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This paper presents families of spatial discretisations of the nonlinear rotating
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These are based on two-dimensional mixed finite element methods and hence,
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1. Introduction

The quest for scalable, massively parallel numerical weather
prediction models has led to great interest in extensions
of C-grid staggering to more general mesh structures,
such as icosahedral and cubed meshes. There is also
increasing interest in atmosphere and ocean models that
allow arbitrary mesh refinement, in order to facilitate
seamless regional modelling within a global model. C-grid
staggering was proposed as a way of preventing spurious
numerical wave propagation that appears on other grid
staggerings (Sadourny 1975; Arakawa and Lamb 1977);
these spurious waves interfere with geostrophic adjustment
processes in the numerical solution and rapidly degrade
predictive skill. It was known from the beginning that the C-
grid staggering admits natural finite-difference differential
operators (div, grad, curl) that satisfy discrete versions
of vector calculus identities (div–curl = 0; curl–grad =
0). These identities allow a separation of the irrotational
and solenoidal components of velocity, which play quite
different roles in the low Rossby number regime.

It was also recognised, from experience with incompress-
ible quasigeostrophic models (Arakawa 1966), that conser-
vation of energy and potential enstrophy are important for
obtaining nonlinear stability of the model without excessive
numerical diffusion. An energy-conserving formulation was
provided in Sadourny (1975), and a formulation that con-
serves both energy and enstrophy was given in Arakawa
and Lamb (1981). In the regime of quasigeostrophic tur-
bulence, the shallow-water equations exhibit a cascade

of energy to large scales. On the other hand, enstrophy
cascades to small scales, and so it makes sense to attempt
to dissipate enstrophy at small scales. The Anticipated
Potential Vorticity Method (APVM) was introduced as a
closure to represent the cascade to scales below the grid
width (Sadourny and Basdevant 1985); for an appropriate
choice of parameters, the APVM is closely related to Lax–
Wendroff advection schemes. The APVM was incorporated
into an energy-conserving, enstrophy-dissipating shallow-
water model in Arakawa and Hsu (1990); it remains useful
to start with an enstrophy-conserving model and to then
introduce an enstrophy-dissipating term, since one then
has complete control over the enstrophy dynamics in the
model. Arakawa and Hsu (1990) also demonstrated how to
handle massless layers in this framework, which become the
basis of many isopycnal ocean models (Hallberg and Rhines
1996, for example).

On the sphere, the development of C-grid staggerings
for grids other than the usual latitude-longitude grid was
guided by the extension of the C-grid div, grad and
curl operators to arbitrary grids by the mimetic finite
difference community, and by the connection with finite
volume methods (Hyman and Shashkov 1997). One route
towards energy- and enstrophy-conserving schemes was
proposed using Nambu brackets (Salmon 2005, 2007;
Sommer and Névir 2009; Gassmann and Herzog 2008). In
general, a key challenge was the design of reconstruction
methods for the Coriolis term that allowed for steady linear
geostrophic modes on the f -plane, without which nonlinear
solutions near to geostrophic balance would spuriously
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couple with fast gravity waves. Such a reconstruction
was apparent for triangular grids by making use of the
Raviart-Thomas reconstruction (Bonaventura and Ringler
2005), but unfortunately the triangular scheme suffers from
spurious branches of inertia-gravity waves that render it
problematic (Danilov 2010; Gassmann 2011).

A suitable reconstruction on hexagonal grids was then
provided in Thuburn (2008) and extended to arbitrary
orthogonal polygonal grids in Thuburn et al. (2009), and
energy-conserving, enstrophy-dissipating schemes for the
nonlinear shallow-water equations on arbitrary orthogonal
grids were introduced in Ringler et al. (2010). As discussed
in Staniforth and Thuburn (2012), the global degree-of-
freedom ratio between velocity and pressure is altered by
increasing or decreasing the number of cell edges. This
may lead to spurious mode branches – spurious inertia-
gravity wave branches are present for triangles and spurious
Rossby mode branches, for hexagons – so quadrilaterals are
preferred in order to minimise the possibility of spurious
modes. This suggests the cube mesh for modelling on the
sphere. Unfortunately, the orthogonality requirement in the
construction of Thuburn et al. (2009) leads to meshes that
cluster resolution around the cube vertices, which leads
to non-uniform parallel communication requirements. This
led Thuburn and Cotter (2012) to extend the framework
of Thuburn et al. (2009) to non-orthogonal grids. It has
since been discovered that the scheme of Thuburn et al.
(2009) on the dual icosahedral grid and the scheme
of Thuburn and Cotter (2012) on the cube grid both have
inconsistent discretisations of the Coriolis term (Thuburn,
personal communication), meaning that grid refinement
does not improve the accuracy of this term. This, together
with the additional flexibility to alter degree-of-freedom
ratios and to increase the order of accuracy, has motivated
the investigation of mixed finite element methods.

Mixed finite element methods are the analogue of
staggered grids since they use different finite element spaces
for velocity and pressure. Many different combinations of
finite element spaces have been examined in the ocean
modelling literature (Le Roux 2005; Le Roux et al. 2007;
Rostand and Le Roux 2008; Le Roux and Pouliot 2008; Le
Roux et al. 2009; Danilov et al. 2008; Comblen et al. 2010;
Cotter and Ham 2011; Le Roux 2012). Cotter and Shipton
(2012) concentrated on combinations of spaces that have
discrete versions of the div–curl and curl–grad identities,
just like the C-grid. In the numerical analysis literature, this
is referred to as “finite element exterior calculus” (Arnold
et al. 2006). These combinations were shown to provide
all the properties of the C-grid staggering, including steady
linear geostrophic modes on the f -plane, and hence merited
further investigation (Cotter and Shipton 2012). Staniforth
et al. (2012) examined wave propagation for one particular
combination, namely the 2nd order Raviart–Thomas (RT1)
space for velocity and the bilinear discontinuous (QDG

1 )
space for pressure, and observed a 2∆x mode with zero
group velocity; this mode can be corrected by partially
lumping the velocity mass matrix.

In this paper we provide a formulation that uses mixed
finite elements of the type proposed in Cotter and Shipton
(2012). The formulation closely follows the steps of Ringler
et al. (2010): the prognostic variables are velocity and
layer depth, but there is a diagnostic potential vorticity that
satisfies a discrete conservation law. Using this potential
vorticity in the vector-invariant form of the equations
(as used in the classical C-grid development) naturally

leads to an energy- and enstrophy-conserving form of the
equations without further modification. The conservation
properties arise from the mimetic properties combined with
the integral formulation. We introduce a finite element
version of the APVM that dissipates enstrophy at the
gridscale. This formulation is illustrated through numerical
experiments that demonstrate the energy and enstrophy
properties, and demonstrate that the numerical scheme is
convergent and stable. The analytic shallow-water equations
and a selection of derived results are given in section 2.
We give our proposed spatial discretisation in section 3.
Numerical validation is presented in section 4, and further
areas of research are discussed in the conclusion. We close
by demonstrating that the conservation properties arise
from an almost-Poisson structure of the spatially discretised
equations; this is in Appendix A.

2. Analytic Formulation

In this section, we review conservation properties of the
rotating shallow-water equations, since their proofs will be
extended to the finite element discretisations in section 3.

The nonlinear shallow-water equations in a rotating
frame of reference are commonly written as

∂u

∂t
+ (u · ∇)u + fu⊥ = −g∇D , (1)

∂D

∂t
+∇ · (Du) = 0 , (2)

where u(x, y, t) is the velocity,D(x, y, t) is the layer depth,
f(x, y) is the Coriolis parameter, and g is the gravitational
acceleration. We introduce the ⊥ notation for brevity: for a
two-dimensional vector w in the x-y plane, w⊥ = ẑ×w,
a 90◦ counterclockwise rotation. If w is a vector field,
this is done pointwise. We will also use the notation ∇⊥
and ∇⊥·: writing ∇ in components as (∂x, ∂y), we have
∇⊥ = (−∂y, ∂x). If γ is a scalar field,

∇⊥γ =

(
−∂γ
∂y
,
∂γ

∂x

)
. (3)

For a vector field w, with w ≡ (u, v) in components,

∇⊥ ·w =
∂v

∂x
− ∂u

∂y
, (4)

a two-dimensional form of ∇×.
When rewritten in terms of the relative vorticity

ζ = ∇⊥ · u ≡ ẑ · ∇ × u, (1) and (2) become

∂u

∂t
+ (ζ + f)u⊥ +∇

(
gD +

1

2
|u|2

)
= 0 , (5)

∂D

∂t
+∇ · (Du) = 0 . (6)

This is the so-called ‘vector-invariant’ form of the
equations, which is the starting point for energy-
or enstrophy-conserving formulations using the C-grid
staggering; we shall also use this form here.

We can derive a continuity equation for the absolute
vorticity ζ + f . Defining a potential vorticity q = ζ+f

D , we
rewrite (5):

∂u

∂t
+ qDu⊥ +∇

(
gD +

1

2
|u|2

)
= 0 . (7)
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We now apply the ∇⊥· operator to (7), giving

∂

∂t
(∇⊥ · u) +∇⊥ · (qDu⊥) = 0 , (8)

=⇒ ∂ζ

∂t
+∇ · (qDu) = 0 . (9)

Assuming ∂f
∂t = 0, we then have

∂

∂t
(qD) +∇ · (qDu) = 0 , (10)

which is the equation for q written in local conservation
form. From this, we can derive an advection equation for
the potential vorticity q. Recall the continuity equation (6).
Multiplying this by q, and comparing with (10), we obtain

D

[
∂q

∂t
+ (u · ∇)q

]
= 0 , (11)

implying that q remains constant in a Lagrangian frame
moving with fluid particles. In particular, if q is initially
uniform, q will remain uniform (and constant) for all time.

In a boundary-free domain, several quantities are
conserved. Integrating (10) over the whole domain gives
conservation of the total absolute vorticity

∫
A
qD dA. Less

trivially, the total enstrophy
∫
A
q2D dA and the total energy∫

A

[
1
2D|u|

2 + 1
2gD

2
]

dA are also constant.
The conservation of enstrophy follows from direct

manipulation:

d

dt

∫
A

q2D dA =

∫
A

[
2q
∂

∂t
(qD)− q2 ∂D

∂t

]
dA (12)

=

∫
A

[
2q∇ · (−qDu)− q2∇ · (−Du)

]
dA

(13)

= −
∫
A

∇ · (q2Du) dA (14)

= 0 ,

where we have used (10) and (6) between the first and
second line. A similar result for higher order moments of
potential vorticity can be obtained by replacing q2 with qm.

Similarly, conservation of energy follows from

d

dt

∫
A

[
1

2
D|u|2 +

1

2
gD2

]
dA

=

∫
A

[
D
∂

∂t

(
1

2
|u|2

)
+

1

2
|u|2 ∂D

∂t
+ gD

∂D

∂t

]
dA (15)

=

∫
A

[
D
∂

∂t

(
1

2
|u|2

)
+

(
1

2
|u|2 + gD

)
∂D

∂t

]
dA (16)

=

∫
A

[
−Du · ∇

(
1

2
|u|2 + gD

)
−
(

1

2
|u|2 + gD

)
∇ · (Du)

]
dA (17)

= −
∫
A

∇ ·
[
Du

(
1

2
|u|2 + gD

)]
dA (18)

= 0 ,

where we have used u·(5) and (6) between the third and
fourth line.

3. Finite Element Discretisation

In this section, we present a family of spatial discretisations,
based on the Finite Element Method, for the nonlinear
rotating shallow-water equations. These discretisations
will mimic many properties of the continuous equations,
including the conservation of enstrophy and energy. The
prognostic variables will be the discrete velocity field uh

and discrete layer depthDh. Our method explicitly defines a
potential vorticity field qh and a volume flux Fh. However,
these should be interpreted as diagnostic functions of uh

andDh, rather than independent variables in their own right.
The critical step is the choice of function spaces in

which our fields will reside. In the Finite Element Method,
the domain is partitioned into a large number of non-
overlapping subdomains (elements). The function space
specification can be divided into two parts: the behaviour
of a function within each element, and the continuity of
a function at the element boundaries. Almost all function
spaces are piecewise-polynomial (that is, a polynomial
when restricted to a single element). For a scalar function
space, the most common continuity constraints are:

• C0 continuous - giving the Continuous Galerkin
family Pn, where n is the polynomial degree, and

• discontinuous - giving the Discontinuous Galerkin
family PDG

n , where n is the polynomial degree.

Other, less common, conditions include C1 continuity
between elements, and nonconforming (C0 continuity
at only the midpoint of edges). The Continuous and
Discontinuous Galerkin families are somewhat natural
function spaces for scalar fields; this can be stated
more precisely in the context of finite element exterior
calculus (Arnold et al. 2006). Commonly-used vector
function spaces are often merely tensor products of these
two types of scalar function spaces. However, a careless
choice of function space can lead to genuinely incorrect
results, such as spurious solutions arising in eigenvalue
problems (Arnold et al. 2010).

We now introduce the function spaces that we will use,
and the relations between them; further details can be found
in Cotter and Shipton (2012). We make use of a family of
partially discontinuous vector spaces which are contained in
H(div), in other words they are ‘div-conforming’:∫

A

u · u + (∇ · u)(∇ · u) dA <∞ . (19)

Since the functions will be piecewise-polynomial, this
condition can only be violated due to behaviour at element
boundaries. The normal component of the vector field
must therefore be continuous across element boundaries,
although the tangential component may be discontinuous
(there is a related space H(curl) in which the opposite is
true). Our discrete velocity field uh and volume flux Fh will
live in this space, which we will denote S. Examples include
the Raviart–Thomas family RTn (Raviart and Thomas
1977), the Brezzi–Douglas–Marini family BDMn (Brezzi
et al. 1985), and the Brezzi–Douglas–Fortin–Marini family
BDFMn (Brezzi and Fortin 1991).

Once we have chosen S, we can define a corresponding
scalar function space

V =
{
∇ ·wh : wh ∈ S

}
. (20)
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This space is totally discontinuous at element boundaries.
The discrete layer depth Dh will be in V. Finally, following
principles of Finite Element Exterior Calculus, we define a
function space E such that

∇⊥E ≡ {∇⊥γh : γh ∈ E} ⊂ S , (21)

and
∇⊥E = {ker(∇· : S→ V)} ; (22)

∇⊥ maps bijectively from E to {ker(∇·)} ⊂ S, modulo
constant functions. This ensures that, for any γh ∈ E,
∇ · ∇⊥γh ≡ 0, the zero-function in V, and is the analogue
of the continuous identity ∇ · ∇× ≡ 0. E is continuous at
element boundaries, and will contain the potential vorticity
field qh.

We refer to the ∇⊥ : E→ S and ∇· : S→ V operators
as ‘strong’ derivatives, since they act in a pointwise sense
and are identical to the ‘continuous’ ∇⊥ and ∇· operators.
There are corresponding ‘weak’ operators ∇̃⊥· : S→ E and
∇̃ : V→ S which do not act pointwise, but are instead
defined via integration by parts. Before we elaborate, we
take the opportunity to introduce some notation. We will
use angle brackets to denote the standard L2 inner product:

〈f, g〉 =

∫
A

f(x′)g(x′) dA ,

〈u,v〉 =

∫
A

u(x′) · v(x′) dA .

(23)

Then, in a domain without boundaries, we define ∇̃⊥· and
∇̃ by〈

γh, ∇̃⊥ · uh
〉

= −
〈
∇⊥γh,uh

〉
, ∀γh ∈ E , (24)

〈
wh, ∇̃Dh

〉
= −

〈
∇ ·wh, Dh

〉
, ∀wh ∈ S . (25)

This is a surprisingly natural definition: let ΠE,ΠS,ΠV be
operators that L2-project arbitrary functions into E, S and
V respectively, i.e.〈

γh,ΠE(f)
〉

=
〈
γh, f

〉
, ∀γh ∈ E , (26)

with ΠS and ΠV defined analogously. Then the following
identities hold:

∇̃⊥ · (ΠS(v)) ≡ ΠE(∇⊥ · v) , (27)

∇̃(ΠV(f)) ≡ ΠS(∇f) , (28)

where v and f are arbitrary functions; the weak differential
operators commute with L2-projection into the function
spaces. These identities underlie the proof of steady linear
geostrophic modes in the f -plane outlined in Cotter and
Shipton (2012).

We are now ready to present the discretisation. Recall that
uh is in S andDh is in V. The continuous potential vorticity
q satisfied qD = ζ + f , where ζ = ∇⊥ · u. However, this
is invalid in our discrete framework: for uh ∈ S, ∇⊥ · uh
is not generally defined, since the tangential component of
uh is not continuous across element boundaries. Instead,
we must use the weak operator ∇̃⊥· discussed previously.
Our discrete potential vorticity qh ∈ E is therefore defined

to satisfy, in a boundary-free domain,〈
γh, qhDh

〉
=
〈
−∇⊥γh,uh

〉
+
〈
γh, fh

〉
, ∀γh ∈ E ,

(29)
where fh is a suitable discrete approximation to the Coriolis
force f . In a domain with boundaries, we would pick up a
non-vanishing surface integral when integrating by parts.

In the continuity equation (6), there was a term
∇ · (Du). Since Dh ∈ V is discontinuous, this expression
is problematic. In order to write a discrete continuity
equation, we define a discrete volume flux Fh to be the L2-
projection of Dhuh into S, i.e.〈

wh,Fh
〉

=
〈
wh, Dhuh

〉
, ∀wh ∈ S . (30)

We can then replace∇ · (Du) by∇ · Fh.
Similarly, in the momentum equation (7), there was a

term ∇
(
gD + 1

2 |u|
2
)
, which is again incompatible with

our discrete framework. We replace∇ by the weak gradient
∇̃ discussed previously. The discrete forms of our evolution
equations (5) and (6) are then〈

wh,
∂uh

∂t

〉
+
〈
wh, qhFh

⊥〉
−
〈
∇ ·wh, gDh +

1

2
|uh|2

〉
= 0 , ∀wh ∈ S ,

(31)〈
φh,

∂Dh

∂t

〉
+
〈
φh,∇ · Fh

〉
= 0 , ∀φh ∈ V . (32)

The equations (29) through (32) form our scheme. Note that
(31) holds even in a domain with boundaries, as long as
uh · n = 0. More importantly, (32) implies that the equation

∂Dh

∂t
+∇ · Fh = 0 (33)

is satisfied pointwise, as both ∂Dh

∂t and ∇ · Fh are in V.
In a boundary-free domain, these discrete equations

reproduce the results given in the previous section for the
continuous governing equations. To do this, we begin by
inserting wh = −∇⊥γh into (31), for any γh ∈ E. This is
permissible since∇⊥E ⊂ S, as was stated in (21). Recalling
that∇ · ∇⊥γh ≡ 0, we obtain〈
−∇⊥γh, ∂u

h

∂t

〉
+
〈
−∇⊥γh, qhFh⊥

〉
= 0 , ∀γh ∈ E .

(34)
Assuming that ∂f

h

∂t = 0, we can rewrite the first term using
∂
∂t (29):〈

γh,
∂

∂t
(qhDh)

〉
+
〈
−∇⊥γh, qhFh⊥

〉
= 0 , ∀γh ∈ E

(35)

=⇒
〈
γh,

∂

∂t
(qhDh)

〉
+
〈
−∇γh, qhFh

〉
= 0 , ∀γh ∈ E

(36)

=⇒
〈
γh,

∂

∂t
(qhDh)

〉
+
〈
γh,∇ · (qhFh)

〉
= 0 , ∀γh ∈ E ,

(37)
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where the integration by parts in the final line is permitted,
i.e. it is an exact identity, since γh is continuous and Fh

is div-conforming. (37) is then a discrete approximation to
(10), the local conservation law for q. This was previously
combined with the continuity equation to form (11), an
advection equation for q. A similar procedure can be carried
out in the discrete case by expanding out the derivatives:〈

γh, Dh ∂q
h

∂t
+ qh

∂Dh

∂t

〉
+
〈
γh, qh∇ · Fh + (Fh · ∇)qh

〉
= 0, ∀γh ∈ E .

(38)

We now use our observation (33), which stated that the
continuity equation holds pointwise, implying〈

γh, Dh ∂q
h

∂t

〉
+
〈
γh, (Fh · ∇)qh

〉
= 0, ∀γh ∈ E .

(39)
This is a discrete analogue of (11), and is enough to
reproduce the result that if qh is initially constant, qh
remains constant for all time.

To reproduce conservation laws, we will typically make a
specific choice of the ‘test-function’ γh (or wh, or φh). For
example, taking γh ≡ 1 in (35) or (36) gives conservation
of absolute vorticity in a boundary-free domain.

Conservation of enstrophy follows from choosing
γh = qh (which is permitted since qh ∈ E):

d

dt

∫
A

(qh)2Dh dA ≡ d

dt

〈
qh, qhDh

〉
(40)

= 2

〈
qh,

∂

∂t
(qhDh)

〉
−
〈

(qh)2,
∂Dh

∂t

〉
. (41)

Using our result from (33), that ∂Dh

∂t +∇ · Fh = 0 is
satisfied pointwise, and taking γh = qh in (36):

= 2
〈
∇qh, qhFh

〉
+
〈
(qh)2,∇ · Fh

〉
(42)

=

∫
A

∇ · ((qh)2Fh) dA (43)

= 0 .

Conservation of energy is again obtained by direct
computation:

d

dt

∫
A

[
1

2
Dh|uh|2 +

1

2
g(Dh)2

]
dA

≡ d

dt

(
1

2

〈
Dhuh,uh

〉
+

1

2

〈
gDh, Dh

〉)
(44)

=

〈
Dhuh,

∂uh

∂t

〉
+

〈
∂Dh

∂t
,

1

2
|uh|2

〉
(45)

+

〈
∂Dh

∂t
, gDh

〉
.

Using (30) with wh = ∂uh

∂t (permitted since ∂uh

∂t ∈ S), we
obtain

=

〈
Fh,

∂uh

∂t

〉
+

〈
∂Dh

∂t
, gDh +

1

2
|uh|2

〉
. (46)

Then, using (31) with wh = Fh (permitted since Fh ∈ S),
and (33), we obtain

=
〈
Fh,−qhFh⊥

〉
+

〈
∇ · Fh, gDh +

1

2
|uh|2

〉
+

〈
−∇ · Fh, gDh +

1

2
|uh|2

〉
(47)

= 0 ,

as required. An explanation of how these properties arise
from a discrete almost-Poisson structure is provided in
Appendix A.

Equations (29) through (32) imply a set of ODEs in
the basis coefficients for uh and Dh, which can then be
integrated using any chosen time integration scheme. For
explicit schemes, they will still require the solution of
matrix-vector systems in order to obtain ∂uh

∂t and ∂Dh

∂t ; the
matrices are, however, very well-conditioned (the condition
number being independent of mesh resolution (Wathen
1987)) and, in the case of Dh, block diagonal.

There is a problem, though: (39) is the usual Galerkin
finite element discretisation of the advection equation,
which, just like the centred finite difference discretisation,
is known to be unstable when used with explicit time
integration methods (Gresho and Sani 1998). This means
that the L2 norm of qh will grow without bound, implying
that uh will become increasingly rough. Additionally,
for low Rossby number solutions of the shallow-water
equations near to geostrophic balance, enstrophy is known
to cascade to small scales. This means that an enstrophy-
conserving scheme will lead to a pile up of enstrophy at
small scales, and it is necessary to dissipate enstrophy at
such scales in order to obtain physical solutions. This is an
identical situation to the energy- and enstrophy-conserving
scheme of Arakawa and Lamb (1981), and indeed to any
enstrophy-conserving scheme. To obtain a stable scheme,
we must make modifications so that equation (36) takes the
form〈

γh,
∂

∂t
(qhDh)

〉
+ 〈−∇γh, qhFh + Qh∗〉 = 0, (48)

where Qh∗ is an additional numerical flux that leads
to stability – necessary for convergence of numerical
solutions. This changes the evolution equation (31) to the
following:〈

wh,
∂uh

∂t

〉
+
〈
wh, qhFh

⊥
+ (Qh∗)⊥

〉
−
〈
∇ ·wh, gDh +

1

2
|uh|2

〉
= 0 , ∀wh ∈ S.

(49)

If, in addition, the dissipative flux Qh∗ is proportional to
Fh, the energy is still conserved, since the corresponding
term vanishes in equation (49) when wh = Fh. The term
Qh∗ is chosen so that the divergence-free component of
uh remains stable. In the low Rossby number limit near
to geostrophic balance, the irrotational component of u
is extremely weak and it is not necessary to introduce
further stabilisation to control that component. Since Qh∗

is introduced to dissipate instabilities generated by the
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6 A. T. T. McRae and C. J. Cotter

advection term in the PV equation, it evolves on the slow
timescale and therefore does not create a strong source
of inertia-gravity waves; it instead just modifies the “slow
manifold” about which the fast waves oscillate.

There are a wide range of higher-order time integration
schemes available for the advection equation using
continuous finite element spaces, many of which can be
written in the form of the addition of a dissipative flux
Qh∗ to discrete counterparts of (49), including SUPG
(Brooks and Hughes 1982) and Taylor-Galerkin methods
(Donea 1984). To ease the exposition in this paper
by avoiding complicated discussion of time-discretisation
methods and to provide a link with the history of the
development of C-grid grids, here, following Arakawa and
Hsu (1990), we will introduce the Anticipated Potential
Vorticity Method (Sadourny and Basdevant 1985) to
stabilise the scheme, by setting Qh∗ = −τ(uh · ∇)qhFh

in the continuous time equations, where τ is a timescale.
By design, this dissipates enstrophy at small scales by
using an upwinded q value in the advective term, while the
conservation of energy is unchanged. The other equations
remain unchanged. Since we are using the APVM purely
for stabilisation, rather than as a subgrid parameterisation,
we will simply take τ = ∆t

2 . This means that when we
discretise the equations in time, the resulting numerical
scheme will be first-order accurate in time.

4. Numerical results

The above equations were integrated using the classical 4th
order Runge-Kutta scheme, making use of tools from the
FEniCS project: a collection of free software for automated
and efficient solutions of differential equations (Logg et al.
2012). In particular we make use of the H(div) elements
(in this case, RT0, BDM1, BDM2, and BDFM1) whose
implementation in FEniCS is described in Rognes et al.
(2009). The goal of the numerical experiments is to
demonstrate: a) that they produce convergent discretisations
of the equations, b) that the claimed energy and enstrophy
conservation properties hold, and c) that they reproduce
convincing vortex dynamics within balanced solutions. All
the integrations were performed in planar geometries.

The analytic results derived in the previous section
hold for any function spaces E, S and V satisfying the
stated relationships. In this section we will explicitly
use the four triples (P1,RT0,P0), (P2,BDM1,P0),(
P2 ⊕ B3,BDFM1,P

DG
1

)
and

(
P3,BDM2,P

DG
1

)
, which

adhere to the criteria.
The Pn and PDG

n spaces have been introduced already,
in the previous section. RTn,BDMn and BDFMn are
the Raviart–Thomas, Brezzi–Douglas–Marini and Brezzi–
Douglas–Fortin–Marini families respectively (Raviart and
Thomas 1977; Brezzi et al. 1985; Brezzi and Fortin
1991), and the n suffix indicates a spatial discretisation
of order n+ 1. These somewhat-uncommon vector-valued
function spaces are shown in Figure 1. P2 ⊕ B3 denotes
a continuous, piecewise-quadratic function enriched with a
cubic ‘bubble’ local to each element.

It is known that RT spaces on triangles have a surplus
of pressure degrees of freedom [DOFs] and consequently
have spurious inertia-gravity modes. BDM spaces have a
deficit of pressure DOFs and consequently have spurious
Rossby modes. BDFM1 has an exact balance of velocity
and pressure degrees of freedom, which is a necessary

(a) RT0 (b) BDM1

(c) BDFM1 (d) BDM2

Figure 1. The degrees of freedom for the different velocity function
spaces. RT0 requires the zeroth moment of the normal component on
edges or, equivalently, point evaluation of the normal component at the
midpoint of each edge. BDM1 requires zeroth and first moments on edges,
or two point evaluations. BDFM1 additionally requires the zeroth moment
of tangential velocity on each edge, local to each cell, since the tangential
velocity can be discontinuous between neighbouring cells. Finally, BDM2

requires three pointwise evaluations of normal velocity on each edge, plus
three additional interior moments.

condition for the absence of spurious modes (Cotter and
Shipton 2012), hence its inclusion in our tests.

Although we will only present results for the four triples
mentioned above, any member of the infinite families(
Pn,RTn−1,P

DG
n−1

)
and

(
Pn+1,BDMn,P

DG
n−1

)
could be

used, and three of our four triples are from said families
(PDG

0 and P0 are synonymous). Also, as discussed in
the previous section, the choice of the velocity space S
determines V and E. Therefore, from here onwards, we
will only refer to the velocity space used – RT0, BDM1,
BDFM1 or BDM2 – when presenting our results.

To emulate a boundary-free domain, we used [0, 1]2

equipped with periodic boundary conditions throughout.
All lengths are therefore non-dimensional. We used both
regular and unstructured meshes; examples are given in
Figure 2. The regular meshes are available in FEniCS
by default. The unstructured meshes were generated in
gmsh (Geuzaine and Remacle 2009) with ‘target element
size’ 1

8 , 1
12 , 1

16 , 1
24 and 1

32 . This gave grids with 160,
416, 736, 1488 and 2744 triangles respectively. For the
unstructured grids, we have plotted errors against the total
number of DOFs. For RT0, there are 1.5 global velocity
DOFs and 1 height DOF per triangle. For BDM1, the
corresponding numbers are 3 and 1. For BDFM1, 6 and 3;
for BDM2, 7.5 and 3.

We will begin by examining the original, unstabilised
scheme, and verifying that the discrete conservation results
indeed hold. We will then look at the effects of the APVM
stabilisation.
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Figure 2. Examples of regular and unstructured meshes.

4.1. Balanced state

We performed a convergence test to verify that our
implementation is correct. Here, we restricted ourselves
to solutions of the form u = (u(y), 0), D = D(y), and f
constant. Then the shallow-water equations reduce to

∂u

∂t
= 0, fu = −g ∂D

∂y
,

∂D

∂t
= 0 . (50)

This is a simple example of geostrophic balance, in which
the Coriolis force balances the pressure term exactly, and
the advection terms vanish.

For our tests we made the particular choice

u = sin(4πy) ,

D = 10 +
1

4π

f

g
cos(4πy) ,

(51)

where we have nondimensionalised time accordingly (recall
that the domain had non-dimensional width 1). We will take
f = 10.0 and g = 10.0, with the appropriate nondimension-
alisations, giving a Rossby number Ro ≡ UL

f ' 0.1 and a
Burger number B ≡ gH

f2L2 ' 1. We used RK4 timestepping
with ∆t = 0.0005 until t = 1, a regime in which timestep-
ping error is far smaller than spatial discretisation error.

The L2 norms of ufinal − uinitial and Dfinal −Dinitial are
shown in figures 3 and 4 for a structured mesh, and figure
5 for an unstructured mesh. We see at least second-order
convergence for all the schemes. This is an order more than
we would naively expect for RT0. BDFM1 and BDM2 both
have quadratic representations of q which may explain the
third order convergence, which is especially noticeable on
the unstructured grid.

4.2. Energy and Enstrophy conservation

To demonstrate energy and enstrophy conservation, we
took an arbitrary initial condition and parameters f = 5.0,
g = 5.0. The system was simulated with RK4 timestepping
for a range of ∆t until t = 1.001. Although the spatial
discretisation conserves energy and enstrophy, the temporal
discretisation does not. We expect to see at most fourth-
order errors in the conservation of energy and enstrophy,
with changing ∆t, as the discrete-time numerical solutions
approach the continuous-time, discrete-space solutions. We
used the initial condition

u = (0, v(x)) = (0, sin(2πx))

D = D(y) = 1 +
1

4π

f

g
sin(4πy)

(52)
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BDM2  depth
∝∆x
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∝∆x3

Figure 3. L2 norms of relative velocity and height errors when simulating
the balanced state described in section 4.1, with the unstabilised scheme,
on a regular mesh. Error plotted against ∆x.
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Figure 4. L2 norms of relative velocity and height errors when simulating
the balanced state described in section 4.1, with the unstabilised scheme,
on a regular mesh. Error plotted against the square root of nDOF .
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Figure 5. L2 norms of relative velocity and height errors when simulating
the balanced state described in section 4.1, with the unstabilised scheme,
on an unstructured mesh.

The relative changes in energy and enstrophy between the
initial and final states are shown in figures 6 and 7. The
former is for a regular mesh with ∆x = 1

16 , the latter for
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Figure 6. Relative energy and enstrophy errors when the initial condition
given in section 4.2 is simulated, with the unstabilised scheme, on a regular
mesh with ∆x = 1

16
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Figure 7. Relative energy and enstrophy errors when the initial condition
given in section 4.2 is simulated, with the unstabilised scheme, on an
unstructured mesh with 736 triangles.

an unstructured mesh with 736 triangles. In both cases, the
enstrophy change is fourth-order in ∆t. The energy change
is fifth-order in ∆t; we believe that this is due to additional
cancellations in the equation for energy evolution.

4.3. Stabilised scheme

We repeated the balanced state convergence test for the
scheme stabilised by the APVM. The L2 norms of
ufinal − uinitial andDfinal −Dinitial are shown in figures 8 and
9 for a regular and unstructured grid, respectively. Note that
the numerical values from the stabilised scheme are almost
identical to the unstabilised scheme, to within a couple of
percent.

We tested for energy conservation using the same initial
conditions as were used in section 4.2, on the same
unstructured grid, and examined the enstrophy loss. These
are shown in figures 10 and 11 respectively. As before, the
energy change appears to be at least fourth-order in ∆t
while, as expected, enstrophy is now dissipated.

Finally, in figures 13 and 14, we show the evolution
of a ‘merging vortex’ problem, in a quasi-geostrophic
parameter regime, in order to visually compare the
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Figure 8. L2 norms of relative velocity and height errors when simulating
the balanced state described in section 4.1, with the stabilised scheme, on
a regular mesh.
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Figure 9. L2 norms of relative velocity and height errors when simulating
the balanced state described in section 4.1, with the stabilised scheme, on
an unstructured mesh.
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Figure 10. Relative energy error using the Anticipated Potential Vorticity
Method to stabilise the proposed scheme. As before, it appears to be fifth-
order in ∆t, consistent with the use of RK4 timestepping.

stabilised and unstabilised schemes. The initial condition
for the velocity field is derived from a streamfunction:
a superposition of two radially-symmetric Gaussians with
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Figure 11. Relative enstrophy change using the Anticipated Potential
Vorticity Method to stabilise the proposed scheme. As the APVM
erodes enstrophy, we no longer see fourth-order convergence. First-order
convergence is seen, since we took τ = ∆t
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Figure 12. Evolution of total enstrophy in the ‘merging vortex’ problem.
The stabilised scheme loses a macroscopic amount of enstrophy, while the
unstabilised scheme only loses enstrophy due to numerical error.

different centrepoints. The initial condition for the depth
field is chosen to satisfy linear geostrophic balance. The
BDM1 function space was used for these examples.
Enstrophy evolution is shown in figure 12. This example
demonstrates the ability of the APVM to dissipate
enstrophy on an unstructured mesh in this framework
whilst preserving energy (up to timestepping error). The
L2 norm of the linear geostrophic imbalance fu⊥ + g∇D
was calculated at each timestep, and the differences between
with and without APVM were orders of magnitude smaller
than the variation in the imbalance in either case, which in
itself was very small, demonstrating that APVM does not
generate fast inertia-gravity waves.

5. Conclusion

In this paper, we introduced a discretisation of the nonlinear
shallow-water equations that extends the energy- and
enstrophy-conserving formulation of Arakawa and Lamb
(1981), and the energy-conserving, enstrophy-dissipating
formulation of Arakawa and Hsu (1990), to the mixed
finite element approach advocated in Cotter and Shipton
(2012). The extension is obtained by replacing the discrete

differential operators defined on the C-grid by div and curl
operators that map between different finite element spaces.
Given these operators, the steps are then identical to the C-
grid approach: a discrete volume flux is obtained, a potential
vorticity is diagnosed and the discrete volume flux is used
to create a discrete potential vorticity flux. This flux is then
used in the vector-invariant form of the equation for u. The
energy- and enstrophy-conservation arises from a discrete
Poisson bracket structure, to be discussed in the Appendix.
The convergence and energy/enstrophy properties of the
scheme were demonstrated using numerical examples.

In ongoing work, we are developing semi-implicit
versions of this discretisation approach, as well as extending
it to curved elements for meshing the sphere, with the
aim of prototyping horizontal discretisations for the UK
GungHo Dynamical Core project. We are also exploring the
replacement of (30) with an upwind discontinuous Galerkin
scheme (which would dissipate potential energy at the
gridscale) to avoid solution of a global mass matrix, and the
use of explicit Taylor-Galerkin schemes to extend the time
accuracy of the implied PV equation whilst maintaining
stability. We are also investigating the extension of the finite
element framework to three-dimensional flows.

A. Almost-Poisson structure of the spatial
discretisation

In this section, we briefly discuss the Poisson structure
underlying our spatial discretisation, which will explain the
origin of the conservation of energy and enstrophy. For any
functional F (uh, Dh), F : S×V→ R, we calculate

dF

dt
=

〈
δF

δuh
,
∂uh

∂t

〉
+

〈
δF

δDh
,
∂Dh

∂t

〉
, (53)

where δF
δuh ∈ S satisfies〈
δF

δuh
,wh

〉
= lim
ε→0

1

ε
[F (uh + εwh, Dh)

− F (uh, Dh)] , ∀wh ∈ S ,
(54)

and similarly δF
δDh ∈ V satisfies〈

δF

δDh
, φh
〉

= lim
ε→0

1

ε
[F (uh, Dh + εφh)

− F (uh, Dh)] , ∀φh ∈ V .

(55)

Proceeding with the calculation, we obtain

dF

dt
=

〈
δF

δuh
,−qhFh⊥

〉
+

〈
∇ · δF

δuh
, gDh +

|uh|2

2

〉
−
〈
δF

δDh
,∇ · Fh

〉
=

〈
δF

δuh
,−qh δH

δuh

⊥
〉

+

〈
∇ · δF

δuh
,
δH

δDh

〉
−
〈
δF

δDh
,∇ · δH

δuh

〉
:= {F,H} , (56)
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10 A. T. T. McRae and C. J. Cotter

Figure 13. Evolution of merging vortices. The potential vorticity q is shown, with the stabilised scheme on the right. By the fourth pair of images,
spurious oscillations are visible when the unstabilised scheme is used. The plots above correspond to t = 0, 8, 16, 24.
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Figure 14. Evolution of merging vortices. The potential vorticity q is shown, with the stabilised scheme on the right. Spurious oscillations are clearly
visible when the unstabilised scheme is used. The plots above correspond to t = 32, 40, 48, 56.
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where H is the Hamiltonian defined by

H =
1

2

〈
uh, Dhuh

〉
+

1

2

〈
gDh, Dh

〉
. (57)

Equation (56) defines a bilinear bracket for functions
S×V→ R, which is antisymmetric by inspection. This
bracket is the restriction to finite elements of a standard
Poisson bracket for shallow-water dynamics. Since we have
not proven the Jacobi identity for the finite element bracket,
we only know that it is an almost-Poisson bracket.

We obtain energy conservation immediately,
since Ḣ = {H,H} = 0. It turns out that enstrophy
C = 〈qh, qhDh〉 is a Casimir for this bracket, since

〈γh, δ(qhDh)〉 = −〈∇⊥γh,uh〉, ∀γh ∈ E, (58)

and hence

δC =
〈
2δqh, qhDh

〉
+
〈
(qh)2, δDh

〉
(59)

=
〈
2qh, δ(qhDh)

〉
−
〈
(qh)2, δDh

〉
(60)

= −
〈
2∇⊥qh, δuh

〉
−
〈
(qh)2, δDh

〉
. (61)

This means that δC
δuh = −2∇⊥qh pointwise (since

∇⊥qh ∈ S), and〈
δC

δDh
, φh
〉

=
〈
−(qh)2, φh

〉
, ∀φh ∈ V. (62)

Hence, for any functional G,

{C,G} =

〈
2qh∇⊥qh, δG

δuh

⊥
〉

+

〈
∇ · −2∇⊥qh︸ ︷︷ ︸

=0

,
δG

δDh

〉
+

〈
(qh)2,∇ · δG

δuh

〉
(63)

=

〈
∇(qh)2,

δG

δuh

〉
+

〈
(qh)2,∇ · δG

δuh

〉
(64)

=

〈
∇(qh)2,

δG

δuh

〉
−
〈
∇(qh)2,

δG

δuh

〉
(65)

= 0 ,

where we may integrate by parts in the last line since
qh ∈ E and uh ∈ S. C vanishes in the bracket with any
other functional and therefore is a Casimir, i.e. a conserved
quantity for any choice of H . Unfortunately, there are no
known Poisson time integrators for this type of nonlinear
bracket; in particular, the implicit midpoint rule is not a
Poisson integrator for this bracket.
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