essarily �nd the global optimum of problem (44).Nevertheless, as 
on�rmed by the numeri
al results in the next se
tion, the method 
an perform well inpra
ti
e.4 Numeri
al ResultsWe 
onsider a dynami
 water reservoir 
ontrol problem for hydro power generation, whi
h is inspiredby a model due to Andrieu et al. [2℄. Let ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃T ) denote the sequen
e of sto
hasti
 in�ows(pre
ipitation) into the reservoir at time instan
es t = 1, . . . , T . The history of in�ows up to time t isdenoted by ξ̃t = (ξ̃1, . . . , ξ̃t), where ξ̃T = ξ̃. We let µ ∈ RT and Σ ∈ ST denote the mean ve
tor and
ovarian
e matrix of ξ̃, respe
tively. Furthermore, ξ̃ is supported on a re
tangle of the form Ξ = [l, u].However, we assume that no further information about the true distribution of ξ̃ is available. As usual, welet PΞ denote the set of all distributions supported on Ξ with mat
hing �rst- and se
ond-order moments.We denote by xt(ξ̃
t) the amount of water released from the reservoir in period t. Note that the de
ision

xt(ξ̃
t) is sele
ted at time t after ξ̃t has been observed and is therefore a fun
tion of the observationhistory. We require xt(ξ̃

t) ≥ 0 almost surely for all P ∈ PΞ and t = 1, . . . , T . The water level at time tis 
omputed as the sum of the initial level l0 and the 
umulative in�ows minus the 
umulative releasesup to time t, that is,
l0 +

t
∑

i=1

ξ̃i −
t
∑

i=1

xt(ξ̃
t).We require that the water level remains between some upper threshold lhigh (�ood reserve) and somelower threshold llow (dead storage) over all time periods t = 1, . . . , T with probability 1 − ǫ, where

ǫ ∈ (0, 1). The water released in any period t is used to produ
e ele
tri
 energy whi
h is sold at a25



periodi
 pri
e
ct = 10 + 5 sin

[

π(1 − t)

3

]

∀t = 1, . . . , T.The worst-
ase expe
ted pro�t over all time periods is 
omputed as
inf

P∈PΞ

EP

(

T
∑

t=1

ctxt(ξ̃
t)

)

.In order to determine an admissible 
ontrol strategy that maximizes the worst-
ase pro�t, we mustsolve the following distributionally robust joint 
han
e 
onstrained problem.
maximize

x1(·),...,xT (·)
inf

P∈PΞ

EP

(

T
∑

t=1

ctxt(ξ̃
t)

)

subject to inf
P∈PΞ

P

(

llow ≤ l0 +

t
∑

i=1

ξ̃i −
t
∑

i=1

xt(ξ̃
t) ≤ lhigh ∀t = 1, . . . , T

)

≥ 1− ǫ

xt(ξ̃
t) ≥ 0 P-a.s. ∀P ∈ PΞ, t = 1, . . . , T

(48)
Note that (48) is an in�nite dimensional problem sin
e the 
ontrol de
isions xt(·) are generi
 measurablefun
tionals of the un
ertain in�ows. To redu
e the problem 
omplexity, we fo
us on poli
ies that area�ne fun
tions of ξ̃. Thus, we optimize over a�ne disturban
e feedba
k poli
ies of the form

xt(ξ̃
t) = x0

t + xT

t Ptξ̃ ∀t = 1, . . . , T, (49)where x0
t ∈ R, xt ∈ Rt and Pt : RT → Rt is a trun
ation operator that maps ξ̃ to ξ̃t. By fo
using ona�ne 
ontrol poli
ies we 
onservatively approximate the in�nite dimensional dynami
 problem (48) bya problem with a polynomial number of variables, namely, the 
oe�
ients {x0

t , xt}Tt=1. For more detailson the use of a�ne 
ontrol poli
ies in robust 
ontrol and sto
hasti
 programming, see, e.g., Ben-Tal etal. [3℄, Chen et al. [10℄, and Kuhn et al. [15℄.By applying now standard robust optimization te
hniques [3℄, the requirement that xt(ξ̃
t) ≥ 0 holdsalmost surely 
an be expressed as

x0
t + xT

t Ptξ ≥ 0 ∀ξ ∈ Ξ

⇐⇒ 0 ≤ min
ξ∈RT

{

x0
t + xT

t Ptξ : l ≤ ξ ≤ u
}

⇐⇒ 0 ≤ max
λt∈RT

{

x0
t + xT

t Ptu + λT

t (l− u) : λt ≥ PT

t xt, λt ≥ 0
}

⇐⇒ ∃λt ∈ RT : x0
t + xT

t Ptu + λT

t (l− u) ≥ 0, λt ≥ PT

t xt, λt ≥ 0.
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By substituting (49) into (48) we thus obtain the following 
onservative approximation for (48).
maximize

T
∑

t=1

ct

(

x0
t + xT

t Ptµ
)

subject to λt ∈ RT , xt ∈ Rt ∀t = 1, . . . , T

inf
P∈PΞ

P













l0 − lhigh +
t
∑

i=1

ξ̃i −

(

t
∑

i=1

x0
i + xT

i Piξ̃

)

≤ 0 ∀t = 1, . . . , T

llow − l0 −
t
∑

i=1

ξ̃i +

(

t
∑

i=1

x0
i + xT

i Piξ̃

)

≤ 0 ∀t = 1, . . . , T













≥ 1− ǫ

x0
t + xT

t Ptu + λT

t (l − u) ≥ 0

λt ≥ PT

t xt, λt ≥ 0







∀t = 1, . . . , T

(50)
Note that the joint 
han
e 
onstraint in (50) involves 2T inequalities that are bilinear in the de
isions
{xt}Tt=1 and the random ve
tor ξ̃. Problem (50) 
an therefore be identi�ed as a spe
ial instan
e ofproblem (4) and is amenable to the approximation methods des
ribed in Se
tion 3. In the remainder ofthis se
tion, we 
ompare the performan
e of these approximation methods.In the subsequent tests, we set T = 5, l0 = 1, llow = 1, and lhigh = 5. The mean value of ξ̃t isassumed to be 1, while its standard deviation is set to 10%, over all time periods. Furthermore, we setthe 
orrelation of di�erent sto
hasti
 in�ows to 25% for adja
ent time periods and 0% otherwise. Finally,we assume that Ξ = [0, 2]T . All tests are run for a range of reliability levels ǫ between 1% and 10% insteps of 1%.We �rst solve problem (50) using the Bonferroni approximation by de
omposing the joint 
han
e
onstraint into 2T individual 
han
e 
onstraints with reliability fa
tors ǫi = ǫ/(2T ) for i = 1, . . . , 2T .The resulting optimal obje
tive value is denoted by V B , and the asso
iated optimal solution is used toinitialize Algorithm 3.1. We run the algorithm using the Worst-Case CVaR approximation as well as theapproximation by Chen et al. des
ribed in Se
tion 3.2. We denote the resulting optimal obje
tive valuesby V M and V U , respe
tively. In both 
ases the algorithm's 
onvergen
e threshold is set to γ = 10−6.All SDPs arising from the Worst-Case CVaR approximation are solved with SDPT3 using the YALMIPinterfa
e [16℄, while all SOCPs arising from the Bonferroni approximation and the approximation byChen et al. are solved with MOSEK using the algebrai
 modeling toolbox ROME [13℄.Table 1 reports the optimal obje
tive values and the improvement of V M relative to V U and V B .As expe
ted, all three methods yield optimal obje
tive values that in
rease with ǫ be
ause the joint
han
e 
onstraint be
omes less restri
tive as ǫ grows. At ǫ = 1% the obje
tive values of the di�erentapproximations 
oin
ide. However, V M ex
eeds V U and V B for all the other values of ǫ. In this parti
ularexample, our method outperforms the Bonferroni approximation by up to 25% and the approximationby Chen et al. by up to 12%. Table 1 also reports the runtimes of the di�erent algorithms. All instan
esbased on the Worst-Case CVaR approximation are solved in less then 20 se
onds, while the instan
esbased on the approximation by Chen et al. and the Bonferroni approximation are solved in less then 527



ǫ V M V U V B (V M − V U )/V U (V M − V B)/V B RM RU RB1% 44.3 44.3 44.3 0.0% 0.0% 2.18 2.50 0.822% 44.9 44.3 44.3 1.4% 1.3% 17.47 2.51 0.823% 49.4 44.4 44.3 11.3% 11.4% 14.99 4.19 0.814% 52.4 46.7 44.5 12.2% 17.6% 14.14 4.17 0.825% 54.5 49.0 45.2 11.2% 20.5% 15.79 4.18 0.816% 56.3 50.9 46.0 10.6% 22.5% 17.30 4.24 0.827% 57.8 53.0 46.7 9.1% 23.6% 15.98 4.54 0.868% 58.9 54.7 47.3 7.7% 24.5% 13.82 4.62 0.829% 59.9 56.0 47.8 7.0% 25.2% 17.70 4.16 0.8210% 60.7 57.1 48.8 6.3% 24.5% 14.29 4.24 0.81Table 1: Optimal obje
tive values of the water reservoir 
ontrol problem for the Worst-Case CVaR approximation (V M ), theapproximation by Chen et al. (V U ), and the Bonferroni approximation (V B). The table also reports the per
entage gaps (V M
−

V U )/V U and (V M
− V B)/V B as well as the runtimes for the three algorithms (RM , RU , RB) in se
onds.and 1 se
onds, respe
tively. Thus, as expe
ted, the improved solution quality o�ered by the (SDP-based)Worst-Case CVaR approximation over the two (SOCP-based) ben
hmark approximations 
omes at anin
reased 
omputational overhead.A
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A Worst-Case Expe
tation and Probability ProblemsLemma A.1 Let f : Rk → R be a measurable fun
tion, and de�ne the worst-
ase expe
tation θwc as
θwc = sup

P∈P

EP

(

(f(ξ̃))+
)

,where P represents the usual set of all probability distributions on Rk with given mean ve
tor µ and
ovarian
e matrix Σ ≻ 0. Then,
θwc = inf

M∈Sk+1

{

〈Ω,M〉 : M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ f(ξ) ∀ξ ∈ Rk
}

,where Ω is the se
ond-order moment matrix of ξ̃.Proof: The worst-
ase expe
tation θwc 
an equivalently be expressed as
θwc = sup

µ∈M+

∫

Rk

max{0, f(ξ)}µ(dξ)

s. t.

∫

Rk

µ(dξ) = 1

∫

Rk

ξµ(dξ) = µ

∫

Rk

ξξTµ(dξ) = Σ + µµT,

(51)
whereM+ represents the 
one of nonnegative Borel measures on Rk. The optimization variable of thesemi-in�nite linear program (51) is the nonnegative measure µ. Note that the �rst 
onstraint for
es µto be a probability measure. The other two 
onstraints enfor
e 
onsisten
y with the given �rst- andse
ond-order moments, respe
tively. We now assign dual variables y0 ∈ R, y ∈ Rk, and Y ∈ Sk to theequality 
onstraints in (51), respe
tively, and introdu
e the following dual problem (see, e.g., [25℄).

inf y0 + yTµ + 〈Y,Σ + µµT〉

s. t. y0 ∈ R, y ∈ Rk, Y ∈ Sk

y0 + yTξ + 〈Y, ξξT〉 ≥ max{0, f(ξ)} ∀ξ ∈ Rk

(52)Be
ause Σ ≻ 0, it 
an be shown that strong duality holds [14℄. Therefore, the worst-
ase probability θwc
oin
ides with the optimal value of the dual problem (52). By de�ning the 
ombined variable
M =





Y 1
2y

1
2yT y0



 ,
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problem (52) redu
es to
inf

M∈Sk+1
〈Ω,M〉

s. t.
[

ξT 1
]

M
[

ξT 1
]T

≥ max{0, f(ξ)} ∀ξ ∈ Rk.
(53)Note that the semi-in�nite 
onstraint in (53) 
an be expanded in terms of two equivalent semi-in�nite
onstraints.

[

ξT 1
]

M
[

ξT 1
]T

≥ 0 ∀ξ ∈ Rk (54a)
[

ξT 1
]

M
[

ξT 1
]T

≥ f(ξ) ∀ξ ∈ Rk (54b)Sin
e (54a) is equivalent to M < 0, the 
laim follows.Lemma A.2 Let S ⊆ Rk be any Borel measurable set (whi
h is not ne
essarily 
onvex), and de�ne theworst-
ase probability πwc as
πwc = sup

P∈P

P{ξ̃ ∈ S}, (55)Then,
πwc = inf

M∈Sk+1

{

〈Ω,M〉 : M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ ∈ S
}

..Proof: The proof is due to Cala�ore et al. [7℄, see also Zymler et al. [29℄. A sket
h of the proof isprovided here to keep this paper self-
ontained. De�ne the indi
ator fun
tion of the set S as
IS(ξ) =











1 if ξ ∈ S,

0 otherwise.The worst-
ase probability problem (55) 
an equivalently be expressed as
πwc = sup

µ∈M+

∫

Rk

IS(ξ)µ(dξ)

s. t.

∫

Rk

µ(dξ) = 1

∫

Rk

ξµ(dξ) = µ

∫

Rk

ξξT µ(dξ) = Σ + µµT .By dualizing this problem and applying similar manipulations as in the proof of Lemma A.1 we obtainthe postulated result.
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