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Abstract 

 

Passing one electric-current pulse through deformed pearlitic steel wires at room temperature causes 

the formation of cementite particles around 30 nm in size. This is found not only in some particular 

locations but throughout the cementite area, which reveals a different mechanism from traditional 

spheroidization of cementite plates because the latter leads to the formation of particles with much 

large size. Transmission electron microscopy images show electropulse-induced strain relief and 

formation of fine precipitations. Differential scanning calorimetry analysis demonstrates the 

additional stored free energy by electropulsing treatment. The raised free energy accounts the 

increased interface area in finer microstructure of materials. The experiment evidences that the 

passing electric current in metal has alternated the free energy sequence of various microstructures in 

comparison with that of current-free system. 
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1. Introduction 

 

When metals carry electric current, their system free energy encloses an additional term G
e
 in 

comparison with the system without electric current but at the same state (constitution, temperature, 

pressure etc.). The method for computing G
e
 is derived from Maxwell Faraday equation and 

Maxwell Ampere law, and is presented in two different formats. One is to integrate the product of 

magnetic field B


 and magnetizing field H


 throughout the space 

  drHBGe


2

1
         (1) 

where r is a point in real space. Another format is to integrate the product of current density j


 and 

magnetic vector potential A


 inside conductive materials because 0j


 outside. 

  drAjGe

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Using the general solution of A


 in given current distribution j


, Eq. (2) can be represented by 
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where µ is the magnetic permeability. r  and r  are two different positions in metal, respectively. 

The reference state for Eq. (3) is at the infinite far away location.  

 

In microstructure transformation, which can be due to phase transition or structural relaxation, 

electrical conductivity of part or whole metal changes from one value to another. This causes the 

alternation of current distribution from 0j


 to 1j


, and hence the change of electric-current associated 

free energy eG . Using Eq. (3), it has 
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where the sub-index 0 and 1 represent the states before and after microstructural transformation. Eq. 

(4) shows that the passing electric current in metal affects thermodynamics of phase transformation 

and tends to generate the most negative eG .  

 

Quantitative calculation of eG  by Eq. (4) has been performed in nucleation [1], nanoscale crystal 

growth [2], microstructure damage recovery [3] and microscale crack healing [4]. It has been found 

that the free energy associated with electric current, eG , plays an important role when the current 

density surpasses 10
3
 A/cm

2
. The calculation explains the experimental observations in solidification 

[5, 6], amorphous alloy crystallization [7], crack healing in steels [8], solid phase transition [9, 10] 

and so on. Dolinsky and Elperin have applied Eq. (4) to conductor explosion [11] and solid-gas 

transition [12, 13]. The general conclusion after all of those calculations is that the passing electric 

current promotes the formation and growth of phase with higher electrical conductivity. Kinetically, 

it has been found that passing electric current can accelerate microstructure transformation [7, 14] 

and decrease the transition starting temperature [15-17]. Recently, Samuel et al reported the 

electropulsing-accelerated spheroidization of cementite plates in deformed pearlitic steels [18].  Both 

the thermodynamic and kinetic effects are proved different from ohmic heating and percolation. The 

application of pulsed electric current is to reduce the ohmic heating effect.  

 

Cold plastic deformation changes the electric conductivity of metals [19]. This is due to the change 

of microstructure of materials such as the generation and accumulation of dislocations, change of 

total amount of interface and grain edge [20], the stored strain and so on. The deformed 



 
 

microstructure is frequently at non-equilibrium state, but is unable to transform into the equilibrium 

state due to the kinetic barrier at low temperature. This situation provides with another ideal 

opportunity to study the effect of electropulse on microstructure transformation. From industrial 

point of view, the cold worked metals have many properties to improve. Exploration of the effect of 

electropulse on deformed metals is meaningful.    

 

2. Experimental procedure 

 

Commercial steel wires of chemical composition Fe-0.8C-0.2Si-0.5Mn (in weight %) were received, 

heat treated to form full pearlitic microstructure, and then cold-drawn to a true strain of 1.61 and cut 

into 30 mm length samples. A number of samples were put into the in-house designed electropulsing 

equipment for treatment, and their microstructures are examined and compared with those without 

electropulsing samples. The electric current pulse is damped-sinusoidal waveform. The highest peak 

density is 9.61×10
9
 A/m

2
. The first half-wave lasted 150 µs and the signal disappearing completely 

after 1800 µs due to damping. Only one electropulse was applied to the samples. Both the 

electropulsed and un-electropulsed samples were prepared by cutting along the longitudinal and 

cross sections, polished and etched in natal for metallographic analysis and sent to Carl Zeiss made 

Ultra-55 scanning electron microscope (SEM), JOEL made 2100F transmission electron microscope 

(TEM) and Netzsch STA-449C differential calorimetry for examination. The Vickers hardness was 

measured using a WOLPERT-425 SVD machine (UK Calibrations Ltd., Lancashire, UK) employing 

10-kg load for a dwell time of 10 s 

3. Results and Discussion 

 



 
 

Fig. 1 demonstrates the effect of electropulse on microstructures transformation of deformed pearlitic 

steel by SEM micrographs, where Fig. 1(a) is the microstructure before electropulse and Fig. 1(b) is 

the microstructure after an electropulse. The bright plates are cementite. Pearlite consists of 

alternating lamellae of cementite and ferrite but the latter is easier to dissolve in etching liquid 

because of its iron-rich composition. The images were taken from the longitudinal cut section. Fig. 

1(a) shows the elongated but integrated cementite plates. In Fig. 1(b), the cementite plates are 

fragmented into fine particles of around 30 nm in size and distributed homogeneously along the 

original cementite plates. This fragmentation is purely due to the effect of electropulse because the 

only different processing between two samples is the electropulse treatment.     

 

 

Figure 1 SEM micrographs of electropulse-induced microstructure transformation in pearlitic steel (a) 

before electropulse and (b) after electropulse. 

      

As is known from literature, cementite plates in pearlitic steels can be fragmented into small parts 

and spheroidized under static annealing at temperature above 580 C for a few hours [21].   The 

fragments are observed in an aspect ratio between 6:1 and 8:1, and the pre-processing by various 

deformations and annealing conditions did not change the aspect ratio [22]. The spheroidization is to 



 
 

reduce the total area of interface and hence to minimize the system free energy. A simple mathematic 

calculation reveals that the minimum average diameter of those spherical particles by annealing is 

three times of the thickness of the original plate. The volume of a particle with the minimum average 

diameter corresponds to a plate-shape fragment with aspect ratio 3.759:1. In observation of Fig. 1(b), 

it can be found that the particle size obtained by electropulse processing is smaller than the 

theoretical minimum particle size in annealing. This means that the passing electric current provided 

with extra free energy during the microstructure transformation and the latter enabled to generate 

extra interface area so that the particle size can achieve much finer than in thermal annealing. The 

extra free energy is provided by the electric-current associated free energy. This falls into the scope 

of Eq. (4) if the new phase is with higher electrical conductivity. Reduction of dislocation density 

and lattice distortion leads to the increase of electrical conductivity in most of the cases [23].   

 

The transmission electron micrographs are demonstrated in Fig. 2, where Fig. 2(a) is for the sample 

before electropulsing treatment and Fig. 2(b) is for the sample after electropulsing. Both are from 

cross sectional view. Fig 2(a) shows many dark fields in the noticeable white background of the 

ferrite matrix. Those dark fields are strain fields and contribute to the change of electric conductivity. 

Our measurement shows that the bulk electric resistivity of un-electropulsed sample is 2.1410
-7

 

m, while that of the electropulsed sample is 1.6410
-7

 m. This is in alongside the theoretical 

conclusion of that the high conductive phase is promoted to form on application of electropulse.  

 

Those noticeable contrast strain areas are disappeared in Fig. 2(b). This evidences the electropulse-

induced structural relaxation. Fig. 2(b) also shows some very fine precipitates on the surface of the 



 
 

lamellar structure, as highlighted by arrows. This is different from observations in the cementite 

spheroidization observed and described in isothermal annealing processes. 

 

 

 

Figure 2. Transmission electron micrographs in cross sectional view. (a) Before electropulsing;  (b) 

After electropulsing. 

 

Figure 3 shows the heat flow recorded using differential scanning calorimeter during (a) heating and 

(b) cooling cycles for the steel before (solid line) and after (dashed line) electropulsing. It can be 

seen clearly from Fig 3(a) that the area under the dashed line is larger than that of under solid line. 

This implies that the electropulsed sample has released more heat than the un-electropulsed sample 

during the DSC experiment. This means that the electropulsed sample is at higher free energy state in 

comparison with the sample without electropulsing treatment. Obviously, part of the excess energy is 

stored as the increased area of interface as demonstrated in Fig. 1(b). This is in agreement with the 

reported increase in free energy in plain carbon steel alloyed with Co, in which it was rationalized by 

the increase in ferrite cementite interfacial area [24]. The excess free energy, however, has been 



 
 

released at austenitizing temperature due to the lost of electropulse-induced structure. In the DSC 

cooling stage, both the electropulsed and un-electropulsed show that same behaviors, as illustrated in 

Fig 3(b). This is due the similar microstructure in both samples after austenitizing temperature.  

 

 

Fig. 3 Differential scanning calorimetric recordings for the cold-deformed pearlite before and after 

application of a pulse for the heating cycle. (a) heating (b) cooling. 

 



 
 

The Vicker’s hardness value of the samples before electropulsing was 415 HV10 while after 

electropulsing is 460 HV10. The increment of hardness reflects the effect of formation of finer grains 

in sample, which agrees with microstructure observation. It is worth to point out that heat treatment 

of drawn steel wire usually leads to the decrease of hardness due to the annihilation of dislocation 

under heat treatment.   

 

 

Fig. 4 Schematic diagram of the mechanism of electropulse induced microstructure transformation. 

 

To demonstrate the mechanism of electropulse-induced microstructure transformation more clearly, 

the process is schematically presented in Fig. 4. The state 0 represents the steel with microstructure 

before transformation and the state 1 represents the microstructure after transformation. Without the 

passing electric current, the free energy in state 1 (denoted by B) is higher than that of the state 0 

(denoted by A). This is not possible to happen because the second law of thermodynamics is violated. 



 
 

When the electric current is passing through the steel, however, the free energy of state 0 is change 

into the position denoted as A’ and that of the state 1 is changed into the position denoted as B’. The 

difference of free energy increasing for both states is due to their different electrical conductivity, i.e. 

ee

o GG 1 . In this situation, the free energy of state 0 is higher than the free energy of state 1. 

Microstructure transformation happens during the passing of electric current. After electric current 

passing by, state 1 is left at high free energy state but unable to transform into the lower free energy 

state 0 because of the high kinetic barrier at low temperature. The kinetic barrier is much lower 

during the passing of high density electric current according to the previous experimental 

observations [14-17].    

 

The unique effect of electropulse provides kinetic possibility for the observed transformation. On the 

one hand, the high intensity electric current pulse causes rapid increase of the temperature in steel 

wire. This introduces a huge amount of vacancies along grain boundary, interface and dislocations. 

Those vacancies migrate into cementite plates and enhance the diffusion of elements. The cementite 

plates are therefore able to transform into spherical particles [18]. However, one another hand, due to 

the short duration nature of electropulse the temperature drops into room temperature quickly and the 

kinetic barrier prevented further diffusion after electropulse. The nanoparticles are unable to grow 

larger.      

      

4. Conclusions 

 

(1) Passing one electric current pulse with peak density 9.61×10
9
 A/m

2
 and pulse duration less than 1 

ms through deformed pearlitic steel causes the formation of nanoscale cementite particles around 



 
 

30 nm in size. This transformation is found throughout the sample. The particle size is smaller 

than the minimum theoretical value obtained by free energy estimation in thermal annealing 

treatment, shows the different mechanism of microstructural transformation driven by passing 

electric current in metals.  

 

(2) The passing electric current has caused the structural relaxation. The strain area formed in cold 

worked metal is disappeared after electropulse. The bulk electrical resistivity of pearlitic steel is 

reduced from 2.1410
-7

 m to 1.6410
-7

 m after electropulsing treatment. This gives good 

agreement with the theoretical prediction of that the passing electric current promotes the 

formation and growth of phases with high conductivity. 

 

(3) The passing electric current in steels changes the free energy sequence of various phases, and can 

cause the microstructure transformation which is not possible in the same system but without 

electric current. The low temperature processing allows the retaining of the electropulse-induced 

microstructure. 
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