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Abstract

Fundamental approaches to modelling the control of a car by a driver are reviewed

briefly. The context of the work presented is explained. Then, previous research on the

application of optimal linear preview control to aspects of driving road vehicles is extended.

This prior research treated the tracking of a roadway by a vehicle and driver at constant

forward speed and the tracking of a speed demand while running straight. The two previ-

ously separate problems are now combined, so that longitudinal and lateral path demands

are considered in parallel. A new feature is that low-pass filters are included in the driver

modelling, to represent driver bandwidth limitations. This feature enables the finding of the

influence of the driver’s control bandwidth on the optimal strategies and on the closed-loop

system performance, by way of frequency-response calculations. A new optimal preview

control toolbox is employed. Simulations of the virtual driver-controlled car are shown to

demonstrate the closed-loop system following longitudinal and lateral position demands.

Keywords: Road vehicle, car, driver, preview, tracking control, optimal, simulation
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1 Introduction

The work described is part of a research programme to create a practical virtual racing driver.

Practicality implies both fast computation and the ability to fully exploit the potential perfor-

mance of a realistic contemporary high-level racing car. The part of the programme considered

here involves the extension of previous separate works on longitudinal control [27, 29] and

lateral control [25, 26, 28, 30, 34] to combined longitudinal and lateral controls. Recent work

on the computation of optimal linear H2 preview controls, including the writing of a MAT-

LAB toolbox [11, 12] see http://code.google.com/p/preview-control-toolbox/, is also newly

exploited.

It has become the conventional wisdom that effective driving involves using information

from ahead of the vehicle for control purposes [10, 14, 17], so-called preview, model predictive

or receding-horizon control [4, 5]. At the level of common experience, one only has to imagine

trying to drive in the dark with headlights which illuminate the road only to the side of one’s

vehicle, to appreciate the loss of facility implied by lack of preview information.

Although nonlinear model predictive control (NMPC) theory has been developed and used

extensively [4, 5, 20, 21], general truths about optimal preview control come more readily from

linear theory. Among these truths are that:

1. beyond a preview extent that is problem-dependent, the returns available from increasing

the preview available diminish towards zero. Thus it is possible to approximate the

controlled system quality obtainable with infinite preview to an arbitrarily small degree

by using finite-horizon control;

2. tight controls can be designed by weighting tracking accuracy highly and control power

only a little, and conversely. Optimal linear preview control is not one scheme but is one

of a whole family of schemes, for a given problem;

3. tight control can be characterized as requiring relatively short previews and yielding

relatively large control efforts and conversely;

4. optimal linear quadratic preview controls for time-invariant systems are of state-feedback

form and can be found off-line. The state which is fed back is that of the plant augmented
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with a shift register or delay-line, thus involving the preview information;

5. near-perfect tracking occurs with optimal linear systems within a frequency range that

extends as the control tightness increases.

The dynamics of a racing car can be described as follows. Primary interest from a control

viewpoint is in the longitudinal and lateral dynamics. Longitudinal control is mainly exercised

by throttle and brake controls, while lateral control comes from the steering system. It is con-

ventional to think of the throttle displacement, the brake pedal pressure and the steering wheel

displacement as being the significant control inputs. The longitudinal dynamics are simpler

than the lateral dynamics [25–30, 34] but both must be considered together in treating the

general manoeuvring problem. The dynamic characteristics of the race-car vary strongly with

speed. Within an operating range around the straight-running state, a linear representation of

a (good) car is expected to be accurate. As manoeuvring severity increases, tyre shear forces

saturate in a smooth and progressive manner. Near to saturation, shear forces depend on the

frictional coupling between the tyres and the ground and longitudinal and lateral forces are in

competition for the available friction. Controls derived assuming linearity are expected to work

well for gentle manoeuvring and not so well for limit operation. A racing driver can be expected

to know the dynamics of his/her car perfectly. Optimality of controls is vital. Robustness is

not so important.

Neglecting practical issues relating to computing time, standard NMPC theory would pro-

vide virtual racing driver designs straightforwardly [18]. Such theory involves the parametriza-

tion of the path ahead of the vehicle and of the control history within the preview/control

horizon. Then, at each computational step, a high-dimension nonlinear optimization problem

has to be solved on-line. Convergence to the global optimum is not guaranteed and results are

largely hidden from view. From any solution obtained, only the first step is used for control.

The process is slow and extravagant. Compromise between accuracy of solution and speed of

computation is essential.

Methods for simplifying NMPC calculations include:

1. shortening the preview and control horizons. Such shortening reduces the dimension

of the optimization problem and thereby speeds it up. However, using foreshortened
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previews may spoil the results, even yielding instability for the controlled system [4, 5].

In the limit, single-point preview and a single control level may be employed but the

results are likely to be poor [10];

2. linearising the plant model to ease the computation of controls [14];

3. using a simplified plant model for control-design purposes [3, 6–9]. The simplified-plant-

model approach is especially attractive if an approximation to the plant having particular

simplifying characteristics can be found. For example, a kinematic vehicle, with pure-

rolling tyres, may allow its states and inputs to be deduced from a knowledge of its outputs

and their derivatives, so-called differential flatness [6–9]. Basing the control system design

on a very simplified plant appears to be risky. Nevertheless, many examples of successful

(virtual) tracking events incorporating such simplifications can be found in the literature.

It should be noted, however, that modest tracking capabilities are easy to realize, while

racing-driver performance levels are very high and will not be achieved readily.

In the view of the authors, an optimal racing lap is one in which the driver always operates

the car in the neighbourhood of a trim state. This suggests that a good way to obtain the

desired balance between speed of computation and vehicle control capability is to employ off-

line-computed optimal linear controls, with adaptation to deal with the progressive and smooth

saturating nonlinearity of the car. In this schema, the theoretical driver pulls from memory a

control design that is appropriate to current operating conditions, which we imagine is exactly

what real drivers do. Each control design is optimal for a trim, which is close in state-vector

terms to the current state of the vehicle. However, adaptation of the controls to the operating

circumstances is not discussed further in this paper. That topic is covered elsewhere [35, 36].

Here, previous work on small-perturbation dynamics is developed through a car model which

incorporates both throttle and steering actuators, with saturating engine and tyre shear force

capabilities, and a control objective that includes longitudinal and lateral path tracking quality,

according to a time schedule, together with control power minimization. Trim states, about

which small perturbations are considered, include both straight-running, involving left/right

symmetry, and cornering conditions without symmetry.

Although high-performance is the main aim, we take the opportunity to include driver
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response delay in the model, by incorporating second order Butterworth low-pass filters within

throttle and steering actuators. Performance degradation associated with driver shortcomings

is of interest in the engineering of production cars [14, 17, 37] and slowing of driver actions

surely represents one such degradation. This inclusion affords a new opportunity to study the

influence of driver delays on the optimal control laws and the closed-loop system performance.

In the next section, the car model is described. This is followed by a brief outline of the

optimal preview control theory employed. Then, we describe the use of open-loop simulation

runs to find trim or dynamic equilibrium states for the vehicle, both for straight-running

where left/right symmetry exists and for cornering, where the symmetry is broken. Optimal

controls for both classes of trim state are discussed and the influences of driver lags highlighted.

Simulations of the closed-loop longitudinal and lateral path-tracking system are described and

finally conclusions are drawn.

2 Vehicle Model

The car model is built using the multibody-modelling software VehicleSim R©, formerly called

AutoSim [15, 22, 33], also see http://www.carsim.com. The starting point for any VehicleSim-

based model building is an inertial reference frame. The first added body is allowed to move

with up to six degrees of freedom with respect to the inertial frame. Children bodies of this,

or any other body present, can be added, with a description of the freedoms permitted to this

new body, relative to its parent body. In the nominal configuration of the system, the point

common to both parent body and child body, names for the mass and inertia elements etc. need

to be defined. The symbolic equations of motion are derived via Kane’s equations, which are

based on the principle of virtual power [23]. Points can be defined in bodies. These are most

often fixed points in the bodies to which they belong but they may be specified as ”moving”,

with their locations specified by coordinates in a defined reference system. Forces with given

magnitudes and directions can be applied to points and reacted to choice. Alternatively, a strut

following a force law can be defined as acting between two points, in which case, the direction

of the force is that of the line joining the points. Moments with magnitudes and directions can

be defined as acting between bodies.
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New state variables can be added to a model and they can be made integral functions

of existing variables. Differentials with respect to time and partial differentials of variables

can be defined. Abs, ifthen, max, min and sign functions can be used, allowing discontinuous

actions, like tyres leaving the ground and limit stops being contacted, to be modelled easily.

The analyst can define how discontinuous functions are to be differentiated. Alternatively, the

model can be made continuous for linearization purposes by restricting its range of operation.

Equations are prepared in the form:

[S(q, t)] q̇ = ν (q, u, t) kinematics (1)

[M(q, t)] u̇ = f (q, u, t) dynamics (2)

in which S and M are matrices, ν is a vector function, q is the generalized displacement vector,

u is the generalized speed vector and f is the force vector. Equation 1 defines the geomet-

ric relationships between the generalized coordinates and generalized speeds, while equation

2 defines the equations of motion. These equations, required parameter values and desired

outputs can be written by VehicleSim into a simulation code, with the aid of a “C” or “FOR-

TRAN” compiler, or they can be linearized for small perturbations about a general trim state

and written into a MATLAB “M”-file. Typically, for linear analysis, the nonlinear simulation

program is used to find trim states and the equilibrium values of states and inputs are passed

to MATLAB to set up the numerical state-space form of the linear system equations.

The car model consists of the bodies and freedoms shown in Figure 1. The chassis has all

six degrees of freedom. Each wheel is suspended by a transverse swing axle, having a pivot axis

location which is quite general, allowing the representation of any desired small-perturbation

lateral properties. Geometric parameters are chosen to position the suspension roll centres [2]

at ground level in the nominal state. The longitudinal properties are simple. The suspension

geometry is illustrated by Figure 2, while a side-view of the car is shown in Figure 3.

Each front wheel steers around a nominally vertical axis, with a small offset, the mechanical

trail, forwards from the wheel centre. A simple steering system includes a steering wheel,

whose displacement is given by the output of the relevant low-pass filter. The steering wheel

displacement combines with the pinion rotation to determine the torque in the steering column,
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inertial body lp_butter2

s: translate (x, y, z); 
rotate (z, y, x)

engine map

throttle pedal 
displacement demand

same torque to each rear wheel

lmb: rotate (x) rmb: rotate (x)lhc: rotate (x) rhc: rotate (x)

rhc: rotate (z)lhc: rotate (z)lwhl: rotate (y) rwhl: rotate (y)

lwhl: rotate (y) rwhl: rotate (y)

steering wheel: 
rotate (x)

lp_butter2

steer angle demand

pinion: rotate (x)

frontrear

linked to pinion by 
torsion rod

Figure 1: Bodies and freedoms included in car model. Low-pass filters associated with throttle
and steering actuators, to represent driver response delays are also shown. mb means “massless
body”. hc means “hub carrier” and whl means “wheel”. The steering wheel is linked to the
pinion by a torsion rod, which, in turn, is linked to the front hub carriers by torsion springs
through a gear ratio. l means “left” and r means “right”.

rw

w

zg

rw

w

G, mass centre

O

wheel wheel
hub carrier hub carrier

Figure 2: Diagrammatic view of car suspension from rear. The instantaneous centre of rotation
of each wheel is at ground level on the car’s centre-line.
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Figure 3: Diagrammatic view of car from right side.

with the pinion linking to each front hub carrier through a gear ratio and torsion rod.

The throttle pedal displacement is treated like the steering wheel angle, with the pedal

displacement combining with the engine speed to yield an output torque, that is divided equally

between the rear wheels. In the linear model, pedal displacement and steer angle demands are

the inputs. Front and rear anti-roll bars are included and simple aerodynamic drag, 0.5CdρAV
2,

and lift forces, 0.5ClfρAV
2 and 0.5ClrρAV

2, act on the chassis. Cd, Clf and Clr are coefficients,

ρ is air density and V is the car speed. Bump-steer is included at each wheel station, to the

extent that suspension displacement influences the lateral slip ratio for the appropriate tyre,

thereby affecting the tyre force system. Parameter values specifying the car and tyres in detail

represent a typical contemporary European family saloon. Car parameters are given in Table 1.

Tyre shear forces and moments are represented by a combined-slip model that uses a com-

bination of the well-known “Magic Formula” [16] and normalization [24, 31, 32]. The model

deals realistically with completely general running conditions. Pure-slip longitudinal and lateral

forces are illustrated in Figure 4.

The engine torque output, χ, is described by throttle-opening and engine-speed functions

of “Magic Formula” form:

χ =
Ds

ω
sin [arctan (Btdg − Et (Btdg − arctan (Btdg)))] ·

sin [Cs arctan (Bsω − Es (Bsω − arctan (Bsω)))] (3)
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Parameter Symbol Value, SI units

Chassis

Mass M 1355.6
Mass centre (xg, yg, zg) (0.291,0,-0.576)
Trail t 0.0192
Wheelbase l 2.695
Front half-track wf 0.765
Rear half-track wr 0.7375

Inertias





Isxx 0 Isxz

Isyy 0
sym Iszz









343.6 0 −98.0
2152.1 0

2208.5





Hub carrier (each)

Mass mhc 30
Inertias (ihx,ihy,ihz) (0.77,0.1,0.77)

Road wheel (each)

Radius rw 0.3
Spin inertia iwhly 0.653

Aerodynamics

Drag coefficient Cd 0.35
Lift coefficient Clf 0.1
Lift coefficient Clr 0.16
Cross-section A 2.0
Air density ρ 1.227

Stiffnesses

Steering column kst 1500
Pinion to wheel kp 15000
Front suspension kfsus 19480
Rear suspension krsus 16800
Tyre (each) ktyr 180000
Front sway bar kfsb 11000
Rear sway bar krsb 5000

Damper coefficients

King-pin cst 10
Pinion cpin 16
Front suspension cfsus 1500
Rear suspension crsus 1500
Tyre (each) ctyr 800

Miscellaneous

Pinion spin inertia ipin 0.1
Steer ratio Gr 15.35
Crank/car speed ratio Gc 11.72
Front roll steer ratio ǫf -0.0262
Rear roll steer ratio ǫr 0.0087

Table 1: Symbols and parameter values of the car.
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Figure 4: Longitudinal (left) and lateral (right) tyre forces associated with variations in load
and longitudinal or lateral slip ratio respectively, for zero camber angle. Tyre parameters used
come directly from [32].

in which Bs, Cs, Ds and Es are engine-speed-shaping and Bt and Et are throttle-opening-

shaping parameters, dg is the throttle opening ratio and ω is the engine speed in rad/s. Engine

torque output is limited to positive values and is shown in Figure 5 as a function of speed and

throttle opening. If the throttle opening becomes negative, proportional braking torques are

applied to each road wheel in the ratio 70 percent front, 30 percent rear. Left and right wheels

are treated equally with respect to braking.
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Figure 5: Engine torque output as a function of engine speed and throttle opening. Parameter
values are Bs=0.0014, Cs=1.6, Ds=100000, Es=-8, Bt=1.8, Et=-12, see equation 3.

10



3 Optimal Linear Preview Control Theory

In studies of preview steering control already completed, a linear vehicle model is arranged to

include the absolute lateral displacement of its reference point as a state and to have steering

torque or steering displacement as a primary control input. The model is put into discrete-

time form, using a time step of T say. Through each time step, the vehicle travels V T where

V is the specified speed. A roadway lateral profile is defined by discrete points V T apart

longitudinally in the inertial reference system, so that all the road profile points in front of the

vehicle approach it by V T through each time step. In this inertial reference system, illustrated

in Figure 6, the road dynamics are those of a shift register or delay line and the equations

describing these dynamics are of the same form as the equations of the vehicle. The two sets

of equations are combined to yield a composite system, with its state-vector having a partition

for the vehicle and a partition for the road. At this first stage, there is no coupling between

the parts.

car

ψc

xc

O fixed x-axis

roadyr0

V.T

yr1
yr2

yr3
yr4

fixed y-axis

yc

Figure 6: Diagrammatic representation of a car tracking a road at constant speed, with the
whole system referenced to ground. Such a description implies that the road sample values
pass through a serial-in, parallel-out shift register operation at each time step. The dynamics
of the shift register are easy to specify mathematically.
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Suppose the discrete-time linearised vehicle equations are:

xv(k + 1) = Avxv(k) + Bvτ (k) (4)

yv(k) = Cvxv(k) (5)

with discrete-time counter k, vehicle state vector xv and control input τ , and let the road

equation be:

ηr(k + 1) = Arηr(k) + Brηrn(k) (6)

with (2n x 1) road state ηr and road sample values that enter the system at time kT being

the (2 x 1) ηrn, 2 being the number of previewable disturbances and n being the number of

preview steps included. In the present case, the input is:

τ (k) = [dg θs]
T (7)

dg being throttle pedal displacement and θs being steering wheel angle. ηrn here represents

both x-displacement and y-displacement demands.

To represent the road shift register process, Ar is (2n x 2n) and has the form:

Ar =

























02 I2 02 . . . 02

02 02 I2 . . . 02

...
...

...
. . .

...

02 02 02 . . . I2

02 02 02 . . . 02

























(8)

and Br, corresponding to the two previewable disturbances, is (2n x 2) and has the form:

Br =







0 0 0 0 0 0 . . . 1 0

0 0 0 0 0 0 . . . 0 1







T

(9)

Here, 02 is a (2 x 2) zero matrix while I2 is a (2 x 2) identity matrix.
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Combining vehicle and road equations together, the full dynamic system is defined by:







xv(k + 1)

ηr(k + 1)






=







Av 0

0 Ar













xv(k)

ηr(k)






+







Bv

0






τ (k) +







0

Br






ηrn(k) (10)

which takes the standard discrete-time form:

z(k + 1) = Az(k) + Bu(k) + Eηrn(k) (11)

y(k) = Cz(k) (12)

If ηrn contains samples from two uncorrelated white-noise random sequences, the time-

invariant optimal control which minimizes a quadratic cost function J , given that the pair

(A,B) is stabilizable and that the pair (A,C) is detectable [1], is:

u∗(k) = Kz(k) (13)

where K = −
(

R + BTPB
)

−1
BTPA, given that the cost function J is:

J = lim
n→∞

n
∑

k=0

{zT (k)Qz(k) + uT (k)Ru(k)} (14)

and P satisfies the matrix-difference-Riccati equation:

P = ATPA − ATPB
(

R + BTPB
)

−1
BTPA + Q (15)

Here Q = CTqC and q is a diagonal weighting matrix, diag[q1, q2, . . .], with terms correspond-

ing to the number of performance aspects contributing to the cost function, and R is a (2 x 2)

diagonal weighting on the control inputs, throttle pedal displacement and steering wheel angle.

C is chosen such that the quadratic term zT (k)Qz(k) in the cost function J penalizes the sum

of the squares of the differences between the (x, y) coordinates of the car’s reference point and

the corresponding (x, y) of the road, over the optimization horizon. Since there are only these

two aspects of performance in the cost, q is (2x2).
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Calculation of the optimal controls is non-trivial [11, 12]. In previous work involving only

a single input signal, a method described in [13, 19, 29, 30, 34] was employed but it is now

preferred to use Hazell’s MATLAB Toolbox. The Toolbox requires only the setting up of

the standard state-space (A, B, C, D) matrices, the setting of weights on tracking errors and

control efforts, and the calling of special functions, for the optimal controls to be revealed.

The problem structure and optimal controls are illustrated in Figure 7. The preview gains K2

inevitably fall to zero as the preview distance increases, so that the number of preview points

included can be chosen, by trials, so that effectively the full benefit available is obtained. This

is referred to as “full” preview. Only full preview control is of interest in the present context.

xdem

ydem
car with 
low-pass 
throttle 

and steer 
actuators

K1

K2

car states

xc

yc

shift register; n = 14

throttle
steer

ψc

Figure 7: Structure of the two-control, x- and y-input preview tracking system. xdem and
ydem are the previewable longitudinal and lateral displacement signals. K1 represents the full
car-state feedback, while K2 represents the preview control, in the form of feedback of the shift
register states.

4 Optimal Controls

Examples of optimal controls are shown in this section. Each set of controls generated requires

choices of:

1. the trim state from which small perturbations are considered to occur;

2. the time step to be used in the problem discretization;

3. x- and y-tracking error weights;
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4. control power weights relating to throttle displacement demand and steering wheel angle

demand;

5. the number of preview points to be used. In this work, the last is always chosen, by trials,

to give full preview.

With the following somewhat arbitrary choices, sampling interval = 0.01 s, straight-running

at 35 m/s, x-weight and y-weight of 50; throttle displacement weighting 50 and steer angle

weighting 1, the main feedback controls for driver filter bandwidths, ωn, of 3.15, 12.6 and

50.4 rad/s are shown in Figure 8. The left/right symmetry of the straight-running trim state is

matched by symmetry in the feedback gains, shown in connection with variables 2 and 3 and

with 4 and 5 in the lower part of the figure. The symmetry implies complete decoupling at first

order of the longitudinal and lateral problems, so that x-errors lead to zero preview gains in

respect of the steering system and y-errors lead to zero preview gains relating to the throttle

control. Such preview gains are shown in Figure 9.

Feedback gains are influenced systematically but not dramatically by the control bandwidth.

The gains are usually largest for the slowest-responding “driver”. Preview controls change only

a little with changes to the driver bandwidth when the driver dynamics are fast relative to

those of the car. As the driver becomes slower than the car, the gain sequence is “stretched”

longitudinally. More preview is utilized to compensate for the system delay, which result can

be expected intuitively.

Results belonging to a cornering trim state are now generated. The trim state chosen is for

a speed of 17.54 m/s, a lateral acceleration of 7.22 m/s2 and a body roll angle of -6.46 ◦. Tyre

loads, lateral forces, normalized slips, longitudinal slip ratios and lateral slip ratios for the trim

state are shown in Table 2. The tyre shear-force model has the potentially useful property that

the normalized slip is directly related to the adhesion utilization, that is, the extent to which

the tyre to road friction is being used. Peak shear force is obtained for the tyre-normalized-slip

parameter λn=2.325 [32], so that the front right (inside) tyre, with normalized slip 5.644, is

operating on the declining part of the shear-force curve. It is peripheral to the present purpose

but the trim condition shows the case for anti-Ackermann steering geometry, which would allow

the adhesion utilization of the two front tyres to be more nearly equal.
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Figure 8: Main feedback control gains for a representative straight-running trim state at 35
m/s, with Q = [50 0; 0 50] and R = [50 0; 0 1] and three values for the driver filter cut-off
frequency, ωn. Variables fed back to the throttle demand are: 1=body pitch angle, 2=throttle
filter “position”, 3=throttle filter “velocity”, 4=vehicle speed. Variables fed back to the steering
demand are: 1=body roll angle, 2=front right suspension deflection, 3=front left suspension
deflection, 4=rear right suspension deflection, 5=rear left suspension deflection, 6=steer filter
“position”, 7=steer filter “velocity”, 8=lateral velocity, 9=yaw velocity.
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[50 0; 0 1] and three values for the driver filter cut-off frequency, ωn. Steering gains for x-errors
and throttle gains for y-errors are zero by symmetry. These are omitted from the figures in the
interests of clarity.
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The left/right symmetry has gone, so the longitudinal and lateral problems are cross-coupled

and the optimal controls are more complex than before, see Figures 10 and 11. The control

computations involve the same weightings as above, with ωn = 12.6 rad/s. The high gain

associated with pitch angle feedback to steer angle is surprising. Throttle displacements in

response to lateral position errors are not much smaller than those deriving from longitudinal

errors. The extent of the steer angle desired in response to a longitudinal position error is quite

large for this particular trim state, involving high lateral acceleration.

tyre load side-force λn κ α

front right 828 N 731 N 5.644 0 0.2220
front left 7531 N 6268 N 2.382 0 0.2141
rear right 1790 N 1240 N 1.340 0.0329 0.0505
rear left 4226 N 2690 N 0.8440 0.0096 0.0488

Table 2: Tyre loads, tyre side-forces, normalized slips, long-slips and side-slips for cornering
trim state at 17.54 m/s speed and 7.22 m/s2 lateral acceleration. λn is normalized slip, κ is
longitudinal slip ratio, α is lateral slip ratio.

The tracking capabilities of the closed-loop system can be demonstrated by calculating

frequency responses [27, 29, 30]. We imagine demanding a small-amplitude sinusoidal pertur-

bation on the steady motion in longitudinal or lateral direction and calculate the sustained

response of the driver-controlled system to such a demand. The frequency of the perturbation

is varied over a range and the calculations repeated. Results are represented in Bode diagram

form, showing gain and phase against circular frequency. The input to the closed-loop system

is at the furthest extent, from the car, of the preview. That is, it is at the preview horizon. The

car is required to track what the driver can see at the horizon. It will take some time for the car

to arrive at the preview horizon, so that perfect tracking is indicated by a gain of unity and a

phase lag corresponding to the transport delay. This phase lag amounts to 180nTω/π ◦, where

n is the number of preview points, T the discrete time step and ω is the circular frequency

of the perturbation. Results are shown firstly for perturbations from a straight-running trim

state with speed of 35 m/s, driver filter bandwidths of 3.15, 12.6 and 50.4 rad/s, Q = [50 0; 0

50] and R = [50 0; 0 1] and 500 preview points, Figures 12 and 13. Figure 12 relates to the

longitudinal response of the car to an x-displacement demand, while Figure 13 relates to the

lateral response to a y-displacement demand.
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Figure 10: Main feedback control gains for a representative cornering trim state at 17.54
m/s speed and 7.22 m/s2 lateral acceleration, with Q = [50 0; 0 50] and R = [50 0; 0 1].
Variables fed back to the throttle demand are: 1=body bounce displacement, 2=body pitch
angle, 3=body roll angle, 4=throttle filter “position”, 5=forward velocity, 6=lateral velocity,
7=bounce velocity, 8=yaw velocity, 9=pitch velocity. Variables fed back to the steering demand
are: 1=body bounce displacement, 2=body pitch angle, 3=body roll angle, 4=front right
suspension deflection, 5=front left suspension deflection, 6=rear right suspension deflection,
7=rear left suspension deflection, 8=forward velocity, 9=lateral velocity, 10=bounce velocity,
11=yaw velocity, 12=pitch velocity.
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Figure 13: Lateral frequency responses for driver-controlled car linearized around a straight-
running trim state at 35 m/s, with Q = [50 0; 0 50], R = [50 0; 0 1] and 500 preview points,
for three driver bandwidths.
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Longitudinally the tracking is perfect for frequencies below 0.4 rad/s and there are no sig-

nificant differences between the three systems until the input frequency is 2 rad/s. Then the

slowest system attenuates the input more than the others. The system phase lag is the same as

the transport lag until the input frequency reaches 2 rad/s. Laterally, the bandwidth is greater,

with almost perfect tracking for input frequencies below 1 rad/s. The slowest system is not as

good as the other two again beyond about 3 rad/s. As in the longitudinal case, attenuation is

a greater problem than phase distortion.

Secondly, the influence of the control tightness on the closed-loop system bandwidth is

illustrated by Figures 14 and 15. Here, the conditions are the same as for Figures 12 and 13

except that the driver-filter bandwidth is fixed at 12.6 rad/s and cases Q = [50 0; 0 50], Q =

[500 0; 0 500] or Q = [5000 0; 0 5000] are treated.
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Figure 14: Longitudinal frequency responses for driver-controlled car linearized around a
straight-running trim state at 35 m/s, with filter bandwidth 12.6 rad/s, 500 preview points
and R = [50 0; 0 1], for three levels of control tightness.
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Figure 15: Lateral frequency responses for driver-controlled car linearized around a straight-
running trim state at 35 m/s, with filter bandwidth 12.6 rad/s, 500 preview points and R =
[50 0; 0 1], for three levels of control tightness.
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If the tracking-error weights are increased beyond Q = [5000 0; 0 5000], little change

in performance occurs. Tight control will enable perfect tracking longitudinally for circular

frequencies below about 1.5 rad/s and laterally for circular frequencies below about 3 rad/s.

For higher frequencies than these, some attenuation will occur, with lesser problems associated

with phase distortion.

5 Tracking Simulation Results

To demonstrate the application of the optimal preview controls, tracking longitudinal and

lateral position target sequences by the driver-controlled car are simulated. Each sequence is

designed such that the car remains reasonably close to the trim state used in the generation

of the controls installed. The chosen trim involves straight-running and is that employed, with

ωn = 12.6 rad/s, to yield the corresponding results of Figures 8 and 9. Such a trim state

implies zero steer angle demand, side-slip and yaw rate, zero out-of-plane displacements and

a throttle displacement demand sufficient to maintain the speed against aerodynamic drag. It

also implies the car position and attitude angle at intervals of T, the discrete-time interval,

over the preview horizon, were the trim controls to be maintained. In a simulation run, the

differences between the car states and the trim states are used for feedback control and the

distances between the demanded path points and those points implied by the trim state are

used for preview control. Both of these controls are added to the trim values to yield the total.

Tracking a generally curved path is only feasible if the controls are transformed from the

inertial reference system in which they were established to the local reference system of the

car [25, 26, 28, 30, 34]. The x- and y-path data points describing the intended trajectory in

absolute terms are therefore transformed, at each time step in the simulation, into a driver’s-

view frame, accounting of course for the current vehicle position. Clearly the transformation

has to be done on-line. At each time step, the reference axes for the motion are re-located at

the car, which automatically zeros the displacements of the car, xc, yc and ψc, see Figure 6.

The loss of the corresponding feedback terms from the controls is exactly compensated by the

changes which occur in the preview errors due to the re-positioning of the axes, when full

preview is utilised. The control calculation process is illustrated by a snapshot of the car and
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road at a general point along the trajectory in Figure 16.

car
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road
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yr4

current y-axis

x x x xx

Vtrim.T

o

o

o

o
oxr0 xr1

xr2
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Figure 16: Illustration of control calculations for simulations in which the trim state involves
straight running. Points marked ’x’ are the points that the car’s reference point would pass
through if the trim controls were applied. The points marked ’o’ are those specified in the
path demand. Both sets of points are for time intervals T. Preview errors used for control
calculations are shown as (xri, yri) pairs.

The first tracking test involves a lane change manoeuvre, shown in the first part of Figure 17.

The car starts at the origin, parallel to the x-axis, at its trim speed of 35 m/s. The x-data points

describing the road are equi-spaced in time, while the y-data points are obtained by smoothing

a ramp/step sequence implying two sharp 5◦ direction changes with a fourth-order low-pass

Butterworth filter. The speed demand, originally 35 m/s throughout the simulation, therefore

varies a little near the direction-change stages. The controls installed are those obtained with

Q = [500 0; 0 500] and R = [50 0; 0 1] with 500 preview points. Aspects of the simulation

results are shown in Figures 18 and 19.

The tracking errors occurring in the lane change manoeuvre are near to zero in the y-

direction and reach to 0.0013 m in the x-direction, with 0.08 rad maximum steering wheel

angle being employed, yielding a maximum lateral acceleration less than 1m/s2. The throttle

opening varies a little around the trim value of 0.1 of full range and the car speed varies from

35 to 35.12 m/s. The transient response to the initial direction change is not completely over

before the second direction change is required, so the later part of the manoeuvre is not just a

mirror-image of the first.

In the second test, the car slows from its initial speed in order to traverse a hair-pin bend,

see the second part of Figure 17. Then, it speeds up again. The car starts from the origin and

initially follows a path parallel to the x-axis at its trim speed of 35 m/s. After 10 s, while still
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Figure 17: Paths used for tracking tests showing points at 2 s intervals along them.

travelling in a straight line, the car decelerates to approximately 22 m/s in 6 s until it reaches

the corner entry point. It then continues to decelerate for another 4 s to 15 m/s while following

the first quadrant of the hair-pin, which has a constant radius of 140 m. The speed is then

held constant until the apex of the corner is reached. After the apex, the car accelerates back

to its trim speed of 35 m/s in 25 s, this time tracking a constant radius of 250 m, eventually

exiting the corner and travelling in a straight line. In contrast to the lane change, the path

does not contain smooth transition curves which would reduce the need for high-bandwidth

system performance. Selected results are shown in Figures 20 - 24.

Tracking errors in the x-direction vary from -0.04 to 0.16 m, while those in the y-direction

range over -0.04 to 0.06 m. The steering control range is -0.2 to 0.7 rad, while the throttle

opening goes from 0 to 0.3 and the brakes are applied for a period of about 10 s. The car

body rolls in a somewhat oscillatory fashion with maximum roll angle about 3.5 ◦. The body

also pitches significantly with about one half of the roll amplitude, see Figure 22. Tyre loads

are shown in Figure 23 and the shear forces developed by the left-front and right-rear tyres

27



0 5 10 15 20 25
−0.1

−0.05

0

0.05

S
te

er
in

g 
an

gl
e 

(R
ad

)

 

 

Steering demand
from controller
Steering response
of driver after delay

0 5 10 15 20 25
0.08

0.09

0.1

0.11

Time (s)

T
hr

ot
tle

 p
os

iti
on

 

 

Throttle demand
from controller
Throttle response
of driver after delay

Figure 18: Time histories of steering and throttle controller demands and the delayed driver
responses to these demands in tracking the lane change. Note that no braking is necessary in
this case.
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Figure 19: Tracking errors for the lane change, using the same trim state for control design as
in Figures 8 and 9 with ωn = 12.6 rad/s and Q = [500 0; 0 500].
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Figure 20: x- and y-tracking errors for the hair-pin.
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Figure 21: Time histories of steering, throttle and brake controller demands (and the delayed
driver responses to these demands) required to track the hair-pin.

29



0 10 20 30 40 50 60 70
10

20

30

40

S
pe

ed
 (

m
/s

)

 

 

Speed demand
Actual speed

0 10 20 30 40 50 60 70
−4
−2

0
2
4
6

La
t a

cc
 (

m
/s

2 )

0 10 20 30 40 50 60 70
−0.08

0

0.05

Time (s)

A
ng

le
 (

ra
d)

 

 

Pitch
Roll

Figure 22: Selected motions for the hair-pin, using the same trim state for control design as in
Figures 8 and 9 with ωn = 12.6 rad/s and Q = [500 0; 0 500].
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Figure 23: Time histories of tyre loads when tracking the hair-pin.

are plotted in Figure 24. Modest braking forces from the tyres correspond to the braking-

control input. The balanced braking system and the free differential gear included in the car’s

final drive imply that the left-rear tyre longitudinal force is substantially equal to that for the

right-rear tyre.

6 Conclusion

The work described is motivated by a desire to construct a perfect virtual racing driver, initially,

for a flat and level circuit. The strategy used involves the adaptive employment of linear

optimal preview controls. Prior research has shown how such controls can be found and applied

when only one-dimensional tracking is required. Here, the previous work is extended to the

parallel two-dimensional x- and y-tracking problem for a representative production car with

realistic tyre forces. Optimal controls are shown for each of two trim states, one involving

straight-running with the left/right symmetry of the problem reflected in the de-coupling of

the controls, the other involving cornering, where there is no symmetry and the controls are
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cross-coupled. Throttle and steering actuators are given second-order-lag dynamics to represent

driver response-speed limitations and the influence of the bandwidth on the optimal controls is

illustrated. Two simulations of combined x- and y-tracking by a representative optimal driver

and car show typical motions and demonstrate the good operation of the closed-loop system.

Manoeuvre severity has been deliberately restricted in the cases covered, in recognition of the

limitations of linear controls. More severe manoeuvring, with high quality, are possible with

adaptive employment of linear optimal preview controls.
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