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Abstract

In Chapters 2 and 3 of the thesis we propose a self-scheduled control method for a doubly-

fed induction generator driven by a wind turbine (DFIGWT), whose rotor is connected to

the power grid via two back-to-back PWM power converters. We design a controller for

this system using the linear matrix inequality based approach to linear parameter varying

(LPV) systems, which takes into account the nonlinear dynamics of the system. We pro-

pose a two-loop hierarchical control structure. The inner-loop current controller, which

considers the synchronous speed and the generator rotor speed as a parameter vector,

achieves robust tracking of the rotor current reference signals. The outer-loop electrical

torque controller aims for wind energy capture maximization, grid frequency support and

generates the reference rotor current. We perform a controller reduction for the inner-loop

LPV controller, which is not doable by conventional model-reduction techniques, because

the controller is parameter-dependent. In simulation, the reduced order controller has been

tested on a nonlinear 4th order DFIG model with a two-mass model for the drive-train.

Stability and high performances have been achieved over the entire operating range of

the DFIGWT. More importantly, simulation results have demonstrated the capability and

contribution of the proposed two-loop control systems to grid frequency support.

In Chapter 4 we investigate the integral input-to-state stability (iISS) property for pas-

sive nonlinear systems. We show that under mild assumptions, a passive nonlinear system

which is globally asymptotically stable is also iISS. Moreover, the integral term from the

definition of the iISS property has a very simple form (like anL1 norm). These theoretical

results will be useful for our stability analysis of wind turbine systems in Chapter 5.

In Chapter 5 we investigate the stability of a variable-speed wind turbine operating

under low to medium wind speed. The turbine is controlled to capture as much wind

energy as possible. We concentrate on the mechanical level of the turbine system, more
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precisely on the drive-train with the standard quadratic generator torque controller. We

consider both the one-mass and the two-mass models for the drive-train, with the inputs

being the deviation of the active torque from an arbitrary positive nominal value and the

tracking error of the generator torque. We show that the turbine system is input-to-state

stable for the one-mass model and iISS for the two-mass model. Using our abstract results

from Chapter 4, we identify the iISS gain of this system. We also propose an adaptive

search algorithm for the optimal gain of the quadratic torque controller.
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Chapter 1

Introduction

1.1 Backgrounds and motivations

Wind driven power generating units based on a doubly-fed induction generator (DFIG), as

shown in Figure 1.1, have been widely recognized in industry as one of the most promis-

ing wind turbine configurations, especially for high power capacity off-shore wind farms.

A large number of such wind farms are already in operation and more are planned or un-

der construction (see [11] and [14]). The DFIG is a wound rotor asynchronous generator,

whose stator is connected to the power grid (via a transformer). The rotor operates at a

frequency depending on its speed, so that the power-flow between the rotor and the power

grid must be channelled through back-to-back AC/DC and DC/AC converters. The rated

power of the power converters defines the range of the variable speed (typically± 30%

around synchronous speed), see [8, 14, 21] and [42]. Control of the DFIG wind turbine

(DFIGWT) is theoretically challenging for control engineers because the dynamical sys-

tem, with a wide operating range, is highly nonlinear and the wind speed input is a rapidly

changing random signal.

Linear parameter varying (LPV) systems are a special class of systems, which for every

fixed value of the parameter vectorθ(t) ∈ Rs are linear time invariant (LTI) systems. We

need to consider LPV systems where the state-space matrices depend on the vector of

parametersθ(t) in an affine fashion. A state-space representation of an LPV systemΣ is

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t), (1.1.1)

y(t) = C(θ(t))x(t) + D(θ(t))u(t), (1.1.2)
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Figure 1.1: Control of a grid-connected wind driven DFIG with back-to-back converters
for the rotor power. The block diagram used in the synthesis of the rotor current controller
is shown in Figure 3.3. The block diagram of the electrical torque controller (which also
does frequency support) is shown in Figure 3.1. The reference rotor current calculation
is explained in Section 3.6.1. The phase-locked loop (PLL)-based estimation is shown in
greater detail in Figure 3.5. The block labelled “controller for grid integration” controls
the stator reactive power and the GSC reactive power.
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wherex(t) is the state (x(t) ∈ Rn), u(t) is the input vector andy(t) is the measured output

vector. In this thesis, we only have to deal with LPV systems where measurements ofθ(t)

are available in real time. For LPV systems, a traditional control method is to design

LTI controllers for several pointsθ, and then using an interpolation technique to obtain

the control law over the entire operating range. The main drawback of this is a lack of

high performance, of robustness, even of stability [7]. In the framework of LPV systems

proposed by Apkarianet al. [4], Apkarianet al. [5] and Gahinetet al. [15], the controller

synthesis problem is formulated as a convex optimization problem. After solving some

linear matrix inequality (LMI) constraints, the so-called self-scheduled LPV controller is

given by a simple linear interpolation and then stability and certain performance bounds

are guaranteed along all possible trajectories ofθ. A self-scheduled LPV controller can

update itself online using parameter measurements, so that the changing plant dynamics

are taken into account.

In Chapter 3, based on LPV control technique, we design an inner-loop current con-

troller for the DFIG, which achieves robust tracking of reference rotor currents. We take

both the synchronous speed and the generator rotor speed into the parameter vector to

conduct the LPV design. This is doable in practice, as the measurement of the generator

rotor speed can be obtained from a slower outer mechanical loop, while the measurement

of the synchronous speed is available using a PLL-based estimation (see Figure 1.1). A

good application of the LPV technique to the control of an induction motor can be found

in [44].

The synthesized LPV controller has at least the same order as the plant and may have

some unnecessary fast modes, which would complicate the hardware implementation [7].

Controller reduction for general LPV systems is an active research area, see Jaimoukhaet

al. [27]. We propose a crude controller reduction procedure for self-scheduled LPV con-

trollers. Fast modes are truncated so that the reduced order controller is easy to implement

on a digital signal processor (DSP).

In most countries, the nominal grid frequency is 50Hz. If the instantaneous demand

is higher than the generation, the system frequency will fall. Conversely, if the instanta-

neous demand is lower than the generation, the frequency will rise. Under exceptional
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circumstances, the system frequency can rise to 52Hz and fall as low as 47.0Hz. There

are two main causes for the frequency drop:i) loss of generation;ii) increase in demand,

for example due to cold or hot weather. The active power output from a generator needs

to be controlled in response to the above situations, so that the grid frequency can be

maintained within± 0.5Hz around 50Hz (see [1]).

In the event of frequency drop, with traditional generation, the increase in the active

power output of the generators is achieved through governor control. As the penetration

of wind power in the electricity grid continues to increase in many countries, wind farms

could potentially contribute to the frequency support, see Hugheset al. [26], Hansenet

al. [22] and Morrenet al. [38]. Motivated by this new control task for wind turbines to

provide grid support, in this thesis we design a novel frequency support controller, which

is embedded in the electrical torque controller (see Figure 1.1 and see also our recent

paper [58]). We take both the synchronous speed and the generator rotor speed into the

parameter vector to improve the LPV design for the DFIG, so that the grid frequency vari-

ation is taken into account, and more importantly, the stability of the DFIG is guaranteed

over the entire operating range of the wind turbine system.

The stability analysis of variable-speed wind turbines is another challenging task for

control engineers because the dynamical system, with a wide operating range, is essen-

tially nonlinear and the active torque (which depends on the wind speed as well as the

turbine speed and the pitch angle) is a random signal. The turbine system has hierarchical

control levels, see Figure 1.1. On the highest level (not shown in Figure 1.1), the su-

pervisory control system decides when the turbine should start up and whether it should

operate in region2 (optimizing power capture under moderate wind speed) or in region3

(maintaining constant power under high wind speed). The middle (mechanical) level con-

trol systems are responsible for generator torque control, pitch control and yaw control

(the latter is not shown in Figure 1.1). The lowest (electrical) control level is in charge of

rotor current control and DC-link voltage control, and this level is the fastest, see Johnson,

Pao, Balas and Fingersh [31]. It is reasonable to assume that the generator with a good

rotor current control system responds rapidly and accurately when tracking the reference

torque produced by the torque controller. Then, the stability analysis of the mechanical
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level does not depend on the details of the rotor current control. In this thesis, we focus

on the stability analysis of the drive-train with the inputs being the deviation of the active

torque from an arbitrary positive nominal value and the tracking error of the generator

torque (see the main results in Chapter 5).

The stability analysis of the drive-train with the quadratic torque control law has been

the main topic of the paper [31]. Our research (see our recent paper [57]) could be re-

garded as a continuation of their work. We consider the more accurate two-mass model

for the drive-train, and we consider global asymptotic stability (GAS) as well as the rel-

atively recent concepts known as input-to-state stability (ISS) and integral input-to-state

stability (iISS). For the interpretation and importance of ISS and iISS, please refer to

[3, 51].

By extracting and generalizing the abstract idea in the direct proof of [57], we investi-

gate the iISS property for a broad class of passive nonlinear systems (see our recent paper

[56]). Stability analysis often involves a big effort to search for a Lyapunov function. Our

main result is meant to eliminate the need for finding a Lyapunov function satisfying the

condition (4.1.3) (see Chapter 4), for passive systems. By combining our result with a

recent result in Jayawardhana, Teel and Ryan [29], we can actually prove that under mild

technical assumptions, a passive and GAS system satisfies the iISS type estimate with a

very simple (L1 norm type) integral term. We will illustrate the result by proving the iISS

property (with a simple integral term) for the drive-train of a wind turbine, in Chapter 5.

In order for a variable speed wind turbine to maximize wind energy capture, the turbine

aerodynamics need to be well known (see Subsection 2.3). Many control methods have

been proposed to maximize the energy production in the presence of turbine uncertainties

(see [6, 31, 35, 48]). We shall describe in Section 5.4 a simple adaptive algorithm that

updates the gain of the quadratic torque control law. No prior knowledge of the turbine

aerodynamics is required. This adaptive algorithm may be regarded as an alternative to

the one proposed in [31]. The simulation results in Section 5.5 show that this adaptive

algorithm together with the quadratic control law lead to a high efficiency in capturing the

available wind power.
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1.2 Contributions of the thesis

We mention below the contributions of the thesis which have been submitted as articles

in journals or presented in conferences.

• We propose a self-scheduled control method for a DFIGWT, using the LMI

based approach to LPV systems. We perform a controller reduction for the LPV

controller, which is not doable by conventional model-reduction techniques, see

[58, 60].

• We design a novel frequency support controller, which is embedded in the electrical

torque controller. The electrical torque controller is capable of both wind energy

capture maximization and primary grid frequency support, see [60].

• We investigate the iISS property for passive nonlinear systems. We show that under

mild assumptions, a passive nonlinear system which is globally asymptotically sta-

ble is also iISS. Moreover, the integral term from the definition of the iISS property

has a very simple form (like anL1 norm). These theoretical results will be useful

for our analysis of wind turbine systems, see [56, 59, 57, 61].

1.3 Structure of the thesis

Throughout the thesis, we assume that the readers have some basic understanding on

vector control, robust control and stability for nonlinear systems.

Chapter 2 describes the wind turbine systems, which include wind speed character-

istics, wind turbine aerodynamics and control strategies, generator modelling, drive-train

dynamics and converter modelling. A brief introduction to the vector control of converters

using PI control technique is also given.

In Chapter 3, we propose a two-loop control strategy for a DFIGWT using LPV tech-

niques. We perform a controller reduction procedure for the inner loop LPV controller.

We also propose a novel frequency support controller which can be embedded in the

outer-loop electrical torque controller.
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In Chapter 4, we investigate the iISS property for passive nonlinear systems. We show

that under mild assumptions, a passive nonlinear system which is GAS is also iISS. More-

over, the integral term from the definition of the iISS property has a very simple form (like

anL1 norm).

In Chapter 5, we investigate the stability of the drive-train of a variable-speed wind

turbine with quadratic torque control. The wind turbine is operating under low to medium

wind speed. We show that the turbine system is ISS for the one-mass drive-train model

and iISS for the two-mass drive-train model. Using our abstract results from Chapter

4, we identify the iISS gain of this system. In the end, we propose an adaptive search

algorithm for the optimal gain of the quadratic torque controller.
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Chapter 2

Wind turbine systems

2.1 Wind properties

The wind is movement of air masses with different speeds in all the regions of the at-

mosphere. These movements are very difficult to characterize due to the highly variable

behavior both geographically and in time. This means that this variability persists over a

very wide range of scales in time. On a long-term scale, days and hours, the wind will

vary from site to site mostly dependent on the general climate and the physical geography

of the region. Locally, the short-time behavior of the wind is affected by the surface con-

ditions at the ground, such as trees, buildings, areas of water, etc. Then fluctuations in the

flow, i.e. turbulence, are introduced as well. The effect of the ground roughness will then

decrease as a function of height over the ground (see [55]).

2.1.1 Turbulence

Suppose the mean wind speed,Ū , is typically determined as a 10 minute average value,

then instantaneous wind speedU can be described as̄U plus a fluctuating wind component

δ (see [55] and [45]).

U = Ū + δ. (2.1.1)

The turbulence intensity,TI, is computed by

TI =
σU

U
,

whereσU denotes the standard deviation of the wind speed. This is also calculated over

a time period of 10 minutes, with sampling frequency at least 1 Hz (see [45]). The ef-
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Table 2.1: Parameters for calculating vertical profile of wind speed

Type of terrain Roughness classhr(m) a

Water areas 0 0.001 0.01

Open country, few surface features 1 0.12 0.12

Farmland with buildings and hedges 2 0.05 0.16

Farmland with many trees, forest

and villages 3 0.3 0.28

fect of the friction at the ground, the roughness, will decrease as the elevation increases.

The wind speed increases with increasing height as well which can be described by the

following power exponent function

U(h) = U ref

(
h

hr

)a

,

whereU(h) is the wind speed at heighth above ground level,U ref is the wind speed at

the reference heighthr anda is the so-called Hellman exponent (see [24]) which depends

on the roughness of the terrain. Some parameters fora andhr for different type of terrain

are shown in Table 2.1 (see [55]).

2.1.2 Wind speed model

As described in the previous section the characteristics of the wind will be affected by the

factors such as turbulence and height above ground. In the model of the wind that is used

for the simulations, following [45] and [43], the wind speed can be computed based on

the frequency spectrum proposed by Kaimal given by

S(f) =

(
0.4

log(h/hr)

)2
105hŪ

(1 + 33fh/Ū)5/3
,

wheref is the frequency. This is then solved by the relation taken from the probability

theory

V ar[U(t)] ≈
∫ fcut

0

S(f)df, (2.1.2)

wherefcut means the (upper) frequency at which to cut the spectrum. For values offcut

in the range from 10 to 100 Hz, Equation (2.1.2) will, according to [43], give a very good
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approximation. This is the description of the wind characteristics in one dimension which

is used in this thesis. A simulated wind speed with low turbulence intensity can be seen

in Figure 2.1.
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Figure 2.1: Simulated wind speed sampled at 30Hz and mean wind speed 8 m/s

2.2 Aerodynamics of horizontal-axis wind turbines

In this section, the background concepts on turbine aerodynamics are taken from Burton,

Sharpe, Jenkins and Bossanyi [10] and Heier [24].

2.2.1 The actuator disc concept

The aerodynamic behavior of the wind turbine can be analyzed without any specific tur-

bine design just by considering the energy extraction process. Actuator disc is introduced

to carry out this task (see [10]).

Assumptions:
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• The affected mass of air remains separates from the air which does not pass through

the actuator disc;

• A boundary surface can be drawn containing the affected air mass and this boundary

can be extended upstream as well as downstream forming a long stream-tube of

circular cross section.

Because the air within the stream-tube slows down, but does not become compressed,

the cross-sectional area of the stream-tube must expand to accommodate the slower mov-

ing air (see Figure 2.2).

As the air passes through the rotor disc, by design, there is a drop in static pressure such

that, on leaving, the air is below the atmospheric level. The air then proceeds downstream

with reduced speed and static pressure–this region of flow is called thewake.

The mass of air which passes through a given cross section of the stream-tube in the

unit length of time isρAU , whereρ denotes the air density,A the cross-sectional area and

U the flow velocity. No air flows across the boundary and so the mass flow rate of the

air flowing along the steam-tube will be the same for all stream-wise positions along the

steam-tube,

ρA∞U∞ = ρAdUd = ρAwUw,

where the symbol∞ refers to conditions far upstream,d refers to conditions at the disc

andw refers to conditions in the far wake.

The actuator disc induced a velocity variation which must be superimposed on the

free-stream velocity. The stream-wise component of this induced flow at the disc is given

by −aU∞, wherea is called theaxial flow induction factor, or theinflow factor. At the

disc, therefore, the net stream-wise velocity is

Ud = U∞(1− a). (2.2.1)

Momentum theory

The overall change in velocity of the air passing through the disc is,U∞ − Uw. A rate of

change of momentum,RM , equals to the overall change of velocity times the mass flow
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Figure 2.2: An energy extracting actuator disc and stream-tube.

rate:

RM = (U∞ − Uw)ρAdUd.

The force causing this change of momentum comes entirely from the pressure difference

across the actuator disc,

F = (p+
d − p−d )Ad = RM . (2.2.2)

whereF denotes the force on the air. It can be shown that (see [10])

Uw = (1− 2a)U∞. (2.2.3)

Substituting (2.2.1) and (2.2.3) into (2.2.2), we obtain

F = 2ρAdU
2
∞a(1− a).

Power coefficient

The power extracted from the air is given by

Pa = FUd = 2ρAdU
3
∞a(1− a)2. (2.2.4)

Thepower coefficientis then defined as

Cp =
Pa

0.5ρAdU3∞
= 4a(1− a)2. (2.2.5)

The maximum value ofCp occurs when

dCp

da
= 4(1− a)(1− 3a) = 0,
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which gives a value ofa = 1
3

and the maximum achievable value of the power coefficient

CpBetz = 0.593. This maximum power coefficient is known as the Betz limit after Albert

Betz, a German physicist and a pioneer of wind turbine technology. The Betz’ law states

that independent of the design of a wind turbine only59.3% of the kinetic energy in the

wind can be converted to mechanical energy. To date, no wind turbine has been designed

which is capable of exceeding this limit. The limit is not caused by any deficiency in

design, but because of the tube where the air is at the full free-stream velocity is smaller

than the area of disc.

Using the concept ofCp, we rewrite (2.2.4):

Pa = 0.5ρπR2
wCpU

3
∞, (2.2.6)

whereRw is the blade length. The power coefficientCp is a function of thetip-speed ratio

(TSR) λ andpitch anglesβ as shown in Figure 2.3(b). If we denote byωT the turbine

speed, then

λ =
RwωT

U∞
. (2.2.7)
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Figure 2.3: (a) Output power of a typical wind turbine operating in different wind speed
regions, denoted by 1, 2 and 3 (taken from GE, see[17]). (b) TypicalCp curves for a wind
turbine, as a function ofλ andβ.

The pitch angle is the angle of the rotation of the blades around their main axis, with

respect to a reference position (see Figure 2.5 (a)). In region2, the pitch angle is kept



2.2 Aerodynamics of horizontal-axis wind turbines 28

constant, at an optimal value (1◦ in the example shown in Figure 2.3(b)).Pa can be

maximized if the wind turbine is operating at maximumCp.

To evaluate theCp performance characteristic, there are two methods available

• data fields containing the family of curves derived from measurements or from cal-

culation;

• analytical functions.

If the turbine characteristics or the data for plotting them are available then the data

fields can be created by reading off the various values or entering them directly. These

then form the basis for performance computation in system simulations. The validity

of the results therefore will then be dictated by that of the data. When enough data are

available, linear interpolation can be used to arrive at intermediate values.

To arrive at a complete data set for the operation of a turbine, it may however be

necessary to extend the characteristics plot. By extending the characteristic curves for

small, or even negative, or large angles and by supplementing incomplete characteristics,

undefined operating states can be avoided. In this case, approximation of theCp curves

by non-linear analytical functions is quite useful to forecast those extreme situations.

Following [24], a family ofCp curves can be generated by

Cp = c1(c2 − c3β − c4β
1.5 − c5)e

−c6 , (2.2.8)

wherec1 = 0.5, c2 = 116
λi

, c3 = 0.4, c4 = 0, c5 = 5, c6 = 21
λi

and

1

λi

=
1

λ + 0.08β
− 0.035

β3 + 1
.

In practice, theCp curves must be modified to obtain a close simulation of the machine

in question. To manage this, however, demands a non-negligible investment of time and

effort, even for those with long experience of performing such approximations

2.2.2 Rotor blade theory

Assume optimal operation which implies maximum power efficiency, anda is constant

along each blade, we could takea = 1
3
, which will produceCmax

p = CpBetz. For more
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realisticCp curves shown in Figure 2.3(b), if the pitch angleβ is fixed to be its optimal

valueβopt = 1◦, then the correspondingCmax
p = 0.4587 will produce a more realistic

axial flow induction factora = 0.164 (see (2.2.5)). Again we assume thata is constant

along each blade, then for the segment with distance from rootr (see Figure 2.4), we have

a′ =
a(1− a)

λ2µ2
,

tan φ =
1− a

λµ(1 + a′)
,

α = φ− β, (2.2.9)

whereµ = r
Rw

is the non-dimensional radial position,α denotes the angle of attack

(AoA), anda′ is the tangential flow induction factor. Given Figure (2.6), once an AoA

is available from (2.2.9), the corresponding lift coefficientCl and drag coefficientCd can

be found using interpolation. Then we are able to calculate the blade forces (see Figure

2.5(b)).

Vwr =
√

U2∞(1− a)2 + ω2
T r2(1 + a′)2,

dFL =
1

2
ρV 2

wrcCldr,

dFD =
1

2
ρV 2

wrcCddr,

dFax = dFL cos(φ) + dFD sin(φ),

dFT = dFL sin(φ)− dFD cos(φ),

whereVwr is the relative wind speed at the blade,c is the chord,FL is the lift force normal

to the direction ofVwr, FD is the drag force parallel to the direction ofVwr, Fax is the

axial force, andFT is the torque generating force.

After some rearrangements and substitutions, we obtain

dFax =
1

2
ρV 2

wrNc(Cl cos φ + Cd sin φ)dr,

whereN denotes the number of blades.
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Figure 2.4: A blade element sweeps out an annular ring
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Figure 2.5: Blade element velocities and forces
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Figure 2.6: Lift coefficient and drag coefficient

2.3 Torque control in region 2

We give a short derivation of the quadratic torque control law that is usually employed

when the wind is not too strong (region2) and the objective is to maximize the output

power of the turbine. Figure 2.3(a) shows the desired output power as a function of the

wind speed.

As explained in [10] and [24], the available wind power is given by

Pwind = 0.5ρπR2
wU3

∞, (2.3.1)

and the power captured by the wind turbine isPa, see (2.2.6).

The aerodynamic torqueTa at the turbine shaft is (neglecting losses in the drive-train)

Ta = 0.5ρπR3
wCtU

2
∞, (2.3.2)

whereCt = Cp(λ,β)

λ
is the torque coefficient. Figure 2.7 shows the Simulink model of the

wind turbine.
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Figure 2.7: The Simulink model of the wind turbine. The ‘CalCp’ block is shown in
(2.2.8). The ‘CalTa’ block is shown in (2.3.2).

The standard region2 torque control scheme for a variable-speed wind turbine is to set

T ref
e =

Pmax
a

ωm

=
0.5ρπR2

wCmax
p U3

∞
ωm

,

=
0.5ρπR2

wCmax
p (RwωT

λopt
)3

ωm

=
0.5ρπR5

wCmax
p

λ3
optn

3
g

ω2
m,

whereT ref
e is the reference electrical torque,ωm is the generator speed andng is the

gearbox ratio (see [31, 42]). In this derivation, the meaning ofPmax
a , Cmax

p andλopt is

easy to infer. Thus, to maximizePa, we set

T ref
e = Koptω2

m, Kopt =
0.5ρπR5

wCmax
p

λ3
optn

3
g

. (2.3.3)

Note that in steady stateωm = ngωT . Actually, the control law (2.3.3) is only applied

whenωm > 0. In the rare instances whenωm < 0 (i.e. the turbine spins backwards), it

is considered better not to apply any electrical torque, i.e.T ref
e = 0, and wait until the

speed reverses toωm > 0 (this may need the intervention of the yaw controller), see [31].

The quadratic control law (2.3.3) requires the knowledge ofKopt, which may be sup-

plied by the turbine manufacturer. In practice, however,Kopt may vary from turbine to

turbine (even if they are meant to be equal) and it may also change during a turbine’s life

span. In our stability analysis (see Chapter 5) we assume thatT ref
e = Kω2

m, whereK > 0

(not necessarily the optimal gainKopt) is constant. In Section 5.4 we describe a simple

adaptive search algorithm that updatesK, to an estimate ofKopt (when the wind speed is

in region2).
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Figure 2.9(a) shows the overall control system in region2. In this diagram, the DFIG,

the grid, the transformer, the two converters and the controllers directly attached to these

converters have been packaged into one block.

2.4 Control strategies in region 3

A wind turbine is subject to many different modes of vibration. Figure 2.8 explains fore-

aft vibrations and side-to-side vibrations of the tower. In addition, each blade can vibrate

in two main directions and the low-speed drive-train (up to and including the gearbox) is

subject to torsional vibrations (see [10, 9, 63]). The frequencies of vibration depend on

the turbine, however typical frequencies are known, such as for example the first vibration

frequency of 0.32Hz, for the tower of a 5MW turbine, with an average tower diameter of

6m and a 250 ton nacelle at 125m above the sea. The first vibration frequency of the

drive-train of the same turbine is around 4.8Hz (see [33]). We cannot suppress all the vi-

brations, because we have only two control variables at our disposal: the electrical torque

(through which we can indirectly control the turbine speed) and the rotor collective pitch

(through which we can regulate aerodynamic torque, which regulates speed). We will

investigate which vibrations it would be best to suppress. This depends on risk consider-

ations (how damaging are the various vibrations to the structure) as well as on feasibility

considerations.
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Figure 2.8: Assumed wind turbine model with10 degree-of-freedom.
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2.4.1 Control of tower fore-aft vibration

The 1st tower fore-aft vibrational mode is poorly damped, exhibiting a strong resonant

response even by a small amount of excitation which is naturally present in the wind (see

[10]). Given the1st fore-aft mode of the wind turbine tower, we have (see [9])

Mẍ + D1ẋ + K1x = Fax, (2.4.1)

whereM , D1, andK1 denote system mass, damping, and stiffness, respectively. Then

the1st tower fore-aft mode frequency isωfa1 =
√

K1

M
rad/s. The axial-forceFax can be

approximated by

Fax = F op
ax + δFax, (2.4.2)

δFax ≈ ∂Fax

∂U∞
δU∞ +

∂Fax

∂ωT

δωT +
∂Fax

∂β
δβ. (2.4.3)

We take

∂Fax

∂β
δβ = −Dadd1ẋ, (2.4.4)

δβ =
−Dadd1

∂Fax/∂β
ẋ, (2.4.5)

whereF op
ax is the axial force at an operating point,Dadd1 is the additional damping, and the

prefixδ means a small deviation of a variable from its operating point. The tower velocity

ẋ can be calculated by integration of the tower acceleration measured by an accelerometer

mounted in the nacelle.

If we take the state variables asx and ẋ, disturbances asF op
ax , δU andδωT , control

input asδβ,

ζ =

[
x
ẋ

]
, w =




F op
ax

δU
δωT


 , u = δβ.

then the linearized state-space model can be written as

ζ̇ = Aζ + [B1 B2 B3]w + B4u, (2.4.6)

where

A =

[
0 1

−K1

M
−D1

M

]
, (2.4.7)

B = [B1 B2 B3 B4] (2.4.8)

=

[
0 0 0 0
1
M

1
M

∂Fax

∂U∞
1
M

∂Fax

∂ωT

1
M

∂Fax

∂β

]
. (2.4.9)
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The dampingD1 is composed of structural damping and aerodynamic damping ele-

ments.

D1 = D1struct + D1aero. (2.4.10)

Given the structural damping ratioξs1, the structural damping element can be computed

as:

D1struct = 2Mωfa1ξs1. (2.4.11)

The aerodynamic damping is almost entirely provided by the turbine rotor, the damping

ratio for the1st tower fore-aft mode can be computed approximately as

ξa1 =
1
2
ρNωT

∫ Rw

0
dCl

dα
rc(r)dr

2Mωfa1

. (2.4.12)

So the aerodynamic damping element is

D1aero = 2Mωfa1ξa1. (2.4.13)

For a detailed study of turbine structural dynamics, please refer to S. Suryanarayanan

and A. Dixit [53].

2.4.2 Control of drive-train torsional vibration

The primary goal in region3 (above the rated wind speed, see Figure 2.3(a)) is to maintain

the generated power at the rated value. This is done by maintaining a constant electrical

torque (using the rotor current controller and the rotor-side converter) and regulating the

turbine speed by pitch control. Another important control objective is to increase the

life span of the gearbox (and possibly other components) by suppressing the mechanical

oscillations in the turbine shaft (see [9, 10, 63]). The overall control system in region3 is

shown in Figure 2.9(b).

In region3, we try to keep the electrical torque of the generator constant, at the value

T rated
e . However, strong variations of the wind speedVw may cause (lightly damped)

oscillations in the drive-train. These oscillations can be very harmful to the gearbox,

which is one of the most expensive yet fragile components in a wind turbine. Thus, it is

desirable to reduce these oscillations. One method, which has been successfully adopted

on many turbines, is to modify the generator torque. A small rippleδTe at the drive-train
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Figure 2.9: Block diagrams for the control of the mechanical part of a wind turbine in
both regions 2 and 3. Note that the pitch controller and the drive-train vibration controller
Kvs are only functioning in region 3.

resonant frequency is added toT rated
e , with its phase adjusted, to counteract the effect of

the resonance and effectively increase the damping (see Figure 2.9(b)). A high-pass filter

of the form

Kvs(s) =
s

s + ωh

, (2.4.14)

acting onωm can be used to generate this ripple, see [9, 10]. The frequencyωh should be

less than the resonant frequency which is to be damped.

Based on internal model theory, the damping performance can be improved by adding

a narrow-band filter to the high-pass filter. In this case, the electrical torque controller has

the transfer function

Kvs(s) = kh
s

s + ωh

+ kp
s

s2 + ω2
p

, (2.4.15)

whereωp should also be close to the first drive-train torsion mode, whilekh andkp are

parameters to be chosen. This results in an infinite loop-gain at the frequencyωp, so that

the sensitivity of the feedback system is zero at this frequency.
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2.5 Reference frame conversion

2.5.1 Transformation from a three phase to a stationary reference
frame

A three phase signal with three quantities (sa, sb andsc), such as voltageu, currenti and

flux ψ can be transformed to a two phase vector in the complex plane by:

~sαβ = sα + jsβ = c(sae
j0 + sbe

j 2π
3 + sce

j 4π
3 ).

or expressed by matrix 


sα

sβ

s0


 = TS




sa

sb

sc


 ,

where

TS = c




1 −1
2

−1
2

0
√

3
2

−
√

3
2√

2
2

√
2

2

√
2

2


 ,

and c is a constant. If we takec =
√

2
3
, thenTS is unitary, which has theenergy-

preservingproperty:‖x‖ = ‖TSx‖, ∀x ∈ Cn. n = 3 for a three phase signal. In other

words, the power of the system inabc-frame is the same as in theαβ-frame. Theαβ-

system is then calledpower-invariant. If we takec = 2
3
, then the modulus of the signal is

maintained after transformation. Thisαβ-system is then callednon power-invariant. See

Figure 2.10 for a visualization of theabc to αβ transformation.

2.5.2 Transformation from a stationary to a rotating reference frame

Theαβ to dq transformation can be written as:

~sdq = sd + jsq = ~sαβe−jθ

or expressed by matrix 


sd

sq

s0


 = TR




sα

sβ

s0


 ,

where

TR =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .
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Figure 2.10: Transformation fromabc to αβ-reference frame

TR is unitary. Therefore energy-preserving property holds fordq transformation. See

Figure 2.11 for a visualization of theαβ to dq transformation.

Power-invariant transformation

Assume a sinusoidal symmetric three-phase supply voltage system with RMS valueU ,

frequencyω1 and phase shift2π
3

given by

ua =
√

2U cos(ω1t),

ub =
√

2U cos(ω1t− 2π

3
),

uc =
√

2U cos(ω1t− 4π

3
).

The voltage space phasor in theαβ-reference frame is the following:

~uαβ = uα + juβ =
√

3Uejω1t,

~udq = ~uαβe−jθ =
√

3Uej(θ1−θ).

whereω1 = dθ1/dt.
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Figure 2.11: Transformation fromαβ to dq-reference frame

The instantaneous active power,P , is given by

P = vaia + vbib + vcic = Re(vαβi∗αβ),

= vαiα + vβiβ,

= vdid + vqiq.

The instantaneous reactive power,Q, is given by

Q = Im(vαβi∗αβ) = −vαiβ + vβiα,

= −vdiq + vqid.

Non power-invariant transformation

The voltage space phasor in theαβ-reference frame is the following:

~uαβ = uα + juβ =
√

2Uejω1t, (2.5.1)

~udq = ~uαβe−jθ =
√

2Uej(θ1−θ). (2.5.2)
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The instantaneous active power,P , is given by

P = vaia + vbib + vcic =
3

2
Re(vαβi∗αβ),

=
3

2
(vαiα + vβiβ),

=
3

2
(vdid + vqiq).

The instantaneous reactive power,Q, is given by

Q =
3

2
Im(vαβi∗αβ) =

3

2
(−vαiβ + vβiα),

=
3

2
(−vdiq + vqid).

In this thesis, we only consider the power-invariant transformation.

2.6 Wind-driven doubly-fed induction generator

2.6.1 Some typical features and advantages of the DFIG

Some typical features and merits of the wind-driven DFIG can be concluded as follows:

• Converters only need to handle approximately30% of the total generator power, so

we can use cheap converters to control a machine of high power capacity;

• Wind farms equipped with DFIG wind turbines are able to compensate or produce

reactive power through power electronic converters, so there is no need to install

capacitor banks as in the case of squirrel cage induction generators.

• Speed variation of30% around synchronous speed can be obtained. This large

speed variation range allows the DFIG to extract maximum energy from the wind

for low wind speeds by optimizing the turbine speed and to minimize mechanical

stresses on the turbine during wind gusts;

• It is possible to save on the safety margin of gear;

• In industry, DFIG wind turbine has been well developed by manufacturers, such as

Vestas (V80–2MW) and GE wind (3.6s–3.6MW).
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2.6.2 Power flow

Now we discuss more about the active and reactive powers of the DFIG.
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Figure 2.12: Power flow of a lossless DFIG wind turbine system

• Assume the power converter is lossless, then the total mechanical powerPa of the

lossless DFIG system is simply the sum of stator powerPs and rotor powerPr:

Pa = Ps + Pr. (2.6.1)

The active power from the rotor is proportional to theslip, S, of the generator:

S =
ωs − ωr

ωs

, (2.6.2)

Pr = −SPs, (2.6.3)

whereωs is the synchronous speed,ωr is the generator rotor speed. Substituting

equation (2.6.3) into equation (2.6.1)

Pa = (1− S)Ps. (2.6.4)

If the generator is running super-synchronously (calledsuper-synchronous mode),

it will feed electrical power to the grid through both the rotor and the stator. If the

generator is running sub-synchronously (calledsub-synchronous mode), the electri-

cal power is only delivered into the rotor from the grid (see [8]).

• Assume the converter is able to control the power flow at the converter-supply side

at any time so its reactive power is zero. This assumption is reasonable because the
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converter rating is a maximum30% of the generator rating and it is used primarily

for supplying the active power of the rotor to the grid. Therefore, the reactive

power exchanged between the DFIG and the grid is equal to the reactive power in

the stator:

Qtotal = Qs

• The reactive power from the stator will be zero in case of a strong power system

or when there is no requirement for the DFIG control ability of the voltage. In this

case, the DFIG supplies only active power and is magnetized through the rotor, with

the power factor of the DFIG close to unity. Otherwise, the reactive power set-point

of the DFIG will be defined for the voltage control purpose (see [2]).

2.6.3 The 4th-order DFIG model

To investigate the dynamic modeling of the DFIG in power systems, we consider the

following modeling issues, see [2]:

• Modeling of the DFIG itself using its physical state equations;

• Representation of its control systems for the decoupled control of the active and

reactive powers.

For power system stability studies it is desirable to apply reduced models of the ma-

chine and the converter in order to relax the computation burden. The comparison be-

tween reduced models and more detailed models has been discussed in the literature (see

[39] and [47]). The manufacturer Vestas has agreed that the 4th-order model of the DFIG,

at least, is necessary for power stability investigation (see [2] and [39]). Therefore, with

respect to the generator, the fifth order model is considered in this thesis. With respect to

the converter, a classical approach is adopted, i.e. the converter is modeled as a simple

gain in the controller designing phase. But a more elaborated converter model can be

introduced in simulation to validate the control law [37].
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State equations of the4th order DFIG model can be written as the following [54]:

Ψds = Lsids + Lmidr,

Ψqs = Lsiqs + Lmiqr,

Ψdr = Lridr + Lmids,

Ψqr = Lriqr + Lmiqs,

vds = Rsids − ωsΨqs +
dΨds

dt
,

vqs = Rsiqs + ωsΨds +
dΨqs

dt
,

vdr = Rridr +
dΨdr

dt
− ωslΨqr,

vqr = Rriqr +
dΨqr

dt
+ ωslΨdr.

Te = np
Lm

Ls

(Ψqsidr −Ψdsiqr),

ωsl = ωs − ωr,

S =
ωsl

ωs

.

The Simulink model of the4th order DFIG is shown in Appendix B.

2.6.4 Modeling of DFIG in the stator-flux reference frame

To achieve a decoupled control between the stator active and reactive powers, we choose

a dq representation of the DFIG, with thed-axis oriented along the stator-flux vector po-

sition. Since the stator is connected to the grid, we could make the following assumptions

[54]:

• The stator resistanceRs can beneglected (usually justified in machines with a

rating over10kW );

• The stator magnetizing current space phasor:~ims = |~ims|∠ρs. In the steady state,

|~ims| = constant andρs = constant;

• Frequency of the power supply on the stator is constant, i.e.ωs = constant.
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Under those assumptions, it implies that:

Ψds = Ψs = Lm|~ims|,
Ψqs = Lsiqs + Lmiqr = 0,

Ψdr =
L2

m

Ls

|~ims|+ σLridr,

Ψqr = σLriqr,

|~ims| =
|~vs|

ωsLm

,

whereσ = 1− L2
m

LsLr
, and|~vs| =

√
3Vs. Vs is the RMS of the stator-voltage space phasor in

the stationary reference frame,~vs =
√

3Vse
jωst.

After some substitutions, the stator and rotor voltages can be written as:

vds = Rsids − ωsΨqs +
dΨds

dt
≈ 0, (2.6.5)

vqs = Rsiqs + ωsΨds +
dΨqs

dt
≈ ωsΨds = |~vs|, (2.6.6)

vdr = Rridr + σLr
didr

dt
− ωslσLriqr,

vqr = Rriqr + σLr
diqr

dt
+ ωsl(

L2
m

Ls

|~ims|+ σLridr).

Te = −np
L2

m

Ls

|~ims|iqr. (2.6.7)

Voltagesvdr and vqr obtained from the controller will be used to control the rotor

voltages through a rotor side PWM converter. We rewrite the stator active and reactive

powers equations as:

Ps = vdsids + vqsiqs = −|~vs|Lm

Ls

iqr, (2.6.8)

Qs = −vdsiqs + vqsids = −|~vs|Lm

Ls

idr +
|~vs|2
ωsLs

. (2.6.9)

From equations (2.6.7), (2.6.8) and (2.6.9), it can be seen that the electromagnetic

torqueTe and then the active powerPs only depends on theq-axis rotor currentiqr. The

reactive powerQs only depends on the rotor excitation currentidr. Therefore, the decou-

pled control of active and reactive powers has been achieved in the stator-flux reference

frame.
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From (2.6.5) and (2.6.6), it can be seen that if the rotor resistanceRs is neglected, the

stator-flux orientation is equivalent to the grid-voltage orientation in steady state. We will

introduce the grid-voltage orientation in section 2.7.1.

2.7 Modeling and control of the grid-side converter
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Figure 2.13: Grid-side converter

Figure 2.13 is a schematic diagram of the grid-side converter. The voltage equation

across the inductors is


va

vb

vc


 = R




ia
ib
ic


 + L

d

dt




ia
ib
ic


 +




vc
a

vc
b

vc
c


 . (2.7.1)

Apply theabc-dq transformation to (2.7.1) , we obtain the following voltage equations

in thedq frame rotating at grid voltage frequencyω1:

vd = Rid + L
did
dt
− ω1Liq + vc

d, (2.7.2)

vq = Riq + L
diq
dt

+ ω1Lid + vc
q. (2.7.3)

We take the state variablesx, external input variablesw and controller outputu to be

the following:

x =

[
id
iq

]
, w =

[
vd

vq

]
, u =

[
vc

d

vc
q

]
.
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The measured outputs arey =
[

id iq
]T

.

The state-space equations are

ẋ = Agx + Bg1w + Bg2u,

y = Cgx,

where

Ag =

[ −R
L

ω1

−ω1 −R
L

]
,

[
Bg1 Bg2

]
=

[
1
L

0 − 1
L

0
0 1

L
0 − 1

L

]
,

Cg =

[
1 0
0 1

]
.

The active and reactive powers are

Pg = vdid + vqiq, (2.7.4)

Qg = −vdiq + vqid. (2.7.5)

DC-link model

We assume the back-to-back converter is lossless and neglect the losses in the inductor

resistance, then the DC-link is modeled as

PDC = VDCiDC , (2.7.6)

Pg = VDCigDC , (2.7.7)

Pr = VDCirDC , (2.7.8)

PDC = Pg − Pr, (2.7.9)

iDC = igDC − irDC , (2.7.10)

iDC = CDC
dVDC

dt
. (2.7.11)

Apply Laplace transforms to (2.7.11)

V̂DC(s) =
1

CDCs
îDC(s).



2.7 Modeling and control of the grid-side converter 47

2.7.1 Vector control of the grid-side converter

The control objective of the grid-side converter is to maintain constant DC-link voltage

regardless of the changing rotor power. Vector control has been applied to enable decou-

pled control of the active and reactive powers flowing between the grid and the grid-side

converter (see [42]). The rotating reference frame is aligned with the grid voltage, so from

equation (2.5.2), we haveθ = θ1:

~vdq = ~vαβe−jθ1 =
√

3V ej(θ1−θ1) =
√

3V.

And we obtain

vd =
√

3V = |~v|,
vq = 0.

The angle position of the grid voltage is computed as

θ1 =

∫
ω1dt = tan−1 vβ

vα

,

wherevα andvβ are the stationary components of the grid voltage.

Then we rewrite the active and reactive power equations (2.7.4) and (2.7.5):

Pg = |~v|id,
Qg = −|~v|iq.

Now it can be seen clearly that active and reactive powers are proportional tod-axis

current componentid and q-axis current componentiq respectively. Therefore we can

achieve the decoupled control of the active and reactive powers throughid andiq.

We assume that harmonics due to the switching can be neglected, and the grid-side

converter and the inductor resistance are lossless, then based on the DC-link model

(2.7.6)-(2.7.11), we have

Pg = VDCigDC = |~v|id,
|~v| =

m1

2
VDC ,

igDC =
m1

2
id,

CDC
dVDC

dt
=

m1

2
id − irDC , (2.7.12)
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wherem1 is the modulation depth of the grid-side PWM converter. We now consider

irDC as distance, and apply Laplace transforms to (2.7.12), then we can obtain the transfer

function fromid to VDC :

V̂DC(s) =
m1

2CDCs
îd(s).

The DC-link voltage controller, of PI type, has been used to guarantee constant DC-

link voltage and generate referenced-axis current componentiref
d to the inner control

loop. We setiref
q = 0, because we want the grid-side reactive power to be zero. We define

ṽd = Rid + L
did
dt

,

ṽq = Riq + L
diq
dt

.

Then from the voltage equations (2.7.2) and (2.7.3), the reference converter voltages are

vcref
d = −ṽd + (ω1Liq + vd),

vcref
d = −ṽq − ω1Lid,

whereṽd andṽq are the outputs of the inner PI current controllers.

The whole vector control scheme for the grid-side converter is shown in Figure 2.14.
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Figure 2.14: Vector control of the grid-side converter.
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2.8 Modelling the drive-train dynamics

When considering mechanical models of the wind turbine, drive-train dynamics have the

first priority compared with the other parts of the wind turbine. The reason, generally

speaking, is that engineers would like to emphasize those parts of the dynamic structure

of the wind turbine that contribute to grid integration (see [23] and [20]). Another point

we need to bear in mind is that the parameters of the wind turbine system is highly con-

centrated, which means that the elements of the model do not necessarily have direct

correspondence with the physical elements in the system (see [7]).

The rotor blades in a wind turbine are very large with lots of weight and create a

significant moment of inertia into the system, especially in comparison to the generator.

This inertia behaves like an inductor in an electrical circuit, storing energy when the

turbine accelerates and restoring it during deceleration. It also accordingly prevents fast

variations of the rotor speed on the turbine shaft, meaning that it acts like a low-pass filter

(see [45] and [41]). The turbine rotor’s moment of inertia is much larger than that of the

generator.

2.8.1 The one-mass drive-train model

In the literature, a typical one-mass drive-train model (see Figure 2.15) consists of the

inertia of both the turbine and the generator. The large turbine inertiaJT corresponds to

the blades and the hub, and the small inertiaJG represents the induction generator. The

equations are

ω̇m =
1

J
(Tt − Te − bωm), (2.8.1)

J =
1

n2
g

JT + JG,

Tt =
1

ng

Ta,

ωm = ngωT ,

whereJ > 0 is the total inertia,b ≥ 0 is the damping coefficient,Te is the electrical torque

from the generator,Tt is the active torque from the turbine (referred to the generator side)

andng is the gearbox ratio. We remark that in steady state (whenω̇m = 0) we have the
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power balanceTaωT = Ttωm = Teωm + bω2
m, whereTeωm is the generator power and

bω2
m is the power loss due to friction.
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Figure 2.15: (a): A one mass model for the drive-train; (b): Another representation of the
one mass model with parameters referred to the high-speed shaft.

2.8.2 The two-mass drive-train model

A two-mass drive-train model (see Figure 2.16) is often used when analysing the interac-

tion of the wind turbine with the grid, because, due to its torsional vibrations, the drive-

train has a significant influence on the power fluctuations (see [20, 36]). Torque control

can help to dampen these mechanical oscillations both in region2 (where the quadratic

control law (2.3.3) has a dampening effect) and in region3 (see Section 2.4.2).

Denoting the turbine rotor angle byθT and the generator rotor angle byθm, the equa-
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Figure 2.16: The two-mass drive-train model with gearbox.

tions are

θ̇T = ωT ,

θ̇m = ωm,

θk = θT − θm

ng

,

ω̇T =
1

JT

(Ta − Tlss),

ω̇m =
1

JG

(Thss − Te − bωm),

Tlss = Ksθk + Csθ̇k,

= Ksθk + CsωT − Csωm

ng

,

= ngThss.

HereKs > 0 is the torsional stiffness of the low speed shaft,Cs ≥ 0 is the torsional

damping of the low speed shaft,Tlss is the low speed shaft torque andThss is the high

speed shaft torque. We remark that in steady state (whenω̇T = ω̇m = 0), we have again

the power balanceTaωT = Teωm + bω2
m.

We take the state variablesx, the external input variablesw (disturbances) and the

control inputu as follows:

x =




θk

ωT

ωm


 , w = Ta, u = −Te.

The output variables areωm andωT , so thaty =
[

ωT ωm

]T
.
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Then the3rd order state-space representation is

ẋ = Ax + B1w + B2u, (2.8.2)

y = Cx + D1w + D2u,

where

A =




0 1 − 1
ng

−Ks

JT
−Cs

JT

Cs

JT ng
Ks

JGng

Cs

JGng
− Cs

JGn2
g
− b

JG


 ,

B =
[

B1 B2

]
=




0 0
1

JT
0

0 1
JG


 ,

C =

[
C1

C2

]
=

[
0 1 0
0 0 1

]
,

D =
[

D1 D2

]
=

[
0 0
0 0

]
.
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Chapter 3

LPV control of a DFIGWT with
primary grid frequency support

3.1 LPV systems

A state-space representation of a linear parameter varying (LPV) systemΣ is

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t), (3.1.1)

y(t) = C(θ(t))x(t) + D(θ(t))u(t). (3.1.2)

wherex is the state (x ∈ Rn), u is the input vector andy is the measured output vector.

In this thesis, we only have to deal with LPV systems where measurements ofθ(t) are

available in real time.

The following well-known result is called the bounded real lemma (BRL) and it can

be found in [19] and [64].

Theorem 3.1.1. Given a continuous-time LTI system (not necessarily minimal) with

transfer functionG(s) = D + C(sI − A)−1B, the following statements are equivalent:

• A is stable and‖D + C(sI − A)−1B‖∞ < γ,

• there exists a positive definite solutionX to the matrix inequality:

Bs
[A,B,C,D] :=




AT X + XA XB CT

BT X −γI DT

C D −γI


 < 0,

whereBs
[A,B,C,D] is also called the BRL map.
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The BRL can be extend to LPV systems so that sufficient conditions can be given for

the transfer function ofΣ at any fixedθ to have an inducedL2-norm (see definition 3.1.2)

bounded byγ > 0.

Notation: L2[0,∞) denotes the set of measurable, square integrable functions oft,

t > 0, with norm‖f‖L2 = (
∫∞

0
|f(t)|2dt)

1
2 . By abuse of notation, we will also use the

same notation for the space of vector-valued square integrable signals.

Definition 3.1.1. Let Θ ⊂ Rs be a compact set of possible parameter vectors. The LPV

systemΣ from (3.1.1) and (3.1.2) hasquadraticH∞ performanceγ > 0 if there exists a

matrixX > 0 such that



A(θ)T X + XA(θ) XB(θ) C(θ)T

B(θ)T X −γI D(θ)T

C(θ) D(θ) −γI


 < 0 (3.1.3)

for all θ ∈ Θ (see [5]).

Remark3.1.1. The LMI (3.1.3) implies, by multiplying the matrix from the left with

zT = [x(t)T u(t)T 1
γ
y(t)T ] and then multiplying it from the right withz, that

d

dt
〈Xx(t), x(t)〉 ≤ γ‖u(t)‖2 − 1

γ
‖y(t)‖2. (3.1.4)

If the initial state ofΣ is zero, we obtain that‖y‖L2 ≤ γ‖u‖L2, and this is true for any

measurable functionθ : [0,∞) → Θ.

Proof: we omitθ for simplicity, so that we writeA instead ofA(θ), and similarly for

B(θ), C(θ) andD(θ). Firstly, let’s computed
dt
〈Xx, x〉, whereX > 0, XT = X.

d

dt
〈Xx, x〉 = 〈X(Ax + Bu), x〉+ 〈Xx, Ax + Bu〉

= 〈XAx, x〉+ 〈XBu, x〉+ 〈AT Xx, x〉+ 〈x,XBu〉
= 〈(AT X + XA)x, x〉+ 2Re〈XBu, x〉. (3.1.5)
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Then let’s calculate the following inner product:

〈


AT X + XA XB CT

BT X −γI DT

C D −γI







x
u
1
γ
y


 ,




x
u
1
γ
y




〉
≤ 0,

⇔
〈


(AT X + XA)x + XBu + CT y 1

γ

BT Xx− γu + DT y 1
γ

Cx + Du− γy 1
γ


 ,




x
u
1
γ
y




〉
≤ 0,

⇔ 〈(AT X + XA)x, x〉+ 〈XBu, x〉+
1

γ
〈y, Cx〉

+〈BT Xx, u〉 − γ〈u, u〉+
1

γ
〈y, Du〉

+
1

γ
〈y, y〉 − 1

γ
〈y, y〉 ≤ 0,

(substituted by(3.1.5))

⇔ d

dt
〈Xx, x〉 − γ〈u, u〉+

1

γ
〈y, y〉 ≤ 0.

Rearrange the above inequality, we obtain (3.1.4).

If X > 0, 1
γ

> 0 and (A, C) observable, then the system is stable inL2 sense (see

definition 3.1.2). Indeed, takingu = 0, d
dt
〈Xx(t), x(t)〉 ≤ − 1

γ
‖y‖2. Assuming that the

initial state ofΣ is 0, we integrate (3.1.4) from 0 to∞ on both sides:

〈Xx(t), x(t)〉|∞0 ≤ γ‖u‖2
L2 − 1

γ
‖y‖2

L2 ,

⇔ ‖y‖L2 ≤ γ‖u‖L2 .

We conclude that the LMI (3.1.3) is true for any measurable functionθ : [0,∞) → Θ.

Therefore, even asθ changes and no matter how fast it changes, we always have (3.1.4).

2

Definition 3.1.2 (InducedL2-norm). For eachθ ∈ Θ, let Gθ be the transfer function of

the stable system obtained by takingθ(t) = θ in (3.1.1) and (3.1.2). The inducedL2-norm

of the familyG = (Gθ) is defined by

‖G‖ = sup
θ∈Θ

‖Gθ‖∞,

where‖Gθ‖∞ = supRe(s)>0 ‖Gθ(s)‖.
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It follows from Remark3.1.1 that, ifΣ hasquadraticH∞ performanceγ > 0, then

‖G‖ ≤ γ.

The following definitions and theorems are taken from [5].

Definition 3.1.3 (Matrix polytope). A matrix polytopeis defined as the convex hull of a

finite number of matricesNi with the same dimensions.

Co{Ni, i = 1, ..., r} := {
r∑

i=1

αiNi : αi ≥ 0,
r∑

i=1

αi = 1}. (3.1.6)

Definition 3.1.4 (Polytopic LPV systems). An LPV system is calledploytopicwhen it can

be represented by state-space matricesA(θ), B(θ), C(θ) andD(θ), where the parameter

vectorθ(t) ranges over a fixed polytopeΘ of verticesθ1, θ2, ..., θr, that is

θ(t) ∈ Θ := Co{θi, i = 1, ..., r}. (3.1.7)

The dependence ofA(·), B(·), C(·) andD(·) on θ(t) is affine.

Theorem 3.1.2 (Vertex property). Consider a polytopic LPV plant described by theG

with (
A(θ) B(θ)
C(θ) D(θ)

)
∈ P := Co

{(
Ai Bi

Ci Di

)
, i = 1, 2, ..., r

}
,

The following statements are equivalent:

• there exists a matrixX > 0 such that, for all

(
A(θ) B(θ)
C(θ) D(θ)

)
∈ P,

Bs
[A(θ),B(θ),C(θ),D(θ)](X, γ) < 0. (3.1.8)

• there existsX > 0 satisfying the set of LMIs

Bs
[Ai,Bi,Ci,Di]

(X, γ) < 0, i = 1, 2, ..., r. (3.1.9)

The following definition and theorem can be found in [4], [13] and [46].

Definition 3.1.5 (LMI Region). A subsetD of complex plane is called anLMI region

if there exist a symmetric matrixλ = [λik]1≤i,k≤m ∈ Rm×m and a fixed real matrix

µ = [µik]1≤i,k≤m ∈ Rm×m such that

D = {z ∈ C : [λik + zµik + z̄µki]1≤i,k≤m < 0}
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Note that LMI regions are convex and symmetric with respect to the real axis. Special

cases include vertical strips, disks, horizontal strips, conic sectors, ellipsoids, domains

bordered by parabolas and their arbitrary intersections.

Theorem 3.1.3 (D-stable). The matrixA has all its eigenvalues in the LMI regionD =

{z ∈ C : [λik + zµik + z̄µki]1≤i,k≤m < 0}, (A is then calledD-stable), if and only if there

exists a symmetric matrixX > 0 such that

[λikX + µikA
T X + µkiXA]1≤i,k≤m < 0,

where” < 0” stands for negative definite.

3.2 Computation of the self-scheduled LPV controller

Consider an open-loop LPV systemP described by

ẋ(t) = A(θ(t))x(t) + B1(θ(t))w(t) + B2(θ(t))u(t),

z(t) = C1(θ(t))x(t) + D11(θ(t))w(t) + D12(θ(t))u(t),

y(t) = C2(θ(t))x(t) + D21(θ(t))w(t),

wherey denotes the measured outputs,z the controlled outputs ,w the reference and dis-

turbance inputs andu the control inputs. The LPV synthesis problem consists in finding

a controllerK(·) described by

ẋk(t) = AK(θ(t))xk(t) + BK(θ(t))y(t),

u(t) = CK(θ(t))xk(t),

such that the closed-loop system (with inputw and outputz) satisfies (3.1.3) for any

measurable functionθ : [0,∞) → Θ.

The computation of the LPV controller described below (also used in this thesis) could

potentially have some conservatism in the case of slow parametric variations. In [16],

a less conservative LMI-based technique has been proposed, which is an extension of

the notions of quadratic stability and performance where the fixed quadratic Lyapunov

function is replaced by a Lyapunov function with affine dependence on the uncertain

parameters.
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A self-scheduled controller implies that the controller can update itself online by in-

corporating the parameter measurementsθ(t), so that the real-time plant dynamics can be

taken into account. Then stability and certain performances bounds are guaranteed along

all the trajectories ofθ(t).

We assume that the parameter dependence of the plantP is affine andΘ is a polytope

with verticesθj, j = 1, 2, ..., r. According to the results in [4] and [5], one LPV controller

K(·) can be computed through the following steps:

• Offline computations: compute the vertex controllersKj = (AKj
, BKj

, CKj
, 0),

(1 ≤ j ≤ r) as follows:

i. Solve the following set of LMIs



XAj + B̂Kj
C2j

+ ? ? ? ?

ÂT
Kj

+ Aj AjY + B2j
ĈKj

+ ? ? ?

(XB1j
+ B̂Kj

D21j
)T BT

1j
−γI ?

C1j
C1j

Y + D12j
ĈKj

D11j
−γI


 < 0, (3.2.1)

together with [
X I
I Y

]
> 0, (3.2.2)

where? denotes terms whose expressions follow from the requirement that the

matrix is self-adjoint. This step gives(ÂKj
, B̂Kj

, ĈKj
) and symmetric matricesX

andY .

ii. Solve forN , M based on the singular value decomposition (SVD) ofI −XY

I −XY = NMT . (3.2.3)

iii. Compute theAKj
,BKj

andCKj
with

AKj
= N−1(ÂKj

−XAjY − B̂Kj
C2j

Y −XB2j
ĈKj

)M−T , (3.2.4)

BKj
= N−1B̂Kj

, (3.2.5)

CKj
= ĈKj

M−T . (3.2.6)

• Online computations:
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i. Measureθ(t) and compute itsconvex decomposition:

θ(t) = α1θ1 + α2θ2 + ... + αrθr, (3.2.7)

where
∑r

j=1 αj = 1, αj ≥ 0. Note thatα1, ..., αr are functions ofθ.

ii. Compute the state-space matrices of the controllerK(·) as aconvex combination

of the vertex controllers:
[

AK BK

CK 0

]
(θ) =

r∑
j=1

αj

[
AKj

BKj

CKj
0

]
. (3.2.8)

Note that the online computations (3.2.7) and (3.2.8) are very cheap.

3.3 Controller design with pole placement constraints

The resulting controller from Section 3.2 may have some poles whose real parts are far

from the imaginary axis. Those poles, the so calledfast modes, would complicate the

hardware implementation of the controller (see [7]). This drawback can be fixed by con-

fining the closed-loop poles of the underlying vertex LTI systems (at fixedθ) to a certain

regionD ∈ C. The LMIs (3.2.1) and (3.2.2) must then be complemented with
[
λik

[
X I
I Y

]
+ µikT + µkiT

T

]

1≤i,k≤m

< 0,

where

T =

[
AjY + B2j

ĈKj
Aj

ÂKj
XAj + B̂Kj

C2j

]
.

The dataλik andµik defines the geometry of the regionD. For example, if we want the

regionD to be the plane whereRes < −10, we simply chooseλ = 20 andµ = 1.

Then the new controller state-space matricesAK , BK andCK can be obtained with the

computations of (3.2.3)-(3.2.8).

3.4 Controller reduction based on the truncation of fast
modes

The design procedure from Section 3.2 gives a self-scheduled LPV controller of the same

order as the plant. However, often some of the modes are stable and very high compared
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to the frequency range of interest. In this case, these modes should be eliminated from

the controller by model reduction. Very sophisticated model-reduction techniques are

known for individual LTI systems, see for example [18] and [64]. For LPV systems these

techniques are not practical, because they would require us to perform the model reduction

at each individual pointθ ∈ Θ. Here we propose a model-reduction procedure which can

be applied to self-scheduled LPV controllers and only requires the designer to compute a

reduced controller in each vertex ofΘ.

To simplify the notation of vertex controllers, we writeAj instead ofAKj
, and similarly

for Bj andCj.

Controller reduction procedure: Assume that the matrices forKj(j = 1, ..., r) can be

partitioned compatibly using a transformation matrixT (the same for all vertices):

K̆j
s
=

[
T−1AjT T−1Bj

CjT 0

]
=




Aj11 Aj12 Bj1

Aj21 Aj22 Bj2

Cj1 Cj2 0


 , (3.4.1)

where all of the eigenvalues ofAj22 are large compared to the frequency range of interest.

Then we rewrite the LPV controller from (3.2.8) in the new coordinates:



AK11 AK12 BK1

AK21 AK22 BK2

CK1 CK2 0


 (θ) =

r∑
j=1

αjK̆j. (3.4.2)

The reduced order controllerKr = (Ã, B̃, C̃, D̃) is computed as follows:

Ã = AK11 − AK12A−1
K22AK21, (3.4.3)

B̃ = BK1 − AK12A−1
K22BK2, (3.4.4)

C̃ = CK1 − CK2A−1
K22AK21, (3.4.5)

D̃ = −CK2A−1
K22BK2. (3.4.6)

Justification: We omit the subscriptK for simplicity. Consider the transfer function

K(s) of the controller for any fixedθ. For small|s| (in the frequency range of interest),

A22− sI ≈ A22. Based on Schur’s formula (see [64]), we have the following approxima-
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tion: DefineA =

[
A11 A12

A21 A22

]
, Ã = A11 − A12A

−1
22 A21 andS = Ã− sI, then

(A− sI)−1

≈
[ S−1 −S−1A12A

−1
22

−A−1
22 A21S−1 A−1

22 + A−1
22 A21S−1A12A

−1
22

]
,

=

[
I

−A−1
22 A21

]
S−1

[
I −A12A

−1
22

]
+

[
0 0
0 A−1

22

]
.

(3.4.7)

For any fixedθ, the transfer function of the controller

K(s) = − [
C1 C2

]
(A− sI)−1

[
B1

B2

]
, (3.4.8)

can be approximated, according to (3.4.7), by

Kr(s) = C̃(sI − Ã)−1B̃ + D̃. (3.4.9)

2

3.5 LPV model for the DFIG

Based on a4th order nonlinear DFIG model (see Vas [54] or Section 2.6.3), we take

the state variablesx as the stator and rotor currents in thedq frame. The external input

variablesw (disturbances and references) are stator voltages and reference rotor currents,

also in thedq frame. The controller outputu consists of rotor voltages. Thus

x =




ids

iqs

idr

iqr


 , w =




vds

vqs

iref
dr

iref
qr


 , u =

[
vdr

vqr

]
.

The controlled outputs and measured outputs are

z =

[
eidr

eiqr

]
, y =




ids

iqs

idr

iqr


 ,

whereeidr = iref
dr - idr andeiqr = iref

qr - iqr.

Recalling the structure of the open-loop LPV systemP described in Section 3.2, we

choose the parameter vectorθ =
[

ωs ωr

]T
, whereωs is the synchronous speed andωr
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is the generator electrical angular speed. Note thatωs = 2πfg/np, wherefg is the grid

frequency andnp is the number of pole pairs. Then the state-space equations of the DFIG

model are

ẋ = (A0 + ωsA1 + ωrA2)x + B1w + B2u,

z = C1x + D11w + D12u, (3.5.1)

y = C2x + D21w + D22u,

where

A0 =




−aLrRs 0 aLmRr 0
0 −aLrRs 0 aLmRr

aLmRs 0 −aLsRr 0
0 aLmRs 0 −aLsRr


 ,

A1 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 ,

A2 =




0 aL2
m 0 aLrLm

−aL2
m 0 −aLrLm 0

0 −aLsLm 0 −aLsLr

aLsLm 0 aLsLr 0


 ,

B1 =




aLr 0 0 0
0 aLr 0 0

−aLm 0 0 0
0 −aLm 0 0


 ,

B2 =




−aLm 0
0 −aLm

aLs 0
0 aLs


 ,

[
C1

C2

]
=




0 0 −1 0
0 0 0 −1

I 4×4


 ,

[
D11 D12

D21 D22

]
=




0 0 1 0
0 0 0 1

02×2

04×4 04×2


 .

We definea = 1
LsLr−L2

m
.

Note that the above state-space model (3.5.1) is obtained based on the complete 4th-

order DFIG model described in Section 2.6.3. Whereas the purpose of presenting a DFIG
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model in the stator-flux reference frame in Section 2.6.4 is to show that decoupled con-

trol of stator active and reactive powers can be achieved by rotor current control, which

explains the motivation of addingiref
dr andiref

qr to the external input vectorw.

3.6 Two-loop control systems design

As shown in Figure 1.1, there are basically two control loops embedded hierarchically in

the control systems for the DFIGWT, namely the inner current control loop and the outer

electrical torque control loop. In the inner loop, the control of the grid-side converter will

not be discussed in this paper, but the detailed description can be found in Penaet al. [42].

3.6.1 Electrical torque control with frequency support

Quadratic torque controller

We assume that theCp curves are known based on field measurements. In the lower to

medium wind speed region (or region 2), the control objective is to maximize energy

production, which can be achieved byi) keeping the pitch angleβ to be the optimal

value corresponding to the maximum possibleCmax
p and ii) controlling the generator

rotor speed such thatλ = λopt. In this paper, we adopt the standard quadratic torque

control method, see [42] and Johnsonet al. [31].

The primary goal in region 3 (above the rated wind speed, see Figure 2.3(a)) is to

maintain the generated power at the rated value. This is done by maintaining a constant

electrical torque (using the rotor current controller and the rotor-side converter) and regu-

lating the turbine speed by pitch control. Therefore the reference electrical torqueu1 over

both regions 2 and 3 is

u1 =

{
Koptω2

r region 2,
T rated

e region 3,
(3.6.1)

whereKopt = 1
2

ρπR5
wCmax

p

λ3
optn

3
gn2

p
, see (2.3.3).
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Frequency support controller

With conventional generation, in terms of time horizon, power/frequency control is classi-

fied as primary (less than 30 seconds after a major frequency drop), secondary (30 seconds

to 30 minutes) and tertiary, see Kundur [34]. Wind turbines are able to contribute to the

primary control by releasing the stored kinetic energy over the critical first few seconds

following loss of network generation. A wind farm can also contribute to the secondary

control, when the power/frequency reference is imposed by the system operator at any

time. See [22] for a detailed description of different control functions in modern wind

farms, such as balance control, delta control, power ramp rate limiter and active frequency

control. In this paper, the proposed frequency support controller has been designed and

tested to meet the primary control requirement. However, it can also be easily extended

for the secondary control purpose.

When the deviation of the grid frequencyfg from the nominal value 50Hz is beyond

±1%, a wind turbine needs to produce more or less active power in order to compensate

for the deviant behavior infg. This can be achieved by a step change in the reference

torqueu2, produced by the proportional controller P as shown in Figure 3.1. This step

signal u2 will be added to the output of the quadratic torque controlleru1. Then the

overall control signalu3 = u1 +u2 will be injected into the speed protection block, which

is essentially a switch, deciding whetheru1 or u3 will be the reference electrical torque

T ref
e based on the value ofωr.

Speed protection block:Suppose thatfg ≤49.5Hz has been detected. Then the fre-

quency support controller generates a positive step signalu2 andT ref
e is set to beu3 to

extract the kinetic energy stored in the turbine blades. The generator speedωr will then

decrease following this sudden excess demand of active power, but before it would drop

below a minimal allowable value,T ref
e will be switched back tou1. This will prevent

reaching near standstill from where it would take a long time to return to normal opera-

tion (because of lowCp).

Suppose thatfg is oscillating around 49.5Hz, a relay block would then be needed

to preventu2 from oscillating accordingly. The on/off behavior of the relay1 block is

shown in Figure 3.2. The grid frequency can rise to 52Hz and fall as low as 47Hz under
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exceptional circumstances. Suppose thatfg <47Hz has been detected, then the wind

turbine would have to be shut down. The relay2 block (see Figure 3.2) has been used to

prevent oscillations in the shut down signalr2.
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Figure 3.1: Block diagram of the electrical torque controller. The quadratic torque con-
troller has been shown in (3.6.1). The speed protection block is essentially a switch.
Whenωr drops below the lower bound,T ref

e = u1, otherwiseT ref
e = u3. LPF stands for

low pass filter. The on/off states of the relay blocks are shown in Figure 3.2.

Reference rotor current calculation

A widely-recognized vector control scheme for DFIG is under the stator-flux reference

frame, where a decoupled control between the electrical torque and the rotor excitation

current is obtained, see [42] and [54], and it can be shown that the electrical torque is

proportional to theq-component of the rotor current:

Te = −np
L2

m

Ls

|~ims|iqr, (3.6.2)

|~ims| =
|~vs|

ωsLm

,
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Figure 3.2: The specification of the relay blocks from Figure 3.1. The horizontal axis is
the filtered frequency deviation signalδ. The relay1 block is used to prevent oscillations
in u2. The relay2 block is used to prevent oscillations in the shut down signalr2.

whereims is the stator magnetizing current. One of the key assumptions of this decoupling

is that the grid frequencyfg has to be constant, i.e. the synchronous speedωs is constant.

Therefore we know that (3.6.2) would not be true whenfg changes. Here we derive a more

accurate reference rotor current calculation which can be used regardless of the variation

of fg. Recall that the electrical torque is:

Te = npLm(iqsidr − idsiqr). (3.6.3)

We assume thatidr = iref
dr . This is a valid assumption, becauseiref

dr should be given by an

outer-loop controller for grid integration (see Figure 1.1), which is much slower compared

to the inner electrical control loop. Therefore, rearrange (3.6.3), we have

iref
qr =

ciqsi
ref
dr − T ref

e

cids

, (3.6.4)

wherec = 3
2
npLm and the stator currents (ids, iqs) are measurable. OnceT ref

e is known

(see Figure 3.1), we can easily computeiref
qr using (3.6.4) and send it to the inner-loop

LPV current controller.
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3.6.2 Self-scheduled LPV current control loop

Based on the LPV model of the DFIG shown in Section 3.5 and the 4 vertexes defined by

the upper and lower bounds ofωs andωr, we denote theA matrix at these vertexes by

Ã1 = A0 + ωmin
s A1 + ωmin

r A2,

Ã2 = A0 + ωmax
s A1 + ωmin

r A2,

Ã3 = A0 + ωmin
s A1 + ωmax

r A2,

Ã4 = A0 + ωmax
s A1 + ωmax

r A2.

At these 4 vertexes, the extended plantP̃, shown in Figure 3.3, can be represented (see

Appendix A.1) as

P̃j =




Ãj 0 0 B1 B2

BwC1 Aw 0 BwD11 BwD12

0 0 Au 0 Bu

DwC1 Cw 0 DwD11 DwD12

0 0 Cu 0 Du

C1 0 0 D11 D12

C2 0 0 D21 D22




, j = 1, ..., 4. (3.6.5)

Once a measurement ofωs(t) andωr(t) is available at timet, after performing the

convex decomposition (3.2.7), we have that the LPV form of the extended plant admits

the following polytopic state-space representation:

P̃(t) = α1P̃1 + α2P̃2 + α3P̃3 + α4P̃4,

where
∑4

j=1 αj = 1, αj ≥ 0.

The filtersW1 andWu are used to shape the output sensitivity functionTzw as (3.6.6)

(the transfer function fromw to z for any fixedθ =
[

ωs ωr

]T
, see Appendix A.2) and

the control effort respectively.

Tzw =




A0 + ωsA1 + ωrA2 B2CK B1

BK1C1 + BK2C2 AK + (BK1D12 + BK2D22)CK BK1D11 + BK2D21

C1 D12CK D11


 .

(3.6.6)
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Figure 3.3: Formulation of the LPV control problem. This block diagram represents the
extended plant̃P for the LPV controller synthesis, which consists of the original LPV
model of the DFIG (3.5.1) together with the filtersW1 andWu. The parameter vector
θ = [ωs ωr]

T .

1. Robust tracking requirements-S
For robust tracking, we need to consider the sensitivityS (hereTzw) of the system

such that:

σ̄(W1(jω)Tzw(jω)) < 1,∀ω (3.6.7)

W1(s) is a stable minimum phase low-pass filter:

W1(s) =

[
w1(s) 0

0 w1(s)

]
=

[
kl

s+ωl
0

0 kl

s+ωl

]
.

2. Control effort requirements-KS
To implement a controller in practice, its bandwidth should not be too high.

Otherwise, it may lead to energy consumption and high cost [28]. To make sure a

limited bandwidth, we require:

σ̄(Wu(jω)K(jω)S(jω)) < 1,∀ω (3.6.8)
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whereK denotes the controller,Wu(s) is a stable minimum phase high-pass filter

Wu(s) =

[
wu(s) 0

0 wu(s)

]
=

[
khs

s+ωh
0

0 khs
s+ωh

]
.

The closed-loop system should not be sensitive to the high frequency components in

the reference rotor currents, soωl should not be too large. We chooseωl = 100rad/s.

The bandwidth of the LPV controller is limited byωh. We takeωh = 100rad/s. The

parameterskl andkh are chosen based on trial and error. The larger thekl, the smaller

the current tracking errors. But a very largekl would cause spikes in the rotor voltages.

So we takekl = 4× 104. The smaller thekh, the better the current tracking performance.

But if kh is too small, the controller design algorithm would tend to neglect the existence

of the filterWu. So we takekh = 10−3.

3.7 Simulation results

The simulations have been carried out using Matlab/Simulink. The reduced order LPV

controller has been tested on a nonlinear4th order DFIG model (described in Section

2.6.3) with a two mass drive-train (see Section 2.8.2). As shown in Figure 3.4, the

Simulink implementation of the LPV controller is based on a time varying state-space

block, which is available online from the Mathworks. This block takes two kinds of

inputs, namely, the system input and the gain matrix. The former consists of the rotor

current tracking errors (eidr, eiqr), stator and rotor currents (ids, iqs, idr, iqr). The latter

contains the system matrices of the reduced controller. The calculation of these system

matrices has been shown in Sections 3.2 and 3.4. Here we provide a more detailed de-

scription:

Offline: theRobust Control Toolboxin Matlab has been used to solve the LMIs (3.2.1)

and (3.2.2). Alternatively, the Matlab routinehinfgsmay be used to compute the vertex

controllersKj(j = 1, ..., 4).

Online: to compute the reduced controllerKr at timet when a measurementθ(t) =
[

ωs(t) ωr(t)
]T

is available, we need to partition the realization forKj compatibly as

(3.4.1) using a transformation matrixT (the same for all of the4 vertices). ThisT matrix
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can be obtained by applying the Schur decomposition to theA matrix of anyKj. After we

obtain the new vertex controllers̆Kj, combiningαj from the convex decomposition block,

we are able to perform convex combination (3.4.2) and compute the system matrices

(Ã, B̃, C̃, D̃) of Kr (see Section 3.4). Herej = 1, ..., 4. Note that the outputs of the

controller reduction block are(Ã, B̃, C̃, D̃), which are the gain matrices to be sent to the

time varying state-space block.

The quadraticH∞ performance of the closed-loop system isγ = 0.1738. After con-

troller reduction, for intermediate values ofα(t) ∈ (0, 1), the poles of the reduced con-

troller will be very close to the slow modes of the vertex controllers.

convex
decomposition

s

r

convex
combination

controller
reduction

rK

4321 ,,, KKKK

4321 ,,,

utDxtCy

utBxtAx

)()(
)()(

time varying 
state-space block

)(),(),( dqidqidqe rsir

)(dqvr

Figure 3.4: The Simulink implementation of the LPV controller, including the controller
reduction procedure shown in Section 3.4. Based on the measurements ofωs andωr, the
self-scheduled LPV controller is being updated online, in real-time.

The nominal physical parameters of a6MW wind turbine can be seen in Table 3.1.

The voltage supply has been modelled by a 3-phase programmable source. This block is

used to generate a frequency dip, while keeping constant amplitude (see Figure 3.6). A

3-phase PLL block has been used to measure the grid frequencyfg. Theabc to dq block

is used for transforming the voltage signal fromabc to dq frame, see Figure 3.5. In the

stator-flux reference frame, assuming thatωs is constant and the stator resistanceRs is

negligible, we approximately havevds = 0 andvqs = |vs|. Figure 3.5 corresponds to this

simplified situation.

The proportional gainkp of the frequency support controller (see Figure 3.1) is tuned

based on the amount of power output needed for grid support. But at the same time, it
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Table 3.1: Nominal physical parameters of a6MW wind turbine

Description Parameter Value

Rated turbine power 6MW

Stator resistance Rs 0.0022Ω

Rotor resistance Rr 0.0018Ω

Stator inductance Ls 3mH

Rotor inductance Lr 2.9mH

Mutual inductance Lm 2.9mH

Pole pairs np 3

Stator voltage vs 690V (RMS)

Grid frequency f ref
g 50Hz

Turbine inertia JT 2.225 · 107kgm2

Generator inertia JG 600kgm2

Torsional stiffness Ks 7.5 · 108Nm/rad

Torsional damping Cs 100Nms/rad

Damping coefficient b 0kgm2/s

Gearbox ratio ng 21.64

Blade length Rw 55m

Air density ρ 1.225kg/m3
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Figure 3.5: The Simulink model of a simplified version of the PLL-based estimation of
fg, vds andvqs (these are expressed in the stator-flux reference frame). In this simplified
version, it is assumed thatRs = 0 andωs is constant. A 3-phase programmable source
has been used to generate the grid voltage with a frequency dip, while keeping constant
amplitude.
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Figure 3.6: The grid frequencyfg and the stator voltagesvds, vqs. At t = 40s, the fre-
quencyfg drops from 50Hz to 48Hz and recovers att = 60s.
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should be confined by the physical constraints of the turbine system. A largekp would

result in a large reference torque once a grid frequency drop is detected, meaning that a

large amount of electrical power output is demanded in a very short-term frame. This

could potentially damage the turbine shaft and/or the converters if the sudden demand of

active power is too much. Here we choosekp = 104.

We assume that the average wind speed is10m/s, whereωr = ωs in the steady state.

The first set of simulation results is based on a constant wind speed, equal to12m/s.

The turbine behavior and the DFIG behavior are shown in Figures 3.7, 3.8 and 3.9. The

power coefficientCp has been maintained to be around its maximal valueCmax
p = 0.4587

in the steady state, which implies that we have achieved the control objective of wind

energy capture maximization. The stator active and reactive powers depend oniqr and

idr respectively in the stator-flux reference frame.iref
dr should be given by the outer-

loop controller for grid integration. Here we takeiref
dr = 0. It can be seen clearly from

Figure 3.9 that good current tracking performance has been achieved. The second set of

simulation results is based on a more realistic random wind speed, shown in Figures 3.10,

3.11 and 3.12. The wind speed along the turbine axis (see Figure 3.10) has been generated

based on the frequency spectrum proposed by Kaimal (see [52]).
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Figure 3.7: The plot ofCp assuming constant wind speed and a grid frequency drop of
2Hz betweent = 40s andt = 60s. From40s to60s, Cp is decreasing due to the frequency
support controller. After60s, Cp recovers to its maximum valueCmax

p = 0.4587 within
15s.
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Figure 3.8: Electrical torqueTe, generator rotor speedωr and electrical power outputPe

under constant wind speed. The difference betweenT ref
e andTe is visually not distin-

guishable at the scale of the plot. Att = 40s, there is a sudden increase inTe, which
is due to the frequency support controller. The additional power output between40s and
60s demonstrates the contribution of the wind turbine to grid frequency support.
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Figure 3.9: DFIG rotor current tracking under constant wind speed. The spikes in the
tracking errors at40s and60s are due to the frequency support controller. In the steady
state, it can be seen thateiqr is around 1A, which is very small compared toiqr (more
than 2000A).
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Figure 3.10: A more realistic random wind speed and the plot ofCp. After the first few
seconds, the wind speed is in the range[6, 14]m/s, representing the low to medium wind
speed region (or region 2). From40s to 60s, Cp drops in response to the wind speed and
the frequency support controller.
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Figure 3.11: Electrical torqueTe, generator rotor speedωr and electrical power output
Pe under random wind speed. The difference betweenT ref

e andTe is visually not distin-
guishable at the scale of the plot. Att = 40s, there is a sudden increase inTe, which
is due to the frequency support controller. The additional power output between40s and
60s demonstrates the contribution of the wind turbine to grid frequency support.
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Figure 3.12: DFIG rotor current tracking under random wind speed. The spikes in the
tracking errors at40s and60s are due to the frequency support controller. It can be seen
thateiqr < 1A at around70s, which is very small compared toiqr (more than 2000A).
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Chapter 4

The iISS property for passive nonlinear
systems

4.1 Background concepts

The concept of passivity is important in control theory because 1) it is a property shared

by many physical systems; 2) it is related to stability (see Moylan [40], Hill and Moylan

[25], Byrnes, Isidori and Willems [12]). Consider a dynamical systemS described by the

state equations

ẋ = f(x, u), (4.1.1)

y = h(x, u),

wheref : Rn × Rm → Rn is locally Lipschitz continuous andh : Rn × Rm → Rm is

continuous. Herex(t) is the state at timet, which is inRn, u is the input signal andy

is the output signal. Under these assumptions, for every initial statex(0) and for every

bounded input signalu, (4.1.1) has a unique solution on some time interval[0, ε), with

ε > 0. S is said to bepassiveif there exists a continuously differentiablestorage function

or HamiltonianH : Rn → [0,∞) such that

Ḣ ≤ uT y, where Ḣ =
∂H

∂x
f(x, u),

for all (x, u) ∈ Rn × Rm. To investigate the Lyapunov stability of the equilibrium points

of S corresponding tou = 0 we may useH as a Lyapunov function (see Willems [62] or

Khalil [32]).
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The notion of input-to-state stability (ISS), as introduced in Sontag [49], implies that

f(x, 0) = 0 iff x = 0 and for any initial state, if the input becomes uniformly very small

after some time, then also the state becomes uniformly very small after some time (see

Sontag [51]). A strictly weaker variant of ISS is the concept of integral input-to-state

stability (iISS), where the uniform smallness of the input is replaced by the smallness of

a certain integral depending on the input, see Angeli, Sontag and Wang [3]. The formal

definition of iISS is given below.

In this Chapter, we investigate the iISS property of passive nonlinear systems. In our

main result (stated in Section 4.2), we show that under mild assumptions, a passive non-

linear system which is globally asymptotically stable (GAS) is also iISS. Stability analysis

often involves a big effort to search for a Lyapunov function. Our main result is meant to

eliminate the need for finding a Lyapunov function satisfying the condition (4.1.3) below,

for passive systems. By combining our result with a recent result in Jayawardhana, Teel

and Ryan [29], we can actually prove that under mild technical assumptions, a passive and

GAS system satisfies the iISS type estimate with a very simple (L1 norm type) integral

term. We will illustrate the result by proving the iISS property (with a simple integral

term) for the drive-train of a wind turbine, in Chapter 5.

For the remainder of this section, we recall the background about the iISS property

following [3].

A function V : Rn → [0,∞) is calledpositive definiteif V (x) = 0 iff x = 0. V

is calledproper if V (x) → ∞ when ||x|| → ∞. Recall that a continuous function

α : [0, a) → [0,∞) is said to belong to the classK if it is strictly increasing andα(0) = 0.

Such a functionα is said to belong to the classK∞ if a = ∞ andα(r) →∞ asr →∞.

A continuous functionβ : [0, a) × [0,∞) → [0,∞) is said to belong to the classKL if,

for each fixeds, the mappingβ(r, s) belongs to the classK with respect tor and, for each

fixed r, the mappingβ(r, s) is decreasing with respect tos andβ(r, s) → 0 ass →∞.

Consider the system described by (4.1.1). Given any measurable and bounded con-

trol u and anyξ ∈ Rn, there is a unique solution of the initial value problemẋ =

f(x, u), x(0) = ξ. This solution (or state trajectory) is defined on some maximal in-

terval of the type[0, δ), and it is denoted byx(·, ξ, u).



4.1 Background concepts 81

Definition 4.1.1. The system described by (4.1.1) isintegral input-to-state stable(iISS) if

there exist a classK∞ functionα, a classKL functionβ and a classK functionγ such that

for everyξ ∈ Rn and for every measurable and bounded functionu, the state trajectory

x(t, ξ, u) is defined for allt ≥ 0, and

α(||x(t, ξ, u)||) ≤ β(||ξ||, t) +

∫ t

0

γ(||u(τ)||)dτ ∀t ≥ 0. (4.1.2)

The functionγ is called theiISS gainof the system described by (4.1.1). If the input

u is such that
∫∞

0
γ(||u(τ)||)dτ < ∞, then the iISS estimate in (4.1.2) also implies the

converging-state property:x(t, ξ, u) → 0 ast → ∞. However, if the system is iISS and

u is only bounded, then the state trajectoryx(·, ξ, u) may be unbounded.

Note that if the system described by (4.1.1) is iISS, then this system has a unique

equilibrium point at zero (f(x, 0) = 0 iff x = 0) and the system isglobally asymptotically

stable(GAS), which means that it is Lyapunov stable, the trajectoriesx(t, ξ, 0) are defined

for all t ≥ 0 and tend to zero (ast →∞).

Definition 4.1.2. The system described by (4.1.1) iszero-output dissipative, if there ex-

ists a continuously differentiable proper and positive definite functionV , and a classK
functionσ, such that

∂V

∂x
f(x, u) ≤ σ(||u||) ∀(x, u) ∈ Rn × Rm. (4.1.3)

Theorem 4.1.1.The system described by (4.1.1) is iISS if and only if it is GAS and zero-

output dissipative.

This follows from [3, Theorem 1] together with [3, Remark II.3].

In the following theorem, a technical assumption onf andσ has to be imposed (see

[29, Theorem 3.1]):

(A) There exists a classK functionσ and for every compact setL ⊂ Rn, there exists

l > 0 such that,

‖f(x, u)‖ ≤ l(1 + σ(‖u‖)) ∀(x, u) ∈ L× Rm. (4.1.4)



4.2 The iISS property for passive nonlinear systems 82

Theorem 4.1.2.Assume that the system described by (4.1.1) satisfies (A), is GAS and

zero-output dissipative with the same functionσ in (4.1.3) and (4.1.4). Then for every

ξ ∈ Rn and for every measurable and bounded functionu : [0,∞) → Rm, the state

trajectoryx(t, ξ, u) (which is defined for allt ≥ 0 according to Theorem 4.1.1) satisfies

(4.1.2) withγ = σ.

This recent result on the iISS gain is due to Jayawardhana, Teel and Ryan [29]. In

particular, it follows that if
∫∞

0
σ(||u(τ)||)dτ < ∞, thenx(t, ξ, u) → 0 ast →∞.

4.2 The iISS property for passive nonlinear systems

Consider the systemΣ described by

ẋ = f(x, u), (4.2.1)

y = h(x),

wheref : Rn × Rm → Rn is locally Lipschitz andh : Rn → Rm is continuous.

Our main results are the following:

Theorem 4.2.1.We assume thatΣ is passive and GAS, with the storage functionH.

Denote

c(r) = sup
‖x‖≤r

‖h(x)‖.

We assume that there existα, k > 0 andR ≥ 0 such that

H(x) ≥ k‖x‖α for ‖x‖ ≥ R (4.2.2)

and ∫ ∞

0

dθ

c(θ
1
α ) + 1

= ∞. (4.2.3)

Then the system described by (4.2.1) is zero-output dissipative withσ(r) = r, and hence

it is iISS.

Proof: Defineλ0 = kRα ≥ 0, then obviouslyc(R) = c((λ0

k
)

1
α ).

Choose the Lyapunov functionV (x) = F (H(x)), where

F ′(λ) =

{
1

c(R)+1
when λ < λ0,

1

c((λ
k
)

1
α )+1

when λ ≥ λ0,
∀λ ≥ 0.
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It is easy to see thatF ′(λ) is a non-increasing continuous function ofλ (see Figure 4.1).

We remark that in the region ofRn whereH(x) ≤ λ0, we haveF (λ) = λ
c(R)+1

, so that

V (x) = H(x)
c(R)+1

.

0

)(F

0

1)(
1

Rc

Figure 4.1: The functionF ′(λ), which is a non-increasing continuous function ofλ. In
this figure we have assumed thatλ0 > 0.

We want to show that (4.2.1) withV satisfy (4.1.3). We have to consider two cases

depending on‖x‖.

• Assume thatx ∈ Rn with ‖x‖ < R (case1). Using the passivity ofΣ and the

Cauchy-Schwarz inequality, we obtain

V̇ = F ′(H(x))Ḣ

≤ 1

c(R) + 1
· uT y

≤ 1

c(R) + 1
· ‖h(x)‖ · ‖u‖

≤ 1

c(R) + 1
· c(‖x‖) · ‖u‖.

Since c(r) is a non-decreasing function ofr ∈ [0,∞), ‖x‖ < R implies that

c(‖x‖) ≤ c(R). Using this inequality, we have

V̇ ≤ ‖u‖.

• Now assume thatx ∈ Rn with ‖x‖ ≥ R (case2). Thenk‖x‖α ≥ kRα = λ0, so

that F ′(k‖x‖α) = 1
c(‖x‖)+1

. Using the assumption (4.2.2) and the fact thatF ′ is
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non-increasing, we have

F ′(H(x)) ≤ F ′(k‖x‖α).

This implies, using again the passivity ofΣ and the Cauchy-Schwarz inequality,

V̇ = F ′(H(x))Ḣ

≤ F ′(k‖x‖α) · uT y

≤ 1

c(‖x‖) + 1
· ‖h(x)‖ · ‖u‖

≤ 1

c(‖x‖) + 1
· c(‖x‖) · ‖u‖

≤ ‖u‖.

Thus we have proved thatV̇ ≤ ‖u‖ for all x ∈ Rn. This implies that (4.2.1) is zero-

output dissipative.

Now we show thatV is proper. We have

∫ ∞

0

F ′(λ)dλ = ∞. (4.2.4)

Indeed, using (4.2.3), we have

∫ ∞

0

F ′(λ)dλ ≥
∫ ∞

λ0

F ′(λ)dλ

= k

∫ ∞

λ0
k

dθ

c(θ
1
α ) + 1

= ∞.

SinceH is proper (this follows from (4.2.2)), we have

lim
‖x‖→∞

V (x) = lim
H→∞

F (H) = lim
H→∞

∫ H

0

F ′(λ)dλ = ∞.

(We have used (4.2.4).) SinceΣ is GAS, applying Theorem 4.1.1 we conclude thatΣ is

iISS. 2

Remark4.2.1. If the outputy of the systemΣ is a linear function of the statex, i.e.

h(x) = Cx, whereC is a matrix of matching dimensions, thenc(r) = ‖C‖r and then

(4.2.3) holds for everyα ≥ 1.
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Remark4.2.2. If there existk1 > 0 andr0 ≥ 0 such that

c(r) ≤ k1r
α ∀r ≥ r0, (4.2.5)

then it follows that (4.2.3) holds.

Theorem 4.2.2.We assume thatΣ is passive, GAS and satisfies (4.2.2) and (4.2.3). We

also assume thatf satisfies (A). Then for everyξ ∈ Rn and for every measurable and

bounded functionu : [0,∞) → Rm, Σ has a unique state trajectoryx(·, ξ, u) defined on

[0,∞), and this satisfies

α(‖x(t, ξ, u)‖) ≤ β(||ξ||, t) +

∫ t

0

‖u(τ)‖dτ ∀t ∈ [0,∞), (4.2.6)

whereα ∈ K∞ andβ ∈ KL are independent ofξ andu.

Note that (4.2.6) means thatΣ is iISS, with the iISS gainγ(r) = r.

Proof: Recall from Theorem 4.2.1 that the system described by (4.2.1) is zero-output

dissipative withσ(‖u‖) = ‖u‖. Applying Theorems 4.1.1 and 4.1.2, we see that this

system is iISS, with the iISS gainγ(‖u‖) = ‖u‖. 2

Remark4.2.3. After seeing Theorem 4.2.2, it is tempting to conjecture that ifΣ satisfies

the assumptions in this theorem, then it has state trajectories for everyξ ∈ Rn and every

u ∈ L1[0,∞). However, this is not correct, as can be seen from Example 7.2 in Jayaward-

hana and Weiss [30]. The existence of global solutions is guaranteed only for bounded

and measurable inputs.

4.3 Examples

Example 1: (A counter-example due to Bayu Jayawardhana). We consider the following

systemS, which is passive and GAS, but not iISS:

ẋ1 = −x1 − (2 + u)2x2,

ẋ2 = (2 + u)2x1 + (1− x2)
2u,

y = x2(1− x2)
2.
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Choosing the storage functionH = 1
2
(x2

1 + x2
2), we have

Ḣ = x1ẋ1 + x2ẋ2

= x1[−x1 − (2 + u)2x2] + x2[(2 + u)2x1 + (1− x2)
2u]

= −x2
1 + uy

≤ uy.

HenceS is passive.

If the control inputu = 0, thenS can be written as

ẋ1 = −x1 − 4x2,

ẋ2 = 4x1,

y = x2(1− x2)
2,

so that the ordinary differential equation (ODE) describing the state trajectories is linear.

The unique equilibrium point of this system isx̄ = 0. Clearly, foru = 0, S is GAS.

Now we choose the following control input

u(t) =

{ −2 t ∈ [0, 1),
0 else.

Then on the time intervalt ∈ [0, 1), S can be written as

ẋ1 = −x1,

ẋ2 = −2(1− x2)
2, (4.3.1)

y = x2(1− x2)
2.

If the initial state is such thatx2(0) = 0.5, then the solution of the ODE (4.3.1) is

x2(t) =
2t− 1

2(t− 1)
.

We see thatx2(t) blows up ast → 1. HenceS is not iISS. Note that (4.2.2) holds with

α ≤ 2 but (4.2.3) does not hold for any suchα, becausec(r) ≥ r3.

Example 2: In Chapter 5, we illustrate the main result (Theorem 4.2.2) by proving that

the drive-train of a wind turbine with quadratic torque control is iISS, see Theorem 5.3.4.
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Chapter 5

Stability analysis of the drive-train of a
wind turbine with quadratic torque
control

5.1 Background concepts

Here, the material concerning passivity and ISS is taken from Khalil [32].

Consider the dynamical systemS described by the state-space model

ẋ = f(x, u), (5.1.1)

y = h(x, u),

wheref : Rn ×Rm →Rn andh : Rn ×Rm →Rm are continuous,

f(0, 0) = 0, h(0, 0) = 0.

Further technical assumptions are needed if we want to ensure that (5.1.1) has unique

solutions (see for example [30, 50]). We will not deal with these technicalities, but always

assume that our ODEs have unique solutions on some open interval.

Recall that a square matrix-valued transfer functionG is calledpositive-realif G(s̄) =

Ḡ(s) andG(s) + G(s)∗ ≥ 0 for all complexs with Re s > 0.

Lemma 5.1.1 (Positive Real Lemma).Let A, B, C, D be real matrixes of matching

dimensions so that the transfer functionG(s) = C(sI − A)−1B + D is defined and its

values are square matrices. Assume that(A,B) is controllable and(A,C) is observable.
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ThenG(s) is positive-real if and only if there exist matricesP = P T , L andW such that

PA + AT P = −LT L,

PB = CT − LT W,

W T W = D + DT .

Lemma 5.1.2.The linear time-invariant minimal system

ẋ = Ax + Bu,

y = Cx + Du,

with G(s) = C(sI − A)−1B + D is passive if and only ifG(s) is positive-real.

Definition 5.1.1. The system described by (5.1.1) is said to beinput-to-state stable (ISS)

if there exist a classKL function β and a classK function γ such that for any initial

statex(0) and any essentially bounded and measurable input functionu, the solutionx(t)

exists for allt ≥ 0 and satisfies

||x(t)|| ≤ β(||x(0)||, t) + γ(||u||L∞[0, t]).

A function V : Rn → [0,∞) is calledpositive definiteif V (x) = 0 iff x = 0. V is

calledproper if V (x) →∞ when||x|| → ∞.

Theorem 5.1.3.LetV : Rn →R be a continuously differentiable function such that

α1(||x||) ≤ V (x) ≤ α2(||x||) ∀x ∈ Rn, (5.1.2)

∂V

∂x
f(x, u) ≤ −W (x), (5.1.3)

for all (x, u) ∈ Rn × Rm such that||x|| ≥ ρ(||u||) > 0, whereα1, α2 are of classK∞,

ρ is of classK, andW : Rn → [0,∞) is positive definite. Then the systemS is ISS with

γ = α−1
1 ◦ α2 ◦ ρ.
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5.2 Stability analysis based on the one-mass drive-train
model

For the turbine operating in region2, we generate the reference electrical torque given by

the standard quadratic torque control law, as explained in Subsection 2.3:

T ref
e =

{
0 when ωm < 0,
Kω2

m when ωm ≥ 0,
(5.2.1)

whereK > 0. We introduce

du = T ref
e − Te, (5.2.2)

which is proportional to theq-component tracking error of the current controller. We

have mentioned that a good current controller leads to fast and accurate tracking of the

rotor current references, and hence to accurate tracking of the electrical torque reference

T ref
e . Thus when analyzing the much slower mechanical system (the drive-train), it is

reasonable to assume thatdu is small.

Proposition 5.2.1.Consider the closed-loop wind turbine systemS1 described by (2.8.1)

and (5.2.1), withb ≥ 0, du = 0 and with inputTt and outputωm. TakeTt = c > 0 (a

constant). Then this system is GAS with respect to the equilibrium point

ω̄m =

√
b2 + 4cK − b

2K
. (5.2.3)

(Note that the stability is not due to the damping coefficientb, and it is true also for

b = 0.)

Proof: The systemS1 can be written as

ω̇m =

{
1
J
(c− bωm) when ωm < 0,

1
J
(c−Kω2

m − bωm) when ωm ≥ 0.
(5.2.4)

In the regionωm ≥ 0 we have the unique equilibrium pointω̄m, which is the positive

solution of the equation

0 =
1

J
(c−Kω̄2

m − bω̄m). (5.2.5)

In the regionωm < 0 there is no equilibrium point. The equilibrium point̄ωm

is attractive (locally stable), a fact that is easily seen by linearizing (5.2.4). In fact,
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m

m

m

J
c

0

Figure 5.1: The dynamics and the equilibrium pointω̄m for the one-mass drive-train
model.

this equilibrium point is GAS as can be seen in Figure 5.1. Formally, we may use

V (ωm) = 1
2
(ωm − ω̄m)2 as a Lyapunov function, check thatV̇ < 0 for ωm 6= ω̄m and use

one of Lyapunov’s stability theorems (see [32, Theorem 4.2]). 2

Theorem 5.2.2.Consider the closed-loop wind turbine systemS1 described by (2.8.1),

(5.2.1) and (5.2.2), withb > 0, whereTt = c + dw, c > 0 is a constant anddu, dw

are disturbance signals. We regard this system with inputd = [dw du]
T and stateζ =

ωm − ω̄m, whereω̄m is defined in (5.2.3). Then this system is ISS, more precisely

||ζ(t)|| ≤ β(||ζ(0)||, t) +
2
√

2

b
||d||L∞[0, t], (5.2.6)

for all t > 0, whereβ is a function of classKL.

Proof: Choose the Lyapunov functionV = 1
2
ζ2. In the regionωm ≥ 0, S1 can be

written as

ω̇m =
1

J
(c + dw −Kω2

m + du − bωm).
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Using (5.2.5), we obtain that in this region

ζ̇ =
1

J
(c + dw −Kω2

m + du − bωm)

=
1

J

[
c + dw + du −K(ζ + ω̄m)2 − b(ζ + ω̄m)

]

=
1

J
(dw + du)− K

J
ζ2 − 1

J
ζ(b + 2Kω̄m).

SinceV̇ = ζζ̇, we obtain

V̇ = −K

J
ζ3 − 1

J
ζ2(b + 2Kω̄m) +

1

J
ζ(dw + du). (5.2.7)

We need the following inequality:

−K

J
ζ3 − 1

J
ζ2(b + 2Kω̄m) ≤ − b

J
ζ2 ∀ζ ∈ [−ω̄m,∞). (5.2.8)

This holds because it reduces to

K

J
ζ2(ζ + 2ω̄m) ≥ 0 ∀ζ ∈ [−ω̄m,∞).

Substituting the inequality (5.2.8) into (5.2.7), we obtain

V̇ ≤ − b

J
ζ2 +

1

J
ζ(dw + du)

≤ − b

2J
|ζ|2 − b

2J
|ζ|2 +

√
2

J
|ζ| · ||d||

≤ − b

2J
|ζ|2 ∀|ζ| ≥ 2

√
2

b
||d||.

We conclude that in the regionωm ≥ 0 (i.e. ζ ≥ −ω̄m), the inequality

V̇ ≤ − b

2J
|ζ|2

holds for alld satisfying||d|| ≤ b
2
√

2
|ζ|. Thus, (5.1.3) holds with

W (ζ) =
b

2J
|ζ|2 and ρ(r) =

2
√

2

b
r.

In the regionωm < 0 the systemS1 can be written as

ω̇m =
1

J
(c + dw + du − bωm).
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Take againζ = ωm − ω̄m (so thatζ ≤ −ω̄m). Using (5.2.5), we obtain that in this region

ζ̇ =
1

J
(c + dw + du − bω̄m − bζ)

=
1

J
(Kω̄2

m + dw + du − bζ).

Assuming that||d|| ≤ b
2
√

2
|ζ|, we have

V̇ =
1

J
ζ(Kω̄2

m + dw + du − bζ)

=
1

J
|ζ|(−Kω̄2

m − dw − du − b|ζ|)

≤ 1

J
|ζ|(

√
2||d|| − b|ζ|)

≤ − b

2J
|ζ|2.

Thus (5.1.3) holds in this region (with the sameW andρ).

The Lyapunov functionV = 1
2
ζ2 satisfies (5.1.2) withα1(r) = α2(r) = 1

2
r2. We

apply Theorem 5.1.3, where(α−1
1 ◦ α2)(r) = r, so thatγ(r) = 2

√
2

b
r. We conclude that

the systemS1 is ISS with thisγ(r), so that (5.2.6) holds. 2

Remark5.2.1. If the damping coefficientb = 0, then we lose the ISS property, because

for ωm < 0, a negativeTt will accelerate the turbine so thatωT → −∞. This would not

happen in practice, because the yaw controller (ignored in our analysis) would reverse the

turbine leading toTt > 0.

5.3 Stability analysis based on the two-mass drive-train
model

Proposition 5.3.1.Consider the linear drive-train systemS1, described by the matrices

(A,B,C,D) from (2.8.2), with inputu = [Ta, −Te]
T , statex = [θk, ωT , ωm]T and

outputy = [ωT , ωm]T . Then this system is passive with the storage functionH(x) =

xT Px, where

P =




Ks 0 0
0 JT 0
0 0 JG


 . (5.3.1)
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Proof: For the two-mass drive-train model (2.8.2), it can be checked that(A,B) is

controllable and(A,C) is observable. If we choose a positive definite matrixP (5.3.1),

then it can been shown that

PA + AT P = −Q

= −




0 0 0
0 2Cs −2Cs

ng

0 −2Cs

ng

2Cs

n2
g

+ 2b


 , (5.3.2)

PB = CT ,

D + DT = 0.

The matrixQ is positive semi-definite. We takeL =
√

Q andW = 0, then according

to Lemmas 5.1.1 and 5.1.2, the system(A,B,C,D) is passive. 2

Proposition 5.3.2.Consider the closed-loop wind turbine systemS2 described by (2.8.2),

(5.2.1) and (5.2.2). We regard this system with inputd = [Ta, du]
T , state x =

[θk, ωT , ωm]T and outputy = [ωT , ωm]T . Then this system is passive with the same

storage functionH as in Proposition 5.3.1.

Proof: From Proposition 5.3.1, we see thatS1 is passive. Choose the same storage

functionH, we have

Ḣ ≤ uT y

=

[
Ta

du − T ref
e

]T [
y1

y2

]

=

[
Ta

du

]T [
y1

y2

]
− T ref

e y2.

We see from (5.2.1) that the termT ref
e y2 ≥ 0 only exists wheny2 = ωm ≥ 0. Hence

we have

Ḣ ≤
[

d1

d2

]T [
y1

y2

]
.

Thus,S2 is passive. 2
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Proposition 5.3.3.Consider the closed-loop systemS2 formed by the drive-train (2.8.2)

with the feedback law (5.2.1), withdu = T ref
e − Te = 0 and withTa = ngc > 0 (a

constant). Then this system is GAS with respect to the equilibrium point

x̄ =




x̄1

x̄2

x̄3


 =




ngc

Ks√
b2+4cK−b

2Kng√
b2+4cK−b

2K


 . (5.3.3)

Note thatTa is the aerodynamic torque (see (2.3.2)) andc is the active torque referred

to the high speed shaft, as in Proposition 5.2.1.

Proof: The closed-loop systemS2 with Ta = ngc can be written as

ẋ =

{
Ax + B1ngc when ωm < 0,
Ax + B1ngc + B2(−Kx2

3) when ωm ≥ 0.

In the regionωm ≥ 0 we have a unique equilibrium point̄x, which is the positive

solution of the equation

0 = Ax̄ + B1ngc + B2(−Kx̄2
3). (5.3.4)

In the regionωm < 0 there is no equilibrium point.

Takeζ = x− x̄ and choose the Lyapunov functionV = 1
2
ζT Pζ. In the regionωm ≥ 0

(or ζ3 ≥ −x̄3), using (5.3.5), we obtain

ζ̇ = Ax + B1ngc + B2(−Kx2
3)

= A(ζ + x̄) + B1ngc−B2K(ζ3 + x̄3)
2

= Aζ −B2K(ζ2
3 + 2x̄3ζ3).

SinceV̇ = ζT P ζ̇, we obtain

V̇ =
1

2
ζT (PA + AT P )ζ −K(ζ3

3 + 2x̄3ζ
2
3 ).

We know from (5.3.2) thatPA + AT P ≤ 0, hence

V̇ ≤ −K(ζ3
3 + 2x̄3ζ

2
3 )

≤ 0 ∀ζ3 ∈ [−x̄3,∞).
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In the regionωm < 0 (or ζ3 < −x̄3), also using (5.3.5), we obtain

ζ̇ = Ax + B1ngc

= A(ζ + x̄) + B1ngc

= Aζ + B2Kx̄2
3.

Choosing the same Lyapunov function, we obtain

V̇ =
1

2
ζT (PA + AT P )ζ + Kx̄2

3ζ3

≤ Kx̄2
3ζ3

< 0 ∀ζ3 ∈ (−∞,−x̄3).

Using again one of Lyapunov’s stability theorems (see [32, Theorem 4.2]), we con-

clude that the equilibrium point̄x is GAS. 2

Now we shall consider the closed-loop systemS2 consisting of the two-mass model

of the drive-train, described by the matricesA,B,C,D from (2.8.2), with the quadratic

torque control (5.2.1), with a torque tracking errordu as in (5.2.2) and with an aerody-

namic torqueTa = ngc + dw, wherengc is a “steady state” value anddw is the deviation

of Ta from this value, see Figure 5.2. Our main result is the following:

A B

C D

drive-train

quadratic
torque

controller

+

+
+

cng

eTu

aT

ref
eT

u

w

d

d

d y

m

T

Figure 5.2: The (linear passive) two-mass drive-train from (2.8.2) with the quadratic
torque controller from (5.2.1). This closed-loop system is calledS2 in Theorem 5.3.4.
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Theorem 5.3.4.Consider the closed-loop wind turbine systemS2 described by (2.8.2),

(5.2.1) and (5.2.2), whereTa = ngc + dw, c > 0 is a constant anddu, dw are disturbance

signals. We regard this system with inputd = [dw, du]
T , stateζ = x− x̄, wherex̄ is given

in (5.3.3) and outputy = [ζ2, ζ3]
T . Then this system is iISS, more precisely

α(‖ζ(t)‖) ≤ β(||ζ(0)||, t) +

∫ t

0

‖d(τ)‖dτ,

for all t > 0, whereα ∈ K∞ andβ ∈ KL.

Proof: We know from Proposition 5.3.2 that the closed-loop turbine systemS2 is

passive. We also know from Proposition 5.3.3 thatS2 is GAS with respect tōx, which is

the positive solution of the equation

0 = Ax̄ + B1ngc + B2(−Kx̄2
3). (5.3.5)

In the regionωm < 0 there is no equilibrium point.

In the regionωm ≥ 0 (or ζ3 ≥ −x̄3), using (5.3.5) we obtain

ζ̇ = Ax + B1(ngc + dw) + B2(−Kx2
3 + du)

= A(ζ + x̄) + B1(ngc + dw)−B2K(ζ3 + x̄3)
2 + B2du

= Aζ + B1dw + B2du −B2K(ζ2
3 + 2x̄3ζ3).

In the regionωm < 0 (or ζ3 ≤ −x̄3), using (5.3.5), we obtain

ζ̇ = A(ζ + x̄) + B1(ngc + dw) + B2du

= Aζ + B1dw + B2du + B2Kx̄2
3.

In both regionsωm ≥ 0 andωm < 0, sinceζ̇ depends on the inputd linearly, we can

easily see that the condition (A) in Theorem 4.1.2 holds.

Choose the storage functionH(ζ) = ζT Pζ, whereP is the positive definite matrix

shown in (5.3.1). Letλmin denote the smallest eigenvalue ofP (i.e. the smallest ofKs,

JT andJG). ThenH(ζ) ≥ λmin||ζ||2. Hence, (4.2.2) holds forα = 2 andk = λmin.

Since the output ofS2 depends on the stateζ linearly, i.e. y = Cζ, we may choose

c(r) = ‖C‖r = r. Then it can be shown easily that (4.2.3) holds (see Remark 4.2.1).
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Applying Theorem 4.2.2, we conclude that (4.2.6) holds. 2

We remark that a direct proof of this theorem has been given in our paper [57], where

we chose the Lyapunov function

V (ζ) =
1
2
ζT Pζ√

1 + 1
2
ζT Pζ

and showed thatS2 with V satisfy (4.1.3).

5.4 Adaptive torque control

For the turbine operating in region 2, we propose the following adaptive torque controller,

which is very similar to the standard quadratic control law as shown in (5.2.1), but now

K, instead of being a constant, is adaptive, searching for the valueKopt from (2.3.3).

According to (2.3.3) we can factorKopt = ρM opt, where the air densityρ is measurable,

so that we only have to adjust an adaptive gainM searching forM opt. The adaptive

control law is

T ref
e =

{
0 when ωm < 0,
ρMω2

m when ωm ≥ 0.
(5.4.1)

We add a modulation∆M · cos(2π
T

t) to M to see its effect on the electrical power

Pe = Teωm. The periodT of this modulation is much larger than the time constant of the

linearization of the system from (5.2.4), in order to eliminate the effect of the inertia. We

expectPe to oscillate in phase withM if M < M opt, and we expectPe to oscillate about

180◦ out of phase withM if M > M opt. To eliminate as much as possible the effect of

the random wind, we look atPe

Pwind
, instead ofPe, wherePwind is the available wind power

(see (2.3.1)). For this, we need wind speed measurements. An anemometer on the top of

the turbine’s nacelle or on a separate meteorological tower can provide the wind speed

measurements in real time (see [31]). Assuming that the wind speed measurements are

reliable, we can use the following update algorithm forM :

ż(t) = −γz(t) +
Pe(t)

Pwind(t)
· cos(

2π

T
t),

Ṁn(t) = λz(t),

M(t) = MSZOH
n (t) + ∆M · cos(

2π

T
t),
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whereγ is a forgetting factor,λ is a small positive constant,MSZOH
n (t) is the signal

Mn(t) processed by a sampler and a zero order hold (SZOH) with the sampling period

Ts being an integer multiple of the modulation periodT . Some guidelines on the tuning

of these parameters will be given in Section 5.5. The block diagram of the algorithm for

the adaptation ofM is shown in Figure 5.3. Figure 5.4 shows a dynamic saturation block

used for chopping off the spikes in the signalPe

Pwind
, which are due to wind gusts or to

moments withPwind = 0 (no wind).

+
+

wind

e

P
P

dynamic 
saturation block

SZOH

M

M

LPF

SZOH
nMnMzr

)
2

cos( t
T

s
1

s

modulation

Figure 5.3: The block diagram of updatingM . The details of the dynamic saturation
block appearing above are shown in Figure 5.4. LPF stands for low pass filter.

1
1
sTlwind

e

P
P

y
up

lo

u

1.2

0.8

saturationLPF

r

Figure 5.4: The dynamic saturation block used for conditioning the signalPe

Pwind
. If Pe

Pwind

has no sudden changes, such as spikes, then the outputr of this block is the same as its
input. Sudden changes larger than±20% are cut off by this system. The signalr is fed
into the adaptive torque control law. HereTl = 5T . The block marked “saturation” is a
saturation with unity gain and adjustable saturation limits.

The signal∆M · cos(2π
T

t) may be considered as being added to the tracking error of

the generator torque,du (5.2.2), see Figure 5.2.
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If the wind speed is constant, thenMSZOH
n converges toM opt (the proof is a bit tedious

and we omit it). With a random wind speed,MSZOH
n will not converge, but it will vary in

a narrow range aroundM opt.

This search algorithm for the optimal gainM opt need not run all the time: it may be

enough to updateM by running this adaptive system for one day every few months. The

disturbance introduced to the power grid by this adaptive system (the modulation ofM )

is very small, see Section 5.5.

5.5 Simulation results

The simulations have been carried out using Matlab/Simulink. The two-mass drive-train

model has been used to test the adaptive torque control method. The turbine parameters

are taken from a generic5MW offshore wind turbine model (see Table 5.1 and [33]).

The damping coefficientb has been taken zero, because it is very small. The electrical

subsystems of the wind turbine (DFIG, converters and their controllers) have also been

neglected, because we assume that the DFIG with a good rotor current control system

responds rapidly and accurately when tracking the reference torque given by the torque

controller. The wind speed along the turbine axis (see Figure 5.5) has been generated

based on the frequency spectrum proposed by Kaimal (see [52]).
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Figure 5.5: A realistic wind speed input ranging from4m/s to 14m/s covering the low
to medium wind speed region. This is a zoomed plot.

The parametersT, Ts, γ, λ and∆M in the adaptive torque control law have been cho-

sen based on trial and error. The modulation periodT needs to be very large in order
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Table 5.1: Nominal physical parameters of the5MW wind turbine

Description Parameter Value

Rated turbine power 5MW

Number of blades 3

Turbine blade length Rw 55m

Turbine inertia JT 2.225 · 107kgm2

Gearbox ratio ng 60.88

Generator inertia JG 600kgm2

Torsional stiffness Ks 7.5 · 108Nm/rad

Torsional damping Cs 100Nms/rad

Damping coefficient b 0kgm2/s

Air density ρ 1.225kg/m3

Grid frequency f 50Hz

No. of pole pairs np 2

Synchronous speed ωs 157.08rad/s

to eliminate the effect of the turbine inertia, so we choseT = 2000s. Ts has to be an

integer multiple ofT , so we choseTs = 4000s. If we define the forgetting factor to be

γ = 2π
Tγ

, thenTγ should be on the order of hours. We tookTγ = 7200s. λ and∆M

would influence the convergence rate ofM . A largeλ may cause instability, while a large

∆M would introduce large oscillations into the electrical torque. We choseλ = 10−5 and

∆M = 0.15.

Our main concerns on the adaptive torque control law are 1) its accuracy and conver-

gence rate; 2) its influence on the power grid. Based on the standard quadratic control

law (see (2.3.3)) as well as the simulatedCp curves (see Figure 2.3(b)), we can obtain

the optimal gainM opt = 2.3m5. In one of the simulations (see Figure 5.7), we chose the

initial value ofM to be1m5. This−56.5% deviation from the optimal gainM opt would

result in a15% loss of the electrical power output if the wind speed were constant, equal

to its mean value of8m/s. By using the adaptive torque control law, after approximately

30 hours, we see thatM oscillates around2.2m5 with the modulation amplitude set at

∆M = 0.15m5. Now, this−4.3% deviation fromM opt would only result in a0.06% loss
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Figure 5.6: The generator power outputPe versus the deviation ofM from the optimal
gainM opt, for three different wind speeds. Herea = M−Mopt

Mopt · 100%.

of the electrical power output if the wind speed were equal to the same constant8m/s.

This is because the plot of the electrical power as a function ofM is rather flat, see Fig-

ure 5.6. This shows that the adaptive algorithm leads to a high efficiency in wind energy

capture. In terms of the influence on the power grid, we can see from Figure 5.8 that

the adaptive algorithm does not result in noticeable electrical power oscillations, when

compared to the variations due to the random nature of the wind.
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Figure 5.7: The control gainM in the quadratic control law and a zoomed plot. We see
thatM oscillates around2.2m5 with the modulation amplitude set at∆M = 0.15m5. The
optimal control gain isM opt = 2.3m5. This−4.3% error inM would result in a0.06%
loss of the electrical power output if the wind speed were constant, equal to its mean value
of 8m/s. This error inM is acceptable from an energy production point of view.
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Figure 5.8: The electrical power output with the quadratic torque control law and the
adaptation ofM , as described in Section 5.4. If we plot the electrical power output with
the same random wind speed and with constantM = M opt, we get practically the same
curve, visually not distinguishable at the scale of the plot. Thus the adaptation algorithm
does not result in noticeable electrical power oscillations, when compared to the variations
due to the random nature of the wind.
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Chapter 6

Conclusions and future works

6.1 Conclusions

In Chapter 3, we propose a two-loop control strategy for a grid-connected wind driven

DFIG using LPV technique. In the inner electrical loop containing a DFIG and a rotor-

side converter, the LPV control technique has been applied to guarantee quadraticH∞

performance of the closed-loop system, which represents robust tracking of the rotor cur-

rent over the entire operating range of the system. The main merits of the LPV control

technique are:

• It provides a systematic way of designing controllers for LPV systems, such as

DFIG;

• The synthesized controller is given by a simple linear interpolation without the

classical interpolation drawbacks;

• The controller is adaptively gain-scheduled using the parameter measurements, so

that the plant dynamics are taken into account in real time.

• The online computation of the controller is cheap so that the implementation of the

LPV controller using a cheap processor can be an option in industry.

Controller reduction has also been developed based on the truncation of fast modes.

The method has significantly reduced the size of the LPV controller’s state-dimension.

A frequency support controller has been designed to extract the kinetic energy stored in

the turbine blades and contribute to the grid frequency support following loss of network
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generation.

In Chapter 4, we have shown that under mild assumptions, a passive nonlinear system

which is GAS is also iISS with a very simple (L1 norm type) integral term. Our main

result eliminates the need for finding a Lyapunov function satisfying the estimate (4.1.3)

for this class of systems.

In Chapter 5, we have investigated the stability of a variable-speed wind turbine operat-

ing in region2. The closed-loop wind turbine system has been modelled at the mechanical

level as a drive-train with the standard quadratic torque controller. We have shown that

the turbine system is ISS for the one-mass model and iISS for the two-mass model. This

is useful for assessing the robustness of the system with respect to tracking errors of the

electrical torque and with respect to small perturbations of the electrical torque introduced

in order to identify the optimal control gain of the torque controller.

6.2 Future works

Some possible extensions of the results and techniques presented in this thesis have been

identified. They are as follows:

• Future work is required to assess the dynamic performance of the proposed two-

loop control strategy in a power network model that combines synchronous and

wind farm (WF) generation, see [26, 38] and see Figure 6.1 for such a power net-

work model.

• The frequency support controller proposed in this thesis can be extended to support

the secondary frequency control. The idea is that a WF can be controlled to operate

with a certain constant reserve capacity in relation to its momentary possible power

production capacity. Then the reserved kinetic energy can be released in frequency

control action, see [22].

• We aim to develop advanced control strategies for wind turbines that will enable the

active suppression of mechanical vibrations of the tower and drive-train, and better

grid integration of WFs. The suppression of vibrations would enable lighter, less

rigid structures, whereas better grid integration refers to the contribution of WFs
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Figure 6.1: Generic network model developed to assess dynamic and transient perfor-
mances

to voltage support and recovery following network faults, together with improved

power system damping to prevent inter-area oscillations. Vibration suppression and

grid integration may lead to conflicting requirements, and a proper balance must be

sought.
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Appendix A

Realization of system matrices

A.1 Realization ofP̃j

Here we derive (3.6.5), the realization of the extended plant for any fixedθ =
[

ωs ωr

]T
. DenotingÃ = A0 + ωsA1 + ωrA2, we have from Figure 3.3

ỹ1 = z =

[
Ã B1 B2

C1 D11 D12

] [
w
u

]
,

ỹ2 = x =

[
Ã B1 B2

C2 D21 D22

] [
w
u

]
,

z̃1 = W1z

=

[
Aw Bw

Cw Dw

] [
Ã B1 B2

C1 D11 D12

] [
w
u

]

=




Ã 0 B1 B2

BwC1 Aw BwD11 BwD12

DwC1 Cw DwD11 DwD12




[
w
u

]
,

z̃2 = Wuu

=

[
Au 0 Bw

Cu 0 Du

] [
w
u

]
.

If we combine the above equations, then we obtain (3.6.5).

A.2 Realization ofTzw

Here we derive (3.6.6). For any fixedθ =
[

ωs ωr

]T
, by denotingÃ = A0 + ωsA1 +

ωrA2, we have from Figure 3.3 thatu = CKxK , wherexK satisfies

ẋK = AKxK + BK1z + BK2y.
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Substitutingu = CKxK into (3.5.1), then

ẋ = Ãx + B1w + B2CKxK ,

z = C1x + D11w + D12CKxK ,

y = C2x + D21w + D22CKxK .

Furthermore

ẋK = (AK + BK1D12CK + BK2D22CK)xK

+(BK1C1 + BK2C2)x + (BK1D11 + BK2D21)w.

Hence, the transfer matrix fromw to z for any fixedθ is (3.6.6).
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Appendix B

Simulink models
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Figure B.1: The Simulink implementation of the LPV control of a DFIGWT. The wind
turbine block is shown in Figure 2.7. The4th order DFIG block is shown in Figure B.4.
The drive-train block is shown in (2.8.2). The grid and PLL block is shown in Figure 3.5.
The electrical torque controller block is shown in Figure 3.1. The reference rotor current
calculation is shown in (3.6.4). The LPV current controller block is shown in Figure B.2.
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Figure B.2: The Simulink implementation of the LPV controller, including the con-
troller reduction procedure shown in Section 3.4. The vertex controllers(K̆1, K̆2, K̆3, K̆4)
are computed using (3.4.1). The system matrices of the reduced controllerKr =
(Ã, B̃, C̃, D̃) are computed using (3.4.3)-(3.4.6). The convex decomposition block is
implemented using a Matlab routine:polydec.m.
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Figure B.3: Vector control of the grid-side converter. The grid side converter block is
shown in (2.7.1). The DC-link block is shown in Section 2.7.
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Figure B.4: The Simulink model of the4th order DFIG.


