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Abstract

Vision processing is a topic traditionally associated with neurobiology; known to en-

code, process and interpret visual data most effectively. For example, the human retina;

an exquisite sheet of neurobiological wetware, is amongst the most powerful and efficient

vision processors known to mankind. With improving integrated technologies, this has

generated considerable research interest in the microelectronics community in a quest to

develop effective, efficient and robust vision processing hardware with real-time capability.

This thesis describes the design of a novel biologically-inspired hybrid analogue/digital

vision chip ORASIS1 for centroiding, sizing and counting of enclosed objects. This chip is

the first two-dimensional silicon retina capable of centroiding and sizing multiple objects2

in true parallel fashion. Based on a novel distributed architecture, this system achieves

ultra-fast and ultra-low power operation in comparison to conventional techniques.

Although specifically applied to centroid detection, the generalised architecture in fact

presents a new biologically-inspired processing paradigm entitled: distributed asynchronous

mixed-signal logic processing. This is applicable to vision and sensory processing appli-

cations in general that require processing of large numbers of parallel inputs, normally

presenting a computational bottleneck.

Apart from the distributed architecture, the specific centroiding algorithm and vision

chip other original contributions include: an ultra-low power tunable edge-detection circuit,

an adjustable threshold local/global smoothing network and an ON/OFF-adaptive spiking

photoreceptor circuit.

Finally, a concise yet comprehensive overview of photodiode design methodology is pro-

vided for standard CMOS technologies. This aims to form a basic reference from an en-

gineering perspective, bridging together theory with measured results. Furthermore, an

approximate photodiode expression is presented, aiming to provide vision chip designers

with a basic tool for pre-fabrication calculations.

1ORASIS is taken from the Greek word: óραση (orasi) meaning vision.
2Such as biological cells under a microscope, pharmaceutical drugs under production line inspection, etc.



Chapter 1

Introduction

1.1 Motivation Neurobiology

Biology makes excellent use of resources to solve a given task. For example, the human

retina; an exquisite sheet of neural tissue, is made up of a layered network of millions

of poorly replicated yet statistically identical primitives to provide the brain with a well-

conditioned neural image of what we see. Extending beyond the retina into the brain,

this employs much the same strategy; using billions of poorly defined primitives to achieve

the most computationally demanding and perceptive tasks. Face recognition, real-time

navigation control, object segmentation, depth perception, saliency detection are a few tasks

that we routinely perform and take for granted; yet even our most advanced computational

hardware is incapable of achieving acceptable let alone comparable results. Biology is

efficient, robust, adaptable, real-time, effective, scalable and reliable.

For the above reasons, any engineer would do extremely well in learning from nature.

In electronics, developing systems based on neurobiological hierarchy, organisation [1], rep-

resentation and/or structure could result in improved efficiency, robustness, adaptability,

responsivity, effectiveness and reliability.

1.2 Research Objectives

This research is aimed in exploring biologically-inspired electronics [2] through developing a

specific application, employing a hybrid strategy. This aims to combine biological-inspired

1
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methods together with conventional techniques to achieve the best of both worlds. Subse-

quently, this work is targeted towards providing some insight into answering the following

questions:

• In which aspects is neurobiology superior to modern microelectronic technologies and

vice-versa ?

• What can we learn from biology that is efficiently implementable in standard mi-

croelectronic technologies and can provide substantial advantage over conventional

techniques ?

1.3 Overview

This section aims to provide a concise and brief, single paragraph introduction to the

material covered in each of the following chapters.

1.3.1 Biologically Inspired Electronics

This chapter is aimed at introducing the term “biologically inspired electronics” and iden-

tifying appropriate technologies for implementing such systems. Initially fundamentals of

neurobiology such as structure, organisation and hierarchy are described, leading to the

notion of biologically inspired representation. This approach is then extrapolated to mi-

croelectronics; in particular emphasising on process efficient representation. The notion

of hybrid computation is discussed and the relative merits and flaws concerning resource

efficient computation are compared for common operations. Finally for modes of device op-

eration in current microelectronic technologies and associated design techniques related to

reliable and efficient implementation in this representation space are discussed and reviewed.

1.3.2 Modern Vision Processing Technology

This chapter begins by comparing modern imaging and vision acquisition process technolo-

gies. Following is an extension to a typical processing platform identifying key features

and limitations. Distributed techniques resembling biologically-inspired systems are then

introduced and outlines as to provide a plausible solution to the limitations of modern sys-

tems. Finally an extensive vision chip review is presented for all centroid processing systems
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reported to date; employing both traditional computational techniques and embedded in

distributed hardware.

1.3.3 A Distributed Architecture for Centroid Detection

This chapter presents a novel distributed algorithm for centroiding and sizing of regular ob-

jects. Through a true parallel processing approach, tradition information flow bottlenecks

have been overcome and high computational efficiency is achievable. Furthermore, the pre-

sented scheme; based on a biologically-inspired organisation demonstrates great robustness

to fabrication non-idealities and ill-conditioned sensor data. This has been experimentally

verified by testing both to non-uniform input data and pixel processing element mismatch.

Finally the presented architecture is extended to form a generic distributed array processing

paradigm. The basic concept is described and related to a biological vision system with

some example implementable algorithms being outlined.

1.3.4 Photodiodes in Modern Deep Sub-Micron CMOS Technology

During the past few years, an increased interest in CMOS technology for imaging appli-

cations; principally due to the progress of the Active Pixel Sensor (APS) approach, has

prompted much work on photodiode modelling. Although much work has been published

on modelling phototransduction, reliable modelling in standard CMOS technologies has not

been widely accessible. This is partly due to corporate interests, and partly due to estab-

lished semiconductor physics being applicable to CMOS phototransduction. This chapter

begins by presenting a unified phototransduction theory specifically for PN junction photo-

diodes within standard CMOS technologies. A series of test devices are then fabricated in

a modern technology and all the measured results are presented. These are used to validate

the developed model and outline a set of generic design rules for good photodiode design

within a standard CMOS technology. Finally, a biologically-inspired photoreceptor circuit

is presented; using an ON/OFF spiking scheme to provide adaptable, tradable dynamic

range, spatial and temporal resolution. This circuit is designed to be part of a dynamically

reconfigurable foveating silicon retina, details of which are not included.
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1.3.5 ORASIS: A Micropower Centroiding Vision Processor

The final chapter presents the complete system implementing the distributed algorithm

(described in Chapter 4) and photosensing elements (described in Chapter 5) into custom

integrated hardware. This system, named ORASIS; presents the first distributed vision

processor (or silicon retina) capable of multiple centroid detection and sizing; implemented

in a standard CMOS technology. This chapter describes the architecture, hierarchy, inter-

connectivity and specific circuit blocks also including simulated and measured results.
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Chapter 2

Biologically Inspired Electronics

2.1 Introduction

Although modern microelectronic technologies have surpassed our expectations in virtually

all areas, there still remains a vast application space of computational problems either too

challenging or complex to be solved with conventional means. These applications often

require the transformation of data across the boundary between the real (analogue) world

and the digital world. The problem arises, whenever a system is sampling and acting on

real-world data, for example in any recognition or identification task. Traditional processing

techniques find it very challenging and computationally demanding to identify and process

complex structures and relationships in vast quantities of ill-conditioned data (low precision,

ambiguous and noisy) [1].

Although great progress has been made in hardware processing techniques (eg. DSP,

FPGA), in both computational power and efficiency, the solution to complex recognition

tasks still continues to elude us. Furthermore, neither artificial intelligence, artificial neural

networks nor fuzzy logic has provided us with an effective and robust solution. However,

biological organisms routinely accomplish complex visual tasks such as object recognition

and target tracking. For example, a common housefly; with a brain the size of a grain of rice

can outperform our modern multiple gigahertz processors in real-time obstacle avoidance

in flight navigation in addition to countless other perception tasks.

Thus, the Neuromorphic community has emerged aiming to provide a design method-

ology for tackling such problems. Using hybrid, distributed processing architectures based

on simple primitives; inspired by biology, modern microelectronic technology is progressing

6
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Computation Neural Electronic Ref.
(von Neumann based)

Representation Analogue, spike domain1 Digital [3]

Processing Parallel Serial [3]

Power Low High [4]

Speed Low, High2 High [4]

Learning Adaptive Preset [5]

Precision Fuzzy Accurate [5]

Sensitivity Redundant Fault sensitive [6]

Organisation Monolithic Modular [7]

Connectivity Very high fan-out Sparsely connected [7]

Geometry 3 dimensions3 2 dimensions [6]

1 Intracellular representation is continuous whereas intercellular is dis-
crete.

2 Dependant on the particular process and level of abstraction, eg. low
speed operation at neuronal level, however extremely high speed at cor-
tical level.

3 Often classed as 2.5 dimension as neural tissue typically has layered
structure that folds, occupying a 3 dimensional space.

Table 2.1: Comparison of Neural and Electronic Computational Paradigms

one step closer to finding a workable solution to these problems.

2.2 Neural Organisation [2]

Neurobiology has a massively different organisation to that of any conventional electronic

system. This vast difference is highly evident when comparing various features of the two

systems (see Table 2.1).

This section aims to provide a basic overview of the neurobiological organisation, start-

ing from the fundamental processing element and building block; the biological neuron. The

mechanism of synaptic processes; providing intra- and inter-neuronal communication and
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Figure 2.1: Neural architecture - Horizontal cells from a rabbits retina representing the
intricate web-like neural interconnectivity (left) and typical representation of a neuron high-
lighting data flow (right)

interaction will then be discussed. Having established these key primitives, the neural hier-

archical organisation will be outlined; linking together genes, molecules, synapses, neurons,

neural networks and beyond.

2.2.1 Neurons [8]

The brain is a collection of about 10 billion interconnected neurons. A neuron is a cell (see

Fig. 2.1) which uses biochemical reactions to receive, process and transmit information.

Each neuron’s dendritic tree is connected to up to thousands of neighbouring neurons.

When any of these neurons fire, a positive or negative charge is received by one of the den-

drites. The strengths of all the received charges are added together through the processes

of spatial and temporal summation. The aggregate input is then passed to the soma (cell

body). The soma and the enclosed nucleus don’t play a significant role in the processing of

incoming and outgoing data. Their primary function is to perform the continuous mainte-

nance required to keep the neuron functional. The part of the soma that does concern itself

with the signal is the axon hillock (and the internal surface membrane.) If the aggregate

input is greater than the axon hillock’s threshold value, then the neuron “fires” and an

output signal (known as the action potential) is transmitted down the axon. The strength

of the output is constant, regardless of whether the input was just above the threshold, or

say a hundred times as great, however the time to spike is affected. The output strength is
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Figure 2.2: The synapse, a neurobiological mechanism forming the contact sites that facil-
itate interneuronal connections for transmission and processing of neural information.

unaffected by the many divisions in the axon; it reaches each terminal button with the same

intensity it had at the axon hillock. This uniformity is critical in an analogue device such

as a brain where small errors can snowball, and where error correction is more difficult than

in a digital system. It is this action of the neuron firing when a threshold value is reached

which introduces the gain that enables the processing in the neurobiological system.

2.2.2 Synapses [7]

Each terminal button is connected to other neurons across a small gap called a synapse

(see Fig. 2.2) The physical and neurobiological properties of each synapse, determines the

strength and polarity of the new input signal. This is where the nervous system is the most

flexible. Changing the constitution of various neurotransmitter chemicals can increase or

decrease the amount of stimulation that the firing axon imparts on the neighbouring den-

drite. Altering the neurotransmitters can also change whether the stimulation is excitatory

or inhibitory. It is this dynamic nature of the synapses that provides the neurobiological

architecture with the ability to adapt and “learn”. This results in an extremely robust

system architecture, being considerably immune to component degradation and failure.
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Figure 2.3: The hierarchical organisation of the nervous system, from the highest level;
behavioural systems (on the left,) to the lowest level; genes (on the right)

2.2.3 Neural Hierarchy [7]

Neurobiology uses an intricate hierarchical organisation, with spatial and temporal scales

spanning several orders of magnitude to produce a certain behaviour in a given organism.

This begins at the genetic level, with genes interacting with the environment to define the

basic protein constitution in the different regions of the nervous system. These molecular

components form the various parts of the different brain cells and furthermore, the synaptic

organisation is facilitated through the genetic blueprint. The smallest clusters of inter-

connected synapses then form local units often referred to as microcircuits [9]. These are

grouped to form dendritic subunits [10] within a dendritic trees of individual neurons. A

single neuron may contain several such dendritic subunits. The next level in the hierarchy

consists of local circuits [11], being groups of interconnected neurons of similar types. Such

neuronal groups are then arranged into larger neuronal networks including interregional

pathways, columns, laminae and topographic maps involving multiple regions in the brain

that mediate specific types of behaviour. A basic representation of this intricate hierarchy

is illustrated in Fig. 2.3.

2.3 Neural Representation

To provide an insight into neurobiological data representation, this section begins by dis-

cussing how visual information is segregated and transmitted in parallel visual pathways.

This is then extended to the cellular level; in particular, with reference to the retina- the

underlying inspiration being the perfect use of resources.

This philosophy is then applied to microelectronics. Much work has already gone into

trying to realise neurobiological systems in silicon technologies [12] [13]; however the two-

dimensional geometry with limited interconnection capacity has proved no match for three-

dimensional neurobiological wetware [4]. Subsequently a different approach is taken; to aim
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to use the general organisation and representation in biology to help optimise our designs

to our available resources.

2.3.1 Neural Visual Streams [2]

Anatomical studies show that neurons in the visual pathway (see Fig. 2.4) are segregated

into several visual streams. The functional role of the visual streams must be inferred from

the anatomical properties along with the way neurons in these separate streams respond to

light stimulation.

Different visual streams each have a unique role; encoding specific features extracted

from the image, then being relayed to different parts of the brain and central nervous

system.

The most important information represented by visual pathways is image contrast rather

than absolute light level. Visual contrast is the ratio of localised light level to average

image intensity. To represent the image contrast, neurons in the visual pathway change

sensitivity to compensate for changes in the mean illumination level. This process, called

visual adaptation, allows the biological visual system to represent scenes of extremely high

total dynamic range without compromising fine details.

Contrast is supplied via two complimentary visual streams up to the primary visual

cortex. One of these represents contrast information varying slowly over space but rapidly

over time, whilst the other varies rapidly over space but slowly over time. These can each

have their own purpose; for example, one stream can relay fine detail for object recognition

tasks, whilst the other provides transient information for saliency and attention processing.

Beyond the primary visual cortex, behavioural and electrophysiological measurements

suggest that image contrast is represented within separate visual streams that each specialise

in coding the information within a certain range of spacial frequencies and orientations. The

multi-resolution representations is qualitatively consistent with measurements of receptive-

field properties in the primary visual cortex. Multi-resolution image representations have

become a standard tool in computational applications, including image compression, seg-

mentation and analysis.
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Figure 2.5: Signal representation in the primate retina, illustrating typical electrical re-
sponse of various neuron types to spot illumination.

2.3.2 Retinal Data Representation

A common paradigm is the associating of neural activity with spiking and action potentials.

Although fundamentally correct, it is commonly overlooked that a great deal of neural

processing in fact is continuous in both time and value. Here, it is not the spike timing

which encode the data but rather the synaptic biochemistry at the various neural interfaces.

A prime example is the mammalian retina; consisting of over 75 discrete neuron types

classed into five main groups. Of these, the only group to transmit data as action potentials

are the ganglion cells. The other neuron groups (photoreceptors, horizontal, bipolar and

amacrine cells) encode, process and share data as graded potentials (see Fig. 2.5) Transduc-

tion proteins and ion channels are optimised for sensitivity, speed, gain and noise. At each

interface, the different representations serve to achieve optimum performance for a given

function. It is this remarkable organisation that ensures both exceptional performance and

great computational efficiency. A good review on retinal circuit optimisation can be found

in reference [14].
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2.3.3 Quantised Data/time vs. Continuous Data/time

Information exists in a three dimensional media with data encoded in time, intensity and

space. Various techniques of data representation utilise this space in different ways. Since

spatial content can be included in all electronic representations; i.e. it is not fundamental,

it will only be included in the next subsection on spike-domain coding.

For example, in electronics, analogue circuits represent data as continuous voltages

and currents, varying both in time and intensity. On the other hand, conventional digital

electronics use clocks to synchronise activity; data therefore being represented as discrete

voltages; being quantised in time in addition to value.

Sampled data techniques exist such as switched-capacitor (SC) [15] and switched-current

(SI) [16] that use a clock to sample continuous-varying signals and are therefore discrete

in time but continuous in amplitude. Such techniques are widely used in signal processing

of continuous (analogue) signals, for example in implementing filters for oversampling data

converters.

Exploring this two dimensional space (time and amplitude, see Fig. 2.6) for encoding of

data; the only remaining unexploited representation is continuous-time, discrete-data. This

is in fact the principle representation of biology; with spiking neurons conveying no data

in the shape or amplitude of the action potential, but rather in the timing. This encoding

can easily be achieved using asynchronous digital technology; although not widely used in

system-level design due to complexity in synthesis.

2.3.4 Spike Domain

This wide category of this continuous-time spike coding is often referred to as spike domain.

This has the property that all processing is in fact event driven, i.e. the data directly triggers

the processing rather than using some external stimuli or signal as is the case in the majority

of integrated systems.

Spike domain coding is often only associated with the frequency of spike occurrence,

referred to as rate coding. However, this alone cannot account for the high temporal per-

formance achieved in neurobiology, referred to as temporal hyper-acuity. For example,

echo-locating bats have been reported [17] to be able to discriminate echo delays from 10

to 50 nanoseconds. If the minimum spike rate is in the order of milliseconds, some coding
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scheme other than rate coding must be responsible for this phenomenon.

Several different schemes [18] have been proposed utilising both temporal and spatial

properties, in order to interpret how data is actually encoded in biology; the most popular

being listed below:

• Rate coding (temporal): The most popular idea is that the data is represented by the

density (or rate) of spikes (or pulses.) Experiments that measured the response of V1

cells in the Primary Visual Cortex [19] [20], found that increasing the contrast input at

the eye had the effect of increasing the rate at which the neurons fired. By periodically

counting the number of spikes in a set sampling window, the data is decoded. This is

good for slowly changing stimuli, or where long distance transmission is required as

this technique inherently removes random noise.

• Population average coding (spatial): In this scheme, the data is encoded as a nor-

malised spatial average. By periodically counting the number of neurons firing within

a short window and normalising to the population size, the population average is

determined. This scheme has good temporal properties and is therefore sensitive to

rapid changes.

• Time of arrival (spatiotemporal): This coding normally conveys data concerning an

external event, with most of the information contained in the first few spikes.
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• Phase coding (spatiotemporal): In this scheme, the data is encoded as the phase

difference between different spike trains (or pulse streams).

• Synchrony (spatiotemporal): In this scheme the data is encoded in a pattern of spikes

produced by a set of neurons, for example, the pattern may be for simultaneous or

correlated firing.

2.4 Hybrid Computation for Improved Computational Effi-
ciency

Having illustrated how biology uses a sparse set of signal representation forms at differ-

ent levels; it follows that the same strategy should be applied in microelectronics. This

section starts by comparing different signal representation and processing modalities in

standard CMOS technologies. Following is a qualitative comparison of selected linear and

non-linear mathematical operations implemented in different signal and data representation

techniques. Finally, various methods of combining these techniques in a realistic system level

organisation will be outlined.

2.4.1 Analogue versus Digital Signal Processing

A key debate in the low power electronics community is whether analogue or digital signal

processing can be more computationally efficient.

Much work [21] [1] [22] [23] [4] has already gone into this by considering factors such

as signal-to-noise ratio (SNR,) power consumption, silicon area, channel utilisation, design

time, etc. Following from this, the general conclusions are:

• Analogue processing can be far more computationally efficient than digital signal

processing. This is due to the rich mathematical content in the physics of the de-

vices in comparison to the primitive nature of a digital device (a switch). It follows

that to achieve similar functionality with digital logic, many more devices need to

be used; in fact this can be several orders of magnitude more devices! Moreover, at

high activities this results in significantly higher power consumption. This is because

digital logic dissipates both due to continuous subthreshold “leakage” current (static

power) and during switching (dynamic power,) whereas analogue devices only have a
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continuous current supply (static power.)

• Digital processing is immune to noise and cumulative offsets. The continuous nature of

analogue signals means they cannot be restored at each stage as discrete signals can.

Consequently any noise or circuit-introduced offset accumulates through cascading

and can ultimately deteriorate the signal in complex analogue systems. This reduces

the accuracy and dynamic range of such a system for a given power budget. If device

geometries are increased and more power is dissipated, analogue systems can be made

to perform to higher accuracies, however then the computational efficiency of digital

systems tends to be superior.

• Quantifying these benefits, it can be shown that the cost (silicon area and power

consumption) of analogue computation is exponential with respect to SNR, whereas

the cost of digital computation is linear. In addition to this, the starting overhead (at

low SNR,) of analogue is low, whereas for digital is high. This sets a trend where the

benefits of each method can be divided using SNR alone (see Fig. 2.7 [22, 4]). For

lower SNR’s, analogue techniques can have many order of magnitude area and power

advantage, whereas for higher precision computation digital techniques have the cost

advantage.

These conclusions are the result of deriving mathematical expressions to quantify com-

putational cost that are based on the fundamental limits of each technique. Although these

provide the ultimate theoretical performance of each representation technique, they do not

consider implementation issues, with circuit design and wafer processing being far from

ideal. Following are qualitative comparisons of various microelectronic representations in

performing common computational tasks; implementation issues being considered.

2.4.2 Linear operations

The most common mathematical computations are in fact linear operations. These include

addition, subtraction, multiplication, division and so on. Implementing these computations

in different ways can prove hugely beneficial. For example, to add two currents, only a

single wire is needed (by Kirchhoff’s Current Law,) whereas an 8-bit digital implementation

would require 8 full-adder stages, comprising a total of at least 228 transistors. Similarly, a

multiplication can be achieved using a Gilbert (translinear) multiplier circuit [24] employing

only 8 transistors. Here the equivalent digital solution would be an 8-bit array multiplier
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requiring an excess of over 2000 transistors. In these examples silicon area can be saved

using analogue techniques, however as always in electronic design, the various trade-offs

need be considered. A qualitative comparison of the most popular techniques used for

linear arithmetic computation is illustrated in Table 2.2.

For these comparisons, sampled data techniques have been combined with their re-

spective continuous-time counterparts as these are both based on the same underlying

circuit theory. To substantiate this Furth et al. [23] have shown these continuous-time and

sampled-data techniques to follow similar SNR to power consumption relationships.

2.4.3 Non-linear operations

In most complex processing tasks, the underlying computation tends to be non-linear. This

may comprise of an array or bank of linear functions to achieve the overall non-linear

behaviour. A qualitative comparison, as previously presented for linear operations, has

been formulated for selected common non-linear functions, shown in Table 2.3.



Biologically Inspired Electronics 19

Si
gn

al
R

ep
re

se
nt

at
io

n
T
op

ol
og

y
Si

lic
on

A
re

a
P
ow

er
A

cc
ur

ac
y

N
oi

se
Sp

ee
d

R
ef

.

A
d
d
it
io

n
,
S
u
b
tr

ac
ti
on

,
S
u
m

m
at

io
n

C
ur

re
nt

-m
od

e
an

al
og

ue
1

cu
rr

en
t

ad
di

ti
on

(K
C

L
)

be
st

be
st

go
od

ex
ce

lle
nt

go
od

[2
5]

V
ol

ta
ge

-m
od

e
an

al
og

ue
2

ch
ar

ge
do

m
ai

n
(s

w
it

ch
ed

-c
ap

)
go

od
go

od
go

od
ex

ce
lle

nt
go

od
[2

6]

Sp
ik

e
do

m
ai

n3
lo

gi
c

O
R

go
od

go
od

ex
ce

lle
nt

go
od

ex
ce

lle
nt

[2
7]

D
ig

it
al

4
pa

ra
lle

l
co

un
te

r,
ri

pp
le

ad
de

r
fa

ir
go

od
ex

ce
lle

nt
ex

ce
lle

nt
ex

ce
lle

nt
[2

8]

M
u
lt
ip

li
ca

ti
on

,
D

iv
is

io
n

C
ur

re
nt

-m
od

e
an

al
og

ue
G

ilb
er

t
m

ul
ti

pl
ie

r
ex

ce
lle

nt
ex

ce
lle

nt
ex

ce
lle

nt
go

od
fa

ir
[2

4]

V
ol

ta
ge

-m
od

e
an

al
og

ue
fli

pp
ed

vo
lt

ag
e

fo
llo

w
er

s
go

od
go

od
go

od
go

od
fa

ir
[2

9]

Sp
ik

e
do

m
ai

n
pu

ls
e-

m
od

e
ne

ur
on

go
od

go
od

po
or

go
od

go
od

[3
0]

D
ig

it
al

ar
ra

y,
tr

ee
m

ul
ti

pl
ie

r
po

or
fa

ir
ex

ce
lle

nt
ex

ce
lle

nt
ex

ce
lle

nt
[3

1]

S
ca

li
n
g

C
ur

re
nt

-m
od

e
an

al
og

ue
sc

al
ed

cu
rr

en
t

m
ir

ro
r

ex
ce

lle
nt

ex
ce

lle
nt

go
od

fa
ir

go
od

-

V
ol

ta
ge

-m
od

e
an

al
og

ue
op

er
at

io
na

l
am

pl
ifi

er
go

od
fa

ir
go

od
go

od
go

od
-

Sp
ik

e
do

m
ai

n
sh

ift
re

gi
st

er
co

un
te

r
go

od
go

od
fa

ir
ex

ce
lle

nt
go

od
[3

2]

D
ig

it
al

ba
rr

el
sh

ift
an

d
ac

cu
m

ul
at

e
fa

ir
go

od
ex

ce
lle

nt
ex

ce
lle

nt
ex

ce
lle

nt
[3

3]

1
P

ro
vi

de
m

ax
im

um
re

so
ur

ce
effi

ci
en

cy
(a

re
a

an
d

po
w

er
)

[4
].

2
P

ro
vi

de
go

od
al

l-
ro

un
d

pe
rf

or
m

an
ce

.
3

P
ro

vi
de

go
od

no
is

e
im

m
un

it
y,

ro
bu

st
ne

ss
an

d
re

so
ur

ce
effi

ci
en

cy
[2

7]
.

4
P

ro
vi

de
hi

gh
es

t
sp

ee
d

op
er

at
io

n
an

d
pr

ec
is

io
n

[4
].

T
ab

le
2.

2:
A

qu
al

it
at

iv
e

co
m

pa
ri

so
n

of
lin

ea
r

co
m

pu
ta

ti
on

s
im

pl
em

en
te

d
us

in
g

di
ffe

re
nt

si
gn

al
re

pr
es

en
ta

ti
on

te
ch

ni
qu

es
.



Biologically Inspired Electronics 20
Si

gn
al

R
ep

re
se

nt
at

io
n

T
op

ol
og

y
Si

lic
on

A
re

a
P
ow

er
N

oi
se

A
cc

ur
ac

y
Sp

ee
d

R
ef

.

C
om

p
ar

is
on

,
T

h
re

sh
ol

d
in

g1

C
ur

re
nt

-m
od

e
an

al
og

ue
cu

rr
en

t
co

m
pa

ra
to

r
ex

ce
lle

nt
ex

ce
lle

nt
go

od
fa

ir
fa

ir
[2

5]

V
ol

ta
ge

-m
od

e
an

al
og

ue
op

er
at

io
na

l
am

pl
ifi

er
go

od
go

od
go

od
go

od
go

od
-

Sp
ik

e
do

m
ai

n
in

te
gr

at
e,

lo
gi

c
A

N
D

ex
ce

lle
nt

go
od

ex
ce

lle
nt

fa
ir

ex
ce

lle
nt

[3
4]

D
ig

it
al

su
bt

ra
ct

or
fa

ir
fa

ir
go

od
ex

ce
lle

nt
ex

ce
lle

nt
[3

3]

E
x
p
on

en
ti
al

,
L
og

ar
it
h
m

,
S
q
u
ar

e,
R

o
ot

2

C
ur

re
nt

-m
od

e
an

al
og

ue
tr

an
sl

in
ea

r
ci

rc
ui

ts
ex

ce
lle

nt
ex

ce
lle

nt
go

od
go

od
fa

ir
[3

5]

V
ol

ta
ge

-m
od

e
an

al
og

ue
no

n-
lin

ea
r

V
to

I
go

od
fa

ir
go

od
go

od
fa

ir
[3

6]

Sp
ik

e
do

m
ai

n
no

n-
lin

ea
r

ne
ur

on
go

od
go

od
go

od
go

od
go

od
[3

4]

D
ig

it
al

ro
ot

/d
iv

is
io

n
al

go
ri

th
m

fa
ir

fa
ir

ex
ce

lle
nt

ex
ce

lle
nt

go
od

[3
7]

F
il
te

ri
n
g,

In
te

gr
at

io
n
,
D

iff
er

en
ti
at

io
n
,
F
ou

ri
er

T
ra

n
sf

or
m

3

C
ur

re
nt

-m
od

e
an

al
og

ue
L
og

do
m

ai
n

go
od

ex
ce

lle
nt

go
od

ex
ce

lle
nt

ex
ce

lle
nt

[3
8]

V
ol

ta
ge

-m
od

e
an

al
og

ue
C

ha
rg

e
do

m
ai

n
(s

w
it

ch
ed

-c
ap

)
go

od
ex

ce
lle

nt
fa

ir
go

od
go

od
[2

6]

Sp
ik

e
do

m
ai

n
L
os

sy
in

te
gr

at
e

&
fir

e
ne

ur
on

go
od

go
od

go
od

fa
ir

go
od

[2
7]

D
ig

it
al

II
R

/F
IR

fil
te

rs
,
F
F
T

po
or

fa
ir

go
od

ex
ce

lle
nt

go
od

[3
9]

1
T

he
di

re
ct

co
m

pa
ri

so
n

of
co

nt
in

uo
us

si
gn

al
s

m
ak

es
an

al
og

ue
co

m
pa

ra
to

rs
th

e
m

os
t

ea
si

ly
im

pl
em

en
ta

bl
e,

w
he

re
as

di
gi

ta
l

co
m

pa
ri

so
n

te
ch

ni
qu

es
ar

e
ty

pi
ca

lly
im

pl
em

en
te

d
us

in
g

su
bt

ra
ct

io
n

dr
iv

en
co

m
bi

na
ti

on
al

lo
gi

c.
2

A
na

lo
gu

e
re

al
is

at
io

ns
ar

e
ba

se
d

on
tr

an
sl

in
ea

r
te

ch
ni

qu
es

or
ex

pl
oi

ta
ti

on
of

no
n-

lin
ea

r
co

m
po

ne
nt

re
sp

on
se

,w
he

re
as

di
gi

ta
l

im
pl

em
en

ta
ti

on
s
re

qu
ir

e
ei

th
er

R
O

M
-b

as
ed

lo
ok

up
ta

bl
es

or
sy

nt
he

si
s
of

cu
st

om
ar

it
hm

et
ic

-l
og

ic
-u

ni
t
(A

L
U

)
ty

pe
ha

rd
w

ar
e.

3
D

ig
it

al
im

pl
em

en
ta

ti
on

pr
ov

id
es

be
tt

er
re

co
nfi

gu
ra

bi
lit

y,
st

ab
ili

ty
to

dr
ift

/t
em

pe
ra

tu
re

an
d

lo
w

fr
eq

ue
nc

y
op

er
at

io
n.

T
ab

le
2.

3:
A

qu
al

it
at

iv
e

co
m

pa
ri

so
n

of
no

n-
lin

ea
r

co
m

pu
ta

ti
on

s
im

pl
em

en
te

d
us

in
g

di
ffe

re
nt

si
gn

al
re

pr
es

en
ta

ti
on

te
ch

ni
qu

es
.



Biologically Inspired Electronics 21

2.4.4 Hybrid System Organisation

The ultimate goal of using a hybrid approach is to exploit different representation strategies

throughout a system; ideally concocting a cocktail of circuit topologies to achieve optimum

performance for a given processing task. Unfortunately, we are unable to simply pick-and-

match circuit blocks to form a complete system. Conversion techniques must be imple-

mented whenever signal representation changes, however these impose power constraints on

the overall system.

Most modern applications typically require both analogue and digital techniques to work

along side one another as the bare minimum. Since the real world is analogue, any system

requiring a sensor interface requires analogue electronics. On the other hand, as most

control systems and communication protocols are digital, any system requiring external

interface capability requires digital electronics.

This paradigm itself defines a minimum of one data converter required to be used.

Therefore, in order to best utilise resources, it would be best to use this data conversion to

our advantage by using this as the main conversion stage within a system. Using previously

mentioned signal representation techniques, there exist several architectures that fulfil these

criteria (see Fig. 2.8).

2.5 The Technology

For such hybrid processing architectures, CMOS technology is ideally suited. Inherently

being a digital process, representation of discrete data is possible in all forms, whether it be,

clocked-digital, asynchronous or spike domain. Furthermore, through its wide use in mixed-

signal systems, circuit elements well characterised for analogue operation are provided.

This section shall deal with some important aspects in CMOS low power design. For

continuous-signal (analogue) design, the weak inversion operating region shall be discussed

with emphasis on reliable simulation and noise modelling and device mismatch. Similarly,

for discrete-signal design, asynchronous digital implementation issues will be discussed with

emphasis on delay modelling, trip-point matching and power reduction techniques.



Biologically Inspired Electronics 22

Sensor
and

Interface

Digital
Signal

Processing

Analogue
to Digital
Converter

Clock

Digital
Output

Real world signals

Analogue domain Digital domain

Analogue
Signal

Processing

Sensor
and

Interface

Digital
Signal

Processing

Clock

Digital
Output

Analogue domain Digital domain

Real world signals

Analogue
to Digital
Converter

Sensor
and

Interface

Spike
Domain

Processing

Analogue
to Spike

Converter

Handshake

Async.
Digital
Output

Real world signals

Analogue domain Spike domain

Analogue
Signal

Processing

Sensor
and

Interface

Real world signals

Analogue domain

Analogue
Signal

Processing

Analogue
to Digital
Converter

Sampled
Data

Processing

Clock

Digital
Output

Digital domain

(a)

(b)

(c)

(d)

Figure 2.8: Hybrid processing architectures with a single data conversion stage. (a) con-
ventional analogue front-end with digital processor and output (b) hybrid analogue/digital
processing platform with digital output (c) hybrid analogue and sampled data processing
platform with digital output and (d) hybrid analogue/spike-domain processor with asyn-
chronous digital output
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2.5.1 Weak Inversion Technology

It is widely accepted that for low power analogue design, the MOS transistor is most effi-

ciently1 used in the weak inversion region. Furthermore, the exponential gate-source voltage

to drain-current relationship extends translinear circuit theory to be applicable in CMOS,

as in bipolar technology. This makes realisation of powerful mathematical operations ex-

tremely cost beneficial; both in computational efficiency and silicon area.

The basic model for MOS operation in the weak inversion region [40] is given by:

IDS = I0

(
kT

q

2)
e

qκVG
kT

(
e

qVS
kT − e

qVD
kT

)
+ GDVDS (2.1)

where I0 is the pre-exponential constant, VG is the gate voltage, VS is source voltage,

VD is drain voltage (all relative to substrate,) κ is the body effect (κ = ∂ψS/∂VG, where ψS

is the surface potential,) k is Boltzmann’s constant, T is temperature, q is the electronic

charge and GD = ∂I/∂VD is the coefficient for channel length modulation (Early) effect;

being different to that for strong-inversion.

This section shall continue by discussing some of the issues that can be particularly

detrimental to circuit performance when using devices operating in weak inversion.

Simulation Models

There exist several different MOSFET simulation models; virtually all being valid in strong

inversion, however, many of these are simply extrapolated to cover weak inversion operation

and therefore provide inaccurate results. A careful review of various simulation models with

emphasis on validity and continuity from strong to weak inversion can be found in reference

[41].

The two most popular models are the BSIM(V3+) and EKV(V2+) families; both

physics-based models being accurate and continuous throughout all operating regions. The

BSIM model; an empirically adjusted SPICE model has been adopted (BSIM3v3) as the

industry standard CMOS simulation model. On the other hand, the EKV model; built

on fundamental charge-based physics has been designed for and dedicated to low power
1In weak inversion the gm/I ratio is at a maximum; a measure of how efficiently a transistor uses current

to generate transconductance
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Figure 2.9: Evolving complexity of common MOSFET simulation models; the two plots
illustrating the trend for the BSIM and EKV models.

circuit simulation. Most modern simulators are compatible with both models; the most

widespread in each case being BSIM3v3.2 and EKV2.6. In comparison, the BSIM model

is more complicated, requiring many more parameters than EKV; having only 18 intrinsic

parameters (see Fig. 2.9). Furthermore, the EKV model provides a single expression for

drain current valid in all modes of operation. For these reasons, the EKV model is often

used as an intuitive tool; useful for fast simulation and can be very helpful at understanding

device behaviour.

Noise in Weak Inversion

Ultra-low power weak inversion circuits imply low current and/or voltage levels and are

therefore more susceptible to the effects of noise. Hence a good understanding in noise

in weak inversion MOS transistors would be most useful. Traditional independent noise

mechanisms include thermal, shot, flicker, recombination and burst noise [42].

White Noise is the expression given to noise with a flat power spectrum; the most com-

mon being thermal or Johnson noise. Such an expression has been derived for subthreshold
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MOS transistors by considering the weakly inverted transistor channel to be composed of

a series of resistors [43]. Furthermore, Sarpeshkar et al. have developed a single expression

for white noise by unifying the processes of thermal and shot-noise for weak inversion MOS

transistors [44].

Iwhite
2 � 2qIsatΔf (2.2)

with q being the electronic charge, Isat being the DC current level and Δf being the

bandwidth.

Pink Noise describes those noise sources with a power spectrum inversely proportional

to frequency; in particular flicker noise [45].

Iflicker
2 � KIp

satΔf

WL

1
f

(2.3)

with K and p being process dependant constants, W and L being the device width and

length and f being the frequency.

By comparing (2.2) and (2.3,) it can be concluded that flicker noise dominates for

f < KI/2q in weak inversion MOS transistors. Furthermore, measured results of flicker

noise in weak inversion transistors [46] [47] tend to suggest that PMOS devices in general

are quieter than NMOS. This is due to the fact that different noise mechanisms exist for

NMOS and PMOS devices. Flicker noise in NMOS devices is thought to follow carrier

density fluctuation, whereas in PMOS devices it is mobility fluctuation and the strong gate

bias that are responsible.

MOSFET Matching in Weak Inversion

In CMOS fabrication, there exist two types of wafer processing error to consider. Global

variation accounts for the total variation in absolute value of a component over a wafer or

a batch. On the other hand, local variation reflects the relative variation in a component

value with reference to an adjacent component on the same chip.

Absolute value variations are usually provided by characterising the process at key points

often referred to as process corners. In contrast, relative value variations are modelled sta-
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tistically, often provided though Monte-Carlo models using gaussian spreads to represent

the fluctuating parameters. It is these relative variations, often referred to as device mis-

match that pose a challenging task to the analogue designer. Furthermore, it is circuits

operating in the weak inversion region [48] that are most susceptible to such errors.

Measurements of weak inversion MOS mismatch [48, 49, 50, 51] have identified three

main factors effecting device mismatch.

• The edge effect causes variations in drain current and is dependant on device position

with respect to surrounding structures. For example, in an array of identical transis-

tors, those transistors located at the perimeter will exhibit this edge effect; typically

5-15% for NMOS and 20-50% for PMOS. This can be attributed to various factors.

Uneven poly-silicon etch rates at such edge-conditions can alter the effective device

size; the etch rate being affected by the etch area. Also doping variations result-

ing from off-perpendicular ion implantation and diffusion from nearby structures (eg.

wells) contribute to this edge effect.

• The striation effect (sometimes classed as quasi-deterministic) manifests itself as a si-

nusoidal spatial variation in drain current. The amplitude of this variation is typically

30% the average drain current and the spatial period varies slowly from 100-300μm.

This is thought to be due to gas direction flow in wafer processing in implantation

chambers.

• Random variations manifest themselves to short distance fluctuations in threshold

voltage and drain current. Such effects are often attributed to phenomena such as

gate oxide non-uniformities (granularity, trapped charge, thickness,) uneven dopant

distribution and local effective mobility fluctuations. It is assumed that these physical

properties are independent random variables and that the correlation distance of the

statistical disturbance is small compared to the active device area. These assumptions

lead to characterising the normalised device property distribution with a spatial zero-

mean gaussian distribution function.

Threshold Mismatch: The standard deviation of short distance transistor threshold

voltage matching, is given by:

σ(ΔVT0) =
AVT0√
W.L

(2.4)
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with AVT0 being a device-specific constant and W.L being the active device width and

length, therefore the larger the area, the better the matching due to the averaging of short

distance variations.

The dependance of AVT0 on physical properties, is given by:

AVT0 =
qtox

√
2Ntdl

ε0εox
(2.5)

with N being the active doping atoms in the depletion layer, tox and tdl being the oxide and

depletion layer thicknesses respectively and ε0εox being the oxide permittivity.

Current Mismatch: The device current mismatch is dependant on the threshold

voltage mismatch in addition to the current factor mismatch. A common expression [52]

for drain current mismatch is given by:

σ

(
ΔID

ID

)
=

√
4σ2(VT0)

(VGS − VT0)2
+

σ2(β)
β2

(2.6)

with (VGS−VT0) being the overdrive voltage and β being the current factor. This expression

is normally reduced to a basic area dependance, as in the case for threshold mismatch:

σ

(
ΔID

ID

)
=

AIDx√
W.L

(2.7)

with AIDx being a device-specific constant, normally quoted in foundry documentation for

various values of overdrive voltage.

The current mismatch therefore increases with higher transconductance. This has dev-

astating effect on weak inversion circuits; known for having a maximum transconductance

for a given current. At the circuit level, it is therefore advantageous to bias any transistors

operating in weak inversion at a constant IDS rather than a constant VGS . Biasing at a con-

stant current and thinking in terms of current-domain signals is the essence of current-mode

approach in circuit design.
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Mismatch Reduction Techniques: Generally these sources of mismatch can be

greatly reduced through careful layout techniques. By using symmetric, regular device

placements together with use of dummy devices, the edge effect can be completely elimi-

nated. Long-range gradients and striation effects can be reduced using common-centroid

layout strategies. Furthermore, random variations can be reduced through increased device

sizing. A comprehensive review on careful layout techniques for improved matching is given

in reference [53].

Technology Scaling generally has a beneficial effect on device mismatch. It is evident

that with decreasing feature sizes the gate oxide thickness decreases and so the oxide quality

improves. As the gate oxide thickness is directly proportional to the threshold voltage

mismatch (see Eqn. 2.5), this is therefore improved. On the other hand, the current factor

mismatch remains more or less constant, hence any improvement in current mismatch is

due to better threshold voltage matching.

By collating statistical mismatch data (confidential) over a wide variety of CMOS tech-

nologies, the effect on threshold voltage area dependance (mismatch) with minimum tech-

nology feature size is established. This trend is illustrated for NMOS and PMOS devices

separately in Fig. 2.10. An interesting observation is that although traditionally NMOS

devices match better than PMOS, in deep submicron technologies this becomes reversed.

This can be explained; not by PMOS matching improving for deep submicron technologies

but rather NMOS matching deteriorating. The reason for this is due to the increased doping

levels required to maintain acceptable depletion widths in deep submicron. For feature sizes

larger than 0.25μm it was sufficient to produce NMOS devices using a relatively low doped

p-substrate. However, for sub-250nm technologies it is required to increase basic substrate

doping by placing NMOS devices in p-wells, similarly to the way PMOS devices have been

traditionally placed in n-wells.

2.5.2 Asynchronous Technology

The clocked synchronous paradigm is currently the dominant design methodology for digital

systems. While this approach has proved hugely successful over many decades, limitations

and drawbacks do exist. For example, the requirement in distributing high-speed clocks over

a large chip area, with precision, is complex and the clock tree itself dissipates a significant

proportion of the total power consumption. Also, clocking an entire system does not make

the most efficient use of resources; for circuits not contributing to a particular process still
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Figure 2.10: Effect of CMOS technology scaling on threshold voltage mismatch

burden the power supply. Furthermore, in mixed-signal systems, digital clocks often pickup

in sensitive analogue circuitry resulting in degraded performance. These problems become

more severe as device sizes continue to shrink and as clock frequencies continue to rise.

Asynchronous design offers an alternative to the clocked system methodology. This

overcomes the above limitations by dispensing with the clock and using self-timed signaling

to control the sequencing of computations in the system. Such circuits have the potential

for very low power consumption, as only the parts of the circuit that are utilised at any

time have switching activity and thus consume power.

In order to utilise such techniques effectively, a good understanding of transistor-level

logic implementation is timely. This section shall discuss some key issues in logic design,

particularly focusing on power dissipation and delay modelling.

Power Consumption

CMOS logic is typically classed as static logic, ideally consuming no power for no activity.

In reality however, power dissipation can be attributed to three main sources [33]. These

are:

• Static Dissipation refers to all the sources that draw constant current from the power
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supply. In static CMOS logic, this is due to reverse bias leakage between diffusion

regions and the substrate in addition to subthreshold conduction.

Pstatic = (Irb + Isub)VDD (2.8)

with Irb being the reverse bias leakage, Isub being the subthreshold (diffusion) current

and VDD being the supply voltage.

• Dynamic Dissipation refers to power used that is directly related to activity, i.e. the

more activity, the more dynamic power. This is due to the charging and discharging

of load capacitances during switching. The expression for dynamic switching power

is given by:

Pdynamic =
CLV 2

DD

tp
(2.9)

with CL being the load capacitance and tp being the minimum switching interval.

• Short-Circuit Dissipation is a form of dynamic dissipation; this occurs during tran-

sitions when both NMOS and PMOS devices are conducting and in saturation and

a direct route exists for current to flow between the power rails. The expression for

short-circuit dissipation is given by: [33]

Pshort−circuit =
β

12
(VDD − 2VT )3

tedge

tp
(2.10)

with β being the transconductance coefficient, VT being the thermal voltage and tedge

being the edge rise or fall time (assuming that the rising and falling edges are the

same.)

The total power dissipation can therefore be determined by considering the sum of

equations (2.8), (2.9) and (2.10). However, in complex circuit design, it is impractical

to evaluate the above at each individual logic node. Since for any well designed digital

logic, the dynamic dissipation will be the predominant factor, a simple approximation can

be made. By lumping together all the capacitance driven by gate outputs, the following

expression is formed:

Papprox =
δCtotalV

2
DD

tp
(2.11)

with δ being the percentage activity and Ctotal being the total load capacitance.
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Delay Modelling

In asynchronous circuit design, a crucial tool in creating reliable self-timed circuits is delay

modelling. As no clock exists to synchronise and condition signals, the focus is on building

well balanced circuits to provide glitch-free operation. In order to achieve this, a strong

understanding of switching characteristics is paramount.

Inverter Timing Analysis

The switching speed of any CMOS gate is limited by the time taken to charge and dis-

charge the load capacitance. In order to establish this, it is useful to analyse the constituent

timings within a simple inverter.

The fall-time of a CMOS inverter is dictated by the NMOS switching characteristic.

This is defined as the time taken for a waveform to fall from 90% to 10% of its steady-state

value. The analytical expression [33] is given by:

tf =
2CL

βnVDD(1 − n)

[
(n − 0.1)
(1 − n)

+
ln(19 − 20n)

2

]
� kCL

βnVDD
(2.12)

with βn being the transconductance coefficient for a NMOS device, n being the NMOS

turn-ON point (n = vtn/VDD with vtn being the NMOS threshold voltage) and k being the

switching strength parameter; lumping together all the n terms. The assumption is then

made that the k parameter is the same for NMOS and PMOS devices.

Similarly, the rise-time of a CMOS inverter is dictated by the PMOS switching charac-

teristic. This is defined as the time taken for a waveform to rise from 10% to 90% of its

steady-state value. The analytical expression [33] is given by:

tr =
2CL

βpVDD(1 − p)

[
(p − 0.1)
(1 − p)

+
ln(19 − 20p)

2

]
� kpCL

βpVDD
(2.13)

with βp being the transconductance coefficient for a PMOS device, n being the PMOS

turn-ON point (p = vtp/VDD with vtp being the PMOS threshold voltage) and k being the

switching strength constant.

Thus for equally sized N- and P-MOS transistors, with βn = 2βp (due to different carrier

mobilities,) the rise and fall times are scaled proportionally, i.e. tf = tr/2. For well balanced

inverters it is therefore necessary to design the PMOS with increased aspect ratio.
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The delay-time is then defined as the time difference between input transition (50%)

and the 50% output level. This can be approximated as half the rise or fall time, depending

on whether the transition is rising or falling.

Gate Delays

CMOS logic delays are often approximated by reducing a gate to an equivalent inverter.

For example, a 3-input NOR gate would reduce to three series PMOS devices for determining

the rise time and a single NMOS device for determining the maximum fall time.

In general, the fall time tf is atf for a NMOS transistors in series and the rise time

tr is btr for b PMOS transistors in series. Similarly, the minimum fall time is tf/x for x

NMOS transistors in parallel and the minimum rise time is tr/y for y PMOS transistors in

parallel. The maximum fall and rise times for parallel devices being achieved when only a

single device is contributing to the logic action. Such timings are invaluable for designing

circuits that have critical-delay paths, to avoid glitches and hazards. For other methods of

determining delay approximations see references [54] and [55].

2.6 Summary

In this chapter neurobiology has been reviewed from an engineering perspective, examin-

ing organisational and representation techniques. Extrapolating to microelectronics, these

design principles have been used in determining methods suitable for realising electronic sys-

tems based on biology. The motivation being that this will lead to development of effective,

efficient and robust perceptive systems. It has been established that hybrid structures are

a requisite in modern sensor processing applications and representation-based system-level

design techniques can assist in improving computational efficiency. Weak inversion analogue

and asynchronous digital electronics have been identified as the most suitable techniques

for biologically-inspired circuit design. Specific implementation issues have been discussed

and analysed for low power and robust design methodology. For weak inversion operation,

noise and matching analysis suggest that PMOS devices perform better than NMOS in deep

submicron technologies. Furthermore, an understanding behind device mismatch provides

the knowhow in designing reliably manufacturable subthreshold circuits. For asynchronous

logic design, delay modelling and power dissipation analysis provides an intuitive design

methodology for realising reliable self-timed and well-balanced circuits with minimal power

losses.
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Chapter 3

Modern Vision Processing
Technology

3.1 Introduction

Computer and machine vision are disciplines that have matured substantially in the past two

decades. Computer vision consists of image processing (image in, image out), image analysis

(image in, measurement out) and image understanding (image in, high-level description

out). Machine vision is the application of computer vision to enable a system to detect or

extract and subsequently act upon a certain visual feature in a control or analysis task.

Machine vision technology is becoming an increasingly important and in some cases in-

dispensable tool, for example in manufacturing automation. Applications appear in many

disciplines and industries, including: semiconductor, electronics, pharmaceuticals, packag-

ing, medical devices, biomedical, space, automotive, security, surveillance and consumer

goods. Machine vision systems offer a non-contact means of inspecting and identifying

parts, accurately measuring dimensions, or guiding robots, instruments or other machines

during positioning, navigation or stabilising operations.

Although such techniques continue to enjoy much success, effective realisation of per-

ceptive vision processing is a function that continues to elude us. Visual perception is a

high level process often associated with the human visual system. This is because, biologi-

cal vision is undoubtedly superior-to and unrivaled-by any synthetic artifact in perceptive

processing. For example, through our visual perception we immediately perceive a room as

containing windows, furniture and objects without delaying to process or analyse the image.

38
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Such neurobiological visual perception is facilitated by filtering, extracting and converting

the incident image through a chain of sub-processes of increased abstraction and complexity

starting at the ocular optics and retina. The retina preconditions, amplifies, compresses and

extracts parallel visual streams from the incident image. This set of neural images convey

various features via the Lateral Geniculate Nucleus (LGN) to the primary visual cortex for

more specific feature extraction (eg. orientation selective). As subsequently information is

conveyed to higher neural layers, the amount (or quantity) of data reduces, whereas the

perceptive level (or quality) increases.

Conventional computer vision processing systems are designed to operate under well

controlled conditions for example, with uniform lighting and well-defined targets. Visual

perception functions however are not influenced by such factors. For example, an image

recognition task should not be affected by lighting, orientation or size. Therefore it would

be useful to understand and use the underlying biological principles to produce effective

and robust perceptive vision processors.

This chapter begins by reviewing standard silicon process technologies suitable for imag-

ing, image processing and vision processing. Emphasis is given to identify a technology

suitable for implementation biologically inspired processing; integrating phototransduction

devices with electronics. Sequential and distributed processing architectures are then exam-

ined identifying their merits and limitations. Finally, existing techniques (both software and

distributed hardware) for centre-of-mass processing and target tracking are reviewed and

discussed, and vision chips developed in this field are compared. This task (centroid process-

ing) is considered a high-level task; for it requires image conditioning and pre-processing,

object segmentation and beyond and is therefore classed as a perceptive vision process.

3.2 Imager Technology

George Smith and Willard Boyle invented the Charge-Coupled Device (CCD) [1] at Bell

Labs in the late 1960’s. They were attempting to create a new kind of semiconductor

memory for computers. By 1970, the Bell Labs researchers had built the CCD into the

world’s first solid state video camera. Until the recent invention of the CMOS Active Pixel

Sensor (APS) by Eric Fossum in the early 1990’s, solid-state imaging systems have relied

on Charge-Coupled Device (CCD) technology for the image sensor component.

For the past decade, the CMOS APS has attempted to address some of the weaknesses
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of CCD technology. CCD’s rely on perfect charge transfer which makes the technology

intrinsically radiation “soft” in comparison to CMOS and therefore less straight-forward to

use at low temperatures. Furthermore, the difficulty to integrate with on-chip electronics

makes high frame-rate imagers and low power operation extremely challenging for CCD

technology. Also, comparing a specialist CCD imager process to standard CMOS technol-

ogy; by far being the most common and highest yielding process, it follows that CMOS

imagers would boast a significant cost advantage.

This section is dedicated to these two solid-state imager technologies. By outlining the

principles of operation and comparing state-of-the-art CCD and CMOS image sensors, the

strengths and weaknesses of each method are established and stated.

3.2.1 CCD Imagers

CCD technology uses the inherent photoresponsiveness of silicon to generate electron-hole

pairs on photon absorption. Impurity implants patterned into the silicon together with a

suitable voltage bias confine the photo-generated electrons to discrete packets. These charge

packets are then transferred to the conversion hardware using various strategies.

There typically exist three main architectures for CCD-based imagers: full-frame, frame

transfer and interline. Other techniques (not discussed) include Frame-Interline Transfer,

Accordian, Charge Injection and MOS XY Addressable.

• Full-Frame (FF): These typically are have the simplest architecture and are there-

fore the easiest to design, fabricate and operate. In these, the total area of the CCD

(100% fill factor) is available for detecting incoming photons during the exposure

period. During the readout phase, charge is shifted sequentially across the array

therefore necessitating a mechanical shutter to maintain image integrity (i.e. to pre-

vent smearing). This architecture consists of a parallel CCD shift register, a serial

CCD shift register and a charge conversion output amplifier. These simplicity of the

FF design yields CCD imagers with the highest resolutions and densities.

• Frame Transfer (FT): This architecture are very similar to the FF technique, differ-

entiating in the fact that it uses two CCD arrays; one photosensitive and one used

exclusively for storage. The idea is to quickly shift the captured scene from the photo-

sensitive region to the storage array. Readout off-chip from the storage register is then
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performed similarly to the FF device, whilst the next image is being formed on the

sensing array. The advantage is that continuous (shutterless) operation is achievable

resulting in faster frame rates. This is however at the expense of image quality (due

to smearing), reduced resolution and higher cost.

• Interline (IL): These have been devised to address the shortcomings of FT devices.

This is achieved by separating the photo-detecting and readout functions by forming

isolated photosensitive regions interweaved with lines of light-shielded parallel readout

CCDs. After integrating a scene, the signal collected in every pixel is shifted, all in

parallel, to the charge storage parallel CCD. Readout and output is then performed

similarly to FF and FT devices. This architecture significantly reduces smearing and

increases frame-rate. However, the increased pixel complexity and reduced fill factor

typically result in higher unit costs and lower sensitivities.

CCD technology has several general advantages and disadvantages. Using a single out-

put amplifier to convert and amplify the charge means excellent global image uniformity.

Furthermore, a single output amplifier can be optimised for low-noise operation and com-

bined with a low-noise substrate, CCD imagers boast good dynamic range. On the other

hand, as the image is formed through accumulating charge in adjacent wells, an “overfill”

would result in charge spilling out to adjacent pockets, referred to as blooming. It is tech-

nically feasible but not economic to use the CCD manufacturing process to integrate other

image sensor requisites, such as the clock drivers, timing logic, and signal processing on

the same chip as the photodetectors. These are normally put on separate chips so CCD

cameras contain multiple chips. The complete CCD imager architecture (FF organisation)

is illustrated in Figure 3.1.

3.2.2 CMOS Imagers

In the past, CMOS imagers based on the Passive Pixel Sensor (PPS) architecture suffered

from poor image uniformity/dynamic range and limited output bandwidth (due to high

readout capacitance). A solution to this problem would be to introduce local gain within

the pixel to buffer the signal. However, in doing so the active photo-sensor area to total pixel

size ratio (surface fill factor) would be reduced, consequently also reducing the responsivity

(incident light power to photocurrent ratio.)

In the past, as minimum transistor feature sizes were multiple-micron, an active sensor
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Figure 3.1: A typical CCD imager (full-frame based) architecture.

approach would render an prohibitively low fill factor, resulting in an unusable pixel format.

Through CMOS technology scaling, the Active Pixel Sensor (APS) [2] was recently made

feasible as the ratio of electronic device to photodetecting element has been significantly

reduced. The APS approach is to include an in-pixel amplifier performing the charge-to-

voltage conversion inside each and every pixel. Using a column and row selection matrix,

the individual pixel voltages are scanned off the array and buffered by the column amplifiers.

A drawback of the APS approach is that non-uniformities in the in-pixel amplifiers

constitute the so-called Fixed Pattern Noise (FPN). However, a major benefit in using

CMOS technology is the ability to integrate photodetecting elements with electronics on

the same chip. Subsequently, advanced signal conditioning techniques can be implemented

to dramatically reduce the FPN (eg. correlated-double sampling) and further process the

image. The complete CMOS imager architecture is illustrated in Figure 3.2.

3.2.3 CCD vs. CMOS

Comparing CCD to CMOS imager technologies [3] [4] several key differences can be found.

Table 3.1 makes such a comparison in various performance criteria including: dynamic

range, responsivity, uniformity, speed, power and cost [3]. Considering these advantages

and disadvantages of CCD and CMOS imagers, it is evident these will continue to co-exist

having a complimentary application space:

• CCD image sensors offer superior image quality and flexibility at the expense of system

size, cost and power. This technology remains the most suitable for high-end imaging
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applications. Such examples include: high definition video and still cameras and most

high quality industrial, scientific and technical applications.

• CMOS imagers offer superior integration, fabrication cost, power dissipation and sys-

tem size at the expense of image quality. This technology is the most suitable for

high-volume, space- and power-constrained applications with relaxed image quality

requirements. Such examples include: security, surveillance, biomedical, biometric,

automotive, healthcare and machine vision applications.

• Recent trends in CMOS imager technology have shown potential for APS systems

applied to high definition applications traditionally catered for exclusively by CCD

systems [5, 6].

3.3 Vision Processing Techniques

Image and vision processing has traditionally involved a modular organisation, consisting of

a stand-alone camera, computer interface and PC. Recent developments in processing hard-

ware has enabled embedded processors to substitute the traditional computing platform.

Although this presents a more compact, power efficient system, the underlying principle of

organisation remains the same; very much a sequential von Neumann based architecture.

This section outlines the strengths and weaknesses of this approach and continues by

introducing the distributed processing approach, recently made feasible by advances in

microelectronic technology, in particular concerning submicron CMOS.
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Attribute Comparison Advantage

Responsivity Both CCD and CMOS have similar responsivities
(as both can now include in-pixel gain).

Same

Dynamic Range CCD achieves superior dynamic range due to lower
noise (in substrate and amplifiers).

CCD

Fill Factor CCD approaches 100% fill factor whereas CMOS
typically achieves 20-50%, however this can be
greatly improved by using micro-lenses.

CCD

Pixel Size Full-frame CCD’s can have the minimum pixel
pitch, due to no in-pixel circuitry.

CCD

Uniformity CCD has excellent image uniformity due to single
output amplifier whereas in CMOS, FPN degrades
uniformity hence additional electronics are required
for compensation.

CCD

Shuttering Interline CCD’s have the ability to shutter arbitrar-
ily whereas CMOS requires additional electronics.

CCD

Speed CMOS capable of much higher speed of operation
than CCD due to the integration of all functions
on the same chip (less capacitance).

CMOS

Windowing On-chip electronics in CMOS can produce control
signals for windowing functionality.

CMOS

Anti-blooming CMOS has inherent immunity to blooming whereas
to reduce in CCD requires alteration to the stan-
dard CCD fabrication process.

CMOS

Anti-smearing CMOS has inherent immunity to smearing whereas
this places design constraints in CCD.

CMOS

Biasing & Clocking CMOS devices operate from a single voltage bias
and clock level, generated on-chip whereas CCD
require several higher voltage biases.

CMOS

System Size Electronics integration on single chip in CMOS re-
sults in reduced system size compared to CCD.

CMOS

Power CMOS technology is inherently lower power than
CCD. Optimal modular design in CCD for high-
speed systems can provide good power efficiency.

CMOS

Cost Lower total cost in CMOS technology due to wider
availability of CMOS fabrication and single-chip
implementation.

CMOS

Table 3.1: Comparison of CCD and CMOS imager technologies
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3.3.1 The Modular Approach

This conventional approach uses a standard CCD or CMOS camera (image sensor includ-

ing all internal image conditioning and pre-processing hardware) for image capture, subse-

quently transmitting the image to be stored in memory. The processor, either an embedded

DSP/FPGA or a conventional PC platform then executes an image processing algorithm,

either randomly or sequentially accessing the stored image within memory. This process is

typically repeated for each frame in static image processing. If transient image properties

are to be processed then a history of previous frames need to be stored in memory. The

great merit of this technique is reconfigurability and versatility, for the processing algo-

rithm is defined in software and therefore reprogrammable. This modular architecture for

implementing real-time image processing is illustrated in Figure 3.3.

Generally with modern processing hardware, “real-time” processing at standard scan

rates (eg. 25Hz) is achievable for many tasks, at the expense of power consumption and sys-

tem size. This poses a major issue in portable battery-operated machine vision applications

having stringent power and size constraints. Furthermore, the sequential processing and

communication nature of this technique render it unusable for high frame rate applications.

For example, for 8-Bit VGA resolution (640x480 pixel) image at 1000 Frames Per Second

(FPS) refresh, the imager alone would require a 2.46Gbps communication bandwidth! It is

here the bottleneck of the sequential von Neuman based computational paradigm presents

itself.

iCount: A Modular Real-time Image Processing Example

A commercial system implemented using such a platform is iCount by Safehouse Technology

Ltd [7]. The product brochure provides the following description:
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“iCount unobtrusively provides counting statistics for people and vehicles moving be-

tween user-defined areas. The system uses analogue or digital cameras, runs on standard

PC hardware and integrates easily with existing IT infrastructures.”

In this application, the modular approach provides a good, usable solution; for there are

no power or size constraints and reconfigurability is necessary to set up the various system

parameters. For example, in a particular scene object size and shape, boundary crossings,

forbidden regions and lighting conditions need to be set.

3.3.2 The Distributed Approach

Distributed or focal-plane vision processing has mainly evolved and been developed within

the Bio-inspired Electronics community in the past 15 years, since Carver Mead introduced

the notion of Neuromorphic Electronics[8]. This is due to the fact that distributed vision

processing at least shares two fundamental properties with neurobiology: massive paral-

lelism and being constructed from basic and identical processing elements.

A distributed processing architecture (see Fig. 3.4) uses electronics embedded within the
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photo-detection array, within each pixel; performing local, parallel and distributed process-

ing. Every row and column shares a common output bus for extraction of processed data.

Since the output is high-level processed data, the output buses are event- or data-driven;

delivering an event or value only when the local processing elements flag a useful result is

awaiting. This phenomenally reduces the communication bandwidth, thus a simple asyn-

chronous handshake is the preferred method for off-chip communication. Some such vision

systems contain an off-array processing core for some post-processing of the sequentially

extracted data. Distributed processing vision architectures are often called vision chips

because all the required functionality is on a single chip, including bias and reference gener-

ators, clocks1, control and tuning logic are contained on a single chip. This has been made

possible through use of modern CMOS technology.

The distributed processing paradigm overcomes the bottleneck presented in sequen-

tial processing architectures by employing massive parallelism of low speed processing el-

ements2. Furthermore, by optimising these elements using hybrid (analogue, digital and

spike-domain) circuit topologies, phenomenally good computational efficiency is achievable

in real-time vision processors. This has been until recently [9, 10] at the expense of devel-

opment time and reconfigurability. As vision chips are application specific and hardware

based, generally they require more time to design and once fabricated are typically dedicated

to a specific algorithm or processing task.

ACE16K: A Distributed Real-time Vision Processing Example

A commercial system implemented using such a platform is the ACE16K [11] by Anafocus

Ltd. The product brochure provides the following description:

“A digitally-controlled analog array processor designed for fast image processing appli-

cations. Its revolutionary processing capabilities rely on a combined spatial distribution of

sensing, processing and storage on an array of identical programmable units.”

This product is a generic high frame-rate (surpassing 1000FPS) vision processing system

targeted at applications such as textile fault detection, rail inspection from high-speed

trains, detection of debris particles in oil flow, high speed inspection during production,

etc. The system uses a distributed Cellular Neural Network (CNN) architecture to provide

the computational power required to process the vast amount of image data. However, the
1Use of clocks is normally avoided (for noise and power reasons) unless absolutely critical.
2An important advantage of this technique is the processing time is independent of array size
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main limitations of this approach is the relatively large pixel size and prohibitively high

power consumption, excluding it from use in applications with stringent power constraints

or those requiring high resolution images.

3.3.3 The Computation-on-Readout Approach

Although the distributed approach is ideal for fast and efficient early vision processing,

the inclusion of processing circuitry within the pixels, prevents such systems from acquir-

ing high-resolution images. These space constraints are eliminated if the processing is

performed serially during read-out using pixel-block-parallel-addressing. Various kernels

can be programmed in the processing unit of the imager and convolution is performed on

readout with several kernels in parallel. Functionally, the image itself serves as an analog

memory because the image dynamics occur at much slower speed than the image process-

ing being performed. The benefits of this approach are: (1) small pixel size allowing for

high-resolution imaging, (2) a single processor unit is used throughout the entire retina and

(3) programmability does not impact the imaging array density. The space constraints are

then transformed into temporal restrictions because the scanning clock speed and response

time of the processing circuits must scale with the size of the array. This approach is often

referred to as Computation-on-Readout (COR). This architecture is in fact very similar to

the APS, differing in only that it includes a processing core; controlling the row/column

selection and facilitating the COR.

Dallaire et al. [12] have applied the COR organisation by implementing a multireso-

lution edge detection algorithm on hexagonal pixel array. Another similar system based

on COR was used by Mallik et al. [13], implementing a temporal change threshold detec-

tor. A more generic approach was taken by Gruev et al. [14, 10], attempting to realise a

pseudogeneral-purpose vision chip for spatiotemporal filtering having the size and configu-

ration of processing convolution kernels programmable.

3.4 Centroid Detection

Visual position tracking and centroid detection have been tasks traditionally associated

with military applications. However these same tasks are fundamental to the more generic

field of image recognition. Traditional image processing techniques effectively condition,

filter and process image data but still normally output a matrix of pixels, constituting an
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image. For perceptive vision applications it is paramount to cluster together pixels in a

region of interest and provide a single entity for this. This task is often referred to as object

segmentation. Having performed this, it is useful to describe the object using a centroid co-

ordinate describing the object position and a single magnitude providing a measure for the

object size. Having such high-level processed data available can benefit countless systems

through a broad range of disciplines.

Machine vision for autonomous navigation, automation of security camera tasks, image

stabilisation for medical applications and biochemical cellular migration/population analysis

are some applications that could benefit from advances in such processing techniques. For

mobile platforms including autonomous systems and handheld devices, minimising power

consumption is of the upmost importance. It is therefore beneficial to include low-power

front-end electronics to perform this saliency or region-of-interest detection to alleviate

other processing tasks by applying attention only where it is most useful.

For applications that include the centroid computation as part of a feedback loop, high

speed and low latency are most crucial. Latency is an especially important issue for image

stabilisation and feedback systems with mechanical actuators. They demand quick response

or risk becoming oscillatory or simply ineffective. For example, in microsurgery, tremors

from the surgeons hand in addition to tremors from the subject can result in hazard sit-

uations. Here, optical tracking the surgeons instrument and objects in the operating field

coupled with mechanical compensation of surgical instruments could result in jitter-free

surgery.

3.4.1 Sequential Processing

As already stated, virtually all processing architectures today are based on the von Neu-

mann sequential processing paradigm [15]. With the advent of reconfigurable processing

hardware including field-programmable gate arrays (FPGA) and digital signal processors

(DSP), it has been made possible to produce autonomous embedded systems. Furthermore,

the reconfigurability has extended traditionally computer-bound software algorithms to be

used in real-time processing hardware. The computational efficiency of a state-of-the-art

hardware platform is more or less fixed; usually quoted in mW or μW per MIPS (Million

Instructions Per Second). Subsequently, it is the software algorithm making good use of

hardware resources which determines the system performance.



Modern Vision Processing Technology 50

This subsection will outline some common software techniques suitable for object cen-

troid computation.

Centre-of-Mass Computation

Calculating the centre of mass (COM) or centroid of an object is a relatively (computation-

ally) simple and efficient task. Considering the image to be a matrix I of intensities that

contains both an object and a background. Equation 3.1 gives the centroid calculation for

a single axis.

Cx =

∑n
i=1

∑m
j=1(xi · Iij)∑n

i=1

∑m
j=1 Iij

(3.1)

where xi is the coordinate of a pixel on the x-axis and Iij is the intensity of that pixel. This

equation assumes that the intensities of the object have higher numerical value than the

background. The computational expense (related to image size) of a single axis centroid

calculation is given by: Ix ∝ 2xy, where Ix is the number of processor instructions and x

and y are the image dimensions.

Although this approach is valid for asymmetric objects, the method is especially sus-

ceptible to changes in object shape and orientation between successive images when used

in target tracking. Furthermore, this method alone cannot handle multiple target track-

ing/centroiding.

Object Segmentation

In order to facilitate Multi-Target Tracking (MTT), effective object segmentation becomes a

fundamental requirement. A thresholding function to produce a binary template combined

with an object indexing technique is a basic method for achieving this. However, in real-

world images containing noisy undefined targets a more advanced technique is required for

robust object segmentation.

The Active Contour (Snake) Algorithm [16]

The active contour method provides a reliable method of object selection within images

containing “real-world” data. An active contour (snake) is a deformable contour that moves
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under a variety of local image constraints and object-model constraints. The representation

of a snake is: v(s) = (x(s), y(s)), where s runs from 0 to 1 over the perimeter of the

snake. The snake is controlled by minimising a function which converts high-level contour

information like curvature and discontinuities and low-level image information like edges,

gradients and terminations into energies. The energy functional is given by:

E =
∫ 1

0

1
2
[α|x′(s)|2 + β|x′′(s)|2] + Eext(x(s))ds (3.2)

where α and β are weighting parameters that control the snakes tension and rigidity, re-

spectively and x′(s) and x′′(s) denote the first and second derivatives of x(s) with respect

to s. The external energy function Eext is derived from the image so that it takes on its

smaller values at the features of interest, such as boundaries. Given a grey-level image

I(x, y), viewed as a function of continuous position variables (x, y), a typical external en-

ergy designed to lead an active contour toward a discrete edge is: Eext(x, y) = −|∇I(x, y)|2,
where ∇ is the gradient operator. The energy function is minimised by solving the Euler

equation:

αx′′(s) + βx′′′′(s) + ∇Eext = 0 (3.3)

On formation of the active contour boundary, the area enclosed can be delegated to a

centre-of-mass calculation function to compute the centroid of that particular object.

The active contour method provides an effective boundary detection technique suitable

for object segmentation. The resulting contour is smooth and continuous, and adapts readily

to deforming objects (changing shape, orientation and/or size). On the down side, the snake

algorithm is computationally intensive and requires external initialisation processes which

are able to position a snake close enough to the desired solution. Furthermore, the image

data is required to be sufficiently smooth so that the snake does not remain blind to the

desired solution and to maintain numerical stability in the iterative computations.

Other techniques

It has already been established that a software solution to multiple target tracking in real-

world data needs to incorporate several algorithms. To perform object segmentation the
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active contour method has been outlined, whereas for the centroid calculation the centre-

of-mass computation has been mentioned. Other techniques include:

• For centroid calculation: object contour averaging, intensity centroiding [17], mul-

tithreshold centroiding [18] and Gaussian fit estimation [19].

• For object segmentation: binary thresholding, fuzzy [20], alpha map [21], particle

filter [22], distribution matching [23] and gradient vector diffusion+region merging

[24].

Limitations

Although sequential processing is extremely powerful in processing off-line data, this tech-

nique presents a computational bottleneck in real-time centroid processing; especially in the

case of multiple-target tracking. The sheer volume of image data and complexity of object

segmentation algorithms result in a computational workload that would render an embedded

processing platform too power intensive for real-time and high frame-rate operation.

3.4.2 Distributed Processing

To overcome the computational limitations of traditional image processing techniques, a

parallel processing approach could be explored. Hybrid focal-plane electronics combined

with photodetection elements have the potential to achieve computationally efficient dis-

tributed centroid processing.

A review of previously developed vision chips demonstrate both the feasibility and po-

tential in distributed architectures for centroid processing. High speed operation, good

robustness and low power consumption have already been reported in a number of such

systems already developed. A quantitative comparison of several centroiding vision chips

in key performance criteria is provided in Table 3.2. The underlying principles of operation

can be divided into three main categories:

Column/Row Summation

The most common approach to object centroid computation is illustrated in Fig. 3.5. The

basic principle is to sum the pixels in all rows and columns to the edge of the array and
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Figure 3.5: Object centroid computation by row/column summation followed by one di-
mension mean point calculation. Binary (left) and analogue (right) representation schemes.

use one-dimensional mean point calculation to determine the X and Y centre of mass. This

mean point calculation can be implemented either using analogue techniques, for example

using a basic vector-matrix multiplier or with a mean cumulative computation function

implemented with digital logic.

The summation has been executed upon either binary values (employing a thresholding

function) [26] [30] [33] [36], or directly on continuous value (analogue) data [28] [34] [35] [29]

[24]. Since the analogue summation considers the fractional values of the object edge pixels,

centroid computation with sub-pixel accuracy is possible using this technique. The discrete

summation however provides am increased degree of immunity to noise and/or fuzzy data.

Although this column/row summation technique can compute an object centroid with

precision, speed and relatively simple hardware, this technique remains limited to computing

single object centroids.

Windowing and Search

Another effective technique, more widely used in general target tracking is using windowing

and search operations to locate objects and then to locally compute the centroid. Systems

based on such a strategy employ an initial search algorithm to locate different points of

interest. This has been done by using maximum local point detectors on a resistive network

and then generating a search window by propagating outwards [32] or by target tracking;

using an initial target template (lock) to define the initial search windows [31]. On defini-

tion of these tracking windows, the centroid extraction is normally facilitated through the
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Figure 3.6: Object centroid computation by winner-take-all network (competition illus-
trated only in one dimension). Using basic resistive grid (left) for single centroid, dy-
namic switching network (middle) for saliency/object segmentation and interrogation win-
dow (right) for centroid tracking

column/row summation method.

The great advantage of such schemes being the ability to track and centroid multiple

targets. However, this is at the expense of increased complexity, either with intricate in-

pixel digital processing or off-chip programmable logic device (PLD) to facilitate the digital

computation. Furthermore this introduces the requirement for a clock and control strategy

which can lead to degradation of signal-to-noise ratio (SNR) in addition to increased power

consumption.

Winner-take-all (WTA)

A third approach to centroid detection is to employ analogue processing for object seg-

mentation and/or saliency followed by a winner-take-all network on a resistive grid. Such

systems have either operated on the resistive network directly [40] or included dynamic

switch networks [38] for object segmentation or spatial derivative circuits [39] [37] for di-

rection sensing. These various techniques are illustrated in Fig. 3.6.

As this is a fundamentally analogue solution, reduced circuit complexity makes imple-

mentation straight forward. The voltage-smoothing resistive grid inherently removes noise

and thus increases robustness. Furthermore, by combining WTA networks with windowing

functions, multiple object centroid determination is possible [40].
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3.5 Summary

This chapter has begun by reviewing CCD and CMOS technologies. It has been estab-

lished that these technologies will continue to co-exist as complimentary rather than one

superseding the other. CCD’s will continue to provide high-quality, high resolution im-

agers for top-end applications, whereas CMOS offers the ability of in-pixel integrability

with electronics and low power/high speed operation. This trend makes CMOS technology

ideal for implementation of biologically inspired electronics (mentioned previously), based

on distributed algorithms and architectures.

Conventional software techniques have extensively tackled single target tracking and

centroid detection. The algorithm involved is both computationally efficient and hardware

implementable. Moreover, many distributed techniques based on the same centre-of-gravity

calculation have also proved successful in implementing robust, accurate and power efficient

vision chips.

Centroiding vision chips however, have failed to deliver true distributed multi-target

tracking. Although few systems have reported multiple object capability, the effectiveness

and efficiency has yet to be demonstrated. On the other hand, software techniques have

matured a variety of object segmentation algorithms suitable for multi-target tracking.

However, the huge computational expense of implementing these limit their use to offline

or low frame-rate processing. Furthermore, such techniques do not scale efficiently, for

example, the array (pixel grid) size may only be scaled a certain amount; until the processing

platform is operating at full capacity.

Another important feature vision chips have not yet yielded upon is object size and/or

shape estimation. This coupled with centroid location would provide very powerful high-

level processed data widely applicable in vision processing. For example, object size could

be used as a screening parameter, limiting the centroid co-ordinates only to objects within

a certain size window. This would be useful in microscopic cellular population analysis

for counting of biological cells and classification by size. Such a technique could provide

cell-type ratio’s, for example, between red and white blood cells; that have a distinct size

difference.
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Chapter 4

A Distributed Algorithm for
Centroid Detection

4.1 Introduction

This chapter introduces a novel scheme suitable for object-based centroid computation based

on a distributed processing architecture. Although several of the features have been biolog-

ically inspired, the algorithm is fundamentally synthetic. By using this hybrid approach,

a realistically hardware implementable system can be developed benefiting from increased

computational efficiency provided by the bio-inspired analogue processing elements. The

reduced power consumption enables realisation of mobile diagnosis devices which would

otherwise be technically unachievable.

This chapter begins by describing qualitatively a specific distributed algorithm suitable

for hardware implementation. A formalisation is then provided by describing the vari-

ous parallel processing functions using mathematical and/or logical expressions. It is then

outlined how this would be implemented in hardware, from a top-level functional perspec-

tive. Subsequently, software simulation results provide details to computational workload,

robustness and accuracy. Finally, this algorithm is architecturally generalised to a parallel-

processing platform with other similarly-based distributed algorithms being proposed.

62
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Figure 4.1: Example analysis scenarios where extraction of object centroid and/or size could
provide useful information in (from left to right): (a) Pharmaceutical drug production (b)
Reliability (leak) detection of bubbles in fluids and (c) Microscopic cellular population
analysis

4.2 The Bio-pulsating Contour Reduction Algorithm

An algorithm is proposed for distributed centroid processing and sizing of simple objects

[1]. Circular blob-like objects with uniform texture and an intensity differing from the

background level can be segmented and their size and position (centroid) determined by

means of a distributed binary algorithm. Some example images this can be applied to are

shown in Fig. 4.1.

Possible applications for such perceptive vision processing span through many disci-

plines. From machine vision applications such as production line inspection and reliability

detection, security (asset tracking), surveillance (counting persons passing a boundary),

space (star tracking, lunar mapping and vehicle navigation) and military (target tracking)

to biomedical analysis (cellular, microbial and neural).

4.2.1 Overview

This algorithm uses an edge-detection technique to form the contours and trigger the data-

driven processing. On detection of an object boundary, the initial state for the signal flow

is set. By propagating an inward fill, the contour can be reduced until this converges to

the centre. The central point is detected by utilising spatiotemporal integration; i.e. a

summation of the cells set within the receptive field within a certain time window. On

centroid detection, the object is reset and output transmitted, thus realising an inward

pulsating action. The frequency of pulsation determines the size, i.e. radius of this object.
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Fig. 4.2 illustrates this interaction graphically through computer simulations (described

later in detail).

4.2.2 Method

Threshold Detection

Objects are defined as regions in the image with narrow-field (2x2 average with adjacent

cells1) local-average intensity either below (or above) the average level of the input image.

This can implemented either as a true global average or a wide-field local-average; centred

on the object pixel to be tested.

Edge and Contour Detection

The edges are detected (in continuous-time) by computing the difference in adjacent cel-

lular intensities. In a quad-grid connectivity scheme (i.e. using square cells), each pixel is

compared with its four neighbours. Subsequently contours are formed if a continuous edge

is determined; assuming that a contour is defined as a cell corner adjacent to at least two

detected edges.

State Setting

The pulsating action is initially triggered by setting a cells (binary) state on detection of

a contour, i.e. when it lies on a continuous edge. The reduction is then facilitating by

each pixel checking whether any of their neighbouring cells have been set in addition to the

object criterion (threshold for that cell) being satisfied. The rate of this contour (cellular

state) reduction is defined by an artificial propagation delay introduced in this event path.

Centroid Detection

In parallel with this contour reduction, each pixel checks whether it satisfies the centre-

criterion. This is defined as when surrounding cells (but not directly adjacent; for reliability)
1A cell is referred to as the minimally-repetitive processing element (pixel circuitry) in for hardware

tessellation.
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Figure 4.2: Computer simulation results of the bio-pulsating contour reduction algorithm,
illustrating continuous-time image processing functions (top row) and snapshots taken at
regular time intervals at the propagation delay of the processing (bottom 3 rows)
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are set and the central pixel is remains unset. Such a condition immediately flags a centroid-

detection signal, that transmits the pixel co-ordinates off-array and subsequently off-chip,

then issuing a localised reset signal.

State Resetting

This reset signal is then back-propagated outwards in a recursive manner similar to the

contour reduction with the absence of the artificial delay. This delay is not required in

both paths, as the pulsating (or reset) period can be defined by including a delay in either

the forward or back-propagating path. More importantly a swift back-propagating reset

is required to avoid flagging multiple centroids. The resetting action therefore acts by

suppressing neighbouring cells from detecting centroids, thus realising a winner-takes-all

(WTA) type functionality.

An unusual and important feature of this method is the absence of any pre-defined syn-

chronisation signal, for example, a clock. The only synchronisation is obtained through the

data-driven object reset scheme but on a local, rather than a global basis. This in combi-

nation with the artificial delay time-constant defines the processing time, since CMOS the

(asynchronous) digital logic operates with propagation delays in the order of nanoseconds.

4.2.3 Analytical Formalisation

Image Processing Functions

The distributed spike-domain processing is driven by two specific binary signals generated

within each cell; the THRESHOLD (Th) and CONTOUR (Co) inputs. These serve to

initiate and steer the signal propagation correctly.

The THRESHOLD input is used to facilitate the object segmentation by defining the

valid area the signal can propagate within. Therefore this has the task of ensuring the fill

is propagating inwards and NOT outwards. This input for a particular cell is generated by

comparing its intensity, with the average background (outside object boundaries) intensity.

For object and background intensities that significantly differ it is therefore valid to use the

average image intensity as the global threshold point.

As the centroid processing occurs at the pixel corners, a local average of all pixels

adjacent to that processing node is required to convey a valid intensity at that point. This
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has the additional advantage of smoothing the image, thus helping reduce noise. This

local averaging (narrow-field) function can be expressed as given in Eqn. 4.1. Further noise

suppression can be achieved by implementing a larger averaging field, eg. using a 9 or 16

pixel squares.

Avnarrow =
1
4

x+1∑
i=x

y+1∑
j=y

Ii,j (4.1)

Similarly, to calculate the global average intensity the summations extend though the

whole array, as expressed in Eqn. 4.2.

Avglobal =
1
xy

x∑
i=1

y∑
j=1

Ii,j (4.2)

Where: (x,y) are the array dimensions.

However, for images with varying background intensity, for example a gradient due

to lighting conditions, it is favourable to perform a wide-field local average. This should

be a large enough area to extend beyond a single object in order to capture the back-

ground intensity. An easily hardware-implementable scheme would be to combine all the

the narrow-field local averages calculated in a cells column and/or row to calculate the

wide-field local average. This would provide a “global” average unique to every pixel as

expressed in Eqn. 4.3.

Avwide =
1
2x

x∑
i=1

Inarrow(i,j) +
1
2y

x∑
j=1

Inarrow(i,j) (4.3)

Comparing the wide-field average to the narrow-field average constitutes the required

thresholding function, given in Eqn.4.4.

Th = vdd · H(Avnarrow(x,y) − Avwide(x,y) + K) (4.4)
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Where: vdd is the supply voltage, H(x) is the Heaviside function, Avnarrow(x,y) and Avwide(x,y))

are the narrow- and wide- field local averages centred on the (x, y) pixel and K is a toler-

ance adjustment constant; to avoid erroneous thresholding due to noise in images with low

contrast selectivity.

To increase versatility to input images, adapting the threshold function such that the

narrow- and wide- field averages can be inter-changed, would enable the system to select

objects of either higher or lower intensity (relative to background).

In addition to requiring the THRESHOLD (Th) input to define the object areas, a CON-

TOUR (Co) input is also necessary to initiate the signalling from object boundaries. This

can be generated by using an edge detection function followed by some basic post-processing

to ensure reliability. To facilitate the edge detection, every pixel must be compared to its

four adjacent neighbours and if the differential surpasses a certain threshold, an edge has

been detected. On a tessellating basis, each pixel needs to be compared with only two neigh-

bours, for convenience the pixels below and to the right. The corresponding expressions are

given in Eqns. 4.5 and 4.6.

Evertical = vdd · H(| ln(Ix,y) − ln(Ix,y+1)| − Ethreshold) (4.5)

Ehorizontal = vdd · H(| ln(Ix,y) − ln(Ix+1,y)| − Ethreshold) (4.6)

Where: vdd is the supply voltage, H() is the Heaviside function, Ix,y is the intensity of

the (x, y) pixel in the array and Ethreshold is the pre-defined threshold, for flagging an edge

condition. Rather than comparing the intensity values directly, their natural logarithms are

taken, for this achieves increased dynamic range for edge detection.

On determining how many edges surround a specific cell, a contour is defined as a

continuous edge, i.e. when a cell is adjacent to two edges and lies on the outside of an

object. This can be defined as a boolean expression, given in Eqn. 4.7.

Co = (Th) · (A · B · C) + (A · B · D) + (A · C · D) + (B · C · D) (4.7)
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Where: A, B, C and D are the four edge inputs and Th is the threshold status.

Centroid Detection Functions

Having used the continuous-time analogue processing (See Fig. 4.3) to generate two binary

signals: CONTOUR and THRESHOLD, in turn these are used to feed, control and regulate

the asynchronous logical neuronal network.

Each cell requires three bits static memory to store its current STATE, RESET and

CENTRE activity. These are updated asynchronously depending on one cells CONTOUR

and THRESHOLD inputs, its current STATE, RESET and CENTRE values and current

STATE, RESET and CENTRE values from surrounding cells. The minimum required

cellular interconnectivity for implementing this algorithm is illustrated in Fig. 4.4. This

particular connectivity is required for the following reasons:

• Each pixel receives four state inputs (from directly adjacent cells) to facilitate the

inward signal propagation.

• Each pixel receives four reset inputs (from directly adjacent cells) to facilitate the

back-propagation signal, i.e. the local reset.

• Each pixel receives eight centre inputs (from directly and diagonally adjacent cells)

to ensure multiple centroids are not detected. This realises a form of inhibition on

centroid detection; preventing neighbouring cells from also registering a centre.

• Each pixel receives four state inputs (from indirectly adjacent cells, i.e. two pixels

apart in each direction) to determine the surround status used in centroid determina-

tion. The immediately adjacent cells are no used for this purpose as this could pose

a reliability issue for uneven aspect ratio objects, i.e. those that are not perfectly

circular.

Therefore, the internal functionality of a (binary) processing element (cell) can be de-

scribed using state diagrams or boolean expressions. These can be used to define the

conditions for setting and resetting the various memories (RS flip-flop based).

The Set STATE (SSet) condition is defined in Eqn. 4.8.
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Figure 4.3: Front-end continuous-time image-processing functionality.
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Figure 4.4: Local connectivity required for binary signals (state, reset and centre) to and
from every pixel.

SSet(t + τs) = Co(t) + Th(t) · (S1(t) + S2(t) + S3(t) + S4(t)) (4.8)

Where: τs is the delay time-constant which defines the propagation rate, Co(t) is the current

CONTOUR status, Th(t) is the current THRESHOLD status and S1(t), S2(t), S3(t), S4(t)

being the STATE variables of the directly adjacent cells.

The Reset STATE (SReset) and Set RESET (RSet) occur for identical conditions, i.e.

when a cells RESET memory is set, its STATE memory resets. This occurs either on

CENTRE being reset, or on RESET back-propagating (from adjacent cells) during a local

reset. This condition is defined in Eqn. 4.9.
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RSet(t + δt) = SReset(t + δt)

SReset(t + δt) = C(t − δt) · C(t) + S(t) · (R1(t) + R2(t) + R3(t) + R4(t)) (4.9)

Where: δt represents the propagation delay of the combinational logic, S(t) is the cells

current STATE value, C(t) is the current CENTRE status and R1(t), R2(t), R3(t), R4(t)

are the RESET variables of the directly adjacent cells.

The RESET memory is configured to self-reset, i.e. operate as a monostable, by feeding

the current RESET status through a small delay to the reset input. This ensures all setup

and hold times are respected when issuing a back-propagating RESET signal. This condition

is defined in Eqn. 4.10.

RReset(t + τr) = RSet(t) (4.10)

Where: τr is the Set-to-Reset delay time-constant.

The CENTRE memory is set on detection of an OFF-centre, ON-surround condition,

i.e. when surrounding pixels have STATE set and the centre-pixel has STATE not set.

Furthermore, lateral inhibition (Eqn. 4.11) prevents a cell flagging CENTRE if an adjacent

cells CENTRE status is set. This condition is defined in Eqn. 4.12.

CInhibit(t + δt) = C1(t) + C2(t) + C3(t) + C4(t) + C5(t) + C6(t) + C7(t) + C8(t) (4.11)

Where: C1(t) to C8(t) are the CENTRE status of the 4 directly- and 4 diagonally- adjacent

cells.

CSet(t + δt) = CInhibit · S(t) · S12(t) · S22(t) · S32(t) · S42(t) (4.12)

Where: S12(t), S22(t), S32(t) and S42(t) are the STATE values of cells’ two to the left, two

above, two to the right and two below respectively.

Finally the CENTRE memory is reset when the contour reduction reaches the centre

cell. This condition is defined in Eqn. 4.13.



A Distributed Algorithm for Centroid Detection 73

CReset(t + δt) = S(t) · S1(t) · S2(t) · S3(t) · S4(t) (4.13)

Where: S1(t), S2(t), S3(t) and S4(t) are the STATE values of the directly adjacent cells.

4.2.4 Algorithmic Features

• Asynchronous: The distributed nature of this algorithm makes it readily imple-

mentable using asynchronous digital logic. A tuneable (artificial) propagation de-

lay included in the input-enclosed feedback scheme provides a means of regulating

and controlling the rate of pulsing, when operated in closed-loop mode. Furthermore

such architectures are directly compatible with asynchronous off-chip communication

protocols such as the address-event representation (AER) scheme.

• Parallel Processing: Being of distributed nature, each cell contains identical processing

elements of relatively low specifications. This massive parallelism will be shown (later

in Chapter 6) to result in exceptional system performance; including high speed and

computational efficiency.

• Real-time: The parallel, distributed nature of the algorithm results in a very fast

processing time, making real-time and very high frame-rate2 processing feasible.

• Event-driven (spike domain): Image-detail driven processing produces a computa-

tional workload dependance on image content. This means that for no objects (in the

focal-plane) to centroid, the computational burden is much reduced.

• Scalable: Identical processing elements working in parallel means scaling up to an

increased array size will not produce a computational bottleneck. Power consumption

is therefore directly proportional to the number of processing elements (pixels).

• Robustness: Parallel processing provides an inherent tolerance to various non-idealities.

For example, effects of fabrication defects, process variations and ill-conditioned are

reduced through relative representation and processing redundancy (discussed later).

• Hardware implementable: This distributed algorithm truly lends itself to hardware

implementation in standard CMOS technologies. Combining weak inversion analogue
2Continuous-time asynchronous operation does not sample or refresh the image array at regular time

intervals as in the case of a conventional imaging chip.
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Figure 4.5: Proposed cellular architecture for object-based processing illustrating organisa-
tion and connectivity of functional blocks within a quad-pixel arrangement.

front-end signal conditioning and pre-processing together with distributed asynchro-

nous digital for neuronal-like networks makes ultra low power CMOS implementation

plausible.

4.2.5 Implementation

In order to facilitate the contour computation, the processing must occur at the pixel

corners, as illustrated in the pixel-cell architecture shown in Fig. 4.5.

The various functional (cellular-level) blocks; all continuous-time topologies, to be im-
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plemented in a standard CMOS technology are given below:

• Light detection: Integrated silicon pn junction (CMOS) photodiode (see Chapter. 5

for further details).

• Contour detection: Differential-input, single (discrete) output (thresholding) edge-

detectors feeding combinational logic for contour detection.

• Threshold detection: Narrow-field averaging for input image smoothing and wide-field

(or global) averaging for object detection; using current-mode techniques for linear

computations.

• Local resetting: reconfigurable (dynamic) switch network (logical), regulated by thresh-

old detector for object segmentation, to provide localised (object-constrained) reset-

ting by back-propagation.

• Neuromorphic logic: performing delay-and-propagate computation for signal flow and

centre-surround-like computation for centroid determination.

• Memory: Single-bit static memories for storage of each cells signal, reset and centroid

states (3 bits per cell).

4.2.6 Simulation

Being an algorithm of both distributed and asynchronous nature, this is somewhat com-

plex to model and virtually impossible to simulate the exact behaviour using conventional

software techniques. However, by making some simplifying assumptions a “frame-based”

representation can be derived and simulated.

The basic assumption is that all delay elements are perfectly matched and therefore all

pixels in a frame can be exhaustively processed sequentially, for each delay “period”. The

sequence of this pixel processing can be implemented either in a scan fashion or for more

realistic functionality, in a random pattern. This was developed using Borland Delphi V4

and the GUI developed is shown in Fig. 4.6. A full listing of the source code is provided in

Appendix A.
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Figure 4.6: The ORASIS simulator: screenshot of the developed software simulator for the
bio-pulsating contour reduction algorithm.

Effective Computation

In order to estimate the effective computation of this distributed algorithm, the frame-based

equivalent algorithm needs to be evaluated. Although, many of the functions are static,

i.e. require be executed each frame for each pixel, there also exist dynamic functions, for

example the reset cycle being recursive. The static computation is dependant only on the

array dimensions whereas dynamic computation is largely dependant on input data.

For a pixel array of dimensions (x, y), with n-objects (a ∈ [0, n]) of radius rn-pixels each,

the computational load required in processing each frame for main functions is specified

in Table. 4.1. This frame-based algorithm could be optimised by combining some of the

nested loop functions, thus reducing the computational workload by approximately 5-10%.

On the other hand, memory access operations have not been included in determining the

computational workload of the algorithm and as these are extensive, it is estimated these

would increase the computational burden by at least 50-100% [2] [3] [4].

Having a frame capture and process time of tμs, the complete computational load be-

comes:

Computation(total) =
1 + 8y + 37xy + 6

∑n
a=1(πr2

a)
t × 10−6

(4.14)
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Function Instructions1 Computational Load

Local Averaging loops2, 4 ADD, 1 DIV y(1 + 5x)

Global Averaging loops2, 1 ADD, 1 DIV 1 + y(1 + 2x)

Edge Detection loops2, 4 SUB, 4 COND y(1 + 9x)

Contour Detection loops2, 4 COND y(1 + 5x)

Threshold Detection loops2, 1 COND y(1 + 2x)

State Definition loops2, 6 COND y(1 + 7x)

Centre Definition loops2, 5 COND y(1 + 5x)

Reset Definition loops2, 1 COND and y(1 + 2x) + 6
∑n

a=1(πr2
a)

per iteration3, 5 COND

1 INC = increment, COND = condition, ADD = addition / summation,
SUB = subtraction, DIV = division.

2 Double nested loops require y(1+x) INC/COND instructions.
3 Multiple iterations due to recursive operation.

Table 4.1: Split of computational load for various processing functions

Estimating that the image comprises of n-objects of average radius rav-pixels.

Computation(total) � y(37x + 8) + 6n(πr2
av)

t × 10−6
(4.15)

For computer simulation parameters, with 100x100 array @ 50fps with 25 objects of

average 8-pixel radius:

Computation(software) = 50(100(37(100) + 8) + 6(25)(π82)) = 20.05MIPS

For hardware operation parameters (see Chapter 6 for details), with 48x48 array @

2000fps with 5 objects of average 5-pixel radius:

Computation(hardware) = 2000(48 ∗ (37(48) + 8) + 6(5)(π52)) = 175.21MIPS

The advantage of implementing this algorithm in custom hardware using asynchronous

techniques, is that more functions can be made dynamic and therefore data-driven. This re-

sults in a reduced average computational burden and can therefore contribute to substantial

reductions in power consumption.

In contrast, a state-of-the-art digital signal processor (DSP), for example the Texas In-
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struments TMS320C5000 series is quoted [5] to consume 0.25mW/MIPS. To execute the

above mentioned (hardware) scenario on such a system (excluding imager consumption)

would therefore consume at very least: 175.21*250μW=43.8mW. Furthermore, the maxi-

mum capacity of such power-efficient platforms are limited to 400-600MIPS. Therefore scal-

ing this algorithm to a larger array size would be at the expense of frame-rate, thus making

the realization of a high resolution, high-frame rate system unfeasible using existing DSP

technology.

4.2.7 Robustness

The robustness of an algorithm provides an indication to its reliability against hardware

fabrication non-idealities in addition to how immune it is to ill-conditioned or noisy data.

Processing non-idealities refers to hardware fabrication defects (eg. unreliable via connec-

tions) in addition to process variations and device mismatches. In terms of this algorithm,

process variations would effect the following:

• Component mismatch: This is by far the most critical expected source of errors. Com-

ponent mismatch would directly effect the photodiode array, causing non-uniformities

in offset (referred to as fixed pattern noise) and sensitivity (referred to as speckle

noise) variations. Furthermore, non-uniformities in gain elements (transistors) would

increase the degradation due to sensitivity mismatch. Beyond the imaging, edge de-

tection and thresholding electronics would also be affected by component mismatches,

resulting in uneven feature extraction.

• Processing Defects: Fabrication defects causing unreliable connections, could result in

various signals being incorrectly conveyed from one cell to its neighbour. Such errors

could cause a cell to flag an erroneous result or cause a break in the propagation cycle.

In order to analyse and evaluate the robustness of this algorithm, the input image

data can be adjusted to include array non-uniformities such as fixed-pattern noise, pixel

sensitivity and feature detection fluctuations. This can be modelled and/or simulated using

various techniques.
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Figure 4.7: Acceptable noise margins for error-free binary edge detection and thresholding.

Analytical Robustness

This involves considering the intensity profiles and error tolerances of the input images and

therefore determining the noise margin or signal-to-noise ratio for error-free binary feature

extraction. Subsequently for a given image type, the optimum settings (threshold and edge

levels) can be determined for maximum binary robustness and furthermore the suitability

of the algorithm for different image types can be analysed. Finally, the relationship between

distorted binary detection and erroneous centroid/sizing determination can be discussed.

Binary Feature Extraction Robustness

For edge detection (as defined in Eqns. 4.5 and 4.6) to be reliable in an input image consisting

of (relatively) dark objects on a light background, the conditions specified in Eqns. 4.16 (for

edge-detection) and 4.17 (for no edge-detection) need to be satisfied (see Fig. 4.7).

(Ibg − Iobj) − Eoffset > Imargin + Inoise (4.16)

Eoffset > Imargin + Inoise (4.17)

Where: (Ibg − Iobj) is the contrast difference of the objects to background level, Eoffset

is the minimum edge detection level, Imargin is the maximum object (and/or background)

intensity variation and Inoise represents the maximum tolerable level of intensity variations

(non-uniformities) in the array.

Assuming Imargin(background) = Imargin(object) and Inoise is increased to the maxi-

mum allowable level such that Eqns. 4.16 and 4.17 become equalities, the optimum setting

for Eoffset can be specified for a given image type as expressed in 4.18.
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Eoffset =
1
2
(Ibg − Iobj) (4.18)

However, the actual robustness to noise (Eqn. 4.17); causing erroneous edges to be de-

tected, is in fact increased due to the post-edge-detection CONTOUR logic. The operation

of this logic is to effectively screen out any noise triggering erroneous edges within object

boundaries by only detecting edges outside object regions. Furthermore by performing the

the thresholding operation on the narrow-field local averaged data, the object segmentation

is also reliable against noise induced errors.

For threshold detection (as defined in Eqn. 4.4) to be reliable in an input image consisting

of (relatively) dark objects on a light background, the conditions specified in Eqns. 4.19 (for

thresholding) and 4.20 (for no thresholding) need to be satisfied (see Fig. 4.7).

(Iav − Iobj) − Toffset > Imargin + Inoise (4.19)

(Ibg − Iav) + Toffset > Imargin + Inoise (4.20)

Where: (Iav−Iobj) is the margin from average intensity to object intensity level, (Ibg−Iav) is

the margin from background intensity to average intensity level, Toffset defines the threshold

detection offset from average intensity, Imargin is the maximum object (and/or background)

intensity variation and Inoise represents the maximum tolerable level of intensity variations

(non-uniformities) in the array.

Assuming Imargin(background) = Imargin(object) and Inoise is increased to the maxi-

mum allowable level such that Eqns. 4.19 and 4.20 become equalities, the optimum setting

for Toffset can be specified for a given image type as expressed in 4.21. Depending on image

content, Toffset may take a positive or negative value.

Toffset =
1
2
(2Iav − Iobj − Ibg) (4.21)

To establish numerical data for the above described tolerances and intensity levels,

analysing some sample images can provide typical values. By performing edge-detection

and thresholding operations on sample red-blood-cell images (as those shown previously in

Figs. 4.1 and 4.3), the resulting binary masks can be used to obtain statistical image content
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Sample RB001 RB01 RB02 RB03 RB04 RB05

Global Mean(x): 0.645 0.728 0.675 0.836 0.722 0.897

Background Mean(x): 0.794 0.850 0.843 0.980 0.971 0.990

Std(σ): 0.0001 0.023 0.029 0.030 0.044 0.015

Object Mean(x): 0.409 0.624 0.497 0.698 0.440 0.741

Std(σ): 0.0001 0.037 0.037 0.032 0.059 0.037

Cover(%): 38.52 53.76 48.50 51.11 46.85 37.32

Count(N): 56 380 291 52 46 41

Edge Eoffset: 0.193 0.113 0.089 0.069 0.141 0.078

Inoise: 0.193 0.039 0.014 0.006 0.023 0.005

SNR(dB): 10.482 25.53 33.66 42.88 29.94 45.08

Threshold Toffset: 0.044 -0.009 0.005 -0.003 0.017 0.031

Inoise: 0.197 0.039 0.104 0.074 0.164 0.082

SNR(dB): 10.302 25.42 16.25 21.06 12.87 20.78

1 Test image with ideal object and background uniformity.
2 Indicates minimum possible SNR for a given contrast ratio.

Table 4.2: Example image analysis (red blood cells) for statistical spread in
object and background intensity levels. This is used to determine the edge
(Eoffset) and threshold (Toffset) levels for optimum robustness.
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data; extremely useful in determining the algorithmic robustness to that image type. Such

an example analysis is provided in Table. 4.2.

This data is extracted by thresholding the various images at the global average level and

clustering together all pixels within background and object regions. The statistical proper-

ties of each of these groups can therefore be computed and the specific feature variations

can be compared for various images. What this data shows is that the robustness to the

binary operations (edge detection and thresholding) is largely dominated by the variance of

image object and background intensities in addition to array non-uniformities (considered

as static noise). For input images with relatively high variance, the binary segmentation

technique offers poor immunity to array non-uniformities (for example, only 5-10% noise

margin for the red-blood cell images), whereas for images with relatively low variance, this

technique can provide up to 30-40% noise margin.

Post-Binary Feature Extraction Robustness

The previous section has concentrated on optimising the feature extraction robustness based

on the implemented binary operations and image content. However, a major objective in

implementing distributed algorithms based on a biologically-inspired paradigm, is to capture

the inherent robustness, defect-immunity and tolerance to ill-conditioned data of nature.

Similarly, this algorithm is shown to substantially increase robustness beyond the expected

analytical feature extraction limit.

This feature can be attributed to the parallel distributed processing forming multiple

data flow paths coupled with data redundancy and compression. In the context of this

algorithm, the data flow is initiated at the object contours and an inward fill is facilitated.

This has the effect of compacting the amount of data being processed; for the “ring” of

cells being processed at any time reduces with this inward propagation. Furthermore, this

shrinking ring realises a many-to-one mapping and thus introduces massive data redun-

dancy. For example, if an edge cell does not register a contour, or an internal cell does

not register a threshold, the data propagation path simply tends to route itself around the

erroneous data. This action is illustrated in Fig. 4.8. Similarly, this algorithm makes defec-

tive circuitry redundant provided it is not incorrectly reporting an initiation condition, eg.

flagging a contour condition.

Due to the anticipated complexity in modelling this behaviour analytically, an alterna-
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a. Error-free operation

b. Tolerance to incomplete thresholding (error-free results) 

c. Tolerance to incomplete edge detection (error-free results)

d. Tolerance to incomplete thresholding (reduced accuracy in results)

e. Tolerance to incomplete edge detection (reduced accuracy in results)

No thresholding Thresholding Edge detection Centre detection Signal propagation

Figure 4.8: Simulated results demonstrating the algorithms inherent tolerance to erroneous
(or incomplete) binary feature extraction. Shown are, response to: (a) perfect binary
extraction, (b,d) to incomplete thresholding and (c,e) to incomplete edge detection.
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tive technique to examine this added robustness is through statistical algorithmic simula-

tions.

Simulated Statistical Robustness

This involves experimentally testing (simulating) the algorithm for various input images

against the various expected sources of error (previously mentioned). To facilitate this, the

input image data is pre-processed to include various levels of pixel-array non-uniformities

and the algorithm is simulated to determine the outcome for each case. By normalising the

results to the image content, this process can be repeated many times, collating statistical

simulation results (in total 18,000 simulation runs are performed). The detailed statistical

procedure that is taken is as follows:

• Input image: In total ten different input images have been used with different sizes

and frequencies of circular objects. The images were chosen to have flat object and

background texture in order to demonstrate the algorithmic response to array non-

uniformities rather than to non-idealities in image feature uniformity.

• Contrast ratio: Each image is then altered to three set illumination levels; i.e. contrast

ratios for object to background intensity ratios of 10:1, 4:1 and 3:2. Subsequently the

average image intensity was adjusted to be at 50% maximum illumination level as to

fairly capture effects to positive and negative non-uniformities. Image contrast ratio

is the most crucial parameter when determining algorithmic robustness, therefore for

fair comparison, only images of identical contrast ratio should be aggregated.

• Noise types: The sample images are subjected to three types of noise: Gaussian,

speckle and salt pepper noise. These three types have been specifically chosen for their

resemblance to various array non-uniformities in hardware fabrication. In particular

(1) Additive (zero mean) Gaussian noise is used to simulate for photoreceptor offsets

(fixed pattern noise), (2) Speckle noise represents gain and sensitivity non-uniformities

of phototransduction and amplification elements and (3) Salt and Pepper noise is used

to model dead or defective photoreceptors or in-pixel circuits with permanent low or

high response.

• Noise power: Each type of noise is generated for twenty preset levels of noise power to

cover 100% intensity spread, i.e. +/- 50% about the zero-noise intensity. It is these

noise levels that shall be used as a reference to algorithmic robustness.
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• Multiple simulation: In order to generate a sufficient amount of statistical data and

achieve a conclusive trend, each simulation run is repeated using ten different noise

sets.

• Algorithm settings: For each image/contrast ratio a single set of edge and object

threshold levels are chosen based on the optimum dynamic range criteria expressed in

Eqns. 4.18 and 4.21.

• Post simulation analysis: The generated results are averaged (for repeated runs), nor-

malised to image content, i.e. object density (for different images) and then averaged

again. The resulting data is then appropriately scaled to report the error in average

object count and size for the three predefined contrast ratios.

These analysed results are illustrated in Fig. 4.9 for gaussian and speckle noise and

Fig. 4.10 for salt and pepper noise. Concluding from these results, the good robustness of

this algorithm is apparent. At no point does the algorithm cease to operate or “crash”,

however the accuracy becomes degraded with increased image noise. For typical fixed

pattern noise levels [6] and medium contrast selectivity, an acceptable 2-5% inaccuracy can

be observed. Whereas for images with high contrast ratios, higher accuracy can be expected.

The algorithm also proves to be robust to defective pixel outputs, as indicated in the salt

and pepper noise results.

4.2.8 Accuracy

Due to the binary nature of this centroiding/sizing algorithm, the centroid accuracy for

regular objects, eg. circular objects, is limited to one pixel resolution. Similarly, radial

precision can be also calculated to single pixel accuracy. However for irregular objects this

centroid accuracy deteriorates. This algorithm is intended to provide a good estimate to

centroid position and size, not a mathematically accurate centre-of-mass computation. For

more precise object-centre determination, such a centre-of-mass/centre-of-gravity calcula-

tion can compute to multiple sub-pixel accuracy.

In general, the accuracy of perceptive vision processing tasks need not be highly accurate.

For these are primarily used to divert attention of additional parallel processes to resolve

the task to higher precision. For example, attention/saliency selection tasks typically have

poor spatial resolution but good temporal resolution and are subsequently succeeded with

processes of high spatial resolution.
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Figure 4.9: Statistical simulations to demonstrate robustness to array non-uniformities.
Algorithmic response to additive spacial gaussian noise representing fixed pattern noise (top)
and random speckle noise representing array gain/sensitivity non-uniformity (bottom).
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Figure 4.10: Statistical simulations to demonstrate robustness to array phototransduc-
tion/amplification defects. Algorithmic response to additive salt and pepper noise repre-
senting pixels with permanent low/high response.
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4.3 A Bio-inspired Paradigm for Parallel Processing

By taking this specific (centroiding) distributed algorithm and analysing the connectivity

and representation, a general architectural description can be derived. This method pro-

vides a formalisation to hardware implementation of intricate hybrid3 structures based on

common software techniques. Such techniques include recursion, erosion, dilation and back-

tracking; being only implementable in a sequential manner using conventional techniques.

Distributed processing can offer significant performance advantages in computational effi-

ciency, robustness, speed and processing capacity.

4.3.1 The Concept

The underlying concept behind this computational paradigm is to combine two different

processing arrays. The front-end for signal acquisition and binary feature extraction and

the back-end for binary spatiotemporal processing, the cross-connection being the extracted

binary feature template. By dissociating the binary signal processing from the continuous

signal conditioning in this way, advanced binary algorithms can be implemented within a

true parallel architecture.

4.3.2 The Architecture

This distributed architecture can be implemented in several integrated sensor acquisition

and processing applications requiring either one or two dimensional arrays.

This architecture can be therefore divided into the following five layers:

• Sensor acquisition layer (direct connectivity): This constitutes the sensor; input trans-

ducer including associated signal conditioning circuitry. For example, in an auditory

system this could include a microphone and a pre-amplification stage. This layer

could also include an off-array signal acquisition structure, for example interfacing to

a microelectode array.

• Signal processing layer (direct and lateral connectivity): This includes continuous
3Hybrid refers to a system using multiple forms of data representation for parallel processing.
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value spatiotemporal filtering including averaging, differentiating, integrating, nor-

malising, etc. for preparation of binary extraction.

• Binary extraction layer (direct connectivity): Involves some thresholding functionality,

i.e. a tuneable one-bit converter. This binary feature extraction produces digital

signals (from analogue inputs) for driving the asynchronous logic array.

• Binary processing layer (direct and lateral connectivity): Forms a distributed asyn-

chronous logic network, with parallel inputs for binary signal processing and subse-

quently high-level feature extraction. Advanced algorithms can include feedback to

signal processing layer to achieve added adaptivity, tunability or accuracy.

• Array supervisory layer (lateral connectivity): Provides global inputs and control

to all cells and handshakes processed information off-array. Communication with

conventional processor can providing start data or provide search functionality.

This generalised distributed processing architecture is illustrated in Fig. 4.11.

4.3.3 Neurobiological analogy

The general architecture presented in fact shares several similarities to neurobiology and in

particular the visual system. The following analogies can be made for each of the above

mentioned layers:

• Sensor acquisition layer → Retinal photoreceptor layer: These neurons generate elec-

trical signals on absorption of photons of light and through local amplification pro-

duces inputs suitable for the subsequent signal processing.

• Signal processing layer → Retinal bipolar, horizontal and amacrine layers: These bio-

logical cells form receptive fields producing parallel spatiotemporally-processed visual

streams for subsequent image-feature extraction.

• Binary extraction layer → Retinal ganglion cell layer: Through “integrate-and-fire”

functionality this neural layer aggregates signal amplitude, converting to the temporal

domain as discrete pulse-frequency data, subsequently transmitted to the brain.

• Binary processing layer → Cortical primary visual cortex: V1 cells are believed to

have orientation selective functionality using localised interactions facilitating signal

propagation [7] in a similar manner to that intended in this binary processing layer.
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Figure 4.11: The generalised distributed processing architecture; a one dimensional array il-
lustrating the various functional layers and interconnectivity. Increased performance and/or
added functionality (eg. localised gain control, noise-shaping, oversampling, etc) could be
realised through closed loop conversion mechanisms (dotted arrows), although these would
be purely synthetic as oppose to biologically-inspired.
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• Array supervisory layer → Higher order cortical processes: Although structurally

different, these provide high-order perceptive functionality such as saliency and at-

tention selection, very much performing a supervisory or control role over lower-order

processes.

4.3.4 Implementation

This architecture is best suited for implementation in CMOS technology. Possessing pho-

totransductive (photodiodes) or mechanical acoustic (MEMS) elements, CMOS technology

can offer sensor integration; critical for such distributed processing platforms. Furthermore,

implementing this architecture using MOSFET devices operated in the weak inversion re-

gion, coupled with asynchronous digital logic provides the ideal combination for power effi-

cient realisation. Power efficiency is extremely important when tessellating several thousand

(or more) cells on a single silicon substrate.

Application

A reconfigurable array processor would perhaps be the most suitable system based on

this architecture. Since logic is easily made reconfigurable and front-end binary feature

extraction functions can be made general, an FPGA-like vision processor could be useful

for a variety of applications. On the other hand, a reconfigurable system would be far

from being universally applicable. For well defined tasks with specific algorithm a custom

implementation would achieve the optimum performance. The difficulty therefore lies in

developing the distributed algorithm to be implemented, as these are generally less-intuitive

to formulate.

4.4 Emerging technologies

A number of leading research establishments and semiconductor foundries are currently

investing in and developing next generation 3D CMOS technologies [8] [9]. These expect to

provide multiply stacked substrates with interconnecting vias; in a similar manner to metal

layers in current processes. Such a technology would have a huge impact on the imaging and

vision chip community. For example the exposed substrate layer can be specifically devoted

and tailored to imaging; with low substrate doping and near 100% fill factor. Subsequently,
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the “underground” layers could contain the processing electronics in true 3D retinomorphic

arrangement [10].

Although this emerging technology is believed to revolutionise the semiconductor in-

dustry as a whole, it will only be truly beneficial to a very small proportion. For example,

most high-performance digital processing systems currently limited due to power dissipa-

tion constraints will not be assisted by advances in such technologies. Therefore, foreseeing

ahead it would be advisable to develop those circuits and systems that will benefit from such

future technologies. It is expected, systems involving distributed architectures; particularly

involving vision applications, will be amongst those to thrive the most in these emerging

technologies.

4.5 Summary

This chapter introduces the concept of the bio-pulsating contour reduction algorithm. This

is a parallel, distributed algorithm performing asynchronous object recognition breaking

the bottleneck of traditional, sequential von Neumann based computational paradigm. The

globally asynchronous scheme is regulated by employing data-generated local synchronisa-

tion, increasing computational efficiency and improving the signal-to-noise ratio. By incor-

porating the processing in the front end, the bandwidth requirements have been reduced

by at least four orders of magnitude.

Through developing a software equivalent technique, the computational complexity has

been estimated and by comparison to state-of-the-art DSP technology a target computa-

tional benchmark has been determined. Furthermore, it has been established that con-

ventional techniques are preferable for off-line processing applications, providing superior

accuracy. On the other hand, distributed techniques are more suited to realtime, high-speed

and high-resolution processing.

Analysis and simulation into algorithmic robustness have identified two crucial factors:

image content and array non-uniformities. Analysis has determined robustness to be highly

dependant on image type and content. Subsequently a method for defining the suitability of

the algorithm to a certain image type has been outlined. Furthermore, statistical simulations

have tested the algorithm to different types and levels of spatial noise and concluded very

good robustness to array non-uniformities.
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Finally a distributed processing platform has been outlined; based on the bio-pulsating

contour reduction algorithm. This extends the core architecture by generalising the vari-

ous sub-blocks, realising a platform suited to hardware implementation of a wide-range of

distributed algorithms.
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Chapter 5

Photodiodes in Modern Deep
Sub-Micron CMOS Technology

5.1 Introduction

A major objective in implementing any vision processing system is monolithic integration

of imaging elements with processing circuits. Traditionally, the limiting factor has been

large area overhead for circuit implementation as past CMOS technologies (i.e. of larger

feature sizes) have generally yielded either low-resolution systems or systems of limited

in-pixel processing complexity. In modern technologies (i.e. sub-350nm minimum feature

size) however, this trend has been reversed and although the in-pixel circuits scale in size

and include higher complexity, the photodetection elements tend not to scale [1, 2] so

favourably. It is therefore a challenge in developing any vision processing system in modern

deep submicron CMOS technology is to achieve photodetection elements of performance

comparable with those available in past technologies.

This chapter reviews silicon-based phototransduction in CMOS technology specifically

concerning p-n photodiode implementation, developing an analytical model intended for

deep submicron technologies. Then a range of fabricated devices in a given technology

(0.18μm CMOS) are presented and the their measured results discussed and analysed, par-

ticularly concerning deep submicron technology related issues. Several key factors are then

identified and a generic set of design rules outlined for photodiode optimisation. Finally, dif-

ferent interface topologies are reviewed leading to a novel bio-inspired spiking photoreceptor

with a scheme for adaptable/tradable dynamic range, spatial and temporal resolution.

96
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Figure 5.1: The basic P-I-N diode under zero external bias illustrating: (a) cross-section
and (b) energy band diagram.

5.2 Photodiode Modelling

Much work has already gone into modelling and analysing silicon-based photodiode behav-

iour [3, 4, 5, 6, 7, 8, 9, 10]. This section aims to develop a comprehensive yet concise model;

useful in pre-fabrication design and optimisation of CMOS based P-N junction photodiodes,

particularly targeted towards implementation in deep submicron technologies.

5.2.1 Silicon-based Phototransduction

Traditionally, silicon-based photodiodes have been implemented using p-type/intrinsic/n-

type (P-I-N) structures. Phototransduction occurs when incident photon energy is absorbed

within the intrinsic region causing an electron-hole pair to split and collected resulting in a

photo-detectable current. This process can be described by its energy band diagram, shown

in Fig. 5.1.

Incident light radiation; of photon energy (hv) being greater than Eg (Eg(Si) = 1.1eV )

will result in excitation of an electron from the valence band (Ev) to the conduction band

(Ec). This process manifests itself as an electron-hole pair splitting and subsequently as it

will consume exactly 1.1eV, any excess energy will be dissipated thermally.

As the absorption requires the excitation of valence band electrons of a certain energy
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and these are finite per unit volume, it is therefore dependant on the thickness of the

semiconductor. Given an incident photon flux of Φ, penetrating a thickness of δx; causes a

change in photon flux of ΔΦ, the absorption coefficient is defined as:

α = − ΔΦ
ΦΔx

(5.1)

Where α is the absorption coefficient, Φ = (λ/hc)(Popt/A) is the photon flux, Popt is the

incident optical power, A is the cross-section area and the negative sign represents an

attenuation. Integrating Eqn. 5.1 for illumination of constant wavelength, forms the Beer-

Lambert Law describing the transmitted photon flux to decrease exponentially with depth:

Φ(x) = Φ0e
−αx (5.2)

Where Φ0 is the initial photon flux (i.e. at x=0) and x is the depth. Alternatively, expressing

the absorption coefficient as a function of wavelength yields the relationship:

α ≈ 2ωni

c
=

4πni

λ
(5.3)

Where λ is the wavelength of incident radiation and ni is the imaginary part of the materials

refractive index. This expression in fact reveals a significant relationship; that the longer the

wavelength, the deeper it can penetrate into a given material. Furthermore, the penetration

depth; derived from Eqn. 5.2 is defined as the depth a given wavelength can penetrate until

it is attenuated by 63% (1/e) its original value. This is expressed as: y = α−1.

5.2.2 The P-N Junction Photodiode

As standard deep-submicron CMOS technologies typically do not include process steps for

creating defined intrinsic layers for fabricating P-I-N photodiode structures, parasitic P-N

junctions are generally used for phototransduction. At the P-N junction, majority carrier

diffusion gives cause to a depletion layer being formed having pseudo-intrinsic properties and

therefore being suitable for photo-absorption; generating electron-hole pairs. This diffusion

is due to the majority carrier concentration gradient with holes diffusing from the p-type
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region to the n-type and electrons vice versa. As a result, the region near the P-N junction

is depleted of majority carriers and hence the term depletion region (Fig. 5.2a,b).

Depletion Layer [3]

As the space charge region (depletion layer) has no free charge carriers, the depleted n-type

region has a net positive charge and the depleted p-type region has a net negative charge

(Fig. 5.2c). This gives rise to an internal junction “built-in” voltage, expressed in Eqn. 5.4.

φbi =
kT

q
ln

NAND

n2
i

(5.4)

Where φbi is the junction built-in voltage, kT/q(= φt) is the thermal voltage, NA and ND are

the impurity acceptor and donor atom concentrations and ni is the intrinsic semiconductor

concentration.

Once determining this built-in potential (Fig. 5.2e), the width of the depletion region

can be determined.

xw =

√
2ε0εr(Si)

q

(
1

NA
+

1
ND

)
(φbi − vb) (5.5)

Where xw is the depletion width, ε0 is the permittivity of vacuum, εr(Si) is the relative

permittivity of silicon and vb is the applied bias. Consequently, the depletion region can

be made to increase in width by applying a reverse bias; the higher the bias, the wider the

depletion region.

Furthermore, this depletion region gives rise to an internal electric field (Fig. 5.2d) due

to the static charge differential. This is crucial in separating photo-generated electron-hole

pairs and thus collecting the photocurrent. The magnitude of this internal electric field at

the abrupt junction interface is expressed in Eqn. 5.6.

E0 = −qNDxwn

ε0εr
= −qNAxwp

ε0εr
(5.6)

Where E0 is the maximum internal electric field and xwn and xwp are the depletion region

widths in the n- and p-type regions respectively.
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Figure 5.2: The basic P-N junction diode under zero external bias illustrating: (a) cross-
section (b) n/p concentration profile (c) space charge density (d) electric field and (e)
internal potential
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Photocurrent Density [11]

The electron-hole pair generation rate can be directly derived from the Beer-Lambert law

(Eqn. 5.2) giving:

G(x) = −dΦ(x)
dx

= αΦ0e
−αx (5.7)

The photocurrent density (Jphoto) consists of two components: the drift current (Jdrift);

due to carriers generated within the depletion region and diffusion current (Jdiffusion); due

to carriers generated outside the depletion region. Assuming an initial photon flux (Φ0) at

the edge of the depletion region, the expression for the drift current component becomes:

Jdrift = −q

∫ xw

0
G(x)dx = q (Φxw − Φ0) = −qΦ0

(
1 − e−αxd

)
(5.8)

Where xd is the depletion layer width in the axis of the incident light radiation. For a

vertical junction this would be equal to the depletion layer width (i.e. xd = xw), however

for a lateral junction this would be equal to the junction depth (i.e. xd = xz).

The diffusion current consists of two sub-components; the reverse diffusion current den-

sity under dark conditions (Jdark) and the photogenerated contribution from the substrate

(Jdiff,vert and Jdiff,horiz for vertical and lateral diffusion). The expression for dark current

density can be derived from:

Jdark = Js =
qDnnpo

Ln
+

qDppno

Lp
(5.9)

Where Js is the saturation current density, Ln =
√

Dnτn and Lp =
√

Dpτp are the electron

and hole diffusion lengths, Dn = φtμn and Dp = φtμp are the n- and p-type diffusion

constants, μn and μp are the electron and hole mobilities and np0 and pn0 are the equilibrium

minority carrier densities in the n- and p-type regions.

Assuming that either the n- or p-type region is much more heavily doped, i.e. in the

case of a diode to the p-substrate (n+/p-), ND 
 NA and that Vr > 3φt, where Vr is the

reverse bias, Eqn. 5.9 can be reduced to:

Jdark � q

(√
Dn

τn

n2
i

NA
+

nixw

τg

)
(5.10)
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Where τg is the generation lifetime. [3]

The photogenerated diffusion contribution from the substrate can be expressed as one-

dimensional diffusion equations for vertical and horizontal junctions, given in Eqns.5.11 and

5.12 respectively.

Jdiff,vert = −qΦ0

(
αLp

1 + αLp

)
e−αxw (5.11)

Jdiff,horiz = −qΦ0

(
1 − xxpi − xx

2Lp

)
(5.12)

Where Lp is the minority carrier diffusion length in the substrate, xxpi is the total photo-

diode width (x-pitch), xx is the junction width (lateral) and xj is the junction depth. The

geometric design parameters are illustrated in Fig. 5.4.

The total photocurrent can therefore be expressed separately for the vertical (Eqn. 5.13)

and horizontal (Eqn. 5.14) junctions, each consisting of its drift and diffusion components:

Iphoto,vert = xxyx (Jdrift,vert + Jdiff,vert + Jdark) (5.13)

Iphoto,horiz = 2xw (xx + xy) Jdrift,horiz + (xxpixypi − xxxy) Jdiff,horiz + 2xj (xx + xy) Jdark

(5.14)

Where xypi is the total photodiode length (y-pitch).

These expressions do not account for the fact that charge carriers generated near the

semiconductor surface are likely to recombine due to surface effects. As a result, these

expressions are likely to evaluate higher current densities for short wavelength radiation

than real devices are expected to measure.

5.2.3 Photodiode Efficiency

Having defined the photocurrent density for a P-N junction region, the photodiode efficiency

can be determined by including the device geometric and physical design parameters.
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The two main factors affecting the overall photodiode (or quantum) efficiency are the

optical and dimensional efficiencies. The optical interface will generally attenuate and

redistribute the incident light radiation, whereas the internal silicon P-N junction structure

can be designed to optimally absorb and detect the remaining photon flux.

Optical Transmission [12]

A crucial factor in determining a photodiodes overall efficiency is the transmission through

its optical interface. In CMOS technologies this generally includes a metal mask on top

metal layer; shielding non-photodetecting elements from incident light radiation and a

transparent passivation/field-oxide layer acting as the air/coating/substrate interface. A

typical profile of a modern CMOS technology is illustrated in Fig. 5.3.

Considering a substrate with refractive index ns on top of which a dielectric layer (of

refractive index nc and thickness t) is coated, light of wavelength λ strikes the coating

surface from the air (n0 = 1). The air/coating(SiO2) and coating(SiO2)/substrate(Si)

interface reflectances are given in Eqns. 5.15 and 5.16.

r0C =
nC − n0

nC + n0
(5.15)

rCS =
nS − nC

nS + nC
(5.16)

Where r0C is the complex amplitude reflection coefficient for the air/coating interface and

rCS is the complex amplitude reflection coefficient for the coating/substrate interface.

The propagation of the incident light within the coating introduces a phase shift, de-

scribed by:

φC = 4π
t

λ0
nC (5.17)

Where φC is the optical phase shift, λ0 is the incident radiation wavelength in vacuum and

t is the coating thickness.
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Figure 5.3: Cross section of a typical modern deep submicron CMOS technology showing
the stacked metal layers with insulating dielectrics and optical transmission path (right).
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Figure 5.4: Basic geometric dimensions (design and technology/bias defined) for a single
junction device representing the surface (left) and cross-section (right) views.

Assuming that all the materials are lossless and that the substrate is semi-infinite, the

reflection coefficient can be expressed as [13, 8]:

r =
∣∣∣∣ r0C + rCSeiφC

1 + r0CrCSeiφC

∣∣∣∣
2

= 1 −
( (

1 − r2
0C

) (
1 − r2

CS

)
1 + r2

0Cr2
CS + 2r0CrCScosφC

)
(5.18)

Where r is the effective reflectance of air/coating/substrate optical interface. Subsequently

the optical efficiency (η0) is defined as the transmission, i.e. ηo = T = 1 − r.

Geometric Substrate Utilisation

The second factor affecting overall photodiode efficiency, for a given illumination area is the

geometric substrate utilisation; dependant on depletion layer and diffusion region volume,

depth and exposed surface.

Any three dimensional p-n photodiode structure can be modelled as two parallel de-

vices; one representing the vertical junctions and one representing the horizontal (lateral)

junctions. The basic geometric dimensions for a single junction device is illustrated in

Fig. 5.4

Vertical pn-junction efficiency can be determined from the derived photocurrent ex-

pression (Eqn. 5.13) by including the absorption effect for a junction beneath the surface.

Similarly, horizontal pn-junction efficiency can be determined based on the derived lateral

photocurrent expression (Eqn. 5.14) assuming the remaining substrate region (i.e. outside
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the junction area but still within the photodiode “allocation”) can contribute to the lateral

diffusion current.

External Quantum Efficiency

The external quantum efficiency defines the amount of electron-hole pairs contributing

towards the photocurrent for every incident photon. The external quantum efficiencies

have been determined separately for each surface of the pn-junction, combined to give the

resultant photocurrent.

The external quantum efficiency for a vertical pn-junction (Eqn. 5.19) is the classic

expression often used in photodiode designs with relatively low edge effect (high vertical to

lateral ratio).

ηvert = (1 − R) ζ

(
1 − eαxw

1 + αL

)
e−αxz (5.19)

Where ηvert is the external and ζ is the internal quantum efficiency for the vertical surface

of a pn-junction, 1 − R is the optical efficiency and xz is the junction depth.

The lateral external quantum efficiency is defined using separate expressions for the

lateral drift (Eqn. 5.20) [11] and diffusion (Eqn. 5.21) contributions.

ηhoriz,drift = (1 − R) ζ

(
1 − eα(xz+xw)

1 + αL

)
(5.20)

ηhoriz,diff = (1 − R) ζ

(
1 − xxpi − xx

2L

)
(5.21)

Where ηhoriz,drift and ηhoriz,diff are the external (drift and diffusion) and ζ is the internal

quantum efficiency for the horizontal (lateral) surface of a pn-junction.

These quantum efficiency expressions can then be combined by considering the pro-

portion of incident photon flux on each junction depletion (or diffusion) region, yielding

Eqn. 5.22.
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ηeff =
(

(xxxy) ηvert

xxpixypi

)
+

(
2xw (xx + xy) ηhoriz,drift

xxpixypi

)
+

(
(xxpixypi − xxxy) ηhoriz,diff

xxpixypi

)
(5.22)

Where xx is the junction width, xy is the junction length, and xw is the depletion width.

This assumes that all exposed substrate area is utilised either by vertical or horizontal pn

junction depletion layer.

Photoresponse

Subsequently, the device responsivity provides an expression for the photoresponse per unit

irradiance by including the electronic charge and photon energy.

R =
ηeff · q

hv
=

ηeff · λ
1.24

(5.23)

Where R is the responsivity and λ is the incident radiation wavelength (in μm).

Iφ = R · Qλ + Jdark [xxxy + 2xz (xx + xy)] (5.24)

Where Iφ is the photocurrent generated by incident (monochromatic) radiation of Qλ irra-

diance (W/m2) and Jdark is the dark current density defined in Eqn. 5.10.

The photodiode capacitance can be reduced to the junction depletion layer capacitance

including both base and sidewall junctions; expressed in Eqn. 5.25.

Cj =
ε [xxxy + 2xz (xx + xy)]

xw
(5.25)

Where Cj is the reverse bias junction capacitance. As previously mentioned, the depletion

width can be modulated by reverse bias (Eqn. 5.5), thus the higher the reverse bias, the

wider the depletion region and consequently the smaller the junction capacitance.
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5.3 Photodiode Characterisation

5.3.1 Technology

The test technology for the photodiode characterisation is UMC 0.18μm 1P6M MM/RF

CMOS [14].

This process has the following standard features; useful utilisation of which can assist

the photodiode designer to engineer optimally performing devices:

• Substrate processing: non-epitaxial p-substrate with masks for n-well, p-well, t-well

(within n-well) and n++/p++ diffusion formation. Doping profile available on request

(crucial for determining depletion region).

• Passivation: High density plasma (HDP), poly-silicon glass (PSG), passivation en-

hanced silicon nitride (PESIN).

• Interconnect: Pitch 0.42μm for poly, 0.48μm for metal 1, 0.58μm for metal 2 to 5,

2.2μm for metal 6. Thickness 2.0kA for poly, 4.8kA for metal 1, 5.8kA for metal 2 to

5, 20.6kA for metal 6.

5.3.2 Device Design

A total of fourteen (14) different test (photodiode) devices have been designed and fabricated

in the above mentioned technology (mentioned in section 5.3.1). These can be grouped into

three categories with the following objectives:

• Single junction topologies (4 devices): To test single junction vertical pn-junction

structures and thus validate vertical junction model. Furthermore the effect of sub-

strate doping and reverse bias can be examined without influence of side effect (due to

side-walls). These devices have the side-walls (optically) shielded to ensure measured

photoresponse is only a measure dependant on vertical junction efficiency. Dark cur-

rent however will be influenced by the side-wall areas contributing diffusion current.

• Multiple paralleled (lateral) junction topologies (7 devices): To test multiple vertical

and lateral pn-junction structures and thus empirically determine relative vertical

and horizontal junction efficiencies. Furthermore, by testing different well/substrate
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collection schemes, the influence of diffusion current and recombination effects can be

observed.

• Multiple stacked (vertical) junction topologies (3 devices): To test spectral response

due to selective absorption based on photon energy, i.e. wavelength, at different junc-

tion depths. This will provide verification if such structures are feasible in standard

CMOS deep-submicron technologies. It is important to note that these devices are

not intended for use as phototransistors and will be tested such that all junctions

remain reverse biased.

All these fabricated device topologies are illustrated (diagrammatically) in Figs. 5.5

(single junction devices) and 5.6 (multiple junction devices). Furthermore, actual chip

microphotographs of these structures are provided in Fig. 5.7. The design parameters for

these presented photodiode structures are provided in Table 5.1.

5.3.3 Device Measurements

Details of the equipment setup and measurement procedure for electrical and optoelectronic

characterisation are provided in Appendix E.

As all devices are built in the same process, they all have a similar optical efficiency and

therefore any differences are due to different semiconductor structures, not due to optical

transmission transfer.

Electrical Response

Measured electrical characteristics yielding a series of current-voltage relationships (per

device) under different irradiance levels are illustrated in Figs. 5.8 and 5.9. The presented

measurements are for a maximum irradiance of 0.45mW/cm2 at λ = 550nm. Furthermore,

dark current characteristics are included to quantify dynamic range; to the tested optical

signal power and can subsequently determine responsivity (discussed next).

Furthermore, a summary of extracted electrical characteristics is provided in Table 5.2.

Measured dark current values are higher than expected partly due to equipment limitations,

i.e. the minimum reliably measurable current is of the order of 100fA (for the equipment

used). Other parameters extracted are open-circuit voltage, short-circuit current, fill factor
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N++P++ N-Well (P+)P-Well (P+)P-Substrate (P-) T-Well (P+)

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 5.5: Various single-junction photodiode structures fabricated and tested in 0.18μm
CMOS. Illustrated are the surface and cross-section views of the following structures: (a)
n++/p-substrate (b) n++ rings/p-substrate (c) n++/p-well (d) n++ rings/p-well (e) n++
strips/p-well (f) n-well/p-substrate (g) n-well strips/p-substrate (h) n-well grid/p-substrate
(i) n-well mesh/p-substrate and (j) p++/n-well. All devices are sized 30μm × 30μm and
illustrations not to scale.



Photodiodes in Modern Deep Sub-Micron CMOS Technology 111

N++P++ N-WellP-WellP-Substrate T-Well (P+)

(a)

(d)(c)

(b)

Figure 5.6: Various multi-junction photodiode structures fabricated and tested in 0.18μm
CMOS. Illustrated are the surface and cross-section views of the following structures:
(a) t-well/n-well/p-substrate (b) t-well grid/n-well/p-substrate (c) n++/t-well/n-well/p-
substrate and (d) p++/n-well/p-substrate. All devices are sized 30μm × 30μm and illus-
trations not to scale.

(a) (b) (c) (d) (e) (f )

(g) (h) (i) (j) (k) (l)

Figure 5.7: Microphotographs of photodiode structures fabricated and tested in 0.18μm
CMOS. Illustrated are: (a) n++/p-well (b) n++ rings/p-well (c) n++ strips/p-well
(d) n-well/p-substrate (e) n-well strips/p-substrate (f) n-well grid/p-substrate (g) n-well
mesh/p-substrate, (h) p++/n-well, (i) p++/n-well grid, (j) t-well/n-well/p-substrate (k)
t-well grid/n-well/p-substrate and (l) n++/t-well/n-well/p-substrate. All devices are sized
30μm × 30μm.
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Junction structure Active area 1 Active perimeter1 Junction Junction
doping2 depth

Single junction devices (single isolated terminal, shared substrate)

n++/p-sub 673.4μm2 - 1019/8×1014 0.18μm

n++ rings/p-sub 71.3μm2 300.0μm 1019/8×1014 0.18μm

n++/p-well 673.4μm2 - 1019/1017 0.18μm

n++ rings/p-well 71.3μm2 - 1019/1017 0.18μm

n++ strips/p-well 91.4μm2 381.5μm 1019/1017 0.18μm

n-well/p-sub 673.4μm2 - 2×1017/8×1014 1.80μm

n-well strips/p-sub 322.8μm2 274.7μm 2×1017/8×1014 1.80μm

n-well grid/p-sub 411.4μm2 384.0μm 2×1017/8×1014 1.80μm

n-well mesh/p-sub 324.7μm2 921.6μm 2×1017/8×1014 1.80μm

p++/n-well 509.8μm2 92.0μm 1019/2×1017 0.20μm

p++ strips/n-well 381.0μm2 789.1μm 1019/2×1017 0.20μm

Double junction devices (two isolated terminals, shared substrate)

(t-well/n-well/p-sub) device

t-well/n-well 446.8μm2 83.7μm 6×1017/2×1017 1.20μm

n-well/p-sub 578.3μm2 95.9μm 2×1017/8×1014 1.80μm

(t-well grid/n-well/p-sub) device

t-well grid/n-well 431.3μm2 384.0μm 6×1017/2×1017 1.20μm

Triple junction devices (three isolated terminals, shared substrate)

(n++/t-well/n-well/p-sub) device

n++/t-well 329.5μm2 71.9μm 1019/6×1017 0.18μm

t-well/n-well 432.0μm2 81.0μm 6×1017/2×1017 1.20μm

n-well/p-sub 567.3μm2 91.9μm 2×1017/8×1014 1.80μm

1 Including only optically exposed active junction area/perimeter.
2 Assuming abrupt junction; valid due to high junction doping differential.

Table 5.1: Design parameters (process defined and geometric) for the various test (pho-
todiode) structures.
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(a) (b)

(c) (d)

(e) (f )

Figure 5.8: Measured IV characteristics of various test (photodiode) structures (using cal-
ibrated light source: λ=550nm, Pmax=0.45mW/cm2). Shown are the characteristics for:
(a) n++/p-substrate (b) n++ rings/p-substrate (c) n++/p-well (d) n++ rings/p-well (e)
n++ strips/p-well and (f) n-well/p-substrate.
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(a) (b)

(c) (d)

(e)

Figure 5.9: Measured IV characteristics of various test (photodiode) structures (using cal-
ibrated light source: λ=550nm, Pmax=0.45mW/cm2). Shown are the characteristics for:
(a) n-well strips/p-substrate (b) n-well grid/p-substrate (c) n-well mesh/p-substrate (d)
p++/n-well and (e) p++ strips/n-well.
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Junction structure Open-circuit Short-circuit Fill Shunt Dark Dynamic
voltage current factor resistance1 current23 Range 34

n++/p-sub 0.284V 211pA 64.52% 75GΩ 440fA 53.6dB

n++ rings/p-sub 0.317V 428pA 65.05% 50GΩ 440fA 59.8dB

n++/p-well 0.148V 29.98pA 25.81% 4.4GΩ 28.9fA 60.3dB

n++ rings/p-well 0.385V 180.3pA 69.35% 13GΩ 49.9fA 71.2dB

n++ strips/p-well 0.356V 42pA 55.17% 40GΩ 580fA 37.2dB

n-well/p-sub 0.295V 270pA 60.65% 12GΩ 680fA 52.0dB

n-well strips/p-sub 0.336V 1.30nA 67.84% 21GΩ 130fA 80.0dB

n-well grid/p-sub 0.341V 1.27nA 65.60% 12GΩ 130fA 67.0dB

n-well mesh/p-sub 0.345V 1.11nA 63.85% 20GΩ 570fA 65.8dB

p++/n-well 0.277V 120pA 57.66% 60GΩ 840fA 43.1dB

p++ strips/n-well 0.311V 544pA 66.16% 33GΩ 380fA 63.1dB

1 Measured over 0 ≤ Vbias ≤ 50mV
2 Dark current measured at: Vbias = 0V
3 Limited by resolution of current measurement: 10−13A
4 Dynamic range for given light power density: 0.45mW/cm2

Table 5.2: Measured electrical characteristics for the various test (photodiode) structures.
Light source is calibrated at: Plight=0.45mW/cm2, λ=550nm.

and shunt resistance. The open-circuit voltage V oc is identified as the voltage across the

illuminated device at zero current. This is useful when the device is to be used in photo-

voltaic mode. Similarly, the short-circuit current Isc, is the current through the illuminated

device if the voltage across it is zero. This gives a measure of the device responsivity and

subsequently its quantum efficiency. The fill factor (not to be confused with surface area

fill factor) of the device is defined as the ratio of the maximum power of the device to the

product of the open-circuit voltage and short-circuit current.

Light Intensity Response

For a maximum irradiance of 0.45mW/cm2 at λ = 550nm (under zero bias), the measured

responsivity (photocurrent versus irradiance) is illustrated in Fig. 5.10. This has been

extracted from the IV curves presented previously.
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Figure 5.10: Measured responsivities of various test (single junction photodiode) structures
(using calibrated light source: λ=550nm, Pmax=0.45mW/cm2).

The results show excellent linearity over 2-3 orders of magnitude, although the photo-

diodes complete linear range is expected to be 4-5 orders of magnitude. The reason the

responsivity has not been measured to cover a wider range is due to a limited set of Neu-

tral Density (ND) filters within the light source attenuator (See Appendix E). Specifically,

there was no intermediate filter between ND2.04 and ND5.07, where the latter results in

photocurrent levels in the region of 10-500fA; at the low-end current measurement resolution

of the test equipment setup.

Spectral Response

Spectral characterisation is conducted to a calibrated irradiance for incident light of wave-

length λ = 350nm to λ = 750nm at Δλ = 5nm increments.

• Spectral efficiency (single junction devices): Measured results for spectral photore-

sponse, responsivity and absolute external quantum efficiency are presented in Figs. 5.11,

5.12 and 5.13 respectively. Generally the devices utilising minimally doped semicon-

ductor junctions tend to most efficient, i.e. those devices collecting onto the substrate.
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Figure 5.11: Measured spectral photoresponse of single junction photodiode structures (us-
ing controlled light source: 350nm < λ < 750nm).

Furthermore, devices with increased lateral junction area show to significantly improve

device efficiency. Devices with single (vertical) junctions are the least efficient, how-

ever they have other favourable properties (discussed below).

• Spectral efficiency (multiple junction devices): Measured results for spectral pho-

toresponse, responsivity and absolute external quantum efficiency are presented in

Figs. 5.14, 5.15 and 5.16 respectively. Generally the deeper the junction, the higher

the responsivity as also observed in the single junction devices. Consequently long

wavelength response tends to exhibit higher efficiencies than shorter wavelengths.

• Spectrally selective devices (single junction): The normalised quantum efficiency re-

sults for devices that show spectral selectivity are presented in Fig. 5.17. Generally the

devices fabricated with single vertical junctions are the most spectrally selective. The

only exceptions are multi-junction (lateral) devices with relatively shallow junctions

to a relatively highly doped bulk.

• Spectrally selective devices (multiple junction): The normalised quantum efficiency re-

sults for multi-junction devices that show spectral selectivity are presented in Fig. 5.18.

Both devices tested demonstrate good spectral selectivity. Generally as expected,
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Figure 5.12: Measured spectral responsivity of single junction photodiode structures (using
controlled light source: 350nm < λ < 750nm).

Figure 5.13: Measured spectral quantum efficiency of single junction photodiode structures
(using controlled light source: 350nm < λ < 750nm).
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Figure 5.14: Measured spectral photoresponse of multiple junction photodiode structures
(using controlled light source: 350nm < λ < 750nm). Devices tested are: t-well/n-well/p-
sub (left) and n++/t-well/n-well/p-sub (right).

shallow junctions (< 0.5μm) are selective to short wavelength light, i.e. blue, whereas

deeper junctions (> 1.5μm) are selective to long wavelength light, i.e. red. The ac-

tual spectral selectivity is expected to be better than the presented results, as the

measurements were taken separately for each junction. Therefore, stray electron-hole

pairs generated at other junction interfaces may contribute to neighbouring junction

spectral performance. This would have the effect of observing reduced spectral re-

sponsivity.

• Spectrally insensitive devices: The normalised quantum efficiency results for devices

that do not show spectral selectivity are presented in Fig. 5.19. Generally deep devices

with relatively high sidewall to base ratio are spectrally insensitive. The corresponding

normalised quantum efficiency curves show similar spectral profiles for a number of

such devices, exhibiting an almost flat response from 500nm to 700nm allowing for

optical interference effects.
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Figure 5.15: Measured spectral responsivity of multiple junction photodiode structures
(using controlled light source: 350nm < λ < 750nm). Devices tested are: t-well/n-well/p-
sub (left) and n++/t-well/n-well/p-sub (right).
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Figure 5.16: Measured spectral quantum efficiency of multiple junction photodiode struc-
tures (using controlled light source: 350nm < λ < 750nm). Devices tested are: t-well/n-
well/p-sub (left) and n++/t-well/n-well/p-sub (right).

Figure 5.17: Measured spectral quantum efficiency (normalised) of spectrally selective single
junction photodiode structures (using controlled light source: 350nm < λ < 750nm).
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Figure 5.18: Measured spectral quantum efficiency (normalised) of multiple-junction pho-
todiode structures (using controlled light source: 350nm < λ < 750nm). Devices tested
are: t-well/n-well/p-sub (left) and n++/t-well/n-well/p-sub (right).

Figure 5.19: Measured spectral quantum efficiency (normalised) of spectrally unselective
single junction photodiode structures (using controlled light source: 350nm < λ < 750nm).
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(a) (b)

(c) (d)

Figure 5.20: Measured and simulated (based on developed photoresponse model) spectral
quantum efficiency comparison for: (a) n++/p-well, (b) n++ rings/p-well, (c) n-well/p-
substrate and (d) n-well strips/p-substrate.

5.4 Photodiode Results Discussion

5.4.1 Functional Analysis

A functional analysis of experimental data has been performed using the presented device

measurements and simulation results, based on the developed photodiode model. The com-

parisons between measured and simulated results for spectral (external) quantum efficiency

are illustrated in Fig. 5.20.

The results compare measured and simulated results by initially considering only the
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drift current contribution (in simulation model) and subsequently also including the dif-

fusion contribution to provide a more realistic model. From the four examples; the de-

vices tested being: n++/p-well, n++ rings/p-well, n-well/p-substrate and n-well strips/p-

substrate, in three cases the diffusion current makes up a substantial proportion of the

total photocurrent (up to 50% or more). For the n-well/p-substrate device (Fig. 5.20c),

the diffusion current component constitutes only 10-15% or so of the total photoresponse;

accentuated for longer wavelength light. This can be explained by the fact that this device

has been designed to have no exposed (optically) sidewall region, thus there is no lateral

diffusion current contributing to the photocurrent (although it contributes to the dark cur-

rent). Thus the only diffusion current occurs at the vertical junction; principally below the

junction in the substrate. As this is a n-well junction, the region contributing diffusion

current would be located over 2μm beneath the semiconductor/coating (silicon dioxide)

interface. At this depth, only light of longer wavelength (beyond 550nm) would be able to

be absorbed.

Concerning spectral selectivity, the simulated results generally conform to the measured

data; following a similar trend. The only exception is the n++ rings/p-well junction device

(Fig. 5.20b), where measured photoresponse is approximately only 40% of the expected

value for short wavelengths (350nm-450nm). However, above 450nm the measured and

simulated results conform reasonably well. This discrepancy can be attributed to recom-

bination just below the semiconductor/coating (silicon dioxide) interface due to surface

effects. The reason this appears accentuated is because this device is designed with very

shallow junctions and a very high lateral to vertical area ratio; thus virtually all photore-

sponse is expected to be due to lateral diffusion near the surface. One might expect the

n++/p-well device (Fig. 5.20a) to suffer from similar effects, however this is not the case

as it contains a single junction with no exposed (optically) lateral junctions. Subsequently

most the diffusion current is below the junction into the well and therefore has no direct

route to the semiconductor surface.

The measured and simulated spectral profiles reveal the optical interference effect is

more intricate than expected. The model includes a single air/coating/substrate interface

and determines the interference effect due to the coating thickness; considered a single in-

terface. However, in practice the optic coupling between air and substrate involves many

embedded dielectric layers; evident from the interconnect cross section (Fig. 5.3). Sub-

sequently, although primary effects have been successfully modelled, the measured results

tend to suggest that there are additional secondary processes further degrading the inci-



Photodiodes in Modern Deep Sub-Micron CMOS Technology 125

Figure 5.21: Scanning electron microscope (SEM) images of the ORASIS-P2 surface; il-
lustrating the passivation layer/air interface profile. Cross-section through a photodiode
region shown in lower-right image.

dent light radiation. These are caused by internal absorption, reflections, refraction and

thus scattering within the layered coating; created during the planarisation process.

Furthermore, the actual fabricated device surface profile substantially deviates from the

process data over the photodiode regions. This is due to these regions violating metal fill

constraints required for uniform planarisation. As a result, the surface becomes slightly

indented with pit-like features at the photodiode openings. This can be clearly seen from

the electron microscope images, shown in Fig. 5.21. From these images the indentation is

measured to be 2.5μm.
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5.4.2 Impact of Technology Scaling on Photodiode Performance

As CMOS technology inevitably progresses and scales, it has many detrimental effects on

CMOS technology being used in applications requiring photodetection and in particular

imaging. Technology scaling affects imaging devices in the following areas:

• Sensitivity: Higher doping concentrations lead to reduced mobility and carrier life-

times. As a result the diffusion length is reduced thus reducing the diffusion current

contribution to the overall photoresponse. Furthermore, higher doping leads to re-

duction in depletion layer width; thus also decreasing the drift current contribution

to the overall photoresponse.

• Dark Current: Reduced diffusion length results in increased dark current density thus

further degrading the signal to noise ratio (SNR).

• Dynamic Range: Technology scaling results in reduced gate oxide thickness and thus

also reduced power supply voltage. For Active Pixel Sensor (APS) applications, this

means a reduction in maximum signal level, thus further limiting the overall dynamic

range.

• Spectral Response: Shallow drain/source diffusion provide structures capable of ab-

sorbing short wavelength light. As a result, spectral sensitivity tends to shift to shorter

wavelengths with technology scaling.

• Optical Interface: Increasing interconnect layers means more oxide surfaces and in-

creased thickness, therefore more internal interfaces thus increased interference effects.

Reflection, refraction, diffraction and absorption cause scattering and attenuation

leading to reduced device efficiencies and increased inter-pixel cross-talk.

• Junction Capacitance: Increase doping results in reduced depletion region widths and

therefore increased junction capacitance.

5.4.3 Photodiode Design Recommendations

• For high device efficiencies:

– Design junction structures using minimally doped structures, typically substrate/well

diodes.



Photodiodes in Modern Deep Sub-Micron CMOS Technology 127

– Use several small parallel-connected structures, i.e. to achieve high lateral to

vertical area ratio.

– Distribute substrate contacts throughout a multiple junction devices to maximise

collection efficiency.

• For increased optical efficiency:

– Select technology and/or option with minimum required metal layers.

– Select technology with anti-reflective coating (ARC) or post-process.

• For colour selectivity use single diode structures (vertical junction), optically shielding

the sidewalls (lateral junctions).

• Position metal interconnects near device perimeter to minimise shadowing and/or

diffraction effects.

• Use high reverse bias for minimal capacitance.

• To minimise cross-talk:

– Use deep guard ring, typically a biased well if area permits, otherwise maximise

substrate contacts around the perimeter.

– Include perimeters throughout all metal layers connecting via interconnects,

forming a cage structure.

5.5 Interface Techniques

Interfacing to a photodiode is perhaps the most critical and important circuit within a vision

chip. Selecting the correct topology is crucial to overall system performance and success.

The most popular techniques are illustrated in Fig. 5.22.

5.5.1 Continuous-time Pixel

The simplest circuit and most popular (throughout the vision chip community) for convert-

ing a photocurrent into a voltage is the logarithmic sensor (See Fig. 5.22a,b) using a stacked

diode-connected MOS devices [15] biased in weak inversion by the photocurrent itself.
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Figure 5.22: Various photodiode interface topologies. Shown are: (a) logarithmic sensor
using single MOS diode (b) logarithmic sensor using two series MOS diodes (c) adaptive
photoreceptor (d) active pixel sensor (APS) and (e) spiking photoreceptor

• Advantages: Small size (silicon area) and wide dynamic range.

• Disadvantages: High sensitivity to device mismatch and slow response in low light

conditions.

The continuous-time logarithmic sensor has been widely used throughout the vision

chip community. An popular variant of a continuous-time logarithmic pixel has been the

adaptive photoreceptor circuit (See Fig. 5.22c) [16]. This has incorporated a logarithmic

photoreceptor topology with a temporally adapting bias, thus altering its operating point

over time and achieving an impressive dynamic range.

5.5.2 Active Pixel Sensor (APS)

The photodiode interface topology used in all CMOS imaging systems is the APS organ-

isation (see Fig. 5.22d) [17]. The photocurrent is used to charge up a parasitic MOS ca-

pacitance that is periodically sampled and reset. This technique has several advantages:

linear transfer, controllable dynamic range and low sensitivity to device mismatch. The

main disadvantages are: the dynamic range cannot be set locally and it requires a clock.

• Advantages: Linear transfer characteristic, controllable dynamic range and low sensi-

tivity to device mismatch.

• Disadvantages: Global clock required and local adjustment of dynamic range has not

been achievable until recently [18, 19].
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5.5.3 Spiking Pixel

An alternative technique is to output the result as a frequency (or pulse/spike rate). The

implementation is similar to the APS, except that the photocircuit self-resets itself (see

Fig. 5.22e) [20, 21]. By monitoring the integrating node by means of a comparator, the

reset switch can be activated after a set threshold has been surpassed.

• Advantages: Information encoded temporally (continuous time, discrete signal) there-

fore robust to device mismatch and noise pickup. Asynchronous technique; requires

no clock.

• Disadvantages: This method intrinsically has a slow response in low light condi-

tions. Recent developments to overcome this use a time-varying threshold [22] or

using ON/OFF encoding [23, 24]. Furthermore a spiking output generally requires

higher communication bandwidth, however, recent work has attempted to address this

by using single spike coding

5.6 An Adaptive-ON/OFF Spiking Photoreceptor

In this section is presented a spiking photoreceptor circuit [24] which is intended for use in

adaptable foveating vision chips. The ultimate aim is to realise an imaging device which can

electronically split its photosensor array into peripheral and fovea regions in a similar fash-

ion to the human eye. Specialisation of the visual field would allow for high spatial or high

temporal resolution imaging with the possibility of high dynamic range. To this end a pulse

frequency modulated spiking photoreceptor has been developed which is capable of provid-

ing high dynamic ranges with power consumption similar to animal retina. The circuit is

based on the ON/OFF opponency algorithm used by the human eye to maintain high fre-

quency response at low light levels, while maintaining low power operation. The photosensor

surface fill factor is kept to a maximum and power consumption are kept to a minimum.

This section discusses the algorithm, its implementation and simulated/measured results

describing its response and power consumption.
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5.6.1 A bio-inspired encoding scheme

The eye has around 100 million photoreceptors with an intensity detection range from

starlight to bright sunlight, and a typical video rate of 25 Hz. This remarkable capability is

rooted in the rhodopsin photocascade [25] in the rods and cones which are used to convert

incoming photons into electrical information.

Inorganic silicon photodiodes are capable of up to five orders of magnitude of dynamic

range. Usually however, only an 8-bit dynamic range per channel is implemented due to

the relatively high power consumption of higher bit-rate signal conditioning circuits. This

can under or over saturate scenes with large variations in image intensity. Early work by

Delbrck and Mead [16] led to an adaptive photoreceptor which could detect the contrast

regardless of overall light intensity. This structure along with edge detection algorithms

[26, 27] can be used to extract the salient information from the scene, at the expense of the

non-salient information.

It is however possible to use a spike rate encoding algorithm similar to that in ani-

mal vision such as the human eye [28, 29]. By changing from voltage or current space to

frequency space, it is possible to achieve wide dynamic ranges at lower power consump-

tion. Furthermore, such a scheme can provide adaptive functionality, trading between high

dynamic range and frequency response by means of adaptive spike counting.

The major drawback to any integrating system is the low frequency response for low

light intensities. Here again we can learn from nature by implementing complementary

ON and OFF channels [23, 30]. Using ON/OFF opponency, where ON-cells spike at high

frequency at high light levels, and OFF-cells spike at high frequency at low light levels,

there will always be an adequate frequency response, even at low light levels. Therefore

either the ON- or OFF-cell will always provide a high firing rate and thus a fast frequency

response. A winner-takes-all type of circuit can be used to remove redundancy in the output

information stream.

A naive approach to the total spiking rate, before compression could be expected to be

given by:

fspike = DR × Nphotoreceptors × frefresh (5.26)
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Where fspike is the output spiking rate, DR is the dynamic range, Nphotoreceptors is the total

number of photoreceptors range and frefresh is the refresh rate.

Therefore, assuming a dynamic range of 7 decades, 100x106 photoreceptors, and a refresh

rate of 25Hz, the output spiking frequency would be an enormous 2×1016 spikes per second.

Even with the 5 million or so axons; constituting the optic nerve, leading to the visual cortex,

this would be unobtainable.

The retina therefore carries out various algorithms to sort salient information from

non-salient information, and to compress information stream to the visual cortex. This

processing includes spatiotemporal filters [27], colour opponency and motion sensitivity.

The retina also specialises into the fovea and peripheral vision. The fovea contains a high

concentration of cones and is scanned across the field of view to build up a high definition

image, whereas the peripheral vision concentrates on passing on fast motion information and

is important for object fixation. The dynamic sensitivity in intensity is compressed using

the iris as a light intensity modulator. The division into regions of fast motion sensitivity

and high spatial sensitivity has been very successful in evolutionary terms. Most vertebrates

perform this type of processing to get round bandwidth restraints in sending visual signals

to the visual cortex. The fast temporal resolution is important for danger awareness, and

reaction time, while the spatial resolution allows greater understanding of ones environment.

Therefore, in developing such a biologically-inspired system, a technique is required for

dynamically changing the output of an imaging device from high temporal but low spatial

resolutions to low temporal but high spatial resolutions.

5.6.2 Photodiode Implementation

The measured current/intensity characteristics for the photodiode to be used can be seen

in Fig. 5.23. As previously seen, generally the psub/nwell or psub/n+ structures are most

efficient. Internal quantum efficiency in these structures tend to be high. However external

quantum efficiencies tend to be lower due to fill factor constraints coupled with coupling

losses due to the dielectric layers and the surface morphology of the CMOS chip around the

photodiode.

The response is linear for an incident power from 50pW to greater than 100nW . The

minimum detectable light is set by the dark current which is determined by the bias and the

fixed pattern noise. While increasing bias increases the frequency response and quantum
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Figure 5.23: Measured photodiode characteristics. The photodiode response is linear until
below 50pW.

efficiency, it also increases the dark current by a much greater factor. In our configuration

the photodiode is reverse biased by 1.5V leading to a dark current of 4.8fAμm−2. Fixed

pattern noise is also a limiting factor as it can reach 1% (between pixels at 100μm proximity)

on the amplification stage, but as will be discussed later, our asynchronous spiking regime

allows for some variance as we will discuss later. The photodiode internal quantum efficiency

is 76% for 530nm wavelength.

The current characteristics from this photodiode were used in the circuit simulation

for the spike generator. For the purposes of the circuit simulation we have used a current

variation of 1pA to 10nA corresponding to 25nWcm−2 to 2.6mWcm−2. These five decades

of intensity variation correspond to the difference between starlight and a well lit room. The

photocurrents on a seven pixel photoreceptor group can be added to give better dynamic

range in dark conditions. This can be seen in the seen in the system algorithm given in

Fig. 5.24.
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Figure 5.24: Core algorithm per photoreceptor group includes: phototransduction,
ON/OFF opponency, spike generation, variable spike interval encoding and input selec-
tion.

5.6.3 System Algorithm

In previous neuromorphic vision chips pixel sizes have tended to be around a 100x100μm in

size with a photodiode fill factor of around 10% [31]. This has tended to work against

creating imaging chips with high pixel densities. High pixel density therefore requires

effective processing that does not take up large areas of the imaging array.

The basic system algorithm can be seen in Fig. 5.24. A single spike encoder is shared

between seven photodiodes, thus increasing the effective fill factor. The spike encoder

can take inputs from individual or all of the photodiodes using a switched arrangement.

This provides the system the ability to select between high spatial and high temporal

resolution, and decreases the silicon surface area required. The spike encoder takes the

selected photocurrent(s) and produces complimentary increasing and decreasing currents

to provide the ON and OFF channels, i.e. low photocurrents create high OFF-currents

and vice versa. The two channels then compete by integrating their currents into voltages

through capacitance. This voltage is released in the form of a spike once a trigger threshold

has been surpassed and the charge collected is reset. To reduce redundancy only the first

spike, whether ON or OFF is released and both channels are reset. A complementary output

is sent to indicate an ON or OFF spike. Hysteresis is added to stop the circuit oscillating

between on and off when the light intensity is close to the threshold between light and dark

channels. This relatively high spiking response is then compressed by means of a counter.

On overflow, a spike interval encoded (SIE) output is signalled, resetting the counter and

selecting the next photodiode in sequence. The counting method enables reconfigurability
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Figure 5.25: Circuit schematic of the adaptive-ON/OFF spiking photoreceptor block, oper-
ated off a 1.8v core supply (implemented in 0.18m CMOS). Illustrated is the basic scheme
for generating an adaptive-ON/OFF spiking output for a single photodiode input. Shown
at the bottom-left is the implementation of the thresholding comparator based on a scaled
cascade of current-limited digital inverters. Unless stated all devices have aspect ratio
(4/3)lmin for NMOS and (10/3)lmin for PMOS, with lmin being the technology minimum
feature size.

and tradability between dynamic range and temporal response by means of selecting the

overflow at different stages.

5.6.4 Circuit Topology and analysis

The circuit schematic is given in Fig. 5.25. The pn photodiode is reverse-biased by the

diode-connected PMOS device Q1; forming a simple current mirror with devices Q2 and

Q3. To ensure good linearity, devices Q1-Q5 are sized such that they operate being biased

in weak inversion over the full input current (photocurrent) range. The photodiode reverse-

bias voltage is therefore given by:

Vphoto = VGS1 = nVT ln(Iphoto/I0) (5.27)
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Where n is the slope factor, VT is the thermal voltage (= kT/q) and I0 is the device pre-

exponential current. For photocurrents of 100fA to 1nA, the photodiode reverse-bias is:

1.47 ≤ Vphoto ≤ 1.78 for Vdd = 1.80V . Subsequently Iphoto is mirrored by devices Q2 and

Q3 to source the ON-current (Ion) and ON-difference-current (Ion). The ON-difference-

current is generated by means of Kirchhoff’s current law (KCL), i.e. by injecting the copied

ON-current (ID3) into a current sink (ID6), the difference can be determined. By sourcing

this difference through a PMOS current mirror, the OFF-current (Iioff = ID5) is generated.

Ioff = ID5 ≈ Ibias − Iphoto (5.28)

The ON and OFF currents are then used to create an increasing voltage, by means of

integrating these into the parasitic capacitance of their respective nodes. These capacitances

are given by:

Cpon = CDB2 + CGD2 + 3(CDB7 + CGD7) + CDB11 + CGD11 ≈ 1.3(CDB2 + CGD2) (5.29)

Cpoff = CDB5 + CGD5 + 3(CDB9 + CGD9) + CDB12 + CGD12 ≈ 1.3(CDB5 + CGD5) (5.30)

Where the predominant capacitance is due to the current sourcing devices (Q2, Q5) and the

reset switches (Q11, Q12). Therefore selecting reduced device widths for these devices can

reduce this capacitance for higher speed operation. The limiting factor to how much these

device widths can be reduced to depends on device matching for Q2, Q5 and RDS(on) for

Q11, Q12. For the designed values, i.e. W/L(Q2,Q5)=(3/10)μ and W/L(Q11,Q12)=(1/1)μ,

this node capacitance is 7.2fF. Therefore, the maximum spiking rate is given by:

fmax =
Ibias

CpoffVthreshold
(5.31)

Where Ibias = Iphoto(max) is the maximum ON or OFF current and Vthreshold is the com-

parator threshold voltage. The threshold comparators (shown in Fig. 5.25) are based on a

high-gain digital inverter cascade. By limiting and scaling the maximum current source to

each stage, a successively steeper edge is obtained and power consumption is minimized.
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For a three-stage cascade of minimum channel length devices, the optimum (for power con-

sumption) first stage bias current is 2nA with a current ratio of 1:6:12 between stages. This

gives a comparator threshold voltage of 270mV on a 1.8V supply. Therefore using expres-

sion Eqn. 5.31 the maximum frequency of operation for a 1nA maximum photocurrent is:

fmax=(1n)/(7.2f)(270m)=514.4kHz.

By threshold detecting the integrating nodes Von and Voff , the first channel (ON or

OFF) to reach threshold is collected through a logic OR operation. This provides the Vspike

output. A minimum spike width is then secured by using a digital monostable based on a

self-resetting RS flip-flop with inverter cascade. This is required to ensure a minimum pulse

width is asserted on the reset switched to reliably discharge the integrating nodes each inte-

gration period. An additional output is provided to specify whether the response is ON or

OFF by using an additional RS flip-flop to determine which channel is dominant. Hysteretic

feedback is provided to the threshold comparators by slightly increasing the threshold volt-

age by 5mV providing an approximately 10% lag on channel selection changeover to prevent

rapid channel toggling when the ON and OFF responses are comparable. The two outputs

Vspike and VON/OFF are also combined to provide a single spike polarity encoded (SPE)

signal VSPE by using a logic XOR operation.

5.6.5 Circuit Implementation

The adaptive-ON/OFF spiking photoreceptor circuit has been designed, implemented and

fabricated in a standard 0.18μm CMOS process. The single receptor layout is shown in

Fig. 5.26, the total silicon area being 880μm2. This would lead to a fill factor of 52% with

30μm x 30μm photodiodes. However, it is possible to share the spike generator circuit

amongst multiple photodiodes to increase the fill factor and/or photodiode density. In our

configuration we envisage sharing the photoreceptor between a local hexagonal neighbour-

hood containing seven photodiodes, as given by Fig. 5.24.

5.6.6 Simulated and Measured Results

The circuit was simulated using the Cadence Spectre (5.0.33) simulator with BSIM 3v3.2

models for the MOS devices combined with a photodiode model derived from the measured

parameters, shown in Fig. 5.23. The simulation results for the individual ON and OFF

channels are shown in Fig. 5.27. The slow responses can be seen for the ON channel at low
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Figure 5.26: Physical layout of the adaptive-ON/OFF spiking photoreceptor block, imple-
mented in UMC 0.18μm Mixed-mode CMOS. By area, the photodiode has a 52% fill factor,
the threshold detectors occupy 18%, current mirrors 16% and asynchronous digital logic
14%.

light intensities and the OFF channel at high light intensities. The simulation results of the

competing ON/OFF channel spike generator are shown in Fig. 5.28. The response shows

good variation between light and dark over many orders of magnitude and the final output

shows good distinction between ON and OFF channels. The hysteresis at the transitions

can also be clearly seen.

The spike interval at the maximum firing rate is 2μs, corresponding to over 1MHz

in response when considering that the data is effectively compressed by half. 500kHz is

sufficient to provide a 16-bit dynamic range at 5Hz refresh on a single pixel. As mentioned

previously, this maximum firing rate is limited by the combined parasitic capacitance at the

integrating nodes as described by expressions 5.29, 5.30 and 5.31.

The power dissipation of this circuit can be expressed due to two sources; the continuous

current flow in the current mirrors; the static power and the digital switching; the dynamic

power. The total current consumption is illustrated in Fig. 5.29. The quiescent (or static)

current consumption is approximately 3nA (dependant on bias, i.e. Istatic ≈ 2Ibias). The

dynamic current consumption is 370μA per 1.5ns spike in a 3μs window. Thus the energy

consumption per spike is 500fJ . Given the competition between the ON and OFF channels

the minimum frequency the circuit will operate at is 500Hz. In this regime the quiescent

power consumption is 5nW compared to 125pW for the spiking. However for most of the

operation at 5kHz to 500kHz it is the quiescent power consumption which will dominate.

Thus, averaging this quiescent power over the pulse train gives 20.5pJ of energy per spike,
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Figure 5.27: Simulated transient analysis for the individual ON and OFF channel spike
generators. The waveforms shown- from top to bottom: (a) photocurrent (b) ON channel
charging response (c) ON channel spike output (d) OFF channel charging response (e) OFF
channel spike output.
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Figure 5.28: Simulated transient analysis for the combined ON/OFF channel spike genera-
tor. The waveforms shown- from top to bottom: (a) photocurrent (b) competing ON/OFF
charging response (c) spike output (d) ON/OFF channel selection (e) combined spike and
ON/OFF channel encoded output.
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Figure 5.29: Simulated transient analysis for illustrating power consumption profile. The
waveforms shown- from top to bottom: (a) photocurrent (b) combined spike and ON/OFF
channel encoded output (c) current consumption and (d) integrated current consumption.

which is comparable to the bit-energy of 2− 20pJ/bit for the blow fly retina [25]. An 8-bit

output therefore has a power equivalent of 5nW per pixel.

The fabricated adaptive-ON/OFF spiking photoreceptor circuit operates as expected.

The light intensity controlled frequency modulation can be clearly seen in the measured

results given in Fig. 5.30.

This relationship between light intensity and spiking rate has been measured for various

values of bias current, ranging from 1pA to 5nA. The response indicates there are two linear

regions of operation, the boundary condition being at a 300pA bias current. This in fact

agrees with the trend shown in the measured photo response of the individual photodiode,

shown previously in Fig. 5.23. Furthermore, the ON/OFF response is illustrated by a

positive or negative gradient in this relationship, i.e. the changeover points at the corners

of the graphs. It is observed that this ON/OFF changeover point can be tuned by adjusting

the bias current as would be expected. In reality only bias currents in the range 500pA

to 5nA would be used to utilise the ON/OFF compression most efficiently, i.e. ideally the

changeover point should be tuned to lie in the centre of input light intensity range. A high-

frequency OFF response can be traded with bias current and therefore power consumption.
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Figure 5.30: Measured photo-response results for the adaptive-ON/OFF spiking photore-
ceptor circuit. Illustrated is the spike rate to incident light power relationship for various
bias current levels. The action to shift the ON/OFF transition point can be clearly seen.
The light intensity incident on the chip is the equivalent of a well lit room.
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Figure 5.31: Measured bias current tuning results for the adaptive-ON/OFF spiking pho-
toreceptor circuit. Shown (from top to bottom) is: (a) the incident light power ON/OFF
crossover point versus bias current and (b) the spike rate versus bias current for dark cur-
rent, i.e. zero incident light power.

The ON/OFF changeover intensity relationship with bias current is given in Fig. 5.31(a).

The observed deviation from linear fit is due to two reasons in measurement procedure.

Firstly due to hysteresis, an increasing intensity changeover point would be different to a

decreasing intensity changeover and this has not taken into account in the measured results.

Furthermore, due to the limited number of ND filters (12) used in defining the intensity

variation, the changeover is measured to occur within a range rather than at an absolute

value. Subsequently as the changeover for a set bias is defined by a range of two ND filter

values, the error margin is quite substantial. Thus to measure a more accurate relationship

either more ND filters are required, or an alternative method for intensity variation.

The dark current spiking rate versus bias current relationship is given in Fig. 5.31(b).

As expected, this gives a perfect linear relationship for bias currents in the range of 100fA to

10nA. Furthermore, the fact that only an OFF response is measured for bias currents down

to 100fA tends to suggest that the dark current of the photodiode biased in this circuit is

below 100fA. 100fA is much better than would be expected on the basis of the photocurrent
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IV curve and allows for operation in excess of 13-bits.

5.6.7 Spike Interval Encoding

The asynchronous output of the protocol would make it in the first instance very simple

to address and connect to a FPGA, DSP, Address Event Protocols [32], or other digital

logic. The maximum output frequency of spikes, given by Eqn. 5.26 would be 0.5MHz.

For ten sets of spike generators it would be 5MHz (70-140 photodiodes) and for a hundred

sets of spike generators it would be 50MHz (700-1400 photodiodes). Clearly to achieve the

equivalent of a 1 megapixel camera the maximum output frequency would reach 35−71GHz!

A 16-bit parallel bus could bring this down to a few GHz, but even this is too much for a

0.18μm process. Power consumption and switching noise would also get undesirably high.

Some form of information compression is therefore required. In the eye, each spike cab

convey multiple bits of information, which together with redundancy can be used to make

the spiking rate more sparse [33].

The challenge is therefore to compress the data by a factor of a few decades without

losing the fundamental asynchronous nature of the signal and allowing for addressing. The

simplest practical way of implementing compression is to use spike interval encoded modula-
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tion where each photodiodes spike train are accumulated into a single spike whose temporal

width is modulated according to the spike frequency. The advantage here is multi-fold. A

single temporally wide pulse introduces less switching noise than trains of spikes. Secondly

the power consumption is highest on the rise and fall of the spikes. As the spiking circuit

is shared between multiple photodiodes, a further advantage is that the negative pulse in-

terval between spikes now indicates the switching to a new photodiode. Opposite polarity

between ON and OFF spikes can be used to indicate their state.

This spike interval encoding can be implemented using a standard asynchronous ripple

counter (see Fig. 5.32) based on a cascade of JK-type flip-flops (U1-8). Subsequently,

the output can selected, using the CtrlA signal from either Q(U6) or Q(U8) using a 1-

bit multiplexer, i.e. divide by 64 or 256. This output encodes the compressed data and is

additionally used to: (1) reset the ripple counter and (2) provide an input to the photodiode

selection control circuit. This consists of a 3-bit ripple counter with an octal output for

controlling the photodiode selection switches. As there are only seven photodiodes for

sequential selection, the 8th output is used to reset this counter. The CtrlB signal is

used to foveate the local photodiode cell by overriding the multiplexer by configuring the

photodiodes in parallel for increased temporal resolution.

5.6.8 Contribution to Related Work

This section highlights how the presented work compliments related work developed to

similar technical goals. The contribution in this work is shown to be two-fold; both on a

proposed system architecture (implementation still ongoing) and on the front-end photore-

ceptor circuit. At each of these levels, a brief summary on state-of-the-art related research

is given followed by a rationale on how the presented work differs.

Foveating Vision Chips

Considerable work has already gone into developing vision chips based on the foveal or-

ganisation of the animal retina. Early work by Wodnicki et al. [34, 35] and Sandini et

al. [36, 37, 38] produced polar arrays of increasing resolution towards the centre. More

recent work by Etienne-Cummings et al. [39] has combined foveation with visual smooth

pursuit tracking, acquisition saccadic control and centroiding. Azadmehr et al. [40] have

produced a system with a central (static) imaging array surrounded by a temporal response
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(dynamic) border for controlling a pan-tilt system to track motion on the foveal region.

The proposed system takes an alternative approach; to implement a homogenous recon-

figurable array, such that the foveal region can be adjusted and moved dynamically. This

provides the ability to control both the size and position of foveal region electronically,

without need of mechanical actuators. Such a scheme is intended to achieve much swifter

pseudo-saccadic response to an electromechanical saccade.

Spiking Photoreceptors

Spiking photoreceptor circuits have evolved since the basic concept was introduced [20, 21],

not originally aimed for biologically-inspired vision chips. Along the same lines, Bermak et

al. [41, 42] continued to develop a number of Pulse-Width-Modulated (PWM) and Pulse-

Time-Modulated (PTM) based imagers. Another approach, due to the close resemblance to

neurobiology, inspired Kramer et al. [23, 30] to use a spiking scheme to encode a temporally

changing response with separate ON-increasing and OFF-increasing channels. Other devel-

opments in spiking photoreceptors included the use of current feedback to reduce energy

per bit [43, 44] and using adaptive reference thresholds to achieve object segmentation [45].

To further reduce power consumption time-to-first-spike (TTFS) encoding was applied to

reduce redundant spiking [46, 22, 47].

As previously mentioned (Section 5.5.3) a fundamental limitation of using spike-encoding

scheme is slow response to low light levels. Qi et al. [46] addressed this issue by using a

time-varying threshold, i.e. an exponential sawtooth-like signal. Although this technique

proved to be successful in response-time, the benefits of being asynchronous and having

linear response had been lost. Subsequently, this work has proposed an alternative scheme

to achieve fast response whilst maintaining linear response and asynchronicity, i.e. by

using an adaptable-ON/OFF encoded scheme. Furthermore, the ability to trade dynamic

range with temporal and spatial resolution is made possible due to combining the proposed

foveating architecture.

5.7 Summary

This chapter presents a unified model for a pn-junction photodiode implemented in CMOS

technology based on the underlying semiconductor physics. Measured results of fabricated
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devices have validated the quantum efficiency expressions developed. Furthermore through

design, fabrication and verification, several devices have been characterised in a deep sub-

micron process. Subsequently, some basic design rules for implementing pn-junction pho-

todiodes in deep submicron technologies have been outlined.

Finally, a biologically-inspired scheme to obtain optical information from vision chips has

been presented. The technique uses a ultra-low power (20pJ per spike) spiking photoreceptor

to output intensity information from a set of photodiodes. The scheme uses spike-interval

coding to encode the information asynchronously and therefore aims to reduce coupled

switching noise when distributed throughout a system.
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Chapter 6

ORASIS: A Micropower
Centroiding Vision Processor

6.1 Introduction

This chapter presents a computationally-efficient vision processing chip for multi-object-

based centroiding and sizing. The outlined system, named ORASIS; constitutes a 48×48

pixel photo-detecting and distributed processing array. This directly implements the bio-

pulsating contour reduction algorithm (Chapter 4) using hybrid cellular topologies involving

weak-inversion analogue and asynchronous digital circuit techniques (Chapter 2).

The presented system provides the following additional functionality to previous work

developed in this area (reviewed in Chapter 3).

1. Object centroiding: This system is the first developed (to date) capable of facilitating

simultaneous centroid detection of unlimited1 objects.

2. Object Sizing: This system is the first developed (to date) capable of facilitating

parallel size determination of unlimited1 objects.

3. Object counting: This system is the first developed (to date) capable of parallel object

counting.

4. Input Versatility: The system can be configured such that it can operate with a wide
1There is no maximum object object constraint, i.e. concerning the amount of objects that can be

processed in parallel. The only limiting factor is the address event communication capacity.
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variety of different input image types. The image processing parameters that can be

tuned are: edge detection threshold, object/background threshold sense and threshold

offset.

5. Ultra-low power consumption: The developed system achieves relatively high compu-

tational efficiency in comparison to traditional techniques.

This chapter begins with a top-level system architecture, describing how the various

blocks are hierarchically arranged, interconnected and can be scaled. Following is the cellu-

lar (tessellating) organisation outlining the functional sub-blocks for implementing the given

algorithm. These sub-blocks are then each described in detail, including circuit schemat-

ics with accompanying results. The fabricated prototypes are then discussed, with a brief

overview of their structure and contents. Finally system-level results, both simulated and

measured conclude the system description.

6.2 System Organisation

Based on implementing the bio-pulsating contour reduction algorithm; described previously

in Chapter 4, a system architecture is outlined [1], shown in Fig. 6.1.

6.2.1 Pixel Array

This can be subdivided into four “corners”, each of (x/2, y/2) dimensions, where (x,y) is

the array size (48x48). These sub-blocks are interconnected in the same way pixel elements

are interconnected internally with the exception of power supplies, bias currents and con-

trol signals. Furthermore each “corner” is synthesised using a unique set of pixel types,

depending on location. For example, the top-left corner block will contain left-edge, top-

left-corner, top-edge and standard pixel types. In total there are nine different pixel types,

i.e. four edge pixels, four corner pixels and one standard (centre) pixel. The difference

between these pixel types is simply due to the different terminating edge configurations, for

example a corner cell will have two terminating edges, whereas an edge cell will only have

one terminating edge. As will be seen later, the I/O connections need to be terminated

correctly for useful and error-free operation.
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6.2.2 Global Signal Distribution

Due to the large number of in-pixel processors, a current distribution scheme is needed for

bias current copying and hierarchical fanout required for distribution of digital (control)

signals.

For the given size of pixel array (48x48), the following four-level distribution tree/fanout

is proposed for current distribution:

• Corner (1 to 4): Four initial master bias currents are generated and used to supply

the four corner headers of the pixel array, i.e. one header in each corner block (shown

in Fig. 6.1: sub-block A).

• Row (1 to 24): Each master reference set is then used to make (y/2) copies feeding

every row header in its corner (shown in Fig. 6.1: sub-block B).

• Column (1 to 24): Each row header in turn is used to make (x/2) copies feeding every

pixel in its row.

• Pixel (1 to 4): Within each pixel these bias currents are locally combined and copied

further (discussed later).

Current-mode vs. Voltage-mode Current Distribution

In a current-mode scheme, at each current-distribution chain, the currents are copied locally

using devices in close proximity (thus well-matched) and subsequently distributed along

separate metal lines. This increases device count and metal area usage in comparison to a

voltage-mode current distribution scheme.

A voltage-mode scheme uses voltage distribution to set device input voltages (over a

large area) and thus creates the bias currents. However, the error contribution is two-fold;

systematic in addition to increased mismatch. Using set bias voltage distribution, metal

line resistance over a relatively large distance results in a linear voltage gradient. When

used to generate bias currents, this translates in a non-linear current gradient through

device transconductance. Furthermore the mismatch increases due to large proximity device

separation where process variation gradients come into effect.
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Therefore current-mode current distribution is preferred over voltage-mode distribution

for large area distribution to improve current matching at the expense of silicon area.

Digital Fanout (Control Distribution)

The scheme used for the control signal fanout is arranged using the same tree hierarchy as

for the current distribution. The digital signals are buffered at each level, by means of a

quad inverter cascade of increasing dimensions. By designing the buffers output transistors

to be relatively large, they can drive many relatively small input transistors in subsequent

levels, therefore ensuring fast and reliable operation.

System Scalability

This proposed architecture allows for a certain degree of scalability (perhaps tenfold), how-

ever to scale to much larger array sizes, for example, a 1 megapixel array, the distribution

hierarchy would have to be modified, i.e. increased number of levels/duplication stages.

The pixel circuitry and address-event hardware are however fully scalable.

6.2.3 System Input/Output

The various I/O signals used to control and tune the system and subsequently communicate

processed data off-chip are defined below:

• GLOBAL RESET: For initialisation of the initial state of the pixel array. Resets all

the distributed memory contents.

• LOCAL RESET: Defines whether localised resetting is enabled, realising a pulsating

action, or operating in single-shot mode; initiated through a global reset signal.

• THRES MODE: Defines whether background intensity is above (or below) object

intensity.

• OUTPUT SEL[1:0]: Selects signal to be routed to AER output: Centre, State and

Reset.

• GLOBAL AVERAGE: Selects whether the wide-field local average is computed as a

column average or global average.
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• IGLOBAL: Adjusts the global average level by sinking or sourcing a correction current

to this node when GLOBAL AVERAGE is asserted.

• IBIAS: Provides edge detector bias current and defines artificial propagation delay

constant.

• ITUNE: Tunes edge detector sensitivity, i.e. threshold of flagging edge detection.

• CHIP REQ: Chip request for off-chip communication; used to signal asynchronous

handshake to receiving device on having data ready for transmission.

• CHIP ACK: Chip acknowledge for off-chip communication; used to acknowledge suc-

cessful transmission of data from receiving device.

• X[5:0]: The X-coordinate of address being transmitted.

• Y[5:0]: The Y-coordinate of address being transmitted.

6.2.4 Pixel Organisation

The basic pixel organisation is illustrated in Fig. 6.2. Based on the bio-pulsating contour

reduction algorithm described in Chapter 4, this architecture realises a direct implementa-

tion.

The photodiode is a reverse biased n-well/p-substrate junction (discussed in Chapter 5),

of dimensions 30μm× 30μm. This feeds the in-pixel analogue signal processing (ASP) core

which smooths, averages, compares and thresholds as described earlier. The ASP generates

two signals; CONTOUR and THRESHOLD, which in turn are used to feed the asynchronous

binary processing (ABP) core. This facilitates the contour reduction through asynchronous

signal propagation, flagging the centres on detection. On centroid detection, the output

neuron negotiates with the Address Event Representation (AER) core for a timing slot for

off-chip communication.

The following three sections describe the structure and make-up of these blocks (ASP,

ABP and AER), the fundamental circuit theory, circuit operation and simulated / measured

results.
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Analogue Signal
Processor (ASP)

Asynchronous Binary
Processor (ABP)

Photodiode

Output
Neuron

Adjacent cells
(photodiodes)

Adjacent cells
(local-, global-av, edges)

Bias, tuning
currents

Output
selection

Row
handshake

Adjacent cells
(state, reset, centre)

Chip control
(threshold mode,
averaging mode,
global reset and 

local reset)

Column
handshake

Figure 6.2: The proposed ORASIS Pixel architecture. Illustrated are the four main com-
ponents: sensor (photodiode), Analogue Signal Processor (ASP), Asynchronous Binary
Processor (ABP) and Address Event Representation (AER) neuron.

6.3 Distributed Analogue Signal Processing (ASP) Core

The concept of using a distributed ASP core to feature extract is to avoid use of analogue-

to-digital converters (ADC) to reduce power consumption (previously discussed more rig-

orously in Chapter 2). Instead analogue processing is used to reduce the computation to

a series of comparisons, where simple comparators, i.e. 1-bit converters can be used for

discrete, asynchronous output.

This section describes the distributed architecture and circuits for extracting the re-

quired CONTOUR and THRESHOLD signals from a matrix of photocurrents.

6.3.1 Architecture

External

The extracellular interconnectivity is illustrated in Fig. 6.3 and previously in Fig. 4.5. Each

pixel-cell requires 16 connections with adjacent cells to achieve the required computational

functionality (front-end image processing):



ORASIS: A Micropower Centroiding Vision Processor 159

• Narrow-field local averaging (6 connections): Each cell receives three iphoto in current

inputs from adjacent photodiodes (lower, right and lower-right) and consequently

transmits its iphoto out current to three adjacent cells (left, upper and upper-left).

• Wide-field local averaging (2 connections): as column averaging is used, every cell

connects to a column averaging node shared with the upper and lower cells.

• Edge detection (4 connections): Every pixel-cell receives two vphoto in inputs from

adjacent photodiodes (lower and right) and consequently transmits its vphoto out

value to two adjacent cells (left and upper).

• Contour detection (4 connections): As each cell compares its photo-intensity with

that of the cell adjacently below and to the right, two edges are computed per pixel.

Therefore to process all edges adjacent to a photodiode two edge inputs (from left and

upper cells) and two edge outputs (to right and lower cells) are required.

Internal

The internal architecture of the ASP core is illustrated in Fig. 6.4.

The ASP core consists of three main (functional) blocks for: (1) averaging and com-

parison, (2) edge detection and (3) contour discrimination, in addition to some support

circuitry.

A cells photo-voltage (Vphoto); being a log-compression of its photocurrent, is generated

at the front-end in the averaging and comparison block. This block computes the narrow-

field and wide-field local averages, compares these and thresholds to determine whether a

certain pixel is above or below the average intensity level (Vthreshold). In parallel, the cells

photo-voltage is compared with those of neighbouring cells to determine whether it lies on

an edge. The four edge signals (to adjacent photodiodes) are then used in conjunction with

the THRESHOLD signal to determine whether a cell satisfies the CONTOUR condition.

6.3.2 Averaging and Comparison

The schematic diagram for the ASP block responsible for photodetection, averaging, com-

parison is given in Fig. 6.5.
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Figure 6.3: Symbol representation of the analogue signal processing (ASP) core. Illus-
trated is the external connectivity of analogue signals, i.e. with other cells, showing the
requirements for cellular tessellation. This excludes global control signals and bias point
connections. Nodes have been abbreviated for clarity as follows: vp=vphoto, ip=iphoto,
ve=vedge.
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Figure 6.4: Schematic diagram of the in-pixel analogue signal processing (ASP) organisa-
tion. Illustrated is the internal connectivity emphasising the signal flow path between the
various blocks.

Q1 Q3

Iphoto

6/10 3/10

Q4

3/10

Q5

3/10

Q6

3/10

Q11 Q12

3/10 3/10

Q2

6/10

Q7

3/10

Q8

3/10

Q9

2/10

Q10

3/10

Q13 1/1

Ip
h

o
to

_o
u

t1

Ip
h

o
to

_o
u

t2

Ip
h

o
to

_o
u

t3

Ip
h

o
to

_i
n

1

Ip
h

o
to

_i
n

2

Ip
h

o
to

_i
n

3

(t
o

 lo
w

er
 c

el
l)

(t
o

 ri
g

h
t 

ce
ll)

(t
o

 lo
w

er
-r

ig
h

t 
ce

ll)

(f
ro

m
 lo

w
er

 c
el

l)

(f
ro

m
 ri

g
h

t 
ce

ll)

(f
ro

m
 lo

w
er

-r
ig

h
t 

ce
ll)

Vphoto

Vlocal

Vcolumn

Vthreshold

Ic
o

lu
m

n
(f

ro
m

 a
ll 

co
lu

m
n

 c
el

ls
)

MODE
Ilocal

Ilocal

Photodetection
and log compression Narrow-field local averaging

Wide-field local 
(column) averaging

Comparison
and thresholding

D1

30x30

Iphoto

Min (Ilocal, 
Icolumn)
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Phototransduction: The pn-junction photodiode (D1) is reverse-biased by stacking

two diode-connected PMOS devices (Q1, Q2) to Vdd. The photocurrent range for the given

device under the expected light levels is from 100fA (dark current) to 5nA. For this current

range devices Q1 and Q2 operate in the weak inversion region therefore the applied reverse-

bias is logarithmically proportional to the photocurrent [2, 3] as expressed in Eqn. 6.1.

Vphoto = Vdd − (Vgs1 + Vgs2) ≈ Vdd − 2nφtln

(
Iphoto

I0

)
(6.1)

Where: n is the subthreshold slope factor, φt is the thermal voltage, Iphoto is the photocur-

rent and I0 is the pre-exponential current.

Narrow-field local averaging: The node in-between the stacked devices is also used

to form a current mirror with devices Q3-Q6; providing scaled, copied currents for current-

mode averaging. Devices Q3-Q5 source copied photocurrents (Iphoto out1,2,3) to adjacent

cells and device Q6 receives and sums copied photocurrents from adjacent cells to form a

four-pixel average current, such that Ilocal = (Iphoto + Iphoto out1 + Iphoto out2 + Iphoto out3)/2.

Wide-field local averaging: The wide-field local average is implemented by using a

column averaging technique. This is facilitated by summing all the copied (through current

mirror Q7, Q8) narrow-field smoothed currents (Ilocal). Normalisation is then achievable

by copying this current using a distributed 1:1 current mirror per cell. This has the effect

of forming an X:1 scaled mirror; with X being the number of cells attached to the column

(see Fig. 6.6).

Current-mode comparison: The near-field local (cellular) average is then compared

to the wide-field local (column) average by means of a basic current comparator formed by

an opposing source/sink transistor pair [4] (Fig. 6.5: Q10, Q12). If the device bias points

are similar, then both devices will be in saturation and the output voltage (Vthreshold) is

given in Eqn. 6.3.

Vthreshold =
Icolumn (1 + λpVdd)

Ilocal (1 + λn) + Icolumnλp
(6.2)

Where: λn and λp are the linear channel length modulation (early) factors for N- and P-

MOS devices respectively. Subsequently, if the input currents are exactly equal, then this

simplifies to:
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Figure 6.6: Schematic representation of the wide-field (column) averaging mechanism. Ex-
ample given for a three row example.

Vthreshold =
1 + λpVdd

1 + (λn + λp)
(6.3)

However, if the source/sink bias points (saturation currents) are different, the device

with the higher bias point will be forced out of saturation, i.e. it will enter the ohmic

region. For example, in Fig. 6.5, if Icolumn > Ilocal, the source device (Q12) will operate in

the linear region, and the output voltage (Vthreshold) will swing upwards towards V dd. This

behaviour is described by eqn. 6.4 (for Ilocal < Icolumn) and eqn. 6.5 (for Ilocal > Icolumn).

Vthreshold =
Icolumn (1 + λpVdd)
Icolumnλp + Ilocal

φt

(6.4)

Vthreshold =
IlocalVdd − Icolumnφt

Ilocal + Icolumnλnφt
(6.5)

Although the generated threshold voltage (Vthreshold) describes the current comparison

discretely for a substantial differential current, smaller current differences cause Vthreshold

to remain between V ss and V dd. For driving CMOS static logic, such a signal is undesir-

able, for a non-discrete input can give rise to large “short-circuit” currents. Therefore a

thresholding buffer is required to “square up” this signal to reliable discrete levels (discussed

later).

Threshold mode option: To provide versatility to a wider range of image types, a
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Figure 6.7: Schematic diagram of the tunable discrete edge detector circuit. Details of the
current generation scheme (Isource and Isink) and implementation of thresholding inverters
(X1 and X2) are provided later.

threshold mode option can provide the functionality to select between light object on dark

background and dark object on light background. To achieve this, the threshold detection

offset must be shifted (inverted) to provide the correct margin for adequate noise rejection

and robustness to process variation. This can be implemented by means of altering the

effective device aspect ratios by switching in additional devices in parallel with the sinking

device (Fig. 6.5: Q9, Q13). Furthermore the discrete output requires to be inverted, easily

achievable by using a XOR gate (see Fig. 6.4).

Global averaging option: Using this current-mode averaging/thresholding scheme, it

is easily extendable to provide the option for global averaging, with an input for threshold

correction. This is achievable by switching all the column averaging nodes (Vcolumn) to be

shorted together thus realising a single global average. Subsequently, if an external current

is sourced or sunk to this node, this will have the effect of adjusting the global average

threshold higher or lower.

6.3.3 Edge Detecting and Contour Discrimination

The schematic given in Fig. 6.7 illustrates the edge detection circuitry [5] [6] inserted be-

tween every pair of adjacent pixels.
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Edge Detection: Principle of Operation

The diode-connected devices (previously illustrated in Fig. 6.5) provide the logarithmically

compressed voltage inputs (Vphoto1 and Vphoto2). Two diode-connected devices are used to

ensure the current sourcing device (not shown) remains in saturation for small photocur-

rents. The differential voltage (Vphoto1, Vphoto2) is applied to the PMOS differential pair

(Q1 and Q2) sourced by the current Isource. The differential pair tail currents are sunk via

the current mirror (Q3, Q4 and Q5) which is controlled by the sink current; Isink. The

operation is as follows:

• Isource is selected such that it generates sufficient transconductance and therefore

gain to ensure reliable operation for the minimum response time required (limited

by response of photodiodes). Too high a value would result in a useless increase in

power consumption (for this is static power dissipation) with no increase in system

performance. Furthermore, both the bias currents and device sizes are selected such

that all the devices remain (as much as possible) within a single region of operation;

for the expected current levels, in weak inversion. This is to avoid any asymmetric

behaviour due to some devices having a significant drift-current influence, i.e. entering

moderate inversion.

• Isink is adjusted to lie in between Isource/2 and Isource and sets the allowed tolerance

before indicating an edge and flagging it up. This will set the gate-source voltages of

devices Q4 and Q5. This voltage will in turn determine the maximum current that

can be sunk from the drains of Q4 and Q5 (Id4max and Id5max respectively). Assuming

devices Q1 and Q2 are ideally matched, this circuit operates in one of two states:

1. (Vphoto1 = Vphoto2): Since Isource/2 < Isink < Isource then Id1 < Id8max causing

device Q4 to be forced into the ohmic region. This in turn will cause Vedge1

to sit barely above ground and similarly Q5, Id6 and Vedge2 will behave in the

same way. As a result of Vedge1 and Vedge2 both being low, Vout will output high

indicating there is no edge.

2. (Vphoto1 �= Vphoto2): For example, if Vphoto1 < Vphoto2 such that Id1 = Id4max

then device Q4 is in saturation and Vedge1 rises to just below Vdd. However

Id2 < Id5max so device Q5 is still in the ohmic region, keeping Vedge2 low. This

will result in Vout outputting low indicating there is an edge.
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Edge Detection: Circuit Analysis

Assuming devices Q1 and Q2 are operating in saturation, the following expression (Eqn. 6.6)

can be derived, expressing the output current (differential).

Id1 − Id2 = Isource · tanh

(
Vphoto1 − Vphoto2

2nφt

)
(6.6)

Where: n is the charge effect due to the substrate (also referred to as the slope factor

or subthreshold constant) and φt is the thermal voltage (φt = kT/q=25.9mV at room

temperature).

This can be split as to provide the single-ended tail currents described in expressions

6.7 and 6.8.

Id1 =
1
2
· Isource ·

[
1 + tanh

(
Vphoto1 − Vphoto2

nφt

)]
(6.7)

Id2 =
1
2
· Isource ·

[
1 − tanh

(
Vphoto1 − Vphoto2

nφt

)]
(6.8)

From 6.6, the large signal (6.9) and small signal (6.10) transconductance of the differ-

ential pair can be derived [7].

GM =
d(I1 − I2)
d(V 1 − V 2)

=
Isource

2nφt
· sec2

(
Vphoto1 − Vphoto2

2nφt

)
(6.9)

gm =
Isource

2nφt
(6.10)

Furthermore, expression 6.9 can be used to express the range of values for which the circuit

will flag an edge detected.

Isink − [GM (Verror + |Vphoto1 − Vphoto2|)] < 0 (6.11)

Where: Verror is the error term expressing the total mismatch error in the differential pair
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as an input referred voltage. This expression directly links into those developed previously

for algorithm-based edge detection robustness in Eqns. 4.16 and 4.17.

Although Eqn. 6.11 yields at least one discrete edge signal (Vedge1, Vedge2) for a moderate

differential input voltage (Vphoto1−Vphoto2), smaller variations result in graded output levels.

This is due to the differential pair having a finite gain and thus operating as a transconductor

rather than comparator. As a result, devices Q1-Q5 are in saturation and the edge output

voltages are given by Eqns. 6.12 and 6.13.

Vedge1 =
1
λn

Isink

Isource

(
1 + e

Vphoto2−Vphoto1
nφt − Isource

Isink

)
(6.12)

Vedge2 =
1
λn

Isink

Isource

(
1 + e

Vphoto1−Vphoto2
nφt − Isource

Isink

)
(6.13)

Where: λn is the linear channel length modulation (early) factor for the sinking devices,

assuming Vds > 3φt (for device Q3-Q5). This expression ignores any current source non-

idealities (early effect).

As discussed earlier (in threshold detection), such intermediate (non-discrete) voltage

levels are undesirable for driving CMOS logic. Therefore thresholding buffers are inserted

in between the edge signals (Vedge1 and Vedge2) and logic NOR gate.

Edge Detection: Results

The intended edge detection functionality is illustrated in the simulation results given in

Figs. 6.8 and 6.9. Figure 6.8 shows the operation of the circuit for set bias currents (Isource

and Isink), but with varying photocurrents (Iphoto1 and Iphoto2). Results are given for ten

different Iphoto1 levels spanning over three orders of magnitude, with Iphoto2 swept over the

entire range (X-axis). The “window” of edge-detection is seen (fig. 6.8(e)) to exhibit excel-

lent linearity throughout the tested photo-intensity range. Figure 6.9 shows the operation

of the circuit for a set bias current Isource and photocurrent Iphoto1 with varying bias current

Isink, with Iphoto2 swept over the entire range (X-axis). This demonstrates the tunability of

the edge detection window using a single current-mode input.

Furthermore, the current consumption profile for a 1nA bias, is illustrated in the simu-

lated results (Figs. 6.8(f) and 6.9(f)). This shows an average 3.5nA total current consump-
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(a)
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(d)

(e)

(f )

Figure 6.8: Simulation results of the edge detector circuit illustrating the discrete detection
at varying light intensities. Results are for: Isource = 1nA, Isink = 600pA, with 1pA ≤
Iphoto1, Iphoto2 ≤ 10nA. Shown (from top to bottom) are: (a) Id1, (b) Id2, (c) Vedge1, (d)
Vedge2, (e) Vout and (f) Ivdd
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Figure 6.9: Simulation results of the edge detector circuit illustrating the tunable sensitivity.
Results are for: Isource = 1nA, 500pA ≤ Isink ≤ 1nA, Iphoto1 = 300pA, with 1pA ≤ Iphoto2 ≤
10nA. Shown (from top to bottom) are: (a) Id1, (b) Id2, (c) Vedge1, (d) Vedge2, (e) Vout and
(f) Ivdd
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Figure 6.10: Monte Carlo simulation results for the edge detector illustrating variability of
edge detection window to process variation and mismatch. For Isource = 2nA, Isink = 1.5nA,
Iphoto1 = 300pA, 1pA ≤ Iphoto2 ≤ 10nA, statistical simulation of N = 1979 runs results in:
μlower = 176.009pA, σlower = 32.190pA, μupper = 521.234pA, σupper = 98.071pA

tion (excluding photocurrents), over all operating regions with a peak consumption of 7-8nA

at the onset of edge detection. Therefore the total average power consumption, per edge

detector block is 6.5nW. The peaking mentioned previously is due to the current-limiting

operation in the thresholding inverters for intermediate input voltages (discussed later).

Statistical simulation results show acceptable variability in edge detection threshold

with process variation and device mismatch. The histogram given in Fig. 6.10 shows the

full range (±3σ) variation of current level to be 75-275pA for lower edge threshold and

325-850pA for upper edge threshold, for the given example. Although for the chosen device

sizing, the statistical spread is not optimal (i.e. the design criteria are for power and area

optimisation), the observed non-overlap band between upper and lower edge threshold levels

indicates good yield and robust operation.

Contour Discrimination

The schematic given in Fig. 6.11 illustrates the contour discrimination logic present in

every cell. This takes its (edge) inputs from the two internal (to that cell) edge detectors

(right and bottom edges), the cell to the left (left edge) and the cell above (upper edge).

Furthermore, the threshold input effectively inhibits static (spatial) noise from affecting the

signal propagation within objects (discussed previously in Chapter 4).
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Figure 6.11: Schematic diagram of the contour discrimination combinational logic.
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Figure 6.12: Schematic diagram of the in-pixel current distribution circuit, providing bias
currents to the edge detecting and timing delay blocks.

6.3.4 Bias Distribution

Each pixel receives two individual bias currents; Ibias and Itune. These are used to gener-

ate all accurate2 in-pixel bias currents through current summation of copied currents (see

Fig. 6.12). This generates Isource1 = Isource2 = (2Ibias), Isink1 = Isink2 = (Ibias + Itune) and

Idelay = (Ibias/2).

6.3.5 Thresholding

To achieve power-efficient binary extraction functionality as previously mentioned, a thresh-

olding inverter has been strategically inserted in the edge detection and local/global- aver-

aging/comparison functions. This has the task of converting an analogue voltage to discrete

level (1-bit conversion) with minimum power consumption. The implemented circuit solu-
2refers to relatively accurate currents (± 5%), in comparison to voltage-mode distributed currents (±

25%)
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Figure 6.13: Schematic diagram of the current-limiting thresholding inverter; used for 1-bit
conversion.

tion is illustrated in Fig. 6.13.

The basic concept is to threshold the signal using a three-stage cascade of logic in-

verters. Since the “short-circuit” voltage component would be prohibitively high in directly

implementing this, the inverters power-supply (Vdd) is connected through a current-sourcing

device. This has the effect of current limiting the short-circuit current at each stage. By

scaling this limiting current, a successively squarer signal is obtained in successive stages.

Furthermore, as the circuit topologies demand a low threshold detection point (≈ Vdd/6)

a scaled PMOS current (limiting) mirror can help achieve this low threshold point. For a

1nA initial stage bias, the optimum (regarding power consumption) current-limit ratio is

1:6:16.

Statistical simulation results show acceptable variability in threshold voltage with process

variation and device mismatch. The histogram given in Fig. 6.14 shows the full range (±3σ)

variation of threshold voltage to be 200-350mV. Although this represents a significant 8.3%

variation over the power supply range, the target input signals (Vedge1, Vedge2 and Vthreshold)

exhibit a steep roll-off in this region and therefore some variation in threshold level will

translate to negligible output referred error.

6.4 Distributed Asynchronous Binary Processing (ABP) Core

Having extracted the important features by means of the ASP core, the image data has

been reduced to two binary bits per pixel; CONTOUR and THRESHOLD. Subsequently,

using these inputs to feed and synchronise a distributed, asynchronous binary network,
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Figure 6.14: Monte Carlo simulation results for the thresholding inverter illustrating vari-
ability of threshold voltage to process variation and mismatch. μ = 275.322m, σ = 29.028m,
N = 2000

computationally-efficient spatiotemporal processing can be achieved on another level.

This section describes the distributed architecture and combinational circuits for facili-

tating the object segmentation and centroid extraction from a matrix of CENTROID and

THRESHOLD binary inputs.

6.4.1 Architecture

External

The extracellular interconnectivity is illustrated in Fig. 6.15 and previously in 4.4. Each

pixel-cell requires 52 connections with adjacent cells to achieve the required computational

functionality (segmentation and centroiding):

• STATE (12 connections): Each cell receives eight STATE inputs from adjacent cells

(four from directly adjacent and four from a three-cell proximity, i.e. three pixels to

the right, three pixels above, etc) and consequently transmits its STATE contents to

its four directly adjacent cells.

• RESET (8 connections): Each cell receives four RESET inputs from directly adjacent

cells and transmits its RESET status back to them.

• CENTRE (16 connections): Each cell receives eight CENTRE inputs from adjacent



ORASIS: A Micropower Centroiding Vision Processor 174

S4 3S
4

C
4

R4S C R

S3

3S3

C3

R3

S

C

R

S2 C
2 R2

S C R

S1

3S1

C1

R1

S

C

R

C5 C6

C8 C7

Analogue
Signal Processing

(ASP) Core

Asynchronous
Binary Processing

(ABP) Core

3S
2

ST
AT

E(
x,

y-
1)

ST
AT

E(
x,

y-
3)

C
EN

TR
E(

x,
y-

1)

RE
SE

T(
x,

y-
1)

ST
AT

E(
x,

y)

ST
AT

E(
x,

y)

C
EN

TR
E(

x,
y)

STATE(x+1,y)

STATE(x+3,y)

CENTRE(x+1,y)

RESET(x+1,y)

STATE(x,y)

STATE(x,y)

CENTRE(x,y)

STATE(x-1,y)

STATE(x-3,y)

CENTRE(x-1,y)

RESET(x-1,y)

STATE(x,y)

STATE(x,y)

CENTRE(x,y)

ST
AT

E(
x,

y+
1)

ST
AT

E(
x,

y+
3)

C
EN

TR
E(

x,
y+

1)

RE
SE

T(
x,

y+
1)

ST
AT

E(
x,

y)

ST
AT

E(
x,

y)

C
EN

TR
E(

x,
y)

CENTRE(x-1,y-1)

CENTRE(x-1,y+1)

CENTRE(x+1,y-1)

CENTRE(x+1,y+1)

Figure 6.15: Symbol representation of the in-pixel asynchronous binary processing block.
Illustrated is the external connectivity of discrete signals, i.e. with other cells, showing
the requirements for cellular tessellation. This excludes global control signals and out-
put signals. Nodes have been abbreviated for clarity as follows: S=STATE, R=RESET,
C=CENTRE.
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Figure 6.16: Schematic diagram of the Asynchronous Binary Processing (ABP) organisa-
tion. Illustrated is the internal connectivity emphasising the signal flow path between the
various blocks.

cells (four directly adjacent and four diagonally adjacent) and transmits its CENTRE

status back to them.

• Signal feed-through (16 connections): Provides two feed-through connections in each

direction (i.e. two leftwards, two upwards, etc) for three-cell proximity state signalling.

Internal

The internal architecture of the ABP core is illustrated in Fig. 6.16.

The ABP core consists of three main (functional) blocks for: (1) state setting (inward

propagation), (2) state resetting (back-propagation) (3) state and centroid storage, in ad-

dition to some support circuitry.

The state is initially set if a contour is defined (initiation) or if a neighbouring cell

signals a state (propagation). A preset delay is added in the propagation path to limit the

signalling speed. In parallel the centroid detection checks for a centre-surround condition

(i.e. if surrounding cells are set and centre cell is unset). On centroid detection a reset

signal is back-propagated through all set cells, until it is blocked by a contour object limit.
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Figure 6.17: Schematic diagram of the state set logic facilitating the forward asynchronous
signal propagation.

Furthermore a centroid detection will trigger an off-chip address-event, discussed in detail

in the following section.

6.4.2 State Set

The complete combinational logic required to facilitate the state set functionality is illus-

trated in Fig. 6.17. This block generates the SET, SURROUND and RESET INHIBIT

signals:

• The SET signal is asserted if an adjacent cell has its state set in addition to the

THRESHOLD signal being asserted. Alternatively, a SET signal can be generated by

a CONTOUR signal provided the SET INHIBIT condition does not block this. The

function of the SET INHIBIT signal is to avoid oscillation between SET and RESET

on completion of a local (object-based) reset cycle.

• The SURROUND signal is generated to assist the centroid detection. The condition

for this is if the received surrounding cells (three-pixel proximity) have states set.

• The RESET INHIBIT signal is generated if any adjacent cells do not have their states

set. The purpose for this is described in the following section.
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Figure 6.18: Schematic diagram of the state reset logic facilitating the reverse signal (back)
propagation.

6.4.3 State Reset

The complete combinational logic required to facilitate the state reset functionality is illus-

trated in Fig. 6.18. This block generates the RESET and SET INHIBIT signals:

• The RESET signal is asserted if the LOCAL RESET mode is enabled and the cell

signals a CENTRE (logic X3 and X5). A RESET INHIBIT signal delays the RESET

signal being generated until the inward propagation reaches the central cell, to provide

a continuous back-propagation path. Alternatively a RESET signal can be signalled

if the STATE is set and any adjacent cell back-propagates a RESET (logic X4 and

X5). On generating a RESET signal, a monostable is triggered (logic X6, X8-10) to

produce a RESET pulse of sufficient time to reliably back-propagate to adjacent cells.

• The SET INHIBIT signal (active low) is asserted if any adjacent cells are resetting.

This ensures the back-propagation has reliably terminated before a forward propaga-

tion can commence.

6.4.4 State Memory

The complete combinational logic required to facilitate the state memory functionality is

illustrated in Fig. 6.19. This block completes the asynchronous state machine and provides

the STATE and CENTRE signals:

• The STATE signal is latched high on assertion of a SET input and conversely it is

latched low on assertion of a RESET input.
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Figure 6.20: Schematic diagram of the current-controlled delay circuit for creating an asyn-
chronous discrete delay.

• The CENTRE signal is asserted when a high SURROUND signal is received in addi-

tion to the cells STATE being low. However, this is inhibited if any neighbouring cell

(directly adjacent or diagonal) flags a centre. This ensures a single centre is detected

in the duration between the CENTRE signal being asserted and the RESET signal

being issued.

6.4.5 Delay

As mentioned previously, an artificial delay is inserted in the SET signal path; between

the STATE SET logic and the internal STATE MEMORY cell (See Fig. 6.16). The circuit

implementation of this delay cell is given in Fig. 6.20.

The delay circuit has a binary input (IN), a binary output (OUT) and two current inputs
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Figure 6.21: Measured delay cell performance for different bias currents (Idelay), illustrating
statistical variation over a batch of ten samples.

(Ilimit and Idelay). The Ilimit current defines the current limit on the thresholding inverter

circuit, as described previously in Fig.6.13. When the input is high, the Idelay current is

switched (by device Q1) into a capacitive, integrating node; Vdelay. A metal-insulator-metal

(MIM) capacitor (C1) is used to ensure good linearity and matching. Subsequently, Vdelay

is connected to a three stage NMOS current-limited thresholding inverter; whose threshold

sits approximately 300mV below Vdd. Therefore for a fixed current, the time delay is given

by:

τdelay =
Qc

Idelay
=

C · Vthreshold

Idelay
(6.14)

Where: τdelay is the time delay, Qc is the charge stored on the capacitor and Vthreshold is

the threshold voltage of the inverter cascade. For example, an Idelay of 1nA would result in

a delay of 102μs.

Figure 6.21 presents measured results for the current delay circuit block over a batch

of ten fabricated dies. Although a 10-20% spread can be observed, it has to be taken

into account that these circuits are collected throughout different wafers and therefore

different process corners. Corner simulations demonstrate similar variations in performance.

Subsequently, Monte Carlo mismatch simulations suggest that similar delay cells fabricated

on the same die; at close proximities will match performance within a 5-10% spread.
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6.5 Address Event Representation (AER)

As the described system is both asynchronous and data-driven in nature, it is ideally suited

to an event driven output. One such protocol is the Address Event Representation [3]; used

extensively in the vision chip arena. The principle behind this data-transmission mechanism

is that each pixel has a unique identifier (i.e. its co-ordinate) and when a pixel registers an

event this identifier is asserted onto a digital bus. The data is then communicated off-chip

through means of an asynchronous handshake.

This section describes the specific AER architecture [8] adopted and the accompanying

blocks implemented for off-chip communication.

6.5.1 Architecture

The specific AER architecture implemented is given in Fig.6.22, illustrated for a 4x4 array.

Each pixel in the array has a sender neuron that latches a pixels state on an event until

the data has been communicated off-chip. The sender neuron initially sends a arbitration

request to the row (Y) arbitration tree. The role of the arbitration tree is to select a single

output in the event of multiple inputs. On selection of a particular row, the row header is

latched and subsequently the competition passes to the column arbitration tree. A similar

process then occurs from the sender neurons to column arbitration tree and back to the

column headers until a single column has been latched. On selection of both a row and

column, the chip sends a bus request signal off-chip to the receiving device. The address

is read off the bus and then a bus acknowledge signal is relayed back to reset the row and

column latches that consequently reset the sender neuron state. This selection/arbitration

process is then repeated for all events awaiting to be transmitted.

6.5.2 Sender Neuron Circuit

The circuit implementation of the sender neuron block is shown in Fig. 6.23. On a pixel sig-

nalling an event, the edge-triggered RS flip-flop (X2) is latched. Subsequently, devices Q1-

Q3 are used to divert the output signal flow to negotiate row and then column arbitration.

On successful off-chip communication both a row and column reset (Y PIXEL RESET

and XPIXEL RESET ) will be received thus resetting the flip-flop.
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ORASIS: A Micropower Centroiding Vision Processor 182

X_PIXEL-RESET

Y_PIXEL-RESET

S

R Q

QCENTRE

X
_A

RB
.R

EQ

Y_ARB.ACK

Y
_A

RB
.R

EQ

X1

X2 Q1 Q2

Q3

Figure 6.23: Schematic diagram of the sender neuron circuit facilitating the pixel handshake
with the AER row/column latches.

The X ARB.REQ and Y ARB.REQ lines require shared pull-up biasing to avoid float-

ing nodes during low activities.

6.5.3 Column/Row Latch

The circuit implementation of the column/row latch block is illustrated in Fig. 6.24. On a

pixel signalling an event, the ARB.REQ signal is inverted and passed to the arbitration tree.

On arbitration, the ARB.ACK of a single row/column latch is asserted that latches the

RS flip-flop (X1, X2). Consequently, the BUS.REQ signal is asserted to alert the receiving

(off-chip) device that an event is awaiting to be read. In the case of a two-dimensional

arbitration tree; as used in ORASIS, the row and column BUS.REQ signals are AND’ed to

produce a single chip request. On successful off-chip communication, the receiving device

relays a BUS.ACK signal that resets the selected row and column latches and issues the

PIXEL RESET signals to reset the sender neuron within the sending pixel.

The BUS.REQ line requires a shared pull-down bias to avoid a floating node during

low activities.

6.5.4 Arbiter Circuit

The circuit implementation of the arbiter block; used to synthesise the row and column

arbitration trees is illustrated in Fig. 6.25. The arbitration tree has the task to select one

of many requests, facilitated through a binary tree hierarchy. The arbiter cell operates on a

single input pair, i.e. by selecting one of two outputs, resolving contention by using a high

gain positive feedback element. The arbiter operates as follows:
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Figure 6.24: Schematic diagram of the row and column latch circuit; locking a pixel’s
address upon arbitration until being successfully transmitted off-chip.

• If ARB1.REQ and/or ARB2.REQ is asserted, ARB.REQ is asserted to a higher

arbitration level (logic OR operation).

• If either ARB1.REQ or ARB2.REQ is asserted, the RS flip-flop (X2, X3) is steered

accordingly and on the arbiter receiving an ARB.ACK signal from a higher level, it

signals an ARBX .ACK to the requesting branch.

• If neither ARB1.REQ nor ARB2.REQ are asserted the RS flip-flop enters an un-

defined state, however this doesn’t effect the operation since it will not pass an

ARB.REQ signal to a higher level.

• If both ARB1.REQ and ARB2.REQ are asserted, the RS flip-flop selects the last

asserted and on receiving an ARB.ACK signal from a higher level, it signals an

ARBX .ACK to the selected branch.

6.5.5 Address Encoder

The address encoder circuit is based on a wired-OR topology, shown in Fig.6.26. This

implementation is both reliable and effective for encoding the output, as the arbitration

tree can only select a single output. Therefore each output can be hard-wired to assert the

required digital representation on the AER bus.
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Figure 6.25: Schematic diagram of the arbiter circuit, interconnected hierarchically to syn-
thesise the arbitration trees for row and column selection.

One pull-down bias is required per bus line (bit), to prevent the bus output from floating

during low activities.

6.6 Fabricated prototypes

The proposed system was developed and fabricated in two stages: ORASIS-P1; the test chip

and ORASIS-P2; the full system (48x48 array). These integrated circuits are implemented

in a standard, commercially available CMOS process; UMC 0.18μm single-poly, six-metal

layer, triple-well (MM/RF) technology.

6.6.1 ORASIS-P1

The first fabricated circuit was developed to demonstrate the feasibility of the proposed

distributed analogue signal processing (ASP) and asynchronous binary processing (ABP)

architectures. A 4x8 element ASP and 1x15 element ABP were separately implemented

to verify the expected operation of the two custom (distributed) processing cores. Fur-

thermore, several test structures and prototype circuits were included for validation and

characterisation. The layout of this this test chip (ORASIS-P1) is illustrated in Fig. 6.27.

Details of the test platform used to verify this IC are given in Appendix D.
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Figure 6.26: Schematic diagram of the address encoder circuit, shown for an eight input,
3-bit output example.
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Figure 6.27: The ORASIS-P1 test chip layout (top), microphotograph (top right) and
basic floorplan (bottom); implemented in UMC 0.18μm 1P6M mixed-mode CMOS, accessed
through Europractice (IMEC). The die size is 1.525mm x 1.525mm (excluding scribe line).
Metal layers 5 and 6 have been excluded for clarity.
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6.6.2 ORASIS-P2

The complete system (ORASIS-P2) layout is given in Fig. 6.28.

The design uses 84 physical bondpads (17 per side) uniformly distributed (at 200μm

spacing) with 75μm×65μm passivation opening for bonding within a J-leaded chip carrier

package (PLCC84). The padring is constructed from a standard cell library provided by

virtual silicon for 60μm inline pads. As the design uses RF top metal (20KA) option, the 5

metal layer (logic process) cell library was used to avoid design rule violations. The padring

is split at the left and right edges; with top part being the analogue section and bottom

part being the digital section.

The master current references are on the top edge using off-chip resistors for wide tun-

ability and fine adjustment to compensate for process variation. Four master currents per

reference are sourced to the array corners to drive the current distribution network (see

Fig. 6.29). The buffers illustrated provide the digital fanout for the globally distributed

control inputs.

The address event representation hardware is situated at the bottom (column control)

and right (row control) of the array. The pixel array implemented is a 48x48 matrix using

a tessellation of nine different cell types (edge, corner and regular) for correct termination

to provide good array utilisation. The regular cell implementation (layout) is given in

Fig. 6.30.

The pixel floorplan is arranged such that the ASP (approximately top 65% area) is

separate from the ABP (approximately bottom 35% area). The distributed data “bus” is

routed in metals layers 1 and 3 vertically along the left pixel edge and metal layers 2 and 4

horizontally along the bottom pixel edge (See Table 6.1). Metal layer 5 is used for current

and power supply distribution (horizontal), from the left and right current distribution with

a break after the central pixel (X24) column. Metal 6 is used as a ground plane and a light

blocking screen, to minimise photo-absorption in the substrate, apart from at photodiode

openings.
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plan (bottom); implemented in UMC 0.18μm 1P6M mixed-mode CMOS, accessed through
Europractice (IMEC). The die size is 5.0mm x 5.0mm (excluding scribe line). Metal layers
5 and 6 have been excluded for clarity.



ORASIS: A Micropower Centroiding Vision Processor 189

Pixel Array

Row bias
and control
distribution

Corner bias
and control
distribution

Column AER 
latch and

address
encoder

Row AER 
latch and
address 
encoder

Row 
arbitration
tree

Column
arbitration

tree

Pixel

Pixel

Pixel

Pixel

Pixel

Pixel

Pixel

Pixel

Pixel

Current
copiers

Current
copiers

Current
copiers

Current
copiers

Current
copiers

Current
copiers

Current
copiers

Current
copiers

Buffers

Buffers

Buffers

B
u

ff
er

s

Figure 6.29: The bottom-right array corner layout (top) and floorplan (bottom), illustrat-
ing the implementation of the current distribution scheme and array-side address-event
circuitry. Metal layer 6 has been excluded for clarity.
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Figure 6.30: The ORASIS-P2 regular cell layout (top) and floorplan (bottom). The cell
size is 85μm×85μm with 30μm×30μm active photodiode area, giving a 12.5% surface fill
factor. Metal layers 5 and 6 have been excluded for clarity.
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Metal 1 Metal 2 Metal 3 Metal 4 Metal 5
(top to bottom) (left to right) (top to bottom) (left to right) (left to right)

↑ ↓ ← → ↑ ↓ ← → ← →
1 R1 R IOUT1 ILOC C1 C VOUT VIN1 IB[23:0] IB[23:0]

2 R R3 ITHRU ILOC C C3 EOUT1 EIN1 IT[23:0] IT[23:0]

3 3S1 2S1 R4 R S S3 C4 C VDDA VDDA

4 2S1 S1 R R2 S3 2S3 C C2 VSSA VSSA

5 S1 S C5 C1 2S3 3S3 C7 C3 VSS VSS

6 RESX RESX C1 C6 REQX REQX C3 C8 VDD VDD

7 IOUT3 ITHRU 3S4 2S4 EOUT2 EIN2 S S2 OUT1 OUT1

8 IOUT2 ILOC 2S4 S4 VOUT VIN2 S2 2S2 OUT0 OUT0

9 ICOL ICOL S4 S - - 2S2 3S2 MODE MODE

10 - - RESY RESY - - - - RESL RESL

11 - - ACKY ACKY - - REQY REQY RESG RESG

Table 6.1: Tessellating cellular interconnectivity; in total, each cell has 190 connections with
adjacent cells.

6.7 System Results (Simulated)

System verification has been divided into four sections; partly to reduce simulator load

and partly to obtain comprehensive and standalone results at each stage. The first three

sections deal with scaled-down ASP, ABP and AER architectures individually, with the

final section presenting the overall system results. All the test schematics used are provided

in Appendix C.

6.7.1 ASP

The ASP core was verified by simulating a 16×16 array with a static single-object image

(photocurrent array) hardwired under different configurations. Each system state is tested

through all process corners to verify robustness to process variations. Furthermore, the

total ASP power consumption is measured under each test condition, given in table 6.2.

The analogue power consumption contribution can be relatively accurately calculated
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Corner tt ss ff snfp fnsp

State 1: VTHRES MODE = 0, VGLOBAL AV = 1.8, Iphoto = 300p, IphotoObj = 50p,
IphotoAverage = 228p, Ibias = 1n, Itune = 250p, Iglobal = 0

Analogue 4345nW 4349nW 4340nW 4343nW 4349nW
Core digital 1771nW 4018nW 1547nW 1736nW 2272nW

Total ASP power (16×16) 6116nW 8367nW 5887nW 6079nW 6621nW

Average ASP power (per cell) 23.89nW 32.68nW 23.00nW 23.75nW 25.86nW

State 2: VTHRES MODE = 1.8, VGLOBAL AV = 1.8, Iphoto = 100p, IphotoObj = 300p,
IphotoAverage = 153p, Ibias = 1n, Itune = 250p, Iglobal = 0

Analogue 4081nW 4077nW 4082nW 4079nW 4082nW
Core digital 1646nW 1463nW 3382nW 1650nW 1998nW

Total ASP power (16×16) 5727nW 5540nW 7464nW 5729nW 6080nW

Average ASP power (per cell) 22.37nW 21.64nW 29.16nW 22.38nW 23.75nW

State 3: VTHRES MODE = 1.8, VGLOBAL AV = 1.8, Iphoto = 1n, IphotoObj = 100p,
IphotoAverage = 761p, Ibias = 1n, Itune = 500p, Iglobal = 0

Analogue 6356nW 6340nW 6374nW 6354nW 6358nW
Core digital 1777nW 1551nW 4016nW 1745nW 2272nW

Total ASP power (16×16) 8133nW 7840nW 10390nW 8099nW 8629nW

Average ASP power (per cell) 31.77nW 30.82nW 40.58nW 31.64nW 33.71nW

Table 6.2: Simulation results for a 16×16 ASP core indicating average power consumption
levels for typical stimuli through the different process corners.
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due to the fact that all biasing is current-input, i.e. current-mode. Therefore the average

cellular (analogue) current consumption is expressed in Eq. 6.15. As expected and confirmed

by the corner simulation results, this analogue contribution is nearly constant through the

different process corners.

PASP (ana) ≈ Vdda · (7.5Ibias + 3Itune + 7IphotoAverage) (6.15)

However the core digital power consumption is observed to vary substantially with

process variation. This is due to also supplying the current-limiting threshold detectors

that experience a shift in region of operation. The core digital supply current is therefore

independent of average photocurrent level and ASP configuration. The maximum limit

of digital (core) current consumption within the ASP core is expressed in Eq.6.16. This

is based on the maximum simulated current consumption for typical values of internal

mismatch within three current-limiting threshold detectors.

PASP (dig)(max) ≈ Vdd · (10Ilimit) (6.16)

Where: Ilimit is the first stage current-limit set in the thresholding inverter.

As this presented ASP architecture (with exception of bias distribution) requires no off-

array circuits, the total power consumption can be reduced to a cellular average. Based on

the simulated ASP results and measured photodiode responsivity this average is expected

to be in the range 15-40nW per cell (pixel). Therefore scaled to a megapixel array, this

would give 15-40mW total power consumption for both phototransduction and front-end

binary feature extraction.

6.7.2 ABP

The ABP core was verified by simulating a 9×9 array with a static single-object image

hardwired; by means of providing the ASP outputs (contour and threshold) as a matrix of

distributed inputs within the ABP array. For Idelay = 1.3nA, the transient behaviour is

illustrated in the simulation results given in Fig. 6.31.

These results illustrate the algorithms bio-pulsating action distributed through internal

(array) memory for a preset circular object. The cellular STATE can be observed to fill
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(a)

(b)

(c)

Figure 6.31: Transient analysis simulation results for a 9×9 ABP core illustrating bio-
pulsating action for a single object image. Results shown are taken across the central row
(Y=5) for: (a) state propagation, (b) reset back-propagation and (c) current consumption.
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inwards (Fig. 6.31(a)). On convergence to a centroid cell, the CENTRE signal is flagged,

causing a RESET back-propagation (Fig. 6.31(b)). This sequence then reinitialises and thus

for a static input, the process repeats in a periodic manner.

The average power consumption determined in this simulation is 470nW, providing 1739

processed (centroid) results per second. In a 9×9 array with a circular object of diameter

7 pixels, the active pixels are: πr2=38.5 pixels. By assuming static power dissipation in

non-active cells to be negligible (reviewed later), the ABP consumption per active pixel

is therefore: 470n/38.5=12.21nW. Furthermore, as the delay constant scales linearly with

Idelay, both the activity and power consumption also scale linearly.

6.7.3 AER

The AER architecture was tested using a 12×12 sender neuron array with 12-input row/column

latches, encoders and arbitration trees. Multiple sender neurons selected at random posi-

tions were programmed to output colliding events to test robust arbitration and bus selec-

tion. The colliding events have been arranged in two phases; the sender neurons at positions:

(2,9) (6,9) (5,10) (6,10) (9,10) signalling events at t=50μs and sender neurons: (4,2) (8,2)

(1,3) (5,3) (11,4) (12,4) (4,7) (8,7) (1,8) (5,8) (11,8) (12,8) (9,9) (12,9) (1,10) (2,10) (2,11)

(6,11) (9,11) outputting at t=80μs. The system REQ and ACK signals facilitating the

off-chip handshake are connected directly through a 3μs delay; representing the receiving

device. The results are given in Fig. 6.32.

The current consumption profile (Fig. 6.32(b)) suggests that a unit energy is required

per event in addition to a static dissipation proportional to the number of rows and columns.

This is expressed in Eq. 6.17.

Paer ≈ Vdd · (Nrows + Ncolumns) [Istatic + (IeventAv · Nevents · teventAv)] (6.17)

Where: Istatic is the static current (per row/column header overhead), Nrows and Ncolumns

are the number of rows and columns respectively, IeventAv is the average event current,

Nevents is the number of events (per second) and teventAv is the average event time.

The value of Istatic is proportional to the bias current; used in the address encoder

pull-down, bus request pull-up, etc. Thus a higher bias can increase the throughput of the

address-event bus at the expense of static dissipation. From the simulated results presented
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(a)

(b)

Figure 6.32: Transient analysis simulation results for a 12×12 AER sending architecture
illustrating arbitration for 24 colliding events. Results shown are: (a) the AER bus out-
put/handshake and (b) current consumption.
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in Fig. 6.32, typical AER consumption values (for Ibias = 100nA) are: Istatic = 11.16nA

and IeventAv = 225.7nA (determined from EeventAv = 27.08pJ). For example, in a 12 × 12

array, outputting 10K events per second the total AER consumption would be 752.9nW.

6.7.4 Overall System

The overall system was simulated and therefore verified in two stages. Initially a complete

distributed array is simulated with ideal current and voltage sources to confirm correct

array processing functionality and thus validate the cellular processing element. The second

stage involves hierarchically arranging the array to include the current bias and control

distribution tree. Thus the second stage simulation is intended to truly represent a scaled

final system validation.

Complete Array

The combined operation of the distributed ASP and ABP cores with the AER off-chip

communication is verified by testing a complete 12×12 array. The simulation results are

given in Fig. 6.33.

The total array power consumption is consistent with the expected level; derived from

appropriately scaling constituent component requirements. This comparison is given in Ta-

ble. 6.3. The small difference in between estimated (4350.2nW) and simulated (4816.4nW)

results can be attributed to the static power dissipation in the ABP core (this was previ-

ously assumed negligible). This therefore represents a static dissipation within the ABP

core of 3.24nW/cell.

Complete System

Having verified correct operation in the distributed array, a scaled-down system mock

is tested to validate correct hierarchy and to determine power consumption overhead in

global bias distribution. A 12×12 array, arranged in exactly the same hierarchy (i.e. sys-

tem/array/corner/row/cell) as the final chip (48×48 array). The simulation results are

given in Fig. 6.34.

As expected, the core power (vdd) consumption is in line with that shown previously,

i.e. as in the 12×12 array simulated results. The power consumption due to global bias
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(a)

(b)

Figure 6.33: Transient analysis simulation results for a 12×12 complete array for a sin-
gle circular object input (8 pixel diameter). Results shown are: (a) the AER bus out-
put/handshake; event at position (6,6) and (b) current consumption.
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(a)

(b)

Figure 6.34: Transient analysis simulation results for a 12×12 complete system (including
bias and signal distribution) for a single circular object input (8 pixel diameter). Results
shown are: (a) the AER bus output/handshake; event at position (6,6) and (b) current
consumption.
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Cellular Power Active Cells Distributed Power

Component Static Dynamic Static Dynamic Static Dynamic Total

ASP 23.89nW - 144 - 3440nW - 3440nW

ABP - 12.21nW - 501 - 610.5nW1 610.5nW

AER 11.16nW 48.75pJ2 243 14 267.8nW3 31.68nW4 340.9nW

Array
(estimated) - - - - 3708nW 642.2nW 4350.2nW

Array
(simulated) - - - - - - 4816.4nW

1 Assuming an input image including a circular object of 4 pixel radius.
2 Energy required per address event output.
3 Static dissipation is per row and column header.
4 Assuming each active cell to be a centroid; generating approximately 650 events per second.

Table 6.3: Comparison between expected (based on constituent ASP, ABP, AER embedded
arrays) and simulated power consumption for a combined 12×12 array.

distribution is observable as the difference in analogue power (vdda) consumption between

the simulated array and system results. Furthermore, it is apparent that the static (leakage)

dissipation is substantial and in fact is the main source of power consumption within the

ABP core; even at high activities.

6.8 System Results (Measured)

6.8.1 Test Method

A custom testboard has been developed for verifying system functionality (full schematic

provided in Appendix D). The approach taken is to have a dedicated microcontroller

(Microchip PIC18LF4620) facilitating the address event handshake and subsequently storing

the address event data into internal memory until filled, then streaming out to a PC via a

standard UART (RS232) interface. The drawback of this approach is that the test chip is

only tested in short bursts and therefore the output data (although processed in realtime),

is only available off-line. This is due to the limited bandwidth of the UART (a maximum

of 115200kbps). The source code for the address-event handshake and sampling has also

been included in Appendix B.
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Figure 6.35: Test images with single uniform objects, with pixel grid overlayed including
measured centroid position and size.
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Figure 6.36: Test images with single non-uniform objects, with pixel grid overlayed including
measured centroid position and size.
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Figure 6.37: Test images with multiple uniform objects, with pixel grid overlayed including
measured centroid positions and sizes.
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For image acquisition, a 2/3” format CCTV lens (Pentax C1614A) is mounted a fixed

distance (16mm fixed focal length) above the bare silicon surface. Subsequently, a thin-film

transistor (TFT) liquid crystal display (LCD) is used to produce the image, positioned

approximately 40cm perpendicular to the focal plane of the ORASIS P2 chip. The region

on the TFT display focused onto the photodiode array is then determined through power

consumption measurements. Initially, a narrow white rectangular region incident inside

the photodiode array is extended both in X and Y axis, until no further increase in current

consumption is measurable. At this point the entire array has been illuminated and therefore

the array boundaries have been established. Furthermore, to determine the incident light

intensity, test photodiodes devices previously characterised are now used to provide this

calibration.

6.8.2 System Functionality

This setup is used to confirm system functionality within the intended design specifications.

Sample images, projected onto the ORASIS P2 chip and corresponding measurements are

presented in Figs. 6.35, 6.36 and 6.37. These illustrate both single and multiple object

detection, centroiding and sizing. Typically the measured centroid and size measurements

are within the actual object boundaries, i.e. the system tends to under rather than over

estimate. Furthermore, uneven objects are successfully detected but with inaccurate cen-

troid and position estimates, again within the actual object boundaries (see Fig. 6.36b,c).

However, overlapping objects are detected as a single uneven object (see Fig. 6.36a).

Accuracy

The accuracy, as expected is at best3 limited to single pixel resolution for centroid position

and object radius.

An interesting observation has been a small random deviation (±2 pixels) in object cen-

troid location, resulting in a similar deviation in object size. At first glance this fluctuation

was passed off as an error, however on closer examination it has shown to be able to provide

sub-pixel accuracy (through successive averaging) having a pseudo-dithering effect. This

can be explained due to an edge effect caused by an imperfectly focused image or a graded

object boundary. Subsequently, the static (spatial) fixed-pattern noise (FPN) coupled with
3Best performance is achieved in images with high contrast ratio (i.e. dynamic range) and relatively high

incident light intensity.
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Figure 6.38: Pseudo-dithering providing increased centroid position accuracy through suc-
cessive averaging.

the (temporal) flicker noise within the edge detector blocks provide this statistically-biased

dithering effect. As a result, this provides a mechanism to enable centroid processing time

to be tradable with centroid position accuracy, illustrated through trends on measured data

shown in Figs. 6.38 and 6.39.

This suggests that less than 1% error is achievable for centroid position and radius

measurement by using 10-12 events per result. On this 48×48 pixel array, this corresponds

to approximately half pixel accuracy.

6.8.3 Power Consumption

The measured power consumption levels are generally in line with the previously presented

simulated results. The measured results partition the total power consumption into the

following sources:
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Figure 6.39: Pseudo-dithering providing increased object size accuracy through successive
averaging.

Analogue Consumption

This represents the analogue power consumption within the distributed array, including the

photocurrents, local and global averaging and threshold/edge detection circuitry. Measured

ASP consumption is within 5% of the simulated results. This can be attributed to the fact

that all the ASP circuits are biased using current mode techniques, i.e. all inputs are

currents. As expected, the ASP power is largely dependant on bias currents and incident

light intensity, typically being in the range: 15-50μW, as illustrated in Figs. 6.40 and 6.41.

Digital Consumption (Leakage)

This represents the subthreshold leakage current within the digital core distributed through-

out the array. This has been insufficiently considered at design time and has shown to be

a main source of power consumption within the ABP core. Power consumption due to this

leakage is in the order of 40-60μW.

For such applications with relaxed bandwidth requirements, static leakage can be mas-

sively reduced by either increasing the device channel length moderately, or by applying
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Figure 6.40: Measured supply current levels illustrating the effect of tuning main bias
current (feeding edge detectors and discrete delays) on system power consumption.



ORASIS: A Micropower Centroiding Vision Processor 208

Figure 6.41: Measured supply current levels illustrating the effect of illumination level
on system power consumption for various tuning bias current levels (controlling the edge
detecting threshold).
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a reverse bias on the bulk/source junction. This effect is illustrated in Fig. 6.42. It can

therefore be deduced that using NMOS devices of channel length 400nm and PMOS devices

of channel length 250nm can reduce static leakage tenfold in comparison to using minimum

feature length (180nm) devices.

Digital Consumption (Static)

This represents the static current supply to the digital core distributed throughout the array.

This is virtually all due to “digital” short-circuit current caused by incomplete thresholding,

i.e. logic gates with non-perfectly discrete inputs. The exact amount of static dissipation is

dependant on the configuration of the edge detection circuitry, i.e. bias current levels and

input light intensity. This dependance is clearly illustrated in Figs. 6.40 and 6.41.

ABP static consumption could be expected to account for up to 80% of the total sys-

tem power requirements in certain configurations. However, a significantly lower level of

static dissipation has been measured from the expected (simulated) results. The reason for

this is that the fixed-pattern noise provides a random offset to the edge detector inputs.

Consequently, this inherently biases the differential edge detector output to always have an

offset. As the simulations have considered only images of uniform background intensity,

this would represent the maximum static dissipation, i.e. when both inputs to a logic gate

are not discrete and floating.

Digital Consumption (Dynamic)

This represents power consumption directly related to the distributed binary signal propa-

gation and therefore proportional to the activity. In addition the address-event bus activity

influences this level. For typical activities, this has been measured to represent only a

10-15% portion of the total system power consumption. Therefore, no substantial power

saving can be achieved by operating the device at a reduced duty cycle.

Other

Power consumption of the I/O cells (obtained from a standard cell library [9]) have not been

included, as these have been characterised by the vendor and this consumption is largely

dependant on the external circuitry interfacing to the chip, i.e. input capacitances.
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Figure 6.42: Effect of channel length and bulk (reverse) bias on static leakage (off) current
(at Vds = 1.8V, Vgs = 0V) for (a) NMOS and (b) PMOS devices.
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Delay bias current (nA)

Figure 6.43: Dependance of process time on bias current, given for input images including
objects of maximum size of 3, 4, 5, 6 and 8 pixel radius.

6.8.4 Processing Time

Although the asynchronous nature of this distributed system produces temporally unsyn-

chronised events between different objects (due to the local resetting), the algorithm can

be run in a “single-shot” mode, and a clock applied to the global reset input. Using this

technique a true high frame rate processor can be realised, the limiting factor being the

maximum size of detectable object, i.e. the maximum propagation delay. This can in fact

be tuned as the internal propagation delay is controlled by a bias current. This relationship

between bias current and process time/frame rate is illustrated in Fig. 6.43.

6.8.5 AER Bandwidth

As the Address-Event bus bias is tuneable, the bandwidth dependance on bias current

has been measured, illustrated in Fig. 6.44. Since the bus bandwidth requirement for this

application is relatively moderate, high bandwidth and channel utilisation is generally not
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Nominal capacity

Figure 6.44: Measured address-event bus capacity (bandwidth) by varying pull-up/pull-
down bias currents.

an issue. However, for colliding events, the arbitration scheme introduces some latency, and

if comparable to the internal propagation delay, this could somewhat distort the information

extracted. Therefore a high address-event bandwidth is favourable to achieve a low latency

for maintaining temporal resolution.

6.9 Summary

In this chapter a vision processing chip has been presented for object size and centre de-

tection. It is the first system reporting multiple (unlimited) object centroid processing

capability. Furthermore the developed system demonstrates high computational efficiency;

implementing a computationally intensive algorithm with micropower consumption. Al-

though the developed system includes only a 48×48 cell array; with a cellular power budget

of a few tens of nanowatts, scaled to a megapixel array this would only require a few tens of
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milliwatts. Also, the fabricated system has shown to utilise fixed pattern noise favourably

(as in neurobiology), both reducing power consumption and increasing accuracy through

successive sampling. The achieved system specification is summarised in Table. 6.4.

At a component level, novel contributions include a discrete edge detector topology, a

locally/globally-averaging threshold detector network and an asynchronous spatiotemporal

bio-pulsating core. At an architectural level the contribution is a dedicated vision processor

capable of delivering thousands of processed centroids per object every second at ultra-low

power levels; at present, unachievable by conventional means.
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Technology UMC 0.18μm MM/RF 1P6M CMOS

Supply voltage 1.8V core (3.3V I/O)

Bias current range 50nA to 2μA (for Iaer)
250pA to 10nA (for Ibias)
50pA to 2nA (for Itune)

Photosensitivity 6 decades, from 100nW/cm2 to 100mW/cm2

Responsivity 0.18A/Wcm2 (for blue light @ λ = 480nm)
0.28A/Wcm2 (for green light @ λ = 550nm)
0.32A/Wcm2 (for red light @ λ = 650nm)

Pixel Level

Pixel size 85μm × 85μm

Surface fill factor 12.46%

Pixel device count 277

Pixel power 23.04 nW (ASP)
73.44 nW (ABP)
96.48 nW (total)

System Level

Die dimensions 5mm × 5mm

Array size 48 × 48 pixels

System device count 745,200

System power 222.28 μW (array)
20.3 μW (other)
243.6 μW (total)

Accuracy (centroid and radius) ±1 pixel1

Equivalent image process time 0.5ms (maximum)2

Address-event bandwidth 0.61 MEPS3(at Iaer=1μA)

Equivalent computational efficiency 1.38 μW per MIPS2

1 Using successive sampling the accuracy can be increased to ±0.5 pixel.
2 For a test image (with average incident power density of 6μW/cm2) consisting of

5 objects of 10 pixel diameter (at Ibias=2.5nA, Itune=250pA) .
3 MEPS = Million Events Per Second

Table 6.4: ORASIS-P2 system properties and performance summary



References

[1] T. G. Constandinou, J. Georgiou and C. Toumazou, “Towards a Bio-inspired Mixed-

signal Retinal Processor,” Proceedings of the IEEE International Symposium on Circuits

and Systems, vol. 5, pp. 493–496, 2004.

[2] C. A. Mead, Analog VLSI and Neural Systems. Addison-Wesley, 1989.

[3] M. Mahowald, VLSI Analogs of Neuronal Visual Processing: A Sythesis of Form and

Function. PhD thesis, California Institute of Technology, Pasadena, California, 1992.

[4] C. Toumazou, F. J. Lidgey and D. G. Haigh, Analog IC Design: The Current-Mode

Approach. London: Peter Perigrinus, 1990.

[5] T. G. Constandinou, J. Georgiou and C. Toumazou, “A Nanopower Tuneable Edge

Detection Circuit,” Proceedings of the IEEE International Symposium on Circuits and

Systems, vol. 1, pp. 449–452, 2004.

[6] T. G. Constandinou, J. Georgiou and C. Toumazou, “Nano-power mixed-signal tunable

edge-detection circuit for pixel-level processing in next generation vision systems,” IEE

Electronics Letters, vol. 39, no. 25, pp. 1774–1775, 2004.

[7] J. Georgiou, Micropower Electronics for Neural Prosthetics. PhD thesis, Imperial College

of Science, Technology and Medicine, University of London, 2002.
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Chapter 7

Conclusion

This thesis explores and develops biologically-inspired vision processing using distributed

hybrid electronics in CMOS technology.

Chapter 2 introduces neurobiology through system organisation and neural primitives

to data representation and spike coding, in particular in reference to the vision system.

The notions of biologically-inspired representation and hybrid computation have then been

examined in the context of microelectronic integration. Related design and implementation

issues for bio-inspired computation have then been outlined specifically in reference to weak

inversion analogue and asynchronous binary (or spike domain) computation.

Chapter 3 reviews current state-of-the-art silicon-based imaging technologies and dis-

cusses their suitability for integration with processing hardware. This leads to a direct

comparison of sequential and distributed topologies for vision processing in custom hard-

ware. A specific vision processing function, centroid detection (and object segmentation)

has then been targeted and a comprehensive review of research and development in that

arena is given.

7.1 Contributions

Chapter 4 presents a novel distributed algorithm for parallel centroid detection with in-

herent object segmentation and sizing functionality. It describes the functionality both

qualitatively and analytically and provides both experimental verification and an intuitive

reasoning behind the high robustness and inherent tolerance to ill-conditioned data and
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process variations. A pixel architecture for hardware implementation is proposed and an

equivalent software algorithm is coded. Subsequently, the computational load is estimated

and power consumption figures are reported by considering benchmark computational effi-

ciencies for state-of-the-art processing hardware. Finally, a generic distributed processing

paradigm for hardware implementation is outlined based on the underlying principles of

the presented algorithm. The versatility of this array processing platform is reinforced by

outlining two specific distributed algorithms directly implementable using this technique.

Chapter 5 reviews silicon-based photodiode modelling specifically related to CMOS pn-

junction devices. Furthermore, discussed implementation issues and design techniques for

deep submicron technologies are consolidated with measured data from fabricated devices.

A review of common photodiode interface topologies is then followed by a novel front-end

spiking photoreceptor circuit, with adaptive selection of ON/OFF-encoded channels. The

topology is intended for use in adaptable foveating vision chips, where spatial and temporal

resolution can be dynamically reconfigured locally.

Chapter 6 describes a novel vision chip implementing the bio-pulsating contour reduction

algorithm described previously in chapter 4. This device is the first silicon retina reported

capable of parallel centroiding of unlimited objects and returning object size in addition to

centroid position. The presented system implements a retinocortically-inspired organisa-

tion employing an asynchronous binary algorithm combined with continuous time feature

extraction. The developed architecture, organisation and circuit topologies are described in

detail including both simulated and measured results to validate the theory. The presented

system advances vision chip development into exploring new distributed architectures based

on hybrid pixels, whilst maintaining micropower consumption and good system stability.

7.2 Recommendations for Future Work

Future developments based on material described in this thesis are proposed in the following

areas:

7.2.1 System Optimisation, Enhancement and Development

Although the system has been designed with low power consumption in mind, it could

yet further be optimised, also in accuracy, speed and silicon area. At a circuit level, the
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current comparators could be redesigned for lower sensitivity to process variation, the global

averaging to include both row and column aggregates and the edge detector to be tunable

through a single bias. Furthermore, the asynchronous logic can be reduced through custom

device-level logic minimisation [1] and static dissipation be reduced by increasing device

length moderately.

At an functional level, the edge and contour detection could be improved by implement-

ing a thresholding difference of Gaussian function. Alternatively an adaptive photoreceptor

topology [2] could be used to dynamically bias the edge detector block to provide a local

automatic gain control and thus improve SNR. Furthermore, the threshold detection could

be massively improved by optimising the averaging/smoothing functions.

At a system level, the algorithm could be modified to return the aspect ratio of detectable

objects, i.e the W/L. Other techniques for object segmentation could be used to provide

versatility to a larger range of object types/input images. For example, colour segmentation

[3] could provide a condition for object segmentation where intensity alone fails.

At an technological level, this system is ideally implementable in one of the upcoming

3D CMOS technologies [4] [5], slicing the distributed architecture to several layers, thus

increasing fill factor whilst massively reducing both the footprint and interconnectivity re-

quirements. A compact cellular footprint could then open the door to a megapixel resolution

vision processor.

7.2.2 Hybrid Distributed Algorithm Design and Implementation

There is great scope to continue work on hybrid distributed algorithms as initiated in this

thesis. By dissociating the front-end feature extraction from the higher level back-end al-

gorithm in a distributed fashion as described paves the way for implementing countless

computationally demanding algorithms. Moreover, towards the end of chapter 4, two spe-

cific examples including such hardware implementable algorithms have been proposed.

Ultimately, the proposed hybrid distributed architecture could be extended to imple-

ment an FPGA-like vision processor with a reconfigurable back-end for providing a generic

platform for custom binary algorithm implementation. This would provide the perfect

compliment to the front-end reconfigurability already developed within the Cellular Neural

Network (CNN) community [6] [7] [8].



References

[1] N. H. E. Weste and K. Eshraghian, Priciples of CMOS VLSI design: A systems per-

spective. Addison-Wesley, 1993.

[2] T. Delbrck and C. A. Mead, “Analog VLSI phototransduction by continuous-time, adap-

tive, logarithmic photoreceptor circuits,” Vision Chips: Implementing vision algorithms

with analog VLSI circuits, by C. Koch and H. Li eds., pp. 139–161, 1995.

[3] R. Merrill, “Color separation in an active pixel cell imaging array using a triple-well

structure.” US Patent Number 5,965,875, 1999.

[4] R. Islam, C. Brubaker, P. Lindner and C. Schaefer, “Wafer level packaging and 3D

interconnect for IC technology,” IEEE/SEMI Conference and Workshop on Advanced

Semiconductor Manufacturing, pp. 212–217, 2002.

[5] J. Baliga, “Chips go vertical [3D IC interconnection],” IEEE Spectrum, vol. 41, no. 3,

pp. 43–47, 2004.
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{******************************************************************************
Program : ORASIS Simulator
Module : MAIN.PAS
Date : See File Timestamp

Author : Timothy G Constandinou
Company : Imperial College London
*****************************************************************************}

unit main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, StdCtrls, Buttons, ExtDlgs, Menus, ComCtrls, Grids, Math;

const
xgrid = 250;
ygrid = 250;
maxresets = 100000;
maxsize = 27;
defaultfpn = 10;
defaultdefects = 10;
defaultedge = 128;
defaultthreshold = 128;
defaultbgcolour = 0;

type
Tmainform = class(TForm)
Image1: TImage; Image2: TImage; Image3: TImage; Image4: TImage;
Image5: TImage; Image6: TImage; Image7: TImage; Label1: TLabel;
Label2: TLabel; Label3: TLabel; Label4: TLabel; Label5: TLabel;
Label6: TLabel; Label8: TLabel; OpenPictureDialog1: TOpenPictureDialog;
MainMenu1: TMainMenu; FreqGrid: TStringGrid; N1: TMenuItem; N2: TMenuItem;
N3: TMenuItem; File1: TMenuItem; Open1: TMenuItem; Exit1: TMenuItem;
Mode: TMenuItem; Scan1: TMenuItem; Help1: TMenuItem; About1: TMenuItem;
N01fps: TMenuItem; N1fps: TMenuItem; N5fps: TMenuItem; N10fps: TMenuItem;
MaxRefresh1: TMenuItem; SaveImages1: TMenuItem; Monochrome1: TMenuItem;
SingleFrame1: TMenuItem; Random1: TMenuItem; NoiseBox1: TGroupBox;
GroupBox1: TGroupBox; ThresholdsBox: TGroupBox; AddFlatButton: TButton;
AddGaussianButton: TButton; AddSpeckleButton: TButton; Label10: TLabel;
Label11: TLabel; FPN: TEdit; Defects: TEdit; AddSaltButton: TButton;
AddPepperButton: TButton; AddSaltPepperButton: TButton; Label7: TLabel;
ResetAllButton: TButton; AutoThresholdButton: TButton; Label9: TLabel;
SetThresholdsButton: TButton; GlobalThresholdLabel: TLabel;
EdgeThresholdLabel: TLabel; GlobalThreshold: TTrackBar; Label12: TLabel;
EdgeThreshold: TTrackBar; ResultDesc: TEdit; AppendFileButton: TButton;

procedure FormCreate(Sender: TObject);
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procedure IdleHandler(Sender: TObject; var Done: Boolean);
procedure Exit1Click(Sender: TObject);
procedure Open1Click(Sender: TObject);
procedure GlobalThresholdChange(Sender: TObject);
procedure EdgeThresholdChange(Sender: TObject);
procedure AutoThresholdButtonClick(Sender: TObject);
procedure AddFlatButtonClick(Sender: TObject);
procedure ResetAllButtonClick(Sender: TObject);
procedure About1Click(Sender: TObject);
procedure AddSaltButtonClick(Sender: TObject);
procedure Scan1Click(Sender: TObject);
procedure Random1Click(Sender: TObject);
procedure SetThresholdsButtonClick(Sender: TObject);
procedure MaxRefresh1Click(Sender: TObject);
procedure N10fpsClick(Sender: TObject);
procedure N5fpsClick(Sender: TObject);
procedure N1fpsClick(Sender: TObject);
procedure N01fpsClick(Sender: TObject);
procedure SingleFrame1Click(Sender: TObject);
procedure Image1Click(Sender: TObject);
procedure SaveImages1Click(Sender: TObject);
procedure Monochrome1Click(Sender: TObject);
procedure AddPepperButtonClick(Sender: TObject);
procedure AddSaltPepperButtonClick(Sender: TObject);
procedure AddSpeckleButtonClick(Sender: TObject);
procedure AddGaussianButtonClick(Sender: TObject);
procedure AppendFileButtonClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

TPixelElement = record Pixel : integer; Status : boolean; end;
TSizeElement = record Count, Size : integer; end;
TPixelArray = array[1..xgrid, 1..ygrid] of TPixelElement;
TSizeArray = array[1..xgrid, 1..ygrid] of TSizeElement;
TReset = record x, y : array[1..maxresets] of integer; n : integer; end;

var
mainform : TMainForm;
OutFile : textfile;
SizeArray : TSizeArray;
Centre, Reset : TReset;
DoResetAll : Boolean;
CurrGen : integer;
OrigArray, PixelArray, PixelArray2 : TPixelArray;
BgCol, FgCol1, FgCol2, FgCol3, FgCol4, FgCol5: TColor;
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implementation

uses about; {$R *.DFM}

{ GENERIC FUNCTIONS }

procedure Mul(var a : integer; b : double);
begin a := round(a * b); end;

procedure Delay(msecs:integer);
var
FirstTickCount:longint;

begin
FirstTickCount:=GetTickCount;
repeat
Application.ProcessMessages; {allowing access to other controls, etc.}

until ((GetTickCount-FirstTickCount) >= longint(msecs));
end;

function Convert24bitTo8bitGrey(incolor : integer) : integer;
begin
result := 0;
while (incolor > 65536) do
begin incolor := incolor - 65536; inc(Result); end;

while (incolor > 256) do
begin incolor := incolor - 256; inc(Result); end;

Result := (Result + incolor) div 3;
end;

function Convert8bitGreyTo24bit(incolor : integer) : integer;
begin result := (incolor * 65536) + (incolor * 256) + incolor; end;

procedure EmptySizeArray(var TempArray : TSizeArray);
var
x, y : integer;

begin
for y := 1 to XGrid do
for x := 1 to YGrid do
begin
TempArray[x,y].count := 0;
TempArray[x,y].size := 0;

end;
end;

procedure EmptyPixelArray(var TempArray : TPixelArray);
var
x, y : integer;

begin
for y := 1 to XGrid do
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for x := 1 to YGrid do
begin
TempArray[x,y].Pixel := 0;
TempArray[x,y].Status := FALSE;

end;
end;

function GetFPS() : integer;
begin
Result := 0;
if mainform.N10fps.checked then Result := 100;
if mainform.N5fps.checked then Result := 200;
if mainform.N1fps.checked then Result := 1000;
if mainform.N01fps.checked then Result := 10000;

end;

{ PROCESSING PROCEDURES }

procedure ImageToArray();
var
x, y : integer;

begin
for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
PixelArray[x*2-1,y*2-1].Pixel :=
Convert24bitTo8bitGrey(mainform.Image1.Canvas.Pixels[x,y]);

end;

function isEdge(x1, y1, x2, y2 : integer) : boolean;
begin
Result := FALSE;
if (abs(PixelArray[x1, y1].Pixel - PixelArray[x2, y2].Pixel) >
mainform.EdgeThreshold.Position) then Result := TRUE;

end;

procedure CalcEdges();
var
x, y : integer;

begin
for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
begin
PixelArray[x*2, y*2-1].Status := IsEdge(x*2-1, y*2-1, x*2+1, y*2-1);
PixelArray[x*2-1, y*2].Status := IsEdge(x*2-1, y*2-1, x*2-1, y*2+1);

end;
end;

procedure CalcEdgeNodes(var TempPixelArray:TPixelArray);
var



Algorithm Simulation Source Code 225

x, y, temp : integer;
begin
for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
begin
temp := 0;
if TempPixelArray[x*2-1, y*2].Status then inc(Temp);
if TempPixelArray[x*2+1, y*2].Status then inc(Temp);
if TempPixelArray[x*2, y*2-1].Status then inc(Temp);
if TempPixelArray[x*2, y*2+1].Status then inc(Temp);
if (temp = 2) and (PixelArray[x*2, y*2].Pixel >

mainform.GlobalThreshold.Position) then
TempPixelArray[x*2, y*2].Status := TRUE;

end;
end;

procedure CalcAverages();
var
x, y, i, j, av : integer;

begin
for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
begin
av := 0;
for j := 1 to 4 do for i := 1 to 4 do

inc(av, PixelArray[x*2+(i*2)-5, y*2+(j*2)-5].Pixel);
PixelArray[x*2, y*2].Pixel := av div 16;

end;
end;

procedure CalcGlobalAverage();
var
x, y, temp : integer;

begin
temp := 0;

for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
temp := temp + PixelArray[x*2-1, y*2-1].Pixel;

temp := temp div (mainform.Image1.height * mainform.Image1.width);
mainform.GlobalThreshold.Position := temp;

end;

procedure ResetPixel(x, y : integer);
begin
inc(reset.n);
reset.x[reset.n] := x;
reset.y[reset.n] := y;
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PixelArray[x,y].Status := FALSE;
PixelArray2[x,y].Status := FALSE;
if (x>2) and PixelArray2[x-2,y].Status then ResetPixel(x-2,y);
if (y>2) and PixelArray2[x,y-2].Status then ResetPixel(x,y-2);
if (x+2<(2*mainform.image1.width)) and PixelArray2[x+2,y].Status then
ResetPixel(x+2,y);

if (y+2<(2*mainform.image1.height)) and PixelArray2[x,y+2].Status then
ResetPixel(x,y+2);

end;

procedure CalcStaticNoise(NoiseType : string);
var
x, y, randlimit : integer;
randspread, temp : double;

begin
randomize;
randlimit := round(2.55 * strtofloat(mainform.FPN.text));
randspread := (strtofloat(mainform.FPN.text) / 100);

for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
begin
if (NoiseType=’flat’) then
begin
temp := randlimit / 2 - random(randlimit);
inc(PixelArray[x*2-1,y*2-1].Pixel, round(temp));

end;
if (NoiseType=’gaussian’) then
begin
temp := RandG(0, (randlimit / 6));
inc(PixelArray[x*2-1,y*2-1].Pixel, round(temp));

end;
if (NoiseType=’speckle’) then
begin
temp := 1 + randspread * (random - 0.5);
mul(PixelArray[x*2-1,y*2-1].Pixel, temp);

end;
if (PixelArray[x*2-1,y*2-1].Pixel > 255) then
PixelArray[x*2-1,y*2-1].Pixel := 255;

if (PixelArray[x*2-1,y*2-1].Pixel < 0) then
PixelArray[x*2-1,y*2-1].Pixel := 0;

end;
Mainform.ResultDesc.Text := Mainform.ResultDesc.Text + NoiseType + ’=’ +

mainform.FPN.text + ’, ’;
end;

procedure CalcSaltPepperNoise(NoiseType : string);
var
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n, x, y, defects : integer;
begin
randomize;
defects := round(strtofloat(mainform.defects.text));

for n := 1 to defects do
begin
x := random(mainform.Image1.width);
y := random(mainform.Image1.height);
if (NoiseType=’salt’) then PixelArray[x*2-1,y*2-1].Pixel := 255;
if (NoiseType=’pepper’) then PixelArray[x*2-1,y*2-1].Pixel := 0;

end;
Mainform.ResultDesc.Text := Mainform.ResultDesc.Text + NoiseType + ’=’ +

inttostr(defects) + ’, ’;
end;

procedure CalcNextGen;
var
x, y : integer;

begin
centre.n := 0; reset.n := 0; PixelArray2 := PixelArray;

for y := 2 to mainform.Image1.height-1 do
for x := 2 to mainform.Image1.width-1 do
begin
if (PixelArray[x*2, y*2].Pixel < mainform.GlobalThreshold.Position)
and not(PixelArray[x*2, y*2].Status) then
begin
if PixelArray[(x-1)*2, y*2].Status or
PixelArray[(x+1)*2, y*2].Status or
PixelArray[x*2, (y-1)*2].Status or
PixelArray[x*2, (y+1)*2].Status then
PixelArray2[x*2, y*2].Status := TRUE;

if (PixelArray[(x-3)*2, y*2].Status and
PixelArray[(x+3)*2, y*2].Status) and
(PixelArray[x*2, (y-3)*2].Status and
PixelArray[x*2, (y+3)*2].Status) then
begin
centre.n := centre.n + 1;
centre.x[centre.n] := x * 2;
centre.y[centre.n] := y * 2;
ResetPixel(x*2, y*2);
CalcEdgeNodes(PixelArray2);

end;
end;

end;
PixelArray := PixelArray2;
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end;

procedure CalcNextGenRandom;
var
x, y, count, maxcount : integer;
TempArray : TPixelArray;

begin
centre.n := 0; reset.n := 0; count := 0; PixelArray2 := PixelArray;
maxcount := (mainform.Image1.width - 2) * (mainform.Image1.height - 2);
EmptyPixelArray(TempArray);

while (count < maxcount) do
begin
x := 1 + random(mainform.Image1.width - 1);
y := 1 + random(mainform.Image1.height - 1);
if not(TempArray[x,y].Status) then
begin
TempArray[x,y].Status := TRUE;
inc(count);

if (PixelArray[x*2, y*2].Pixel < mainform.GlobalThreshold.Position)
and not(PixelArray[x*2, y*2].Status) then
begin
if PixelArray[(x-1)*2, y*2].Status or
PixelArray[(x+1)*2, y*2].Status or
PixelArray[x*2, (y-1)*2].Status or
PixelArray[x*2, (y+1)*2].Status then
PixelArray2[x*2, y*2].Status := TRUE;

if (PixelArray[(x-3)*2, y*2].Status and
PixelArray[(x+3)*2, y*2].Status) and
(PixelArray[x*2, (y-3)*2].Status and
PixelArray[x*2, (y+3)*2].Status) then
begin
inc(centre.n);
centre.x[centre.n] := x * 2;
centre.y[centre.n] := y * 2;
ResetPixel(x * 2, y * 2);
CalcEdgeNodes(PixelArray2);

end;
end;

end;
end;

PixelArray := PixelArray2;
end;

{ DISPLAY PROCEDURES }

procedure DisplayImage();
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var
x, y : integer;

begin
mainform.Image1.Canvas.Brush.Color := BgCol;
mainform.Image1.Canvas.FillRect
(Rect(0,0,mainform.Image1.Width, mainform.Image1.Height));

for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
mainform.Image1.Canvas.Pixels[x,y] :=
Convert8bitGreyTo24bit(PixelArray[x*2-1, y*2-1].Pixel);

end;

procedure DisplayAverages();
var
x, y : integer;

begin
mainform.Image2.Canvas.Brush.Color := BgCol;
mainform.Image2.Canvas.FillRect
(Rect(0,0,mainform.Image2.Width, mainform.Image2.Height));

for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
mainform.Image2.Canvas.Pixels[x,y] :=
Convert8bitGreyTo24bit(PixelArray[x*2, y*2].Pixel);

end;

procedure DisplayThreshold();
var
x, y : integer;

begin
mainform.Image3.Canvas.Brush.Color := BgCol;
mainform.Image3.Canvas.FillRect
(Rect(0,0,mainform.Image3.Width, mainform.Image3.Height));

for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
if (PixelArray[x*2, y*2].Pixel<mainform.GlobalThreshold.Position) then
mainform.Image3.Canvas.Pixels[x,y] := FgCol1;

end;

procedure DisplayEdges();
var
x, y : integer;

begin
mainform.Image4.Canvas.Brush.Color := BgCol;
mainform.Image4.Canvas.FillRect
(Rect(0,0,mainform.Image4.Width, mainform.Image4.Height));
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for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
if PixelArray[x*2, y*2].Status then
mainform.Image4.Canvas.Pixels[x,y] := FgCol2

end;

procedure DisplayNextGen();
var
x, y : integer;

begin
mainform.Image5.Canvas.Brush.Color := BgCol;
mainform.Image5.Canvas.FillRect
(Rect(0,0,mainform.Image5.Width, mainform.Image5.Height));

for y := 1 to mainform.Image1.height do
for x := 1 to mainform.Image1.width do
if PixelArray[x*2, y*2].Status then
mainform.Image5.Canvas.Pixels[x,y] := FgCol3;

if mainform.Saveimages1.Checked and (currgen = 1) then
begin
mainform.Image2.Picture.SaveToFile(’smoothed.bmp’);
mainform.Image3.Picture.SaveToFile(’threshold.bmp’);
mainform.Image4.Picture.SaveToFile(’contour.bmp’);

end;

if mainform.Saveimages1.Checked and (currgen < 100) then
mainform.Image5.Picture.SaveToFile(’firing’+inttostr(currgen)+’.bmp’);

end;

procedure DisplayResets();
var
n : integer;

begin
mainform.Image6.Canvas.Brush.Color := BgCol;
mainform.Image6.Canvas.FillRect
(Rect(0,0,mainform.Image6.Width, mainform.Image6.Height));

for n := 1 to reset.n do
mainform.Image6.Canvas.Pixels[(reset.x[n] div 2),
(reset.y[n] div 2)] := FgCol4;

for n := 1 to centre.n do
begin
mainform.Image6.Canvas.Pixels[(centre.x[n] div 2),
(centre.y[n] div 2)] := FgCol5;
mainform.Image6.Canvas.Pixels[(centre.x[n] div 2)-1,
(centre.y[n] div 2)] := FgCol5;
mainform.Image6.Canvas.Pixels[(centre.x[n] div 2)+1,
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(centre.y[n] div 2)] := FgCol5;
mainform.Image6.Canvas.Pixels[(centre.x[n] div 2),
(centre.y[n] div 2)-1] := FgCol5;
mainform.Image6.Canvas.Pixels[(centre.x[n] div 2),
(centre.y[n] div 2)+1] := FgCol5;

end;
end;

procedure DisplayCentres();
var
n : integer;

begin
mainform.Image7.Canvas.Brush.Color := BgCol;
mainform.Image7.Canvas.FillRect
(Rect(0,0,mainform.Image7.Width, mainform.Image7.Height));

for n := 1 to Centre.n do
mainform.Image7.Canvas.Pixels[(centre.x[n] div 2),
(centre.y[n] div 2)] := FgCol5;

end;

procedure DisplaySizes();
var
x, y : integer;
count : array[1..maxsize] of integer;

begin
if mainform.Scan1.checked then
begin
for y := 1 to Ygrid do
for x := 1 to XGrid do
inc(SizeArray[x,y].Count);

for x := 1 to centre.n do
begin
SizeArray[centre.x[x], centre.y[x]].Size :=
SizeArray[centre.x[x], centre.y[x]].Count;
SizeArray[centre.x[x], centre.y[x]].Count := 0;

end;

for x := 1 to maxsize do count[x] := 0;

for y := 1 to Ygrid do
for x := 1 to XGrid do
if (SizeArray[x, y].Count>maxsize) then SizeArray[x, y].Size := 0
else

if (SizeArray[x, y].Size>0) then inc(Count[SizeArray[x, y].Size]);
end

else
for x := 1 to maxsize do count[x] := 0;
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y := 0;

for x := 1 to maxsize do
begin
y := y + count[x];
if (mainform.FreqGrid.Cells[x, 1] <> inttostr(count[x])) then
mainform.FreqGrid.Cells[x, 1] := inttostr(count[x]);

end;

If (mainform.FreqGrid.Cells[maxsize + 1, 1] <> inttostr(y)) then
mainform.FreqGrid.Cells[maxsize + 1, 1] := inttostr(y);

end;

{ FILE OUTPUT PROCEDURES }

procedure OutputHeader();
begin
write(outfile, DateTimeToStr(Now)+’: ’);
write(outfile, ’filename="’+mainform.OpenPictureDialog1.FileName+’", ’);
write(outfile, ’edge=’+inttostr(Mainform.EdgeThreshold.Position)+’, ’);
write(outfile, ’threshold=’+inttostr(Mainform.GlobalThreshold.Position));
writeln(outfile, ’, ’+mainform.ResultDesc.Text);

end;

procedure OutputResults();
var
n : integer;

begin
for n := 1 to maxsize do
write(outfile, mainform.FreqGrid.Cells[n, 1]+’ ’);

writeln(outfile, mainform.FreqGrid.Cells[maxsize+1, 1]);
end;

procedure OutputFile();
begin
assignfile(outfile, ’results.txt’);
if fileexists(’results.txt’) then append(outfile) else rewrite(outfile);
OutputHeader(); OutputResults();
closefile(outfile);

end;

{ INITIALISATION AND CLEARUP PROCEDURES }

procedure InitFreqGrid();
var
n : integer;
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begin
mainform.FreqGrid.Cells[0,0] := ’Size’;
mainform.FreqGrid.Cells[0,1] := ’Count’;
mainform.FreqGrid.Cells[(maxsize+1),0] := ’Total’;

for n := 1 to maxsize do mainform.FreqGrid.Cells[n, 0] := inttostr(n);
end;

procedure ClearImages();
begin
mainform.Image1.Canvas.Brush.Color := BgCol;
mainform.Image1.Canvas.FillRect
(Rect(0,0,mainform.Image1.Width, mainform.Image1.Height));
mainform.Image1.refresh;
mainform.Image2.Canvas.Brush.Color := BgCol;
mainform.Image2.Canvas.FillRect
(Rect(0,0,mainform.Image2.Width, mainform.Image2.Height));
mainform.Image2.refresh;
mainform.Image3.Canvas.Brush.Color := BgCol;
mainform.Image3.Canvas.FillRect
(Rect(0,0,mainform.Image3.Width, mainform.Image3.Height));
mainform.Image3.refresh;
mainform.Image4.Canvas.Brush.Color := BgCol;
mainform.Image4.Canvas.FillRect
(Rect(0,0,mainform.Image4.Width, mainform.Image4.Height));
mainform.Image4.refresh;
mainform.Image5.Canvas.Brush.Color := BgCol;
mainform.Image5.Canvas.FillRect
(Rect(0,0,mainform.Image5.Width, mainform.Image5.Height));
mainform.Image5.refresh;
mainform.Image6.Canvas.Brush.Color := BgCol;
mainform.Image6.Canvas.FillRect
(Rect(0,0,mainform.Image6.Width, mainform.Image6.Height));
mainform.Image6.refresh;
mainform.Image7.Canvas.Brush.Color := BgCol;
mainform.Image7.Canvas.FillRect
(Rect(0,0,mainform.Image7.Width, mainform.Image7.Height));
mainform.Image7.refresh;

end;

procedure ResetAll(CalcGlobalThreshold : boolean);
begin
CurrGen := 0;
EmptySizeArray(SizeArray); EmptyPixelArray(PixelArray);
ImageToArray(); CalcAverages();
if CalcGlobalThreshold then CalcGlobalAverage();
CalcEdges(); CalcEdgeNodes(PixelArray);

DisplayImage(); Delay(50); DisplayAverages(); Delay(50);
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DisplayThreshold(); Delay(50); DisplayEdges(); Delay(50);
DisplayNextGen(); Delay(50); DisplayResets(); Delay(50);
DisplayCentres(); Delay(50); DisplaySizes();

end;

{ TRACKBAR EVENT HANDLERS }

procedure Tmainform.GlobalThresholdChange(Sender: TObject);
begin
if (GlobalThresholdLabel.Caption <> inttostr(GlobalThreshold.Position)) then
begin
GlobalThresholdLabel.Caption := inttostr(GlobalThreshold.Position);
ResetAll(FALSE);

end;
end;

procedure Tmainform.EdgeThresholdChange(Sender: TObject);
begin
if (EdgeThresholdLabel.Caption <> inttostr(EdgeThreshold.Position)) then
begin
EdgeThresholdLabel.Caption := inttostr(EdgeThreshold.Position);
ResetAll(FALSE);

end;
end;

{ BUTTON EVENT HANDLERS }

procedure Tmainform.ResetAllButtonClick(Sender: TObject);
begin
DoResetAll := TRUE;
ClearImages();

// mainform.GlobalThreshold.Position := DefaultThreshold;
// mainform.EdgeThreshold.Position := DefaultEdge;

mainform.ResultDesc.Text := ’’;
PixelArray := OrigArray;
DisplayImage; ResetAll(TRUE);
DoResetAll := FALSE;

end;

procedure Tmainform.AutoThresholdButtonClick(Sender: TObject);
begin ResetAll(TRUE); end;

procedure Tmainform.SetThresholdsButtonClick(Sender: TObject);
begin ResetAll(FALSE); end;

procedure Tmainform.AddFlatButtonClick(Sender: TObject);
begin CalcStaticNoise(’flat’); DisplayImage(); ResetAll(TRUE); end;

procedure Tmainform.AddGaussianButtonClick(Sender: TObject);
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begin CalcStaticNoise(’gaussian’); DisplayImage(); ResetAll(TRUE); end;

procedure Tmainform.AddSpeckleButtonClick(Sender: TObject);
begin CalcStaticNoise(’speckle’); DisplayImage(); ResetAll(TRUE); end;

procedure Tmainform.AddSaltButtonClick(Sender: TObject);
begin CalcSaltPepperNoise(’salt’); DisplayImage(); ResetAll(TRUE); end;

procedure Tmainform.AddPepperButtonClick(Sender: TObject);
begin CalcSaltPepperNoise(’pepper’); DisplayImage(); ResetAll(TRUE); end;

procedure Tmainform.AddSaltPepperButtonClick(Sender: TObject);
begin
CalcSaltPepperNoise(’salt’); DisplayImage();
CalcSaltPepperNoise(’pepper’); DisplayImage(); ResetAll(TRUE);

end;

procedure Tmainform.AppendFileButtonClick(Sender: TObject);
begin OutputFile(); end;

{ MENU EVENT HANDLERS }

procedure Tmainform.Open1Click(Sender: TObject);
begin
if OpenPictureDialog1.Execute then
begin
Image1.Picture.LoadFromFile(OpenPictureDialog1.Filename);
ResetAll(TRUE); OrigArray := PixelArray;
end;

end;

procedure Tmainform.Exit1Click(Sender: TObject);
begin Application.Terminate; end;

procedure Tmainform.MaxRefresh1Click(Sender: TObject);
begin mainform.MaxRefresh1.Checked := TRUE; end;

procedure Tmainform.N10fpsClick(Sender: TObject);
begin mainform.N10fps.Checked := TRUE; end;

procedure Tmainform.N5fpsClick(Sender: TObject);
begin mainform.N5fps.Checked := TRUE; end;

procedure Tmainform.N1fpsClick(Sender: TObject);
begin mainform.N1fps.Checked := TRUE; end;

procedure Tmainform.N01fpsClick(Sender: TObject);
begin mainform.N01fps.Checked := TRUE; end;
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procedure Tmainform.SingleFrame1Click(Sender: TObject);
begin mainform.SingleFrame1.Checked := TRUE; end;

procedure Tmainform.Scan1Click(Sender: TObject);
begin mainform.Scan1.Checked := True; ResetAll(False); end;

procedure Tmainform.Random1Click(Sender: TObject);
begin mainform.Random1.Checked := True; ResetAll(False); end;

procedure Tmainform.About1Click(Sender: TObject);
begin aboutform.show; end;

procedure Tmainform.SaveImages1Click(Sender: TObject);
begin mainform.Saveimages1.Checked:=not(mainform.Saveimages1.Checked); end;

procedure Tmainform.Monochrome1Click(Sender: TObject);
begin
mainform.Monochrome1.Checked:=not(mainform.Monochrome1.Checked);
if mainform.Monochrome1.Checked then
begin
BgCol := $00FFFFFF; FgCol1 := $00000000; FgCol2 := $00000000;
FgCol3 := $00000000; FgCol4 := $00999999; FgCol5 := $00000000;

end
else
begin
BgCol := $00000000; FgCol1 := $00FF0000; FgCol2 := $0000FF00;
FgCol3 := $000000FF; FgCol4 := $00666666; FgCol5 := $00FFFFFF;

end;
ResetAll(TRUE);

end;

{ APPLICATION EVENT HANDLERS }

procedure Tmainform.IdleHandler(Sender: TObject; var Done: Boolean);
begin
if not(DoResetAll) and not(mainform.SingleFrame1.Checked) then
begin
Delay(GetFPS());
if mainform.scan1.checked then CalcNextGen() else CalcNextGenRandom();
DisplayNextGen(); DisplayResets(); DisplayCentres(); DisplaySizes();
inc(CurrGen);

end;
end;

procedure Tmainform.Image1Click(Sender: TObject);
begin
if mainform.SingleFrame1.Checked then
begin
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if mainform.scan1.checked then CalcNextGen() else CalcNextGenRandom();
DisplayNextGen(); DisplayResets(); DisplayCentres(); DisplaySizes();

end;
end;

procedure Tmainform.FormCreate(Sender: TObject);
begin
BgCol := $00000000; FgCol1 := $00FF0000; FgCol2 := $0000FF00;
FgCol3 := $000000FF; FgCol4 := $00666666; FgCol5 := $00FFFFFF;
DoResetAll := TRUE;
Application.OnIdle := IdleHandler;
InitFreqGrid();
mainform.GlobalThreshold.Position := defaultThreshold;
mainform.EdgeThreshold.Position := defaultEdge;
mainform.fpn.text := inttostr(defaultfpn);
mainform.defects.text := inttostr(defaultdefects);
ResetAll(TRUE);
OrigArray := PixelArray;
DoResetAll := FALSE;

end;

end.
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/* **************************************************************************
Program : ORASIS AER Readout Firmware (for PIC18F4620) in Microchip C18
Module : main.c
Date : See File Timestamp

Author : Timothy G Constandinou
Company : Imperial College London
************************************************************************** */

#include "p18f4620.h" /* for TRISB and PORTB declarations */

#include <delays.h>
#include <portb.h>
#include <adc.h>
#include <usart.h>
#include <stdio.h>

#pragma config OSC=HS,BOREN=OFF,WDT=OFF,MCLRE=ON,LPT1OSC=OFF,PBADEN=OFF,
LVP=OFF,DEBUG=OFF,XINST=OFF

#define max_events 750

#pragma udata big1
char x[max_events+1];

#pragma udata big2
char y[max_events+1];

#pragma udata big3
unsigned int t[max_events+1];

#pragma udata

void initialise(void)
{
ClosePORTB();
CloseADC();

ADCON1 = 0b1111;
TRISA = 0b11111111;
TRISB = 0b01111111;
TRISC = 0b10001110;
TRISD = 0b00000000;
TRISE = 0b00000000;

}

void display_led(int led, int mode)
{
if (led==1) PORTCbits.RC4=mode;
if (led==2) PORTCbits.RC5=mode;

}

void display(int value) // To display a value (under 1023) on LED display
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{
unsigned char value2=0;

while (value>255) {value-=256; value2++;}
PORTD=value;
PORTE=4+value2;

}

void orasis_reset(int mode) // To assert a GLOBAL_RESET signal on ORASIS
{
PORTCbits.RC0=mode; // Set reset
PORTBbits.RB7=1; // Set acknowledge high (active low)

}

void orasis_flush_aer(void) // Ensure AER registers are empty before starting
{
unsigned int n=0, m=0;

display_led(1,0); display_led(2,0);

while (n<50000) // If no chip request for 50K ops then flushed
{
if(PORTBbits.RB6==0) // If chip request then acknowledges
{
PORTBbits.RB7=0; while(PORTBbits.RB6==0);
PORTBbits.RB7=1; m++; n=0;

}
n++;

}

if (m>0)
fprintf(_H_USART, "ORASIS_P2 AER Output: Flushed %d events...\n\r", m);

display(m); Delay10KTCYx(500); // Displays number of events flushed
}

void orasis_sample_aer(void) // Runs chip, samples AER and outputs to RS232.
{
unsigned int n, event=0, time=0;

char *x_ptr = &x[0];
char *y_ptr = &y[0];
short long *t_ptr = &t[0];

display_led(1,1); display_led(2,1);

while(n<=max_events)t[n++]=0;
while ((time<62500)&(event<max_events)) // Samples until buffer is full
{ // or no activity for 500ms.
if(PORTBbits.RB6==0) // If chip request then acknowledges
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{
x[++event]=PORTA&0b00111111;
y[event]=PORTB&0b00111111;
t[event]=time;

PORTBbits.RB7=0; while(PORTBbits.RB6==0); PORTBbits.RB7=1;
time+=3;

}
time++;

}

display_led(1,0); display_led(2,0); display(event);

if (event>0)
{
fprintf(_H_USART,
"ORASIS_P2 AER Output: Streaming %d events...\n\r", event);

for(n=1;n<=event;n++)
fprintf(_H_USART, "Event %u at t=%u: %u,%u\n\r", n, t[n], x[n], y[n]);

fprintf(_H_USART, "\n\r");
}

Delay10KTCYx(500);
}

void main (void)
{
int value;
unsigned char ctrl1,ctrl2,ctrl3;

initialise(); orasis_reset(1);

OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_ASYNCH_MODE &
USART_EIGHT_BIT & USART_CONT_RX & USART_BRGH_HIGH, 10);

display_led(1,0); display_led(2,0);

for (value=0;value<=1000;value++)
{
if (((value/16)%2)==0) {display_led(1,0);display_led(2,1);}
if (((value/16)%2)==1) {display_led(1,1);display_led(2,0);}
Delay10KTCYx(1); display(value);

}

orasis_flush_aer(); orasis_reset(0); orasis_sample_aer();
orasis_reset(1);
CloseUSART();

}
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Figure C.1: Schematic diagram of the simulated 16×16 ASP array.
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Figure C.2: Schematic diagram of the simulated 9×9 ABP array.
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Figure C.3: Schematic diagram of the simulated 12×12 AER architecture.
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Figure C.4: Schematic diagram of the simulated 12×12 array.
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Figure C.5: Schematic diagram of the simulated system including a 12×12 distributed
processing array.
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Figure D.1: Schematic diagram of the ORASIS-P1 platform for sub-circuit test and photo-
diode characterisation.
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Figure D.2: Photograph of the ORASIS-P1 platform for sub-circuit test and photodiode
characterisation.
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Figure D.3: Schematic diagram of the ORASIS-P2 platform for photodiode characterisation.



Testboard Hardware 252

Figure D.4: Photograph of the ORASIS-P2 platform for photodiode characterisation.
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Figure D.5: Schematic diagram of the ORASIS-P2 platform for system test and validation.
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Figure D.6: Photograph of the ORASIS-P2 platform for system test and validation.
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Figure E.1: Diagram of equipment setup for photodiode characterisation.

The equipment setup1 for measurement of electrical (IV characteristics) and optical (spec-

tral, responsivity, quantum efficiency, etc) is illustrated in Fig. E.1.

The tungsten halogen light source is UV filtered to remove sub-400nm wavelengths

and avoid 2λ interference. This and the monochromator are characterised through the

test optics with a calibrated photodiode (Newport 818-UV#3310). This provides the total

incident light power for each monochromator (wavelength) setting at the device mount.

Furthermore, a single small area photodiode is scanned across the incident light spot to

determine its intensity profile. This characterisation is illustrated in Fig. E.2.

For each test device, the following measurements are taken:

• Electrical characterisation: At a set wavelength and calibrated light intensity the

Source Measure Unit (SMU) sweeps device bias and measures corresponding pho-

tocurrent. Repeated for all Neutral Density (ND) settings (0, 0.15, 0.30, 0.41, 0.45,

0.77, 0.87, 1.10, 1.34, 1.47, 2.04, 5.06) and for under dark (no input) conditions.

• Spectral characterisation: At each wavelength the photoresponse is taken for various

values of reverse bias. From this spectral photoresponse data, the responsivity and

therefore external quantum efficiency can be determined.

1Optoelectronic measurements taken at facilities provided in The Blackett Laboratory, Department of
Physics, Imperial College London.
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Figure E.2: Calibrated (measured) light source intensity characteristics. Illustrated are: (a)
intensity profile and (b) spectral transmission (normalised to maximum value).
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