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                                                                                                                      Abstract 

Abstract 
 

Resistance to parasites is advantageous for most organisms but investing limited 

resources into defence depends on the selection pressure involved and the 

nature and magnitude of costs involved. The evolutionary interactions between 

hosts and their parasites have received much attention but the effect of 

intracellular parasites in such systems is far less understood. Microsporidia are 

intracellular parasites of vertebrates and invertebrates that have gained 

prominence both as a pathogen and a potential biocontrol agent.  

 

This thesis investigates evolution of resistance against intracellular parasites and 

the associated trade-offs in Drosophila melanogaster and Tubulinosema kingi 

system. Stage-specific susceptibility of the host to T. kingi infection and stage-

specific within-host parasite proliferation; host tissue specificity and the impact of 

T. kingi on host sex ratio were also investigated in this system. Immune 

responses of D. melanogaster to T. kingi infection were examined. Increased 

haemocyte density and phenoloxidase activity was observed in infected flies and 

a negative effect of nitric oxide on parasite density was observed.  

 

Five pairs of replicate D. melanogaster lines were used for experimental 

evolution of resistance to T. kingi. The within-host parasite density decreased 

significantly in selected lines indicating the evolution of resistance. The early 

fecundity and longevity of selected lines were significantly higher than of control 

lines when infected by T. kingi. Trade-offs associated with increased resistance 

against microsporidia was investigated. The evolved resistance was negatively 

correlated with fecundity both under normal and stressed conditions of the host; 

the selected lines were also poor larval competitors for scarce food resources. 

The haemocyte density and phenoloxidase activity in haemolymph of larvae from 

selected lines was higher than in control lines. 

 

The implications of these results are discussed in relation to other host-parasite 

systems and the possibility of using the system as a model insect-microsporidia 

system to explore ecological and evolutionary interactions.      
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Chapter One: General Introduction 
 

1.1. Host-parasite interactions 
Most organisms face threat from natural enemies such as predators, parasites 

and pathogens and interaction with these enemies is often inevitable. The 

evolutionary interactions between hosts and their parasites in particular have 

received a great deal of attention, since it presents a perfect scenario for 

understanding factors that drive co-evolutionary processes. Host-parasite 

interactions are highly complex involving a wide range of factors that greatly 

influence the ecology and evolution of both the host and its parasite (Anderson 

and May 1981). The host and their parasites can interact at different levels: 

individual, population and ecosystem. In this thesis I focus on the interactions 

between a host and its intracellular parasite which can be broadly classified into 

two levels. First, I explore crucial within-host interactions in the system including 

the immune responses of the host to its parasite. Second, I explore evolutionary 

interactions in terms of a host population evolving resistance against the parasite 

and further investigate the associated mechanisms and costs involved.    

 

The interaction of a parasite with its host at an individual level involves finding a 

susceptible host or host stage followed by successful infection and within-host 

proliferation, and finally successful transmission to a new host. To ensure each of 

these is achieved a parasite has to overcome a range of obstacles put forward by 

its host. A host may primarily avoid the parasite behaviourally (Fauchald et al. 

2007; Luong and Polak 2007), but once they are infected the host can only resist 

or tolerate the parasite (Boots and Bowers 1999; Miller et al. 2005). Most 

parasites are known to synchronise their lifecycle with that of their hosts to 

maximise their fitness (Kwiatkowski and Nowak 1991). Parasites further increase 

their ability to locate a susceptible host and ensure successful transmission to 

the next generation by evolving different modes of transmission; some use 

horizontal transmission involving environmentally stable forms, such as spores in 

the case of bacteria and fungi, while others use vertical transmission (Terry et al. 

1997). However, this process is complex in certain parasites and may involve 

intermediate hosts or vectors and may use different modes of transmission at 

different stages.  
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To successfully infect and multiply in its host a parasite has to evade harsh 

within-host conditions such as gastric juices, physical barriers (gut wall) and host 

immune responses. Parasites are known to either neutralise such harsh host 

responses, may just evade it or may do both (Vacher et al. 2005). Successful 

infection and within-host establishment of the parasite usually leads to fitness 

reduction in the host (Altizer and Oberhauser 1999; Blaser and Schmid-Hempel 

2005; Futerman et al. 2006), which could either be due to the cost incurred by 

the host in attempting to resist the parasite or may be due to the extensive 

damage that the parasite may have caused, in other words virulence of the 

parasite. Since parasite development mostly depends on the host’s well-being 

there exists an important trade-off between the virulence exhibited by a parasite 

and the extent of damage caused to its host (Stewart et al. 2005). Theoretical 

studies consider mode of parasite transmission to play a key role in this trade-off 

and this has been demonstrated in a few experimental systems  (Bull et al. 1991; 

Herre 1993; Stewart et al. 2005). 

 

The host-parasite interactions at the individual level subsequently affect the 

populations of both the host and its parasites. The host can interact with its 

parasite either passively by “tolerance” or actively by “resistance” (Miller et al. 

2005). In most literature “resistance” is broadly defined as mechanisms that 

inhibit or reduce infection, while “tolerance” is defined as mechanisms that 

negate the damage caused by the parasite, but does not limit the infection 

(Antonovics and Thrall 1994; Boots and Bowers 1999; Roy and Kirchner 2000; 

Miller et al. 2005; Miller et al. 2007).   However, it is due to the selection pressure 

exerted by the parasite that host populations are selected for strategies that 

provide maximum fitness and this could either be avoidance, tolerance, 

resistance or a combination of all these towards the parasite (Boots and Bowers 

1999). On the other hand parasites evolve counter-strategies that provide higher 

fitness to the parasite, such as better transmission (Terry et al. 1997), higher 

virulence (Levin 1996) and better evasion of host immune resistance (Kraaijeveld 

et al. 1998; Shelby et al. 2000; Nappi et al. 2004). Both the evolution of 

resistance in host population and the evolution of counter-defence strategies in 

parasite populations may involve costs (Lenski 1988; Kraaijeveld and Godfray 

1997; Kraaijeveld et al. 1998; Webster and Woolhouse 1999; Green et al. 2000; 

Freitak et al. 2003; Lohse et al. 2006; Pennacchio and Strand 2006; Luong and 

Polak 2007). Another important interaction between hosts and their parasites has 

been reported. Parasites that are transmitted vertically have been reported to 
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skew the sex ratio of their host population to maximise their transmission 

success. The parasites achieve this by either exhibiting sex-specific virulence, 

feminising behaviour or by altering the sex-ratio of the host progeny (Dunn et al. 

1993; Dunn et al. 1998; Hurst and Jiggins 2000; Montenegro et al. 2005; Bentley 

et al. 2007). At the ecosystem level parasites play an important role in structuring 

ecological communities by apparent competition and intraguild predation 

(Hatcher et al. 2006; van Veen et al. 2006). 

 

In this chapter, I provide an introduction to the model study system used in this 

thesis: Drosophila melanogaster and its intracellular microsporidian parasite 

Tubulinosema kingi. I further briefly discuss the evolution of resistance in general 

and in particular refer to Drosophila and its parasites as a model system, and 

have included a brief summary of microsporidian biology.     

 

1.2. Evolution of resistance 
For an organism, defending itself from natural enemies within the community that 

are capable of reducing its fitness, such as parasites, pathogens and predators is 

crucial. To achieve this, an organism has to invest a significant part of available 

resources into defence functions (Schmid-Hempel 2003). Since resources are 

usually limited, the extent to which an organism invests in defence is mainly 

driven by factors such as the selection pressure applied by the parasite and the 

extent of costs involved (Rolff and Siva-Jothy 2003). Costs associated with 

resistance to parasites have been documented in a range of host-parasite 

systems: Arabidopsis-pathogen system (Burdon and Thrall 2003); bacteria-

phage system (Lenski 1988); Paramecium-bacteria system (Lohse et al. 2006); 

Plodia interpunctella-virus system (Boots and Begon 1993); Aedes aegypti-

Plasmodium  system (Yan et al. 1997) and a snail-schistosome system (Webster 

and Woolhouse 1999). Apart from these, costs of resistance have also been 

reported in Drosophila-natural enemy systems, which are discussed later in this 

chapter. The costs associated with resistance can be broadly classified into the 

actual cost incurred by mounting a defence reaction against the parasite and the 

standing cost incurred by maintaining a defence reaction in anticipation of a 

parasite attack (Kraaijeveld et al. 2002).  

 

In addition, the presence of additive genetic variation in traits associated with 

defence ability is essential for resistance to evolve and this has been commonly 

assumed in models for co-evolution in host-parasite systems (May and Anderson 
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1983; Schmid-Hempel 2003). Evidence for this has been demonstrated in plant-

pathogen (Burdon 1980; Burdon and Thrall 2003) and plant-herbivore systems 

(Agrawal et al. 1999). Similar evidence has also been documented in a few 

animal-natural enemy systems, such as sheep-nematodes (Smith et al. 1999); 

snail-schistosome (Webster and Woolhouse 1998); Daphnia-bacteria (Ebert et al. 

1998), Daphnia-midge (Spitze 1992);  Drosophila-fungi (Tinsley et al. 2006) and 

Drosophila-parasitoid (reviewed by Kraaijeveld et al. (1998)).      

 

As discussed earlier, evolving resistance to natural enemies has associated 

costs in terms of life-history traits; For example, the resistance in the snail system 

had a trade-off with fecundity (Webster and Woolhouse 1999), while in the Plodia 

system resistance was linked to development time and egg viability (Boots and 

Begon 1993).  Apart from this it has also been suggested that evolved resistance 

to one natural enemy can be traded-off with resistance to a second natural 

enemy (Simms and Fritz 1990). However, this would be true only in cases where 

the genetic correlation between resistances to the two natural enemies is 

negative. In cases where correlations between the resistance to two natural 

enemies is positive, selection by one natural enemy will result in increased 

resistance not only to this species but also to the second natural enemy, even in 

its absence (Fellowes et al. 1999a). Therefore, the specificity of resistance can 

have complex implications for the structure and dynamics of natural communities 

(Fellowes and Kraaijeveld 1998c; Bohannan and Lenski 2000; Ferrari 2001; 

Poitrineau et al. 2003).        

 

Selection experiments involving experimental evolution are valuable tools to 

investigate the evolution of resistance against a parasite followed by investigating 

the correlated responses to evolved resistance that might represent costs (Fry 

2003). This technique is also advantageous since it allows replication of the 

treatment (Gibbs 1999; Harshman and Hoffmann 2000). However, selection 

experiments have drawbacks which include the unnatural selection regimes used 

in the experiments and unintentional selection (Partridge et al. 1999; Harshman 

and Hoffmann 2000). Other advantages and drawbacks associated with selection 

experiments will be discussed in chapter four along with the essential factors in 

designing selection experiments. In this thesis I report the use of an experimental 

evolution set-up to investigate the evolution of resistance and/or tolerance in a 

Drosophila-intracellular parasite system and then look for correlated responses to 

selection (see chapter four and five).    
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1.3. Drosophila and its parasites 

The fruit fly, Drosophila, has been extensively used to investigate and 

understand ecological interactions and evolution of organisms. It has been used 

for the last 100 years by researchers from various fields as a model insect to test 

predictions and newly developed techniques. Drosophila cultures have been 

recently used in experiments to test the effect of space travel on immune system 

of an organism (Benguria et al. 1996; Marco et al. 1996), suggesting that 

Drosophila will continue to be an important model organism in the future (www. 
quest.arc.nasa.gov). The physiology and genetics of Drosophila is well 

understood (Schneider 2000) and can be easily manipulated (Ueda 2001). With 

the genome of Drosophila  completely sequenced (Celniker 2000) and with new 

manipulative tools such as RNAi available (Ueda 2001), Drosophila  is an 

excellent model organism. The recent reports on human homologues in 

Drosophila has provided researchers an opportunity to investigate a wide range 

of human diseases in the fruit fly for a better understanding of the host-

pathogen/parasite interactions and disease causing mechanisms (Lemaitre et al. 

1996; Bernards and Hariharan 2001; Mansfield et al. 2003; Shinzawa and 

Kanuka 2006; Jensen et al. 2007).  
 

Drosophila is also a good model insect to study life-history related trade-offs 

involving the immune system; This is especially due to the wealth of information 

and wide range of techniques available in this model system (Ueda 2001; Tzou 

et al. 2002; Lemaitre and Hoffmann 2007). Since Drosophila have a short 

generation time and can be easily maintained as large populations in laboratories, 

they have been ideal systems in which specific traits could be artificially selected 

experimentally (Kraaijeveld and Godfray 1997; Fellowes et al. 1998a; Partridge 

et al. 1999; Harshman and Hoffmann 2000; Fry 2003).      

 

Drosophila is exposed to a range of ecto- and endoparasites such as parasitoids, 

mites, nematodes, fungi, bacteria and viruses, partially because they inhabit, 

feed and reproduce in decaying environments rich in microbes (D'Argenio et al. 

2001; Mansfield et al. 2003). The Drosophila females are attracted to fermenting 

and decomposing substrates, upon which they lay their eggs.  The larvae that 

hatch out feed on the decomposing food and moult through three instars prior to 

pupating. Within the pupae the larval tissue is restructured to form a fly which 

finally emerges from the pupal case. The duration of each life-stage and that of 

the lifecycle is species-specific and is dependent on a range of environmental 
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conditions such as temperature and day length. D. melanogaster, at 20ºC has a 

five day larval period, followed by seven to eight day pupal period then the 

emerging flies need a day to sexually mature. The different life stages of 

Drosophila are susceptible to different parasites (Kraaijeveld et al. in press). For 

example the parasitoid Asobara tabida parasitizes the larvae, while the parasitoid 

Pachycrepoideus vindemiae parasitizes the pupae and fungal parasite Beauveria 

bassiana attacks only the adult flies. However, Drosophila may be susceptible to 

other parasites irrespective of their life stages, for example Drosophila C virus 

(Gomarizzilber and Thomasorillard 1993). This stage-specific susceptibility is an 

important determinant of the host-parasite interactions (Law 1979; Briggs and 

Godfray 1995; Moerbeek and Vanden Bosch 1997).  

 

Drosophila is parasitized by its endoparasites through one or more of the 

following routes: orally, through the cuticle and through the reproductive orifice. 

However, a few parasites use special organs for parasitizing their host, for 

example the ovipositor in parasitoids. In an attempt to resist the parasitic 

invasions Drosophila have developed a range of resistance mechanisms. These 

primarily involve physical barriers such as thicker cuticle and puparium, gut wall 

and mucosal lining, as well as innate immune mechanisms. The innate immunity 

in Drosophila comprises of humoral and cellular immune responses (Lemaitre 

and Hoffmann 2007). The Drosophila immunity is discussed later in chapter three. 

 

The parasites infecting Drosophila vary in their objective: some utilize the host 

body (for feeding), others utilize the host metabolism, and a few others may use 

the host for transmission. Directly or indirectly, parasitism causes a reduction in 

Drosophila fitness such as reduced fecundity, reduced longevity or even death in 

some cases and this has a significant impact on Drosophila population dynamics. 

The selection pressure exerted by the parasites on the Drosophila population 

may result in the evolution of resistance against the parasite involved and this 

has been demonstrated previously using laboratory-based artificial selection 

experiments. Evolution of resistance against two larval parasitoids, Asobara 

tabida (Braconidae) and Leptopilina boulardi (Figitidae), in D. melanogaster 

population has been reported showing that there is considerable additive genetic 

variation in the D. melanogaster population for resisting parasitoids (Kraaijeveld 

and Godfray 1997; Fellowes et al. 1998a). In a similar investigation Kraaijeveld 

and Godfray (subm.) demonstrate evolution of resistance against a fungal 

parasite Beauveria bassiana in the same D. melanogaster population. The 
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resistance evolved against these three parasites was found to involve costs 

associated with standing defence, although the nature and magnitude of these 

cost varied. The cost associated with resistance was weaker against fungi in 

comparison to that against the parasitoids (Kraaijeveld and Godfray, subm.). The 

D. melanogaster population selected for increased resistance to larval 

parasitoids A. tabida and L. boulardi was found to be poorer larval competitors in 

comparison to the control population suggesting that increased resistance was 

costly (Kraaijeveld and Godfray 1997; Fellowes et al. 1998a). The D. 

melanogaster population selected for increased resistance against B. bassiana 

were found to have lower lifetime reproductive success compared to the control 

population suggesting a possible cost (Kraaijeveld and Godfray, subm.).  

 

The evolutionary interactions investigated between Drosophila and its three 

endoparasites described in the previous paragraph show that resistance against 

parasites can evolve and involves costs, the nature and magnitude of which 

limits the evolution of resistance. Recent evidence suggests that Drosophila can 

similarly evolve behavioural resistance against an ectoparasitic mite Macrocheles 

subbadius and this again has a fitness cost in terms of host fecundity (Luong and 

Polak 2007). However, all the parasites investigated so far are extracellular in 

nature and it is not known if Drosophila can resist their intracellular parasites 

such as microsporidia (Kramer 1964a; Futerman et al. 2006) and Wolbachia 

(Ilinsky and Zakharov 2007). It is also possible that the immune reactions elicited 

against extracellular parasites may be infective against these parasites due to 

their intracellular nature. Can resistance to intracellular parasites evolve, and if 

so, what are the costs and mechanisms associated with it? Investigating these 

questions has potential implications on our understanding of host-parasite 

interactions. 

  

1.4. Microsporidia - highly evolved parasites 
The microsporidia are obligate intracellular parasites that are highly-derived fungi 

with greatly reduced morphology and genomes (Katinka et al. 2001; Keeling and 

Fast 2002; Keeling et al. 2005). Microsporidia are known to infect a wide range of 

vertebrates and invertebrate hosts including insects. This group of parasites have 

recently received considerable attention for two reasons; first, they have 

emerged as human pathogens that cause fatal infections in immuno-

compromised patients (Hart et al. 2000; Weiss 2001; Visvesvara et al. 2005; 

Omalu et al. 2006; Dwivedi et al. 2007) and second, because of their potential to 
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be used for bio-control of arthropod pests and disease vectors (Sweeney and 

Becnel 1991; Hajek et al. 2007). The vital need to understand this newly 

emerged pathogen has led to the complete genome sequencing of the 

microsporidium Encephalitozoon cuniculi, which infects a range of mammals 

including man (Katinka et al. 2001).   

 

The phylum Microspora, comprising more than 1200 species belonging to about 

143 genera, was initially classified in the kingdom Protista. Recent studies using 

DNA techniques strongly suggest that the phylum should be classified in the 

kingdom Fungi or at least as a sister kingdom to Fungi (Hirt et al. 1999; Keeling 

et al. 2000; Bruns 2006; James et al. 2006; Hibbett et al. 2007) although the 

specifics are still currently debated. Taxonomic classification of microsporidia 

was traditionally based on their natural host and ultrastructural features such as 

size of mature and developing stages, arrangement of nucleus (mono- or 

diplokaryon), arrangement and number of polar filament coils (Omalu et al. 2006). 

Microsporidian classification may also consider other factors such as the 

interface of developing stages within the host cell (either directly in contact with 

host cell cytoplasm or within host cell derived vacuole) and the mode of cell and 

nuclear division (Omalu et al. 2006). Subsequently, molecular methods (Franzen 

and Muller 1999) have been utilized resulting in frequent revision and debate on 

class, order and families within the phylum Microspora (for example see Franzen 

et al. 2005). 

 

 
Fig. 1.1: General structure of a microsporidian spore, a diagrammatic 
representation (from Keeling and Fast 2002). 

 19 



                                                                                                  General introduction 
                                     

Microsporidia are exclusively intracellular and are characterised by their unique 

thick-walled, resistant transmission stage: the spore. The microsporidian spores 

are double walled, with an outer exospore and an inner endospore, which 

contains the sporoplasm and a posterior vacuole around which the polar filament 

coils, see figure 1.1 (Keeling and Fast 2002). Microsporidia have a unique mode 

of infecting their host cells. Resistant spores that are normally ingested by the 

host are triggered to extrude their polar filament (that acts as a combination of 

harpoon and hypodermic needle) towards the host cell, penetrating the host cell 

and inoculating it with the infective sporoplasm through the filament. Recently, it 

has been suggested that microsporidia gain access into the host cell alternatively 

by phagocytosis and the polar tube is used to escape from the maturing 

phagosomes and to infect the cytoplasm of host cells (Franzen 2004; Franzen 

2005). Once within the host cytoplasm the microsporidium undergoes two 

characteristic developmental phases: a proliferative phase known as merogony, 

followed by a sporulation phase known as sporogony. Merogony results in the 

production of increased numbers of meronts (microsporidium development stage) 

within the cells, while sporogony results in the production of infective spores.  

 

A few microsporidia produce two kinds of spores: the early and late spores. Early 

spores have thin exospore, a short polar tube and primarily infect neighbouring 

cells within the same host, while late spores have longer polar filaments, a 

thicker exospore and are mainly transmitted to new hosts. Microsporidia have 

been reported to use either one or both modes of transmission: horizontal 

transmission between unrelated hosts or vertical transmission between female 

hosts and their offspring (Dunn and Smith 2001; Didier et al. 2004). Horizontal 

transmission of microsporidia mainly occurs through an orofecal route, where 

hosts feed on spores released from faecal fluids (Chen et al. 2004) or infected 

cadavers (Becnel and Johnson 2000; Futerman et al. 2006). Microsporidia are 

transmitted vertically from infected females to their offspring transovarially (within 

their eggs) (Dunn et al. 2001) and microsporidia that are exclusively transmitted 

vertically have been shown to have serious implications on host sex ratio due to 

the manipulation of host reproduction (Dunn et al. 1993; Ironside et al. 2003).  

The life cycles of some microsporidia are simple and direct involving a single 

host and a single spore form, while in others it can be more complex involving 

multiple hosts and many spore forms transmitted by different modes at different 

stages in the life cycle (Johnson 1997; Dunn and Smith 2001; Vossbrinck et al. 

2004; Futerman et al. 2006).     
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Ever since the first named microsporidian, Nosema bombycis, was isolated from 

the silk worm, Bombyx mori, a century ago, when the silk industry suffered 

severely because of a mysterious disease, other insect-infecting microsporidia 

have been regularly reported. Insect-infecting microsporidia have mainly been 

studied, either with a view to using them as a potential biocontrol agent for 

agricultural pests and disease vectors (Johnson 1997; Williams et al. 1998; 

Agnew and Koella 1999; Becnel and Johnson 2000; 2004), or as a parasite 

having adverse effects on beneficial insects (Schuld et al. 1999; Malone et al. 

2001; Olsen and Hoy 2002). The effect of microsporidiosis in insect hosts varies 

greatly between being relatively benign in some (Weiss 2001) to being fatal 

before host maturation in others (Schuld et al. 1999). Microsporidia are also 

known to adversely affect a range of host life-history traits such as decreased 

fecundity (Schuld et al. 1999; Futerman et al. 2006), increased mortality (Wilson 

1974), increased development period (Boohene et al. 2003) and reduced size 

(Agnew and Koella 1999; Futerman et al. 2006). These effects of microparasites 

on host fitness traits can have serious impact on host populations, including local 

extinction (Anderson and May 1981; Becnel and Johnson 2000; Kohler and 

Hoiland 2001). 

 
1.5. Drosophila-microsporidia system 
Drosophila have been extensively maintained as laboratory cultures in scientific 

institutions across the world and even in this artificial environment Drosophila 

have to face a range of enemies such as fungi, mites and microsporidia. There 

have been many reports of microsporidian infections in laboratory Drosophila 

populations, but the identity of the microsporidium has only been reported in 

three cases. First, Octosporea muscaedomesticae Flu, a microsporidium that has 

been found to infect a range of dipteran species including the families 

Drosophilidae, Muscidae, Sacrophagidae and Calliphoridae (Kramer 1973; 

Roxstrom-Lindquist et al. 2004) was observed in D. busckii, D. confusa and D. 

melanogaster (Kramer 1964b). Second, Tubulinosema kingi (Kramer) (formerly 

known as Nosema kingi) was found in laboratory cultures of Drosophila willistoni 

(Burnett and King 1962; Kramer 1964a), but was later known to infect a range of 

Drosophila species, including D. melanogaster and D. subobscura (Armstrong 

1976; Armstrong et al. 1986; Armstrong and Bass 1989a; Armstrong and Bass 

1989b; Franzen et al. 2006; Futerman et al. 2006). Finally, the recently described 

Tubulinosema ratisbonensis Franzen et al. was found in a single laboratory 
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culture of D. melanogaster (Franzen et al. 2005). I am not aware of the 

prevalence of microsporidium infections in field populations of Drosophila. The 

survey carried out by Futerman et al. (2006) in a university campus in southern 

England found only one microsporidium-infected fly, which they suggest could 

have escaped from the laboratory cultures (Futerman et al. 2006).    

 

Tubulinosema kingi, the microsporidian parasite of Drosophila spp. used for 

investigating the host-parasite interactions in this thesis, was described four 

decades ago (Burnett and King 1962; Kramer 1964a). The T. kingi used for 

experimental inoculation in this thesis was from an infection that occurred in the 

Drosophila/Asobara culture system maintained in our laboratory for evolutionary 

studies (Kraaijeveld and Godfray 1997). The microsporidia were initially spotted 

in the parasitoids with physogastric (distended and pale) abdomens. Light 

microscopic observations of infected parasitoids showed microsporidian spores. 

The same spores were subsequently found in abdominal smears of Drosophila 

(Futerman et al. 2006). Detailed ultrastructure and molecular investigation of this 

infection identified the microsporidium parasite as Tubulinosema kingi (Franzen 

et al. 2006; Futerman et al. 2006).  

 

Futerman et al. (2006) further investigated the effects of T. kingi infection on the 

fitness of its hosts D. melanogaster, D. subobscura and their parasitoid Asobara 

tabida. They also explored the routes of transmission of this microsporidian 

parasite within the Drosophila-parasitoid system. Amongst the different life 

history parameters that Futerman et al. (2006) compared in T. kingi-infected and 

uninfected Drosophila, they found the effect on early fecundity to be most severe. 

The T. kingi-infected flies had a 34-55% reduction in their early life fecundity 

(Futerman et al. 2006). The other traits that suffered due to microsporidian 

infection were increased developmental period and pupal mortality (Futerman et 

al. 2006). They found that T. kingi was mainly transmitted horizontally from dead 

cadavers to larvae, larvae to larvae and from contaminated food to larvae. 

However a very low level of vertical transmission from  infected female flies to 

their offspring (approximately 10%) was also observed (Futerman et al. 2006). 

These results were in line with the previous studies investigating the effects of T. 

kingi on Drosophila (Armstrong 1976; Armstrong and Bass 1989a; Armstrong 

and Bass 1989b).  
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The D. melanogaster cultures used for the experiments described in this thesis 

were the same as those used by Kraaijeveld and Godfray (1997). This D. 

melanogaster population was originally derived from 250 wild flies captured near 

Leiden in The Netherlands and has been maintained as an outbred population for 

over a decade with non-overlapping generations. This D. melanogaster 

population was previously used to demonstrate evolution of resistance against 

the larval parasitoids A. tabida and L. boulardi (Kraaijeveld and Godfray 1997; 

Fellowes et al. 1998a)  and a fungal pathogen Beauveria bassiana (Kraaijeveld 

and Godfray, subm.) through artificial selection.  

 

The investigations into host-parasite interactions required that the D. 

melanogaster base population used should be free of microsporidian infection. I 

examined the D. melanogaster base population by screening 250 randomly-

selected flies from the population for T. kingi spores by observing their Giemsa 

stained abdominal smears (Pell and Canning 1993; Futerman 2005), see chapter 

two for method. It was necessary to maintain the base population free of 

microsporidium infection and hence the culturing of this population was carried 

out in sterile conditions. The equipment used was autoclaved and the work 

surface was swabbed with alcohol. The incubators and refrigerators used were 

periodically subjected to alcohol and bleach washes. The base population was 

maintained in sterile 300ml glass bottles containing a medium composed of 3.5% 

baker’s yeast, 5% sugar, 0.5% Tartaric acid, 0.15% Potassium dihydrogen 

phosphate, 0.2% Ammonium sulphate, 0.05% Magnesium sulphate heptahydrate 

and 2% agar (hereafter referred to as yeast/sugar medium) along with a little live 

yeast. At periodic intervals the base population was examined for T. kingi 

infections by screening a random sample of flies from the population.  

 

1.6. Thesis Objectives 
There are many references to microsporidia infecting insect hosts. However most 

studies appear to concentrate on the identification and classification of the 

parasite with brief descriptions of their effects on their hosts but scarcely 

investigate the interactions between the host and its parasite.  This work furthers 

the investigation carried out by Futerman (2005) on the D. melanogaster–T. kingi 

model system. Futerman examined the impact of a shared microsporidian 

parasite in a Drosophila-parasitoid system (Futerman et al. 2006). In this thesis I 

investigate the interactions between Drosophila and its microsporidian parasite. 

To the best of my knowledge this study is the first in which the evolution of 
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resistance against an intracellular microsporidian parasite has been investigated 

along with its associated costs and mechanisms. In addition, this system was 

useful in exploring a range of host-parasite interactions including insect immune 

response to microsporidia. The main body of this thesis is divided into four 

chapters (two to five), each describing a set of experiments investigating the 

interactions between Drosophila and its microsporidian parasite at either 

individual or population levels.  

   

In chapter two I explore the within-host dynamics of T. kingi. I subjected different 

Drosophila life-stages to T. kingi infection and explored if they varied in their 

susceptibility, since this was unknown. I then investigated the proliferation of T. 

kingi spores within the host and identified the tissues targeted by T. kingi for 

better understanding of how the microsporidian infection spreads within the host. 

Among other tissues, the female reproductive organ was found to be infected by 

T. kingi and since low levels of vertical transmission had been previously 

observed in this system (Futerman et al. 2006) I explored the effect of T .kingi on 

the Drosophila sex ratio. In chapter three I explain how I further investigated the 

host-parasite interactions at an immunological level by subjecting Drosophila to T. 

kingi infections and looking for correlated cellular and humoral immune 

responses.  

 

In chapter four I describe experimental evolution for increased resistance and/or 

tolerance to microsporidia in replicated populations of D. melanogaster along 

with bioassays of host life-history traits. In chapter five, I explore the costs and 

immune mechanisms in Drosophila that could be associated to the evolved 

resistance/tolerance against T. kingi.  

 

Chapters two and three provided an insight into the interactions between 

Drosophila and T. kingi at an individual level, while chapters four and five explore 

these interactions at an evolutionary scale. In chapter six I summarise the results 

of the preceding chapters and examine the implications of these results on 

furthering our knowledge of host-parasite interactions, natural communities and 

biocontrol programs. I conclude this final chapter with suggestions on further 

investigations that could enhance our understanding of host-parasite interactions. 
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Chapter Two: Within-host dynamics of Tubulinosema kingi 
in Drosophila melanogaster 

 

2.1. Introduction  
Prior to exploring a prospective host-parasite system it is crucial to understand 

that factors such as dose, susceptible stages of host, parasite replication, host 

immune responses, parasite evasion of host resistance and mode of parasite 

transmission influence the interactions in such systems (Briggs and Godfray 

1995; Moerbeek and Vanden Bosch 1997; Blaser and Schmid-Hempel 2005). 

Insect models investigating host-parasite interactions are valuable for 

understanding the factors involved in a disease such as: host resistance and its 

evolution (Kraaijeveld et al. 2002; Mansfield et al. 2003; Kanost et al. 2004; 

Schmid-Hempel 2005), pathogen virulence (Day 2002; Day 2003; Blaser and 

Schmid-Hempel 2005) and its modes of transmission (Day 2001; Ebert and Bull 

2003), parasite-host population dynamics (Dunn and Hatcher 1997; Vizoso and 

Ebert 2004; Futerman et al. 2006) and biological pest management (Sweeney 

and Becnel 1991).  

 

Very few studies have reported on the within-host dynamics of insect-infecting 

microsporidia (Milner 1973; Blaser and Schmid-Hempel 2005; Tokarev et al. 

2007) even though these fundamental questions are vital in understanding the 

significance of microsporidia both as an opportunistic pathogen and as a 

plausible biocontrol agent. Thus this investigation was carried out in the T. kingi – 

Drosophila system, which provides for a potentially usable insect-microsporidia 

model. Former studies on this system (Kramer 1964a; Armstrong 1976; 

Futerman et al. 2006) have described modes of parasite transmission, fitness 

losses to the host and reliable methods of infecting D. melanogaster with T. kingi. 

However very little is known about the within-host interactions in this host-

parasite system and fundamental questions such as the susceptibility of different 

host stages to T. kingi remains unanswered.  

 

In nature insects are typically susceptible to a given parasite only for short 

periods of their life-cycle (Briggs and Godfray 1995). Theoretical studies have 

demonstrated the significance and consequences of stage specific susceptibility 

to the dynamics of insect-parasite systems (Briggs and Godfray 1995; Moerbeek 

and Vanden Bosch 1997). Microsporidia are known to depend on specific host 
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stages for infection, effective replication and transmission (Tanada and Kaya 

1992). The change in host age or stage often corresponds to a change in host 

structure, behaviour, diet and probability of infection (Kennedy 1975). This type 

of stage- or age-specificity exhibited by a  parasite for infection and transmission 

might be due to infection probability, mode of infection, vulnerability of the host, 

histology of the host stage, host stage specific immune mechanisms, temporal or 

spatial availability of the host, or its size and behaviour (Kennedy 1975; Elliot et 

al. 2002; Blaser and Schmid-Hempel 2005). Younger larval stages are usually 

reported to be more susceptible to microsporidia than the older larvae (Weiser 

1969; Blaser and Schmid-Hempel 2005) but the adults are considered to be 

either resistant (Blaser and Schmid-Hempel 2005) or very slightly susceptible 

(Milner 1973).  This phenomenon has been broadly termed ‘maturation immunity’ 

(Tanada and Kaya 1992). 

 

Endo-parasites usually exhibit a degree of specificity to the tissues they infect 

and replicate within. The tissue-susceptibility to parasites depends on within-host 

factors like host behaviour, host and parasite genetics, natural and acquired 

resistance, factors associated with host age and host sex, inter- and intraspecific 

interactions and parasite density (Bush et al. 2001). However the portal of 

parasite entry also influences the within-host parasite establishment: parasites 

that infect through the oral route often either localize in the gut epithelium or 

cross beyond the gut wall to infect other tissues and organs, for example fat body. 

Parasites infecting the host through damaged body surfaces are commonly 

known to infect superficial tissues, while those infecting through the reproductive 

openings usually infect the reproductive organs and other tissues within the 

abdomen (Steinhaus 1949). This tissue-susceptibility is an important factor that 

determines the virulence of the parasite and the extent to which the host suffers 

(Tanada and Kaya 1992). Microsporidia infect a wide range of host tissues and T. 

kingi in particular has been reported from fat body, reproductive organs, and 

epithelial matrix of abdominal tracheae and alimentary tract of D. williston 

(Kramer 1964a; Armstrong 1976). 

 

Parasites that are transmitted vertically are known frequently to skew the sex 

ratio of their host in order to increase their own fitness and transmission since 

both these factors depend on females and not males (Dunn et al. 1993; Dunn 

and Hatcher 1997; Terry et al. 1997; Dunn and Smith 2001; Terry et al. 2004). 

Such sex-specific virulence is achieved by parthenogenesis (Huigens et al. 2000), 
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male killing (Hurst et al. 1999; Bentley et al. 2007) and feminisation (Bouchon et 

al. 1998), and is considered to be an essential strategy for maintaining these 

parasites (Hurst et al. 1993; Dunn et al. 1998; Dunn et al. 2001; Charlat et al. 

2003; Ironside et al. 2003). Tubulinosema kingi is transmitted both horizontally 

and vertically in the laboratory cultures of Drosophila. Transmission studies for 

this parasite have shown that horizontal transmission is much more prevalent 

than vertical transmission, but nothing is known of their relative rates in the field 

(Armstrong 1976; Futerman et al. 2006). Although sex ratio distortion has been 

reported in vertically transmitted parasites, it is not known if parasites with mixed 

modes of transmission use such strategies.  

 

This chapter aims to address the following fundamental questions. First, to 

identify the Drosophila life stages susceptible to the T. kingi infection and 

establish whether infecting different host stages had an effect on parasite density 

within the host. Second, to examine how T. kingi proliferates during host 

development, and the duration after infection when mature spores are produced. 

Third, to identify the host tissues which are targeted by T. king. Finally to 

investigate, the possible influence of T. kingi on the sex ratio of D. melanogaster 

progeny.  

 

2.2. Material and Methods 
The large outbred population of D. melanogaster (introduced in Chapter one) 

reared under our standard laboratory conditions (20ºC in 16:8 light:dark regime 

and ambient humidity) formed the base stock for these experiments. The T. kingi 

used for experimental infections throughout this thesis was extracted from 

symptomatic parasitoids of Drosophila, Asobara tabida, using a method 

described in Futerman et al. (2006). The infected parasitoids were first surface 

sterilised by immersing them in 1% sodium hypochlorite containing traces of 

0.1% SDS solution with brisk shaking for five minutes. The parasitoids were then 

thoroughly washed with distilled water and homogenised in 0.1% SDS and 

filtered through muslin cloth to remove tissue debris of the parasitoid. The spore 

suspension (filtrate) thus obtained was then quantified by haemocytometer. A 

standard spore dose of approximately 2.5x106 spores per 50 D. melanogaster 

larvae was used for most experiments, a dose recommended by Futerman et al. 

(2006). The spore suspensions were freshly prepared prior to inoculation for all 

the experiments. 
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2.2.1 Host susceptibility  
To study the host life stages that are susceptible to T. kingi infection, 24 vials  

(80x22mm) containing yeast/sugar medium and live baker’s yeast were set up. 

Each contained 50 D. melanogaster eggs which were collected by allowing flies 

to mate and oviposit overnight in sterile 300ml bottles with medium and live yeast. 

These vials were incubated at 20ºC and 16:8 light:dark regime. The D. 

melanogaster life stages investigated here were a) 1st, 2nd, early 3rd and late 3rd 

instar larval stages, determined by time since oviposition, b) pupae and darkened 

pupae just prior to emergence, determined by morphology, and c) just emerged 

flies and three day old flies, six hours and 72 hours after emergence respectively. 

The 24 vials were divided into eight batches of three vials, each of which were 

treated as replicates for each life stage. As the individuals within the vials 

developed and reached each of the above mentioned stages the three vials were 

inoculated with ~2.5x106 T. kingi spores per vial, the spore suspensions for each 

vial was prepared individually. 24 hours post inoculation the individuals within the 

vial were washed out and rinsed repeatedly with millipore water to remove any 

adhering spores (with the exception of the adult stages) before being transferred 

to sterile vials containing medium and live yeast, which were then incubated at 

20°C. The date of inoculation was recorded for each of the eight life stages. On 

the 17th day after inoculation for each stage, ten individuals from each of the 

three replicate vials were randomly selected and smeared on glass slides and 

giemsa stained (Pell and Canning 1993). It was thus ensured that the infection 

status of each stage was examined after the same duration of infection. The 

following Giemsa staining procedure was used. Slides with smeared samples 

were fixed with 100% methanol for five minutes and then air-dried. The smears 

were then stained in 10% Gurr’s improved R66 Giemsa stain in pH 7.2 

phosphate buffer for 45 minutes (Futerman 2005). The slides were then rinsed in 

running water and gently blot-dried. The slides were examined under oil 

immersion at 1000x magnification.   

 

The infection status of the host was determined semi-quantitatively (Futerman et 

al. 2006) by assigning the following scores to the microscope observations of 

spore density: slides with numerous spores spread all over were considered 

heavily infected and scored 4; slides with plenty of spores mostly in large groups 

were considered moderately infected and scored 3; slides with few spores found 

mostly in small groups were considered lightly infected and scored 2; slides with 

just a few spores found occasionally across the slide were considered very lightly 
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infected and scored 1; whilst slides that were free of any T. kingi spores were 

considered to be uninfected  and scored 0.   

 

2.2.2 T. kingi spore proliferation   

To monitor the T. kingi spore proliferation within the host after infection, D. 

melanogaster adults were allowed to mate and oviposit overnight in sterile 300ml 

bottles with yeast/sugar medium and live baker’s yeast. The eggs were collected 

the following day and transferred to a Petri plate (9cm) containing yeast/sugar 

medium with live yeast and the surface smeared with T. kingi spore suspension 

(~ 1x107 spores). The plates were then incubated at 25ºC for 24 hours, after 

which the hatched larvae were washed from the plate and rinsed with sterile 

water. Twenty vials (80x22mm) were set up with fresh medium and live baker’s 

yeast. Approximately 50 larvae were transferred into each vial and the vials were 

then incubated at 20ºC in a 16:8 light:dark regime. For the 20 following days, one 

vial per day was randomly selected. Ten randomly selected individuals from this 

vial were giemsa stained as described in section 2.2.1. The slides were then 

examined and semi-quantitatively scored as in section 2.2.1.     

 
2.2.3 Host tissue specificity 
To identify the tissues targeted and infected by T. kingi, D. melanogaster from 

the base population were allowed to oviposit in bottles containing medium and 

live yeast for six hours. 50 eggs were transferred into each of the three vials 

(80x22mm) containing medium and live yeast. 24 hours later, ~2.5x106 T. kingi 

spores in 0.1% SDS were added to each vial and incubated at 20ºC. 24 hours 

after the flies emerged, two adult flies of each sex per vial were sectioned and 

observed by light microscopy. The flies were fixed in 4% phosphate buffered 

formaldehyde (PBF) for 48 hours, the head, wings and legs of the specimens 

were cut off and the specimen dehydrated in 70% ethanol for one hour, 95% 

ethanol for three hours and thrice in 100% acetone for three hours. The 

specimens were then infiltrated (impregnated) overnight in 1:1 acetone:Spurr’s 

mixture (an embedding resin), followed by 24 hours in 1:5 acetone:Spurr’s 

mixture and finally in 100% Spurr’s mixture for another 24 hours. All of the above 

processing was carried out at room temperature.  

 

After infiltration, the specimens were transferred to fresh 100% Spurr’s mixture 

and placed in a vacuum oven for 30 minutes. They were then transferred into 

capsules and the resin was allowed to polymerise at 60ºC. Semi-thin sections 
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(0.5 micron and 1micron) of the specimens were cut on a Reichert Ultracut 

microtome and 3 levels per slide (15micron between levels) were stained with 

0.1% toluidine blue in 1% borax for one minute at room temperature. The slides 

were examined by light microscopy at 100X magnification. Qualitative data was 

collected on the tissues that harboured the spores and the representative tissues 

were photographed. In addition to this one fly of each sex embedded in Spurr’s 

resin mixture was sent to the laboratory of Dr. Alan Curry at Manchester Royal 

Infirmary to be sectioned and stained for electron microscopy.   

 

2.2.4 Sex ratio distortion 

To investigate the influence of parasite infection on the sex ratio of the host 

offspring adult D. melanogaster from the base stock were allowed to lay eggs 

overnight in sterile 300ml bottles with yeast/sugar medium and live yeast. The 

eggs were washed and 20 vials (80x22mm) with medium and yeast, containing 

50 eggs in each were set up. Ten of the 20 vials were then infected with ~2.5x106 

T. kingi spores in 0.1% SDS per vial and rest of the vials were treated with equal 

volumes of sterile 0.1% SDS solution. The vials were incubated at 20ºC and 16:8 

hour light:dark regime till the flies emerged, after which three randomly selected 

females per vial were transferred into three individual vials (80x22mm) containing 

medium and yeast. Two males from the same vial were added to each of the 

three vials to ensure mating. The set up therefore had two sets of 30 vials 

containing infected flies and uninfected control flies. The vials were then 

incubated for 24 hours to allow the flies to mature and mate. Following this the 

flies were transferred every 24 hours into fresh vials containing medium and live 

yeast and the previous day vials, containing eggs were incubated at 20ºC. This 

process of transferring the flies into fresh vials every day was stopped when the 

respective females died. Once the offspring flies from the incubated vials 

emerged they were transferred to plastic containers, labelled and frozen at -20ºC, 

to be counted and sexed later. 
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2.3. Results 
2.3.1. Host susceptibility 
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Fig. 2.1. Susceptibility of different Drosophila life stages to T. kingi (density ± 
S.E.). A- 1st instar; B- 2nd instar; C- early 3rd instar; D- late 3rd instar; E- pupae; F- 
darkened pupae; G- just emerged adult fly & H- 3 day old flies. 
 

Tubulinosema kingi spores were only observed in smears of D. melanogaster 

infected as larvae; the smears of flies infected as pupae and adults showed no 

signs of infection. The mean parasite densities (n = 10) per replicate was used 

for analysis. A one-way ANOVA revealed significant differences in spore density 

between the larval stages (F3, 8 = 101.11, p<0.001). The means and standard 

deviations are presented in Fig. 2.1. The Tukey HSD procedure revealed that not 

all the pairwise differences among means were significant. The P-values are 

presented in Table 2.1. 

 

d.f. = 8 
  1st instar 2nd instar Early 3rd instar Late 3rd instar 

1st instar   0.67 0.00014 0.00014 
2nd instar     0.00014 0.00014 

Early 3rd instar       0.070 
 

 
Table 2.1. Tukey HSD test comparing the susceptibility of different D. 
melanogaster life stages to T. kingi. 
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2.3.2. T. kingi spore proliferation 
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Fig. 2.2. Within-host proliferation of T. kingi across 20 days after infection 
(density ± S.E.). Stages corresponding to days are; larvae: day 1-5, pupae: day 
6-12, adult: day 13-20. 
 
The spore density of T. kingi was quantified across the D. melanogaster 

developmental period. The mean spore densities in larvae (mean=0.16 ± 0.05, n 

=5), pupae (mean = 0.67 ± 0.28, n =7) and adults (mean = 3.34 ± 0.53, n =8) was 

used for analysis. A one-way ANOVA showed that the spore density was 

significantly different between the different life-stages (F2, 17 = 140.98, p<0.001). 

The spore proliferation over the 20 days following infection is presented in Fig. 

2.2. The Tukey HSD procedure revealed that the pairwise differences among 

means were significant only between adults and pre-adults. The p-values are 

presented in Table 2.2.  

 

d.f. = 17 
  Larvae Pupae Adult 

Larvae   0.083 0.00016 
Pupae     0.00016 

 

Table 2.2. Tukey HSD test comparing the T. kingi spore density in different D. 
melanogaster life stages. 
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2.3.3. Host tissue specificity 
 

 
 
Fig. 2.3. Histological sections of Drosophila melanogaster infected with 
microsporidian parasite Tubulinosema kingi (indicated by black arrow heads) ; (A 
& B) Cross section through abdomen of infected female and male respectively. 
(C) Infected fat body tissue, (D, E & F) infected tissues of the alimentary canal; 
(G & H) infected female reproductive tissues, and (I) infected thoracic muscles.     
 
In longitudinal sections of D. melanogaster of both sexes the parasite T. kingi 

was mostly observed in the abdominal region, but a few spores were observed in 

the thorax of males, where the muscles were observed to be infected (see I in 

Fig. 2.3). The cross sections of T. kingi infected males showed greater host 

tissue degeneration in contrast to the cross sections of infected females (see A & 

B in Fig.2.3). Tubulinosema kingi was found in the fat body (see C in Fig. 2.3) 

and in the epithelium of malpighian tubules and alimentary canal of both sexes 

(see D, E & F in Fig 2.3). The female reproductive tissue was observed to be 

lightly infected with a few spores found in the follicles (see G & H in Fig 2.3), I 

failed to examine or identify the male reproductive tissue since most abdominal 

tissues had degenerated following infection. The transmission electron 
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micrographs of D. melanogaster male and female showed the different 

developmental stages of Tubulinosema kingi. Presented below is a 

representative micrograph of D. melanogaster female showing the different 

developmental stages of T. kingi (see Fig. 2.4.). 
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Fig. 2.4: Transmission electron micrograph of Tubulinosema kingi developmental 
stages (M-meronts, S-beginning of sporogony, SP-sporont and SB-sporoblast) in 
a Drosophila melanogaster female (Courtesy A. Curry). 
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2.3.4. Sex ratio distortion 
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Fig. 2.5. Mortality of infected (filled triangles) and control (open triangles) females 
during the sex ratio assay.  
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Fig. 2.6. The effect of microsporidian infection on offspring sex-ratio (mean ± 
S.E.) of D. melanogaster. 
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Fig. 2.7. The effect of duration since infection on sex ratio of D. melanogaster. 
The sex ratio (male: female ± S.E.) of control flies (open triangles) and infected 
flies (filled triangle) are shown across seven days.     
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Fig. 2.8. The effect of microsporidian infection upon the number of emerging 
progeny (mean/treatment ± S.E.). 
 

The experiment was stopped after 26 days, when all the 30 infected females 

from ten replicates had died. Mortality occurred early in infected females (see Fig. 

2.5) with ~70% dead by day 17 which was significantly higher than in uninfected 
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females where only ~20% died (Fishers exact test, p=0); after day 17 the infected 

females that lived laid very few or no eggs while the uninfected females 

continued to produce large number of eggs. I counted and sexed the progeny of 

infected and uninfected females at days 1, 2, 4, 5, 9, 13 and 17 thus aiming at 

including days when most females were alive along with covering the entire 

period. The total number of males and females produced by the three females in 

each replicate were used to calculate the sex ratio for the replicate and for 

subsequent analysis. 

 

The figure 2.7 shows the sex ratio of the offspring of T. kingi infected and 

uninfected females 1, 2, 4, 5, 9, 13 and 17 days after emergence and suggests 

that there might be a slight tendency for female biased sex ratios over time. 

However, a repeated-measures ANOVA on the (arcsine-transformed) sex ratios 

shows no difference in sex ratios between the offspring of females from the two 

treatments (F7,4=0.83, p=0.61). This is confirmed by the lack of significant 

difference when comparing the overall sex ratios of the offspring of infected and 

uninfected females (Fig.2.6) (t18 = 0.68, p=0.05). However as expected a highly 

significant difference (F1,18 = 46.334, p< 0.001) in the total number of emerging 

offspring of infected females and uninfected females (Fig. 2.8) was observed.  

 

2.4. Discussion 
The results of the experiments described in this chapter clearly indicate that 

different host life stages are crucial to microsporidia for infection, proliferation and 

transmission. This is most clearly seen here with D. melanogaster in which T. 

kingi infection and proliferation within the host and transmission between hosts 

strongly depended on host stage such that: a) only larval stages are susceptible 

(Fig. 2.1), b) microsporidia proliferate only in pupae and adult flies (Fig. 2.2) and 

c) mature spores are mainly observed within adult flies. The tissues targeted by T. 

kingi indicate that the parasite, after orally infecting its host, crosses the gut wall 

and infects the target organs that lie beyond. The microsporidia had no impact on 

the host sex ratio, although the number of offspring produced by infected flies 

was significantly lower than by uninfected flies.   

 

The susceptibility of larvae and the decrease in susceptibility with larval age  was 

found to be in agreement with earlier reports with other insect-microsporidia 

models (Milner 1973; Onstad and Maddox 1990; Altizer and Oberhauser 1999; 
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Maddox et al. 2000; Blaser and Schmid-Hempel 2005). The causes of larval 

susceptibility to microsporidia are not clear, but this may be due to physical 

factors such as histology of the larval gut. Blaser and Schmid-Hempel (2005), 

studying microsporidian infection in Tribolium, highlighted the role played by the 

gut wall in stage-specific infection. However, the parasite might have evolved to 

only target the larvae. In Tribolium, adults and larvae coexist in stored products 

therefore having the same probability of feeding on microsporidian spores but in 

Drosophila, adults and larvae differ in their feeding behaviour and hence in the 

probability of feeding microsporidian spores. The microsporidium might thus 

never encounter an adult since adults are in contact with food patches (potential 

source for infection) only for short durations: to feed, mate and oviposit thus 

suggesting that T. kingi might have evolved to target only the larvae. The time 

spent by larvae foraging is presumably higher than by adults suggesting that 

larval behaviour could also be responsible for its susceptibility. The decrease in 

susceptibility of older larvae (3rd instar) (Fig. 2.1) observed here could be due to 

the fact that younger larvae (2nd instars) forage usually on the surface of the 

medium where dead cadavers and free microsporidian spores are usually found 

in laboratory cultures, while the older larvae tend to burrow into the medium and 

are likely to have had reduced contacts with the spores. Other factors such as 

gut volume (Weiser 1969), gut content and histological reorganisation during 

pupation (Milner 1973) could also be responsible for this stage-specific 

susceptibility to the parasite.  

 

Tubulinosema kingi has been reported in infected Drosophila flies while its 

presence in larvae and pupae has never been investigated (Kramer 1964a; 

Armstrong 1976; Franzen et al. 2006; Futerman et al. 2006). The microsporidial 

infection is most obvious in smears of adult stages due to the presence of 

distinguishable spores, while in larval and pupal smears only the developmental 

stages of microsporidia are observed which are difficult to distinguish. The 

difference in transmissible spore densities between the three host life stages 

sheds light on the within-host dynamics of the parasite. This host-stage 

correlated delay in production of transmissible spores might be associated with 

three main factors. Transmission studies of T. kingi in the laboratory have shown 

that the parasite is mainly transmitted by infected adult cadavers, in faeces and 

in or on eggs, suggesting that parasite transmission success thus depends on 

adult hosts (Armstrong 1976; Futerman et al. 2006). b) The parasite might have 

been selected for delayed proliferation to avoid detrimental effects on juvenile 
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stages, thus allowing subsequent emergence of spore carrying adult flies 

(Futerman et al. 2006).Finally the interaction of the parasite with its host’s 

internal environment, such as insect immune responses and inter- and intra-

specific competition among parasites may itself restrict parasite development 

and/or proliferation. Although scarcely reported and indecisive these within-host 

factors cannot be neglected while addressing such questions (David and Weiser 

1994; Nassonova et al. 2001; Hoch et al. 2004; Futerman et al. 2006).  

 

The adult D. melanogaster tissues targeted by T. kingi were similar to those 

targeted in D. willistoni (Kramer 1964a; Armstrong 1976). To reach the target 

organs T. kingi  needs to cross the hostile insect gut, which it appears to breach 

effectively suggesting that proliferation route involved is complex and needs 

detailed investigation. The tissues of the alimentary canal and reproductive 

organs that were observed to be infected are usually targeted by parasites as a 

potential exit from the host (Tanada and Kaya 1992). These tissues are known to 

be targeted only during the final stages of infection to avoid premature host death 

by septicaemia due to other microbes present in the gut and reproductive tracts 

(Maddox et al. 2000). The other common tissues infected by microsporidia is fat 

bodies, which may be targeted for nutritional requirements (Hoch et al. 2002). 

The sections of infected males showed comparatively greater degeneration than 

those of infected females. However, due to the small sample size examined here, 

it would be inappropriate to class this as differential virulence.   

 

Parasite strategies such as host feminisation and male killing are well known 

phenomena in parasitology and parasites that are mainly transmitted vertically 

have been reported to increase their transmission fitness by distorting the sex 

ratio of the host. Microsporidia are known to cause sex ratio distortion in 

invertebrates (Weiser 1976; Dunn et al. 1993; Ironside et al. 2003; Terry et al. 

2004). No evidence for sex ratio distortion by T. kingi was observed suggesting 

that these strategies are applicable to parasites that are mainly transmitted 

vertically.  

 

The within-host interactions demonstrated here between T. kingi and D. 

melanogaster were important in both designing the experiments and interpreting 

the results obtained in the following chapters. The information on susceptibility of 

the host would be useful in designing bio-control programs for pests and in 

eradication of parasites from host populations. Information on the within-host 
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parasite proliferation would also be of use in recovering maximum yield of a bio-

pesticide, determining the modes of parasite transmission and in identifing the 

parasite during diagnosis. In conclusion, the study here highlights the need for 

further research on the parasite’s interactions with the internal environment of the 

host and suggests that information on the within-host dynamics of a parasite is 

crucial for understanding host-parasite interactions. 
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Chapter Three: Innate immune responses to T. kingi 
infection in Drosophila melanogaster 

 
3.1. Introduction 
In the previous chapter, I explored within-host interactions between the 

microsporidian parasite Tubulinosema kingi and its host Drosophila 

melanogaster in terms of host susceptibility, tissue specificity and parasite 

proliferation. In this chapter I shall continue investigating this host-parasite 

interaction at an immunological level. Insects are generally exposed to a wide 

range of natural parasites, from microorganisms such as viruses, bacteria and 

fungi, to macro-parasites such as mites, nematodes and parasitoids. To 

counteract such parasitic invasions insects provide their parasites with hostile 

environments, both in terms of physiological barriers, like the gut wall or cuticle, 

and effectors of innate immune responses, such as haemocytes and 

antimicrobial peptides. Insect survival in many cases depends on their ability to 

tolerate and/or resist these parasites. In insects, the mechanistic basis of such 

tolerance or resistance is through innate immunity (Lemaitre and Hoffmann 2007). 

The insect innate immune system generally responds to a parasite either after it 

is recognised as non-self, or as a result of damage caused by it, by mounting 

both cellular and humoral defence reactions (Hoch et al. 2004). The cellular 

immunity consists of different classes of haemocytes, or blood cells, that are 

involved in phagocytosis and encapsulation of foreign organisms, while the 

humoral immunity constitutes of a number of processes including phenoloxidase 

activation for melanisation and induction of antimicrobial peptides in response to 

parasitic infections (Lemaitre and Hoffmann 2007). 

 

Very little is known about insect immune responses to microsporidian infections 

(Hoch et al. 2004). Recent studies have indicated that microsporidian infections 

can trigger both cellular and humoral immune responses in insects (Kurtz et al. 

2000; Hoch et al. 2004). Laigo and Paschke (1966) observed a temporary 

decrease in the number of circulating haemocytes in cabbage looper, 

Trichoplusia ni when infected by microsporidia. Hoch et al. (2004) report a 

significant increase in haemocyte counts in Lymantria dispar when infected by 

the microsporidium Vairimorpha disparis, however the haemocyte density of L. 

dispar was found to decrease when infected with different host strains of 

Vairimorpha. 
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Phagocytosis of microsporidia by insect haemocytes has been reported (Laigo 

and Paschke 1966; Cali and Briggs 1967; Kellen and Lindegren 1972; Abe 1978; 

Nassonova et al. 2001; Hoch et al. 2004) suggesting that haemocytes contribute 

to host immune responses against microsporidian infections. However, 

observations of microsporidian stages within circulating haemocytes have 

suggested that insect phagocytosis is inefficient in killing the parasite and that 

instead of destroying these spores the haemocytes themselves get infected 

(Hazard and Fukuda 1974; Hazard et al. 1984; David and Weiser 1994; Kurtz et 

al. 2000). David and Weiser (1994) observed that haemocytes get infected by 

spores they phagocytose and suggested that these haemocytes facilitate the 

spread of microsporidian infection throughout the host body. Other studies on 

insect-infecting microsporidia have often identified haemocytes as sites of 

microsporidian infection, thus providing more support for David and Weiser’s 

hypothsis (Larsson 1992; Sokolova and Lange 2002; Sokolova et al. 2003). Kurtz 

et al. (2000) confirmed phagocytosis of spores and suggest that if extrusion of 

polar filament could be determined with certainty this observation could support 

the view of David and Weiser (1994) that haemocytes support parasite 

multiplication and proliferation. Further evidence to support this was provided by 

Nassonova et al. (2001), who demonstrated that phagocytosis of microsporidian 

spores in vivo and in vitro by haemocytes lead to replication and proliferation of 

the parasite rather than its destruction. They also found evidence that 

microsporidian spores are able to prevent acidification of the phagosomes they 

reside in, thus preventing their destruction and ensuring further dissemination. 

Apart from phagocytosis of microsporidian spores, haemocytes have also been 

reported to encapsulate microsporidium-infected insect tissues (Hoch et al. 2004). 

 

Microsporidian infection in insect hosts has been shown to elicit humoral immune 

responses such as nodule formation and melanin deposition resulting in the 

formation of atypically shaped spores (Tokarev et al. 2007). Decreased 

melanisation levels and reduced phenoloxidase activity has been reported in 

microsporidium-infected insects (Tokarev and Sokolova 2005). However, in other 

insect-microsporidium systems elevated rates of melanisation have been 

observed in response to infection (Hoch et al. 2004; Tokarev et al. 2007).   

 

In Drosophila, the immune response can be broadly divided into three categories: 

a cellular response involving phagocytosis and encapsulation; a phenoloxidase 

cascade resulting in deposition of melanin on the target site (wound or foreign 
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object); and an antimicrobial peptide response (Lavine and Strand 2002; Tzou et 

al. 2002; Hoffmann 2003; Hultmark 2003; Meister and Lagueux 2003; Lemaitre 

and Hoffmann 2007).  

 

The immune defence reactions of Drosophila reported so far has been mostly 

against extra cellular parasites such as fungi, bacteria and parasitoids (Lemaitre 

and Hoffmann 2007). In comparison very little is known about its immune 

responses against an intracellular parasite such as microsporidia. Drosophila 

uses both cellular and humoral responses against macro-parasites such as 

parasitoids and this involves encapsulation followed by melanisation. Similarly, 

Drosophila combats microparasites such as bacteria and fungi with specific 

antimicrobial peptides and phagocytosis (Lemaitre and Hoffmann 2007). Parasite 

recognition is considered to be the primary step in Drosophila immune response 

and this involves recognition of parasitic material as self and non-self prior to 

destroying them (Wang and Ligoxygakis 2006; Hultmark and Borge-Renberg 

2007). Microsporidia, due to their intracellular nature, presents the Drosophila 

immune system with a unique challenge.  

 

The cellular response is mainly observed in larvae and involves haemocytes that 

can be distinguished into three functional types: plasmatocytes that are involved 

in phagocytosis of invaders like bacteria, yeast and apoptotic bodies; 

lamellocytes that are involved with encapsulation of larger objects such as 

parasitoid eggs and infected tissues; and finally crystal cells that contain 

phenoloxidase and are considered to play a role in melanisation (Lavine and 

Strand 2002). The cellular response in insects to parasites has been previously 

quantified by determining the haemocyte counts in larval haemolymph 

(Kraaijeveld et al. 2001b; Silva et al. 2002; Hoch et al. 2004). Futerman (2005) 

investigated the effect of haemocytes on microsporidia using D. melanogaster 

lines that were previously selected for increased resistance against parasitoid 

wasps and which were known to vary in their total haemocyte densities 

(Kraaijeveld and Godfray 1997; Kraaijeveld et al. 2001b). It is important to stress 

here that the base population used for experiments here is same as that used by 

(Kraaijeveld and Godfray 1997) and hence have the same genetic background 

(see chapter one). Futerman (2005) infected these Drosophila lines with T. kingi 

and compared the fitness loss in terms of early fecundity. Tubulinosema kingi 

infection had previously shown to affect this particular life-history trait greatly 

(Futerman et al. 2006). Futerman found that higher haemocyte density did not 
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decrease the fitness loss in the host, suggesting that haemocytes do not play an 

important role in resisting microsporidia (Futerman 2005). Apart from this study, 

nothing is known about the cellular immune response of Drosophila to 

microsporidia. 

 

The phenoloxidase system is an humoral immune response in Drosophila, where 

injuries and presence of non-self objects result in melanin deposition around the 

damaged tissue or intruding objects (Bidla et al. 2005). The enzyme 

phenoloxidase is present in insect haemolymph in the form of inactive 

prophenoloxidase and is activated by a serine protease after recognition of injury 

or intrusion. This active phenoloxidase catalyses the oxidation of phenols to 

quinones that further polymerize to melanin (Soderhall and Cerenius 1998; 

Cerenius and Soderhall 2004; Hoch et al. 2004). Determining the phenoloxidase 

activity in insect haemolymph has been often used as a measure of haemolymph 

melanisation (Tzou et al. 2002; Hoch et al. 2004; Schwarzenbach et al. 2005). 

Melanin and its biosynthetic byproducts, such as hydrogen peroxide and nitric 

oxide, are considered to be directly toxic to microorganisms (Evans et al. 2003). 

However, more recent evidence has suggested that phenoloxidase activation is 

not essential to combat microbial infections in Drosophila  (Leclerc et al. 2006). 

Thus the role of phenoloxidase in resisting microparasites of Drosophila is 

ambiguous and the phenoloxidase response to its intracellular parasite T. kingi is 

not known. 

 

Drosophila also relies on a battery of injury- or pathogen-induced antimicrobial 

peptides secreted by the fat body (Lemaitre and Hoffmann 2007). To date seven 

distinct peptides (plus isoforms) have been identified in Drosophila, upregulated 

in response to microbial infections (Lemaitre and Hoffmann 2007). The 

expression of these antimicrobial peptides is regulated through two immune 

pathways, the Toll pathway and the imd pathway (Lemaitre et al. 1997; Lemaitre 

and Hoffmann 2007). Differential induction of antimicrobial peptides in Drosophila 

by various classes of microbes has been reported (Lemaitre et al. 1997) but did 

not include microsporidia. Roxstrom-Lindquist et al. (2004) also investigated 

parasite-specific immune responses in Drosophila using a genomic approach, 

and included a microsporidian parasite Octosporea muscaedomesticae among 

the parasites investigated in this study. Antimicrobial peptides were not 

upregulated in response to microsporidian infection, however a range of 

lysozymes were found to be upregulated  (Roxstrom-Lindquist et al. 2004).  
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Apart from the above mentioned three categories of Drosophila immune 

responses, nitric oxide (NO), a highly reactive molecule with an innate immune 

function of destroying invading microorganisms, has recently gained attention 

(Nappi et al. 2000; Rivero 2006). A number of studies provide evidence for the 

antiparasitic nature of NO (Foley and O'Farrell 2003; Faraldo et al. 2005; 

Krishnan et al. 2006). Within-host NO levels can be increased by including L-

arginine in the diet, from which NO is synthesized by NO synthase (NOS) 

(Regulski and Tully 1995) and this has provided a method to determine the effect 

of NO on parasites (Nappi et al. 2000; Foley and O'Farrell 2003).  

 

In this chapter, I quantify three parameters of D. melanogaster immune response 

to an intracellular microsporidian parasite T. kingi. First, to quantify the cellular 

immune response I determined the effect of T. kingi infection on larval 

haemocyte density. Second, to quantify the phenoloxidase response I 

determined the effect of T. kingi infection on phenoloxidase activity in larval 

haemolymph. Third, I quantified the effect of increased L-arginine intake on 

parasite density.   

 

3.2. Materials and methods 
3.2.1. Cellular immune response 
To determine the effect of T. kingi infection on the larval haemocyte density D. 

melanogaster from the base stock were allowed to oviposit in sterile 300ml 

bottles with yeast/sugar medium and live yeast. The eggs were collected and 

distributed (~75 eggs per vial) into 60 glass rearing vials (80x22mm) with 

yeast/sugar medium and live yeast. The vials were incubated overnight at 25ºC 

and the following day ~2.5x106 T. kingi spores in 0.1% SDS was added to 30 

vials and an equal volume of 0.1% SDS to the remaining 30 vials, which were 

thus designated as ‘infected’ and ‘control’ treatments respectively. The vials were 

then divided into three groups, each comprising ten infected and ten control vials. 

The vials were then incubated at 20ºC with a 16:8 hour light:dark regime. The 

three groups differed in the post-infection incubation period: 24 hours, 48 hours 

and 72 hours; after these time periods, the larvae in the vials will have reached 

second, early third and late third instar, respectively. After the respective 

incubation period, larvae from 9 infected and 9 control vials per group were 

washed and collected separately.  A haemolymph sample was extracted from a 

single set of larvae per vial and the haemocyte count in it was determined twice. 

The mean haemocyte count per vial was calculated as the average of the two 
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counts. In the first group 20 second instar larvae from each vial were bled and 

3µl of the pooled haemolymph was pipetted onto a haemocytometer to determine 

the haemocyte counts at 40X magnification under a light microscope. While for 

the second and third groups haemocyte counts were determined similarly but 

with pooled haemolymph from 15 larvae per vial rather than 20. The remaining 

pair of vials in each of the three groups was further incubated at 20ºC; on 

emergence of the adult flies, abdominal smears of 15 flies per vial were screened 

for T. kingi infection by Giemsa staining (as described in chapter one) to confirm 

the absence of infection in flies from control vials, and the presence of infection in 

flies from infected vials. All flies from the control vials from all three groups were 

uninfected while all flies from the infected vials from all three groups were 

infected.  The mean haemocyte density per vial was analysed by a two-way 

ANOVA, with incubation period and treatment as the two factors. 

 

3.2.2. Phenoloxidase activity 
To determine the effect of T. kingi infection on phenoloxidase activity in larval 

haemolymph, D. melanogaster from the base stock were allowed to oviposit in 

sterile 300ml bottles with yeast/sugar medium and live yeast. The eggs were 

collected and distributed (50 eggs per vial) into 16 glass vials (80x22mm) with 

yeast/sugar medium and live yeast. The vials were incubated at 25ºC with a 16:8 

hour light:dark regime for a day. After 24 hours approximately 2.5x106 T. kingi 

spores in 0.1% SDS were added to eight vials and an equal volume of 0.1% SDS 

to the remaining eight vials, designated  as ‘infected’ and ‘control’, respectively, 

and further incubated for 72 hours at 20ºC. 

   

Phenoloxidase activity was measured in two haemolymph samples, extracted 

from two separate sets of larvae per vial. The phenoloxidase activity was 

determined using the method suggested in Tzou et al. (2002). For each sample, 

3µl of haemolymph pooled from ten third instar larvae was added to 50µl of 

10mM phosphate buffer (pH 5.9) containing 10mM L-DOPA in a 50µl-2000µl 

disposable cuvette (Eppendorf catalogue number: 952010069). The optical 

density was recorded at five minute intervals for 30 minutes at 470nm in a 

spectrophotometer (WPA, Lightwave, UK). The enzyme activity for each sample 

was measured as the slope (absorbance vs. time) of the reaction curve during 

the linear phase of the reaction. Any optical density readings that were recorded 

as greater than two were removed from the analysis, as these were values which 

the spectrophotometer failed to measure. The mean phenoloxidase activity per 
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vial was calculated as the average of the slopes of the two replicates measured 

during the linear phase and this was used in the analysis. The phenoloxidase 

activity in T. kingi-infected and uninfected larvae was compared using a t-test for 

unequal variance.    

 

3.2.3. Effect of nitric oxide  
To study the effect of increased L-arginine intake on parasite density, 40 glass 

rearing vials (80x22mm) with yeast/sugar media were set up and split into four 

groups of ten vials each. The four groups were supplemented with 0mM, 0.63mM, 

6.3mM and 63mM (corresponding to 0mg/ml, 0.11mg/ml, 1.1mg/ml and 11mg/ml 

respectively) concentrations of L-arginine respectively. I used three different 

levels of L-arginine since the optimum concentration of L-arginine for such an 

experiment was not known. Uninfected D. melanogaster were allowed to oviposit 

in sterile culture bottles containing medium and live yeast at 25ºC for 6 hours. 

Subsequently, the eggs were collected and 50 eggs were added to each of the 

40 vials. Approximately 2.5x106 T. kingi spores were then added to each of the 

40 vials, which were incubated at 20ºC with a 16:8 hour light:dark regime, until 

the flies emerged. Three flies per vial were chosen at random to determine 

within-host parasite density. The abdomen of each fly was homogenised in 100µl 

of 0.1% SDS and the T. kingi spore density in the sample was determined using 

a haemocytometer at 40X magnification under a light microscope.  
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3.3. Results 
3.3.1. Cellular immune response 
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Fig. 3.1. The haemocyte density (count ± S.E.) of D. melanogaster larvae 
infected with T. kingi (dark bars) and control larvae (light bars) at different larval 
stages. 
 
Haemocyte densities (Fig. 3.1) in D. melanogaster larvae infected with T. kingi 

were significantly higher than in control larvae (F1, 48 = 47.3, p=0.0132). The 

haemocyte density across the larval stages was also found to differ significantly 

(F2, 48 = 106.4, p=0.001). However, the interaction between larval stage and 

infection was not significant (F2, 48 = 0.62, p= 0.5396), indicating that the larvae of 

different stages did not differ in their response to T. kingi infection and thus that 

the increase in haemocyte density following infection was consistent across the 

different larval stages.  

 
3.3.2. Phenoloxidase activity 
The phenoloxidase activity, measured as the slope of absorbance against time, 

in haemolymph extracted from D. melanogaster larvae infected with 

microsporidia was significantly higher than the phenoloxidase activity in 

haemolymph extracted from uninfected control larvae (Fig 3.2; t7.399 = -5.3458,p 

=0.0008).  
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Fig. 3.2. The phenoloxidase activity (slope ± S.E.) in D. melanogaster larvae 
infected with T. kingi (dark bar) and in uninfected control larvae (light bar).  
 

3.3.3. Effect of nitric oxide 
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Fig.3.3. The spore density (count ± S.E.) of T. kingi in D. melanogaster reared 
on medium with different concentrations of L-arginine. 
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A one-way analysis of variance revealed significant differences in spore density 

between larvae reared on medium with different concentrations of L-arginine, (F3, 

36 = 10.439, p<0.001; Fig 3.4). However, the decrease in parasite density was 

non-linear with concentration of L-arginine. The Tukey HSD procedure revealed 

that not all the pairwise differences among means were significant (table 3.1).  

 

d.f. = 36 
  Control 0.63 mM 6.3 mM 63 mM 

Control   0.00003 0.233 0.0038 
0.63 mM     0.009 0.3915 
6.3 mM       0.3027 

 
Table 3.1. Tukey HSD test (p-values) comparing the T. kingi spore density in D. 
melanogaster reared as larvae on diet supplemented with different 
concentrations of L-arginine.   
 

3.4. Discussion 
The results of the experiments described in this chapter clearly indicate that 

immune responses in Drosophila are upregulated when infected with the 

microsporidium T. kingi. This is plainly seen both in the cellular and 

phenoloxidase response. The number of circulating haemocytes in the larval 

haemolymph increased with larval development and the haemocyte density of 

microsporidian infected larvae was significantly higher in all the three stages 

investigated. The phenoloxidase activity in infected larvae was also significantly 

higher than in control larvae. Higher levels of within-host nitric oxide had a 

deleterious effect on parasite density, but this effect was ambiguous.  

 

The total haemocyte density was significantly upregulated after T. kingi infection. 

The haemocytes in the haemolymph of infected D. melanogaster larvae were 

circulating freely and there was no aggregation of haemocytes, which would 

indicate nodule formation or encapsulation. This is consistent with the elevation 

in haemocyte density observed in L. dispar infected with the microsporidium 

Vairimorpha disparis (Hoch et al. 2004). Considering that haemocyte 

upregulation can also occur due to tissue damage (Ramet et al. 2002; Evans et 

al. 2003); microsporidian infection causes tissue damage (Hoch et al. 2004); and 

microsporidia are capable of altering the contents of phagocytic vacuoles and 

germinate within them (David and Weiser 1994; Nassonova et al. 2001), it would 

be unwise to conclude that the upregulation of haemocytes observed here is in 

response to microsporidia; nevertheless, it seems a possibility. Although Hoch et 
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al. (2004) observed haemocyte upregulation they concluded that this response 

was due to tissue damage, rather than the parasite, since these responses failed 

to prevent the establishment of an infection. Similarly although Kurtz et al. (2000) 

observed phagocytosis of microsporidian spores they agreed with (David and 

Weiser 1994) that this could be a propagation route for the parasite rather than a 

immune response against it. Futerman (2005) observed no effect of higher 

haemocyte numbers in improving host fitness when infected with T. kingi, 

suggesting that haemocytes are not involved in resisting microsporidia. However, 

he suggested that this could be due to the difference in the type of haemocytes 

involved in resisting microsporidia and parasitoids. I suggest that further 

investigation into the fate of microsporidian spores ingested by haemocytes is 

needed prior to drawing any conclusions.  

 

 Microsporidian infection in D. melanogaster larvae induced the activation of 

phenoloxidase enzyme and the levels were significantly higher than in uninfected 

larvae. Hoch et al. (2004) observed a similar increase in phenoloxidase activity in 

L. dispar haemolymph after microsporidian infection. They do not consider this 

increase in phenoloxidase activity to be induced by microsporidia, but by the 

damaging effects of heavy infections (Hoch et al. 2004). This higher 

phenoloxidase activity corresponds to higher melanin production, which could 

result in melanisation of either infected or damaged tissues.  Considering the 

extensive damage microsporidia cause to a range of host tissues in Drosophila 

(see chapter two) I conclude that the measured alterations to phenoloxidase 

activity observed here is more likely due to the damage caused by the parasite 

rather than the parasite itself. 

 

A significant decrease in microsporidia spore density was observed in D. 

melanogaster flies reared as larvae on diet supplemented with L-arginine. NO, a 

highly reactive molecule synthesised from L-arginine, is speculated to have 

caused the deleterious effect on the parasite. NO has been observed to play an 

important role in combating gram negative bacteria in Drosophila (Foley and 

O'Farrell 2003) and its antiparasitic nature in Drosophila and other invertebrates 

is currently being debated (Nappi et al. 2000; Rivero 2006; Lemaitre and 

Hoffmann 2007). The result here is a prima-facie evidence that NO is involved in 

combating microsporidia and thus benefiting the host. The effect of L-arginine on 

T. kingi observed here suggests that the increased intake of L-arginine could be 

boosting an immune defence reaction against microsporidia, however the 
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absence of a dose effect suggests L-arginine could have other, unknown effects 

on the microsporidian spores. Further investigation is required to improve our 

understanding of these effects.  

 

In conclusion, the results obtained in this chapter confirm that microsporidian 

infection in Drosophila leads to immunological responses such as increased 

haemocyte density and phenoloxidase activity. The results also provide some 

preliminary evidence suggesting that NO mediates parasite suppression. 

However, these results do not provide evidence for the individual roles of these 

immune functions in combating microsporidian infection. I therefore suggest the 

following experiments to help determine the role and efficiency of these immune 

responses in this system. 

 

To study the role of haemocytes upregulated following microsporidian infection, 

we could first determine and isolate the haemocyte subpopulations that are 

upregulated, presumably plasmatocytes, which are the phagocytic haemocytes. 

This could be easily carried out using plasmatocyte-specific antibodies and the 

Fluorescent Activated Cell Sorting (FACS) technique (Asha et al. 2003; 

Tirouvanziam et al. 2004; Vilmos et al. 2004). The isolated plasmatocytes and 

the contents of their phagosome could then be examined by transmission 

electron microscopy to determine the fate of phagocytosed spores. The presence 

of any developmental stages in the cytoplasm and spores with extruded polar 

filaments in the phagosomes would confirm their role in parasite propagation, 

while absence of developmental stages in the cytoplasm and the presence of 

digested remains of the spores could confirm their immune efficiency. This 

experiment would therefore provide us with greater insight into the efficiency of 

haemocytes as immune cells.  

 

In order to confirm the role of phenoloxidase activity in combating microsporidia I 

suggest the use of replicated Drosophila lines artificially selected for increased 

phenoloxidase activity in a manner similar to experiments with yellow dung flies, 

Scathophaga stercoraria in (Schwarzenbach and Ward 2006). Though 

considerable development would be required to produce a workable selection 

regime, in principle infecting pairs of lines that vary in their phenoloxidase activity 

with a microsporidian parasite and then measuring host life-history parameters 

such as fecundity and survival (Futerman 2005) along with within-host parasite 

density would confirm the effect of phenoloxidase activity on microsporidia. If 
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indeed melanisation is an immune response against microsporidia, I would 

expect flies with higher phenoloxidase activity to have higher fitness and lower 

parasite density in comparison to flies with lower phenoloxidase activity. 

 

To confirm the role of nitric oxide as an antiparasitic molecule, the nitric oxide 

synthase (NOS) enzyme in Drosophila could be chemically blocked using NOS-

inhibitory arginine analog Nω-Nitro-L-Arginine-Methyl-Ester (L-NAME) (Foley and 

O'Farrell 2003). An inactive D-enantiomer (D-NAME) could be used as a control 

(Foley and O'Farrell 2003). Infecting Drosophila that is reared with or without the 

NOS-inhibitor with T. kingi and measuring life-history parameters and parasite 

densities similar to the previous experiment could explain the effect of L-arginine 

intake reported here. If NO functions as an antiparasitic molecule against 

microsporidia the NOS inhibited flies with low NO levels would have lower fitness 

and higher parasite load in comparison to the control flies. 

 

Parasite-specific immunity in Drosophila has intrigued many researchers 

especially since Drosophila has shown fascinating mechanisms of defence 

against a wide range of natural enemies. However, research on Drosophila 

immune responses to microsporidia and other intracellular parasites is still at its 

infancy and needs extensive investigations. 
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Chapter Four: The Evolution of host tolerance/resistance             
in Drosophila melanogaster –Tubulinosema kingi system 

 
4.1. Introduction 
Parasitism is a common kind of association found among organisms, where one 

organism depends on the resources of another organism for both its 

maintenance and reproduction. In response to such parasitic infection, hosts 

have evolved a diverse array of defence mechanisms which involve either 

resisting or tolerating the parasite (Roy and Kirchner 2000; Miller et al. 2005). It 

has been established that parasites can significantly alter the host’s evolutionary 

dynamics, when the hosts vary in their relative resistance to parasites (Boots and 

Bowers 1999; Boots and Haraguchi 1999). There have been theoretical studies 

investigating the evolution of resistance to parasites (Anderson and May 1981) 

and it is widely accepted that increased resistance to parasites can be a mixed 

blessing to the host, since it can be costly in terms of other life-history traits 

(Fellowes et al. 1998a; Boots and Haraguchi 1999; Kraaijeveld et al. 2002). 

Insect populations have been reported to evolve resistance after prolonged 

exposure to their parasites (Boots and Begon 1993; Kraaijeveld and Godfray 

1997; Yan et al. 1997; Fellowes et al. 1998a; Luong and Polak 2007). Evolution 

of resistance in insects has been identified towards parasites as varied as 

viruses (Ignoffo and Allen 1972), bacteria (Janmaat and Myers 2003), fungi 

(Kraaijeveld and Godfray, subm.) and parasitoids (Kraaijeveld and Godfray 1997; 

Fellowes et al. 1998a). 

 
The host’s resistance to microparasites has been functionally classified as 

avoidance, resistance and tolerance (Boots and Bowers 1999; Miller et al. 2005). 

The rate of and direction in which host resistance will evolve depends on the 

combination of selection pressure exerted by parasites and the nature and extent 

of the costs involved (Kraaijeveld et al. 2002). It is argued that the host may not 

evolve resistance under circumstances where the cost of defence is greater than 

the negative effect of the parasite on its host and that the spread of resistance 

genes in a population can be slowed down when evolved resistance has 

negative effect on other fitness parameters of the host (Kraaijeveld et al. 2002). 

 

Drosophila melanogaster relies on multiple innate defence reactions to combat 

several natural enemies, from microparasites such as bacteria, fungi and viruses 
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to macroparasites such as mites, nematodes and parasitoids (Lemaitre et al. 

1997; Tzou et al. 2002). D. melanogaster populations are known to vary in their 

ability to resist bacteria (Lazzaro et al. 2006), fungi (Tinsley et al. 2006) and 

parasitoids (Kraaijeveld and Godfray 1997). Parasites such as microsporidia 

have been shown to cause fitness reduction in D. melanogaster (Futerman et al. 

2006). There is thus strong selection on the flies to evolve resistance to parasites 

(Miller et al. 2005). Kraaijeveld and Godfray (1997) selected a susceptible 

population of D. melanogaster for resistance to its parasitoid Asobara tabida and 

Fellowes et al. (1998) selected the same D. melanogaster population for 

resistance to another parasitoid Leptopilina boulardi.  

 

Tubulinosema kingi is an intracellular parasite which is known to reduce D. 

melanogaster fitness. However, the fly succumbs only when severely infected 

suggesting either tolerance or resistance to the parasite (Kramer 1964a; 

Armstrong 1976; Armstrong and Bass 1989a; Futerman et al. 2006). The larvae 

of D. melanogaster are susceptible to T. kingi (see chapter 2) through both 

horizontal and vertical transmission (Futerman et al. 2006). In the previous 

chapter it was shown that haemocyte numbers and phenoloxidase activity 

increased in the D. melanogaster larval haemolymph in response to 

microsporidian infection. Although the role of these responses against 

microsporidia is unclear they are known to be important in combating several 

other natural enemies. The T. kingi spores have to withstand recognition and 

attack by the invertebrate immune system, in order to parasitize and establish 

within the host.  The extent to which- and mechanisms by which- D. 

melanogaster resist T. kingi is still unclear, although there is limited evidence that 

the flies do have immune responses when attacked by microsporidia (see 

chapter 3). The maintenance cost of resistance has been demonstrated 

previously in the D. melanogaster model system through artificial selection for 

increased resistance against parasitoids. After selection, the correlated 

reductions in other fitness components were examined (Kraaijeveld and Godfray 

1997; Fellowes et al. 1998a; Kraaijeveld et al. 2002). Here I use the same 

approach to investigate if D. melanogaster populations can be selected for 

increased resistance or tolerance to intracellular parasites like microsporidia and 

identify the associated costs involved.  

 

Selection experiments are important from an evolutionary perspective as they 

provide an opportunity to observe evolution as it occurs and to study correlated 
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responses to experimentally manipulated traits, for example increased resistance 

(Kraaijeveld and Godfray 1997) or higher phenoloxidase activity (Schwarzenbach 

and Ward 2006). Selection experiments are also useful since their experimental 

design includes replication of selected and control treatments and relatively high 

stability in experimental conditions (Gibbs 1999; Harshman and Hoffmann 2000). 

Despite these advantages, certain drawbacks have been highlighted in selection 

experiments by Harshman and Hoffman (2000). Their causes for concern were 

the heterogeneity of correlated responses in similar selection experiments and 

the effect of laboratory culture methods and unnatural selection regimes on the 

outcome of experiments. Similarly (Fuller et al. 2005) stress the critical role of 

selection intensity, experimental design and execution, these factors according to 

them could affect the results of a selection experiment profoundly.  It has been 

suggested that design of selection experiments should especially consider 

avoiding unintentional selection (Partridge et al. 1999).   

 

A carefully planned and executed experimental design can overcome most of the 

limitations listed above by considering a few essential factors. Long-established 

laboratory populations have been advocated for base population in selection 

experiments since they are well-adapted to laboratory conditions however it is 

recommended that they be started with multiple founders and maintained at a 

large size (Fry 2003). The population to be selected and the control population 

should be derived from the same base population and should be maintained in 

similar environments to detect correlated responses to selection (Fry 2003). To 

avoid inbreeding depression in selected and control populations it is essential to 

maintain them as moderate-to-large population sizes (Harshman and Hoffmann 

2000; Fry 2003). Replication of selection regimes, including the controls, allows 

the effects of selection to be distinguished from those caused by random drift 

(Fry 2003). The fitness assays to determine if selected and control populations 

differ in their fitness must be carried out on samples of populations that were 

reared in common environment for at least one generation to avoid maternal 

effects (Fry 2003). 

 

Sometimes populations fail to evolve resistance due to three main reasons: lack 

of genetic variation in the host population; the selection pressure or intensity 

being low; or the costs of resistance being too high initially (Kraaijeveld and 

Godfray subm.). Although the lack of genetic variation in the D. melanogaster 

base population is unlikely, since the same population was previously selected 
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for increased resistance against parasitoids (Kraaijeveld and Godfray 1997; 

Fellowes et al. 1998a), it does not guarantee genetic variation in traits linked with 

resistance to microsporidia. Any failure to select for increased resistance or 

tolerance against microsporidia could be more likely due to low selection 

pressure and this need to be investigated before concluding that the host 

population cannot evolve resistance against the parasite.   

 

In this chapter, I report the results of an experimental evolution in which the D. 

melanogaster population evolved resistance to T. kingi. The selection protocol 

was designed to allow for increased representation of progeny from resistant or 

tolerant females in the successive generation, i.e. resistant or tolerant flies would 

survive longer and lay more eggs than susceptible flies when infected with T. 

kingi. Therefore, when eggs were collected, the resistant females would have a 

higher probability of being represented due to both their longevity and higher 

fecundity.  

 

Tubulinosema kingi reduces the early fecundity and adult survival of infected D. 

melanogaster among other fitness traits (Futerman et al. 2006). In the current 

selection experiment the early fecundity and adult survival of population from 

selection and control regimes were assayed. To exclude maternal effects the 

sample populations were reared in the absence of selection pressure for one full 

generation before the assays.  The assays on selected and control lines were 

conducted both with and without T. kingi infection. It was expected that the 

selected lines would show increased performance over the controls when 

infected if resistance or tolerance against the parasite had evolved and the 

control lines would fare better than selected line in the absence of infection if a 

trade-off existed. 

 

As mentioned previously, D. melanogaster could evolve to resist T. kingi or 

simply to tolerate it when artificially selected, however the former strategy does 

not rule out a tolerance component (Boots and Bowers 1999; Miller et al. 2005). 

It is therefore important to distinguish between tolerance and resistance (Miller et 

al. 2005). The parasite density within a host correlates with the type of strategy 

evolved. If tolerance has evolved, parasite density would be expected to remain 

constant in both selected and control individuals when infected. However, if 

resistance has evolved, tolerance cannot be ruled out, but then the selected 
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individuals should foster a significantly lower parasite density than the control 

individuals.   

 

4.2. Materials and methods 
4.2.1. The selection experiment 
The large outbred population of D.melanogaster (described in chapter one) 

formed the base population for this experiment. This base population was first 

split into five subpopulations, each of which was further divided into control and 

selection lines. The resulting five pairs of lines were reared at 20oC in Perspex 

cages (20x20x20cm). The cages were designed to reduce cross infection by 

restricting the air flow in the cages through five sterilized cotton plugs (see Fig. 

4.1.). Control and selection lines were maintained in exactly the same way 

except that the selection lines were routinely exposed to microsporidia. Each pair 

of lines was started from 500 eggs laid by flies from the uninfected D. 

melanogaster base population in culture bottles with Drosophila yeast/sugar 

medium and live yeast. The 500 eggs were divided into two batches of 250 eggs 

and placed in two separate sterile culture bottles containing medium and live 

yeast. To one batch ~1x107 T.kingi spores in 0.1% SDS were added and to the 

second batch an equal volume of 0.1% sterile SDS was added. The bottles were 

then incubated at 20oC, with a 16:8h light:dark regime. When the flies emerged, 

they were released into a pair of identical Perspex cages (20cmx20cmx20cm) 

maintained at 20oC, with a 16:8h light:dark regime in a controlled-temperature 

room at ambient humidity, with constant access to honey and water.  

 

The control and selection lines were maintained as cage cultures with 

overlapping generations. Twice a week the flies from control and selection lines 

were allowed to oviposit for 24 hours in a sterilized Petri dish (9cm) containing 

medium and yeast, 150 eggs per plate were collected and transferred to rearing 

bottles containing medium and live yeast. The eggs collected from the selection 

lines were treated with ~ 7.5x106 T.kingi spores in 0.1% SDS while the eggs from 

the control lines were treated with equal volume of 0.1% SDS solution. The T. 

kingi spore dose used to infect the selection lines was increased ten fold during 

the second half (week 37 onwards) of the experiment due to reasons I discuss in 

detail a little later in the chapter. The rearing bottles with duly treated eggs were 

incubated at 20oC untill the flies emerged, when they were released into their 

respective cages. 
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The cadavers of dead flies in the cages were removed every second day, as they 

are potential source of infections which could interfere with the standard spore 

dose used in the selection regime. The water in the cages was changed every 

fortnight while the honey was replenished weekly. Back-up populations were 

maintained in addition to the cage cultures. Every two weeks approximately 250  

 

 
Fig. 4.1. Population cages set up for the selection experiment, which were 
especially designed to prevent cross contamination.  
 

eggs per line, were taken from the standard culture, treated appropriately with or 

without spores, they were cultured in bottles containing yeast/agar medium and 

live yeast. A day prior to collecting eggs for the backup population, ten flies 

randomly collected from the control cages were screened using Giemsa staining 

for cross-infections. Ten flies from the selection cages were also removed to 

avoid any bias. The back-up population was maintained to be used as a 

replacement in case a control cage got infected.  

 

The selection for increased resistance or tolerance to microsporidia in five 

replicate populations of D. melanogaster was carried out for 73 weeks. Selection 

was suspended for 13 weeks between the 19th and 31st week due to unavoidable 

circumstances. During this 13 week period, the populations were maintained in 
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sterile culture bottles containing medium and live yeast as non-overlapping 

generations. The control populations remained uninfected throughout the 

selection regime: the Giemsa-stained abdominal smears of flies from the control 

lines examined prior to creating back-up populations at intervals of two weeks 

were all negative for T. kingi infection.  

 
4.2.2. Bioassays 
Fecundity and survival bioassays were conducted to investigate if selected lines 

had evolved to become tolerant or resistant to microsporidia. This was done 

twice during the selection period, after 34 and 60 weeks of selection. The 

selected line populations were subjected to curing process to eliminate T. kingi 

infection; while the control line populations were treated similarly to avoid 

treatment bias. The flies from both control and selection lines were cured by 

allowing them to lay eggs for a day in culture bottles containing medium and live 

yeast, ~300 eggs per line were collected and surface-sterilised with 0.6% NaOCl 

solution for five minutes and then washed several times before transferring these 

de-chorinated eggs into rearing bottles containing medium and live yeast. Once 

the flies emerged they were screened for T. kingi infection by examining Giemsa-

stained abdomen smears of 15 randomly selected flies per line. On both 

occasions (first and second bioassays) all the flies examined for infection were 

uninfected. After confirming the absence of T. kingi in these lines, flies from both 

control and selected lines were allowed to lay eggs and cultured in bottles 

containing medium and yeast for an extra generation to remove any maternal 

effects. 

 

The experimental design for the assays conducted after 34 and 60 weeks were 

identical, with the exception of the T. kingi spore dosage used to infect the flies. 

For the first fecundity and survival assay a spore dose of ~ 2.5x106 T. kingi 

spores was used. For the second set of assays the spore dose was increased 

ten-fold, to “mirror” the increased dosage used during the second half of the 

selection experiment. 

 
4.2.2.1. Fecundity assay 
The control and selected lines were allowed to oviposit in culture bottles 

containing medium and live yeast for six hours. Eight vials (80x22mm) per line 

containing medium and live yeast, each with 50 eggs collected from respective 

bottles were set up. Four of these vials were treated with T. kingi spores in 0.1% 
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SDS while the rest were treated with an equal volume of 0.1% SDS solution. The 

vials were incubated at 20ºC to facilitate development. On emergence, four 

females from each vial were placed in individual vials of the same size containing 

medium and live yeast along with two males from the same vial. The assay 

therefore comprised 32 vials per line (control or selection): 16 with T. kingi 

infection and 16 controls. The following day all the flies were placed in fresh 

laying vials containing medium and live yeast and the previous vials were 

discarded. For the next ten consecutive days the vials were replaced every 24 

hours; and eggs laid during the previous 24 hours counted and recorded. Any 

dead males were removed from these vials and replaced. To ascertain that 

females of both lines that were not exposed to T. kingi were uninfected and those 

treated with T. kingi were infected, all the females used in the fecundity assay 

were screened for T. kingi after the ten day period by observing their Giemsa-

stained abdomen smears. 

 

For the females that died during the assay, the data for the remaining days were 

recorded as missing values for calculating the mean number of eggs laid per day. 

The fecundity of control and selected lines when infected demonstrate the 

response to selection for increased resistance while the fecundity of control and 

selection lines when uninfected demonstrates the potential trade off associated 

with increased resistance and analysing them together as an interaction between 

selection (line) and infection (treatment) using a two-way analysis of variance 

could obscure the significance of each. Therefore the analysis was split into two: 

control lines versus selected lines with infection and without infection. 

 
4.2.2.2. Survival assay 
Approximately 400 eggs per line were collected from control and selected lines 

cured of maternal effects in the same way as for the fecundity assay. The 400 

eggs collected per line were distributed equally into two bottles containing 

medium and live yeast. To one bottle T. kingi spores in 0.1% SDS were added 

while to the other an equal volume of 0.1% SDS was added. The bottles were 

incubated at 20ºC untill the pupae within darkened. The darkened pupae were 

washed out of the bottle gently, 100 dark pupae per bottle were transferred to 

individual glass vials (50x12mm) containing a small amount of honey. The vials 

were closed with a cotton-wool plug soaked with water. The plugs were 

maintained wet through out the assay. The vials were incubated at 20ºC with a 

16:8h light:dark regime. Survival of each fly was recorded from the day of its 
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emergence. The flies were observed daily to record which flies had died during 

the previous 24 hours. Once all the flies had died they were sexed to determine if 

survival differs between the sexes in selected and control lines.  

 

Flies from the pupae that failed to emerge during the assay were not included in 

the analysis. As with the analysis of fecundity data (see section 4.2.2.), the 

survival data was analysed separately for control lines versus selected lines with 

infection and without infection. The analysis of sex specific survival in selected 

and control lines with or without infection was done using a three-way analysis of 

variance. 

 

 4.2.3. Spore dose effect 
Prior to increasing the selection pressure (spore dose) in the selection 

experiment protocol from week 37, the effect of spore dose on within-host 

parasite density and host mortality was assayed. The D. melanogaster larvae 

were infected with different doses of T. kingi spores to investigate if increased 

dose had deleterious effects on D. melanogaster. Flies from the base population 

were allowed to oviposit in culture bottles containing medium and live yeast for 

six hours. The eggs laid in the bottles were collected and eight vials (80x22mm) 

containing medium, live yeast and 50 eggs in each were set up. The following T. 

kingi spore doses: a) ~2.5x106 spores, b) ~12.5x106 spores and c) ~25x 06 spores 

in 0.1% SDS were added to three pairs of vials respectively. The last pair of vials 

was treated as controls and an equal volume of 0.1% SDS to that in spore dose 

‘c’ was added to them. The vials were incubated at 20ºC until emergence. The 

number of flies emerging per vial was recorded. The parasite spore density per 

fly was determined by homogenising five flies per vial in 100µl of 0.1% SDS and 

counting the spores in 3µl of each sample using a haemocytometer under a light 

microscope at 40X magnification. 

 
4.2.4. Tolerance versus resistance 
The spore densities in infected control and selection line flies were determined to 

identify the cause (tolerance or resistance) of increased fitness in infected 

selection line flies.  The selection and control line flies cured of T. kingi and 

maternal effects were allowed to oviposit in culture bottles containing medium 

and live yeast. Three hundred eggs were collected per line and distributed 

equally into six vials (80x22mm) containing medium and live yeast. On the 

following day ~2.5x107 T. kingi spores were added to each vial which was then 
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incubated at 20ºC. On emergence the spore density of five randomly chosen flies 

per vial was determined using a haemocytometer after each individual fly was 

homogenised in 100µl of 0.1% SDS,  

 
4.3. Results  
The results in this section have been presented chronologically in four sub-

sections. First, I report the results of the first bioassays; second, the effects of 

increased T. kingi spore dose on its host; third, the results of the second 

bioassays; and finally the result which determines if the strategy evolved by the 

host against its parasite is tolerance or resistance. 

 
4.3.1. First bioassays 
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Fig. 4.2. The effect of selection for increased resistance to T. kingi upon early 
fecundity (mean ± S.E.) of D. melanogaster control lines (light bars) and selection 
lines (dark bars). 
 

The early fecundity (Fig. 4.2.) of T. kingi infected D. melanogaster females 

selected for increased resistance (53.98 ± 1.26) was not significantly different 

from T. kingi infected control flies (52.80 ± 1.14), (F1, 8 = 0.48, p = 0.5072). The 
early fecundity of uninfected females from selected lines (67.46 ± 0.93) was not 

different from uninfected females from control lines (66.42 ± 1.03) (F1, 8 = 0.563, p 

= 0.4747).  
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Fig. 4.3. The effect of selection for increased resistance to T. kingi upon adult 
survival (mean ± S.E.) of D. melanogaster: control lines (light bars) and selection 
lines (dark bars). 
 

The survival (Fig. 4.3.) of T. kingi infected D. melanogaster females selected for 

increased resistance (9.09± 0.52) was not significantly different from T. kingi 

infected control flies (8.77± 0.42), (F1, 8 = 0.218, p = 0.6529). The survival of 

males and females from control and selected lines, with or without T. kingi 

infection, did not differ significantly (F1, 32 = 0.514, p = 0.4785). The interaction 

between sex and selection was not significant (F1, 32 = 0.007, p = 0.9308). 

Similarly, the interaction between sex and T. kingi infection was also not 

significant (F1,32 = 0.593, p = 0.8091). 

 
4.3.2. Spore dose effect 
The number of flies emerging (Fig. 4.4.) from vials treated with different T. kingi 

spore doses were not significantly different (F3,4 = 3.75, p = 0.1171). A Tukey 

HSD comparing the means showed no significant difference in number of flies 

emerging from the vials subjected to different T. kingi spore doses. The mean 

spore density per fly (see Fig. 4.5.) in vials infected with the largest spore dose 

25x106 spores was significantly higher than in vials infected with regular spore  

dose of 2.5x106 spores (F1,2 =21.75, p =0.0430).  
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Fig. 4.4. The effect of increased T. kingi spore dose upon emergence (mean ± 
S.E.) of D. melanogaster: 
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Fig 4.5. The effect of T. kingi spore dose upon within host parasite density (mean 
± S.E.). 
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4.3.3. Second bioassays 
4.3.3.1. Fecundity assay 
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Fig. 4.6. The effect of selection for increased resistance to T. kingi upon early 
fecundity (mean ± S.E.) of D. melanogaster: control lines (light bars) and 
selection lines (dark bars). 
 

A few  females that did not lay any eggs during the ten day assay period were 

termed ‘sterile’ and  were excluded from the analysis after it was confirmed by 

doing a Fisher’s exact test (p= 0.1098) that the sterility occurred to the same 

extent in control and selected lines irrespective of T. kingi infection. The early 

fecundity (Fig. 4.6.) of T. kingi infected D. melanogaster females selected for 

increased resistance (45.11± 2.38) was significantly higher than T. kingi infected 

control flies (39.14± 1.65), (F1, 8 = 5.376, p= 0.0490). The early fecundity 

(eggs/female/day ± S.E.) of uninfected females selected for increased resistance 

(64.35± 2.13) was significantly lower than uninfected control flies (70.70± 1.62), 

(F1, 8 = 5.616, p= 0.0453).  

 

4.3.3.2. Survival assay  

The mean adult survival (Fig.4.7.) of T. kingi infected D. melanogaster selected 

for increased resistance to microsporidia was significantly higher than the T. kingi 

infected control flies (F1, 8 =6.58, p = 0.0336), however the uninfected flies from 

the selected lines and control lines did not differ significantly in their adult survival 

(F1, 8 =0.06, p = 0.8069). The survival of males and females from control and 

selected lines with or without T. kingi infection did not differ significantly (F1, 32 = 
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0.136, p = 0.7150). The interaction between sex and selection was not significant 

(F1, 32 = 0.532, p = 0.4712) and similarly interaction between sex and T. kingi 

infection was also not significant (F1, 32 = 0.024, p = 0.8786). 
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Fig. 4.7. The effect of selection for increased resistance to T. kingi upon adult 
survival (mean ± S.E.) of D. melanogaster: control lines (light bars) and selection 
lines (dark bars). 

4.3.4. Tolerance versus resistance  
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Fig. 4.8. The effect of selection for increased resistance to T. kingi upon within 
host parasite density (mean ± S.E.) in D. melanogaster: control lines (light bar) 
and selection lines (dark bar). 
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All the flies from the control and selected lines used to determine within-host 

spore density were infected with microsporidia. The mean spore density per fly 

(see Fig.4.8.) in the five selection lines was significantly lower than in the five 

control lines (F1, 8 = 31.726, p = 0.0004).   

 

4.4. Discussion 
The experiments described in this chapter clearly indicate that D. melanogaster 

within a population vary in their ability to resist microsporidia and can evolve to 

become increasingly resistant to an intracellular parasite Tubulinosema kingi. 

The response to selection was similar across the five lines and in the analysis the 

lines were treated as replicates. Early fecundity and adult survival were the two 

traits compared between selected and control lines. No differences between 

control and selected lines were found in early fecundity and adult survival in the 

first bioassay.   

 

The selected lines failed to evolve resistance or tolerance against microsporidia 

during the initial selection regime where each batch of larvae from these lines 

was fed ~7.5x106 T. kingi spores. This spore dose was similar to the dosage 

used to explore the immune responses of D. melanogaster to T. kingi infection 

(see chapter three) and by Futerman et al. (2006) to determine fitness effects. 

This lack of evolution was more likely due to low selection intensity rather than 

lack of genetic variation in the host population.  

 

In order to increase the selection pressure it was necessary to determine if an 

increased spore dose would have other consequences on the host population, 

such as very high mortality. A five-fold and a ten-fold increase in the spore dose 

were evaluated and no difference in the number of flies emerging was found 

between the different doses. However, the flies treated with ten-fold increased 

spore dose had a significantly higher parasite density than the regularly used 

dosage, indicating a greater impact on the host. The selection regime was 

therefore modified with a ten-fold increase in the spore dose, to increase 

selection intensity, in the second half of the selection experiment.    

 

The second bioassays, conducted after approximately 13 generations of 

selection with increased spore dose, clearly indicated that the selected 

populations of D. melanogaster had evolved resistance against T. kingi. The 

higher fecundity and adult survival in selected flies when infected by T. kingi in 
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comparison to infected control flies indicated that the selected flies suffered less 

fitness loss due to evolved mechanisms to resist the parasite.  

 

Evolution of immunological resistance to the larval parasitoids A. tabida and L. 

boulardi in D. melanogaster (Kraaijeveld and Godfray 1997; Fellowes et al. 

1998a) and evolution of behavioural resistance to ectoparasitic mites M. 

subbadius in Drosophila nigrospiracula (Luong and Polak 2007) has been 

demonstrated using artificial selection experiments. A similar approach was used 

here to demonstrate the evolution of resistance against microsporidian parasite T. 

kingi in D. melanogaster. The mechanism of evolved resistance against 

parasitoids is not fully understood, but probably involves an increased haemocyte 

density (Kraaijeveld et al. 2001b). The evolved resistance against mites are 

behavioural in nature (Luong and Polak 2007). However, the precise 

mechanisms involved in resistance against microsporidia is not clear. The 

evolution of resistance against parasitoids was rapid and changes in survival 

were higher in comparison to resistance against microsporidia (Kraaijeveld and 

Godfray 1997; Fellowes et al. 1998a). In fact, changes in resistance to 

microsporidia became apparent only when the microsporidian spore dose used 

to infect the population was increased ten-fold.  

 

As mentioned earlier in this chapter, theoretical studies have broadly classified 

resistance into tolerance and control (Miller et al. 2005). It is evident that in this 

selection experiment the evolved resistance is a control strategy where the 

parasite density is lowered by host defence mechanisms, however, this does not 

rule out tolerance.  

 

Evolution of resistance is considered costly: the increased resistance to parasites 

in a host involves resources redirected from other fitness traits and is therefore 

assumed to carry costs (Schmid-Hempel 2005). There are two types of costs 

involved while considering the costs of resistance: the costs involved in mounting 

the immune response and the costs involved in maintaining the immunity 

(Kraaijeveld et al. 2002). In Drosophila lower competitive ability in larvae has 

been identified as costs of immunological resistance against parasitoids 

(Kraaijeveld and Godfray 1997; Fellowes et al. 1998a), while increased 

resistance to mites was negatively correlated to fecundity (Luong and Polak 

2007). In my study I report the prima-facie evidence that the evolved resistance 

against T. kingi in D. melanogaster has a cost. The selected lines flies had lower 
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fecundity compared to flies from control lines, in the absence of T. kingi infection, 

indicating a trade-off between increased resistance and early fecundity. The 

following chapter further explores the potential costs involved in this increased 

resistance and the different mechanisms involved. 

 

This is the first time that evolution of resistance and an associated cost has been 

demonstrated against microsporidia. Microsporidia, as mentioned earlier, are 

gaining prominence both as an opportunistic pathogen and a potential bio-control 

agent. In this study I demonstrate the possibility of insect populations evolving 

resistance against microsporidia and suggest that bio-control programs for the 

control of insects, both as disease vectors and as pests, should consider the 

implications of evolving resistance in field populations when designing them. The 

results reported in this chapter also highlight the role played by the intensity of 

selection pressure in evolving resistance, therefore suggesting that regulated use 

of bio-pesticides is equally important. 
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Chapter Five: Trade-offs and mechanisms associated with 
increased resistance to Tubulinosema kingi in Drosophila 
melanogaster 
 

5.1. Introduction 
Attacks from natural enemies, like predators and parasites, are inevitable for 

most, if not all, organisms, thus causing these organisms to evolve some sort of 

defence mechanisms against their enemies. However, mounting evidence has 

made it clear that such resistance against parasites and pathogens requires 

resources and is costly (Schmid-Hempel 2005). Costs associated with resistance 

are considered to maintain heritable genetic variation for resistance in field 

populations (Henter and Via 1995; Kraaijeveld et al. 1998; Rigby et al. 2002). 

Costs of resistance to natural enemies have been identified in a range of 

organisms; such as bacteria (Lenski 1988), plants (Bergelson and Purrington 

1996; Siva-Jothy et al. 2001), invertebrates (Kraaijeveld and Godfray 1997; 

Webster and Woolhouse 1999; Luong and Polak 2007) and vertebrates (Sheldon 

and Verhulst 1996; Verhulst et al. 1999). The nature and magnitude of the costs 

of resistance, along with the selection pressure exerted by the natural enemies, 

has been considered to play a key role in the rate and direction of the evolution 

of resistance (Kraaijeveld et al. 2002). The costs of resistance can be 

distinguished into two types: those associated with mounting the actual defence 

and those associated with maintaining the standing defences (Kraaijeveld et al. 

2002). The costs associated with the actual defence are incurred due to the 

energy and resources used for mounting the defence against parasites or 

pathogens, whilst the cost associated with maintaining standing defence involve 

resources redirected into the immune or other defence systems in anticipation of 

potential attacks (Kraaijeveld et al. 2002). Costs of standing defence is important 

evolutionarily since it could influence evolution of resistance (Kraaijeveld et al. 

2002).  

 

A range of costs involved in mounting actual defence has been identified in 

insect-parasite systems, including reduced adult size, longer development period, 

decreased fecundity, reduced survival, increased susceptibility to other parasites 

and lower reproductive and foraging activity (Boots and Begon 1993; Yan et al. 

1997; Siva-Jothy et al. 1998; Doums and Schmid-Hempel 2000; Siva-Jothy et al. 
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2001). However, it is often difficult to distinguish the costs of actual defence from 

the negative effects of the parasite (Kraaijeveld et al. 2002).  

 

The trade-offs between resistance and the other fitness parameters of a host 

indicate the costs involved in standing defence. Selection experiments and 

quantitative genetic estimation of trait covariance are powerful methods for 

detecting such costs (Reznick 1985; Fry 2003). Trade-offs associated with 

evolution of resistance have been demonstrated in a few systems. The evolution 

of resistance against a granulosis virus was found to be correlated with increased 

developmental time and reduced egg viability in the Indian meal moth, Plodia 

interpunctella (Boots and Begon 1993). In mosquitoes, Aedes aegypti  resistance 

to the malarial parasite decreased adult body size, fecundity and longevity (Yan 

et al. 1997). In D. melanogaster, resistance to parasitoids decreased larval 

competitive ability (Kraaijeveld and Godfray 1997; Fellowes et al. 1998a), while 

resistance to the ectoparasitic mite, Macrocheles subbadius reduced fecundity 

(Luong and Polak 2007). Selection for increased immune function 

(phenoloxidase activity) in yellow dung flies was found to be positively correlated 

with fertility and fecundity and negatively correlated with longevity under 

starvation (Schwarzenbach and Ward 2006).        

 

The Drosophila system, with its wide range of parasites (see Introduction), is a 

valuable model system for investigating costs of resistance (Kraaijeveld and 

Godfray 1997; Fellowes et al. 1998a; Luong and Polak 2007) because of its short 

generation time, relatively simple immune system (compared with vertebrates) 

and fully sequenced genome (Orr and Irving 1997; Fellowes et al. 1998a; 

Kraaijeveld et al. 2002). The evolution of resistance in D. melanogaster against 

the larval parasitoids Asobara tabida and Leptopilina boulardi involved increased 

encapsulation and was associated with a fitness cost in terms of reduced larval 

competitive ability in both cases (Kraaijeveld and Godfray 1997; Fellowes et al. 

1998a). The costs of mounting a successful defence against the larval 

parasitoids in Drosophila was reduced adult size and fecundity and increased 

susceptibility to pupal parasitoids (Carton and David 1983; Fellowes et al. 1998b; 

Fellowes et al. 1999b). The evolution of resistance in Drosophila nigrospiracula 

against ectoparasitic mites was costly in terms of reduced fecundity (Luong and 

Polak 2007). The costs of standing defence were obscured when the selected 

and control lines were compared for competitive ability under conditions of 

excess larval food, but became apparent when compared under conditions of 
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scarce larval food (Kraaijeveld and Godfray 1997), hence trade-offs are more 

likely to become obvious when organisms are under stress (Bergelson and 

Purrington 1996; Kraaijeveld et al. 2002).  The level of resistance against the 

larval parasitoid, A. tabida, shown by different lines of D. melanogaster is 

positively correlated with the number of haemocytes circulating in the larval 

haemolymph.  It has been suggested that this could be the basis of the improved 

resistance in the selected lines (Kraaijeveld et al. 2001b).  

 

Among other parasites of D. melanogaster, the microsporidium Tubulinosema 

kingi provides a potential host-parasite system to investigate the evolution of 

resistance and its associated costs (Kramer 1964a; Armstrong 1976; Futerman 

et al. 2006). Infection by T. kingi in D. melanogaster has been shown to reduce 

early fecundity and adult body size (Futerman et al. 2006), but it is unclear if 

these fitness losses observed are due to the costs of actual defence or due to the 

negative effect of microsporidia on the host. Earlier, in chapter three, it was 

shown that in response to infection by T. kingi, a higher haemocyte density and 

increased phenoloxidase activity was observed in the haemolymph of D. 

melanogaster larvae. Although it is still unclear if these immune responses are 

effective against T. kingi, it has been suggested that these activities are likely to 

require resources and hence have an associated  cost (Kraaijeveld et al. 2002).  

 

In the previous chapter it was shown that a D. melanogaster population can be 

experimentally evolved to resist T. kingi. The evolved resistance in the uninfected 

selected flies was found to be correlated with decreased fecundity when 

compared to uninfected control flies. This chapter has two aims: to test whether 

there are costs associated with standing defence against microsporidia and to 

explore the immunological basis for the evolved resistance found in chapter four.  

 

To detect the costs associated with increased resistance to microsporidia, I first 

investigated if the trade-off between resistance and fecundity observed in the 

previous chapter becomes more apparent under stressed condition. The early 

fecundity was previously measured under ideal conditions, with surplus 

resources. As discussed above, this could conceal or diminish the costs of 

standing defence and hence I subject the larvae to the stress of food scarcity. 

Second, I examined whether lines experimentally evolved to resist T. kingi had 

reduced larval competitive ability. Competition for food between larvae is a 

crucial trait in natural Drosophila populations (Atkinson 1979) and as mentioned 
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above reduction in larval competitive ability has been previously reported as a 

cost of resistance (Kraaijeveld and Godfray 1997; Fellowes et al. 1998a).  

 

In chapter three, I reported the up-regulation of both haemocyte density and 

phenoloxidase activity in D. melanogaster larval haemolymph when infected with 

T. kingi. To investigate the immunological basis for the evolved resistance, I 

compared the number of circulating haemocytes and phenoloxidase activity in 

the larval haemolymph of control and selection lines.     

    

 5.2. Materials and methods 
The four experiments described below were conducted on the D. melanogaster 

lines experimentally evolved for increased resistance to T. kingi and their 

respective control lines (see chapter four). Prior to these experiments, the lines 

were cured of T. kingi infection and cultured without infection for a generation to 

remove any maternal effects. The curing protocol is described in section 4.3.2. 

Ten flies per line were screened for T. kingi infection by Giemsa-staining of the 

abdomen smear, to confirm that the lines were indeed infection free. No 

microsporidia were observed in the stained smears of the examined flies.    

 

5.2.1. Fecundity under resource scarcity as larvae 
When larvae of control and selected lines are subjected to stress in the form of 

food (resource) scarcity, the allocation of available resources to development of 

reproductive organs versus immune functions would be constrained, therefore 

affecting the adult fecundity. It has been reported that when 30 second instar 

larvae fed on 0.1ml of larval food (~0.003ml per larvae) their developmental 

period increases and their size on emergence was reduced (Kraaijeveld and 

Godfray 1997). In this experiment, allowing 50 first instar larvae to feed on 

0.25ml of larval food (0.005ml per larvae) was expected to cause stress, through 

limited resources.   

 

The control and selected lines were allowed to oviposit in culture bottles 

containing yeast/sugar medium and live bakers yeast for six hours at 25ºC. 200 

eggs per line were distributed equally into four vials (80x22mm) lined with agar 

and 0.25ml of larval food (25g live bakers yeast per 100ml water). The vials were 

incubated at 20ºC for further development. When the flies emerged, four   

females and eight males, from each vial were randomly selected. Each female 

together with two males were placed in individual vials (80x22mm) containing 
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yeast/sugar medium and live yeast. The experiment therefore comprised 16 vials 

per line (control or selection). The following day, all the flies were transferred into 

fresh laying vials (80x22mm) containing medium and live yeast and the previous 

day’s vials were discarded. For the next ten days the vials were replaced every 

24 hours; and eggs laid during the previous 24 hours counted and recorded. Any 

dead males were removed and replaced. The data for females that died during 

the assay period were included as missing values for analysis. The mean 

number of eggs, per female, per day for each line was calculated and the lines 

were treated as replicates in the statistical analysis. The difference in the early 

fecundity of flies from selected and control lines, reared as larvae with limited 

food, was tested by a one-way ANOVA.  

 

5.2.2. Larval competitive ability 
To determine and compare the competitive ability of two phenotypically 

indistinguishable strains comparison of their respective performances against a 

mutant tester stock has been suggested (Santos et al. 1992). Here, I compare 

the relative performance of the D. melanogaster control lines with lines selected 

for increased resistance to T. kingi under strong or weak intra-specific 

competition regimes, by rearing them with larvae of sparkling poliert 1 (tester flies) 

(Kraaijeveld and Godfray 1997). The tester flies are mutants with sparkling red 

eyes, while the experimental flies have normal red eyes and this identifiable 

phenotypic difference was used to determine the relative competitive ability of 

experimental lines.  

 

The flies from the experimental lines and the tester stock were allowed to oviposit 

overnight in bottles containing medium and live yeast at 25ºC. The bottles were 

further incubated at 20ºC for 48 hours after which the larvae were washed out of 

the culture bottles. I transferred 15 second-instar larvae from either control or 

selection lines, together with 15 second-instar larvae from the tester stock, into 

Petri dishes (5cm) lined with agar and either 0.2ml or 0.1ml of larval food (25g 

live bakers yeast per 100ml water). These resource levels, as demonstrated by 

Kraaijeveld and Godfray (1997), represent weak and strong competition regimes 

respectively. I set up 15 replicates for each combination of line and resource 

level. The Petri dishes were incubated at 20ºC until the flies emerged. The 

number of experimental and tester flies that survived per plate was recorded. 

These survival data were analysed by calculating the competitive index, 

log (e/(t+1)), where e is the number of experimental and t is the number of tester 
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flies that survived in each replicate (Santos et al. 1992). The means of the 

competitive indices for the ten lines were calculated and the difference between 

the selected and control flies was tested using a t-test with unequal variances. 

 

5.2.3. Haemocyte density 
To compare the haemocyte density in the haemolymph of selected and control 

lines in the absence of T. kingi infection, flies from both lines were allowed to 

oviposit in culture bottles containing Drosophila medium and live yeast at 25ºC 

overnight. The eggs were washed out of the bottles and four vials (80x22mm) per 

line containing medium and live yeast were set up with 50 eggs in each. The 

vials were incubated at 20ºC for 96 hours. 15 third instar larvae from each vial 

were bled and their haemolymph pooled; 3µl of haemolymph was pipetted onto a 

haemocytometer and the total haemocytes in the samples were counted using a 

light microscope at 40X magnification. The counts were repeated twice for each 

haemolymph sample. The means of the haemocyte counts for the ten lines were 

calculated and the difference between the haemocyte density of the selected and 

control larvae was tested using a one-way ANOVA.   

 

5.2.4. Phenoloxidase activity 
The phenoloxidase activity in the haemolymph of Drosophila larvae selected for 

increased resistance to microsporidia was compared to that in larvae from control 

lines.  The protocol outlined below was based on the suggestion in (Tzou et al. 

2002). Flies from both selected and control lines were allowed to oviposit 

overnight in culture bottles containing Drosophila medium and live yeast at 25ºC. 

The eggs within these bottles were washed out and three vials per line 

(80x22mm) containing medium and live yeast were set up with 50 eggs in each. 

The vials were incubated at 20ºC for 96 hours. Ten third instar larvae per vial 

were bled and the haemolymph was pooled to determine phenoloxidase activity. 

3µl of pooled haemolymph was added to 50µl of 10mM phosphate buffer (pH 5.9) 

containing 10mM L-DOPA in a 50µl-2000µl disposable cuvette (Eppendorf 

catalogue number:952010069). The optical density was recorded at five minute 

intervals for 30 minutes at 470nm in a spectrophotometer (WPA, Lightwave, UK). 

The enzyme activity for each sample was measured as the slope (absorbance vs. 

time) of the reaction curve during the linear phase of the reaction. Any optical 

density readings that were recorded as greater than two were removed from the 

analysis, since these were values which the spectrophotometer failed to measure. 

The mean phenoloxidase activity per vial was calculated as the average of the 
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slopes of the two replicates measured during the linear phase and this was used 

in the analysis. The selected and control lines were compared using a t-test with 

unequal variances.    

 

5.3. Results 
5.3.1. Fecundity under resource scarcity as larvae 
The D. melanogaster females from selected and control lines were reared with 

limited food as larvae and their early fecundity under stress was determined.      

The early fecundity (Fig. 5.1) of females selected for increased resistance to T. 

kingi (37.73 ± 0.99) was significantly lower than control flies (60.39 ± 1.73), (F1, 8 

= 129.43, p <0.001).  
 
5.3.2. Larval competitive ability 
The relative competitive ability of D. melanogaster larvae from selected and 

control lines were determined at two levels of competitions. At a low level of 

competition (Fig.5.2) (0.2ml of larval food) survival was high (~80%) and there 

was no significant difference in competitive ability between the selected and 

control larvae (p=0.0866). However, at a high level of competition (0.1ml of larval 

food) survival was reduced (~50%) and the competitive ability of selected line 

larvae was significantly lower than larvae from control lines (p =0.0008).  

 

5.3.3. Haemocyte density 
The haemocyte density (Fig. 5.3.) of D. melanogaster larvae from lines selected 

for increased resistance to microsporidia (119.19 ± 2.17) was significantly higher 

than that in larvae from control lines (104.5 ± 3.31), (F1, 8 = 15.12, p =0.0046). 

 
5.3.4. Phenoloxidase activity  
The phenoloxidase activity, measured as the slope (absorbance vs. time) was 

determined for haemolymph samples extracted from selected and control line 

larvae. The phenoloxidase activity (slope) (Fig.5.4) in haemolymph extracted 

from D. melanogaster larvae selected for increased resistance to microsporidia 

was significantly higher than the phenoloxidase activity (slope) in haemolymph 

extracted from control line larvae (p =0.0423).  
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Fig. 5.1. The early fecundity (eggs/day/female ± S.E.) of D. melanogaster 
selected for increased resistance to T. kingi (dark bar) and control flies (light bar) 
under stressed conditions.   
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Fig. 5.2. The competitive ability (± S.E.) of D. melanogaster selected for 
increased resistance to T. kingi (dark bars) and their respective control lines (light 
bars) relative to a tester strain at low and high levels of larval competition.  
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Fig. 5.3. The haemocyte density (count ± S.E.) of D. melanogaster larvae 
selected for increased resistance to T. kingi (dark bar) and control larvae (light 
bar). 
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Fig. 5.4. The phenoloxidase activity (slope of regression on time ± S.E.) in D. 
melanogaster larvae selected for increased resistance to T. kingi (dark bar) and 
control larvae (light bar). 
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5.4. Discussion 
It is evident from studies of insect-parasite systems in the past decade that 

resistance against natural enemies involves costs which can be distinguished 

into actual costs and standing costs (Boots and Begon 1993; Kraaijeveld and 

Godfray 1997; Yan et al. 1997; Fellowes et al. 1998a; Luong and Polak 2007). 

The nature and magnitude of these costs, along with the selection pressure 

applied on the host by the parasite, determines the rate and direction in which 

resistance evolves. Resource allocation to one fitness-relevant trait must be 

traded off against allocation to other fitness components and this is applicable to 

the evolution of resistance (Rolff and Siva-Jothy 2003) where allocation of 

resources into either actual or standing defence should trade-off against other 

fitness components.  

 

Costs of actual defence are quite often difficult to distinguish from the pathogenic 

effects of the parasite. Delayed and reduced fecundity is observed in mosquitoes 

(Armigeres subalbatus) that successfully encapsulate their filarial parasite, but it 

is unclear if this is a cost of encapsulation, the effect of parasite, or both (Ferdig 

et al. 1993). Futerman (2006) similarly reported that Drosophila infected with 

microsporidian parasite T. kingi that are successful in emerging as adults have 

reduced body size and fecundity. However, it is unclear whether this is a cost of 

the increased haemocyte counts or phenoloxidase activity observed in larval 

haemolymph, or a pathogenic effect of the microsporidia, or a combination of 

both. It is important to stress here that although the effectiveness of these 

immunological responses is unclear; they are likely to require resources.  

 

Selection experiments involving insect models that have short generation times 

and simple immune systems have provided an excellent tool for investigating 

potential genetic correlations between immune parameters and life-history traits 

(Reznick 1985; Fry 2003; Schwarzenbach and Ward 2006). In the previous 

chapter, replicate lines of D. melanogaster were selected for increased 

resistance to their microsporidian parasite, T. kingi. This chapter further 

investigated the potential trade-offs in life-history traits associated with increased 

resistance against T. kingi. 

 

The early fecundity of flies selected for increased resistance significantly 

decreased compared to the control flies when stressed by scarce food during the 

larval stage indicating a trade-off between evolved resistance and host fecundity 
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under stressed conditions. This result is consistent with the reduced fecundity 

(~10%) of selected lines in comparison to control lines when kept under surplus 

food conditions reported in the previous chapter. However, under resource 

scarcity the fecundity of selected lines reduced drastically (~40%). This reduced 

fecundity in a scarce-resource environment is a correlated response to selection 

for improved defence against microsporidian infection in D. melanogaster. The 

flies selected for increased resistance were also found to have poorer larval 

competitive ability when compared to control flies under high level of competition 

for food. However, this difference in competitive ability disappeared at lower 

levels of competition for food. I thus demonstrate here yet another trade-off with 

increased microsporidium resistance: reduced larval competitive ability in D. 

melanogaster. I suspect that under scarce food conditions the selected larvae 

allocate more resources into resistance mechanisms against microsporidia 

resulting in them have poorly developed reproductive organs and a reduced 

ability to withstand competition. The conditions of food scarcity under which the 

reduced fecundity and competitive ability was observed in selected lines are 

realistic since D. melanogaster in the wild often occur under comparable levels of 

competition (Atkinson 1979). The result thus also highlights the widely accepted 

fact that costs are more obvious when organisms are under stress (Kraaijeveld 

and Godfray 1997). 

 

The larval haemolymph from fly lines selected for increased resistance to T. kingi 

and larval haemolymph from control lines were compared for two immune 

parameters: number of circulating haemocytes and phenoloxidase activity. The 

number of haemocytes and the phenoloxidase activity in the haemolymph of 

larvae from selected lines were higher than in the haemolymph of larvae from 

control lines. T. kingi infection is known to cause an up-regulation of haemocyte 

density and phenoloxidase activity in D. melanogaster larvae (see chapter three). 

Phagocytosis of microsporidia has been reported previously (Weiser 1976; Kurtz 

et al. 2000), while encapsulation of infected tissue by haemocytes followed by 

melanisation has also been observed (Hoch et al. 2004), suggesting that the 

increase in haemocytes and the increase in phenoloxidase activity observed in 

the selected lines could be evolved resistance mechanisms to combat 

microsporidia.  However, it has been argued that haemocytes are inefficient  at 

combating microsporidia (David and Weiser 1994), which could imply that the 

higher haemocyte density might have unintentionally evolved in response to the 

extensive tissue damage that microsporidia are known to cause (Hoch et al. 
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2004). Futerman (2005) observed no difference in the effect of T. kingi on the 

early fecundity of D. melanogaster lines differing in their haemocyte density, 

demonstrating that haemocytes played an insignificant role in combating 

microsporidia. It is similarly unclear if the higher phenoloxidase activity in 

selected line larvae has evolved in response to T. kingi infection or to the tissue 

damage it causes. The increased immune mechanisms detected in the selected 

lines provide no evidence that these responses are either efficient or inefficient in 

combating microsporidia. Nevertheless, deeper investigation to distinguish 

between these alternative hypotheses is required since they have potential 

implications on the ecology and evolution of hosts and their parasites.   

 

Kraaijeveld and Godfray (1997) reported similar trade-off in D. melanogaster 

between evolution of resistance against A. tabida and larval competitive ability. 

The increased resistance was due to the higher haemocyte density observed in 

the selected lines (Kraaijeveld et al. 2001b). Luong and Polaok (2007) have 

reported yet another similar trade-off in a Drosophila-Macrocheles system, 

between evolution of behavioural resistance and fecundity. The similarity in costs 

associated with increased resistance to parasitoids and microsporidia (reduced 

larval competitive ability) and with increased resistance to mites and 

microsporidia (reduced fecundity) in Drosophila suggests that parasite-mediated 

directional selection for increased resistance has conserved costs. However, 

though we find an up-regulation in haemocyte density in response to selection for 

increased resistance against both parasitoids and microsporidia, it would be 

inappropriate to suggest that the underlying immune mechanisms may be similar, 

since the role of haemocytes against parasitoids is known but against 

microsporidia is not clear.  

 

Kraaijeveld et al. (2001) hypothesised that the basis of the trade-off observed 

between parasitoid resistance and larval competitive ability was due to 

reallocation of limiting resources from trophic to defensive functions. Considering 

that early fecundity and larval competitive ability are correlated with increased 

resistance against microsporidia, I believe that limiting resources are reallocated 

to defence functions from a range of physiological functions rather than just the 

trophic functions. 

 

In conclusion, it is evident here that evolving resistance against a micro-parasite 

(microsporidia) is costly. The costs of resistance identified here are similar to 
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costs associated with increased resistance to macro-parasites, both 

endoparasites (parasitoids) and ectoparasites (mites). Two trade-offs were 

identified between microsporidia resistance and fecundity under stress and 

between microsporidium resistance and larval competitive ability. Larvae of 

selected lines have been shown to have higher haemocyte counts and higher 

phenoloxidase activity in comparison to control larvae, but it is not clear whether 

they evolved in response to parasitism or merely to tissue damage caused by the 

parasite. In either case it is most likely that up-regulating these traits need 

resources and hence involve costs. 
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Chapter Six: General Discussion  
 
6.1. Introduction 

The investigations presented in this thesis examine the interactions between a 

host and its intracellular parasite and is in succession to the work presented by 

Futerman et al. (2006). First, I investigated the within-host dynamics of the 

intracellular parasite and examined the immune responses of the host. Next, I 

explored if the host population can evolve tolerance or resistance against the 

intracellular parasite using an artificial selection experiment. Finally, I 

investigated the correlated responses to selection that might represent the 

associated costs and the involved mechanisms for increased resistance. 

 

Each experimental chapter finished with a detailed discussion and therefore in 

this chapter I present a summary of results followed by a general discussion on 

the implications of these results on understanding host-parasite interactions.  

 

6.2. Summary of results 
Chapter two describes a set of four experiments examining the within-host 

dynamics of T. kingi in D. melanogaster. The first experiment explored the 

susceptibility of D. melanogaster to T. king where it was found that only the larval 

stages of the fruitfly were susceptible. The second experiment investigated the 

within-host proliferation of T. kingi where it was shown that the parasite spore 

proliferation occurred mainly after the fly emerged from its pupal-case. The 

within-host spore density was lowest in larvae, slightly higher in pupae and 

highest in the fly, suggesting that parasite proliferation in this system was specific 

to the life-stage of its host. The third experiment aimed at identifying the 

Drosophila tissues that were targeted by T. kingi. The Drosophila fat body, 

female reproductive organs and alimentary canal tissues were found to be 

targeted by the microsporidium. The final experiment in the chapter investigated 

if T. kingi caused sex-ratio distortion in host progeny. No evidence was found to 

suggest that T. kingi skews the host sex-ratio. 

 

Chapter three describes three experiments that investigated the immune 

responses of D. melanogaster to T. kingi infection. The first experiment examined 

the cellular immune responses of D. melanogaster to T. kingi infection, where a 

significant upregulation of haemocyte numbers in haemolymph of infected 
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Drosophila larvae was found. The second experiment examined the humoral 

immune responses in terms of phenoloxidase activity. The phenoloxidase activity 

was found to be higher in the haemolymph of T. kingi infected larvae. The third 

experiment investigated the role of nitric oxide (NO) in resisting T. kingi. 

Drosophila that were fed on L-arginine supplement had a lower parasite density, 

suggesting that NO might play an important role in resisting microsporidia. 

Although Drosophila immune responses were found to be upregulated after T. 

kingi infection, it was not evident if the immune responses were targeted towards 

microsporidia.  

 

Chapter four describes a selection experiment designed to explore if D. 

melanogaster population could evolve resistance or tolerance against its 

intracellular microsporidian parasite, T. kingi, under experimental conditions. The 

D. melanogaster selected and control lines did not differ in the correlated fitness 

traits examined (early fecundity and longevity) after the initial selection regime, 

suggesting that the population failed to evolve resistance. When the T. kingi 

spore dose was increased ten-fold in the selection regime, the D. melanogaster 

selected lines were found to resist T. kingi better than the control lines. The 

selected lines had a higher early fecundity and higher longevity than the control 

lines when infected with T. kingi. However, the selected lines had a lower 

fecundity compared to the control lines in the absence of infection, thus providing 

preliminary evidence that resisting microsporidia is costly. 

 

Chapter five describes the investigations into the trade-offs associated with 

increased resistance in a D. melanogaster population and the immune 

mechanisms involved with the increased resistance. Larval competitive ability 

and early fecundity were measured under conditions of food scarcity in D. 

melanogaster selected and control lines to identify the trade-offs associated with 

increased resistance to microsporidia. The selected line larvae were poorer larval 

competitors than the control line larvae. The early fecundity of selected line flies 

that were stressed as larvae with scarce food was found to be lower than that of 

control line flies that were similarly stressed. To identify the immune mechanisms 

associated with increased resistance I compared the haemocyte density and 

phenoloxidase activity in the haemolymph of selected and control line Drosophila 

larvae. The haemolymph from selected line larvae was found to have higher 

haemocyte density and a higher phenoloxidase activity than in the control line 

larvae.             
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6.3. General conclusions 
In conclusion, this thesis examines the interactions between an insect host and 

its intracellular microsporidian parasite, including evolution of resistance. 

Previous studies in other insect-microsporidian systems have argued both for 

and against the presence of successful innate immune defences against 

microsporidia (David and Weiser 1994; Kurtz et al. 2000; Hoch et al. 2004; 

Roxstrom-Lindquist et al. 2004; Tokarev et al. 2007). In the Drosophila-

microsporidia system it had been previously shown that the host is moderately 

infected and has a reduced fitness (Futerman et al. 2006). The Drosophila 

immune responses towards T. kingi, observed in chapter three; the evolution of 

resistance demonstrated in chapter four; and the heightened immune responses 

of selected lines reported in chapter five suggest that Drosophila could have 

competent defences against microsporidia, although the mechanisms involved 

are yet to be confirmed. Innate immune responses in Drosophila towards 

microsporidia were shown to involve both cellular and humoral immunity. 

Preliminary evidence also suggests that nitric oxide may be involved in the 

Drosophila immune defence against microsporidia. Clearly, further work is needs 

to be undertaken to identify the immune pathways associated with microsporidian 

resistance, which is discussed later in this chapter.   

 

This is also the first study of which I am aware that reports evolution of resistance 

in a host population towards a microsporidian parasite, including the trade-offs 

and potential immune mechanisms associated with the evolved resistance. 

Previous works have shown that Drosophila can evolve resistance to 

extracellular parasites such as parasitoids (Kraaijeveld and Godfray 1997; 

Fellowes et al. 1998a), fungus (Kraaijeveld and Godfray, subm.) and mites 

(Luong and Polak 2007). This study found that Drosophila can also evolve 

resistance against an intracellular microsporidian parasite and this involves costs 

in terms of fecundity and larval competitive ability. Similar costs are associated 

with increased resistance in Drosophila against its other enemies: resistance to 

fungus and mites have been shown to trade-off with fecundity, whilst resistance 

to parasitoids trades-off with competitive ability. As discussed in chapter five, 

costs of resistance can be of two forms: actual costs and standing costs, both of 

which can constrain evolution. The magnitude and nature of standing costs have 

the potential to prevent evolution of resistance, whilst the actual costs can only 

reduce its rate. Hypothetically, the lack of such trade-offs would have driven the 

genes associated with defence to become fixed throughout the host population, 
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resulting in a parasite-free world (Sheldon and Verhulst 1996; Gemmill and Read 

1998). 

 

Phagocytosis and melanisation have been suggested as the mechanistic basis of 

the increased immunity to microsporidia. The haemocytes involved in 

phagocytosis (plasmatocytes) are also known to differentiate into lamellocytes 

involved in encapsulation of parasitoid eggs. Evolution is more likely to favour 

immune defences that are effective against multiple enemies rather than 

defences effective against a specific enemy (Boots and Haraguchi 1999; 

Poitrineau et al. 2003). This study hence suggests that mechanisms involved in 

evolution and maintenance of resistance against multiple enemies may be 

conserved.  

 

The Drosophila population evolved resistance only when subjected to a strong 

selection pressure of increased microsporidian spore dose. Futerman et al. (2006) 

investigated the fitness effect of T. kingi infection on its hosts D. melanogaster, D. 

subobscura and Asobara tabida. Though the microsporidian spore dose used to 

infect was kept constant, the parasitoid A. tabida was found to become heavily 

infected by microsporidia and suffer a greater reduction in fitness in comparison 

to the Drosophila hosts that were moderately infected. These results imply that 

spore dose is a crucial factor that needs to be considered when parasites such 

as microsporidia are used as bio-pesticides for insect pests and vectors, since 

they can determine both the evolution of resistance in target insects and their 

effect on other non-target insects.  

 

Previous work by Futerman et al. (2006) had determined that T. kingi was mainly 

transmitted horizontally and to a lesser extent vertically within the Drosophila 

population. This study has furthered our understanding of Drosophila-T. kingi 

model system, by demonstrating that stage-specific susceptibility of the host and 

stage-specific proliferation of the parasite exists in this system. Figure 6.1, 

presents a diagrammatic representation of the synchrony between the host and 

parasite lifecycles in Drosophila-T. kingi model system. This study also re-

confirmes previous reports (Kramer 1964a; Armstrong 1976) on Drosophila 

tissues targeted by T. kingi and found that though the reproductive tissues were 

infected, T. kingi had no detrimental effects on the host sex-ratio. The work on 

Drosophila immune responses to its microsporidian parasite, T. kingi, reported in 
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Futerman (2005) and in this thesis, suggest that further investigations in this front 

is essential.   

 

 
Fig. 6.1. Diagrammatic representation of Drosophila (dark arrows) and 
Tubulinosema kingi (light arrows) life-stages and the synchrony in between them.  
 

As mentioned earlier, Futerman et al. (2006) demonstrated differential virulence 

of T. kingi infection in Drosophila and its parasitoid, A. tabida. The effects of 

microsporidiosis in the parasitoid were severe and this suggests that the 

parasitoids are under a higher selection pressure to evolve resistance than the 

flies. The parasitoid population is hence expected to evolve resistance towards T. 

kingi more rapidly than the Drosophila population. The evolution of resistance 

against a shared parasite in either the Drosophila or parasitoid population has 

serious implications on the ecological and evolutionary dynamics of the host-

parasitoid system. Assuming that the evolution of resistance in the parasitoid 

population is also likely to involve costs, it would be interesting to compare the 

costs (actual and standing) associated with resisting the same parasite in hosts 

that differ trophically. This information could provide more insight into the 

dynamics of parasites with vector mediated transmission.   
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Further investigations in this model system are essential for a deeper 

understanding of host-parasite interactions and its evolution. I conclude this 

thesis with examining a few future directions suggested by this work in the 

following three sections.   

 
6.4. Microsporidia and intraguild predation  
Intraguild predation is broadly defined as a phenomenon where two species 

share a common prey (or host) and concurrently engage in a prey-predator (or 

host-parasitoid) relationship with each other (Polis et al. 1989). The two species 

that engage in intraguild predation are commonly termed intraguild predator and 

intraguild prey (Polis et al. 1989). The intraguild predation theory assumes that 

intraguild predator and intraguild prey compete for the shared resource (host or 

prey) and that this resource competition is an important factor that determines 

their interactions (Holt and Polis 1997). The theory also assumes that the 

intraguild predator kills both the primary and intraguild prey species (Holt and 

Polis 1997). However, there are some systems where neither this resource 

competition between the intraguild prey and intraguild predator is present nor 

does the intraguild predator kill the primary and intraguild prey species, for 

example the Drosophila-parasitoid-microsporidia systems (Futerman 2005; 

Futerman et al. 2006). In this system, the presence of microsporidian infection in 

Drosophila does not deter the parasitoids from parasitisation, nor does parasitism 

of Drosophila by the parasitoid subsequently exclude the microsporidia 

(Futerman et al. 2006). Futerman (2005) suggested that the current intraguild 

predation framework is perhaps inadequate for investigating such systems and 

that further expansion of it to include shared pathogens as a separate case was 

essential. In this section, I discuss the role of microsporidia as an intraguild 

predator in Drosophila-parasitoid system.     

 

Parasitoids are a unique group of animals that share the features of parasites 

and predators; they develop on their hosts like any other parasite but invariably 

cause death of their hosts. They are considered to be one of the most species 

rich groups among animals. The hosts for parasitoids are usually other insects on, 

or in whose bodies they feed (Godfray 1994). The host-parasitoid interactions 

have received considerable attention, especially by ecologists and evolutionary 

biologists and this is especially because parasitoids are important regulators of 

their insect hosts (Godfray and Shimada 1999). Theoretical models of host-
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parasitoid populations have been demonstrated to be inherently unstable and 

most work in this field has concentrated on identifying factors which promote the 

stability in natural host-parasitoid populations (Hassell 2000). Among other 

factors that could have an effect on the dynamics of host-parasitoid interactions, 

the addition of other species to the simple host-parasitoid system is stated to be 

significant (Hassell 2000). The impact of including higher order parasitoids and 

predators into host-parasitoids systems is unpredictable, though they may 

stabilise the interactions (Rosenheim et al. 1995; Rosenheim 1998). However, 

pathogens can also affect the host-parasitoid systems in similar ways and this 

has been investigated both theoretically and empirically, although most models 

tend to assume that parasitoids and pathogens are competing for resources (the 

hosts) (Hochberg et al. 1990). The Drosophila-parasitoid-microsporidia model 

system (Futerman 2005; Futerman et al. 2006) is one such example, but as 

mentioned earlier, the parasitoid and pathogen in this system are not really in 

competition.  

 

The impact that shared micro-parasites may have on the dynamics of the host-

parasitoid system is influenced by the relative degree to which the host and 

parasitoid are affected by them. It is hypothesised that if the host suffers a 

greater loss in its fitness in comparison to the parasitoid, when infected by a 

shared parasite, then the host population suffers since the effects of parasitoid 

and parasite is expected to be additive. In a reversed situation, where the effect 

of parasites is greater on the parasitoids than their hosts, it is expected that the 

host population thrives since the parasitoid control on them is relaxed. The 

Drosophila-T. kingi system explored in this thesis, along with well-studied 

Drosophila-parasitoid systems such as those established by Kraaijeveld and 

Godfray (1997), can be used as an ideal model for experimental investigation 

into the effects of a shared pathogen on the dynamics of a host-parasitoid 

system. 

 

Tubulinosema kingi, the microsporidian parasite, and Asobara tabida, the larval 

parasitoid, share a common host, Drosophila, and also engage in a host-parasite 

interaction of their own. Futerman et al. (2006), have shown that the effect T. 

kingi has on A. tabida is greater than its effect on Drosophila, thus suggesting 

that T. kingi might lead to reduced parasite-mediated host suppression in 

Drosophila populations. Experimental manipulation in his intraguild system is 

possible, with the potential for tightly controlled population experiments (for 
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example see Green et al. (2000) and the selection experiment in this thesis). 

Futerman (2005) had proposed a population cage experiment with two 

treatments involving Drosophila-A. tabida systems maintained either with or 

without T. kingi, to determine if the presence of a shared parasite reduces the 

parasitoid’s ability to regulate host populations.  

A. tabida                               P. vindemiae                          T. kingi 

Drosophila Drosophila Drosophila 

Treatment 1                           Treatment 2                     Treatment 3 

             P. vindemiae                         T. kingi                                    T. kingi 

A. tabida                                A. tabida                          P. vindemiae                 

     Drosophila                             Drosophila                            Drosophila 

Treatment 4 Treatment 5 Treatment 6

                                   T. kingi                             P. vindemiae 

A. tabida 

Drosophila

                                            Treatment 7 

 
Fig. 6.2. Proposed population cage experiment to determine the impact of  
T. kingi on the dynamics of Drosophila--A. tabida--P. vindemiae system. 
Treatments 1 & 5, were previously proposed by Futerman (2005).  
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This Drosophila-parasitoid-microsporidia system can be further investigated by 

the inclusion of a hyper-parasitoid, Pachycrepoideus vindemiae. This hyper-

parasitoid is known to attack the Drosophila pupae, including those that are 

already parasitised by A. tabida (Fellowes et al. 1998b), hence it is in itself an 

intraguild predator. Therefore parasitism by P. vindemiae results in the equal and 

efficient suppression of both Drosophila and A. tabida populations. However, 

when P. vindemiae parasitises T. kingi infected-pupae, it has been found that the 

emerging hyper-parasitoid is also infected (A.R. Kraaijeveld pers. comm.). 

Therefore microsporidia can act as an Intraguild predator of Drosophila-A. tabida-

P. vindemiae system. Although considerable thought would be required in 

designing a workable experiment, in principle the study would involve replicate 

population cages with treatments as in Fig 6.2 above, could be very informative. 

 

The hypothesis to be tested would be as follows: in simple host-

.5. Parasite transmission and evolution of virulence 
nce, the mode of 

parasite/parasitoid treatments involving Drosophila-T. kingi, Drosophila-A. tabida 

and Drosophila-P. vindemiae, strong suppression mediated by parasite or 

parasitoids is expected and Drosophila populations will therefore be maintained 

at low densities. In treatments involving a single intraguild prey and intraguild 

predator species, the outcome may depend on the effect of the intraguild 

predator on its primary and intraguild prey. In Drosophila-A. tabida-P. vindemiae 

treatment I expect no change in host densities, since the effect of P. vindemiae 

on Drosophila and A. tabida is equal. In Drosophila-A. tabida-T. kingi and 

Drosophila-P. vindemiae-T. kingi treatment, I expect the Drosophila populations 

to be maintained at a higher mean density than the simple two species treatment 

because I expect T. kingi to cause a reduction in host suppression. If my 

hypothesis is correct, the four species treatment with two levels of intraguild 

predation would lead to a reduction in host suppression, though the magnitude of 

this is unpredictable.   

 
6
Among the different factors influencing the evolution of virule

transmission is believed to play an important role in determining pathogen 

virulence over evolutionary time (Lipsitch et al. 1996). Vertically transmitted 

parasites are likely to be less virulent to their hosts in comparison to horizontally 

transmitted parasites, since host reproduction and hence its survival translates 

very directly to the fitness (reproduction) of the parasite (Lipsitch et al. 1996). The 
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trade-off associated with evolution of virulence and mode of transmission has 

been demonstrated in Escherichia coli-bacteriophage system (Bull et al. 1991). 

Observations in fig wasps have also demonstrated a close correlation between 

nematode virulence and the degree of horizontal transmission relative to vertical 

transmission (Herre 1993). A similar trade-off has also been demonstrated in a 

plant (barley) and virus (barley stripe mosaic-virus) system (Stewart et al. 2005). 

The Drosophila-T. kingi model system investigated in this thesis involves a 

parasite that is known to spread within the host population by both horizontal and 

vertical transmission (Futerman et al. 2006). This system thus provides an 

opportunity to explore the effects of the differential selection pressures exerted 

by the two modes of transmission on the evolution of microsporidian virulence.  

 

To explore the correlation between transmission and evolution of virulence I 

6. Insect immune responses and the microsporidia 
r three, that could 

suggest an experimental evolution set-up where the mode of parasite 

transmission could be restricted to exclusively vertical in one line and mainly 

horizontal in the other line. A large number of T. kingi infected D. melanogaster 

females in each line would be allowed to mate with uninfected males from the 

base population and oviposit in individual vials containing yeast/sugar media for 

a day. In one line, the females would be individually homogenised and fed to its 

offspring, whilst in the second line all the females would be homogenised 

together and then fed equally to all the offspring. The idea of feeding the mother 

(containing infective spores) to its offspring is to ensure vertical transmission 

while feeding spores mostly from unrelated females ensures horizontal 

transmission. The offspring from each line are then pooled together before 

randomly selecting the females for the next generation. The same protocol, if 

repeated over a number of generations, is expected to result in selecting the 

microsporidia in the first line to be less virulent than the microsporidia in the 

second line. The virulence of microsporidia can be assayed by measuring the 

effect it has on host life history traits.  

  

6.
Three experiments were suggested in the discussion of chapte

determine the effectiveness of the Drosophila immune responses towards its 

microsporidian parasite. In addition, I present below two more possible 

experiments that could be carried out in this model system, to further our 

understanding of insect immunity and host-parasite interactions.  
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Drosophila immune responses to parasites and pathogens are considered to be 

regulated broadly by two immune pathways: the Toll and imd pathways (Tanji et 

al. 2007). The Toll pathway is considered to be mainly activated in response to 

infections by fungi and Gram-positive bacteria whilst the imd-pathway in 

response to mainly Gram-negative bacteria. The Drosophila cellular immunity 

involving phagocytosis, encapsulation and melanisation is regulated by the Toll-

pathway, which also activates an antifungal peptide Drosomycin. The imd-

pathway on the other hand activates other antimicrobial-peptides: Diptericin, 

Attacin, Drosocin, Cecropin, Defensin and Metchnikowin (Lemaitre and Hoffmann 

2007). The antimicrobial-peptide genes for Drosomycin and Diptericin are used 

as read-out genes for the Toll and imd pathways respectively (Tanji et al. 2007).  

 

The Drosophila immune pathways and defences have been investigated 

extensively against parasitoids, bacteria, fungi and viruses (Lemaitre and 

Hoffmann 2007), but nothing is known about the immune pathways associated 

with defence against intracellular microsporidia. Roxtrom-Lindquist et al. (2004) 

analysed the Drosophila gene expression and though 59 genes were uniquely 

expressed in response to infection by Octosporea muscaedomesticae, most of 

these genes were of unknown function and included no antimicrobial peptides. 

We cannot be sure that microsporidia do not induce antimicrobial peptides, since 

Roxtrom-Lindquist et al. (2004) measured gene expression after feeding the 

microsporidian spores to adult flies and in case of T. kingi infections, only larvae 

were found to be susceptible (see chapter two). Hence, I suggest the following 

experiment to determine the immune pathway associated with resisting 

microsporidia in Drosophila.  

 

Gene expression of Drosomycin and Diptericin, the read-out genes for the Toll 

and imd pathways respectively (Tanji et al. 2007) can be quantified in RNA 

extracted from Drosophila larvae at different time points after being fed with 

microsporidian spores. An efficient method to measure expression could be 

reverse transcription-polymerase chain reaction (RT-PCR). This molecular 

technique involves preparation of cDNA from the extracted RNA samples, 

followed by amplifying the target genes using specific primers and suitable 

probes such as SYBERGREEN. It is essential for the quantification process that 

a housekeeping gene (for example, Actin) be included in the assay, along with 

using RNA samples from control larvae. The increased expression of either 

Drosomycin or Diptericin in the microsporidia infected larvae would clearly 
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indicate the immune pathway involved in resisting these intracellular parasites. It 

is very likely that the Toll-pathway would be associated with resisting 

microsporidia since they are highly evolved fungi and have been shown to elicit 

cellular immune responses (see chapters three and five). Apart from the 

possibility that the imd-pathway is associated with microsporidian resistance, 

suppression of immune pathways may be observed due to microsporidian 

manipulation, since suppression of insect immune responses has also been 

claimed in parasitic infections, such as microsporidia (Lozinskaya et al. 2004) 

and Spiroplasma (Hurst et al. 2003). Assuming that either Toll or imd pathway is 

associated with microsporidian resistance, it would be interesting to determine if 

the costs (actual and standing) associated with resisting different parasites is 

pathway specific. I presume it is very likely that resisting different parasites 

through an analogous immune-pathway would have identical costs and hence be 

favoured to evolve. 

 

Tubulinosema kingi successfully pass through the larval gut wall and infect the 

tissues present beyond, despite the presence of defences such as lysozymes 

and locally produced antimicrobial peptides (Lemaitre and Hoffmann 2007). In 

addition, the guts of insects are also lined by an extracellular matrix known as 

peritropic membrane that consists of proteins, chitin and proteoglycans. This 

functions as a hostile physical barrier to parasites (Lehane 1997). The 

Drosophila-microsporidia model system thus presents an opportunity to 

investigate the host-gut immune defences to parasite invasion through the 

alimentary canal, including the strategies that parasites use to evade them. The 

non-susceptibility of Drosophila flies to T. kingi observed in chapter two could 

possibly be due to the adult-gut immunity, which could either be more effective or 

just different to that in susceptible larval stages. This hypothesis could further 

explain why Roxtrom-Lindquist et al. (2004) observed elevated expression of 

lysozymes, but no antimicrobial peptides, in response to feeding O. 

muscaedomesticae spores to Drosophila flies. The interaction between T. kingi 

and Drosophila gut epithelia of both larval and adult stages can be explored 

using the range of mutant flies and live imaging techniques currently available. 
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