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Abstract

The solution of the time-dependent Schrödinger equation for systems of interacting electrons is

generally a prohibitive task, for which approximate methods are necessary. Popular approaches,

such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density func-

tional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction

incapable of fully accounting for the excited character of the electronic states involved in many

physical processes of interest; TDDFT, although exact in principle, is limited by the currently avail-

able exchange-correlation functionals. On the other hand, multiconfigurational methods, such as

the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate

description of the excited states and can be systematically improved. However, the computational

cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the

MCTDHF method is only practical for few-electron systems. In this work, we propose an alter-

native approach which effectively establishes a compromise between efficiency and accuracy, by

retaining the smallest possible number of configurations that catches the essential features of the

electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF

working equation for a multiconfigurational expansion with fixed coefficients, and specialise to the

case of general open-shell states, which are relevant for many physical processes of interest.
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I. INTRODUCTION

Over the last couple of decades, substantial progress in the field of laser technology has

provided powerful tools to probe the dynamics of excited electronic states in atoms and

molecules. Indeed, new radiation sources combining high intensities with ultrashort pulse

durations have been developed, allowing for the time-resolved investigation of dynamical

processes which occur on subpicosecond time scales. Prominent examples include studies of

photoexcitation dynamics1–4 and ultrafast charge transfer processes5–7 in complex molecular

systems.

The theoretical interpretation of these experiments offers significant challenges, since

it requires better approximations for solving the time-dependent Schrödinger equation for

systems of many interacting electrons, taking into account the excited character of the elec-

tronic states without hampering computational performance. One of the most widely used

methods is time-dependent density functional theory8,9 (TDDFT), in which the electronic

density is propagated in time. The popularity of TDDFT stems from the success of its

time-independent counterpart in electronic structure calculations, as well as the possibil-

ity of including electron correlation effects in a numerically tractable way. Although, in

principle, TDDFT could yield the exact solution of the time-dependent Schrödinger equa-

tion, in practice its results need to be interpreted carefully, since it is nontrivial to build

an exchange-correlation functional which can accurately describe localised excited states,

e.g., polaron-excitons.10 Further, since TDDFT only deals with the electronic density and

not with the many-body wavefunction, it can be difficult to define several important physi-

cal observables in a rigorous way: one important exception is the single-particle excitation

spectrum. The choice of a single Slater determinant representation for the charge density

also makes it difficult to see how to construct a calculation starting from (for example) an

excited singlet state that requires at least two determinants in a wavefunction calculation.

An alternative wavefunction-based approach, also with low computational cost, is the

time-dependent Hartree-Fock11–13 (TDHF) approximation. This method consists in restrict-

ing the electronic wavefunction to the form of a single Slater determinant, built using a num-

ber of single-particle orbitals, which are optimised according to a time-dependent variational

principle. The single-configurational nature of TDHF is clearly insufficient to accurately de-

scribe the excited states involved in most physical processes of interest. This is especially
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true for the commonly used restricted version of TDHF, where the spatial parts of the single-

particle orbitals are identical for both spin states. An improved description may be achieved

by relaxing this constraint, but the resulting unrestricted formalism has only been employed

with limited success.14

In recent years, considerable effort has been devoted to generalising the TDHF method,

by expanding the electronic wavefunction into several Slater determinants,15–19 rather than

a single one. This multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach

exploits the idea of variationally optimising the expansion coefficients, as well as the single-

particle orbitals used to build each configuration. This allows for a much more effective

sampling of the many-body Hilbert space in comparison with expansions which use time-

independent configurations. The MCTDHF method systematically improves the description

of electron correlation effects towards the exact solution of the time-dependent Schrödinger

equation, as more and more electrons are added to an increasingly large active space.

In its current formulation, MCTDHF is only practical for few-electron systems, since the

wavefunction expansion quite rapidly becomes prohibitively large as the number of degrees

of freedom increases (the computational time has an exponential dependence on the number

of electrons). In this work, we take a complementary approach which aims at establishing

a compromise between efficiency and accuracy, thus allowing for the study of much larger

systems. The idea is to retain the smallest possible number of configurations that catches

the essential features of the electronic wavefunction, notably its spin symmetry. This is

important, as it allows to distinguish between singlet and triplet excited states, which exhibit

quite different properties. The single-particle orbitals used to construct the wavefunction

expansion are then optimised according to a time-dependent variational principle. However,

in contrast to the work of Refs. 15–19, the expansion coefficients are held fixed. In this way,

we are implicitly assuming a minimal description of the electronic wavefunction, such that,

for symmetry reasons, the expansion coefficients can be treated as time-independent. We are

particularly interested in specialising to the case of general open-shell states,20–22 which are

relevant for many physical processes of interest, such as the dynamics of photoexcitations

in molecules.

The remainder of this paper is organised as follows. In Sec. II, we derive the MCT-

DHF working equation for a multiconfigurational expansion with fixed coefficients, using

the Dirac-Frenkel formulation of the time-dependent variational principle.12,23,24 In Sec. III,

4



the method is applied to the case of general open-shell states. The illustrative examples of

closed-shell and open-shell singlet states are considered in detail. Finally, a comparison with

related work is given in Sec. IV, and Sec. V is devoted to concluding remarks.

II. GENERAL FORMALISM

A. MCTDHF working equation

Consider a system of N interacting electrons, described by the Hamiltonian25

Ĥ =
∑
i,j

Tij ĉ
†
i ĉj +

1

2

∑
i,j,k,l

Vijklĉ
†
i ĉ

†
j ĉlĉk, (1)

where ĉ†i (ĉi) creates (annihilates) an electron in the molecular spin-orbital φi, and

Tij =

∫
φ∗

i

(
ξ
)
T̂
(
ξ
)
φj

(
ξ
)
dξ,

Vijkl =

∫
φ∗

i

(
ξ
)
φ∗

j

(
ξ′)V̂ (ξ, ξ′)φk

(
ξ
)
φl

(
ξ′) dξdξ′.

(2)

The operators T̂ and V̂ gather all the one-electron and electron-electron interactions, respec-

tively, and ξ = {r, σ} denotes collectively the orbital and spin coordinates of an electron.

The task of finding an approximate solution to the time-dependent Schrödinger equation,

ih̄|Ψ̇〉 = Ĥ|Ψ〉, (3)

requires that we specify an ansatz for the electronic wavefunction. We will assume that this

has the form of a superposition of Slater determinants,

|Ψ〉 =
∑

α

Cα|φα1 · · ·φαN
〉 ≡

∑
α

Cα|Φα〉, (4)

with fixed expansion coefficients, Cα. Although this multiconfigurational form is quite gen-

eral, we have in mind a minimal description of the electronic wavefunction, which retains the

smallest possible number of Slater determinants required to generate an eigenfunction of the

spin operator. In this case, the expansion coefficients are uniquely defined (up to an overall

phase factor) and can be regarded as time-independent. For instance, in a photoexcitation

process, absorption of a photon creates an open-shell singlet state, which can be written as

a sum of two Slater determinants, provided that electron correlation is not too important.
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The time evolution of such a state, under a spin-independent Hamiltonian, clearly does not

introduce a phase difference between the two configurations, in order to preserve the proper

spin symmetry. For this reason, in a minimal model to study the dynamics of such an excited

state, the expansion coefficients can be considered time-independent.

Each configuration in Eq. (4), Φα, is built using N molecular spin-orbitals, indexed by αi,

from the complete set {φj}. Although some orbitals may not be included in the expansion,

the existence of such a complete set can always be assumed.25 Our goal is then to derive a

set of optimal equations of motion for the (single-particle) molecular spin-orbitals. Stated

in an equivalent way, we wish to find a single-particle, Hermitian operator, R̂, that provides

the best self-consistent approximation to the true evolution of the many-body wavefunction,

Ψ:

ih̄|Ψ̇〉 ≈ R̂|Ψ〉 =
∑
i,j

Rij ĉ
†
i ĉj|Ψ〉, (5)

where

Rij =

∫
φ∗

i

(
ξ
)
R̂
(
ξ
)
φj

(
ξ
)
dξ = ih̄

∫
φ∗

i

(
ξ
)
φ̇j

(
ξ
)
dξ. (6)

Note that R̂|Ψ〉 is equivalent to a sum over the time derivatives of the single-particle orbitals.

It is clear that this can only provide an approximation to the true evolution of the many-body

wavefunction, since R̂ is a single-particle operator, unlike the Hamiltonian [Eq. (1)]. This is

a fundamental consequence of keeping the coefficients fixed in the wavefunction expansion,

which is meant to be highlighted through the use of the approximation sign in Eq. (5).

The evolution operator R̂ (and, hence, the optimal equations of motion for the

molecular spin-orbitals) may be found using the Dirac-Frenkel time-dependent variational

principle.12,23,24 In this formalism, one varies the action integral23

I
[
Ψ
]

=

∫ t2

t1

〈Ψ|Ĥ − ih̄
∂

∂t
|Ψ〉 dt, (7)

with fixed end points. This procedure yields the variational equation

〈δΨ|
(

Ĥ − ih̄
∂

∂t

)
Ψ〉+ 〈

(
Ĥ − ih̄

∂

∂t

)
Ψ|δΨ〉 = 0, (8)

which must be satisfied for arbitrary variations, δΨ, of the approximate many-body wave-

function, Ψ. Although Eq. (8) is usually stated directly as the Dirac-Frenkel variational

principle,12,24 the underlying principle is always the integral formulation, which is necessary
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to justify the presence of the time derivative acting on the bra (in the second term) by

partial integration.

To write the variation, let us consider the effect of a small rotation of the orthonormal

set of molecular orbitals:

|φ′
i〉 =

∑
j

e∆ji|φj〉. (9)

Notice that, since the new orbitals also form an orthonormal set, the matrix of orbital

rotation (or mixing) parameters, ∆, must be anti-Hermitian:

∆ij = −∆∗
ji. (10)

The transformed wavefunction can be written as

|Ψ′〉 =
∑

α

Cα

∏′

i

ĉ′†i ĉi|Φα〉, (11)

where the symbol
∏′

means that the product runs over the subset of spin-orbitals included

in Φα, and ĉ′†i creates an electron in the rotated orbital φ′
i. This operator can be expressed

in the basis of the original orbitals as25

ĉ′†i =
∑

j

〈φj|φ′
i〉ĉ

†
j, (12)

or, since we are considering small rotations,

ĉ′†i ≈
∑

j

(
δji + ∆ji

)
ĉ†j. (13)

Inserting Eq. (13) into Eq. (11), we obtain to first order in ∆

|Ψ′〉 ≈
∑

α

Cα

[∏′

i

ĉ†i ĉi|Φα〉+
∑′

i

∑
j

∆jiĉ
†
j ĉi|Φα〉

]
= |Ψ〉+

∑
i,j

∆jiĉ
†
j ĉi|Ψ〉, (14)

from which we identify

|δΨ〉 =
∑
i,j

∆jiĉ
†
j ĉi|Ψ〉. (15)

This methodology has the obvious advantage of incorporating the orthonormality constraints

by construction. Furthermore, it provides physical insight into the structure of the variation,

thus facilitating the elimination of redundant parameters, which is of key importance.
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Combining Eqs. (5), (8), (10) and (15), the variational equation can be recast in the form∑
i,j

∆ij〈Ψ|
[
Ĥ − R̂, ĉ†i ĉj

]
|Ψ〉 = 0, (16)

or, after inserting the Hamiltonian [Eq. (1)] and doing some operator algebra,∑
i,j

∆ij

{∑
k

[(
Tki −Rki

)
ρ

(1)
kj −

(
Tjk −Rjk

)
ρ

(1)
ik

]
+

+
∑
k,l,m

[
Vklimρ

(2)
klmj − Vjkmlρ

(2)
iklm

]}
= 0,

(17)

where

ρ
(1)
ij = 〈Ψ|ĉ†i ĉj|Ψ〉,

ρ
(2)
ijkl = 〈Ψ|ĉ†i ĉ

†
j ĉkĉl|Ψ〉

(18)

denote the one- and two-body reduced density matrices,25,26 respectively. Equation (17)

constitutes the basic MCTDHF working equation. To carry on the derivation of the equa-

tions of motion for the single-particle orbitals, it is necessary to further specify the form

of the one- and two-body reduced density matrices. In Sec. III, we will do so for general

open-shell states, with the special cases of closed-shell and open-shell singlet states being

treated explicitly.

B. Conservation properties

In order to obtain proper dynamics, it is crucial that the equations of motion conserve

energy (for time-independent Hamiltonians) and preserve the orthonormality of the molec-

ular spin-orbitals. To establish energy conservation, we can resort to the Dirac-Frenkel

variational principle directly. In general, we can write24

|δΨ〉 = |Ψ̇〉δt. (19)

Substitution into Eq. (8), yields

〈Ψ̇|Ĥ|Ψ〉+ 〈Ψ|Ĥ|Ψ̇〉 = 0, (20)

which shows that energy is conserved throughout the dynamics if the Hamiltonian is time-

independent. The conservation of orthonormality,

d

dt
〈φi|φj〉 = 〈φ̇i|φj〉+ 〈φi|φ̇j〉 = 0, (21)
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follows trivially from the requirement that the effective single-particle operator R̂ is Hermi-

tian, on view of Eq. (6).

III. APPLICATIONS

A. Closed-shell singlet state

We now specialise the variational approach of Sec. IIA to the case of a closed-shell

singlet state and a spin-independent Hamiltonian. The wavefunction takes the form of a

single Slater determinant:

|Ψ〉 = |φ1φ̄1 φ2φ̄2 · · · φnφ̄n〉. (22)

In the above expression, φi (φ̄i) denotes a spin-up (spin-down) state and n = N/2. Spin

symmetry suggests the use of a restricted formalism, for which the spin-up and spin-down

states possess the same orbital part. It also suggests that we set

∆iσi,jσj
= ∆̃ijδσiσj

, (23)

thus considering only the mixing between the spatial parts of the molecular spin-orbitals.

The relevant operators are all spin-independent, with matrix elements satisfying

Tiσi,jσj
= T̃ijδσiσj

,

Viσijσj ,kσklσl
= Ṽijklδσiσk

δσjσl
,

Riσi,jσj
= R̃ijδσiσj

,

(24)

where

T̃ij =

∫
φ∗

i (r)T̂ (r)φj(r) dr,

Ṽijkl =

∫
φ∗

i (r)φ∗
j(r

′)V̂ (r, r′)φk(r)φl(r
′) drdr′,

R̃ij =

∫
φ∗

i (r)R̂(r)φj(r) dr = ih̄

∫
φ∗

i (r)φ̇j(r) dr,

(25)

and φi now denotes the spatial part of the molecular spin-orbitals alone.

Using the standard rules for the behaviour of creation and annihilation operators,25 the

elements of the one- and two-body reduced density matrices can be easily computed. The
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result is

ρ
(1)
iσi,jσj

= δijδσiσj
,

ρ
(2)
iσijσj ,kσklσl

= δilδjkδσiσl
δσjσk

− δikδjlδσiσk
δσjσl

,
(26)

when all the indices refer to occupied orbitals, and zero otherwise. Inserting Eq. (26) into

Eq. (17), we can write the variational condition as

∑
i,σi

∑′

j,σj

∆iσi,jσj

[(
Tjσj ,iσi

−Rjσj ,iσi

)
+
∑′

k,σk

(
Vjσjkσk,iσikσk

− Vjσjkσk,kσkiσi

)]
−

−
∑′

i,σi

∑
j,σj

∆iσi,jσj

[(
Tjσj ,iσi

−Rjσj ,iσi

)
+
∑′

k,σk

(
Vjσjkσk,iσikσk

− Vjσjkσk,kσkiσi

)]
= 0,

(27)

where the symbol
∑′

means that the sum extends only over occupied molecular orbitals.

Performing the summations over spin, with the help of Eqs. (23) and (24), yields

∑
i

∑′

j

2∆̃ij

[(
T̃ji − R̃ji

)
+
∑′

k

(
2Ṽjkik − Ṽjkki

)]
−

−
∑′

i

∑
j

2∆̃ij

[(
T̃ji − R̃ji

)
+
∑′

k

(
2Ṽjkik − Ṽjkki

)]
= 0.

(28)

Let us now introduce the (closed-shell) Fock operator,12,24

F̂ = T̂ +
∑′

k

(
2Ĵk − K̂k

)
, (29)

where Ĵk and K̂k are Coulomb and exchange operators,12,24 defined by

Ĵk(r)φi(r) =

[ ∫
φ∗

k(r
′)V̂ (r, r′)φk(r

′) dr′
]
φi(r),

K̂k(r)φi(r) =

[ ∫
φ∗

k(r
′)V̂ (r, r′)φi(r

′) dr′
]
φk(r).

(30)

Clearly, we have

F̃ji = 〈φj|F̂ |φi〉 = T̃ji +
∑′

k

(
2Ṽjkik − Ṽjkki

)
, (31)

and thus the variational equation can be rewritten as∑
i

∑′

j

2∆̃ij

(
F̃ji − R̃ji

)
−
∑′

i

∑
j

2∆̃ij

(
F̃ji − R̃ji

)
= 0. (32)
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Introducing the occupation numbers,

ni =

2 if φi is doubly occupied

0 otherwise
, (33)

it is possible to gather the two terms in Eq. (32):∑
i,j

∆̃ij(nj − ni)〈φj|F̂ − R̂|φi〉 = 0. (34)

Hence, the choice R̂ = F̂ satisfies the Dirac-Frenkel variational principle, and the optimal

equations of motion for the spatial part of the single-particle orbitals read

ih̄|φ̇i〉 = F̂ |φi〉, (35)

as expected (this is the usual TDHF result11–13). Notice that there is a certain degree of

arbitrariness in this choice of the effective single-particle operator R̂, since Eq. (34) is auto-

matically satisfied when ni = nj. Thus, the relevant matrix elements are those connecting

the occupied and virtual subspaces, for which the choice of R̂ is unique.

B. Open-shell singlet state

Let us now consider the case of an open-shell singlet state and a spin-independent Hamil-

tonian. The spin symmetry arguments of the single-configurational case can still be invoked,

and thus Eqs. (23) through (25) remain valid. In this case, the wavefunction is the sum of

two Slater determinants,

|Ψ〉 =
1√
2
|φ1φ̄1 · · · φn−1φ̄n−1 φvφ̄c〉+

1√
2
|φ1φ̄1 · · · φn−1φ̄n−1 φcφ̄v〉

≡ 1√
2

(
|Φ1〉+ |Φ2〉

)
,

(36)

corresponding to a singlet arrangement of a set of n − 1 doubly occupied orbitals and

two singly occupied orbitals, labelled ‘v’ and ‘c’ (motivated by the physical picture of an

excitation from the valence band to the conduction band in periodic systems, e.g., conjugated

polymers). As before, the elements of the one-body reduced density matrix are trivial:

ρ
(1)
iσi,jσj

=
ni

2
δijδσiσj

, (37)
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with the populations

ni =


2 if φi is doubly occupied

1 if φi is singly occupied

0 otherwise

. (38)

However, the two-body reduced density matrix possesses a more involved structure, which

we will describe briefly. When all the indices refer to occupied orbitals, its elements can be

written as the sum of two terms (we recall that they are zero otherwise):

ρ
(2)
iσijσj ,kσklσl

=
1

2

(
γiσijσj ,kσklσl

+ ζiσijσj ,kσklσl

)
. (39)

The first one, given by

γiσijσj ,kσklσl
=
(
δilδjkδσiσl

δσjσk
− δikδjlδσiσk

δσjσl

)
×

×
[(

1− δivδσi↓ − δjvδσj↓
)(

1− δicδσi↑ − δjcδσj↑
)
+

+
(
1− δivδσi↑ − δjvδσj↑

)(
1− δicδσi↓ − δjcδσj↓

)]
,

(40)

arises from contributions, such as 〈Φ1|ĉ†iσi
ĉ†jσj

ĉkσk
ĉlσl

|Φ1〉, which are only nonzero when we

annihilate and create the same pair of orbitals. Since each configuration is “missing” two

states (φ̄v, φc are not included in Φ1, and φv, φ̄c are not included in Φ2), some combinations

of indices referring to occupied orbitals only give a partial contribution to the total matrix

element, via 〈Φ1|ĉ†iσi
ĉ†jσj

ĉkσk
ĉlσl

|Φ1〉 or 〈Φ2|ĉ†iσi
ĉ†jσj

ĉkσk
ĉlσl

|Φ2〉 (but not both). In Eq. (40),

this is accounted for by the term in square brackets. The second contribution is given by

ζiσijσj ,kσklσl
=δivδjcδσi↑δσj↓

(
δkvδlcδσk↓δσl↑ − δkcδlvδσk↑δσl↓

)
+

+ δicδjvδσi↓δσj↑
(
δkcδlvδσk↑δσl↓ − δkvδlcδσk↓δσl↑

)
+

+ δicδjvδσi↑δσj↓
(
δkcδlvδσk↓δσl↑ − δkvδlcδσk↑δσl↓

)
+

+ δivδjcδσi↓δσj↑
(
δkvδlcδσk↑δσl↓ − δkcδlvδσk↓δσl↑

)
,

(41)

and arises from the cross terms 〈Φ1|ĉ†iσi
ĉ†jσj

ĉkσk
ĉlσl

|Φ2〉 and 〈Φ2|ĉ†iσi
ĉ†jσj

ĉkσk
ĉlσl

|Φ1〉. Since the

configurations included in the wavefunction differ in two orbitals, namely the singly occupied

ones, these terms are only nonzero when we annihilate the singly occupied states that appear

in one configuration and create the respective states included in the other. Equation (41)

expresses all the allowed ways in which we can accomplish this.
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With these results, Eq. (17) reads∑
i,j,σi,σj

∆iσi,jσj

[
nj

2

(
Tjσj ,iσi

−Rjσj ,iσi

)
− ni

2

(
Tjσj ,iσi

−Rjσj ,iσi

)]
+

+
∑
i,σi

∑′′′

j,σj

∆iσi,jσj

[∑
k,σk

nk

2

(
Vjσjkσk,iσikσk

− Vjσjkσk,kσkiσi

)]
−

−
∑′′′

i,σi

∑
j,σj

∆iσi,jσj

[∑
k,σk

nk

2

(
Vjσjkσk,iσikσk

− Vjσjkσk,kσkiσi

)]
−

− 1

2

∑
i,σi

∑′

j,σj

∆iσi,jσj

[∑′′′

k,σk

(
Vjσjkσk,iσikσk

− Vjσjkσk,kσkiσi

)]
+

+
1

2

∑′

i,σi

∑
j,σj

∆iσi,jσj

[∑′′′

k,σk

(
Vjσjkσk,iσikσk

− Vjσjkσk,kσkiσi

)]
+

+
1

2

∑
i,σi

[
∆iσi,v↑

(
Vv↑c↓,iσic↓ − Vc↓v↑,iσic↓ + Vc↑v↓,iσic↓ − Vv↓c↑,iσic↓

)
+

+ ∆iσi,v↓
(
Vv↓c↑,iσic↑ − Vc↑v↓,iσic↑ + Vc↓v↑,iσic↑ − Vv↑c↓,iσic↑

)
+

+ ∆iσi,c↑
(
Vc↑v↓,iσiv↓ − Vv↓c↑,iσiv↓ + Vv↑c↓,iσiv↓ − Vc↓v↑,iσiv↓

)
+

+ ∆iσi,c↓
(
Vc↓v↑,iσiv↑ − Vv↑c↓,iσiv↑ + Vv↓c↑,iσiv↑ − Vc↑v↓,iσiv↑

)]
−

−1

2

∑
j,σj

[
∆v↑,jσj

(
Vjσjc↓,v↑c↓ − Vjσjc↓,c↓v↑ + Vjσjc↓,c↑v↓ − Vjσjc↓,v↓c↑

)
+

+ ∆v↓,jσj

(
Vjσjc↑,v↓c↑ − Vjσjc↑,c↑v↓ + Vjσjc↑,c↓v↑ − Vjσjc↑,v↑c↓

)
+

+ ∆c↑,jσj

(
Vjσjv↓,c↑v↓ − Vjσjv↓,v↓c↑ + Vjσjv↓,v↑c↓ − Vjσjv↓,c↓v↑

)
+

+ ∆c↓,jσj

(
Vjσjv↑,c↓v↑ − Vjσjv↑,v↑c↓ + Vjσjv↑,v↓c↑ − Vjσjv↑,c↑v↓

)]
= 0,

(42)

where the symbol
∑′′′

means that the sum runs over both doubly and singly occupied

molecular orbitals (but not empty ones), and
∑′

is used for sums which extend only over

singly occupied orbitals. Using Eqs. (23) and (24) to perform the summations over spin,

13



yields∑
i,j

∆̃ij

[
nj

(
T̃ji − R̃ji

)
− ni

(
T̃ji − R̃ji

)]
+

+
∑

i

∑′′′

j

∆̃ij

∑
k

nk

(
2Ṽjkik − Ṽjkki

)
−

−
∑′′′

i

∑
j

∆̃ij

∑
k

nk

(
2Ṽjkik − Ṽjkki

)
−

−
∑

i

∑′

j

∆̃ij

∑′′′

k

(
2Ṽjkik − Ṽjkki

)
+

+
∑′

i

∑
j

∆̃ij

∑′′′

k

(
2Ṽjkik − Ṽjkki

)
+

+
∑

i

[
∆̃iv

(
Ṽvcic + Ṽvcci

)
+ ∆̃ic

(
Ṽcviv + Ṽcvvi

)]
−

−
∑

j

[
∆̃vj

(
Ṽjcvc + Ṽjccv

)
+ ∆̃cj

(
Ṽjvcv + Ṽjvvc

)]
= 0.

(43)

Explicitly separating the sums that run over all occupied states into contributions from

orbitals with double and single occupancies, and collecting similar terms, we obtain∑
i,j

∆̃ij

[
nj

(
T̃ji − R̃ji

)
− ni

(
T̃ji − R̃ji

)]
+

+
∑

i

{∑′′

j

∆̃ijnj

[
1

2

∑
k

nk

(
2Ṽjkik − Ṽjkki

)]
+

+
∑′

j

∆̃ijnj

[
1

2

∑′′

k

nk

(
2Ṽjkik − Ṽjkki

)
+

+
1

2

∑′

k

nk

(
2Ṽjkik + 2Ṽjkki

)(
1− δjk

)]}
−

−
∑

j

{∑′′

i

∆̃ijni

[
1

2

∑
k

nk

(
2Ṽjkik − Ṽjkki

)]
+

+
∑′

i

∆̃ijni

[
1

2

∑′′

k

nk

(
2Ṽjkik − Ṽjkki

)
+

+
1

2

∑′

k

nk

(
2Ṽjkik + 2Ṽjkki

)(
1− δik

)]}
= 0,

(44)

where the symbol
∑′′

means that the sum extends only over doubly occupied molecular

orbitals, and we have conveniently introduced some occupation numbers.

It is clear from the form of Eq. (44) the emergence of Fock-like operators which depend on

the orbital occupation, in contrast with the case of a single Slater determinant. Specifically,

14



all the doubly occupied orbitals possess the same Fock operator, whereas each singly occupied

orbital has its own. Gathering groups of orbitals with the same Fock operator in a shell,

labelled by µ, ν, . . . , we can rewrite Eq. (44) as∑
µ,ν

∑
iµ,jν

∆̃iµjν 〈φjν |nνF̂ ν − nµF̂ µ − (nν − nµ)R̂|φiµ〉 = 0, (45)

where iµ runs over orbitals of shell µ, nµ = 0, 1, 2 denotes the occupation number of an

orbital in shell µ, and the Fock operator for shell µ (µ 6= 0) is given by

F̂ µ = T̂ +
1

2

∑
ν

∑
jν

nν
(
2Ĵjν − bµνK̂jν

)
, (46)

with

b =


1 1 1

1 2 −2

1 −2 2

 , (47)

where we adopted the conventional ordering,20–22 in which µ = 1 labels the doubly occupied

shell, and µ = 2, 3 refer to the singly occupied ones. Notice that we also consider the

subspace of unoccupied orbitals as a proper shell (labelled by µ = 0), even though its Fock

operator is undefined (this is, however, irrelevant since it is always premultiplied by zero),

and therefore this shell is not included in the definition of b given above.

From Eq. (45), we can see that mixing orbitals that belong to the same shell does not

lead to any change in the variational quantity, and thus the terms with µ = ν can be safely

disregarded. Equivalently, as already encountered in the single-configurational case, there is

a gauge freedom to choose the matrix elements of R̂ within the subspaces spanned by each

shell. For simplicity, these will be set to zero. Additionally, the contributions which arise

from mixing orbitals of different shells, but with the same occupation number, in general

differ from zero regardless of the choice of the operator R̂. Hence, the corresponding orbital

rotation parameters must be set to zero in order to satisfy the variational principle. This is

consistent with neglecting two-electron processes which change the shell structure, and can

only be described using a formalism with time-dependent expansion coefficients.

With the above considerations, the variational equation reduces to∑
µ,ν

(nµ 6=nν)

∑
iµ,jν

∆̃iµjν 〈φjν |nνF̂ ν − nµF̂ µ − (nν − nµ)R̂|φiµ〉 = 0, (48)

15



which suggests that we set

R̂ =
∑
µ,ν

(nµ 6=nν)

P̂ ν nνF̂ ν − nµF̂ µ

nν − nµ
P̂ µ, (49)

where P̂ µ is a projector onto the subspace spanned by shell µ:

P̂ µ =
∑
iµ

|φiµ〉〈φiµ|. (50)

Clearly, this choice satisfies the Dirac-Frenkel variational principle. The optimal equations

of motion for the spatial part of the single-particle orbitals thus read

ih̄|φ̇iµ〉 =
∑
ν,λ

(nν 6=nλ)

P̂ λ nλF̂ λ − nνF̂ ν

nλ − nν
P̂ ν |φiµ〉. (51)

C. General open-shell states

We now turn to general open-shell states, within a spin-restricted formalism. These are

characterised by the one- and two-body reduced density matrices

ρ
(1)
iµσiµ ,jνσjν

=
nµ

2
δiµjνδσiµσjν

,

ρ
(2)
iµσiµjνσjν ,kλσkλ

lκσlκ
=

nµnν

12

[(
4aµν − bµν

)(
δiµlκδjνkλ

δσiµσlκ
δσjν σkλ

− δiµkλ
δjν lκδσiµσkλ

δσjν σlκ

)
+

+ 2
(
aµν − bµν

)(
δiµkλ

δjν lκδσiµσlκ
δσjν σkλ

− δiµlκδjνkλ
δσiµσkλ

δσjν σlκ

)]
,

(52)

where

aµν = aνµ,

bµν = bνµ
(53)

are numerical coefficients (or state parameters) specific to the particular form of the

wavefunction,20–22 which in general is a sum of many Slater determinants. Equation (52)

leads to the energy expression

E =
∑

µ

∑
iµ

nµT̃iµiµ +
1

4

∑
µ,ν

∑
iµ,jν

nµnν
(
2aµν J̃iµjν − bµνK̃iµjν

)
, (54)
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which is the more familiar way to define a general open-shell state.20–22 Notice that the

closed-shell and open-shell singlet states of the previous sections are special cases of this

broad definition. For a closed-shell singlet state there is only one occupied shell, and the

state parameters read a = b = 1. As we have already seen, in the case of an open-shell

singlet state there are three shells, b is given by Eq. (47), and

a =


1 1 1

1 1 1

1 1 1

 . (55)

Many other important electronic states of atoms and molecules fall into this category. Most

notably, it includes all possible spin-adapted states that can be generated from a given

electronic configuration.20–22

To derive the optimal equations of motion for the single-particle orbitals, we now proceed

as in the previous sections. Inserting Eq. (52) into Eq. (17), and summing over spin, after

using the Kronecker deltas to eliminate several sums, we obtain

∑
µ,ν

∑
iµ,jν

∆̃iµjν

{
nν
(
T̃jν iµ − R̃jν iµ

)
− nµ

(
T̃jν iµ − R̃jν iµ

)
+

+ nν

[
1

2

∑
λ

∑
kλ

nλ
(
2aνλṼjνkλiµkλ

− bνλṼjνkλkλiµ

)]
−

− nµ

[
1

2

∑
λ

∑
kλ

nλ
(
2aµλṼjνkλiµkλ

− bµλṼjνkλkλiµ

)]}
= 0,

(56)

i.e.,∑
µ,ν

∑
iµ,jν

∆̃iµjν 〈φjν |nνF̂ ν − nµF̂ µ − (nν − nµ)R̂|φiµ〉 = 0, (57)

where the Fock operator for shell µ (µ 6= 0) takes the generalised form

F̂ µ = T̂ +
1

2

∑
ν

∑
jν

nν
(
2aµν Ĵjν − bµνK̂jν

)
. (58)

As before, in order to satisfy the Dirac-Frenkel variational principle it is necessary to zero

the mixing parameters between orbitals of different shells, but with the same occupation

number. Also, the terms with µ = ν may be ignored, as they do not change the variational

quantity (again, we will use this gauge freedom to set the matrix elements of R̂ within each
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shell subspace to zero). We are, thus, lead to the choice

R̂ =
∑
µ,ν

(nµ 6=nν)

P̂ ν nνF̂ ν − nµF̂ µ

nν − nµ
P̂ µ, (59)

and the optimal equations of motion for the spatial part of the single-particle orbitals have

the form of Eq. (51), with the Fock operators given by Eq. (58).

We conclude this section with a discussion of the cost of the numerical implementation

of the proposed scheme. In all the applications we envisage, the number of occupied shells,

Nshells, will be fixed by the spin symmetry, independent of system size, and in addition

will be much lower than the size of the basis set, Nbasis. This is typically the case when

only a few configurations are included in the wavefunction expansion, e.g., for an open-shell

singlet state. In such a case, the computational bottleneck lies in the calculation of the

two-electron Coulomb and exchange terms required to build the matrix form of the Fock

operators, exactly as in the TDHF method. The formal scaling is NshellsN
4
basis, since the total

number of two-electron integrals increases as N4
basis and Nshells different Fock operators must

be constructed. If semiempirical parameters are used instead, the numerical effort can be

more favourable, of the order of N3
basis. In the limit of Nshells � Nbasis, the proposed method

requires only a few more matrix multiplications than the TDHF method, and thus exhibits

a comparable computational cost.

IV. COMPARISON WITH RELATED WORK

Let us now consider the case of a multiconfigurational expansion [Eq. (4)] with time-

dependent coefficients, Cα(t). The time evolution of the approximate many-body wavefunc-

tion reads

ih̄|Ψ̇〉 = ih̄
∑

α

Ċα|Φα〉+ R̂|Ψ〉, (60)

where the first term on the right-hand side arises from the time dependence of the expan-

sion coefficients, and the second one emerges from the time dependence of the molecular

spin-orbitals. As we have seen in Sec. II A, this latter contribution is conveniently expressed

in terms of a single-particle, Hermitian operator, R̂, which is to be found through a vari-

ational procedure. In the case under consideration, the expansion coefficients need to be

variationally optimised as well.
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Since the expansion coefficients and the single-particle orbitals used to build each con-

figuration are independent variables, the many-body wavefunction can be varied separately

with respect to each of them. The variation with respect to the expansion coefficients can

be written as

|δCΨ〉 =
∑

α

δCα|Φα〉. (61)

Application of the Dirac-Frenkel time-dependent variational principle [Eq. (8)], with the

variation given by Eq. (61), yields

ih̄Ċα =
∑

β

〈Φα|Ĥ − R̂|Φβ〉Cβ. (62)

As shown in Sec. II A, the variation with respect to the orbitals can be expressed as

|δφΨ〉 =
∑
i,j

∆ij ĉ
†
i ĉj|Ψ〉. (63)

Combining Eqs. (8), (60) and (63), we obtain

∑
i,j

∆ij

[
〈Ψ|
[
Ĥ − R̂, ĉ†i ĉj

]
|Ψ〉+ ih̄

∑
α,β

(
Ċ∗

αCβ + C∗
αĊβ

)
〈Φα|ĉ†i ĉj|Φβ〉

]
= 0. (64)

Notice that, if the time evolution of the expansion coefficients only changes the wavefunction

by an overall phase factor, Eq. (64) reduces to Eq. (16). In this case, the derivation of the

optimal equations of motion for the single-particle orbitals follows that of the previous

section, for general open-shell states and a spin-independent Hamiltonian. Also, in such

a case, Eq. (62) may be disregarded, since an overall phase factor is unimportant for the

calculation of physical observables.

We now proceed assuming that the wavefunction expansion is built from all
(

M
N

)
possi-

ble configurations obtained by distributing N electrons over M spin-orbitals. In principle,

Eq. (64) should uniquely determine the single-particle operator R̂, which in turn could be

used in Eq. (62), that governs the time evolution of the expansion coefficients. Let us ex-

amine Eq. (64) more closely to see whether this statement holds for such a complete active

space expansion. First, we note that the terms which involve mixing unoccupied orbitals

are equal to zero, since, in this case, ĉ†i ĉj|Φα〉 = 0 for all configurations included in the

wavefunction expansion. The contributions which arise from mixing occupied orbitals are
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also equal to zero. This is most clearly seen by combining Eqs. (62) and (64):∑
i,j

∆ij

[
〈Ψ|
(
Ĥ − R̂

)(
1− P̂

)
ĉ†i ĉj|Ψ〉 − 〈Ψ|ĉ†i ĉj

(
1− P̂

)(
Ĥ − R̂

)
|Ψ〉
]

= 0, (65)

with

P̂ =
∑

α

|Φα〉〈Φα|. (66)

When the indices i, j both refer to occupied states, ĉ†i ĉj|Ψ〉 generally yields a superposition of

Slater determinants, all of which are included in the expansion. However, this is eliminated

by the action of the projector onto the virtual subspace, 1 − P̂ . Finally, we note that the

matrix elements 〈Φα|ĉ†i ĉj|Φβ〉 are only nonzero when the indices i, j both correspond to

occupied orbitals. With these considerations, Eq. (64) can be recast in the form

∑′

i

∑′′

j

∆∗
ji

[∑′

k

(
Tjk −Rjk

)
ρ

(1)
ik +

∑′

k,l,m

Vjkmlρ
(2)
iklm

]
+

+
∑′′

i

∑′

j

∆ij

[∑′

k

(
Tki −Rki

)
ρ

(1)
kj +

∑′

k,l,m

Vklimρ
(2)
klmj

]
= 0,

(67)

where the symbol
∑′

means that the sum extends only over occupied molecular orbitals,

and
∑′′

is used for sums which run over empty states. It is clear that Eq. (67) can

only determine the matrix elements of R̂ between occupied and unoccupied orbitals (and

vice versa), but not within the occupied subspace. On the other hand, these latter terms

are precisely the ones required in Eq. (62). They remain, however, undetermined and it

is necessary to introduce further constraints. This is in striking contrast with the case

of a multiconfigurational expansion with fixed coefficients, for which the necessary matrix

elements are determined from the Dirac-Frenkel variational principle alone, as we have seen

in Sec. III.

This problem may be overcome by exploiting the invariance of a complete active space

wavefunction with respect to unitary transformations of the single-particle orbitals, com-

pensated by reverse transformations of the coefficients.17,19 Such property guarantees that

the single-particle operator R̂ can be chosen arbitrarily within the occupied subspace, in

analogy with the (more restricted) gauge freedom observed for general open-shell states.

The simplest possible choice reads15–19

Rij = ih̄〈φi|φ̇j〉 = 0, (68)
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for all pairs i, j of occupied states. With this choice, Eq. (62) reduces to

ih̄Ċα =
∑

β

〈Φα|Ĥ|Φβ〉Cβ, (69)

and the optimal equations of motion for the occupied orbitals follow from Eq. (67). Since the

real and imaginary parts of the orbital rotation parameters can be regarded as independent

variables, the two terms on the left-hand side of Eq. (67) can be equated to zero separately.

Taking only the first term into consideration, we find

∑′

k

[(
Tjk −Rjk

)
ρ

(1)
ik +

∑′

l,m

Vjkmlρ
(2)
iklm

]
= 0, (70)

where the indices i, j refer to occupied and unoccupied states, respectively. Multiplying

Eq. (70) by the inverse of the one-body reduced density matrix, ρ̄(1), whose existence can

always be assumed,26 yields

〈φj|R̂|φi〉 = 〈φj|

(
T̂ |φi〉+

∑′

k,l,m,n

ρ̄
(1)
ik ρ

(2)
klmnV̂lm|φn〉

)
, (71)

where

V̂lm

(
ξ
)

=

∫
φ∗

l

(
ξ′)V̂ (ξ, ξ′)φm

(
ξ′) dξ′. (72)

Since j labels an empty state, we can introduce the projector onto the subspace spanned by

the unoccupied orbitals,

Q̂ = 1−
∑′

i

|φi〉〈φi| =
∑′′

j

|φj〉〈φj|, (73)

and rewrite Eq. (71) in the equivalent form

〈φj|R̂|φi〉 = 〈φj|Q̂

(
T̂ |φi〉+

∑′

k,l,m,n

ρ̄
(1)
ik ρ

(2)
klmnV̂lm|φn〉

)
. (74)

Thus, the optimal equations of motion for the occupied molecular spin-orbitals read

ih̄|φ̇i〉 = Q̂

(
T̂ |φi〉+

∑′

k,l,m,n

ρ̄
(1)
ik ρ

(2)
klmnV̂lm|φn〉

)
. (75)

The presence of the projector in the above expression guarantees that the conditions specified

by Eq. (68) are met at all times throughout the propagation of the orbitals. Also, it is easy
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to show that equating the second term on the left-hand side of Eq. (67) to zero, provides no

further information, as it yields the complex conjugate of Eq. (75).

The coupled set of Eqs. (69) and (75) has been previously derived in Refs. 15–19. It is

clear that the numerical implementation of these expressions incurs a much higher cost than

for the equations of motion derived in the previous section for general open-shell states.

Indeed, the computational cost is exponential in the number of electrons, and thus quite

rapidly becomes prohibitive as the number of degrees of freedom increases. For this reason,

the application of this method is currently limited to few-electron systems.15–19

In many processes of interest, the description of electron correlation effects does not

require the level of accuracy inherent to the MCTDHF method for a large wavefunction

expansion with time-dependent coefficients, and the essential physics is well described in

terms of simple spin-adapted states, for which the expansion coefficients can be regarded

as time-independent. In such cases, the method devised in the previous section for gen-

eral open-shell states offers an attractive alternative. Strictly speaking, the description of

several important two-electron processes, such as those governing exciton transfer between

molecules,27 requires a formalism with time-dependent coefficients (although not necessarily

a large number of configurations). Within the proposed scheme, this is only accounted for

in a mean-field way. The advantage is, of course, that it is designed to treat the dynamics of

excited electronic states at a computational cost comparable to that of the TDHF method,

thus allowing for the study of large systems of interacting electrons.

V. SUMMARY AND OUTLOOK

We have developed a multiconfigurational method for the approximate solution of the

time-dependent Schrödinger equation for systems of interacting electrons, which effectively

establishes a compromise between efficiency and accuracy in the description of excited elec-

tronic states. Based on a time-dependent variational principle, we have derived the MCT-

DHF working equation for a multiconfigurational expansion with fixed coefficients, and

specialised to the case of general open-shell states, which are relevant for many physical

processes of interest.

The proposed scheme offers an attractive alternative to the MCTDHF method based on a

complete active space expansion with time-dependent coefficients, when an accurate descrip-
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tion of electron correlation effects is impractical, or not required. With a computational cost

comparable to that of the TDHF method, the study of large systems of interacting electrons

can be readily performed.

As we shall see in forthcoming articles in this series,28,29 when combined with a classical

description of the ionic degrees of freedom (mean-field approximation), this method provides

a powerful tool to study the effects of Coulomb interactions and interchain coupling on the

dynamics of photoexcitations in conjugated polymers.
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