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Abstract

In Chapters 2 and 3 of the thesis we propose a self-scheduled control method for a doubly-
fed induction generator driven by a wind turbine (DFIGWT), whose rotor is connected to
the power grid via two back-to-back PWM power converters. We design a controller for
this system using the linear matrix inequality based approach to linear parameter varying
(LPV) systems, which takes into account the nonlinear dynamics of the system. We pro-
pose a two-loop hierarchical control structure. The inner-loop current controller, which
considers the synchronous speed and the generator rotor speed as a parameter vector,
achieves robust tracking of the rotor current reference signals. The outer-loop electrical
torque controller aims for wind energy capture maximization, grid frequency support and
generates the reference rotor current. We perform a controller reduction for the inner-loop
LPV controller, which is not doable by conventional model-reduction techniques, because
the controller is parameter-dependent. In simulation, the reduced order controller has been
tested on a nonlinear 4th order DFIG model with a two-mass model for the drive-train.
Stability and high performances have been achieved over the entire operating range of
the DFIGWT. More importantly, simulation results have demonstrated the capability and
contribution of the proposed two-loop control systems to grid frequency support.

In Chapter 4 we investigate the integral input-to-state stability (iISS) property for pas-
sive nonlinear systems. We show that under mild assumptions, a passive nonlinear system
which is globally asymptotically stable is also iISS. Moreover, the integral term from the
definition of the iISS property has a very simple form (likel2morm). These theoretical
results will be useful for our stability analysis of wind turbine systems in Chapter 5.

In Chapter 5 we investigate the stability of a variable-speed wind turbine operating
under low to medium wind speed. The turbine is controlled to capture as much wind

energy as possible. We concentrate on the mechanical level of the turbine system, more



precisely on the drive-train with the standard quadratic generator torque controller. We
consider both the one-mass and the two-mass models for the drive-train, with the inputs
being the deviation of the active torque from an arbitrary positive nominal value and the
tracking error of the generator torque. We show that the turbine system is input-to-state
stable for the one-mass model and iISS for the two-mass model. Using our abstract results
from Chapter 4, we identify the iISS gain of this system. We also propose an adaptive

search algorithm for the optimal gain of the quadratic torque controller.



Acknowledgements

This thesis is a summary of my PhD research at Imperial College London, supervised by
Professor George Weiss. | have been working on this project with Prof. Weiss since May
2004, when | was studying towards an MSc degree. Throughout my study at Imperial
College, | have been learning from Prof. Weiss. As he once mentioned, PhD study is a
kind of adventure, full of risks and uncertainties. Thanks to his inspiration and guidance,
this journey is fruitful and means very much to me. | experienced the joyfulness when
our first paper was accepted for publication, then comes the second, the third, etc. | also
experienced the dilemma when something we proposed was theoretically nice but might
not necessarily work very well in practice. Most of the time, we were struggling with
ideas or simulations and could not make progress for days. Looking back, | feel that
although we have eventually worked out many questions in this project, in real life there
are always more questions than answers. Here let me convey my gratefulness and best
wishes to Prof. Weiss. Thank you!

Then | would like to thank Miss Xia Wang for her support throughout my study in
the UK. You have been extremely encouraging, especially since | began to think about
future career. Do you remember those days when | was working at McD and struggling
with life? Do you remember those times when | presented my papers in conferences and
began to realize my strength and career ambition? You may forget last summer at LSE
and this spring at FTC, but you would not forget the time we spent and the effort we made
in pursuing a career in the UK, which | believe is life-changing.

I would like to thank Mr. Shaohua Tang, my old housemate and my “old brother”. You
are my lighthouse, especially during those early days in the UK, when | felt confused and
sometimes even depressed about the gap between education and career. Looking at your

path to success, | can always feel the power of your philosophy of life.



My colleagues, Mr. Bayu Jayawardhana, Miss Xinxin Wang, Mr. Zhenhai Li, Ms.
Chunmei Feng, etc. Thank you for your concerns on both my life and study in the UK.
You are ones of those most talented and hard-working people | have ever met. Working
with all of you at Imperial College is definitely a good memory.

In the end, to my beloved parents. You may not understand my PhD research, you
could not imagine what | am doing everyday, you have not seen my face for the last three
years, but | know from the bottom of my heart that you understand your son best. Your
love and trust are my torches in darkness. Your smile is and will always be my biggest

drive for success throughout my career!



To my parents



Contents

Statement of Originality 1
Abstract 3
Acknowledgements 5
1 Introduction 15
1.1 Backgroundsand motivations . . . . . .. ... ... ... ... 15
1.2 Contributions ofthethesis . . . ... .. ... ... ... ........ 20
1.3 Structureofthethesis . . . . . .. .. ... ... .. o 20
2 Wind turbine systems 22
21 Windproperties . . . . . . .. 22
211 Turbulence . ... ... ... ... 22
212 Windspeedmodel . ... ... ... .. ... ... .. ..... 23
2.2 Aerodynamics of horizontal-axis wind turbines . . . . . ... ... ... 24
2.2.1 Theactuatordiscconcept. . . . .. ... ... .. .. ...... 24
2.2.2 Rotorbladetheory . . .. ... .. ... ... ... ... .. 28
2.3 Torquecontrolinregion2 . . . ... .. . . ... ..., 31
2.4 Control strategiesinregion3 . . . . . . . . . .. ... e 33
2.4.1 Control of tower fore-aft vibration . . . . ... .. ... ..... 34
2.4.2 Control of drive-train torsional vibration . . . . . . ... ... .. 35
2.5 Reference frameconversion . .. .. .. ... .. ... .. .. ... 37
2.5.1 Transformation from a three phase to a stationary reference frame 37
2.5.2 Transformation from a stationary to a rotating reference frame . . 37
2.6 Wind-driven doubly-fed induction generator . . . . . .. ... ... ... 40
2.6.1 Some typical features and advantages of the DFIG . . . . . . .. 40
26.2 Powerflow . ... .. ... ... 41
2.6.3 The 4th-orderDFIGmodel . . . . . .. .. ... ... ...... 42
2.6.4 Modeling of DFIG in the stator-flux reference frame . . . .. .. 43
2.7 Modeling and control of the grid-side converter . . . . . ... ... ... 45
2.7.1 \Vector control of the grid-side converter . . . . . .. ... .. .. 47
2.8 Modelling the drive-traindynamics . . . . . .. ... ... .. ...... 49
2.8.1 The one-massdrive-trainmodel . . .. ... ........... 49

2.8.2 The two-mass drive-trainmodel . . . . . . ... ... ... ... 50



CONTENTS 9

3 LPV control of a DFIGWT with primary grid frequency support 53
3.1 LPVsSystems . .. . . . . . . .. 53
3.2 Computation of the self-scheduled LPV controller . . . . . ... .. ... 57
3.3 Controller design with pole placement constraints . . . . ... ... ... 59
3.4 Controller reduction based on the truncation of fastmodes . . . . . . .. 59
3.5 LPVmodelfortheDFIG . .. .. .. ... ... . ... . ........ 61
3.6 Two-loop control systemsdesign . . . . .. ... ... .......... 63

3.6.1 Electrical torque control with frequency support. . . . . .. ... 63
3.6.2 Self-scheduled LPV current controlloop . . .. ... ... ... 67

3.7 Simulationresults . . . . . ... e 69

4 The ilSS property for passive nonlinear systems 79
4.1 Backgroundconcepts . . . . . . ... 79
4.2 The ilSS property for passive nonlinear systems . . . . .. ... .. ... 82
4.3 Examples . . . . . .. e 85

5 Stability analysis of the drive-train of a wind turbine with quadratic torque
control 87
5.1 Backgroundconcepts . . . . . . . . ... e 87
5.2 Stability analysis based on the one-mass drive-train model . . . . . . .. 89
5.3 Stability analysis based on the two-mass drive-train model . . . . . . .. 92
5.4 Adaptivetorquecontrol . . . . ... ... L L 97
5.5 Simulationresults . . . . . ... L 99

6 Conclusions and future works 104
6.1 Conclusions . . . . . . .. e 104
6.2 Futureworks . . . . . . .. 105

Bibliography 107

A Realization of system matrices 114
Al RealizationofP; . ... ... ... .. ... ... 114
A.2 Realizationofl',, . ... .. . . . . . . . . e 114

B Simulink models 116



10

List of Figures

1.1 Control of a grid-connected wind driven DFIG with back-to-back con-
verters for the rotor power. The block diagram used in the synthesis of
the rotor current controller is shown in Figure 3.3. The block diagram
of the electrical torque controller (which also does frequency support) is
shown in Figure 3.1. The reference rotor current calculation is explained
in Section 3.6.1. The phase-locked loop (PLL)-based estimation is shown
in greater detail in Figure 3.5. The block labelled “controller for grid

integration” controls the stator reactive power and the GSC reactive power. 16

2.1 Simulated wind speed sampled at 30Hz and mean wind speed8m/s . .. 24
2.2 An energy extracting actuator disc and stream-tube. . . . . . ... .. .. 26
2.3 (a) Output power of a typical wind turbine operating in different wind

speed regions, denoted by 1, 2 and 3 (taken from GE, see[17]). (b) Typical

C, curves for a wind turbine, as a functiondands. . . ... ... .. 27
2.4 Ablade element sweepsoutanannularring . . ... ... ... ..... 30
2.5 Blade elementvelocitiesandforces . . ... ... .. .......... 30
2.6 Lift coefficient and drag coefficient . . . . . . ... ... ... ...... 31

2.7 The Simulink model of the wind turbine. The ‘G&)}’ block is shown in

(2.2.8). The ‘Call,;’ block is shownin (2.3.2). . ... .......... 32
2.8 Assumed wind turbine model witlt degree-of-freedom. . . . . . . . .. 33
2.9 Block diagrams for the control of the mechanical part of a wind turbine

in both regions 2 and 3. Note that the pitch controller and the drive-train

vibration controllerK”¢ are only functioning inregion3. . . . . .. . .. 36

2.10 Transformation frombc to aG-referenceframe . . . . . . . ... . ... 38



LIST OF FIGURES 11

2.11 Transformation from/ to dg-reference frame . . ... ... ... ... 39
2.12 Power flow of a lossless DFIG wind turbine system . . . . .. ... ... 41
2.13 Grid-side converter . . . . . . ... 45
2.14 Vector control of the grid-side converter. . . . . . .. .. .. ... .. .. 48

2.15 (a): A one mass model for the drive-train; (b): Another representation of
the one mass model with parameters referred to the high-speed shaft. . . . 50

2.16 The two-mass drive-train model with gearbox. . . . . . .. ... .. ... 51

3.1 Block diagram of the electrical torque controller. The quadratic torque
controller has been shown in (3.6.1). The speed protection block is es-
sentially a switch. Whew, drops below the lower bound;”*/ = u;,
otherwisel*/ = u3. LPF stands for low pass filter. The on/off states of
the relay blocks are shownin Figure3.2. . . . . .. ... ... ...... 65

3.2 The specification of the relay blocks from Figure 3.1. The horizontal axis
is the filtered frequency deviation signal The relayl block is used to
prevent oscillations im,. The relay2 block is used to prevent oscillations
inthe shutdownsignal. . . . .. ... ... ... ... ........ 66

3.3 Formulation of the LPV control problem. This block diagram represents
the extended pIarﬁ’ for the LPV controller synthesis, which consists of
the original LPV model of the DFIG (3.5.1) together with the filtérs
andW,. The parameter vectdr= [w, w,]7. . . . . .. ... ... ... 68

3.4 The Simulink implementation of the LPV controller, including the con-
troller reduction procedure shown in Section 3.4. Based on the measure-
ments ofw, andw,, the self-scheduled LPV controller is being updated
onling,inreal-time. . . . . . . . . . . . ... 70

3.5 The Simulink model of a simplified version of the PLL-based estimation
of f,, vas andv,, (these are expressed in the stator-flux reference frame).

In this simplified version, it is assumed thiai = 0 andw; is constant. A
3-phase programmable source has been used to generate the grid voltage

with a frequency dip, while keeping constant amplitude. . . . . . . . . .. 72



LIST OF FIGURES 12

3.6

3.7

3.8

3.9

The grid frequency, and the stator voltages;,, v,s. Att = 40s, the
frequencyf, drops from 50Hz to 48Hz and recoverstat 60s. . . . . . 72
The plot ofC,, assuming constant wind speed and a grid frequency drop
of 2Hz betweernt = 40s andt = 60s. From40s to 60s, C, is decreasing

due to the frequency support controller. Afgfrs, C, recovers to its
maximum valueC7**® = 0.4587 within 15s. . . . . . ... ... ... .. 73
Electrical torquel,, generator rotor speed. and electrical power out-

put P, under constant wind speed. The difference betwEe&h and 7,

is visually not distinguishable at the scale of the plot.tAt 40s, there

is a sudden increase ifi,, which is due to the frequency support con-
troller. The additional power output betweéts and60s demonstrates

the contribution of the wind turbine to grid frequency support. . . . . . . 74
DFIG rotor current tracking under constant wind speed. The spikes in the
tracking errors at0s and60s are due to the frequency support controller.

In the steady state, it can be seen thgt is around 14, which is very

small compared tg,. (more than 2000A). . . . . . .. ... ... .... 75

3.10 A more realistic random wind speed and the platpfAfter the first few

seconds, the wind speed is in the ram@e4]m /s, representing the low
to medium wind speed region (or region 2). Frafs to 60s, C,, drops in

response to the wind speed and the frequency support controller. . . . . . 76

3.11 Electrical torqud,, generator rotor speed. and electrical power out-

put P. under random wind speed. The difference betw&&H and 7,

is visually not distinguishable at the scale of the plot.tAt 40s, there

is a sudden increase ifi., which is due to the frequency support con-
troller. The additional power output betweéts and60s demonstrates

the contribution of the wind turbine to grid frequency support. . . . . . . 77

3.12 DFIG rotor current tracking under random wind speed. The spikes in the

tracking errors at0s and60s are due to the frequency support controller.
It can be seen that,. < 1A ataround’Os, which is very small compared
toi, (morethan 2000A). . . . . . . . . . . . . . 78



LIST OF FIGURES 13

4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

The functionF” (), which is a non-increasing continuous function\of

In this figure we have assumed thgt>0. . ... ... ... ...... 83

The dynamics and the equilibrium poiny, for the one-mass drive-train

The (linear passive) two-mass drive-train from (2.8.2) with the quadratic
torque controller from (5.2.1). This closed-loop system is caiedn
Theorem 5.3.4. . . . . . . . . . e 95
The block diagram of updatiny. The details of the dynamic saturation

block appearing above are shown in Figure 5.4. LPF stands for low pass
filter. . . . . . 98

The dynamic saturation block used for conditioning the sigﬁat. If

P has no sudden changes, such as spikes, then the outgdtthis

wind

block is the same as its input. Sudden changes largerdtkaf are cut

off by this system. The signalis fed into the adaptive torque control law.

HereT; = 5T. The block marked “saturation” is a saturation with unity

gain and adjustable saturation limits. . . . . .. ... ... .. ... ... 98
A realistic wind speed input ranging frofm:/s to 14m/s covering the

low to medium wind speed region. Thisisazoomedplot. . . . . . .. .. 99

The generator power outpHt versus the deviation df/ from the optimal

gain M, for three different wind speeds. Here= 2= . 100%. . . 101
The control gain/ in the quadratic control law and a zoomed plot. We
see that\/ oscillates around.2m® with the modulation amplitude set at
AM = 0.15m°. The optimal control gain ig/°"t = 2.3m?. This —4.3%

error in M would result in &.06% loss of the electrical power output if
the wind speed were constant, equal to its mean val8e:g. This error

in M is acceptable from an energy production point of view. . . . . . .. 102



LIST OF FIGURES 14

5.8 The electrical power output with the quadratic torque control law and the
adaptation of)/, as described in Section 5.4. If we plot the electrical
power output with the same random wind speed and with constast
Mert, we get practically the same curve, visually not distinguishable at
the scale of the plot. Thus the adaptation algorithm does not result in
noticeable electrical power oscillations, when compared to the variations

due to the random nature of thewind. . . . . . . . . . ... ... .... 103

6.1 Generic network model developed to assess dynamic and transient per-

formances . . . . . . .. e, 106

B.1 The Simulink implementation of the LPV control of a DFIGWT. The
wind turbine block is shown in Figure 2.7. THéh order DFIG block is
shown in Figure B.4. The drive-train block is shown in (2.8.2). The grid
and PLL block is shown in Figure 3.5. The electrical torque controller
block is shown in Figure 3.1. The reference rotor current calculation is
shown in (3.6.4). The LPV current controller block is shown in Figure B.2. 117
B.2 The Simulink implementation of the LPV controller, including the con-
troller reduction procedure shown in Section 3.4. The vertex controllers
(K1, K», K3, K,) are computed using (3.4.1). The system matrices of
the reduced controllek” = (A, B, C, D) are computed using (3.4.3)-
(3.4.6). The convex decomposition block is implemented using a Matlab
routine:polydec.m . . . . . . . ... 118
B.3 Vector control of the grid-side converter. The grid side converter block is
shown in (2.7.1). The DC-link block is shown in Section2.7. . . . . . .. 118
B.4 The Simulink model of thé'” order DFIG. . . .. ... ......... 119



15

Chapter 1

Introduction

1.1 Backgrounds and motivations

Wind driven power generating units based on a doubly-fed induction generator (DFIG), as
shown in Figure 1.1, have been widely recognized in industry as one of the most promis-
ing wind turbine configurations, especially for high power capacity off-shore wind farms.
A large number of such wind farms are already in operation and more are planned or un-
der construction (see [11] and [14]). The DFIG is a wound rotor asynchronous generator,
whose stator is connected to the power grid (via a transformer). The rotor operates at a
frequency depending on its speed, so that the power-flow between the rotor and the power
grid must be channelled through back-to-back AC/DC and DC/AC converters. The rated
power of the power converters defines the range of the variable speed (typical%o
around synchronous speed), see [8, 14, 21] and [42]. Control of the DFIG wind turbine
(DFIGWT) is theoretically challenging for control engineers because the dynamical sys-
tem, with a wide operating range, is highly nonlinear and the wind speed input is a rapidly
changing random signal.

Linear parameter varying (LPV) systems are a special class of systems, which for every
fixed value of the parameter vectgt) € R*® are linear time invariant (LTI) systems. We
need to consider LPV systems where the state-space matrices depend on the vector of

parameterg(t) in an affine fashion. A state-space representation of an LPV systism

z(t) = A0())z(t) +B(O(t))ult), (1.1.1)
y(t) = CO@))=(t) + D(O())ult), (1.1.2)
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Figure 1.1: Control of a grid-connected wind driven DFIG with back-to-back converters
for the rotor power. The block diagram used in the synthesis of the rotor current controller
is shown in Figure 3.3. The block diagram of the electrical torque controller (which also
does frequency support) is shown in Figure 3.1. The reference rotor current calculation
is explained in Section 3.6.1. The phase-locked loop (PLL)-based estimation is shown in
greater detail in Figure 3.5. The block labelled “controller for grid integration” controls
the stator reactive power and the GSC reactive power.
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wherez () is the statef(t) € R"), u(t) is the input vector angl(¢) is the measured output
vector. In this thesis, we only have to deal with LPV systems where measureméts of

are available in real time. For LPV systems, a traditional control method is to design
LTI controllers for several pointg8, and then using an interpolation technique to obtain
the control law over the entire operating range. The main drawback of this is a lack of
high performance, of robustness, even of stability [7]. In the framework of LPV systems
proposed by Apkariast al. [4], Apkarianet al. [5] and Gahinett al. [15], the controller
synthesis problem is formulated as a convex optimization problem. After solving some
linear matrix inequality (LMI) constraints, the so-called self-scheduled LPV controller is
given by a simple linear interpolation and then stability and certain performance bounds
are guaranteed along all possible trajectorie8.oA self-scheduled LPV controller can
update itself online using parameter measurements, so that the changing plant dynamics
are taken into account.

In Chapter 3, based on LPV control technique, we design an inner-loop current con-
troller for the DFIG, which achieves robust tracking of reference rotor currents. We take
both the synchronous speed and the generator rotor speed into the parameter vector to
conduct the LPV design. This is doable in practice, as the measurement of the generator
rotor speed can be obtained from a slower outer mechanical loop, while the measurement
of the synchronous speed is available using a PLL-based estimation (see Figure 1.1). A
good application of the LPV technique to the control of an induction motor can be found
in [44].

The synthesized LPV controller has at least the same order as the plant and may have
some unnecessary fast modes, which would complicate the hardware implementation [7].
Controller reduction for general LPV systems is an active research area, see Jaigioukha
al. [27]. We propose a crude controller reduction procedure for self-scheduled LPV con-
trollers. Fast modes are truncated so that the reduced order controller is easy to implement
on a digital signal processor (DSP).

In most countries, the nominal grid frequency is 50Hz. If the instantaneous demand
is higher than the generation, the system frequency will fall. Conversely, if the instanta-

neous demand is lower than the generation, the frequency will rise. Under exceptional
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circumstances, the system frequency can rise to 52Hz and fall as low as 47.0Hz. There
are two main causes for the frequency drodoss of generation;) increase in demand,

for example due to cold or hot weather. The active power output from a generator needs
to be controlled in response to the above situations, so that the grid frequency can be
maintained withint 0.5Hz around 50Hz (see [1]).

In the event of frequency drop, with traditional generation, the increase in the active
power output of the generators is achieved through governor control. As the penetration
of wind power in the electricity grid continues to increase in many countries, wind farms
could potentially contribute to the frequency support, see Hughes [26], Hanseret
al. [22] and Morrenet al. [38]. Motivated by this new control task for wind turbines to
provide grid support, in this thesis we design a novel frequency support controller, which
is embedded in the electrical torque controller (see Figure 1.1 and see also our recent
paper [58]). We take both the synchronous speed and the generator rotor speed into the
parameter vector to improve the LPV design for the DFIG, so that the grid frequency vari-
ation is taken into account, and more importantly, the stability of the DFIG is guaranteed
over the entire operating range of the wind turbine system.

The stability analysis of variable-speed wind turbines is another challenging task for
control engineers because the dynamical system, with a wide operating range, is essen-
tially nonlinear and the active torque (which depends on the wind speed as well as the
turbine speed and the pitch angle) is a random signal. The turbine system has hierarchical
control levels, see Figure 1.1. On the highest level (not shown in Figure 1.1), the su-
pervisory control system decides when the turbine should start up and whether it should
operate in regior (optimizing power capture under moderate wind speed) or in regjion
(maintaining constant power under high wind speed). The middle (mechanical) level con-
trol systems are responsible for generator torque control, pitch control and yaw control
(the latter is not shown in Figure 1.1). The lowest (electrical) control level is in charge of
rotor current control and DC-link voltage control, and this level is the fastest, see Johnson,
Pao, Balas and Fingersh [31]. It is reasonable to assume that the generator with a good
rotor current control system responds rapidly and accurately when tracking the reference

torque produced by the torque controller. Then, the stability analysis of the mechanical
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level does not depend on the details of the rotor current control. In this thesis, we focus
on the stability analysis of the drive-train with the inputs being the deviation of the active

torque from an arbitrary positive nominal value and the tracking error of the generator
torque (see the main results in Chapter 5).

The stability analysis of the drive-train with the quadratic torque control law has been
the main topic of the paper [31]. Our research (see our recent paper [57]) could be re-
garded as a continuation of their work. We consider the more accurate two-mass model
for the drive-train, and we consider global asymptotic stability (GAS) as well as the rel-
atively recent concepts known as input-to-state stability (ISS) and integral input-to-state
stability (iISS). For the interpretation and importance of ISS and ilISS, please refer to
[3, 51].

By extracting and generalizing the abstract idea in the direct proof of [57], we investi-
gate the iISS property for a broad class of passive nonlinear systems (see our recent paper
[56]). Stability analysis often involves a big effort to search for a Lyapunov function. Our
main result is meant to eliminate the need for finding a Lyapunov function satisfying the
condition (4.1.3) (see Chapter 4), for passive systems. By combining our result with a
recent result in Jayawardhana, Teel and Ryan [29], we can actually prove that under mild
technical assumptions, a passive and GAS system satisfies the iISS type estimate with a
very simple {.! norm type) integral term. We will illustrate the result by proving the iISS
property (with a simple integral term) for the drive-train of a wind turbine, in Chapter 5.

In order for a variable speed wind turbine to maximize wind energy capture, the turbine
aerodynamics need to be well known (see Subsection 2.3). Many control methods have
been proposed to maximize the energy production in the presence of turbine uncertainties
(see [6, 31, 35, 48]). We shall describe in Section 5.4 a simple adaptive algorithm that
updates the gain of the quadratic torque control law. No prior knowledge of the turbine
aerodynamics is required. This adaptive algorithm may be regarded as an alternative to
the one proposed in [31]. The simulation results in Section 5.5 show that this adaptive
algorithm together with the quadratic control law lead to a high efficiency in capturing the

available wind power.
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1.2 Contributions of the thesis

We mention below the contributions of the thesis which have been submitted as articles

in journals or presented in conferences.

e We propose a self-scheduled control method for a DFIGWT, using the LMI
based approach to LPV systems. We perform a controller reduction for the LPV
controller, which is not doable by conventional model-reduction techniques, see
[58, 60].

¢ We design a novel frequency support controller, which is embedded in the electrical
torque controller. The electrical torque controller is capable of both wind energy

capture maximization and primary grid frequency support, see [60].

e We investigate the iISS property for passive nonlinear systems. We show that under
mild assumptions, a passive nonlinear system which is globally asymptotically sta-
ble is also iISS. Moreover, the integral term from the definition of the iISS property
has a very simple form (like ah! norm). These theoretical results will be useful

for our analysis of wind turbine systems, see [56, 59, 57, 61].

1.3 Structure of the thesis

Throughout the thesis, we assume that the readers have some basic understanding on
vector control, robust control and stability for nonlinear systems.

Chapter 2 describes the wind turbine systems, which include wind speed character-
istics, wind turbine aerodynamics and control strategies, generator modelling, drive-train
dynamics and converter modelling. A brief introduction to the vector control of converters
using PI control technique is also given.

In Chapter 3, we propose a two-loop control strategy for a DFIGWT using LPV tech-
niques. We perform a controller reduction procedure for the inner loop LPV controller.
We also propose a novel frequency support controller which can be embedded in the

outer-loop electrical torque controller.



1.3 Structure of the thesis 21

In Chapter 4, we investigate the iISS property for passive nonlinear systems. We show
that under mild assumptions, a passive nonlinear system which is GAS is also iISS. More-
over, the integral term from the definition of the iISS property has a very simple form (like
anL! norm).

In Chapter 5, we investigate the stability of the drive-train of a variable-speed wind
turbine with quadratic torque control. The wind turbine is operating under low to medium
wind speed. We show that the turbine system is ISS for the one-mass drive-train model
and ilSS for the two-mass drive-train model. Using our abstract results from Chapter
4, we identify the iISS gain of this system. In the end, we propose an adaptive search

algorithm for the optimal gain of the quadratic torque controller.
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Chapter 2

Wind turbine systems

2.1 Wind properties

The wind is movement of air masses with different speeds in all the regions of the at-
mosphere. These movements are very difficult to characterize due to the highly variable
behavior both geographically and in time. This means that this variability persists over a
very wide range of scales in time. On a long-term scale, days and hours, the wind will
vary from site to site mostly dependent on the general climate and the physical geography
of the region. Locally, the short-time behavior of the wind is affected by the surface con-
ditions at the ground, such as trees, buildings, areas of water, etc. Then fluctuations in the
flow, i.e. turbulence, are introduced as well. The effect of the ground roughness will then

decrease as a function of height over the ground (see [55]).

2.1.1 Turbulence

Suppose the mean wind speéd, is typically determined as a 10 minute average value,
then instantaneous wind speéaan be described @8plus a fluctuating wind component
0 (see [55] and [45]).

U=U+4. (2.1.1)

The turbulence intensityf1, is computed by

ou
TI = —
U?

whereo; denotes the standard deviation of the wind speed. This is also calculated over

a time period of 10 minutes, with sampling frequency at least 1 Hz (see [45]). The ef-
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Table 2.1: Parameters for calculating vertical profile of wind speed

Type of terrain Roughness clas&™(m) a
Water areas 0 0.001 0.01
Open country, few surface features 1 0.12 0.12
Farmland with buildings and hedges 2 0.05 0.16
Farmland with many trees, forest

and villages 3 0.3 0.28

fect of the friction at the ground, the roughness, will decrease as the elevation increases.
The wind speed increases with increasing height as well which can be described by the

following power exponent function

U(h) = Ure! (%)a7

whereU (h) is the wind speed at heightabove ground level/™/ is the wind speed at
the reference heiglit” anda is the so-called Hellman exponent (see [24]) which depends
on the roughness of the terrain. Some parametersdodh” for different type of terrain

are shown in Table 2.1 (see [55]).

2.1.2 Wind speed model

As described in the previous section the characteristics of the wind will be affected by the
factors such as turbulence and height above ground. In the model of the wind that is used
for the simulations, following [45] and [43], the wind speed can be computed based on

the frequency spectrum proposed by Kaimal given by

0.4 2 1050
S0 = (i) T asgiyos

where f is the frequency. This is then solved by the relation taken from the probability

theory ;
VarlU(6)] ~ /0 S(f)df, 2.1.2)

where f.,, means the (upper) frequency at which to cut the spectrum. For valyég of

in the range from 10 to 100 Hz, Equation (2.1.2) will, according to [43], give a very good
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approximation. This is the description of the wind characteristics in one dimension which
is used in this thesis. A simulated wind speed with low turbulence intensity can be seen

in Figure 2.1.

11

Wind speed (m/s)

|
0 10 20 30 40 50 60
Time (s)

Figure 2.1: Simulated wind speed sampled at 30Hz and mean wind speed 8 m/s

2.2 Aerodynamics of horizontal-axis wind turbines

In this section, the background concepts on turbine aerodynamics are taken from Burton,

Sharpe, Jenkins and Bossanyi [10] and Heier [24].

2.2.1 The actuator disc concept

The aerodynamic behavior of the wind turbine can be analyzed without any specific tur-
bine design just by considering the energy extraction process. Actuator disc is introduced
to carry out this task (see [10]).

Assumptions:
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e The affected mass of air remains separates from the air which does not pass through

the actuator disc;

¢ A boundary surface can be drawn containing the affected air mass and this boundary
can be extended upstream as well as downstream forming a long stream-tube of

circular cross section.

Because the air within the stream-tube slows down, but does not become compressed,
the cross-sectional area of the stream-tube must expand to accommodate the slower mov-
ing air (see Figure 2.2).

As the air passes through the rotor disc, by design, there is a drop in static pressure such
that, on leaving, the air is below the atmospheric level. The air then proceeds downstream
with reduced speed and static pressure—this region of flow is calleudake

The mass of air which passes through a given cross section of the stream-tube in the
unit length of time isn AU, wherep denotes the air density, the cross-sectional area and
U the flow velocity. No air flows across the boundary and so the mass flow rate of the
air flowing along the steam-tube will be the same for all stream-wise positions along the
steam-tube,

pAooUoo = PAdUd = PAwa

where the symbobo refers to conditions far upstreamrefers to conditions at the disc
andw refers to conditions in the far wake.

The actuator disc induced a velocity variation which must be superimposed on the
free-stream velocity. The stream-wise component of this induced flow at the disc is given
by —aU,.,, wherea is called theaxial flow induction factoror theinflow factor At the

disc, therefore, the net stream-wise velocity is

Uy =Usx(1 —a). (2.2.1)

Momentum theory

The overall change in velocity of the air passing through the didé.is;- U,,. A rate of

change of momentun®,,, equals to the overall change of velocity times the mass flow
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Figure 2.2: An energy extracting actuator disc and stream-tube.

rate:
RM = (Uoo - Uw),OAdUd.

The force causing this change of momentum comes entirely from the pressure difference
across the actuator disc,
F = (p} —p;)As= Ry (2.2.2)

whereF' denotes the force on the air. It can be shown that (see [10])
Uy = (1 = 2a)Us. (2.2.3)
Substituting (2.2.1) and (2.2.3) into (2.2.2), we obtain
F =2pAU%a(1l —a).

Power coefficient
The power extracted from the air is given by

P, = FU; = 2pAqU2 a(1 — a)*. (2.2.4)
Thepower coefficienis then defined as

Cp,=—"— =4a(l —a)’. (2.2.5)

The maximum value of’, occurs when

dc,

— L =41 —a)(1 - 3a) =0,
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which gives a value of = £ and the maximum achievable value of the power coefficient
Cpet- = 0.593. This maximum power coefficient is known as the Betz limit after Albert
Betz, a German physicist and a pioneer of wind turbine technology. The Betz’ law states
that independent of the design of a wind turbine dsty3% of the kinetic energy in the

wind can be converted to mechanical energy. To date, no wind turbine has been designed
which is capable of exceeding this limit. The limit is not caused by any deficiency in
design, but because of the tube where the air is at the full free-stream velocity is smaller
than the area of disc.

Using the concept of’,, we rewrite (2.2.4):
P, = 0.5p7R2C, U2 | (2.2.6)

whereR,, is the blade length. The power coeffici€rtis a function of theip-speed ratio

(TSR) A andpitch angless as shown in Figure 2.3(b). If we denote by the turbine

speed, then
R wr
= (2.2.7)
Uso
A Rated capacity
’g 3600 - ‘ o
S 1 £
5 2600 ! ko)
| Q
2 | =
2. 2000 i Q
5 | 3 S
=3 ! g
5 1200 | 3
© | Rated wind speed £
400 4
1 4 7 10 13 16 19 22 25
Wind speed (m/s)

Tip-speed-ratio 4
(a) (b)

Figure 2.3: (a) Output power of a typical wind turbine operating in different wind speed
regions, denoted by 1, 2 and 3 (taken from GE, see[17]). (b) Typlgcalrves for a wind
turbine, as a function of ands.

The pitch angle is the angle of the rotation of the blades around their main axis, with

respect to a reference position (see Figure 2.5 (a)). In regidime pitch angle is kept
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constant, at an optimal valué°(in the example shown in Figure 2.3(b))}’, can be
maximized if the wind turbine is operating at maximdry

To evaluate th€, performance characteristic, there are two methods available

¢ data fields containing the family of curves derived from measurements or from cal-

culation;
e analytical functions.

If the turbine characteristics or the data for plotting them are available then the data
fields can be created by reading off the various values or entering them directly. These
then form the basis for performance computation in system simulations. The validity
of the results therefore will then be dictated by that of the data. When enough data are
available, linear interpolation can be used to arrive at intermediate values.

To arrive at a complete data set for the operation of a turbine, it may however be
necessary to extend the characteristics plot. By extending the characteristic curves for
small, or even negative, or large angles and by supplementing incomplete characteristics,
undefined operating states can be avoided. In this case, approximation(®f theves
by non-linear analytical functions is quite useful to forecast those extreme situations.

Following [24], a family ofC), curves can be generated by

Cp=ci(ca — 38 — caB'° — ¢5)e™, (2.2.8)

116

WhereCl =0.5,c9 = v

,0320.4,0420,05:5,06:%and

1 1 0.035

N A+0088 Bl

In practice, the”,, curves must be modified to obtain a close simulation of the machine
in question. To manage this, however, demands a non-negligible investment of time and

effort, even for those with long experience of performing such approximations

2.2.2 Rotor blade theory

Assume optimal operation which implies maximum power efficiency, arglconstant

along each blade, we could take= % which will produceC}*** = Cjp;.. For more
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realisticC,, curves shown in Figure 2.3(b), if the pitch angles fixed to be its optimal
value 37" = 1°, then the corresponding;** = 0.4587 will produce a more realistic
axial flow induction facto = 0.164 (see (2.2.5)). Again we assume tlais constant

along each blade, then for the segment with distance fromr-r(sate Figure 2.4), we have

a(l —a
o <W )
1—a
t = —
an ¢ (1 +a')’
a = ¢—p, (2.2.9)
wherep = - is the non-dimensional radial position, denotes the angle of attack

(AoA), andd’ is the tangential flow induction factor. Given Figure (2.6), once an AoA

is available from (2.2.9), the corresponding lift coefficiéhtand drag coefficient’; can

be found using interpolation. Then we are able to calculate the blade forces (see Figure

2.5(b)).

Vir = \/Ugo(l - a)Q + W%TQ(]' + a,)27
1

dF;, = §pV£rcCldr,
1

dFp = 5 pV2 cCydr,

dF,, = dFycos(¢)+ dFpsin(¢),
dFr = dFysin(¢) — dFp cos(¢),

whereV/,, is the relative wind speed at the bladés the chord /7, is the lift force normal
to the direction ofV/,,., F)p is the drag force parallel to the direction G, F,, is the
axial force, andf’; is the torque generating force.

After some rearrangements and substitutions, we obtain
1 5 i
dF,, = EpVWNc(Cl cos ¢ + Cysin ¢)dr,

where N denotes the number of blades.
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Figure 2.4: A blade element sweeps out an annular ring

Rotating direction

U,(1-a)

(a) Velocities (b) Forces

Figure 2.5: Blade element velocities and forces
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Figure 2.6: Lift coefficient and drag coefficient

2.3 Torque control in region 2

We give a short derivation of the quadratic torque control law that is usually employed
when the wind is not too strong (regi@ and the objective is to maximize the output

power of the turbine. Figure 2.3(a) shows the desired output power as a function of the
wind speed.
As explained in [10] and [24], the available wind power is given by

Prina = 0.5pTR2U3

w00

(2.3.1)
and the power captured by the wind turbine’is see (2.2.6).
The aerodynamic torqug, at the turbine shaft is (neglecting losses in the drive-train)
T, = 0.50mR3 C, U,

(2.3.2)
where(C; = M is the torque coefficient. Figure 2.7 shows the Simulink model of the
wind turbine.

31
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Figure 2.7: The Simulink model of the wind turbine. The ‘@3J block is shown in
(2.2.8). The ‘Call;,’ block is shown in (2.3.2).

The standard regiohitorque control scheme for a variable-speed wind turbine is to set

prer 05pr RIS

Trel = =
€ Win Win ’
Ry
_OSEORE  osmcpe
Win Ao m

where T/ is the reference electrical torque,, is the generator speed ang is the
gearbox ratio (see [31, 42]). In this derivation, the meaning6f*, C*** and \,; is

easy to infer. Thus, to maximize,, we set

0.5pm R> C'™maz
Tgef — Kopthn’ Kopt — w ' p
)‘gpt

(2.3.3)

g
Note that in steady state,, = n,wr. Actually, the control law (2.3.3) is only applied

whenw,, > 0. In the rare instances when, < 0 (i.e. the turbine spins backwards), it

is considered better not to apply any electrical torque, T&/ = 0, and wait until the

speed reverses tg,, > 0 (this may need the intervention of the yaw controller), see [31].
The quadratic control law (2.3.3) requires the knowledg&8f, which may be sup-

plied by the turbine manufacturer. In practice, howevét?* may vary from turbine to

turbine (even if they are meant to be equal) and it may also change during a turbine’s life

span. In our stability analysis (see Chapter 5) we assuméfhat= Kw?, whereK > 0

(not necessarily the optimal gaii?*) is constant. In Section 5.4 we describe a simple

adaptive search algorithm that updafésto an estimate ok °?* (when the wind speed is

in region?2).
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Figure 2.9(a) shows the overall control system in regiom this diagram, the DFIG,
the grid, the transformer, the two converters and the controllers directly attached to these

converters have been packaged into one block.

2.4 Control strategies in region 3

A wind turbine is subject to many different modes of vibration. Figure 2.8 explains fore-
aft vibrations and side-to-side vibrations of the tower. In addition, each blade can vibrate
in two main directions and the low-speed drive-train (up to and including the gearbox) is
subject to torsional vibrations (see [10, 9, 63]). The frequencies of vibration depend on
the turbine, however typical frequencies are known, such as for example the first vibration
frequency of 0.32Hz, for the tower of a 5SMW turbine, with an average tower diameter of
6m and a 250 ton nacelle at 125m above the sea. The first vibration frequency of the
drive-train of the same turbine is around 4.8Hz (see [33]). We cannot suppress all the vi-
brations, because we have only two control variables at our disposal: the electrical torque
(through which we can indirectly control the turbine speed) and the rotor collective pitch
(through which we can regulate aerodynamic torque, which regulates speed). We will
investigate which vibrations it would be best to suppress. This depends on risk consider-
ations (how damaging are the various vibrations to the structure) as well as on feasibility

considerations.

Wind direction

Generator

B
azimuth Blade flap \ Blade edge

N \)Dr\ive_train torsion
A7 -
\
7 \

Tower side-to-side

\| Tower fore-aft

Figure 2.8: Assumed wind turbine model with degree-of-freedom.
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2.4.1 Control of tower fore-aft vibration

The 1% tower fore-aft vibrational mode is poorly damped, exhibiting a strong resonant
response even by a small amount of excitation which is naturally present in the wind (see

[10]). Given thel® fore-aft mode of the wind turbine tower, we have (see [9])
Mi + Dyt 4+ Kyx = F,,, (2.4.2)

where M, D,, and K; denote system mass, damping, and stiffness, respectively. Then
the 1°* tower fore-aft mode frequency is;,; = ,/% rad/s. The axial-forcé’,, can be

approximated by

Fpo = F%+6F,,, (2.4.2)
OF,, =~ ggzanJrgi“;éwTJragg%ﬁ. (2.4.3)
We take
agﬁ”aﬁ = —Doani, (2.4.4)
58 = %i, (2.4.5)

whereF? is the axial force at an operating poifd, ., is the additional damping, and the
prefix means a small deviation of a variable from its operating point. The tower velocity
& can be calculated by integration of the tower acceleration measured by an accelerometer
mounted in the nacelle.

If we take the state variables asand z, disturbances ag°?, éU anddwr, control

ax!

input asé 3,

¥
¢ = [?],w: SU | u=dp.
T
(5wT
then the linearized state-space model can be written as

é =A(+[B1 By Bsjw+ Byu, (2.4.6)
where

0 1

T | K Dy } ; (2.4.7)
L T M

= [B1 By B3 By (2.4.8)
[0 0 0 0

= | L 1 0Fuw 1 0Fu 1 0Fu } : (2.4.9

M MoUs Mowr M 08
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The dampingD; is composed of structural damping and aerodynamic damping ele-
ments.
Dl - Dlstruct + Dlaero- (2410)

Given the structural damping rat{Q,, the structural damping element can be computed
as:
Dlstv‘uct = 2waa1£sl. (2411)

The aerodynamic damping is almost entirely provided by the turbine rotor, the damping

ratio for thel! tower fore-aft mode can be computed approximately as

%prT fORw %rc(r}dr

al = 2.4.12
u ST (24.12)
So the aerodynamic damping element is

Dlaero = 2waa1€a1- (2413)

For a detailed study of turbine structural dynamics, please refer to S. Suryanarayanan
and A. Dixit [53].

2.4.2 Control of drive-train torsional vibration

The primary goal in regiofl (above the rated wind speed, see Figure 2.3(a)) is to maintain
the generated power at the rated value. This is done by maintaining a constant electrical
torque (using the rotor current controller and the rotor-side converter) and regulating the
turbine speed by pitch control. Another important control objective is to increase the
life span of the gearbox (and possibly other components) by suppressing the mechanical
oscillations in the turbine shaft (see [9, 10, 63]). The overall control system in r@gson
shown in Figure 2.9(b).

In region3, we try to keep the electrical torque of the generator constant, at the value
Trated . However, strong variations of the wind speBgd may cause (lightly damped)
oscillations in the drive-train. These oscillations can be very harmful to the gearbox,
which is one of the most expensive yet fragile components in a wind turbine. Thus, it is
desirable to reduce these oscillations. One method, which has been successfully adopted

on many turbines, is to modify the generator torque. A small rippleat the drive-train
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Figure 2.9: Block diagrams for the control of the mechanical part of a wind turbine in
both regions 2 and 3. Note that the pitch controller and the drive-train vibration controller
K"* are only functioning in region 3.

resonant frequency is added#5***?, with its phase adjusted, to counteract the effect of
the resonance and effectively increase the damping (see Figure 2.9(b)). A high-pass filter

of the form

S
K(s) = o (2.4.14)

acting onw,, can be used to generate this ripple, see [9, 10]. The frequenskould be
less than the resonant frequency which is to be damped.

Based on internal model theory, the damping performance can be improved by adding
a narrow-band filter to the high-pass filter. In this case, the electrical torque controller has

the transfer function
S S

54+ wp p32—|—wg7

K (s) =k (2.4.15)

wherew, should also be close to the first drive-train torsion mode, whjlendk, are
parameters to be chosen. This results in an infinite loop-gain at the frequgrsy that

the sensitivity of the feedback system is zero at this frequency.
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2.5 Reference frame conversion

2.5.1 Transformation from a three phase to a stationary reference
frame

A three phase signal with three quantitigg, s, ands,.), such as voltage, current; and

flux ¢) can be transformed to a two phase vector in the complex plane by:
- . 50 jQJ jﬂr
Sap = Sa T Jsg = (546’ + sp€’ 3 + 5.6773).

or expressed by matrix

Sa Sa
sg | =Ts | s |
So Se
where
1 i _1
o
TS =C 0 5 5 s
VZooV2 V2
2 2 2
andc is a constant. If we take = \/E then Ty is unitary, which has thesnergy-
preservingproperty:||z|| = ||Tsz|, Vx € C®. n = 3 for athree phase signal. In other

words, the power of the system ibc-frame is the same as in thes-frame. Theag-
system is then callegower-invariant If we takec = % then the modulus of the signal is
maintained after transformation. Thig/-system is then calledon power-invariantSee

Figure 2.10 for a visualization of théc to a3 transformation.

2.5.2 Transformation from a stationary to a rotating reference frame

Theapf to dg transformation can be written as:
§dq =S4+ JSq = gageije

or expressed by matrix

Sd Sa
s¢ | =Tr| 53 |,
S0 S0

where
cosf sinf 0

Tr=| —sinf cosf
0 0 1

o
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Figure 2.10: Transformation frombc to a3-reference frame

Ty is unitary. Therefore energy-preserving property holds dgrtransformation. See

Figure 2.11 for a visualization of thes to dq transformation.

Power-invariant transformation

Assume a sinusoidal symmetric three-phase supply voltage system with RMSialue

frequencyw; and phase shiﬁsE given by

u, = V2U cos(wit),
u, = V2U cos(wit — =),

U, = V2U cos(wit — 3)
The voltage space phasor in thg-reference frame is the following:

ﬁaﬂ = Uy ‘l']uﬁ = \/gUejW1t7

l_l:dq = ﬁaﬁe_je = \/§U€j(61_9).

wherew, = df, /dt.
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Figure 2.11: Transformation from/ to dg-reference frame

The instantaneous active power, is given by

P = wyiq + vyip + vic = Re(vaging),
= Uqlaq + Vglg,

= vgiq+ quq.
The instantaneous reactive pow@yr,is given by

Q = Im(vagils) = —Vaip + Vgia,
= —Uglq + Vglq.
Non power-invariant transformation
The voltage space phasor in thg-reference frame is the following:

Uap = U+ JjUug = V2U e, (2.5.1)

Ugg = tape?? = V2UIO=0), (2.5.2)
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The instantaneous active power, is given by

3
P = v,i, 4+ vplp + Vi = §Re(va5izﬂ),
3, . .
= - (Vala + vsip),
2
= §(Udid + quq).
The instantaneous reactive pow@y,is given by
3 " 3 . .
Q = Im(vagizg) = 5(=vais + vsia),

3 . .
= 5(—vdzq + v4lq).

In this thesis, we only consider the power-invariant transformation.

2.6 Wind-driven doubly-fed induction generator
2.6.1 Some typical features and advantages of the DFIG

Some typical features and merits of the wind-driven DFIG can be concluded as follows:

e Converters only need to handle approximat¥ly; of the total generator power, so

we can use cheap converters to control a machine of high power capacity;

e Wind farms equipped with DFIG wind turbines are able to compensate or produce
reactive power through power electronic converters, so there is no need to install

capacitor banks as in the case of squirrel cage induction generators.

e Speed variation 080% around synchronous speed can be obtained. This large
speed variation range allows the DFIG to extract maximum energy from the wind
for low wind speeds by optimizing the turbine speed and to minimize mechanical

stresses on the turbine during wind gusts;
e Itis possible to save on the safety margin of gear;

¢ Inindustry, DFIG wind turbine has been well developed by manufacturers, such as
Vestas (V80—-2MW) and GE wind (3.65s-3.6MW).
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2.6.2 Power flow

Now we discuss more about the active and reactive powers of the DFIG.

P
P p =—4 P
a DFIG sT1lg a
> | Grid
|
b ==Sh=—<F,
«—
AC
AC

Figure 2.12: Power flow of a lossless DFIG wind turbine system

e Assume the power converter is lossless, then the total mechanical phwéthe

lossless DFIG system is simply the sum of stator pofeand rotor power?,:
P,=P,+P,. (2.6.1)

The active power from the rotor is proportional to gig, S, of the generator:

s = = (2.6.2)
P’r‘ = _SPs; (263)

wherew;, is the synchronous speed, is the generator rotor speed. Substituting

equation (2.6.3) into equation (2.6.1)
P,=(1-S)P,. (2.6.4)

If the generator is running super-synchronously (cafleger-synchronous maoge
it will feed electrical power to the grid through both the rotor and the stator. If the
generator is running sub-synchronously (caieti-synchronous moyehe electri-

cal power is only delivered into the rotor from the grid (see [8]).

e Assume the converter is able to control the power flow at the converter-supply side

at any time so its reactive power is zero. This assumption is reasonable because the
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converter rating is a maximug0% of the generator rating and it is used primarily
for supplying the active power of the rotor to the grid. Therefore, the reactive
power exchanged between the DFIG and the grid is equal to the reactive power in

the stator:

Qtotal = Qs

e The reactive power from the stator will be zero in case of a strong power system
or when there is no requirement for the DFIG control ability of the voltage. In this
case, the DFIG supplies only active power and is magnetized through the rotor, with
the power factor of the DFIG close to unity. Otherwise, the reactive power set-point

of the DFIG will be defined for the voltage control purpose (see [2]).

2.6.3 The 4th-order DFIG model

To investigate the dynamic modeling of the DFIG in power systems, we consider the

following modeling issues, see [2]:
e Modeling of the DFIG itself using its physical state equations;

e Representation of its control systems for the decoupled control of the active and

reactive powers.

For power system stability studies it is desirable to apply reduced models of the ma-
chine and the converter in order to relax the computation burden. The comparison be-
tween reduced models and more detailed models has been discussed in the literature (see
[39] and [47]). The manufacturer Vestas has agreed that the 4th-order model of the DFIG,
at least, is necessary for power stability investigation (see [2] and [39]). Therefore, with
respect to the generator, the fifth order model is considered in this thesis. With respect to
the converter, a classical approach is adopted, i.e. the converter is modeled as a simple
gain in the controller designing phase. But a more elaborated converter model can be

introduced in simulation to validate the control law [37].
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State equations of th&" order DFIG model can be written as the following [54]:

\des = Lsids + Lmidw
\Ilqs = Lsiqs + Lmiqra
\der = Lridr + Lmidsa

\I[qr = Lriqr+LmiqS7

d\des
Vds — RSZ s wS\II s TR
d d qs T It
dv
s — Rs' s s‘P s —qsa
Vg lgs + WsWys + i
dqjdr
Vagr = RT‘Z r Y, T Ws v )
d dr T dt 1 *q
v,
Vgr = Rriqr + dtq —i—wsl\Ildr.

Ly . :
Te = an_(\IquZd'r' _\deslq'r)a
s
Wsi = Ws — Wr,
Wsl
S = —.
Ws

The Simulink model of the!* order DFIG is shown in Appendix B.

2.6.4 Modeling of DFIG in the stator-flux reference frame

To achieve a decoupled control between the stator active and reactive powers, we choose
adqrepresentation of the DFIG, with theaxis oriented along the stator-flux vector po-
sition. Since the stator is connected to the grid, we could make the following assumptions
[54]:

e The stator resistancg, can beneglected (usually justified in machines with a

rating overl0kW);

e The stator magnetizing current space phasgy:= Ifmsléps. In the steady state,

|st| = constant andp, = constant,

e Frequency of the power supply on the stator is constantyi.es constant.
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Under those assumptions, it implies that:

\des \Ijs = Lmlzms|a

Uy = Lyigs + Lonig =0,
2

‘Pdr L_m’st’ + O'Lridm
s

\Ilqr JLriqra

o] Mj

WL,

L7,

77—, and|v| = V/3V,. V, is the RMS of the stator-voltage space phasor in

whereo =1 —
the stationary reference frame, = /3V,e/*s*,

After some substitutions, the stator and rotor voltages can be written as:

AW 45
msz_&%—w&¢+7#wwa (2.6.5)
Vgs = Rgigs +wsWas + o~ wsWas = |Us], (2.6.6)

digy, ,
var = Rpigr + O-Lr% - Wslo-erqra
. dl r L2 g .

Vegr = erqr + O-er_(z + u}sl(L_mllms| + ULerT)-

2 —

T, = =y 22 i (2.6.7)

Voltagesv,, andv,, obtained from the controller will be used to control the rotor
voltages through a rotor side PWM converter. We rewrite the stator active and reactive

powers equations as:

L,

Ps = Udsids + qul.qs = —|173|L—Zq7~, (268)
_"S Lm . _)S 2

QSZ-WM%+%%=—B£ﬂW %ﬁ. (2.6.9)

From equations (2.6.7), (2.6.8) and (2.6.9), it can be seen that the electromagnetic
torqueT. and then the active powét, only depends on the-axis rotor current,,. The
reactive power), only depends on the rotor excitation currept Therefore, the decou-
pled control of active and reactive powers has been achieved in the stator-flux reference

frame.
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From (2.6.5) and (2.6.6), it can be seen that if the rotor resist®nce neglected, the
stator-flux orientation is equivalent to the grid-voltage orientation in steady state. We will

introduce the grid-voltage orientation in section 2.7.1.

2.7 Modeling and control of the grid-side converter

B ipc Pg’igDC
<« D
A 1 ] ]
l’bc —I —I —I
L R i,
Vpe _— ar— <__ N
Coc Va b A —e=—toy,
v cd— Nm—:l—l”ovv
v(‘
Grid
1 354 35 4 75
DC link Converter

Figure 2.13: Grid-side converter

Figure 2.13 is a schematic diagram of the grid-side converter. The voltage equation
across the inductors is

/U(l /l:a d ,l:a Ug
v | =R 1 | + LE w |+ | vy |- (2.7.1)
Ve e e V¢

[

Apply theabe-dg transformation to (2.7.1) , we obtain the following voltage equations

in the dq frame rotating at grid voltage frequengy:

»

va = Rig + Lf — wi Liy + 05, (2.7.2)
a

vy = Riy + L% + wy Lig + v (2.7.3)

We take the state variables external input variables and controller output to be
the following:
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The measured outputs aye= | iy i, ]T.

The state-space equations are

&t = Agr+ Bjw + Byu,

y:ng7
where
R
— L w
v [ 5]
L . —-L1
[Bgl Bg?}: 6%:OL _% 3
1 0
o - [19]

The active and reactive powers are

Pg = Ud’id—i-vqiq, (274)
Qg = —Vdiq+ Vgia- (2.7.5)
DC-link model

We assume the back-to-back converter is lossless and neglect the losses in the inductor

resistance, then the DC-link is modeled as

Ppc = Vpcipc, (2.7.6)
Py = Vbcigpe, (2.7.7)
P. = Vpcirpe, (2.7.8)

Ppe = P,— P, (2.7.9)

ipc = ftgpCc — irDC, (2.7.10)
inc = Cpe d‘;];c‘ (2.7.11)

Apply Laplace transforms to (2.7.11)

Voe(s) ipc(s).

Cpcs
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2.7.1 Vector control of the grid-side converter

The control objective of the grid-side converter is to maintain constant DC-link voltage
regardless of the changing rotor power. Vector control has been applied to enable decou-
pled control of the active and reactive powers flowing between the grid and the grid-side
converter (see [42]). The rotating reference frame is aligned with the grid voltage, so from

equation (2.5.2), we have= 0,:
ﬁdq = Uaﬁeijel = \/gVej(erel) = \/§V
And we obtain

Vg = \/§V = ‘Ul,

v, = 0.
The angle position of the grid voltage is computed as

91 = /wldt = t&nilv—ﬁ,

Vo
wherev, andvs are the stationary components of the grid voltage.

Then we rewrite the active and reactive power equations (2.7.4) and (2.7.5):
Pg = ‘midv
Qg = _|U|iq'

Now it can be seen clearly that active and reactive powers are proportiodadiis
current componeni; and g-axis current componernt, respectively. Therefore we can
achieve the decoupled control of the active and reactive powers thigpagll:,.

We assume that harmonics due to the switching can be neglected, and the grid-side
converter and the inductor resistance are lossless, then based on the DC-link model
(2.7.6)-(2.7.11), we have

P, = Vpcigpe = |U)ia,
. m
|U| == TlVDCW
. my.
lypc = 7%
dV;
Choc D _ @id — 1,DC (2.7.12)

dt 2
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wherem, is the modulation depth of the grid-side PWM converter. We now consider
i-pc as distance, and apply Laplace transforms to (2.7.12), then we can obtain the transfer

function fromi, to Vpc:

The DC-link voltage controller, of PI type, has been used to guarantee constant DC-
link voltage and generate referenéexis current componen'gef to the inner control

loop. We set’gef = 0, because we want the grid-side reactive power to be zero. We define

N ) di
oy = Rig+ Ld_td’
N ) di
U, = Ri,+ Ld—:.

Then from the voltage equations (2.7.2) and (2.7.3), the reference converter voltages are

cref ~ .

vy = —04+ (w1 Li, + va),
cref ~ .

Uy = —0y —wilg,

wherev, andv, are the outputs of the inner PI current controllers.

The whole vector control scheme for the grid-side converter is shown in Figure 2.14.

*—

T
—l_v

DC link

" PWM [P —IGS

\AAAS |
~

A

i

abc

1 {/abc

Grid

Figure 2.14: Vector control of the grid-side converter.
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2.8 Modelling the drive-train dynamics

When considering mechanical models of the wind turbine, drive-train dynamics have the
first priority compared with the other parts of the wind turbine. The reason, generally
speaking, is that engineers would like to emphasize those parts of the dynamic structure
of the wind turbine that contribute to grid integration (see [23] and [20]). Another point
we need to bear in mind is that the parameters of the wind turbine system is highly con-
centrated, which means that the elements of the model do not necessarily have direct
correspondence with the physical elements in the system (see [7]).

The rotor blades in a wind turbine are very large with lots of weight and create a
significant moment of inertia into the system, especially in comparison to the generator.
This inertia behaves like an inductor in an electrical circuit, storing energy when the
turbine accelerates and restoring it during deceleration. It also accordingly prevents fast
variations of the rotor speed on the turbine shaft, meaning that it acts like a low-pass filter
(see [45] and [41]). The turbine rotor's moment of inertia is much larger than that of the

generator.

2.8.1 The one-mass drive-train model

In the literature, a typical one-mass drive-train model (see Figure 2.15) consists of the
inertia of both the turbine and the generator. The large turbine inést@orresponds to
the blades and the hub, and the small inestiarepresents the induction generator. The

equations are

1
Wy = 7(ﬂ — T, — bwm)v (281)

1
J = ﬁJT—i_JG,

g

1

Tt = _Ta7
g

Wm = NgWwr,

whereJ > 0 is the total inertia) > 0 is the damping coefficient,, is the electrical torque
from the generatofl} is the active torque from the turbine (referred to the generator side)

andn, is the gearbox ratio. We remark that in steady state (whgn= 0) we have the
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power balancd,wr = Tw,, = T.w,, + bw?, whereT,w,, is the generator power and

bw?, is the power loss due to friction.

Jr
1 g
Or JG
o, 0
Low speed Gear High speed High speed
shaft box shaft shaft

(2) (b)

Figure 2.15: (a): A one mass model for the drive-train; (b): Another representation of the
one mass model with parameters referred to the high-speed shatft.

2.8.2 The two-mass drive-train model

A two-mass drive-train model (see Figure 2.16) is often used when analysing the interac-
tion of the wind turbine with the grid, because, due to its torsional vibrations, the drive-
train has a significant influence on the power fluctuations (see [20, 36]). Torque control
can help to dampen these mechanical oscillations both in régy{amere the quadratic
control law (2.3.3) has a dampening effect) and in regi¢see Section 2.4.2).

Denoting the turbine rotor angle I8y and the generator rotor angle 8y, the equa-
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‘]T
K, lin,
T, 2 | ~ L | . Jg
: hss
CS a)m ;/_7‘ b
Turbine Low speed Gear High speed Generator
aerodynamics shaft box shaft

Figure 2.16: The two-mass drive-train model with gearbox.

tions are
QT = wr,
em = Wmn,
O
ek‘ = QT - T
Ng
(T, Ti)
w = 7 La — LiIss)
T JT l
1
wm == _(Thss - Te - bwm)u
Ja
T‘lss = Ksek + Cséka
Cs m
= Ksek + OSWT - - )
Ng
= ngThss-

Here K, > 0 is the torsional stiffness of the low speed shéft, > 0 is the torsional
damping of the low speed shalff;,, is the low speed shaft torque afiy,, is the high
speed shaft torque. We remark that in steady state (whes w,, = 0), we have again
the power balanc&,wr = T.w,, + bw?,.
We take the state variables the external input variables (disturbances) and the
control inputu as follows:
Ok

Wm

The output variables ate,, andwr, so thaty = [ wr  wp, ]T.
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Then the3rd order state-space representation is

T = Az + Byw+ Bau, (2.8.2)

y = Cz+ Dyw+ Dsu,

where
0 1 —L
Ng
A = Ks Cs Cs
- Jr Jr JTng )
S CS J— S _L
Jang  Jagng JGng Ja
010
1
B = [Bl By } =1 7101,
0 |+
Ja
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Chapter 3

LPV control of a DFIGWT with
primary grid frequency support

3.1 LPV systems

A state-space representation of a linear parameter varying (LPV) system

z(t) = A0())z(t) +B(O(t))u(t), (3.1.1)
y(t) = C(O(t)x(t) + D(O(t))u(t). (3.1.2)

wherez is the state{ € R"), u is the input vector ang is the measured output vector.
In this thesis, we only have to deal with LPV systems where measuremefits) afre
available in real time.

The following well-known result is called the bounded real lemma (BRL) and it can

be found in [19] and [64].

Theorem 3.1.1. Given a continuous-time LTI system (not necessarily minimal) with

transfer functionG(s) = D + C(sI — A)~!' B, the following statements are equivalent:
e Aisstable and|D + C(sI — A)"'B|l» < 7,

e there exists a positive definite solutiahto the matrix inequality:

ATX + XA XB O7
BFA,B,C,D] = BTX —’yI DT < O,
C D —I

whereB}, . p, is also called the BRL map.
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The BRL can be extend to LPV systems so that sufficient conditions can be given for
the transfer function of! at any fixed) to have an induced?-norm (see definition 3.1.2)
bounded byy > 0.

Notation L?[0,c0) denotes the set of measurable, square integrable functiohs of
t > 0, with norm || f|| = = ([>° | f(t)[?dt)2. By abuse of notation, we will also use the

same notation for the space of vector-valued square integrable signals.

Definition 3.1.1. Let © C R® be a compact set of possible parameter vectors. The LPV
system> from (3.1.1) and (3.1.2) hagpuadraticH> performancey > 0 if there exists a

matrix X > 0 such that

AO)TX + XA() XB(6) C(6)T
B(0)" X I DO | <0 (3.1.3)
C(9) D) I

for all € © (see [5]).

Remark3.1.1 The LMI (3.1.3) implies, by multiplying the matrix from the left with
21 = [z(t)"u(t)" y(t)"] and then multiplying it from the right with, that

d

(Xa(t),2(t)) <A@ - %Hy(t)!l? (3.1.4)

If the initial state ofX is zero, we obtain thaty||2 < 7||u|/z2, and this is true for any

measurable functiof : [0, co) — ©.

Proof: we omité for simplicity, so that we writé\ instead ofA(#), and similarly for

B(6), C(9) andD(6). Firstly, let's computes (X z, z), whereX > 0, X* = X.

d
a(Xx,@ = (X(Az + Bu),x) + (Xz,Ax + Bu)

= (XAz, 2) + (XBu,z) + (A" Xz, x) + (x, XBu)

= ((ATX + XA)z,z) + 2Re(XBu, z). (3.1.5)
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Then let’s calculate the following inner product:

ATX + XA XB Ct S I
< BTX —~I DT u |,| w > < 0,
C D —/I ] [2y] [3v]
(A"X + XA)x+ XBu+C'yt | [ 2 ]
(:)< BTXx—yu—f—DTy% o > < 0,
1
Cx—l—Du—yy% | L3Y]
1
& ((ATX + XA)z, x) + (XBu,z) + —(y, Cx)
gl
1
1 1
+—Ww,y) — -y < 0,
7< ) 7< )
(substituted by(3.1.5))
d 1
= a(X%@ — y(u,u) + ;<y,y> < 0

Rearrange the above inequality, we obtain (3.1.4).

If X > 0,% > (0 and (A, C) observable, then the system is stable.insense (see
definition 3.1.2). Indeed, taking = 0, 4(Xz(t), z(t)) < —%||y||2. Assuming that the
initial state ofX is 0, we integrate (3.1.4) from O t& on both sides:

o 1
(Xa(t),z()]y < vHuHir;HyHiz,

S lyllee < Allullze.

We conclude that the LMI (3.1.3) is true for any measurable functiof), co) — ©.

Therefore, even a&changes and no matter how fast it changes, we always have (3.1.4).

O

Definition 3.1.2 (nduced L?-norm). For eachy € O, let G4 be the transfer function of
the stable system obtained by takit{g) = ¢ in (3.1.1) and (3.1.2). The inducéd-norm
of the familyG = (G) is defined by

|G| = sup [|Gol|o,
0cO

where||Golloo = Suppe(s)=o [|Go(s)]]
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It follows from Remark3.1.1 that, if> hasquadratic H*> performancey > 0, then
Gl <.

The following definitions and theorems are taken from [5].

Definition 3.1.3 (Matrix polytopg. A matrix polytopes defined as the convex hull of a

finite number of matriced’; with the same dimensions.
CO{NZ‘, 1= 1, ...,7’} = {Z Oé,L'NZ' : (073 Z 0, ZO&Z' = 1} (316)
=1 i=1

Definition 3.1.4 (Polytopic LPV systems An LPV system is calleg@loytopicwhen it can
be represented by state-space matri¢és, B(0), C(0#) andD(#), where the parameter

vectord(t) ranges over a fixed polytogge of verticesd, 0s, ..., 6,, that is

0(t) e © :=Colb;, i=1,...1}. (3.1.7)
The dependence of(-), B(-), C(-) andD(-) oné(t) is affine.
Theorem 3.1.2 Yertex property. Consider a polytopic LPV plant described by tGe

(&) 56)<r=col(&5) =rer)

The following statements are equivalent:

with

e there exists a matriX > 0 such that, for all( A(0) B(0) ) eP,
B[SA(g),BW),C(G),D(Q)](Xv v) < 0. (3.1.8)
e there existsX > 0 satisfying the set of LMIs
Bia, .c,.p)(X,7) <0, 1=12.r (3.1.9)

The following definition and theorem can be found in [4], [13] and [46].

Definition 3.1.5 LMI Region). A subsetD of complex plane is called anMI region
if there exist a symmetric matriX = [Aj]i<ix<m € R™ ™ and a fixed real matrix

p= [pir)1<ix<m € R™*™ such that

D ={z¢€ C: [Nk + 2k + Zlki|1<ik<m < 0}
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Note that LMI regions are convex and symmetric with respect to the real axis. Special
cases include vertical strips, disks, horizontal strips, conic sectors, ellipsoids, domains

bordered by parabolas and their arbitrary intersections.

Theorem 3.1.3 {D-stable). The matrixA has all its eigenvalues in the LMI regidd =
{z € C: [Nir + zpir + ZpgiJ1<in<m < 0}, (A is then calledD-stable), if and only if there

exists a symmetric matriX > 0 such that
NieX + pix AT X + i X Al<ikam < 0,

where” < (” stands for negative definite.

3.2 Computation of the self-scheduled LPV controller

Consider an open-loop LPV systdPdescribed by

w(t) = A(0(t))x(t) +Bi(0(t))w(t) + B2 (6(2))ult),
z(t) = Ci(0(t))x(t) + Dir(0(t)w(t) + Di2(0(t))u(?),
y(t) = Ca0(t)x(t) + D (0(t))w(?),

wherey denotes the measured outputshe controlled outputsy the reference and dis-
turbance inputs and the control inputs. The LPV synthesis problem consists in finding

a controllerK (-) described by

T(t) = Ax(0(t)zx(t) + Br(0())y(t),
ut) = Cx(0(1))x(),

such that the closed-loop system (with inputand outputz) satisfies (3.1.3) for any
measurable functiof : [0, co) — ©.

The computation of the LPV controller described below (also used in this thesis) could
potentially have some conservatism in the case of slow parametric variations. In [16],
a less conservative LMI-based technique has been proposed, which is an extension of
the notions of quadratic stability and performance where the fixed quadratic Lyapunov
function is replaced by a Lyapunov function with affine dependence on the uncertain

parameters.
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A self-scheduled controller implies that the controller can update itself online by in-
corporating the parameter measuremé(its so that the real-time plant dynamics can be
taken into account. Then stability and certain performances bounds are guaranteed along
all the trajectories off(¢).

We assume that the parameter dependence of thePlardffine ando is a polytope
with verticest;, j = 1, 2, ..., r. According to the results in [4] and [5], one LPV controller

K () can be computed through the following steps:

e Offline computationscompute the vertex controllels’; = (Ag,, Bg;, Ck;,0),

(1 <j <r)as follows:

i. Solve the following set of LMIs

XAj+§KjCQj+* * * *
AT 4 A, AY +ByCr ++ * =«
R S A <0,  (3.2.1)
(XBlj + BKJ- Dglj) Blj —’7]
Cy, CpY +Diy,Ck; Du, —1
together with
X I
{ v 0, (3.2.2)

where x denotes terms whose expressions follow from the requirement that the
matrix is self-adjoint. This step givésly,, Bx,, C,) and symmetric matricex
andY.

ii. Solve for N, M based on the singular value decomposition (SVD) ef XY
I - XY =NMT. (3.2.3)

iii. Compute thed g, Bx, andC; with

Ag, = N7HAg, — XA;Y — Bg,Cy)Y — XBy,C, )M~ 7, (3.2.4)
Bk, = N 'Bg,, (3.2.5)
Cx, = Cx,M". (3.2.6)

e Online computations
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i. Measurg/(t) and compute itsonvex decomposition
9(t> == 041(91 + @292 + ...+ Ckrer, (327)

wherezzzl a; =1, a; > 0. Note thatn, ..., a, are functions of.

i1. Compute the state-space matrices of the contrélle) as aconvex combination

of the vertex controllers:
Ax B Ak, B
{Ci K] Za][ Ky DK } (3.2.8)
Note that the online computations (3.2.7) and (3.2.8) are very cheap.

3.3 Controller design with pole placement constraints

The resulting controller from Section 3.2 may have some poles whose real parts are far
from the imaginary axis. Those poles, the so cafiest modeswould complicate the
hardware implementation of the controller (see [7]). This drawback can be fixed by con-
fining the closed-loop poles of the underlying vertex LTI systems (at fiyed a certain

regionD € C. The LMIs (3.2.1) and (3.2.2) must then be complemented with

X I
ik [ } + pie' T + PJk:iTT] <0,
[ Iy 1<ik<m
where .
T — AJY —|—A B2j CK7 A]A .
AKj XAj+BKjCQj

The data);, and;;, defines the geometry of the regi@h For example, if we want the
regionD to be the plane wher&es < —10, we simply choose\ = 20 andy = 1.
Then the new controller state-space matrides Bx andCy can be obtained with the

computations of (3.2.3)-(3.2.8).

3.4 Controller reduction based on the truncation of fast
modes

The design procedure from Section 3.2 gives a self-scheduled LPV controller of the same

order as the plant. However, often some of the modes are stable and very high compared
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to the frequency range of interest. In this case, these modes should be eliminated from
the controller by model reduction. Very sophisticated model-reduction techniques are
known for individual LTI systems, see for example [18] and [64]. For LPV systems these
techniques are not practical, because they would require us to perform the model reduction
at each individual poind € ©. Here we propose a model-reduction procedure which can
be applied to self-scheduled LPV controllers and only requires the designer to compute a
reduced controller in each vertex 6t

To simplify the notation of vertex controllers, we writg instead ofd x;, and similarly
for B; andC;.

Controller reduction procedureAssume that the matrices féf;(j; = 1, ...,r) can be

partitioned compatibly using a transformation maffixthe same for all vertices):

A A | B;

. —1 4. -1, J11 J12 J

KJ;V CA%TTOBJ]: A A | By | . (3.4.1)
J Ch Ci| 0

where all of the eigenvalues df;,, are large compared to the frequency range of interest.

Then we rewrite the LPV controller from (3.2.8) in the new coordinates:

Ak Axi2 | Bk o
Aka1 Ak | Bk | (0) = ZozjKj. (3.4.2)
Cki Cik2| O j=1

The reduced order controllés” = (A, B,C, D) is computed as follows:

A = Agi — AgAb Ak, (3.4.3)
B = Bri — Ag1Axb,Bro, (3.4.4)
C = Cgi — CroArb, Ak, (3.4.5)
D = —CgoAx,Bro. (3.4.6)

Justification We omit the subscripk’ for simplicity. Consider the transfer function
K (s) of the controller for any fixed. For small|s| (in the frequency range of interest),

Age — sl = Asy. Based on Schur's formula (see [64]), we have the following approxima-
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tion: DefineA = { A Ar } VA=A — ApAy Ay andS = A — 1, then
A21 A22
(A—sI)™!
N St ~ST1AL AL
T AR AnSTY AN+ AL A STIARAY | (3.4.7)
B I AT 7 A At 0 0
o [ —A2_21A21 ] S [ I A12A22 ] + |: 0 A2_21 :| '
For any fixed, the transfer function of the controller
-1 Bl
K(s)=—[C1 Cy | (A= s) {B 1, (3.4.8)
2
can be approximated, according to (3.4.7), by
K"(s)=C(sI — A)7'B + D. (3.4.9)
O

3.5 LPV model for the DFIG

Based on alth order nonlinear DFIG model (see Vas [54] or Section 2.6.3), we take

the state variables as the stator and rotor currents in tthgframe. The external input

variablesw (disturbances and references) are stator voltages and reference rotor currents,

also in thedq frame. The controller output consists of rotor voltages. Thus

ids Vds
1 v )
x=| .7 w=| ., w=| o |.
) ref )
tdr Lar Uqr
q ref
qu qu

The controlled outputs and measured outputs are

Z.ds
- Cidr - lgs
Zz = ) y - N )
Ciqr Ldr
Lgr

ref -

wheree;q. =iy - ig. andeg, = il¢/ - ig,.
Recalling the structure of the open-loop LPV systPnalescribed in Section 3.2, we

choose the parameter vectoe [ Wy Wy ]T, wherew, is the synchronous speed and
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is the generator electrical angular speed. Notedhat 27 f,/n,, wheref, is the grid

frequency and., is the number of pole pairs. Then the state-space equations of the DFIG

model are
r = (AO + wsAl + WTAQ)Z' + Blw + BQU,
z = CL’E —+ an + D12U, (351)
y = Chr + Dyw + Dou,
where
[ —aL, R, 0 aln,R, 0
A - 0 —al, R, 0 al,, R,
o= aLy, R, 0 —aL R, 0 ’
i 0 al,, R, 0 —alL,R,
0 1 0 0
-1 0 0 O
A= 0 0 0 1]}
i 0O 0 -1 0
[0 aLfn 0 alL,L,,
A = —al?, 0 —alL,L,, 0
2 0  —alLiL,, 0 —aLL, |’
i alL,L,, 0 alL,L, 0
[ al, 0 00
0 al, 0 0
B = —al, 0 0 0]’
|0 —al,, 0 0
[ —al,, 0
0 —alL,,
By = al, 0 ’
i 0 al,
- 00 -1 0
Ch
= 00 0 -1 ,
< R
- 0010
Doy Doy I R
- Osx4 ' Ogxo

Note that the above state-space model (3.5.1) is obtained based on the complete 4th-

order DFIG model described in Section 2.6.3. Whereas the purpose of presenting a DFIG
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model in the stator-flux reference frame in Section 2.6.4 is to show that decoupled con-
trol of stator active and reactive powers can be achieved by rotor current control, which

explains the motivation of adding’ andi’¢/ to the external input vectan.

3.6 Two-loop control systems design

As shown in Figure 1.1, there are basically two control loops embedded hierarchically in
the control systems for the DFIGWT, namely the inner current control loop and the outer
electrical torque control loop. In the inner loop, the control of the grid-side converter will

not be discussed in this paper, but the detailed description can be found iatRérjd2].

3.6.1 Electrical torque control with frequency support

Quadratic torque controller

We assume that th€, curves are known based on field measurements. In the lower to
medium wind speed region (or region 2), the control objective is to maximize energy
production, which can be achieved bykeeping the pitch anglg to be the optimal
value corresponding to the maximum possiblg®® andii) controlling the generator
rotor speed such that = A,,.. In this paper, we adopt the standard quadratic torque
control method, see [42] and Johnssral. [31].

The primary goal in region 3 (above the rated wind speed, see Figure 2.3(a)) is to
maintain the generated power at the rated value. This is done by maintaining a constant
electrical torque (using the rotor current controller and the rotor-side converter) and regu-
lating the turbine speed by pitch control. Therefore the reference electrical torquer

both regions 2 and 3 is

KP'w?  region 2,
Uy = { Trated Tegion 37 (361)
where K" = g’;R— see (2.3.3).
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Frequency support controller

With conventional generation, in terms of time horizon, power/frequency control is classi-
fied as primary (less than 30 seconds after a major frequency drop), secondary (30 seconds
to 30 minutes) and tertiary, see Kundur [34]. Wind turbines are able to contribute to the
primary control by releasing the stored kinetic energy over the critical first few seconds
following loss of network generation. A wind farm can also contribute to the secondary
control, when the power/frequency reference is imposed by the system operator at any
time. See [22] for a detailed description of different control functions in modern wind
farms, such as balance control, delta control, power ramp rate limiter and active frequency
control. In this paper, the proposed frequency support controller has been designed and
tested to meet the primary control requirement. However, it can also be easily extended
for the secondary control purpose.

When the deviation of the grid frequengy from the nominal value 50Hz is beyond
+1%, a wind turbine needs to produce more or less active power in order to compensate
for the deviant behavior irf,. This can be achieved by a step change in the reference
torquewus,, produced by the proportional controller P as shown in Figure 3.1. This step
signal u, will be added to the output of the quadratic torque contraller Then the
overall control signali; = u; + u» Will be injected into the speed protection block, which
is essentially a switch, deciding whether or u5 will be the reference electrical torque
Tr<f based on the value of,.

Speed protection blockSuppose thaf, <49.5Hz has been detected. Then the fre-
quency support controller generates a positive step signahd77¢/ is set to beus to
extract the kinetic energy stored in the turbine blades. The generator speeltithen
decrease following this sudden excess demand of active power, but before it would drop
below a minimal allowable valuefg‘ef will be switched back ta:;. This will prevent
reaching near standstill from where it would take a long time to return to normal opera-
tion (because of low,).

Suppose thay, is oscillating around 49.5Hz, a relay block would then be needed
to preventu, from oscillating accordingly. The on/off behavior of the relayl block is

shown in Figure 3.2. The grid frequency can rise to 52Hz and fall as low as 47Hz under
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exceptional circumstances. Suppose that<47Hz has been detected, then the wind

turbine would have to be shut down. The relay2 block (see Figure 3.2) has been used to

prevent oscillations in the shut down signal

F,=10Hz

relayl

LPF

frequency
support
controller

\ 4

quadratic
law (3.6.1)

U

\4

Y

P

»
»

relay2

\ 4

Y

speed

U, +:‘jr: u; |protection

Tref

> 1, shut down signal

Figure 3.1: Block diagram of the electrical torque controller. The quadratic torque con-
troller has been shown in (3.6.1). The speed protection block is essentially a switch.
Whenw, drops below the lower boun(Tg‘ef = Uy, otherwiseT;“ef = us. LPF stands for

low pass filter. The on/off states of the relay blocks are shown in Figure 3.2.

Reference rotor current calculation

A widely-recognized vector control scheme for DFIG is under the stator-flux reference

frame, where a decoupled control between the electrical torque and the rotor excitation

current is obtained, see [42] and [54], and it can be shown that the electrical torque is

proportional to thej-component of the rotor current:

L2
o= —mp’
el = 1
ms wsLm’

- .
|st|2qr7
s

(3.6.2)
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A
Y
A
\ 4

0.3 0.5 2.5 3

A
\ 4

A
A 4

0 0
relayl relay?2

Figure 3.2: The specification of the relay blocks from Figure 3.1. The horizontal axis is
the filtered frequency deviation signal The relayl block is used to prevent oscillations
in uy. The relay2 block is used to prevent oscillations in the shut down signal

wherei,,, is the stator magnetizing current. One of the key assumptions of this decoupling
is that the grid frequency, has to be constant, i.e. the synchronous spgesl constant.
Therefore we know that (3.6.2) would not be true wifgohanges. Here we derive a more
accurate reference rotor current calculation which can be used regardless of the variation

of f,. Recall that the electrical torque is:

Te = anm<iqs/idr — idsiqr). (363)

T€E

We assume thap, = /. This is a valid assumption, becau$g should be given by an
outer-loop controller for grid integration (see Figure 1.1), which is much slower compared

to the inner electrical control loop. Therefore, rearrange (3.6.3), we have

- ref  ref
iref — Clgsyy Te

o _ : (3.6.4)
Clgs

wherec = %anm and the stator currents,(, i,;) are measurable. Ong&*/ is known

(see Figure 3.1), we can easily compigfé using (3.6.4) and send it to the inner-loop

LPV current controller.
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3.6.2 Self-scheduled LPV current control loop

Based on the LPV model of the DFIG shown in Section 3.5 and the 4 vertexes defined by

the upper and lower bounds ©f andw,, we denote thel matrix at these vertexes by

Al = A() + w;m”Al + w;,nmAQ,
Ay = Ag + WM A + W Ay,
Ag = AQ —I— wg’“”Al —|— Ld:mwAQ,

Ay = Ag +wm® Ay + wmeT A,

At these 4 vertexes, the extended p[ﬁmshown in Figure 3.3, can be represented (see

Appendix A.1) as

A0 0| B 1 By
B,C, A, 0 | ByDiy | ByDio
N 0 0 A, 0 ' B,
P;=| D,C, Cy 0 |DyDy 1 DyDyy |,j=1,..,4. (3.6.5)
0 0o C,| 0 | D,
Ci 0 0 Du | Dn
L CQ 0 0 D21 1 DQQ i

Once a measurement of (t) andw,(t) is available at time, after performing the
convex decomposition (3.2.7), we have that the LPV form of the extended plant admits

the following polytopic state-space representation:

P(t) = (](1]51 + OéQiSQ + O(gf)g + Oz4f)4,

wherezz%:1 aj=1,a; >0.
The filters¥; andV,, are used to shape the output sensitivity functity as (3.6.6)
(the transfer function fronw to z for any fixedd = [ Ws Wy ]T, see Appendix A.2) and

the control effort respectively.

AO -+ wsAl -+ CL)T»AQ BQCK Bl
T., = Bx1C1 +BraCy  Ax + (Bxk1Di12 + BraDas)Ck | Bk1 D11 + BraDay
4 D12Cp ‘ Dy

(3.6.6)
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r———————————
K ——
W
| .| F
W Plant | }?
| > y |
u | / |

LPV controller

K(0)

Figure 3.3: Formulation of the LPV control problem. This block diagram represents the
extended planP for the LPV controller synthesis, which consists of the original LPV
model of the DFIG (3.5.1) together with the filtei8; and1V,. The parameter vector
0=ws w.

1. Robust tracking requirementss
For robust tracking, we need to consider the sensit¥ithereT,,,) of the system

such that:

(Wi (jw)T,y(jw)) < 1,Vw (3.6.7)

Wi(s) is a stable minimum phase low-pass filter:

Wi(s) = [wlés) wl(zs) } - [ % . ]

S+w;

2. Control effort requirementskK S
To implement a controller in practice, its bandwidth should not be too high.
Otherwise, it may lead to energy consumption and high cost [28]. To make sure a

limited bandwidth, we require:

o(Wy(jw)K (jw)S(jw)) < 1,Vw (3.6.8)
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whereK denotes the controlleV), (s) is a stable minimum phase high-pass filter

WL(S)Z[qu(S) ) ]Z[Si? kgs]

Wy (8) s+wp,

The closed-loop system should not be sensitive to the high frequency components in
the reference rotor currents, sp should not be too large. We choase= 100rad/s.
The bandwidth of the LPV controller is limited hy,. We takew;, = 100rad/s. The
parameters; andk, are chosen based on trial and error. The largerkthéhe smaller
the current tracking errors. But a very largewould cause spikes in the rotor voltages.
So we takek; = 4 x 10%. The smaller thé;,, the better the current tracking performance.
But if £, is too small, the controller design algorithm would tend to neglect the existence
of the filterW,,. So we takeé:;, = 1073,

3.7 Simulation results

The simulations have been carried out using Matlab/Simulink. The reduced order LPV
controller has been tested on a nonlinédr order DFIG model (described in Section
2.6.3) with a two mass drive-train (see Section 2.8.2). As shown in Figure 3.4, the
Simulink implementation of the LPV controller is based on a time varying state-space
block, which is available online from the Mathworks. This block takes two kinds of
inputs, namely, the system input and the gain matrix. The former consists of the rotor
current tracking errorsefy,, e;,), Stator and rotor currentsu(, i,s, iar, 7). The latter
contains the system matrices of the reduced controller. The calculation of these system
matrices has been shown in Sections 3.2 and 3.4. Here we provide a more detailed de-
scription:

Offline the Robust Control Toolboi Matlab has been used to solve the LMIs (3.2.1)
and (3.2.2). Alternatively, the Matlab routitenfgsmay be used to compute the vertex
controllersk;(j = 1,...,4).

Online to compute the reduced controll&f” at timet when a measuremefitt) =
[ ws(t) w(t) }T is available, we need to partition the realization f6y compatibly as

(3.4.1) using a transformation matrix(the same for all of the vertices). ThislI’ matrix
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can be obtained by applying the Schur decomposition telthwtrix of anyk;. After we
obtain the new vertex controllefs;, combining; from the convex decomposition block,
we are able to perform convex combination (3.4.2) and compute the system matrices
(A, B,C, D) of K" (see Section 3.4). Herg = 1,...,4. Note that the outputs of the
controller reduction block ared, B, C, D), which are the gain matrices to be sent to the
time varying state-space block.

The quadratidH> performance of the closed-loop systemyis= 0.1738. After con-
troller reduction, for intermediate values @ft) € (0, 1), the poles of the reduced con-

troller will be very close to the slow modes of the vertex controllers.

a)S
—
convex
o, decomposition e, (dq),i.(dg),i (dg)
(dq)
v
0, 0,,05,0, i=Ax+Btu | 1
L] k| y=COx+D(u
convex _| controller _
’_'combination " | reduction g
o time varying
K,.K,,K;,K, state-space block

Figure 3.4: The Simulink implementation of the LPV controller, including the controller
reduction procedure shown in Section 3.4. Based on the measurementarafw,., the
self-scheduled LPV controller is being updated online, in real-time.

The nominal physical parameters ofa/1/ wind turbine can be seen in Table 3.1.
The voltage supply has been modelled by a 3-phase programmable source. This block is
used to generate a frequency dip, while keeping constant amplitude (see Figure 3.6). A
3-phase PLL block has been used to measure the grid freqygnd@eabc to dg block
is used for transforming the voltage signal fra#t to dg frame, see Figure 3.5. In the
stator-flux reference frame, assuming thatis constant and the stator resistarieis
negligible, we approximately havg, = 0 andv,, = |vs|. Figure 3.5 corresponds to this
simplified situation.

The proportional gairt, of the frequency support controller (see Figure 3.1) is tuned

based on the amount of power output needed for grid support. But at the same time, it
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Table 3.1: Nominal physical parameters af @ W wind turbine

Description Parameter Value

Rated turbine power 6MW

Stator resistance R, 0.00222

Rotor resistance R, 0.001802

Stator inductance L, 3mH

Rotor inductance L, 2.9mH

Mutual inductance L, 2.9mH

Pole pairs np 3

Stator voltage Vs 690V (RMS)
Grid frequency frel 50Hz

Turbine inertia Jr 2.225 - 10" kgm?
Generator inertia ~ Jg 600kgm?
Torsional stiffness K, 7.5-10Nm/rad
Torsional damping C; 100Nms/rad
Damping coefficient b Okgm?/s
Gearbox ratio ng 21.64

Blade length Ry 55m

Air density ) 1.225kg/m3
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Je
v, (abc) freq
grid I > Vabe
sin_cos
3-phase PLL
sin_cos VissVys
dq——>
» abc
abc to dq
transformation

Figure 3.5: The Simulink model of a simplified version of the PLL-based estimation of
fq, vas anduys (these are expressed in the stator-flux reference frame). In this simplified
version, it is assumed th#&t, = 0 andw;, is constant. A 3-phase programmable source
has been used to generate the grid voltage with a frequency dip, while keeping constant
amplitude.
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Figure 3.6: The grid frequency, and the stator voltages;, v,s. Att = 40s, the fre-
quencyf, drops from 50Hz to 48Hz and recovers at 60s.
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should be confined by the physical constraints of the turbine system. AAangeuld
result in a large reference torque once a grid frequency drop is detected, meaning that a
large amount of electrical power output is demanded in a very short-term frame. This
could potentially damage the turbine shaft and/or the converters if the sudden demand of
active power is too much. Here we chodse= 10*.

We assume that the average wind speedis /s, wherew, = w, in the steady state.
The first set of simulation results is based on a constant wind speed, eqiiahfe.
The turbine behavior and the DFIG behavior are shown in Figures 3.7, 3.8 and 3.9. The
power coefficient, has been maintained to be around its maximal valfie” = 0.4587
in the steady state, which implies that we have achieved the control objective of wind
energy capture maximization. The stator active and reactive powers depépdanml
iqr respectively in the stator-flux reference fram&:/ should be given by the outer-
loop controller for grid integration. Here we tabfgf = 0. It can be seen clearly from
Figure 3.9 that good current tracking performance has been achieved. The second set of
simulation results is based on a more realistic random wind speed, shown in Figures 3.10,
3.11 and 3.12. The wind speed along the turbine axis (see Figure 3.10) has been generated

based on the frequency spectrum proposed by Kaimal (see [52]).

0.46 —
0.455} ¥: st ]
045} |
O 0.445 1
0.44 1
0.435 1
0.43 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120
t(s)

Figure 3.7: The plot of”, assuming constant wind speed and a grid frequency drop of
2Hz between = 40s andt = 60s. From40s to 60s, C, is decreasing due to the frequency
support controller. Afte60s, C,, recovers to its maximum valug*** = 0.4587 within

15s.
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Figure 3.8: Electrical torqué,, generator rotor speegd. and electrical power output.
under constant wind speed. The difference betwEgh and T, is visually not distin-
guishable at the scale of the plot. At= 40s, there is a sudden increase’ip, which
is due to the frequency support controller. The additional power output betideemd
60s demonstrates the contribution of the wind turbine to grid frequency support.
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Rotor currents Tracking errors
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Figure 3.9: DFIG rotor current tracking under constant wind speed. The spikes in the
tracking errors at0s and60s are due to the frequency support controller. In the steady
state, it can be seen tha, is around 14, which is very small compared tg, (more

than 2000A).
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Figure 3.10: A more realistic random wind speed and the pldt,ofAfter the first few
seconds, the wind speed is in the raf§e 4]m /s, representing the low to medium wind

speed region (or region 2). Fros to 60s, C, drops in response to the wind speed and
the frequency support controller.
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Figure 3.11: Electrical torqué,, generator rotor speed. and electrical power output
P, under random wind speed. The difference betwggn andT, is visually not distin-
guishable at the scale of the plot. At= 40s, there is a sudden increase’ii, which
is due to the frequency support controller. The additional power output betideeand
60s demonstrates the contribution of the wind turbine to grid frequency support.
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Figure 3.12: DFIG rotor current tracking under random wind speed. The spikes in the
tracking errors at0s and60s are due to the frequency support controller. It can be seen
thate;,. < 1A ataroundr0s, which is very small compared tg, (more than 2000A).
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Chapter 4

The 1ISS property for passive nonlinear
systems

4.1 Background concepts

The concept of passivity is important in control theory because 1) it is a property shared
by many physical systems; 2) it is related to stability (see Moylan [40], Hill and Moylan
[25], Byrnes, Isidori and Willems [12]). Consider a dynamical sysgdescribed by the

state equations

r = f(z,u), (4.1.1)

y = h(z,u),

wheref : R” x R™ — R is locally Lipschitz continuous anll : R"” x R™ — R™ is
continuous. Here:(t) is the state at time, which is inR", « is the input signal ang
is the output signal. Under these assumptions, for every initial staeand for every
bounded input signat, (4.1.1) has a unique solution on some time intef0at), with
e > 0. S is said to bepassivef there exists a continuously differentiatdtorage function

or Hamiltonian H : R™ — [0, oo) such that

. . H
H<u"y, where H= aa—xf(a:,u),

for all (x,u) € R™ x R™. To investigate the Lyapunov stability of the equilibrium points
of S corresponding ta = 0 we may useH as a Lyapunov function (see Willems [62] or
Khalil [32]).
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The notion of input-to-state stability (ISS), as introduced in Sontag [49], implies that
f(z,0) = 0iff x = 0 and for any initial state, if the input becomes uniformly very small
after some time, then also the state becomes uniformly very small after some time (see
Sontag [51]). A strictly weaker variant of ISS is the concept of integral input-to-state
stability (iISS), where the uniform smallness of the input is replaced by the smallness of
a certain integral depending on the input, see Angeli, Sontag and Wang [3]. The formal
definition of iISS is given below.

In this Chapter, we investigate the iISS property of passive nonlinear systems. In our
main result (stated in Section 4.2), we show that under mild assumptions, a passive non-
linear system which is globally asymptotically stable (GAS) is also iISS. Stability analysis
often involves a big effort to search for a Lyapunov function. Our main result is meant to
eliminate the need for finding a Lyapunov function satisfying the condition (4.1.3) below,
for passive systems. By combining our result with a recent result in Jayawardhana, Teel
and Ryan [29], we can actually prove that under mild technical assumptions, a passive and
GAS system satisfies the iISS type estimate with a very simplenérm type) integral
term. We will illustrate the result by proving the iISS property (with a simple integral
term) for the drive-train of a wind turbine, in Chapter 5.

For the remainder of this section, we recall the background about the iISS property
following [3].

A function V' : R" — [0,00) is calledpositive definitdf V(z) = 0iff z = 0. V
is calledproperif V(z) — oo when||z|| — oo. Recall that a continuous function
a:[0,a) — [0, 00) is said to belong to the clasif it is strictly increasing and(0) = 0.

Such a functiony is said to belong to the clags,, if « = oo anda(r) — oo asr — co.
A continuous functiorg : [0,a) x [0,00) — [0, 00) is said to belong to the clags( if,
for each fixeds, the mappings(r, s) belongs to the clag§ with respect to- and, for each
fixed r, the mappingi(r, s) is decreasing with respect taandj3(r, s) — 0 ass — oo.

Consider the system described by (4.1.1). Given any measurable and bounded con-
trol v and any¢ € R”, there is a unique solution of the initial value problem=
f(z,u), =(0) = £ This solution (or state trajectory) is defined on some maximal in-

terval of the typd0, ¢), and it is denoted by (-, £, u).



4.1 Background concepts 81

Definition 4.1.1. The system described by (4.1.1)nsegral input-to-state stabl@lSS) if
there exist a clas§ ., functiona, a classCL functions and a clas&” function~ such that
for every¢ € R™ and for every measurable and bounded functipthe state trajectory

x(t, &, u) is defined for alk > 0, and

a(llz(t,&, wl]) < Bl 1) +/0 Y(l[u(m)|dr vt = 0. (4.1.2)

The functiony is called thelSS gainof the system described by (4.1.1). If the input
u is such thatf;~ y(||u(7)||)dT < oo, then the iISS estimate in (4.1.2) also implies the
converging-state property:(¢, £, u) — 0 ast — oo. However, if the system is iISS and
u is only bounded, then the state trajectafy, £, v) may be unbounded.

Note that if the system described by (4.1.1) is iISS, then this system has a unique
equilibrium point at zerof(z,0) = 0iff = 0) and the system iglobally asymptotically
stable(GAS), which means that it is Lyapunov stable, the trajectatiest, 0) are defined

for all t > 0 and tend to zero (als— o).

Definition 4.1.2. The system described by (4.1.1)zisro-output dissipativef there ex-
ists a continuously differentiable proper and positive definite functipmand a clas¥C

functiono, such that

O fwy <ollul) Vi) € B B @13

Theorem 4.1.1.The system described by (4.1.1) is iISS if and only if it is GAS and zero-

output dissipative.

This follows from [3, Theorem 1] together with [3, Remark 11.3].
In the following theorem, a technical assumption oandos has to be imposed (see
[29, Theorem 3.1]):

(A) There exists a class functiono and for every compact sét C R", there exists
[ > 0 such that,

If(x,w)|| < U1+ o(||ul])) V(r,u)e L xR™. (4.1.4)
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Theorem 4.1.2. Assume that the system described by (4.1.1) satigilgss(GAS and
zero-output dissipative with the same functwoin (4.1.3) and (4.1.4). Then for every
¢ € R™ and for every measurable and bounded function [0, c0) — R™, the state
trajectory z(¢, £, v) (which is defined for alt > 0 according to Theorem 4.1.1) satisfies
(4.1.2) withy = 0.

This recent result on the iISS gain is due to Jayawardhana, Teel and Ryan [29]. In

particular, it follows that if[;~ o (||u(7)||)dT < oo, thenz(t,£,u) — 0 ast — oc.

4.2 The ilSS property for passive nonlinear systems

Consider the system described by
t = flz,u), (4.2.2)
y = hx),

wheref : R” x R™ — R™ is locally Lipschitz andh : R — R™ is continuous.

Our main results are the following:

Theorem 4.2.1.We assume thaX is passive and GAS, with the storage functign

Denote

c(r) = sup [[A(x)]].

llzll<r
We assume that there exist £ > 0 and R > 0 such that
H(z) > k||z|* for ||z|| > R (4.2.2)

and

o do

Then the system described by (4.2.1) is zero-output dissipativer(ith= r, and hence
itisilSS.

Proof: Define)\, = kR* > 0, then obviously:(R) = c((%)é).

Choose the Lyapunov functidri(xz) = F(H(x)), where

L hen X< A
: w1 Y 0
F ()\) - { ((A)ll)Jrl when )\ 2 )\07 V)\ Z 0
c((f)a
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It is easy to see that’()\) is a non-increasing continuous functionofsee Figure 4.1).

We remark that in the region &" where H(z) < Ao, we haveF'(\) = C(R—A)H, so that
H(x
V(z) = C(R()le'
F'(1) A
1
c(R)+1 &
|
|
| .
0 A y)

Figure 4.1: The functior#”(\), which is a non-increasing continuous function)ofin
this figure we have assumed thgt> 0.

We want to show that (4.2.1) with’ satisfy (4.1.3). We have to consider two cases

depending orjz||.

e Assume thatr € R" with ||z|| < R (casel). Using the passivity ok and the

Cauchy-Schwarz inequality, we obtain

V = F'(H)H

< ; T
~ ¢R)+1 oy
< e @l
< - ellel) - ol

Sincec(r) is a non-decreasing function of € [0,00), ||z|| < R implies that

c(||lz]]) < ¢(R). Using this inequality, we have

V < uf.

e Now assume that € R™ with ||z|| > R (case2). Thenk|z||* > kR* = Xy, SO

that £’ (k||z||*) = C(chhm. Using the assumption (4.2.2) and the fact thats
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non-increasing, we have
F'(H(x)) < F'(kl[z]|%).
This implies, using again the passivity Bfand the Cauchy-Schwarz inequality,

V o= F(H@)H

< F'(k|z]|*)-u"y
1

< et Il
1

<l

Thus we have proved that < ||u|| for all z € R”. This implies that (4.2.1) is zero-
output dissipative.

Now we show thai is proper. We have
/ F'(A)d\ = oo. (4.2.4)
0
Indeed, using (4.2.3), we have

/OOO FO)dy > /oo F/(\)dA

Ao
= k:/ ld—e = 00.
2 c(f=)+1

SinceH is proper (this follows from (4.2.2)), we have

H
lim V(z) = lim F(H) = lim F'(\)d\ = .

||z||—o0 H—o00 H—oo [,

(We have used (4.2.4).) Sinegis GAS, applying Theorem 4.1.1 we conclude that
iISS. O

Remark4.2.1 If the outputy of the system® is a linear function of the state, i.e.
h(z) = Cz, whereC' is a matrix of matching dimensions, ther) = ||C||r and then

(4.2.3) holds for every > 1.
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Remark4.2.2 If there existk; > 0 andry > 0 such that
c(r) < kyr® Vr > 1o, (4.2.5)
then it follows that (4.2.3) holds.

Theorem 4.2.2.We assume that is passive, GAS and satisfies (4.2.2) and (4.2.3). We
also assume thaf satisfies ). Then for every € R™ and for every measurable and
bounded function : [0, 00) — R™, ¥ has a unique state trajectorny -, £, u) defined on

[0, 00), and this satisfies

afllz(t, & wll) < Al 1) +/O [u(r)lldr Vi € [0,00), (4.2.6)

wherea € K, andj € KL are independent af andu.

Note that (4.2.6) means thatis iISS, with the iISS gain/(r) = r.

Proof: Recall from Theorem 4.2.1 that the system described by (4.2.1) is zero-output
dissipative witho(||u||) = ||u||. Applying Theorems 4.1.1 and 4.1.2, we see that this
system is iISS, with the iISS gaif(||u||) = ||| O

Remark4.2.3 After seeing Theorem 4.2.2, it is tempting to conjecture that satisfies
the assumptions in this theorem, then it has state trajectories for &l and every
u € L'[0, 00). However, this is not correct, as can be seen from Example 7.2 in Jayaward-
hana and Weiss [30]. The existence of global solutions is guaranteed only for bounded

and measurable inputs.

4.3 Examples

Example 1 (A counter-example due to Bayu Jayawardhana). We consider the following

systemsS, which is passive and GAS, but not iISS:

iy = —m — (2+ u)’xy,
Ty = (24u)x + (1-— T9)u,

y = (1 —m9)%
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Choosing the storage functidit = (21 + 23), we have

H = T1T1 + T2To
= x[—x1—(2+ u)2:c2] + zo[(2 + u)2x1 +(1- x2)2u]

= —al+uy

IN

uy.

HenceS is passive.

If the control inputu = 0, thenS can be written as

it‘l = —x1—43:2,
1‘2 = 4$17

y = xg(l—m2)2,

so that the ordinary differential equation (ODE) describing the state trajectories is linear.
The unique equilibrium point of this systemiis= 0. Clearly, foru = 0, S is GAS.

Now we choose the following control input

u(t>:{ -2 tel0,1),

0 else.

Then on the time interval € [0, 1), S can be written as

ry = —I,

ty = —2(1 —x3)?, (4.3.1)

y = (1 —x9)2

If the initial state is such that,(0) = 0.5, then the solution of the ODE (4.3.1) is

2t —1

We see that,(t) blows up ag — 1. HenceS is not ilSS. Note that (4.2.2) holds with
a < 2 but (4.2.3) does not hold for any suchbecause(r) > r3.
Example 2 In Chapter 5, we illustrate the main result (Theorem 4.2.2) by proving that

the drive-train of a wind turbine with quadratic torque control is iISS, see Theorem 5.3.4.
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Chapter 5

Stability analysis of the drive-train of a
wind turbine with quadratic torque
control

5.1 Background concepts

Here, the material concerning passivity and ISS is taken from Khalil [32].

Consider the dynamical systendescribed by the state-space model

r = f(z,u), (5.1.1)

y = h(z,u),
wheref : R" x R™ — R™andh : R" x R™ — R™ are continuous,
£(0,0)=0, h(0,0)=0.

Further technical assumptions are needed if we want to ensure that (5.1.1) has unique
solutions (see for example [30, 50]). We will not deal with these technicalities, but always
assume that our ODEs have unique solutions on some open interval.

Recall that a square matrix-valued transfer functibis calledpositive-realif G(s) =

G(s) andG(s) + G(s)* > 0 for all complexs with Re s > 0.

Lemma 5.1.1 (Positive Real Lemma)Let A, B, C, D be real matrixes of matching
dimensions so that the transfer functi6tis) = C(sI — A)"'B + D is defined and its

values are square matrices. Assume th&tB) is controllable and A, C') is observable.
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ThenG(s) is positive-real if and only if there exist matricés= P”, L andW such that

PA+ATP = —L"L,
PB = Cct-L'Ww,
WT'W = D+ DT,

Lemma 5.1.2. The linear time-invariant minimal system

& = Az + Bu,

y = Cx+ Du,
with G(s) = C(sI — A)~'B + D is passive if and only if7(s) is positive-real.

Definition 5.1.1. The system described by (5.1.1) is said tdriqmt-to-state stable (ISS)
if there exist a clas& L function 5 and a classC function v such that for any initial
statex(0) and any essentially bounded and measurable input funetithre solutionz(t)

exists for allt > 0 and satisfies
z(t)]] < B(||z(0)]|, ) + v([|ul|z~p, 4)-

A functionV : R" — [0, 00) is calledpositive definitef V(z) = 0iff 2 = 0. V is

calledproperif V(z) — oo when||z|| — oc.

Theorem 5.1.3.LetV : R™ — R be a continuously differentiable function such that

ai(llz]]) = V() < ax(ll2]]) Vo € R, (5.1.2)
g—‘;f(x,u) < —W(x), (5.1.3)

for all (z,u) € R™ x R™ such that||z|| > p(||u]|) > 0, wherea,, o, are of classiC.,
pis of classiC, andV : R — [0, c0) is positive definite. Then the syst&nis ISS with

v=ailoazonp.
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5.2 Stability analysis based on the one-mass drive-train
model

For the turbine operating in regidy we generate the reference electrical torque given by

the standard quadratic torque control law, as explained in Subsection 2.3:

0 when  w,, <0
ref __ m ;
1 = { Kw?  when w, >0, (5-2.1)

whereK > 0. We introduce
d, =T —1T,, (5.2.2)

which is proportional to the-component tracking error of the current controller. We
have mentioned that a good current controller leads to fast and accurate tracking of the
rotor current references, and hence to accurate tracking of the electrical torque reference
Tre/. Thus when analyzing the much slower mechanical system (the drive-train), it is

reasonable to assume thitis small.

Proposition 5.2.1. Consider the closed-loop wind turbine syst®pdescribed by (2.8.1)
and (5.2.1), withh > 0, d, = 0 and with input7; and outputw,,. TakeT; = ¢ > 0 (a

constant). Then this system is GAS with respect to the equilibrium point

VI ACK — b
D = +2l§ . (5.2.3)

(Note that the stability is not due to the damping coefficigrdnd it is true also for
b=0.)

Proof: The systenB; can be written as

o (¢ — bwp) when  w,, <0,
Wm = (e — Kw? —bw,,) when  w, > 0.

m

||

(5.2.4)

In the regionw,, > 0 we have the unique equilibrium poiat,,, which is the positive
solution of the equation

0= %(c — K2, — boy,). (5.2.5)

In the regionw,, < 0 there is no equilibrium point. The equilibrium poiat,

is attractive (locally stable), a fact that is easily seen by linearizing (5.2.4). In fact,
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~|o

m

Figure 5.1: The dynamics and the equilibrium paint for the one-mass drive-train
model.

this equilibrium point is GAS as can be seen in Figure 5.1. Formally, we may use
V(wm) = 2(wm — @m)? as a Lyapunov function, check thit< 0 for w,, # @,, and use

one of Lyapunov’s stability theorems (see [32, Theorem 4.2]). a

Theorem 5.2.2.Consider the closed-loop wind turbine syst8mdescribed by (2.8.1),
(5.2.1) and (5.2.2), with > 0, whereT, = ¢+ d,, ¢ > 0 is a constant andl,, d,,
are disturbance signals. We regard this system with inpst [d,, d,|” and state( =

Wi — W, Wherew,, is defined in (5.2.3). Then this system is ISS, more precisely

IS < IGO0 + 220, 526

for all t > 0, whereg is a function of classC L.

Proof: Choose the Lyapunov functioii = 3¢?. In the regionw,, > 0, S; can be

written as
1
Wy, = j(c+ dy — Kw? +dy — bwyy,).
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Using (5.2.5), we obtain that in this region
: 1 )
¢ = j(c—i—dw — Kw;, + dy, — bw,y,)
1
= 5 [ c+dy+dy— K+ @)= b+ @) |
1 K., 1
= = ——(" == 2K@©,,).
SinceV’ = (¢, we obtain
K 5 1, . 1
V= Jg Jg (b+2Kw,) + JC(dw +dy). (5.2.7)
We need the following inequality:
——§3 C (b+2Kw,) < ——C V(¢ € [—@pm, 00). (5.2.8)

This holds because it reduces to

K , B B

7( (C+2w,) >0 V(€ [-wnp,).
Substituting the inequality (5.2.8) into (5.2.7), we obtain

. b 1
V o< —=C4 =((d,+d,
< = +-JC( + dy)

b oo b, V2
< g7 lP = 57 ICP + 5 lel - Hldll

b 2%’
——— > =
< —g5le el = SNl
We conclude that in the regian,, > 0 (i.e. ( > —&,,), the inequality
V< ——|(|2

holds for alld satisfying||d|| < ﬁim. Thus, (5.1.3) holds with

b o 2v/2
W) = 55I¢I" and p(r) = — =
In the regiorw,, < 0 the systen$; can be written as

1
W = j(c+ dy + dy — bwp,).
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Take agair( = w,, — w,, (so that{ < —&,,). Using (5.2.5), we obtain that in this region

: 1
¢ = —=(c+dy+d,— by, —bC)

J
1
= j(K@; +dy + dy — Q).
Assuming that|d|| < ;%|¢|, we have

: 1
Vo= 7C(wan + dy + dy, — 1)

= 21U -K2, — dy — dy = C)

IN

1

j\C|(\/§||d|| —b[¢])
b 2

< —gm -

Thus (5.1.3) holds in this region (with the saméandp).
The Lyapunov functiod/ = £¢? satisfies (5.1.2) withy, (r) = ao(r) = 3% We
apply Theorem 5.1.3, whef@; ' o ay)(r) = r, so thaty(r) = %ir. We conclude that

the systen8; is ISS with thisy(r), so that (5.2.6) holds. O

Remark5.2.1 If the damping coefficient = 0, then we lose the ISS property, because
for w,, < 0, a negativel; will accelerate the turbine so that- — —oo. This would not
happen in practice, because the yaw controller (ignored in our analysis) would reverse the

turbine leading td; > 0.

5.3 Stability analysis based on the two-mass drive-train
model

Proposition 5.3.1. Consider the linear drive-train systefi, described by the matrices
(A, B,C, D) from (2.8.2), with inputu = [T,,, —T.]", statex = [0}, wr, w,]’ and

outputy = [wr, wy,]’. Then this system is passive with the storage function) =

K, 0 0
P=|0 Jr 0 |. (5.3.1)

0 0 Ja

zT Pz, where
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Proof: For the two-mass drive-train model (2.8.2), it can be checked(thaB) is
controllable and A, C') is observable. If we choose a positive definite mafrix5.3.1),

then it can been shown that

PA+ATP = —Q
0 0 0
= —|0 26, = (5.3.2)
e
PB = (7,
D+ DT = 0.

The matrix() is positive semi-definite. We takle = \/Q andW = 0, then according
to Lemmas 5.1.1 and 5.1.2, the system B, C, D) is passive. O

Proposition 5.3.2.Consider the closed-loop wind turbine systesrdescribed by (2.8.2),
(5.2.1) and (5.2.2). We regard this system with ingut= [T, d,]’, statez =
[0k, wr, wy|T and outputy = [wr, wy,]?. Then this system is passive with the same

storage functior as in Proposition 5.3.1.

Proof: From Proposition 5.3.1, we see tHat is passive. Choose the same storage

function H, we have

HSuTy

— Tq ! hn
du - T£6f Y2
T
1, Y1 ref
= - T .
) (] -
We see from (5.2.1) that the terfij*/y, > 0 only exists wheny, = w,, > 0. Hence

r<[413)

Thus,S, is passive. O

we have
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Proposition 5.3.3. Consider the closed-loop systé&y formed by the drive-train (2.8.2)
with the feedback law (5.2.1), with, = 77/ — T, = 0 and with7,, = n,c > 0 (a

constant). Then this system is GAS with respect to the equilibrium point

ngc

Ty K
_ - Vb2 +4cK—b
xr = T2 = W . (533)
T3 Vb2 +4cK—b
2K

Note that7, is the aerodynamic torque (see (2.3.2)) anslthe active torque referred
to the high speed shaft, as in Proposition 5.2.1.

Proof: The closed-loop syste®), with T, = n,c can be written as

.| Az + Bingc when  w,, <0,
| Az + Bingc+ By(—Kx3) when  wy, > 0.

In the regionw,, > 0 we have a unique equilibrium poiat, which is the positive

solution of the equation
0 = AZ + Bingc + Bo(—K73). (5.3.4)

In the regionw,,, < 0 there is no equilibrium point.
Take( = x — 7 and choose the Lyapunov functibh= %CTPQ In the regionw,, > 0
(or (3 > —z3), using (5.3.5), we obtain
( = Ax+ Binyc+ By(—Ku3)
= A((+ ) + Binge — BoK((3 + 73)°
= AC — BoK((5 + 275¢3).
SinceV = ¢TP¢, we obtain
. 1
V=3¢ (PA+ ATP)C — K(G +2253).

We know from (5.3.2) thaPA + AT P < 0, hence

Vo< —K((G+2563)

< 0 VG € [-73,00).
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In the regiorw,, < 0 (or (3 < —Z3), also using (5.3.5), we obtain

Q" = Ax + Bingc
= A((+ 1)+ Binyc
= A(+ B,K73.

Choosing the same Lyapunov function, we obtain

: 1
vV = 5gT(PA + ATPY + K73(3
< Kf%@a

< 0 VCg € (—OO, —jg)

Using again one of Lyapunov’s stability theorems (see [32, Theorem 4.2]), we con-

clude that the equilibrium point is GAS. O

Now we shall consider the closed-loop syst8mconsisting of the two-mass model
of the drive-train, described by the matricésB, C, D from (2.8.2), with the quadratic
torque control (5.2.1), with a torque tracking erehras in (5.2.2) and with an aerody-
namic torquel;, = n,c + d,,, Wheren,c is a “steady state” value ant), is the deviation

of T, from this value, see Figure 5.2. Our main result is the following:

g€ drive-train
b+
d, —5 . A| B |—o
d 4'* y
du C D ” a)m

quadratic
torque
controller

A

Figure 5.2: The (linear passive) two-mass drive-train from (2.8.2) with the quadratic
torque controller from (5.2.1). This closed-loop system is caieth Theorem 5.3.4.
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Theorem 5.3.4.Consider the closed-loop wind turbine syst8mdescribed by (2.8.2),
(56.2.1) and (5.2.2), wher€, = nyc + d,, c > 0 is a constant and,,, d,, are disturbance
signals. We regard this system with ingut [d,,, d,]|7, state¢ = 2 —z, wherez is given

in (5.3.3) and outpuy = [(», 3]7. Then this system is iISS, more precisely

a([[C(O)]) Sﬁ(\IC(O)H,tH/O [d()||dr,
forall t > 0, wherea € K, andj € KL.

Proof: We know from Proposition 5.3.2 that the closed-loop turbine sys$ens
passive. We also know from Proposition 5.3.3 tBais GAS with respect ta, which is

the positive solution of the equation
0 = AZ + Bingc + Bo(—K73). (5.3.5)

In the regiornw,,, < 0 there is no equilibrium point.

In the regionw,,, > 0 (or (3 > —23), using (5.3.5) we obtain

¢ = Az + Bi(nge+dy) + Bo(— K12 +d,)
= A(C+Z) + Bi(nge + dw) — BoK (G + Z3)* + Bad,

= AC+ Bidy + Bydy — BoK (G2 + 2735(3).
In the regionw,, < 0 (or (3 < —z3), using (5.3.5), we obtain

( = A(C+7)+ Bi(ngc+ dy) + Bad,

= A(+ Bidy + Bad, + B2 K73,

In both regionsv,,, > 0 andw,, < 0, since¢ depends on the inputlinearly, we can
easily see that the conditioA) in Theorem 4.1.2 holds.

Choose the storage functidii(¢) = (7 P¢, whereP is the positive definite matrix
shown in (5.3.1). Leh,,;, denote the smallest eigenvalue@f(i.e. the smallest ofy,,
Jr andJg). ThenH () > \ninl|C||?. Hence, (4.2.2) holds far = 2 andk = \,.i.

Since the output 08, depends on the statelinearly, i.e. y = C(, we may choose
c(r) = ||C|lr = r. Then it can be shown easily that (4.2.3) holds (see Remark 4.2.1).
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Applying Theorem 4.2.2, we conclude that (4.2.6) holds. O

We remark that a direct proof of this theorem has been given in our paper [57], where
we chose the Lyapunov function
1TP¢

and showed tha#, with V' satisfy (4.1.3).

V(¢) =

5.4 Adaptive torque control

For the turbine operating in region 2, we propose the following adaptive torque controller,
which is very similar to the standard quadratic control law as shown in (5.2.1), but now
K, instead of being a constant, is adaptive, searching for the vatdefrom (2.3.3).
According to (2.3.3) we can factdt?* = pM°Pt, where the air density is measurable,

so that we only have to adjust an adaptive giinsearching for)/°*. The adaptive

control law is

ref __
. =

{ 0 when  w,, <0, (5.4.1)

pMw?, when w,, > 0.
We add a modulatiol\ M - cos(%:t) to M to see its effect on the electrical power

P, = T.w,,. The periodl’ of this modulation is much larger than the time constant of the
linearization of the system from (5.2.4), in order to eliminate the effect of the inertia. We
expectP, to oscillate in phase with/ if M < M, and we expecP, to oscillate about

180° out of phase with\/ if M > M°P'. To eliminate as much as possible the effect of

the random wind, we look agp—nd instead ofP,, whereP,;, is the available wind power

(see (2.3.1)). For this, we need wind speed measurements. An anemometer on the top of
the turbine’s nacelle or on a separate meteorological tower can provide the wind speed
measurements in real time (see [31]). Assuming that the wind speed measurements are
reliable, we can use the following update algorithm &ér

P.(t 2
() 2

Z(t) = —WZ(t)‘FW OS(?t%

M,(t) = Az(t),

M) = MfZOH(t)—l—AM-COS(Q%t),
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where~ is a forgetting factor)\ is a small positive constanfy/>42°#(t) is the signal

M, (t) processed by a sampler and a zero order hold (SZOH) with the sampling period
T, being an integer multiple of the modulation peri6d Some guidelines on the tuning

of these parameters will be given in Section 5.5. The block diagram of the algorithm for
the adaptation ol/ is shown in Figure 5.3. Figure 5.4 shows a dynamic saturation block
used for chopping off the spikes in the sigr)di;—d, which are due to wind gusts or to

moments withP,,;,,, = 0 (no wind).

Pe | r 1 z Mn M r.lgon
> > A
Pina | ><—>S+7 >y =~ > [ N
) + )
dynamic
SZOH
saturation block LPF
modulation
2w AM _,
005(71) "l X

Figure 5.3: The block diagram of updatidd. The details of the dynamic saturation
block appearing above are shown in Figure 5.4. LPF stands for low pass filter.

1.2 >

o X
Pe 1 » up | r
> >» y—>
Pwind TlS +1 N lu |
> 10
LPF N saturation
0.8 > X

Figure 5.4: The dynamic saturation block used for conditioning the S@ﬁal If Uid
has no sudden changes, such as spikes, then the eutptiiis block is the sameas its
input. Sudden changes larger thad0% are cut off by this system. The signals fed

into the adaptive torque control law. Hefg= 57". The block marked “saturation” is a

saturation with unity gain and adjustable saturation limits.

The signalA M - cos(%’rt) may be considered as being added to the tracking error of

the generator torquéd,, (5.2.2), see Figure 5.2.
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If the wind speed is constant, thén’Z° converges td/°"* (the proof is a bit tedious
and we omit it). With a random wind speed,>#“ will not converge, but it will vary in
a narrow range arounti/ ",

This search algorithm for the optimal gald°?* need not run all the time: it may be
enough to updaté/ by running this adaptive system for one day every few months. The
disturbance introduced to the power grid by this adaptive system (the modulatidi of

is very small, see Section 5.5.

5.5 Simulation results

The simulations have been carried out using Matlab/Simulink. The two-mass drive-train
model has been used to test the adaptive torque control method. The turbine parameters
are taken from a generieM W offshore wind turbine model (see Table 5.1 and [33]).

The damping coefficient has been taken zero, because it is very small. The electrical
subsystems of the wind turbine (DFIG, converters and their controllers) have also been
neglected, because we assume that the DFIG with a good rotor current control system
responds rapidly and accurately when tracking the reference torque given by the torque
controller. The wind speed along the turbine axis (see Figure 5.5) has been generated

based on the frequency spectrum proposed by Kaimal (see [52]).
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Figure 5.5: A realistic wind speed input ranging frdm/s to 14m/s covering the low
to medium wind speed region. This is a zoomed plot.

The parameters, T, v, A andA M in the adaptive torque control law have been cho-

sen based on trial and error. The modulation pefibdeeds to be very large in order
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Table 5.1: Nominal physical parameters of &1/ wind turbine

Description Parameter Value

Rated turbine power HW

Number of blades 3

Turbine blade length R, 55m

Turbine inertia Jr 2.225 - 10"kgm?
Gearbox ratio Ng 60.88
Generator inertia ~ Jg 600k gm?
Torsional stiffness K 7.5-10Nm/rad
Torsional damping C 100Nms/rad
Damping coefficient b Okgm?/s

Air density p 1.225:g/m?
Grid frequency f 50H z

No. of pole pairs np 2
Synchronous speed w;, 157.08ad/s

to eliminate the effect of the turbine inertia, so we ch@se- 2000s. 7T, has to be an
integer multiple of7’, so we chosd’; = 4000s. If we define the forgetting factor to be
v = ;-: thenT’, should be on the order of hours. We todk = 7200s. A and AM
would influence the convergence rateldt A large A may cause instability, while a large
AM would introduce large oscillations into the electrical torque. We chosel0—° and
AM = 0.15.

Our main concerns on the adaptive torque control law are 1) its accuracy and conver-
gence rate; 2) its influence on the power grid. Based on the standard quadratic control
law (see (2.3.3)) as well as the simulatégl curves (see Figure 2.3(b)), we can obtain
the optimal gain\/°?* = 2.3m5. In one of the simulations (see Figure 5.7), we chose the
initial value of M to belm?®. This —56.5% deviation from the optimal gain/°?* would
result in al5% loss of the electrical power output if the wind speed were constant, equal
to its mean value ofm/s. By using the adaptive torque control law, after approximately
30 hours, we see that/ oscillates aroun@.2m® with the modulation amplitude set at

AM = 0.15m°. Now, this—4.3% deviation fromM/°rt would only result in &.06% loss
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Figure 5.6: The generator power outptit versus the deviation o/ from the optimal

gain M°¥, for three different wind speeds. Hare= =207 . 100%,

of the electrical power output if the wind speed were equal to the same coRsiast

This is because the plot of the electrical power as a functialy a$ rather flat, see Fig-

ure 5.6. This shows that the adaptive algorithm leads to a high efficiency in wind energy
capture. In terms of the influence on the power grid, we can see from Figure 5.8 that
the adaptive algorithm does not result in noticeable electrical power oscillations, when

compared to the variations due to the random nature of the wind.
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Figure 5.7: The control gaii in the quadratic control law and a zoomed plot. We see
that M oscillates around.2m® with the modulation amplitude set AtM = 0.15m°. The
optimal control gain isM°P* = 2.3m®. This —4.3% error in M would result in &.06%

loss of the electrical power output if the wind speed were constant, equal to its mean value
of 8m/s. This error inM is acceptable from an energy production point of view.
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Figure 5.8: The electrical power output with the quadratic torque control law and the
adaptation of\/, as described in Section 5.4. If we plot the electrical power output with
the same random wind speed and with consfidnt M/°P*, we get practically the same
curve, visually not distinguishable at the scale of the plot. Thus the adaptation algorithm
does not result in noticeable electrical power oscillations, when compared to the variations
due to the random nature of the wind.
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Chapter 6

Conclusions and future works

6.1 Conclusions

In Chapter 3, we propose a two-loop control strategy for a grid-connected wind driven
DFIG using LPV technique. In the inner electrical loop containing a DFIG and a rotor-
side converter, the LPV control technique has been applied to guarantee quafiratic
performance of the closed-loop system, which represents robust tracking of the rotor cur-
rent over the entire operating range of the system. The main merits of the LPV control

technique are:

e It provides a systematic way of designing controllers for LPV systems, such as

DFIG;

e The synthesized controller is given by a simple linear interpolation without the

classical interpolation drawbacks;

e The controller is adaptively gain-scheduled using the parameter measurements, so

that the plant dynamics are taken into account in real time.

e The online computation of the controller is cheap so that the implementation of the

LPV controller using a cheap processor can be an option in industry.

Controller reduction has also been developed based on the truncation of fast modes.
The method has significantly reduced the size of the LPV controller’s state-dimension.
A frequency support controller has been designed to extract the kinetic energy stored in

the turbine blades and contribute to the grid frequency support following loss of network
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generation.

In Chapter 4, we have shown that under mild assumptions, a passive nonlinear system
which is GAS is also iISS with a very simplé{ norm type) integral term. Our main
result eliminates the need for finding a Lyapunov function satisfying the estimate (4.1.3)
for this class of systems.

In Chapter 5, we have investigated the stability of a variable-speed wind turbine operat-
ing in region2. The closed-loop wind turbine system has been modelled at the mechanical
level as a drive-train with the standard quadratic torque controller. We have shown that
the turbine system is ISS for the one-mass model and iISS for the two-mass model. This
is useful for assessing the robustness of the system with respect to tracking errors of the
electrical torque and with respect to small perturbations of the electrical torque introduced

in order to identify the optimal control gain of the torque controller.

6.2 Future works

Some possible extensions of the results and techniques presented in this thesis have been

identified. They are as follows:

e Future work is required to assess the dynamic performance of the proposed two-
loop control strategy in a power network model that combines synchronous and
wind farm (WF) generation, see [26, 38] and see Figure 6.1 for such a power net-

work model.

e The frequency support controller proposed in this thesis can be extended to support
the secondary frequency control. The idea is that a WF can be controlled to operate
with a certain constant reserve capacity in relation to its momentary possible power
production capacity. Then the reserved kinetic energy can be released in frequency

control action, see [22].

e We aim to develop advanced control strategies for wind turbines that will enable the
active suppression of mechanical vibrations of the tower and drive-train, and better
grid integration of WFs. The suppression of vibrations would enable lighter, less

rigid structures, whereas better grid integration refers to the contribution of WFs
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to voltage support and recovery following network faults, together with improved
power system damping to prevent inter-area oscillations. Vibration suppression and

grid integration may lead to conflicting requirements, and a proper balance must be
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Appendix A

Realization of system matrices

A.1 Realization of P;

Here we derive (3.6.5), the realization of the extended plant for any ftkee

[ws w, }T. DenotingA = Ay + w,A; + w, A, we have from Figure 3.3

AR
! Cy| Dy Dy u |’
G = 1= Al B Bszl
? Cy | Doy Dy u |’
z1 = Wiz
B "AwaHABl Bsz}
B Cw‘Dw Cl‘Dll Dss u
A 0| B B,
= | B,Ci Ay | BuDy BuDi {w]
| D,Ci C, | DyDyy DyDys | L

B A, 10 B, w
o c,10 D, uw |
If we combine the above equations, then we obtain (3.6.5).

A.2 Realization ofT.,,

Here we derive (3.6.6). For any fixéo= [ w, w, ]T, by denotingd = Ay + w,A; +

w, Ao, we have from Figure 3.3 that= Cxzx, Wherer satisfies

T = Agrig + Bgi1z + Bgoy.
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Substitutingu = Ck g into (3.5.1), then

i = Az + Bjw+ ByCrury,
z = Ciz+ Dnw+ DipCrag,

y = Cox+ Dyyw+ DypCrrik.
Furthermore

Tk = (Ax +Bg1D12Ck +BgoDyCxk)rk

+(Bg1C1 4+ BgaCs)x + (Bi1 D11 + BraDoy)w.

Hence, the transfer matrix from to z for any fixedd is (3.6.6).
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Appendix B

Simulink models
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Figure B.1: The Simulink implementation of the LPV control of a DFIGWT. The wind
turbine block is shown in Figure 2.7. Theh order DFIG block is shown in Figure B.4.
The drive-train block is shown in (2.8.2). The grid and PLL block is shown in Figure 3.5.
The electrical torque controller block is shown in Figure 3.1. The reference rotor current
calculation is shown in (3.6.4). The LPV current controller block is shown in Figure B.2.
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Figure B.2: The Simulink implementation of the LPV controller, including the con-
troller reduction procedure shown in Section 3.4. The vertex contrgliérsik,, K, K)

are computed using (3.4.1). The system matrices of the reduced contfller

(A, B,C, D) are computed using (3.4.3)-(3.4.6). The convex decomposition block is
implemented using a Matlab routingolydec.m
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Figure B.3: Vector control of the grid-side converter. The grid side converter block is
shown in (2.7.1). The DC-link block is shown in Section 2.7.
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