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Small-molecule amphiphilic species such as many drug molecules frequen-

tly exhibit low-to-negligible aqueous solubility, and generally have no

identified transport proteins assisting their distribution, yet are able to rapidly

penetrate significant distances into patient tissue and even cross the blood–

brain barrier. Previous work has identified a mechanism of translocation

driven by acid-catalysed lipid hydrolysis of biological membranes, a process

which is catalysed by the presence of cationic amphiphilic drug molecules.

In this study, the interactions of raclopride, a model amphiphilic drug, were

investigated with mixtures of biologically relevant lipids across a range of

compositions, revealing the influence of the chain-melting temperature of

the lipids upon the rate of acyl hydrolysis.
1. Introduction
The interplay between the majority of small-molecule compounds and biologi-

cal membranes remains poorly understood, despite intense investment and

research from both academia and industry. Many drugs display poor aqueous

solubility, leading to their absorption by lipid bodies such as cell membranes,

adipose tissue and liposomes in vivo, which may alter the transport kinetics

of the compound, the stability and integrity of the lipid assembly, or both.

These relationships are of critical importance when attempting to understand,

predict or modulate the pharmacokinetics and availability of these compounds.

Hydrophobic and amphiphilic substances such as drug molecules can tra-

verse the bilayer either by simple diffusion or by hijacking the cell’s transport

system [1]. Membrane proteins (including species such as carriers and channels)

mediate substrate flux by facilitated or active transport in the direction of

or against concentration gradients, the latter of which is energy dependent.

Energy is used either in the form of ATP hydrolysis [2], known as primary

active transport, or through the dissipation of electrochemical gradients by coup-

ling transport to secondary molecules, classified as secondary active transport [3].

In recent years, these proteins have been the focus of clinical attention owing to

their association with multidrug resistance [4].

Unfavourable drug interactions with proteins can have adverse effects, includ-

ing drug resistance and major side effects through low drug specificity. However,

drug–protein interactions are not the only consideration during drug design:

the extent of membrane partitioning of a drug is a key physico-chemical property

that must be considered. The partition coefficient (log P) and distribution function

(log D) of compounds are often used as crude measures of the distribution of

compounds in vivo [5], as Overton’s rule suggests that lipophilic compounds

will traverse a lipid bilayer faster than more hydrophilic species [6]. Unfortunately,

while the behaviour of some drug compounds correlates well with log P and log D
values, there are also many exceptions [7], as these parameters in combination with
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Figure 1. The mechanism of lipid hydrolysis catalysed by the presence of an
amphiphilic species acting as a phase transfer agent, illustrated here with a
phosphatidylcholine species and the CAD raclopride, where R1 and R2 are
alkyl chains. As the reaction progresses, the diacyl species which promote
the formation of lipid bilayers are replaced by highly curved lysolipids and
fatty acids which prefer to form curved interfaces, leading to dramatic
perturbations within the membrane. (Online version in colour.)
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specific active processes can lead to the sequestration of drugs

within membranes and other non-target tissue. This results in

reduced efficacy in therapeutic uses, leading to increased

doses and subsequent toxicity as well as severely limiting

contrast in applications such as medical imaging.

It is clear that this sequestration of material in non-target

tissues, often referred to as non-specific binding, is a far more

complex process than has been previously thought and that

protein-mediated drug transport alone cannot adequately

describe the translocation of bulky hydrophobic or amphiphilic

molecules not recognized by the cell (e.g. the cationic amphi-

philic drugs; CADs) [8]. In the light of this, other modes of

drug uptake based on direct chemical or physical interactions

between the drug and lipid molecules have been postulated.

Baciu et al. [9] demonstrated the CAD-catalysed hydrolysis

of a phosphatidylcholine membrane via its lipid ester bonds,

generating a molecule of mono-acyl phosphatidylcholine and

the concomitant fatty acid as shown in figure 1. This pro-

cess rapidly causes dramatic perturbations to the membrane

topography, as degradation products begin to accumulate.

Fluorescence microscopy studies have revealed that drug-

bearing membrane fragments are ejected from the membrane

within seconds of the compound’s administration.

Here, we present studies describing lipid hydrolysis by

the dopamine-D2 antagonist raclopride tartrate as a function

of membrane composition. Previous studies have focused

upon model systems comprising pure lipid species
predominantly in 1,2-dioleoyl-sn-glycero-3-phosphatidyl-

choline (DOPC), as it adopts the fluid lamellar phase over a

wide range of hydrations and temperatures. Model membranes

such as these, comprising a small number of synthetic and pur-

ified lipids, are routinely used to mimic the behaviour of

biological membranes in vitro [10]. These systems are generally

protein free and provide a relatively stable platform with phys-

ical characteristics similar to those found in most cells,

allowing the direct and quantitative analysis of phenomena in

a membrane environment. Although these models are simplistic

compared with biological membranes, they are currently the

only practical option for in vitro characterization of membrane

properties.

To isolate and characterize the influence of the chain

packing within a membrane upon lipid hydrolysis mediated

by raclopride tartrate, saturated and mix-tailed phosphatidyl-

choline lipids were systematically doped into DOPC bilayers,

and the rate(s) of hydrolysis was measured. The structures of

all lipids used are shown in figure 2.

For the first time, to the best of our knowledge, we can

demonstrate direct dependence of the rate of reaction upon

the melting temperature of the lipid, and thus the efficiency

of fatty chain packing interactions within the system.
2. Material and methods
Lipids were purchased from Avanti Lipids (AL, USA) at the

highest purity available. All other compounds were purchased

from Sigma–Aldrich (UK), unless otherwise specified and were

of at least 95% purity.

2.1. Lipid preparation
Sample preparation was adapted from previously reported studies

[11]. In each vial, 25 mmol (�20 mg) of lipid or lipid mixtures with

5 mol% drug was dissolved in a mixture of 1 : 1 chloroform and

methanol, and the solvent removed under a nitrogen stream. The

lipids or lipid mixtures were then dried under vacuum overnight,

before being hydrated with 60 ml 10 mM phosphate-buffered

saline (PBS) at pH 7.4 to a final concentration of 0.42 M. The assay

vials were then vortexed, and centrifuged three times to ensure

homogeneity and incubated at 378C throughout the course of the

experiments in aluminium heating blocks to prevent the formation

of a thermal gradient in the vials. All buffers were made using high-

performance liquid chromatography (HPLC)-grade water (VWR,

UK). Samples (6 ml) were taken at 3–4 day intervals, and dispensed

into a 1 ml HPLC sample vial. These samples were dried under

vacuum in a desiccator to halt any further reaction, and were then

redissolved into 1 ml of methanol for HPLC analysis.

2.2. HPLC conditions
Analyses were performed using an all-polyetheretherketone

(PEEK), dual-pump system (model 626 LC, Waters). Measure-

ments were conducted on an experimental 150 � 3.9 mm Agilent

PLRP-AQ column (packed with 12 mm hydrophilic, hydroxylated

polymer beads with hydrophobic pores of around 100 Å and a

pore volume of 45%) and analysed via evaporative light scattering

using an ESA 301 detector. The solvent profile consisted of a short

run at 95% water to clear the buffer and inorganic salts from the

column (which were otherwise found to co-elute with the lyso-

lipids), followed by a rapid climb to 70% methanol and then a

shallow gradient to 95% methanol. Eluting solvents were degassed

through a Degassex DG-401 unit (Phenomenex). Methanol (25 ml)

solution was injected on each occasion using a Waters 771 Plus

autosampler module, giving strong evaporative light-scattering
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DOPC
(2 × C18 : 1; –20°C)

DLPC
(2 × C12; 8°C)

DPPC
(2 × C16; 41°C)

C13 PC
(2 × C13; 14°C)

POPC
(C16, C18 : 1; –5°C)

SOPC
(C18, C18 : 1; 6°C)

DMPC
(2 × C14; 22°C)

Figure 2. The structures of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC), 1,2-palmitoyl-sn-glycerol-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-tridecanoyl-sn-glycero-
3-phosphatidylcholine (C13 PC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC). Carbon chain lengths and melting transition temperatures given
in parentheses. (Online version in colour.)
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detector (ELSD) signals with a good signal-to-noise ratio. Cali-

bration was conducted using standard solutions of each lipid in

methanol to give injections of 0.001–0.1 mM. The mass injected

was plotted against the peak area recorded by the ELSD. There

was no significant change in ELSD signal between identical concen-

trations of the different species injected, allowing the hydrolysis

data to be collected as a simple percentage.

2.3. Small-angle X-ray scattering
Small-angle X-ray scattering (SAXS) was conducted using custom-

built equipment, based around a Bede (Durham, UK) Microsource

X-ray generator with integrated optics, an Ealing (Ealing Electro

Optics, UK) linear transition stage and a Photonic Science Ltd

(Battle, UK) Gemstar intensified CCD X-ray detector [12]. X-ray

data were acquired over a 60 s exposure, and spacings were cali-

brated against a silver behenate standard [13]. Sample diffraction

patterns were analysed with the IDL-based AXCESS software pack-

age that was developed by Andrew Heron at Imperial College,

London, UK [9].
3. Results and discussion
Prior to probing the effect of raclopride-mediated hydrolysis

of membranes of varying lipid compositions, experiments were

undertaken to analyse the dose–response curve of raclopride

in the standard model membrane system, condensed-phase

DOPC. In line with previously reported studies [9,11],
experiments were carried out with 5 mol% raclopride as it pro-

duced a statistically significant, measurable rate of hydrolysis

and no morphological disruption of the host membranes as

measured by SAXS, as shown in figure 3.

To probe the reliability of the condensed-phase results, nine

independently prepared vials containing DOPC and raclo-

pride were assayed and their results compared (figure 4).

Data analysis generated a hydrolysis rate of 0.1308 mol h21

molRAC
21 ( p , 1�1024, r2 ¼ 0.985), and error bars derived

from the standard deviation of the data which were used to

validate all subsequent assays. Lipid hydrolysis was only

observed upon addition of raclopride, confirming that the

drug-catalysed reaction was significantly faster than any

background degradation processes.
3.1. Effect of acyl chain saturation on lipid hydrolysis
by raclopride

In order to investigate the effects of saturated lipids within

the fluid membrane with respect to raclopride-mediated

lipid hydrolysis, DOPC bilayers were doped with lipids of

increasing saturated chain lengths. DOPC was chosen as the

host lipid to allow direct comparison of results with previous

studies [9,11], whereas dopant lipids were selected to provide

a congruent set of naturally occurring species, isolating the

contributions of the acyl region to the rates of reaction.
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These included a range of fully saturated PC lipids:

1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyris-

toyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-palmitoyl-

sn-glycerol-3-phosphocholine (DPPC). These lipids contain

fully saturated chains of 12, 14 and 16 carbons, respectively,

and exhibit an increasing gel–fluid transition temperature.

DLPC becomes fully liquid at ca 88C, and DMPC at 22–248C,

whereas pure DPPC melts slightly above 408C [14]. DLPC,

DMPC and DPPC were all mixed with DOPC and prepared as

previously described with 5 mol% raclopride tartrate.
Experiments were also conducted using mixtures of

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with

DOPC. This lipid carries one saturated C16 chain and one

mono-unsaturated C18 chain, and unlike some of the saturated

species [15,16] mixes ideally with DOPC at all ratios, forming a

stable fluid lamellar structure above its chain-melting point of

258C [17]. Under these experimental circumstances, it was

capable of isolating the contribution of the fatty acid tail group

in determining the rate of the reaction with respect to choice of

acyl group and membrane fluidity. Finally, in order to probe

the influence of chain packing efficiency (as typified by the melt-

ing temperature) upon the rates of reaction, the hydrolysis of 1-

stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and

the wholly synthetic 1,2-tridecanoyl-sn-glycero-3-phosphatidyl-

choline (C13 PC) were also investigated.

In each of the experiments, lyso-PC was formed at a linear

rate dependent upon the system composition, in a similar

manner to the data in figure 4. The same trends were visible

across the three lipid types (figure 5): hydrolysis in mixtures

containing 20, 40 and 60 mol% saturated lipid was very close

to that observed in pure DOPC. Above this threshold,

hydrolysis began to occur very rapidly and these rates of

hydrolysis appear to increase with increasing acyl chain

length, up to an eightfold increase in the case of DPPC.

The DOPC–POPC system was tested following the same

protocol as described above. Owing to similarities in chemi-

cal structure between the two potential lysolipids coupled

with their propensity to isomerize into the sn-1 form [18],

the DOPC and POPC reaction products co-eluted, thus the

reaction’s chemoselectivity could not be ascertained. How-

ever, these data strongly indicate that raclopride-mediated

hydrolysis is within error the same for DOPC and POPC

lipids, as the observed rates of hydrolysis were independent

of the level of POPC in the bilayers (figure 5).

Absolute rates (0.1136+0.00645 mol h21 molRAC
21)

measured for DOPC/POPC lipid mixtures were identical

under the specified experimental conditions; SAXS data

(not shown) confirmed that no bulk mesophase changes

were detected during the experimental period.
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While the hydrolysis data presented in figure 5 also indicate

a trend of increase in rate with acyl chain length, there is an

obvious and significant discontinuity between the rates of

formation of lysolipid species in mixtures dominated by un-

saturated lipids relative to those comprising mostly saturated

species. Temperature- and composition-dependent phase coex-

istence regions have been observed between ordered domains

enriched in saturated lipids, and fluid-disordered regions

enriched in unsaturated molecules. In the case of DOPC–

DPPC mixtures at 378C, the coexistence region has been

found by fluorescence methods [15] and X-ray diffraction [16]

to form just below 80 mol% DPPC, which agrees well with

the experimental data presented above. Although this effect

has not been observed in the more fluid DLPC and DMPC sys-

tems, the imperfect mixing between the lipid species and the

wide disparity between their chain-melting temperatures

suggests that something more dynamic and short-lived, but

similar, may occur in these shorter chain species.

A striking observation that can be made from the data

above is the strong, positive correlation between the melting

transition temperature of the lipids and the rate at which they

are consumed by raclopride-mediated hydrolysis. Further-

more, this trend shows no discontinuity across the Lb! La

phase transition. To strengthen the confidence in this associ-

ation, hydrolysis experiments were undertaken using 5 mol%

raclopride in two further lipids with chain-melting transition

temperatures intermediate between those already establi-

shed. These were SOPC and C13 PC, described previously

in figure 2, with melting temperatures of 68C and 148C,

respectively. The data generated in these experiments fitted

the trend closely, as shown in figure 6.

3.2. Potential mechanisms
These experimental findings indicate that the hydrolysis of

phosphatidylcholine lipids by raclopride is proportional to

the chain-melting temperature of the lipid aggregate. The

explanations for the observed effects cannot at this stage be

conclusively identified: the chain-melting temperature is a

complex phenomenon, related to the physical and electronic

shapes of the component lipids, the viscosity of the membrane,
its surface topology and a number of other factors. A number of

hypotheses present themselves, some of which are outlined

below; experiments are ongoing to determine which of these

predominate in both laboratory and biological conditions.

The introduction of the saturated lipid species, with their

relatively high transition temperatures, causes phase separation

and eventual bulk phase changes to the system and have a

number of implications. It has been demonstrated that amphi-

philic compounds experience a log P lower by an order of

magnitude or more when lipids are in the gel phase compared

with the fluid lamellar (although this depends to some degree

on the structure of the dopant) [19]. This suggests that while

log P must contribute to the overall rate, as some degree of mem-

brane penetration is prerequisite for the reaction to occur, it

is not the sole rate-determining factor in the reaction as

gel-phase systems reacted significantly faster than those in La.

There is also evidence that shorter-chained lipids are better

at sequestering small amphiphilic molecules than longer lipids

when both are in the fluid phase [20], presumably because of

the greater free volume between chains creating more space for

the incorporation of dopant molecules. It has been demon-

strated that the addition of fatty acids to such membranes

will decrease the transition temperature under all pH con-

ditions below their pKa in the membrane (around 7.7) [21]

by intercalating between lipid molecules (thus affecting inter-

head-group interactions) [22] and introducing anionic charge

to the interface. This, in turn, will change the partition function

and membrane topography experienced by any amphiphile

such as raclopride.

However, the regiochemistry of the system is also impor-

tant. If the rate-determining step of the hydrolysis reaction is

the protonation of the lipids’ ester groups, then the two species

must necessarily be in close proximity for the process to occur.

It is hypothesized that a dominant factor determining the rate

of lipid hydrolysis in these systems is linked to the depth within

the membrane at which the CAD resides, and that this is deter-

mined largely by the size and population of free volume voids

within the hydrophobic core of the membrane.

The strength of the interchain forces controls the formation

or otherwise of voids, packing defects within the hydrophobic

core of the membrane [23], and it is suggested that these control

the depth to which raclopride partitions into the membrane. For

the reaction to progress, the free proton carried by the CAD must

be in close proximity to the ester moieties of the lipid membrane:

here, we propose that these voids promote the migration of the

CAD towards the hydrophobic centre of the membrane, into a

region where they are effectively sequestered and passivated.

The lack of change in the SAXS images to the administration

of raclopride was confirmed via fluorescence experiments with

the surface charge density probe N-(fluorescein-5-carbonyl)-

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine FPE [24] (not

shown), which showed that despite the hydrolytic effects of

the drug at a molecular level it had limited structural effect

upon the membrane in the head-group region, demonstrating

that the electronic and steric influence of the drug was minimal.

This suggests that raclopride forms either an non-ionized,

hydrophobic species or some form of net-neutral zwitterion

or internal salt species [25], making its incorporation into the

membrane interior much more favourable if the space is avail-

able to accommodate it.

In this model, raclopride acts more like a phase transfer

agent, forming only transiently charged species which reside

predominantly below the water interface. The more disordered
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and fluid the membrane, the greater the free volume available

to sequester the drug molecules in the membrane core, where

they are unable to either acquire protons or deliver them to

the lipids’ acyl regions. It has not been possible to definitively

identify this mechanism as that underpinning the observed

phenomena and indeed it may be the case that they result

from a complex combination of these and other effects: how-

ever, the combination of drug sequestration into lipid void

volumes and a transiently cationic drug present a plausible

hypothesis around which further studies will be based.
J.R.Soc.Interface
11:20131062
4. Conclusion
The above study demonstrates that small changes in compo-

sition between biological membranes may have dramatic

effects upon the behaviour of an amphiphile with its constitu-

ent lipids. If this behaviour plays a significant role in

determining the systemic transport of such species, as postu-

lated by Baciu et al. [9], such differences could determine a

compound’s success and failure in clinical trials. The identifi-

cation of a consistent, reproducible and linear relationship

between the composition and rate of digestion of a membrane

also provides, for the first time, a testable explanation for the

structural effects some drug molecules have been observed

to exert upon their surrounding tissue upon prolonged admin-

istration. A number of CAD species cause lipid storage

disorders such as phospholipidosis within cells [26]: it may

be that this and related conditions are as much a function of

the drugs’ direct interactions with the membranes’ lipid
matrix as it is with any family of proteins. These interactions

might be directly probed in vitro using cell cultures incubated

in media of differing lipid content; any differences in mem-

brane morphology between cultures can then be attributed

to the differences between those membrane compositions

rather than any other factor, although it may not be possible

to generate quantitative information in the manner of this

study from such experiments.

The complexity of the trends described in this study high-

lights some of the difficulties in modelling or attempting to

predict the behaviour of the diverse and highly dynamic

environment of biological membranes. By studying these reac-

tions in condensed phase systems where reaction rates are

considerably slower than fluorescence-based studies in giant

vesicles [9], it is possible to quantify the rates with respect to sys-

tematic changes in bilayer composition on sufficiently large

populations to produce statistically relevant data. These exper-

iments provide an effective method to probe and quantify

drug–lipid interactions, thus characterizing from a chemical per-

spective a reaction which can be applied to more complex

biological systems. They also highlight the importance of prob-

ing drug–lipid interactions and the role these interactions have

in drug administration and systemic transport.

Data accessibility. All lysolipid concentration measurements are available
via Figshare [27].
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