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Abstract

Biological systems are usually complex nonlinear systems of which

we only have a limited understanding. Here we show three different

aspects of investigating such systems. We present a method to extract

detailed knowledge from typical biological trajectory data, which have

randomness as a main characteristic. The migration of immune cells,

such as leukocytes, are a key example of our study. The application of

our methodology leads to the discovery of novel random walk behaviour

of leukocyte migration.

Furthermore we use the gathered knowledge to construct the under-

lying mathematical model that captures the behaviour of leukocytes, or

more precisely macrophages and neutrophils, under acute injury. Any

model of a biological system has little predictive power if it is not com-

pared to collected data. We present a pipeline of how complex spatio-

temporal trajectory data can be used to calibrate our model of leukocyte

migration. The pipeline employs approximate methods in a Bayesian

framework. Using the same approach we are able to learn additional in-

formation about the underlying signalling network, which is not directly

apparent in the cell migration data.

While these two methods can be seen as data processing and analysis,

we show in the last part of this work how to assess the information

content of experiments. The choice of an experiment with the highest

information content out of a set of possible experiments leads us to the

problem of optimal experimental design. We develop and implement an

algorithm for simulation based Bayesian experimental design in order

to learn parameters of a given model. We validate our algorithm with

the help of toy examples and apply it to examples in immunology (Hes1

transcription regulation) and signal transduction (growth factor induced

MAPK pathway).
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One

Introduction

1.1 OVERVIEW

The mathematical description of biological systems has over recent years enabled

better understanding of many biological processes. Typically we start by studying

individual processes, which we can consider as embedded in the complete biological

system; we can refer to such individual processes as subnetwork. Each subnetwork

exists on a specific scale, for example based on interactions between molecules, or

the analysis of a cellular population. However, living organisms are organised on

multiple scales that are correlated with each other, i.e. the organism’s processes

should be modelled on a multiscale basis. Due to the rise of “omics” technologies [1]

and high-throughput methods, experimental data are becoming available for all types

of cellular processes on a systems-level. These large datasets require us to integrate

the current state of knowledge from the molecular scale to the whole organism level

[2]. Another level of complexity is introduced by single molecule and single cell data.

Analysing the average behaviour of a population of molecules or cells often hides the

detailed dynamics of the system at the single cell level. The reason can be found

in cell to cell variability, i.e. heterogeneity, but also in spatio-temporal effects. The

nature of the experimental data and the diverse levels of complexity require advanced

methodologies to extract the full information content in modern life sciences data.
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1.1. Overview

In biological systems where little information is available the first goal is to anal-

yse data using appropriate statistical methods. This process of explorative data

analysis usually involves the computation of simple statistics, such as the mean and

the standard deviation of a system output. However, the levels of complexity of the

biological system as well as of the experimental data may require the development

of more specialised approaches. The knowledge gained by such an initial analysis is

then often incorporated into the process of constructing mathematical models.

Mathematical models of biomolecular systems are by design and necessity abstrac-

tions of a much more complicated reality [3, 4]. In mathematics, and the theoretical

sciences more generally, such abstraction is seen primarily as a virtue which allows

us to capture the essential features or defining mechanisms underlying the workings

of natural systems and processes. But while qualitative agreement between even

very simple models and very complex systems is easily achieved, formally assessing

whether a given model is indeed good (or even just useful) is notoriously difficult.

These difficulties are exacerbated in no small measure for many of the most important

and topical research areas in biology [5–7]. The regulatory, metabolic and signalling

processes involved in cell-fate and other biological decision-making processes are often

only indirectly observable; moreover, when studied in isolation their behaviour can

often be markedly altered compared to the experimentally more challenging in vivo

contexts.

These challenges have prompted the development of novel statistical and inferen-

tial tools, required to construct (or improve) mathematical models of such systems.

We can loosely group these methods into (i) those aimed at reconstructing network

models [8–10] (using correlations or statistical dependencies in observed datasets),

(ii) methods to estimate (biochemical reaction) rate parameters of models describing

the dynamics of biological systems [11–13], and (iii) approaches that allow us to rank

or discern between different candidate models/hypotheses [14, 15]. The first set of

challenges is typically faced when dealing with new systems where little information

is known, and where network-inference algorithms offer a convenient way of gener-

ating novel mechanistic hypotheses from data. The latter two types of problems are

frequently (and perhaps should be generally) considered together, and in most in-

stances rely on our ability to formulate suitable candidate models based e.g. on prior

knowledge or biophysical/biochemical reasoning.
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1.2. Objectives

We can summarise the above described aspects in two main categories: (i) de-

scribing and understanding the data to understand the biological system; and (ii)

mathematical modelling of the system using the data. A third important topic arises

almost naturally: Which experiments should be performed in order to gather the

most information about the biological system? This is investigated in the field of

experimental design [16]. Once a mathematical description of a system is achieved,

it is the aim to calibrate it or to distinguish between competitive models. It is im-

portant to understand what type of experiments can be performed that are most

informative. While some experiments contain no or little additional information to

previously collected data, others will allow to fully answer the biological question of

interest. For small networks, this question might seem trivial and the answer is often

intuitive. However, the majority of biological systems are complex and nonlinear. To

find the optimal experiment turns into an equally complex problem.

1.2 OBJECTIVES

The aim of this PhD thesis is to find new ways to describe and model complex

biological systems. In detail we will develop methods for:

• analysis of spatio-temporal leukocyte trajectory data

• model calibration and model choice using spatio-temporal cell trajectory data

• experimental design to calibrate mathematical models of biological systems.

In this thesis we will introduce the main concepts to achieve these goals. We will

present novel statistical approaches and illustrate their usefulness by applying them

to systems in immunology and signal transduction. A key system will be the migration

of leukocytes in response to acute wounding.

1.3 THE IMMUNE SYSTEM

In this section we will outline the basic concepts of the immune system. More

specifically we will introduce the innate immune system with its main cell types, i.e.

macrophages and neutrophils. This leads us finally to the principals of cell migration

via chemotaxis.

15



1.3. The Immune System

1.3.1 Innate versus adaptive immunity

The mammalian immune system is comprised of a set of components that defend the

organism against foreign substances and organisms such as pathogens. The organs of

the immune system include the skin, the bone marrow, the spleen, the thymus and

the lymph nodes [17]. Another important component are specialised immune cells

and molecular components that affect pathogens. Most mammalian immune systems

are composed of the innate and the adaptive immune system, but the innate immune

response is always present [17].

The innate immune system is a non-specific response system and it represents the

first layer of defence against pathogens. The main parts are tissue barriers (e.g. the

skin), innate immune cells (e.g. macrophages and neutrophils) and secreted soluble

molecules to attack foreign organisms.

In contrast to the innate immune system, the adaptive immune system works in a

specific manner [17]. It is the acquired immunity that is able to generate memory of

specific pathogens after a previous response to that pathogen. Characteristic of the

adaptive immune system are the production of specific antigens and immune cells,

which recognise specific pathogens. The adaptive immune response is slower than

the first innate immune response. However, once an immunological memory against

a certain pathogen is created the adaptive response is enhanced and more effective in

case of a repeated contact. This is the fundamental basis of vaccination.

Our main focus here will be on the innate immune response and we describe some

of its components in more detail below.

1.3.2 Macrophages and neutrophils

Leukocytes, more commonly known as white blood cells, are important cells dur-

ing nearly all stages of the immune response. These cells can be divided into several

cell types: neutrophils, basophils, eosinophils, lymphocytes, macrophages, monocytes

and dendritic cells [17]. The cells which play a crucial role during inflammation and

therefore during the innate immune response are macrophages and neutrophils (fig-

ure 1.1). The more general term leukocytes is often used in the literature to refer

to these two cell types when discussing the innate immune response during inflam-

mation. However, a third cell type, monocytes, which are highly mobile leukocytes

16



1.3. The Immune System

circulating in the blood vessels, initiate the immune response. They leave the blood

vessels and enter the tissue after receiving a signal. This process is described as

leukocyte recruitment. In the tissue the monocytes develop into the more sedentary

macrophages.

Macrophages can survive for long periods of time as sentinels guarding against

foreign pathogens [18]. In addition to their phagocytic duties, macrophages posses a

large number of receptors for pathogens and pathogen-related substances, which can

trigger the secretion of proinflammatory cytokines and chemokines after activation.

Macrophages are important cells during wound healing processes. Their detailed

functions include the promotion of inflammation. After macrophages are activated

by for example pro-inflammatory cytokines, LPS or interferons, macrophages produce

various cytokines. These cytokines include interleukin-1, interleukin-6, interleukin-12

and TNFα. [19]. Furthermore macrophages are known to produce chemoattractants.

The specific secreted chemokines into the extracellular matrix can activate further

cell types of the innate immune response, such as neutrophils [18, 20], but also cells

of the adaptive immune response and therefore act as a link between the two systems.

Apart from their pro-inflammatory function, macrophages that are related to wound

healing also have an anti-inflammatory function. It is suggested by in vitro studies

that macrophages can switch from the pro-inflammatory state to an reparative state

[21, 22]. Latter shows the expression of anti-inflammatory mediators, such as IL-1R

antagonist or interleukin-10. Furthermore they produce growth factors (e.g. vascular

endothelial growth factor, insulin-like growth factor). These growth factors promote

the cell proliferation and protein synthesis [23]. Several studies provide strong ev-

idence that macrophages promote angiogenesis, fibroblast proliferation and synthe-

sis of the extracellular matrix [24–26]. Another important function of macrophages

during wound healing is the removal of neutrophils in order to facilitate the repair

processes.

Neutrophils have a shorter life span than macrophages (on average 5 days), but

appear in much higher numbers during acute inflammation [17]. Neutrophils appear

mainly in early wounds. The main function of neutrophils is to generate an anti-

microbial environment. This is achieved by phagocytosis, a mechanism by which

they engulf microbes [27]. As part of this process, neutrophils negatively influences

the process of wound healing, mainly because they destroy surrounding tissue [28].
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1.3. The Immune System

They contain proteases, which degrade major components of the extracellular matrix

and even cytokines. this strongly reduces repair mechanisms during wound healing.

Furthermore neutrophils are involved in the production of hydrogen peroxide and

other oxygen radicals, which are toxic for microbes. This so-called oxidative burst

functions as a defence mechanism [20, 29]. This oxidative burst can cause further

tissue damage. All this indicates, that the main function of neutrophils is the de-

contamination of the wound, rather than the repair of the wound. For this reason

they appear in high abundance in poorly healing wounds, while the number of neu-

trophils in wounds that heal well is low [30]. As mentioned above, it is important that

neutrophils are removed from the site of the wound after decontamination, which is

supported by macrophages.

Figure 1.1: Cartoon representations of macrophages and neutrophils.
The morphological differences of macrophages and neutrophils are clearly vis-
ible in this representation: the macrophage (left) has a large kidney-shaped
nucleus, while the neutrophil (right), a polymorphonuclear granulocyte, has
a lobed nucleus and toxic granules within its cytoplasm. (These images,
which are in the public domain, were taken from http://openclipart.org/user-
detail/keikannui).

1.3.3 Cell migration: Chemotaxis

A vital component of the immune system is the ability of cells to migrate in the extra-

cellular matrix. Any immune response which involves immune cells requires the mi-

gration of these cells. Examples are the migration of tissue “patrolling” macrophages

to protect the organism from pathogens, or the migration of leukocytes during wound

healing towards the wound.

The molecular mechanism that leads to the migration of a cell is still not well
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1.3. The Immune System

understood. The majority of migrating cells produce a protrusion of the cytoplasm

and cell membrane, a so called leading edge, towards the direction of movement. Two

main theories exist that try to explain the molecular details of this process. The first

theory is the cytoskeletal model. It is based on the polymerisation of actin filaments

at the front of the cell, which guides the cell towards a specific direction [31–34]. The

second theory is the membrane flow model, which is based on the observation that

membrane of the migrating cell flows towards the front of the cell [35].

A specific form of cell migration is chemotaxis, which was first described in 1881

by Engelmann [36] and in 1884 by Pfeffer [37]. Chemotaxis describes the migration

of cells in response to an external stimulus. This response can be attracting (positive

chemotaxis), i.e. the migration occurs towards the stimulus, or repellent (negative

chemotaxis), i.e. the migration goes away from the stimulus. Accordingly we dis-

tinguish between chemoattractants and chemorepellents, which are in general called

chemokines. The behaviour of migrating cells in response to different chemokines was

studied in isolation intensively using cell cultures [38–40]. However, immune cells in

an organism are subject to a combination of different chemokines. Because of that

the cell migration process results from the integration of all surrounding signals.

1.3.4 Chemokines and Cytokines in inflammation and wound healing

During inflammation and the early stages of wound healing chemokines are produced,

which result in the recruitment of immune cells to the site of inflammation. The

chemokines activate specific receptors and regulate downstream mechanisms. Apart

from the release of cytokines, reactive oxygen species (ROS) are produced, which

help to decontaminate the tissue [41]. The cytokines, as well as chemokines, which

are released during inflammation can be distinguished in pro-inflammatory and anti-

inflammatory cytokines / chemokines. Leukocytes release in the first stages of inflam-

mation pro-inflammatory cytokines, interleukin-1α and -β. Other pro-inflammatory

molecules are interleukin-6, the chemokine CX3C, TGF-β and TNF-α [42]. Latter

is mainly produced by macrophages and regulates other immune cells. TNF-α is

directly involved in the apoptotic cell death and therefore links back to the depletion

of neutrophils to facilitate the repair processes during wound healing [42]. The main

anti-inflammatory cytokine is interleukin-27, which is produced by macrophages.
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Interleukin-27 regulates the Il-27 receptor as well as the STAT3 pathway and therefore

influence the activity of B-lymphocytes and T-lymphocytes [43].

1.4 INVESTIGATION OF CELL MIGRATION

In this section we will present classical methods to investigate cell migration. We will

show the advantages of the zebrafish as a suitable experimental model and introduce

the mathematical models of leukocyte migration that have been considered thus far.

1.4.1 Cell migration assays

Leukocyte recruitment is an essential and early component of the inflammatory re-

sponse to local injury [17]. It was first described in 1881 (T. W. Engelmann) that

leukocytes perform chemotaxis, i.e. move upwards a chemical gradient to find the

source of an injury [44]. Leukocyte migration has been studied extensively using the

so-called chamber system [45, 46, 46, 47]. Isolated cells are positioned in one part

of the chamber, while a chemoattractant is placed in the other part. Several types

of chambers have been created. The Boyden chamber uses a top-bottom configura-

tion [38]. The Zigmond chamber is based on a sidewards organisation [48], while the

Dunn chamber has a centric arrangement [49]. These experimental setups are able

to evaluate how many cells migrate from one side of the chamber to the other in a

given time. In this way several chemical components can be tested whether or not

they can act as chemoattractants. These simple assays do not, however, aim to probe

the actual process of migration.

A more advanced technology are microfluidic devices [40, 50]. Jeon et. al. con-

structed a system, which produces a stable gradient of a chemoattractant over time

[40]. The gradient shape can be chosen by the experimentalist. This allows re-

searchers to study the migration behaviour of a cell in gradients of chemoattractants

as well as chemorepellents and facilitates a dynamical analysis. The major problem

of these methods is the unnatural environment that does not reflect the presence of

an organism, which is known to impact the migration process. An example would be

the structure of the extracellular matrix: a migrating cell is interacting via membrane

receptors with components of the matrix. These components are difficult to mimic in

a microfluidic device. A novel platform that aims to collect and integrate data about
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the molecular details of cell migration is the cell migration gateway (CMG) [51].

We will use these concepts in chapters 3 and 4, where we will investigate the

migration of macrophages and neutrophils.

1.4.2 Zebrafish as an experimental model

Many, if not most, open problems in biomedical research involve questions related to

whole organism biology. Despite the wealth of insights provided by molecular and cell

biology, genetics and genomics, we still do not understand most of the tissue-level,

physiological and organism-level processes underlying e.g. development, health and

disease. In-vivo studies allow us to investigate biological processes at the level of the

organism.

The zebrafish is an attractive model in which to study inflammation and the im-

mune system as we can combine in vivo imaging of immune processes with molecular

analyses that probe or interfere with the molecular signalling processes underlying

the immune response.

The innate immune system of a zebrafish, which closely resembles that of mam-

mals, is fully competent at early embryological stages before the emergence of lym-

phocytes allowing dissection of innate responses in the absence of adaptive immunity.

Several studies have demonstrated that tail fin wounding in zebrafish embryos, in-

cluding tail transections, medial fin incisions and laser induced wounds result in the

migration of leukocytes to the site of tissue damage [52–56]. This migration is de-

pendent in part on a hydrogen peroxide gradient produced at the wound margin [57].

How leukocytes respond to this and other signals and reach the decision to migrate

towards and remain at the site of injury or infection is only incompletely understood.

In particular, it is not known what determines the precise nature and magnitude

of the innate immune response, or how individual cells “decide” whether to engage

with immune stimuli. Different mechanisms have been proposed: cytokine signalling

or sensing of extracellular hydrogen peroxide concentrations could (i) either alter the

speed at which leukocytes migrate towards the origin of these signals, (ii) or the num-

ber of cells recruited to and retained at the site of injury. Being able to distinguish

between these two mechanisms is of fundamental importance for understanding the

processes by which immune system cells reach decisions. Ultimately, being able to
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manipulate or guide these processes will open up novel therapeutic opportunities.

Previous studies in zebrafish have addressed several aspects of leukocyte migra-

tion in isolation: we know, for example, that innate immune cells in zebrafish embryos

activated by wounding alone or by bacterial infection express adaptor molecules asso-

ciated with TLR (Toll-like receptor) mediated signalling [58] and that LPS can induce

the expression of inflammatory cytokines [59] and the activation of NF-κB [60]. The

p38 MAPKs are stress-activated proteins central to cellular responses induced by ex-

ternal stimuli and due to their role in the response to pro-inflammatory cytokines are

considered candidate drug targets for treatment of a broad range of inflammatory

diseases [39, 61–63].

The MAPK pathways are important mediators of cellular responses to inflam-

matory signals including leukocyte migration behaviour. During inflammation the

MAPK signal transduction pathway is activated. The activation of p38 MAPK as

well as regulating the production of inflammatory mediators regulates the effector

function of leukocytes by controlling their migration in response to inflammatory

stimuli [64, 65]. p38 MAPK is involved in the regulation of pro-inflammatory cy-

tokine expression, and therefore directly influences the behaviour of macrophages

and neutrophils [66]. Furthermore p38 MAPK regulates the inducible NO synthase,

which is essential for neutrophils during the oxidative burst phase [66]. A much

studied but still little understood anti-inflammatory component is the p38 inhibitor

SB203580. Many in vitro studies, as well as studies on cell cultures show that in-

hibiting p38 results in a decreased straightness index, velocity and recruitment of cell

numbers under acute injury and/or when stimulated with LPS [67, 68]. However,

some studies report contradictory effects [69, 70]. The use of p38 inhibitors in clinical

trials did also not fully confirm the anti-inflammatory behaviour.

Another molecule of the MAPK pathway is JNK (JUN N-terminal kinase). Sev-

eral JNK substrates are known to impact actin regulation and cytoskeleton remod-

elling, including MAP1B, MAPA2, DCS and SCG10. These substrates are likely to

play an important role during inflammation and cell migration processes [67, 71–

73]. JNK has recently been shown to play an important role in insulin-resistance

induced by obesity [74]. Studies have been conducted using the anti-inflammatory

JNK-inhibitor SP600125. However, the overall role of JNK during inflammation still

remains unclear.
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The optical translucency of zebrafish, together with the availability of transgenic

lines that express fluorescent proteins under myeloid lineage specific promoters, allows

real-time imaging of migrating leukocytes in response to inflammatory stimuli [53,

54, 56, 58, 71]. These imaging data can be analysed using automated image analysis

and cell tracking [75]. We will make use of these principles in chapter 3.

1.4.3 Models of cell migration

The underlying mechanisms that lead to migration of eukaryotic cells have been

studied over the last decades. Several types of mathematical models were formulated

and investigated. In this section we will focus on the biological motivation of these

modelling approaches, while we will present the mathematical background in chapter

2.

The mathematical modelling approaches can be classified as follows: (i) stochastic

models of random walks; (ii) Monte Carlo modelling approaches; (iii) force based

dynamical models and (iv) biochemical models of cell migration. The first class,

stochastic models, have been investigated by Tranquillo et. al. [76, 77] and Stokes et.

al. [78, 79]. Both describe cellular motion as persistent random walks by numerically

solving the Langevin equation. In this way the model generates single cell tracks, but

also captures whole population dynamics. However, the details about the biochemical

or biophysical mechanisms can not be investigated with such an approach. The

initial 2D migration model was later extended to 3D by Parkhurst et. al. [80]. In

recent years these type of models have been further developed to account for more

complicated types of random walks and for random walks in crowded environments.

Examples include the work by Painter [81] and Murray [82].

The Monte Carlo modelling approaches have been applied by Zaman et. al.

[83, 84] to describe cell migration on lattices in 2D as well as in 3D. Short simulation

times are the major advantages of these type of models. Furthermore the model

description can incorporate simple rules that determine cell migration. Recently,

Kim et. al. [85] published a dynamic model of cell migration on planar substrates,

which combines Monte Carlo simulations with a force based description of the cell

migration process.

The force based dynamical models aim to describe the biophysical processes of
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cell migration. This includes the interaction of the cell with the surface (matrix)

that it is located on, as well as the resulting change in cell shape. The cell tracks

are simulated based on internally generated traction forces. The model describes

the biophysical process by introducing parameters that describe the matrix stiffness,

the matrix density and the cell-matrix adhesivity. This type of cell migration model

provides more detailed insights into the cell migration process of a single cell, but it

is so far not suited to describe the population behaviour. A well established example

of a forced based dynamical model was published by Zaman et. al. [86].

The biochemical models of cell migration aim to describe the intracellular and/or

extracellular signalling processes that lead to cell migration. The most described pro-

cesses are the polarisation of intracellular signalling, actin cytoskeleton remodelling

and focal adhesion signalling. Although first steps towards a detailed mathematical

model have been made [87], the main task here is still to reconstruct the pathways

that regulate these processes. The cell migration gateway [88] aims to collect all

available information in order to facilitate a thorough mathematical analysis of these

signalling cascades.

Several approaches have been published that model more specifically the migra-

tion of leukocytes in response to chemokines. The above mentioned work by Tran-

quillo et. al. [77] in 1988 presents a stochastic model for leukocyte chemotaxis. The

model is based on receptor binding fluctuations and captures two observations from

cell culture experiments: (i) in a uniform chemoattractant source the migrating cell

shows a persistent random walk; (ii) in a gradient of chemoattractants the cell is

migrating towards higher chemoattractant concentration in a biased random walk

manner. They assume that a cell polarises during the migration process and that

the cell polarity is maintained during every step. The polarity is modelled based on

noise in the cellular signal response mechanisms. This model ignores the details of

the underlying molecular processes such as kinase signalling cascades.

Since more experimental data about chemotaxis became available, Onsum et.

al [87] constructed a mathematical model of neutrophil gradient sensing, which is

based on the underlying signalling cascades. Using partial differential equations they

model actin polymerisation at the front of a cell. This polymerisation results from

the local activation of the phosphatidylinositol-3-kinase (PI3K) and Ras signalling

pathway, which ion turn leads to the translation of an external stimulus gradient to
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an intracellular gradient of signalling molecules. Although the authors dramatically

simplify the shape of a migrating cell as a constant two dimensional box, the model

shows the importance of spacial models to explain the migration process.

This already complex model ignores cellular morphology (and its changes) and

it does not describe the actual migration process of the cells. A detailed analysis

that describes changes in the cellular morphology was proposed in the same year

[89]. Later different groups focussed on the capability of leukocytes to sense external

signals [90]. Recently the movement of leukocytes was described by modelling the

extension of pseudopodia [91].

These modelling approaches consider either the sub-cellular processes (e.g. pro-

duction of internal gradients) or the cellular migration processes in response to chem-

ical gradients. Here we present the first approach to integrate these two scales into

one model that also contains intracellular signalling processes (3).
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Theoretical background

2.1 RANDOM WALKS

2.1.1 History

In 1827 the scottish botanist Robert Brown (1773 - 1858) observed a jittery motion

of particles suspended in water under the microscope. The movement seemed to

be continuous and without any regularity and therefore completely random. Even

though Brown himself did not propose any theory that describes this motion, the

process by which a molecular particle is moving was later described as Brownian

molecular motion. This problem of such a random process, although observed much

earlier, was not mathematically investigated until 1905, when Karl Pearson sent a

letter to the journal Nature formulating the problem of a random walker and asking for

help on this matter (figure 2.1A). The main important response to this proposal was

from Lord Rayleigh, pointing out that this problem was published and investigated

in 1880 and 1899 in the field of soundwaves in heterogeneous materials (see figure

2.1B). Indeed, random walks had been investigated under a different terminology.

Karl Pearson summarises the letter from Lord Rayleigh in the same issue of

Nature with: “The lesson of Lord Rayleigh’s solution is that in open country the most

probable place to find a drunken man who is at all capable of keeping on his feet is

somewhere near his starting point!” The communication between Karl Pearson and
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2.1. Random walks

Figure 2.1: Random walks in early literature. Text passage from the
journal Nature (Volume 72, p. 294 and p. 318, 1905). Communication between
Karl Pearson (A) and Lord Rayleigh (B).

Lord Rayleigh drew attention to mathematicians and physicists like Einstein (1905,

1906), Smoluchowski (1916) or Ornstein and Uhlenbeck (1930), to name just a few.

We will introduce several types of random walks, which are also used in biology to

describe animal movement, cell movement, as well as the motion of molecules. A

good overview about random walks in biology can be found in [92, 93].

2.1.2 Isotropic random walks

The most basic random walk is the isotropic random walk. Let us imagine a random

walker on a straight line, starting at position, x = 0. In each time step, τ, our random

walker can either move a step to the left or a step to step right with equal probability
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q, i.e. q = 1/2. We assume for now that the step length is constant, l. We then want

to know the probability that our random walker is at position x∗ = nl after N time

steps, i.e. after time Nτ. This problem has been solved in several ways [94–96]. In

the discrete case, after one time step τ the walker can be either at position x = l or

x = −l with probability 1/2. In the following tie step τ the walker will be at position

x = 2l with probability 1/4, at position x = −2l with probability 1/4, or at its origin

x = 0 with probability 1/2. Continuing this logic for N time steps, the probability of

the walker being at position x = nl is described by the binomial distribution

p(n,N) =

(
1

2

)N
N!

( 1
2
(N + n))!( 1

2
(N − n))!

=

(
1

2

)N(
N
N−n
2

)
. (2.1)

This equation is valid for even n and N. For large N the binomial distribution

converges to the Normal distribution [97]:

limp(n,N) =

(
2

Nπ

)1/2
exp

(
−n2

2N

)
. (2.2)

Using the fact that n is even as well as the above described relations x = nl and

t = Nτ we define.

P(x, t)dx = p

(
x

l
,
t

τ

)
1

2l
dx. (2.3)

The probability of being between the positions x and x + dx is then given by

p(x ∈ (x, x + dt), t) =
1√
2πl2 t

τ

e
− x2τ

2l2t dx. (2.4)

Analysing the limits τ, l→ 0 with the constant l2/τ = 2D, we obtain

p(x ∈ (x, x + dt), t) =
1√
4πDt

e−
x2

4Dt dx. (2.5)

Equation 2.5 is the standard solution of the diffusion equation. Apart from its prob-

ability distribution, several characteristics can be measured of the one-dimensional

isotropic random walk, such as the mean position

〈x〉 =
∫∞
−∞ xP(x, t)dx = 0 (2.6)

and the mean square displacement

〈x2〉 =
∫∞
−∞ x

2P(x, t)dx = 2Dt. (2.7)

This description of the one-dimensional isotropic random walk can be extended to

higher dimensions. While the diffusion equation in one dimension is given by

∂P

∂t
= D

∂2P

∂x2
(2.8)
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the same process in r dimensions is described by

∂P

∂t
= D

(
r∑
i=1

∂2

∂2xi

)
P. (2.9)

The standard solution of equation 2.9 is then given by

p(x, t) =
1√

(4πDt)r
exp

(
−

∑r
i=1 x

2
i

4Dt

)
. (2.10)

Figure 2.2 visualises the solution of the diffusion equation for the diffusion coefficients

D = 1 (A) andD = 5 (B) for different time points, t. It is important to note that these

solutions are only valid for a large number of time steps, N, because the derivation of

equations 2.5 and 2.10 assumes the limit N → ∞ to obtain the normal distribution

from the binomial distribution. The same fact was stated by Lord Rayleigh (1880,

1899) as mentioned in the previous section 2.1.1.

Figure 2.2: Solution of the diffusion equation. Equation 2.10 is plotted
for three different time points: t = 1 black lines; t = 5 blue lines; t = 10 red
lines. The diffusion coefficient was chosen D = 1 (A) and D = 5 (B).

2.1.3 Derivation of the diffusion equation

We will now derive the one-dimensional diffusion equation as defined in equation 2.8,

as done for example in Strauss (2008) [98]. Imagine we have a liquid in a pipe to

which we add a coloured dye. The dye is then diffusing through the liquid from higher

to lower concentrations. We describe the concentration of the dye at position x and

time t with P(x, t). The total amount of the dye between x0 and x1 at time t is then

given by

A(t) =

∫x1
x0

P(x, t)dx. (2.11)
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We then have

∂A

∂t
=

∫x1
x0

∂P(x, t)

∂t
dx. (2.12)

Applying Fick’s Law [99], which states

∂A

∂t
= D

∂P(x1, t)

∂x
−D

∂P(x0, t)

∂x
, (2.13)

with D > 0. Therefore combining equation 2.12 and 2.12 results in

∂A

∂t
=

∫x1
x0

∂P(x, t)

∂t
dx = D

∂P(x1, t)

∂x
−D

∂P(x0, t)

∂x
. (2.14)

The derivative of equation 2.14 with respect to x1 is then

∂P(x1, t)

∂t
= D

∂2P(x1, t)

∂x2
(2.15)

which can be written as ∂P(x,t)
∂t

= D∂2P(x,t)

∂x2
and therefore results in the diffusion

equation as presented in equation 2.8.

2.1.4 Biased random walks

Using similar methods as for the derivation of the simple isotropic random walk de-

scribed in the previous section we can now look at more complicated random walk

behaviours. So far we assumed that for a one-dimensional random walk the proba-

bility of going left or right is equal to 1
2
. Let us now consider a situation in which

the random walker is subject to a constant force, F, which drags him stronger to the

right. The movement is then a biased random walk, which is also described as a

random walk with drift. In each time step, τ, the random walker is moving (with

constant step size, l) to the right with probability q1, and to the left with probability

q2, where q1 + q2 = 1. In the case the drift is towards the right we have q1 > q2.

Note that if q1 = q2 the walk is unbiased and reduces to the isotropic random walk.

This process can then be described with the drift-diffusion equation

∂P

∂t
= D

∂2P

∂x2
− v

∂P

∂x
, (2.16)

where v = q1 − q2. The solution of this equation is

p(x, t) =
1√
4πDt

e−
(x−vt)2

4Dt . (2.17)

For the one dimensional biased random walk mean position is 〈x〉 = vt and the mean

square displacement is 〈x2〉 = 2Dt+ v2t2. A biased random walk in r dimensions can

30



2.1. Random walks

be described by the partial differential equation

∂P

∂t
= D

(
r∑
i=1

∂2

∂2xi

)
P − v

(
r∑
i=1

∂

∂xi

)
P, (2.18)

which has the standard solution

p(x, t) =
1√

(4πDt)r
exp

(
−

∑r
i=1 (xi − vt)

2

4Dt

)
. (2.19)

Equation 2.18 is a special case of the so called Fokker-Planck equation with constant

diffusion coefficient D [100].

2.1.5 Persistent random walks

The types of random walk introduced so far can be described as a Markov process,

in which the step of the walker at time t + 1 is independent of the previous step at

time t, but only in the position where it is at time t, i.e. the walk is uncorrelated.

Other possible types of motion are correlated random walks, where the walker has

higher probability of keeping its direction than changing it. This tendency is also

described as persistence and the corresponding motion as persistent random walk.

Such a process is fully governed by

∂2p

∂t2
+ 2λ

∂p

∂t
= ν2

∂2p

∂x2
, (2.20)

where λ is the probability to keep the direction and ν is the velocity. Equation 2.20

is the so called unbiased telegraph equation. In 1951 Goldstein showed that the

telegraph equation delivers the full description of the persistent random walk [101],

although it was first investigated by Lord Kelvin in the field of signal propagation

in the transatlantic telegraph cable. A solution of the telegraph equation in one

dimension was provided 1953 by Morse and Feshbach [102]. They showed that given

the initial conditions p(x, 0) = δ(x) and ∂p
∂t

(x, 0) = 0 the solution

p(x, t) =


e−λt

2

{
δ(x + νt) + δ(x − νt) + λ

ν

(
I0(Z) +

λt
Z
I1(Z)

)}
if |x| < νt

0 if |x| ≥ νt
(2.21)

satisfies equation 2.20 with Z = λ
√
t2 − x2/ν2 and the modified Bessel function of

first kind I0 and I1. By applying equation 2.6 to equation 2.20 we obtain the mean

position of the persistent random walk, which is 〈x〉 = 0. If we compute the mean

square displacement according to equation 2.7 we obtain

∂2〈x2〉
∂t2

+ 2λ
∂〈x2〉
∂t2

= 2ν2. (2.22)
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Under the assumptions ∂p(x,0)
∂t

= 0 and p(x, 0) = δ(x) we obtain the initial conditions

of equation 2.22 as

〈x2(0)〉 = ∂〈x2(0)〉
∂t

= 0 (2.23)

and the solution of the same equation 2.22 results in the mean square displacement

〈x2(t)〉 = ν2

λ

(
t −

1

2λ
(1 − e−2λt)

)
. (2.24)

One can show that for very small t the mean square displacement is approximately

〈x2(t)〉 ∼ ν2t2, and for large t it is 〈x2(t)〉 ∼ ν2

λ
t.

Both the uncorrelated biased random walker and the correlated (persistent) un-

biased random walker have at each step a higher probability for a certain direction.

However, the persistent random walk is not biased, because the direction does not

depend on a global force that drives the walker. It only depends of the previous step

and could be seen as a localised bias.

A combination of the latter two described random walks results in a process

called biased persistent random walk. This type of motion can be described in one

dimension by the biased telegraph equation

∂2p

∂t2
+ (λ1 + λ2)

∂p

∂t
+ (λ1 − λ2)

∂p

∂t
= ν2

∂2p

∂x2
, (2.25)

where λ1 and λ2 are the frequencies of keeping the direction and changing the direc-

tion, respectively. Note that for λ1 = λ2 equation 2.25 simplifies to the equation of

the unbiased persistent random walk 2.20.

In chapter 3 and 4 we will apply the random walk theory to investigate leukocyte

migration as part of the innate immune response.

2.2 BAYESIAN INFERENCE

2.2.1 History

Bayesian inference is based on Bayes theorem, which was named after Thomas Bayes

(1702 - 1761). Thomas Bayes provided the proof of a special case of the theorem.

Later Pierre-Simon Laplace (1749 - 1827) proved the general Bayes theorem and ap-

plied it in several fields such as statistics and mechanics [103]. There are two major
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schools of thought in statistics: the frequentist and the Bayesian approaches [104–

106]. In the early 20th Century the frequentist approach was dominating most fields

in statistics, and only slowly throughout the century statisticians payed increased

attention to Bayesian approaches. In Bayesian inference there are two main inter-

pretations of probability, which divide the community into those favouring objective

Bayesian inference and subjective Bayesian inference, respectively [107–109]. In the

last 30 years, as new computational resources as well as Markov chain Monte Carlo

methods [110] became available, Bayesian inference started to receive increased at-

tention, and the research field of Bayesian inference grew among mathematicians,

statisticians as well as physicists [15, 111, 112].

2.2.2 Bayes theorem

Let A and B be two random variables. We want to determine the probability of A

given a specific B, i.e. P(A|B). Bayes theorem states:

P(A|B) =
P(B|A)P(A)

P(B)
, (2.26)

where P(∗|∗) is the conditional probability, P(A) and P(B) are the probabilities of A

and B. In the following section we will show the main concepts of Bayesian inference,

which is based on equation 2.26

2.2.3 Model based Bayesian inference

Considering equation 2.26 and replacing A by parameters, Θ, of a given model, B

by the evidence in form of collected data D, and the probabilities P by probability

density functions p we can write

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
, (2.27)

where p(Θ) is the prior probability distribution, or short prior, of the model param-

eters before observing the data D, and p(D|Θ) is the likelihood of observing the data

under the model with parameters Θ. We will call the conditional probability density,

p(Θ|D), the posterior distribution. Bayes theorem shows that the posterior distribu-

tion is proportional to the likelihood and the prior. p(D) is the probability of the

data, which is independent of the model and sometimes referred to as the marginal
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likelihood. It can be seen as a constant factor c, where

c =

∫
p(D|Θ)p(Θ)dΘ. (2.28)

This constant is important to normalise the posterior distribution so that it integrates

to 1. In summary, to obtain the posterior distribution, p(Θ|D), we have to compute

the product of the likelihood and the prior. In the following sections we will explain

the main three components of Bayesian inference in more detail and show how we can

use approximate methods in cases where the computation of the likelihood is costly

or not possible.

2.2.4 The prior distribution

The prior distribution, p(Θ), (or prior) expresses the amount of uncertainty in the

parameter Θ before the data are taken into account. Because in Bayesian inference

the prior is multiplied by the likelihood to obtain the posterior distribution, the prior

affects the posterior directly (see equation 2.27). Depending on the characteristics of

the prior it contains different amounts of information about the parameter Θ. The

parameters that describe the actual prior distribution, if an analytic or otherwise con-

venient form is available, are called hyperparameters. According to the information

content of the prior we distinguish between different types of priors: the informative

prior and the least informative prior [113].

The informative prior is often used when pre-evidence is taken into account. Pre-

viously collected data might guide the settings of the prior for new data. Note that

in any case the conventional Bayesian inference scheme requires that the prior is not

informed by the data used during the inference [113]. However, a first inference could

result in a posterior, which then could be used as an informative prior when new data

are collected. Informative priors are often normal distributions with the mean guided

by an expert or by previous knowledge [113].

In the case of the least informative prior the aim is to reduce the information

content as much as possible to obtain a posterior distribution which mainly depends

on the likelihood and therefore on the model and data only. An example of least

informative priors are flat priors, where

Θ ∼ U(−∞,+∞). (2.29)
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Such a prior is not really informative by itself. A variation would be to define the

boundaries of the uniform distribution as finite values. This is often done in biological

problems when we know a parameter can not be negative or larger than a certain

number. Note that the class of least informative priors used to be considered and

referred to as the non-informative prior. The term non-informative prior was however

misleading, because the majority of priors contain some information [107].

2.2.5 The likelihood

The likelihood is defined as [114]

p(D|Θ) =

N∏
i=1

p(D1|Θ), (2.30)

where N is the amount of collected data D. In order to obtain the posterior distribu-

tion, the likelihood must be completely specified. In cases where this might not be

possible or computationally very expensive, the likelihood can be approximated as

we will explain later in this chapter. The likelihood only depends on the model and

the data. Because of that Bayesian inference follows the rule that any two models,

which have the same likelihood, will result in the same posterior distribution for the

parameter Θ. This is also known as the likelihood principle.

2.2.6 The posterior distribution

The posterior distribution p(Θ|D) balances the prior information with the information

contained in the data via the likelihood. In most real-world applications it is a

multivariate distribution. The main advantage of the Bayesian posterior compared

to other methods is that the posterior distribution carries more information than a

single point estimate. The univariate components, p(Θi|D), called marginal posterior

distributions, can be summarised into a single value using e.g. the mean or the

median. But the spread, such as the variance, does provide additional information

about the confidence of the estimate. The spread of the distribution also contains

information about the sensitivity of the system to a given parameter Θi: a large

spread indicates low sensitivity, while a small spread indicates high sensitivity of the

system to the parameter [115].
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2.2.7 Numerical approximations

In many systems it is difficult to compute the likelihood [116]. This can have several

reasons, for example, because the system is too complex, the data structure is too

complex or the system is formulated with stochastic differential equations (SDE)

rather than with ordinary differential equations (ODE). In these situations it is still

possible to apply Bayesian inference by approximating the likelihood and therefore the

posterior distribution. Several so called approximate Bayesian computation (ABC)

methods have been developed [117–120]. Here we will introduce the most simple

ABC rejection sampler [117] and the more advanced ABC based on a sequential

Monte Carlo framework (SMC) [15].

The ABC rejection sampler contains the general principle of all ABC methods.

The algorithm is:

step 1: sample θ∗ from the prior p(θ)

step 2: simulate the system with θ∗ to obtain y∗

step 3: if d(D,y∗) ≤ ε, accept θ otherwise reject

step 4: return to step 1

In this algorithm the calculation of the likelihood is replaced by comparing the col-

lected Data D with simulated data y (step 3). This introduces a tolerance, ε, which

represents the minimal distance, d, between the collected data, D, and the simulated

data, y∗, using parameter Θ∗.

ABC SMC was developed to estimate parameter of dynamical models. Therefore

the most common task here is to compare time series data. In this case the Euclidean

distance is often used for the distance function d, but in general any metric is possible

[111]. So far no detailed studies have been presented to investigate the influence of

the chosen distance function on the approximated posterior distribution. Sometimes

it might be of use to apply a distance function, which describes the relative deviation

from the reference data, instead of the absolute deviation (as it is the case for the

euclidean distance). The distance function closely links to the summary statistic of

the data. In the case of time series data, we directly use each data point to compute

the distance. However, in other fields, for example population genetics, it is necessary

to compute a summary statistic. Here, the problem of defining the sufficient summary
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statistic appears, which was also discussed in [121].

The resulting distribution from the ABC rejection sampler is a sample from

p(Θ|d(D,y∗) ≤ ε) and one can show that if ε → 0 the distribution p(Θ|d(D,y∗) ≤

ε) → p(Θ|D). The simple ABC rejection sample can be computationally very ineffi-

cient in cases where the posterior differs strongly from the prior, which decreases the

acceptance rate. To increase the acceptance rate and therefore the efficiency other

ABC based algorithms have been developed: ABC MCMC [119] and ABC SMC [15].

ABC MCMC uses a Markov chain Monte Carlo approach to efficiently sample from

the parameter space. We will focus on the ABC SMC scheme, as this algorithm has

been used and was further developed throughout this thesis.

Figure 2.3: Inference scheme ABC SMC. The parameters, also called
particles, are initially sampled from a prior distribution and tested wether or
not they result into d(D,y∗) ≤ ε1. The accepted particles build the first
intermediate distribution. Particles are then sampled from the intermediate
distribution, perturbed and tested with the next tolerance value. This proce-
dure is repeated until population T , where εT is small enough to approximate
the posterior distribution. (Figure adapted from Secrier et al. [122].)

The aim of ABC SMC compared to the simple ABC rejection sampler is to de-

crease the computational cost. This is achieved by increasing the acceptance rate by

introducing a tolerance schedule {ε1, ε2, ...εT }, so that at each step the acceptance

rate is sufficiently high. This introduces a set of so called populations. In the first

population the ABC SMC proceeds like the ABC rejection sampler, i.e. a parameter

sample from the prior distribution is drawn; the model is simulated and the output is

compared to the collected data using the first tolerance, ε1. In the next population

the parameter sample is drawn from the first accepted intermediate distribution, after
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perturbing the parameters. This will continue until population T . At each step the

accepted distributions get closer to the final approximated posterior distribution (see

figure 2.3).

The ABC SMC scheme proceeds as follows [111]:

step 1: define a tolerance schedule ε1, ...εT

set t = 0

step 2: set i = 1

step 3: if t = 0: sample θ∗ from prior p(Θ)

else: sample θ∗ from previous population {Θ
(i)
t−1}

with weights wt−1

perturbation of θ∗ results in θ∗pert

if p(θ∗pert)=0: return to step 3

else: simulate y∗ using p(θ∗pert)

if d(D,y∗) ≤ εt: go to step 4

else: return to step 3

step 4: set θ
(i)
t = θ∗pert

calculate the particle weight w
(i)
t

if i < N: set i = i + 1 and go to step 3

else: go to step 5

step 5: normalise wt

if t < T: set t = t + 1 and go to step 2

The perturbation of the particle Θ∗ is done using a perturbation kernel Kt(Θ|Θ
∗).

In Toni et. al (2010) [15] the Kt was set to be a random walk, either Gaussian or

uniform distributed. The resulting weight of particle Θ
(i)
t is computed as

wt =


1, if t = 0

p(Θ
(i)
t )∑

N
j=1

w
(j)
t−1

Kt(Θ
(j)
t−1

,Θ
(i)
t )

if t > 0
(2.31)

Further details about how to perturb the sampled parameters and how to compute

the weights can be found in [15]. In recent years the perturbation of the particles has

been investigated to further increase the efficiency of the ABC SMC algorithm [123].
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2.2.8 Bayesian model comparison

The Bayesian equivalent of classical frequentist hypothesis testing is Bayesian model

selection, which revolves often around the so-called Bayes factors. The Bayes factors

where introduced by Harold Jeffreys in 1961 [116]. Using the Bayes theorem in

equation 2.26 the posterior model probability p(M|D) of a model M is

p(M|D) =
p(D|M)p(M)

p(D)
, (2.32)

where the model M is parameterised with parameters Θ. If we want to compare two

models M1 and M2 with their parameters Θ1 and Θ2 respectively, we can calculate

the Bayes factor B as

B =
p(D|M1)

p(D|M2)
=

∫
p(Θ1|M1)p(D|Θ1,M1)dΘ1∫
p(Θ2|M2)p(D|Θ2,M2)dΘ2

. (2.33)

A value of B > 1 indicates that the data D support M1 with higher probability than

M2, and vice versa if B < 1. It can be difficult to compute Bayes factors, but they

can be approximated with the Laplace-Metropolis estimator [124, 125].

The concepts of Bayesian parameter inference and model comparison will be used

in chapter 4 and 5 to investigate models of cell migration and other signalling cascades.

2.3 BAYESIAN EXPERIMENTAL DESIGN

2.3.1 History

Ever since experiments have been performed the problem of finding the experiment

with the highest information arose naturally. The first significant publications on

experimental design in a mathematical framework appeared in the early 20th cen-

tury. In 1918, Smith [126] investigated the problem of optimal design in polynomial
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regression. In general, decision theory was very popular during the time of the sec-

ond world war [127]. In 1943, Wald formulated the problem of experimental design

in a mathematical way [128]. Throughout the following years statisticians, like Bose

(1948), Karlin and Studden (1966), Stigler (1971) or Kurotschka (1978), developed

concepts and methods for optimal experimental design [129–132]. Increasingly these

approaches borrowed from information theory, first developed by Shannon in the

1940s. A important theory for optimal design was developed by Kiefer and Wol-

fowitz [133]. Although their theory had a strong impact on the development of new

concepts, only little attention was paid to it in practice. The main criticism was that

their concepts assumes the model is absolutely exact. This assumption raised doubts

about the robustness of the derived optimal designs. Most optimal design strategies

until then aimed to find the best experimental design to estimate the parameters

of a system. Only later the concept of assessing the model predictive power was

developed.

The first publication about Bayesian experimental design appeared 1956 by Lind-

ley [134]. He measures the information that is provided by an experiment under the

consideration of prior knowledge. His measure is based on earlier work by Shannon

in 1948 [135]. In the following section we will introduce the concept of Bayesian

experimental design and relate it to the work of Shannon and Lindley.

2.3.2 Mathematical formulation

We have a system that we can describe mathematically with parameters Θ. We want

to estimate Θ using observed data D resulting from an experiment q. We then want

to chose q from a set of possible experiments Q, so that the data under q provide

us with the most information about Θ. Using Bayes theorem (equation 2.26) we can

write:

p(Θ|D,q) =
p(D|Θ, q)p(Θ)

p(D|q)
, (2.34)

where p(Θ|D,q) is the posterior distribution under experiment q and its data D,

p(D|Θ, q) is the likelihood, p(Θ) is the prior distribution and p(D|q) is the probability

density of the data D under the experiment q. p(D|q) can be evaluated as

p(D|q) =

∫
p(Θ)p(D|Θ, q)dΘ (2.35)
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and equation 2.34 can be written as

p(Θ|D,q) =
p(D|Θ, q)p(Θ)∫
p(Θ)p(D|Θ, q)dΘ

. (2.36)

To determine the experiment q in Q, which provides the most information about Θ

we have to define the utility of the experiment U(q):

U(q) =

∫
U(D,q)p(D|q)dD, (2.37)

where U(D,q) is a utility function, which contains the cost and gain of performing

experiment q with the resulting data D and parameter Θ. This means U(D,q) is

a function of the posterior distribution p(Θ|D,q), which is obtained from collected

data D of the experiment q. The aim is now to maximise the expected utility over

all experiments q in Q.

2.3.3 The expected utility function

The expected utility function can be defined as the information gain from the prior

distribution to the posterior distribution. In the case of parameter estimation, or

estimation of functions of these parameter, the Shannon entropy can be used to asses

the information gain [135]. The Shannon entropy H is defined for a discrete random

variable X as

H(X) = EX(I(X)) = E(−ln(p(X))), (2.38)

where EX is the expected value of X, I is the information content of X and p(X) is the

probability mass function of X. In the continuous case equation 2.38 can be extended

to

H(X) = −

∫+∞
−∞ p(x)ln(p(x))dx. (2.39)

The utility function is then

U(D,q) = −H(p(Θ|D,q))+H(p(Θ)) =

∫
ln(p(Θ|D,q))p(Θ|D,q)dΘ−

∫
ln(p(Θ))p(Θ)dΘ

(2.40)

The equivalent to computing the change in Shannon entropy from prior to posterior

distribution is the Kullback-Leibler divergence [136] DKL as

U(D,q) = DKL(p(Θ|D,q)||p(Θ|q)). (2.41)

For continuous distributions A and B the Kullback-Leibler is defined as

DKL(A||B) =

∫∞
−∞ ln

(
a(x)

b(x)

)
a(x)dx, (2.42)
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with a and b being the probability densities of A and B [136]. Lindley showed that

by using equation 2.40 in equation 2.37 the expected utility of an experiment U(q)

can be written as

U(q) =

∫ ∫
ln(p(Θ|D,q))p(Θ,D|q)dΘdD −

∫
ln(p(Θ))p(Θ)dΘ. (2.43)

To determine the optimal experiment it is necessary to maximise U(q), i.e. to max-

imise the right hand-site of equation 2.43. The second term, however, only depends

on the prior distribution but not on the experiment q and therefore does not need to

be computed to select the optimal experiment.

To calculate such a utility function it is often necessary to solve high dimen-

sional integrals and optimisation problems. For linear models it might be possible to

solve the integrals analytically, but nonlinear models require approximations of the

integrals. Examples of such approximations are Monte Carlo integration, Laplace

integration or numerical quadrature [16, 137].

Other utility functions, such as quadratic loss functions and asymmetric loss

functions, have been explored and applied to various design problems [16, 137]. The

choice of the utility function always depends on the proposed design problem.

2.3.4 Mutual information

The above described concept can be directly linked to the concept of mutual informa-

tion. For two continuous random variables x and y the mutual information is defined

as

I(X, Y) =

∫
Y

∫
X

ln

(
p(x, y)

p(x)p(y)

)
p(x, y)dxdy. (2.44)

It results that the mutual information between the parameters Θ and the collected

data D is

I(Θ,D) =

∫ ∫
ln

(
p(Θ,D)

p(Θ)p(D)

)
p(Θ,D)dΘdD. (2.45)

Using

p(Θ,D) = p(Θ|D)p(D), (2.46)

which can be written as

p(Θ|D) =
p(Θ,D)

p(D)
, (2.47)

we obtain from equation 2.45

I(Θ,D) =

∫ ∫
ln

(
p(Θ|D)

p(Θ)

)
p(Θ,D)dΘdD. (2.48)
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Separation of variables results in

I(Θ,D) =

∫ ∫
ln (p(Θ|D))p(Θ,D)dΘdD −

∫ ∫
ln (p(Θ))p(Θ,D)dΘdD, (2.49)

which is

I(Θ,D) =

∫ ∫
ln (p(Θ|D))p(Θ,D)dΘdD −

∫
ln (p(Θ))p(Θ)dΘ = U(q). (2.50)

This shows that the expected utility of an experiment q is equal to the mutual

information between Θ and the collected data D.

In chapter 5 we will meld the concepts of Bayesian inference and information

theory to develop a framework of experimental design for complex biological models.
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Three

Analysis of Biological Trajectory

Data

Parts of this chapter have been published in [138].

3.1 INTRODUCTION

In this chapter we examine the behaviour of leukocyte dynamics in zebrafish embryos

in response to injury. The zebrafish, which has long been an important model system

in developmental biology, has also become an attractive model in which to study

inflammation and the immune system. Analyses in zebrafish allow in vivo imaging

of immune processes to be combined with molecular studies that target signalling

processes regulating leukocyte migration.

The innate immune system of zebrafish closely resembles that of mammals and is

fully competent at early embryological stages before the emergence of lymphocytes.

For the first few weeks of their life zebrafish embryos rely solely on their innate im-

mune system as the adaptive system becomes functional four weeks after fertilisation.

Here we focus on the spatio-temporal response of myeloid cells in zebrafish follow-

ing surgical injury to the tail fin. Several studies have demonstrated that injury in

zebrafish embryos results in the migration of leukocytes to the site of tissue damage

[52–56]. Although the migration is dependent in part on a hydrogen peroxide (H2O2)
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gradient produced at the side of injury [57], clearly other signals also contribute to

the decision making that results in cell migration.

What becomes apparent from these studies of leukocyte recruitment in zebrafish

embryos is that cells exhibit a panoply of different types of migratory behaviours.

These behaviours will be influenced by the time since and distance from the wound

site. Here our aim is to capture and rationalize this richness in immune cell chemo-

taxis. The simple statistics, such as the number of recruited cells, the velocity, the

mean square displacement or the straightness index, that are often used to analyse

these trajectory data do not capture the whole information content of such rich data

[139–142].

Random walks have been used to model animal movement and cell migration [92].

They are often described as uncorrelated random walks with diffusion [93], or as Levy

flights [143, 144], which are isotropic random walks with characteristic distributions

of the step length (e.g. Brownian motion vs. Levy flights). Another possibility is to

model the change in direction rather than considering the step length, which leads

to the analysis of isotropic vs. non-isotropic random walks. In this context it was

recently reported that living mammary epithelial cells in a tissue display a bimodal

persistent random walk [145]. Here we use automatic image analysis to capture

and analyse a sufficiently large number of leukocyte trajectories in wounded zebrafish

embryos to obtain reliable statistical interpretations of the leukocyte recruitment and

migration under different conditions.

We investigate the the influence of the MAPK pathway on leukocyte migration.

The MAPK (Mitogen-activated protein kinases) pathway is a sequence of kinases

that transports a signal from a cell surface receptor to the nucleus of the cell by

phosphorylation and dephosphorylation processes. In the nucleus it activates the

transcription of specific genes and the translation of its proteins, which are related to

processes such as stress response, cell division, cell growth and apoptosis. Apart from

the MAPK’s MAP1K, MAP2K and MAP3K, the components of the MAPK pathway

include ERK, p38 and JNK.

The discovery of selective ATP-competitive inhibitors made it possible to dissect

the individual roles of the JNK and p38 MAPK families. The anthrapyrazolone

SP600125 is now widely used as an inhibitor of JNK signalling [145] and SB203580,

a pyridinyl imidazole, is commonly used to inhibit p38 MAPK dependent signalling
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[146]. These inhibitors are useful tools to study the function of these protein kinases

in cell signalling and other physiological processes. For instance, it has recently been

shown, that the JNK inhibitor SP600125, but not the p38 inhibitor SB203580 plays

an important role in the recruitment of tissue-resident primitive macrophages to the

site of acute injury induced by tail transection [71].

To investigate the diverse dynamics of leukocyte migration we apply transition

matrices as a novel statistical approach to analyse in vivo trajectories of migrating

cells. A transition matrix is used to describe the transition, in this case cell move-

ment, from one state to another. Transition matrices have been previously used

to define and model different types of random walks [147]. Here we use transition

matrices as a data analysis tool to analyse leukocyte migration data produced in

zebrafish injured and treated with pharmacological inhibitors of signalling proteins.

This allows us to study how different molecular components can modulate the im-

mune response by influencing the migratory behaviour of leukocytes. In addition to

the analysis described, we show that migration behaviours are dependent on space

and time. Our approach can be applied to analyse any kind of biological trajectories.

We finally use the same approach to investigate differences between the migration

patterns of macrophages and neutrophils using transgenic zebrafish with the mpo

marker for heterophil granulocytes (here mainly neutrophills) and the fms marker for

macrophages.

3.2 METHODS

3.2.1 Zebrafish care and breeding

Tg(-9.0spi1:EGFP)zdf11 (pu.1:EGFP) zebrafish [148] were bred and maintained ac-

cording to the Animals (Scientific Procedures) Act 1986.
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3.2.2 Tail transection and image acquisition

All experiments used in this chapter were performed by the group of Prof. M. Dallman

(Imperial College London). pu.1:EGFP zebrafish embryos (5 dpf) were pre-treated

in system water only (untreated) or system water containing either 0.002 % (v/v)

Dimethyl Sulfoxide (DMSO) (vehicle control), 20 µM SP600125 or 10 µM SB203580,

both dissolved in DMSO (Sigma-Aldrich), for two hours at 28.5 C. After two hours,

they were anaesthetised in 0.6 mM MS-222 (Tricaine methanesulfonate, from Sigma-

Aldrich) and the tail fin was transacted using a sterile scalpel. The fish were then

transferred to fresh treatment media for 2 hours 28.5C before transferral to 0.8% low

melt agarose (Flowgen, Lichfield, UK) for time lapse imaging experiments. Images

were captured using a Zeiss Axiovert 200 inverted microscope controlled by the C-

Imaging Simple-PCI acquisition software for up to 14 hpw. The temperature was

maintained at 28.5C throughout the experiment using a full incubation chamber with

temperature control. The time gap between two consecutive images was 18 seconds.

3.2.3 Image processing and data transformation

Imaging resulted in image stacks with dark background and fluorescent pu.1:EGFP++

cells. The image processing was done in R using the package EBImage [149]. An edge

detection method was used to automatically extract the information of the cells from

the images. We used a manually set threshold of the light intensity per image stack.

Each detected cell was described as an object with the coordinates of its geometrical

centre describing the cell location and the occurrence time (figure 3.1A). A surface al-

gorithm was used to track the cells over time, which is based on the shortest distance

between cells from two consecutive images. The algorithm calculates the distance

between a chosen detected cell and all remaining cells at the next time point. The

two cells with the smallest distance are connected, i. e. they are part of the same

trajectory. Our time-lapse microscopy data were optimised in the experimental setup,

e.g. 18 sec time gap between two consecutive images, so that the cell area from one

time point to the next one overlapped, in order to reduce the typical tracking errors

described in [75]. When two cells overlapped in the same image (due to 2D data)

we stopped tracking them to avoid incorrect cell paths. We excluded all cell tra-

jectories that included time points in which the cell was located at the edge of the
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image. The images contain the zebrafish tail with the whole injury and only those

trajectories with a distance to the injury of less than 650 µm were included. Only

trajectories that contain more than 40 time steps have been used for the analysis to

improve the reliability of our results. Datasets in which tissue deformation occurred

during acquisition were excluded from analysis. However, no minimum path length

was required as long as the cell was tracked over minimum 40 time steps. In this

way it is also possible to observe possible resting cells. We produced bright field

and fluorescent images at each time point. Comparing/overlapping two consecutive

bright field images allowed us to detect shift and rotation due to small movements

of the zebrafish, which was used to correct the absolute position of tracked cells. An

overview about the analysed data is given in figure 3.1. Although the zebrafish tail

has a depth of a few cell layers we performed our analysis in 2D for 2 reasons: (i) the

majority of leukocytes that respond to injury in this tissue region can be imaged in

one focal plane (at 10x magnification) if the fin tissue is mounted flush with the plate

(cells not in focus were excluded from analysis), (ii) the acquisition of 3D data leads

to a longer time gap between two consecutive images, which results in more tracking

errors and less information about the migration process. To analyse the extracted im-

age data more efficiently and to combine or compare data from several movies it was

necessary to normalize them, e.g. the reorientation of the object positions in respect

to the notochord of the fish. This was achieved by using linear transformation. The

transformation describes the rotation and shifting of the new coordinate bases in the

way that the blood flow describes the y-axis and orthogonal to it the x-axis, which

was located approximately parallel to the injury (figure 3.1A and B). The orientation

was based on the bright field images. For the analysis only zebrafish embryos with

the wound approximately orthogonal to the notochord were included. Because the

embryos were injured manually we accepted small deviations and assumed them to

be orthogonal.

3.2.4 Statistical analysis and random walk models

The detailed description of the random walk models and their analysis is present

in section 3.3.3. Simulation of the sample paths from the models was done in R.

The extracted leukocyte trajectories were split into subtrajectories of 20 time steps.
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Table 3.1: Extracted data

exp. condition number of movies number of cell tracks (length 20 steps)

untreated 12 3265

+ DMSO 7 1427

+SB203580 7 1244

+SP600125 10 2122

List of extracted data, which were used in this study. The cells were automatically
detected and tracked from time-lapes fluorescent microscopy movies. The tracked
trajectories were split into subtrajectories of length 20 steps.

All analysis was performed on the subtrajectories, to avoid effects due to different

trajectory length. The velocity of the trajectories has been computed using local

polynomial regression. The straightness index SD was calculated as the coefficient of

the shortest distance between the start and end point of a trajectory and the actual

length of the trajectory. A straightness index close to 1 indicates movement along a

straight line. Note that a straightness index close to zero does not necessarily imply

that the cell performs a random walk as later described in equations 3.1-3.4. We

defined the correlation time τ as the time when the average autocorrelation function

(over all trajectories) of β (angle between a motion vector and the negative y-axis) is

zero. We compute the autocorrelation function for each cell trajectory in R (function

acf from package nlme) and average over all cells that belong to the same analysis

group. We use local linear regression to estimate when the average autocorrelation

function reaches zero. Bars are the 5% and 95% bootstrap confidence interval of

the mean. All statistics and graphics were generated in R. The analysis was here

performed in 2D. Simple statistics such as the straightness index and the velocity

can be computed analogously in 3D. To investigate the random walk process, some

adaptations are necessary. While the mathematical extensions to 3D are straightfor-

ward by using spherical coordinates, the visualisation of the results would lack the

intuitive appeal compared to 2D. The data were clustered depending on time after

wounding (T1-T4) and distance from the wound (S1-S4). The analysis was repeated

with shifted intervals to test for independence of the clustering scheme. An initial

analysis showed that the cell movement does not vary along the x-direction (parallel

to the wound).

49



3.3. Results

3.3 RESULTS

3.3.1 Cell tracking and the acquisition of trajectory information

Developments in the field of live imaging of single cell migration enable us to observe

cellular processes and their temporal evolution in unprecedented detail. It is now

possible to image the rich diversity of cellular dynamics inside living organisms.

We previously developed an automated cell tracking system in live zebrafish em-

bryos to analyse leukocyte recruitment at the single cell level from trajectory data

produced by time-lapse imaging. Details about the tracking algorithm are provided in

section 3.2.3. The data acquisition protocol was developed during an MSc project and

is summarised in figure 3.1. Trajectories were analysed mathematically to produce

detailed information about leukocyte migration. Time lapse imaging of pu.1:EGFP

transgenic zebrafish embryos was performed to record the recruitment of pu.1:EGFP+

leukocytes to an injury produced by tail transection (figure 3.1A). The pu.1 promoter

is a marker for mainly neutrophils, but also macrophages, i.e. we observe a mixed

cell population of neutrophils and macrophages. The data acquired were processed

and normalised using the automated cell tracking system to produce information on

the trajectories of individual cells migrating in response to injury.

Cell trajectory data are usually noisy, discretised and error prone, which needs

to be taken into account when analysing them. The errors often result during the

data acquisition and data processing stage. Our protocol took into account typical

tracking errors, recently reviewed by Beltman and colleagues [75], and controlled for

their effects, resulting in reliable trajectory data. The automated cell tracking system

acquired cell shape and cell movement information that allowed the generation of

image sequences documenting change in cell shape and trajectory over time (figure

3.1B). A cell trajectory is then represented as a sequence of coordinates, here 2

dimensional x and y, over time.

3.3.2 General analysis of cell migration data

Biological trajectory data have been collected for many years, mainly investigating

animal movement. However, surprisingly little work has been done to analyse these

data. We next describe the typical analysis parameters and show their advantages as

well as limits to capture the whole trajectory information. We apply them to our
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Figure 3.1: The automated leukocyte tracking system. pu.1:EGFP
zebrafish embryos were injured via tail transection (blue dashed line). The
blue-framed region was captured using time-lapse fluorescent microscopy re-
sulting in image sequences with green fluorescent pu.1:EGFP positive cells. In
addition, bright field images were generated to normalise the data by linear
transformation of the trajectory data into the new axes shown in red. Result-
ing cell tracks are shown in blue. Scale bars are 100 µm (A). Time-lapse bright
field images overlaid with images of single pu.1:EGFP positive cell automati-
cally detected (green cell) and tracked (blue trajectory line) (B). A trajectory
(blue) of a pu.1:EGFP positive cell (green) that was tested for random walk
characteristics. Two motion vectors v1 and v2 (dark blue) with their projec-
tions onto the x-axis and the y-axis (x1, y1 and x2, y2) were used to test for
isotropy which is achieved by calculating the angle α between v1 and v2. If the
BM random walk model holds, the one-dimensional projections of the motion
vectors onto the axes are Gaussian distributed (C).
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extracted leukocyte trajectory data during acute wounding. Simple statistics can be

directly computed from the cell coordinates over time such as the velocity and the

straightness index of a cell. The distance and direction in which a cell moves between

frames, i.e. the motion vector, was determined and the angle α between consecutive

motion vectors was calculated (figure 3.1C). We can now compute the velocity and

straightness index of a cell as described in the method section 3.2. Both parameters

give us an idea about the spread of cells and can provide an expectation how far a

cell is moving from a starting point in a certain time. The straightness index provides

first insights weather a cell moves randomly or not.

The inhibition of MAPK proteins, known to play a role in leukocyte migration,

altered migration behaviour as determined by our new statistical approach. Trans-

genic pu.1:EGFP zebrafish embryos were used to acquire the in vivo experimental

data we presented 19. PU.1 is myeloid cell selective allowing investigation of the

migratory behaviour of a heterogeneous population of myelomonocytes.

MAPK pathways are known to play important roles in leukocyte migration [69].

JNK but not p38 MAPK has been shown to influence the number of macrophages

and neutrophils recruited to an injury in zebrafish [71]. However, the role MAPKs

play in modulating leukocyte migration dynamics is poorly understood. We compared

different characteristics of cell migration trajectories extracted from zebrafish embryos

treated with the p38 MAPK inhibitor SB203580, the JNK inhibitor SP600125 (both

soluble in DMSO) with DMSO control treated embryos. We also acquired recruitment

data from untreated embryos to determine the effect of DMSO alone on leukocyte

migration, as DMSO is known to have modulatory effects on inflammatory processes.

We analysed trajectory information produced by two common methods of quantifying

cell migration behaviour. Of the treatment groups analysed only the p38 MAPK

inhibitor SB203580 had a significant effect, an increase in velocity and straightness

index when compared to untreated fish (figure 3.2). Velocity and straightness index

contain only little information about the actual dynamics of a cell and are because

of that not a sufficient analysis tool to detect differences in treatment groups.
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Figure 3.2: P38 MAPK and JNK influence the velocity and the
straightness of leukocytes. Boxplots representing the distribution of the
velocity (A) and the straightness index (B) of individual leukocyte trajecto-
ries for the 4 treatment groups (number of trajectories: 497 untreated, 727
+DMSO, 581 +SB203580, 690 +SP600125) are shown. All cells were detected
between 3 and 7 hpw. Dotted lines represent the 5% and 95 percent inter-
val, boxes represent the 25% and 95% interval, bold lines are the medians and
notches represent the confidence interval of the median.

3.3.3 Random walks in cell biology

We repeat the key formulae of random walks that were already discussed in section

2.1. Random walks have been used to model animal movement and cell migration

[92]. They are often described as uncorrelated random walks with diffusion [93] or

Levy flights [143]. Recently it was reported that living mammary epithelial cells in

a tissue display a bimodal persistent random walk [144]. To analyse the leukocyte

trajectories we considered 4 different random walks [92, 150]. The simple Brownian

motion (BM) defined as

∂P(x, y, t)

∂t
= D∇2P (3.1)

with the vector D of the diffusion coefficients, and the probability density function

P(x, y, t) of the object location at time t. Considering the possibility of drift, equation

3.1 becomes a biased random walk (BRW)

∂P(x, y, t)

∂t
= −ν∇P +D∇2P (3.2)

where ν describes the expected velocity of the drift. These two types are uncorrelated

random walks. However, it is described that animal and cell trajectories often show
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correlated random walks. This so-called persistence random walk (PRW) is defined

through the Telegraph equation

∂2P(x, y, t)

∂t2
+ 2λ

∂P

∂t
= D2∇2P (3.3)

where λ is the rate of turning events. In case a certain direction is favoured addition-

ally to the persistence, an observed trajectory would be a sample path of the biased

Telegraph equation, here referred to as a biased persistence random walk (BPRW)

∂2P(x, y, t)

∂t2
+ (λ1 + λ2)

∂P

∂t
+ (λ1 − λ2)

∂P

∂y
= D2∇2P. (3.4)

The equations 3.1 - 3.4 are extensions of the one dimensional random walk models

introduced in chapter 2.1. They describe the probability densities of the cell popu-

lations over space and time, i.e. they summarise the walk. They do not explicitly

capture the movement of a single cell over time, also called the sample path. The

specific sample paths can be obtained by numerical simulations (figure 3.3). We per-

formed all analysis and modelling work based on such sample paths because they

closest resemble the characteristics of biological cell trajectories.

Figure 3.3: Sample paths of random walk models. Simulated trajec-
tories of the 4 described random walk models: BM Brownian motion, BRW
biased random walk, PRW persistence random walk, BPRW biased persis-
tence random walk. Initial conditions for numeric simulation: x = 0, y =
-10.

When we want to investigate whether or not a cell performs a certain type of

random walk, we need to consider that usually cell trajectory data are discretised

with a given constant time step ∆t. This leads to a scaling problem, which we will

further consider in the next section.
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3.3.4 Analysis of cell migration dynamics using transition matrices

Leukocyte migration dynamics exhibit diverse types of behaviour that are affected by

a multitude of factors. These patterns are only poorly described by simple statistics;

computing the average straightness index or velocity across a whole population of

cells can only give coarse insights into cell migration behaviour and how this differs as

conditions are changed. Here we aim to capture more subtle and nuanced changes in

the migration behaviour over time and space. We therefore developed the application

of transition matrices, which can provide more information and are better suited to

elucidating mechanisms and effects of leukocyte behaviour than simple statistics. We

furthermore consider how these transition matrices differed at a range of distances

from the wound site and at a range of times after injury.

Leukocyte migration in the presence and absence of a signal has been described

as a random walk [46, 91, 151–153] and we considered the four different random

walk processes described in the previous section. We investigate if and how the

migration deviates from a isotropic random walk, where all directions of movement

are equally favoured. Our models do not consider the distribution of the step length,

because the distribution of the step length is not a characteristic that differs between

the investigated types of random walk. However, the step length could be used

to distinguish between for example Brownian motion and Levy flights, where the

distribution of the step length differs.

We transform all the trajectories so that the zebrafish notochord defines the y-

direction and the x-direction is parallel to the injury (see methods 3.2) and therefore

the y-axis was used as a reference to determine if a cell moves towards or away from

the injury, i.e. the cell movement is biased in a certain direction and is therefore

directed.

Next we investigate which dynamical model dominated under the different treat-

ment groups in the real data. The investigated dynamical models are continuous-time

stochastic processes {αt}, where αt is the angle between a motion vector and the neg-

ative y-axis at time t (figure 3.1). Because we observe data only every 18 seconds, we

need to discretize the stochastic process {αt} by sampling intervals of length l = 18

seconds and therefore obtain {βt} , where βt = αkl . We can now analyse the process

γk = i if βk ∈ [−π + 2π/15(i − 1),−π + 2π/15i] for i ∈ [1, ..., 15] by computing the
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probability matrix of transitions from step t to t + 1 as Ti,j = P(γt = i, γt+1 = j) ,

where Ti,j is the (i, j)-th entry in T . A β close to 0 describes a movement towards the

injury, β > 0 and β < 0 describes an angle to the right and left side, respectively, and

β close to ±π (180 degrees) describes movement away from the injury. The schematic

in figure 3.4A shows some of the possible transitions using arrows to indicate motion

vectors.

Figure 3.4: Transition matrix as a tool to capture complex dynamics
in cell migration behaviours. A key to indicate the cell migration transi-
tions captured by the transition matrix (A). Red arrows indicate the first step,
followed by green arrows representing the consecutive step. The angles provide
the absolute orientation in the fish, where the negative y-axis (notochord) is
used as a reference (A). Sample paths of the 4 described random walk models:
BM Brownian motion, BRW biased random walk, PRW persistence random
walk, BPRW biased persistence random walk. Initial conditions for numeric
simulation: x = 0, y = −10 (B). Probability matrices for transitions of β for
the 4 random walk models plotted as heat maps (blue lowest probability, red
highest probability). Matrices are computed from 100 trajectories over 50 time
units. The matrices show clearly distinctive patterns and can therefore be used
to distinguish between the different random walk types (C).

This approach distinguishes sets of migration patterns that are based on the tran-

sition from a given state, in this case the angle between a reference axis (notochord)

and the leukocyte step (direction), into another (figure 3.1A). We first used simula-

tions to determine the nature of transition matrices for different types of migration

behaviour (see methods 3.2).

Figure 3.4A is a schematic that illustrates the location on the matrix of a represen-

tative selection of the step transitions that were captured by the transition matrices.

We used Monte Carlo simulations to generate trajectories for each of the four types

of random walk described above (figure 3.4B) to generate probability matrices for

the four random walk models. We sample a sequence of βt from a circular normal
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distribution with mean µ (π for BRW, βt−1 for PRW) and variance σ (0.5 for BRW,

PRW and BPRW). We generated 100 sample paths of 20 steps for each random walk

model, to capture the characteristics of the extracted cell migration data, which are

also limited in number and length. We could clearly distinguish the different pat-

terns produced by the different types of random walks from the resulting transition

matrices (figure 3.4C).

Simulated trajectories for Brownian motion produced transition matrices where

all transitions have equally high probability, i.e. no overall pattern is discernible.

By contrast, simulated trajectories for a biased random walk generated transition

matrices with higher probability for the transitions in the centre of the matrix, rep-

resenting the bias towards the injury, in this case. Trajectories simulated using a

persistent random walk produced transition matrices with high probabilities of tran-

sitions along the diagonal, where consecutive steps at time t and t + 1 have very

similar directions, indicating persistence. Trajectories from a biased persistent ran-

dom walk produced transition matrices with high probabilities of transitions along

the diagonal with highest probability in the centre of the matrix (figure 3.4C). We

used these patterns as dictionaries to compare the patterns produced in transition

matrices generated from real experimentally acquired trajectory data to determine

the types of walk demonstrated by real leukocytes over time and space and under

different treatment conditions.

The investigated models of random walks are stationary processes, i.e. their

characteristics do not change in time or space. We next investigate whether or not

the observed migration process in zebrafish embryos is stationary as well, in which

case the properties of the transition matrices do not change over time or space. It

is important to investigate if stationarity is given, not only to gain insights into the

biological processes, but also to understand if simple summary statistics are applicable

or not.

3.3.5 Temporal dependence of leukocyte migration dynamics

We applied this transition matrix analysis to the dynamics of leukocyte movement.

Signals sensed by each leukocyte will change over time depending on the balance

of pro-inflammatory and anti-inflammatory/pro-resolution mediators [154, 155]. We
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might therefore have expected the dynamics of leukocyte migration behaviour to

change over time and we investigated this using experimentally extracted trajec-

tory information from live-imaging data to produce transition matrices. We grouped

extracted trajectories taken at a distance of 0 to 155 µm from the wound from 3

hpw (hours post wounding) to 14 hpw into four equally distributed intervals (T1,

3.00 − 5.72 hpw, T2, 5.72 − 8.44 hpw, T3, 8.44 − 11.16 hpw and T4, 11.16 − 14.00

hpw, figure 3.5A) and computed the corresponding transition matrices for each set

of trajectories (the grouping was used to yield roughly equivalent statistical power

across all time-windows; the overall picture emerging from this analysis is, however,

robust to varying the time-windows). Leukocytes from untreated zebrafish embryos

showed a persistent random walk (PRW), as demonstrated by the high probability of

transitions along the diagonal (figure 3.5). Over time this high probability along the

diagonal is reduced, indicating that the migration type is a non-stationary process,

where the level of persistence decreased with time.

Another measure of the level of persistence is the correlation time of a trajectory

(for details see chapter 3.2.4). This is a measure of how long it takes until a cell

changes its direction. To compute the correlation time, τ, the autocorrelation function

of β (the angle between a motion vector and the negative y-axis) was computed. We

define the time until this function reaches zero (no correlation) as the correlation

time. Figure 3.5B shows the correlation time per time interval (T1-T4) after injury.

In an untreated zebrafish the correlation time decreased from 60 sec at T1 to 18 sec

at T4. This is in line with the reduction in persistence demonstrated over time by

the transition matrices.

The transition matrices for fish that underwent DMSO treatment showed weak

persistence, i.e. somewhat lower probability along the diagonal, in comparison to un-

treated fish (figure 3.5A, 2nd row). A higher probability for transitions in the centre

of the matrix was observed, which showed a bias in the leukocyte movement towards

the injury site. The pattern of the transition matrices did not change significantly

over time, meaning that the temporal dependence of the leukocyte behaviour was

ablated in the presence of DMSO. The correlation time for DMSO was also lower

than in untreated, and did not decrease over time (figure 3.5B, 2nd row). Treatment

with the p38 MAPK inhibitor SB203580 (dissolved in DMSO) restored the persis-

tence and the decrease in correlation time. In fact, it increased the level of persistence
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Figure 3.5: Leukocyte dynamics change with time after injury. Tran-
sition matrices as heat maps for the 4 treatment groups are presented. Leuko-
cyte trajectories detected at the injury site (distance from injury between 0 and
300 µm) were divided into four time intervals post injury T1 - T4 (see legend)
and transition matrices plotted for each (A). We compute the average correla-
tion time at each time interval (circles) with its bootstrap confidence interval
of the mean (vertical lines). Note that the scales differ in between the treat-
ment groups (B). To explain the unexpected dynamical patterns that appear
in some of the transition matrix, we formulated 2 models, forward-backward
random walk (FBRW) (C) and trafficking (D), to numerically simulate trajec-
tories and compute their transition matrices for comparison. Initial conditions
for numeric simulation: x = 0, y =-10.

compared to the untreated condition. Inhibiting p38 restored the temporal depen-

dencies. Compared to untreated trajectories we observed a bias towards the injury

site at later time points in these trajectories. Since this pattern is also present in the
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DMSO control, this is likely a DMSO effect.

Leukocytes exposed to the JNK inhibitor SP600125 (dissolved in DMSO) exhibit

correlation times comparable to DMSO only treated zebrafish embryos at T1. At time

T1 a moderate level of persistence was observed similar to that seen in untreated fish

(figure 3.5A, 4th row). In the presence of SP600125 the persistence decreased rapidly

over time following injury: at T1 there was a higher probability on the diagonal of

the matrix that was not seen at T2-T4. Instead high probability was observed in

the centre of the transition matrix, meaning that there was bias towards the injury.

The patterns in the transition matrices observed in the SP600125 treated cells were

similar to the DMSO control over time indicating that JNK inhibition does not have

a strong effect on migration behaviour when analysed in this way.

In the untreated and DMSO treated groups we also observed an increased prob-

ability along two further diagonals (in addition to the high probability along the

diagonal of the transition matrix). Such transitions indicated a forward-backward

movement along the same axis. This had not been expected or previously been de-

scribed; but this behaviour can also be described in a Monte Carlo simulation model

(figure 3.5C): in this scenario a leukocyte has a high probability of keeping its direc-

tion or moving into the opposite direction in consecutive steps. Changing direction

along the x-axis was observed with low probability, i.e. there was a low probability for

cells to move along the x-axis parallel to the injury. This forward-backward random

walk was clearly apparent in untreated zebrafish and also the DMSO alone group.

Inhibiting p38 MAPK decreased this behaviour, while inhibiting JNK removed this

characteristic completely.

In both the DMSO and the JNK inhibitor treated groups a high probability in

a further 4 positions of the matrix (figure 3.5A, 4th row) was observed. These four

areas on the matrix represent movement where the first step is towards the injury and

the consecutive step away from the injury (and vice versa). This type of behaviour

had not been expected but may represent increased leukocyte trafficking at later time

points. We were able to generate simulated cell trajectories that display this type

behaviour and computed the corresponding transition matrix (figure 3.5D).
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3.3.6 Spatial dependence of leukocyte migration dynamics

We investigated the dependence of leukocyte migration behaviour on the location of

the cell in relation to the wound site. In our experimental setup the tail transection

wound is approximately orthogonal to the notochord in the embryo. We investigated

how the migration dynamics change depending on the distance of the cell from the

wound, i.e. along the y-axis (see figure 3.1A for orientation). To do this we grouped

leukocyte trajectories detected between 3 hpw and 5.72 hpw (T1) into four equal

distance intervals from the wound and computed the transition matrix and the corre-

lation time for each interval (S1, 0−155µm, S2 155−310µm, S3, 310−465µm and S4,

465− 620µm). We found that migration behaviour strongly depends on the distance

from the wound in all four groups (figure 3.6A). Leukocyte persistence, high prob-

ability along the diagonal of the matrices, decreased with distance from the injury

(figure 3.6A, S2-S4). The correlation time also reflects this aspect of the leukocyte

dynamics and decreases with distance from wound (figure 3.6B). Note that, as seen

in the temporal analysis, we observed high levels of persistence in untreated and fish

treated with p38 MAPK inhibitor, while treatment with DMSO and JNK inhibitor

resulted in lower overall persistence.

Leukocytes from the untreated, DMSO and JNK inhibitor treatment groups had

similar spatial dependencies (figure 3.6A, rows 1-2 and 4). When treated with p38

MAPK inhibitor the spatially resolved dynamics showed a different pattern (figure

3.6A, 3rd row). The persistence decreased with distance and at distances S2-S4 (dis-

tance between 155µm and 620µm) we observed a higher probability for movement

towards the injury. This bias was increased, while the level of persistence was de-

creased, for cells further away from the injury site. Inhibiting p38 MAPK leads

therefore to biased and persistent migration behaviour (BPRW, figure 3.4B and C),

with both bias and persistence depending on the distance to the wound. In general

we found that leukocytes observed at greater distances from the injury site (distance

> 465µm) displayed Brownian motion type random walk (BM) across all groups

(figure 3.6A, 4th column and figure 3.4B and C).
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Figure 3.6: The level of persistence in the migration of leukocytes is
spatially dependent. Transition matrices as heat maps for the 4 treatment
groups. Trajectories detected between 3 and 7 hpw were divided into four
equally distributed spatial clusters S1 - S4 according to the distance from the
injury, (see legend) and the transition matrices plotted (A). Average correlation
time at each cluster (circles) with its bootstrap confidence interval of the mean
(vertical lines) (B).

3.3.7 Spatio-temporal leukocyte migration patterns

We studied the combined influence of time since injury (temporal) and distance from

injury (spatial) on the level of persistence of the leukocytes. We grouped the leukocyte

trajectories into four temporal clusters (T1 - T4), each of these was then split into 4

spatial clusters (S1 - S4), resulting in 16 spatio-temporal clusters. For each cluster

we computed the correlation time as a measure of the level of persistence (figure 3.7)

for each treatment group.

Untreated and p38 MAPK inhibitor treated leukocytes showed a clear spatio-

temporal dependency in their correlation time: the strength of persistence decreased
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Figure 3.7: The correlation time of migrating leukocyte is spatio-
temporal dependent and was modified by DMSO and MAPK in-
hibitors. The correlation time τ is plotted as a function of the distance
from injury and the time post injury for the 4 treatment groups untreated
(A), +DMSO (B), +SB203580 (C) and +SP600125 (D). The surfaces repre-
sent the interpolation of the measurements, where red is the longest and blue
the shortest correlation time.

with increasing distance from the injury (from S1 to S4) and increasing time after

injury (from T1 to T4) (figure 3.7A and C). The correlation time in untreated leuko-

cytes rapidly decreased close to the injury (S1-S2) and shortly time after the injury

(T2). Inhibiting p38 MAPK slowed this effect considerably and e.g. at T4 (> 11

hpw) leukocytes had a correlation time of 36 seconds at the injury site (53% decrease

from T1) (figure 3.7A) compared to 18 sec (73% decrease from T1) in the untreated

group (figure 3.7C).

Inhibiting JNK or treating with DMSO alone also reduces correlation times and

for early time points after injury (T1) we observe a pronounced spatial dependency

with a decrease in the correlation time as we move further away from the wound with

increasing distance from the injury (from S1 to S4) (figure 3.7B and D), as mentioned

before (figure 4B). This spatial dependence was lost at later time points (T2-T4).
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3.3.8 Heterogeneity in cell populations: characterising macrophages and neu-

trophils

The above described analysis was performed using zpu.1:EGFP++ trangenic ze-

brafish, in which pu.1+ cells are GFP marked. Pu.1+ cells are a mixed population of

macrophages and neutrophils, which are known to have different roles and behaviours

and even different underlying molecular networks. This fact leads to heterogeneity

among the investigated cell population. To further understand the heterogeneity ef-

fects based on the mixed population, subsequent in vivo imaging was performed with

separate markers for neutrophils and macrophages. In this way we wanted to identify

differences between macrophage and neutrophil migration patterns with respect to

space and time.

Firstly we compute the speed v and the straightness index SD for both cell

populations. Figure 3.8 clearly shows that on average macrophages move slower

(0.05 µm/sec) than neutrophils (0.2 µm/sec). Furthermore macrophage have a lower

straightness index than neutrophils (figure 3.8B). This simple analysis already shows

highly significant differences between the two cell populations.

Figure 3.8: Velocity and straightness of macrophages and neu-
trophils. The velocity (A) and straightness index (B) were computed
per detected trajectory and their distribution was plotted as box plots for
macrophages and neutrophils, respectively.

Next, the dynamics of the two cell populations have been investigated in more

detail, using the above introduced concept of transition matrices. This analysis also

takes into account spatio-temporal dependencies. We compare the transition matri-
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Figure 3.9: Spatial dynamics of macrophages and neutrophils. The
transition matrices for the trajectories of macrophages and neutrophils were
calculated in dependence of distance from the injury.

ces of macrophages and neutrophils for cell trajectories that were extracted between

1.5h and 4h at different distances from the wound: S1: 0 - 200 µm; S2: 200 - 410

µm; S3: 410 - 620 µm. Macrophages and neutrophils close to the wound (group S1)

show a biased-persistent random walk. However, the level of persistence is higher in

neutrophils compared to macrophages. In both cell populations the level of persis-

tence decreases with increasing distance from the wound (figure 3.9). To investigate

temporal effects we cluster the extracted cells close to the wound (spatial group S1)

according to time passed after injury. The time clusters used for this analysis were

T1: 1.5-4 hours; T2: 4-6 hours; T3: 6-8 hours and T4: 8+ hours after wounding.

The level of persistence increases over time for neutrophils (up to 6h), but decreases

again at later time points. On the contrary, the transision matrices computed for

macrophages show few temporal dependencies. The level of persistence is similar low

over time, with a small bias towards the wound (figure 3.10).
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Figure 3.10: Temporal dynamics of macrophages and neutrophils.
The transition matrices for the trajectories of macrophages and neutrophils
were calculated in dependence of time passed after wounding. Only trajectories
close to the wound (0 - 200 µm) were included in the analysis.

3.4 DISCUSSION

The development of sophisticated live imaging facilities enables us to collect high

quality cell migration data in live zebrafish embryos. These data are often rich in

detail and behaviour, but this also makes them challenging subjects for analysis

and statistical investigations. Here we have aimed to capture the spatio-temporal

dependence of leukocyte migration in response to wounding. We believe that the new

tool of transition matrices which capture the change in directionality of a migrating

cell/particle afford a more nuanced description of such processes than previously

used statistical measures such as velocity or straightness index. On the one hand this

is not surprising as our statistics are multi-dimensional (n×n if n different intervals

of angles are considered); but on the other hand, especially when interpreted in light

of the ”dictionaries” (presented in figure 3.4) of simulated trajectories, these matrices

can be directly linked to certain modes of chemotaxis. Crucially, this methodology

enabled us not only to distinguish between the previously described types of random

walk, but also revealed new unpredicted migration patterns.

We can therefore interpret cell migration patterns, their change over time and
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space, and their dependence on molecular mechanisms in a more straightforward

way. The comparison between real data and our dictionaries has enabled us to de-

tect nuances in the migratory behaviour of leukocytes that had hitherto not been

observed. The new types of migration behaviour forward and backward is not

commensurate with any of the classical random walk behaviour hypotheses [55, 93],

but seems to dominate cell migration at later time-points in untreated fish. This

forward-backward motion is furthermore biased in the direction perpendicular to the

wound in some instances: notably at distances far from the wound in untreated fish,

and it is especially pronounced at intermediate and later time points for fish in which

JNK is inhibited. Such a dependence is lost if simpler statistical measures, such as

the straightness index, are used.

The transition matrices offer a convenient and self-explanatory representation of

many aspects of cell migration behaviour and how this is affected by different factors.

Here we have used them to test for consistency between hypothetical/theoretical mod-

els of random walk behaviour and actual in vivo observations of leukocyte migration;

and we have been able to propose new models of random walk behaviour that are

in better agreement with the observed behaviour under some conditions, when the

cell migration clearly deviates from classical, biased, persistent or biased persistent

walks.

Computing conventional statistics, such as velocity and straightness index etc.,

would have failed to detect this nuanced behaviour, which becomes so apparent in

the transition matrices. However, these matrices also only become truly useful with

the aid of dictionaries (or comparison to numerical simulations). This increased level

of detail, however, also comes at a price: we observe pronounced spatio-temporal

dependence of the transition matrices, and thus infer concomitant changes in the

migratory behaviour of cells, which need to be considered: heterogeneity between

cells is to some extent a function of time since and distance to the wound, it appears.

This has thus far not received the level of attention it deserves in light of our findings.

This heterogeneity (and the way in which leukocytes respond to wound injury)

can be tempered with by selectively inhibiting signalling proteins in the zebrafish

embryos. Here we have focussed on DMSO, and inhibitors of the p38 MAPK and

JNK MAPK signalling proteins to exemplify how this approach allows us to connect

molecular processes and migration phenotypes. However, our approach can more
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generally be used to study any kind of cell migration data, collected under diverse

experimental conditions.

To understand the impact of the specific molecules on the cell migratory behaviour

more detailed and comprehensive (multifactorial) inhibitor studies will be necessary.

The platform we present here will help to complete such studies.

Another reason for the heterogeneity is the mixed cell population that is marked

in the pu.1:EGFP zebrafish. The separate analysis of macrophages and neutrophils

allowed us to distinguish the dynamical patterns of both cell types. The higher

motility of neutrophils compared to macrophages is clearly apparent in this analysis.

These expected differences can be linked to the differences in the underlying signalling

cascades in both cell types.

In conclusion, this work serves to demonstrate the uses and potential insights to be

gained from considering transition matrices as descriptions of random walks. While

they are staple methods in the simulation of random walks (and a plethora of other

stochastic phenomena), this is, to our knowledge, the first time that they have been

used in this inverse or reverse engineering capacity. This is, of course, more widely

applicable than just to the present context of leukocyte response. While visualising

the transition matrices has the additional benefit of serving as a convenient way of

exchanging ideas and concepts between experimentalists and modellers, their use in

reverse engineering tasks more generally seems equally promising and has here not

really been explored at depth. Here recent years have seen advances in connecting

simulation studies more directly and immediately to data [15, 156–160] in order to

parameterise or infer structures of mechanistic models (here, for example, signalling

pathways regulating the cell migratory behaviour).
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Four

Bayesian Inference with

Biological Trajectory Data

Parts of this chapter have been published in [159].

4.1 INTRODUCTION

Mathematical models of biological systems are abstractions of much more compli-

cated processes [161]. Such models allow us to summarise our state of knowledge

about biological systems and processes in a concise manner; to explore likely dynam-

ics of biological systems; and to elucidate experimentally inaccessible aspects of the

molecular machinery underlying complex phenotypes and the function of biological

organisms more generally. In mathematical studies abstraction is not so much seen

as a necessity but as a virtue, which enables us to focus on the principal underlying

mechanisms. However, even most experimental analyses are performed under con-

ditions that are very different from those encountered in natural systems. In vivo

analyses are often performed under as close to realistic conditions as possible, but

even here many interactions, e.g. with the environment, are controlled or suppressed.

As biological research moves closer to clinical applications it becomes necessary to

include more of these details in the analysis of biological systems. In principle it

is straightforward to add detail to mathematical models, too. But in practice it
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4.1. Introduction

Figure 4.1: Overview of methodology. Leukocyte trajectory data were
extracted from time lapes microscopy experiments and used for model selection
and parameter inference using the ABC SMC framework. A model for leuko-
cyte migration was constructed, which involves the production of a cytokine
gradient after wounding (red line), the sensing of the gradient using recep-
tor binding kinetics and the translation of the signal into movement of the
leukocyte. Three different models for the stimulus gradients (M1 - M3) were
proposed. From the model that explains the experimental data best informa-
tion about the migration mechanism can be obtained as well as information
about the stimulus gradient.

then becomes more difficult to calibrate (or “fit”) these more detailed models against

complex and potentially highly resolved data [14].

Here we introduce a statistical methodology that is able to estimate parameters

of mathematical models from spatio-temporally resolved in vivo data. We employ a

Bayesian framework, which also allows us to rank an arbitrary number of alterna-

tive models in light of data [14, 15]. Our approach does not require evaluation of

the likelihood which is forgone in favour of a simulation-based approximate Bayesian

computation procedure [111]. Here simulated data are compared with observed data,

and this way parameter (and model) posterior distributions can be constructed even
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for cases where conventional statistical approaches are currently unfeasible. We il-

lustrate our approach in the context of leukocyte migration inside zebrafish embryos

[53, 54, 56]. We make use of the same imaging facility as introduced in chapter 3

to extract leukocyte trajectory data from injured zebrafish. By coupling the spatio-

temporal leukocyte dynamics with models of intra-cellular signal transduction models,

true multi-scale analysis becomes within reach [162, 163].

Over the past decade several approaches for analysing and modelling leukocyte

migration have been published [75]. As early as 1980 Alt used mathematical descrip-

tions of a biased random walks to model cell chemotaxis [164]. In 1987 Tranquillo

et. al. [77, 153] proposed a first model for leukocyte chemotaxis. Later other groups

constructed leukocyte migration models regarding different aspects of the migration

process in response to external stimuli [87, 89, 91].

Here, we combine modelling of leukocyte migration in a living organism in re-

sponse to wounding with intercellular signalling processes. We construct a model

that describes the leukocyte dynamics. Our dynamical model depends on a stimulus

gradient shape, which is unknown. We propose 3 different gradient shapes (M1 - M3)

and compare the combined model output to the leukocyte trajectories extracted from

life imaging data (figure 4.1). We use approximate Bayesian computation (ABC) for

model selection to infer the stimulus gradient shape. ABC allows us additionally to

gain further details about the leukocyte dynamics during the migration process.

We outline a generic statistical framework that allows us to discriminate between

different competing mechanistic models, estimate model parameters, and understand

biological processes at a physiological/whole organism level. We illustrate the in-

sights that can be obtained in this framework in the context of leukocyte migration

patterns following injury to zebrafish embryos, and conclude with a discussion of how

informative such data are about mechanistic models.
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4.2. Methods

4.2 METHODS

4.2.1 Data acquisition and image processing

Two datasets were generated and analyzed. The first dataset was used to validate

the statistical approach and the simple model of leukocyte migration. This dataset

was provided by Daniel Irimia (Harvard Medical School, Boston) and was generated

using a microfluidic device, as described in [40]. It contains trajectory data of hu-

man neutrophils in a linear interleukin 8 gradient. The second dataset describes the

migration of zpu.1:EGFP+ + cells in a living zebrafish embryo after tail transection.

The zebrafish were treated exactly as described in chapter 3. The images analysed

contained fluorescent zpu.1:EGFP+ + cells. The image processing also corresponds

to that in chapter 3.

4.2.2 Statistical analysis of datasets

The ABC SMC algorithm is implemented in the Python package ABC−SysBio [165]

and was adapted to allow for comparison between summary statistics and model

simulation in R. ABC SMC was applied to both datasets. The inference on the

second dataset was applied to all 5 temporal groups simultaneously, resulting in 5

different gradient shapes for the 5 time points, and one set of model parameters. The

model parameters and their prior distributions are summarised in table 4.1. The

gradient specific parameters for the 3 models are: p1 = U[0, 100] (in rel. gradient

concentration), p2 = U[−1, 0] (unitless) (M1); p1 = U[−100, 100] (in rel. gradient

concentration), p2 = U[−1000, 1000] (unitless), p3 = U[0, 100] (in 1/µm) (M2) and

p1 = U[0, 1000] (in µm2), p2 = U[0, 1000] (in rel. gradient conc./µm) (M3), where

U[a, b] is the uniform prior distribution with minimum a and maximum b.

The first in vitro dataset contains 122 trajectories that are spatially distributed

in the microfluidic device. The IL 8 gradient is known and constant over the mea-

surement time. The second in vivo live-imaging dataset contains 341 trajectories

extracted from 18 zebrafish embryos, which are spatially distributed in the zebrafish

tail (Figure 4.1). The data were captured from 2 to 10 hours after wounding. For

this dataset the gradient is unknown and can not be assumed to be constant over

time. Because of that we group the trajectories in 5 equally distributed intervals over

time to account for the temporal resolution. To analyse the spatial effects we group
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the trajectories according to their distance from the gradient source and wound for

the first and second dataset, respectively. We use again equally distributed intervals.

Compared to the first dataset we have now 5 temporal groups in dataset 2 (instead

of 1) and each of them contains 3 spatial groups.

The following analysis is the same for both datasets. Since we are interested

in the characteristics of the cells that describe the dynamics in dependence to the

distance from the gradient source / wound, we analyse the motion parallel to the

y-axis only. For each spatio-temporal group we compute the distribution of the

straightness indices S
(i)
D for the extracted trajectories accordingly to equations 4.16 -

4.18. As a result we obtain 3 spatial distributions for the first dataset and 5 times 3

spatio-temporal distributions for the second dataset (Figure 4.4 bottom row).

4.2.3 Robustness analysis

To understand how the dynamical behaviour depends on simultaneous changes to

model parameters we perform a robustness analysis on the posterior distributions.

The posterior parameter distribution allows us to evaluate the Fisher Information

matrix [166], and the eigenvalues and the corresponding eigenvectors correspond

to the information content. To determine so called “stiff” and “sloppy” param-

eter/parameter combinations [115] we performed a principal component analysis

(PCA) on the posterior parameter distributions, focusing on those parameters that

are relevant for leukocyte migration (table 4.1). The marginalised posterior distri-

butions for parameters Kd and R are very close to their prior distributions, which

means that they are not inferable given the provided datasets. Because of that we

exclude these two parameters from the robustness analysis. The PCA was done on

the correlation matrix of the remaining five parameter distributions. We can use the

correlation matrix here, because all parameters can have values between 0 and 1 only.

The 1st principal component (PC1) shows the “sloppiest” parameter vector, i.e. the

parameter combination that carries the least information. We contrast this with the

5th principal component (PC5), which provides the “stiffest” parameter vector and

therefore the parameter combination for which the data exhibit the highest infor-

mation content (figure 4.7 B-D). These vectors can be visualised as in figure 4.7 A,

where the pairwise probability density of the parameters is plotted with the vector
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for the “sloppy” (red line) and the “stiff” (blue line) direction. The length of the

vector represents the inverse of the information content.

4.3 RESULTS

4.3.1 Modelling leukocyte migration

The investigated biological system is illustrated in Figure 4.1. In case of an injury

to the zebrafish embryo a stimulus, e.g. cytokines, is released from the injured tissue

and/or surrounding tissue, which leads to the establishment of a stimulus gradient.

In our experiments we introduce the wound by tail transection so that the wound

is orthogonal to the blood vessels of the zebrafish. Because of this simple wound

geometry we can assume that the generated distribution of the stimulus is uniform in

the direction parallel to the wound (here x direction), but changes with the distance

to the wound, i.e. the direction orthogonal to the wound (here y direction). Now the

concentration of the stimulus is a (unknown) function of the distance to the injury

f(y, t), where t is the time passed after wounding. A leukocyte is here described by

its centre at position y and its radius r (more detailed descriptions are possible, of

course). Leukocytes move randomly until they are stimulated, e.g. when they sense

a cytokine signal. This local external gradient will be translated into an internal

cellular signal gradient of signalling molecules that activate F-actin polymerisation

in areas with high gradient concentrations, and myosin aggregation in areas with

low gradient concentrations, as well as microtubule assembly and disassembly, which

leads to a movement of the leukocyte in the direction of the highest stimulus. Thus

the direction of leukocyte movement depends on the slope of its internally generated

gradient. We describe the behaviour of leukocytes as a sequences of steps, where each

step includes: (i) sensing of the gradient by random protrusion of pseudopodia [91],

(ii) collapsing pseudopodia in low gradient concentrations while keeping them in high

gradient concentrations, and finally (iii) moving towards the high concentration. This

discretisation of a, in principle, continuous process is motivated by the type of data

we use for the analysis. The data contain leukocyte trajectories with values every
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15 seconds. We can compute the average distance between two consecutive steps

(average step size) from the data. Now our model needs to describe the direction of

the cell, which depends on the directional bias and persistence. We do so by modelling

the cell movement as a sequence of angles αt between consecutive steps t and t + 1,

which is a weighted mean of two processes, persistence and bias:

αt = wpNc(αt−1,Varp)︸ ︷︷ ︸
persistence

+wbNc(0,Varb)︸ ︷︷ ︸
bias

(4.1)

with the first term describing the directional persistence of the leukocyte (i.e. its

tendency to keep moving in the same directions) and the second term describing the

directional bias of the leukocyte towards the direction of the highest stimulus, where

wp and wb are the weights and Nc is the circular normal distribution with its mean

and variance. Note, that by using the weights wp and wb our model captures not

only different levels of a biased persistent random walk, but also the more simple

processes of only persistence random walk (if wb = 0) and only biased random walk

(if wp = 0). Both directional persistence and bias were previously used to model

leukocyte migration [75, 91, 92, 151, 152, 164]. However, in our model the level of the

persistence and of the bias is not constant for a given cell, but instead depends on

the gradient concentration the cell is sensing. The strength of the persistence and of

the bias is here expressed as the variance of the two normal distributions in equation

4.1. Since this model is mechanistic and we do not have much information about the

biological parameters that regulate these dependencies, we aim to express our model

with normalised parameters in a form as concise as possible. The variance of the two

processes can be any positive number. To normalise it we introduce the concentration

parameters ρp and ρb:

Varp = −2log(ρp) and Varb = −2log(ρb), (4.2)

with ρ ∈ (0, 1), to compute the variance for directional persistence and bias, respec-

tively. If ρp and ρb are close to 1 a cell’s migratory behaviour will exhibit high

persistence and high bias. We assume that both processes, directional persistence

and bias depend to some level on the external gradient such that we observe lower

variance for high levels of persistence and bias. However, the (effective) gradient

concentration is described by an unknown analytical function f(y). We prefer to use

the term “effective gradient” as the real gradient will be more complex and presum-
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ably depend on a multitude of variables, as well as being more irregular/noisy than

the forms considered here. This effective gradient subsumes these complications and

describes the input that is sensed by the cell and translated into a internal gradient.

The sensing happens via receptors responsive to the external stimuli, i.e. cytokine

receptors, which are assumed to be uniformly distributed on the surface of the cell,

i.e. Rfront ≈ Rrear ≈ R. Because of the wound geometry we assume that the leukocyte

dynamics are dependent on the distance to the injury (y-direction) but not on the

direction parallel to the injury (x-direction), the model of gradient sensing depends

only on the y-direction. The leukocyte movement however is described in the x and y

direction. Each binding event of a cytokine will lead to the activation of a signalling

cascade to generate the internal gradient. Experimental data provide only little (and

in part contradictory) information about the involved signalling cascades. Further-

more our experimental leukocyte trajectory data alone are unlikely to provide enough

information to infer the details of these signalling cascades. For these two reasons we

will simplify the signalling processes and assume that the translation from the exter-

nal gradient into the internal gradient is linear. The internal gradient then depends

on ligand-receptor binding kinetics, i.e. on the amount of ligand-receptor complexes

C. The amount of bound ligand in steady-state can be derived using the following

scheme:

R∗ + L∗
k1
�
k2

C, (4.3)

with the number of receptors per cell R∗, the amount of ligand around the cell L∗

and the amount of bound ligand per cell C. This reaction can be described by the

ordinary differential equations:

−
dR

dt
= −

dL

dt
=
dC

dt
= R∗L∗k1 − Ck2. (4.4)

In steady-state and by defining Kd = k1
k2

equation 4.4 results in:

C =
R∗L∗

Kd
. (4.5)

Using the conservation rules R∗ = R0 − C and L∗ = L0 − C, where R0 and L0 are the

initial amount of receptor and ligand, respectively, we obtain the quadratic equation:

0 = C2 − C(R0 + L0 + Kd) + R0L0. (4.6)

Solving equation 4.6 and using R = R0 and f(y, t) = L0 we obtain

C(f(y)) =
1

2
(R + f(y, t) + Kd) −

√
1

4
(R + f(y, t) + Kd)2 − Rf(y, t). (4.7)
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with the number of receptors R, the receptor binding constant Kd and the relative

ligand concentration f(y, t).

Figure 4.2: Dependencies between strength of persistence on the
gradient shape. Shown is an example gradient shape (f(y, t) and the resulting
sensed internal gradient C(f), the concentration difference between front and
back of a leukocyte ∆C, the concentration parameter ρ and the variance of the
circular normal distribution according to equations 4.2 - 4.10. The parameters
R, Kd and pmax are fixed as an example. The parameter dp is ranged from 0
to 1 represented from dark to light.

4.3.2 Parameterisation of a leukocyte migration model

We assume that the level of persistence and bias depends to some level on the slope of

the gradient regulated by the parameters dp and db. To normalise this dependency

we divide the gradient slope C(f(y− r, t))−C(f(y+ r, t)) by the largest existing slope

4Cmax:

4Cmax = argmax︸ ︷︷ ︸
y

(C(f(y, t)) − C(f(y + 2r, t))), (4.8)

where r is the radius of the cell to describe front and rear. Now the parameters ρp

and ρb can be expressed as:

ρp = pmax

(
1 + dp

(C(f(y − r, t)) − C(f(y + r, t))

4Cmax
− 1
))
, (4.9)

ρb = bmax

(
1 + db

(C(f(y − r, t)) − C(f(y + r, t))

4Cmax
− 1
))
, (4.10)

where pmax and bmax describe the maximum possible persistence and bias, respec-

tively, and r is the radius of a cell. The term C(f(y−r,t))−C(f(y+r,t))
4Cmax

describes the

relative gradient slope at time t and position y, which can have any value between 0

and 1. If the gradient slope is the highest (around 1) then for example equation 4.9

is:

ρp = pmax

(
1 + dp

(
1 − 1

))
= pmax, (4.11)
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i.e. the level of persistence is the maximum level of persistence pmax. On the contrary,

if the relative gradient slope is very small (around 0) then equation 4.9 is:

ρp = pmax

(
1 + dp

(
0 − 1

))
= pmax(1 − dp), (4.12)

i.e. the level of persistence is the maximum level of persistence reduced by the

dependence on the gradient slope pmax − dp. The same relationship is described for

the bias in equation 4.10. These equations show that the parameters pmax, bmax, dp

and db can all take values between 0 and 1. To understand the relationship between

the effective gradient concentration and the resulting variance as a function of y we

plot equations 4.7 - 4.10 for an example gradient f(y, t) (figure 4.2).

Here we discuss how the mathematical model can be calibrated against observed

trajectories of leukocyte migration from live imaging data. As mentioned above, the

leukocyte migration model includes an unknown function, f(y), which describes the

spatial (and, implicitly, temporal) distribution of the stimulus with respect to the

site of the injury. Several alternative phenomenological models have been proposed

[87, 90] and three different distributions are considered here (figure 4.1),

M1 : f(y) = p1 − p2y (4.13)

M2 : f(y) = p3 × ep1−p2y/
(
1 + ep1−p2y

)
(4.14)

M3 : f(y) =
p1√
4πp2

e−y
2/4πp2 (4.15)

where y is always the distance to the injury and p1, p2 and p3 are unknown parameters

that define the effective gradient shape, and which here need to be inferred from the

data. The models describe a linear gradient (M1), a sigmoidal gradient (M2) and a

gradient generated by a standard diffusion process (M3).

In order to estimate the gradient shape that explains the leukocyte dynamics best,

we apply an approximate Bayesian computation (ABC) approach as the likelihood for

random-walk processes in unknown gradients is too cumbersome to evaluate exactly.

ABC methods have been developed for just this case but where simulation of the

(plausible) data generating process is still possible.

Typically observed, x, and simulated data, x ′θ, where θ is a parameter drawn

from its appropriate prior distribution, π(θ), are compared via some distance measure,

d(x, x ′). Only when d(x, x ′θ) < ε, where ε is the desired tolerance level, is θ considered

as a valid draw from the (approximate) posterior distribution, Pr(θ|x). When the
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Figure 4.3: Validation of migration model and ABC approach. Trajec-
tories of human neutrophils (black lines) in an interleukin 8 (IL8) gradient were
extracted (A). The blue background visualises the IL8 gradient (from white to
dark blue for 0 nM to 12 nM). All cells have a tendency to migrate towards high
IL8 concentration. We used ABC SMC to obtain the posterior model proba-
bilities (B). The prior distribution was uniform among all 3 gradient models.
Shown are the mean probabilities over 5 runs, error bars are the lowest and
highest probability of the 5 runs. Model 1 in the last population (population
22) has a probability of 0.89 to fit the experimental data best compared to
the remaining two models (B). The estimates of the gradient parameters (blue
lines) (shift, p1, and slope, p2, of a line) are shown in the prior range (C -
D). The prior distribution (grey lines) was for both parameters uniform. The
experimental measured parameters (red lines) are in the posterior parameter
range. The inferred gradient shape (blue line ) with 95 percentiles (pink lines)
(interleukin concentration as a function of the distance from the source) and
the experimental measured gradient shape (red line) is shown (E).

data are detailed or have a complicated structure, then the probability of generating

a simulated dataset that resembles the observed data closely becomes vanishingly

small if θ is drawn from the prior. In this case it is, with a number of caveats, possible

to make some progress by only comparing summary statistics of real and simulated

data, S(x) and S(x ′θ), respectively; especially when S(.) is a sufficient statistic of the

data, this compression is loss-less and considerable speed-gains are obtained while still

retaining a valid approximation to the posterior (subject to the tolerance level ε).
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Even if S(.) is not a priori sufficient it is possible to perform parameter estimation and

a range of methods has been proposed that allow the construction of (approximately)

sufficient statistics by pooling information captured by different summary statistics

[112, 167, 168].

ABC approaches can also be used for model selection, where we seek to evaluate

Pr(Mi|x), i.e. the posterior distribution of a model (chosen from a set of candidate

models, M = {M1, . . . ,Mq}. Here sufficiency across models is also a problem, but

here, too, methods to construct sufficient sets of statistics exist. As it turns out, the

construction of sufficient statistics is straightforward for random-walk like processes

[112]. For each scenario we compute the distribution S of the straightness indices S
(i)
D

for the extracted trajectories,

S
(i)
D =

di

li
, (4.16)

where li is the total length of the trajectory and

di = |y0, yend| (4.17)

is the Euclidian distance between start and end point of each trajectory i and equation

4.16 can be written as

S
(i)
D =

|y0, yend|

li
. (4.18)

The straightness index is dependent on the number of observed steps nl of the trajec-

tory thus we split all trajectories so that the resulting trajectories have all the same

number of steps of nl = 30 steps. The precise value of nl used for the analysis does

not seem to matter but for nl = 30 steps we are able to use the vast majority of

trajectories.

In its simple rejection scheme ABC is too slow to cope with real-world problems

and several computational improvements have been suggested, including regression-

adaptation, Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC)

approaches. We adopt the latter approach, in particular the ABC SMC procedure

of Toni et al. [15, 111] as implemented in the ABC-SysBio package [165], which was

adapted to allow for comparison between summary statistics for random walks and

model simulation in R. This approach samples parameter combinations (particles)

from a non-informative prior distribution, simulates the model and compares the

simulation results with the experimental data using a distance function. For classical

dynamical systems the distance function is usually the Euclidean distance between
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Figure 4.4: Spatio-temporal heterogeneity in chemotactic leukocyte
migration behaviour. The top row shows the relative displacement of leuko-
cytes following the start of the tracking (time measured in hpw); each trajectory
was considered in non-overlapping 5 min intervals in order to capture any tem-
poral effects acting over longer time scales. Blue trajectories have a straightness
index SD < 0.5, orange trajectories have SD > 0.5. The red line indicates the
average behaviour across all trajectories shown in the panel. Values ∆y > 0
indicates movement towards the wound, ∆y > 0 indicates movement away from
the wound. In the bottom row we show the distributions of the straightness
index divided into three different classes according to the distance from the
wound (A: y < 250µm, B: 250µm < y < 500µm, C: y < 500µm) and grouped
according to time post-wounding (as top row).

the simulated trajectories and the experimental measurements. However, as we deal

with spatio-temporal data that have a considerable random component, the Euclidean

distance between single trajectories does not contain sufficient information about

whether different trajectories were generated from the same process. To distinguish

between different forms of random walk behaviour we compare the distributions, S, of

S
(i)
D . These distributions are generated by simulating 200 trajectories for each sampled

particle and we process these in the same way as the experimental dataset. Now we

can compare the distribution using the Kolmogorov-Smirnov distance between their

respective histograms. The resulting distance function is

d =

Nt∑
t=1

Ns∑
s=1

K(Ss,t, S∗s,t), (4.19)

where S and S∗ are the distributions of S for the experimental data and the simulated

data, respectively, Ns is the number of spatial groups (here 3) and Nt is the number
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of temporal groups, and K is the Kolmogorov-Smirnov distance for pairs of empirical

distribution functions. The Kolmogorov-Smirnov distance is defined as:

K(S, S∗) = sup
x

|S(x) − S
∗(x)|, (4.20)

with S and S∗ are the two empirical distribution functions that we aim to compare.

Details of the implementation are given in section 4.2.

To validate this approach under controlled conditions we first applied it to leuko-

cyte trajectory data extracted from migration patterns in a microfluidic device with

a known linear interleukin 8 (IL 8) gradient. Figure 4.3 A shows the extracted tra-

jectories. Our method identifies the experimentally applied linear gradient (model

1, equation 4.13, has 89 % of the posterior probability associated) correctly (fig-

ure 4.3 B). The linear gradient has two parameters (p1 and p2). The estimates for

these parameters are shown in figure 4.3 C-D. The experimental parameter values

are covered by the estimated posterior distribution and the resulting predicted gradi-

ent shape (figure 4.3 E) is in good agreement with the actual experimental gradient.

These results serve as a proof of principle for our model, our statistical approach and

demonstrate the ability to extract hidden information from rather simple cell migra-

tion data. Purely in-silico analyses, where the true model is known by definition,

results in similar credible intervals for the gradient parameters (data not shown).

4.3.3 Spatio-temporal analysis of leukocyte migration

We tracked zpu.1:EGFP positive cells in living zebrafish embryos to study the spatio-

temporal dynamics of leukocytes in response to wounding. We show that the dynam-

ics of leukocyte movement is dependent upon the position of the cell in relation to the

site of inflammation and on the time that has elapsed since the injury. Heterogeneity

in spatio-temporal dependencies of leukocyte migratory behaviour is illustrated in

Fig. 4.4. Each trajectory is presented as a line with the distance movement towards

(∆y < 0) or away from (∆y > 0) the wound plotted on the Y axis and time on the

X axis (Fig. 4.4 top row). Cells are migrating towards and away from the wound at

all time points, which reflects the presence of retrograde chemotactic behaviour [54].

The straightness index (see above) is indicated by the colour of the line: trajectories

with a low straightness index (D < 0.5) are shown in blue and those that have high

directionality (SD > 0.5) in orange. At earlier time points post injury (T < 3.5 hpi)
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more cells are traveling towards the wound (i.e. ∆y < 0) than at later time points.

Displaying each trajectory in this graphical form allows us to appreciate the diver-

sity rather than merely the (not very informative) average behaviour of the immune

cell population: while the average population behaviour may always suggest no net

movement in the direction perpendicular to the wound (as indicated by the red lines

in the top row), the individual migratory behaviour at the single cell level becomes

most diverse between 3.5-6.5 hpi. We also plot the distributions of the straightness

index of the trajectories at different times, divided into 3 classes according to their

distance from the wound (Fig. 4.4 bottom row). At later time points (> 5.0 hpi),

the straightness index, SD, is large for trajectories at intermediate distances and

significantly higher than for leukocytes close or far away from the wound.

Figure 4.5: Posterior model probablity distribution. Using a uniform
prior distribution among the 3 models in the ABC SMC approach model 3
(M3) has a probability of 1 to represent the data best. Model 3 represents a
diffusion type gradient that changes over time.

Using different divisions of time results in qualitatively identical behaviour. The

chosen partition, however, has the advantage of capturing both the biological phe-

nomenon of a dynamic gradient and resulting in good statistical power (similar num-

bers of trajectories) for the mechanistic analysis detailed next.

4.3.4 Spatio-temporal characteristics of stimulus gradients

In light of the spatio-temporal behaviour of the leukocytes in response to wounding we

next infer the stimulus gradient, for which in general no direct measurements exist.

Linking these extracted trajectories with our leukocyte migration model using the
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Table 4.1: Leukocyte migration model parameters

parameter prior posterior Mean posterior Mean
(1st dataset) (2nd dataset)

db (unitless) U[0, 1] 0.42 [9.6 · 10−4, 0.84] 0.60 [0.05, 0.92]

dp (unitless) U[0, 1] 0.41 [1.3 · 10−3, 0.92] 0.67 [0.26, 0.93]

bmax (unitless) U[0, 1] 0.45 [1.6 · 10−2, 0.93] 0.53 [0.03, 0.82]
pmax (unitless) U[0, 1] 0.92 [0.84, 0.97] 0.86 [0.71, 0.95]

Kd (1/amount per cell) U[0, 10000] 4831.9 [151.2, 9345.5] 5329.03 [39.2, 8939.4]
R (amount per cell) U[0, 10000] 5086.3 [53.1, 9408.4] 5052.25 [226.3, 8612.5]

w (unitless) U[0, 1] 0.81 [0.58, 0.98] 0.79 [0.69, 0.88]

List of parameters specific to leukocyte migration model with priors used in the
Bayesian framework (U - uniform prior).

approach described above we gather not only information about the spatio-temporal

dynamics of the stimulus gradient but also gain more detailed mechanistic insights

into the leukocytes dynamics. The same models for the gradient shape were assumed

and tested. The main difference between this dataset and the microfluidic dataset

used in the validation of our approach is that the stimulus gradient is now a function

of both the distance to the wound and of the time that has elapsed since the injury,

f(y, t). Therefore the problem becomes far more complex due to the high dimensional

parameter spaces for each of the three models. When we divide time into five intervals

each model has now five times as many parameters, which describe the gradient

shape (resulting in 17 parameters for model 1 and 3, 22 parameters for model 2).

The biophysical reaction parameters that describe the molecular processes inside

leukocytes can be assumed to be constant over the time spans considered here [76].

Using ABC SMC with a uniform prior model distribution we find that model 3,

which uses a diffusion-process gradient, represents the available datasets best (figure

4.5). The posterior parameter distributions for model 3 reveal more details about the

in vivo dynamics of leukocyte migration (figure 4.7 A). Parameters db and dp are both

higher than 0.5, which indicates that both bias and persistence are dependent on the

gradient and therefore spatial characteristics. Parameters bmax and pmax describe

the maximum level of bias and persistence, respectively. The posterior distribution

shows that the level of persistence is higher than the level of the bias. This is also

seen from parameter w (mean: 0.79), which is the relative weighting between bias and

persistence. This parameter is clearly shifted towards 1, i.e. persistence is favoured

over the bias. Parameters Kd and R are not inferable. These parameters describe the
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binding of the stimulus molecules to the surface receptors, i.e. the stimulus sensing.

We can conclude that the trajectory data of the leukocytes do not carry information

about these molecular details.

Figure 4.6: Spatio-temporal characteristics of chemokine gradients.
Shown are the estimated chemokine gradients for 5 time intervals (A-E) using
the mean estimate of the gradient parameters (dark blue lines) and the 5 and
95 percentiles (light blue lines). The gradient concentrations are plotted in
relative units.

Finally, we can use the inferred 10 gradient specific parameters to investigate the

gradient dynamics over time. Figure 4.6 shows the inferred gradient-specific shapes

with their 95 percentiles for 5 time intervals after wounding. For all time points,

we observe the classical diffusion shape gradient [93]. Interestingly, the process that

generates the stimulus gradient can not result from the analytical form of the heat

equation, because the concentration at the source (distance = 0 µm, wound) increases

until around 7 hours after wounding. This shows an active production of the stimulus

at the site of the injury. After around 7 hours this production decreases, which leads

to a decreasing concentration at the wound; this shapes the temporal development of

the effective stimulus gradient.

4.3.5 Analysis of leukocyte migration model

The models for leukocyte migration (equations 4.1 - 4.7) allow us to gain information

about the stimulus gradient. Next we can use the same model and the corresponding

parameter estimates to learn more about the characteristics of the leukocyte move-

ment. Because the parameters, Kd and R, show flat posterior distributions, they

are not inferable from the present data and we can exclude them from the following

analysis.

The posterior distribution including only the remaining 5 parameters (db, dp,
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Figure 4.7: Robustness analysis. The marginalized density estimates for
posterior parameter distributions related to chemotaxis are plotted on the diag-
onal in the range of the uniform prior distributions (A). The pairwise posterior
density estimates are plotted on the off-diagonal. The red lines show the pro-
jection of the first principal component (PC), i.e. the robust direction. The
“stiff” direction is displayed by the blue line and represents the vector of the
fifth principal component (A). The variance of the principal components are
shown in (B). PCA was performed on the correlation matrix of the posterior
parameter distribution. The corresponding vectors of the first (C) and fifth
(D) PC are visualised by its projections onto the parameters (red bar plots for
”sloppy” directions and blue bar plots for ”stiff” directions) are shown.

bmax, pmax and w) was used to determine the relative dependencies of the migratory

dynamics on the parameters. This in turn is related to how much information the

data carry about the parameters and allows us to determine “stiff” and “sloppy” di-

rections [115]. We calculated the correlation matrix of the posterior distribution and

used principal component analysis (PCA) to determine the directions with highest

and lowest variance of the overall posterior [122, 169]. Figure 4.7 B shows the 5 prin-

cipal components (PC) with their corresponding variances (upper row, right). PC1

has the highest variance, therefore the corresponding vector represents the “sloppi-

est” parameter combination (or the combination of parameters least constrained by

the available data). The projections of PC1 onto the “raw” parameter vectors are
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shown in figure 4.7 C. The two parameters db and bmax have the highest projection

onto the first principal component, i.e. they are “sloppy” parameters and have thus

comparatively minor influence over the leukocyte migration dynamics observed here.

These two parameters determine the bias of leukocyte migration towards higher gra-

dient concentrations. This suggests that the movement of leukocytes is not primarily

regulated by directional bias. On the contrary, the level of persistence is the domi-

nating characteristic of the leukocyte movement. This results from PC5 (figure 4.7

D), which represent the “stiffest” parameter combination, i.e. the combination of

parameters for which the data exhibits the highest information content (and hence

the collection of parameters that have the highest impact on system dynamics). The

largest projections onto these two principal components are by w and pmax. The

parameter w shows, as mentioned above, that persistence appears to be more pro-

nounced than bias, while the parameter pmax quantifies the level of persistence and

also suggests overall highly persistent leukocyte movement. Note that the level of

persistence also depends on the slope of the local gradient (mean dp: 0.67). The

importance of bias and persistence can also be seen in figure 4.7 A. Here we show the

pairwise posterior probability densities of the parameters. The red and blue lines in-

dicate the “sloppy” and “stiff” directions, respectively. The “stiff” direction is almost

parallel to w (representing the persistence), whereas the “sloppy” direction is almost

parallel to bmax (representing the bias). This indicates that they affect the dynamics

independently and that persistence exerts greater influence on the trajectories than

bias.

4.4 DISCUSSION

The application of the ABC-centered approach on trajectory data extracted from

living zebrafish leukocytes during acute injury provided us with detailed insights into

the dynamics of the stimulus gradient. In particular we found evidence that the

stimulus changes as a function of space and time. Biologically this is plausible but

again current experimental setups cannot routinely overcome the technical difficulties
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in measuring such gradients let alone their change (even if all chemokines etc. involved

in immune signalling were known). Our results suggest that the stimulus is produced

at the site of injury until 7 hours post injury (hpi). Because the stimulus concentration

increases at the wound until that time, the diffusion of the stimulus is weaker than

its production. This can also be seen from the increasing slope of the gradient until 7

hpi. This increased slope leads to a stronger persistence in the leukocyte movement

at intermediate distances and allows a more efficient leukocyte recruitment to the site

of injury, i.e. more cells are at the site of the injury.

We then performed robustness analysis on the leukocyte migration model: this

reveals the most important characteristics of the leukocyte dynamics, but also safe-

guards against potential over-interpretation of the dynamics in light of the inferred

parameters. From this analysis we learn that the persistence of leukocytes exerts the

largest influence on the dynamical behaviour in vivo. On the other hand the leuko-

cyte dynamics are robust to changes in the level of bias towards the wound. This

means that even with low bias a leukocyte would still manage to migrate towards the

wound as long as the level of persistence is high enough and dependent on the local

slope of the gradient. Persistent movement seems to be an optimal search strategy

for leukocytes during inflammation.

The overarching problem as to how stimulus gradients change with space and

time is hard to solve without some further assumptions: here we have partitioned

both space and time into discrete intervals. Without this it would be impossible to

achieve the statistical power required for the inference of the unknown gradient/model

parameters. It may in principle be possible to use an explicitly spatio-temporal para-

metric model of the gradient but this will require much more detailed knowledge as

to what are the actual signalling molecules than is presently known. Inferential tech-

niques, such as ABC, allow us to model immune-response processes by conditioning

mathematical models on available data. In the present context, for example, the

central finding of a spatially and temporally varying stimulus gradient is probably

not surprising or unexpected. Without this type of modelling, however, it would not

be possible to determine the relative balance between e.g. persistence and bias in the

migratory behaviour. Such mechanistic insights (or hypotheses) cannot be derived

from verbal/qualitative models alone.

We present a statistical framework that allows us to calibrate mathematical mod-

88



4.4. Discussion

els of biological systems against in vivo data. Here we study leukocyte dynamics in

zebrafish embryos following injury to their tail-fin. We show this response is medi-

ated by a stimulus gradient, which emanates from the wound site and changes with

space and time. While this change is not directly observable in experiments, we can

infer the spatio-temporal behaviour of the stimulus using an approximate Bayesian

computation framework, which is able to reliably infer an experimentally validated in

vitro stimulus gradient. In chapter 3 we introduced the concept of transition matrices

in order to study the types of random walks exhibited my leukocytes in response to

wounding. These transition matrices could potentially be used in future instead of

the distribution over the straightness index in order to infer more detailed dynamical

processes. With a detailed mathematical description of the temporal processes related

to the signalling gradient, as well as the internal and external cellular signalling dy-

namics, we could estimate the temporal evolution of the transition probabilities (for

example by applying the forward Kolmogorov equation). However, at the present

state this is not possible.
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Five

Experimental Design in Systems

Biology

Parts of this chapter are published in [170].

5.1 INTRODUCTION

Performing different experiments is costly in terms of both money and time, and

not all experiments are equally informative. Ideally we would like to perform only

those experiments which yield substantial and relevant information. Here we have

to consider what is meant by both of these terms: we regard any information that

decreases our uncertainty about model parameters or model predictions as relevant.

As we will show below, what is substantial information is then easily and naturally

resolved. We will show, for example, that experimental interventions differ in the

amount of information they provide e.g. about model parameters. Equally some

experiments provide insights that are more useful for making predictions about system

behaviour than others.

Models in systems biology typically describe how the abundances of a set of

molecular entities, x, change with time, t; here the rate of change in x(t) over time is

typically described in terms of (ordinary, partial or stochastic) differential equation
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systems, where

dx(t)

dt
= Fq(x, θ);

here x is a k-dimensional vector describing the system’s state and θ = (θ1 . . . , θl)

is an l-dimensional vector containing the model parameters. Finally q denotes the

particular experimental setup under which data are being collected. This dependence

is generally tacitly ignored but, as we will show below, explicitly incorporating the

experimental approach (and the fact that different experimental choices are typically

available) into the model and any down-stream statistical analysis allows us to develop

strategies that yield more detailed insights into biological systems, and better models

thereof.

We therefore require inferential tools that, given some observed biological data

and a suitable mathematical candidate model, provide us with parameters that best

describe the system’s dynamics [111, 118, 119]. Unfortunately obtaining reliable

parameter estimates is plagued with difficulties. Usually sparse and notoriously noisy

data are fitted using models with large number of parameters [171]. As a result, over-

parameterized models tend to fit to the noisy data but may loose predictive power.

Conventional fitting approaches to such data routinely fail to capture this complexity

by underestimating the uncertainty in the estimated parameters, which substantially

decreases their predictive power; the so-called “inverse problem” is often considered

(see e.g. Brenner [172]) as one of the major problems facing systems biologists. What

we set out here is a rational strategy — together with an associated set of statistical

and computational tools — that allow researchers to probe biological systems and

develop better, more realistic and predictive mechanistic models. This approach

enables experimenters to choose the most appropriate experimental approach to fulfil

their respective needs, and ultimately results in better understanding of biological

systems at reduced cost and experimental burden.

We use Q = {q1, . . . , q|Q|} to denote the total set of available experimental assays

that could be used to probe a system in a given situation. These might, for example,

include knock-out or knock-down mutants, transcriptomic or proteomic assays, differ-

ent time-courses or different environmental conditions (or both), etc. Here we remain

very flexible as to which type of experimental setup is included in Q, but merely

acknowledge that it is rarely possible to probe all important aspects of a system si-
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multaneously. Instead different techniques require different sample preparations etc,

and therefore separate experiments. Here we account also for the possibility that,

for two different experimental set-ups, q and q ′, the mathematical model may differ;

therefore the dependence on q is made explicit in our notation Fq. For example, if

species xk is knocked out in experiment q∗, we can ignore any terms referring to it

when modelling Fq∗ .

Here we show how we can meld concepts from Bayesian inference and information

theory to guide experimental investigations into biological systems to arrive at better

parameter estimates, better model predictions, and, ultimately better models. We

first develop the theoretical concepts before demonstrating the use (and usefulness) of

the Bayesian experimental design approach in the context of a number of biological

systems that exemplify the set of problems encountered in practice. In order to

demonstrate the practical applicability of our approach we investigate two simple

models (repressilator and Hes1 systems), as well as a complex signalling pathway

(AKT) with experimentally measured dynamics.

5.2 METHODS

5.2.1 Information theoretic design criteria

Our aim is to choose an experiment q from a set of candidate experimental setups,

Q, which either reduces uncertainty about model parameters or uncertainty of an

outcome of a particular condition q∗ for which data are impossible or difficult to ob-

tain. In the information theory framework, these two goals boil down to determining

an experiment q ∈ Q which contains maximal information about the parameter or

the desired predictions for condition q∗. In order to present in more details these

two goals let us recall some concepts of information theory and experimental design

introduced in chapter 2.3. As in equation 2.39 we first define the entropy H(X) of a

random variable X, which measures the uncertainty of the random variable,

H(X) = −EX(log(p(X))) = −

∫
log(p(x))p(x)dx (5.1)
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and the mutual information I(X, Y) between two random variables X, Y, which is the

reduction of the uncertainty that knowing Y provides about X,

I(X, Y) = H(X) − EY(H(X|Y)) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (5.2)

where p(x, y) is the joint probability density function of X and Y while p(x) and p(y)

are the marginal probability density functions. We denote by EX the expectation with

respect to the probability distribution of X. Here we follow the convention where

capital letters stand for random variables while lower-case stand for a particular

realisation of a random variable.

5.2.2 Reducing uncertainty in model parameters

We first consider the task of choosing an experiment that will on average provide

most information about model parameters measured through the reduction in their

respective uncertainties. In the information theoretic language, as by Lindley [134]

and later by Sebastiani and Wynn [173], the initial (prior) uncertainty is given by the

entropyH(Θ) of the prior distribution p(θ), which after data xq have been collected (in

experimental setup q) gives rise to the entropy H(Θ|xq) of the posterior distribution

p(θ|xq). The information gained about the parameter by collecting the data xq is

then H(Θ) − H(Θ|xq). On average, however, the decrease of uncertainty about Θ

after data are collected in an experiment q is given by I(Xq, Θ). Therefore, in order

to reduce parameters’ uncertainties one should choose an experiment that maximises

the mutual information between Xq and Θ.

Here we specifically consider models such that the output is of the form

xq = µ(θ, q) + ε (5.3)

where µ is a deterministic function and ε an uncorrelated, zero mean, gaussian ran-

dom variable with variance σ2. In such a model maximisation of mutual informa-

tion I(Θ,Xq) is equivalent to maximisation of the entropy H(xq). This observation

described first in [173] results directly from the fact that the mutual information

I(Θ,Xq) can be written as the difference between H(Xq) and EΘ(H(Xq|Θ)) and that

EΘ(H(Xq|Θ)) = −

∫∫
p(θ)p(xq|θ) log (p(xq|θ))dxqdθ

does not depend on the experiment q. Indeed, equation (5.3) implies that p(xq|θ) is

the probability of the experimental noise ε. In this study we use gaussian distributed
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noise. But one could use any distribution of noise, for which the probability den-

sity function is known in an analytic form, in order to compute p(xq|θ). The only

assumption here is, that the noise has to be independent for all terms.

Maximisation of I(Xq, Θ) is equivalent to maximisation of H(Xq). However, this

is only the case for the mutual information between the output xq of an experiment

q and the parameter of the system Θ. Whenever we are interested in the increase

of information about only one component of the parameter vector, or in reducing

uncertainty about an experimental outcome, we need to use the mutual information

and not the entropy.

5.2.3 Reducing uncertainty in an experimental outcome

Similar reasoning leads us to a criterion for selecting an experiment q that reduces

uncertainty about predictions for the system output under a different set of conditions

or experiment q∗. Choosing q that maximises I(Xq, Xq∗) leads to an experiment that

on average reduces the uncertainty of predictions for condition q∗ most. This can be

seen by rewriting (5.2) as

I(Xq, Xq∗) = H(Xq∗) − EXq (H(Xq∗ | Xq)) . (5.4)

5.2.4 Estimation of the mutual information.

The mutual information for models of type (5.3) can be estimated using Monte Carlo

simulations. We first focus on the mutual information between parameters Θ and

the output Xq of an experiment q which can be written as a function of the prior

distribution p(θ), the probability of the output given the parameter p(xq|θ) and the

evidence p(xq) as follows

I(Θ,Xq) =

∫∫
p(θ, xq) log

p(θ, xq)

p(θ)p(xq)
dθdxq =

∫∫
p(θ)p(xq|θ) log

p(xq|θ)

p(xq)
dθdxq .

(5.5)

Drawing a sample {θ(i)}1≤i≤N1 from the prior distribution p(θ) we obtain a Monte-

Carlo estimate,

I(Θ,Xq) ≈
1

N1

N1∑
i=1

log
p(x

(i)
q |θ(i))

p(x
(i)
q )

, (5.6)

where for all 1 ≤ i ≤ N1, x
(i)
q is an output of the system for the parameter θ(i).

For models of type (5.3) p(xq|θ) is the probability density function of a Gaussian
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distribution with mean µ(θ, q) and covariance σ2I taken at xq. To compute the

quantity in (5.6) we have to estimate the evidence p(x
(i)
q ), which can be done via

Monte Carlo simulation: given aN2-sample {θ(j)}N1+1≤j≤N1+N2 drawn independently

from the prior distribution p(θ) with {θ(i)}1≤i≤N1 we have

p(x(i)q ) =

∫
p(x(i)q |θ)p(θ)dθ ≈ 1

N2

N1+N2∑
j=N1+1

p(x(i)q |θ(j)) . (5.7)

Combining equations (5.6) and (5.7), we obtain the following estimate of the mutual

information between the parameter θ and the output xq,

I(Θ,Xq) ≈
1

N1

N1∑
i=1

log
(
p(x(i)q |θ(i)),

)
− log

 1

N2

N1+N2∑
j=N1+1

p(x(i)q |θ(j))

 . (5.8)

Similarly, we can estimate the mutual information between any single component

θc of the d-dimensional parameter vector, Θ, and the output Xq. We denote by Θc̄

the d− 1-dimensional vector containing all the components of Θ except the c-th one.

Integrating over θc̄, the mutual information between Θc and Xq is equal to

I(Θc, Xq) =

∫∫
p(θc, xq) log

p(θc, xq)

p(θc)p(xq)
dθc dxq

=

∫∫
p(θ, xq) log

p(θc, xq)

p(θc)p(xq)
dθdxq

=

∫∫
p(θ)p(xq|θ) log

p(xq|θc)

p(xq)
dθdxq

and can be estimated through Monte Carlo simulation by

I(Θc, Xq) ≈
1

N1

N1∑
i=1

log
p(x

(i)
q |θ

(i)
c )

p(x
(i)
q )

(5.9)

As previously the evidence p(x
(i)
q ) can be estimated from a sample drawn from the

prior without great difficulty. On the other hand, the estimation of the numerator

p(x
(i)
q |θ

(i)
c ) requires an additional integration over θc̄. We then have

p(x(i)q |θ(i)c ) =

∫
p(x(i)q |θ(i)c , θc̄)p(θc̄|θ

(i)
c )dθc̄ ≈

1

N3

N3∑
j=1

p(x(i)q |θ(i,j)) (5.10)

where for each 1 ≤ i ≤ N1, {θ(i,j)}1≤j≤N3 is a sample drawn from p(θ) under the

constraint that θ
(i,j)
c = θ

(i)
c . Putting all the terms together, we obtain the fol-

lowing estimation of the mutual information between Θc and Xq: given a sample

{θ(i)}1≤i≤N1+N2 drawn from p(θ) and a N1 ×N3-sample {θ(i,j)}1≤i≤N1, 1≤j≤N3 such

that for all i, j, θ(i,j) is drawn from p(θ|θ
(i)
c ),

I(Θc, Xq) ≈
1

N1

N1∑
i=1

log

 1

N3

N3∑
j=1

p(x(i)q |θ(i,j))

 − log

 1

N2

N1+N2∑
k=N1+1

p(x(i)q |θ(k))

 .
(5.11)
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To finish we consider the estimation of the mutual information between the output

of the system for two different experiments q and q∗. We have

I(Xq, Xq∗) =

∫∫
p(xq, xq∗) log

p(xq, xq∗)

p(xq)p(xq∗)
dxq dxq∗

=

∫∫∫
p(xq|θ)p(xq∗ |θ)p(θ) (log p(xq, xq∗) − log p(xq) − log p(xq∗))dθdxq dxq∗

where we used the fact that Xq and Xq∗ are independent conditionally to a parameter

θ. This equation leads to a Monte Carlo estimation from a N-sample {θ(i)}1≤i≤N

drawn from the prior given by

I(Xq, Xq∗) ≈
1

N1

N1∑
i=1

log

 1

N2

N1+N2∑
j=N1+1

p(x(i)q |θ(j))p(x
(i)
q∗ |θ

(j))


− log

 1

N3

N1+N2+N3∑
k=N1+N2+1

p(x(i)q |θ(k))


− log

 1

N4

N∑
l=N1+N2+N3+1

p(x
(i)
q∗ |θ

(l))

 ,
where N1 +N2 +N3 +N4 = N.

For the repressilator, we assume measurement noise ε with variance σ2 = 5. To

estimate the mutual information between the output and the parameter, we use

N1 = 100000 and N2 = 4500000. The mutual information between the output of the

system and each parameter in the Hes1 example is computed using σ2 = 0.5, and

N1 = N2 = N3 = 5000. For the AKT model, the variance of the measurement noise

is equal to 10, N1 = 1000, and N2 = N3 = N4 = 4500.

5.2.5 Approximate Bayesian Computation (ABC).

Once data x∗ have been collected, we use the Approximate Bayesian Computation

(ABC) framework to infer the posterior parameter distribution p(θ|x∗). We intro-

duced this concept in chapter 2.2.7. To summarise, ABC is a simulation-based

method, which mainly consists of sampling the parameter space from a prior distri-

bution p(θ), simulating the system for each sampled parameter (often called particle)

and selecting the particles such that the simulated data are less than some maximal
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distance away from the observed data. Those particles define an estimate of the

posterior distribution given the observed data:

p(θ|x∗) ≈
p(θ)

∫
x
p(x|θ)1∆(x,x∗)≤δdx

p(x∗)
. (5.12)

Specifically we use an ABC scheme based on sequential Monte Carlo (SMC) (see

chapter 2.2.7), which has been developed for likelihood-free parameter inference in

deterministic and stochastic systems [111]. We use the implementation of this method

in the package ABC − SysBio [165].

5.2.6 Estimation of the entropy

The estimation of entropy has been performed only to test and confirm our experi-

mental choice, which is based on Monte Carlo estimation of mutual information. For

each experiment q we compute the difference between the entropy H(Θ) of the prior

distribution p(θ) and the entropy H(Θ|xq) of the posterior distribution p(θ|xq). The

entropies H(Θ) and H(Θ|xq) are approximated using a histogram-based estimator.

This discretization of the parameter space leads to a change of scale in the entropy

measure. This explains why the scales of the differences between estimated entropies

and the estimated mutual information differ despite the fact that the mutual infor-

mation I(Θ,Xq) is the expectation over all possible data, xq, of the difference between

H(Θ) and H(Θ|xq). It is also well known that such a histogram approach leads to

a biased estimate of the entropy [174]. However, since the bias only depends on the

number of bins and the sample size, we can compare the estimation results among

experiments as long as these algorithm parameters are kept the same.

To compute the entropy H(Θ|xq) for each experiment q in the repressilator exam-

ple we compute a 4-dimensional histogram to discretise the posterior distribution

(for all 4 model parameters) using 100 bins for each dimension resulting in a total of

108 bins. We use the R package entropy [175] to estimate the entropy. For the Hes 1

model we computed histograms over the marginals posterior distribution, to measure

the entropy of each parameter separately. Here we used 1000 bins.
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5.2.7 Experimental data

The experimental datasets used to investigate the Akt model were collected and pub-

lished by the lab of S. Kuroda. The data are normalised Western blot measurements

as described in [158].

5.3 RESULTS

5.3.1 Information Content of Experimental Data

To achieve their full functionality mathematical models require parameter values

which generally need to be inferred from experimental data. The extraction of this

information is, however, a nontrivial task and is further compounded by the need

to assess the statistical confidence of such parameter estimates. In chapter 2.2 we

introduced the concept of Bayesian inference. We will now link the ideas of Bayesian

inference to the concept of experimental design and refer to the theory introduced in

chapter 2.2.

We seek to evaluate the conditional probability distribution, p(θ|x), which relates

to the prior knowledge p(θ) and the distribution of data, x, given parameters, p(x|θ).

This is achieved via Bayes theorem (see also equations 2.26 and 2.27)

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

· (5.13)

The probability density function, p(θ|x) describes the probability of finding a param-

eter θ in the volume element dθ of parameter space, given the data, the model and

the prior information. Finding the posterior probability distribution p(θ|x) is usually

achieved by means of powerful (if costly) computational algorithms such as Markov

chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods.

Rather than providing a single parameter estimate the posterior distribution al-

lows us to assess how well a parameter is constrained by data (see figure 5.1 A). More

formally, we measure the uncertainty about a parameter information-theoretically in

terms of the Shannon entropy [135],

H(Θ) = −

∫
p(θ) log(p(θ))dθ, (5.14)
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for the prior and

H(Θ|x) = −

∫
p(θ|x) log(p(θ|x))dθ, (5.15)

for the posterior. The information gained by collecting data x can then be expressed

as the information gain from prior to posterior distribution H(Θ) − H(Θ|x). The

output of the experiment, however, is in turn “random” with distribution p(x), and

therefore the average posterior uncertainty is

HX(Θ|X) =

∫
H(Θ|x)p(x)dx (5.16)

which leads to the average information gain called mutual information between X and

Θ,

I(X,Θ) = H(Θ) −HX(Θ|X). (5.17)

When faced with different experimental setups, q, and hence different datasets, Xq,

choosing the set(s) which maximise I(Xq, Θ) will provide the best insights into the

system via improved parameter estimates. Note that in the general concept of optimal

design, the aim is to maximise the utility function, which can be directly related to

mutual information as we demonstrated in chapter 2.3.4. This observation is the basis

of our experimental design methodology, which consists of computing the mutual

information I(Xq, Θ) for every experiment q and selecting the experiment resulting in

the highest mutual information (see chapter 5.2 for computational details). Once the

chosen experiment has been carried out, the new data are used to update the model

and the posterior distribution of the parameters (see figure 5.1 B).

Given the importance of the predictive role of mathematical modelling it is also

of interest to reduce the uncertainty of model predictions; intriguingly and counter-

intuitively — but demonstrably and provably — better parameter estimates are not

necessarily required for better, more secure model predictions. We can thus also seek

to identify the experimental condition q∗ which maximises the predictive power of

the model under (potentially very different) circumstances to predict new data Y.

Analogously to the previous case minimising uncertainty in predictions of Y means

to maximise mutual information between X and Y (see chapter 5.2):

I(X, Y) = H(Y) −H(Y|X) (5.18)
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Figure 5.1: Information content of experimental data and flow chart
of the experimental design method. (A) The regions of plausible pa-
rameters values for three different experiments. Each ellipse defines the set of
parameters which are commensurate with the output Xq of an experiment q.
In this example, the data Xq3 leads to the most precise inference of the param-
eters. The parameters which explain the output of all the three experiment are
at the intersection of the three ellipsoids. (B) Flowchart of the experimental
design method. Given a mathematical model of the biological system, a set
of experiments and the target information —which can be either a set of pa-
rameters to infer or a description of the experiment to predict — the Bayesian
Experimental Design method determine the experiment to carry out. Once
the experiment has been performed, the experimental data are then used to
provide target information and to improve the model. Thereafter, the process
can be iterated to select other experiments in order to improve the accuracy of
the target information. (C) Link between the total and conditional entropies
and the mutual information of experimental data X and parameters θ.

5.3.2 Implementation and Validation

The algorithms to estimate the mutual information (computation of the Monte Carlo

estimates) were implemented in Python. Because a high number (N2 and N4) of

pairwise probabilities needs to be computed, which are all independent of each other,

the algorithm was implemented in a parallel manor using graphical processing units

(GPUs). The coupling to Python was achieved by using the package Pycuda. The nu-

merical solutions of the models were obtained using the solver for ordinary differential

equations of the package cuda− sim [176], which allows for parallel implementation

on graphical processing units (GPUs).

We use three representative models to test our implementation. For all three
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models we can exactly calculate the expected mutual information analytically, which

allows us to determine the accuracy of our implemented algorithm.

Mutual information between parameter space and model system output

We define model 1 as

X = Θ + ε, (5.19)

where Θ is the model parameter, and ε is a realisation of noise sampled from a

normal distribution N(0, σ2ε). The form of this model corresponds to equation 5.3.

We define the prior distribution of Θ as a normal distribution N(0, σ2Θ). We now need

to determine I(Θ,X), which is the mutual information between Θ and X. We can

write equation 5.17 as:

I(Θ,X) = H(Θ) +H(X) −H(Θ,X), (5.20)

Since Θ and X are normally distributed we have

H(Θ) =
1

2
(ln(2πσ2Θ) + 1), (5.21)

H(X) =
1

2
(ln(2πσ2Θ + σ2ε) + 1) (5.22)

and

H(Θ,X) =
1

2
ln((2πeσΘ + σε)

2). (5.23)

Using equation 5.20 we obtain

I(Θ,X) =
1

2
ln

(
1 +

σ2Θ
σ2ε

)
(5.24)

We evaluated analytically the mutual information between the parameter Θ and the

model output X using equation 5.24 for given σΘ and σε and compared it with the

estimates of our algorithm. Figure 5.2A shows that the estimates correspond to the

exact solution for a wide range of σε.

Mutual information between a specific parameter and model system output

We tested the algorithm to estimate the mutual information between a specific pa-

rameter of the system Θs and the model output X with the following model 2:

X = Θ1 + Θ2 + ε. (5.25)
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Figure 5.2: Validation of the implemented algorithms. Shown are the
theoretical solutions of the mutual information according to equation 5.24 (A),
equation 5.26 (B) and equation 5.29 (C) (black lines) and the mean estimates
resulting from our implemented algorithms (red circles). Red lines in (B) are
the standard deviation of 5 repeated estimations for model 2, in (A) and (C)
standard deviation were too small to be shown. The standard deviations of
the normal distributions were chosen as σΘ = 1.0; σΘ1 = 10.0; σΘ2 = 5.0;
σm1 = 0.01 and σm2 = 0.001.

We want to determine I(Θ1, X). As in model 1 we assume that ε is a realisation of

noise sampled from N(0, σ2ε) and Θ1 and Θ2 are as well normally distributed with

N(0, σ2Θ1) and N(0, σ2Θ2), respectively. Following the same principle as in equations

5.20 - 5.23 we obtain:

I(Θ1, X) =
1

2
ln

(
σ2Θ1 + σ2Θ2 + σ2ε

σ2Θ2 + σ2ε

)
. (5.26)

The solution of this equation for a given σ2Θ1 and σ2Θ2 is in accordance with the

estimated values (figure 5.2B). It is important to notice that for very small values of σ2ε

it is necessary to increase the number of particles N to obtain stable estimates. This

becomes computationally very expensive, because the total number of probabilities

to estimate is N4 (as compared to N2 for the other two implemented algorithms).

Mutual information between two different model system outputs

In this last case we tested the estimation of mutual information between the outputs

X and Y of two different systems, which share some parameter Θ. We define the test

model as:

X = Θ +m1 + ε and Y = Θ +m2 + ε, (5.27)

where m1 and m2 are normal distributed random variables with mean 0 and variance

σ2m1 and σ2m2 , respectively. The noise term ε and the parameter Θ follow as well a
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normal distribution, N(0, σ2ε) and N(0, σ2Θ), respectively. We can then obtain I(X,Y)

by using equation 5.18, which results in:

I(X, Y) = H(X) +H(Y) −H(X, Y). (5.28)

The resulting mutual information is

I(X, Y) =
1

2
ln

(
(σ2Θ + σ2m1 + σ2ε)(σ

2
Θ + σ2m2 + σ2ε)

(σ2Θ + σ2m1 + σ2ε)(σ2Θ + σ2m2 + σ2ε) − σ4Θ

)
. (5.29)

Figure 5.2C shows that our estimation results are in agreement with the analytical

solution of equation 5.29.

In the following section we use three examples of various complexity to show how

this combination of rigorous Bayesian and information theoretical frameworks allows

us to design/choose optimal experimental setups for parameter/model inference and

prediction, respectively.

5.4 APPLICATIONS

5.4.1 Experiment selection for parameter inference

To investigate the potential of our experimental design method for parameter estima-

tion we first apply it to the repressilator model, a canonical model for gene regulatory

systems. The repressilator model was first introduced by Elowitz and Leibler in 2000

[177]. It consists of three genes connected in a feedback loop, where each gene tran-

scribes the repressor protein for the next gene in the loop (see figure 5.3 A and B).

The deterministic model describes the change of mRNA and protein per cell as a

function of time. In order to reduce the dimensionality of the model, time is rescaled

in units is rescaled in units of the mRNA lifetime. As a result, all parameter in this

model are unitless, and the abundance of mRNA and protein is measured in arbitrary

units (AU).

To infer the parameters of this model, h, α, α0, and β, we propose 5 sets of

possible experiments: the wild type experiment (set 1) which is described in figure

5.3 A and corresponds to the ordinary differential equations in figure 5.3 B, and 4
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Figure 5.3: The repressilator model and the set of possible experi-
ments. (A) Illustration of the wild type repressilator model. The model con-
sists of 3 mRNA species and their corresponding proteins (shown in the same
colour). (B) The ordinary differential equations which describes the evolution
of the concentration of the mRNAs and proteins over time. (C) Four potential
modifications of the wild-type model. For each experimental intervention the
modified parameters are listed (colours are as in A). The modifications of the
wild-type model consist of decreasing one or several of the parameters of the
system: in sets 2, 3 and 5, the regime of the parameter α is changed; in sets 3,
4 and 5, respectively, parameters α0, α and β are modified for only one gene
which breaks the symmetry of the system.

modifications of the wild type model, see figure 5.3 C. These modifications can lead to

different dynamics, and this in turn can lead to a higher mutual information between

the parameters and the output of the system: the information content increases

as differences in the outputs resulting from different parameter values increase. In

figure 5.4, we illustrate the link between the increase in mutual information and the

dynamics of the system for three different regimes. The mutual information I(x, θ)

depends on the dynamics of the system given the prior of the system parameters: the

more the dynamics for different parameter values differ from each other, the higher

is the information content. To visualise this we compute the mutual information

between one parameter and the outcome of the system for three different regimes in

the repressilator example. Noting that α0 is a bifurcation parameter and α0 = 2.55

is a Hopf bifurcation point (for the remaining parameters held at h = 2,α = 1000
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Figure 5.4: Information content of different parameter regimes. Shown is the
bifurcation diagram for parameter α0 with its stable (solid lines) and unstable
(dashed lines) states. Estimation of mutual information was performed for 3
different parameter regimes. For illustration we plot the mean (dark blue), 25
and 75 percentiles (blue) and the 5 and 95 percentiles (light blue) of trajectories
simulated with 10000 parameter sets, where α0 is uniformly sampled and the
remaining parameters are kept constant (h = 2, α = 1000 and β = 5).

and β = 5), we choose 3 different prior regimes for α0: π1(α0) ∼ U(0.5, 1.5), π2(α0) ∼

U(3, 4) and π3(α0) ∼ U(10, 11). We keep the remaining 3 parameters constant: h = 2,

α = 1000 and β = 5. For these three priors we estimate the mutual information

I(x, α0) and represent the dynamics of the output of the system. We observe that the

dynamics resulting from the first prior regime are most diverse and therefore I(x, α0)

has the highest value (118.78± 2.2710−3) compared to the remaining two parameter

regimes (113.48± 2.4210−3 for π2(α0) and 113.41± 4.9210−4 for π3(α0)).

To determine which experiment to carry out, we compute the mutual information

between the parameter prior distribution and the system output via Monte-Carlo es-

timation. We use uniform priors over [1, 10] for h, over [0, 20] for α0, over [500, 2000]

for α and over [0, 10] for β. Figure 5.5 shows that experiment 2 and 5 have highest

mutual information, i.e. carrying out those experiments will decrease the uncertainty

in the parameter estimates most. To confirm this we simulate data for the 5 exper-

iments using the parameter (h∗, α∗, α∗0, β
∗) = (2, 10, 1000, 5); see figure 5.8. Based

on these data we perform parameter inference using an approximate Bayesian com-
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Figure 5.5: Experiment choice for parameter inference in the repres-
silator model. Top: The mutual information I(θ, X) between the parameters
θ and the output of each set of experiment (in dark green), and the entropy dif-
ference between the prior distribution and the posterior distribution for a data
obtained from simulation of the system for each experiment (in light green).
The error bars on the mutual information barplots show the variance of the
mutual information estimations over 3 independent simulations. Bottom: For
each set of experiment we show the histogram of the marginal of the posterior
distribution of every parameters. The red line indicates the true parameter
value.

putation approach [111] for each experiment separately and compare the posterior

distributions shown in figure 5.5. We observe that using the data generated from set

1 (wild type) only 2 parameters can be inferred: h and α0. By contrast, the data gen-

erated by set 2 and set 5 allow us to estimate all 4 parameters with high confidence.

A more detailed representation of the posterior distribution for each experimental set

is given in figure 5.6.

In addition, for each experiment we compute the reduction of uncertainty from

the prior to the posterior distribution. The results are consistent with the results

using mutual information and confirm that we should choose experiment 2 or 5 for

parameter inference. In practice not all molecular species may be experimentally

accessible and it is therefore also of interest to decide which species carries most

106



5.4. Applications

Figure 5.6: Surface plots of the estimated posterior distributions.The
posterior distribution is shown given the data represented in Figure 5.8. Each
subfigure (A to E) corresponds to an experiment (1 to 5). In each subfigure, the
diagonal represents the marginal posterior distribution for each parameter and
the off-diagonal elements show the correlations between pairs of parameters.

information about the parameters. We can estimate the mutual information between

the parameter and each species independently, and, for example, for experimental

set 5 we observe that mRNA m1 and m2 as well as protein p1 carry equally high

information; see figure 5.7.
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Figure 5.7: Species dependent mutual information measurements.
The mutual information between the parameters and each species (3 mRNA
and 3 protein measurements) is measured for experiment 5, which had the
highest total mutual information.

5.4.2 Experiment selection to infer a specific parameter

Sometimes we are interested in estimating only some of the parameters, e.g. those

that have a direct physiological meaning or are under experimental control. To inves-

tigate this aspect we consider the Hes1 transcription factor that plays a number of

important roles, including in the cell differentiation and segmentation of vertebrate

embryos. In 2002 oscillations in the Hes1 system were observed by [178] and such

oscillations might be connected with formation of spatial patterns during develop-

ment. The Hes1 oscillator can be modelled by a simple three-component ODE model

[179] as shown in figure 5.9 A. This model contains 4 parameters, k1, P0, ν, and h,

and 3 species: Hes1 mRNA, m, Hes1 nuclear protein, p1, and Hes1 cytosolic protein,

p2.Hes1 proteins and Hes1 mRNA are measured as fold-change. Similar to the re-

pressilator model, the time is rescaled in units of the mRNA birth rate, therefore all

parameters in this model are dimensionless quantities. It is possible to measure either

the mRNA (using real-time PCR) or the total cellular Hes 1 protein concentration

p1 + p2 (using Western blots). We investigate whether protein or mRNA measure-

ments provide more information about the model parameters. Thus we estimate

the mutual information between mRNA and parameters, and between protein and

parameters. Figure 5.9 B shows that mRNA measurements carry more information

about all of the parameters.

This can again be further substantiated by simulations shown in figure 5.10. We

perform parameter inference based on such simulated data and compute the differ-

ence between the entropy of the prior and that of the resulting posterior distribution.
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Figure 5.8: Repressilator mRNA and protein concentration time
course for each experimental setup. The parameter vector used for sim-
ulations is (h∗, α∗, α∗

0, β
∗) = (2, 10, 1000, 5). The colours correspond to those

in figure 5.4. The dots represent the simulated data and the lines corresponds
to the mean of the species for 1000 parameters sampled from the posterior
distribution computed using ABC SMC.

The results shown in figure 5.9 C are consistent with the predictions based on mutual

information: mRNA measurements carry more information for parameter inference.

Interestingly, however, although the mutual information computation indicates that

the protein measurements should contain more information about parameter k1 than

about the other parameters, this is not confirmed by the difference in entropy re-

sult for this simulated dataset. This divergence is due to the fact that the mutual

information measures the amount of information contained on average over all the

possible behaviours of the system whereas figure 5.9 C represents the decrease in en-

tropy from the prior to the posterior distribution given specific data. The differences
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Figure 5.9: Experiment selection for parameter inference in the Hes1
model. (A) Diagram of the Hes 1 model and the associated ordinary differ-
ential equations. (B) The mutual information between each parameters and
the output of the system for repectively mRNA measurement (left) and total
cellular Hes1 measurement (right). The barplot represents the mean and the
variance over 3 repetition of the Monte-Carlo estimation. (C) Estimation of
the difference between the entropy of the parameter prior and the entropy of
the posterior distribution given one dataset. The parameter kdeg was set to
be 0.03 as experimentally determined by [178].

in entropy for other datasets simulated using different parameter regimes are thus in

better agreement with the mutual information results (see figure 5.11).

5.4.3 Experiment selection for prediction

We next focus on a scenario where we aim to predict the behaviour of a biological sys-

tem [180] under conditions for which it is not possible to obtain direct measurements.

We consider as an example the phosphorylation of Akt and ribosomal binding protein

S6 in response to a epidermal growth factor (EGF) signal. The Akt pathway regu-

lates many molecular processes, e. g. cell survival, growth and proliferation. These

mechanisms are controlled by growth factors. Especially in tumour development, the

Akt pathway is a potential target for drug development [181–185]. In this system we

analyse data that result from PC12 cells that undergo cell proliferation and differenti-
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Figure 5.10: Simulation results of Hes1 model. Simulated trajectories
of the mRNA and protein concentrations (dots). The parameter used for sim-
ulation is (P0, h, ν, k1) = (1.4, 5.7, 0.02, 0.09) . The lines represent the 5% and
95% percentiles of the species abundances for 1000 parameters sampled from
the posterior distribution computed using ABC SMC.

ation in response to epidermal growth factor (EGF). Depending on the Akt pathway

both cell proliferation and differentiation require an increase in cell size. Binding

of EGF to its receptor (EGFR) leads to phosphorylation of Akt via phosphatidyli-

nositol 3-kinase (PI3K). Akt is wired to the mTOR complex 1 that phosphorylates

and activates the ribosomal protein S6 kinase (S6K). The latter one phosphorylates

ribosomal protein S6. Figure 5.12 A shows the pathway of interest: the EGF growth

factor binding to the activated receptor EGFR leads to phosphorylation of EGFR

and a signal cascade, which results in the phosphorylation of Akt (pAkt) which in

turn can activate downstream signalling cascades and leads to the phosphorylation

of S6 (pS6); a corresponding mathematical model is shown in Figure 5.13 [158]. The

system is modelled using ODE’s, which result from first-order mass action kinetics.

That means, for the reaction A + B → C with rate k, the change of A and B over

time is described by

dA

dt
=
dB

dt
= −kAB, (5.30)

while the change of C is modelled as

dC

dt
= +kAB. (5.31)

We are interested in predicting the dynamics of the Akt system under multiple

pulsed stimuli with EGF in the presence of background noise, as shown in figure

5.15 A. We consider 5 pulses of intensity 1 ng/ml and length 60 seconds spaced by

400 seconds with additive background noise. This input is difficult to realise in an
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Figure 5.11: (a) Simulated trajectories of the mRNA and protein concen-
tration (dots) for the parameter (P0, h, ν, k1) = (1.25, 7.54, 5.36× 10−2, 4.02×
10−3) . The lines represent the 5% and 95% percentiles of the species abun-
dances for 1000 parameters sampled from the posterior distribution computed
using ABC SMC. (B) Estimates of the differences between the entropies of the
prior and posteriors.

experimental system (let alone in an animal or clinical setting). Using an initial

dataset, see figure 5.12 B, we can infer system parameters using ABC SMC (see

figure 5.14). From the resulting posterior distribution we then sample 1000 parameter

combinations and simulate the model with the 5-pulse-stimulus in order to predict

the time courses of phosphorylated EGF receptor (EGFR), phosphorylated Akt and

phosphorylated S6; based on just the estimated parameters these predictions are,

however, associated with high uncertainty, see figure 5.15 B.

To obtain better predictions we can use data from other experiments measuring

the time course of the 3 species of interest for a experimentally more straightfor-

ward input signals chosen from among 12 possible stimuli: impulse, step or ramp

stimuli with different EGF concentrations (see figure 5.15). To determine which of
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Figure 5.12: The EGF-dependent AKT pathway and an initial
dataset. (A) Diagram of the model of the EGF-dependent AKT pathway.
Epidermal growth factor (EGF, red triangle) is a stimulus for a signalling cas-
cade, which results in the phosphorylation (green circle) of Akt (blue square)
and S6 (purple square). EGF binds to the EGF membrane receptor EGFR
(orange), which is generated from a pro-EGFR. The Binding results in the
phosphorylation of the receptor, which consequently leads to the activation of
downstream cascades (thick black circle). This simplified model was shown to
capture the experimentally determined dynamics [158]. (B) A impulse input
of EGF over 60 seconds with an intensity of 0.1 ng/ml (top) and the resulting
time course of phosphorylated EGF receptor (pEGFR), phosphorylated Akt
(pAKT) and phosphorylated S6 (pS6) in response to this stimulus (bottom).
Data were provided by the authors of [158].

those inputs would result in the most reliable predictions we compute the mutual

information between the time courses for the different potential experimental inputs

and the time-course of the target 5-impulse noisy stimulus. We incorporate initial

information about model parameters by computing the mutual information based on

the posterior distribution inferred above. Figure 5.15 C shows that a step stimulus of
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Figure 5.13: Ordinary differential equations of the Akt model.The
equations describe the dynamics of the 11 species of the AKT model. The
model contains 12 parameters denoted pi, 1 ≤ i ≤ 12. The concentration of
the following species (in this order) are denoted by yi, 0 ≤ i ≤ 10: EGF,
EGFR, pEGFR, pEGFR-AKT, AKT, pAKT, S6, pAKT-S6, pS6, pro-EGFR
and EGF-EGFR.

intensity 3 ng/ml has the highest predictive power about the behaviour of our target

stimulus pattern.

In figure 5.15 D we show that this does indeed yield vastly improved predictive

power compared to the initial prediction. This increase in predictive performance

results from the difference in the posterior distributions resulting from different stim-

uli; by focussing on predictive ability we focus implicitly on data that are informative

about those parameters that will affect the system behaviour most under the target

(5-pulse) stimulus. The posterior distributions are represented in figure 5.15 E for two

parameters, the EGFR turn over and the EGFR initial concentration, which appear

to be essential for the prediction of the evolution of Akt/S6 phosphorylation patterns

under the 5-pulse stimulus. Those two parameters were not inferred using the initial
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Figure 5.14: Fits of initial dataset. The time course of phosphorylated
EGF receptor (pEGFR), phosphorylated Akt (pAKT) and phosphorylated S6
(pS6) in response to an impulse input of EGF over 60 seconds with an intensity
of 0.1 ng/ml (dots). Data are Western blots measurements, described in [158].
The lines represent the 5% and 95% percentiles of the evolution of the species
for 1000 parameters sampled from the posterior distribution computed using
ABC SMC.

dataset alone, whereas the addition of the outcome of the step stimulus experiment

suggested by our methods infers these parameters with the required high precision.
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Figure 5.15: Experiment selection for prediction in the EGF-
dependent AKT pathway. (A) The noisy 5-impulses EGF input signal:
the 5 pulses are of intensity 1 ng/ml and length 60 seconds spaced by 400
seconds with an additive background noise which is the absolute value of a
gaussian white noise of variance τ2 = 0.1. (B) The predicted time course of
the proteins pEGFR, pAKT and pS6 under the noisy 5-impulses EGF input
signal based on the intial dataset. (C) The mutual information between the
time course of the 3 species of interest under the noisy 5-impulses EGF input
signal and the time course of the species under each of the following 12 possible
experiments: an impulse stimuli of length 60 seconds with 5 possible intensity
(0.3, 1,3, 10 and 30 ng/ml), a step stimuli of length 60 minutes with 4 possible
intensity (0.1, 0.3, 1 and 3 ng/ml) and a ramp stimuli of length 60 minutes
with 3 possible final intensity (0.03, 0.3 and 3 ng/ml). (D) The predicted time
course of the proteins pEGFR, pAKT and pS6 under the noisy 5-impulses EGF
input signal based on the outcome of the step stimuli with intensity 3 ng/ml,
which is the experiment with the highest mutual information. The scale of
the y-axis is different for figures (B) and (D). (E) The posterior distribution of
two parameters (EGFR turnover and EGFR initial condition) when using the
initial dataset alone (left) and when using the initial dataset and the outcome
of the step stimuli with intensity 3 ng/ml (right). The scale of the EGFR
turnover is the prior range for the figure on the left panel whereas it is 100
times smaller for the figure in the right panel.
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5.4. Applications

Figure 5.16: Experiment selection for prediction of a signal with
high level of noise. (A) A noisy 5-impulses EGF input signal: the 5 pulses
are of intensity 1 ng/ml and length 60 seconds spaced by 400 seconds with an
additive background noise which is the absolute value of a gaussian white noise
of variance τ2 = 1. (B) The mutual information between the time course of the
3 species of interest under the noisy input signal represented in (A) and the
time course of the species under each of the following 12 possible experiments:
an impulse stimulus of length 60 seconds with 5 possible intensity (0.3, 1,3, 10
and 30 ng/ml), a step stimulus of length 60 minutes with 4 possible intensity
(0.1, 0.3, 1 and 3 ng/ml) and a ramp stimulus of length 60 minutes with 3
possible final intensity (0.03, 0.3 and 3 ng/ml).

This predictive power even extends to much greater signal distortion and even

with a noise level of 100 percent of the signal intensity (see figure 5.16 A) we find

that our experimental design method yields similar improvements in the predictions

(see figure 5.16 and 5.17). We observe that the direct target (EGFR receptor) as well

as activated AKT (pAKT) efficiently filter out the noise but capture the 5 pulses;

EGFR activation quickly returns to base level in response to the higher frequency

background noise. This indicates that there might be a constant low concentration of

activated EGFR (pEGFR), but the activation of S6 has very different characteristics

and is far less robust to noise. The level of noise is amplified as can be observed in the
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5.4. Applications

Figure 5.17: Prediction of system response to highly noisy input
signal. The predicted time course of the proteins pEGFR, pAKT and pS6
under the noisy 5-impulses EGF input signal with a noise of high intensity
represented figure 5.16 A. In the left panel, the prediction is based on the
initial dataset whereas in the right panel in addition to the initial data it is
also based on the outcome of the step stimulus with intensity 3 ng/ml, which
is the experiment with the highest mutual information. The scale of the y-axis
is different for each figure.

pS6 time course. This might suggest that the downstream molecule pS6 has a longer

time delay to react to a signal. Moreover, pS6 does not have time to relax to its

baseline between the 5 pulses, which leads to incremental signal amplification. This

behaviour fits with the low-pass filter characteristics previously described [158]. In

further support earlier studies [186] found that a downstream molecule can be more

sensitive to an upstream activator than the direct target molecule of the activator.

This might explains that the activation of EGFR and AKT is more robust to noise

than the downstream molecule, S6.
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5.5. Discussion

5.5 DISCUSSION

We have found that maximising the mutual information between our target informa-

tion — here either model parameter values or predictions of system behaviour — and

the (simulated) output of potentially available experiments offers a means of arriving

at optimally informative experiments. The experiments that are chosen from a set of

candidates are always those that add most to existing knowledge: they are, in fact,

the experiments that most challenge our current understanding of a system.

This framework has a number of advantages: First, we can simulate cheaply any

experimental set-up that can in principle be implemented; second, using simulations

allows us to propagate the model dynamics and to quantify rigorously the amount of

(relevant) information that is generated by any given experimental design; third, our

information measure gives us a means of meaningfully comparing different designs;

finally, our approach can be used to design experiments sequentially — our preferred

route as this will enable us to update iteratively our knowledge of a system along the

way — or in parallel, i.e. selecting more than one experiment. Previous approaches

had taken a more local approach [187–190] that relied on initial parameter guesses

and often data; our approach also readily incorporates different stimulus patterns

[191].

Here we have focussed on designing experiments that increase our ability to esti-

mate model parameters or to predict model behaviour. The latter depends on model

parameters in a very subtle way: not all parameters affect system output equally and

under all conditions. But with optimal design we can overcome the problem of sloppy

parameters [115] (which are, of course, dependent on the experimental intervention

chosen [169]). By making predictive power the target of our analysis we directly

home in onto those system parameters that are most relevant for making success-

ful predictions under the target conditions. Equally, however, we could make model

discrimination or checking the target of our analysis [191, 192], and, for example,

choose experimental designs that maximise our ability to distinguish between com-

peting alternative hypotheses or models. All of this is straightforwardly reconciled in

the Bayesian framework which also naturally lends itself to such iterative procedures

where “today’s posterior” is “tomorrow’s prior ”.

Experimental design in systems biology is different from classical experimental
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5.5. Discussion

design studies. The latter theory was first developed at a time when the number of

alternative hypotheses was smaller than the amount of available data and replicates

[193]. Systems biology, on the other hand is hypotheses rich and data rarely suffice

to decide clearly in favour of one model unambiguously. Moreover for dynamical

systems, as a host of recent studies have demonstrated, generally less than half of the

parameters are tightly confined by experimental data [115, 169]. Together these two

challenges have given rise to a number of approaches aimed at improving our ability

to develop mechanistic models of such systems.

Our approach improves on previous methods [188–190, 194–198] in a number of

ways: first we are able to incorporate but do not require preliminary experimental

data; second, it is a global approach that is not limited to some neighbourhood in

parameter space unlike approaches solely based on e.g. the Fisher information [188,

199]; third, we obtain comprehensive statistical predictions (including confidence,

sensitivity and robustness assessments if desired); and we are very flexible in the type

of information that we seek to optimize.
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Six

Conclusion

When analysing experimental data resulting from cell populations we often observe

effects due to heterogeneity in the cell population. Various sources of heterogeneity

exist and their relevance should be carefully explored. Here we have investigated

the cell migratory behaviour of leukocytes during wounding. This system serves as

a good example of how to analyse such data. The observed heterogeneity in cellular

behaviour has several sources.

First of all we investigated a population of cells that share the same marker.

The marked cells belong to different cell types, here macrophages and neutrophils.

However, even when separating these two cell types, we still observe a high level of

heterogeneity. Another source of variation in cellular behaviour is the extra-cellular

environment. Spatial as well as temporal differences in the extracellular matrix, neigh-

bouring cells and external signals affect the behaviour of each particular leukocyte and

result in large variation across the entire leukocyte population. The presented study

here investigates the spatio-temporal effects and elucidates the resulting changes in

cell migration.

A further source of heterogeneity is the noise of the external signals, which

guide the migratory behaviour of leukocytes. A noisy external signal (due to a non-

homogenous extracellular matrix) needs to be integrated and translated into a cellular

decision. This noisy component in part leads to the randomness of leukocyte migra-

tion. In this study it becomes clearly apparent that investigating the average cellular
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response of an entire population provides little information about the biological sys-

tem.

A detailed analysis of leukocyte migration using transition matrices enabled us

to observe several random walk models. We detected previously described Brownian

motion, the biased random walk and the persistent random walk. Furthermore we

observe two novel types of random walk, which had previously not been described: the

forward-backward random walk and the process of trafficking. The main argument

throughout our study, however, is that leukocytes do not perform only one specific

type of random walk. The walk changes depending on space and time, i.e. with he

changing cellular environment and the changing internal signals. We observe mainly

mixture models of several random walk types, such as the biased persistent random

walk. These fine nuances of leukocyte migration were apparent, because the analysis

with transition matrices does not require an initially assumed model of migration.

This type of analysis is not specific for leukocyte migration, but can be applied to

any kind of biological trajectory data.

The random walk observations describe processes on the cellular scale. How-

ever, using molecular interventions it is possible to connect the cellular level with the

molecular scale. We demonstrated this for example, in the presented study of how

specific inhibitors can modulate the cellular migratory behaviour. This specific ex-

ample again serves as a case study, which allows the systematic analysis of signalling

pathways connected to cell migration.

The information we gain by analysing experimental data is the basis on which we

construct a mathematical model of the investigated system. Lack of information often

leads to several hypothesis (or models) and it is an important challenge to discrim-

inate between them. We employed a model selection algorithm in an approximate

Bayesian framework (ABC SMC) to distinguish between three candidate models of

signalling gradients that drive leukocyte migration during wounding. The novelty of

our constructed cell migration model is the description of leukocyte recruitment in

dependence of the location in the whole organism, i.e. the model takes into account

spatial effects. These effects result from the spatio-temporal distribution of signalling

molecules. This combines the molecular level with the cellular level under consider-

ation of the whole organism. We apply for the first time the ABC SMC framework

for model ranking to spatio-temporal models. A further level of complexity are the
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random characteristics of biological trajectory data. Two trajectories generated by

the same underlying random walk model can not be compared with the standard

euclidian distance, but a sufficient summary statistic needs to be defined, which cap-

tures the characteristics of the underlying random walk process based on a set of

short sample paths.

To increase the predictive power of a mathematical model it is vital to calibrate

it using experimental data. However, different experiments contain different informa-

tion about the investigated biological system. In this work we meld concepts from

information theory and Bayesian inference to select experiments with the highest in-

formation content of the resulting data. Our global approach allows us to incorporate

already gathered knowledge, i.e. prior information, in a flexible manner. The classi-

cal approaches in the field of experimental design are restricted to small and linear

systems, which can be treated analytically. These approaches find little application

in modern systems biology. The theoretical framework developed here is simulation-

based and therefore applicable to a wide range of biological systems. We demonstrate

how this approach is used to study complex systems such as the Akt signalling path-

way. This systematic method to choose experiments will allow researchers to target

experimental efforts optimally.
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