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ABSTRACT 

For the linear system (_C,A,B), the properties of almost 

controlled and almost conditionally invariant subspaces are reviewed 

and new properties are obtained for sliding subspaces. 

These concepts are used to give : 

i) A transparent geometric interpretation for the infinite-

zeros of G(s) = C(sI-A)
-1

B • 

ii) A condition so that the orders of the asymptotes (as a scalar 

g 	00) of (A+gBC) coincide with the orders of the infinite-zeros 

of G(s). 

iii) A new method for the choice of an output fedback map R which 

assigns the asymptotes of (A+gBRC). 

The concept of a nonsingular proportional-derivative (P.D.) 

law, u = F
l
x + F

2
x is introduced. 	Properties of a linear system 

(A,B) under such a law are described. 	Under the solvability con-

dition given by Willems, it is shown that the almost disturbance 

decoupling can be achieved by a nonsingular P.D. law involving finite 

maps. 

The notion a regular P.D. law is also introduced and it is 

applied to the theory of almost controlled invariant subspaces. 

Such a law is then used to solve the disturbance decoupling problem 

in a situation where a state feedback law does not do it. 

The thesis also contains a concise geometric theory of the 



ii 

regular pencil (sE-A) which includes a geometric criterion for the 

regularity of the pencil. 

The generalized linear system Ex = Ax+Bu; y = Cx, where 

E is a singular map, is studied using geometric tools and the 

following contributions are given: 

i) Necessary and sufficient conditions for the controllability 

and observability of the infinite-zeros of the pencil (sE-A). 

ii) Proof that controllability of the infinite-zeros is equivalent 

to the existence of a state feedback map which assigns those zeros 

to arbitrary positions in the complex plane. 

iii) An interpretation in terms of invariant subspaces for the 

controllability and observability of the finite-zeros of (sE-A). 

iv) A method for the choice of a state feedback map F which 

assigns the zeros of the pencil (sE -A-BF) . 
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NOTATION-  AND PRELIMINARIES 

This section contains some basic concepts of linear algebra 

and the notation employed in the thesis. 

We shall denote throughout vectors by roman lower case 

letters, time functions and distributions by script underlined lower 

case leters, matrices (linear operators)by roman capitals and sub-

spaces by script capitals. 

We shall often consider families of subspaces of a given 

finite dimensional vector space X. Let L be such a family, we 

shall say that L is closed under addition if L1, L2  e L 	+ L2  

and 

	1 	2 

and closed under intersection if L1, L
2  6  L 	L

1 
n L

2 
e L. 	The 

subspace sup L denotes the smallest subspace which contains every 

element of L while inf L denotes the largest subspace contained 

in every element of L. In general sup L and inf L do not belong 

to L. However, the following case yields a result which is 

important for the geometric approach to linear systems theory. 

Lemma 0: If L is closed under addition then sup L e L and if 

L is closed under intersection then inf L E L. 

If n is a positive integer, then n stands for the 

set of integers {1,2,...,n}. 

viii 

L 

i e• n is such that L D 
1 

that. {L
1
} is a chain in L while if L c L1 

L. } is a chain around L. 
1 

1 D. • • D L
n 

then we say 

C. ..0 L
n 

then we say that 

The orthogonal complement of L is denoted by LI. 

The dimension of a subspace LAX is denoted by dim L and codim 

denotes codimension, codim L = dim X - dim L = dim LI. 
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For a given subspace L c X we represent the associated 

quotient space {x+LIxEkby X/L or X(mod L) with dim X/L = dim X-dim L. 

Let A : X X be a linear operator and L c X be such 

that AL c L then we say that L is A-invariant. Let U, X,Y be 

finite dimensional vector spaces and A : X7+X, B : (1.+X and C : )0i/ 

be linear. 	The maps AIL, A(mod L), B(mod L) and CIL are then defined 

by the following commutative diagram 

AIL 
L 

       

      

c L 

C B 

  

A 

L 

	>X 

   

B (mod L) 

A(mod L) 
X(mod 	 X(mod L) 

where L is the canonical injection and P is the canonical projection, 

a map such that ImP : X(mod L) and ker P = L. 

Im and ker denote image (range) and kernel (null space), 

respectively. 

Let L, K c X. Then we shall say that L is A(mod K)-

invariant if AL c L + K and that L is AIK invariant if A(LnK) c L. 

Furthermore, <AIL> := L+AL +...+ A
n-1

L and <LIA> := 

- 
L n A 	

n+11
L n ,.. A 	denote 	respectively, the smallest A- 

invariant subspace containing L and the largest A-invariant sub-

space contained in L. 



r 
In terms of the linear system 2, : x = Ax + Bu; y =Cx R := 

<AIIm B> is the reachable subspace while N := <kerCIA> is the 

unobservable subspace. 

B stands for Im B and A
F 
:= A+BF denotes the closed-loop 

map obtained by the state feedback control law u = Fx on 

If A : X4-X is a linear operator and L,K c X are such that 

AL c K we then denote the restriction of A to L with codomain 

K by KIAIL. 

Let X be a normed vector space and consider any measurable 

function t. : [0,co) 4- X. 	We then say that L belongs to the 

L -space ifII IIL < m, where 
- p  

 

(roil t(t) IIP)P 
0 	— 

sup II ,e(t) II 
t>0 

  

II 41, := 
p 

1 <p < co 

p = CO 
• 

    

The following list shows the symbols often found throughout the 

thesis together with their usage and(or) meaning. 

Symbol 	 Usage/Meaning 

x:=y, 	x is defined as y• 

2) LeK , 	direct sum 

3) u 
	

A
1
uA
2
, list combination 

4) 	.' 	 the real line 

+ 
5) E 	 the nonnegative interval [0,m) on the real line 

6) E 	 complex plane 



xi 

7)  

8)  

9)  

E 

dim X 

open left-half complex plane 

complex conjugate 

dimension of 	X 

10)  0(A) the spectrum (i.e. the set of eigen-

values, counting multiplicities) of 

the square matrix A 

11)  Re real part 

12)  Mat A matrix of A(i.e. the representation 

of the map A in a certain basis) 

13)  X' dual vector space 

14)  A
T 

transpose of A(the dual map to A) 

15)  n the set of positive integers 

i1,2,...,n} 

16)  2(s) field of the rationals over 	E 

17)  Es] ring of the polynomials over 	2 

18)  E 	(s) if e E(s)If = q/p, p, q e E[s] 

and degree p > degree q} 



Lemma 
P"se 

Theorem 
F''be 

Proposition 
flee 

Definition. 

?"36- 

Remark.  

0.0 yiii 1.1 15 1.1 24 1.1 14 1.1 33 33 
1.1 20 1,2 11 1,2 43 1.2 14 2.1 81 
1.2 22 1.3 19 1.3 53 1.3 16 2.2 85 
1.3 49 1.4 25 1.4 54 1.4 18 2.3 86 
1.4 51 1.5 34 1.5 57 1.5 19 2.4 96 
1.11  69 1.6 39 1.6 60 1.6 21 2.5 99 
1.21  71 1.7 46 2.1 82 1.7 60 3.1 159 
2.1 80 1.8 47 2,2 121 1.8 61 3.2 170 
2.2 50 1.11  65 2.3128 1.9 63 3.3 172 
A.1 140 1.21  65 3.1 158 1.10 64 3,4 176 
A.2 142 1.31  67 3.2 162 1.11 64 3.5 182 
4.1 225 2.1 95 3.3 173 1.12 64 3-.6 185 
4.2 293 3.1 153 3.4 177 1.13 67 3.7 204 
4.3 294 3.2 168 3.5 177 1.14 70 4.1 222 
4.4 296 3.3 171 3.6 192 2.1 77 4.2 238 
4.5 296 3.4 174 4.1 219 2.2 78 4.3 256 
4.6 303 3.5 176 4.2 221 2.3 86 4.4 263 

3.6 179 4.3 224 2.4 99 4.5 275 
3.7 183 4.3a 258 3.1 156 
3.8 19.7 4,4 259 3.2 158 
4.1 230 4.5 260 4.1 242 
4.2 233 4.6 277 4.2 276 
4.3 235 4.7 278 4.3 293 
4.4 243 4.4 294 
4.5 261 
4.6 269 
4.7 271 
4.8 283 
4.9 290 
4.10 298 
4.11 306 
4.12 310 
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formulation of relaxed. versions of control synthesis problems. 

For example, consider the linear system 

x = Ax + Bu + Gd 	 (0.1) 

z = Dx 

where d is a vector of disturbances and z denotes the to-be- 

controlled outputs. 

We can then ask : does these exist a control law u = Fx 

such that in the closed loop system the influence of d on z 

is arbitrarily small in some precise mathematical sense? Such 

a problem is called the almost disturbance decoupling problem (ADDP). 

Willems [1.14] has given a necessary and sufficient condition 

for the solution of (ADDP) in terms of a certain type of almost 

controlled invariant subspace which we denote in this introduction 

by Vb. Once the condition is satisfied, namely the problem is 

solvable, then in order to obtain an arbitrarily small influence 

of d on z we must have a sequence of controlled invariant subspaces 

V
e
.[1.12] such that V approaches Vb  as e 4 O. 	Moreover, in the 

approximation process the feedback maps Fe for which (A+BF )V c V 
E E. E 

are such that Fe co as E -- 0. 

It is in this context that we introduce the notion of a non-

singular proportional-derivative (P.D) state feedback law, u = F
1 
+ 

F
2
x, which is a law such that the map (I-BF2) is nonsingular. 	The 

terminology stems from the fact that a PD law gives rise to the 

following closed loop system. 
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• 
x = ( 	

-1 	-1
I-BF

2
) (A+BF

1
)x + (I-BF

2
) Gd 

z = Dx. 

The interesting fact is that under the same solvability 

condition for (ADDP), as given by Willems, we can also obtain an 

arbitrarily small influence of d on z by means of a nonsingular 

PD law involving finite feedback maps. 	More explicitly, it is shown 

that the subspaces Vc  can be made invariant under the operators 

(I-BF
2E
)
-1
(A+BF

1
) where F

1 
is a finite map and F2e —4-  2 is a map 

e40  

such that (.I-BF2) is singular. 

Such a result illustrates the usefulness of the derivative 

feedback in the context of (ADDP) and it can be interpreted in the 

following way : a trajectory of y which remains in a controlled 

invariant subspace that is close to an almost controlled invariant 

subspace is characterized by high 

more relevant information to be fedback is the derivative x. 

The high gain state feedback task is transferred to the derivative 

which accomplishes it with finite gain. 

It is also shown that a nonsingular RD. law preserves all the 

important features of a pair (A,B) such as the controllable sub-

space and the controllability indices. 

Another significant point about the use of derivative feedback 

is that, under the same solvability condition for (ADDP), we can 

achieve exact disturbance decoupling (influence of d on z is zero) 

by means of a law with the from 

• 
u=F

1 
 x+F2x + F3 

 d (0.2) 



which yields the following closed loop system 

(I-BF
2
)x = (A+BF

1
)x 	(G-1-BF

3
)d 
	

(0.3) 

z = Dx. 

The maps F
1 
and F

2 
involved in the solution are such 

that (I-BF
2) is singular and the pencil s(I-BF2) - (A+BF1) is 

-kegular[4.7]. 	A PD law, represented by the pair (F1,F2), with 

such features will be called a regular PD law. 

There are interesting connections between regular PD laws 

and almost controlled invariant subspaces. 	For example, there 

exists a kind of an almost controlled invariant subspace, called 

a sliding subspace, which cannot be made invariant under state 

feedback. 	However a regular P.D. law can be used to establish a 

type of invariance for such a subspace. It is shown that for a 

sliding subspace R
s 

there exists a regular P.D. law (F
1
,F
2
) such that 

(I-BF
2 
 )R
s 
 c (A+BF)R

s 

Note from (0.3) that with d = 0 we obtain an autonomous linear 

system of the type 

Ex = Ax 	 (0.4) 

where E is a singular map. This kind of system will be called 

a generalized linear system to distinguish it from the ordinary 

(or regular) linear system when E is nonsingular. 
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The theoretical development which leads to the exact solution 

of the disturbance decoupling by the law (0.2) depends upon some 

geometric properties of a regular pencil (sE-A). 

Although the main features of a regular pencil are well 

known [4.1, 4.3, 4.7, 4.16] it seems that there does not exist in 

the literature geometric conditions for the regularity of a pencil 

which is a point required for the definition of the law (0-.2). For 

this reason we have included a compact geometric theory on regular 

pencils which unifies some existing results and also provides 

solutions to questions not answered before. 	The presentation of 

the theory emphasizes dynamical interpretations with respect to 

the associated generalized linear system (0.4). 

A regular P.D.law can also be introduced as a motivation for 

the study of structural properties of a generalized linear system 

n dest.;Libeu 

EX = Ax Bu 	 (0.5) 

y = Cx 

where E is a singular map. 

Several properties of this kind of system have already been 

described in C4.3, 4.15]. 	It is well known that if we allow 

arbitrary initial conditions for the autonomous generalized linear 

system (0.4) we then have in general a response characterized by 

exponential and impulsive modes. 	This is due to the fact that 

a pencil (sE-A) has in general finite and infinite-zeros. 
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Verghese [4.15, 4.16] has pointed out that the controll-

ability and observability criteria for the infinite-zeros (relative 

to the system(0.5)) given by Resenbrock were valid only in a special 

case. He has then introduced tests to check for the controllability 

and observability of such zeros which are applicable in any sit-

uation. Based on his tests we have been able to provide correct 

necessary and sufficient conditions for the controllability and 

observability of the infinite-zeros in terms of the maps E, A, B 

and C. We also present an interpretation for the controllability 

and observability of the finite-zeros in terms of invariant 

subspaces associated with the pencil (sE-A). 

Cobb [4.3] has given a necessary and sufficient condition 

for the existence of a state feedback law u = Fx for (0.5) which 

brings the infinite-zeros to finite positions of the complex plane 

without pre-specifying those positions. 

We show here that his condition is in fact the controllability 

of the infinite-zeros and we also obtain the stronger result that 

controllability of the infinite-zeros is equivalent to the existence 

of a state feedback law which assigns pre-specified complex numbers 

to those zeros. 	The result may be considered as an extension of 

the celebrated result on pole placement by Wonham [3.17] for linear 

systems for which E is the identity map. A new method for the 

assignment of all zeros (finite and infinite) by state feedback 

is also presented. 

Other topics considered in this thesis are those of infinite-

zeros and root-loci for multivariable linear systems. 



Consider the linear system 

= Ax Bu 

y = Cx 

and its associated transfer matrix G(s) = C(sI-A)
-1
B. 

Commault and Dion [2.2] have given a geometric definition 

for the infinite-zero structure of G(s) by relating it to the notions 

of almost controlled invariant subspaces. 	It turns.out that infinite- 

zeros and almost invariant subspaces play an important role in the 

root-loci analysis of invertible. linear systems which are those for 

which G(s) is invertible over the field of the rationals (note that 

this implies that the number of inputs is equal to the number of 

outputs). 

L Viii GL jtatG space point +4,n, 	^F nlmna* nnn*rnllimel 

  

invariant subspaces in the study of root-loci properties is adequate 

for the simple reason that the concept of an almost invariant subspace 

is intimately connected with high gain feedback. 

By exploiting properties of representations of a sliding 

subspace, it is shown how to construct an output feedback law, 

u = gRy, where g is a real scalar, g co, such that the eigenvalues 

that go to infinity in the closed loop map (A+gBRC) approach pre- 

assigned asymptotes. 

The assignment procedure suggested has the following features : 

the orders of the assigned asymptotes coincide with the orders 

7 
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of the infinite-zeros of the transfer matrix of the invertible system. 

asymptotes of distinct orders are assigned independently . 

limit eigenvectors are also assigned. 

Our method differs from that presented in [2.11] with some 

advantage in that the asymptotes can be assigned without the know-

ledge of the asymptotic structure of the closed loop map (Al-gBC), 

g co. 	It is well known that the asyMptotes of this last map 

may not have the same orders as the orders of the infinite-zeros 

of C(sI-A)
-1

B. In this respect we show a condition derived directly 

from the maps B and C which ensures that both entities, infinite-

zeros and asymptotes, have the same orders. The condition is con-

structive in the sense that the magnitude of the asymptotes can also 

be computed from it. 

Finally the thesis contains a summary of the main known 

properties of almost invariant subspaces together with some new ones. 



Main Contributions of the Thesis 

We list below the main contributions and we refer to the 

theoremaand propositions which are related to them: 

the description of properties of sliding subspaces: 

Theorems 1.4, 1.5 and 1.6. 

an extension of a result due to Trentelman [1.12] regarding 

the spectrum of a controlled invariant subspace which complements 

a L -almost controlled invariant subspace : Theorem 1.8. 

a derivation of the prime subsystem in Morse's canonical 

form in terms of almost controllability subspaces (Theorem 2.1 Item d) 

together with a detailed geometric interpretation for the infinite-

zeros of the transfer matrix C(sI-A)
-1
B. 

a liew piuQeduze fu L 	uunstiueLiull of a high gain uutput 

feedback map for a linear system with invertible transfer matrix so 

that the asymptotes of the closed loop system take on pre-assigned 

values : Proposition 2.2. 

a condition which ensures that the asymptotes of a linear 

scalar gain output feedback have the same orders as the orders 

of the infinite-zeros of the transfer matrix : Proposition 2.3. 

Regarding the generalized linear system Ex = Ax Bu; y = Cx 

we have given : 

9 
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necessary and sufficient conditions for the controllability 

and observability of the infinite-zeros of the pencil (sE-A) : 

Theorems 3.3 and 3.5 (see also Theorems 3.2, 3.4 and Propositions 

3.3, 3.4) 

the proof that controllability of the infinite-zeros is 

equivalent to the existence of a state feedback map which assigns 

those zeros to pre-specified complex numbers : Theorem 3.7. 

a method to assign all the zeros (finite and infinite) 

by state feedback : Proposition 3.6. 

the proof that controllability and observability of the infinite- 

zeros is equivalent to the existence of an output feedback map which 

converts those zeros into finite ones : Theorem 3.8. 

a procedure for zero assignment via observers for systems 

described by Jx = x + Bu; y = Cx where J is a nilpotent map (see 

Section 3.5). 

Relative to the geometric theory of a pencil (sE-A) the 

following contributions have been given: 

the identification of the minimal column indices of a singular 

pencil with certain indices derived from a sequence of subspaces 

and the determination of the map whose eigenvalues are the finite- 

zeros of such a pencil : Theorem 4.1. 

a necessary and sufficient condition for a pencil to be regular : 

Theorem 4.2. 



miscellaneous geometric properties of a regular pencil 

stated in Proposition 4.1, Corollaries 4.1, 4.2, Lemma 4.1 and 

Theorem 4.3. 

Finally, it is believed that all the results in Chapter IV 

concerning properties of a linear system under a regular and a 

nonsingular PD law and the use of such laws in the exact and almost 

disturbance decoupling problems are new. 	The construction of PID 

observers in the context of almost conditionally invariant subspaces 

also seems to be original. 

11 



CHAPTER I 

ALMOST INVARIANT SUBSPACES 

I.1 	INTRODUCTION 

Linear systems theory has evolved extraordinarily since the 

introduction of (A-B) and (A-C) invariant subspaces [1.2-3,.1.17]. 

These concepts proved to be fundamental in the structural analysis 

of linear systems and also served as an excellent framework for solving 

several control synthesis problems such as the disturbance decoupling 

problem, tracking, regulation, the model following problem, the 

synthesis of noninteracting controllers, etc. . The methodology 

that employs the above concepts to deal with analysis and synthesis 

of linear systems has been labelled as the "geometric" approach in 

the important book by Wonham [1.17]. 

In this thesis we shall adopt the nomenclature suggested in 

[1.2, 1.14-5]. 	(A-B) invariant subspaces will be termed A(mod ImB) 

or controlled invariant subspaces and (A-C) invariant subspaces will 

be called Alker C invariant subspaces or conditionally invariant 

subspaces. Such a terminology is, of course, related to the basic 

features of such subspaces which are presented in the following sections. 

The concepts of almost controlled and almost conditionally 

invariant subspaces have been recently introduced by Willems [1.13-5] 

and they can, undoubtedly, baconsidered as one of the most important 

new developments in the "geometric" approach to linear systems theory. 

The names "almost controlled invariant subspaces and almost 

12 
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conditionally invariant subspaces" stem from the fact that such sub-

spaces are limit subspaces of sequences of controlled invariant 

and conditionally invariant subspaces. 

The new notions have proved to be fundamental to deal with 

high gain feedback questions. As an example, the almost disturbance 

decoupling problem, by state feedback and by measurement feedback, 

has been solved in [1.14-5]. 	As another application we shall see 

in Chapter II that almost invariant subspaces provide an excellent 

framework for a state space analysis of the root-loci problem for 

multivariable linear systems. 

Almost invariant subspaces have also played a role in the 

structural analysis of linear systems : the geometric definition of 

infinite-zeros given in [1.43 builds on them. 

The concept of invariant subspaces is rich not only because 

it plays a fundamental role in linear systems theory but also because 

it is the 

theory. 

subspaces 

kind of concept which has its countcrpart in 

It is also expected that the concept of almost invariant 

should be generalized in the context of nonlinear systems. 

For potential applications we refer to [1.14-5]. 

The objective of this chapter is twofold : firstly, to describe 

known concepts which are essential for the subsequent development 

of the thesis and secondly, to present some new properties of almost 

invariant subspaces. 

2.2 	ALMOST CONTROLLED INVARIANT SUBSPACES 

1.2.1 Basic Concepts  

The material of this section is known and can be found in 
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[1.17, 1.13-143. 	It consists of a collection of definitions and 

results which are needed for the development of the thesis. The 

exposition style here follows closely that one of [1.143. 	For the 

reader well acquainted with the concept of almost controlled invariant 

subspaces we suggest to examine this section for the notation and 

proceed directly to the next section. 

Consider the linear system 

• 
X : x = Ax + Bu 

where 	x e X := 141  ; u E U := in  ; dim = m 

and let 
	

denote all possible state trajectories generated by X. 

Definition 1.1: 	A subspace V c X is said to be a controlled invariant 

subspace. if V x
0 
 E V, 	3 _x E /

X 
such that X(0) = x

0 
 and 

X(t) E V, Vt. 	A subspace V
a 

c X is said to be an almost controlled 

invariant subspace if Vx
0 
 E Va and e > 0, 3/f.e /x  such that X(0) = x0 

 and 

d(X(t), V
a) := infll X(t)-x11 < e , Vt. 

xEV
a 

 
(1.2) 

Note that an almost invariant subspace is characterized by the 

fact that there exists a trajectory of Ix  that remains arbitrarily 

close to it. 

Definition 1.2: A subspace R c X is said to be a controllability 

subspace if Vx
0 , x1  E R, 3T > 0 and X e X 

 such that ,c.(0) = xo, 

X(T) = x
1 
and x(t) E R, Vt. 	A subspace Ra  is said to be an almost 

controllability subspace if Vx0, x
1 
 E R

a
, 3T > 0 such that ATE > 0, 



gx e /x 
with the properties that X(0) = x0, 	= x

1 
 and 

d(X(t), R ) < e, Vt. 
a — 

The above definition shows that (almost) controllability sub-

spaces are (almost). controlled invariant subspaces which possess a 

reachability property. 

Let V, R, V , R denote the set of all controlled invariant /,4.b.spci.cp_6, - - -a -a 

etc. and V(K),R(K),V 
a 
 (K) and R

a 
 (K) those contained in a given subspace 

K c X. From definitions 1.1 and 1.2 it follows that R c V c V and 
- - -a 

RcR cV. 
- -a -a 

The first property of the subspaces introduced in definitions 

1.1 and 1.2 is extremely important in applications. 

Theorem 1.1: 	V, R, V
a 
 and R

-a 
 are closed under subspace addition. 

- - -  

Consequently, 

sup V(K):=V
K 
 e V sup R(K):=R

K 
 e R - 

sup 	Va(K):=Va, 
K  ..e V

a 	sup R
-a 

 (K):=R a, e R - 	-a 

The subspaces introduced in definition 1.1 and 1.2 also admit 

"state feedback" characterizations which are shown in the next theorem. 

Theorem 1.2: 

a) {VEV} .--.> OF such that A
FVcril <.=> {AVcV+8} • 

b) {RER} <=--> {3F,and B
1 
 c8 such that R = <20

1
>1. 

c) V = V+R , i.e. VEirl<=1. OVE and R 	such that V =V-i-Ra}. -a 	- -a 	a -a 	- - 	a--a 	a  

15 
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d) 	{R GR } <=> {]F and a chain 
a -a 

AF 
 13
2 
 +...+ A

n-1 

} in B such that R
a
=B

1 
+ 

The notation F(V), F(R) and F(R
a
) will be used to denote the 

set3of maps F which describe, respectively V, R and R
a
. 

It has been proven in [1.14] that the set V
a 
 is the closure 

of the set V. 	In other words, arbitrarily close to any almost 

controlled invariant subspace V
a 

there exists a controlled invariant 

subspace V and in the approximation process, the feedback gain of 

the approximating controlled invariant subspace goes to infinity. 

Conversely, if a given subspace K can be approximated arbitrarily close 

by a controlled invariant subspace, then K E V 
a
. Such a characterization 

- 

of V
a 
establishes the link with high gain feedback. 

Another important 	characterization of an almost controlled 

invariant subspace V
a 

is its equivalence to a controlled invariant 

subspace when distributional inputs are allowed in (1.1). 	In fact, 

there is a type of distribution which when used as input yields a 

"trajectory" which remains in V
a 

if one starts in V
a
(x
0 
e V 

a
). 	Such 

a distribution is described in the next definition. 

Definition 1.3: 	A distribution  4 with support on E
+ 
is said to be 

of Bohl type if there exist vectors f. and matrices F, G, H such that 
1 

6 	f. 6(i)  + 
i=0 1  

where 6‘ : t He
Ft

G and cS (i) is the i
th 

distributional derivative 

of the delta functional. Equivalently, the distribution 6 is 

Bohl if its Laplace transform is rational. 
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The above characterization establishes a distinction between 

a controlled invariant and an almost controlled invariant subspace 

with respect to the type of open-loop inputs needed to hold a trajectory 

in either of such subspaces. 	It is well known [1.2] that,controlled 

invariant require piecewise continuous functions as inputs, whereas 

almost controlled invariant subspaces require distributions. 

It is also possible to hold a "trajectory" in Va, if one 

Starts there, by a distributional state feedback law u : x Fx + 

6(i) F.x,forcertairlimapsFanciF. ,i e n (see [1.14]). 
i=0 

We shall show in Chapter IV that it is possible to keep a 

"trajectory" in Va  by making use of a proportional-derivative state 

feedback law of the kind u : x Fix + F
2x for certain maps F1 

and F
2
. 

In the following we review the algorithms which yield the 

supremal subspaces defined in Theorem 1.1. 

The subspace 	VK  is the limit of the nonincreasing sequence, i.e. 

v'T(  := vdimK+1 	Vu  = K n A-1  (01-1 	B) ; 
	0 	

• 	(1.3) 

It has been shown by Willems [1.13] that the subspace Ra,K  

is the limit of the following monotone nondecreasing sequence. 

Ra,K := R
di

mK ;  R
u 
= K n (Aku-1+ B) ; e = 0. aa 	a 	a 

(1.4) 

The above sequence has been used in [1.17] in order to 

compute RK, which is given by 

* 	* 	* 
R
K 
= V

K 
n R

a,K 
	 (1.5) 



From Theorem 1.2-C, it follows that 

* 	* 
V
a,K 

=V
K 
 + R

a,K 
	 (1.6) 

* 
It is clear from Definition 1.1 that V

a,K  consists of all 

those points x
0 
 e K, for which there exists a trajectory that starts 

in x
0 
 and remains arbitrarily close to K in the sense of the norm 

(1.2). 	Such a norm does not constitute the only way of measuring 

the distance of a trajectory through a point x
0 
 e X to the subspace 

K. 	In fact, there are many ways to measure (integrated) pointwise 

distance to K which are shown in the next definition. 

Definition 1.4: 	The I- distance in the L - sense from a point 

X
0 
 E X to a subspace K c X is defined by 

18 

d
p
(x
0
,K) := inf d(xdok 	, 1 < 

Xe 
X 

p CO 

where 

d(X,K) 	:= [f 	d
P
(X(t),K)dt 

_00 

 

 

, 1 < p < co 

and 

 

ti(x,K) 	:= supH d(X(t),K)H . 

The points x0  of interest are, of course, those for which x0 
 

is zero distance from K. Moreover, from the linearity ofZx, it 

follows that such points constitute a subspace of X. This has led 

Willems to the following definition. 



Definition 1.5:  V
P,K 

 := {x
0 
 e Xld

p
(x
0
,K) = 0} will be called the 

supremal L - almost controlled invariant subspace "contained" 

in K and 

R
* 

:= R * 
p,K 	a

'
V
p,K 

will be termed the supremal L -almost controllability subspace 

"contained" in K. 

The subspaces above introduced are directly connected to 

* 	* 
the subspace V

a,K 
 and Ra,K 

 as the next theorem shows. 

Theorem 1.3: 

a) R 	= R
a,K 

and V 	= V 
a,K 

b) for 1 < p < co : R
p,K 

= AR
a,K 

+ B and V 	R 	+ V 
p,K 	p,. 	K 

* 	 * 
It is clear from this theorem that V 	c K, but V

p,K 
 need 

co,K 

not be a subspace of K. Part b of the above theorem shows that 

R
p,K does not depend on 1 < p < co and for this reason the following 

notation is adopted. 

* 	* 
R10,K := AR

a,K 
+ B 

and 

* 	* 
V
b,K 

:= R
b,K 

+ V
K 
= AV

a,K 
+ B + V

a,K 
= AV

a,K 
+ B + V

K 

(1.7) 

19 



The subspace Rb K  can be computed through the following 

monotone nondecreasing sequence. 

dim16-1 
Rb,K := S 	; S

u 
= A(S

u-1 
n K) 	13; 	S°  = 0. 

(1.9) 

Trentelman [1.12] has shown how to construct sequences of 

controlled invariant subspaces which approach R
a,K 

and -b K.  

1.2.2 Decomposition of an Almost Controlled:Invariant Subspace  

and Some Geometric Relationships Affibhg'the Various Subspaces  

We start this section by showing some relationships among 

the sequences of subspaces defined in (1.3-4), (1.9) and the monotone 

nondecreasing sequence which yields RK  given by 

dimV*  
R* -= 
K 

K 	* 
; R

u 
 = V

K 
n (AR

u-1 	
3) ; R°  = 0 

Lemma 1.1: 

(1.10) 

a) Su  = ARu-1  
a 

b) S
u 
 n V

K 
= Ru  

* 
c) R

a
u 
 n V

K 
= Ru  

d) Su  n K = Ru  . 
a 

 

20 



Proof: a) is proven in [1.14] ; b) is proven in [1.10], 

c) and d) follow immediately from a) and b) and have been shown 

'in [1.5]. 
0 

We introduce now two classes of subspaces which are extremely 
bte, 

important inAgeometric definition of finite-zeros, infinite-zeros and 

synthesis of control systems. 

Definition 1.6: A subspace C e V is said to be a coasting subspace 

if R.*  = 0. 

V
R 

= 0. 
s 

 

A subspace R
s 
E 

(2a 
is said to be a sliding subspace if 

A coasting subspace does not possess the reachability property 

or equivalently 0[(A+BF)1C] is fixed for any F e F(C) (see [1.14] and 

thm. 5.7 in [1.17]). 

In a sliding subspace there are no trajectories generated by 

X other than the null trajectories. All "trajectories" in that 

subspace are generated by distributional inputs. 

We shall show next that sliding subspaces appear in the 

following way : let R
a 
be an almost controllability subspace; then 

R
a 
= R

R 
® R

s 
, i.e., sliding subspaces show up as complements of 

* 	a 
R
R 

to R . To show this we introduce two more sequences of subspaces 
a 

which will be used throughout the thesis. 

Let B be any subspace such that 

* 	- 8 = 13 n V K  e B 

and consider the subspacesk K  and fZaK  defined by the following ,  

21 
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sequences of subspaces. 

= xdimK+1; Su 
= A(gu-1  n K) + B ; SO = 0. Rb,K  : 

dim K 

a,K 
:= R

a 	
- 	 -1 	- 

R
a
0  ; R

a
u 
 = K n (AR

a
u 	

+ B) ; 
	

= 0 . 

(1.12) 

(1.13) 

We then obtain the following relationships among the sequences 

defined in (1.3-4), (1.9-10) and (1.12-13). 

Lemma 1.2: 

a) S
u 
 =S

u 
 eR

u 
 

b) Su  n V*K  = 0 

Au 	 u-1 
c) = AR 	e B 

a 
 

d) Ru = K n SU  
a 

e) R = R
u 
 eR

u 
a 
u 

a 
 

f) Ru  n V
K  = 0 a  

Proof: 	a) and b) are proven in [1.10] ; c) is analogous to 

part a) in Lemma 1.1 ; (d-f) follow immediately from (a-c) and are 

shown in [1.5]. 

From Lemma 1.2(e-f), it follows that 



The only subspace which is uniquely defined in (1.15) is R 
V

* a 

* 

* 	_ 
R* =R eR 
a,K 	K 	a,K 

(1.14) 

23 

with R
a,K 

 , a sliding subspace. 	Since Ra,K  is the supremal almost 

controllability subspace in K, it follows that the sequence (1.13) 

yields a sliding subspace of maximal dimension in K. Note that 

distinct sliding subsp;A:X4 are obtained in (1.13) for distinct com-

plements of 13 n V
K 

chosen in (1.11). 

From (1.14) with K:= V
a 

and Theorem 1.2c we have 

* 	_ 
V
a 
=CeR

V 
 eR
a 	a V a 
	 (1.15) 

* 	* 
where C is a coasting subspace such that C 9 R

V 
 = V 	The 
a 	Va 

decomposition (1.15) has been obtained in [1.14] and it describes 

the structural features of an almost controlled invariant subspace. 

, which is 

a subspace such that for any symmetric set A of dim RV ,complex 
a 

 

numbers. there exists F 	F(V.
v 
 ) such that 0-[.(A-1-BF)iR- 	= A. 
a 	 V 

a 

To conclude this section we refer to [1.7] for a matrix pencil 

characterization of almost controlled invariant subspaces. 

1.2.3 Properties of Sliding Subspaces  

The decomposition (1.15) of an almost controlled invariant 

subspace has shown that sliding subspaces constitute one of the key 

concepts in the new theory developed by Willems. This motive alone 

would be sufficient to justify the study of properties of such sub- 

spaces. 	But this is not the only reason. 	We shall see in Chapter II 
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that some of the properties described here are important to obtain 

a good formulation for the assignment of root-loci asymptotes and to 

analyse Morse's canonical form in the light of invariant and almost 

invariant subspaces. 

	

Let R
s 

be a sliding subspace. 	The first property is a simple 

one and it is direct consequence of the fact that V
R 
= 0. 

Proposition 1.1: 	Let R
s 

be a sliding subspace. 	Then 

, 
a) R

s 
n A

F 
1 
 o =7 0 	, VF : X 	U 

b) 	max dim Rs 
= n-m 

Proof: 	Consider the algorithm 1.3 with K := R. It is straightforward 

to see that the subspace Vu  is invariant under the transformation 

A 	A+BF, VF : X .4- U. 	Since R
s 

is a sliding subspace, it follows 

by the stopping rule of the algorithm that for some u E n, 

R
s 

n A
F
1 
 i3 =  0 and a) follows. To show b) note that a) implies 

A
F 
R
s 

n B = 0 and ker A
F 

n R
s 

= O. This and dim B = m imply b). 

We already know that a sliding subspace is an almost controll-

ability subspace and therefore it admits a feedback representation as 

shown in Theorem 1.2d. What we want is to obtain some properties of 

the feedback map that describes a sliding subspace and to analyse 

in more detail the algorithm (1.13) which is slightly different from the 

algorithm (1.4). 	In (1.13) we have discarded the subspace B n V
K 

which gives rise to the supremal controllability subspace in K. 



Theorem 1.4: 

a) The sequence {R:} is monotone nondecreasing ; moreover 

-dimK -c° = Ru-1 	Ru-1 = 
Ra 	a 

= R := lim Ru  and Ru 	KM. a a a a a 
u+00  

b) R
u-1 
 = sup{J c Kl4F and a chain {B.} in 8 such that 
a 

J =3 	A
F
13
2 
+...+Au

F
-2B

u-1 	a with BF ku-2  c 8}. 

c) Let k G n be such that Rk-1  = Rm. Then 
a 	a 

7,k-1 	k-2„ 
K
a 	

= B
1 

6, A
F2 

9...QA
F 

0
k-1 

for some chain {B
i
} in B. 	The subspace R_can also be written 

as 

where 

-k-1 
R
a 	

= L
2 
e L

3 
e...e Lk 

(1.16) 

L 	= 	e A 13' 	e 	e Au-1  IP 
u+1 	u+1 	F u+1 	F 	u+1 

25 

with 

8, 	c B 
u+1 	u 

u e {1,2,...,k-2} 

and 

k-2 - 
= 	9 	9 ... 9 A 	0 Lk 	Bk_i 	AF  Bk-1 	

F 	k-1 • 

Furthermore, the map F can be chosen so that 

BF L c B' 
2 	1 

(1.17) 
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and 

BFL1.14.1 c 31  
' + 82 
	Bu-1

' 	, u E{2,3,...,k-1} 
	

(1.18) 

Proof: 	The proof of a) is absolutely identical to that in [1.17 

page 106]. 	The result b) is easily proven by induction on u. 

To this end suppose that 

1 
AF-2 ^ 

+ A
F 
 g,+...+ A

F
-2 

B
u-1 

c-R
a
u-1 

for some chain {B.} in S. Hence 

21 	AF g2 
+...+ Au 	g c K n (g

1 	AF a  
ku-1) c K n 

(AR11-1  + 2) = e . 
a 	a 

We now show that the subspace 11: can itself be written as 

Au 
K = B

1 	F 
e A

F
B
2
e..e A

u-1 
u . a  

The proof is inductive and it also yields the results described 

in c). 	Some of the steps involved in the proof are similar to those 

used in the proof of the second theorem in [1.13]. 

1 
Consider the sequence (1.13) for u = 1 and let R

a 
=

1 
:= 

K n S. Let 131
1 
 be any subspace such that 

B' 	= B
o 
 := 2 



and let {bi} , i E £1, be a set of linearly independent vectors which 

span $1. Write 

	

x
i ,1 

:= b
i 	

i e
1 
 . 

- 

- 

	

For u =2, R
2 

	K n (AR
1 
 + 8) = K n (

0 
+ AB

1 	1 
+ 8.). Since 

	

a 	• a 	a  
R1
a c 

 
K, there exist linearly independent vectors xi,2, i e .f..2  such 

..2 	1.; 	A  
that K

a 
= K

a 
9 span{xi,2}. 	Since K n 8' = 0, the vectors x

i,2 1 

have the form 

xi 2 = Abi  + 	1 , i e Z2  
, 

(1.19) 

wheretheb.EB 	
' 

i e t. are linearly independent and b! 	
e $1. -2 	 1,1 	1.  

Le Let 

:= spari6.). 	$2 c  1 	2 	1 

and define F :
2 
-* U such that 

BF b = b1,1  . i   

Then from (1.19) 

xi,2 	1 
= (A+BF)b. . 

Let S2 be any subspace such that 

0 82  = 

(1.20) 

27 
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Thus 

R
a
2  
= 8

1 
e A

F
B
2 
= L

2 
e L

3 

with 

L := B' 
2 	2 

L
3 
:= B2 e Ar82' 

Note from (1.20) that BFB
2 c B1 and by the independence of 

L2  and L3  we can define F on L2  and on span {xi 2} = AFB2  so that , 

EFL c B' 
2 	1 

and 

BFL c B' 
3 	1 

which proves (1.17) and (1.18) for u = 2. 

Now assume that for u - 1 

u
a
-1 

= B
1  
e A

F
B
2 
e 	e A

F-28
u-1 
	(1.21) 

= L
2 
e L
3u 

with 

L. 	. B' 	
e AB' 
	e 

j+1 	j+1 	F j+1 	
AF-18 

j+1,  j E {1,2,...,u-2} (1.22) 

	

Bu-1 e A F Bu-1 	
u
F
-28 

u-1 
	(1.23) 

EFL c B' 
2 	1 

(1.24) 

EFL.
j+1 c  1 	2 

B' + B' +...+ 	
, j J-1  

(1.25) 
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e B 
J 
 .-- B. 

7 	
j e {1,2,...,u-1}. 

-1  
(1.26) 

Now 

Ru  = K n (01-1  + 8) 
a 	a (1.27) 

-u-1 	-k-1 	-k-1 
and since R

a 
c R

a 
and R

a 
is a sliding subspace there follows 

by Proposition 1.1a that 

-u-1 	 u-1 
dim(A R 	B) = dim(AR

a 	
9 13), V F : 

a 

But from (1.24-6) 

BFRu-1 
a 	

B 

Thus 

AF a 	a 
Te-1  9 8 c AR11-1  9 8 . 

Taking into account (1.28) it follows that 

Ar-1  e 8 = A Fa  Ru-1  e 8 . 
a  

(1.28) 

(1.29) 

Hence (1.27) can be rewritten as 

Ru = K n (A F a R11-1  e 8) a  

= K n (Ra 
-i 
	

1 
+ s' + A

F2  
B' 

4....+AFu 273,u-1 
	AF

-1 u 	
$u-1). 



Since K
a 	

K, there exist linearly independent vectors 

x. 	,iEt. such that R
u 
 = K

a 	
pan{x.}. a i,u 	-u 	 I,u 

Since 

K n (81 
	AF 2  

8' 	
F 
Au-2  B,  ) = 0 

u-1 

	

the vectors x. 	have the form 
i,u 

- 
u-1 

x. 	
= Au-1 
 b. + / A3-' b! 

	

i,u 	F 	1 	F 	1,3 	-u j=1 

wherethevectorsb.EB
u-1 

are linearly independent and b' 	e 8!. 
i,7 	7 

Define the following vectors 

x
i,1 

= b
i 

I•4 

+ A
F 
b
i 
X

i,2 
=

i,u-1 

• 
• 

AF-2   = b! 	+ A b' 	+...+ A
F
-2 
 b. x

i,u-1 1,2 F i,3 	1 

AF-1   x. 	= b'
i 	+ AF i 

b' 	+...+ A
u-2 

b' 	+ A
F
-1 
 b. 

	

I,u 	,1 	,2 	F 	i,u-1 	1 

for i e £. and note that 
-u 

xi 

	

= A x. . 	+ b' 

	

1,3 	F 1,3-1 	1,u-j+1 ' i 6 	j 	U 

Define F" on {x..},iet.,je{1,2,...,u-1} so that 
1,7 	-u 

RE" x
I
, 	b' 	• ,j 	i,u-j+1 

(1.30) 
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Thus 

xif] 
. = (AF  4 	

-1 
. BF") 	b. 	,iet

-u
,jeu. 

Let 

1.4 

811 :=sparith.l, B
u 
c

u-1 

and let 73' be any subspace such that 

u 	u 	u -1 

DefineF"onspan{x.},iet. so that 
i,u -u 

1,U 	u -1 
(1.31) 

and finally define F' : Teal. 	U by 

F' := F + F" on span{x
1  
. .} ,ietje{1,2,...,u-1} 
/7 	-u 

• 

F' := F" on span{x. 
1,u 	-u 

F' := F on L
2 
e L3 0 ... e Lu-1 e Lu 

where 

Lu := 731u  9 AFB' e ... 0 A
u-2 

8'. 
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It now follows that 

u 
R
a
u 
 = 81 e AF' 82 e 	e A

F' 
1 B

u (1.32) 

L2 e 	e L
u 
a L

u+1 

Lu+1 = B
u 
e A
Flu 	

... 	A
u
F'

1
B
u . 

It is not difficult to see from the inductive hypothesis 

(1.24-5), (1.30-1) and the definition of F', that 

BF'L c B' 
2 	1 

BF'Lj4.1  c B1 	8;_ 1, j e 

which proves part c) of the theorem. 

0 

Corollary 1.1: 	Le
t 
Rs c K be a sliding subspace of maximal 

dimension described by 

R
s 

= 
1 
e A

F
B
2 
e 	

F 
e Au

-1 
$u 

for some F : X 	U and some chain B. in 8 , where 8 is as in (1.11) . 

Then necessarily 

BF(B
1 
 9 A

F 
 $2 
	F 
9 ... e A

u-2 
B 	) c 
u-1 
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with 

and 



Proof: 	Just note that at the step u of the algorithm (1.13), 

(1.33) must hold in order to have the equality (1.28) and then write 

re as in (1.32). a 

0 

Remarks 1.1: 

a) Note from (1.28) and Lemma 1.2e that 

u 	 u-1  
S = A

F
R
a  e 

= 	A
F
.13
1  9 
	

F 
9 Au-1 u-1 
	(1.34) 

which shows that Su  also admits a state feedback representation. 

b) Also note that we have defined F" on span x. 	(see (1.31)) 
i,u 

to obtain the extra property (1.25) which is to be used in Chapter II. 

However we need not have Anna 	Prnm (1‘1n) ;1- fnllnwq that with 

Fil defilledon{x.},iEtu
,j“1,2,...,u-11 we have automatically 

x.
1 	

= (AF 	 b BF")
u-1 - 

.. 
,U 

Thus unless we wish some extra property, the conclusion is 

that to obtain the representation 

u-I 
1111  = 

1 
0  A
F2 	

A
F 
 $

u a  

the map F need not be defined on A
u-1 	

= span{x. }.  
1,u 

Our next result is simple and concerns the existence of sliding 

33 
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subspaces of maximal dimension. 

Theorem 1.5: There exists a sliding subspace of maximal dimension 

(n-m) if and only if the pair (A,B) is controllable. 

Proof 

Let Rs be a sliding subspace of dimension n7m. Then by 

Proposition 1.1a, it follows that 

A
F
Rs e B = X 

where 

R =3 eA 	... RS 
	1 . F

13 
 2 	

AF
-1  Bk  

forsomechainfBA- in B , some F : X 4  U and some k e  n. Since the 

controllable subspace is invariant under state feedback, it follows 

that the pair (A,B) is controllable. 

<r) 	If the pair (A,B) is controllable, then the space X can be 

decomposed into a direct sum of m controllability subspaces Ri, 

dim(R.) = k., where the k., i e m, are the controllability indices 1 	1 	1 	- 

of the pair (A,B). 	It is easy to see that if 

X = R $ R $...e R 
1 	2 	m 

where the 

k.-1 
R. =b. 	A

F1  
b. 	A

F
1  b

i 
,iEm 

1  

are controllability subspaces, then 

(1.35) 
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Rs =L1  eL2  e...eLm 
	 (1.36a) 

where 
k.-2 

L.
1 
 = b. +A

F
b. 	b,iem 
	

(1.36b) 

is a sliding subspace of dimension n - m. 

0 

In the following we shall discuss some features of sliding 

subspaces of maximal dimension. 

Let Rs 
be a sliding subspace of dimension n - m, i.e. 

R
s 
= 8

1 
e A

F
B
2 
e 	e AF

-18k 

 
	 (1.37) 

for some chain 03.1 in B, some F: X 4- U and some k E n. 
1 

It should be clear from Theorem 1.4c that R can also be 

written as 

R
s 
= L

l 
e L

2 
e...e L

p 	
, p = dim Bl 	(1.38a) 

where 

L = b + A b +... + A
F
1 	b

i
, i C p 	(1.38b) L. 

Fi 

for some set {n,} , i 
1 

E p. 

It is clear that 

A
F
R
s 
e B= X 

2 , 	k, 
= 	e A

F
B
1 
9 A

F 
o
2 
9...9 A

F
oo
k 

= R e R
a2 	

a 
e...e R 

a1 
 

(1.39) 

(1.40) 
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where the 

n -1 
R
a 	

= b + A
F1  
b. +...+ A

F  i  b., 	
G m 

. 	 1 
1 

(1.41) 

are almost controllability subspaces. A precise definition of the 

set {n.}  , i G m, will be given in a moment. 

By comparing (1.36) and (1.38) we see that we have two types 

of sliding subspaces of dimension n-m. 	The first one in (1.36) 

gives rise to a decomposition of the state space into m controllability 

subspaces. We call this type of sliding subspace a prime sliding 

subspace in connection with the definition of a prime system in [1.10]. 

The second type in (1.38) originates a decomposition of the state space 

into m almost controllability subspaces and is termed here a irre-

ducible sliding subspace in connection with the definition of irre-

ducible systems in [1.5]. 

Our 	 i G M. 
1 	1 

For this consider the algorithms (1.4) and (1.9) with K := R. 	Then 

from Remark 1.1, it follows that if at the step u-1 of the algorithm (1.4) 

R
u-1 = 
a 

AF-2 
 

9 A F13_ 	A-2 B
u-1 

then at the step u of the algorithm (1.9) 

Su 	
11-1, 

=o9AB 9 A
2
B 9 	9A

F
° 

F 1 	F 2 	u-1 
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u+1 

4)0 := m' (°11 = dim  
ue{1,2,...,n -1} . 

Su  

We have defined .0 up to n-1 to keep symmetry with the de- 

finitionofthesetikj which is to come. 
1 

Since B D Bi  0...0  Ble it follows that 

4)0 	4)1 > 	> 41n-1 > 

and by (1.39) 

(150 	4)1 	(I) 	= n-1 

Let 

n. := number of integers in the set 
1 

{4)0' 1".
" 4)11-11 which are > i. 

Then 

n
1 
 > n

2  > 
	> n

m 
 > 1 

— — —  — 

and 

n
1 	

n
2  + 
	nm  = n. 	 (1.42) 

Notethattheset{11.}, i.e m above defined is the same as 
1 

that of (1.41). 
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We now review the way that the set of controllability indices 

{k.} ,iEm is defined [1.17]. 	For this consider the following 

sequence of subspaces 

1Pu  = 	+ AB + 	+ AuB, u e {1,2,...,n-1} and let 

p
0 
 := m 	p

u 
= dim  

u-i  
, u e{1,2,...,n-1}. 

It is well known that 

	

p0 > p > 	> p 	> 0 
0 	1 - 	- n-1  

p
0 
 + p1 +...+pn-1 = n. 

Let 

k. := number of integers in the set 

{p0' Pl''''' 	which are > i . 

Thus 

k
l

> k2 > 	
—
> km 

k
1 
 + k

2 
+ 	+ k

m 
= Th 	 (1.43) 

We are finally in a position to state our next result. 

and 

with 



Theorem 1.6: 	Thesets{k.}and fn.} are related by the following 

inequalities 

j 
 
j
cc k . > X 
i=1 	

n
m-i+1 m-1+1 — 

i=1 
j E  m (1.44) 

with equality holding for j = m. 

Proof: 	The equality at j = m follows from(1.42-3). 	Now, note that 

2 
S = A(BnR) +13cAB +8= 10 

and if Su  c 0-1, then 

su+1 = 
A(Su  n Rs) + 	c A opu- 10 Rs  + 3 c AlP1-1-1  +8 = 

Therefore 

2 

/ 	X 	P. 	, 	e {1,2,...,n -1} . 	(1.45) 
i=0 	i=0 

As adirectconsequenceofthedefinitionsofk.
1 
 andn.

1
,i G M, 

it follows that the integers p
u 

and (1)
u 

can be written in the following 

form 

Pu 

m,U = 0,1,...,k
m
-1 

m-1,u = k
mm-1

-1 

(Pu 

	

1, 	u = -1 k2"k  

	

0, 	u = k
2
,...,n-1 

m, 	u = 	0,1,...,n 	-1 
m 

m-1,u 	= n 	-1 
mm-1 

 

1, 	u = n 	n -1 
2" 	' 	1 

0, 	u = n
1 
 ,...,n-1 

(1.46) 

39 
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It follows immediately from the lists (1.46) and (1.45) that 

k > n . The proof now goes by induction. Thus, assume that 
m— m 

(1.44) is true up to j = m-s, i.e., up to the inequality 

k
m 

+ k
m-1 	

> n + n 	+...+n 
Z+1 — m 	m-1 	t.+1 • 

(1.47) 

We then have two cases : 

i) k > n 

Hence by (1.47) 

k
m 

+ k
m-1 

+...+ k 	+k >n
m
+n

m-1 
+...+ nn 	+ k 

.e.+1 	— 

> n
m 
 + m

m-1 — 	
+...+n

t+1 
+ n. 

ii) k < n 

Suppose that 

k
m 

+ k
m-1 

+...+ k < n
m 

+ n
m-1 

+...+ n,. 

ThiS implies 

k
m 

+ k
m-1 	

+ (:e-1)n
2 
 < n

m 
 + nm- 1 +...+ .end  

which is equivalent to 

mk
m 

+ (m-1)(k
m-1 

-k
m) + Om -2)(km-2 — km-1) +...+t(k - kt+1) 

+ (t.-1) (nt-kz) 



<m n
m 

+(m-1)(n
m-1-nm) 

 + (m-2)(n
m-2

-n
m-1

) +...+ ,e(n-n
t+1

). 

The last inequality implies by the lists (1.46) that 

n -1 	n -1 

X Pu <  X cor, 
u=0 

which contradicts (1.45). 	The desired result then follows. 

El 

Comments: 	It is interesting to note that the set of inequalities (1.44) 

sholasupin[1.11/Chapter 5 fIlleoreM 4.2].Theset.{11 .
1
} i E Mr 

there, refers to the possible degrees of the invariant polynomials 

of the map A + BF,. VF : X U, when the pair (A,B) is controllable. 

It will become clear from the results of Chapter II that if 

C : X 	is a map with ker C = Rs 
and 	is an arbitrary space of 

dimension m, then the set {11.
1
), 	E M constitutes the set of in- 

nf thin trans-Far matrix C(sI-A)
-1 
 B. 

Another way of presenting the set of inequalities (1.44) is 

as in [1.8]. 	It can be easily seen that such a set is equivalent 

to the set 

n. > 	k, 	r jeM 

i=1 	i=1 

with equality at j = m. 

1.2.4 The System yx(mod Rs) 

In this section we describe some features of the quotient space 

41 
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X/R , where Rs 
is, as usual, a sliding subspace. 

Let X
X 
be the set of trajectories generated by 	which 

are infinitely differentiable, i.e. 	:= 	: R Xlx E C and 

• 
X(t) - AX(t) e B,vt}. 

Let N be a subspace of X and consider X
x
(mod N), i.e. 

.1/ 

{X' e Ix  (mod N) 
	

=> {3X e /
X 
 1X1 (t) = X(t) (mod N), vt}. 

Theorem A in [1.14] states that there exists a pair of maps 

A A 	, 
(A,B) such that 2, (A,B) = X

x 
(mod N) if and only if N E V

a
. 

The map B is the insertion map in X of the subspace 

B = (AN + B) (modN). 	 (1.48a) 

To describe the map A, consider any subspace W of X 

such that W N = X. Then A : Al W with 

Aw := A(w,0) mod(N). 	 (1.48b) 

It is well known [1.17] that if V e V, then there exists a pair 

(A,B) such that Xx(A,B) = X (mod V) with 

A := A
F 

mod(V) 	, VF e F (V) 

and 

= B (modV) . 

Moreover, if the pair (A,B) is controllable, then the quotient 

space X := X/V is controllable, i.e. <A18> = R. 



One of the aims of this section is to show that if the pair 

(A,B) is controllable and N:= R
s 
, then the quotient space 

X := X/R
s 
is controllable, i.e. <0> = 

First note that 

S AR
s 
9 	R

s 
. 

To see this, let K = R
s 

in algorithm (1.4). 	Then, obviously 

Ra,K = Rs and the claim follows on noting that by Lemma 1.1d 

SnR =R . 
s 	s 

Now let S c S be any subspace such that 

S = S e R
s 
	 (1.49) 

and let S : S X and R
s 
: R

s 
-+ X be the insertion maps of S and 

R in X. 

Proposition 1.2: Let (A,B) be a controllable pair, let N = Rs  be 

A 
a sliding subspace and consider the pair (A,B) defined in (1.48). 

Then : 

a) <Ig> = 

b) Consider any subspace W such that W 9 Rs  = X. Then, there 

exist maps ZI  and Z2  such that 

43 
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(A + SZ
1 

-I- Rs Z2)W c W 

and 

+ sz 
1 
+ R

s
Z
2) IWi = A 

where A is a set of dim W symmetric complex numbers. 

Proof: 

a) 	The proof of this part is similar to the proof of Lemma 3.5 

in [1.17]. 	Let W be as described above and let P : X -4.  X be 

a projection on W along R. We shall show that 

<PAIP(AR
s 

B)> = W. 

For this it is enough to verify that 

x
T
(Rs e <pAlp(ARs 9 B)>) = 0 

implies x
T 

= 0, for all x
T 
e X'. 

Now 

x
T 

R = 0 => x (I-P) = 0 => x
T 
= x

T
P 

T 
x P(AK e B) = 0 => x

T
(AR 9 B) = 0 => x

T
B = 0 

xT AK = 0 
s 

 

which implies xTAP = x
T
A. 

Similarly 



x
T
PAP(AR 9 13) = 0 => x

T
A(AR e 13) = 0 	x

T
AB = 0 

x
T
A
2
R = 0 
s 

 

By induction on i we have x
T
A
i-1 

= 0, i E n, i.e. 

x
T
<A18> = 0 and hence x

T 
= 0. The result follows on identifying 

PAIW and P(AR
s 
+ 13) with A and 

b) 	First note by (1.49) that 

= P(AR
s 
9 13) = PS = PS 

From part a), the pair (PAP, PS) is controllable. 	Thus 

there exists a map Z1  : W 4-Ssuch that 

6[ (PAP + PS Z
1 
 )IW] =A. 	 (*) 

Let M : X R be the projection on R
s 
along W. 	It is 

clear that MR
s 
is nonsingular : thus there exists a map Z

2 
such that 

iNJ 

MAP + MSZ
1 
 + MR

s
Z
2 
= 0 

and note that since PR
s 
= 0, (*I is equivalent to 

G[P(AP + SZ
1 
+ R

s 
Z
2)IW] = A • 

From (1.50) the result b) follows. 

(1.50a) 

(1.50b) 

0 

45 



46 

1.2.5 Finding a Controlled Invariant Subspace With Pre-Assigned 

Spectrum laz a Complement of an Almost Invariant Subspace  

Consider any given almost controllability subspace Ra. 

Trentelman [1.12] proved a very interesting and important result 

concerning the existence of a controlled invariant subspace with 

arbitrary spectrum that complements R
a
. The statement of his result 

is as follows. 

Theorem 1.7: 	Let (A,B) be controllable and let R
a 

be an almost 

controllability subspace. Suppose A is a symmetric set of n - 

dim R
a 
complex numbers. There exists V e V and F e F(V)such that 

V 9 R
a 
= X 

and 

0[(A+BF)IV] = A . 

It can be shown that the above result also holds for the L 
p 

almost controllability subspace RID  = ARa  + B. The statement relative 

to Rio  is identical to that of Theorem 1.7 when we replace R
a 

by 

Rb.  

The above results can be further extended with a minor modification 

for the case of an almost invariant subspace V and the corresponding 
a 

L -almost invariant subspace Vb  = AVa  + V
a 

+ B. 

For this, let Az  be the set of complex numbers given by 

(see Theorem 5.7 in [1.171). 



6E (.uo-BF)1V; )(mod RV )1 , vF E F(1/
u

V  ). a 	a 	'a 

The above set can be considered as the set of finite-zeros 

of the transfer matrix of the system 

X = Ax Bu 

y = x(mod V
a
) • 

We then obtain the following result. 

Theorem 1.8: 	Let (A,B) be controllable and consider the subspaces 

V
a 
and Vb  as described above. Let A be a symmetric set of 

n - dim V
a
(V
b
) complex numbers such that A n A

z 
= 4). 	There exist 

V e V and F e F(V) such that 

V e V
a 

 (_Vb ) = X 

and' 

Of(A+BF)IV] = A 

Proof: We shall prove the statement concerning the subspace V
b
. 

The proof for V
a 	

. follows similar steps. The technique of proof 

follows that one of [1.12] and it makes use of two intermediate 

lemmas. 

We first describe a decomposition of Vb.  

Vb  = Rb 	 Vfi • 
ofa va 

Using Lemma 1.2a,b we obtain 

From (1.8) 
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Vb  = Rbiv  
a 

where R10,v  is given by the sequence (1.12) with K := Va  and 
a 

by Lemma 1.2c 

k,V = ARa,V 
a 	a 

where Ra V is given by the limit of the sequence (1.13) and B 
' a 

is as in (1.11), i.e. 

8eBn V; 	- 
a 

From Remark 1.1 we also have that 

Rb,V = A
F 

Ra,V 9 8 	 (1.51) 
a 	a 

 

where F is a map as given by Theorem 1.4. 

k-1 
Let Ra,V 	m 

.75a,V 
 for some k e n in the sequence (1.13). 

a 	a 
Then from Theorem 1.4c and 

• k 131  e AF82  e...eAF-1,k a,Va 

	

where B. is a chain in 8. 	Consider subspaces 3' as in (1.26), i.e. 
1 

B' = 	13 	8, i-1' o • 

Let 8' := 
k 
	Then by using (1.51) and (1.16) we obtain 



M1. 	e M e...e Mk  
,Va    

(1.52) 

49 

where 

M. . = 13! e AF 	F 
3' e 	e A1- 	

i 	
i e 

1  

Since Ra,Va n V = 
0 it follows that the map F can also 

V a 

be taken from the set F(V
V 
 ). We can now state the following lemma. 
a 

Lemma 1.3: Let A, B, Vb, A and F as above. 	Then there exists 

0 
= X such that 

ID V = X 
0 b 

and 

aEP 	A,F  IDo 
= A v  

0 

where P 	: X X is the projection on 'V0 
 along Vb. 

Do   

Proof: Let '0 c X be any subspace such that D e Vb  = X and consider 

a map Q : Vb  4. V defined by v -4- P
D 

A
F
v , where P is the projection 

on 	along Vb. 

Consider the pair (P A
F' 
 Q) and suppose it is not controllable 

Then there existsasubspaceWcp,Dsuch that 

P AWc W 	W ImQ 
D F 

which implies 

A
F
WcWeVb 	A

F 
V
b 	

W $ V
b 

whence 

A
F 
 (W$V

b
)cW 9 V

b 
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with 

W 9 Vb  X and W 9 V
b 

which in turn implies that the pair (A,B) is not controllable which 

is a contradiction. Thus the pair (.
PD AF'Q)  is controllable and 

there exists Z:D÷V
b 
such that 

(J[P A
F 
 ID + OZ] = A. 

Let S X -* X be a map defined by 

SID =+ P 	; SIV = IV  
b V
b 	 b b 	V 

where PV  is the projection on V
b 
along D. 

b 

Define D
0  := SD 

and note that D
O 
9 V

b = X. Let P be the 
0 

, projection on D
0 
 along Vb. 	Then since P = SP

D , 
it follows that 

0 

the diagram below commutes. 

P A -1-P AF
DFD 

	PVZ 
b 

S S 

Do 	Pi, 
Do AF ID0 	Do 

The lemma follows on noting that S is an isomorphism between 

D and D . 
0 

The proof of the theorem still requires a further lemma. 



Lemma 1.4: There exists a map T and a map F1  such that with 

D1 
:= TV

0 
 the following relations hold : 

a) 	X = D
1 
e Vb.  

b) G[PD  (A
F 
 +BF

1 
 ) ID1   1 = A, where P

D 
is the projection on D

1 1 	 1 
along Vb. 

c) 	(A
F
+BF

1
)1)

1 
 c D

1 
 e V

Va 

d) (A +BF )IV, = AF 
v  

IV„ 
F 1 v

a 	a 

Proof: 	The proof of the above lemma is absolutely analogous to 

the proof of Lemma 5.2 in [1.12] on considering the decomposition 

(1.52). 	 0 

Let A
r 

be a symmetric set of dim Rv  complex numbers such 
a 

n A = 0. 	Then £1.17] there exists F E F(V
V 
 ), F

v 
 : 

a 
 

such that 

o (A +BF )IV, ] = A u AZ. 
F v v

a 
r  

Since (A
r 

u A
z
) n A = 0 it follows that there exists a map 

J :
1 	

V
V 

which solves the following Silvester's equation 
a 

(see [1.17]). 

PD  (ANF 
 +BF v 
	v 
) I V" J-J Pe, (A

F 
 +BF

1 
 )ID1  -P (Ai+BF1)11)1 = 0 

a 
 

1 

where P *  is the projection on Vv  along D1. 
a 
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1  
v 	(A 

F
+BF ) 112 

N 

(A+BF
new

)IV 

52 

Defi
n
e F

2 
: X -+ U by F

2
ID
1 
= 0 • F I 

2 
= F 
vv  
IV„

a 
' 
• F
2b, 	

= O. a  

Also consider the map N defined by 

NI  
D1 
	- J 	NIV

b 
= Di = ID 	, 	

V
b 

• 
1 

Finally take V = ND
1 
and F

new 
:= F + F

1 
+ F2. Then clearly 

X = V e Vb  . 

Using Lemma 1.4c it is not difficult to see that the foll-

owing diagram commutes . 

It now follows that (A+BFnew)  V c V and since N is an 

isomorphism between D1  and V , the conclusion is that OTA+BFnew
)IV] = A. 

0 

The result proved by Trentelman (Theorem 1.7) and the extension 

shown here (Theorem 1.8) are important because if we are required 

to approximate an almost invariant subspace (say ga) by a sequence 

of controlled invariant subspaces, then we may fix FIV, where V is 

as in Theorem 1.7, and a symmetric set A of n-dim Ra 
complex numbers. 

It nas been shown in [1.12] that there exists a sequence of subspaces 

V 	and a sequence of map F :.Ve-+1.1 such that Ve9V=X, (A+BFE) VecVe_ and Ve 	Ra  • 
E e+0 
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Moreover, in the approximation process the elements of the set 

Ae := a[(A+BFEIVE] go to infinity and the magnitude of the ..asymptotes 

can be chosen freely. 

To conclude this section we point out that the existence of 

a controlled invariant subspace with pre-assigned spectrum that 

complements a subspace. J is generic in the following sense. 

Proposition 1.3: Let J be any subspace of X and let the pair 

(A,B) be controllable. 	Consider a symmetric set A of n-dim J 

complex numbers. Then there exists a controlled invariant subspace 

V and a map F : X U such that 

J 9 V = X and aC(A.+BF) IV]  = AE  

where Ae is a symmetric set of n-dim J complex numbers whose elements 

are arbitrarily close to the elements of the pre-specified set A. 

Proof: Let Z be an arbitrary space of dimension t z=n-dim 3 and 

define a map H : X Z such that ker H = J and rank H = t. 

We may assume that the pair (A,b) is controllable for some 

bed. 	Otherwise, there exists a map FO  : X-..(1 such that 

(A+BF
0  ,b) is controllable for any b e d [1.17 Lemma 2.2]. 

Let Be = b, for some A. Then from the proof of the main 

result in [1.6], there exists a map R*: Z + U , with R
* 
 := OR for 

some 1 X £. vector R, and a subspace V such that 

(A+BR H)V c V 	V 9 ker H = X 

and 

01:(A+BR H) I V] = AE  

Set F := R H and the result follows. 

0 



54 

1.2.6 Properties Of Coasting Subspaces 

Coasting subspaces also play an important role in the theory 

of almost controlled invariant subspaces. In the proof of 

Theorem 6 in [1.14] is shown that a sliding subspace can be 

approximated by a sequence of coasting subspaces. 

The next proposition consists of a collection of basic 

properties of coasting subspaces- 

Proposition 1.4: 	Let C be the set of coasting subspaces. Then 

a) max dim C e C = n-m 

b) (F1-F2)1C = 0, Wif F2  e F(C), VC e C . 

Now let the pair (A,B) be controllable. 	Then 

c) For any symmetric set A of p complex numbers, p < n-m , 

there exists C E C and a map F: X -4- U such that 

0[(A+BF)[C] = A 

d) For any C e C and for any F e F(C), the pair (A+BF,B) induced 

in X/C is controllable. 	The controllability indices k., i e m, 

of (A+BF,B) are the same for all F e  F(C) and k. <k,iem, where 
1 — i 

the k. are the controllability indices of the pair (A,B). 



Proof: 

a) From Definition 1.6, RC  = 0, which implies C n = 0 and 

the result follows. 

b) See [1.17, page 88]. 

c) Let A
l 
be a symmetric set of n-m complex numbers such that 

A
l 
 =Au A

2 

where A
2 
is also symmetric set of complex numbers with 

A n A
2 	

14) . 

By Lemma 3.5 in [1.17], there exists C
1 
e C and F : X 	U 

such that 

Cl  aB=X 

(A+BF)C
1 
c C

1 

and 

cr[ (A+BF) IC1] = Al 
• 

Let C be the span of the generalized eigenvectors associated 

with A. Then 

55 

(A+BF)C c C 
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and 

a[(A+BF)1C] = A 

d) 	For the first statement of this part, see Proposition 4.1 

in [1.17]. 

Since C n B = 0, it follows that dim 2 = m. The control- 

lability indices of the pair (A+BF,B) are determined from the numbers 

(see Section 2.3). 

-(50 := m 	13.11 	u  = dim  r  $12-i 

where 

U e  {1,2,...,n-1} 	(1.53)  

$u  = B +(A+BF)B +...+ (A+BF)u2 

Let P : X/C be the canonical projection. 	Since (A+BF)P = 

= P(A+BF) and B = 143 , it follows that 

T = 
Phu 

where 

(Pu  = B + (A+BF)B +...+ (A+BF)uB 

= B + AB +...+ AuB. 

Thus 

= P u u 

where 

rriC 

(1)u-1 (1.54) - dim 
nC 

  

{

dim 

   

p
0  : m Pu 

  

u e {1,2,. .,n-1} 

  

     



Let ii  be the number- of integers in the set 
m _
tp p ...,p 	1 
0' 1 1 	n-1 

which are > i. 	Thusl im X/C. — — — m 
- i=1 

From (1.53) it follows that p < p 
u
, which implies u —  

k. <k  ., i e m. 
1 	I 

0 

Part d) of the above proposition obviously holds with a 

minor alteration if we replace C. by the set V. 	Instead of 

V3 having p0  = m in (1.53) we shall have 0= p, where p := dim s-0 	m. 

(1.54) still holds and the conclusion is k.
1 
 < k.

1
, i E p. 

—  

Now let the pair (A,B) be controllable again and consider 

any V e V. Let (A+BF) and B be the maps induced in X/V by 

A+BF and B, VF e F(V). A natural question then arises : what is 

the nature of the subspace that complements V to X so as to 

have A+BF and B in Brunovsky canonical form? The answer is 

Proposition 1.5: 	Let V be  a controlled invariant subspace and 

the pair (A,B) be controllable. 	Let p := dim g. 	Then 

there are almost controllability subspaces R
ai
, i e p, given by 

R
a. 

= b. + A b +...+ A
F
1  b

i F 
1 

such that 

X =VeR e...e R
a a

1  

and the pair (A+BF,B) is in Brunovsky canonical form. 
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Proof: We shall just sketch the proof which is based on [1.1]. 

Let S be any subspace such that 

8=$® 8n V. 

Since Ai(E3 n V) c V + 8 + 	+...+ A 	, 	i E n, 

it follows that 

X = V + <A(3> = V <0>. 

Now construct a basis as in Brunovisky canonical form 

see[1.17,page . 120].Forthislet.-00.1, iEp be a basis for 

and, 
{vi}, 

 i E r, be a basis for V, with r := dimV. 	Then write 

down the list 

{v
11, 

 
...,v ; 	;...; A 	b

1 	
/ ' ...,A 	b 

 

Proceeding as in [1.17] it is then possible to obtain subspaces 

R
a.

, iEp given by 
1 

-1 
R 	= b. 4- A b +...+ A i b. a. 	1 	F i 	F 	1 1 

b . G 8 1 

 

X = V e R 	+...e R 
a1 	a  p  

 

(1.55) 

where the map F is defined on R
a. 

and has the property that 
1 

k. 
1 

A
F 

b
i 

(1.56) 



From (1.55), Lt follows that F can be taken from F(V). 

By taking 01.55) as basis for X and using (1.56), it follows that 

the pair (A+BF,B) is in Brunovsky canonical form and therefore the 

G p, are the controllability indices of this pair. 

0 

1.3 	ALMOST CONDITIONALLY INVARIANT SUBSPACES 

1.3.1 Basic Concepts  

In this Section we present a summary of the main concepts 

introduced in [1.15], which will be used in Chapter IV in connection 

with the construction of observers which make use of differentiators. 

The notion of a conditionally invariant subspace is dual to 

that of a controlled invariant subspace and it can be introduced this 

way [1.10, 1.1/1. 	However, as remarked in [1.13], it is more natured 

from the linear systems theory point of view to introduce it in the 

context of observer design. 

To this end, consider the system 

• 
: x = Ax ; y = Cx 	 (1.57) 

where 

x e X := En  ; y e y := R r  

and observers with the form 

Cobs 	W =Kw + Ly 	 (1.58) 

59 



60 

with 

W E W 

Definition 1.7: A subspace S c X is said to be conditionally 

invariant if there exist matrices K, L such that W(0) = X.(0) (mod S) 

yields W(t) = X(t) (mod S), t E E . 

The above definition shows that associated with a conditionally 

invariant subspace there is an observer which reconstructs x(mod S) 

from-the observations y. 

The following proposition establishes,  the connection between 

conditional invariance and Alker C invariance [1.15-16]. Let AL 

denote A-1-L'C, i.e., the result of output injection L'y in X 

Proposition 1,6: 	The following statements are equivalent : 

1) S is a conditionally invariant subspace. 

2) S is Alker C invariant (i.e., A(S n ker C) c S). 

3) There exists L' : V X such that AL'S c S. 

Let S be a conditionally invariant subspace and let L' 

be as in part 3 of the above proposition. Let P : X X/S be the 

L' 
canonical projection and consider A(mod S) which is the unique map 

such that 

AL'  (mod S)P = PA
L' 

. 



Hence 

Px = PAx 

= P(A+L'C)x - PL'y 

and then 

x (mod S) 	(mod S) x(.mod .S) - L' (mod S)y 
	

(1.59) 

where 	PL' = L' (mod .S) : Y 	X/S. 

Consider now the observer 

wi = A
L 
 (mod S)w - L' (mod S) y 	 (1.60) 

for x(mod S) and define e := w - x(mod S). 	Then from (1.59) and 

(_1.60) it follows that 

= A
L' 
(mod S)e 
	

(1.61) 

nnA if win) = v trIl(mnel q) 	+hcan 0 — fl 	i o 	tit (A-1 = v (i-1 (ar.A Q1 

Vt E E. 

The equation (1.60) shows that the observer for x(mod S) is 

completely specified by defining 

K := A
L'  (mod S);L:= -LI  (`raod S) • 

The almost version of definition 1.7 is as follows. 

Definition 1.8: 	A subspace S
a 
c X is said to be almost conditionally 

invariant if V X 	E S
a 
and e > 0 there exist K,L such that W(0) = 0 

yields II W(t)-X(t) (mod S
a
)11

—
< e for t e 2+. 
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A very useful way of expressing the duality between (almost) 

conditionally invariant subspaces and (.almost) controlled invariant 

subspaces is as follows. 

Let V be a. controlled invariant subspace and V:V -4- X 

be the canonical injection. Also let Qv  : X + X/V. Then the 

controlled invariance property can be expressed by the equation 

Qv(sI-A)
-1 

 BU(s) = Qv(sI-A)
-1
V 
	

(1.62) 

which should be solved for U(s). 	From [1.17] we know that (1.62) 

has solution for U(s) e E_(s) if and only if V is controlled 

invariant. 

Now let S be a conditionally invariant subspace and let 

X(s) := (sI-K)
-1 
 L be the transfer matrix of the observer (1.58). 

Let S : S 4-  X be the canonical injection and Qs 
: X 4. XIS be the 

canonical projection. 

Then with 1.0(0) = 0, the conditional invariance can be expressed 

by the following equation 

X(s)C(sI-A)
-1 

 S = Q (sI-A)
-1 

 S 
	

(1.63) 

or 

S
T
(sI-A

T
)
-1
C
T
X
T
(s) = S

T
(sI-A

T
)
-1
Q
T 	

(1.64) 

/ where S
T 

: X -- X/SI  is the canonical projection and Q
T 
: S 	X is 

the canonical injection. 

We recognize immediately that equation (1.64) expresses the 

controlled invariance of the subspace S
1 

with respect to the system 



r.* 	q T 
2; 	; x .= A X.+ Cv 

Thus. S is a conditionally invariant relative to 11  if and only if 

SI  is controlled invariant relative to 2.  , a fact easily deducible 

from the equivalence A(.ker C n S) c S <=> ATSI  c SI  + Im CT. 

In this sense we consider the equation (1.63) as dual to the 

equation 01.62) and also by duality it follows that (1.63) has a 

solution X(s) E E+(s) if and only S is a conditionally invariant 

subspace. 

The same duality principle is applicable to the almost 

version [1.15] and the observer for XIS
a 
which achieves 

II (sI-K) -1L C(sI-A) 1Sa - Qs (sI-A) aII < 	V 	> 0  
a 

is a high-gain observer. 

if we now allow X(s) to belong to R(s) we then obtain the 

following definition- 

	

Definition 1.9: 	A subspace SD  c X is said to be a distributionally 

conditionally invariant subspace if there exist K, L0, L1 
	n 

such that 

yobs 	• 	 (1) +...+ L y(n) : v = Kv+Ly , w = v+L
0 
 y + L y 

with X(0) = 0 and X(0-) = 0 yields for all x(0) e S
D 
 W(t) = X(t) 

(mod SD
), t e 

63 

Note that the observer 
cobs 
1 

is a P.I.D. type since it operates 

proportionally to the input y and also makes use of the integral 

of y and its derivatives. 
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Equation (_1.61) shows that the error dynamics (for e(0) 	0) 

I 
are governed by the spectrum of AL (mod S). It is thus important 

to identify the sub-class of the class of the conditionally invariant 

subspaces for which such spectrum is freely assignable. 

Definition 1.10: 	A conditionally invariant subspace N is said to 

be a complementary observability subspace if for any symmetric set 

of complex numbers 	A there exist K,L as in Definition 1.7 

such that a(K) = A. 

The corresponding notion for the almost case is described 

in the following definition. 

Definition 1.11: 	An almost conditionally invariant subspace N 
a 

is said to be an almost complementary observability subspace if 

VX(0) e N
a
, X e E and e> 0 there exist K, L such that e := w- x 

(mod Na) is of the form e(t) = e
Kt

e0) + d(t) with Re am) < X 

and II d(t) II < 	, t e 

If we now allow X(s) in (1.63) to belong to R[s] we then get 

an extremely fast observer which is related to the following class of 

subspaces. 

Definition 1.12: 	A distributionally conditionally invariant 

subspace N
D is said to be a distributionally complementary observability 

ro subspace if there exist L
0' L1" 	

L
n 
 such that L2

bs 
 :w = L

0
y+L

1
y
(1)

4. 

+...+ Lny (n) and X.(0) e ND yields W(t) = X(t) (mod N
D
) for t e re, 

i.e, the estimation error is zero for t > 0. 

In the following we denote S, S , S , N, N and 
.1121 as the sets 

of conditionally invariant, almost-con:i:i:naily-:nvariant, etc.,subspaces 

and S(L), Sa(L) , SD(L), N(L), Na  (L)and ND(L) those containing the 

subspace L c X. 



By dualization of Theorem 5 in L1.14] we have that 

S = S and N = N . 
-a -D -a -D 

In the sequel we state some dual results to those obtained 

for almost controlled invariant subspaces. 

Theorem 1.1' 	(dual of Theorem 1.1): S, N, S and N are closed 
- - -a 	-a 

under subspace intersection. 	Consequently 

inf S(i) := S
L 	

S 	inf N(L) := N
L 
 e N 

- 	-  

inf S (L) := S 	S 	inf N (L):= N 	e N 
-a 	a,L -a 	-a 	a,L -a 

Let K := ker C and consider AL:= A+LC for some L : V X. 

The next theorem gives the output injection characterizations of 

(almost) conditionally invariant subspaces. 

Theorem 1.2' 	(dual of Theorem 1.2): 

a) <=> 1. 4L such that ALScSI <—>{A(KnS) c S}. 

b) {NEN} 	{ 	and K' K such that N = <K'IAL>1. 

c) S = SnN , i.e.{S ES} 	{ 1SES and N EN such that 
-a 	- -a 	a -a 	a -a 

Sa = SnN a 

d) eN <==> 	]1., and a chain {K,} around K such that 

N
a 
 = K

1 
 n (A

L
)-1

K2. 
 n...n (A

L
)
-0+1

K  }. 

We shall sometimes use the notation L(S) to denote the set 

of maps L for which A
L
S c S. 
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In the sequel we describe the sequences which yield the 

infimal subspaces of Theorem 1.1 ' . 

s* 	scodim L+1; S
u 
	

L+AGSLI-1  n 	S0  = 0 
	

(1.65) 

a,L •a 	
Na

a 	a 
Ncodim L+1 -

a 
= L + N

u-1
) n K; N

o 
= X 	(1.66) 

* 	* 
N
L 
= S

L 
+ N

a,L 

* 	* 
S 	n N 
a,L 	L 	a,L 

(1.67) 

(1.68) 

The sequences (1.65-6) and the relations (1.67-8) are dual 

to (1.3-6) and can be derived from the duality principle explained 

previously. 	For example, Na,
1  
L1  is the supremal almost controllability 

,* 
subspace relative to 1 which is contained in Ll.  

Now let H : X - X/L and consider an equation as (1.63) given 

by 

X(s)C(sI-A)
-1 

 x
0 
 = H(sI-A)

-1
x
o 

where 	x
0 
 e X. 

The following question may be raised : for which points x0 
 

can we obtain a L - approximate solution Xe(s) 
e  E (s), 1 < p < 00? 

More formally we want to identify the points x0 
 for which we can 

achieve 

- II X (s)C CSI-A) 1X0 H (Si-A) 1X0  II L < 
P 

for any e > 0, where k IL denotes the L -norm. 
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The above consideration gives the motivation for the 

introduction of the analogs of the L -almost controlled invariant 

subspaces. 

Definition 1.13: The 2, -observation distance in the L -sense from 

a point xo  E X to a subspace L is given by d'(x0,L) := 

inf H W- x.(mod L) II 	where W(0) = 0. 	The set 
K,L 	

(0 ,00) 
 

:= {x
0 
 EXId1 (x

0 
 ,L) = 0} will be called the infimal L - almost 

p,L 

* 	* 
conditional invariant subspace "containing" L and N 

	
:= N

a,S 
 * 

p,L  

subspace "containing" L. 

* 
The subspace S

p,L 
characterizes all the outputs x(mod L) 

which are arbitrarily accurately, in the L sense, reconstructible 
P 

from y. 

The relationship of the above subspaces with the subspace 

* 	*  anu 	, 
L 	

t.A.L.pl.ay Lc J.11 1-11c 	theOreM. 
'a ,L 	a, 

Theorem 1.3' (dual of Theorem 1.3) : 

* 	* 	 * 	* 
a) N 	= N 	and S 	= S 

00,1. 	a,L 
 co, 
	a ,L 

-1 
b) for 1 < p < co : N

p,L 
= (A N

a,L
) n K and S

p,L 
= N

p,L 
n S

L 
. 

* 

	

It should be noted that S 	and N 	need not contain L 
p,L 	p,L 

and similarly to Theorem 1.3 we define 

-1 * 
-= 	(A N 

a fla,L 	,L
) n K 
 (1.69) 
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p,L 

will be called the infimal L - almost complementary observability 
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and 

S
* 	

:= N
* 	

nS
* 
 = 	 1S* 

 ,L
)nKnS

* 	
= (A-13*  )nKnS * b,L 	L 	a,L 	a,L 

(1.70) 

The subspace N
b,L  is given by the following sequence, 

N*
b,L 	

; V 
vcodimL+1 	u 	

K n A-1(Vu-1+L); V°  = X . 	(1.71) 

We remark that for L := 13 we obtain from (1.9) and (1.65), (1.3) 

and (1.70) that 

and 

R
b,K 

S 

* 	* 
V . N 
K. 	b,B 

. 
 

(1.72) 

(1.73) 

From (1.70), (1.72-3) and Lemma 1.1b it follows that 

S = 
b,0 n R

b,K 
 = R

K 
 . (1.74) 

From (1.8) and (1.72-3) we also obtain 

* 	* 
V 	= S + Nb,B NS  

Ci 75) 

where the last equality follows by Lemma 1.i' which is stated in the 

next section. 

The relations (1.72-5) have appeared in the work by Malabre [1.9]. 



It should be clear from this section that (almost) controlled 

invariant subspaces and (almost) conditionally invariant subspaces 

play an important role in the solution of equations as (1.62-3). 

For a more detailed exposition on the object we refer to [1.15]. 

1.3.2 Properties Of Almost Conditionally Invariant Subspaces  

Consider the monotone nonincreasing sequence which yields 

N
L 

C1.9]. 

N* := N
codimS

L
+1 

u * 	-1 u-1 
;N=S + (A 	N 	) n K; 	= X . (1.76) 

We then have the following relationships among the sequences 

(1.65-6), (1.71) and (1.76). 

Lemma 1.1' (dual of Lemma 1.1) : 

a) 
vu = (A-1Nu-1) 

n K 
a 

* 
b) V

u 
 SL  = N

u 
 

c) N
u 
+ S

L 
 = N

u 
a  

d) V
u 
 + L = N

u 
 . 

a 

The dual concepts of coasting and sliding subspaces are 

described in the following definition. 
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Definition 1.14: 	A subspace L 
i 
G, S is said to yield a locked-

in observer if N
L, 
 X. A subspace T e Na  is said to yield an 

instantaneously acting observer if 	X. X. 

For a subspace L
i as in Definition 1.14 there exist unique 

KandLlImCsuch.thatv, -..Kw+LyisanobserverforX/L.,which 

implies that the error dynamics in (1.61) cannot be altered (the 

eigenvalues of AL  (mod Li) are fixed for all L i
)) 

Note that a subspace I as in Definition 1.14 cannot be 

covered by any proper conditionally invariant subspace and as pointed 

out in [1.15] the instantaneously acting observer degenerates into 

a bank of differentiators when the degree of approximation of 

X(mod I) becomes very tight. 	In terms of the equation (1.63) 

this simply means that 

X(s)C(sI-A)
-1 	

Q i 
I = 	(sI-A)

-1 
 I 

in solvable for X(s) E HES1, where I : I 	X and Q,: X -0- X/I are, 
I 

respectively, the canonical injection and the canonical projection 

By dualizing Proposition 1.1a we have that if I is a 

subspace as above then I + A
L 
 ker C = X, VL : Y ->- Xwhereas if L, 

1 

yields a locked-in observer, then from a dual argument used in 

the proof of Proposition 1.3a we obtain L. + ker C = X. 	If rank 

C 	 r. 1 	 a. 

Following a dual procedure to that which has led to Lemma 1.2 

we can generate a subspace I in the following way. Let K K 

be any subspace such that 

K = R n (K+s;:) = K+163;: , i.e., RnS*LcK 
	

(1.77) 



b,L 	
n A-1 

(vu
-1+L) ; V0  = X 

pcodimL+1;  Vu - 
(1.78) 

with the independence relation 

+ S*  =X 

and consider the subspaces Rb,L and  R
a,L 

 obtained by means of the 

following sequences. 
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R 	.= RcodimL+1 R  
a,L ' 	a 	' a a 

n R,
a
= X . (1.79) 

Since V 	= 0 <=> S 
R 
a,L 

Na,L 

= X, then R
a,L 

is indeed a 

subspace which yields an instantaneously acting observer. 

The following relationships among the sequences (1.65-6), 

(1.71), (1.(6) and C1.78-9) may then be established. 

Lemma 1.2'(dual of Lemma 1.2): 

a) V
u 
=V

u 
 nN

u 
 with V

u 
 + N u = X 

b) Pu  + s*  = x 

c) 
= (A-ln

N
u-1 

) n R with A- 1Ru-1 	R  = x  
a 	a 

d) Nu =L+ Vu  
a 

e) Nu  = Nu  n Nu  with Nu  + Nu  = X 

	

a a 	a 

- 	* 
f) Na + S

L 
= X. 
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In the following vie show a decomposition of an almost 

conditionally invariant subspace Sa. 	Let L := S
a
. 	Then from 

Lemma 1.2'e. 

N*
a 	

= R
a,S 	S 

n N* with R 	N, = X. 
,S
a a 	a 	

a,S 
a a 

(1.80a) 

By direct dualization we may also write 

S
S 
 = L

i 
n N

S 	
with L. + N

S 
 = X 	(1.80b) 

a a 	 a 

and 
L.+ 	=X N

a S , a 
(1.80c) 

for some subspace L. which yields a locked-in observer. 

Then from Theorem 1.2'e and (1.80) we obtain 

S
a 
= L

i 
n N

Sa 
n R

a,Sa 

with the independence relations 

L +N
S 
 =L

i 
 +Fl 	

NS
= 	+N 	=X. L. 

	a 	a,S
a 	 a 	

a,S
a 

(1.81) 

(1.82) 

The above decomposition shows that the estimation of 

x(mod S
a
) requires three observers with distinct characteristics. 

Lemma 1.2'e will be used in Chapter IV when we construct 

a P.I.D. observer for x(mod S 	). 
b,L 
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CHAPTER IT 

INFINITE ZEROS AND ROOT-LOCI FOR MULTIVARIABLE LINEAR SYSTEMS 

This chapter is divided in two parts as the title suggests. In the 

first part we deal with the infinite-zeros issue and in the second 

part some aspects of the root-loci theory for multivariable linear 

systems are tackled from a state space point of view. 	By "root- 

loci" we mean the analysis of asymptotic properties for invertible linear 

systems under high scalar gain output feedback. 

II.1 INFINITE-ZEROS 

II.1.1.Introduction 

Infinite-zeros show up naturally in the study of a rational 

matrix G(s), where s is the complex variable. 	In Section 1.2 

we review quickly the definition of infinite-zeros via the Smith-McMillan 

form of G(s)[2.18, 2.23] together with their dynamical interpretation 

[2.24]. 

In particular, when G(s) := C(sI-A)
-1

B, the transfer matrix 

associated with a multivariable linear system represented by the triple 

(C,A,B), an important connection can be established between the 

infinite-zero structure of G(s) and the infinite-zero structure of the 

system or Rosenbrock matrix P(s) given by 

sI-A 	-B 
P(s) = 	 (2.1) 

C 	0 
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In Section 1,3 we show that the infinite-zero structure 

of G(s) and P(s) are isomorphic. 	It is then easy to show that the 

number of infinite-zeros and their orders are given by the list 14  

in [2.147 which characterizes a prime subsystem derived from a triple 

(C,A,B). 

In Section 1.4 we turn our attention to the role played 

by a sliding subspace RaC2.263 of maximal dimension in ker Cr 

which can be obtained from the sequence (1.13). 	Starting from a 

decomposition of Ra  into singly-generated subspaces Ra. .we then obtain 

a new derivation of Morse's canonical form concerning the prime sub-

system and we show that the dimensions of the subspaces 1?
a,
deterM±ne 

the orders of the infinite-zeros for orders higher than one. Commault 

and Dion [2.2-37 have been the first authors to give a geometric inter-

pretation for the infinite-zeros by relating them to the notions of 

almost controlled invariant subspaces. The geometric definition given 

in Section 1.4 is, of course, equivalent to that in [2.2-33 but in 

our opinion, our exposition is more detailed and shows more trans-

parently the structure of the geometric sources (almost controllability 

subspaces) of the infinite-zeros. 

11.1.2 	The Smith-McMillan Form at Infinity  

Let T(s) be an arbitrary rational matrix of rank r and let u:= 

The following definition is well known [2.17-8, 2.23]. 

Definition 2.1: The rational matrix T(s) is said to have an in-

finite-zero of order k when w = 0 is a finite-zero of order k 

for 11 1-) 
co 
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The infinite-zero structure of a rational matrix T(s) 

[ 
can be determined from the Smith-McMillan form of T 1-1 which is 

- w ) 

given by 

D(W)
1
(w)Ti 

w
— 
)1 
1 U
2  (.w) 
	

(2.2) 

where U
1
(w) and U

2
(w) are unimodular matrices and D(w) is a rxr 

diagonal matrix with diagonal elements di(w), i e r, given by 

E. (w) 
d. (.0( ) - 	1 	G r, 	€. (CO ,1Pi  (W) e E[s]. 1 i (w) 

A unimodular matrix is a nonsingular polynomial matrix 

in w with a polynomial inverse, or equivalently, a polynomial 

matrix with a constant non-zero determinant. It follows that the 

matrices U
1 
 (w) and U

2
(W) have their poles and zeros at w = co, and 

thus (2.2) is a valid decomposition at w = 0 in the sense that the 

structure of T[ 1- at w = 0 is isomorphic to that of D(w) at w = 0 w 

[ 2.24]. 

Write 

k. 
E. (w) = w la.(w) 	i e r 

	

1 	1 

with w and 1  (w)coprime. 

This leads to the following definition [2.23]. 

	

Definition 2.2: 	The setof.nonnegativeintegers{k.},ier 

is termed the infinite-zero structure of T(s) and the positive k.'s 

are the orders of the infinite-zeros of T(s). 



with 
1 
2 

0 

1 
3 

  

  

A very nice dynamical interpretation for poles and zeros 

of a rational matrix has been given in [2.24]. As an example, for 

the case of infinite-zeros, consider the equation 

z(s) = D(s) v(s) 

It is clear that to the input vectors v1 (s) = [1 	03
T 

and v2 (s) = [s 0]
T 
 there correspond the output vectors z1 (s) = 

z
T
(s) = [--,

-

1 
2 0]

T 
 and z2(s ) = [--1:- 	0]

T 
 . 

1 	2 	s 
s 

This shows that the polynomial components v(s) and v2(s) vi 
  

are absorbed by the rational matrix D(s), i.e. they disappear from 

the system outputs z
1
(s) and z

2
(s) which are strictly proper rational 

vectors. 	Since v(s) and v2
(s) are linearly independent over the 

1 

field of the real numbers, then the matrix D(s) has an infinite- 

zero of order two. 

In general, to an infinite-zero of order k of a rational 

matrix T(s) there correspond k linearly independent polynomial 

input vectors. 

11.1.3 	The Infinite-Zeros of the System Matrix P(s)  
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Consider the linear system 



x = Ax 	Bu 	 (_2.3) 

y = Cx 

where 

n 
x e X 	j 	u e U 	y 6 V := 24)  

rank B = m ; 	rank C = p 

and its associated transfer matrix G(s) = C(sI-A)
-1
B. 

In this section we shall show in a simple way that the 

infinite-zero structure of G(s) is isomorphic to the infinite-zero 

structure of P(s) in (2.1), which in turn coincides with the list 

I
4 

in [2.14]. 

We need the following lemma of [2.25].. 

Lemma 2.1: 	Use a constant non-singular transformation on the left 

of the pencil sK-L to bring it to the form 

80 

( L1 -  

L
2 

0 

where K1, has full row rank. Then the zero structure of sK-L at 

infinity is isomorphic to the zero structure of 

K
1 
 - L

1 
 W 

- L
2 

at w = 0. 

We can now establish the desired isomorphism. 

Lemma 2.2: 	The infinite-zero structure of G(s) is isomorphic 

to the infinite-zero structure of P(s). 



Proof: 	Let w = 
1
- . 	Then a realization of G 
s 

is given by 

81 

I-WA 
P
R 
(w) •1  

0 
(2.4) 

  

Moreover the above realization is controllable and observable 

at w = 0. 	It then follows from [2.18-19] (see [2.12] for an interesting 

[ 
discussion on finite-zeros) that the zero structure of G 

1
-
) 
at 

W 

w = 0 	is isomorphic to the zero structure of P
R
(w) 	(defined from 

its Smith form) at W = 0. 	The result now follows by applying Lemma 

2.1 to (2.4) 	• 

Remarks 2.1: 

a) Lemma 2.2 remains valid if G(s) is replaced by 
rs. 

/ 1  •-• 	/ 	 / 
sz 	• — CI 1.1 	OULU, 	.C" 	 \,m/ •21.. th 

sI-A -B 
P(s) := 

C 	D 

b) 	A much stronger result has been proved by Verghese [2.24, 

Theorem 3.9] and is as follows. 	Consider the rational matrix 

G(s) = CR 
1 
 (s)B 

where R(s) is a polynomial matrix. 

If the matrices 
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CRCs) -B] and 

Pt, 

have no infinite-zeros, then the infinite-zero structure of G(s) 

is isomorphic to the infinite-zero structure of 

R(s) 	-B 

C 	0 

( C 

(sI-A' 
Since the matrices [sI-A -B] and 	jhave no infinite- 

zeros, Lemma 2.2 follows. 	The reason for the previous proof of 

Lemma 2.2, without using the stronger result by Verghese, is that it 

is simple and exploits the form of a very simple polynomial matrix 

R(s), which in our case is given by (sI-A). 

The next proposition gives the result claimed at the 

beginning of this section. 

Proposition 2.1: The infinite-zero (i.z.) structure of G(s) coincides 

with the list I
4 

given in [2.14]. 

Proof: Let H, T, G be automorphisms of V, X and U, respectively. 

P (s) 

Let F : X U and L : Y X be arbitrary maps. Then the matrices 

T
-1 

0 

-1 	(2.5) 
FT 

T 	-TL 

M := 

	

	 N := 
0 

are nonsingular. By Lemma 2.2 

i.z. G(s) = i.z. P(s) = i.z. MP(s)N = i.z. P(s) 

where 

sI - T(A+BF+LC)T
-1 
 

(2.6) 

HCT 
-1 

-TBG 



and 
sI-A

4 	
-B
4j 
1 

P (s) = 
4 C4  

(2.9) 

It follows from [2,14] that the maps H, G, T, F and K can be 

chosen so that 
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P
1 
 Cs) 	0 	0 	0 

0 	P
2
(s) 	0 	0 

(2.7) 
0 
	

0 	P
3
(s) 	0 

0 
	

0 	0 	P4  (s) 

	

P
1 
 (s) = sI-A

1 
; P

2
(s) = [sI-A

2 
 -B

2  ; 
] 	P

3 

	sI -A 3 	
(2.8) 

C
3 

17.(s) = 

with 

The pairs (A2,B2) and (C3,A3) in (2.8) are controllable 

and observable, respectively. 	Therefore the pencils P
2
(s) and 

P
3 
 (s) do not have finite zeros. 	Obviously, P2(s) and P

3
(s) do 

not possess infinite-zeros as well. 

By Lemma 3 in [2.4], the invariant polynomials of P(s) 

are given by the invariant polynomials of Al. 

The pencil (2.9) in turn, is a square pencil with 

A 
A
4 

= diag[A.] , B
4 
 = diag[b], C

4 
 = diag[a], i E r 



0 

b. = 
1 

k.?<k. 
1 1 

,ier 
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and 

• • • 
	 (2.10) 

A 
c. = [1 	0 
1 

. 	. 
1)(k. 

i 

The set {k.
1
}, i e r, constitutes Morse's list I4. 

It follows from (2.10) that det P
4
(s) = 1, i.e. the pencil P4

(s) 

is regular [2.5]. 	We also have from (2.10) 

1 1 
C
4
(sI-A

4
)
-1
B
4 
= diag — ,ier 

ki 
(2.11) 

From (2.11) and Lemma 2.2 it follows that the infinite-zero 

structure of P
4
(s) is given by 

i.z. P
4
(s) = {k

1
.} 
	

E r 

Since all the infinite-zeros of PGs) and thus P(s) are 

concentrated on the pencil P
4
(s) we must have 

i.z.G(s)=.i.z.P(s)= =i.z.P4(s)={1(.1
} ,ier 

r  with r = rank C(sI-A)-1  B L2.4]. 0 
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Remark 2.2: 

1) We have proved that the infinite-zero structure of G(s) 

coincides with Morse's list
4' 
 without resorting to the notions 

of almost controlled invariant subspaces as in [2.2-3]. 

2) The decomposition of the pencil P(s) in (2.7) corresponds 

to the classical decomposition of a singular pencil described by 

Gantmacher [2.5]. 	The controllability indices of the pairs (A2,B2) 

and (A3 ,C3) ) correspond to the minimal column indices and minimal 

row columns, respectively. 

3) The finite-zeros of P(s), represented by the eigenvalues 

of A1, constitute the transmission zeros of the triple (C,A,B). 

From (2.5-6), it follows that the transmission-zeros and the infinite- 

zeros afe invariant :cinder state feedback and output injection, which are 

represented by the maps F and L, respectively. 

11.1.4 	Sliding Subspaces and Infinite-Zeros 

In this section we show that a prime subsystem can be 

constructed from any sliding subspace R
a 
of maximal dimension in 

ker C. 	It is then easy to see the connection between the list I
4 

(equivalent to the infinite-zero structure) defined in the previous 

section and the structure of Ra. 

We first recall the concept of a prime system [2.14]. 

For this, let R be called a prime controllability subspace if : 



R,, i E m, satisfying 

and 

Remark 2.3: 

X = R
I 
e R

2 
e...e R 

V = cR1  e cR e...e cR 
2 	m 
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a) dim( R n B) = 1 

b) there exists some F: X 4. UandbeRnBsuch that 

R 	b 	A
F
b +...+ A

k-1
b , 	k := dim R 

CAE-1b = 0, i e {1,2,...,k-1} 

CAF-lb   0. 

Definition 2.3: A controllable system, represented by its triple 

(C,A,B) is called prime if there exist prime controllability subspace 

a) A prime system has the same number of inputs and outputs. 

b) The notation used for the triple of Definition 2.3 should 

not confuse the reader : the only property required for the 

triple (C,A,B) in (2.3) is that rank B = m, rank C = p. 

Let G be a group transformation [2.14], with an element 

* 
of G given by (H,L,T,F,G), where K : V 4- X and F :'X 4- U are 
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arbitrary. The maps H,T and G are automorphisms of Y, X and 

U, respectively. 	The action of G on the triple (C,A,B) is defined by 

(C,A,B) 	(HCT
-1 

 ,T(A+BF+LC)-1  , TBG) . 	(2.12) 

The above transformation has been used by Morse to identify 

important invariants associated with a triple (C,A,B). 	The inform- 

ation about such invariants is contained in the pencil (2.7). 

Let K := ker C in algorithms (1.3-4) and (1.9-10) of 

Chapter I. 	It can be easily shown that the subspaces Vu, R a, Su  

and Ru  in those algorithms are all invariant under the trans- 

* 
formation G . 

In the sequel we describe decompositions of some subspaces 

introduced in the previous chapter in order to display structural 

features of the linear system (2.3). 

a) 
	

Decomposition of 
V b,K 

* 	 * 
Consider V

K 
and define a map F on VK  so that AFVK  c 

* 	 * 
c ,VK and so that the minimal polynomial of AFIR

K 
is coprime with 

* 	* 
a(A), the minimal polynomial of A

F
IV
K 
(mod R

K
). 

Then, as in [2.14] define 

X
1 
 -= V

K 
 n ker 

Ct
(A
F
)- 	 (2.13) 

Hence 

VK  = Xi  9 RK 	 (2.14) 
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and 

A
F
X
1 
c X

1 
. 

Note that X
1 
is a coasting subspace. The invariant 

polynomials of 
AFIX1 

constitute the set of transmission polynomials 

of the triple (C,A,B). 

Let Ra,K  be a sliding subspace of maximal dimension given 

by the sequence (1.13). 	From Lemma 1.2f we have that Ra,K  n VK = 0 

which implies that F can be defined on' R 	as in Theorem 1.4c. 
a,K 

Hence by (1.8) and Lemma 1.2 a-b 

V
b,K 
 = R

b,K  
 + V

K   
= Rb,K  e V*  

By using (.2.14) and noting Remark 1.1a, it now follows 

that 

* _ 
V
b,K 

- X
i 
 e R

K 
 e R

b,K 
	 (2.15a) 

where 

Rb,K = AF1c,le 2 

	
(2.15b) 

and F is the map above defined. 

b) 	Decomposition of RbK  and the construction of a prime subsystem 

Our next step is to obtain a decomposition of the subspace 

b,Kinto a direct sum of singly-generated subspaces 
	 with the form  

n. 
M
i 

= b
i 

+ A b +...+ A lb., for some n., i e q 
F i 	F 
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where q := dim B and B is as in (1.11). 

The set {IL} 	E q, could be defined in an analogous 

way to that of Section 2.3 in Chapter I. However, to emphasize 

an aspect on infinite-zeros later, we shall define such a set 

through a slightly different way. 

For this, let p := dim(8 n K)and let B be any subspace 

such that 

= B 013-  n K 	 (2.16) 

Let 

r
u 
:= dim u e n (2.17) 

where the subspaces R
a
u  
are given by (1.13). 

From the proof of Theorem 1.4 we have that 

R
a, K 1 eAF 

 B e 	
e 

2 

for some k E n and 1:= 	n K 

Since $1 D B
2 
D...D Bu, it follows that 

r
1 
 > r

2 
 > ...> rn  > 0 

and 

r
1 
+ r

2 
+ 	+ rn = dim R a,K 



Let 

n, 	number of integers in the set 	(2.18) 
i  

{r1, r
2
,...,r } which are > i . 

Then 

and 

n
1 
 > n

2 
 > ...> n

p 
 > 1 

— — —  — 
(2.19a) 

n
1 
+ n

2 
+...+ np  = dim R

a,K 	
(2.19b) 

Proceeding with the definition of the set {n.}, i e q, let 

^ 
p+1 
n , := number of integers in 

single element) which are > i. 

{q-p} (a set of a 

Then 

ap+1 = ap+2 
= 	= 	= 1. 	 (2.20) 

and write 

np+i := ap+1 -1 = 0, i E {1,2,...,q-p} . 
	(2.21) 

Since dim B = q-p, it follows from (2.17-8) and (2.21) that 

dim(B a
1
EIA
Fa,K

) = dim 	= 	n 	= q-p + 	la.+1. 
i=1' i=1 

By (2.17-8), the subspace Ra,K  can be decomposed into the 

following direct sum 

Ra,K = L
1 
 ® L

2 
e 	e L 	 (2.22) 
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with 
n.-1 

	

L. = b. + A
F 	

A
F 
	b , 	i e p 

1 

and span {b1, b2,...,b 1 = B1. 

From Lemma 1.2e 

R
a
u 
 = Ra

u  
R
u , u E n . 

Since dim(R
u) and dim(R

a
u  ) are invariant under the group 

a 

transformation G , it follows that dim Ra
u  is also invariant. Therefore, 

the indices n., i E p, are invariant under G and also do not depend on 

	

the sliding subspace chosen. 	Recall that the sliding subspace 

R 	depends on the subspace 8 chosen. a,K 
From (2.15b) it is now clear that 

=e 

	

1 	
a ... a 

, 	
it 
	1 

m
b K 	2 	

m 
 q 

where 
n. 

	

M. = b. + AF
b
i 	

A
F
lb

i' 1 	1 

and 

M.
1 
 = b.

1 
 , b.

1 
 G 

* 	
e {p+1,...,q} 

with 
n.-1 

b 	b 	1 	= 	c 	E  P i 	F i 	1 	1 
(2.24) 

From Lemma 1.2d, Ra,K =K  n  RbK. 	Thus 

n 
CA
F
lb 	0 
	

G p 
	

(2.25a) 
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")"1 

E p 
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and obviously 

Cb. # 0, b. 
1 	1 

i E  {p+1,...,q}. 	(2.25b) 

It is also clear that the set (2.25) constitutes a basis 

for the space Cilb,K  . 	Thus, we can define a map L : CR10,1(  X 

in the following way. 

n. 	n. 
LCA

F  l
b. = -A

F  AF
lb. 	Iiqlp 

and 

LCb. = -A b. 
F 1 

whence 

and 

ni  n 
(A
F

C) 	A
F
lb
i 
= 0 	i E  p 

(11F-I-LC)b*1 = 	
, 	. 

Since b. E K, j E p, it follows that 
1 

(2.26a) 

(2.26b) 

(A
F
-1-LC)b 	= A

F 
 b 
i
. 

If it is true that (A
F
+LC) lb. = AFI lb., for 

2  < 	
1 

< n., then 
1 	— —  

- 
(AF 	1 	F 

= (A -ELC)A
Z 
 lb1 
	F 
 = A b. (2.27) 

-1 
since A

F 
t 
 b

i 
G K, for 2 < < n . 

— i 

Therefore, the subspaces M. are not altered by the output 
1 

injection map L above defined and hence 



and 

i E {p+1,...,q}. M. = b., 
I 
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where 

R.10, K =M eM2 	
Mq 

,  
(2.28) 

n. 
M. . = b

1  
. + (A

F
+LC)b +...÷.(A

F
+LC) lb

i 	i E p 

By (2.26-7), it follows that the subspaces Mi, i G q, 

are controllability subspaces with respect to the pair (A+LC,B), Then 

(103F-FLC)%,K 
 c b,K 
	 (2.29) 

Let B be the insertion map of B = B n RbK  in R10,1(  

C := CIRIDK 
	K . and A := (A+BF+LC)17%It is clear from (2.23) 

and (2.25) that the triple (a,A,B) so defined has the same number of 

inputs and outputs. 

It now follows from definition 2.3, remark 2.3a, (2.24-5) 

and (2.29) that the triple (C,A,B) is prime. 

c) 	Decomposition of X 

We just sketch here the derivation of the subspace Z which 

complements Vb,K to X and to which there corresponds another list 

of invariants. 

From (1.75) we have that Vb,K 
 = N " i e., Vb,K is the 

infimal complementary observability subspace which covers B. 

This means that there exists a map L1  : V X such that 
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(A 4- BF + L1C)Vb,K c a,K 
	 (2.30) 

and 

ULM + BF + L c)Omd. V )1 = A 
1 	b ,K 

(2.31) 

where A is a symmetric set of n -dim V
b,K 

 complex numbers. 

The property (2.31) is equivalent to the observability of 

the subsystem (C
1
,A

1
) where 

E
1 
:= C x 	(mod CV* 	) 

b,K 

and 

Al 
	
:= (A+BF+L

1 
 C)(mod v

b,K 
 ) 

The list 1
3 
in Morse's canonical form corresponds to the 

- - 
controllability indices of the pair (A1, 

 C
1), which as shown there, 

* 
are invariant under G as well. 

Following the above ideas it is possible to define maps F1, L1  

and a subspace Z such that 

* 
X =V

1D,N  
veZ 

V = cR
K 
 cZ 

(A+BF
1
+L

1
C)Z c Z 

F
1
1V
b,K 

= FI V 
b,K 

L Ickb,K.= L1 IC Rb,K = Lic 	
,K • 

We summarize below all the results obtained thus far in a 

theorem, which is in fact, Theorem 4.1 in [2.14]. 	The differences 
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um 
between the proofs will be commentedAafter the statement of the theorem. 

Let 

^2 := RK  , X3 :=Z , 	X4 
:
= 

R.b,K 

y
l 
 := cZ , Y2  := CRbK  

and.definemapsc.:X -4- Y. , 	j e 2 , by 
7 

c
1 
 IZ 	= cIZ 

c Iv
b,K 

= 0 

c
2
IZ 	= o 

I  c
2.

I  
Vb,K CIRb,K 

Theorem 2.1 (Morse) : Let (C,A,B) be a fixed triple. 	There exist 

subspaces Xi,.iE4 ,Y,jE2 and maps F1  : X ÷ U, L1  :Y 	X, 

t- :X -4- 	-jE2 , for which the following conditions hold: Yi, 

X = X
1 
e X

2 
e X

3 
9 X

4 

(A+BF
1
-1-L

1
C)X

i 
c X

i 
	e 4 

B =BnX2 
elBnX 4 

Y = Y
1 
e Y

2 

C = C
1 
 e C

2 

X
1 
 e X

2 
9 X

3 
ker C

2 

X 1 9 X2 9 X
4 
 c ker C 1 

X
4 
= M

1 
e M

2 
e 	e M 
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VilleretheM"i s q, are controllability subspaces with respect to 1 

the pair (A+LiC,B) and q := dim B r) X4. 

write g
.1 
 fortheirisectionnapsofBilk1 

	1
in X., i e{2,4}, 

Ai  = (A+BFI-i-L1C)1Xi, i E 4,  Ci  = Ci-21Xi,i E{3,4}. 	Then 

a) the invariant polynomials of A
I coincide with the transmission 

* 
polynomials of (C,A,B), which are invariant under G-. 

b) (A
2
,B
2) is controllable, with controllability indices invariant 

under G
*
. 

c) 	(C3,A3) is observable and the controllability indices of 

T T 
(A
3
,C
3) are invariant under G

*
. 

d) (C4, A4, B4) is prime and the dimensions of the controllability 

subspaces Mi, i E q, are invariant under G 	

0 
Remark 2.4: The subsystems defined in a-d are the same as those 

in (2.8-9). 

Comments: 

The difference between the proof here and the proof in [2.14] 

concerning the prime subsystem lies in the description of the complement 
* 

of RK  to Rb,K. 

From Lemma 1.2a 

Rb,K = Rb,K RK (2.32) 

and Rb,K  is described in E2.14] by means of an output injection 

map L : V -* X, i.e. 
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R,K = <AtI,C18>. 

In our derivation, by Theorem 1.4 and Remark 1.1a, 

Rb,K = AFfC,K e 8 
	

(2.33) 

i.e., R bK is described by a state feedback map F : X U. 

In our opinion the prime subsystem shows up more naturally by 

the use of description (2.33). 	The identification of Vb,K  with 

N,a  also provides more insight in the derivation of the subspace 

Z, which has been obtained by Morse by pure duality arguments. 

In bases provided by the subspaces Xi, i e 4, the maps (A+BF1+LiC), 

B 	and 	C 	can be represented 

Mat(A+BF
1
+L

1
C) = 

Mat C 

as 

( A
l 	

0 

0 	A
2 

0 	0 

0 	0 

0 	0 

0 	0 

0 

0 

A
3 

0 

C
3 

0 

0 

0 

0 

A
4 

0 

C
4 

Mat B = 

0 

B
2 

0 

0 

• • • 

0 

0 

0 

B
4 

( 2 . 3 4) 
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with 

A
4 

= diag[A1,...,Ap, Ap+1 	A ] 

A A 
B
4 

= diag[b1,..., bp, bp+1,..., b ] 
q 

C4 
= diag[el,..., ap, p+1

,..., a ] 

(2.35} 

0 1 	 0 

0 0 • 	0 

. 	• 	• • • • 

0 

A. = b. = 
1 

0 1 . . 	0 
(n.+1)x(n.+1) 
1 	1 

(n, +1)x1 
1 

= 	0 	. 0] 
1 	(lx(n.+1) 

1 

for i E p and 

A. = 0, 	b, = 1, 	a 	1 
1 

for i e{p+1,...,q}. 

It is clear from the above representation and Proposition 2.1 

	

ki, i q, and q = 	the set 
1

},ieqdescribes the 

infinite-zero structure of G(s) = C(sI-A)
-1
B. 

According to the subspace 8 chosen in (1.11) a different 

subspace RbK  is obtained as complement of RK  to RbK  in (2.32). 

For this reason the infinite-zero structure is associated with the 

* 	* 
quotient space Rb,KIRK  or equivalently, it can also be obtained 

* from the quotient space V /V b,K K as in [2.2-3]. 

Based on the above discussion, the following "geometric" 

1 definition may be adopted for the infinite-zero structure of G(s)= C(sI-A)B. 
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134K  
Definition 2.,4; 	Let dim 	= q and let n., 

i E q: be defined as in (2.18) and (2.21). 	Then G(s) is said to 

have q infinite-zerosofresPectiveordersn.4.1. 

Remarks 2.5: 

a) From the above definition and (2.19a), it follows that 

the orders of the infinite-zeros which are higher than one, are deter- 

mined from the dimensions of the sliding subspaces in the decomposition 

(2.22). 	Any sliding subspace of maximal dimellsioTt in K admits 

a decomposition as in (2.22), where the decomposing subspaces have 

always dimensions ni, i e  p. Thus the important entity for the 

, * 
infinite-zeros of order higher than one is R ,/R 

cl,& K.  

b) 	Definition 2.3, expression (2.21) and the nature of the 

B+K subspace B 	/0 1G\ 
iMply that thO Ci=t4 ent K 

contributes only to first order infinite-zeros. 

c) It is remarkable the richness provided by the geometric 

approach in theoretical terms. It might be argued that the Smith-

McMillan decomposition of G(s) at infinity or the structure of a column 

reducedG(s) (see E2.23-41)yield the infinite-zero structure. 	However 

,a, 
suchAapproach does not provide aSclearApicture of the structure of 

the triple (C,A,B) as the geometric approach does. 	Moreover, the 

geometric definitions of finite and infinite-zeros have been and will 

be very important in the search for solutions of control synthesis 

problems. 
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A dynamical interpretation for the infinite-zeros can be 

easily derived. 	For this, consider the transfer matrix of (2.34) 

which is clearly given by 

‘C
4 
(st-A

4
)
-1

13
4 	

diag E q . 

Consider the equation 

1r(s) = C4 
(sI-A

4
-1  
) B

4 
 u(s) + C

4 
(sI-A

4
) 1x0 

where x 
0 RIO,K 

is a given initial condition. 

Suppose that a control u(s) is required so that y(s) = 0. 

From the representation of (C4, A4, 34) in (2.35), it follows that 

y(s) = 0 implies yi(s) = 0, i e q, which in turn implies 

n. 
r 1 u. (s) = -Ls 

1 

n
i
-1 

s 	,...,s,1]x., 	i-e q 
(2.36) 

where 

	

X, E M. , dim x. = n, 	1, 	i E q . 
1 	1 	1 x0  

x 
q 

Hence from (2.35-6) 

n. n,-1 
u, = -LS 1,6 1 	 ...,(5(1) 	(S]x 
1 i E p 

(2.37) 

U. = - X. 
1 

i e{p+1,...,q} 



j where (3 is the delta functional and .5( -j)s  	G n, is the j
th 

-1 

derivative of cS in the distributional sense. 

This shows that an impulsive control type is necessary 

to drive x
0 	

G R10  , to ker C. 

To conclude, if x
0

e but xo 	R1(  , then an 

impulsive control is needed to achieve y(s) =0. The quotient 

* 	* 
space RbK  /RK  is related to the infinite-zero structure. 

On the other hand, if x
° 	

V
K , 

theh there exists a piece- 

wise continuous control so that y(s) = 0. 	The quotient space 

* VK/RK is related to the finite-zero structure C2.27]. 

11.2 	ROOT-LOCI FOR MULTIVARIABLE LINEAR SYSTEMS : A STATE-SPACE  

APPROACH 

11.2.1 Introduction 

Consider the linear system 

x = Ax 	Bu 	 (2.35) 

y = Cx 	 (2.39) 

with 

dim U = dim Y = m 

ranK B = rank C = m. 

The control law considered here is given by 

101 

u =gRy 	 (2.40) 
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for some map R : 	U and a real scalar parameter g. 

Classical root-loci theory is concerned with asymptotic 

properties of the closed-loop map 

(A-1-gBRC) 	 (2.41) 

obtained by application of (2.40) to (2.38) as g 4. co. 

The first results for multivariable linear systems appeared 

in [2.8, 2.9] and from there on a great attention has been paid to 

the subject, especially on the part of the Cambridge school [2.6, 

2.10-11] which has developed the theory mainly in the frequency domaiN%-. 

Apart from the work by Young et al (2.28] which have used 

the technique of singular perturbation to study the asymptotic 

behaviour of (2.41) (for R = I, the identity map) in the special case 

rank CB = m, little has been done in the state-space domain. The 

reason for this is very simple. We had not had, until the work by Willems 

[2.261, high gain concepts in the state-space to allow a development 

of the root-loci theory in this domain. 

Our aim is to give a contribution to the state-space theory 

of root-loci by making use of the notions of almost controlled in- 

variant subspaces introduced by Willems. 

We shall restrict our attention to linear systems described 

by 	(2.38-9) and for which the transfer matrix G(s) = C(sI-A)
-1 

 B is 

invertible over the field of the rationals. 	Accordingly, we shall 

sometimes refer to an invertible linear system. 

The limit behaviour of those eigenvalues of (2.4110 which 

go to infinity is closely related to the subject of infinite-zeros. 



In Section 2.4 we give A procedure for the assignment of 

the asymptotes which, as far as we know, differs from those existing 

in the literature and has some advantages. We shall compute a map 

R : X U such that the asymptotes of (2.41) are assigned and such 

that they have the same orders as the infinite-zeros. . Moreover, 

the assignment of asymptotes of distinct orders is done independently 

and the corresponding limit eigenvectors can also be assigned. 

When R = I., the identity map, the asymptotes of the closed- 

loop map (2.41) may not have the same orders as the infinite-zeros. 

A condition has been given by Owens [2.15] to ensure that both 

entities (asymptotes and infinite-zeros) have the same orders. 	His 

condition is derived from automorphisms G and H of U and Y, 

respectively, used.to obtain Morse's canonical form (see Section 1.4). 

In Section 2.5, we show a condition derived directly from the maps 

B and C. The condition gives simultaneously a way to compute 

the value -c the 'symplo 	not vary roaal- in  19.1,S1 

Part of the material presented in Sections 2.2-2.6 is 

based on [2.1]. 

11.2.2 Properties of Invertible Linear Systems  

We describe in the following, properties of invertible 

linear systems, i.e., systems represented by (2.38-9) with an in- 

vertible transfer matrix G(s) = C(sI-A)
-1
B. 	The properties mentioned 

here are fundamental for the root-locus study in state-space. 

Let again K := ker C in the algorithms of Section 2.1, 

Chapter I. 
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A necessary and sufficient geometric condition for G(s) 

to be invertible is that E2.271. 

VK*  lebe  .X 	 (2.42) 

104 

and 

* 	* 
VK n R1),K = 0 (2.43) 

From (2.43) and Lemma 1.1b, it follows that R
K 

0. 	Thus 

a multivariable invertible linear system can be considered as an 

extension of a single-input, single-output linear system when we 
01,142,01A 

restrict our attention to K. Recall thatAsingle-input systems 

do not possess controllability subspaces other than 0 and X. 

* 	 * 
Since RK = 0, it now follows from Lemma 1.2e, that Ra,K 

the supremal almost controllability subspace in K, is a sliding 

subspace. 

In fact, we can show that 

* 	* 
V
K
eR

a,K 

Just note from (2.42-3) that 

RLe K = X . 

• 
By Lemma 1.1a and Proposition 1.1. 

(2.44) 

(2.45) 



10* 
"b,K.  

* 	 „k-1 
R
a,K 

=
a Then from Theorem 1.4c 

For this, let k-1 be a nonnegative integer such that 
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* 	* 
R. 

	= AR
a,K 	13 

with 	 (2.46) 
* 	* 

dim AR
a,K = dim R a,K 

* 	* 
Thus, from (2.45-6) we have that dim(Ra,K9 VK) = n-m 

and since rank C = m, (2.44) follows. 

In the sequel we obtain a decomposition of the subspace 

,k-1 	k-2 K
a 

= ol  $ AFB2  $ ... 9 AF 	
k-1 

for some chain {3
i
} in 8 and s.ome F. 

Let. EL
1, i E f1,2,...,k-11 be subspace3such that 

B.
1 
 e B.

1  = i-1 	
B
o 
:= B . (2.47) 

with 

and 

Hence, from Theorem 1.4c 

Rk-1 
= L

2 $ L3 e...e Lk a 

L
i 	= B' 	e A B' 	$...9 A

i-1
13 1 	e il,...,k-21 +1 i+1 	F i+1 	F 	i+1 

Lk = 
	eAB 	9...9Ak-2 k 	k-1 	F k-1 	F k-1 

(2.48) 

for some F which obeys (1,17-8). 



To facilitate the notation let IP ;=
k-1 	It is then 

not difficult to see from (2.46-7) that 

where 

S
k 

;= R
7 

=AR 	B 
. 1o,K 	F 

= M1 .® M2e...eAc (2.49) 

M. = B! 9 A13! 9...9Ai
F
-1
8! , 

1 	F 1 	1 
	Ek 

Note that S
k 0  13 and that from (2.47) 

= B'1 	e...e B' 
	

(2.50a) 

which yields the decomposition 

U = U' e 
2
e...eU' 
	

(2.50b) 

where 

BU! = 13! 1 i e k . 

Since R
k-1 

 is the supremal subspace with the form (2.48) 
4 

in K and since K n B1 = 0, it follows from (2.45) and (2.49) that 

= cX = cSk  

and 

V = cX 	V
1 
e Y

2 e...eVk 
	 (2.51) 

where 

Y.1  = CA
F1 

1 
, 	i e k . 

F  
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Let id,
1 
 := dim BI, i E k. It is then clear from (2.23) 

1 

and Definition 2.3 that the transfer matrix G(s) of (2.38-9) has 

id.) i
th 

order infinite-zeros, i E k. 

The decomposition (2.49) is obviously not unique, but any 

decomposition will display the infinite-zero structure. 	If, for 

example, G(s) has no second order infinite-zeros, then the resulting 

decomposition will show no subspace of the M2  type (equivalently 

B2 = 0). 

The decompositions(2.49, 2.50-1) will be used in Section 2.4 

to obtain representations for the maps A, B and C. 

11.2.3 The Case Rank CB = m 

This section reviews the limit behaviour of the closed-loop 

eigenvalues of (A-I-gBC), g co, for the special case rank CB = m. 

Such a case has already been analysed in [2.8] by the use of the 

spectral decomposition of the map BC and in [2.28] through the 

singular perturbation technique. 

It is our opinion that from a state space viewpoint, neither 

of the above approaches provide a deeper insight. For this reason 

we could not resist the temptation of presenting this simple case, 

before tackling the more general case, i.e. rank CB < m. It is our 

objective to show that the use of suitable concepts, i.e., notions 

of (almost) controlled invariant subspaces, makes the analysis of 

this special case to be trivial. 

The consequences of rank CB = m are as follows : 

107 
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a) KnBr.) 

b) Since dim B = m and dim K = n-m, there follows by 

a) that K e B = X. 

c) AKcX=KeB. Thus V
K 
=K. 

d) A(KnB) c B, which implies RbK  7. B. 

* 	* 
Since VK  ED Rb,K  =X , it follows from (2.42-3) that rank 

CB = m implies that G(s) is invertible. 

Let then 

X =KeB 
	

(2.52) 

and consider Q : X -4. X, 	the projection on K along 

We claim that U(QAIK) = Clq+BF)1K7, VF e F(K) . 

This is easily shown by using matrix arguments. 	In the 

decomposition (2.52) 



109 

A
11 	

A
12 
	 0 

Mat A= 
A
21 	

A
22 

	Mat B = 	
B
2 
	(2.53) 

Mat c 	[ 0 
	

C
2 

where A
11 

= Mat QAIK and B
2
, C2  are nonsingular matrices of dimension m. 

Let F = [F
1 

F
2
] be a compatible partition of a map 

F : X 	U. 	Then from (2.53) 

A
11 	

A
12 

Mat A+BF = (2.54) 

A
21

+B
2
F
1 	

A
22

+B
2
F
2 

and any F E  F(K) is such that F
1 
 = -B21A

21' 
which verifies the 

claim. 

It follows from C2.4] that O[QAIK] constitute the set of 

transmission zeros of the triple (C,A,B). 

From (2.53) we have that the closed-loop map A + g BC 

admits the following representation 

A
11 	

A
12 

(2.55) 

A
21 	

A
22
+gB

2
C
2 

Since B
2
C
2 
is nonsingular, it follows from Lemma A.1 in the 

Appendix that as g co 

G(A
22
+gB

2
C
2
) 	g G(B C

2). 

Mat A+gBC = 
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Therefore, the closed-loop map is characterized by two coupled 

"subsystems", one with finite eigenvalues and. the other one with 

eigenvalues which tend to infinity. 	It is then easy to show 

[2.13, 2.28] that one eigensubspace of (2.55) with dimension n-m 

approaches K so that n-m eigenvalues tend to c(A11) = o(QAIK), as 

g co. 	The remaining m eigenvalues go to infinity with asymptotes 

given by o(B2C2) and the corresponding eigensubspace approaches B. 

The closed-loop map (A+gBC). g 00, is then said to have 

first order asymptotes in the sense that m eigenvalues go to 

infinity with power one in g. 	It is also to be noted that rank 

CB = m implies that the infinite-zero structure of G(s) is given by 

m first order infinite-zeros. 

An interpretation of the above results is described in 

the following. 

The class of maps L(B) can be easily characterized. 	For this 

let L
1 
 be a compatible partition of a map L: V X. Hence 

` 2 

from (2,53). 

A
11 	

A
12
+I,

1
C
2 
1 

A+LC = 
A
21 	

A
22

+I,
2
C
2 

and any L E L(B) is such that L1 = Al 
2C21.  

Define the following maps: 

a) 
	

L E L(B) such that (A+LC)B = 0, i.e. set L
2 
= -A

22
C
2 

. 
1 



b) 	F e F(K) such that F'1  B = 0, i.e. set F2  = 0 in (2.54). 

Then 

(A+BF+LC) K = (A+BF)Kc K 

and 

(A+BF+Lc)8 = (A+Lc)B = 0. 

The map (A+BF+LC+gBC) admits the following representation. 

 

A
11 

0 1. 

0 gB
2
C
2 

 

Mat(A+BF+LC+gBC) = (2.56) 

  

and we can see that the limit behaviour of (2.55) coincides with 

the behaviour of (2.56). 	The explanation for this is simple. 

Just note that as g °° 

 

II A2III 
	

ILA12 11  ÷ 0 	and 

 

4-  0 . 

  

II A22+gB2C2II 	k A22+gB2C2 II  

 

The above discussion has shown that a suitable state feed-

back map F and a suitable output injection map L can help in the 

comprehension of limit properties. This observation will be extended 

in Section 2.5 for systems with rank CB < m. 
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11.2.4 Independent Assignment of.  Asymptotes of - Distinct  

Integer Orders  

This section deals with the assignment of asymptotes by 

output feedback for an invertible system described by (2.36-9). 

The assignment procedure suggested here is applicable to all 

invertible systems, i.e., rank CB can be any integer between zero 

and m. 

If X is an eigenvalue of (A+gBC), g 00 and its behaviour 

is given by 

X 41 a, 	03, a EL', ZEE 

then a is said to be an asymptote of order Z. 

To begin with our constructive method., we first identify 

the transmission zeros of (C,A,B) as the eigenvalues of a certain 

map. 	For this, let W be any subspace such that S
k 

= B e W, 

where S
k 

is as in (2.49). 

Let Qv  : X .4- X be the projection on V
K 

along Sk. 	Analo- 

gously 	
* 

to the previous section we claim that a(QAIV
K
) = a[(A+BF)IV

K
] 
' 

VF E F(V
K 

). 

To see this consider the decomposition 

X= 	e e W . 

Then in some basis provided by the above decomposition we obtain 
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Mat A= 

Mat C = 

A00 

A
10 

0 

C 0 

A
01 

A
11 

A
21 

C
l  

A
02 

A
12 

A
22 

C
2 	

3 

Mat B= 

0 

B 1 

0 

(2.57) 

where A
00 

 = Mat QAIVK  and B
1 
is a nonsingular matrix. 

Let F : X÷Ube any map and write F = [F0,F1,F27, 

according to the partitioning of Mat B in (2.57). 	Then 

A 	A 	A 
00 	01 	02 

A
10
+B

1
F
0 	

A
11
+B

1F1 	
A12 +B F 

1 2 

0 	A
21 	

A
22 

It is clear that any F E F(VK) is such that F
O 
 = 

-B11 A10
.  

This shows that A
00 
 is a representation of (A+BF) IVK  , VF 	1  e F(VK  , 

and consequently 6(A00) = U(QAIVK  ) constitute the set of trans- 

mission zeros of the triple (C,A,B) [2.4]. 

We now use the decompositions (2.49, 2.50-1) and Theorem 1.4c 

to obtain suitable representations for the maps A, B and C. 

Let G and H be automorphisms in U and Y, respectively, 

such that 

Mat A+BF = 

(2.58) BG = diag(B 	) 
1 	k 

where 

Im B, = 13! 
1 	i 

k 
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and 

HC =
k
) 
	

(2.59) 

where 

ImC.=CAF
i-1 
 0! 	i E k. 

NotethatthematricesandC.are nonsingular and of 

dimension d., i E k. 

For simplicity of presentation, suppose that RbK  = S 
 
in 

(2.49). 	We shall see that there is no loss of generality in doing 

this. Hence 

* 
X=V

K
eS

3 
 

and using (2.49) 

X = V 
 

1 ' 	9 13 12  9 AFB.  ED 8' 9 A
F 
 8' 9 A213' 	. 
3 	F 3 

(2.60) 

From (1.16-8), it follows that 

A AF-  iB' 	= A B' 	- BFA 
i+1 	F i+1 	F i+1 AF i+1 731+—+81-1 (2.61) 

i  forLei,iek art.011/4  Brz- O. 

From (2.50-1) and (2.61), it follows that the maps B, C and 

A admit the following representations. 
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‘.•Mat.. A = 

Mat HC = 

e 
A
00 

X 

0 

x 

0 

0 

0 

0 

0 

The 

XIX‘XX 

k 	
tx 	0 	x 

1 
1 

1 	 

X 	0 	X 

X k I
d 	

x 
2 

 

x 	0 	x 

x 	0 	x 

x 	0 	x 

C
1 	

0 	0 

0 	0 	C2 

0 	0 

	

symbols 	x 

0 	0 

X 	X 	X 

0 	0 	X 

0 	x 

0 	0 	x 

I
d 	0 
3 
0 	I 	x 

d3 
 

0 	0 	0 

0 	0 	0 

0 	0 	0 	C
3 

denote matrices 

Mat BG = 

which are 

0 	0 	0 

B 	0 	0 
1 

0 	B
2 
0 

0 	0 	0 

0 	0 	B
3 

0 	0 	0 

0 	0 	0 

0 	0 	0 
A 

possibly nonzero 

(2.62) 

- 

and Id  denotes the identity map of dimension 	It is readily seen 
1 

that in general, Mat A will have k diagonal blocks Ai  with the form 

	

0 0 	 0 x 

I
d. 	

0 

E k . 	(2.63) A. = 
0 	I

d. 	
. 

• 0 

0 	0 . I x 
d. 1 ' 	idi  xid. 

Note that A. has the structure of a block companion matrix. 

Consider the following maps 



AISk 
	 I,k 

A
s 
:= Q

s 	
; B

s 
:= Q

s
BG 	C

s 
:= HC13 

where  Q
s 
: X X is the projection on S

k 
along VK. 

Hence, the characteristic matrix of A+gBC on S
k 
has 

the following representation 

Mat(A 
s 
 +gB 

 s 
 C 
s
-XI)= 

x+gB C -XI 	x 
1 	1 	di: 

x-XI
d ! 
2 

x 	I
d2 

x 	0 

x 	0 

x 	0 

x 

x+gB2C2  

x-XI
d2 

x 	x 

0 	0 

0 	0 

	

-XI
d 	

0 
3 

I
d3 

-AId 
3 

	

0 	I
d3 

x 

x 

x+gB3C3  

x-XI
d 
3 

(2.64) 

It will be shown next that the eigenvalues of A
s 

+ gB 
s 
 C 
s
, 

as g cop tend to the asymptotes which are determined from 

WI
a. 

- B.C.' = 0, i e k. 	 (2.65) 

From (2.65), it follows that there are d i
th 
 order asymptotes. 

This implies that the structure of the asymptotes is isomorphic to the 

infinite-zero structure (see Section 2.2). 

th 
Let the i diagonal block of A + gB C be denoted by 

s 
 

s s 

N., i e k, where 
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0 • • 	0 
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T
d. 	

-XI
d. 

0 	I
d. 
	 (2.66) 

	

-XId. 	X2i • • 

0 	0 	• 	• 	I
d. 	

X
1i
-AI

d. 

It can be easily seen that 

1 

	

, 	, 
=-4 IA I

d 	
i-1 	i-2 

. 
- A

li 
- A 	X

2i
-...-X, - gB.0

i 
 I 

1 

where the matrices X.., j E i , denote the matrices symbolized by 
31 

x in (2.63). 

Hence, by Lemma A.1 in the Appendix, it follows that the 

eigenvalues 	, j G di.of a block N, approach Lie asympLoLes yivh 

by (2.65), as g 	co. 

Note that the eigenvalues of distinct diagonal blocks go to 

infinity with distinct rates, where the rate associated with an 
1 

eigenvalues of the block N is gl . Also note that the norm of the 

off-diagonal matrices are finite (see the example in (2.64)). 

It follows that the Gerschgorin sets [2.20] associated 

with any two distinct diagonal blocks N. and N., i j, are disjoint 

as g co. 	Further, the distance between any two sets i and j, 

11
i 
 - 

i 	j, tends to g 	j , as g 	03. 

This shows that the eigenvalues of A 	gB C approach the 
s 

 
s s 
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asymptotesgiveriby o.Thed, ith 
1 	order asymptotes 

are determined from the eigenvalues of the nonsingular matrix B,C.. 

Since all the eigenvalues of As  4. gBsCs  go to infinity, as 

g 	co, it follows by the same arguments used in [2.9, 2.13] that 

the finite eigenvalues of A -I- gBC tend to the eigenvalues of A00 
 

(the transmission zeros), whereas the infinite eigenvalues tend to 

the asymptotes given by (2.65). 

A simple procedure to assign the asymptotes of all orders 

is described next. The method used here is similar to the one used by 

Kimura [2.7] for the assignment of the first order asymptotes in the 

case rank CB = m. 

Since C,B. is nonsingular, there are vectors v 	q E d., 1 i 	 q1 	-1 

i e k, so that the matrix 

Ti  = [C.B.v 	
i 
B
i vd. i

], i E k i 1  
1 

(2.67) 

q e 
 d. 	ie k 
	

(2.68) 

is nonsingular. 

Let 

be a set of complex nrimhers such that for each i e k, the set {yqi}  is 

symmetric with d,
1 
 distinct complex numbers. 

Let 

zi 	Cv 	d 1 , i e k 
ui  (2.69a) 

Hence 

B.Z.C.B.v. = y B.v 	q e d., qi i qi 	-1 
i e k 
	

(2.69b) 



which means that (.y 	B v qi 1. is an eigenvalue-eigenvector pair 
qi  

of B, Z. C.. 

Define 

Z := 

and 

R := GZH. 

Then the closed-loop map (Ai-gBRC), g 00, will possess di  

.th 
order asymptotes given by yqi, q e di, i e k. 

In the sequel, we discuss some properties of the eigenvectors 

associated with the asymptotes. 	Since the eigenvalues of aevti, -LVOV 

j, go to infinity with distinct rates, it 

followsthatasg÷co,a(N.)(16(1\1.)= 	and.thus the eigenvectors 

ofablockLare eigenvectors of A gBRC, as .g co. 	Also from 

the structure of N. in (2.66) and Lemma A.1, it can be concluded that 

th 
the limit behaviour of the eigenvectors associated with 

.
order 

asymptotes can be extracted from the following characteristic equation 

Id.  . -A Id 0 	0 	gB.Z.C. 
1 1 1 

• 0 

= 0 	(2.70) 

• 

0 	 I
d. 

-XId. 

1 

Let((gY .),x) be a pair eigenvalue-eigenvector in (2.70), gi 

where 

119 

0 . 	 0 

d
1
. . 
,1 
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xTT T 
.)
T 

1,i 

Then, from (2.70) 

gB.Z.C.)xd. 1  
. = 0 

	

1 	, 

1 
(gy .)i x 	• x

d-1,i = 	ql 	d11 

i-1 

) 	
x2, . 

xl,i  = gYqi 1 

(2.71) 

(2.72) 

From (2.71), it Can be concluded that the vector xd  

corresponds to the eigenvector B. v in (2.69b). 
1 qi 

From (.2.72) we have that as g 3  00 

0 	j G {2,3,...,d.} 

which shows that the eigenvector x approaches Im B.1 vqi
, since 

X
1,i 

E B i  according to the basis chosen for the representation 

of the map A. 

Another conclusion to be drawn from (2.72) is that the 

eigenvectors associated with the i eigenvalues Xi  gy , q e d1
., 

converge to the direction given by Im B. v qi 

We summarize below all the results obtained so far in a 

proposition. 
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Proposition 2.2: 	Consider an invertible system described by (2.38-9) with 

infinite-zero Structure {d
i 
 i E k, shown in the decomposition 

(2.49). 	Let{,}, q e  d.
1 
 , i e  k be a set of complex numbers as 

described in (2.6B). 

Then, there exists a map R : 	V such that the closed-loop 

inap(mgE3R.C),g4-00,hasd. i
th 
 order asymptotes given by 	 i1 

q e d., i e k. 
-1 

Moreover, the i eigenvectors associated with the i 

eigenvalues 	gyqi  , 4 E di,i Ek approach Im B. v
qi 
 c B!, where 

the v 	E d., are chosen so that T. in (2.67) is nonsingular, i e k. qi 	-i 1 - 

0 

Comments: 

1) 	In our opinion, the method for assignment of asymptotes suggested 

here has two advantanges when compared to the approach in [2.11], 

namely 

a) 	the procedure proposed in [2.11] requires the knowledge of 

all asymptotes of A+gBC, g co, and the eigenvectors of the so-called 

Markov parameters. Moreover, such procedure is valid only in case that 

the orders of the asymptotes of A+gBC, g 4:0, coincide with the orders 

of the infinite-zeros, 

The method proposed here does not have such a limitation, i.e., 

we assign the asymptotes (with the same orders as the infinite-zero 

orders) without previous knowledge of the asymptotic structure 

of A + gBC, g 4- co. 



122 

b) 	The assignment of asymptotes of different integer orders 

can be done independently, i.e. the map Zi, i e k, which assigns 

the asymptotes of order 	 j. 

2) From a state space viewpoint, the assignment of asymptotes 

via (almost) controlled invariant subspaces is the most natural, 

for a simple reason : the eigensubspace associated with finite 

eigenvalues tends to V
K and the eigenvectors associated with infinite 

eigenvalues converge to subspaces of B whose structure is determined 

from R 
a,K
. 
 

The, conclusion that the eigenvectors coresponding to the infinite 

eigenvalues approach B had already been obtained in [2.22]. The 

advantage of the approach adopted here is that we have been able to obtain 

a much richer information. 	It follows from (2.47) that the limit 

t 
eigensubspace associated with the asymptotes of i order is related 

to the quotient space Bi/Bi_ i, i C {0,1,2,...,k-1}, which is completely 

determined from the structure of Rb,K. 	In other words, any subspace 

B! which yields a direct sum in (2.47) can be chosen as a limit eigen-
i 

subspace. 	Such a flexibility may be important, for example, in 

connection with the assignment of "pivots" [2.11], which are the 

points of radiation of asymptotes. 

3) If the system (2.38-9) is not invertible, then the state 

space can be decomposed as 

* 
X = V

b,K 
 9 X

c  

where X is any subspace that complements V , and 
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* 
Vb, = X1  e RK 

 Rb K  

where the above subspaces are as in (2.15a). 

It can be shown in a similar way as we did before that a map 

R : V U can be defined so that a set of dim R, , eigenvalues 
JDA. 

approach pre-specified asymptotes with the same orders as the infinite- 

zero orders. 

It can also be shown that a set of dim X
1 eigenvalues approach 

the transmission zeros of the triple (C,A,B)- 

But the more important point to be emphasized here is that 

now K has a controllability subspace and that V
b,K 

 is a complementary 

observability subspace. 	This means that there exist F : X U and 

L : Y - X such that 

a[(A+BF)IRK  ] = Al  

and 

aC(A+Lc)(mod V
b,K 

 )] = A
2 

where A
l 
and A

2 
are symmetric sets of dim R

K 
and n-dim V 

b,K 

complex numbers, respectively. 

Unfortunately, it is not true, in general, that the subspaces 

R
K 

and Vb
K are (A+BRC)-invariant for some R : V U, i.e. that they 

are simultaneously A(modB) and Alker C invariant subspaces. 

This poses a great difficulty as to how to choose R : V U 

that not only assigns the asymptotes but which also ensures pre-

specified complex numbers for a set of dim (X
c 
9 R ) eigenvalues, as 
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g 	CO, As far as we know there has been no progress in this area. 

11.2.5 	Some Asymptotic Properties  

Consider the invertible system (2.38-S). 	We shall give 

here a sufficient condition for the asymptotes of the closed-loop 

map (Al-gBC), g co, to have the same orders as the infinite-zeros orders 

of G(s). 	The main difference of the analysis here when compared to 

that of the previous section is that we shall not make use of the 

automorphisms G and H in (2.58-9). 

Consider again the case k = 3 and the decomposition (2.60). 

In such a decomposition the map A is represented as in (2.62) and 

the maps B and C admit the following representations. 

0 

B 
1 

B
2 

0 
Mat B =  Mat C = [0 	C

1 	
0 C

2 
0 0 	C3] 

B 
3 

0 

0 

Let Q
s 
: X 	be the projection on S

k 
along vK  and consider 

the following maps 

k 
A
s 
:= Q

s 
AS ;$

s 
 := QsB 	C

s 
:= 1, . 



x+gB2C1  

x 

C 	t  
1 	d ' 

11  

x x+gB1C2  

-AI
2 

x+gB2C2 

I x-X 
d2 

 
d2 

x+gB1C
3 

0 	0 	xi-gB
2
C
3 

0 	0 

Hence, the characteristic matric of A + gBC on S
k 
has 

the following form. 

x+gB
3
C
1 

0 x+gB3C2  AI) +gB 	
d3 	

0 	x+gB3C3  s sC = s 

x 	0
d3d 

d3 

x 	0 	x 	0
d3d3 

... (2.73) 

By comparing the matrices in (2.64)and (2.73), we see 

that the closed-loop matrix in (2.73) displays couplings among the 

inoutmaosB.andtheoutoutmapsC.,i 1. 

Form the nonsingular matrix r 

(B
1
C
1 

B
1
C
2 	

• B
1
C
k 

B
2
C
1 	

• B
2
C
k 

• 

BkC1  BkC2  . 	▪ 	B
k
C
k 

Assume that the matrices r. 
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•
BiCi  B1C2  

B
2
C
1 

B.0
1 	

B,C
2 
 . 

1   

  

r 

B1C, 

B
2
C 

B.C. 
1 1 

e{1,2,...,k-1} 	(2.74) 
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are nonsingulax. 

Let the Gauss generalized algorithm [2.5] be applied to 

F, where the pivots are square matrices of dimension d., i ef1,2,...,k-11. 
1 

The assumption (2,74) ensures that the pivots obtained during the 

application of the algorithm are nonsingular. Hence, the block 

triangular matrix r obtained is 

F
1
1 	F

12 
. . . 	F

lk 

0 	 F 
F22 • 	2k  

0 	0 	F
kk 

(2.75) 

where 

F
11 

= B
1
C
1 

F =BC -BCF 1B C 
22 	2 2 	2 1 11 1 2 

1 	1 
F
33 

= (B
3
C
3 
- B

3
C
1
F
1

B.
1
C
3
) 	(3

3  C1 F11  B1  C2 
 )F

2
1
(B
2  C3 

 -B
2  C1 F11 

1
B
1  C3  ) 

and so on. 

ThematricesF,,i j, which result from the application 
13 

of the algorithm do not play any role here. Note that the matrices 

F.., i 
11 

E k, (the pivots) are nonsingular. 

It will be shown next that the i
th 

order asymptotes 

are determined from 

X11 
d. 

- FI = 0 , ii E k (2.76) 



Such a result is expected since we are replacing the 

nonsingular matrices B. C. i e kr in (2.64) by the nonsingular 

matrices F.., 
11 

. k,whichensurestheexistericeoflth order 
1 

asymptotes. 

To illustrate the derivation of (2.76), consider the 

case k = 2. 	From (2.73) 

x+gB C 	x 
r  1 1 	ut,  x+gB

1
C
2 
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A A 

Mat(A 
s 
 +gB 

 s 
 C 
s
-XI) = 

x+gB2C1  -XI
d x+gB

2
C
2 

2 . (2.77) 

    

    

 

x I
d2 	

x -XI
d d2 

 

 

   

    

    

By Lemma A.2 in the Appendix, it follows that the diagonal 

block of dimension 2d
2 cannot have asymptotes of order less than two. 

Therefore by Lemma A.1 all the first order asymptotes are given by 

1AI 	- B
1 
C
1
1 = 0. 

d
1  

Consider now the application of the Gauss generalized 

algorithm to (2.77) and take the matrices (gB,C,-XI, ) and -Aid  
"1 	2 

as pivots. 	Hence, for X — 0 , it follows that 

(gB
1 
C -XI )

-1 	
g
-1
(B1C1)

-1
. d

1  

Hence, after the pivoting and consideration of g co, 

the matrix in (2.77) is transformed to the following matrix 
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gBaci-  d1  

0 1-AT
d2
+H

1 
gF
22 

0 	I
d 2 
	

-AId 2+H2 

where H
1 
and H

2 
denote matrices obtained in the pivoting process 

and F
22 

is as in (2.75). 

The remaining asymptotes are then given by the limit 

of the roots of the deterMinant of the diagonal block of dimension 

2d2, which is 

1
X
2
I -X(H

1 
 +H
2 
 ) + H

1 
H
2 
- gF

22
1 = 0. 

d2 
 

(2.78) 

By Lemma A.1, it now follows that the roots of (2.78) 

tend to second order asymptotes given by 

IX I - F
22

1 = O. 

The successive application of the Gauss generalized 

algorithm together with Lemmps.A.1, A.2 and the hypothesis (2.74) 

lead to.(2.76). 	The above result is stated in the next proposition. 

Proposition 2.3: 	Consider an invertible system decribed by (2.38-9) 

with infinite-zero structure {d.} , i e  k, as shown in the decom- 

position (.2.49). 	If the condition (2.74) holds, then the closed-

loop
.

nialp(A+53C), 9 4'llascl-l
th 
 order asymptotes, i e k, given 

by (2.76). 



Comments: 

1) The condition (2.74) is similar to that one given by Owens 

[2.15] , except that our condition is expressed directly in terms 

of the map B and C. 

2) TheexpressionsforthematricesF,show that there is a 

nested influence from the faster "subsystems" to the slower ones. 

For example, the first order asymptotes influence all the asymptotes 

of higher orders. This influence has been avoided in the assign-

ment of the asymptotes by making use of suitable automorphisms 

G and H. 

Note that if the transfer matrix G(s) has no infinite-zeros 

of order i, i e k, then B. = C. = 0 and the condition (2.74) is 

not required at i. 	This simply implies Fii  = 0, which 'shows that 

,th 
no asymptotes cif 	0.cucL, are p esenI.. 	We point out this fact 

because Owens [2.16] has shown that the results in [2.8] were not 

valid in case of absence of infinite-zeros of order 	1 < < k. 

3) A decomposition of the spaces U and V has been obtained 

in £2.6]. The decOmPosition is relatelto the way in which the system 

(2.37) responds to the delta functional and its derivatives and it 

has been obtained by applying the techniques of singular value decom- 

position. to the so-called Markov parameters. 

We have seen that the concept of almost controllability sub- 

spaces has led to very simple and natural decompositions described in 

(2.50-1). 	The point we want to make is as follows : geometric 

concepts such as (almost) invariant subspaces provide a clear theoretical 

picture which should be distinguished from theoretical aspects obtained 

129 
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by using a numerical technique such as the singular value decompos- 

ition. 

For single input-single systems we have that [2.26] 

b 	Ab +...+ 
Ak-1 

 6, for some k e n. Ra,K  = 

Hence from (2.46) 

R:,K  = b Ab 	A
k
b. 

In the decomposition 

X= V; 9 RLK  

the maps A, b and c 	admit the following representations 

Mat A = A
00 

A
01 

Mat b = 0 

b
l  A

10 
A
11 ' 

Mat c= [ 0 c
1 

where A
00 

 = Mat Q
v 
 AIV

K 
has as its eigenvalues the transmission 

zeros of the triple Cc,A,b) and 



Mat c = [0 	0 
1 

0
1x(k+1).  
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0 	0. 	. 	. 	0 	x 

1 	0. 	. 	. 	0. 	x 

Mat A
11 = 

0 	0 	. 	1 	
x • (k+1) x (k+1) 

0 
Mat b

1 
= 

0 
• (k+1) >C1 

where 8 = cA
k
b # 0. 

By using Lemma 13.2 in [2.27] it follows that the asymptotes of 

A
11
+gb

1
c
1 and hence (analogously to the analysis of (2.55)) the asym-

ptotes of A+gbc, g co, are given by the roots of 

k+1 
X 	+ 1 = 0 (2.79) 

where obviously, k+1 = n - dim VK. 

Equation (2.79) is a classical one for the root-locus of 

single-input, single-output systems. 	It shows that such systems 

have fixed asymptotes which cannot be altered. 	This is a striking 

contrast with multi-input, multi-output linear systems, where it 

has been shown that there exists freedom to assign all the asymptotes 

of orders coinciding with the infinite-zero orders. 

In the sequel we discuss a property concerning the invariance 

of the asymptotic behaviour under state feedback and output injection 

for an invertible system. 

From Theorem 2.1a we know that the transmission zeros are 
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invariant under state feedback and output injection. In other words, 

* 
the map Q

v
(A+BF+LC) IV

K 
 is fixed for any F : X -+ U and L : 	X. 

A00 in (2.57) is just a representation of this map. 

We have mentioned in Section 1.4 that the subspaces R
u in 
a 

the algorithm (_1.4) are invariant under state feedback and output 

injection and from Theorem 2„.1 we know that the orders of the 

infinite-zeros are also invariant under such transformations. These 

facts imply that under condition (2.74), the asymptotes have their 

orders and magnitudes invariant under state feedback and output 

injection, since the magnitude depend only on a structural partition 

of the maps B and C, which is determined from Ra
. 

Due to the above invariance, it follows that we may obtain 

the asymptotic behaviour of (A-FgBC), g co, from another map 

(A+BF+LC+gBC), for suitable maps F and L. 	This fact has also been 

pointed out in [2.15]. 

Since L. c K, i e{2,3,...,k}, we can proceed as in Section 1.4 
• 1 

and define a map L : V 4.  X so that 

M.
1 
 = 8!1 

 0 (A +LC)B! e...e (A +Lc)i-18!, 1 
E k 

with 

(A
F
+Lc) 13! = 0 
	

i e k . 

As a consequence, the subspace 
„

gets decomposed 
k 	

into 

controllability subspaces Mi, i 6  k, with respect to the pair 

VK 
 

(A+LC,B). 	Also, since R
a,N: 	 K 

0, the map F 	can be chosen 

	

* 	* 
so that AV cV 

	

F K 
	K. 

map (A+BF+LC+gBC) 

Thus (AF+LC)V
K 
 c V

K 
 and for the case k = 3, the 

admits the representation below. 



• 
A
00  

0 

0 

0 

0 

0 

! 
1  
1  

1 
' 

 
0 

- 	1. 
gB1 C

1;  
; 	0 

gB
2  C1 

 ' 0 
1 
! 

0 	;Id  
' 

gB
3
C
1 	

0 

0 	0 

0 	0 

2 

0 

gB
I  C2  

t 
gB2 C

2!  
; 

t 
1 

0 	1  

gB3 C
2:  

0 	' 

0 	'. 0 

0 

0 

0 

0 

0 

d
3 

0 

0 

0 

0 

0 

0 

I
d 3 

0 

gB
1
C
3 

gB
2
C
3 

0 

gB
3
C
3 

0 

0 

Note that the above representation displays only the necessary in-

formation to extract limit properties and it corresponds to the 

extension promised in Section 2.3. 

A nice interpretation for the asymptotes assigned in Section 

2.4 is that the set tyclil , q e di, i E k, in Proposition 2.2, 

corresponds to a set of {id.}, i E k, eigenvalues assigned to the 

controllability subspaces Mi  with respect to the pair (A+LC,B), i.e. 

0L to + BF + LC + BRC) M = 

1 
1, qE d., i e k . -1 

To conclude this section, we would like to point out that 

the analysis of the closed-loop system 

x= 	+ gBC) x, g co 

is equivalent to the analysis of a generalized singularly perturbed system 
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0 d ' 0 	0 	0 
,A00 

Ex 

E( ) = A(e) = 

x 
2 

	

0 1eI 1 
	

0 	0 
d1( ; •  
	a. 	 

0 0 eI
d 

0 
2 

 

	

0 1 	0 	I
d 

ex+B
1  C 
	ex

x
4-13

1
C
2 

ex ex+B
2
C
1: 

0 	ex+B
2C2 

0, 	x 	' x 
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E( )x = ACglx, 

where in the case k = 2 

e 	0 , 	G = 1 
g 

Here d
0 
 = dim V

K 
and the matrices E.(e) and A(E) are obtained 

from (2.73). 	This way of visualizing the closed-loop system may have 

some significance in connection with recent studies of generalized - 

singularly perturbed systems, mainly for the case where condition 

(.2.74) does not hold. 	For a discussion about the case where the 

asymptotes do not have the same orders as the infinite-zeros, see [2.10]. 

11.2.6 An Example  

The following system is taken from an example in [2.15]. 

The example is simple but it serves the purpose of illustrating 

what has been revealed so far. 

Consider the invertible system defined by the triple (C,A,B) 

'0 0 0 1 1 0 

1 0 0 0 - 
C = A 

1 0 1 0 B = 0 0 

-1 1 0 0 0 0 0 1 0 0 

0 0 0 0 0 1 



where 	VK 
=o. 

0 
Tt can be shown that B n K = span = 

81. 0 

0 

1 

The subspace 	84
1 
 is chosen as span' 1 

0 

0 

0 

So 

R = 
a 

81  

R 
	
= K n 	 B 

(A 1+8) 	K n (B1  -1-AS11  
+81 ) a 

where 

AB
1 
= span 

Choose 

—1 

Ab
1 

-= 0 e A81 
	1 
and b' = 0 

1 0 

0 

Hence 

0 

 

0 	0 

R
a 

= span 
0 

=K 

1 

1 	0 

135 

0 

0 



Now, Bu = b'
1
, implies u

1 
 

Define F :
A 1

2 
so that 

BFb= b' 
1 	1 

BFCAb1 
	1 	1 

b') = b' . 

Thus 

0 0 0 1 

0 0 1 0 -1 -1 0 
F = 

{ 

0 1 0 0 0 C 0 

1 0 0 0 • 

  

where the subspace span 0 	1 

1 0 

o o 

o 0 

has been chosen arbitrarily 

as well as the action of 

Hence 

F on this subspace. 

0 0 -1 -1 

F = 0 0 0 

and 

0 0 -1 0 0  

1 0 1 0 0 
A
F 

 
0 0 0 1 

A
F
B
1 
= span 

1 

0 0 0 0 

136 

and 

0 
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2 
F 1 

= span 

 

   

The representation of the maps C, A, B in the basis 

{-b'
l  b1 

 ,A
F  bl 

 ,A
F  bl} ' 	
2 

= 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

-1 

1 

0 

0 

(2.80) 

is given by 

1 0 0 -1 1 1 1 -1 
Mat C = Mat A= 

-1. 0 0 2J  0000 

0 1 0 0 

1 0 1 -1 

  

(2.81) 

Mat B= 

1 

0 	1 

O 0 

O 0 

   

Thus 

 

XT-(A-gBC) = 

	

X-(1-g) ' -1 	-1 	-1+g 

-g 

	

A 	0 	2g 

0 	-1 	A 	0 

-1 	0 	-1 	X+1 
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The characteristic polynomial ACA) of(CA-g3C) is given by 

	

ACM 	= 4 +gA
3
—gX

2 
 +2gX+g2  = (A3+g) (A+g) - gX2 + gA 

Hence 

	

( A ) 	g  g(A
2
-A)  - 'POO. 	 (2.82) 

X
3
+g 

Set A = gt in (2.82) and divide by g. 	Then 

4)(gt) 	gt
2
-t  

= t+1 
g 	23 

gt+1 
• (2.83) 

From (2.83) it follows that 

11/(g
g
t).4. t+1 as g

2  
c,uniformlY for 	< I t I < 	- 

Hence 

It) (A) 	g —>- co 

It follows that A(X) has a first order asymptote in -1 and a 

third order asymptote in -1. 

Note that the term -gA2  does not play any role in the 

determination of the asymptotes. 

Define L so that 

LCb' = -A b' and LCA
2
b = -A 

1 	F 1 	F 1 	F 1 



whence 

0 

L = -1 	1 

0 0 

0 0 

Then the map A + BF +LC in the same basis (2.80) is represented as 

Mat(A+BF+LC)' = 

 

O 0 	0 	0 

O 0 	0 	0 

O 1 	0 	0 

O 0 	1 	0 
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Hence 

A 
	. det(XI-A-BF-LC+gBC) = 	gA3  + 2gX.+ g2  

and we can note that the term -gX
2 

has been eliminoteci. 

The asymptotes can also be determined from the process 

described in Section 2.3. Just note from (2.81) that 

	

1 	-1 

	

-1 	2 

 

B
1
C
1 

B
1
C
3 

B
3
C
1 

B
33 

 

   

It follows that 

Al 	B1C
1 
= -1 

and 

X
3 
= -(B

3
C
3 
- B

3
C
1
(B

1
Ci) 1B

1
C
3
) = -1. 

2  
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To assign the asymptotes consider 

2 1 	I- 
H 

I 1 

so that 
1 0 	0 

HC = 

0 0 0 	0 

[ 	

I Hence the matrix Z = z
1 

0 
 

assigns one first order asymptote in -z1  and one third order 

asymptote in -z
2 

to the closed-loop map (A-gBZHC), g ÷ co. 

APPENDIX  

Lemma A.1: Let L(A) be a matrix polynomial given by 

L(X)=XiI+Xi-1X+...+XX+X. + gX 
1 	i-1 	i+1 

where I is the identity matrix of dimension n, X. are square 

matrices of dimension n, j e{1,2,...,i+1 }, g is a scalar and X
i+1 

is nonsingular. 

Then as g co, all the roots of IL(X)I = 0 go to infinity 

and they tend asymptotically to the roots of IAi r+gX
i+1

I = 0. 

	

Proof: ILCX) I = 0 implies IX1,14.1L(A)1 = 0. 	Hence 

IX-1  L(A)I = IgI + A(X)I 
i+1 

0 	z
2 



where 
i 71 	,i-1 	-1 	 -1 A(A)=X. 	A 	Xi.1.1  xl 	Xi+1  X. 

But, C2.53 

n 
Igi 	A(2)1 = gn  + 	yk gn-k 

k=1 

where yk is the sum of the principal minors of order k of A(A). 

Let (3k , k E n, be the sum of the principal minors of order 
1 	 Xi k of Xi+1. 	Hence, on dividing (Al) by gn  and setting -- = t, IAAL 

itRziAZt ,C4 

1 11)(t,g) 	1 + 	13k tk + 0 —1  k=1 	 7- 
1 

as g -4- 001  uniformly for 0 < -M + Imin 6(Xi+1)1 < It i < 
	max 6(X,1+1  )I+M 

where M is some positive constant. 

Let qh(t) := 1 + kt
k 

and let t be a root of cP(t) of 
k=1 

multiplicity U. 	Then for S > 0 small and fixed, there exists 

g0  > 0 such that 

111.qt,g) - qp(t) I < lq)(t) 

I for all t such that It-t  = 6 and all g > g0. By Rouch4's 

theorem [2.21], IP(t,g) has exactly 6 roots in It-t I < S. 	Let 
* 

t (g) be one of these roots. 	Then 

* 
.= t (g) 
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(Al) 

g 



g 
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satisfies 

11)(- ,g) = 0 

and 
*i 

* 	*1 	IA 	*, 
it (g) - t 	t 	< 6 . 

g 

Thus, in the limit all the roots of 4.)(t,g) approach the 

roots of (1)(t). 	The result follows on noting that 

xi k 
ck(t) = 0 <=> 4)0.1) 	1 + 	a( 	) .0 

k=1 k g 

IgI + AiX
i+1I  = 0 <-> IX

i
I + gX

i+1 
= 0. 

0 

Lemma A.2: Let L(X) be a matrix as in Lemma A.1, where now X. 
1+1 

is an arbitrary square matrix of dimension n. 	Let A be a root 

of IL(.A)I = 0 which goes to infinity as g co. 	Then, there is no 

real number r e (0,i) such that lim 	= a, a 	0, Ct E E. 

Proof: Suppose that there is a 	03  with lim - = a , a # 0, 
g" 

r E (0,i). 

Then 11,(a1 = 0 implies - L(X)I = 0. 	This and lim 
g 	 g+w 

= a imply limlag,g)1 = 0, where 
g+400 

i i-r 	i-1 i-r-1 ..._ 

L(0,,g) .-; a
r 	r 
g 	I+ a r 
	r 

g 	x +...+ g x + x. 
1 	

-1 i 
	1+1 
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i 	r-i 

Since a 
r 
 0 0 and g r 	, we then have 

r-i 	r-i n 

Uinta-  r g  r E(.a,g)1 	lim a  r 	r 

g4c° 
i.:(a,g) = 0. 

Hence 

lim II + A(a,g) I 	0 	 (A2.) 
Vc°  

with 

	

_ 	_ 	_ 1 	1 	2 	2 	r-1 _ 
r 

 
r  

 

	

A(a,g) = a 	g 	X
1 + a 	g  r'x2+—+grx.-" 

r 
Xi4.1  

By the Gerschgo-rintheorem [2.20] , it follows that the eigen-

values of I + A(a,g) are located in one of the discs D., j e n, 

given by 

n 
D. = 	ly-(1+a..)I < X 	Ia. 	j C n 

73 k=1 3k 

k0j 

where k is the jk
th 

a 	
element of A(a,g). 

j 

From the form of A(a,g), it follows that as g 4- CO the centres 

of the discs tend to one while their radii go to zero. Hence 

I + A(a, g) is nonsingular for g 00, which contradicts (A2). 

Therefore — cannot converge to a 0, for r C (0,i). 

0 
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CHAPTER III 

GENERALIZED LINEAR SYSTEMS  

III.1 INTRODUCTION  

Consider a time-invariant system described by 

Ex = Ax + Bu 	 (3.1) 

y = Cx 

where' 

XEX := 2 ; uEU := 2 ; yE 

rank B = m; rank C = r 

and E is a singular map. 

A system described by (3.1) is termed a generalized state 

space system, a singular system, or even a descriptor system, 

[3.13, 3.3] . 	The term "generalized linear system" is adopted here 

to recall that (3.1) is a linear system and it is "generalized" 

by the fact that E is singular. 

It has been suggested in [3.13] that the equation (3.1) can 

be used to describe the behaviour of systems in which a sudden change 

in structure or, parameter values occurs. The reasoning used is as 

follows : let X(t) be the state of a system, not necessarily described 

by (3.1), and let X(t) 	x
0 
 as t -4- 0 . 	Suppose that at t = 0 a switching 



occurs and the system is now modelled by (3.1). 	Then x
0 
 may be 

considered a initial condition for (3.1) which together with u(t) 

will determine its response fot t > 0. 	It is clear that x
0 
 may assume 

any value since nothing has been said about the system structure for 

t< 0. 

It has been shown in [3.8], that when an arbitrary initial 

condition is allowed then the solution of (3.1) belongs to the class of 

distributions and that we should instead consider the equation 

	

= Ax + 6Ex
0 
 + Bu 
	

(3.2) 

y = Cx 

where 5 is the delta functional (see [3.18] , for example). 	It 

can be concluded from the results in [3.13] that with u :=0, the 

solution of (3.2) is a distribution of Bohl type (see Definition 1.3) 

given by 

x = 	x.(5(i)  + X' 	 (3.3) 
i=0 

where X' : t e
Lt 

 x, t > 0. 	Here x,, iEn, and x are vectors and 

L is a matrix. 

In this chapter and in the next one we shall adopt the formul-

ation (3.2), for we are chiefly interested in properties such as 

controllability and observability for the system (3.1) when subject to 

an arbitrary initial condition X(0 ) = x0. 	To facilitate the notation 

and exposition we shall sometimes refer to the system (3.1), which 

should then be understood in the sense of (3.2). 
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Assume that the pencil (sE-A) is regular [3.9, vol II], 

i.e. (sE-A) is invertible over the field of the rationals. 	Then by 

taking the Laplace transform of (3.2), it follows that its unique 

solution, for a given x
0 
 and a given u(t), t > 0, is given by 

x(s) = (sE-A)
-1 

 [Ex
0 	

Bu(s)] 
	

(3.4) 

y(s) = Cx(s) 

where s denotes the complex variable. 

The main features of a generalized linear system are : 

a) The number of zeros of the pencil, which determines the 

free response of (3.2))is given by h := rank E < n. 

b) The transfer matrix of (3.4), G(s) = C(sE-A)
-1

B, consists 

of the sum of a strictly proper rational matrix and a polynomial matrix. 

c) The degree of det(sE-A) := r < h < n, and if r < h, then the 

regular pencil (sE-A) has h-r infinite-zeros which correspond to h-r 

impulsive motions in the free-response. 

The above features of a generalized linear system have been 

discussed by Verghese et. al [3.13] who have also established tests 

for the controllability and observability of the infinite-zeros. 

The tests are then used in a method, based on the Jordan canonical 

form, to extract a controllable and observable subsystem relative 

to the controllable and observable infinite-zeros. 
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One of the aims of this chapter is to present the concepts 

of controllability and observability of the infinite-zeros from a 

am 
geometric point of view. SuchAapproach has then led us to obtain 

necessary and sufficient conditions for the controllability and observa- 

bility of those zeros in terms of the maps E, A, B and C. 	The 

conditions obtained here correct erroneous ones in the literature. 

The geometric language used here also provides an alternative 

way of obtaining a controllable and observable subsystem without 

resorting to a canonical form as in [3.13] and in our opinion it 

gives a clearer picture of the controllable and unobservable infinite-zeros. 

We also give an interpretation for the controllability and 

observability of the finite-zeros which is based on the concept of 

invariant subspaces associated with the pencil (sE-A). For this 

reason and because invariant subspaces play a major role in Chapter IV 

a detailed study of the subject is carried out here. 

A benefit of the geometric approach is that it facilitates 

new resultsin zero placement (we shall refer to zero placement 

instead of pole placement) by state feedback and output feedback. 

In [3.3], a necessary and sufficient condition has been given so that 

the infinite-zeros can be converted into finite ones by state feedback, 

without pre-specification of the resulting finite-zeros. We show here 

in a simple way that suchA
a 
 condition corresponds to the controllability 

of the infinite-zeros. We also obtain the stronger result that 

controllability of the infinite-zeros implies the existence of a state 

feedback map that assigns pre-specified complex values to those zeros. 

This is simply an extension of the celebrated result by Wonham [3.17]. 

It is also shown here that controllability and observability 
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of the infinite-zeros are necessary and sufficient conditions for : 

a) the existence of an output feedback map which converts those 

zeros into finite ones. 

b) the assignment of the infinite-zeros to pre-specified 

complex values via an observer. 

The chapter is organized as follows. 	In Section 2, some 

properties of invariant subspaces associated with the pencil (sE-A) 

are discussed. 	Section 3 describes the concepts of controllability 

and observability of the infinite-zeros from a geometric point of 

view. 	In Section 4, the issue of zero placement by state feedback is 

studied, while Section 5 deals with the assignment of the infinite-

zeros by means of an observer. 

111.2 	INVARIANT SUBSPACES 

In order to obtain invariant subspaces associated with the 

regular pencil (sE-A), we decompose it into two pencils such that one 

of them has only finite-zeros and the other one has infinite-zeros. 

Let cr(E,A) := {Xi} , i e k, denote the set of finite-zeros 

of the pencil (sE-A). 	Write 

k 	ni  
det(sE-A) = 	7 (S-X.) 

i=1 1  
(3.5) 

where 0 0 (1) e 1, X, 0 A. for i 	j and n, is the multiplicity of X,. 
3 



Let a E IG - 0(E,A). 	Then (aE-A) is invertible. 	Define 

n, 

V
s 
:= 9 ker (aE-A)

-1
E a

1
-A. i=1 

(3.6) 

and 

Ulf 	:= ker[ (.LE-A)-1
E] n-r 	

(3.7) 

where 

k 
r = 	,*1a.= degree of det(sE-A). 

i=11  

The following theorem yields the desired decomposition. 	It 

has been obtained by Cobb [3.3] and its proof is based on the theory 

of regular pencils described by Gantmacher [3.9]. 

Theorem 3.1 

1) V
s 

W
f 

= X, dim V
s 
= r 

2) There exists a nonsingular map M : X X such that : 

a) V
s 

and W
f 
are ME and MA-invariant 

b) 	ME1V = I, 	MAIW
f 
= I 

c) J := MEIU is nilpotent. 
k 	n. 

d) L := MAIV
s 
is such that det(sI-L) = it (s-A ) 1 

i=1 

We describe now how the above map M has been obtained by 

Cobb and we shall show later that it can be easily interpreted with 

the help of invariant subspaces. 	Let 
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•,) 

M
1 	
:= 

M2 
:= 

Define 

Mx 

and finally, 

M := 

(aE-A) 
-1 

Ely u I 	
s 

07E-A)
-1  
 E I W f 

M : X 	X as 

m
-11
x 

OM2-I)
-1  , 

MI(.aE-A)-1 	• 

x e V
s 

x  e (U 

(3.8) 

(3.9) 

(3.10) 

Hence, if the pencil (sE-A) is pre-multiplied by M, its 

representation in the basis V
s 

9 (h
f 
is given by 

sI-L 	0 
Mat(sME-MA) = 

	

	 (3.11) 
0 sJ-I 

The representation (3.11) corresponds to the decomposition of 

the pencil (sE-A) into the pencil (sI-L) which has only finite-zeros 

and the pencil (sJ-I) characterized by infinite-zeros only [3.14] . 

Cobb [3.4] has also shown that the subspaces Vs, Wf  and the 

map M are independent of a E IC - G(E,A). 	Consequently, the maps 

L and J are independent of a as well. 

Corollary 3.1  

a) ker J = ker E 

b) ker L = ker A 



c) Wf  n ker E 

d) V
s 

D ker A 

e) rank J= rank E-r 

Proof: 

a) ker E = ker ME= ker MEIV
s 

W
f 
= ker MEIW _f = ker J 

b) ker A = ker MA = ker MAIV
s 
9 W

f 
= ker MAIV

s 
= ker L. 

The items c) and d) follow immediately from the proofs of 

a) and b). 

For the item e) just note that rank J = rank ME - r and 

the result follows- 	 0 

We are now in a position to start the study about invariant 

subspaces. 	Let x = x
s 

x
f 
where x

s 
E Vs and xf e Wf. 	Let X. 

be an eigenvalue of L, or equivalently a finite-zero of (sE-A). 

Then from (3.11) 

 

A.I-L 	0 	x
S 

 
1 

0 	X.
1
J-I 	x

f 

= 0 

  

implies xf  = 0, since J is nilpotent. 

Now let y = a) be an infinite-zero. 	Then 

yi-L 	0 
= 0 

0 yJ-i x 

155 



156 

implies xs  = 0, since 'y1--L is nonsingular and (T-I is singular 

[3.14]. 

This shows that eigenvectors associated with finite-zeros 

are contained in V
s and that eigenvectors corresponding to infinite-

zeros are contained in Wf. 

In fact, the subspace V
s is spanned by the generalized eigen-

vtIctcrs of the map L. A typical chain of k eigenvectors asso-

ciated with a finite-zero X. is given by 

(L-Ainvi  = vi-1, vo  = 0, j e k 

or equivalently by theorem 3.1 

(A-X.E)v. = Ev.
'  v0 

 = 0, j e k . 
3-1   

(3.12) 

(3.13) 

Note that the subspace Vspannedbyv.,j C k is characterized by 

AV c EV 

Based on the above considerations the next definition is very 

natural. 

Definition 3.1: 	A subspace V is said to be (A,E) invariant if 

AV c EV. 

Since the class of the (A,E) invariant subspaces is closed 

under addition then it possesses a supremal given by 

= sup{V1AV c EV} - 	 (3.14) 



It has been shown in [3.1] that for a regular pencil V
0 
 = V

s 

and an algorithm is proposed for the computation of V
0
. Note that 

for a regular pencil V0  n ker E = O. 

From Theorem (3.1) we then have 

LV
s 
c V

s 
<=> MA V . 	MEV

s 
<==> AV

s 
c EV 
	

(3.15) 

It has been shown in [3.14] that to each Jordamblock of 

dimension t in the map J, there corresponds an infinite-zero 

of multiplicity t-1. 	We can therefore associate with such in-

finite-zero a chain of £ eigenvectors given by 

W = 0, 	E jw = w
i-1' 	0 	

(3.16) 

Since w, E f , i e 2, it follows from Theorem 3.1 and (3.16) 

that 

Ew
1 
= 0 

= Aw, 	i 	. 
1 	1- 

Observe that the subspace W spanned by w,, i e t, is 

characterized by 

(3.17) 

EW c AW , 	W n ker E 	0 	 (3.18) 

which leads to the following definition. 
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Definition 3.2; 	A subspace W is said to be (E,A) invariant if 

EW c AW and W n ker E O. 

In Chapter IV we shall define a family of subspaces closely 

related to that described in the above definition. 	It will then 

be possible to obtain Wf  as the limit of a sequence of subspaces. 

From Theorem (3.1) we also obtain that 

r(U c W
f 
 <--=> MEW

f 	
MAW

f 
<=> EW c AW 	. 	(3.19) f 

We can now describe the structure of the map M in Theorem 3.1. 

Proposition 3.1: 

-1 
M x = 

Ex 	X e V 
 

(3.20) 

Ax 	x E W
f 

Proof: We have first to show that EV
s 
9 AtU = X 

Suppose that Ev = Aw, for some v E V
s 
and w e Ulf. 

Theorem 3.1, it follows that 

MEv = MAw <=> v = w 

which is not possible since Vs  n Ulf  = O. 

By Corollary 3.1 c,d we have that 

dim EV
s 

= dim V
s 
and dim AW 	W 

f 
= dim 

f 

and thus EV
s 
9 AW

f = X . 

Then by 
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Now let 

X = V
s 
e W

f 
	 (3.21) 

and let Ex and Ax be represented in the basis 

X = EV
s 
e AW

f 
. 	 (3.22) 

By (.3.15) and (3.16), it follows that in the above bases 

the maps E and A admit the following representations. 

I 	0 
Mat E = 

0 J 
Mat A = 

L 0 

o 
(3.23) 

    

The expression (3.20) follows from (3.22). 

n 

Remark 3.1: We could have obtained (3.20) directly from Theorem 

3.1. 	Just note that 

MEx = x 	
1 

M x = Ex, x e V
s 

and 

MAx = x <==> M lx = Ax, x E W
f 
. 

However, the purpose of Proposition 3.1 has been to show 

that there is no need for the complex number a used in the 

definition of M (see (3.8 - 10)). 	M is just the inverse of a map 

whose columns span EVs  and 220./Vf  (see (3.22)). 



Let 

Q
s 
: X V

s 
be the projection on V along W

f 

and 	 (3.24) 

Q
f 
: X W

f b
e the projection on W

f 
along V . 

Consider the free-system 

EX = Ax . 	 (3.25) 

The pre-multiplication of (3.25) by QsM and by QfM and the 

use of Theorem 3.1a results in the following decomposition 

x
s• 

= Lx 
	

(3.26) 

and 

Jx
f• 
= x

f 
	 (3.27) 

with 

x s = Q 
s
x 	and x

f 
= Q

f
x. 

The dynamical interpretation for a initial condition X (0 - ) e 
-s 

V c V
s' 

where AV c EV is obvious : it implies X(t) E V, t > 0. 

The "dynamical" interpretation for a initial condition 

(0):= x
f0 

e W c Wf, where JW c W is as follows. Consider the equation 

Jx
f 
= x

f 
+ 6Jx

f0 
	• 
	 (3.28) 

It has been shown in [3.13] that the solution for (3.28) is 

the distribution 
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X = - 
q-1 

 61  
._1 

X 	J.  
-f 	

xfo 
i=1 

(3.29) 
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where q is the index of nilpotency of J(.Jcl  = 0). 

From (3.29)., it follows that iff0 e W with JW c (U 

then 1C.f. e W, i e. the distribution also lies in W. 

Note from (3.26) and (.3.27) that the free-response of (3.25) 

subject to an arbitrary initial condition x(0) = xs(0) + xf(0), 

-Xs (0 - ) e V , 
s 

Xf  (0 - 
) e GI f, is given by 

 

X = X + X 
- -s -f 

(3.30) 

with 

X 
s 
 :teN

+ 
e
Lt

X 
s 
 (0) and X-f given by (3.29). 

- 	-  

 

The solution (3.30)represents.the distribution mentioned in 

the introduction of this chapter. 

Cobb [3.5] has obtained some very interesting results concerning 

the solution (3.29) as the limit solution of a singularly perturbed 

system 

Jn 
X
f• 
= X

f 
	, x

f0 
given 
	(3.31) 

where J
n 

J, for integer n and n 00. 

He proves that the limiting solution of (3.31) is unique and 

is given by (3.29). 

This section is closed with a discussion about the eigensubspaces 

which appear in (3.6). 	It can be easily shown that 



n. 
[. 

1 
ker (aE-A) E - 	1 	n1 = ker(A.E-A) 

1 
1 

a-A. 

holds for n. = 1. 
1 

Since V
s 

is independent of a, the above fact makes one wonder 

whether the equality remains for n. > 1. Unfortunately this is not 

true in general. 	The next proposition gives a sufficient condition - 

for the equality to hold with ni  > 1. 

Proposition 3.2: If AE = EA then 

ker (.aE-A) E 	 

[ 

1 
a-A. 
• 1 

n.i  
= ker(X.E-A) 	, n. > 1. 

1 	1 

Proof: 

n. 
. 	 1 
1 ker(X.E-A) n1 = ker (aE-A)((caq1) -1 

	1 
E - 	I) 1  

1 	 a-A. 
1 

It is clear that if (aE-A) and ((4E-A) 1E 	
1 

E 	I) commute, 
a-A. 

I 

then the desired equality holds. It can be shown that if AE = EA, 

then the above maps commute. 

0 

The above proposition shows that although Vs  does not depend 

on a E E- G(E,A), it has in general, to be computed with the help of 

a, which is rather awkward. 	The same thing holds for (Uf. 

We have already identified the structure of the map M, 

eliminating the need of a for its computation. In Chapter IV 
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we shall do the same for the subspaces V
s 
and Wf, by describing 

them as limits of suitable algorithms. Once they are computed, 

the maps L and J can be determined and the finite-zeros can be 

computed as eigenvalues of L. This avoids the computation of 

the finite-zeros as roots of det(sE-A). 

A final remark should be made regarding the regularity 

of the pencil(sE-A). 	It is clear that if (sE-A) is regular then 

ker E n ker A = 0 	 (3.32) 

and 

ImE + ImA = X 	 (3.33) 

A necessary and sufficient condition for the regularity of 

the pencil(sE-A) will be given in Chapter IV. 

111.3 A GEOMETRIC STUDY OF CONTROLLABILITY AND OBSERVABILITY 

Let M be a map as described in Proposition 3.1 (which is 

the same as the one in Theorem 3.1). 	Also consider Q
s 
: X 	V 

 

and Q
f 
: X (V f, the maps described in (3.24). 

Pre-multiplying (3.1) by QsM and QfM, it follows from Theorem 

3.1 that the system (.3.1) is decomposed as 

• 
x
s 

= Lx
s 

+ B u (3.34) 

and 

Jx
f 
= x

f 
+ B

f
u 
	

(3.35) 
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• 

y 	= [C
s 

C
f
][ s  
xf, 

X 

(3.36) 

where 

s 
x 	= Q 

s 
 x and x

f 
 7 Q

f
x 

B
s 
 = Q 

s
MB 	B

f 
= Q

f
MB 

C
s 

= CI Vs -C
f 
= CIW

f 
. 

From (3.34-6) it follows that 

G(s) = C(sPIE - MiT) 1MB = R(s) + D(s) 

where 

R(s) = C
s(sI-L) 1B 

and 

D(s) = C
f
(sJ-I)

-1 
 B
f 
. 

Thus, as pointed out in [3.13], the transfer matrix G(s) 

is decomposed into a sum of a strictly proper matrix R(s) and a poly-

nomial matrix D(s). 

If the control U. belongs to the class of the q-1 differentiable 

functions, where q is the index of nilpotency of J, then the unique 

solution of (3.34) in the class of functions is given by [3.2] 

q-1 
(t) = - / JIB [Lift) 

f i=0 
, t > 0 (3.37) 

It is also shown in [3.2, 3.4] that the solution of (3.1) is 

given by 



X(t) = X
s 
 (t) +(t) 

with X
f 
 (t) given by (3.37) and X

s 
 (t) given by 

(t) = e
Lt 

X (.OT) + f
t 
e
L(t-E)B

!1.1.(E)dE  -s 0 	s (3.38) 

It can be easily seen from (3.37) and (3.38) that the 

reachable subspaces in V
s 

and Ul
f 
are, respectively 

R = <LIB > 

= -<JIBe . 

It is shown next that we may have a situation where R
f 
c W

f 

and yet all the infinite-zeros are controllable. Henceforth control-

ability will mean modal controllability. 

111.3.1 	Infinite-Zeros Controllability  

We shall show that controllability is equivalent to reach- 

ability of certain quotient spaces. 	For this let W
1 

 Ulf be any 

subspace such that 

W
1 	

ker J n ImJ = ker J . 	 (3.39) 

Note that W
1 provides only simple eigenvectors to the map 

J, in the sense that if {w.}, i e t, t := dim W1, is a basis for 
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and 

R
f 
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WI., then JTa. := 0, i 6 t, and there are no generalized eigenvectors 

startingfromld
i
"i E t. In other words, the subspace W

1 
is asso-

ciated with all the simple elementary divisors of J. 

Let (1/ = Wf/Wi  and let P : Wf  (U be the canonical projection. 

Let J be the unique map induced in @ such that JP = PJ. define 

Bf  := B
f
(mod W

1 
 ) : U 

and 	 (3.40) 

Cf  := C
f
(mod W) : 	CW

f 
 /CW 1  . 

Matrix representations for J, B
f 
and C

f 
can be readily 

obtained. 	For this, write 

W
f 
= W1  e W

2 

8f 	B
f 
n W

11. e 82 

CW
f 
= CW

1 
e V

2 

(3.41) 

where W
2'2 

 and V
2 

are any subspaces which yield a. direct sum, res-

pectively, for Wf, Bf  and CWf. 

In the bases provided by the subspaces in (3.41) it follows 

that 

Mat J = 

Mat C
f 

= 

0 J
12 

0 J
22  

Mat B
f 
=  

B
11 	

B
12 

0 	B
22 

(3.42) 

0 	C
22 • 
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In the above representation 

Mat a = J
22 

 , Mat if  = B22, Mat Cf c
22 
 . 

Note from (3.39) that JW
1 
= 0 C W

1 and there is a subspace 

W
2 
such that

2 
a/
2 
and W

1 
 9 W

2 
= W
e The last statement can be 

verified quickly by thinking of the eigenvector chains of J and 

(3.39). 	Thus by Proposition 0.5 in [3.16 ], it follows that the 

elementary divisors of JIW1, with those of J in E), together, give 

all the elementary divisors of J. Hence J is a map which possesses 

all the elementary divisors of order greater than one of J. 

Let W
2 

be a subspace as described above. 	Then, by using 

as basis W
1 

W
2' it follows that in this basis the subsystem (3.35) 

can be represented as 

xf1 = -Bfl
u 	 (3.43) 

and 

J22Xf2 
= x

f2 
+ B

f2
u 	 (3.44) 

where x
f1 

e W
1 
and x

f2 W2. 
	Here. J

22 
and B

f2 
are representations 

of J and 171f- , respectively. 

Note that the subsystem (3.43) is "static", in the sense 

that at each instant t, 	 (t) is a linear combination of the control 

variables a(t). 	So, all the dynamics are concentrated in the sub- 

system (3.44). 

- _ 
Consider the system determined by the pair (J,1). 	Then this 

system is reachable if and only if 
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<JIBf> 	J73f  + 	aq-1 
	

(3.45) 

Test 4.2 in [3.13] describes a necessary and sufficient 

condition for the infinite-zeros to be observable. The dual 

of this test gives a necessary and sufficient condition for 

controllability of the infinite-zeros. The test is described 

in the following. 

Test 3.1: Apply nonsingular transformations on the right of the 

  

pencil (sE-A B) so as to bring it to the form 

(sE
1
-A

1 	
A
2 	

13) 

with E
1 
of full column rank and A = [A

1 
Ate} . 	Then the system 

is controllable at infinity if and only if 

(E
1 	

A
2 	

B) 	 (3.46) 

has full row rank, or 	Im E
1 
 + ImA

2 
+ = X. 

We are now in a position to show the link between (3.45) 

and (3.46). 

Theorem 3.2: 	<,718f> = CU if and only if the system 

- J x
f 
= x

f 
+

f
u 

is controllable (at infinity). 

Proof: It is well known [3.16] that <aliv = W if and only if 
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Ina(A.1-5) 	= W 	, 	111 . 	 (3.47) 

Since J is nilpotent it is clear that (3.47) holds for 

X # O. 	Therefore 

<apf> = 	im a Bf  = W . 	(3.48) 

Applying test 3.1 to the pencil (sJ-I if) and taking J 

in Jordan canonical form it is readily seen that the condition 

(3.46) reduces to (3.48). 

0 

Based on the result of Theorem 3.2, a procedure can be given 

to obtain the controllable subsystem of a system described by (3.35). 

Proce du re 3.1: 

1. Choose any subspace W
1 according to (3.39) and choose 

any subspace (U2  such that W1  e W2  = Wf  

2. Compute the subsystem induced in W2(see (3.42)). 

3. Compute the least J
22
-invariant subspace W

c 
which contains 

822' 
i.e., W

e 
= <J

22
18
22

> . 	Taking W
c as part of a basis for 

W2, the following representation is then obtained. 

J
11 	

J
12 

 

Mat J
22 

= 

e 	\ 

1 
(3.49) 

0 

Mat 
B22 

= 

0 	J
22 
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so that the subsystem 

A 
J 	x. = X 
22 2 2 

is uncontrollable and the subsystem 

A 
J
11 

k
1 
= X +B

1
u (3.50) 

is controllable. 

Remark 3.2 

1) According to (3.39) there are many subspaces Wi  which can 

complement ker J n ImJ. Therefore, controllability of the 

infinite-zeros is associated with reachability of any quotient space 

defined according to the choice of Wi. 

2) Procedure 3.1 described above is not based on the Jordan 

canonical form as in [3.13] and it is an alternative way to obtain 

a controllable subsystem. 

3) In general, the subspace W
e 
= <J

22
1B
22

> does not decompose 

W2, i.e. the union of the elementary divisors of JII  and J22  in (3.49) 

does not yield the set of the elementary divisors of J22. 	Consequently, 

although J
22 has only elementary divisors of order > 2, it is possible 

that aii   has some simple elementary divisors (order one). 	This 

follows from Lemma 1 in [3. 6]. 	If this is the case, the controllable 

subsystem (3.50) will have some static variables which are induced 

by the process of extraction of the uncontrollable subsystem. 
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The ensuing theorem provides a test for controllability 

of the infinite-zeros in terms of the maps A, E and B. 

Theorem 3.3: 	The infinite-zeros of system (3.1) are controllable 

if and only if 

ImE + A ker E + = X 	 (3.51) 

Proof: Let W
1 
be a subspace as in (3.39) and consider the canonical 

projection P : W W/Wi  = W. Let J and B
f 
be the maps induced by 

J and B
f 
in W (see (3.40)). 

Consider a subspace W2  c W
f 
such that W

1 
9 6)

2 
= W

f 
and 

JO
2 
 c 6)2. 	The representations for a and Bf 	by J22  are given and 

B
22 

in (3.42). 	Note that since JW2 
 c W

2' 
 then J

12 
 = 0 in (3.42). 

The space X is now decomposed as 

X .V eW $W 
s 	1 	2 

(3.52) 

Let M be a map as in Theorem 3.1. 	Hence, since 

ImE = EX and W1  c ker J = ker E c Wf, it follows that pre-multiplication 

of (3.51) by M results in 

A 

ME(V
s 
 9 W2) + MA ker E + MB. 

From Theorem 3.1, (3.39) and (3.42) the above expression is 

equal to 

Vs 	
ImJ

22 
+ (W

1 
 9 ker J n ImJ) + ImB

22 
	(3.53) 



But ker .J n ImJ = ker J
22 

and since J
22 

is nilpotent it 

follows that ker J
22 

c Im  J22. 
 

From (3.52), it follows that (3.53) can be rewritten as 

Vs 
 e 01

1 	
(Im J

22 
+ Im B

22
) . 

Hence 

M(ImE + A ker E 8) =X 

A 

if and only if Im J
22 

+ Im B
22 

= W
2
, or by (3.48) if and only if 

the infinite-zeros are controllable. 

0 

Remark 3.3; 

1). 	Corollary 4.1 of Chapter IV shows that the regular pencil 

(.:31-1) has no static variables if and only if A ker E C ImE. 

In this case condition (3.51) reduces to 

ImE + = X = <JI$f> ® vs 	 (3.54) 

which is the condition given by Rosenbrock [3.11] and Cobb [3.3]. 

This shows that their condition is correct if no static 

variables are present. 
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2) From (3.51) and Theorem (3.1) it follows that 



ImJ + ker J B = W 
f 	.f 

(3.55) 

173 

Thus, conditions (3.48), (3.51) and (3.55) are equivalent 

necessary and sufficient conditions for controllability of the infinite- 

zeros. 

It is possible to give a characterization of the reachable 

subspace in terms of (E,A) invariant subspaces for the case Wf  = 

i.e. the map J in (3.35) has all elementary divisors of order 

greater than one (no static variables). 

Proposition 3.3: If the map J has all elementary divisors of order 

greater than one, then the reachable subspace associated with the 

controllable infinite-zeros is the least subspace Wc  c Ulf  such that 

EWCAWarICIP0,1,1-EV 	. 
c 	c 

Proof: By hypothesis, the subspace Wi  = 0 in procedure 3.1. 	Hence, 

by (3.45) the reachable subspace We  is the least J-invariant subspace 

W
c 
which contain Bf' i.e. 

and 

c W 	 (3.56) 
c 	c 

W
c 
D Q

f 
 MB . 	 (3.57) 

But (3.56) is equivalent to E0) c AWc  and (3.57) implies by 

Theorem 3.1 

mB c Q
f 
mAW

c 	
B c (Qf

M)-1Q f
MAW = AUIc  M 1V . 
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But by (3.20) M
1
V
s 
= EV

s 
and the result follows. 

0 

111.3.2 	InfiniteZezos Observability• 

Consider the system 

Jx
f 
= x

f 
+ cSJ)4(0 ) 
	

(3.58) 

Y = C
f 
x
f 

Write W
f 
= W

1 
9

2 
where W

1 
is as in (3.39) and (1)

2 
is such 

that JW2  

represented 

c W2. 

as 

0 	0 

0 	J22 

y = [C
fl 

Then 

xf1 

xf2  

C
f2
]  

in the 

xf1 
 

x
f2 

xfi  

xf2 

basis 

[

1. 

W
1 
9

2 the above system can be 

0 

[ d LI
22 xf2f 	

(0) 

Hence xf1 = 0 and y = Cf2  xf2. 	That is, the variables x
f1 

are nondynamic (there are no impulsive motions in W) and the infinite- 

zero observability is then related to CT/ and to the pair (C
f2'

J) induced 

in W. 

The system (3.58) is said to be observable if there are 

no impulsive motions in E,  which are simultaneously in ker Cf2 

This is a simple extension of the observability of finite-zeros. 

Theorem 3.4: 	<ker Cf1J> = 0 if and only if the system (3.52) is 

observable (at infinity). 



Proof: 	Identical to the proof of Theorem 3.2, on considering the 

-T T 
pair 	

) 
0' C 1'2 

and test (4.2) in [3.13] • 

0 

Theorem 3.3 leads to a procedure to obtain an observable 

system from (3.58). 

Procedure 3.2: 	The first two steps are identical to those in Procedure 

3.1. 	The third one can be described as follows : compute the 

largest J22-invariant subspace Wu  contained in ker F2
, W

u 
= 

= <ker C
+2IJ22>- 

By taking Wu  as part of a basis for W2
, the 

following representation is then obtained 

J
11 -12 
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Mat J
22 

=  
0 	J

22 

Mat C = [ 0 22 ] 

so that the subsystem 

A  

j222  = 22 	6'722 1C2(0  ) 
^ 

y = C
22 

X
2 

is observable and the subsystem 

J
11 

21 
= 21 + 11 R-i (0) 
	

(3.59) 

is unobservable. 

It should be noted that the unobservable impulsive motions 
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in (3.58) will in general consists of delta functionals and their 

derivatives. This is emphasized here because the definition of 

unobservable impulsive motions in [3.13] seems to indicate that they 

consist only of delta functionals. 	This is so because the 

definition in [3.13] is based on a Jordan canonical form which does 

not occur here. 

The following theorem shoes how observability of the 

infinite-zeros can be tested directly from the maps E,A and C. 

Its proof follows from Theorem 3.4 and the result is a simple dual-

ization of (3.51). 

Theorem 3.5: The infinite-zeros of the system (3.1) are observable 

if and only if 

ker E n A
1
(InE) n ker C= 0 	 (3.60) 

0 

Remark 3.4: Proposition 4.2 in Chapter IV shows that the subspace 

ker E n A 
1 
 (Im E) is the subspace of ker E responsible for the 

generation of the infinite-zeros in the pencil (sE-A). 	It is also 

shown in Corollary 4.2 of Chapter IV that a regular pencil (sE-A) 

has no infinite-zeros if and only if ker E n A 
1 
 (imE) = 0. 

When the regular pencil has no static valuables, i.e. 

A ker E C ImE, then (3.60) reduces to 

ker E n ker C = 0 	 (3.61) 

The dual of Proposition 3.3 gives the unobservable subspace 



in terms of an (E,A) invariant subspace. 

	

Proposition 3.4: 	If the map J has all elementary divisors of 

order greater than one, then the unobservable subspace associated 

with those unobservable infinite-zeros is the largest subspace 

W
u 

Wf   such that 

EW c AW 	and W c ker C. 
u 	u 	u  

Proof: Analogous to the proof of Proposition 3.3, by using Theorem 3.4. 

0 

It should be emphasized that only under the hypothesis of 

Proposition 3.3 (3.4) there is a unique correspondence between 

controllable (unobservable) infinite-zeros and a reachable (unobser- 

	

vable) subspace. 	If J has at least one simple elementary divisor, 

then there are many reachable (unobservable) subspaces associated 

with those controllable (unobservable) infinite-zeros. 

To conclude this section, a characterization in terms of 

(A,E) invariant subspaces is given for the reachable and unobservable 

subspaces relative to the system (3.34). 

Proposition 3.5: 

a) 	The reachable subspace of the system (3.34) is the least 

subspace V
c 
c V

s 
such that 

AV
c 
CEV

c 
and EV

c 
+ AW

f 
0 13 
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b) 	The unobservable subspace of the system (3.34) is the largest 
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subspace Vu  c V
s such that 

AV
u 
c EV

u 
and V

u 
ker C 

Proof: Analogous to the proof of Proposition 3.3. 

0 
Note that when V

s 
= X , W

f = 0 and E = I, then a) and b) 

simply give the reachable and unobservable subspaces for the 

system x = Ax + Bu; y = Cx. 

111.4 ZERO ASSIGNMENT BY STATE FEEDBACK  

This section will deal with the issue, of zero placement by 

state feedback. 	It is a tradition in the control literature to 

term pole placement instead of zero placement. 	The reason for this 

is that when the systems (3.34) and (3.35) are controllable then the 

zero structure of the pencils (sI-L) and (sJ-I) is isomorphic to 

the pole structure of R(s) = C
s(sI-L)

-1
B
s and D(s) = Cf(sJ-I)

-1
Bf, 

respectively [3.12, 3.15] . 	Thus the matrix D(s) is polynomial and 

has all its poles at infinity. 

We prefer the term "zero placement!' , because we shall be 

dealing all the time with the pencil (sE -(A+BF)) resulting from a 

state feedback map F and it is the zero structure of such trans-

formed pencil which determines the dynamical response of the system 

Ex 	= (A+BF) x 
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The first theorem of this section is concerned with a 

necessary and sufficient condition to bring all the infinite-zeros 

to finite positions of the complex plane without pre-specification 

of those positions. 	Cobb [3.3] has shown that such a condition 

is given by (3.55) but he has not recognized that it corresponds to 

the controllability of the infinite-zeros. 	Our proof parallels his 

proof but it contains some modifications to take into account the 

concept of controllability developed here and in [3.13]. 

Consider the system (.3.35) and the state feedback law u = Fxf. 

The pencil associated with the closed-loop system is then given by 

(sJ-I-B F). 

As mentioned in the introduction of this chapter, the number 

of zeros of the regular pencil (sE-A) is h = rank E. 	Since the 

pencil (sI-L) in (3.11) has r finite-zeros, it follows that the 

pencil (sJ-I) has y := h-r infinite-zeros. 	Therefore, the maximum 

degree of det(sJ-I-B
f
F), VF : Wf U is given by y = rank J(see 

Corollary 3.1e). 

Let W1 be a subspace as in (3.39), t := dim W 1 and let 

0 = WW1  be the associated quotient space. Let J and Bf be the 

induced maps by J and B
f 
in W. 	Clearly rank J = y. 

Theorem 3.6: 	There exists a map F : Wf  U such that deg(sJ-I-BfF) 

if and only if Ima + 8f. = CO. 

Proof: We restrict ourselves to an example, where dim J = 5. 	The 

general case only causes complication of notation and does not yield 

more insight. 

Recall that all elementary divisors of J are greater than one. 
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Thus, in our example they must be s
3 
and s2. 

Let W
2 
 be any subspace such that G11  9 W2  = Wf 	Choose 

'  

a basis{e11, e12, e13
; e21, 

e22} 
 for W

2 
such that in this basis 

J
22 

= mat J displays two Jordan blocks, one of dimension three and 

the other one of dimension two. 

Let F : 	U be an arbitrary map and in the above basis write 

Mat(I4V) = I B
22 

F
2 
= hi] , i , j e 5- _ 

Note that 

Im 
 j22 = span{e11, e12, e21} 

 

ker J22  = spanfel  , e21} 

Let T := spanfe13' e22} 	In fact T is the span of two 

2 
any cyclic subspaces associated with s

3 
and s 

page 200]. 

of J [3.9, 	vol I, 

Hence 

h
11 

h
12
-s  h

13 
h
14 

h
15 

h
21 

h
22 

h
23
-s  h

24 
h
25 

I+B22F2-sJ22 = h
31 

h
32 

h
33 

h
34 

h
35 

h
41 

h
42 

h
43 

h
44 

h
45

-s  

h
51 

h
52 

h
53 

h
54 

h
55 



It can be seen by Laplace expansion that in order for 

deg det(1+B22F2 -sj22) = rank J22  = rank J = y, the following con- 

dition must hold 

det 

Let 

is equivalent 

is invertible. 

Qt(I 

Q
t
(I+B

22
F
2
)1ker 

h
31 	

h
34 

h
51 	

h
54 

Q
t 
be the projection 

+ B
22 

F
2
)1ker 

Now 

to the requirement 

0 0 

on 	T 	along 
im 

 J22. 
	

Then 

that the map 

J
22 

J
22 

= Q
t
B
22
F
2
Iker J

22 

(3.62) 

(3.62) 

(3.63) 

(3.64) 

since Im J22 	ker J22. 

Let F2  = F21ker J22. 	A map F2  exists such that Qt  B22  F2  

is invertible if and only if 

Im Q
t 
B
22 

= Q
t 
Im B

22 
= T 

which is equivalent to 

Im J
22 

+ Im B
22 =G  2 

From (3.66) it follows that 

(3.65) 

(3.66) 
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Im a f = 	. 

If (_3.66) holds, choose a suitable F
2 which renders (3.63) 

invertible. 	From the representation (3.42) define 	F 	according to 

the partitioning of Mat Bf, i.e. 

0 0 )- 
F = 

0 F
2 

Note that FI(U1 
 
= 0. Hence 

I B
12
F
2
-sJ

12 
mat(i+B

f
F-sJ) = 

0 I+B
22
F
2
-sJ

22 

and 

deg det(I+BfF-sJ) = y 	 0 

Remark 3.5: 	Note that expression (.3.65) is equivalent to the require- 

mentthattherowsof. B22 corresponding to the last position of each 

Jordan block are linearly independent. This is simply the controll-

ability test based on the Jordan form described in [3.13]. 

The next theorem shows that controllability does not only 

imply that the infinite-zeros can be moved as stated in Theorem 3.6. 

Controllability of the infinite-zeros is in fact equivalent to the 

assignment of those zeros to pre-specified values in the complex 

plane by a suitable state feedback map. 

Let
f 

= {X
f
} , i Y be an arbitrary symmetric set of 



J
11 

J
22 

PP 

y complex numbers. 

Theorem 3.7: <Jig? = if and only if there exists a map 

  

F : W
f 

U such that the set of roots of det(sJ-I-B fF) e  0 is A
f
. 

Proof: 

Let W
1 
be again a subspace as in (3.39) and consider any 

subspace (U2  such that Wi  9 W2  = (Ui. Let J
22 

and B
22 

be representations 

of J and gf
, according to (3.42). 	Since 

<j221Im B22>  = W2, the  

basis constructed by Wonham [3.16] can be used so that J
22 

and B
22 

are represented as 

d 

183 

b
11 
	 b

1p 

b
22 

. . . b
2p : 

• 

Mat J
22 

=  Mat B
22 

= 
:822  

PP 

(3.67) 

where J.. is cyclic with minimal polynomial equal to et., the i th 

invariant polynomial of J. 	Since J is nilpotent, (i.e. has all 

eigenvalues = 0) it follows that a. = s 1, for some Z., with 

£ 	> 
1— 

> 
2— 

...> 
— 

. 
p 

It is also shown in [3.16] that the pair (Jizbii) is con- 

trollable. 	ThuswemayassumethatJ_and b..are represented as 



F = 
0 F 

2 1 

0 0 
(3.69) 

fT 
1 

f2  

0 	1 	0 	. • 0 

. . . 0  
0 

0 
• 

• 
	 0 1 

o 	. . . . o 
xt 1 1 
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J = 
ii b = 

11 

The submatrix 13
22 plays no role in the present analysis. 

Define F : W
f 

-)" U as 

where the partitioning follows that one of Bf  in (3.42) and F2  is 

given by 

f
T 

p 

fi 	Efi ,
T 

1 

(3.70) 

d 

i e p 

F
2 
= 

with 

From (3.42) and (3.69), it follows that 

B
12
F
2
-sJ

12 
Mat(I+B

f
F-sJ) =  

0 	I+B F -sJ 
22 2 • 22' 

(3.71) 



From (3.67), (3.68) and (_3.70) it follows that I + B
22 F 2 - 

- sJ
22 

is upper triangular with matrices P(s)fiEP in its diagonal 

given by 

1 	-s 	0 . . 0 

0 	1 	-s . . 0 

185 

i ep 

0 -s 

f
i1 

f
i2 	

f. 
1 

It can be readily seen that the expansion by the last row 

of P.(s) yields 
1 

p.1
(s) := det P.(s) = f st. 

	
f
i2

s-2 
i 	+...+ fit

i 

whence 

det(I+BrF-sJ) = ii pi(s) 
i=1  

It is clear that the zeros of p
i
(s) can be assigned to A

f 

by a suitable choice of the vector f.. 
1 

<—) 	Assume that <al8 > is a proper subspace of (1). 	This implies 

_ - 
that Im J + B

f 
is a proper subspace of 	which in turn imply by 

Theorem 3.6 that there is no F such that deg det(sJ-I-BfF) = y, 

which contradicts the hypothesis. 

Remark 3.6: As mentioned in Section 2, to each matrix J.. there 
11 

corresponds an infinite-zero of order Zi-1. 	The above theorem 

P. ) = 1 
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thusshowsthateacbthfinite-zeroisconvertedintot.-1 finite--- 1 

zeros, which are the roots of pi(s). 

We describe now a procedure of zero placement including the 

assignment of the finite and infinite-zeros. Such a procedure is 

similar to the one in [3.3], but we include the result of Theorem 

3.7 and some new interpretations. 

Let u = Fx + v where v is an external variable and F is 

defined by 

FIVs = 0 

and 

FIW
f 
= F 

where F is given by Theorem 3.7. 

It follows that 

sI-L 	-B F 
Mat M(sE-A-BF) = 

s 
 

(3.72) 

(3.73) 
0 	sJ -I -B

f
F 

The expression (3.73) shows that the pencil has now 

h = rank E finite-zeros which are given by G(E,A) u Af. 

Let A
f 
be such that 

a(E,A) n A f = 0. 	 (3.74) 

Let a E 	6(E,A) u Af  and define 

6 
V = 	ker (.cE-A-BF)

-1 
 E 	

1 
 

i=1 	a-Xf
i 

In 

 

  

(3.75) 

   



d 
where m. is the multiplicity of X e A

f
, 	m, = y = rank E-r. f

i  i=1 

From (3.72), it follows that 

(A+BF)V
s 
= AV

s 
 EV 

 (3.76) 

so V
s is also ((A+B;),E) invariant and by Theorem 5 in [3.3] we 

have 

e 	ker 
i=1 

-1
1E 1  

n. 

= V
s 	

(3.77) 0 	-A-BF) 	E - 	I 
a- X . 

From 	(3.75) 	and 	(3.77) it follows that 

Vs .r1 	= 0 

with 

dim(V
s 
9 O)  = rank E . (3.78) 

From (3.77) and by the fact that the pencil (3.73) is regular 

it follows that the space X is decomposed as 

X= V
s 

9 i) 9 	 ker E 	 (3.78a) 

Define the new map M : 	X from its inverse 

^ -1 
M x = 

Ex x e V
s 
e 

   

(A+BF)x , x e ker E 

From (3.76) and (3.77) it is clear that 

'N1(A+BF)1,V = MAIV
s 
= L. 
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Thus the closed-loop system 

• ̂ MEx = M(A+BF)x MBv 

can be 

X 

x
2 

0 

decomposed as 

L 	0 

0 	0 

0 

x1  

x2 

x
3 • 

1 

B
2 

B 
3 

(3.79) 

with x
1 	

V
s
, x

2 
E V , x

3 
E ker E 

L := MJA+BF) I V a(I) = Af  

B
2 A 

B
1  
= Qs MB = -Q )MB 

3 

where Q
s 

is the projection on V
s 
along V@ ker E. 

It has been shown in [3.11, 3.12] that a finite-zero 

A. E o(E,A) is controllable if and only if 

Im(A_E-A) 	= X 
1 

Since 

 

(3.80) 

Im(X.E-A-BF) +13 = Im(X,E-A) + B, 1 	1 
VF : X 

 

it follows that state feedback does not alter the controllability 

property. 

It can now be easily shown that the set a(E,A), which 
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coincides with the set of eigenvalues of L, is controllable if and 

only if 

Im 
1 	1 

= V
s 
	 (3.81) 

or equivalently 

<LIB
1
> = V

s 
. 

If (.3.81) holds define a map F : X 	U 

VIV 9 ker E = 0 

and 	 (3.82) 

U
s 

= g'
1 

where F
1 
is such that G(L+B

1
F
1
) = As and As is a set of pre-specified 

symmetric complex numbers. 

The advantage of having (3.74) satisfied is that the subspace 

V
s 
and the map L are preserved and then a suitable map F , as in 

(3.82), can be defined so as not to alter the zeros already assigned 
A 

(the eigenvalues of L) and so as to assign the eigenvalues of 

L + B
1 
F
1 
to As. 

The following assignment procedure can be established: 

Procedure 3.3: 

1) 	Compute the decomposition of Theorem 3.1 and obtain the systems 

(3.34) and (3.35). 	(In Chapter IV we suggest an alternative way to 

obtain the same decomposition). 
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2) Assign the zeros to the system (3.35) according to Theorem 3.7. 

3) Compute M and B
1
. 	Assign t.he zeros to the system 

x = Lx + B 
1
u. 

We proceed with an interesting and amusing study of the form 

of closed-loop eigenvalues in systems described by (3.35). 	We shall 

see that such a form reflects once more the symmetry between systems 

described by (3.34) and (3.35) which had already shown up through the 

concepts of (A,E) and (E,A) invariant subspaces. 

Suppose that a feedback map F : W
f 

U has been defined. according 

to - Theorem 3.7 and that X 0 isa finite-zero of multiplicity one 

obtained by means of this feedback map. 

to 
Let w be the closed-loop eigenvector correspondingAthe 

finite-zero X. 	Then it satisfies 

(I + Bf  F)w = xJw 

which implies 

w e (XJ-I)-1 f 

or 

W E
f 
+ X JB +...+ 

f 
-1 

(3.83) 

Since the map F in Theorem 3.7 has been chosen so that 

the pencil (sJ-I-EfF) is regular, it follows w A ker J = ker E 



Consider a single-input system 

f 
= x

f 
 b
f 
u 

where J and b
f 
are the maps induced by J and b

f 
in @ = W

f
/W

1 

and W
1 
is a subspace as in (3.39). 

If the system is controllable, then by Theorem 3.2 <JILf> = (7,./ 

and thus J is cyclic with b
f 

a cyclic generator. 	Hence J and 

b
f 
admit the following representations 

Mat J = 

0 

0 

0 

1 

0 

0 

0 

1 

0 0 0 

1 

0 

Mat b
f 
= 

kxk 

0 

0 

0 

0 

1 
kx1 

... 	(3.84) 

since J is nilpotent. 	Here k = n-r-t, with t = dim W
1
. 

From (3.83) and (3.84) 

• xk -1 

We IM • and w 	ker E (3.85) 

A 

1 

For purpose of illustration suppose that dim L = k in (3.34) 

191 
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and that the pair (L, bs) is controllable. 	Take L in companion 

form. 	Then any closed-loop eigenvector v with associated closed-

loop eigenvalue Cti 0 of multiplicity one is such that 

1 

a 

and v 	ker A . 	(3.86) 

k -1 

The symmetry between (3.85) and (3.86) is obvious. 

We now turn our attention for an extension of a result in 

[3.10] concerning simultaneous zero (in our terminology) and 

eigenvector assignment by state feedback. 

Proposition 3.6: Consider a controllable generalized linear system 

given by (3.1). 	Let {A.}  , i E h, h = rank E, be any set of 

(finite) h distinct complex numbers. 	Let {v.}, i e h, be 

* 
nonzero vectors such that v. EXifX.isreadanciv.=1,7.if 

1 - 	1 	i 3 * 
A. --. A,. 	LetV:=spari{17,} be such that V n ker E = 0. Then a. 	3 	1 

there exists a map F : X U such that (A+BF)vi  = A. Ev, and the 
1 1 

pencil (sE-A-BF) is regular if and only if 

i) the v., i G h, are linearly independent 

ii) v
i "(A. = 	

. 
1 

V E Ira 
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Proof: Conditions i) and ii) are the generalizations of Proposition 1 

in E3.10] obtained by replacing (A, I-A) by (A
i 
E-A). The require- 

ment V n ker E = 0 follows from the regularity of any pencil. 	Modal 

controllability is necessary and sufficient for the assignment of 

all zeros (finite and infinite). 

As in [3.10] associate with each number A e E the matrix 

P
X 
= [AE - A: -B] 

From (3.80) it follows that rank P = n for any finite X. 

N
x 

R
X  

Let 

QX = 

• 

be a compatible partitioned matrix whose columns span ker Px. 

It can he shown that rank B = m implies that the columns of N, 
A 

 linearly independent. 

From 

(A.+BF)v.=A. Ey, 
1 1 1 

h (3.87) 

it follows that 

v. 
EX. E-A):-B] 

Fv, 
1 

Since the columns of Q
A 

form a basis for ker P
A 
 , it follows 

= 0 
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that v E span NA.  = X, 
A.. 

1 	1 

From (3.87) and the fact that the pencil (sE-A7BF) is regular 

it follows that 

(tIE-A-BF) -1 Ev. = 1 	v. 
a—A. 1 

i e h (3.88) 

(a-A.) whenever A. 	A , , (3.88) 1 	1 

implies that the v., i E h, must be linearly.  .independent. 

<----) 	Sincev.1  EX(Ai
) = span NA 

	
i E h,thenthevcan be 

i 1 
expressedasv.

1 
 =Nx ki forsomek.which is unique. 	Hence i 	

1 

(A.E-A)N
Ai 

k
i 
- B R

X
k
i 

= 0 
1 

1 

and define F
0 
: V -* U by 

F
0 

v
i 
= -R

A
, k 

, 	i 
1 

E h . 

It remains to define a suitable extension to F
0 
 such 

that the pencil (sE-A-BF) is regular. 

Since dimV = h, dim ker E = n-h and V n ker E = 0, it follows 

that 

V 	ker E = X . 	 (3.89) 

Also note that 



I 	0 
Mat E = 

0 	0 
Mat A+BF = 

A
11 	

A
12 

0 
	

A
22 

EV = ELY 9 ker E) = EX = lIA E. 

Let x E X be represented in (3.89) and consider any extension 

	

F : X -* U to F
0. 
	Let Ex and (A+BF)x be represented in the basis 

	

EV ED X 
	

(3.90) 

where X is any subspace of dimension n-h which complements Im E. 

In the basis (.3.89) and (.3.90) the maps E and A+BF can 

be represented as 

195 

where dim 	= 	and (1(1111)- 
	i eh. 

It is clear that the pencil (sE-A-BF) is regular if and only 

if A
22 

is nonsingular. 

Consider Qiz, the natural projection on X along EV = Im E. 

Then A
22 

nonsingular is equivalent to the nonsingularity of 

QA(A+BF) Iker E . 

Now 

42 (̂A+BF)Iker E = Q.. Alker E + Q, BF 
x 1 

with F
1 
 = Flker E. 

There exists a map F : ker E U such that (3.91) is 
1 

(3.91) 
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nonsingular if and only if the zero eigenvalues of 12,, Alker E 

are controllable by Q1  B, i.e. 

Q,.(A ker E + 13) = X . 	 (3.92) 

Since the system (3.1) has no uncontrollable infinite-zeros, 

it follows from Theorem 3.3 that 

Im E + A ker E + B = X 

which then implies (3.92). 	Therefore, an appropriate Fi  can be 

chosen so as to make (3.91) nonsingular. 	Finally define 

F : X U by 

F1V = F0 
 

and 

Flker E = F1. 

The definition of a real map F in case conjugate complex 

numbers are assigned, can be handled in the same way as that in 

[3.10] . 	 0 

The above proposition constitutes an alternative way of 

zero assignement to that one described in Procedure 3.3. 	All 

the zeros are assigned together with their eigenvectors and no 

decomposition or special basis (as in Theorem 3.7) are necessary. 



111.5 ZERO ASSIGNMENT VIA OBSERVERS 

This section is concerned with zero assignment via an 

observer in systems described by 

= x
f 

+ B
f
u 
	

(3.93) 

y
f 
= C

f 
x
f 
. 

We start the section by showing an expected result, namely, 

that the infinite-zeros can be brought to finite-positions of the 

complex plane by output feedback if and only if they are controll- 

able and observable through 

Theorem 3.8: There exists a map K : V÷U such that deg 
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det(sJ-I-BfKCf) = Y 
	

only if the system (3.93) is controllable 

and the pair (C,y2,J20) is observable. 

Proof: The proof follows the same lines as those of Theorem 3.6 

up to the expression (3.64) where now it is required that the map 

Qt B22  K2 
 C22Iker J

22 
	 (3.94) 

is invertible for some K2, where B
22 

and C
22 
 are as in (3.42). 

Since the pairs
(j22,  B

22) and (C22, J22) are controllable and 

observable, respectively, then 

i)Im Qt  B22  = T (as in 3.65)), which is the controllability 

condition and 

ii) 	ker C
22 

n ker J
22 

= 0 
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Or 

ker
f 

n ker d o 

which is an observability condition derived from Theorem 3.4. 

On the other hand, if i) and ii) above hold then the pairs 

(0,2t B22)and(c2211(er. j22,0) are controllable and observable at 

the mode X = 0. 	It then follows by Lemma 3 in [3.7) that there exists 
K
2 
 so that (3.94) is nonsingular and hence define K : V÷11 by 

0 	0 
K = 

o K
2 

where the partitioning accords with that one of Bf  and Cf  in (3.42). 

Thus 

Mat(I+B
f 
K C

f
-sJ) = 

I 	
B12K2C22-sj12 

0 	B
22 

K
2 
C
22

-sJ
22 

 

and the result follows. 	
U 

*Remark 3.7 (see page 204). 
In the following we shall construct an observer for the 

system (3.93). 	We shall show that the new system formed by the 

combination of (3.93) and the observer has zeros freely assignable 

if and only if (3.93) is controllable and observable. 

Consider the following observer 

• Jz = 	- Ky
f 

+ B
f
u 

with N := I + KC
f' 
 , for some K : V 	Z . 

Consider a control law 

(3.95) 
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u = Fz 	 (3.96) 

for some F ; Z U , and define the error between x
f 
and z by 

e = x
f 
- z 	 (3.97) 

From (3.93) and (3.95-7), it follows that 

Jx
f 
= (I+B

f
F)x

f 
- B

f
Fe 	 (3.98) 

and 

 

Je = (I + KC
f

)e (3.99) 

or in matrix form 

 

 

J 	0 1 xf   . I+BfF 	-BfF 	xf  

0 J e 	0 	I+KC
f 

e 

 

  

 

(3.100) 

  

It is clear that the zeros of (3.100) can be assigned by 

suitable choice of F and K if and only if the system (3.93) is 

controllable and observable. 	The zero assignment to (3.99) 

can be accomplished by a dual procedure to the one shown in the 

proof of Theorem 3.7. 

Note that observability is equivalent to the -fact that the 

observer (3.95) can be constructed with pre-specified finite-zeros. 

Assume that the system (3.93) is observable and let the 

zeros associated with (3.99) be assigned to -If: Decompose (3.99) 

as in Theorem 3.1. 	Hence 

e
l 

= L
e 
e
l 
	 (3. 101) 

e
2 
 = 0 	, e

2 
e ker E 
	

(3.102) 
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where L
e 
is a map such that aa,

e
) c 

Equation (3.101)shows that the error between the dynamic 

variables of (.3.98) and the dynamic variables of (3.95) goes to 

zero as t 00. 	Equation (3.102)shows that the observer gives 

at each t > 0 the exact value of Xf 
 (t) in ker E. 	However, if the 

ultimate purpose is to assign zeros via an observer and not to 

recover the value of Xf  (t) in ker E, then an observer of reduced 

dimension equal to dim W can be constructed,WHere (4/ = Wf/Wi, 

with W
1 
given by (3.39). 

(*) provided that the pair (Cf, J) is observable. 

Let P : W
f 	

0 and let J be the unique map induced in 

@ such that PJ = JP. 	Let Bf = PBf 
and consider the following observer 

Jz = Nz - PK yf  + gfu 	 (3.103) 

From (3.93) it follows that 

• 
PJ x

f 
= Px

f 
+ g u . (3.104) 

Let Px
f 
= x

f
. 	Then from (3.104) we have 

-• 
JRf 

= x
f 
+ g

f
u 	 (3.105) 

Define the error as 



0 51f  I + BfF —if E, 

0 J e 0 R 

;cf 	 (3.110) 

e 

e = x
f 
- z 

and let K : V -4- Z be such that 

KICf  W = 
	 (3.106) 

Then 

+ KCf 
 )W 1 = W1 

 . - 

Let 

N := (I+KCf) 
	

(3.107) 

i.e., N is the map induced by (I+KCf) in (U. 

From (3.103), (3.105) and (3.107), it follows that 

Je = Ne. 	 (3.108) 

Consider the- control law u = Fz. 	Then from (3./05) 

aif == f
F)Tc

f 	
BfFe. 	 (3.109) 

The combination of (3.108) and (3.109) in matrix form results in 
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It suffices now show _that all the zeros associated with 

(3.110) can be arbitrarily assigned by the choice of F and K, with 

KIC
f
W
1 
= 0. 
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The proof of Theorem 3.7 shows that there always exists F

such that the zeros associated with the system

_e _

Jx = x + B u
f f f

are assigned to pre-specified values, provided that the pair

(J,B
f

) is controllable.

Dually, if the pair (C
f

, J) is observable then the zeros of the

pencil (N - sJ) can be assigned.

The above discussion can also be translated into matrical

language. Consider the representation (3.42) and define

(3.111)

according to the partitioning of B
f

and Cf.

In (3. 11.1), F2 : W2 -+ U, where W1 ED W2 - Wf and K
2

where Y2 is such that aWl ED V
2

= cW
f

Thus

and

Mat (.I+BfF
-sJ) = I + B22 F2 - SJ22

Hence

__ [ 1

0
I + BfF - sJ

B12 F2 - sJ12 ]

I + B
22

F
2

- SJ22



and 

I + KC
f 

sJ = 

I 	-sJ
12 

0 	I+K
2
C
22
-sJ

22 
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Once the triple (C22, 
J22,  B22) is controllable and observable, 

then maps F
2 
and K

2 can be computed from Theorem 3.7 so as to assign 

the zeros of (I + B
22 

F
2 
- sJ22)  and (I + K

2 
C
22 

- sJ
22
). 

There are basically two alternatives to assign zeros in a system 

described by (3.34) and (3.35) by dynamical output feedback. 	The 

first one is suggested by Theorem 3.8 and is as follows : use an 

output feedback map so as to convert all the infinite-zeros into 

finite ones. 

Then compute the 

decomposition of the closed loop system as in Theorem 3.1 to obtain 

a system with the form 

x
s 
= Lx

s 
+ B

s
u 

y = Cs s 

where dim L = rank E. 

A standard zero placement by dynamical output feedback 

may now be carried in the above system. 

The second way, which is not worked out here, consists of 

constructing one observer for the subsystem (3.34) and another one 

for the subsystem (3.35) according to the procedure described 

previously. What remains to be researched is a procedure by 

which the observer constructed for the subsystem (3.34) does not 
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interfere with the zeros already assigned by the observer (3.103) 

to the subsystem (3.35). 

To conclude this section we would like to point out a simple 

fact about output feedback and the regularity of a pencil (sE-A). 

Given a singular pencil, it may be desirable to try to modify it 

by output feedback so as to render it regular. A sufficient con-

dition for this to be possible is that A + BKC is nonsingular for 

some K : 	Such a map exists if and only if the zero 

eigenvalues of A are controllable and observable, i.e. 

Im A + B = X 

and 

ker C n'ker A = 0. 

Given that the above conditions hold, then almost any output 

feedback map will make A + BKC nonsingular [3.7]. 

*REMARK 3.7: By using analogous reasoning to that in the proof of 

Theorem 3.8 it can be shown that if J has all elementary divisors of 

order greater than one (i.e. no static variables) then there exists K 

such that degree det(sJ-I-BfKCf) = y if and only if the system (3.93) 

is controllable and observable. Note that in this case W
1 
= 0 in 

(3.39) and then K must be such that Q
t
B
f 
 K. 
 Cflker J is nonsingular. 
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CHAPTER IV 

THE GEOMETRIC STRUCTURE OF A REGULAR PENCIL AND THE USE OF P.D. 

LAWS IN THE THEORY OF ALMOST INVARIANT SUBSPACES 

IV. 1 	INTRODUCTION. 

This chapter begins with a geometric description of a 

regular pencil which includes the identification of the subspaces 

assoclated_respectively, with the finite-zeros and infinite-zeros, 

as limits of suitable sequences of subspaces. 

We then turn our attention to the study of a proportional-

derivative (P.D.) state feedback law, u=F
1
x+F

2
x, for the linear 

system x = Ax + Bu. We present several geometric properties of 

the closed-loop pencil s(I-BF2) - (A+BF1) and we also show how to 

choose F
1 
and F

2 
so that the distributional response of the closed 

loop system belongs to a prescribed almost controlled invariant 

subspace. An application is then made for the disturbance de-

coupling problem and we also stress the importance of a P.D. law 

in the solution of the almost disturbance decoupling problem. 

Finally, we show the use of P.I.D. observers in the context of almost 

conditionally invariant subspaces. 
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IV.2 	THE REGULAR PENCIL (sE-A) 

IV.2.1 Introduction 

The main features of a regular pencil are nowadays fairly 

well known [4.1, 4.3, 4.7, 4.10, 4.16]. 	A pencil (sE-A) is said 

to be regular if it is invertible over the field of the rationals. 

This implies that the maps E and A are square. We also assume 

that E is a singular map. 

Associated with a pencil (sE-A) we have an autonomous gen-

eralized linear system described by 

EX = Ax 	 (4.1) 

where x E X:= E 

Because some of the results described here have application 

in linear systems theory we shall emphasize dynamical interpretations 

relative to (4.1). 

Recall from Section III.1 that if the initial condition 

X(0 ) := x
0  for (4.1) is arbitrary then we should consider the dis- 

tributional differential equation 

EX = Ax 	6Ex 0 	 (4.2) 

where S denotes the delta functional. 

We shall stress geometric features of a regular pencil for 

this kind of pencil plays an important role in subsequent sections 
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but we shall also pay some attention to singular pencils. 

For a regular pencil there exists a e 	such. that • 

det(aE-A) 	0 and we have seen in Section 111.2 that such a pencil 

has in general finite and infinite-zeros. We have also shown 

there a modal decomposition of the state space X obtained by 

Cobb [4.3]. The decomposition is given by a direct sum of two 

subspaces 

X =VeW 
f 

such that on V there is a dynamical motion of (4.2) characterized 

by the finite-zeros and on W there occur impulsive motions due 

to the infinite-zeros. 

We recall below the expressions for V and W
f 
so as to 

facilitate the comments that follow. 

V = 9 ker {( 	1 aE-A)
-1
E - 	i 

i=1 	a -a.  

)n-r 
W = ker[ (aE-A) 1E 

where r = dim Vs  = deg det (.sE-A) and ( 

(4.3) 

(4.4) 

E k, is the set of 

finite-zeros(.A.hasmultiplicityn.)of the regular pencil (sE-A). 

Although V
s 
and W

f 
do not depend on a, so long as 

(aE-A) is nonsingular, the above expressions do not show clearly 

how V
s 

and 
(1,If 

are related to the original maps E and A. 

Further, the computation of V
s 

requires the knowledge of the finite-zeros. 



Several questions can then be posed: 

a) Is it possible to obtain characterizations for V and 

(V
f 
from the geometry of the maps E and A and at the same time 

compute them without the knowledge of the finite-zeros? 

b) What is the geometric source of the infinite-zeros? 

c) What is the condition for a regular pencil (sE-A) not 

to have infinite-zeros? 

d) What is the condition for a pencil (sE-A) to be regular? 

We shall provide answers to the above questions and we 

shall see in Section IV.3 that the analysis developed here has 

importance in the study of a proportional-derivative state feedback 

law. We also believe that the answer to some of the above questions 

and our presentation constitute an original contribution to the theory 

of pencils. 

1V.2.2 A Useful Representation for the Maps E and A 

We have seen in Section 111.2 (see Proposition 3.1) that by 

a choice of two distinct decompositions in the state space X, the 

maps E and A admit the following decompositions 
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Mat E = 	Mat A = 
L 0 

(4.5) 
0 I 0 J 
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where J is a nilpotent map whose Jordan decomposition yields 

the number and order of the infinite-zeros and L is a map whose 

eigenvalues coincide with the finite-zeros of the regular pencil 

(.sE-A). 

In the sequel we shall obtain a representation for the 

maps E and A which does not require regularity of the pencil 

(sE-A) and that helps to develop some intuition. For this let 

E := Im E 	3 	N := ker E 

and consider the following decompositions of the space X 

X = C
1 
 9 N 
	

(4.6) 

and 

X = E e C2 
	 (4.7) 

where C
1 
and C

2 
are any subspaces which yield a direct sum. 

Let x e X be represented in the decomposition (4.6) and 

let Ex and Ax be represented in the decomposition (4.7). 	Note 

that EC1  = E. 	Thus if foil , i e 	:= dim C
1 
is a basis for 

C
1 
 we may take {Ec.} , i E 	as a basis for E. 	This implies that if 

x =c+v; 	cEC 	v c N 	 (4.8) 

with 

c -a 
t. 1 1 

. c. 
ie 

(4.9) 



then 

Ex = Ec = 	Ec. 
iet, 1  

so that both c and Ex have the same representation 

Ca 1, a 
1 ,  2"."  at.j  := zT  

(4.10) 

(4.11) 

withrespecttothebasesCciland{ab.}, iE.e. 1 	- 

Hereafter,thebases{c.}andfEc.1, iet, are fixed so 1 	1 	- 

that the vector z can be identified with c and Ex. 

It then follows that in the decompositions (4.6-7) 

A A 
0 A B 

Mat E = 
{I 

Mat A = A 
[C 

A (4.12) 
0 	0 D 

where I is the identity map of dim C1  = dim E and the partitioning 

of Mat A follows that of Mat E. 

The representation (.4.12) presents some interesting features, 

namely : 

A 
sI-A -B 
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1) 	IsE -AI = IsI-Al I-G(s) I . A 
-C -D 

Thus, the pencil (sE-A) is regular if and only if the 

proper rational matrix G(s) is invertible over the field of the 

rationals with 

A 	A _1/.. 

	

G(s) = C(sI-A) B 	D 	 (4.13) 
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2) If D is nonsingular, then by using (4.8) , (4.11-2), 

the system (4.1) becomes 

and 

^ 	1  
z = (A - BD 	C) z 

^-1 ^ 
v = D Cz . (4.14) 

It is easy to see that this situation implies regularity 

of the pencil (sE-A) and absence of infinite-zeros. 	The regularity 

is implied by 

lim G(s) = D 
s-° 

so that G(s) is invertible, whereas the absence of infinite-zeros 

follows (see Section III.1) from the fact that the number of zeros 

of a regular pencil is given by dim E and that (4.14) has dim E 

^ 
finite-zeros, which are the eigenvalues of (A-BD C). 	For this 

reason (absence of infinite-zeros) we have used equation (4.1) 

and not (4.2). 

3) The separation of the variables'v e N. 	The initial con- 

dition V(0 ) does not influence the distributional response of 

(4.2). 	By using (4.8), (4.11-2) in (4.2) we obtain 

. ^ ^ 
z = Az + Bz + SZ(0 ) 	 (4.15) 

0 = Cz + Dv 
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and it is clear that V(0 ) is immaterial for the response of (4.15). 

It is easy to obtain explicit expressions for z(s) and 

v(s), the Laplace transforms of the distributions Z and v in 

case the pencil is regular. 	To see this let 

 

'T11 
 (s)T12 (s) 

T
21
(s) 	T

22
(s) 

(sE-A) -1 = 

  

where E and A are as in (4.12) and the above partitioning 

accords with that one of E and A. 	From (4.2) 

_  
x(s) = (sE-A) lEx(0 ) 

[z(s)1 T11 ii(s) 	
[z(0) 

or 

v(s) 	T
21
(s) 	0 	V(0) 

(4.16) 

By using (4.15) we obtain 

A 
T
1 
(s) = (sI-A)-1- ^^-1 LI-BG (s) 

A 	A 
T
21
(s) =-G(s) C(sI-A)

-1 
 . 

^ C(sI-A) -1 
(4.17) 

The expressions (4.17) can also be found in the work 

by Francis [4.6] who has studied the distributional convergence 

of the singularly perturbed system. 

• A 
z = A(E) z + B(E)v + 6 Z(0) 

A 
• 

Ev = C(E)z + D(E)v 
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when e , a positive scalar, goes to zero. 	When E = 0, the 

above system becomes identical to that one in (4.15). 

We can also see from (4.15) that the variable v e N 

"controJ4' the variable z E E (recall that z determines Ex). 

Here "control' means that the Bohl distribution v with support 

on 	(see Definition 1.3 and Section III.1) is such that it 

.n+ drives the distribution z (also Bohl with support on K ) so as 

to obey the constraint 

CZ +- DV = 0 . 

IV. 2.3 Geometric Features of the Regular Pencil 

We start this section by discussing the distributional 

solution of the autonomous generalized system 

Jx
f 
= x

f 
6Jx

f
(0 ) E W 

f 	f 
(4.18) 

which results from the modal decomposition (4.5) (see also 

Section 111.2). 

From Corollary 3.1a, ker J = N and let J be taken in 

Jordan canonical form, i.e., 

J = diag(J1,...,J , 0) 
	

(4.19) 
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where 

0 1 0 	... 0 

0 0 1 	... 0 

J. = • • iep 	. 

0 1 

0 0 
(n.+1)x(n.+1) 
1 	1 

In (4.19) the map J is decomposed into p (p > 0) Jordan 

blocks of size n.+1(n.>1) and a zero block of dimension m so that 
1 

ni  +m=
f 

. 	 (4.20) 

iep 

r— Let4=Lx1,—,xp,x13.14]T withdimx
1  
.--42.+1, iep, and 

dim x
p+1 

= m. 

The block diagonal structure (4.19) implies that the equation 

(4.18) becomes decomposed into a set of p equations 

• 
J.
1
x.
1 
 = x.

1 
 + SJ.

1 
 Xi  (0) 	 (4.21) 

and a trivial equation 

p+i = 0. 	 (4.22) 

The variables x
p+1 

are 'called static variables by Verghese 

[4.15] in the sense that they exhibit no dynamical behaviour. 	It 

is also shown in [4.15] that the distributional solution of (4.21) 

is given by 



) 
-1 

x
i,1 

= - xi,2  (0 )5 - • - x. 	(0)6(n 
 

(4.23) 

,n 
• -x, 	(0 )8 

-1. 

X 	= 0 

(j) 

	

2 	th 

	

where c..) 	is j 	distributional derivative of the delta functional. 

We have seen in Section 111.2 (see (3.16-7)) that to each 

Jordan block there-corresponds a chain of generalized eigenvectors 

given by 

	

Ew
i 	

= 0 
,1 

 

(4.24) 

1 
1,3 	1,3-1 	- 

and the regular pencil (sE-A) has p infinite-zeros of respective 

orders n., iep. We shall identify in a moment such nonnegative 

integer p. 

In the sequel we define maps which are of importance 

in the geometric analysis of a pencil. 

Let 

a) T := A : X X(mod E), which denotes x Ax (mod E) 

(4.25) 

b) D := A : N X(mod E), which denotes x Ax (mod E), x e N . 
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In the decompositions (4.6-7) the maps above defined 

admit the following representations 

Mat T = [C D] 	Mat 5 = D 	(4.26) 

The ensuing proposition identifies the geometric sources 

of those variables in N which are static. 

Proposition 4.1: Let N C N be any subspace such that 

N n ker T 9 N = N . 

Then the regular pencil (sE-A) has m := dim N static variables. 

Proof: First note that 

ker T = A
1
(E) 

and 

N:= N n ker T= N n A 1(E) = ker D . 	(4.27) 

Consider now the following decompositions for X 

X =C
1 
 eNeR 
	

(4.28) 

and 

X=E9C
3
e 
	

(4.29) 

Here C
1 
is as in (4.6) and C

3 is any subspace which com- 

plementsi‘ X in the decomposition (4.29). 	Note that 



dim AN = dim N 

since N n ker A = 0, which is implied by the regularity of the 

pencil (sE-A). 	Also note that 

AR n E =0 

and 

AN c E. 

Let x e X be represented in the decomposition (4.28) and 

Ex and Ax be represented 

Mat E = 

in the 

I 	0 	0 

0 	0 	0 

0 	0 	0 

decomposition 

Mat A = 

(4.29). 

'A1 	A 11 	12 

A
21 	

0 

A
31 	

0 

Hence 

0 

. 	(4.30) 

The identity matrix in Mat E has dim E and the identity 

matrix in Mat A has dim m. 

Consider the pencil (sE-A) with E and A as in (4.30) 

and post-multiply it by the following nonsingular matrix 

I 	0 	0 

0 	I 	0 

-A
31 	

0 	I , 

This oration does not alter the finite and infinite-zero 

structure and the resulting pencil is represented as 

220 



221 

sI-A
11 

-A
21 

0 

-A
12 

0 

0 

0 

0 

I 

(4.31) 

It is clear from the block diagonal structure of (4.31) 

that the finite and infinite-zero structure of (sE-A) can be 

obtained from the reduced pencil 

sI -A
11 	-Al2  

-A21 0 

We have thus far shown that the number of static variables 

is > m. The next proposition shows that the number is indeed 

m, and it is important enough to be stated separately. 	0 

Proposition 4.2. 	Let p := dim N. 	Then regular pencil (sE-A) 

has p infinite-zeros. 

Proof: 	Let {w. 1} , iep, be a basis for N. To prove the above 

statement it is enough to show that there are generalized eigen-

vectors starting from {wi,1}, iep (see (4.24)). 

First recall that AN c E and N n ker A = 0. This implies 

that the vectors 

e. = Aw
i,1 
	iEp 

are in E and are linearly independent. This in turn implies that 



e. = EW. 
1,2 

iep 

for some set {wi,2 } , iep, of linearly independent vectors. 

It remains to show that the sets {wi,1 } and {Ivi,2
} 

are mutually independent, or equivalently that span {wi,1} n span 

{wi,2 } = 0. 	Suppose that there exists 0 # x e span {w
i  1} 

 n span 
, 

{w }. Then i,2 

	

x = _ 	/ Y. w. 

	

1,1 	1,2 
iep 	iep 

forsomerealscalarsa.and,where at least onend Y.1 	Si 
	

y. 
1 

are different from zero. This yields 

Ex = 0 = yi  e. 

iep 

which con tradicts the fact that the vectors e., ep, are Z.i. . 

D 

Remark 4.1  

a) Proposition 4.2 has shown that there are p generalized 

eigenvectors starting from {w. 1} and thus p infinite-zeros. 

We do not know yet the orders of the infinite-zeros, since the 

positiveintegersn.in (4.19) have not been specified. 
1 

do it later. 

We shall 

b) Proposition 4.2 has also shown that the number of static 

variable5is exactly m, as defined in Proposition 4.1, since N 
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generates dynamic variables which behave impulsively. 

Corollary 4.1  : 	The regular pencil (sE-A) has no static variables 

if and only if AN c E. 

Proof: Immediate from Proposition 4.1. 	 0 

Corollary 4.2: The regular pencil (sE-A) has no infinite-zeros 

if and only if D is nonsingular, i.e. N n A
1
(E) = 0. 

Proof: 

If the pencil has no infinite-zeros then by Proposition 4.2 

1 - 
N=N n A (E) = 0 

<-=) 	If D is nonsingular, then AN n E = 0. 	By using the 

decompositions 

X = C
1 
eN 

and 

X=Ee AN 

where C
1 
is as in (4.6), we obtain 

I 0 
Mat E = 

0 0 
Mat A = 

so that the regular pencil (sE-A) has dim E finite-zeros which are 

the eigenvalues of A
11
. 

0 
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We shall analyse now in detail two families of subspaces 

similar to those introduced in 111.2, namely 

F
1 
 = {V c XIAV = EV, V c M} 
	

(4.32) 

F
2 
= {W

a
c X1 W

a 
= K n 

E-1 
 (AW

a
) } 
	

(4.33) 

where M and K are given subspaces. 

It is easy to see that the family Fi  is closed under 

addition. This implies that F
1 contains a supremal element 

c M which can be computed through the following sequence 

E 4.1]. 

Vu  r Vu  = M n A
1(Evu-1), u e 

 n; V0= 

(4.34) 

Hereafter we shall assume that M := A 1(E). Thus 03  

is the supremal subspace of the family F
1 
which is contained in X. 

The family F
2 also appears in (4.1] but it is not given 

the meaning and importance that we show such a family possesses. 

The next proposition states that F2  has a unique least element. 

Proposition 4.3: 

w c W for every W E F
2
. 

-a 	a 	a  

Proof: Define a sequence by 

W
* 
:= W

n
; W

u 
= K n E

-1
(AW

u-1
), u e n; W°  = 0 . 

a a a 	a 	- a 
(4.35) 

First note that the sequence is nondecreasing. We have 
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There is a unique element W
a 
e F

2 
such that 
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W
1

a 
 D W

O 	

a 
and if W

u 
D Wu 

-1 , then Wu+1 	K n E
-1(

A W
u
) D KnE 1 

a 	a 	a 	a 

u-1 
CAW 	) = W. 

a 	a  

,,,k 
Thus there exists k e n such that W

a
u 
 = w

a 
, u > k. _ 	_ 

** 
Set W

a 
 := WI:. 	Then W

a
e F

2* 	
To show that W

a is infimal let 

W
a 
 e F2. Then W

a 
D Wa

0  and if Wa 
	a 

D W
u

, we obtain 

,, -1 ,., 	-1 „iu ,. 
w
,u+1 

W
a 
= N nE (Aw

a
)' D K n E (Aw

a 
= 
	

. 

Thus Wa D W. Vu E n and hence W
a 
0 W*  a 0 

From now on we take K := A-1(E) in the sequence (4.35). 

In the sequel - we consider the subspaces W
b 
and T , which 

belong to F
2 
and play an important role in the geometric theory of 

a pencil. 	Such subspaces are defined by the following sequences. 

mb := (1)1111) i 	E 	‘
* 	-1

(-w
cou
b
-1),  

u e n; 	= 0 
w   

T
* 
:= Tn ; Tu  = 0:  n E-1(ATu-1), u e n; To = 0 

(4.36) 

(4.37) 

The next lemma shows properties of the sequences above 

defined and some relations among them. 

Lemma 4.1: 

,u u-1 ,u 	,* 
EI = AT 	; I c 	I e F

1 
n F

2 

b) 	Tu  = fP n Wb 

a) 



Wu  = K n Wu  
a 

Tu 	
n Wu a 

EWu  = AW
u -1 

b 	a 

Proof: 

a) The equality ETu  = ATu-1  is shown in [4.1]. 	Thus 
* 	* 	 * 	* 	* 

	

ET = AT which implies AI
„ 
 cEik 	

* 
and ETcAi

, 
 so thati , eF1 nF

2. 

b) Note that T1  = VD  n N = 0:  n Wb and if Tu -1  = 0]  n Wu-1 ' then 

Tu  = 0]  n E-1(A(OlDnWu-1))= 0:  n E
-1 

 (A(A-1  (W-n 
 
)) 

= 0]  n E ” 1,Awbu -1 n E0
p) 

= 	0:  n E -1(AWu -1) n E-1(EVD) 

0:  n (E -11AW
b
u -1  ) n ("D  v + N)) `  

= 	IT n (E -1(A Wu-1) n 01 	N) 

E -1(AWbu -1
) n 0]  + 0]  n N 

= E -1(AW
b 
u-1) n 0] = 0] n wu 
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c)  

d)  

e)  

c) 	The proof is analogous to b) by replacing 01  by K = A-1(E). 



d) From b) and c) 

Tu 	n K n Wu  = 	n Wu  
a 

Note that EW
1 
 = 0=AW

o 
and if EWu-1 = AW

a
u-2 

 , then a 

-1 „1 
EWu  = EE (Aw

b 
) = Awbl   n t 

u-1 	 1 - 	_1 	u-1 AW
a 	= A(A (t) n E (EW30  )) 

= A(A-1(E)n(Wirl 	N)) 

= A(A 
1 
 (E) n (b ) 

= AWu-1  n E . 
0 

Let (sE-A) be a singular pencil whose columns are linearly 

independent over the ring of the polynomials. 	Let x(s) be a solution for 

(sE-A) x(s) = 0 	 (4.38) 

with 

x(s) = xk  - sxk_i 	s
2
xk_.2  - 	(-1)k skx . 

0 

Substituting this solution in (4.38) and equating the 

coefficients of the same power in s we obtain 

Axk  = 0 ; Exk  = 
Axk-1 ; • • • ; Ex1  = Ax0  ; Ex0  = 0 . (4.39) 

It has been shown by Gant macher [4.7] that the vectors xi, 
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e)  

and 



i e {0,1,...,0 are linearly independent. 	Let D = span 

Then from (4,39), it follows that ED = AD, whence C 	This 

simple observation suggests that the subspace T (recall that 
* 	* 

ET = AT by Lemma 4.1 a) is the subspace which provides vectors 

for a polynomial basis for ker(sE-A). 	In other words, if 

x.(s), i e 	is a basis for ker(sE-A) with 

x.1(s) = xi,k. 
- s 	+ s

2
x xj,k

i
-1 	

- 
1 	 1 

k. 
s 	1 x. 

1,0 

k. 
+ (-1) 1  

for some set of nonnegative integers {k.1
},  

spen{x.,}, 	E £, j e {0,1,...,k.}. 
1,3 

* 
i E t, then T = 

* 
To show this we proceed with a decomposition of T . 

* 	* 
First, note from Lemma 4.1a that ET = AT , which implies 

* 	 * 
dim(N n T ) = dim(ker A n T ). 	Also from Lemma 4.1b, it follows 

that N n Tu  = 	n N, which implies dim(N n Tu) = constant. 

Let 
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[

t
u 
:= dim 

Tu  u e n 
ru -1 

Since ETu  = AT u-1, we then obtain 

dim i - dim(N n T
u
) = dim Tu 

-
1 - dim(kerA n T

u-1
) 

whence 

t
u 
= constant - dim(ker A n Tu-1). 



Thus 

t
o 
= t

u+1 
+ dim [ker AnTu  

ker AnT
u-1  

u 
and since I 

, 
	T

u-1 
, it follows that t > t 	u e n. u — u+.1. 

Now let 

gi  := number of integers in the set 

{t1, t2n} which are > i. 

Then 

q1 — 
> q

2 
> 
— 

where t := dim(N n T ) = dim(ker A n T ). 

Write 

k 	:= q
i
-1, 	 (4.40) 

	

Then 0 < k
1 
 < k

2  < 
	. < ko. It now follows from 

(.4.40) and Lemma 4.1a that there exist a set of linearly independent 

{0,1,...,k.} 	that I = span 
1,7 	 1 

{t. .} 	with 
1,J 

Et 	= 0 
i3 O 

Et
irJ Ati,j-1 

At 
ifk.= 0 . 

1 

E t, j e k. 
-1 

(4.41) 
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We can now state the following theorem. 

Theorem 4.1: Let (sE-A) be a singular pencil. 	Then: 

a) ker (sE-A) = span{xi(s)},1 E 	where 

= dina(N n T ) = dim(ker A n T ) 

k k 
i i x. (.S) = t 	- St, 	+ 	s 	i e .f. . 

1 	i,k. 	i,k -1 
+ s2t' k 2 1, .- 	

ti,o, 	
- 

	

1 	i 	1 

The set {k.} , i e 	is termed the set of minimal column 
1 

indices. 

b) Let A be a map such that 

: U3Cmod T*) -+ EAmod ET*) . 

Then 

U(A) = {finite-zeros of the singular pencil (sE-A)} 

Proof: Let t E T be represented in the basis {t. .}, i 
1,3 
	et, 

jE{C),1,...,k.}and let At and Et be represented in the basis 

{Et. .} , i e 	j E k . 	Then from (4.41) it follows that 
1.3 

mat[ET I (sE-A) IT  j = diagDi  (s) 
	i 
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where 



s 1 . 	0 0 

0 s . 	0 0 

P, (s) = • • . . 

0 0 . 	1 0 

0 0 s 1 
k.
1
x(k.

1
+1) 

We now show that P(s) := diag[Pi(s)] corresponds to the 

set of canonical blocks associated with minimal column indices in 

Gantmacher's decomposition of a singular pencil. 

For this let V
1 be any subspace such that 

* =T 	eV 1 

and note that V
1 
 n N = 0 since N n 	c T . 

It can also be shown that ET n.EV
1 
= 0 . 

(4.42) 

For, suppose that Et = Ev fortEl ,vEV1. 	Then  

v -tENnO:  and thusvET, which is impossible. 

Thus we may consider the direct sum 

EV°  = ET 9 EV
1  (4.43) 

so that in the decomposition (4.42-3) 

Mati_EVD1(sE-A)101111 = 
•P(s) 	-A

12 

0 	sI-A 
22 , 

(4.44) 
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Al2 

A22 J 

= mat[EVDIAIVO. where 



SinceiSI-A22)isaregIllarpericiaitfollowsthatx1(s ) 

i E t, as given in the theorem's statement is indeed a basis for 

ker(sE-A). 	The set {k. }, i e L, is the set of minimal column 

indices due to the uniqueness of the canonical form of singular 

pencils under strict equivalence transformation [4.7]. 

Since the eigenvectors associated with the finite-zeros 

belong to IP(Av = AEv ==> v e A, it follows that the finite-zeros 

of the pencil (sE-A) are the eigenvalues of A22. 

As a matter of fact, A
22 is the representation of the map 

A : VI:(mod T ) -- EtAmod ET ). 	The following diagram shows how 

A is defined. 

EV°  lAili=1  

Q 

(modT* ) 	A 	 EVD (mod ET ) 

In the above diagram P and Q are the canonical projections. 

To show that the diagram commutes, let A := EVDIAIP. Then since 
A 

t E T implies At = Et, for t e T , it follows that AP = QA and the 

map A is well defined. 

23.2 
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We turn now our attention to a geometric criterion for regularity 

of the pencil (.sE-A). 

Theorem 4.2: The pencil (5E-A) is regular if and only if 

 

LP e W
b 
=X  (4.45) 

Proof: 

) 	If the pencil is regular, then by Theorem 4.1 and Lemma 4.1b 

we obtain 	= 	n W
b 
= 0. 	The regularity of the pencil also 

implies that its number of zeros is dim E. 

Now, from Lemma 4.1c, W
a 

Wb  . 	Let (7/
b 
be any subspace 

such that 

* 	* 
(U =WA  eW . h 	h (4.46) 

We show next that dim 5)
b 
= dim N. 	From Lemma 4.1e, it 

follows that 

* 	* 
dim EW

b 
= dim AW

a 
. 

Note that N = W
b 
and ker A c 	Since I/:  n W

b 
= 0 

* 
then ker A n Wa 

= 0. Thus 

* 	* 
dim W

b 
= dim W

a 
4- dim N 

which confirms our claim. 



We shall prove in Theorem 4.3 that the number of zeros of 

the regular pencil is 

dim VI:  + dim W
a 
= dim E. 

Therefore from (4.46) 

dim iP + dim. Wb*  = dim 0:  + dim W
a  
* + dim 61

b 

dim E + dim N = n 

so that 

* lT" ®Wb =X 

—) 	We first show that lip  9 W = X implies EVE  9 AW*  = X. To 

see this note that LP n W = 0 implies N n 13  = 0 and ker A n W
b 

= 0. 

Thus dim Sill  = dim 0:  and dim AWb  = dim W:. 

Now suppose that 

Ev = Aw, v E 	w e W
b 
. 

This implies that w e 	which is not possible since 

): n W = 0. Thus w = 0 and hence Ev = 0. Since N c W
b 

and 

n Wb  = 0 it follows that v = 0. 

Therefore 

1,0 E v 	n AU)
b 
= 0 

and hence 
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0 	(,,* 
EV G ALA,

b 
= X 

Now define a map M : X 4  X as in Proposition 3.1, i.e. 

Ex 	x e 
-1 

M x = 

Ax 	x E 
Wb 

Since AVIE  c EVE  and EW
b c AWb

, it follows that in the 

decomposition 

X= 	e Wb 

 

sI-L 	0 
Mat M(sE-A) = 

0 	$J-1 
(4.47) 

  

0 0 	* * where L := EVIAIV and J := AW
bIEIWb 	It will be shown in the 

next theorem that J is a nilpotent map. 	Consequently IsJ-I I = 

= a 	0 and hence from (4.47) 

det(sE-A) = 0431sI-LI (4.48) 

and the pencil is regular. 

The next theorem describes the fundamental elements of a 

regular pencil. 

Theorem 4.3: For a regular pencil (sE-A): 

a) 	There are subspaces 0:1  and W
b 
such that 

* e W
b
=X 0=1  

235 



EV°  9 AW =X 

with 

At):  c EU° 	01  D ker A 

E(tlb  c AW
b 	, 
	W

b 
D ker E 

b) There are dim t):  finite-zeros which are the eigenvalues of 

the map L := EVEHAI(P. 

* 	* 
c) The map J := AWbIEIW 

b  is nilpotent and there are 

p := Olm ker E A 1(E)) infinite-zeros of respective orders n., i'lpf 

which are shown to be determined from the sequence (4.35). 	Further 

n. = dim W  with W = A (E) n E
-1
(AW). 

i=1 I 	a 	a 

d) A-1(E) = 	9 (U*  
a 

Proof: 

a) See Theorem 3.1 and Section 111.2 

b) This is clear from (4.47-8). 

c) We recall again the notation K = A 1(E) and N = ker E. 

Proposition 4.2 has already shown that there are dim(K n Winfinite-zeros. 

Now define 

 

wu 
a 

Wu-1 
a 

 

w
u 
:= dim U E n . 
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,u 
Since dim Aw

a 
 = dim W

a 
, it follows from 0.35) that max 

w
u 	

as it must be, for we already know that the pencil has 

infinite-zeros. 

Let 

:= number of integers in the set 

{w1, w
2
, 	, w 1 which are > i. 

Then 

	

n > n > 	> n > 1 
1 	2 -- 	P 

with 

n. = dim Wlc  . 
1 	a 

i=1 

Note that the definition of n. allows one to identify the 
1 

size of an eigenvector chain associated with an infinite-zero i, 

i e p. 	By using (4, 3 5) 
	

it follows from (4.24) that 

span{w. } = W 
lei 	a 

i Ep, j E n. . 
-1 

We may also find the ni's by using Kalman's crate [4.8] 

which is a method absolutely equivalent to the above described. 

To see that J is nilpotent, suppose Ew = XAw, X 0, for 

some w E Wb. 	This implies w E VI:, which is impossible, since 

W
b 
n 0]  = 0 (recall that LP is the supremal subspace of the family 

F
1 
contained in X). 
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d) 	First note that 0/  0 W
a 

c K and let W
b be any subspace 

such that W
b 
= W

a 
e

b
. 	From Lemma 4.1c 6)

b 
n K = 0. 	Thus 

X = (P e W
a  
* 9 Wb  47 and the result follows. 

Remark 4.4: 

a) 	Note in 

* 
W
a 

and that x. 
1 

shows that the 

(4.23) that the components x. 	, jeni  belong to 
1,J 

44A4A 
is a component on a subspaceKas W

b
. This ,n.il 

1 * 
distributional response occurs in W

a
. 

b) It is clear from Theorem 4.2 that 031  = V
s 
and W

b 
= W

f
, where 

V
s 

and W
f are the subspaces given in (4.3-4). 

c) There are basically three distinct situations for the initial 

condition X(0) in (4.2). 

1) X(0-) e 	In this case the response x in (3.3) is a function 

and it consists of exponential motions determined by those infinite-

zeros which are excited (see equation (3.26)). 

2) X(0 ) E W
b
. 	This is the situation where the response 

X in (.3.3) consists only of impulsive motions, namely, the delta 

functional and its distributional derivatives (see (3,28-9)). 

* 
3) X(0) 	and X(0 ) 0 W. 	In this case the response 

X in (3.3) consists of impulsive and exponential modes. 
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The geometric condition for the regularity of a pencil 

involving the direct sum of two subspaces, as given by Theorem 

4.2, is somewhat expected if we recall that pencil is regular 

if and only if G(s) defined in (4.13), is invertible and noting 

the geometric criterion for this to occur given in (2.42-3). 

It is however not simple to work with G(s) and obtain a condition 

which displays clearly the geometry of the maps E and A. 

By introducing suitable sequences of subspaces and analysing 

their properties we have been able to develop a compact geometric 

theory o regular pencils. We do not claim that the work developed 

here is completely new. But we believe to have given a contribution 

by providing a geometric condition for the regularity of a pencil, 

by identifying the number and order of infinite-zeros along with their 

source and by analyzing the origin of static variables. 

The Remark 4. a on the distributional response will be shown to 

be of importance in the ensuing 	when we study some properties 

of a proportional-derivative state feedback for linear systems. 
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IV.3 PROPORTIONAL-DERIVATIVE (P.D.) STATE FEEDBACK LAWS AND  

ALMOST CONTROLLED INVARIANT SUBSPACES  

IV.3.1 Introduction  

Consider the multivariable linear system 

x = Ax + Bu 	 (4.49) 

y = Cx. 

The solution of several control synthesis problems such as, 

for example, disturbance decoupling, tracking and regulation involve 

the use of proportional-integral (P.I.) dynamic compensators. Such 

compensators operate with the output y and its integral as inputs 

and produce as output the control u for the system (4.49). 

The need for P.I. compensators has stimulated a great deal 

of research (see [4.12] and the references therein) which has led 

to a very good understanding of structural properties of such 

compensators. 

It is surprising to note how scarce is the literature on the 

theory of P.I.D. compensators, namely, compensators which also use 
• 

the derivative y as input. Apart from some results on pole 

placement [4.131 it seems that little is known about P.I.D. com- 

pensators. 	Our surprise comes from the well known fact that P.I.D. 

compensators have been employed successfully in some industrial applications. 

Most classical control books dedicate a few pages to the 



241 

subject and explainl  usually by means of an example, the qualitative 

effect caused by the derivative on the closed-loop time response. 

They also point out the anticipatory feature of a control law which 

makes use of the derivative. Willems [4.187 has also pointed out 

the importance of P.I.D. compensators in the synthesis of a controller 

in the disturbance decoupling problem. 

We consider the study undertaken in the following sections as 

the beginning of a theory for P.I.D. compensators and as such we 

start by the simplest control law which is given by u = F1x + F
2
x, 

for some maps F1  and F2. 	Such a law is termed a proportional-der-

ivative (P,D.) state feedback law. 

We concentrate almost totally our attention on the role 

of such a law in connection with the theory of almost controlled 

invariant subspaces. 

ati1lgam  14-171 hac ahcwn that under a certain condition there 

exists a high gain state feedback law, it = Fx, F co which solves 

the almost disturbance decoupling problem in the sense that the 

influence of the disturbance variables d on the regulated variables 

z = Dx is arbitrarielsmall. 

It is shown here that under the same condition there exists 

a P.D. law involving finite maps which achieves the same objective. 

We also solve the exact disturbance decoupling problem (the 

disturbance d has no influence on z) by a law of the type 

u = F1x + F
2
x + F

3
d. It is important to note that we can solve the 

problem with such a law in a situation where the law u = F1x + F
3
d 

cannot do it. 
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IV.3,2 	Regular P.D; Laws and Almost Controlled Invariant  

Subspaces  

Consider again the linear system 

x = Ax + Bu 	 (4.50) 

where 

x E X :_f 	u e 	ifin  rank B = m 

and a P.D. law 

u= F x + F
2
x + v 	 (4.51) 

for some maps F1, F2  and an external control variable v. 	The 

resulting closed loop system is then given by 

(I-BF
2
)x = (A+BF

1 
 )x + Bv. 	 (4.52) 

Note that when (I-BF
2
) is singular and the pencil 

s(I-BF
2
) - (A+BF

1
) is regular, then (4.52) becomes a generalized 

linear system. 	Hence the connection among regular pencils, generalized 

linear systems and P.D. laws. 	This leads to the following definition. 

Definition 4.1: A P.D. law, u = F
1
x + F2x

, 
is termed regular if 

(I-BF
2
) is a singular, map and the closed loop pencil s(I-BF

2
) - 

(A+BF1) is regular for some maps F1  and F2. 

Our next theorem establishes the link between regular 

P.D. laws and almost controlled invariant subspaces. 	It describes 

a holdability property of a "trajectory" in an almost controlled 

invariant subspace V by means of a regular P.D. law. 
a 
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Theorem 4.4: Let V be a given almost controlled invariant subspace 
4 

and let the pair (A,B) be controllable. 	Then there exists a regular 

P.D. law such that the closed loop system 

(_I-BF
2
)x = (Ii+BF 

1
)x 

has the property that the distributional response X with support 

in E belongs to V , VX (0-) e V
* 

a 	- 	b V 
a 

Proof: The proof is a little long and for this reason we have 

organized it by steps • 

Step 1: Decomposition of the state-space 

Consider Va  and its associated L -almost controlled 

invariant subspace V
b,V 	

From (1.8) with K := V 
a
, we have 

a 

Vb,Va  = R  b,V
a 	

V V
a 
	 (4.53) 

Let B c B be any subspace such that 

* 
B=B n Vv a) B 

a 

and consider the subspaces Rb,V and Ra,V obtained through the 
a 	a 

 

sequences (1.12-3). 	Then by Lemma 1.2, it follows that : 

a) 
	

R 
b,V

a 	b,Va
e  R

Va  
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b) n V„ = 0 
b,V

a 	
• 

(4.54) 

Rb,Va AR
a,V

a 
B 

 

R 	.V nR 
a,V

a 	
a 	b,Va  

R 	=R 	eR 
Va  a,V

a 	
a,Va  

* 
R 	n V

Va 
= 0. 

a,V
a 

From the decomposition (1.15) we have that 

* 
V
a 
= Ra,va ® V

va 

and from (4.53), (4.54 a,b) it follows that 

Vb,va = kb,va9 V
va 

c)  

d)  

e)  

f)  

(4.55) 

(4.56) 

since R
V 

c V . 
a 	a 

Since the pair (A,B) is controllable then by Theorem 1.8 

there exist a controlled invariant subspace C and a map 

F e F(..C) such that 
c 

X =9 C 	 (4.57) Vb,va 

and 

Ut(A+BF 
c
)1C-1 = A 
	

(4.58) 



where A
c 

is a symmetric set of dim .0 complex numbers such that 
* 	* 	* 

A
C 
 n A

Z 
 = 0, where A

Z 
 = GE(A*BF)IV,I  (mod RV )], VF E F(Vil  ). 

a 	a 	a 
From (4.56-7) it now follows that 

* 
X= V

v 
eCe R_ 

-b,V
a a 

(4.59) 

which constitutes our desired decomposition. 

Step 2: Definition of the maps F1  and F2. 

We now define the maps F
1 
 and. F

2 
on some subspaces above 

constructed and we shall check later the consistency of the definition 

with the desired result. 

Let q := dim 8 with {bi}, i E q, a basis for 8. 	Then 

b. = Bu,, 
1 	1 

for some u 1 • . 

Also let 	:= dim ARa,Va = dimRa,Va 
(recall that R

a,Va 

is a slidingsubspace)andconsidertheset{r.}, i e 	a basis for 

Ra,Va. 	Thus 	
i
1 , i 	is a basis for AR 

a,V
a 

Define F
s 
: Rb,Va U (see (4.54c)) by 

Fs b1- =111" i E  q 	 (4.60a) 

and 
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F Ar.- = 0 , 
s 1 

E (4.60b) 

Thus 

(I-BF )b. = 0 
s (4.61a) 
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and 

(I-BF 	= Ar. 
s 

Define F2 
 : X U by 

F21 b,V
a 
= Fsl k,Va 

F 1(V
V 

9 C) = 0 . 2 	a 

(4.61b) 

(4.62a) 

(4.62b) 

We now proceed. towards the definition of F1. For this 

let F be a map specified by 

F1C = FDIC 

Fly 	
= F

v
IV
V' 

F
v 
e F(V

V
) 

a 	a 	a 

FlfZ
b,V 

= 0. 
a 

 

Let (P := V„
v 
 9 C. Then in the decomposition 
a 

X 	e Rio  
,Va 

(4.63) 

(4.64) 

we obtain 

Mat(A+BF) = 	A
11 	

A
12 

0 	A
22 

fl 
where A

11 
= Mat(A+BF)1V-  and A

22 
= Mat (A+BF) (mod tP). 

(4.65) 

In the same decomposition (4.64) we obtain from (4.54c) 

and (4.61-2) 
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Mat(.I -BF2) 
I 	0 

I0. 

(4.66) 

E
22 

where dim I = dim 	and E
22 

is a singular map. 

From (4.65) 	and (4..66) 	we see that the pencil s(I-BF2) 

- (A+BF) admits the following representation in the decomposition (4.64). 

MatEs(I-BF_,
2
)-(A+BF)3 = 1sI-A 	-A

12 	
1 

11 (4.67) 

0 	sE22-A22 

The representation (4.67) shows that if A
22 

is nonsingular 

then the above pencil is regular (we shall _show later that the regul-

arity of the pencil, with F defined by (4.63), also implies A
22 

nonsingular). 

Our next step consists of the definition of F1  such that 

the map (A+BF Xmod (P) is nonsingular. 	For this, note from (4.54b,c) that 

Rb,V
a 
= Aic,V

a 
(I)  8  = ra,V

a 
9 T io,V

a 

where R 	is any subspace which yields a direct sum. 
b V ,

a 
Consider the decompositions 

X = 0 e a,V 	b,V a 	- a 
and 

X = 01  e 
ARa,V e8 . 

a 

Let x 6 X be represented in (4.69a) and (A+BF)x be 

represented in the decomposition (4.69b). 	Then 

(4.68) 

(4.69a) 

(4.69b) 



0 B 0 A
11 

A
13 1 

Mat(A+BF) = Mat B = 0 0 (4.70) 0 I A23 

0 0 A
33 

0 83) 

where 	A
11 

= Mat(A+BF)10116  

B 	= Mate n VV 
a 

B
3 

= Nati; 

dim I = dim rZa,v  
a 

It is easy to see that if A
s 

:= Mat (A+BF)(mod VD) then 

As = P2 

I 	A
23 

0 A
33 

(4.71) 

  

for some nonsingular matrix P2  of dim Rio,v . 	For this, let Q and P a   

be nonsingular matrices composed of linearly independent vectors from 

the decompositions (4.69a) and (4.69b). 	Note that 

P = Q 
P
1 
 0 

0 P
2 

 

for some nonsingular matrices P
1 
and P

2 
such that dim P

1 
= dim V

s 
and 

dim P2  = dim Rb  ,V a•  

Hence from (4.70) 

248 



with 

(A+BF).Q = 

A
12 	

:= 

ti 

A 	:= 
s 

 

Q 

CO 

I 

0 

P
1  

0 

0 

P 
2 

A13] 
 

A
23 

A
33 

A11 

0 

A12 

which establishes the claim (4.71). 

Note that dim TZ 	= dim 13 and that B
3 
is nonsingular, b,Va  

Thus the pair (A33, B3) is controllable and hence there exists F
3 

such that A
33 

+ B
3
F
3 is nonsingular. Equivalently, there exists 

— a  
F :

b,v 
 }.0 such that (P AIR 	+PBF) is nonsingular, where 
a 	b,Va. 	2  

P is the projection on 8 along (P 9 ARa.,v  
a 

Finally, define 

F
1 
 = F + F 

and note that 

F1 101 = ;1)10  

249 

F
1 IRa, V = 0 

a 

F11k,V = F 
a 

b, 

(4.72) 
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It follows now from (4.71) that (A-1-13F
1 
 )(mod 	is non- 

singular and consequently the pencil s(I-E1F2) - (A-111F1) is regular. 

Step 3: Geometric validation 

Let 

E := (I-BF
2
) ; A := (k+BF

1
.) 

Wb := Rb,V 	, IP  =V
*
V e C . 

a 	a 

Now, if (sE-A) is a regular pencil with a subspace 

spanned by eigenvectors associated with the finite-zeros and a subspace 

W
b which contains the eigenvectors associated with the infinite-zeros, 

we must have by Theorem 4.3 

a) 
	

X= VU ettl b  

b) X= E 0D 	 W*  9 A_
b (4.73) 

such that 

.17 
A V—  c E 	, kerA 

* 	* 	yc 
EW];)  c AW , Wb 	keri 

We proceed with the verification of items a-d. 

a) It is true by (4.64) . 

b) Note that by (4.62b) 

(I-BF2)cP = 

c)  

d)  

(4.74) 
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Hence 

Let (A+BF
1
) be represented in the decomposition (4.64). 

M4t(A+BF ) 
1 

A11 A12 (4.75) 

0 A
22 

where A
11  

= Mat(A+BF
1 
 )10:  and A

22 
= Mat(A+BF

1
)(mod (P) which is 

nonsingular by construction. 

Hence for Oise Rb,V
a 
' 

we have 

A
11 	

A
12 

(4.76) 
0 	A

22 

since A
22
s # O. 	Also from (4.76) it follows that ker(A+BF ) 

1 

Hence from (4.75), (4.76) 

X = 	V—  ® (A43F1)R ,v 
 a 

c) From (4.62b) and (4.72) 

(I-BF
2
)Vn  = 	= 	(P 

We have already shown in b) that 0:  ker(A+BF
1
). 

d) For any F2  : X .4- U 

ker(I-BF2) c B. 

But from (4.62b), F
2
1(/3 n Vv ) = O. Thus from (.4.61a) 

'a 

0 
	

A s 
12 

A22s  



ker(I-BF
2
) = 8 c R.

JD, V 	
. 

a 

In fact, it can be readily seen from the definition of 

F
2 
that 

Im(I-BF2
) = AR a, V

a 
	 (4.77) 

Furthermore, by (4.54b) 

(A+BF1)Rb,Va 	
a 

(A+BF
1
)R

a,V 
= AR a,V = (I-BF2)Rb,v  

a 	a 

which verifies d). 

Step 4: The zeros of the pencil s(I-BF2) - (A+BF1). 

From (4.77) we have that the number of zeros of the regular 

pencil (sE-A) is equal to dim Ra u  + dim 	We shall check in ,v
a 

the following that the number of finite-zeros is dim VI:  and that the 

number of infinite-zeros is dim Ra,  v 
a 
. 	This will confirm that the 

subspace 	is spanned by eigenvectors associated with finite-zeros 

and that the eigenvectors corresponding to infinite-zeros belong to 

For this, we proceed by proving that 

7C1 (t) = Ra,v  
a 

Ka,V e tip 	
1 

{xiA+BF )x E AR
a 	e 	. 

a 	 Va 

From the definition of F
1 
we obviously have R

aV
9 VIDic Z-1(E). 
a 

 

Now consider the decomposition (4.69a) and let x_= r + r+v with 

r e Rb,V r  EK 	
, v E • 	Then if x e A

-1 
 (E) we must have 

a 	
a,V

a 

252 
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(A+BF )x = Ar + v 
1 	1 	1 

(4.78) 

for some r
1 
E Ra,V  and some v1 E 

a 

From the definition of F
1 
we obtain from (4.78) 

(A+BF
1 	

E AT:a, V e 0:. 
a 

Hence 

(A+BF
1 
 )r = (A+BF

1
)r
2 
+ v

2 
Or 

(Ad-BF
1 
 )(r-r2) = v

2 

for some r
2 

E R
a,V 

and v
2 
e 0:. 	By (4.73b) 

a 

_ 

	

= n and r — r = 0 	 (A,7 q) 
"2 	- 

1 whichimpliesx-E R. ,,and thus A (E) = Ka ,V 
a 	a 

Rai,, eV°. 

From (4.73) it follows that the number of finite-zeros of 

the pencil (sE-A)is at least dim 	To show that it is exactly 

dim Vfl suppose that there exists a pair eigenvalue-eigenvector 

(X,$), 0 # s E W such that 

(A+BF1 
 )s = A(I-BF

2
)s. 

By (.4.77)_ it follows that 
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(A-1-BF1
)s = XAE + Xv, reR,,,V€ 

ao, 
a 

(4.80) 

and from the definition of F
1 

(A+BF1 - )(s-Xr) = Xv. 

Thus by (4.73b) Xv = 0 and s = Ar , so that (4.80) reduces 

to 

xA;. = xpr" 

which corresponds to the trivial equality 

(A+BF
1
)11a,V 

= (I-BF2  )AR a,V • 
a 	a 

We shall now establish that the number of infinite-zeros 

(counting their orders or multiplicities) is indeed dim R 
a,V

a 
 

By Proposition 4.2 we have that the regular pencil (sE-A) 

has 

p:= dimE8ra 1(8)] = dim B n (TZ 	®(A)7 
a,V

a 

infinite-zeros. 	(We recognize that this is a little confusing. 

What we mean is that there are p infinite-zeros of respective orders 

n., i e p, for positive integers ni). 

Let b E B , where 8 is any subspace such that 

8=
*  

8 n" (1) 	. a,v
a 

Then as in (4.78-9) we have that (A+BF
1 
 )b e Im(I-BF

2
) implies 

b = 0 . Thus 8 n 	=n Ra,v  and consequently the number of 
a 

infinite-zeros is p = dim(8 n Ra,v  ). 	It is not difficult to show that 
a 
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the subspace 	 avis equal to the subspace Wa 
 

defined by the 
a 

sequence (4.35). 	From the sequence (1.13) we have that 

Ra,V 
= Rn  ; 	

a 	a 	a 	a 
n (Afe-1 	.13).; R°  = a 	 0 and from (4.35) with 

a 
 

K = Z1(t) = j-
a,v 
Z 	e VI]  = Va e C , Wa  * = Wn; a = ( V- 9 C) n (I-BF2)

-1 
.a 	a 

a r  
(.(A+BF1 a 	a 

)W14-1 1,Wo  = 0. 

Hence as above 

	

R
1
a 
= V

a 
n 	Wi  

a 

and if Wa
u-1 
 =, then since ker F

1 	
K
a,Va 

a 	 a 
= (V

a 
9 C) n (I-BF

2
)-1(Are-l' 

' 

= (V
a 
e C) n (AV-1  + 8) a 

= V n (Ae-1  +3) = Tel  
a 	a 	a 

(4.81) 

Since fea 	a
l = Wu  , u E n, it follows that TZ

a , a V 
= W

a 
and that 

the orders of the infinite-zeros of (sE-A), n
i
, i e p, as defined by 

Theorem 4.3 coincide with the positive integers defined by (2.18) 

with 	n
i 

= dim R 
a,Va i=1 

* 
Let X(0-) E V

a 
 , X(0-) :-= X-1  (0-) + X2 	 - (0-) with X-1  (0-) E VV and _ 	- 	— 

X 03-) e R
a 

„ 	Then by (.3.29) and (3.30) the distributional response 2 	IJ, V 
a
.  

of (.I-BF
2
)x = (A+BF

1 
 )x is given by 

X = X + X 
- -f -s 
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with 	
a-1 

Si-1 i 
x 

	

	= - 	J.  X
2 
 (0-) 

i=1 
t 
v 	„,+ 

Xs 	Xku-),tEN 

where a-I is the largest order of the infinite-zeros , J is a 

nilpotent map and
v 
is a map given by 

L
v 
= (A+BF 

1 	V 
)IV . 

a 

The function X (t) clearly remains in V„
v 
 and by Remark 4. a 
a 

the distribution X
f 
 lies in g

a,V 	
Thus X. e V

a 	0-  
a 

Remarks  4.3:  

1) It should be noted that the controllability hypothesis has 

been used only to find the controlled invariant subspace C and 

therefore it is unnecessary in case V 	= X. 
b,V

a 

2) From (4.66) and (4.75) we obtain 

Isi 	= I sI - A I IsE
22 - A22 1 

and since the pencil (sE-A) has dim 0:  finite-zeros and is regular 

we must have 
IsE22 

- A
22I=const,i 0, which implies that the pencil 

(sE22  - A
22) has only infinite-zeros and therefore A22 = Mat(A+BF1

) 

(.mod 	has to be nonsingular. 	We stress this point to show that 
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the nonsingularity of (A+BF1  1(mod 01) , for F1 
e F(V5) and F

2 
as in 

(4.62), is a necessary and sufficient condition for the regularity 

of the pencil s (I-BF2) - (A+BF
1 
 ). 

3) 	Let F E
a,V

) be a map as in Theorem 1.4c and let 
a 

 

AF 	A+BF, for such a map F. 	From (.1.29) we have that 

Ae-1  + 	= 
AF a  
R11-1 	, U E n. 

a  

Thus the sequence K
a 
is not altered by the change of A 

by AF . 

From the above equality and Lemma 1.2c it follows that the 

sequence S is also invariant under the above feedback transformation. 

Moreover, the sequence Vu  in (1.3) is invariant under the transformation 

A A+BF. 

Thus, by the above considerations, we may replace the map 

A in Theorem 4.3 by AF. 	This leads to a simple visualization  of an 

eigenvector chain associated with an infinite-zeros of the pencil 

s(I-BF
2
) - (A 

F 
 +BF

1 
 ). 

Note from (.2.22) that 

.LeLe...e L 
Ra,V

a 
1 2 	p 

with 
n,-1 

L.
1 
 = b.

1 	AF  bi • +AF
1 	b

i 	
i e 

and span{ b
1
, b..,b} = 	n 

aV • p 	, 
a 

 



From the definition of F
1 

and F2  in the previous theorem we 

obtain 

(I-BF ) 	= 0 

(I-BF
2F1 	F 
)A
j
b. = AF 

i  
b = 	

F +BF1F 
)A
j1

b
i 
 , jen., i€p 

7  	- 

so that the vectors {Aj
F
b.}, iI constitute an eigenvector 

chain associated with an infinite-zero of order n,. 

4) 	The result of the above theorem may be interpreted as a 

way of holding a "trajectory" in a given almost controlled invariant 

• 
subspace, provided that we admit a initial condition for (I-BF

2
)x 

(A+BF
1
)x as specified in the statement of the theorem. 

In the sequel we emphasize some aspects which appeared 

in the proof of the previous theorem and which concern general relation- 

ships between almost controlled invariant subspaces and a P.D.law. 

Proposition 4.3cx.ILet K be a given subspace and let Rb,K =ATZ
a,K

e8 

8 ,i'tb,K  and Ra,K jQ, given by (1.11-3). Then there exist maps F1  : 

X 	U and F
2 
: X U such that 

a) (I-BF„) 	c (A+BF) R 
a,K 

b) (.I-BF
2
) Ia,K 

c (A+BF1 ) 
	

(4.82) 

c) R
a,K 

= K n (I-BF
- 	2 

)-1(.ARa 
 K ) , 
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Proof: The construction of the maps F
1 
 and F

2 
 is identical 

to that shown in (4.62) and (4.72). 	The proof of 14.82a) is 

analogous to that of (_4.73d). 	To see (4.82b) note that 

(I-BF
2  )Ra K 

 c (I-BF
2  )TZb K 	Ra,K 

= A 	= 	 1) ,. 	 ,  

since R30,1‹  D R a,K and ker F
1 

D Ra,K. 	(4.82c) follows from the 

definition of F
2 
and Lemma 1.2d. 	It is interesting to note 

that the sliding subspace Ra,K  in (4.82c) is characterized by 

a pure derivative feedback which is represented by the map F2. 
0 

Let F
1 
and F

2 
be given maps and consider the pencil 

s(I-BF
2
) - (A+BF

1
). 	We show now that the invariant subspaces 

of such a pencil correspond to the controlled and almost controlled 

invariant subspaces associated with the system x = Ax + Bu. The 

statement of the next properties is essentially trivial. 

Proposition 4.4: Consider the (not necessarily regular) pencil 

s(1-BF2) - (A+BF
1
) for certain maps F

1 
and F

2 
and let V be a 

subspace such that (A+BF
1 
 )V c (I-BF

2
)V. 	Then V is a controlled 

invariant subspace. 	Conversely , let V be a given controlled 

invariant subspace. Then there exist maps F
1 
and F

2 
such that 

(A+BF
1 
 ) V c (I-BF2) V. 

Proof:  (A+BF1)V c (I-3F2)V implies AV c V + B and if V is 

controlled invariant subspace then there exists F1  such that 

(A+BF1  )V c V. Define F
2 
so that ker F

2 
0 V. 	Hence (A+BF

1
)V c 

c (1-BF2) V. 

0 
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be a subspace such that (I-BF
2
)W
a 
c (A+BF

1
)W
a
, W

a 
n V = 0. 	Then 

* 
V c V

K 
and W 

a  c  Ra,K
* . 

Now let F
1 
and F

2 
 be maps such that the pencil s(I--BF2) - 

(A+BF1 
 ) is regular and consider the supremal subspace of the 

family (4.32) which is contained in K , i.e. 

V= sup{V c KI(A+BF1)V c (I-BF2)V1. 

We then have 

Proposition 4.5: Let s(I-BF2) - (A+BF1) be a regular pencil for 

some maps F1  and F2  and let K be a given subspace. Let W
a 
c K 
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Proof: By proposition 4.4, V is a controlled invariant subspace 
* 

and hence V c 
VK.  

Note that (I-BF
2
)W
a 
c (A+BF

1
)W
a 
and W

a 
r1 V = 0 imply 

* 
by Theorem 4.3 that Wa  c Wb, where Wb  is defined by the sequence 

(4.36) with respect to E := (I-BF
2) and A := (A+BF1 

 ). 

Also note that B := ker(I-BF
2
) c B and since the pencil 

is regular B n V = 0. 

Since W
a is a subspace associated with infinite-zeros, it 

followsthat(Va =span{ca
i 
 } where the '1. 	are linearly independent . 
 1,3 

and satisfy 

(I-BF
2
)= 0 
wi,1 

(I-BF2)wi,j  = (A+BF1)wi,j-1  

where i e £, .j e m. such that 	m, = dim W
a
. -1 

i=1 



Ex= Ax + SExo  + Bu x0  := X(0-) - 
0,1 

,261 

Consider the sequence (1.4). 	Hence, since 	a B, it follows 

,1 	, 
thatwi,1 
	

K
a 

and if 
wi,u-1

sK
a
-1 

 , then 

LI-BF )w 	= (N+BF )w 
2 i,u 	1 i,u-1 

whence 

W 	E K n (AR 	+ B) = R
u 

a 
U-1  

i,u 	a 

and thus W
a 

R 
a,K • 

IV.3.3 Modal Controllability under Regular P.D. Law 

   

Consider a regular P.D. law as given by (4.51) and the 

corresponding closed-loop system (4.52). 	We then obtain the following 

expected modal controllability property. 

Theorem 4.5: Let the pair (A,B) be controllable and consider 

a regular P.D. state feedback law. 	Let F
2 
: X-)-Ube a map 

such that ker(I-BF
2
) = B c 8, with dim B = 	Then the resulting 

n-t. zeros of the pencil s(I-BF2) - (A+BF1) are controllable. 

Proof: It is well known [4.11, page 100] that the uncontrollable 

finite modes of a generalized linear system 



are the roots of the invariant polynomials (or the finite-zeros) 

of the pencil [sE-Al-B]. 

Now, note that with 

E := (I-BF2) ; A := (A+BF ) 1 

we have 

' 	 I [s(I-BF2) - (A+BF1 
 )-B] = [sI-A:-B] 	I 	0  

(4.83) 

Since the last matrix on the right of (4.83) is unimodular 

it follows that the invariant polynomials of 

[s(I-BF
2
) - (A+BF

1  ) 1 -B] 

and 

[sI-A;7B] 

coincide [4.7]. 

But the pair (A,B) is controllable, which implies that 

the Smith form of [sI-A:-B] is [I;0] [4.11], where I is the 

identity matrix of dimension n. Thus the resulting finite 

modes associated with the closed-loop system (4.52) are controllable. 

Note that the above discussion has also shown that if the system 

(4.52) has uncontrollable modes, then they remain uncontrollable, 

i.e. they cannot be converted into infinite modes. 

It remains to be shown that the infinite-zeros associated 
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sF
2
+F

1 
I 
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with the system C4.521 are also controllable. 	This follows from 

Theorem 3.3, i.e. 

(1-BF2
)X + (A+BF1  ) + B = X 

0 

Remarks 4.  

a) It is interesting to note that we could have applied 

the sufficient condition for the controllability of the infinite- 

zeros given by (3.54). 	Note that 

(I-BF2 
	= X. 	 (4.84) 

The sufficient condition is applicable in this case 

cr,mnial form  of the ainrrillar mars V = 
2 

Consider the subspaces Gib = Kb  	and 	of the Theorem 4.3. 
' a 

 

J := (A+BF
1)WI(I-BF2)I(I-BF2)0)b 

:= Q211 

where Qf : X -+ X is the projection on (A+BF1  )Wb  along (I-BF2)(P. 

It follows from (4.84) and (3.54) that 

<JIB? = W. 

b)  

Let 
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IV. 3.4 Disturbance Decoupling by a Regular P.D. Law  

  

Consider the linear system 

x = Ax + Bu + Gd 	 (4.85a) 

z = Dx 	 (4.85b) 

where 

X E X := En; u E 	d e V := E
s 

; Z e Z := R
t 

. 

The term d in (4.85a) represents an unknown disturbance 

signal and the output variables z are the regulated variables. 

The disturbance decoupling problem (DDP) consists of finding 

a law u = Fx such that the response of the closed loop system. 

• 
x = (A+BF) x + G d x(0) = 0 

belongs to K := ker D, for all signals d. 

Wonham [4.20] has shown that DDP has solution if and only if 

Gc 
	

G • - ImG 
	

(4.86) 

where VK  is the supremal controlled invariant subspace contained in K. 

Willems [4.17] has introduced a relaxed version of the above 

problem in the sense that the regulated variables are only required to 

have L -norm arbitrarily small. Such a problem is called the almost 

disturbance decoupling problem (ADDP) and it consists of finding a 

law u = F x for (4.85a) such that with X(0)=0 for the closed loop system, 



there holds m zmL 	
‹ e m dm , Aft E > 0, j.< p < th, 	It has been - 	— - 	— — 

P 
proven in 4.17] that ADDP has solution if and only if 

G c V b_iK 	 (4.87) 

where Vb,K  is the supremal Lp-almost controlled invariant subspace 

"contained" in K. 

The solution of ADDP requires high gain feedback and to 

obtain a small L -norm for Z we must approximate Vb,K by controlled 

invariant subspaces [4.14, 4.17]. 

A natural question then arises : what can be achieved 

in terms of disturbance decoupling by the use of a regular P.D. law 

such as that of Theorem 4.4 ? 	The aim of this section is to examine 

some aspects of this question. 

Let V
a,K 

 be the supremal almost controlled invariant subspace 

contained in K . 	Then by (1.15) we can write 

* _ 
V
a,K 

= V
K 
e R

a,K 

where R 	is a sliding subspace of maximal dimension in K. a,K 

From (2.15) we can also write 

where 

* _ 
V
b,K 

= V
K 
 e R

b,K 

AR 	e 8 
a,K 

(4.88) 

(4.89) 

and B is a subspace such that 
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= 	n V e 	• 

Let u = F
l
x + F

2x be a regular P.D. law as in Theorem 4.4 

i.e., the distributional response of 

(I-BF1  )x = (A+BF1 
 )x 

* 
belongs to V 	, VX(0-) E V

13, 
 , 

ad< 	- 	N. 

Also, from the proof of theorem 4.4, we obtain the following 

decompositions of the state space 

where 

X  = 	9 Rb,K 

X = 0: 	(A+BF )Rb, , 1 	ic 

Vil = V* 	C 

(4.90) 

(4.91) 

and C is a controlled invariant subspace. 

MoreoVer, for the maps F1  and F
2 

defined there, we have that 

and 

(I-BF2
)V°  = V°  D (A+BF )01  

1 (4.92) 

(A+BF1)R,10,K D (211+13F1 
)1a,K = A%,K = (I-BF2

)R
b,K 	(4.93) 

The above regular P.D. law yields the following generalized 

linear system 

CI-BF2)x = (A+BF1  )x + Gd 
	

(4.94b) 

z = Dx. 
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and Qr  :X 

Hence, 

-1 M 

Let Q
v 

b ,K 

as in 

x = 

: X ÷ 

be the 

Chapter III 	(see 	(3.20), define 

(A-F.BF )x 	x e R 1 	 -bK 

be the projection on l/3  

projection on R
b K 

 along 
, 

the invertible map 

(4.94c) 

along Rb,K  

P. 	Also let 

x
1 
:= Q

v 
x e Vij  and x

2 
:= -Q

r x eb,K
. 	Then by pre-multiplying 

the system (4.94a) by QvM and QrM, respectively, the following 

decomposition is obtained. 

x
1 
= Lx

1 
+ G

1
d 
	

(4.95) 

JX
2 
= x

2 
+ G

2
d 

Z = D
1
X
1 
+ D1x2 

 

where 

L := Mat(A+BF 1 

J = Mat M(I-BF2)1 b,K  

G
1 
= Q

v
MG, 	G

2 
= Q

r 
MG. 

Since we want z = 0, for all possible disturbance signals 

d, it follows that the rational transfer function G(s) from d to 

must be zero. 	From (4.95) it follows that 

G(s) 	R(s) + P (s) 
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where 

R(s) = D (sI-L) -1G1 • 	
-1 1 

and 

P P (s) = D
2 
(sJ-I) 

-1
G
2 
 . 

Since R(s) is strictly proper and P(s) is polynomial, 

it is easy to see that G(s) = 0 implies R(s) = 0 and P(s) = 0. 

Thus, we say that the system (4.95) is disturbance decoupled if 

D
1
x
1 
= 0 and D

2
x
2 
= 0. 

Since ker F
2 
D VI:, it follows from Proposition 3.5a that 

the subspace Vd  c V1], which is influenced by the disturbance is 

the least subspace such that 

(A+BF1)Vd 	Vd  and Vd 	(A+BF1)%.,1(  n G 	(4.96) 

and since Qv  MVd  = Vd  and QvM(A+BF1 
)
kK = 0, then (4.96) is 

equivalent to 

V
d 
= <A+BF

1
1G
1
> 
	

(4.97) 

which is clearly a controlled invariant subspace. Thus, as in the 

proof of Theorem 4.2 in [4.20], we have that D
1
x
1 
= 0 if and only if 

G
1 
 c V

K  . 
	 (4.98) 

At this point we establish a connection with the solvability 



criterion for the ADDP 4s given by C4.87), 

Unfortunately, we cannot ensure that G=
1
c VK  when 

G cV
b K which implies that we cannot guarantee that D1x1 = 0 in (4.95). 

-  

To see this letgEGcVb,K  . 
	Then from (4.88) and since 

ker F1 	
R
a,K 

,'it follows that 

g = v + Ar + b = (I-BF2
)v + (A+BF

1  )i S. 

where 
* 	 - - 

V E V
K' 

r E R
a,K 

and b E B. 

Hence 

Mg = v + r + MS 

(4.99) 

and 

QvMg = v + Qv  Mb E V-j 
	

(4.100) 

M is ac in (Aqdr1) 

From (4.100) we see that. Qv  Mb may not belong to VK, i.e. 

the component of G on 8 gives rise to a certain difficulty. 

The above discussion is the basis for the next theorem 

which gives a condition to achieve exact disturbance decoupling 

by a regular P.D. law. 

Theorem 4.6: Let G c VK 
ATZ
a,K 

for some sliding subspace Ra,K  

of maximal dimension in K and let the pair (A,B) be controllable. 

Then there exists a P.D. law u = F1
x+F

2
x such that the response 

X(t) of the closed-loop system 

(I-BF2
)x = (A+BF )x + Gd 
	x.(0-) =0 

269 
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belongs to K, t E 3 

Proof: Consider the decomposition (4.90) and let F
1 
and F

2 
be 

as in Theorem 4.4. 	Then as in (.4.99) 

* _ 
g= v+Ar = (I-BF

2
)v + (A+BF

1 
 )r, v E V

K' r e R a,K 

Hence 

Mg = v+r 

and since r E Rb K  we obtain 

G1  = Qv  MG c VK 	 (4.101) 

and 

G
2 
= Q

r 
 MG = 

a,K 

From (4.93) and Theorem 3.1 b,c, it follows that 

M(I-BF2)1Za,K 
C 14(A+BF

1
)R
a,K 

and 

JR
a,K

c
a.,K 
	 (4.102) 

where J is as in (4.95). 

The inclusion (4.102) now implies that the response of the 

subsystem Jx2  = x2  + G2d, belongs to R
a K 

(see (3.37)). 	Also 

from (24.105) we have that the response of the subsystem x
1 
 = Lx + G1d, 

belongs to VK. 	Consequently the total response is contained in 
* 

R VK  e 

	

	K. a,K  = Vax 
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* 	_ 
The condition G c V -+ AR ,K is not easily checked 

because there are plenty of sliding subspaces of maximal dimension 

in K, unless the system represented by the triple (D,A,B) is 

invertible (see 11.2.2), in which case Ra 
K 
 , the supremal almost 

controllability subspace in. K 1  is a sliding subspace. 	This 

suggests that for a non-invertible system it is better to start 

the examination of the condition by testing-if 
* 	* 	 * 	 * 	* 

G c V
K 

+ AR
a,K 

 and G n AR
K 

= 0, since R
a,K 

 = R
K 
9 R.

a,K' where  

R
K 
is the supremal controllability subspace in K. Even so, 

it does not seem trivial to continue with the checking of the condition. 

Despite the difficulty above mentioned it is interesting 

to note that by the use of a regular P.D. law we have achieved exact 

disturbance decoupling in a situation where by the use of a law 

u = Fx we can only obtain almost disturbance decoupling involving 

high gain feedback. 

The reader is probably wondering if there is a control law 

involving the derivative of the state which corresponds to the condition 

(4.87). This is the object of the next theorem. 

Theorem 4.7: Let the pair (A,B) be controllable. Then 

G c V
b,K 

 if and only if there exists a law u = F
l
x + F

2
x + F

3
d 

such that the response X(t) of the closed-loop system 

(I-BF
2 
 )x = (A+BF

1 
 )x + (BF3+G)d, X(0-) = 0 

belongs to K, t e E+  and the pencil s(I-BF2) - (A+BF1) is regular. 
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Proof: 	Consider again the decomposition (4.90) and the maps 
* 

F
1 
and F

2 
 of Theorem 4.4. 	Since G c V

K 
AR
a,K 

8  

* _ 
Ari 	r 	11 1 1 	1 1 K' i a,K 

for some set of linearly independent :vectors {d.}, i e s, such that 

span {d
i
} = D. 

Define F
3 
: D U by 

1 	
E S. 

1 (BF3 	G)d. = vi  + 
1 

whence 
* 	_ 

Im(BF
3
+G) c V

K 
9 R a,K .  

The rest of the "only if" part is identical to the proof 

of Theorem 4.6. 

By hypothesis there exists a law u = F1x + F
2
x + F

3d such 

that the closed loop response with X(0-) = 0 satisfies Z(t) = 

DX(t) = 0,.t > 0. 

Since the pencil sCI-BF2) 	(A+BF1) is regular, there exists 

byTheorem. 41.3,sul?sPacestP andW.such that 

e Glb 	X; 	E e b - X 

(A+BF
1 
 )Vp  c (I-BF2 	' )01  - (.I-BF2

)W
b 
c (A+BF

1
)W
b 

Then 



Let M : X-÷Xbe the usual map defined by 

2)x 
 

M
-1
x = 

x e 

 

A+BFi )x x e 

  

Let Q
v 
; X 03  be the projection on V13  along Wb  and 

	

Qw : X 4.  Wb be the projection on Wb 
along 03. 	Then pre-multiplying 

the equation 

• 
(.I-BF

2 
 )x = CA+BF)x + (BF3+G) d 

respectively, by Q
v
M and Q

wM we obtain the following decomposition. 

• 
x
1 
 = Lx

1 
 + G 

1
d 	x

l 
= Q

v
x 

	

Jx = x
2 
+ G

2
d 	x

2 
= Q

w
x 

where 

	

J = M(I-BFn)lW ; 	L = M(A.+BF )103  
b 	1 

G
1 
= Q

v
M(BF

3
+G) ; G

2 	
Q
w
MtBF

3+G). 

Since z(t) = 0, t > 0, we must have 

V := <LIG1> c K and W := <JIG2> c K.  

and note that V c 03  and W c Wb. 
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Thus 

Q
v
M Im(BF3+G) 

Q
wM Im(BF3 

 +G) 
• 

From (4.103-4) 

M Im(BF
3
+G) 

c V <> M Im(BF
3+G) c V 9 Wb. 

c W <=> M Im(BF
3
+G) c 0:  ga W . 

it follows that 

c (V 9 W
b
) 	n (V 0  e W) W) 

= W + (V 9 Wb  ) n 03  = W ®V 

(4. 

(4. 

(4. 

103)  

104)  

105)  

since W
b n 	= 0 and V c 0:  

From (4.105) and the definition of M it now follows that 

Im(BF
3+G) c (I-BF2

)V + (A+BF
1 
 )W. 

By Proposition (4.4), V is controlled invariant and thus 

V c V
K
. 	By Proposition 4.5, W R

a,K 

Therefore 

* 
Im(BF

3
+G) c (I-BF2)V

K 
+ (A+BF )R 

1 a,K 

whence 
* 	* 

	

ARa,K  + B 	V 
13,K ' 
	 0 
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Remarks 4. 

1) The reason for the controllability hypothesis in Theorems 4.6 

and 4.7 is the same as that mentioned in Remark 4.3_. 

2) It should be noted that the proof of the "if" part of Theorem 

4.7 is applicable (set F
3 = 0) to the situation of Theoreall4.6. 

In other words, if we achieve exact disturbance decoupling by a 

regular P.D. law, u = F1x + F2x, then G c VbrK  . 	However, as pointed 

out before, we cannot ensure the converse statement. 	It should be 

noted that the role of the feedback map F3  is to eliminate the component 

of G on 	(mod V
K
). 

3) It is interesting to remark that the condition G c V 
b,K 

an 
corresponds to4other type of control iaw which achieves exact distur- 

bance decoupling. 	Willems [4.19] has shown that the law 

n 
u = 	F d(i)  + Fx 

i=1 

(4.106) 

attains the same objective, i.e. exact disturbance decoupling from 

d to z if and only if G c 
Vb,r 

The law suggested in Theorem 4.6 is somewhat easier than (4.106) 

since it avoids the measurement of derivatives of the disturbance. 	But, 

of course, there are practical situations where the disturbance is 

unmeasurable and neither of such laws is applicable. 
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4) 	1,f we consider the law u = F
1
x + F

3d then the disturbance decoupling 

problem is solvable if and only if ImG C V
K 
 + B (see exercise 4.10 in 

[4,20]). 	SinceV161( 	VK 	B it follows that the law introduced ,  

in Theorem 4.7 can solve DDP in a situation where the above law cannot 

do it. 

IV.4 NONSINGULAR P.D. LAWS AND ALMOST CONTROLLED INVARIANT SUBSPACES  

Thus far we have dealt with P.D. laws for which the map (I-BF2) 

is singular and the pencil s(I-BF
2
) - (A+BF

1
) is regular. 	By using 

this type of law we have been able to obtain exact results in problems 

Involving almost controlled invariant subspaces. 

Henceforth we consider the sequence of controlled invariant 

subspaces (cintroduced in [4.14] such that Ve  €.4.13 Vio,K 	It is shown 

• that there exists a sequence of P.D. laws, u = Fix + F
2ex, such that 

,-1 
"(I-BF

2e) (A+BF1
)V
e 	

V where (I-BF
2e) is nonsingular. 

We shall see that F2e 	F2  where F2  is as in Theorem 4.4. 	In this 

sense the regular P.D. law defined in Theorem 4.4 may be regarded as a 

limit case of the above sequence of P.D. laws. 

The following definition simply establishes a terminology to be 

followed in the text. 

Definition 4.2: A P.D. law, u = F
1
x + F

2x, is termed nonsingular if 

(I,BF2) is a nonsingular map for some F2. 

We first show some simple properties of invariance under a non-

singular P.D. law. 

Let G be a transformation induced by a nonsingular P.D. law, i.e. 



G : CA,B) 	
-1 

C(I-BF
2
) CA+BF

1
1 	

-1 
, CI-BF

2
) B) And denote 

A := (I-BF
2
) 
-1 

 (A+BF1  )- 

Proposition 4.6: Let (Pu  = 8 + A8+... AuB, u 6  n. Then (I)
u 
is 

invariant under G 

Proof: First note that 

(I-BF
2
)
-1  (8 	T) = 	T 	 (4.107) 

for any subspace T. 

Hence 

, n 	-1n  
(I-BF

2
)
-1 

 B + A(I-BF
2
)
-1 

 o+...+All(I,-BF
2
) o 

- (I-BF
2
)
-1L+ A(...(13 + AB))...] 

= 	(A+BF
1 
 )B+...+(A+BF

1  )
u  

+ AB+...+ Au 	
= 	

0 

Corollary 4.3: 	The reachable subspace <AIB>  and the controllability 

indices of the pair (A,B) are invariant under G! 

Proof: The statement about <AIB> follows from Proposition 4.6 and the 

statement on the controllability indices follows. from the fact that 

such indices are determined from dim (15
u 
[4.20]. 	0 

The above invariance property can also be extended to the 

uuuu 
sequences of (almost) controlled invariant subspaces V, R

a
, Su u R , 
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u e n, defined in (1.3-4) and (.1.9-1). 

Also consider the fixed map At  := ((A+BF)1V0(mod RK), VF e F(VK ) 

(see Section I.2,5,for an interpretation of such map) where K is a 

given subspace. 

u 	
u u Proposition 4.7: The sequences V 	R

a, S,R,uenand the map 

At  are invariant under G. 

Proof: 

a) 	Invariance of V 

Consider the sequence 

Vu  = K n H,-1 (Vu-1+ (I-BF2)-18); 

By (4.107) it follows that 

^ vu =K  n A-1(Vu-1 	B) . (4. 108) 

Then from (1.3) and (4.108) we obtain V
1 
 = V1  = K. Suppose 

Vu-1 
„ 

that v 	= v 	. 	Hence 

V11  =:{x e KI(±-BF2)-1(A+BF1 	• 
,)x 	veC/11-1, bel3f} = 

 

Vu  
u -1 	u „ 	„ 	„ which implies Ax E V 	13, so that V c v . 

Now let x e Vu. 	Then, Ax = v+b, for some v E V
u-1 

and some 

b e 8. 	Hence 



(A+BF1)x = v + b(  := BF +b  b vF 
1 / 1 

279 

and 

	

(A+BF
1 
 )x = (I-BF' 	2 - 

)(v+b) 

for any F2  such that (I-BF2) is nonsingular and where b E B is given 

by b = (I-BF2)
-1

(bii-ElF2v). 

, 	,  . 
Thus (I-BF

2
)
-1

(A+BF
1
)x 	V

A21 	
B, i.e.,vA1 

	u 
a v and the result 

follows. 

The invariance of the sequences Ra
u
, Su, R

u 
 , under G is 

proved in a similar way. 

b) 	Invariance. of At. 

* 	* 
Let F

a 
be a map such that (I-BF2

)
-1
(A+BF

1
+BF

a
)V
K 

a V
K 

and 

denote A
Fa 

:= (I-BF2)
-1 

 (A+BF1
+BF

a
). 	Analogously, let F

b 
be a map 

	

* 	* 
such that (A+BF )V c VK 

and denote A 	:= A+BF
b 

 . 

	

b K 	F
b 

 
* * 

Also consider the maps Al., and AF 	induced 	in VK/RK  

	

* * * 	a 	b 
and let P : V

K 
-. V

K
/R
K 

be the canonical projection. 	Then 

AF  X - AF  X = PAF  x - PAF  x = P(AF  x - AF  x). 
a 	b 	a 	b 	a 

Let (I-BF
2
)
-1  Ax := w, which implies w = Ax + BF2

W. 

Hence 

-1 
P(A

F  x-A x) = PEB(F2
W-F

b
x) + (I-BF

2) -= 03F x+BF a
x flE P (Bn V ) by using 

a 
F
b 

 

(4.107) and by noting that (AF  -AF  )x E yic  
a b 

* 	* 
But P(&V

K
)c PR

K 
= 0 and the claim follows. 	0 
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Corollary 4.4: 	Let K := ker C. 	Then the set of transmission poly- 

nomials of the triple (C,A,B) and the set of infinite-zeros of 

-1 
C(sI-A)B are invariant under G. 

Proof: By definition (.see 11.1.4), 	the set of transmission poly- 

nomials of (C,A,B) is the set of invariant polynomials of the map 

A . 

The set of infinite-zeros of C(sI-A)-1B is invariant under G* 

r$ +V ) 
K 	infinite-zeros (see Definition 2.3) with 

KS 
 u 
+VK orders determined from dim 
VK 

 

[4.57. 

  

The above results have shown that a nonsingular P.D. law 

preserves all important structural features of a pair (A,B) relative 

to a given subspace K. 

IV.4.1 Approximation of Almost Controlled Invariant Subspaces  

Let K be a given subspace and consider the supremal L - 
P 

almost controlled invariant subspace "contained" in K and denoted, 

as usual, by VID,K  

Trentelman [4.14] has constructed a sequence of controlled 

invariant subspaces V which approach V
b,K 

 as e 0. 	In the 

approximation process the state feedback maps Fe  for which 

)Va  c V are such that F 6-+00. 	This is an intrinsic property 

of the almost controlled invariant subspace Vb,KI  namely, one requires 

high gain state feedback to approach it. 

since there are dim 
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In this section we show that the subspaces V6  can be made 

invariant under a nonsingular P.D. law of the type (I-BF
2e
)
-1 
(A+BF)V 

E  

c 
e. The main difference with respect to using state feedback 

only is that the sequence of derivative feedback maps F
2e 

converge 

to a finite map F2. This can be useful in application in which one 

wishes to avoid high gain state feedback. 

To facilitate the notation we now denote the state feedback 

map by F and not by F1  as we had been doing previously. 

Let K := ker D. 	From Section 11.1.4 we have that 

* * * _ 

,K V 	=V
K  R

b,K  =V K 	b ® R 	. (4. 109) 

From (2.23) and Definition 2.3 it follows that 

Rb,K =Mi e 	eMp e M
p+1 e...eM 

q 
	 (4. 110a) 

VK + B 	
-1 

where q = dim 	is the number of infinite-zeros of D(sI-A)S. 
VK  

From (2.22-4) we also have that 

ni  

M. = bi + AFbi +...+ A
F bi liEp (4.110b) 

M. = b. , 	i E{p+1,...,q} 	 (4.110c) 
1 	1 

where p = dim(8 n K) and 8 is a subspace such that 

* 
B=8eBn V K  • 

In (4.110c) span {bi} = B where 
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and in C4.110b) F is defined on R 	(see Theorem 1.4) with 
a,K 

Ra,K. = L1 e L2 
e...e L

p 

n.-1 

	

L, 	, = b + A b +...+ A 1  b., 	i E p. 

	

1 	F i 	F 	1 

* _ * 
Since V

K 
n R

a,K 
 = 0 we can define F on V

K 
so that 

* 
A
F
V
K 

V
K 
and 

* 
cCAFI VK] = Ar  U A Z (4.112) 

* 	 * 
where A

r 
 := GEA

F
IR

K
] is a pre-specified symmetric set of dim R 

K 
* 	* 

complex numbers and A
z 
 := GE(A 

FN  
IV,)(mod R

K 
 ).] is fixed for all 

F e F(V
K
). 

Let A. 
I,E 

{A. .(E)}, iEq be a set defined by 
7,1  

} 1,E 	j,i 	 1 

A. 	:= {A
1,i(e)}, iEfp+1,...,q1 1,e 

such that A. (E) is a real number with IA. (E)I ---- 
7,1 	 Jr1 	e40 

Also let A
c 

be a symmetric set of n - dim9:1),K  complex numbers 

such that A n A = c 	z 

We then obtain : 
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Theorem 4.8; Let the pair (A,B) be controllable and consider the 

stbspacESV. viRb K 
and the set A. , i E q, A , A and A above 

I,E 	c r z 

defined. 	Then there exist 

a) a sequence of controlled invariant subspaceSVE  such that 
* 

V
E E40 Rb,K 

(which implies V
e 	N e÷31 
9 V, --÷ 	v N b ) , 

b)  maps F and F
2e E 

--÷ F
2 
 such that (I-BF

2E
)
-1 

 A
F

tf
" 

c V , 
4-0  

q , 
6[(I-BF2E )

-1 
 A
F 
IV
e 
] = iU1 Ai ,E  and (I-BF2)Rb,K.0 AFRb,K. 

= 

Morever 

q 
6[(I-BF

2E
) lA

F 	 e 
uA.

I 	
uA

c 
 uA

r 
 uA

z
. 

,  

Proof: This involves two steps: 

i) 	Definition of the map F 
* 

Let F be defined on Ra,K  and also on VK  so that (4.112), holds. 

As in (4.68) we can write 

(4. 113) 

where by (.4.110-111) 

n 

Rb,K 
, 	13 9 spanfA

F
1  bit, i E p. 



Since the pair (AIB) is controllable, then by Theorem 1.8 

there exist a controlled invariant subspace C and a map F
0 
 such 

that 

Xe C 
Vb,K 

and 

af(A+BF)1C] = A
c
. 

Let FIC = F0IC and note from (4.109) and (4.113)that we obtain the 

following decomposition 

X = 	e Ra,K e b,K 

with 

l)]  :- V 	C . 

Note that we have not defined yet F on RbK. Thus, as 

in Step 2 of Theorem 4.4, it follows that F can be defined on 

so that P Ark & , is nonsingular, where P is the projection 

on 8 along Pi a.,K  e 	This implies (see (4.73)) that 

X = 	t)]  e 
AF 
Rb,N v. 
	 (4.114) 

The reason for the above definition will become clear in the 

next step. 

Step 2: Construction of Ve  and definition of F2e. 
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and consider vectors v. (E) defined 
7,1  X. .(e) 3,1 

285 

The sequence of subspace VE  used here is similar to that 

constructed in [4.14]. 

Leto.(e) .- 
,i 

by 

v. 	,(_E) := (1-6j i (6)AF 
 ) 1A

F3 
v.-1,i (6);v1,i (6

) := (r- 1,i (E)A.....e)
-1

b. 
J,I   

(4.115a) 

for iEp, jE{1,2,...,ni+1} and 

v
1i

(e) := (I- 	.(e)AF )-1 b., 	. 	(4.115b) 

Notethat(1-6—(6)2k
F
)isinvertiblefork5  — (6)1 ÷ 0 oura 

7,1 	7,1  

v (e) 	A7-lb . Fi 
e4i.) 

Furthermore, for e sldficierltIYsrrall, thel/ectorsv.AE  ) 
3,1 

introduced in (.4.115), are linearly independent (See [4.87 on convergence of 

subspaces). 

Thus, let 

R. 	:= span [v. .(e)1 , i e q 
3,1  

and 

V := R 	e...$ R (e). 
1,6  

Note that Ve is a subspace spanned by real vectors, since 
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3, 
(E). is Teal, and that Ve 	,N u  = M1  0.„0q  (see (4.110)). •  

It has been shown in [4.14] that Ve  is a controlled invariant 

subspace. 

For e sufficiently small we can write 

X = cP e V
e 

. 

Define F
2E 

: X U by 

OF
2E
v
1i

(E) = b. , i e q 

F2e v. .(e) = 0, 	i e p, j e{2,...,ni+1} 	(4.116) 
3,1 

F
2E

1 	= 0. 

From (4.115 - 116) we now obtain 

and 

(I-BF2e )v1,i(e) = (S1,i(E)AF  vl,i(E), i e q 

(I-BF)_v, .(e) = S. .(e)A v 	(e) + A v 
ze 3,1 	3,1 F j,i 	F j-1,i' 

(4.117) 

i e p, j e{1,...,ni+1)}. 

Assume for the moment that (I-BF2E) is nonsingular. 	Then 

from(4.116-117)itfollowsthatinthebasis{v.,(e)} 
3,1  

Mat[(I-BF ) 1A 12. ] M. 
2E F 1,E 	IE 



where 
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u1,1(E) (E) U (E) 	ui 	) n.+1,1(E  1,1 	2,1 
.1 1 0 

	

u2,2(E) 	
u 
n+1,2(E) 
i 

 

0 	0 

1 
. 

0 	0 	u 
n +1,n.+1(E)  

1 

ui 	(E) = (-1)
j-k

X. .(E) 	Ak,i
(e) for k < j 

j,k 	Jil 

U. . = A. .(e). 
J 13 	J,1  

Since the subspaces R, 
I 
 , iEq, are independent it follows 
,E 

„ 
(I-BF, )

-1 
 AvcV 

zE 	F 	e 

q -1 
) A IV 	= U A 

2€ F e 	i,e 
i=1 

Also, from the definition of F and F
2E

, it follows that 

	

(I-BF
2e
) 
-1 

 A
F 	

C 

G[(I-BF
2E
) 1A

F
IA =AC  u A u A 

	

r 	Z 

which establishes the claim on the configuration of eigenvalues. 

Since v(e) 	b., it follows that F
2e 	

F
2 
such that 

E4-0 

M:= 
1,E 

with 

that 

with 

with 



(.E-BF
2 
 )b = 0 

• 
	e q 

and 

j-1 
F
2
A
F 

b
i = 0, i E p 	

j e{1,...,ni+1} 

so that 

(I-BF
2 
 )R10  -cAR 

	c AF ,K 	F a,K 	F ,K 

It remains to show that (I-BF
2e) is indeed nonsingular. 

From (4.116) it follows that 

Im(I-BF
2e
) = V

1 
 + (V

2 
E0 V0) 	 (4.118) 

where 

(E)  
} 

 
V1 	 1,i 	1 	ieq  

V2  := span{v. 	 (e)}, i e p, j e{2,...,n +1}. 
3,1  

From (4.115) we obtain that 

V
1,i

(e) - b
i  = 
	.(E)AF v1,i (E), i E q 

and 

v—(6)=Alf.(E)+6..(E)211v..(E),iep,je{2 } • 3,1 	F j-1,1 	3,1 	F 3,1 	1 

(4.119) 

	

Since span{A
F  v. (E)} 	

span{A
F
b
i  } 
	it follows that 3,1  

e40 

for E sufficiency small the vectors{Av
j

(e)} are linearly independent 
F,i  

and also independent from 	(see (4.114)). 

Therefore the sum in (4.118) is a direct one, i.e. 

288 
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so that (I-BF
2e

) is nonsingular 

0 

Comments: 

1) The theorem also holds if the sets,iEpare taken to be 
If e 

setsofn.-1 1
4 symmetric complex numbers. 	In this case the vectors 

v, .(E) shown in (4.115) are in general complex. 	In order to 
3,1 

avoid the definition of complex feedback maps, Trentelman. [4.14] has 

suggested a nice procedure to compute real vectors v, (e) from the 

vectors v (e). The only modification in the proof of the theorem .  

is that the maps F
2E 

are now defined on the real vectors 0j,1 .(e). 

2) Theorem 4.4 may be considered the limit case of Theorem 4.8 

in the sense of convergence of the maps F F and V 
e4101 

g
b,K • The action of the map F defined in Theorem 4.8 

is entirely analogous to the action of the map F
1 
 of Theorem 4.4. 

Note that if we set d. .(E) = 0 in (4.119) then F2E  is replaced by 
1,D 

F
2 

with ker(I-BF
2
) = 8 and Im(I-BF

2) = AF 
 R 
a,&  

m 	0:, as in Theorem 4.4. 

It is not difficult to see from Theorem 4.4. and 4.8, Corollary 

4.4. and Lemma 2.2. that the strictly proper transfer matrix 

G (s) = D(sI-(I-BF
2e

) - lAF) 
 -1 

 CI-BF
2E
)
-1

B 
p 

haspinfihite-zerosofrespectiveordersn.+1, i-E p, and q-p 

infinite zeros of order one (see (4.110)), 
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3) 	We have not considered the distributional convergence of 

the system under the nonsingular P.D. law of Theorem 4.8 to the 

system under regular P.D. law of Theorem 4.4. This remains to be 

worked out and we suggest the reference [4.4] for a good analysis 

on a related subject. 

A similar result holds for the subspace V 	the supremal 

almost controlled invariant subspace contained in K . 

Let A. 	:= {X. .(e)}, i 	p, j e n., be a set of real numbers 
1,e 	3,1 	-1 

such. that. 1A.. .(E)1 -4-  co 	and let A be a symmetric set of n-3, 1 E-K0 	C  
* 

dim V 	complex numbers such that A In A = (I) . 	Hence we have : 
a,K 	 c 	z  

Theorem 4.9: Let the pair (A,B) be controllable and consider the 
* 

subspacesVa,K, R 
a,N.  
, ancithesetsl,i e p, W 

C 
 , A

r 
 and A

z
. 

1,e 	-  

Then there exist ; 

a) a sequence of controlled invariant subspaces Ve'such that 
* 	* 

V
e e -* 

4- Ra K (which implies V
E 
 e 

VK €40 
 V 

Ka 
 ) . 

0 	,  

b) maps F and F2E 
E4  
-
0  F2 

 such that (I-BF2E )
-1 
 Av F"e cVe, 

-1 	if/ 1 	
P ,.., 

CECI-BF
2e
) A

F
Iv
e
J = 

i 1 
u A. 	and (I-BF

2
)R
a,K 

a  A
F
R
a,K = 

1,E 

Moreover 
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-1 	P 
<(I-BF ) A] = u A. 	uA uAnA. 

2E 
F  a..=1 i^E c r z 

Proof: The subspaces Ve  and the maps F2eare constructed identically 

to those of Theorem 4.8. 

We shall just point out a fact about the definition of F. 

By Theorem 1.8 there exist a controlled invariant subspace C and a 

map Fc  such that 

X 	Va,K e C 

and 

crE(A+BF )10 - X. 
c 	c 

From Theorem 1.4 we have that 

RRu := B. 19 A 8_ e ... 9 Au-1  B , for some u e n 
a,K 	a 	F 

where 
{B.}, 

 i e u is a chain in B and from the proof of such 

a theorem B
1 
= B n K. 

By Remark 1.1b we have that F need not be defined on 

-1, 
A
F 

o
u
. 	Thus, analogously to step 2 of Theorem 4.4 consider the 

following decompositions 

X = )3  e Ru-1  9 AF-lB 
a 	u 

X= 0]  9 AF Rau -2  

where 

Ain tr-  •- = VK 9 C. 
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By using identical arguments we have that F can be defined 

on AF-1
$u 

so that P
B1
(A+BF)IAF

u-1 
13u  is invertible, where P is the 

1 
projection on B

1 
along VLI  ® AF 

a  
R
u-2

. 	This implies that P 	A IR 

a,K 
F ad<  

is nonsingular and then as in (4.73h) we can write 

X = 
F a,N 

Let 	F be defined on R
a,K  as shown above. Further, define 

F on V
K 

so that (4.112) holds and also FIC = F
c
IC. 

The rest of the proof is identical to that of Theorem 4.8. 

0 

IV.4.2 Almost Disturbance Decoupling by a Nonsingular P.D. Law  

where 

Consider again the linear system 

x = Ax + Bu + Gd 

z = Dx 

(4.120) 

x e X ;= En; U e U := 1mi  d E V := Esi z e Z 	• 

The almost disturbance decoupling (ADDP) by state feedback 

has already been introduced in Section IV.3.4.(ADDP) requires a 

state feedback map Fe  such that in the closed loop system with 

x(0) = 0 there holds d 
	

< 6  II ENL • 



Let K := ker D. 	If Im G c V
b K 

 then (ADDP) is solvable 
, 

and the state feedback map Fe  involved_in the solution is such 

that F 	co . FE e40 

The main objective of this section is to show that if 

Im G 
cVb,N  

, then we can also use a nonsingular P.D. law to achieve 

the same goal, i.e. II ZII < e IL IL 	The main difference in using 
P. 

a nonsingular P.D. law, u = Fx + F2Ex,  is that the maps involved in 

the solution are such that F is finite and F 	F , where 
2€--O 2 

F
2 
is also a finite map. 	Such a result is expected in view of 

Theorem 4.7 on exact disturbance decoupling by a regular P.D. law 

and, in view of Theorem 4.8 on the approximation of V
b,K' 

 by making 

use of a nonsingular P.D. law. 

We first recall a lemma stated in [4.14]. 

Lemma 4.2: Fix 1 < p < co. 	Suppose there exists a sequence of state — — 
A 

. . 	 F t 
feedback maps Fe  such that II De - 	GilL

-4- O. Ei. 	Then (ADDP) is solvable. 
1 u 

Proof: Since the L -induced norm of a convolution operator is bounded 
P 

by the L1  - norm of its kernel 

A 
F t 

	

< 	De -€ GIL 	II CjI IILp  •• 

	

LP — 	1 
0 

The above lemma shows that (ADDP) requires the L
1
-norm of 

the closed loop impulse response to be arbitrarily small. 

We now introduce a modified version of (ADDP) which makes 

use of a nonsingular P.D. law and which we shall denote by (ADDP)°. 

Definition 4.3: For fixed 1 < p < co the almost disturbance decoupling 

in the L
P 
-sense, (ADDP)°, is said to be solvabe if VE > 0 there exists a 

nonsingular P.D. law, represented by the pair (F,F2e), such that 

293 
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in the closed loop system with X(0) = 0 

	

IIz IIL E  II  d 	• 

Let A := (I-BF
2e  )(A+BF). We then have the following 

result analogous to that described in Lemma 4.2. 

Lemma 4.3:  Fix 1 < p < co. 	Suppose there exists a sequence of 

nonsingular P.D. laws represented by the pair (F2e,F2)  such that 

A t 	
-1e 	(I-BF

2e) 
I'D . 	E 	G II 	4.  L €40. 	Then (ADDP)°  is solvable. 

Proof: Identical to that of Lemma 4.2. 

The following definition is also- needed: 

Definition 4.4:  For e > 0, let Am  := 1(e),...,Xk(g)/ be a multi- 

plicity setsllchthat is realfXAE) = X
3  A E) := X(e) for i j e k. 

We shall say that Ae is a set of infinite root loci with common 

growth a andasymptotic direction X in 1, if there is a real a > 0 

such that eaX(E) 	X, whenever X(c)eAm. 
E-}0 

Let M be an almost controllability subspace described by 

M = b e A
F

k -1
b 

and define the following vectors 

v.
1 
 (e) := (I- 1 	

AF  )
-1 

 A
F 
 v. 	, v

1 
 (e) := (I 1 

AF)-1b 1-1  

	

X(e) 	 X(€) 

where X(E) e 
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LiEtVE :=Spar1{1.7.(E) }, i E k. 	Then as in the proof of 

Theorem 4.8 we have that V —0- M and that there exists a sequence of 
€40 

derivative feedback maps F2e  such that 

„
E  

(I-BF
2e  )

-1
Av 
F 
	c V 

with 

0  
MatE(I-BF

2e
) 
-1 
 A
F 

I V
E 

where 

= M
e 

u
1,1

(e) u2,1(E) u 
k,1 (E)  

• 
0 u

2,2
(e)  

uk,2(c)  

0 0 
Me:= 

0 0 u
k,k

(E) 

with 

U. Je0 	(r-1)
i—j Xi—j+1 	

for j < 1,3 

U. (e) = X(E) 1,1 

Let IE  := diag(u11(e),...,ukk(e)) and let Ne  be the nilpotent 

.matrix defined by N e := M E  -I E 	e . Note that Nk  = 0. We then have the 

following lemma: 
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Amy fF -er 	0 AF  . 	.k 2  c 	D. f Rem, 

Lemma 4.4: 
I t 	. 	. 
e e  t3  11

e  
3  v. (e) 	--+ 0 , for i e k j e{0,...,k-1} e-)"0 

  

p 

and 1 < p < 

Proof: This result is proven in C4.14 , Lemma 6.2, 6.3]. 

The next lemma establishes that the L -norm of the closed 
p 

loop impulse response in the direction of the vectors v.(e), i e k, 

can be made arbitrarily small. 

Let A := (I-BF
2e
)
-1

A
F
. 	Hence 

1_ 
Lemma 4.5: 	Assume that b 9 A

F
6 0...9 AF-2b c ker D. 	Let A

m 
be a 

setasgiveninDefinition4.4.LetF2e andv.(e) as described above. 

Then for i e k. and all 1 < p < cc 

A t 
II De e  v. (g) 	0. 1 L p e4-0 

Proof: For Ie and Ne as previously defined there holds 

	

I 	N = N I 
E E e 

which implies C4.2T 

(IEE)t 	I t Net 

	

e 	= e 

Thus 
Ae 1 

 

t 	Met 

	

e 	V.(0=ev.(e) 

Ie
t (I+tN +... 	

k-1 
N
k-1

)v. (s) . 

	

= e 	e  
E 

By Lemma 4.4, the result follows. 

(4.121) 
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Comments: 

1) Note that the commutativity in (_4.121) plays an important role. 

It is for this reason that we have chosen the rather poor multiplicity 

set AE. 	In [4.14] (see Lemmas 6.2 and 6.3) the set A
e in Definition 

4.4 is replaced by the more general set A :={A.
1
(e),...,X

k
e} where now A is a a 	 AE 

set of k complex numbers, eaX.(E) 	A., i e k, and, 

apartfromthesymmetry,wecanchooseX.( 
	74  e) 	X (e)' for i 	j. 

In this case the elements of. the matrix M are given by 

7u. 	(E) = (-1)i-  X.(e)...X.(e), 	for j < i 

	

1,3 	1 	3 

u. 	 e 	.(E)  

	

1,1 	1 

and it is easy to see that if I := diag(X
1 	A

k
(e)) with X (e) 

X .(E), i 	j,and 1\1,  := M,  - I,  then N I and I N do not coltmute„ c 

This seems to show that the asymptotic configuration of eigen-

values (as for example, that given by Definition 4.4) in the closed 

loop system is important to achieve the result of Lemma 4.5. 

2) Lemma 6.3 in 4.14 states that, relative to An' , there exists 

a sequence of state feedback maps Fe  such that 

A
F t 

II De ev.a. (E)11L  -- 	0 	1 < p < co ..._ 
p e--0 

.1 



29.8 

Nallereasusto1221
F  
...A, + BF and F is a high gain map such that 
•  

A
F  VE 

 cVwith aEA
F 
 IV

e 
 =, Am  . 

Lemma 4.5 has shown that we can attain the same objective, 

intheserise that(e)IL e_046 0, by either using the 

high gain operator A+BFe(Fe 	co) or the operator (I-BF
2E
)
-1

A
F 

where F is finite and F
2E 
	 F2, where F2  is also finite. 	In 

any case we can choose A(E) e Ae to go to - 00  along any real asymptote X. 

The next theorem is a combination of the results obtained in 

Theorem 4.8 and Lemma 4.5 and it is a key one for the solution of (ADDP)°. 

Theorem 4.10: 	Let (A,B) be controllable and consider the subspaces 
* 	_ 
V 	,R 
b,K b,K 

Let A , A and A be as in Theorem 4.8 with A
c 
cC c r z  

,m For i q, let 4. 	beamultiplicitysetofh,-F1 infinite root loci 
I,E 

with common growth a. and asymptotic direction A.- in f - . Then there 

exist 

a) 	a sequence of controlled invariant subspaces V
e E40
-4-  V 

b) maps F and F
2E 

—4- F
2 
such that (I-BF

2E
)-1 A

F
v
E 
c V e 

e4-0 

q  ,„ 
e E 

U[I-BF2e )
-1 

 A
F 
 Iv I = u AT and (I-BF

2
)k

,K 
 c A

F
R
a,K 

i=1 

-1 
Let A := (I-BF

2E 
 ) AF. 	Then for such maps F and F e  : 
- 

A t 
a  D 	Vb,KIILp -'.--4- 	1 < p <€4,0  co 

d) 	6[A ] = U A 	uA uA uA 
i=1 

q  m 
1,E 
	 • 



Proof: Items a, b and d have been proved in Theorem 4.8. 

It is also clear from the proof of Theorem 4.8 that 

A
e
V
K 

C V . 
Thus by using (4.109) it follows that we have to 

show that 

A t 
11 De 

E  
k,K 	

0 	< p < co. 
p E÷0 

As in Theorem 4.8 let 

V := R 	e...eR 
1,E 	q,e 

where 

R. 	:= span{v. 	(E)} 	i E q, j E{1,2,...,n.+1} 
1,E 	7,i 

with n. = 0 for i E{p+1,...,q} (see (4.110c) and also (2.21)) and 

v 	A_
j -1 

 b.. 
j.i 	r e40 

Let A
i,E 

 := A 
E 
IRi,e and note that from (4.110-111) 

n-1 
b
i 

+ A
F
b
i 
+ 	+ +...+ A 1 	b

i 
c K, 	i e p . 

Hence by Lemma 4.5 we have that 

A.. t 
11 De l'e v

j,i(€)111, 	
< p < w, j e {1, 2,...,n.+1}. 

p E40 

From the proof of Theorem 4.8 we also have 

AeIC = AF IC, A 	:= A+BF 
c 

AF 
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II De 

A
F t 

c(e)1 	0 

P '4° 

Also note that since c(e) 4  0 and aCA
F

IC3 c .0 then 
c 
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where C is a controlled 

and aEA
F

ICJ = A
c
. 

c 
 

4J1Variant subspace such that 
Vb K 

e C = X 

To prove item c, it follows from (e) 	that it suffices if 

A t 
E 	t -1 

II 	AF  bs  IL --+ 0 
p Ei0 

s e q, 	e{1,2,...,ni+1} 

Now, for E sufficiently small we can write 

X = V
K
eCeVE 
	 (4.122) 

which implies that the vector A
F
t-1 
 bs 

can be written as 

n.+1 
q 

A
F 	

b
s 
= L 	I a.. 	

3,1 
(e)v. .(e) + w(E)  + c(e) 

i=1 j=1 	
1  

* 
where a. .(e) are real scalars, w(e) E VK c(e) e C. 

3,1 

-1   Since vt s 
	

A
F 

b
s
, we must have 

, 	e_>0  

a 
0 for (j,i) 	(t,$), a 	(e)---± 1 ,w(e) 	0 and c(e) 	0 . 

e-)-(;) 	 ' 	e+0 

Hence 

e-11t CC  
n
i
+1 

De - A 
F bsk 	. (.E) I 11 De

A 	
t vi ► 	IILp 

 

3,1 
j=1 

Aet 
+ h De 	c(e) 	--+ 0 

- p e40 



and c) is proved. 

The arguments used in the proof of the above theorem are 

similar to those used in Theorem 6.1 [4.14]. 

We finally obtain : 

Corollary 4.5: 	Suppose that Im G c 

	

Vb,K. 	
Then (ADDP)° is solvable. 

* 	* 
Proof: Note that ImGcVb,K implies ImG+13cVb 

K 
 and that 

Im(I-BF )-1 GcImG+BcV 
2E 	b,K 

The result now folllows from Theorem 4.10c and Lemma 4.3. 

0 
The final conclusion is that given that Im G c V

b,K  , then 

we can almost decouple the disturbance (II Zd
L  < 
	dd

L 
 ) by either — -  

using high gain state feedback or a finite gain nonsingular P.D. law 

IV.5 	P.I.D. OBSERVERS 

Consider the system 

: X = Ax ; y = Cx 

where 

xEX := En  ; y e V := Er. 

Let L be a given subspace and let SL  be the infimal con- 

ditionally invariant subspace that contains L . 	We have seen in 

cobs Chapter I that there exists an observer 	described by 

301 
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Cobs : w = Kw + Ly 
	

(4.123) 

* 	 * 
such that W(0). = X(0) (mod SL) yields Wt) = X(t) (mod SL), Vt 

- 	- 

Note that robsL 	is an integral (I) type observer in the 

sense that w = f(Jy). 

E E. 

Now consider S
b,L'  the infimal L - almost conditionaly 

invariant subspace "containing" L, 1 < p < 00 (see Definition 1.13 

and Theorem 1.3 (dual)). 	It is clear from the comments in [4.18] 

that in order to arbitrarily accurately estimate x(mod S
b,L 

 ), i.e. 

< e, the integral observer lobs  has to be a high 

gain one (K 	CO,  L i  03). 

In this section we show that there exists a P.I.D. observer 

which exactly estimates X(mod S
b L

). 	P.I.D. observers are those 

which in addition to integral action also admit a proportional (P) 

and differentiating (D) action, i.e. if w is the state variable 

• 
of the observer then w a f(fYr Yr (n)

). 

It is clear that if w(s) =T(s) y(s) is the equation of 

a P.I.D. observer in the complex variable s, then T(s) is a rational 

matrix. 	(For integral observers, T(s) is is strictly proper). 

Since a rational matrix can be realized by a generalized linear 

systerm[4.16] we shall say that an observer is a P.I.D typeobserver 

if it is described by 

w1 	1 
= Kw + Ly 

w
2 
= M

0
y+M

1
y +...+M y

(n) 

(4.124a) 

(4. 124b) 

   

* 
II W - X(mod S

b,L)I1L 
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. where w
T 	

Oa ,wT )T  IS the state variable of the P.I.D. observer. 2 

Note that (4.124b) corresponds to the forced response of a subsystem 

of the type Jw2  = w2+My where J is nilpotent map (see (3.35)). 

The main objective of this section is to give a dual inter-

pretation to theorems 4.4 and 4.8 which leads to 

a) 	the construction of a P.I.D. obseryer which exactly estimates 

x(mod Sb L )and 

b) 	the construction of an observer which exactly estimates 
* 

x(mod Se) where SE E40 Sbir 

* 
The following lemma shows a decomposition of X/S 

b,L 

Lemma 4.6: Let R
b,L 

 be a subspace as in (1.78). 	Then 

X 	X e  X 

s 	s, 
b,, 	)0,1. 

Proof: The above direct sum is to be considered as an external direct 

sum of two vector spaces, which in this case are quotient spaces. 

By Lemma 1.2'-a we obtain 

N 	= N 	n N 
b,L 	b,L 	L 

Now, from (1.70) and (4.125) 

* 	* 	*. 	* 	* 
S
b,L 	b 

= N.
,L 
 nS

L 
 --.N 	nN

L
n S

L b,L 

(4.125) 
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and by using (1.67) and Lemma 1.21 -b, it follows that 

* 	_ 
S
b,L 

=N
b,L 

nS
L 

withR
b,L 
+S= X 

L 

and the result follows. 	
0 

For a geometric interpretation of Lemma 4.6., recall that 

for x e X and for a given subspace K, the element x e X/K is the 

coset of X(mod K) and x = x + K. Geometrically, x is the 

hyperplane passing through x obtained by parallel translation of K. 

z 

y 

x 

y 	z := 1V 
)04_ 

x ® z := s 

Sio,L  

In the above figure, the cosets of X/SL  are all the two 

dimensional planes which are parallel to SL  and similarly for the 

cosets of X/Rb,L  

'Whimwe perform the externaldirect sum of the two quotient 

spaces we obtain all the lines which are parallel to SbL, which are 

exactly the cosets of X/S10,L. 
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We know how to construct an integral observer for X/SL. 

The question that arises now is whether we may define an observer on 

a subspace Z such that 

Nb,L e Z = X. 

The answer is yes and we shall see in a moment that the 

observer defined on Z is in fact a P.D. observer. Note that if 

{z.} is a basis for Z then z. = z + 	
L
, 1 	 b, 

x/ITI10,L 

is a basis for 

Thus by adding the output of such an observer with the output 

of observer for X/SL  we then obtain by Lemma 4.6 an estimate of 

x(mod S
b,L). 

In order to facilitate the presentation of the ensuing theorem 

we TL'Ae a trivial fact from linear algebra. 

Fact (*1: 	Consider the dual space X/  and let Wj:and V1 be subspace 

of X' such that 

X' =W eVI  

Then 

X = V 9 W. 

Proof: First note that (X')' = X and let fx1,...,x11c,x;(+1,...,x;a1 

be a basis for X' such that 

= span{x1,...,x} and VI  = span {x;c+1,...,x;1}. 
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Lettx.1, j E n, be the unique set such that x!1
x. 	6..  

	

3 	13 

Then {xl,..„xk,xki_1,...,xn} is a basis for X with 

span{x1,...,xk} = V and spantxk+1,...,xn
}  = W. 

The next theorem is a mere dualization of Theorem 4.4. 

Theorem 4.11: Let the pair (C,A) be obseevab-ee.. 	Then there exists 

a P.I.D. observer 

f • 

W
1 

 = Kw1 
+ Ly 

P.I.D. 

w2 = M0 y+M1 	
y(n) 

such that W(0) = 0, W (0-) = 0 yields for all X(0) e S 
1 	2 	b,L' 

* 
W
1 
 (t) + W2 

 (t) = X(t) (mod Sb,L 
 ) , t E 1

+
. 

Proof: Our aim is to define a system on a subspace Z which complements 

N
b L 

 . For this write 

• 
(I-L

2
C)x = (A+L

1 
 C)x - L1 

 y - L
2
y (4. 126) 

where L1 
 and L

2 
are maps to be defined. 

From the duality principle established by Willems [4.18] 

1 
,L we have that the subspace Nb 	

is the "RbL" of the sequence (1.12) 

with respect to the pair (A
T
,C
T
). 

Since the pair (A'T  ,C
T) is controllable, then as in the 

proof of Theorem 4.4 (.see (4.59)) it follows that the dual space X' 



admits the following decomposition 

where 

nt 	 I 
X' 	S" e Nb,L 

J. 	*1 
Su  = S

L 
 e L. 

(4.127) 

(4.128) 

1 
and L is a controlled invariant subsp?..cg, relative to (A

T
,C
T
). 

Moreover, by the proof of Theorem 4.4 there are maps L
1 
and 

L
T 
such that 

2 

T 0 	T- 
X' = (I-L

2
C) S 	9 (A+L

1
C) N

b,L 
(4.129) 

and such that the pencil s(I-L
2
C)

T 
- (A+L

1
C)
T 
is regular. 	Hence 
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by Theorem 4.3 there are maps 

L
T 
:= (I-L

2 
 C)T S

0 
 1 (A+L C) 

T 

i 
J := (A+L C)

T-  
N 	I(I-L c 

1 	bL 	
N
b,L 

such that the eigenvalues of LT   and the Jordan structure of the 

nilpotent map J
T 
determine, respectively, the finite-zeros and the 

infinite-zeros of the pencil s(I-L
2
C)

T 
- (A+L1C)T. 

 

Let Z := S0. 	Then by using fact(*-) we obtain from (4.127-8) 

the following decomposition for X 

x ,R 	eZ 
	

(4.131) 

where 
* 	 * 

Z =S 
L 
 n L , with S

L 
	Li  = X. 

(4. 130a) 

(4.130b) 



The decomposition of (4.129) also yields 

- 
b, L 

X = 	(A+L 
1

-1
N C) 	, 9 Z (4.132) 

Let X
1  
4  and .14W

2  denote, respectively, the decompositions (4.127) 

and (4.129) and, similarly, let X
1 
and X

2 
denote the decompositions 

(4.131-2). 	Hence, by using (4.130) it follows that if 

(A+L C 	: XI 	)< , (I-L2C)
T 	

XI 

then 

Mat(A+L
1 
 C)
T 
 = L

T 
 0 
	Mat(I-L2C)T  = ri 

0 I 	0 

By considering 

(A+L
1
C) 	: 

with 

Mat(A+L
1 
 C) = 

Let P 	be the 

the dual 

X
2 

	X1, 

L
v 	

0 

0 	I 

projection 

bases X
1 
and X

2 
we 

	

(I-L
2 
 C) 	: X

2 	
X
1 

Mat(I-L
2
C) = 

on 	Z 	along R. 
biL 

then 

rI 	0 

,0 	J 

Then 

obtain 

(4.133) 

from 

(4.126) and (4.133) we obtain the following generalized linear system 

on Z 

J4 =z-L
1y- L2y  (4.134) 
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where 

Pz  L1  ; 	L
2 
:= P

z
L
2 
. 
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The solution of (4.134) has the form shown in ( 3.37) and 

is given by 

q-1 

zlt) = 	M
. 
y
(i)

(t), t > 0 
i=o 

where 

^ 	^ 	q-1A  M
0 
:= L

1 
; M

1 
:= (JL

1 
 + L );...;M 	:-=(J

q-1 
 L +J

g-
2L
2
);M

q-1 	
L 

2 	q-2 	1 	2 

and q is the nilpotency index of J. 

Define an integral observer for X/SL  (see (1.60)) by 

• 
w
1 
= Kw

1 
+ Ly 

where 

K := (A+1,1 C) (mod SL  ; ) 	L := L'(modS
L) 

and L'eL(S ). 

Also define a P.D. observer for X/Rb,L  by 

w = 
qi1 

M 	(i) 
2 	i 

y 
 

i=0 

Let e := (w1+w2) - (x(modS )+z). 	Then by using Lemma 4.6 

it follows that W (0) = 0,W2(0-) = 0 yields for all x(0) e S 
1  	 b,L' 

e(t) = 0, t > 0, i.e. 

W1  (t) + W2 
 (t). = X(t)(mod S

b L 
 ). 

7, , 
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Comments: 

1) Note that the error dynamics are dictated by the eigenvalues 

of K, i.e., e = Ke. 

2) 	It can also be shown that there exists a P.I.D. observer 

which estimates X/Sa,L,where S
a L  is the infimal almost conditionally , 

invariant subspace which contains L. 

The next theorem contains dual interpretations of some 

results shown in Theorem 4.8. 	By dualing result a) we obtain that 

there exists a sequence of conditionally invariant subspaces Se  such 

that S
e 	

kb,L  . 	This implies by Lemma 1.2'-b that, for e e+Gli  

sufficiently small, Se  + SL  = X. 	Let Se := Se  n S L . 	Hence as 

in Lemma 4.6 we define the following external direct sum 

	

XX 	X = ____ e 
* * 

S 	S 	S E e 	L 

	

* 	* 	* 	* 
Note that Se .17-6- S Hence x+S --i-x + S b,L . 	e e40 	b,i. * 

so that X/Se e4(  XISID,L. We then obtain 

* 
Theorem 4.12: Let Se be as defined above. 	Then there exists an 

observer described by 

w
l• 
= K

1
w
1 
+ L y 

1 

w
2• 
= K

2e
w
2 
+M0y+ M

1e
y;z=w

2 +L2ey 



such that 4tr 1 (0) = O., 7 0311)• = 0 yields fog 411 X(D) G S., 

W (t.), + 4 (t) = Vt.) (mod S. ) . 
- 	_  

Proof: By dualizing result b of Theorem 4.8 we obtain maps L and 
-1 r, 

1D,I. 
L 
2e 

—4- L
2 
such that A

L 
 CI-L

2E
C)- IS6  c Se and A

L N
1D,I. 

c (I-L
2
C)

-1
N 	. 

E± 

We recall the notation A
L 
:= A+LC and we remark that 

(I-L
2E
C) is nonsingular. 

Now write 

•• 
(I-L

2e
C)x = A

L
x - Ly - L y 

2E 

and let X := (I-L
2E
C)x. 	Hence 

A = AL(I-L2,c)-11 - Ly - L2eY . 	(4.133) 

Since AL  (I-L, -1SC) 	c S then there exists a map Kn„ (which 
C C 

is unique) such that K
2E
P = PAL(I-L

2E 
 C)
-1 
 where P : X 4- X/Se  is the 

canonical projection. 	Let M
0 
 := -PL and Mle ;= -PL2e 

	
Then from 

(4.133) it follows that 

• 
i(mod Se) = K2EX(modS ) + M0y + MlEY. 

Since 
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X(modSe ) = (I-L2eC)x + Se  = x(modSe) - L2ey 



• 

w2  =K2e w +My+M 
2 	0 	le

y.  

z = w2 L
2e
y 

represents an observer for X(t)(modSe). 

Let 

w
1 
= Kw

1 
+ L y 

1 

be an observer for X(_t)(mod SL) (see (1.60)) with 

K
1 
 := 	(modSL )-  L

1 
 := -L' (modS

L
) 

and LI e L(S ). 

* 

	

Let e
1 
:= wl  - x(modS ) and e

2 
 := 	- x(modSe). 	Hence 

• e
l 
= K

l
e
l 	

e
2 
= K

26
e
2 

. 

	

* * 	*:.7.-0 	* 
Since Se  .=; Se  n Su  then x(0)(modS 

E A 
L(implies X(0) (modSL ) 

= X(0)(MOdS 
E 
 ) = 0. 	Since (IV

1  (0), 1 6:* = 0 we then obtain 

(e
1
(0), e(0)

2 	
= 0) so that ett) := e

1 
 (t) + 

!=2
(t) = 0, t > 0. 

Comments: 

1) 	It is easy to see that the transfer function matrix X2(s) from 

y to 	is given by 
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X
2 (s) = (sI-K2e) 

-1
(Mo + sMle  

) + L
2e 
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and note that X
2 
 (s) is proper, 	Thus we can exactly estimate 

X(t)(modS ), SE 	
b,L , by using an observer with a proper transfer 

E40  

matrix whereas Theorem 4.11 has shown that to exactly estimate 

X(t)mod(R
bL 

) X2(s) degenerates into a polynomial transfer matrix. 
, 

 

2) 	Let A 	6EK
2E 

= 6GAL(I-L2eC)-1(modSE7. 	Then by using again 

a duality argument (see the proof of Theorem 4.8) we have that IA I ---4-  CO 

e4() 

3) It should be noted that the controllability hypothesis of 

Theorem 4.8 (relative to the pair (AT,C
T
)) has been used only to find 

1 
the controlled invariant subspade Li  (see (4.128)). Since the 

observer constructed in Theorem 4.12 is not concerned with the estimation 

ofX(t)(modL.), it follows that the observability of the pair (C,A) 

(equivalent to the controllability of (AT,C
T
)) is not needed as 

hypothesis in such a theorem. 

4) 	It can also be shown that there exists an observer of the 

same type shown in Theorem 4.12 which estimates X(t)(modS
e 

n SL
) 

* 
where S n SL --÷ SaL E 4-0 



REFERENCES 

[4.1] 	P BERNHARD. On singular implicit linear dynamical systems. 

SIAM J. Contr. and Opt., vol 20(5), pp. 612-633, 1982. 

L4.2] C T CHEN. Introduction to Linear System Theory, Holt, 

Rinehart and Winston, New York, -1970. 

[4.3] J D COBB. Feedback and pole placement in descriptor variable 

systems. Int. J. Contr., vol 33, No 6, pp. 1135-1146, 1981. 

[4.4] J D COBB. On the solutions of linear differential equations 

with singular coefficients. Technical Report, Department of 

Electrical Engineering, University of Toronto, Canada, 1981. 

[4.5] C COMMAULT, J M DION. Structure at infinity of linear multi-

variable systems : a geometric approach. IEEE Trans. Automat. 

Contr., vol AC-27(4), pp. 693-696, 1982. 

[4.6] B A Francis. Singularly perturbed linear initial-value problems 

with an application to singular optimal control. IRIA/IFAC 

Workshop on Singular Perturbations in Control, Paris, 1978. 

Convergence in the boundary layer for singularly perturbed 

equations, Automatica, vol 18, No 2, pp 57-62, 1982. 

314 



315 

[4.7] 	F R GANTMACHER. The theory of Matrices, vol I, II, Chlesea, 

New York, 1969. 

[4.8] S JAFFE, N KARCANIAS. Matrix pencil characterization of almost 

(A,B) - invariant subspaces : A classification of geometric 

concepts. Int. J. Contr., vol 33(1), pp 51-93, 1981. 

[4.9] R E KALMAN. Kronecker invariants and feedback, in Ordinary 

Differential Equations, 1971 NRL-MRC conference, L Weiss(Ed), 

Academic, Paris, 1972. 

[4.10] N KARCANIAS, G E HAYTON. Generalized autonomous dynamical. 

systems, algebraic duality and geometric theory. IFAC VIII 

Congress, Kyoto, Japan, 1981. 

[A.11] B.  T4 RnSENTAROCK_ State-Space and Multivariable Theory, 

Wiley, New York, 1970. 

[4.12] J M SCHUMACHER. Compensator synthesis using (C,A,B) - pairs. 

IEEE Trans. on Automat. Contr., vol AC-25, pp 1133-1138, 1980. 

A.13] H SERAJI. Design of multivariable PID controllers for pole 

placement. Int. J. Contr., vol 32, No 4, pp 661-668, 1980. 

[4. 14] H Trentelman. On the assignability of infinite root loci 

in almost disturbance d-coupling. Report TW 248, 1982, 

Mathematics Institute, P 0 Box 8000, Gronigen University, 

Groningen, The Netherlands. 



316 

[4.15] G C VERGHESE, E C LgVy, T KAILATH. A generalized state-

space for singular systems. IEEE Trans. Automat. Contr., 

vol AC-26, pp 811-831, 1981. 

[4,16] G C VERGHESE. Infinite-frequency behaviour in generalized 

dynamical systems. PhD dissertation, Dept. Electrical 

Engineering, Stanford University, 1978. 

[4.17] J C WILLEMS. ALmost invariant subspaces : an approach 

to high gain feedback design - Patti : Almost controlled 

invariant subspaces. IEEE Trans. Automat. Contr., vol 

AC-26, pp. 235-252, 1981. 

[4.18] J C WILLEMS. Almost invariant subspaces : an approach to 

high gain feedback design - Part II : Almost conditionally 

invariant subspaces. IEEE Trans. Automat. Contr., vol AC-27, 

- pp 1071-1084, 1982. 

[4.19] J C WILLEMS. Feedforward control, PID control laws, and 

almost invariant subspaces. Syst. Contr., Lett., vol 1, No 4, 

pp 277-282, 1982. 

[4.20] W M WONHAA. Linear Multivariable Control : A Geometric 

Approach (2nd Edition), Springer Verlag, New York, 1979. 



CONCLUSIONS 

The intention of this final section is to give some general 

comments about the thesis and also to point out some directions of 

future research which are connected with the work developed here. 

By using geometric properties of sliding subspaces described 

in Chapter I and a suitable state space decomposition for an invertible 

system, we have constructed in Chapter II an output feedback map 

R such that the asymptotes of the closed loop map (A+g BRC), g co, 

take on pre-assigned values. We have also seen that the i eigen-

vectors associated with an asymptote a(A1----4. ga) converge to a 
g °  

direction which can be chosen to belong to any subspace 131 c 

suchthati3!913.=8.
1-1  

-- 	(see the comments. after Proposition 2.2). 

It would be interesting in this context to investigate in more 

detail the limiting process of the sequence of (A+g BRC)-invariant 

subspaces associated with eigenvalues that go to infinity in order 

to find out the reason for the collapsing of the i eigenvectors 

into only one direction. 

In the simple case with rank CB = m, such a collapse does 

not occur : we have m first order asymptotes and the m-dimensional 

(A+g BRC)-invariant subspace associated with such asymptotes converge 

to the m-dimensional subspace B. 	It is worthwhile to note that an 

(A+g BRC)-invariant subspace is an (A,B,C)-invariant subspace 

[4.12, 1.16 ], i.e., it is simultaneously a controlled and a condition-

ally invariant subspace. Thus in the case rank CB = m we have a 

sequence of m-dimensional (A,B,C) invariant subspaces (with arbitrary 
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spectrum) converging to the subspace B which is simultaneously an 

almost controlled invariant subspace and a conditionally invariant 

subspace (see the consequences of rank CB = m in 11.2.3). 	It would 

be valuable to have similar interpretatious for the case rank 

CB < . 

The work carried out here on the topics of generalized 

linear systems (Chapter III) and regular pencils (Chapter IV) was 

partly guided by the suggestions given by Verghese et al [3.13]. 

They have pointed out the need for a geometric language to deal with 

such subjects and the usefulness of such an approach is clearly 

manifested at various points in the text. For example, we have 

obtained a clearer picture of the controllable and unobservable 

infinite-zeros due to the association of such zeros with controllable 

and unobservable subspaces. This yields an alternative way of 

computing a controllable and observable generalized linear system. 

As another example, we have obtained a constructive regularity con-

dition for a pencil in the sense that one can establish computational 

algorithms based on the sequences (4.34) and (4.36) to check for the 

regularity and if the pencil turns out to be regular one can easily 

obtain the maps L and J which yield the modal decomposition of 

the regular pencil. 

The primary objective of Chapter III has been that of 

understanding more about geometric structural properties of a plant 

which is naturally modelled by a generalized linear system. The 

results on zero placement by state feedback and output feedback have 

illustrated the possibilities of altering the dynamical structure 



319 

and have also demonstrated the similarities with ordinary linear 

systems: for example, the infinite-zeros can be assigned if and 

only if they are controllable. 	Thus a generalized linear system with 

controllable infinite-zeros (and of course, a rational transfer matrix 

C(sE-A)
-1

B) can be converted into a linear system with proper 

transfer matrix. 	It is also worthwhile to note that a generalized LizzA.41,1L 

can be transformed into a linear system with strictly proper transfer 

matrix by state derivative feedback and for this to occur it is 

necessary and sufficient that Im E + B = X. This follows immediately 

from the equivalence : 3F such that (E+BF) is nonsingular <=> zero 

eigenvalues of E are controllable <_> Im E + B = X. 

The other important reason for studying generalized linear 

systems and regular pencils is that an ordinary linear system 

(x = Ax + Bu) may become a generalized linear system under a PD law. 

Incissd. several results in Chapter IV involve a regular PD law which 

yields a generalized linear system. 

The sections concerning PD laws and PID observers are 

perhaps the most interesting from the synthesis point of view 

because they point to an area of research, namely the use of PID 

compensators in multivariable control problems, which apparently 

has not been exploited yet. 

It would be very interesting to have general constructive 

principles for a PID compensator in the same spirit as those described 

by Schumacher [4.123 with respect to PI compensators. 	By a PID 

compensator we mean a time invariant linear system with the form 



320 

w = Kw+ L + L y 
	 (C.1) 

u = Mw + F
1 
 y + F

2
y . 	 (C.2) 

We believe that the properties described in Chapter IV concerning 

the relationship between a linear system under a (regular and non- 

singular) PD law and (almost) invariant subspaces will be of utility 

in obtaining those principles. 

Regarding the disturbance decoupling problem we also believe 

that the results of Theorems 4.7 and 4.10 could be useful in the 

search of solution for the following extensions : 

1. 	Consider the linear system 

x = Ax + Bu + Gd 

z = Dx 

where, as usual, d is a vector of disturbances and z denotes the 

to-be-controlled outputs. 

We can then formulate the following problem which we term 

the disturbance decoupling problem by a PID compensator and distur-

bance feedforward : does there exist a PID compensator given by 

(C.1) and 

u = Mw + F
1 
 y + F

2
y + F

3
d 

such that in the closed loop system the transfer matrix from d to 

z is zero? If so, give existence conditions and a procedure for the 



computation of such a compensator. 

2. 	Willems [4.18] has formulated and solved the almost disturbance 

decoupling problem by measurement feedback (ADDPM) which is as 

follows : does there exist a PI compensator w = Kw + Ly; 

u = Mw + Fy such that in the closed loop system with (x(0), w(0)) = 0 

there holds m .11,„ < 6 II dmL  

He has shown that (ADDPM) is solvable if and only if 

Im G c V
b,ker D 

and S
b,ImG c  ker D. 	 (C.3) 

By keeping symmetry with (ADDP)°  (see Definition 4.3) we 

are then led to the following problem : does there exist a PID 

compensator given by(C.1)and(C.2)andwhich involves finite maps such 

that in the closed loop system with (X(0),W(0)) =-0 there holds 

11 Z 	<E 11 dill,  7 
	

If so, find existence conditions and give a 

p 	 p 

procedure for the construction of such a P.I.D. compensator. 

It is reasonable to conjecture (by analogy between (ADDP) and 

(ADDP)°) that under the same conditions (C.3) there exists a P.I.D. 

compensator with the required properties that solves the last problem. 

It is our opinion that in order to construct the above PID 

compensator we shall have first to understand more about the state 

space synthesis of a high gain compensator which solves (ADDPM)- 

Such a synthesis procedure does not exist at the present time. 	In 

[4.18] the PI compensator which solves (ADDPM) is obtained through 
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a realization of a transfer matrix which is computed as the solution 

of an equation. 

We then conclude this thesis in the hope that the above 

questions are significant and interesting, and that they point to 

valuable future research. 
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