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Abstract

We develop tractable semidefinite programming (SDP) based approximations for distributionally
robust individual and joint chance constraints, assuming that only the first- and second-order mo-
ments as well as the support of the uncertain parameters are given. It is known that robust chance
constraints can be conservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR)
constraints. We first prove that this approximation is exact for robust individual chance constraints
with concave or (not necessarily concave) quadratic constraint functions, and we demonstrate that
the Worst-Case CVaR can be computed efficiently for these classes of constraint functions. Next, we
study the Worst-Case CVaR approximation for joint chance constraints. This approximation affords
intuitive dual interpretations and is provably tighter than two popular benchmark approximations.
The tightness depends on a set of scaling parameters, which can be tuned via a sequential convex
optimization algorithm. We show that the approximation becomes essentially exact when the scaling
parameters are chosen optimally and that the Worst-Case CVaR can be evaluated efficiently if the
scaling parameters are kept constant. We evaluate our joint chance constraint approximation in the
context of a dynamic water reservoir control problem and numerically demonstrate its superiority
over the two benchmark approximations.

1 Introduction

A large class of decision problems in engineering and finance can be formulated as chance constrained
programs of the form
Ce . T
minimize c¢'x
xeR”

subject to Q@ (ai(é)Tm < bz(é) Vi=1,.. .,m) >1—¢ (1)

redkX,

where € R" is the decision vector, X C R™ is a convex closed set that can be represented by semidef-
inite constraints, and ¢ € R™ is a cost vector. Without much loss of generality, we assume that c is
deterministic. The chance constraint in (1) requires a set of m uncertainty-affected inequalities to be

jointly satisfied with a probability of at least 1 — €, where € € (0,1) is a desired safety factor specified
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by the modeler. The uncertain constraint coefficients a;(€) € R™ and b;(€) € R, i = 1,...,m, depend

affinely on a random vector é € R¥, whose distribution Q is assumed to be known. We thus have

k k
ai(€) =al +Y alg; and b(€) =b) +> bl¢;.
j=1

j=1
For ease of notation we introduce auxiliary functions yf : R™ — R, which are defined through

yl(x) = (al)Tz—b), i=1,...,n, j=0,... k

These functions enable us to rewrite the chance constraint in problem (1) as
0 (4@ +u@E<0 Vim1m)>1- @)

where y;(x) = [y} (x),...,y¥(x)]" is affine in x for i = 1,...,m. By convention, (2) is referred to as an
individual or joint chance constraint if m = 1 or m > 1, respectively. Chance constrained programs were
first discussed by Charnes et al. [8], Miller and Wagner [18] and Prékopa [23]. Although they have been
studied for a long time, they have not found wide application in practice due to the following reasons.

Firstly, computing the optimal solution of a chance constrained program is notoriously difficult. In
fact, even checking the feasibility of a fixed decision x requires the computation of a multi-dimensional
integral, which becomes increasingly difficult as the dimension k of the random vector € increases.
Furthermore, even though the inequalities in the chance constraint (2) are biaffine in x and £, the
feasible set of problem (1) is typically nonconvex and sometimes even disconnected.

Secondly, in order to evaluate the chance constraint (2), full and accurate information about the
probability distribution @ of the random vector é is required. However, in many practical situations Q
must be estimated from historical data and is therefore itself uncertain. Typically, one has only partial
information about Q, e.g. about its moments or its support. Replacing the unknown distribution Q
in (1) by an estimate Q corrupted by measurement errors may lead to over-optimistic solutions which
often fail to satisfy the chance constraint under the true distribution Q.

In a few special cases chance constraints can be reformulated as tractable convex constraints. For
example, it is known that if the random vector 5 follows a Gaussian distribution and ¢ < 0.5, then
an individual chance constraint can be equivalently expressed as a single second-order cone constraint.
In this case, the chance constrained problem becomes a tractable second-order cone program (SOCP),
which can be solved in polynomial time, see Alizadeh and Goldfarb [1]. More generally, Calafiore and El
Ghaoui [6] have shown that for ¢ < 0.5 individual chance constraints can be converted to second-order
cone constraints whenever the random vector € is governed by a radial distribution. Tractability results
for joint chance constraints are even more scarce. In a seminal paper, Prékopa [23] has shown that
joint chance constraints are convex when only the right-hand side coefficients bl(é) are uncertain and

follow a log-concave distribution. However, under generic distributions, chance constrained programs



are computationally intractable. Indeed, Shapiro and Nemirovski [20] point out that computing the
probability of a weighted sum of uniformly distributed variables being nonpositive is already AP-hard.

Recently, Calafiore and Campi [5] as well as Luedtke and Ahmed [17] have proposed to replace the
chance constraint (2) by a pointwise constraint that must hold at a finite number of sample points drawn
randomly from the distribution Q. A similar approach was suggested by Erdogan and Iyengar [12].
The advantage of this Monte Carlo approach is that no structural assumptions about Q are needed and
that the resulting approximate problem is convex. Calafiore and Campi [5] showed that one requires
O(n/e) samples to guarantee that a solution of the approximate problem is feasible in the original chance
constrained program. However, this implies that it may be computationally prohibitive to solve large
problems or to solve problems for which a small violation probability € is required.

A natural way to immunize the chance constraint (2) against uncertainty in the probability distribu-
tion is to adopt a distributionally robust approach. To this end, let P denote the set of all probability
distributions on RF that are consistent with the known properties of Q, such as its first and second
moments and/or its support. Consider now the following ambiguous or distributionally robust chance
constraint.

. 0 oNTE . _
inf P (y(@) +yi(@) €S0 Vi=1,.m) =1 3)

It is easily verified that whenever @ satisfies (3) and Q € P, then « also satisfies the chance constraint (2)
under the true probability distribution Q. Replacing the chance constraint (2) with its distributionally

robust counterpart (3) yields the following distributionally robust chance constrained program

minimize c'x
zCRn
subject o inf P (y?(m) Ly TE<O Vi=1,... ,m) >1—e (4)
c
xr e X,

which constitutes a conservative approximation for problem (1) in the sense that it has the same objective
function but a smaller feasible set.

A common method to simplify the distributionally robust joint chance constraint (3), which looks even
less tractable than (2), is to decompose it into m individual chance constraints by using Bonferroni’s
inequality. Indeed, by ensuring that the total sum of violation probabilities of the individual chance
constraints does not exceed ¢, the feasibility of the joint chance constraint is guaranteed. Nemirovski
and Shapiro [20] propose to divide the overall violation probability e equally among the m individual
chance constraints. However, the Bonferroni inequality is not necessarily tight, and the corresponding
decomposition could therefore be over-conservative. In fact, for positively correlated constraint functions,
the quality of the approximation is known to decrease as m increases [9]. Consequently, the Bonferroni
method may result in a poor approximation for problems with joint chance constraints that involve many
inequalities.

A recent attempt to improve on the Bonferroni approximation is due to Chen et al. [9]. They first



elaborate a convex conservative approximation for a joint chance constraint in terms of a Worst-Case
Conditional Value-at-Risk (CVaR) constraint. Then, they rely on a classical inequality in order statistics
to determine a tractable conservative approximation for the Worst-Case CVaR and show that the result-
ing approximation for the joint chance constraint necessarily outperforms the Bonferroni approximation.
An attractive feature of this method is that the arising approximate constraints are second-order conic
representable. However, the employed probabilistic inequality is not necessarily tight, which may again
render the approximation over-conservative.

The principal aim of this paper is to develop new tools and models for approximating robust indi-
vidual and joint chance constraints under the assumption that only the first- and second-order moments
as well as the support of the random vector £~ are known. We embrace the modern approach to approxi-
mate robust chance constraints by Worst-Case CVaR constraints, but in contrast to the state-of-the-art
methods described above, we find exact semidefinite programming (SDP) reformulations of the Worst-
Case CVaR which do not rely on potentially loose probabilistic inequalities. These reformulations are
facilitated by the theory of moment problems and by conic duality arguments. We prove that the CVaR
approximation is in fact exact for individual chance constraints whose constraint functions are either con-
cave or (possibly nonconcave) quadratic in € and for joint chance constraints whose constraint functions
depend linearly on &. We also demonstrate that robust individual chance constraints have manifestly
tractable SDP representations in most cases in which the CVaR approximation is exact.

The main contributions of this paper can be summarized as follows:

(1) In Section 2 we review and extend existing approximations for distributionally robust individual
chance constraints and prove that a robust individual chance constraint is equivalent to a tractable
Worst-Case CVaR constraint if the underlying constraint function is either concave or (possibly
nonconcave) quadratic in £&. We also demonstrate that this equivalence can fail to hold even if the
constraint function is convex and piecewise linear in &.

(2) In Section 3 we develop a new tractable CVaR approximation for robust joint chance constraints
and prove that this approximation consistently outperforms the state-of-the-art methods described
above. We show that the approximation quality is controlled by a set of scaling parameters and that
the CVaR approximation becomes essentially exact if the scaling parameters are chosen optimally.

We also present an intuitive dual interpretation for the CVaR approximation in this case.

(3) In Section 4 we analyze the performance of the new joint chance constraint approximation when

applied to a dynamic water reservoir control problem.

Notation. We use lower-case bold face letters to denote vectors and upper-case bold face letters to
denote matrices. The space of symmetric matrices of dimension n is denoted by S™. For any two matrices
X, Y € S, we let (X,Y) = Tr(XY) be the trace scalar product, while the relation X > Y (X > Y)
implies that X — Y is positive semidefinite (positive definite). Random variables are always represented

by symbols with tildes, while their realizations are denoted by the same symbols without tildes. For



x € R, we define T = max{x,0}.

2 Distributionally Robust Individual Chance Constraints

It is known that robust individual chance constraints can be conservatively approximated by Worst-
Case CVaR constraints. In this section, we first show how the theory of moment problems can be
used to reformulate these Worst-Case CVaR constraints in terms of tractable semidefinite constraints.
Subsequently, we prove that the Worst-Case CVaR constraints are in fact equivalent to the underlying

robust chance constraints for a large class of constraint functions.

Distributional Assumptions. In the remainder of this paper we let g € R* be the mean vector
and ¥ € S* be the covariance matrix of the random vector é under the true distribution Q. Thus, we
implicitly assume that Q has finite second-order moments. Without loss of generality we also assume
that 3 = 0. Furthermore, we let P denote the set of all probability distributions on R* that have the

same first- and second-order moments as Q. For notational simplicity, we let

S+ pp’
O- ;Tm e

7 1

be the second-order moment matrix of 5

2.1 The Worst-Case CVaR Approximation

For m =1, (3) reduces to a distributionally robust individual chance constraint

inf P (4 @)+ y(@)E<0) > 1-c, (5)

whose feasible set is denoted by
x1CC = {w €R" : infP (yo(:c) +yla)TE< 0) >1- e} .

In the remainder of this section we will demonstrate that X'°C has a manifestly tractable representation
in terms of Linear Matrix Inequalities (LMIs). To this end, we first recall the definition of CVaR due to
Rockafellar and Uryasev [24]. For a given measurable loss function L : R¥ — R, probability distribution
P on R¥, and tolerance ¢ € (0,1), the CVaR at level e with respect to PP is defined as

P-CVaR(L@) = jut {5+ 15+ (L) - 5)7) }. ©)

where Ep(-) denotes expectation with respect to P. CVaR essentially evaluates the conditional expecta-

tion of loss above the (1 — ¢)-quantile of the loss distribution. It can be shown that CVaR represents a



convex functional of the random variable L(€).
CVaR can be used to construct convex approximations for chance constraints. Indeed, it is well
known that

P (L(€) < P-CVaR(L(§))) > 1

for any measurable loss function L, see, e.g., Ben-Tal et al. [3, §4.3.3]. Thus, ]P’—CVaRE(L(E)) < 0is

sufficient to imply P(L(€) < 0) > 1 — e. As this implication holds for any probability distribution and

loss function, we conclude that

sup P-CVaR. (yo(w) + y(w)Té’) <0 = %Eép (yo(w) +y@)TE< 0) Sl o

Thus, the Worst-Case CVaR constraint on the left hand side constitutes a conservative approximation
for the distributionally robust chance constraint on the right hand side of (7). The above discussion

motivates us to define the feasible set

Zloe {m € R" : supP-CVaR. (yo(cc) + y(m)Té) < 0} , (8)
PeP

and the implication (7) gives rise to the following elementary result.

Proposition 2.1 The feasible set Z'°C constitutes a conservative approzimation for X'CC that is,

ZI0C C ylCC,

We will now show that ZI©C has a tractable representation in terms of LMIs.
Theorem 2.1 The feasible set Z'°C can be written as

3(B,M) € R x Sk+1,

M =0, B+2(Q,M)<o,

0 $y(x)
sy(x)" y(x) -8

2 =z eR":

Proof: By using (6), the Worst-Case CVaR in (8) can be expressed as

sup P-CVaR. (yo(w) + y(:c)Tf) = sup inf {ﬁ + %EIP’ ((yo(fv) +y(x)Té - 5)+>}

PeP Pep BER
-t o+ Lowme (W@ u@TE-p7) L o)

where the interchange of the maximization and minimization operations is justified by a stochastic saddle
point theorem due to Shapiro and Kleywegt [26], see also Delage and Ye [11] or Natarajan et al. [19]. We

now show that the Worst-Case CVaR (9) of some fixed decision @ € R™ can be computed by solving a



tractable SDP. To this end, we first derive an SDP reformulation of the worst-case expectation problem

sup Ez (4 (@) + y(2) €= 9)") .

PeP

which can be identified as the subordinate maximization problem in (9). Lemma A.1 in the Appendix

enables us to reformulate this worst-case expectation problem as

Minf (2, M)
€Sk+1 (10)

st M»0, [£T1M[¢T1] > ') +y(x)E— B VE R

Note that the semi-infinite constraint in (10) can be written as the following LMI.

0 Ly(x 0 Ly(x
(Mo 1 2y(@) Sl ooveeRr — M- 1 @ |
1 sy@)"T yOx)-p| ) |1 sy(@)" y(z) -6
This in turn allows us to reformulate the worst-case expectation problem as
inf (2, M)
MeSk+1
Lol (11)
st. M»0, M- @
sy(@)" yO@) -
By replacing the subordinate worst-case expectation problem in (9) by (11), we obtain
sup P-CVaR, (1°(z) + y(@)T€) = inf B+1(QM)
PeP
k1
s.t. MeSil BeR (12)
1
sy(x
M0, M- | 2y(2) =0,
3y(@)" y(z) -

and thus the claim follows. [ |

2.2 Exactness of the Worst-Case CVaR Approximation

So far we have shown that the feasible set Z!°C defined in terms of a Worst-Case CVaR constraint con-
stitutes a tractable conservative approximation for X'““. We now demonstrate that this approximation
is in fact ezact, that is, we show that the implication (7) is in fact an equivalence. We first recall the
nonlinear Farkas Lemma as well as the S-lemma, which are crucial ingredients for the proof of this result.
We refer to Polik and Terlaky [22] for a derivation and an in-depth survey of the S-lemma as well as a

review of the Farkas Lemma.

Lemma 2.1 (Farkas Lemma) Let fo,...,f, : R¥ — R be convex functions, and assume that there

exists a strictly feasible point & with f;(€) <0, i = 1,...,p. Then, fo(&) > 0 for all & with f;(&) <0,



s D, if and only if there exist constants 7; > 0 such that
P
fo(&) + 3 7fi(€) >0 VE € RE.
i=1

Lemma 2.2 (S-lemma) Let fi(€) = €TA€ with A; € S™ be quadratic functions of & € R™ for i =
0,...,p. Then, fo(&) >0 for all & with f;(€§) <0,i=1,...,p, if there exist constants 7; > 0 such that

P
Ao+ ZTzAz = 0.
=1

For p = 1, the converse implication holds if there exists a strictly feasible point € with f1(§) < 0.

Theorem 2.2 Let L : R¥ — R be a continuous loss function that is either
(i) concave in &, or
(ii) (possibly nonconcave) quadratic in €.

Then, the following equivalence holds.

sup F-CVaR, (L) <0 = miP(LE)<0)>1-c (13)

Proof: Consider the Worst-Case Value-at-Risk of the loss function L, which is defined as

WeVaR,(L(@) = it {r s P (L@ <) 21~} (14)

By definition, the WC-VaR is indeed equal to the (1—e¢)-quantile of L(&) evaluated under some worst-case
distribution in P. We first show that the following equivalence holds.

inf P (L <0) 21— = WC-VaR, (L(§)) <0 (15)

Indeed, if the left hand side of (15) is satisfied, then v = 0 is feasible in (14), which implies that
WC-VaR (L(€)) < 0. To see that the converse implication holds as well, we note that for any fixed
P € P, the mapping v — P(L(€) < 7) is upper semi-continuous, see [21]. Thus, the related mapping

v IFi)g%]P’(L(E) < «) is also upper semi-continuous. If WC-VaR.(L(&)) < 0, there exists a sequence

{¥n }nen that converges to zero and is feasible in (14), which implies

inf P (L(é) < O) > lim sup iIel7f3P (L(é) < vn) >1—e.

PeP n— 00

Thus, (15) follows.



To prove the postulated equivalence (13), it is now sufficient to show that

sup P-CVaR, (L(é)) — WC-VaR, (L(é)) .

Note that (14) can be rewritten as

WC-VaR.(L(£)) = inf {7 . sup P (L(é) > 7) < e}. (16)
YER PeP
We proceed by simplifying the subordinate worst-case probability problem sup ]P’(L(é) > ), which, by
PeP
Lemma A.2 in the Appendix, can be expressed as
: ) T T7 .
nf {(n,M> LM =0, [€T1MIET1] >1 Ve v—L(€) < o}. (17)

We will now argue that for all but one value of v problem (17) is equivalent to

inf (Q,M)
s.t. MeSkH1, 7R, M=0, 7>0 (18)
(€T M7 1T —1+7(y—L(€) >0 VEeRk

For ease of exposition, we define h = inﬂ{k*y — L(&). The equivalence of (17) and (18) is proved case
by case. Assume first that h < 0. T£h€en, the strict inequality in the parameter range of the semi-
infinite constraint in (17) can be replaced by a weak inequality without affecting its optimal value. The
equivalence then follows from the Farkas Lemma (when L(£) is concave in &) or from the S-lemma (when
L(€) is quadratic in &). Assume next that A > 0. Then, the semi-infinite constraint in (17) becomes
redundant and, since € > 0, the optimal solution of (17) is given by M = 0 with a corresponding
optimal value of 0. The optimal value of problem (18) is also equal to 0. Indeed, by choosing 7 = 1/h,
the semi-infinite constraint in (18) is satisfied for any M 3= 0. Finally, note that (17) and (18) may be
different for h = 0.

Since (17) and (18) are equivalent for all but one value of v and since their optimal values are

nonincreasing in v, we can express WC-VaR (L(€)) in (16) as

WC-VaR (L(€)) = inf «
s.t. MeSHL r7eR, veR
QM)<e, M0, 7>0
[ET1M[ET 1]  —14+7(y—L() >0 V¢ eR-

It can easily be shown that (€2, M) > 1 for any feasible solution of (19) with vanishing 7-component.
However, since € < 1, this is in conflict with the constraint (2, M) < e. We thus conclude that no

feasible point can have a vanishing 7-component. This allows us to divide the semi-infinite constraint in



problem (19) by 7. Subsequently we perform variable substitutions in which we replace 7 by 1/7 and M

by M/7. This yields the following reformulation of problem (19).

WC-VaR (L(€)) = inf ~
s.t. MeSH! 7eR, ~veR
%(Q,M>§T, M=0, 7>0
[ETUM[ET 1]  — 747 —L(&) >0 VEcR:

Note that, since €2 > 0 and M = 0, we have %(Q,M) > 0. This allows us to remove the redundant
nonnegativity constraint on 7. We now introduce a new decision variable § =~ — 7, which allows us to

eliminate ~.

WC-VaR.(L(€)) = inf f+7
s.t. MeSHl 7cR, BeR
LHQ,M)y<r, M3>0
[ETM[ET 1] +8-L(&) >0 VEeR:

Note that at optimality 7 = (€2, M), which finally allows us to express WC-VaR, (L(£)) as

WC-VaR.(L(§)) = inf B+ 1(Q,M)
s.t. MeSHL BeR, M=0 (20)
[€T1M[ET1]"+8-L(€) >0 VEeR-

Recall now that by Lemma A.1 we have

- . 1 -
spP-OVaR, (©) =t {5 + 2ol ((6) - 6)*)}
inf B+ 1(Q,M)

s.t. MeSkHL BeR, M=0

[ETIM[ET1]T+8-L(€) >0 VEeR:,

which is clearly equivalent to (20). This observation completes the proof. |

Corollary 2.1 The following equivalence holds

sup P-CVaR, (yo(m) + y(w)Té) <0 < infP (yo(w) +y(x)T€ < O) >1—c¢,
PeP Pep

which implies that Z1°¢ = X1°C,

Proof: The claim follows immediately from Theorem 2.2 by observing that L(€) = y°(z) + y(z)T¢ is

linear (and therefore concave) in &. |

10



In the following example we demonstrate that the equivalence (13) can fail to hold even if the loss

function L is convex and piecewise linear in &.

Example 2.1 Leté be a scalar random wvariable with mean p = 0 and standard deviation o = 1.
Moreover, let P be the set of all probability distributions on R consistent with the given mean and
standard deviation. Consider now the loss function L(§) = max{¢— 1,4 — 4}, and note that L is strictly
increasing and convex in . In particular, L is neither concave nor quadratic and thus falls outside
the scope of Theorem 2.2. We now show that for this particular L the Worst-Case CVaR constraint

sup P—CV&R% (L(§)) <0 is violated even though the distributionally robust individual chance constraint
PeEP

IFi)n;fD P(L(&) <0) > 1/2 is satisfied. To this end, we note that the Chebychev inequality P(§ — p > ko) <
€
1/(1 + K?) for k =1 implies

supP (21) < 5 = supP (L) 2 L(1) = 0) <

N =

= supP (L(é) > 0) < %
(0 <0

)

where the first equivalence follows from the monotonicity of L. Assume now that the true distribution

Q of € is discrete and defined through Q(€ = —2) = 1/8, Q(€ = 0) = 3/4, and Q( = 2) = 1/8. It is

easy to verify that Q € P and that Q-CVaR1 (L(&)) = 0.25. Thus, sup P-CVaR1(L(£)) > 0.25 > 0. We
§ PeP 2

therefore conclude that the Worst-Case CVaR constraint is not equivalent to the robust chance constraint.

2.3 Tractability of the Worst-Case CVaR Approximation

We have already seen that Worst-Case CVaR, constraints are equivalent to distributionally robust chance
constraints when the loss function is continuous and either concave or quadratic in £&. We now prove

that the Worst-Case CVaR can also be computed efficiently for these classes of loss functions.
Theorem 2.3 Assume that L : R¥ — R is either

(i) concave piecewise affine in & with a finite number of pieces or

(ii) (possibly nonconcave) quadratic in €.

Then, sup P—CV&RE(L(@) can be computed efficiently as the optimal value of a tractable SDP.
PeP

Proof: Assume that (i) holds and that L(€) = min—; _;{a; + bT€} for some a; € R and b; € R¥,
i=1,...,l. Then, the Worst-Case CVaR is representable as

+
inf {6+lsupEp<[.min {ai—l—biTé}—B] )} (21)
BER € pcp i=1,...,1

11



By Lemma A.1, the subordinate worst-case expectation problem in (21) can be rewritten as

inf  (Q,M)
MeSk+1 (22)
st. M=0, [¢T1M[ET1]" > min {a; + b€} -5 Vg€ RN

o

Noting that
l

i C bl ey = mi (a; +bL
min l{al +b; &} )I\nelgg)\l(al +b; &),

1=1,...

where A = {\ e R! : Zézl A; = 1, A > 0} denotes the probability simplex in R!, we can use techniques

developed in [4, Theorem 2.1] to reexpress the semi-infinite constraint in (22) as

l
(€7 1M [T 1}T—§gg;&<ai+b?£)+ﬁ >0 VEeR:

Y

1
<=  min max {[ﬁT 1} M [ET I}T - Z/\i(ai +biT€) +5} 0

¢eRF A€A ‘
=1

Y

I
<= max min {[ﬁT 1M [gr 1}T—Zx\i(ai+b?§)+5} 0
=1

AEA ¢cRE

l
< min {[gT 1M [T 1]T—2Ai(ai+bfg)+5} >0, AeA

k
geR i=1

0 Yic b
22:1 A?b;r Zi:l Aia; — [

<— M- =0, Ae€A.
The second equivalence in the above expression follows from the classical saddle point theorem. Thus,

the Worst-Case CVaR, (21) can be rewritten as the optimal value of the following tractable SDP.

inf 3+ H{Q,M)
s.t. BER, MeSH! XeR!
1 :
0 21:1 %bi
l ) 1
Dim1 %sz Yo Aiai — 3

(23)

M>=0 M- =0, Ae€A

Assume now that (ii) holds and that L(&) = £€TQ& + q"€ + ¢” for some Q € S¥, g € R¥, and ¢° € R.

In this case we have

sup P-CVaR.(L(§)) = inf {6 + % sup Ep <[€TQ£+ E'q+q° - 6} +> } : (24)

PeP BER

As usual, we first find an SDP reformulation of the subordinate worst-case expectation problem in (24).

12



By Lemma A.1, this problem can be rewritten as

inf Q. M)
Mesk+1 (25)

st M=0, [¢T1M[ET1]" > £'Qe+£Tg+¢"— 3 VEERE

Note that the semi-infinite constraint in (25) is equivalent to

T

1 1
& (Mm@ 24 o0 veert — wm_ |9 2

=0,
1 597 ¢-p|) |1 354" -0

which enables us to rewrite the Worst-Case CVaR (24) as the optimal value of

inf B+ 1(Q,M)
s.t. MeSH! geR
Q iq

M>=0, M- .
§qT -5

=0,

which is indeed a tractable SDP. [ |

Remark If the loss function is concave but not piecewise affine, the Worst-Case CVaR can sometimes
still be evaluated efficiently, though not by solving an explicit SDP. Indeed, the Worst-Case CVaR
can be computed in polynomial time with an ellipsoid method if L(€) is concave and if, for any & €
R*, one can evaluate both L(£) as well as a super-gradient VeL(€) in polynomial time. This is an
immediate consequence of a result on the computation of worst-case expectations by Delage and Ye [11,

Proposition 2.

3 Distributionally Robust Joint Chance Constraints

We define the feasible set X7¢“ of the distributionally robust joint chance constraint (3) as

XJCC_{meR" : I;g;;]?(y?(w)—Fyi(ic)TégO w_1,...,m)21—e}.

XxJcc

The aim of this section is to investigate the structure of and to elaborate tractable conservative

approximations. We first review two existing approximations and discuss their benefits and shortcomings.
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3.1 The Bonferroni Approximation

A popular approximation for X?°C is based on Bonferroni’s inequality. Note that the robust joint chance

constraint (3) is equivalent to

inf P (ﬁ {y?(w) +yi(x)TE < 0}> >1—¢ < supP (O {y?(w) +yi(@) € > 0}) <e
=1

PeP PeP im1
Furthermore, Bonferroni’s inequality implies that
m _ m _
P <U {W0(@) + yi(2)TE > o}) <3P (@) +u@)E>0) vPeP.
i=1 i=1
For any vector of safety factors e € £ = {e € RT : Y ¢ < e}, the system of distributionally robust
individual chance constraints

IF1)1&1§D]P’(yz(w)—l—yl(alc)S_O)_l 6 Yi=1,...,m (26)

represents a conservative approximation for the distributionally robust joint chance constraint (3). By
Theorem 2.1, we can reformulate each of the individual chance constraints in (26) in terms of tractable
LMIs. In fact, we can further reduce these LMIs to SOCP constraints, but this further simplification is

irrelevant for our purposes. Thus, for any € € £, the assertion that x € Z]‘_l,cc(e), where

3(6Z,MZ)ERXSk+1 Vi=1,...

2 7m7
Mzkov z+iﬂsz SO V’Lzl,,m,
ZCe) =z e R": ’ 51<1 > ;
0 5Yi (XL
M, — I

si(@)" y(x) — B;

is a sufficient condition to guarantee that x satisfies the original distributionally robust joint chance

constraint (3). The above arguments culminate in the following result.
Theorem 3.1 (Bonferroni Approximation) For any € € £ we have Z3°C(e) C A7°C,

A major shortcoming of the Bonferroni approximation is that the approximation quality depends
critically on the choice of € € £. Unfortunately, the problem of finding the best € € £ for a generic
chance constrained problem of type (4) is nonconvex and believed to be intractable [20]. As a result, in
most applications of Bonferroni’s inequality the “risk budget” € is equally divided among the m individual
chance constraints in (26) by setting ¢; = ¢/m for i = 1,...,m. This approach was first advocated by
Nemirovski and Shapiro [20].

The Bonferroni approximation can be overly conservative even if € € £ is chosen optimally. The

following example, which is adapted from Chen et al. [9], highlights this shortcoming.
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Example 3.1 Assume that the inequalities in the chance constraint (3) are perfectly positively correlated

in the sense that

yi () = 6:9°(x) and yi(x) = dij(x)

for some affine functions §° : R® — R and § : R® — R* and for some fized constants 6; > 0 for
t=1,...,m. In this case, it can readily be seen that the joint chance constraint (3) is equivalent to the

robust individual chance constraint

'f]P(O T~<0)>1—. 27
nf Py (z) +y(z) €<0)=21-e¢ (27)
Thus, the least conservative choice for ¢; which guarantees that (26) implies (3) ise; =€ fori=1,...,m.

However, this means that the ¢; sum to me instead of € as required by the Bonferroni approximation.
In fact, the optimal choice for € € € is ¢, = ¢/m fori=1,...,m. This example demonstrates that the
quality of the Bonferroni approzimation diminishes as m increases if the inequalities in the joint chance

constraint are positively correlated.

3.2 Approximation by Chen, Sim, Sun and Teo

In order to mitigate the potential over-conservatism of the Bonferroni approximation, Chen et al. [9]
proposed an approximation based on a different inequality from probability theory. The starting point

is the observation that the joint chance constraint (3) can be reformulated as

inf P <1 max {ai (y?(m) + yz(m)Té)} < 0> >1—c¢ (28)

PeP

.....

for any vector of strictly positive scaling parameters a € A= {a € R™ : a > 0}. Note that the choice
of a € A does not affect the feasible region of the chance constraint (28). Although these scaling
parameters are seemingly unnecessary, it turns out that they can be tuned to improve the approximation
to be developed below. Chen et al. [9] note that (28) represents a distributionally robust individual
chance constraint, which can be conservatively approximated by a Worst-Case CVaR constraint. Thus,

for any a € A, the requirement

z € 29C(a) = {w €R" : sup CVaR. ( max {ai (y?(:c) + yi(:v)Tf) }) < 0} (29)

PEP =1,...m

implies that € X?CC, see Proposition 2.1. It is important to note that, in contrast to the chance
constraint (28), the Worst-Case CVaR constraint @ € Z7°C(a) does depend on the choice of o € A.
Thus, the Worst-Case CVaR constraint in (29) is not equivalent to the robust chance constraint (28)
since the max function in (28) is convex piecewise linear, see also Theorem 2.2 and Example 2.1.

The following theorem due to Chen et al. [9] relies on a classical result in order statistics and provides

a tractable SOCP-based conservative approximation for Z79¢(a).
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Theorem 3.2 (Approximation by Chen et al.) For any o € A we have Z{““(a)) C 27°C(a) C

XICC where Z)°C () = {x € R" : J(z,a) < 0} and

wOeR,weRk | BER

j(m,a) = min {min {ﬁ + %w (wo _ 3, w)} n %

ZW (aiy?(w) —u’, a;yi(T) — w)} } )

i=1

where

7 (22) = 5 (2 +T2) + 5

(s 25|
2

Note that, since the feasible set Z[JJCC (a) constitutes a tractable conservative approximation for X7¢¢
for any o € A, the union (J, . 4 Z{7“ () still constitutes a conservative approximation for X7““. Chen
et al. [9] prove also that their approximation is tighter than the Bonferroni approximation by showing
that ZL9C(€) C Upeu 20°“ (@) for all € € £. Unfortunately, similar to the Bonferroni approach, the
approximation by Chen et al. depends critically on the choice of a, while the problem of finding the best
a € A for a generic chance constrained program of the type (4) is nonconvex and therefore believed to

be intractable.

3.3 The Worst-Case CVaR Approximation

Both approximations discussed so far rely on inequalities from probability theory, which are not neces-
sarily tight. In this section we show that the set Z7““(a) has in fact an exact tractable representation

in terms of LMIs and therefore promises to provide a tight convex approximation for X7¢¢.

Theorem 3.3 For any fired x € R" and o € A, we have

3(8,M) € R x Sk+1,

B+L(Q,M) <0, Mo,

21 ) =z cR": (30)

0 soyi(x)

M — =0 VYi=1,....m

sayl  ad(x) - B

Proof: We note that the constraint € 27°%(a) is equivalent to J(x, ) < 0, where

J(x,a) = supCVaR, < max {ai (y?(m) + yz(m)Té)}>

PeP 1=1,..., m
g +
= ﬁirel% {ﬁ + %;lelg Ep (L_r{l)f}?fm {ai (y?(fv) + yi(w)TS)} - ﬁ] ) } (31)

denotes the Worst-Case CVaR. As in Section 2, the first step towards a tractable reformulation of 7 (x, )

is to solve the worst-case expectation problem

sup Ep ( [i_r{{%fm {ai (y?(w) + yi(w)Té) } - ﬂ] +> : (32)
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For any fixed x € X, 8 € R, and a« € A, Lemma A.1 enables us to reformulate (32) as

inf (9, M)
MeSk+1 . _ (33)
st M0, [€TMIET "> max {ai (@) +u@TE)} -5 veer

We emphasize that (33) represents a lossless reformulation of the worst-case expectation problem (32).

The semi-infinite constraint in (33) can be expanded into m simpler semi-infinite constraints of the form
(€T 1M €7 1] > o (5(@) +9i(2)T€) — B VEERF, i=1,...,m,

which can be equivalently expressed as the following system of LMIs.

0 lOéi i\ L
M — . 30:Yi(@) =0 VYi=1,....m
§aiyz'(w)T ay)(z) —
We can therefore reformulate the worst-case expectation problem (32) as
inf (€2, M)
MeSk+1
0 Loyi(x) (34)

s. t. M>0 M-
sayi(x)T  oyd(x) — 3

Substituting (34) into (31) yields

1
j(il), C!) = inf 6 + _<Qv M>
€
t. M e SFH eR
’ 0 (35)
0 300y
M:>0, M- z0iYi(@) =0 Vi=1,...,m,
saiyi(@)T oyl (x) - 6
and thus the claim follows. [ |

Theorem 3.3 establishes that Z7°“(a) has an exact representation in terms of LMIs. We have already
seen in Section 3.2 that Z7°¢(a)) C X7°C for all & € A and that Z{““(a)) C Z7°“(a), see Theorem 3.2.
Thus, 27°“(a) constitutes a tractable conservative approximation for X7¢“ which is at least as tight as
Z1C (q).

Recall from Section 3.2 that Z}9°(€) C Jyes Z0°C () for all € € £. Moreover, we have Z{%“(a) C
ZIC(a) € A7°C for all @ € A. This allows us to conclude that our new approximation is at least as

tight as the two state-of-the-art approximations discussed above.

Remark 3.1 In contrast to the classical Bonferroni approzimation, the Worst-Case CVaR approxima-
tion behaves reasonably in situations in which the m inequalities in the chance constraint (3) are posi-

tively correlated. Indeed, by choosing «; :=1/6; > 0 for all i = 1,...,m in Example 3.1, the constraint
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x € 27°C(a) is equivalent to
1
JBeR, MeSH! © g4+ -(QM)<0, M»=0, M-
€

which can easily be identified as the SDP reformulation of the individual chance constraint (27). This
implies that Z7°C(a) = X1°C for all a € A in Ezample 3.1, see also Theorem 2.1. Thus, by choosing
a appropriately, our method can provide tight approximations for distributionally robust joint chance

constraints, even in situations when the m inequalities are positively correlated.

3.4 Dual Interpretation of the Worst-Case CVaR Approximation

In this section we explore a different way to find a tractable conservative approximation for the chance
constraint (3). Subsequently, we will prove that this approximation is equivalent to the Worst-Case
CVaR approximation.

Consider again the robust individual chance constraint (28) which is equivalent to the robust joint
chance constraint (3) for any fixed a € A. Instead of approximating (28) by a Worst-Case CVaR
constraint, we can approximate the max-function in the chance constraint (28) by a quadratic majorant

of the form ¢(&) = £€TQE + £Tq + ¢° that satisfies

q(§) > max {oi (1) () + yi(x)T€)} VEERF,
T (36)

— q&) > (y?(cc) —|—yi(m)T£) VEERF, i=1,...,m.

Replacing the max function in (28) by ¢(£) yields the distributionally robust (individual) quadratic
chance constraint

D;QQP(ETQfﬂLETquqOSO)Zl—e. (37)

For further argumentation, we define

Qe Sk, qeR*, ¢ R such that
ZH% a)=qxz eR": Q 1 1 . (38)
q(€) = £TQE + £7q + ¢ satisfies (36) and (37)

Proposition 3.1 For any fized o € A the feasible set Zécc (av) constitutes a conservative approzimation

for X?CC | that is, Zécc (@) C XICC,

Proof: Note that any x feasible in (28) is also feasible in (38) since

P(£TQE+ETq+¢"<0) < P(.max {ai(y?(m)wi(wfé)}so) VP € P.

1=1,..., m

Since x is feasible in (28) if and only if € X7°C| the claim follows. W
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Theorem 3.4 For any fired x € R" and o € A we have

IQeSk, qgeRF, ¢"eR, peR, M eSSk,
1
Joc L B+ (2,M) <0, M>0, M- Q@ =0,
Zy (@) =qxzeR": lqT -3
Q %(q — ;yi(x))
3(q — aiyi(®)T  ¢° — iy ()

Proof: Note that the constraints in (36) are equivalent to

Q 1(q — ayi(x))

1 =0 Yi=1,...,m.
3(q —aiyi(®)"  ¢° — iy ()

Moreover, by Theorem 2.2, the robust quadratic chance constraint (37) is equivalent to the Worst-Case
CVaR constraint

supP-CVaR(éTQé+éTq+q0) — inf {ﬁ+1sup1@]p<[§Q£+£Tq+q°—5r>} < 0. (39
PeP BER € PepP

By the proof of part (ii) in Theorem 2.3, we know that (39) can be written as

0 > inf B+42(Q,M)
s.t. MeSHl BeR
Q g

M0, M- |
1q" -8

= 0.

Thus, the claim follows. |

In the following theorem we show that the approximate feasible set Zécc(a) is equivalent to the
set 27°C(a) found in Section 3.3. This implies that the approximation of a distributionally robust
joint chance constraint by a Worst-Case CVaR constraint is equivalent to the approximation of the max
function implied by the joint chance constraint by a quadratic majorant. Note that both approximations

depend of the choice of the scaling parameters a.

Theorem 3.5 For any o € A we have Zécc(a) = 2% ).

Proof: By defining the combined variable

[N

QO

Q [l
S Q
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the set ZJ°“(cr) can be rewritten as

JY €S*, BeR, M eSSk,

+IQ,M)<0, Mx=0
2% a) =z eR": e ) . ,

Mt |? %y 0 20Yi(@)

= Vi=1,....,m
o' g %Otiyz‘(w)T a;yd (x)

It is easy to see that Y may be eliminated from the above representation of ZJ°°(cx) by rewriting the
last constraint group as

0 laiiw
M — e

sayi(x)T ol (z) — 8

This observation establishes the postulated equivalence. [ |

3.5 Exactness of the Worst-Case CVaR Approximation

So far we have shown that, for any fixed o € A, the feasible set Z/“C(a) constitutes a tractable con-
servative approximation for X7“¢. This implies that the union Z/¢¢ = Uaces ZICC (@) still constitutes
a conservative approximation for X’¢“. We now demonstrate that this improved approximation is

essentially exact. To this end, we introduce the feasible set

xIcC — {:c €ER" : supP <ﬁ {y?(:c) Fyi(x)TE < 0}) >1- e}

PEP  \,_4
corresponding to a strict version of the joint chance constraint.

Theorem 3.6 The Worst-Case CVaR approximation is essentially exact if o is treated as a decision

variable. Formally, we have X3¢ C 2ICC C xICC,

Proof: The theorem can be proved by invoking a Chebyshev-type bound for the worst-case probability
of a random vector to lie in the intersection of a set of quadratic (or, a fortiori, linear) inequalities, see
Vandenberghe et al. [28]. To keep this paper self-contained, we provide here an elementary proof which
is reminiscent of the exactness proof in Section 3.5.

The second inclusion follows immediately from the known conservativeness of the CVaR approxima-
tion. Therefore, it is sufficient to prove the first inclusion. By using similar arguments as in Section 3.1,

we can rewrite X7°C as

—

XC ={xzeR" : supP
PcP

{y?(w) +yi(x) € > 0}) < e} .

=1



By Lemma A.2 in the Appendix we may thus conclude that

IM e SF1 (Q,M) <e, M0,

XICC = xeRr": N
[€T1MIET 1] =1 VEe UL, {v)(2) +yi(x)T€ > 0}

The semi-infinite constraint in the above representation of X?¢C can be reexpressed as
€T M[ET 1] 21 VE - (@) tui@)TE>0, Vi=1,....m,

which, by the S-lemma, is equivalent to

0 lOéi i\ L
a0, M- | 20%@® o i1,
saiyi(x)T iyl () +1
Thus, the feasible set XJC can be written as
IM e ¥t a e R™,
QM)<e, M>=0, a>0,
X =Lz eR™: < ) ) . (40)
0 50,Y; L
M — 30:Yi(@) =0 Vi=1,....m

saiyi(z)T iyl () +1

Note that we require here without loss of generality that « is strictly positive. Indeed, it can be shown

that no feasible & has any vanishing components. By Theorem 3.3, we have

IPBeR, MecSHL acA
1
oo _ ) ogn, AHE@M) S0, M0,

0 lOéiiilt
M — e I

seay!  aiy)(x) =
It is now clear that XJ°C C Z7°C since we are free to set 3 = —1 in (41) and since —1 + 1(Q, M) <0

is equivalent to (€2, M) < e. This observation completes the proof. |

Remark 3.2 Note that Z7°C = XI°C form = 1; see Corollary 2.1. In general, however, both inclusions
in Theorem 3.6 can be strict. If there is no degenerate constraint function with (y9(x),y;(x)")T = 0
Ve € R, then N =", {x e R" : (y0(x),yi(x)")" = 0} constitutes a Lebesque null set as it is a finite
union of strict affine subspaces of R™. By using similar arguments as in the proof of Theorem 3.6 one
can show that X?CC\XICC C N, which implies that X*CC and XJ°C differ at most by a Lebesgue null

set for well-specified chance constraints.

Theorem 3.6 implies that the original joint chance constrained program

minimize c¢'x
xEXNXICC
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and its Worst-Case CVaR approximation

minimize c'x (42)
zexXNZ!C(a)
acA

attain the same optimal value except in degenerate cases. Unfortunately, optimizing jointly over x &
XN 2% (a) and a € A in (42) involves Bilinear Matrix Inequalities (BMIs). It is known that generic
BMI constrained problems are N'P-hard, see [27]. Similar nonconvexities arise also in the approxima-
tions discussed in Sections 3.1 and 3.2, which underlines the general perception that problems with
distributionally robust joint chance constraints are hard to solve.

Recall, however, that for any fixed o € A, the set Z7°C () is representable in terms of tractable LMI
constraints involving the auxiliary variables § and M. In particular, the constraints in (41) are convex
in #,M, and «x for any fixed a, and convex in « for any fixed §, M, and . In Section 3.7 we will use

this property to propose an algorithm for solving (42) approximately.

3.6 Injecting Support Information

In many practical applications the support of the (true) distribution Q of £ is known to be a strict subset
of R*. Disregarding this information in the definition of 7P can result in unnecessarily conservative robust
chance constraints. In this section we briefly outline how support information can be used to tighten
robust joint chance constraints and their approximations developed in Section 3. To this end, we first

revise our distributional assumptions.

Distributional Assumptions. The random vector € has a distribution Q with mean vector g and
covariance matrix X > 0. We assume that Q is supported on = = {€ € R* : [¢T 1JW,[¢T 1]T <0 Vi =
1,...,1}, where W; € S¥! for all i = 1,...,1.> Thus, we have Q(€ € E) = 1. We define Pz as the set of

all probability distributions supported on = that have the same first- and second-order moments as Q.

In this section we are interested in tractable conservative approximations for the feasible set

= {:BER .Plenggﬂ”(yz(w)-i-yl(w)ﬁ_o Vi 1,...,m)_1 e}.

As before, we study approximate feasible sets of the form

210 (q) = {:c € R™ : sup CVaR. ( max {ai (y?(:c) + yz(w)Tf) }) < O}
PEP= i=L..,m

for & € A. By using similar arguments as in Section 2.1, one can show that Z2°“(a) C X2°C for all

a € A. However, the sets Z2““(a) have no longer an exact representation in terms of LMIs. Instead,

they need to be conservatively approximated.

INote that every finite intersection of half-spaces and ellipsoids in R¥ is representable as a set of the form =.
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Theorem 3.7 For any fivzed o € A, we have YV2°“(a) C Z2°“(a) C X2°C, where YI°C(a) has the

following tractable reformulation in terms of LMIs.

IM e SHL BeR, 7R,
B+ (M) <0, 7.>0 Vi=0,....,m
V="(e) = {mER": M+Z§‘:170,jwj#0 . (43)

0 saiyi(x
M+ 3 7, W — 20w (@)

soiyi(@)T iyl (z) — B
Furthermore, for | = 1, we have Y2°“(a) = Z2°C(a).

Proof: The proof widely parallels the proof of Theorem 3.3. The only difference is that R¥ is replaced
by E and that we use the S-lemma to approximate (for I > 1) or reformulate (for [ = 1) the semi-infinite

constraints over = by LMI constraints.

Remark 3.3 While 2'°C(a) is evactly representable in terms of LMIs in the absence of support infor-
mation, Theorem 3.7 only provides a conservative LMI approzimation for Zécc(a). Nevertheless, it is
easily verified that Z'°C(a)) C V2°C(a) and therefore Y2°C () constitutes a better approzimation for

ZICC (@) than Z7°C(a). In fact, by setting 7, = 0 for all i =0,...,m, (43) reduces to (35).

Remark 3.4 Support information can also be used in a straightforward way to tighten the approxima-

tions discussed in Sections 3.1 and 3.2.

3.7 Optimizing over the Scaling Parameters

By Theorem 3.6, the original distributionally robust chance constrained program (4) can be written as
e T
minimize C X
rcR",ac A
subject to  J(x,a) <0 (44)

T e X,

where the Worst-Case CVaR functional J(z, ) is defined as in (31). Unfortunately, as discussed in
Section 3.3, J(x, ) is merely biconvex, but not jointly convex in « and «. Thus, optimization prob-
lem (44) is nonconvex. By Theorem 3.3, however, the problem becomes convex and tractable when the
values of the scaling parameters « are frozen.

For the further argumentation we define the set A = {a : a > de}, where e denotes the vector of

ones and ¢ > 0 represents a small tolerance, which we set to 10~7. Note that, unlike A, the set A is
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closed. Consider now the following optimization model where o € A is fixed.

min c¢'z

xeR"

s.it. J(x,a) <0 (45)
rxeX

We emphasize again that by Theorem 3.3 (45) is equivalent to a tractable SDP and that any x feasible
in (45) is also feasible in the original chance constrained problem (4). In the remainder of this section we
develop an algorithm that repeatedly solves (45) while systematically improving the scaling parameters
a.

The main idea of this approach, which is inspired by [9], is to minimize J (x, a) over o € A with the
aim of enlarging the feasible region of problem (45) and thereby improving the objective value. To this

end, we introduce the following optimization model which depends parametrically on € X.

min  J(z, )
acR™ (4:6)
s. t. ac A

Theorem 3.3 implies that (46) can also be expressed as a tractable SDP.
Assume that x* is an optimal solution of problem (45) for a given o € A. By the feasibility of x*
in (45) we know that J(z*, a) < 0. Keeping x* fixed, we then solve problem (46) to obtain the optimal

scaling parameters a* corresponding to *. By construction, we find
Jkx'a®) < Jx'a) <0. (47)

The above inequalities imply that the optimal objective value of problem (45) with input a* must not
exceed c'z*. Therefore, by solving the problems (45) and (46) in alternation, we obtain a sequence of
monotonically decreasing objective values. This motivates the following algorithm, which relies on the

availability of an initial feasible solution @;,;; for problem (45).
Algorithm 3.1 Sequential Convex Optimization Procedure

1. Imitialization. Let iy, be some feasible solution of problem (45). Set the current solution to

0 T,.0

20 «— xini0, the current objective value to O «— c'x°, and the iteration counter to t «— 1.

2. Scaling Parameter Optimization. Solve problem (46) with input £'~! and let a* denote an

optimal set of scaling parameters. Set a' «— o*.

3. Decision Optimization. Solve problem (45) with input o and let * denote an optimal solution.

Set &t — x* and f' — c'x’.

4. Termination. If (f' — fi=1)/|f7| <~ (where v is a given small tolerance), output =t and stop.
Otherwise, set t <t + 1 and go back to Step 2.
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Theorem 3.8 Assume that @iniy is feasible in problem (45) for some o € A. Then, the sequence of
objective values {f'} generated by Algorithm 3.1 is monotonically decreasing. If the set X is bounded,

then the sequence {x'} is also bounded, while the sequence {f'} converges to a finite limit.

Proof: By the inequality (47), an update of the scaling parameters from a'~! to a! in Step 2 of the
algorithm preserves the feasibility of '~! in problem (45). This guarantees that the sequence of objective
values {f'} is monotonically decreasing. Furthermore, it is readily seen that the solution sequence {x'} is
bounded if the feasible set X is bounded. Since (45) has a continuous objective function, the monotonicity

of the objective value sequence implies that {f} has a finite limit. |

Remark 3.5 Algorithm 3.1 can also be used in the presence of support information as discussed in
Section 3.6. In this case, the Worst-Case CVaR functional J (x, ) has to be redefined in the obvious way.
Algorithm 3.1 can further be used in the context of the approximation by Chen et al., see Section 3.2. In
this case, J (@, a) is replaced by its conservative approximation j(m, ) defined in Theorem 3.2. Details

are omitted for brevity of exposition.

We emphasize that Algorithm 3.1 does not necessarily find the global optimum of problem (44).
Nevertheless, as confirmed by the numerical results in the next section, the method can perform well in

practice.

4 Numerical Results

We consider a dynamic water reservoir control problem for hydro power generation, which is inspired
by a model due to Andrieu et al. [2]. Let €= (51, &, ..., éT) denote the sequence of stochastic inflows
(precipitation) into the reservoir at time instances ¢ = 1,...,7. The history of inflows up to time ¢ is
denoted by &' = (£1,...,&), where €7 = €. We let g € RT and X € ST denote the mean vector and
covariance matrix of £~ , respectively. Furthermore, é is supported on a rectangle of the form = = [I, u].
However, we assume that no further information about the true distribution of £~ is available. As usual, we
let P= denote the set of all distributions supported on = with matching first- and second-order moments.
We denote by (ét) the amount of water released from the reservoir in period ¢. Note that the decision
24(€") is selected at time ¢ after € has been observed and is therefore a function of the observation
history. We require x; (ft) > 0 almost surely for all P € Pz and t = 1,...,T. The water level at time ¢

is computed as the sum of the initial level [y and the cumulative inflows minus the cumulative releases

up to time ¢, that is,
t t
b+ &= @)
i=1 i=1

We require that the water level remains between some upper threshold lnizn (flood reserve) and some
lower threshold 4w (dead storage) over all time periods ¢ = 1,...,T with probability 1 — ¢, where

e € (0,1). The water released in any period ¢ is used to produce electric energy which is sold at a
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periodic price

1—t
¢ = 10 + 5sin [%] Vi=1,...,T.

The worst-case expected profit over all time periods is computed as

T
g B (Soni@).

In order to determine an admissible control strategy that maximizes the worst-case profit, we must

solve the following distributionally robust joint chance constrained problem.

T
maximize inf E ey (€
P (z T >>

t=1

t B t _ (48)
subject to Pien7£EP (llow <ly+ ;&- — Z;xt(gt) <lhigh VE=1,... ,T) >1—c¢
(€Y >0 Pas. VYPeP=, t=1,....,T

Note that (48) is an infinite dimensional problem since the control decisions x;(-) are generic measurable
functionals of the uncertain inflows. To reduce the problem complexity, we focus on policies that are

affine functions of 5 . Thus, we optimize over affine disturbance feedback policies of the form
() =20 + 2] P€ Vi=1,...,T, (49)

where 0 € R, 2; € R* and P; : RT — R! is a truncation operator that maps € to €. By focusing on
affine control policies we conservatively approximate the infinite dimensional dynamic problem (48) by
a problem with a polynomial number of variables, namely, the coefficients {x?, x;}7_,. For more details
on the use of affine control policies in robust control and stochastic programming, see, e.g., Ben-Tal et
al. [3], Chen et al. [10], and Kuhn et al. [15].

By applying now standard robust optimization techniques [3], the requirement that x;(£') > 0 holds

almost surely can be expressed as

D +axPE>0 VEeE

— 0<min{al+a/P& :1<€<
_snel]g%{xt*'mt 13 _€_U}
= OS)\maXT{:E?+mtTPtu+)\tT(l—u) t A >Play, A >0}
tER
— INERT V4] Piu+ AN (1 —u)>0, A\ >Plxi, A >0.
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By substituting (49) into (48) we thus obtain the following conservative approximation for (48).

T
maximize E ct (:E? + wIPtu)
t=1

subject to A, e RT, ax, e R! Vt=1,...,T

t t
lo — lnigh + Z& - (Zx? + :clTPlé> <0 Vt=1,...,T (50)
]Ping' P i?l ijl Z 1—¢
€P= ~ ~
how — lo —Zfﬂ— (Zxﬁﬂ—mfPﬁ) <0 Vt=1,...,T
i=1 i=1
)+ P+ A (1 —u) >0 i1 7

At >Plz, A >0

Note that the joint chance constraint in (50) involves 27" inequalities that are bilinear in the decisions
{z:}1_, and the random vector €. Problem (50) can therefore be identified as a special instance of
problem (4) and is amenable to the approximation methods described in Section 3. In the remainder of
this section, we compare the performance of these approximation methods.

In the subsequent tests, we set T' = 5, lgp = 1, ljoy = 1, and lpjgn = 5. The mean value of g} is
assumed to be 1, while its standard deviation is set to 10%, over all time periods. Furthermore, we set
the correlation of different stochastic inflows to 25% for adjacent time periods and 0% otherwise. Finally,
we assume that = = [0,2]7. All tests are run for a range of reliability levels ¢ between 1% and 10% in
steps of 1%.

We first solve problem (50) using the Bonferroni approximation by decomposing the joint chance
constraint into 27" individual chance constraints with reliability factors ¢; = €/(2T) for i = 1,...,2T.
The resulting optimal objective value is denoted by V2, and the associated optimal solution is used to
initialize Algorithm 3.1. We run the algorithm using the Worst-Case CVaR approximation as well as the
approximation by Chen et al. described in Section 3.2. We denote the resulting optimal objective values
by VM and VY, respectively. In both cases the algorithm’s convergence threshold is set to v = 1076.
All SDPs arising from the Worst-Case CVaR approximation are solved with SDPT3 using the YALMIP
interface [16], while all SOCPs arising from the Bonferroni approximation and the approximation by
Chen et al. are solved with MOSEK using the algebraic modeling toolbox ROME [13].

Table 1 reports the optimal objective values and the improvement of VM relative to VU and VB.
As expected, all three methods yield optimal objective values that increase with e because the joint
chance constraint becomes less restrictive as € grows. At ¢ = 1% the objective values of the different
approximations coincide. However, VM exceeds VU and VB for all the other values of €. In this particular
example, our method outperforms the Bonferroni approximation by up to 25% and the approximation
by Chen et al. by up to 12%. Table 1 also reports the runtimes of the different algorithms. All instances
based on the Worst-Case CVaR approximation are solved in less then 20 seconds, while the instances

based on the approximation by Chen et al. and the Bonferroni approximation are solved in less then 5
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e VM [ VU [ VB [ (VI-VO)VU [ (VI —VB)/VE| R™ | RU | RP
1% | 443 | 443 | 44.3 0.0% 0.0% 218 | 2.50 | 0.82
2% | 44.9 | 44.3 | 44.3 1.4% 1.3% 17.47 | 2.51 | 0.82
3% | 494 | 44.4 | 44.3 11.3% 11.4% 14.99 | 4.19 | 0.81
4% | 52.4 | 46.7 | 44.5 12.2% 17.6% 14.14 | 4.17 | 0.82
5% | 54.5 | 49.0 | 45.2 11.2% 20.5% 15.79 | 4.18 | 0.81
6% | 56.3 | 50.9 | 46.0 10.6% 22.5% 17.30 | 4.24 | 0.82
7% | 57.8 | 53.0 | 46.7 9.1% 23.6% 15.98 | 4.54 | 0.86
8% | 58.9 | 54.7 | 47.3 7.7% 24.5% 13.82 | 4.62 | 0.82
9% | 59.9 | 56.0 | 47.8 7.0% 25.2% 17.70 | 4.16 | 0.82
10% | 60.7 | 57.1 | 48.8 6.3% 24.5% 14.29 | 4.24 | 0.81

Table 1: Optimal objective values of the water reservoir control problem for the Worst-Case CVaR approximation (VM)7 the
approximation by Chen et al. (VV), and the Bonferroni approximation (V Z). The table also reports the percentage gaps (V™ —
VY /vY and (VM — VB)/VE as well as the runtimes for the three algorithms (R™, RY, RP) in seconds.

and 1 seconds, respectively. Thus, as expected, the improved solution quality offered by the (SDP-based)

Worst-Case CVaR approximation over the two (SOCP-based) benchmark approximations comes at an

increased computational overhead.
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A Worst-Case Expectation and Probability Problems

Lemma A.1 Let f:R*¥ — R be a measurable function, and define the worst-case expectation Owe as

e = supEz ((/(€))7).

PeP

where P represents the usual set of all probability distributions on R* with given mean vector p and

covariance matriz 3 > 0. Then,

e = inf (M) : Mo, [T M[ETT 2 4(e) vee R,

where Q is the second-order moment matriz of €.

Proof: The worst-case expectation . can equivalently be expressed as

ewc = sup maX{Ov f(E)}M(dE)

peEM Rk

s. t. /R u(dé) =1

' (51)
/ £u(de) = p
Rk

/R E€Tu(dE) = 5+ ",

where M, represents the cone of nonnegative Borel measures on R¥. The optimization variable of the
semi-infinite linear program (51) is the nonnegative measure p. Note that the first constraint forces p
to be a probability measure. The other two constraints enforce consistency with the given first- and
second-order moments, respectively. We now assign dual variables 1o € R, y € R*, and Y € S* to the

equality constraints in (51), respectively, and introduce the following dual problem (see, e.g., [25]).

inf yo+y p+ (Y, S+ pp')
s.t. y€eR, yeRF, Yesk (52)

Yo+ y' &+ (Y, €€7) > max{0, f(&)} V&€ eRF

Because X > 0, it can be shown that strong duality holds [14]. Therefore, the worst-case probability Oy

coincides with the optimal value of the dual problem (52). By defining the combined variable

Y

ST
<

yT Yo

(SIS
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problem (52) reduces to

inf (Q,M)
MeSk+1 (53)

st [€T1]M[eT1]" > max{0, f(£)} V&€ RE.

Note that the semi-infinite constraint in (53) can be expanded in terms of two equivalent semi-infinite

constraints.

€T 1]M[eT1] >0  VEeR (54a)

[ETYM[eT1]" > f(6) VEeR: (54b)
Since (54a) is equivalent to M 3= 0, the claim follows. |

Lemma A.2 Let S C R* be any Borel measurable set (which is not necessarily convez), and define the

worst-case probability Ty as

Twe = SUP ]P’{é € S}, (55)
PeP

Then,
e = inf {(@M) : M0, [€T1M[T1] =1 vges).

Proof: The proof is due to Calafiore et al. [7], see also Zymler et al. [29]. A sketch of the proof is

provided here to keep this paper self-contained. Define the indicator function of the set S as

1 ifges,
Is(§) = 1

0 otherwise.

The worst-case probability problem (55) can equivalently be expressed as

Twe = sup / I (€)(d€)
peEM L Rk
s. t. /]Rk u(dé) =1
/ €u(de) = p
Rk}

/R EET() = 2+ "

By dualizing this problem and applying similar manipulations as in the proof of Lemma A.1 we obtain

the postulated result. [ |
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