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Abstract

In this work, we propose a novel approach towards sequential data modeling
that leverages the strengths of hidden Markov models and echo-state networks
(ESNSs) in the context of nonparametric Bayesian inference approaches. We
introduce a non-stationary hidden Markov model, the time-dependent state
transition probabilities of which are driven by a high-dimensional signal that
encodes the whole history of the modeled observations, namely the state vector
of a postulated observations-driven ESN reservoir. We derive an efficient infer-
ence algorithm for our model under the variational Bayesian paradigm, and we
examine the efficacy of our approach considering a number of sequential data
modeling applications.
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1. Introduction

The hidden Markov model (HMM) is increasingly being adopted in appli-
cations since it provides a convenient way of modeling observations appearing
in a sequential manner and tending to cluster or to alternate between different
possible components (subpopulations) [1]. Specifically, HMMs with continuous
observation densities have been used in a wide spectrum of applications in ecol-
ogy, encryption, image understanding, speech recognition, and machine vision
applications [2].

Hidden Markov models are based on the assumption that each data point in
a sequence of observations is generated by a latent (hidden) model state. Usu-
ally, a first-order hidden Markov chain is postulated, thus limiting the consid-
ered state dependencies only to successive observations. Longer dependencies
between data over time may be also considered, by postulating higher-order
hidden Markov chains; however, such a selection may also give rise to an over-
whelming increase in the computational complexity of the model, rendering it
unattractive in most practical applications [2].

Echo-state networks are a groundbreaking and surprisingly efficient network
structure for recurrent neural network (RNN) training [3, 4, 5, 6]. ESNs avoid
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the shortcomings of typical, gradient-descent-based RNN training by randomly
creating a recurrent neural network which remains unchanged during training.
This RNN is called the reservoir. It is passively excited by the input signal and
maintains in its state a nonlinear transformation of the input history. Indeed,
the function of the reservoir in ESNs can be compared to that of the kernel func-
tion in kernel machine approaches (e.g., support vector machines [7], relevance
vector machines [8], and their variants) [9]: input signals drive the nonlinear
reservoir and produce a high-dimensional dynamical “echo response,” which is
used as a non-orthogonal basis to reconstruct the desired outputs. The obtained
reservoir state values of the ESN networks capture long-term dependencies be-
tween the modeled data, by encoding the history of the observed values of their
driving signals.

Motivated by these advances, in this paper we exploit the merits of ESN
reservoirs in order to provide a novel non-stationary HMM formulation for
sequential data modeling. The proposed model is based on the fundamental
assumption that the probabilities of HMM state transition are not stationary,
but instead they depend on time, and specifically on the whole history of ob-
served data, as encoded in the state vectors of an echo-state network reservoir.
That is, an HMM with reservoir-driven non-stationary state transition probabil-
ities is essentially introduced. The main advantage of the proposed approach is
that it allows to model longer temporal dependencies compared to conventional
HMMs, by introducing the dynamic information captured from the postulated
ESN reservoirs into the state transition mechanics of the latent Markov chain.
Derivation of our model is conducted under a nonparametric Bayesian approach
to allow for automatic data-driven determination of the appropriate model size.

Nonparametric Bayesian modeling techniques, especially Dirichlet process
(DP) prior-based models, have become very popular in statistics over the last
few years, for performing nonparametric density estimation [10, 11, 12]. Briefly,
a realization of a DP prior-based model can be seen as an infinite mixture of
distributions with given parametric shape (e.g., Gaussian, HMM, etc.). This
theory is based on the observation that an infinite number of component dis-
tributions in an ordinary finite mixture model tends on the limit to a Dirichlet
process prior [11, 13]. Exploitation of the merits of nonparametric Bayesian
statistics has allowed for coming up with computationally efficient formulations
of HMMs that allow for doing inference over the number of model states, thus
obviating the need of model order selection. For example, in [14], an infinite
HMM was proposed, based on the introduction of a hierarchical Dirichlet process
(HDP) prior over the model state transition probabilities. In [15], hierarchical
stick-breaking priors were imposed over the model state transition probabilities
instead of the HDP, to allow for more efficient model inference by means of a
truncated variational Bayesian inference technique.

As we shall discuss in the following sections, the formulation of our model
consists in introduction of a joint stick-breaking and ESN reservoir-driven prior
over the model state transition probabilities, which gives rise to an elaborate
reservoir-driven HMM in the context of a nonparametric Bayesian inference
setting. We derive an efficient truncated algorithm for model inference based
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on the variational Bayesian paradigm, and we experimentally demonstrate the
efficacy of our approach. We dub the resulting model the echo-state stick-
breaking HMM (ES-SB-HMM).

Indeed, our approach towards non-stationary HMMs with observation-driven
state transitions is related to the approach taken by conditional random fields
(CRFs). A CRF is simply a log-linear model representing the conditional distri-
bution of the model states given the observed data with an associated graphical
structure. In other words, they explicitly model data-driven transitions. Be-
cause the model is conditional, dependencies among the observed variables do
not need to be explicitly represented, affording the use of rich, global features of
the input [16]. A drawback of CRFs is that they cannot be used for classification
of whole sequences into a number of learned classes. The hidden CRF (HCRF)
[17] is a discriminative model that caters to these needs, by modeling the class
labels of whole sequences of observations conditional on the observed sequential
data, considering that each observation is also assigned a latent label variable
which is optimized as model parameter.

The remainder of this work is organized as follows: In Section 2, we provide
a brief overview of echo-state networks and the DP prior. In Section 3, we in-
troduce the ES-SB-HMM and derive an eflicient truncated variational Bayesian
algorithm for model inference. In Section 4, we evaluate our approach consider-
ing a number of applications from diverse domains, using benchmark datasets,
and we compare it to CRFs, HCRFs, and SB-HMMSs. Finally, in the last section,
we summarize our results and draw our conclusions.

2. Theoretical Background

2.1. Echo-State Networks

As already discussed, the basic component of ESNs is a discrete-time RNN|,
called the reservoir. Let us consider an ESN comprising N reservoir neurons.
ESN function is described by the following reservoir state update equation:

Str1 =(1 = )h(Wes + Wipxiiq)

+ St M

where ¢; is the reservoir state at time ¢ (an N-dimensional vector of real num-
bers), W is the reservoir weight matrix, that is the matrix of the weights of the
synaptic connections between the reservoir neurons, x; is the observed signal
fed to the network at time ¢, v > 0 is the retainment rate of the reservoir (with
~ > 0 if leaky integrator neurons are considered), W, are the weights of @,
and h(-) is the activation function of the reservoir. All the weight matrices to the
reservoir (W, W ,) are initialized randomly. The initial state of the reservoir
is usually set to zero, ¢o = 0.

An extensively studied subject in the field of ESNs concerns the introduc-
tion of appropriate goodness measures of the reservoir structure. Indeed, the
classical feature that reservoirs should possess is the echo-state property. This
property essentially states that the effect of a previous reservoir state and a
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previous input on a future state should vanish gradually as time passes, and
not persist or even get amplified. However, for most practical purposes, the
echo-state property can be easily satisfied by merely ensuring that the reservoir
weight matriz W is contractive, i.e., by scaling the reservoir weight matrix so
that its spectral radius p(W') (that is, its largest absolute eigenvalue) is less
than one [18]. Indeed, this condition has been proved to be sufficient in prac-
tical applications of ESNs; nevertheless, various researchers have also provided
more rigorous global asymptotic stability conditions, providing better theoret-
ical guarantees for ESNs to perform well on a physical system (see, e.g., [19]).
It has been shown that the maximum possible short-term memory length of an
ESN reservoir comprising N neurons is N time points [3].

2.2. Dirichlet process models

Dirichlet process (DP) models were first introduced by Ferguson [20]. A DP
is characterized by a base distribution Gy and a positive scalar «, usually re-
ferred to as the innovation parameter, and is denoted as DP(Gp, «). Essentially,
a DP is a distribution placed over a distribution. Let us suppose we randomly
draw a sample distribution G from a DP, and, subsequently, we independently
draw N random variables {©%}Y_, from G:

G{Go,a} ~ DP(Go, @) (2)

0:G~G, n=1,...N (3)

Integrating out G, the joint distribution of the variables {07}, can be shown
to exhibit a clustering effect. Specifically, given the first NV — 1 samples of G,
{0:}N-1 it can be shown that a new sample ©% is either (a) drawn from the
base distribution Go with probability —%—, or (b) is selected from the existing
draws, according to a multinomial allocation, with probabilities proportional to
the number of the previous draws with the same allocation [21]. Let {©.}X
be the set of distinct values taken by the variables {©%}N !, Denoting as fN~1
the number of values in {©%}) ' that equal to ©,, the distribution of ©% given
{0} can be shown to be of the form [21]

K

* *1N—1 . «
p( N|{®n}n:1 5G07a) *mGO + Z

fol
C

7596
a+N-1 (4)

where o, denotes the distribution concentrated at a single point ©.. These
results illustrate two key properties of the DP scheme. First, the innovation
parameter « plays a key-role in determining the number of distinct parameter
values. A larger o induces a higher tendency of drawing new parameters from
the base distribution Gy; indeed, as @ — oo we get G — Go. On the contrary,
as a — 0 all {0,,})_, tend to cluster to a single random variable. Second, the
more often a parameter is shared, the more likely it will be shared in the future.
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A characterization of the (unconditional) distribution of the random variable
G drawn from a Dirichlet process DP(Gp, «) is provided by the stick-breaking
construction of Sethuraman [22]. Consider two infinite collections of indepen-
dent random variables v = (v.)o |, {©.}22,, where the v, are drawn from the
Beta distribution Beta(1, @), and the O, are independently drawn from the base
distribution Gy. The stick-breaking representation of G is then given by [22]

G=> m(v)de, (5)
c=1

where .
Te(v) = v, H(1 —v;)  €[0,1] (6)
ve|a ~ Beta(1, ) (7)
and -
D me(v) =1 (8)

3. Proposed Approach

3.1. Model Formulation

Let us consider a sequence X of D-dimensional observable data, with X =
{z:}_,. In HMMs, model states are primarily driven by the observation process
X. The utility of the latent Markov chain is to provide a set of state transition
probabilities for the model that offer additional smoothing. In conventional
HMDMSs, these state transition probabilities are constants, learnt from observed
data using some sort of training algorithm. In this work, we want to come up
with a non-stationary HMM where the state transition probabilities change over
time, driven by the temporal dynamics in the observed sequence. Such an HMM
formulation is expected to allow for a significant model performance increase in
terms of its pattern recognition capacity, by adopting the configuration of the
HMM latent chain to the dynamics of each observed sequence. We are seeking a
non-parametric Bayesian formulation for our model, that allows for conducting
inference over the number of model parameters (states), thus obviating the
need of applying the existing, overfitting-prone, likelihood-based model selection
criteria, such as BIC [23].

For this purpose, we first employ an observation-driven ESN reservoir with
N neurons to capture the temporal dynamics in the observed sequences at any
time point. As discussed in Section 2, at any time point ¢ the employed ESN
reservoir, driven by the observed data x;, generates an N-dimensional state
vector ¢; that encodes the history of the observed signal values {z,}t_,, given
by (1). Based on the obtained observation history representation, expressed by
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means of the reservoir state vectors ¢;, we postulate an infinite state HMM,
with its state transition probabilities formulated as functions of time, as follows

ki (1) 2 p(se = j|si—1 = i5a45,6¢)

(st = jlse—1 = t;a:5)p(Se|se = j; sp—1 = 1)

(9)

YVt > 2, where
p(se = jlsi—1 =5 a45) = Clz'j(UA) (10)
p(§t|8t =7;5t-1= Z) = N(Ct|‘:9ija022j) (11)

N(|¢i;,07) is a spherical Gaussian with mean ¢,; and variance o7}, the s;
are indicator variables denoting the latent HMM state generating the tth obser-
vation x;, and the a;; (v4) are the probabilities generated by a stick-breaking

process with stick-variables v, such that v = (Uf})ff’jzl

j—1
ai(v*) = ofy [T (1 - o) (12)
k=1
vf}- ~ Beta(LaiAj) (13)
> ai(vt) =1Vi (14)
j=1

Definition (9) comprises the basic structural element of our approach. It shows
that, under our approach, the probability of transition between two HMM states
does not only depend on the prior assumptions of our model, as they are ex-
pressed by means of the postulated stick-breaking priors, but also on a proba-
bilistic model that relates the likelihood of HMM state transition with the state
vectors of an employed ESN reservoir. These latter state vectors encode all the
history of the observed signal values, thus allowing for us to derive an HMM
where state transition probabilities are not constant, but depend on the history
of the observed signal values.

Similar to (12), we impose a stick-breaking prior over the initial state prior

probabilities 7; of the latent Markov chain, such that v™ = (v])$2,
p(s1 = i) = mi(v") (15)
i—1
mi(v™) = of | | (1 —vf) (16)
k=1
vl ~ Beta(l,af) (17)
and -
dom(vm) =1 (18)
i=1
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We also impose Gamma priors over the innovation parameters of the model,
such as

af} ~ G(w,ws) (19)
aj ~G(e1,e2) (20)
Finally, we postulate the following state-conditional observation likelihoods

M
mt|5t =G @c ~ Z owN(mt‘u’cvaCm) (21)

m=1

with O, = {Wem, e Bem }M_1. In other words, we consider that the state-
conditional emitting distributions of the postulated model are simple M-component
Gaussian mixture models with means p,,, and precision matrices R.,,. Intro-
ducing the additional latent variables z;, with z; = m if the tth observation x;

is generated from the mth mixture component, we may write

Ty|se = ¢, 20 = m; Op ~ N (e | s Rem) (22)

with
p(ze = m|sy = ¢) = Wem (23)

We dub the nonparametric Bayesian model described by Egs. (9)-(23) the echo-
state stick-breaking HMM.

8.2. Variational Bayesian Inference

Let us consider a training sequence X of D-dimensional observable data, with
X = {x;}1_,. To conduct Bayesian inference for our model, we need first to
impose appropriate prior distributions over its parameters. For convenience, we
choose priors of conjugate exponential form, as this selection greatly simplifies
inference and interpretability [24]. We let the joint (conjugate exponential)
prior on the means and the precisions of the mixture component densities of the
ES-SB-HMM hidden states be

P(Itcm, Rcm) = NW(“cmv Rcm‘)\cma Memsy Nem @cm) (24)

where NW (e, Rem|Aems Meems Tem, Pem) i a Normal-Wishart distribution.
We also impose a Dirichlet prior over the mixture weights w,,,, yielding

p(wwe) = D(wety - - oy @We |Vels -« s Verr) (25)

Regarding the parameters of the p(¢¢|s: = j;st—1 = i), i.e. the set of the
means ¢, and variances a?j, we choose not to impose a prior over them. These
will be optimized as model hyperparameters, as part of the inference algorithm
discussed next.

Inference for non-parametric Bayesian models can be conducted by means
of variational Bayes (e.g., [25]) or Monte Carlo techniques (e.g., [26]). Here, we
prefer a variational Bayesian approach, due to its considerably better scalability
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in terms of computational costs, which becomes of a major importance when
having to deal with large data corpora. Variational Bayesian inference for the
proposed model consists in derivation of a family of variational posterior distri-
butions q( ) which approximate the true posterior distribution over the infinite
sets v4, v, {O‘u’ af 15521, and {©:}22,. Apparently, under this infinite dimen-
sional setting, Baye51an inference is not tractable. For this reason, we employ
a common strategy in the literature of nonparametric Bayesian techniques, for-
mulated on the basis of a truncated stick-breaking construction [25] That is,
we fix a value C and we let the variational posterior over the v - and the v]
have the property q( o0 =1) =1Vi, and q(vfl =1) =1. In other words, we
set T.(v™) and a;.(v?) equal to zero for ¢ > C. Note that, under this setting,
the treated nonparametric Bayesian model involves a full stick-breaking prior;
truncation is not imposed on the model itself, but only on the variational distri-
bution to allow for a tractable inference procedure. Hence, the truncation level
C is a variational parameter which can be freely set, and not part of the prior
model specification.

The variational Bayesian treatment of our model is conducted by introducing
an arbitrary distribution ¢(¥), and maximizing the variational free energy

Fo) = [ awq(0)log 2 W) (26)

(V)
of the model, which comprises a lower bound of the model log evidence logp(X)
[27], where ¥ = {{st,zt}t L16.3¢  vd v ,{a”, 77}1j 1 }- In order to yield
a tractable expression for the varlatlonal free energy of our model, we assume
that ¢(¥) factorizes over the latent variables and the model parameters as

C c C C

T
(V) ~ o") [ laCso)a(zls)] [T a@e) T[] alesy) [T a(eZ)  (27)

t=1 c=1 i=1j=1 c=1

Factorization of ¢(¥) in the form (27) is a common approach in variational
Bayesian inference (see, e.g., [27, 28, 29]). Due to the considered conjugate
prior configuration of our model, the variational posteriors comprising ¢(¥) are
expected to take the same functional form as their corresponding priors [30].
The expressions of the variational posteriors over the model variables are de-
rived by maximizing F'(q) with respect to each one of the factors of ¢(¥) in
turn, holding the others fixed, in an iterative manner [31]. By construction, the
iterative, consecutive updating of the interdependent distributions of the con-
sidered factors of ¢(¥) is guaranteed to monotonically and maximally increase
the variational free energy F'(q) [30].

Let us denote as (-) the posterior expectation of an expression. For com-
pleteness sake, the expressions of the posterior expectations found in the derived
variational posteriors of our model are provided in the Appendix.

1. For the g(v*) we obtain

q(vi}) = Beta(35, 53) (28)

1] » g



Preprint of paper published in the Pattern Recognition Journal, vol 45, no 11, 3985-3996, Nov 2012.

T
N{g =1+ ZQ(St = jlsi—1 =1) (29)
| .,
fj" = <af}> + Z ZQ(St = 0[si—1 = 1) (30)

2. Similar, for the ¢(v™) we obtain
vF) = Betal 37, B7) (31)
F=1+q(s1=1) (32)

C
af)+ Y als1=0) (33)

o=1+1
3. For the q(a;‘}) we obtain
Ay _ A
q(aij) - ( |w7,j7wzj) (34)
where
@ =w +1 (35)
AA
|: j + ﬁz]) (36)
4. For the ¢(al) we obtain
q(af) = G(af[e],&7) (37)
where
Er=e1+1 (38)
& = — [w(B) — (B + )] (39)
5. For the q(p.y,, Rem) we obtain
(e, Rem) = NW(Nem7 cm|5‘cmv Meem, Tem (i)cm) (40)
where we introduce the notation
em 2 q(sy = c)q(z = mlsy = ¢) (41)
T cm
By & 2 S (42)
D1 &
T
Acm é Z ftcm (wt - jjcm) (wt - :icm)T (43)
t=1
and, we have
T
flem = Tem + »_ & (44)
t=1
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T cm
= Aem thl &

q)cm = (I’cm + Acm + (mcm - jCWL) (mcm - a_jcm>T (45)
Aom + oy £

T
5\cm = )\cm + thcm (46)
t=1

— T
)\cmmcm + Lem Zt:1 gtcm

My, = T (47)
)\cm + Et:l gt
6. Regarding the mixture weights w,,,, we obtain
q(wc) :D(wcla-"awCM|ﬂcla"'7ﬁcZM) (48)
where
T
Ve = Vem + fom (49)

t=1
7. Regarding the posteriors over the sets of latent indicator variables § =
{s¢}E, and Z = {#}]_,, we obtain

T-1 T
1 * * * *
q(S’ Z) = éﬂ-sl H astst+1 (gtJrl) sttztp (wt|st’ Zt) (50)
t=1 t=1

where
m; £ exp [(logme(v™))]

*

(
@y (S111) 2 xD [ (10805,6,,, (V1)) + 108N (S141104, 0%, (52
Wem, £ exp [(logwwem,)] (

p* (wt‘st =C 2t = m) £ exp [<10gp(wt|l"’cm7 Rcm)>] (54
the {;}1_, are the reservoir state vectors corresponding to the input sequence
X, Q is a normalizing constant, and t(-) is the Digamma function. Based
on (50), computation of the probabilities ¢(s; = j|st—1 = i), ¢(s1 = i), and
q(z¢ = m|s; = ¢), which constitute the variational posterior ¢(S, L), can be eas-
ily performed for our Bayesian model by just employing the classical forward-
backward algorithm: we run the forward-backward algorithm for simple HMMs
using the posterior expected values 7}, aj,, ., (St+1)s @op, P* (Telse = ¢, 20 = m)
in (51)-(54) as the parameter values of the algorithm [30].

8. Finally, as already discussed, the parameters ¢,; and afj of the model are
optimized as model hyperparameters. This is effected by maximizing the vari-
ational free energy of the model over each one of them, eventually yielding

T . .
_ thg q(se = jlsi—1 = i)sy

Pij - - (55)
’ ZtT=2 q(s¢ = jlsi—1 = 1)
T . . 2
2 Zt:2 Q(St = ]‘Stfl = Z)HCt — <Pin
Tij = T , ; (56)
thz q(s¢ = jlsi—1 = 1)

10
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3.3. Predictive Density

Let us now consider the task of assigning a predictive probability p(X’) to a
test sequence X’ = {x;}7_, with respect to a model trained as described above.
To conduct density estimation, we have to estimate the predictive density of the
test sequence, which reads

p(X') ~ / ATg(V)p(X'|D) (57)

Using Jensen’s inequality, we yield the following lower bound for the logarithm
of p(X’)
logp(X') > Pred(X") (58)

where

Pred(X') =Y ¢(S, 2)

S,z
T-1 / T / (59)
e, i ai,,sm(cm)ﬂt:l @y, ., 0" (] s¢, 24)
xlog

q(S,Z)

the 7w} , @} .., and p*(@|s¢, 2;) are given by (51), (53), and (54), respectively,

and we now have
@i (S141) 2 XD [(10805,0,,, (V1)) + 108N (S|4, 0%0) | (60)

where the {c,}7 ; are the reservoir state vectors corresponding to the input
sequence X'. Similar to the estimation of the ¢(S, Z), computation of Pred(X")
consists in merely employing the forward-backward algorithm, as described in
[1]: we run the forward-backward algorithm for simple HMMs using the poste-
rior expected values 77, a3, ., (St+1), @iy, P*(Te|st = ¢, 2 = m) in (51)-(54)
as the parameter values of the algorithm [30].

3.4. Sequence Decoding

Finally, apart from predictive density estimation, another significant prob-
lem we have to address is sequence segmentation given a trained ES-SB-HMM.
In other words, given a trained ES-SB-HMM model with posterior ¢(¥) and
an observed sequence X = {x;}_,, we want to obtain an optimal assignment
of the observed data points x; to the model states ¢ = 1,...,C. This prob-
lem essentially comprises optimization of the quantity ¢(S) over the indicator
variables S. Based on the expression (50) of the joint posterior ¢(S, Z), the
posterior ¢(.5) yields

o(5) =y

T—1 T
5, H a:tst+1(gt+1)‘| HZw;z,,p*(wt\st,zt) (61)

t=1 t=1 z¢

where A is a normalisation constant.

11
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Figure 1: 3-step climbing: Few example frames from a sequence considered in
our experiments.

The problem of optimising ¢(.5) over S is essentially a dynamic programming
problem. Following, e.g., [32] and [30], it is easy to show that this problem can
be resolved by application of a variational Bayesian analogous to the familiar
Viterbi algorithm: we run the Viterbi algorithm with the parameter values set
equal to the posterior expected values 77, ag,,, . (St+1), @iy, P*(Tt]st = ¢, 20 =
m) of our model, defined in Eqgs. (51)-(54).

4. Experiments

In the following, we experimentally evaluate the performance of the ES-SB-
HMM, considering a number of applications. In all our experiments, we used
randomly initialized reservoirs, comprising simple analog neurons with tanh(-)
activation functions. The spectral radius of the employed reservoirs was set
equal to 0.98, and the connectivity fraction equal to 0.2. For comparison, we
also provide the performance of stick-breaking HMMs (SB-HMMs) [15], CRFs
[16], and HCRFs [17]. Our source codes were developed in MATLAB R2011b,
and made partial use of software provided by Neil Lawrence [33]. Our experi-
ments were executed on a Macintosh platform with a 2.53GHz Intel Core 2 Duo
processor, and 4 GB RAM, running OS X 10.7.3.

4.1. Sequence Segmentation Ezxperiments: Fxperimental setup and results

Here, we consider application of the ES-SB-HMM model to segmentation
of human motion video sequences, using the variational Bayesian analog to the
Viterbi algorithm described in Section 3.4. For this purpose, we use videos from
the CMU motion capture dataset [34]; we consider four different experimental
cases, namely 3-step climbing, skateboard: stop and go, skateboard: push and

12
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Figure 2: Skateboard: Stop and Go: Few example frames from a sequence
considered in our experiments.

Figure 3: Skateboard: Push and Turn: Few example frames from a sequence
considered in our experiments.

13
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Figure 4: Modeling across subjects: Two subjects run, scramble for last seat:
Few example frames from a sequence considered in our experiments.

14
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turn, and modeling across subjects: two subjects run, scramble for last seat.
Our aim is to use the trained models so as to segment the considered video se-
quences into meaningful subsequences, that correspond to parts of the depicted
behaviors.

As input variables to the evaluated algorithms, we use a simplified version
of the skeleton data provided by the CMU motion capture database. Specifi-
cally, in the used simplified skeleton, each pose is defined by three global (torso)
pose angles, three global (torso) translational velocities, and the provided Euler
angles pertaining to the joints: head, lowerneck, thorax, upperback, lowerback,
root, upperneck, clavicle, humerus, radius, wrist, femur, tibia, and foot. For
each frame, the global velocity is set to the difference between the next and the
current frames. The velocity for the last frame is copied from the second to last
frame. The used output variables are the activity (class) labels assigned to each
video frame. We assume there is an 1-1 correspondence between model states
and activity (class) labels; this is a standard procedure in HMM-based sequence
labeling (segmentation). Apart from the proposed ES-SB-HMM approach, we
also evaluate SB-HMMs and CRFs. The number of reservoir neurons of the
evaluated ES-SB-HMM is selected so as to get optimal model performance for
minimum model complexity. The evaluated CRFs utilize linear potential func-
tions, and are trained using the L-BFGS algorithm [35].

Apparently, in these experiments, the number of latent states of both the
postulated SB-HMM and ES-SB-HMM models is known beforehand, and, hence,
their employed nonparametric Bayesian machinery does not come of any utility.
However, in our experiments, we use these models employing their full non-
parametric Bayesian structure. We set their truncation threshold to the desired
number of states C' = 3, and examine whether they use all these three states to
model the data, or less. We have found out that both the SB-HMM and ES-
SB-HMM approaches make use of all these three states, which clearly indicates
that they are not prone to underestimating the appropriate model size.

In each one of the considered experimental cases, multiple different videos of
each movement are used in order to perform cross validation. We also provide
the p-metric value of the Student’s-¢ test run on the pairs of performances of the
evaluated models. The Student’s-t test allows to assess the statistical signifi-
cance of the performance difference between two evaluated methods, given a set
of performance measurements. Generated p-values of the Student’s-¢ test below
0.05 strongly indicate that the means of the obtained performance statistics of
the two methods provide a very good assessment of their actual performance
difference.

4.1.1. 3-step climbing

In this experimental case, we deal with videos depicting a human subject
ascending a short ladder, stepping on a table, making a U-turn on the table,
and descending the ladder. In Fig. 1, we provide few characteristic frames from
one of the videos used in our experiments. Our aim is to train 3-state models
capable of segmenting the videos into three subsequences: (i) ladder ascending;
(ii) making U-turn; (iii) ladder descending. Four different videos, comprising
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Table 1: Sequence segmentation: 3-step climbing videos. Error rates obtained

by the evaluated methods.

Table 2: Sequence segmentation: skateboard: stop and go videos. Error rates

] Method H SB-HMM \ CRF H ES-SB-HMM
Error Rate (%) 35.50 28.98 29.27
p-value 0.017 0.36 || #Neurons=3000

obtained by the evaluated methods.

y Method [ SB-HMM | CRF [ ES-SB-HMM |
Error Rate (%) 27.30 23.73 22.43
p-value 1.1x10=% | 0.005 || #Neurons=3000

200-276 frames, from the same subject are used in our experiments to perform
(4-fold) leave-one-out cross validation. The obtained performance statistics of
the evaluated algorithms are provided in Table 1. As we notice, the ES-SB-
HMM model improves considerably the obtained error rate compared to the
SB-HMM. We also observe that the ES-SB-HMM yields a slightly lower mean
performance compared to the CRF; however, this difference is not statistically
significant.

4.1.2. Skateboard: Stop and Go

Here, we consider videos depicting a human subject sliding on a skateboard,
then stopping, and subsequently pushing the skateboard back to start sliding
again. In Fig. 2, we provide few characteristic frames from one of the videos
used in our experiments. The aim in this experiment is to train 3-state models
capable of segmenting the videos into 3 parts: (i) sliding on the skateboard;
(ii) stopping; (iii) pushing back to resume. Three different videos, comprising
368-474 frames, from the same subject are used in our experiments to perform
(3-fold) leave-one-out cross validation. The obtained performance statistics of
the evaluated algorithms are provided in Table 2. As we notice, the ES-SB-
HMM model improves considerably the obtained error rate compared to the
SB-HMM. We also observe that the ES-SB-HMM offers a statistically significant
improvement over CRFs.

Table 3: Sequence segmentation: skateboard: push and turn videos: Error rates
obtained by the evaluated methods.

] Method H SB-HMM \ CRF H ES-SB-HMM
Error Rate (%) 38.71 29.79 26.46
p-value 2.07x10~8 [ 3.61x10~F || #Neurons=3000
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Table 4: Sequence segmentation: two subjects run, scramble for last seat videos:
Error rates obtained by the evaluated methods.

y Method | SB-HMM | CRF | ES-SB-HMM |
Error Rate (%) 16.27 13.83 13.65
p-value 5.43x10~% | 0.081 || #Neurons—500

4.1.8. Skateboard: Push and Turn

Here we consider videos depicting a human subject sliding on a skateboard,
subsequently pushing the skateboard back to increase speed, and then turning.
In Fig. 3, we provide few characteristic frames from one of the videos used
in our experiments. The aim in this experiment is to train 3-state models
capable of segmenting the videos into 3 parts: (i) sliding on the skateboard; (ii)
pushing back to gain speed; (iii) turning. Four different videos, comprising 202-
302 frames, from the same subject are used in our experiments to perform (4-
fold) leave-one-out cross validation. The obtained performance statistics of the
evaluated algorithms are provided in Table 3. As we notice, in this application
the ES-SB-HMM model improves considerably the obtained error rate compared
to both the SB-HMM and the CRF model.

4.1.4. Modeling across subjects: Two subjects run, scramble for last seat

Finally, in this experimental case we consider human motion modeling across
subjects. Specifically, we train the considered models using two sequences from
one subject, and we evaluate them using two sequences from a different sub-
ject. Modeling across subjects is a more demanding experimental scenario, thus
allowing to better assess the robustness of our algorithm. The aim in this ex-
periment is to train 4-state models capable of segmenting the videos into the
following parts: (i) run; (ii) scramble for the seat; (iii) sit or (iv) leave. In Fig.
4, we provide few characteristic frames from one of the videos used in our exper-
iments. Two-fold cross validation is performed to obtain mean performances, as
well as the p-value from the Student’s-t test to assess the statistical significance
of our results. We again observe that ES-SB-HMM offers a clear improvement
over SB-HMM. CRFs seem to perform comparably to our approach.

4.2. Sequence Segmentation Experiments: Further discussion

4.2.1. Confusion matrices

To gain further insight into the advantages offered by the proposed ES-SB-
HMM, we revisit the previous experiments, providing the confusion matrices of
our method for each considered experimental case. For comparison, we also in-
vestigate the performance of the SB-HMM. These results are depicted in Tables
5-12. A general observation from these results is that the ES-SB-HMM manages
to better distinguish between classes that the SB-HMM has difficulty to recog-
nize, while much less of an improvement is obtained in cases SB-HMM yields
higher success rates. Additionally, there is no single case where ES-SB-HMM
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Table 5: Sequence segmentation: 3-step climbing videos. SB-HMM confusion

matrix.

Correct Label (Groundtruth)

’ Estimated Label

ladder ascending \

making U-turn

\ ladder descending

ladder ascending 71.97% 20.74% 7.92%
making U-turn 23.10% 50.84% 20.61%
ladder descending 4.93% 28.42% 71.47%

Table 6: Sequence segmentation: 3-step climbing videos. ES-SB-HMM confu-

sion matrix.

Correct Label (Groundtruth)

’ Estimated Label

ladder ascending \

making U-turn

\ ladder descending

ladder ascending 78.12% 10.99% 7.03%
making U-turn 18.48% 63.28% 16.51%
ladder descending 3.4% 25.73% 76.46%

performed worse than SB-HMM. Another finding we would like to mention is
that the SB-HMM tends to yield especially low recognition rates in the begin-
ning of each video. We believe this is due to the fact that the transition matrices
of the SB-HMM are static, and probably cannot account for the variability in
how each video begins. In contrast, the time-dependent nature of the transition
matrices of the ES-SB-HMM allows for accounting for this kind of variability,
thus significantly increasing the robustness of the sequence segmentation algo-
rithm.

4.2.2. Effect of the reservoir size on model performance

Here, we examine how the performance of the ES-SB-HMM approach is
related to the size of the employed reservoirs (number of neurons). For this
purpose, we repeat the previous experiments for various numbers of reservoir
neurons, and we illustrate how model performance changes in Figs. 5a-5d. As
we observe, for small reservoir sizes, the proposed ES-SB-HMM model yields
performance almost identical to the SB-HMM. This fact shows that such small
reservoir sizes cannot capture useful information for the HMM algorithm. How-

Table 7: Sequence segmentation: skateboard: stop and go videos. SB-HMM
confusion matrix.

Correct Label (Groundtruth)
’ Estimated Label | sliding \ stopping \ resuming
sliding 64.29% 0 28.90%
stopping 32.14% 100% 21.94%
resuming 3.57% 0 49.16%

18



Preprint of paper published in the Pattern Recognition Journal, vol 45, no 11, 3985-3996, Nov 2012.

Table 8: Sequence segmentation: skateboard: stop and go videos. ES-SB-HMM

confusion matrix.

Correct Label (Groundtruth)
’ Estimated Label | sliding \ stopping \ resuming
sliding 70.71% 0 21.94%
stopping 29.29% 100% 20%
resuming 0 0 58.06%

Table 9: Sequence segmentation: skateboard: push and turn videos. SB-HMM

confusion matrix.

Correct Label (Groundtruth)

’ Estimated Label

sliding \ pushing back to gain speed \ turning

sliding 68.83% 9.09% 33.42%
pushing back to gain speed | 31.17% 57.27% 0
turning 0 33.64% 66.58%

Table 10: Sequence segmentation: skateboard: push and turn videos. ES-SB-

HMM confusion matrix.

Correct Label (Groundtruth)

Estimated Label

sliding | pushing back to gain speed | turning

sliding 75.39% 0 26.84%
pushing back to gain speed | 24.61% 71.83% 0
turning 0 28.17% 73.16%

Table 11:

Sequence segmentation:

videos. SB-HMM confusion matrix.

two subjects run, scramble for last seat

Correct Label (Groundtruth)

’ Estimated Label run \ scramble for the seat \ sit \ leave
run 81.22% 0 0 13.37%
scramble for the seat | 6.32% 80.70% 4.88% 5.20%
sit 0 9.11% 95.12% 0
leave 12.46% 10.19% 0 81.43%

Table 12: Sequence segmentation:

videos. ES-SB-HMM confusion matrix.

two subjects run, scramble for last seat

Correct Label (Groundtruth)

’ Estimated Label run \ scramble for the seat \ sit \ leave
run 83.01% 0 0 8.03%
scramble for the seat | 5.17% 85.12% 1.35% | 3.24%
sit 0 7.83% 98.65% 0
leave 11.82% 7.05% 0 88.73%
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Figure 5: Error rate of the ES-SB-HMM as a function of the number of reservoir
neurons.

ever, we also observe that as the size of the reservoir increases from some tens
to one thousand neurons, our approach manifests a notable performance hike,
while for reservoir sizes exceeding 3000 neurons, we observe that our method’s
performance remains largely stable.

4.83. Sequence Classification Experiments: Bimanual Gesture Recognition
4.3.1. Experimental setup and results

Here, we consider the problem of bimanual gesture recognition, experiment-
ing with the American Sign Language gestures for the words: against, aim,
balloon, bandit, cake, chair, computer, concentrate, cross, deaf, explore, hunt,
knife, relay, reverse, and role. The used dataset was obtained from four dif-
ferent persons executing each one of these gestures and comprises 40 videos
per gesture. 30 of these videos are used for training and the rest for model
evaluation. From this dataset, we extracted several features representing the
relative position of the hands and the face in the images, as well as the shape
of the respective skin regions, by means of the complex Zernike moments [36],
as described in [37]. This way, 12-dimensional feature vectors were derived.
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Table 13: Gesture recognition: Recognition error rates (%) and p-metrics of the
considered methods.

’ Gesture H SB-HMM \ HCRF H ES-SB-HMM \ #Neurons
against 0.95 (1.03x1077) 0.83 (0.001) 0.78 300
aim 0.67 (1.38x1077) 0.45 (0.08) 0.49 300
balloon 7.06 (3.44x1077) 6.12 (0.002) 5.80 500
bandit 0.80 (6.28 x 10~%) 0.73 (0.64) 0.76 500
chair 23.67 (5.01x10719) 12.09 (0.001) 9.59 3000
cake 18.29 (3.63x1077) 6.34 (0.48) 7.07 3000
computer 6.84 (7.06x1077) 4.87 (0.002) 4.23 100
concentrate || 16.20 (1.44x10~7) | 7.69 (1.12x1077) 4.82 3000
cross 28.10 (6.88x107%) [ 14.07 (3.09x107?) 12.44 3000
deaf 4.38 (1.12x107%) 3.66 (0.021) 4.08 300
explore 6.65 (2.12x10~%) 5.41 (0.003) 5.01 300
hunt 28.51 (0.98x107Y) 13.35 (0.001) 11.22 2000
knife 24.17 (7.12x107°) 14.11 (0.001) 12.36 3000
relay 6.41 (3.48x107%) 5.93 (0.07) 5.90 500
reverse 8.52 (9.09x1077) 6.46 (0.03) 6.17 300
role 1.84 (0.003) 1.62 (0.01) 1.55 200
Average 11.44 6.48 5.77

For each one of these 16 gestures, we fitted one model of each one of the algo-
rithms SB-HMM and ES-SB-HMM, with truncation threshold set to C' = 100.
We also trained an HCRF model using the available data, as described in [17].
Classification of our test sequences using the SB-HMM and ES-SB-HMM ap-
proaches was conducted by computing their predictive densities with respect to
each class (e.g., Eq. (59) of our model), and assigning them to the class that
yields the highest predictive density. The error rates obtained by application of
10-fold cross-validation are depicted in Table 13. These results were obtained
for optimal ES-SB-HMM reservoir size. As we observe, our approach works
much better than the SB-HMM, while usually also offering a statistically sig-
nificant improvement over the HCRF. An interesting finding is that, in most
cases where the ES-SB-HMM offers a clear improvement over the competition,
especially over the SB-HMM, the hands and head regions are initially separate,
then they merge and then they separate again. Although the hand shapes are
different, the gesture variability between different or even the same actors cer-
tainly creates ambiguity, which seems to be better modeled by means of our
approach compared to its competitors.

4.3.2. Varying the number of training data points

To examine the effect of training data availability on model performance,
we repeat the previous experiments using limited training data; specifically,
we only use 5 videos from each gesture instead of 30. As it is well known, the
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Table 14: Gesture recognition: Recognition error rates (%) of the considered
methods.

’ Gesture H SB-HMM \ HCRF H ES-SB-HMM \ #Neurons

against 3.46 2.42 1.90 300
aim 4.58 2.17 1.52 500
balloon 14.18 10.24 8.88 800
bandit 3.05 2.13 1.59 500
chair 40.12 29.65 26.37 3000
cake 21.71 17.09 12.63 3000
computer 18.38 10.12 9.31 500
concentrate 25.25 14.48 14.92 3000
cross 40.67 28.40 27.60 3000
deaf 15.91 9.08 9.17 300
explore 10.08 7.18 6.42 600
hunt 30.44 19.47 17.58 2000
knife 30.95 30.24 28.23 3000
relay 12.40 7.67 8.08 500
reverse 19.11 12.53 16.26 500
role 2.08 1.98 1.64 800
Average 18.27 12.80 12

effectiveness of model estimation by means of likelihood (or marginal likelihood)
maximization is contingent upon the availability of adequate training data, to
prevent the possibility of overfitting. Hence, we expect that limiting the number
of training samples should most probably induce an adverse effect on the quality
of the fitted models, and, hence, model performance. Our obtained results
are provided in Table 14. As we observe, all the methods are affected by the
reduction in the number of available training samples. However, we also observe
that the ES-SB-HMM seems to be much less affected compared to the SB-HMM.

4.4. Computational Complexity

Finally, let us examine how the computational costs of the reservoir-driven
ES-SB-HMM are related to the computational costs of the SB-HMM, that is a
baseline HMM formulated in the context of Bayesian nonparametrics. Regard-
ing the costs of the model training algorithms, we note that from a theoretical
standpoint, the extra costs incurred by the ES-SB-HMM concern computation
of the estimates ,; and o;; given by (55) and (56), as well as of the likelihoods
10N (St41|¢5, 5,115 95,5,,,) I (52). These are rather simple computations, ex-
pected to induce only a minor computational overhead for the model training
algorithm. Similar, regarding the computational costs of the sequence segmenta-
tion (Viterbi) algorithm for both models, we observe that our approach requires
only the additional computation of the likelihoods logN (g¢41 2

|Sostst+1 ] O.stst+1) in
(52), which is not expected to give rise to a significant computational overhead
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for our algorithm. The same holds for predictive density computation, under
expression (59).

To substantiate our claims, let us consider, for instance, the case of the
skateboard: stop and go experiment. In this case, 5 iterations of the train-
ing algorithm took 4.56 seconds in our unoptimized implementation, while the
SB-HMM required 3.93 seconds. Hence, the ES-SB-HMM incurred a 13.82%
computational overhead for model training. Similar, segmentation of one test
sequence required 0.25 seconds in the case of the ES-SB-HMM and 0.17 seconds
in the case of the SB-HMM, that is a 32% increase in the total computational
costs of the sequence segmentation algorithm. We believe that these extra costs
are absolutely reasonable, given the observed significant benefits of our approach
in terms of the obtained pattern recognition performance, as we discussed pre-
viously.

5. Conclusions

In this paper, we proposed a novel non-parametric Bayesian approach for
sequential data modeling based on the introduction of a non-stationary HMM.
The proposed non-stationary stick-breaking HMM formulation is based on the
consideration of a novel form of time-dependent state transition priors, the dis-
tribution of which jointly depends on a stick-breaking process and an appropri-
ate probabilistic model over the state values of a postulated echo-state network
reservoir. We provided efficient algorithms for model training and inference,
based on a truncated variational Bayesian approach.

We examined the efficacy of our approach considering a number of applica-
tions dealing with human motion modeling and gesture recognition. To provide
a thorough account of the merits of our approach, we considered both sequence
segmentation and classification applications for our model, and we compared it
to stick-breaking HMMs, CRFs, and HCRFs. As we showed, our approach yields
significant performance improvements over these state-of-the-art approaches.
Note also that the computational costs of our approach are similar to the SB-
HMM, since computation of the reservoir states and derivation of the model
estimates ¢,; and afj induce negligible additional computational costs for the
model training and inference algorithms.

Appendix

Regarding the posterior expectations in Egs. (28)-(54), we have

~ A

A\ _ Wiy
(od) = 32
m _ &
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M
<10gwcm> - w(ﬁcm) - ¢ (Z Dcr) (64)
r=1
(logp(e|ttms Rom)) = — 2log2m +  (log | Rem|)
2 2 (65)

D
+ =
)\cm
(66)
fod D ~

g ) = —tog| 5| + S (T 1) (67)

c—1
(logme(v™)) = Y (log(1 — v%)) + (logv?) (68)
(loguT) = (A7) — (B + BT) (69)
(log(1 — vI)) = (BT) — (B + BT) (70)

j—1
(loga;j(v?)) = Z (log(1 — v5},)) + (logvf}) (71)
(logv{}) = v(Bs) — v(B + B (72)
(log(1 —v})) = w(B) — w(B + B1) (73)
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