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ABSTRACT

For the linear system (C,A,B), the properties of almost
controlled and almost conditionally invariant subspaces are reviewed
and new properties are obtained for sliding subspaces.

These concepts are used to give

i) A transparent geometric interpretation for the infinite-

zeros of G(s) = C(sI—A)_lB .

ii) A condition so that the ordexs of the asymptotes (as a scalar
g > ®) of (A+gBC) coincide with the orders of the infinite-zeros

of G(s). -

iii) A new method for the choice of an output fedback map R which
assigns the asymptotes of (A+gBRC).

The concept of a nonsingular proportional-derivative (P.D.)
law, u = le + Fzé is introduced. Properties of a linear system
(A,B) under such a law are described. Under the solvability con-
dition given by Willems, it is shown that the almost disturbance
decoupling can be achieved by a nonsingular P.D. law involving £inite
maps.

The notion a regular P.D. law is also introduced and it is
applied to the theory of almost controlled invariant subspaces.

Such a law is then used to solve the disturbance decoupling problem

in a situation where a state feedback law does not do it.

The thesis also contains a concise geometric theory of the
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regular pencil (sE-A) which includes a geometric criterion for the
regularity of the pencil.

The generalized linear system E; = Ax+Bu; y = Cx, where
E 1is a singular map, is studied using geometric tools and the
following contributions are given:
i) Necessary and sufficient conditions for the controllability
and observability of the infinite-zeros of the pencil (sE-A).
ii) Proof that controllability of the infinite-zeros is equivalent
to the existence of a state feedback map which assigns those zeros

to arbitrary positions in the complex plane.

iii) An interpretation in terms of invariant subspaces for the

controllability and observability of the finite—-zeros of (sE-A).

iv) A method for the choice of a state feedback map F which

assigns the zeros of the pencil (sE -A-BF).
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NOTATION "~ AND PRELIMINARIES

This section contains some basic concepts of linear algebra
and the notation employed in the thesis.

We shall denote throughout vectors by ¥oman lower case
letters, time functions and distributions by script underlined lower
case leters, matrices (linear operators) by zroman capitals and sub-
spaces by script capitals.

We shall often consider families of subspaces of a given
finite dimensional vector space X. Let L be such a family, we

shall say that L is closed under addition if Ll' L

) e E ﬁ>L1 + ine L

and closed under intersection if Ll' L2 e E => L1 nl. e E. The

2
subspace sup l_. denotes the smallest subspace which contains every
element of L whilejJrEE denotes the largest subspace contained
in every element of L. 1In general sup L and inf L do not belong
to L. However, the following case yields a result which is

important for the geometric approach to linear systems theory.
Lemma 0: If } is closed under addition then sup L € L and-if
L is closed under intersection then inf L € E.

If n 1is a positive integer, then n stands for the
set of integers {1,2,...,n}.

If {Li}, ie n 4is such that L > L1 >...2 Ln then we say

that {Li} is a chain Zn L while if L ¢ L1 c...c Ln then we say that

{Li } is a chain around L.

1
The orthogonal complement of L is denoted by L.
The dimension of a subspace LcX is denoted by dim L and codim

. . L
denotes codimension, codim L = @im X - dim L = dim L™.
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For a given subspace L ¢ X we represent the associated
quotient space {x+L|xeX}by X/L or X(mod L) with dim X/L = dim X-dim L.
Let A : X > X be a linear operator and L ¢ X be such
that AL ¢ L then we say that L is A-invariant. Let U, X,V be
finite dimensional vector spaces and A : X»X, B : X and Cc : X>Y
be linear. The maps A|L, A(mod L), B(mod L) and c|L are then defined

by the following commutative diagram

allL
L L
c|L

L L

Y +
u B - A > X ¢ y
P P
B(mod L)
\ aA(mod L) ¥
X{mod L) +X (mod L)

where L is the canomical injection and P is the canonical projection,
a map such that ImP : X(mod L) and ker P = L.

Im and ker denote image (range) and kernel (null space),
respectively.

Let L+ K ¢ X. Then we shall say that L is A(mod K)-
invariant if AL ¢ L + K and that L is A|K invariant if A(LnK) < L.

Furthermore, <A|L> := L+Al +...+ 2" ! ana <L{n> :=
Ln A-lL N A_n+1L denote respectively, the smallest A-
invariant subspace containing L and the largest A-invariant sub-

space contained in L.



.
In terms of the linear system z : X =4&x +Bu; y =

<A|Im B> is the reachable subspace while N .:= <kerC|a>

unobservable subspace.

Cx p R :=

is the

B stands for Im B and AF := A+BF denotes the closed-loop

map obtained by the state feedback control law u = Fx on
If A : X*X is a linear operator and L,K ¢ X are
AL < K we then denote the restriction of A to L with
K by KlalL.
Let X be a normed vector space and consider any

function £ : [0,®) - X. We then say that £ belongs

Lp—space if | 2| < ® where

P
i
SlewPH® , 1<p<e
1o
|2l == |
P sup|| E(t)” , p=® .

t>0

)-
such that

codomain

measurable

to the

The following list Shows the symbols often found throughout the

thesis together with their usage and(or) meaning.

Symbol Usage/Meaning

1) s= X:=Y, X 1is defined as vy.

2) ® LeK , direct sum

3) u _ A1UA2, list combination

4) R the real line

5 E the nonnegative interval [0,®) on the real line

6) A complex plane



7)
8)
9)

10)

11)

12)

13)
14)

15)

16)
17)

18)

dim X

o(Aa)

Re

Mat A

E(s)
Elsl

E+(s)

open left-half complex plane
complex conjugate
dimension of X
the spectrum (i.e. the set of eigen-
values, counting multiplicities) of
the square matrix A
real part
matrix of A(i.e. thé representation
of the map A in a certain basis)
dual vector space
transpose of A(the dual map to A)
the set of positive integexrs
{1,2,...,n}
field of the rationals over £Z
ring of the polynomials over &
{£ « B(s)|£ = a/p, p, q = B[s]

and degree p > degree g}
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Lemma, Theorem Proposition Definition. Remark.
page feae prae prge prge

0.0 viii 1.1 15 1.1 24 1.1 14 1.1 33
1.1 20 1.2 11 1.2 43 1.2 14 2.1 81
1.2 22 1.3 19 1.3 53 1.3 16 2.2 85
1.3 49 1.4 25 1.4 54 1.4 18 2.3 86 -
1.4 51 1.5 34 1.5 57 1.5 19 2.4 96
1.1 69 1.6 39 1.6 60 1.6 21 2.5 99
1.2 71 1.7 46 2.1 82 1.7 60 3.1 159
2.1 & 1.8 47 2.2 121 1.8 61 ° 3.2 170
2.2 50 1.,1Y 65 2.3 128 1.9 63 3.3 172
A.1 140 1.2¢ 65 3.1 158 1,10 64 3.4 176
A.2 142 1.3' 67 3.2 162 1.11 64 3.5 182
4.1 225 2.1 95 3.3 173 - 1.12 64 3.6 185
4.2 293 3.1 153 3.4 177 1.13 67 3,7 204
4.3 294 3.2 168 3.5 177 1.14 70 4.1 222
4.4 296 3.3 171 3.6 192 2.1 77 4.2 238
4.5 296 3.4 174 4.1 219 2.2 78 4.3 256
4.6 303 3.5 176 4.2 221 2.3 86 4.4 263

3.6 179 4.3 224 2.4 99 4.5 275

3.7 183 4.3a 258 3,1 156

3.8 197 4.4 259 3.2 158

4.1 230 4.5 260 4.1 242

4.2 233 4.6 277 4.2 276

4.3 235 4.7 278 4.3 293

4.4 243 ' 4.4 294

4.5 261

4.6 269

4.7 27

4.8 283

4.9 290

4.10 298

4,11 306

4.12 310



formulation of relaxed versions of control synthesis problems.

For example, consider the linear system

X = Ax + Bu + Gd (0.1)

z = DX

where d is a vector of disturbances and =z denotes the to-be-
controlled outputs.
We can then ask : does these exist a control law u = Fx

such that in the closed loop system the influence of d on =z
is arbitrarily small in some precise mathematical sense? Such
a problem is called the almost disturbance decoupling problem (ADDP) .

. Willems [1.14] has given a necessary and sufficient condition
for the solution of (ADDP) in terms of a certain type of almost
controlled invariant subspace which we denote in this introduction
by Vb. Once the condition is satisfied, namely the problem is
solvable, then in order to cobtain an arbitrarily small influence

of d on z we must have a sequence of controlled invariant subspaces

VEIJ.12] such that VE approaches Vb as € + Q. Moreover, in the

approximation process the feedback maps FE for which (A+BFE)VE'C VE
are such that F_ - © as € = 0.

It is in this context that we introduce the notion of a non-
singular proportional-derivative (PD) state feedback law, u = F, +

1

in, which is a law such that the map (I—BFZ) is nonsingular. The

terminology stems from the fact that a PD law gives rise to the

following closed loop system.
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-1 -1
(I—BF2) (A+BF1)X + (I—BF2) Ga

z = Dx.

The interesting fact is that under the same solvability
condition for (ADDP), as given by Willems, we can also obtain an
arbitrarily small influence of d on 2z by means of a nonsingular
PD law involving finite feedback maps. More explicitly, it is shown
that the subspaces Ve can be made invariant under the operators

is a finite map and F — F_ is a map

(I-BF se o3p o

)_l(A+BF1) where F

2e 1

such that (I—BF2) is singular.

Such a result illustrates the usefulness of the derivative -
feedback in the context of (ADDP) and it can be interpreted in’ the
following way : a trajectory of Z which remains in a controlled
invariant subspace that is close to an almost controlled invariant
subspace is characterized by high velocities. Conscguently the
more relevant information to be fedback 1is the derivative é.

The high gain state feedback task is transferred to the derivative
which accomplishes it with finite gain.

It is also shown that a nonsingular BD. law preserves all the
important features of a pair (a,B) such as the controllable sub-
space and the controllability indices.

Another significant point about the use of derivative feedback
is that, under the same solvability condition for (ADDP), we can

achieve exact disturbance decoupling (influence of d on 2z is zero)

by means of a law with the from

u = F1 X + F2x + F3d (0.2)



which yields the following closed loop system

(I—BF2)§ (A*BF )x + (GBF)a (0. 3)

Dx.

N
I

The maps F, and F, involved in the solution are such

1 2
that (I-BFZ) is singular and the pencil s(I-BFZ) - (A+BF1) is
%egular[4.7]. A PD law, represented by the pair (Fl’FZ)’ with

such features will be called a regular PD law.

There are interesting connections between regular PD laws
and almost controlled invariant subspaces. For example, there
exists a kind of an almost controlled invariant subspace, called
a sliding subspace, which cannot be made invariant'under state
feedback. However a regular BED, law can be used to establish a
type of invariance for such a subspace. It is shown that for a
sliding subspace RS there exigts a regular PD, law (FI'F2) such that

(I-BF2)RS c (A+BF1)RS.

Note from (0.3) that with d = 0 we obtain an autonomous linear

system of the type
Ex = AX (0.4)
where E 1is a singular map. This kind of system will be called

a generalized linear system to distingquish it from the ordinary

(or regular) linear system when E 1is nonsingular.



The theoretical development which leads to the exact solution
of the disturbance decoupling by the law (0.2) depends upon some
geometricﬁproperties of a regular pencil (sE-A).

Although the main features of a regular pencil-are well
known [4.1, 4.3, 4.7, 4.16] it seems that there does not exist in
the literature geometric conditions for the regularity of a pencil
which is a point required for the definition of the law (0.2). For
this’'reason we have included a compact geometric theory on regular
pencils which unifies some existing results and also provides
solutions to questions not answered before. The presentation of
the theory emphasizes dynamical interpretations with respect to -
the associated generalized linear system (0.4).

A regular PD. law can also be introduced as a motivation for
the study of structural properties of a generalized linear system

e

M. _ 1 -
descripecd o

Ex = Ax + Bu (0.5)

where E 1is a singular map.

Several properties of this kind of system have already been
described in [4.3, 4.15]. It is well known that if we allow
arbitrary initial conditions for the autonomous generalized linear
system (0.4) we then have in general a response characterized by
exponential and impulsive modes. This is due to the fact that

a pencil (sE-A) has in general finite and infinite-zeros.



Verghese [4.15, 4.16] has pointed out that the controll-
ability and observability criteria for the infinite-zeros (relative
to the system(0.5)) given by Resenbrock were valid only in a special
case. He has then introduced tests to check for the controllability
and obsexrvability of such zeros which are applicable in any sit-
uvation. Based on his tests we have been able to provide correct
necessary and sufficient conditions for the controllability and
Observability of the infinite-zeros in terms of the maps E, A, B
and C. We also present an interpretation for the controllability.
and observability of the finite-zeros in terms of invariant
subspaces associated with the pencil (sE-A)}.

Cobb [4.3] has given a necessary and sufficient condition
for the existence of a state feedback law u = Fx for (0.5) which
brings the infinite-zeros to finite positions of the complex plane
without pre-specifying those positions.

We show here that his condition is in fact the controllability
of the infinite-zeros and we alsoc obtain the stronger result that
controllability of the infinite-zeros is equivalent to the existence
of a state feedback law which assigns pre-specified complex numbers
to those zeros. The result may be considered as an extension of
the celebrated result on pole placement by Wonham [3.17] for linear
systems for which E 1is the identity map. A new method for the
assignment of all zeros (finite and infinite) by state feedback
is also presented.

Other topics considered in this thesis are those of infinite-

zeros and root-loci for multivariable linear systems.



Consider the linear system

X = Ax + Bu
y = &
-1
and its associated transfer matrix G(s) = C(sI-A) B.

Commault and Dion [2.2] have given a geometric definition
for the infinite-zero structure of G(s) by relating it to the notions
of almost controlled invariant subspaces. It turns .out that infinite-
zeros and almost invariant subspaces play an important role in the
root-loci analysis of invertible linear systems which are those for
which G(s) is invertible over the field of the rationals (note that
this'implies that the number of inputs is equal-to the number of

outputs) .

invariant subspaces in the study of root-loci properties is adequate
for the simple reason that the concept of an almost invariant subspace
is intimately connected with high gain feedback.

By exploiting properties of representations of a sliding
subspace, it is shown how to construct an output feedback law,
u = gRy, where g is a real scalar, g - «, such that the eigenvalues
that go to infinity in the closed loop map (A+gBRC) approach pre-
assigned asymptotes.

The assignment procedure suggested has the following features

- the orders of the assigned asymptotes coincide with the orders



of the infinite-zeros of the transfer matrix of the invertible system.
- asymptotes of distinct orders are assigned independently .

- limit eigenvectors are also assigned.

Our method differs from that presented in [2.11] with some
advantage in that the asymptotes can be assigned without the know-
ledge of the asymptotic structure of the closed loop map (A+gBC),

g > @, It is well known that the asymptotes of this last map

may not have the same orders as thé orders of the infinite-zeros

of C(sI—A)-lB. In this respect we show a condition derived directly
from the maps B and C which ensures that both entities, infinite-
zeros and asymptotes, have the same orders. The condition is con-
structive in the sense that the magnitude of the asymptotes can also
be computed from it.

Finally the thesdis contains a summary of the main known

properties of almost invariant subspaces together with some new ones.



Main Contributions of the Thesis

We list below the main contributions and we refer to the

theoremsand propositions which are related to them:

- the description of properties of sliding subspaces:
Theorems 1.4, 1.5 and 1l.6.

- an extension of a result due to Trentelman [1.12] regarding
the spectrum of a controlled invariant subspace which complements

a Lp—almost controlled invariant subspace : Theorem 1.8.

- a derivation of the prime subsystem in Morse's canonical
form in terms of almost controllability subspaces (Theorem 2.1 Item 4)
together with a .detailed geometric interpretation for the infinite-

zeros of the transfer matrix C(sI-A) 'B.

- a4 new procedure for the construction of a nigh gain cutput
feedback map for a linear system with invertible transfer matrix so
that the asymptotes of the closed loop system take on pre-assigned
values : Proposition 2.2.

- a condition which ensures that the asymptotes of a linear

scalar gain output feedback have the same orders as the orders

of the infinite-zeros of the transfer matrix : Proposition 2.3.

Regarding the generalized linear system Ex = Ax + Bu; ¥y = Cx

we have given :



- necessary and sufficient conditions for the controllability
and observability of the infinite-zeros of the pencil (sE-A)
Theorems 3.3 and 3.5 (see also Theorems 3.2, 3.4 and Propositions
3.3, 3.4) .

- the proof that controllability of the infinite-zeros is
equivalent to the existence of a state feedback map which assigns
those zeros to pre-specified complex numbers : Theorem 3.7.

- a method to assign all the zeros (finite and infinite)

by state feedback : Proposition 3.6.

- the proof that controllability and observability of the infinite-
zeros is equivalent to the existence of an output feedback map which
converts those zeros into finite ones : Theorem 3.8.

- a procedure for zero assignment via observers for systems
described by J; =X +Bu; y =Cx where J 1is a nilpotent map (see

Section 3.5).

Relative to the geometric theory of a pencil (sE-A) the

following contributions have been given:

- the identification of the minimal column indices of a singular
pencil with certain indices derived from a sequence of subspaces

and the determination of the map whose eigenvalues are the finite-
zeros of such a pencil : Theorem 4.1.

- a necessary and sufficient condition for a pencil to be regular

Theorem 4.2.
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~ miscellaneous geometric properties of a regular pencil
stated in Proposition 4.1, Corollaries 4.1, 4.2, Lemma 4.1 and

Theorem 4. 3.

Finally, it is believed that all the results in Chapter IV
concerning properties of a lipear system under a regular and a
nonsingular PD law and the use of such laws in the exact and almost
disturbance decoupling problems are new. The construction of PID
obser?ers in the context of almost conditicnally invariant subspaces

also seems to be original.



12

CHAPTER I

ALMOST INVARIANT SUBSPACES

I.1 INTRODUCTION

Linear systems theory has evolved extraordinarily since the
introduction of (A-B) and (A-C) invariant subspaces [1.2-3, 1.17].
These concepts proved to be fundamental in the structural analysis
of linear systems and also served as an excellent fraﬁework for solving
several control synthesis problems such as the disturbance decoupling
problem, tracking, regulation, the model following problem, the
synthesis of noninteracting controllers, etc. . The methodology
that employs the above concepts to deal with analysis and synthesis
of linear systems has been labelled as the "geometric" approach in
the important book by Wonham [1.17].

In this thesis we shall adopt the nomenclature suggested in
[1.2, 1.14-51. (A-B) invariant subspaces will be termed A(mod ImB)
or controlled invariant subspaces and (A-C) invariant subspaces will
be called Alker C invariant subspaces or conditionally invariant
subspaces. Such a terminology is, of course, related to the basic
features of such subspaces which are presented in the following sections.

The concepts of almost controlled and almost conditionally
invariant subspaces have been recently introduced by Willems [1.13-5]
and they can, undoubtedly, be considered as one of the most important
new developments in the "geometric" approach to linear systems theory.

The names "almost controlled invariant subspaces and almost
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conditionally invariant subspaces" stem from the fact that such sub-
spaces are limit subspaces of sequences of controlled invariant
and conditionally invariant subspaces.

The new notions have proved to be fundamental to deal with
high gain feedback questions. As an example, the almost disturbance
decoupling problem, by state feedback and by measurement feedback,
has been solved in [1.14-5]. As another application we shall see
in Chapter II that almost invariant subspaces provide an excellent
frameﬁork for a state space analysis of the root-loci problem for
multivariable linear systems.

Almost invariant subspaces have also played a role in the
structural analysis of linear systems : the geometric definition of
infinite-zeros given in [1.4] builds on them.

The concept of invariant subspaces is rich not only because
it plays a fundamental role in linear systems theoxry but also because
it is the kind of concept w
theory. It is also expected that the concept of almost invariant
subspaces should be generalized in the context of nonlinear systems.

For potential applications we refer to [1.14-5].

The objective of this chapter is twofold : firstly, to describe
known concepts which are essential for the subsequent development
of the thesis and secondly, to present some new properties of almost

invariant subspaces.

I.2 ALMOST CONTROLLED INVARIANT SUBSPACES

1.2.1 Basic Concepts

The material of this section is known and can be found in
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[1.17, 1.13-141]. It consists of a collection of definitions and
results which are needed for the development of the thesis. The
exposiﬁion style here follows closely that one of [1.14]. For the
reader well acquainted with the concept of almost controlled invariant
subspaces we suggest to examine this section for the notation and
proceed directly to the next section.

Consider the linear system

Y : x=Ax + Bu (1.1)

dim>3 =m

where x e X 1= E° ; uel := da

-

and let Zx denote all possible state trajectories generated by ).

Definition 1.1: A subspace V c X is said to be a controlled invariant

subspace if ¥ x, € V, ixe Zx such that Xx(0) = x_ and

0
x(t) € V, ¥t. A subspace Va c X is said to be an almost controlled

0

invariant subspace if ¥x € Va and € > 0, 3§€sz such that x(0) = x, and

0 0

dlx(t), V) := inf|| x(t)-x|| <, v, (1.2)
xel
Note that an almost invariant subspace is characterized by the
fact that there exists a trajectory of Zx that remains arbitrarily
close to it.

Definition 1.2: A subspace R ¢ X is said to be a controllability

subspace if ¥xg, , x, € R, 4T > 0 and x = Zx such that X(0) = Xy
X(T) = X, and x(t) € R, %t. A subspace Ra is said to be an almost

controllability subspace if ¥x_., %, € Ra' 4T > 0 such that ve > 0,

0" "1
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3§ e zx with the properties that Xx(0) = XO' X(T) = x, and
d(x(t), R)) < e, wt.

The above definition shows that (almost) controllability sub-
spaces are (almost) controlled invariant subspaces which possess a
reachability property. |

Let V, R, Ya' Ba denote the set of all controlled invariant . subspaces,
etc. and Y(K),B(K),Ya(K) and Ba(K).those contained in a given subspace

K ¢ X. From definitions 1.1 and 1.2 it follows that R < Y c Ya and

ReR c V.
- =-a -a

The first property of the subspaces introduced in definitions

1.1 and 1.2 is extremely important in applications.

Theorem 1.1: ¥, R, Ya and Ea are closed under subspace addition.
Consequently,
* *
sup Y(K):=VKE 4 sup B(K):=RKE R
* R' <R
sup Ya(K):=Va’ K€ Ya sup Ba(K) =R ks R, -

The subspaces introduced in definition 1.1 and 1.2 also admit
"state feedback" characterizations which are shown in the -next theorem.
Theorem 1.2:
a) {VeV} <> {3F such that a_VelV} <= {aVcV+3} .

b) {ReR} <=> {3F .and B,<B such that R = <a IB1>}'

c) V = V+R , i.e. {V.eV'}<=> {IVeV and R eR  such that V =V+R }.
~a - -a a -a ‘ - a--a a a



16

d) {ReR } <> {3F and a chain {B.} “n B such that R =B, +
a -a i a 1

The notation F(V), F(R) and F(Ra) will be used to denote the
setsof maps F which describe, respectively V, R and Ra'

It has been proven in [1.14] that the set Ya is the closure
of the set Y. In other words, arbitrarily close to any almost
controlled invariant subspace Va there exists a controlled invariant
subspace V and in the approximation process, the feedback gain of
the approximating controlled invariant subspace goes to infinity.
Conversely, if a given subspace K can be approximated arbitrarily close
by a controlled invariant subspace, then K € Ya' Such a characterization
of Va establishes the link with high gain feedback.

Another important characterization of an almost controlled
invariant subspace Va is its equivalence to a controlled invariant
subspace when distributional inputs are allowed in (1.1). In fact,
there is a type of distribution which when used as input yields a
"trajectory" which remains in Va if one starts in Va(xO & Va). Such

a distribution is described in the next definition.

+
" Definition 1.3: A distribution § with support on £ is said to be

of Bohl type if there exist wvectors fi'and matrices F, G, H such that

§- 1 5 6% 4y

- i=0

t )

F i t
where é‘ : ¢t - He G and 6(1 is the i h distributional derivative
of the delta functional. Equivalently, the distribution é is

Bohl if its Laplace transform is rational.
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The above characterization establishes a distinction between
a controlled invariant and an almost controlled invariant subspace
with respect to the type of open-loop inputs needed to hold a trajectory
in either of such subspaces. It is well known f1.2] that. controlled
invariant require piecewise continuous functions as inputs, whereas
almost controlled invariant subspaces require distributions.

It is a;so possible to hold a "trajectory" in Va, if one
starts there, by a distributional state feedback law u : x - Fx +

n .
z 5(1) Fix, for certain maps F and Fi' i en (see f1.14a).
i=0

We shall show in Chapter IV that it is possible to keep a
"trajectory" in Va by making use of a proportional-derivative state
feedback law of the kind u : x -~ le + Fzé for certain maps F1 and F2.

In the following we review the algorithms which yield the

Supremal subspaces defined in Theorem 1.1.

*
The subspace . VK is the limit of the nonincreasing sequence, i.e.
* 3 - —_
Vg == I et ey 0 - x (1.3)

*
It has been shown by Willems [1.13] that the subspace Ra K
14

is the limit of the following monotone nondecreasing sequence.

RY=kn @aR™ 1+ ; r%=o. (1.4)
a a a .

* _ RdimK ;

a, K’ a

The above sequence has been used in [1.17] in order to

*
compute RK' which is given by

*
R, = VK n Ra (1.5)
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From Theorem 1.2-€, it follows that
(1.6)

*
It is clear from Definition 1.1 that Va K consists of all
2

those points x_. € K, for which there exists a trajectory that starts

0

in XO and remains arbitrarily close to K in the sense of the norm

(1.2). Such a norm does not constitute the only way of measuring

the distance of a trajectory through a point x, € X to the subspace

0

K. In fact, there are many ways to measure (integrated) pointwise

distance to K which are shown in the next definition.

Definition 1.4: The Z— distance in the LD - sense from a point

€ X to a subspace K ¢ X is defined by

%0
d (x.,K) := Ainf a(x,K) , 1 <p<w
p 0 ey [| Nz ”L‘p —_ _—
- &X
J_C(O)=xO
where
1
o D
la Kl ==/ & xw,Khae| , 1<p<w
p -0
and
| ax,K [lL := sup|| a(x(t),K | .
o t

The points x, of interest are, of course, those for which x

0 0

is zero distance from K. Moreover, from the linearity of zx, it
follows that such points constitute a subspace of X. This has led

Willems to the following definition.



Definition 1.5: V := {x_ e X|d_(x.,K) = 0} will be called the
p.K 0 p 0

supremal Lp - almost controlled invariant subspace "contained"

in K and

p.K

will be termed the supremal Lp-almost controllability subspace

“"contained" in K.

The subspaces above introduced are directly connected to

: * *
the subspace V and R as the next theorem shows.
a,K a,K

Theorem 1. 3:

* * * *

a) Rw,K = Ra,K and Vw'K = Va,K

b) for 1<p<w:R ,=2aR B v =R v,
or <p F R K = a,K + and oK = p,K + K °

* *
It is clear from this theorem that Vm g K, but V need

, p.K

not be a subspace of K. Part b of the above theorem shows that
. .

Rp K does not depend on 1 f_p < ® and for this reason the following

notation is adopted.

* *
Rb,K 1= ARa,K + B (1.7)

and

=AV* + B+ V
a

... (1.8)

19



20
*
The subspace Rb K can be computed through the following
I
monotone nondecreasing sequence.

* dimK+1

Ry k =3

;8% = ais® ok +8 sY-=o. (1.9)

Trentelman [1.12] has shown how to construct seguences of

* *
controlled invariant subspaces which approach R and Rb .
a,K K

I.2.2 Decomposition of an Almost Controlled. Invariant Subspace

and Some Geometric Relationships Among the Various Subspaces

We start this section by showing some relationships among .
the sequences of subspaces defined in (1.3-4), (1.9) and the monotone

. 1L
nondecreasing sequence which yields RK given by

*
dimV
RZ =R K., p¥_ VZ n a1 e s RO =0 (1.10)
Lemma 1.1:
a) su - AR:—l + B
b) Sun!/;2=Ru
<) RS n vz = Y

a) S nKk=1r".
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Proof: a) 1is proven in [1.14] ; b) is proven in [1.10],
c) and d) follow immediately from a) and b) and have been shown

‘in [1.5].
0

We introduce now two classes of subspaces which are extremely
the
important inAgeometric definition of finite-zeros, infinite-zeros and

synthesis of control systems.

Definition 1.6: A subspace C € Y is said to be a coasting subspace

*
if RC = 0. A subspace Rs € Ya is said to be a sliding subspace if

A caasting subspace does not possess the reachability property
or equivalently o[ (A+BF) |C] is fixed for any F € F(C) (see [1.14] and
thm. 5.7 in [1.17]).

In a sliding subspace there are no trajectories generated by
Z other than the null trajectories. All "trajectories"vin that
subspace are generated by distributional inputs.

We shall show next that sliding subspaces appear in the
following way : let Ra be an almost Eontrollability subspace; then
Ra = R; B Rs ;, i.e., sliding subspaces show up as complements of

*
R, to R . To show this we introduce two more sequences of subspaces
a

R

a
which will be used throughout the thesis.

Let B be any subspace such that
. * =
B =B8Bn VK 9 B (1.11)

and consider the subspacesﬁb K and R K defined by the following
’ Ay
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sequences of subspaces.

5 _ zQimK+1
%,K = S ’
_ _dim K

Ra,K = Ra ;

3" =

(1.12)

(1.13)

We then obtain the following relationships among the sequences

defined in (1.3-4),

Lemma 1.2:

a) s% = 3% g "
=1 *

b) u S n VK = 0

) - aRt e B

a

a) RY=Kn 3"
a

e) RY =% o r"
a a

£) Tz‘; n V; =0

Proof: a) and b)

part a) in Lemma 1.1 ;

shown in [1.5].

(d-£)

From Lemma 1.2{e-f),

(1.9-10) and (1.12-13).

are proven in [1.10] ;

it follows that

is analogous to

follow immediately from {a-c) and are



23

" =R . eR (1.14)

*
with Ra K@ sliding subspace. Since R K is the supremal almost
14 14

controllability subspace in K, it follows that the sequence (1.13)
yields a sliding subspace of maximal dimension in K. Note that
distinct sliding subsgtés» are obtained in (1.13) for distinct com-

*
plements of B n VK chosen in (1.11).

From (1.14) with K:= Va and Theorem l.2c we have

* -
v :] Ra,V {(1.15)
a a

V¥ =CeR
a

* *.
where C is a coasting subspace such that C & RV = VV . The

a a
decomposition (1.15) has been obtained in [1.14] and it describes

the structural features of an almost controlled invariant subspace.

*
The only subspace which is uniquely defined in (1.15) is R , which is

v
* a
a subspace such that for any symmetric set A of dim KV ,complex
a
* *
numbers. there exists F & F(VV ) such that OE(A+BF)IRV 1 =A,
a a

To conclude this section we refer to [1.7] for a matrix pencil

characterization of almost controlled invariant subspaces.

I.2.3 Properties of Sliding Subspaces

The decomposition (1.15) of an almost controlled invariant
subspace has shown that sliding subspaces constitute one of the key
concepts in the new theory developed by Willems. This motivé alone
would be sufficient to justify the study of properties of such sub-

spaces. But this is not the only reason. We shall see in Chapter II
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that some of the properties described here are important to obtain
a good formulation for the assignment of root-loci asymptotes and to
analyse Morse's canonical form in the light of invariant and almost
invariant subspaces.

Let RS be a sliding subspace. The first property is a simple
one and it is direct consequence of the fact that V; = 0.

. s
Proposition 1,1: Let Rs be a sliding subspace. Then

a) RnA;B=O , WF : X~>U
b) max dim Rs = n-m

Proof: Consider the algorithm 1.3 with K := RS. It is straightforward
to see that the subspace Vu is invariant under the transformation
A > A+BF, VF : X > U. Since Rs is a sliding subspace, it followé
by the stopping rule of thé algorithm that for some u € n,
1

Rs n A; B = 0 and a) follows. To show b) note that a) implies

A, Rs n B =0 and ker A, 0 Rs = 0. This and dim B = m imply b).

We already know that a sliding subspace is an almost controll-
ability subspace and therefore it admits a feedback representation as
shown in Theorem 1.24d. What we want is to obtain some properties of
the feedback map that describes a sliding subspace and to analyse
in more detail the algorithm (1.13) which is slightly different from the
algorithm (1.4). In (1.13) we have discarded the subspace B n U*

K

which gives rise to the supremal controllability subspace in K.



Theorem 1.4:

a) The sequence {ﬁ:} is monotone nondecreasing ; moreover
RAUmK _ 2 o yim R% and R = Rl o R O R
a a a a a a a
ureo
b) ﬁz— = sup{J < K|3F and a chain {Bi} in B such that
u-2 . -u-2 =
J-B1 + AF82 *oe AL Bu_1 with BF Ra < B}.
_k_l -
c) Let k € n be such that Ra = Ra' Then
=k-1 k-2
= D,..9
Ra Bl ® AFBZ AF Bk-l
for some chain {Bi} in E_ The subspace EZ lncan also be written
as
=k-1
Ra = L2 & L3 D...0 Lk {1.16)
where
- ' u-1 [
Lu+1 Bu+1 ® A'FBu+1 ... 9 AF Bu+1
with
B;+1 c Bu , ue {1,2,...,k-2}
and
k-2
L = Bk_1 @A B _,8...0A "B ,
Furthermore, the map F can be chosen so that "’
(1.17)

BF L2 c Bi

25
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and

t ! ' -
BFL ., =By +By + ... +B' , ue{2,3,... ,k-1} (1.18)

Proof: The proof of a) is absolutely identical to that in‘[1.17

page 106]. The result b) 1is easily proven by induction on wu.

To this end suppose that

for some chain {Bi} in B. Hence

] u-1 3 su—1
@1 + .AF 32 +7..+ AF Bu c K n (31 + AF Ra y ¢ Kn

We now show that the subspace R: can itself be written as

5U u-1 N
Ra = B1 @ AFBZGB..@ AF Bu .

The proof is inductive and it alsobyields the results described
in <. Some of the steps involved in the proof are similar to those

used in the proof of the second theorem in [1.13].

Consider the sequence (1.13) for u = 1 and let Ra = Bl 1=

Kn B. Let Bi be any subspace such that
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and let {bi} , 1€ gy be a set of linearly independent vectors which

span Bl' Write
x. := Db, , 1€ Zl .

For u =2, §2 =Kn (Aﬁl +B8) = Kn (ﬁl + AB, + B'). Since
a a a 1 1
=1

Ra c K, there exist linearly independent vectors Xy o ie £2 such
- ' -
-2 =
that R” = Rl @ span{x, .}. Since K n B' = 0, the vectors x,
a a i,2 1 i, 2
have the form
”~ 1 .
X, 5 = Bb. + bi,l , 1e {’2 (1.19)
where the b, € B,, i € £_, are linearly independent and b' _ € B!.
i 1 -2 i,1 1
Let
B {o.} , B cB
= <
7 B e R S |
and define F : 82 + U such that
BF b, = b! . (1.20)

i i,1

Then from (1.19)

X, = (A+BF)g. .
i,2 i

Let Bé be any subspace such that
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Thus

?i =B e aAB =L, oL,
with

L, := B!

L3 1= Bé ® AFBZ.

Note from (1.20) that BF32 c Bi and by the independence of

L, and L_ we can define F on L, and on span {x. .}
2 3 2 i,2

B
BFL2 < B‘1
and
1
BFL3 c 31
which proves (1.17) and (1.18) for u = 2.

Now assume that for u - 1

%1 -8 9 2B e o 2V 2B
a 1 F 2 P u-1
= L2 & L3 &...0L
with
= ' ' j—l ' 5
Lj+1 Bj+1 ® AFBj+1 ... a_ B.+1, j e {1,2,
~ u-2
Lu = Bu—l ® AFBu-l o2 Bu-l
BFL2 c 31
BFL c B +B' +...+8' ., je{2,3,...,u-1}

j+1 1 2 j-1

.,u-2}

AFB2 so that

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)
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35 ) Bj = Bj_1 . 3= {1,2,...,u-1}. (1.26)
Now

Y= kn @R+ B (1.27)

a a

- -1, Cas
and since Rz c R and Rg is a sliding subspace there follows

by Proposition 1.l1la that

dim(a, ﬁ;’l ® B) = dim(Aﬁ:'l @B, vr : Xl (1.28)
F

But from (1.24-6)
BFRY ~ < B .

a

Thus

Taking into account (1.28) it follows that
su-1 5 su-1
aR & B =2aR e B, (1.29)
Hence (1.27) can be rewritten as

'R'll

a

Kn @aRY?!e B)
F a

"
~
b
)

d

+ B' + AFBé+...+Au-
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su-1 . . .
Since Ra c K, there exist linearly independent vectors

sy su-1
x. , i el such that R® = RV " @ span{x. }
“u a a i

i,ua T
Since
u-2
't I ! =
Kn (B} +aB) A, "Bl _) =0
the vectors xi have the form
I
u-1
x, =aYlE o+ 7 allp L ieu
i,u F 1 j=1 F i,] -u

where the vectors bi s Bu—l are linearly independent and b'
i,]
Define the following vectors
= b
xl,l i
=b +3_b
*1,2 " Piu-1t T O P
u-2 ~
=b! _ +A_ Db! _ +...+A b
i,u-1 ;2 F i,3 F i
u-2 u-1 ~
= b! + A_ b! +...+ A ! + A
i i1 TR Py FoPi,u-t T PR Py
for i e @u and note that
= A . + b! . i j € .
i3 T Bp ¥y ,go PR uger r P TS

Define F" on {xi j}’ ie @u, 3 € {1,2,...,u-1} so that
[4

BF" . b! .
xi,] i,u-j+1

e B'.
J

(1.30)
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Thus

] ~ ' .
J bille’guljel_l-

X, . = (AF + BF")

1,]

Let

Bu 1= span{bi} , Bu c Bu_1

and let Ba be any subspace such that

Define F" on span {x, } , i € £ so that
i, u =u

BF' x, < B’
u u-

1,

1 (1.31)

and finally define F' : ﬁz -+ U by

F' :=F + F" on span{x, .} , ief , 3¢ {1,2,...,u-1}
i,j “u
F' := F" on span{x, } , i€l
i,u “u
| -
F.FonL2€BL3€B...€BLu_1€BLu
where
L :=B' @aB' @ ... 9a%23,
u u Fu F u
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It now follows that

71
[
1l
[on]
(=]
)
[a ]
(=]
2%
o

a 1 F' 72 ! u (1.32)

= @ ... @
L2 ® Lu Lu+1
with
u—-1
] T Bu ® AF,Bu ® ... 92, Bu .

It is not difficult to see from the inductive hypothesis

(1.24-5), (1.30-1) and the definition of F', that

BF'L2 c Bln

and

BF'L. c B + B! +...+ B!
2 j

J+1 1 ’ je{2131---ru}

-1

which proves part c¢) of the theorem.

Corollary 1.1: Let Rs ¢ K be a sliding subspace of maximal

dimension described by
=B A B .o
Rs ) @ w0 8 ® A

for some F : X > U and some chain Bi in B , where B is as in (1.11) .

Then necessarily

. u—2 -
BF(Bl @ AF52 & ... 8 AF B ) ¢ B (1.33)
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Proof: Just note that at the step uw of the algorithm (1.13),

(1.33) must hold in order to have the equality (1.28) and then write

RZ as in (1.32).

ad
Remarks 1,1:
a) Note from (1.28) and Lemma 1.2e that
3. leB
F a
-30aB ©...02%'38 (1.34)

~u ..
which shows that S~ also admits a state feedback representation.

b) Alsc note that we have defined F" on span xi a (see (1.31))

I

to obtain the extra property (1.25) which is to be used in Chapter II.

However, we need not have done this. From (1.30) it follows that with

r

F" defined on {xi j} , 1€ g

x, = (a_ +Bm¥ LT,
i,u F i

Thus unless we wish some extra property, the conclusion is

that to obtain the representation

—u u-1
K= ' +.o..t
Pa B1 ) AF32 AF Bu

the map F need not be defined on A;—l Bu = span{xi u}'

Our next result is simple and concerns the existence of sliding
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subspaces of maximal dimension.
Theorem 1.5: There exists a sliding subspace of maximal dimension
(n-m) if and only if the pair (A,B) is controllable.

Proof

=>) Let Rs be a sliding subspace of dimension n-m. Then by

Proposition 1l.la, it follows that

AFRS ® 8B =X
where
_ k-1
RS = B1 9 AFB2 ® ... & AF

By

for some chain{Bi}'in B, some F : X~ U and some k € n. Since the
controllable subspace is invariant under state feedback, it follows

that the pair (A,B) is controllable.

<==) If the pair (A,B) is controllable, then the space X can be
decomposed into a direct sum of m controllability subspaces Ri'
dim(Ri) = ki' where the ki' i € m, are the controllability indices
of the pair (A,B). It is easy to see that if

X=R @R, e...0 R (1.35)

where the

are controllability subspaces, then
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R =L o L_ o...0L (1.36a)
S 1 2 m
where
k. -2
L =b, +Ab, +...+A " b,ienm (1.36b)
i i F a1 F i -

is a sliding subspace of dimension n - m.
g
In the following we shall discuss some features of sliding
subspaces of maximal dimension,

Let RS be a sliding subspace of dimension n - m, i.e.

1z (1.37)

- k-
RS—Ble AF32@ eAF N

for some chain {Bi} in B, some F : X - U and some k €n .
It should be clear from Theorem 1.4c that Rs can also be

written as

RS = L1 ] L2 H...9 Lp , p = dim B1 (1.38a)
where
ni-l,
Li=bi+ AFbi too. o+ A bl, iep (1.38b)

for some set {ni} , 1 € p.

It is clear that

AR @B-=X \39)
F s
_ 2 k
=B & AFB1 ) AF 132 d...9 AFBk
=R & R o...9R (1.40)
a a

1 a2 m



36 -

where the
R = %.+ AFbi Fo. ok AFl b, ienm (1.41)

are almost controllability subspaces. A precise definition of the
set {ni} , 1 € m, will be given in a moment.

By comparing (1.36) and (1.38) we see that we have two types
of'sliding subspaces of dimension n-m. The first one in (1.36)
gives rise to a decomposition of the state space into' m controllability
subspaces. We call this type of sliding subspace'a prime sliding
subspace in connection with the definition of a prime system in [1.10].
The second type in (1.38) originates a decomposition of the stateAspace
into m almost controllability subspaces and is termed here a irre-
ducible sliding subspace in connection with the definition of irre-
ducible systems in [1.5].

Our next objective is to compare the sets {ki} and {ni}, iem.
For this consider the algorithms (1.4) and (1.9) with K := RS. Then

from Remark 1.1, it follows that if at the step u-1 of the algorithm (1.4)

Ru—l

o u-2
a = Bl 2 AFB2 ® ... & A B

F u-1
then at the step u of the algorithm (1.9)

u 2 ) u-1
S =B e AFB1 2 AF82 8 ... & AF B .

u-1



Let

Ju+1
we{1,2,...,n-1} .

¢o = m, ¢u = dim -
S

We have defined u up to n-l1 to keep symmetry with the de-

finition of the set {ki} which is to come.

Since B o 81 >...D Bk' it follows that

and by (1.39)

i
s

q;o + ¢1 + ... F (bn—l-
Let

n, = nunber of integers in the set

PR i > 3.
{¢O' ¢1 ' ¢n—1} which are > i

Then
> ces 2 > 1
nl__ n2__ __nm__
and
n +n + ... +n = n. (1.42)

Note that the set {ni} , i€ m above defined is the same as

that of (1.41).

37
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We now review the way that the set of controllability indices
{ki} , 1 € m is defined [1.173]. Por this consider the following

sequence of subspaces

Y9 =B+ aB + ... +2"B, u e {1,2,...,n-1} and let

u
p. = m p = dim m——— , uae{1,2,...,n-1}.
0 b u—-1
It is well known that
> . > >
pO —-pl — pn—l 20
and
OO + p1 +.. .+ g = A
Let
ki := number of integers in the set
R i > i .
{OO: pl' ' pn—l} which are > i
Thus
> > .. >k
kl-— k2 — — m
with
k1+k2+...+km=11. (1.43)

We are finally in a position to state our next result.
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Theorem 1.6: The sets {ki} and {ni} are related by the following

inequalities
J 3
> .
Lok i —-,z Pn-i+1 r JEm (1.44)
i=1 i=1

with equality holding for j = m.

Proof: The equality at j = m follows from(1.42-3). Now, note that
2 1

S=A(BnRS)+BCAB+B=U)

and if SY c wuﬂl, then

S oA aR) +B cagtThR) +8c a4 8=y

Therefore

Il D1
-
AN

il o~
©

, Le{1,2,...,n-1} . (1.45)

1=0 i=0

As a direct consequence of the definitions of ki and ni, i e m,

it follows that the integers pu and ¢u can be written in the following

form
(m,u = 0,1,...,k ~1 (m, uw=10,1,...,n -1
m m
m—l,u = km,...,km_l—l m-1,4 =n,.. ,nm_l—l
pu = . ¢u B .
1, 4= k2""’k1—1 1, u= n2,. .,nl—l
\O, u = kz,...,n—l L 0, u-= nl,...,n—l

(1.46)
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It follows immediately from the lists (1.46) and (1.45) that

km-z nm. The proof now goes by induction. Thus, assume that

(1.44) is true up to j = m—£, i.e., up to the inequality

+ +...+ > + +,..F . -
km km—l k£+1 Z % T Pt Dpa1 (1.47)

We then have two cases :

i) kf_i n£

Hence by (1.47)

+ ot + > + toa ot +
kp * Kot Kpar T Rg 20y F 0y Rory tKp
> + SR +n,.
Z 0y T e foer T 0
ii) k£ < n£
Suppose that
+ +...+ k < + +,..+ .
km km—1 YA fn-1 R
This implies
+ +...+k, + (£-1 < + +...+
km km—l kﬁ (K )n£ " T Pmet Enﬁ

which is equivalent to

mk  + (m-1) (k -k ) o+ (m-2) (k- ko) +...+£(k£ - k,..)

£+1

+ (£-1) (nﬁ—kﬁ)
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<m nm +(m—1)(nm_1—nm) + (m—2)(nm_2—nm_1) F.. .+ Z(nz-n£+1),

The last inequality implies by the lists (1.46) that

-1 n,-1
g e
Le, <L
u=0 uw=0 Y
which contradicts (1.45). The desired result then follows.
O
Comments: It is interesting to note that the set of inequalities (1.44)

shows up in [1.11, Chapter 5, Theorem 4.2]. The set {ni} iem,
there, refers to the possible degrees of the invariant polynomials
of the map A + BF, ¥F : X = U, when the pair (A,B) is controllable.
It will become clear from the results of Chapter II that if
C: X+ VY is a map with ker C = RS and Y is an arbitrary space of
dimension m, then the set {ni}, i € m constitutes the set of in-

1

finite-zarng of the transfer matrix C(sI—A)- B.
Another way of presenting the set of inequalities (1.44) is

as in [1.8]. It can be easily seen that such a set is equivalent

to the set

with equality at j = m.

I.2.4 The System'Zx(mod RS)

In this section we describe some features of the quotient space
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X/Rs, where Rs is, as usual, a sliding subspace.

Let Zx be the set of trajectories generated by z which
are infinitely differentiable, i.e. fx = {x : R>X|x € ¢ and
X(t) - AX(t) = B,¥t}.

Let N be a subspace of X and consider zx(mod Ny, i.e.

{xt ], mwoa M} <> {3x e [ Ix' () = x(t) (mod N), vt}.

Theorem A in [1.14] states that there exists a pair of maps

~

(A,B) such that Zx(ﬁ,ﬁ) = [, (mod N) if and only if N e V_.

The map B is the insertion map in X of the subspace
B = (aN + B) (modN). (1.48a)

To describe the map A, consider any subspace W of X

such that W ® N = X. Then g : W > W with
Aw := A(w,0) mod(N). (1.48b)

It is well known [1.17] that if V e U, then there exists a pair

(2,B) such that ] (A,B) = ] (mod V) with

A := A mod (V) , WF e F(V)

and

B (modl)) .

(2]
It

Moreover, if the pair (A,B) is controllable, then the quotient

space X := X/V is controllable, i.e. <ilé> = X.
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One of the aims of this section is to show that if the pair
(A,B) is controllable and N:= Rs + then the quotient space
~

AN A
X := X/RS is controllable, i.e. <A|B> = R.

First note that
S:=2R @ B>R .
S S

To see this, let K = Rs in algorithm (1.4). Then, obviously

*
Ra K= Rs and the claim follows on noting that by Lemma 1.1d
’

S=SeR (1.49)

and let S : S » X and Rs : Rs -+ X be the insertion maps of S and
R in X.
s

Proposition 1.2: Let (A,B) be a controllable pair, let N = Rs be

a3
a sliding subspace and consider the pair (g,B) defined in (1.48).

Then :
ALA ~
a) <a|B> = X
b) Consider any subspace W such that W & Rs = X. Then, there

exist maps Z1 and 22 such that
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(A+8Z +R z)WcW
s 2

1
and

ol (A +8z, +RzZ)|wl=4~
s 2

1

where A is a set of dim W symmetric complex numbers.

Proof:
a) The proof of this part is similar to the proof of Lemma 3.5
in [1.17]. ©Let W be as described above and let P : X = X be
a projection on W along RS. We shall show that
<pA|P(ARSe B)> = W.
For this it is enough to verify that

x(R_© <pa|P(aR_ @ B)>) =0
S S

implies %% = 0, for all % e X'.

Now

r'[1
x R =0=x(1-P) = 0= x = xTP

xTP(ARSeB) =0 = xT(ARS ®B) =0=] xB =0

. . : T T
which implies x AP = x A.

Similarly
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0= XTAB = 0

XTPAP (ARs ® B) =0= xTA(ARs e B)

xTAzR =0
s

. . T i-1
By induction on i we have x' A" "B

0, 1= n, i.e.
T T . . .
X <A|B> = 0 and hence x = 0. The result follows on identifying

PA|W/ and P(AR_ + B) with A and B.

b) First note by (1.49) that

B=P(ARs@B)=PS=P§

From part a), the pair (PaP, Pg) is contreollable. Thus
there exists a map Z, s W -+ § such that
o[ (PAP + PS z,) Wl =n. (%)

Let M : X > Rs be the projection on Rs along W. It is

clear that MRs is nonsingular : thus there exists a map 2

2'such that
MAP + MSZ, + MR Z, = O (1.50a)
and note that since PRS =0, (x) is equivalent to
olp(ap + Ezl +R_ 2|0l = AL (1.50b)

From (1.50) the result b) follows.
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I.2.5 Finding a Controlled Invariant Subspace With Pre-Assigned

Spectrum as a Complement of an Almost Invariant Subspace

Consider any given almost controllability subspace Ra.
Trentelman [1.12] proved a very interesting and importaﬁt'result
concerning the existence of a controlled invariant subspace with
arbitrary spectrum that complements Ra. The statement of his result
is as follows.

Theorem 1.7: Let (A,B) be controllable and let Ra be an almost
controllability subspace. Suppose A 1is a symmetric set of n -

dim Ra complex numbers. There exists V e Y and F € F(V)such that

VeR =X
a

and

cl(a+Br) |V]1 = A ..

It can be shown that the above result also holds for the LP—
almost controllability subspace Rb = AR, + B. The statement relative
to Rb is identical to that of Theorem 1.7 when we replace Ra by
Rb.
The above results can be further extended with a minor modification
for the case of an almost invariant subspace Va and the corresponding
L -almost invariant subspace V =al + V + B.
P b a a

For this, let Az be the set of complex numbers given by

(see Theorem 5.7 in [1.17]).
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4

A, = oL ((assP) |V, ) (mod R, D1, ¥F € E (V)
a, a a

The above set can be considered as the set of finite-zeros

of the transfer matrix of the system

X = AX + Bu

v
f

x{mod V ).
a

We then obtain the following result.
Theorem 1.8: Let (A,B) be controllable and consider the subspaces
Va and Vb as described above. Let A bé a symmetric set of
n - dim Va(Vb) complex numbers such that A n Az = ¢. There exist

VelVand F e F(V) such that

Ve Va(Vb) = X

of (a+BF) [V] = A

Proof: We shall prove the statement concerning the subspace Vb.
The proof for Va follows similar steps.  The technique of proof
follows that one of [1.12] and it makes use of two intermediate
lemmas.

We first describe a decomposition of Vb. From (1.8)

Using Lemma 1.2a,b we obtain

47
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where ﬁb v is given by the sequence (1.12) with K := Va and
I
a

by Lemma 1.2¢

where Ra " is given by the limit of the sequence (1.13) and B
I

is as in (1.11), i.e.
) - *
5=B@BHVV -
a
From Remark 1.1 we also have that'
R =a_R e B (1.51)
a,V

where F 1is a map as given by Theorem 1.4.

5 _ 3k-1
Let Ra,V 2= Ra,V
a a

Then from Theorem l.4c and

for some k € n in the sequence (1.13).

- N - k=1
R v = B1 ® AFB2 e...eAF B

a, a k
where B, is a chain in B - Consider subspaces Bi as in (1.26), i.e.
i .
: -
= . = K 3
B:L ) B;L Bi-l' BO B, i€ K

Let B£+£= B . Then by using (1.51) and (1.16) we obtain
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Rb = M1 ® M2 B...B Mk (1.52)

where
1

=
1]

i- ,
' 2 3 @,...8 B! =
B @ a3 Ap i rot

*
Since Ra p N VV = 0 it follows that the map F can also
1 4

a
*

be taken from the set F(V,, ). We can now state the following lemma.

v
a
A

Lemma 1.3: Let A, B, Vb’ and F as above. Then there exists

DO c X such that

and

GEPDO a |01 =47

where PD : X » X is the projection on DO along Vb.
0

Proof: Let D c X be any subspace such that U @ Vb = X and consider
a map Q : Vb > D defined by v > Py ALV , where PD is the projection
on U along Vb.

Consider the pair (PD AF, Q) and suppose it is not controllable .

Then there exists a subspace W <« D, W # D such that

PD‘AFW < W ’ W > ImQ

which implies
AchWevb a V c WeV
whence

AF(we Vb) clWe Vb
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with

W@Vb#XandWGVb > B

which in turn implies that the pair (A,B) is not controllable which
is a contradiction. Thus the pair (PD AF,Q) is controllable and

there exists 2 : D -+ Vb such that
OoLP. A + QZ]1 = A.
[e,, LD +02) = A
Let S : X+ X be a map defined by

s|P=1,+P,2 ; s|V =1
DV bV

where PV is the projection on Vb along D.
b

Define P, := SD and note that V. @ V. = X. Let P, be the
0 0 b DO
.projection on DO along Vb. Then since PU = SPU , it follows that
0

the diagram below commutes.

) PD AF+PD AF Pvi D
ﬂ’
IS S
4 - iﬁ
?, | PDO AF[DO 0,

The lemma follows on noting that S is an isomorphism between

P and QJ‘ 0

The proof of the theorem still requires a further lemma.



Lemma 1.4: There exists a map T and a map F, such that with

1
’Dl 1= TDO the following relations hold :
a) X = Dl 8 Vb
b) O[PD (AF+BF1)|91]_= A, where PD is the projection on Dl
1 1
vV .
along b
D eV,
c) (AF+BF1)01 <D eV,
a
* = |V
d) (AF+BF1)|VU = 8plYy
a a
Proof: The proof of the above lemma is absolutely analogous to

the proof of Lemma 5.2 in [1.12] on considering the decomposition

(1.52). | O
-
Let A Dbe a symmetric set of dim Ru complex numbers such
r
a

that;Af H A = 0. Then [1.17] there exists FV e F(V Y, F o XV

x
v v
a

such that

I
=
c
=

*
O[(AF+BFV)|UUa ]

Since (1\.r U Az) n A =0 it follows that there exists a map

*
v
a
(see [1.17]).

J : Dl -V

which solves the following Silvester's equation

*
(AF+13FV)|VUa J-J Pvl(AF+BFl)Ivl—PV*(AF+BFl)lvl =0

*
, is the projection on UU along Dl'

v a

where P

51
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* * -
Define F, : X = Uby F2|01 =0 ; levva = FVIVVa ; FZIRb,Va = 0.

Also consider the map N defined by

-3 , NV =1 .
1 b Yy

1

Finally take V NU1 and F = F +F '+ F.. Then clearly

1 2

X=Ve Vb .

Using Lemma l.4c it is not difficult to see that the foll-

owing diagram commutes .

Pp .
D1 .  (Bp¥BF ) [0, D1
N N
+
¢ (a+BF__ ) |V v
new

1t now follows that (A+BFneW) Vel and since N is an

isomorphism between Dl and V , the conclusion'is that O[A+BFnew)lV] = A,
d

The result proved by Trentelman (Theorem 1.7) and the extension
shown here (Theorem 1.8) are important because if we are required
to approximate an almost invariant subspace (say Ra) by a sequence
of controlled invariant subspaces, then we may fix FlV, where V is
as in Theorem 1.7, and a symmetric set A of n-dim Ra complex numbers.
It nas been shown in [1.12] that there exists a sequence of subspaces

V_ and a sequence of map Fe:V U such that VeoV=X, (n4BF ) VeV and Ve &0 fa
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Moreover, in the approximation process the elements of the set
Ae := O[(A+BFEIVEJ go to infinity and the magnitude of the - asymptotes
can be chosen freely.

To conclude this section we point out that the existence of
a controlled invarlant subspace with pre-assigned spectrum that
complements a subspace- J is generic in the following sense.

Proposition 1.3: Let J be any subspace of X and let the pair

(A,B) be controllable. Consider a symmetric set A of n-dim J
complex numbers. Then there exists a controlled invariant subspace

V and a map F : X > U such that

JoV=2Xand ol (a+F) V] = A_

where Ae is a symmetric set of n-dim J complex numbers whose elements
are arbitrarily close to the elements of the pre-specified set A.
Proof: Let Z be an arbitrary space of dimension £ z=n-dim J and
define a map H : X + / such that ker H = J and rank H = £.

We may assume that the pair (A,b) is controllable for some
b € B. Otherwise, there exists a map Fo ¢ X - U such that
(A+BFO,b) is controllable for any b € B [1.17 Lemma 2.2].

Let BS = b, for scme 0. Then from the proof of the main

*

*
result in [1.6], there exists amap R : Z -+ U , with R := OBR for

some 1 X £ vector R, and a subspace V such that

(A+BR*H)V c V , Ve ker H =X
and
*
of (a+BR B) |V = A_ .

*
Set F := R H and the result follows.
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I.2.6 Properties Of Coasting Subspaces

Coasting subspaces also play an important role in the theory
of almost controlled invariant subspaces. In the proof of
Theorem 6 in [1.14] is shown that a sliding subspace can be
approximated by a sequence of coasting subspaces.

The next proposition consists of a collection of basic
properties of coasting subspaces -

Proposition 1.4: Let C Dbe the set of coasting subspaces. Then

a) max dim C € C = n-m

b) (Fl—FZ)lC =0, W,6, F

T F,y F(C), wCeC.

Now let the pair (A,B) be controllable. Then

c) For any symmetric set A of p complex numbers, p < n-m ,

there exists C € C and a map F : X - U such that
of (a+BF) |[C] = A

d) For any C € C and for any F € F(C), the pair (A+BF,B) induced
in X/C is controllable. The controllability indices ii' iem,
af (A+BF,§) are the same for all F € F((C) .and Ei-i ki’ i € m, where

the ki are the controllability indices of the pair (A,B).
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Praof:

*
a) From Definition 1'6'~RC = 0, which implies C n B8 = 0 and

the result follows.

b) See [1.17, page 88].
c) Let Al be a symmetric set of n-m complex numbers such that
A, =AU A
1 2

where A2 is also symmetric set of complex numbers with

An A2 =¢ .

By Lemma 3.5 in {1.17], there exists C, €« C and F : X = U

such that

C1 @ B =X

(A+BF)C1 c C1

and

0[(A+BF)|C1] = Al .

Let C be the span aof the generalized eigenvectors associated

with A. Then

(a+BF)C < C
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and

of (a+BF) [C] = A
d) For the first statement of this part, see Proposition 4.1
in [1.17].

Since C n B = 0, it follows that dim B = m. The control-
lability indices of the pair (A+BF,B) are determined from the numbers

(see Section 2.3).

—Q
50 :=m , Bu = dim [¢ ] , ue {1,2,...,n-1} (1.53)
—u-1

¢

where

B +(a+BF)B +...+ (a+BF) B .

-
o
1

Let P : X/C be the canonical projection. Since (A+BF)P =

= P(A+BF) and B = PB , it follows that

=1 u
¢ =Po¢
where
¢u = B + (A+BF)B +...+ (A+BF)"B
=B + aB ...+ A"B.
Thus
_ $'nC
p_ =0 - dimj (1.54)
u u q)u 100
where
¢u
pP. :==m p = dim , U € {1,2,...,n—1}
0 u a1



Let Ei be the number of integers in the set'{Eo,Bl,...,Bn_l}

m
>1and } k, =din X/C.
Ti=1

which are > i. Thus k, > k

> .. >k
. > .. >k

2 m

From (1.53) it follows that 5u f_pu, which inplies

k. <k., i € n.
1 — 1 -

a
Part d) of the above proposition obviously holds with a

minor alteration if we replace C by the set . Instead of

V+B

p, where p := dim _E—-i m.

having 50 =m in (1.53) we shall have 50-

(1.54) still holds and the conclusion is k. < k.

. r 1 € p.
i— %1 E

Now let the pair (A,B) be controllable again and consider
any V € V. Let (A+BF) and B be the maps induced in X/V by
A+BF and B, ¥F € F(V). A natural question then arises : what is

the nature of the subspace that complements V to X so as to

have A+BF and B in Brunovsky canonical form? The answer is

Proposition 1.5: Let { be  a controlled invariant subspace and

the pair (A,B) be controllable. Let p := dim 3- Then

there are almost controllability subspaces Ra » 1 € p, given by
i
' Ei—1
= +o..t b
Ra_ bi + A b, A, i
i

such that

X=VeoeR eo...6R
=} =}
1 p

and the pair (A+BF,§) is in Brunovsky canonical form.

57
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Proof: We shall just sketch the proof which is based on [1.1].

ot

Let be any subspace such that

B=BeBn V.

l—lg

Since AL(B ny ¢V + B + aR +.e.+ A , ien,

it follows that
X=V+<a|B> =V +<alB>.

Now construct a basis as in Brunovisky canonical form
see[1.17, page 120]. For this let {gi}' iep be a basis for B
and, {vi}, i € r, be a basis for V, with r := dimV. Then write
down the list
~ ~ n-1~ n-1~
{vl,...,vr; bl,:..,bp;...; A bl,...,A bp}
Proceeding as in [1.17] it is then possible to obtain subspaces

Ra , lep given by
i

X=VeR +...0R , (1.55)

where the map F 1s defined on Ra and has the property that
i

A b, e V. (1.56)



From (1.55), it follows that ¥ can be taken from F(V).

By taking (1.55) as basis for X and using (1.56), it follows that

the pair (A+BF,B) is in Brunovsky canonical form and therefore the

integers ki' i € p, are the controllability indices of this pair.

O

I.3. ALMOST CONDITIONALLY INVARIANT SUBSPACES

1.3.1 Basic Concepts

In this Section we present a summary of the main concepts
introduced in [1.15], which will be used in Chapter IV in connection
with the construction of observers which make use of differentiators.

The notion of a conditiocnally invariant subspace is dual to
that of a controlled invariant subspace and it can be introduced this
way [1.10, 1.17]. However, as remarked in L i.i5], it is more natural
from the linear systems theory point of view to introduce it in the
context of observer design.

To this end, consider the system

' :x=2ax; y=Cx (1.57)
where

xeX:=F"; yeV :=RF
and observers with the form

Z’Obs W=Kw + Ly (1.58)

59
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with

we l £=ﬁll.

Definition 1.7: A subspace S ¢ X is said to be conditionally

invariant if there exist matrices K, L such that w(0) = X(0) (mod S)
yields w(t) = x(t) (mod S), t €& .

The above definition shows that associated with a conditionally
invariant subspace there is an observer which reconstructs x(mod S)
from :the observations y.

The following proposition establishes. the conneCtibn between
conditional invariance and A[ker C invariance L[1.15-16]. Let AL'

denote A+L'C, i.e., the result of output injection L'y in Z’.

Proposition 1,6: The following statements are equivalent :
1) S is a conditionally invariant subspace.
2) S is Alker C invariant (i.e., A(S n kexr C) < §).
Ll
3) There exists L' : ¥ > X such that &~ S < S.

Let S be a conditionally invariant subspace and let L'
be as in part 3 of the above proposition. Let P : X > X/S be the
canonical projection and consider AL.(mod S) which is the unique map
such that

L

1 Ll
A (mod S)P = PA



Hence

Px = PAx

Il

P(A+L'C)x - PL'y
and then

% (mod 8) = AFl(mod.S) x(mod S) - L' (mod S)y (1.59)
where PL' = L'(mod S) : ¥ > X/S.

Consider now the observer
Ll
wi = A (mod S)w - L' (mod S)y (1.60)

for x(mod S) and define e := W - x(med S). Then from (1.59) and

(1.60) it follows that

L3 L'

e = A (mod Se (1.61)
and if 1HNY = ¥ (DY imnA Q) than 2 = 0 i a Wiy = vIif) (manad Q)
il '—'\"I :\v.' Vs we J y waaRcaa = ~r —vy V-V\‘-‘I :\‘-‘I Ve s gy
vt € B,

The equation (1.60) shows that the observer for x(mod S) is

completely specified by defining

K := AL (mod S)).L:= -L'(mod S) .

The almost version of definition 1.7 is as follows.

Definition 1.8: A subspace Sa c X is said to be. almost conditionally

invariant if ¥Xx(0) € Sa and € > 0 there exist K,L such that w(0) = 0

“yields || w(t)-x(t) mod S) || <« for t =g’

6l



62

A very useful way of expressing the duality between (almost)
conditionally invariant subspaces and (almost) controlled invariant
subspaces is as follows.

Let V be a controlled invariant subspace and V:V - X
be the canonical injection. Also let Q, ¢ X » X/V. Then the

controlled invariance property can be expressed by the equation
-1 -1
QV(SI-A) BU(s) = QV(SI—A) v (1.62)

which should be solved for U(s). From [1.17] we know that (1.62)
has solution for U(s) € E;(s) if and only if V is controlled
invariant.

Now let S be a conditionally invariant subspace and let
X(s) := (SI—K)—lL be the transfer matrix of the observer (1.58).
Let S : S - X be the canonical injection and Q X » X/S be the
canonical projection.

Then with w(0) = 0, the conditional invariance can be expressed
by the following eguation

x(s)c(s1-a) " 1s = QS(SI-A)— s (1.63)

or

sT(s1-a0) 1Tk (s) = ST(SI—AT)_1QZ (1.64)

T L , . T .
where 8~ : X » X/S™ is the canonical projection and QS : St > X is
the canonical injection.

We recognize immediately that equation (1.64) expresses the

. Lo
controlled invariance of the subspace S~ with respect to the system
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# 4 op o
} i x=AX+CV,

Thus S is a conditionally invariant relative to z' if and only if

1 . . , * . .
S is controlled invariant relative to Z , & fact easily deducible

T

from the equivalence Alker C n S) c S <= aTst c st +
In this sense we consider the equation (1.63) as dual to the
egquation (1.62) and also by duality it follows that (1.63) has a
solution X(s) € E+(s) if and only S is a conditionally invariant
subspace.
The same duality principle is applicable to the almost

version [1.15] and the observer for X/Sa which achieves

-1 -1 -1
| (s1-)" L c(s1-2) "s_ - Q_ (sI-A) s ll<e we>o
a
is a high—-gain observer.
If we now allow X{s) to belong to R (s) we then obtain the
following definition*

Definition 1.9: A subspace SD c X is said to be a distributionally

conditionally invariant subspace if there exist X, LO' Ll""'L such that
n
b . ,
Z? S V= Rvily , w = VAL,Y + Lly(l) P Lny(n)

with X(0) = 0 and X(0-) = 0 yields for all x(0) € SD' wit) = x(t)
+
(mod SD), tek .
obs . . .
Note that the observer Zl is a P.I.D. type since it operates

proportionally to the input y and also makes use of the integral

of y and its derivatives.
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Equation (1.61) shows that the error dynamics (for e(0) # 0)
are governed by the spectrum of AL'(mod S. It is thus important
to identify the sub-class of the class of the conditionally invariant
subspaces for which such spectrum is freely assignable.

Definition 1.10: A conditionally invariant subspace N is said to

be a complementary observability subspace if for any symmetric set
of complex numbers A there exist X,L as in Definition 1.7
such that O(K) = A.

The corresponding notion for the almost case is described
in the following definition.

Definition 1.11: An almost conditionally invariant subspace Na

1s said to be an almost complementary observability subspace if
¥X(0) € Na, A e E and € > 0 there exist X, L such that e := w- x
(mod Na) is of the form e(t) = eth]O) + g(t) with Re g:({K) f_l
and || é(t)||f_€ , t <R,

If we now allow X(s) in (1.63) to belong to Rls] we then get
an extremely fast observer which is related to the following class of
subspaces.

Definition 1.12: A distributionally conditionally invariant

subspace ND is said to be a distributionally complementary observability
subspace if there exist LO, L ,...,Ln such that Z;bs TW= Loy+L1y(1)+
(n)

to..t Ly and x(0) € Nj yields w(t) = X(t) (mod N) for te B,

1

i.e, the estimation error is zero for t > 0.
In the following we denote S, S, S, N, N and N_ as the sets
- -a ~-D — - -D
of conditionally invariant, almost conditionally invariant, etc., subspaces

and S(L), §;L), §D(L), Ny, @a(L) and_ND(L) those containing the

subspace L < X.



By dualization of Theorem 5 in [[1.14] we have that
S =S and N =N_.
-a -D -a -D
In the sequel we state some dual results to those obtained

for almost controlled invariant subspaces,

Theorem 1.1’ (dual of Theorem 1.1): . §, N, §a and Ha are closed

under subspace intersection. Consequently

e S inf N(L) := N

Il
=

e S inf N (L):
-a

L
Let K := ker C and consider A := A+LC for some L : ¥ = X.
The next theorem gives the output injection characterizations of

(almost) conditionally invariant subspaces.

Theorem 1.2' {dual of Theorem 1.2):
a) {88} <> { 3L such that A ScS} <=>{a(Kn$) < S}.
b) {NeN} <=> { .31 and K'oK such that N = <K'[AL>}.
c) S =8N , i.e.{S S} <=> { 38=S and N eN such that
~a = -a a -a - a -a
S =SaN 7}
a a
d) {NaG@a} <> { Jdr and a chain {Ki} around K such that
N =K n (AL)—lK Neeon (AL)—nHK }.
a 1 2. n

We shall sometimes use the notation L(S) to denote the set

of maps L for which ALS c S.
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In the sequel we describe the sequences which yield the

infimal subspaces of Theorem 1.1'.

sz o goodim L+l qu L, quml oy g0 g (1.65)
U ety o s WY ak; 00 = X (1.66)
Qr =} a =3 a

No= st W

L= YN L (1.67)
* * \J* '
Sa,L f—SL n 'a,L . (1.68)

The sequences (1.65-6) and the relations (1.67-8) are dual
to (1.3-6) and can be derived from the duality principle explained
previously. For example, N;fLL is the supremal almost controllability
subspace relative to z* which is contained in LL.
| Now let H : X » X/L and consider an equation as (1.63) given
by

X(s)C(sI—A)_lx = H(sI—A)—lx
where X, e X.

The following question may be raised : for which points x0

can we obtain a Lp— approximate solution Xe(s) € E;}s), 1 <p<?

More formally we want to identify the points Xy for which we can

achieve

-1 -1
H Xe(s)C(sI—A) X --H(sI-A) xO“ Lp A

for any € > 0, where || ]E denotes the Lp—norm.
P



The above consideration gives the motivation for the
introduction of the analogs of the Lp—almost controlled invariant

subspaces.

Definition 1.13: The Z -observation distance in the Lp—sense from

a point X, € X to a subspace L is given by d'(xO,L) .=

inf-“ W= x(mod L)H (0, ) where w(0) = 0. The set

K,L -

g* = IxpeX|a (x,,L) = O} will be called the infimal L, - almost

p,L

*
conditional invariant subspace "containing”" L and N = N o *
p.L a,Sp L
r

will be called the infimal Lp— almost complementary observability
subspace "containing" L.

*
The subspace Sp L characterizes all the outputs x(mod L)

’

which are arbitrarily accurately, in the Lp sense, reconstructible

from vy.
The relationship of the above subspaces with the subspace

-3 L i S - 2 e . .
~ STV ) | LD u-LDhJ.La_YCu L1t wile LITAL LIITCOWLClL .
a,L a,L

Theorem 1.3' (dual of Theorem 1.3)

N N ana S, =8
a) o, L = Na,L 34 e T2,
<p < N “Iy* K s Voo st
o = A =
b) for 1 <p o,L ( a,L) n and o, L ‘p,L n L
*
It should be noted that Sp L and N; L need not contain L
r r

and similarly to Theorem 1.3 we define

67

*
= (A Na,L) n K (1.69)
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and

* * * -1 % * _ —1 % %
Sb,L'" Nb,L n SL = (A Sa,L) n Kn Sa,L (A Sa,L) n Kn SL
... {(1.70)

*.
The subspace Nb L is given by the following segquence,

Ly V= x . (1.71)

N* - VcodimL+1 ; e

e 1(vu—1

Kna

We remark that for L :

B we obtain from (1.9) and (1.65), (1.3)

and (1.70) that

R =8

bk = Sz (1.72)
and

* *

Ve =Ny 5 - (1.73)

From (1.70), (1.72-3) and Lemma 1.1b it follows that

S =V, n R* =R, . (1.74)

v =S e N =N (1.75)

where the last equality follows by Lemma 1.1' which is stated in the

next section.

The relations (1.72-5) have appeared in the work by Malabre [1.9]. '
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It should be clear from this section that (almost) controlled
invariant subspaces and (almost) conditionally invariant subspaces
play an important role in the solution of equations as (1.62-3).

For a more detailed exposition on the object we refer to [1.15].

I.3.2 Properties Of Almost Conditionally Invariant Subspaces

N 1.9_.
J

*

L+1 u *

codimS
p sN° =8

N o= W 0

Lt (Z—X—1 Nu—l) nK; NOo=X. (1.76)

We then have the following relationships among the sequences
(1.65-6), (1.71) and (1.76).

Lemma 1.1' (dual of Lemma 1.1)

a) oo el qk
a )
p) . V4 SZ - N

c) Nt + 5 = NM

d) e L= AT

The dual concepts of coasting and sliding subspaces are

described in the following definition.
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Definition 1.14: A subspace Lie, § is said tqQ yield a locked-

in observer if Nz‘ = X. A subspace I € Na is said to yield an
instantaneously aZting cbserver if S;'= X.

For a subspace Li as in Definition 1.14 there exist unique
K and L|Im C such that Q = Kw + Ly is an observer for X/Lf which
implies that the error dynamics in (1.61) cannot be altered (the
eigenvalues of AL(mod Li) are fixed for all L € L(Li)).

Note that a subspace I as in Definition 1.14 cannot be
covered by any proper conditionally invariant subspace and as pointed
out in [1.15] the instantaneously acting observer degenerates into
a bank of differentiators when the degree of approximation of

X(mod I) becomes very tight. In terms of the equation (1.63)

this simply means that
-1 -1
X(s)C(sI-a) I = Qi(SI-A) I

in solvable for X(s) = Fisi, where I : I »~ X and Qi: X + X/1 are,
respectively, the canonical injection and the canonical projection.
By dualizing Proposition l.la we have that if I 1is a
subspace as above then I + AL ker ¢ = X, ¥L : ¥ > X whereas if Li
yields a locked-in observer, then from a dual argument used in
the proof of Proposition 1.3a we obtain Li + ker ¢ = X. If rank
C = r, then CLi = Y and min dim I = min dim Li= r.
Following a dual procedure to that which has led to Lemma 1.2

we can generate a subspace [ in the following way. Let K o K

be any subspace such that

K=K n (K+SZ = K+RnSZ , i.e., IZnSZCK (1.77)
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with the independence relation

and consider the subspaces N and Na L obtained by means of the
'

b,L

following sequences.

Nb | = vcodimL+1;Uu “%n A—l(vu_1+L) : DO _ X (1.78)
N i= NCOdimL+1;N“'= L+ WY gk 0 =x. (1.79)
a,l a a a a

* * - - .
Since V =0 <= § = X, then N L is indeed a

N N ar

1 L
a,l ar

subspace which yields an instantaneously acting observer.
The following relationships among the sequences (1.65-6),

—a
7

b f A [ Falh -
ij, (i1.790; an

1l
"

£h

rAa 74 sl [a R ——
vl \i./0=2) &

Lemma 1.2'(dual of Lemma 1.2):

—-11. -
a) W TN with U + N9 = X
b) ™o+ Sz = X
e) ™o a3 %Y 0K with a7 0% v k= X
a a

a) N =L + P4

a
e) N = B9 n W% with A + A% = X

a a a
£) st - X

a L
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In the following we show a decomposition of an almost
conditionally invariant subspace Sa. Let L := Sa. Then from

Lemma l.2'e.

- * .
Na'S = Na,S n NS with Na + NS = X, (1.80a)

L n NS ith L+ No =X
SS = n 3 with i + s = (1.80b)

and -
L.+ N =X (1.80c¢)

for some subspace Li which yields a locked-in observer.

Then from Theorem 1.2'e and (1.80) we obtain
S =L nN, nR (1.81)
with the independence relations
N, +~N =X . ' (1.82)

The above decomposition shows that the estimation of
X (mod Sa) requires three observers with distinct characteristics.
Lemma 1.2'e will be used in Chapter IV when we construct

*
a P.I.D. observer for x(mod S

b, L)
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CHAPTER IT

INFINITE ZEROS AND ROOT-LOCI FOR MULTIVARIABLE LINEAR SYSTEMS

This chapter is divided in two parts as the title suggests. In the
first part we deal with the infinite-zeros issue and in the second
part some aspects of the root-loci theory for multivariable linear
systems are tackled from a state space point of view. By "root-

loci" we mean the analysis of asymptotic properties for invertible linear

systems under high scalar gain output feedback.

IT.1 INFINITE-ZEROS

IT.1.1.Introduction

Infinite-zeros show up naturally in the study of a rational
matrix G(s), where s 1is the complex variable. In Section 1.2
we review quickly the definition of infinite-zeros via the Smith-McMillan
form of G(s)[2.18, 2.23] together with their dynamical interpretation
£2.247,

In particular, when G(s) := C(sI—A)—lB, the transfer matrix
associated with a multivariable linear system ;épresented by the triple
(C,A,B), an important connection can be established between the
infinite-zero structure of G(s) and the infinite-zero structure of the
system or Rosenbrock matrix P(s) given by

sI-A  -B )

P(s) = . (2.1)
C 0
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In Section 1.3 we show that the infinite~zero structure
of G(s) and P{(s) are isomorphic. It is then easy to show that the
number of infinite-zeros and their orders are given by the list 14
in [2.14] which characterizes a prime subsystem derived from a triple
(C,A,B).

In Section 1.4 we turn our attention to the role played
by a sliding subspace ﬁa[2.26] 6f maximal dimension in ker C,
which can be obtained from the sequence (1.13). Starting from a

decomposition of ﬁa into singly-generated subspaces Ra'.we then obtain
a new derivation of Morse's canonical form concerniqg the prime subf
~system and we show that the dimensions of the subspacés ﬁa.determ;ne
the orders of the infinite-zerxos for orders higher than one. Commault
and Dion [2.2-3] have-been the first authors to g}ve a gecmetric inter-
pretation for the infinite-zeras by relating them to the notions of
almost controlled invariant subspaces, The geometric definition given
in Section 1.4 is, of course, equivalent to that in [2.2-3] but in

our opinion, our exposition is more detailed and shows more trans-

parently the structure of the geometric sources (almost controllability

subspaces) of the infinite-zeros.

II.1.2 The Smith-McMillan Form at Infinity

1
Let T(s) be an arbitrary rational matrix of rank r and let w:= —.

[01]

The following definition is well known [2.17-8, 2.23].

pefinition 2.1: The rgtional matrix T(s) is said to have an in-

finite-zero of order k when w = 0 is a finite-zero of order k

for T[ l—] .
w
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The infinite-zero structure of a rational matrix T(s)
can be determined from the Smith-McMillan form of T[_%-T which is

(w) are unimodular matrices and D(w) is a rXr

where Ul(w) and 02

diagonal matrix with diagonal elements di(w), i € r, given by

€ (W)
d w) = —2—  , icer, e, () ,Y, W) e Bls].
1 - 1 1

wi(w)

A unimodular matrix is a nonsingular polynomial matrix
in ® with a polynomial inverse, or equivalently, a polynomial
matrix with a constant non-zero determinant. It follows that the
matrices Ul(w) and Uz(w) have their poles and zeros at W = «, and
thus (2.2) is a valid decomposition at w = 0 in the sense that the
structure of T[ %-} at w = 0 is isomorphic to that of D(w) at w = 0

L 2.247.

Write

k,
€. (W =w 8 (W , ier
1 1

with ® and %_MH coprime.
This leads to the following definition [2.23].

Definition 2.2: The set of nonnegative integers {ki} y 1 € r

is termed the infinite-zero structure of T(s) and the positive ki's

are the orders of the infinite-zeros of T(s).
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A very nice dynamical interpretation for poles and zeros
of a rational matrix has been given in [2.24]. As an example, for

the case of infinite-zeros, consider the equation

z(s) = D(s) vi(s)
with
1
s
D(s) = . 1 .
3
s
. . T T
It is clear that to the input vectors vl(s)='[1 .01
T - AT T
and vz(s) = [s 0] there correspond the output vectors zl(s) =
T 1 T T 1 T
zl(s) = [;Q 01" and z,(s) = [E- 0l".

This shows that the polynomial components vf(s) and vg(s)
are absorbed by the rational matrix D(s), i.e. they disappear from
the system oﬁtputs ZT(S) and zg(s) which are strictly‘proper rational
vectors. Since VT(S) and vg(s) are linearly independent over the
field of the zreal numbers, then the matrix D(s) has an infinite-
zero of order two.

In general, to an infinite-zero of order k of a rational
matrix T(s) there correspond k linearly independent polynomial

input vectors.

I1.1.3 The Infinite-Zeros of the System Matrix P (s)

Consider the linear system
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X = AxX + Bu (2.3)
y = Cx
where
xEX:=En; uEU-=Emv,y€V:=Ep
rank B = m ; rank C =p
and its associated transfer matrix G(s) = C(sI—A)—lB.

In this section we shall show in a simple way that the
infinite-zero structure of G(s) is isomorphic to the infinite-zero

structure of P(s) in (2.1), which in turn coincides with the list

I, in [2.14].
4
We need the following lemma of [2.25].
Lemma 2.1: Use a constant hon—singular transformation on the left

of the pencil sK-L to bring it to the form

- where Kl' has full row rank. Then the zero structure of sK-L at

infinity is isomorphic to the zero structure of

K1 - Llw
—L2
at w = 0.
We can now establish the desired isomorphism.
Lemma 2.2: The infinite~zero structure of G(s) is isomorphic

to the infinite-zero structure of P(s).
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1 -
Froof: Let w = P Then a realization of G( %-J is given by
{ I-wa -wB}
P_(w) = . (2.4)

Moreover the above realization is controllable and observable
at w = 0. It then follows from [2.18-19] (see [2.12] for an interesting
discussion on finite-zeros) that the zero structure of G[ &7) at
.m = 0 is isomorphic to the zero structure of PR(w) (defined from
its Smith form) at w = 0. The result now follows by applying Lemma

2.1 to (2.4) -

0
Remarks 2.1:
a) Lemma 2.2 remains valid if G(s) is replaced by
~ 1 ~
Vol (R —_ MNi~T 7\\- I aemd TNV al Taes ™/ el dale
T\Vo ) - oLy DTW Qllu O \Dy U.y o o) 7 wiull
~ sI-A -B
P(s) :=
C D
b) A much stronger result has been proved by Verghese [2.24,
Theorem 3.9] and is as follows. Consider the rational matrix

G(s) = CR—l(s)B

where R(s) is a polynomial matrix.

If the matrices
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LR(s) -B] and

have no infinite-zeros, then the infinite-zerc - structure of G(s)

is isomorphic to the infinite-zero structure of

R(s) -B }
P(s) =
C 0
[sI—Al
Since the matrices [sI-A -B] and | c J have no infinite-

Zeros, Lemma 2.2 follows. The reason for the previcus proof of
Lemma 2.2, without using the stronger result by Verghese, is that it
is simple and exploits the form of a very simple polynomial matrix
R(s), which in our case is given by (sI-A).

The next proposition gives the result claimed at the
beginning of this section.

Proposition 2.1: The infinite-zero (i.z.) structure of G(s) coincides

with the list I, given in [2.14].

Proof: Let H, T, G be automorphisms of ¥, X and U, respectively.
Let F : X>Uand L : ¥ - X be arbitrary maps. Then the matrices

T -TL T 0
M := N := (2.5)

are nonsingular. By Lemma 2.2

i.z. G(s) = i.z. P(s) = i.z.” MP(s)N = i.z. P(s)

where
-1
sI - T(A+BF+LC)T -TBG
P(s) := (2.6)

gert 0
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It follows from [2,14] that the maps H, G, T, F and K can be

chosen so that

(P, (s) 0 0 o }
_ 0 P, (s) 0 0
P(s) = (2.7)
0 0 P3(s) 0
e 0 0 P, (s)) ]
with
. sI-A3
Pl(s) = sI—A1 ; Pz(s) = [sI—A2-32] ; P3 = (2.8)
c
3
and \
sI-A4 —34
P4(s) = . (2.9)
C4 C

The pairs (A2'32) and (C3,A3) in (2.8) are contfollable
and observable, respectively. Therefore the pencils PQ(S) and
PB(S) do not have finite zeros. Obviously, Pz(s) and P3(s) do
not possess infinite-zeros as well.

By Lemma 3 in [2.4], the invariant polynomials of P(s)

are given by the invariant polynomials of Al.

The pencil (2.9) in turn, is a square pencil with

~N ”~
A = diag[Ai] , B, = diag[bi], C

_ . A .
4 4 = dlag[c;, iex

4
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and
(0 1 0...0) (o0 )
Q 0 1i...0Q .
Al = . . « o s e a bi = . r 1L EX
0 . - . 1 0
\0 . <« . -0y L']‘J
k.xk, k.1
i1 i
 ee (2.10)
~
e, = [1 o .. .. 01 .
1 1xk,
i

The set {ki}, i € r, constitutes Morse's list I4.

It follows from (2.10) that det P4(s) =1, i.e. the penéii P4(s)

is regular [2.5]. We also have from (2.10)

1)
= diag| — , 1 e
i
s

(2.11)

[Ty

-1
C4(SI—A4) B,

From (2.11) and Lemma 2.2 it follows that the infinite-zero

structure of P4(s) is given by

N

i.z. P (s) = {k.,} , ie
4 i

Since all the infinite-zeros of 5(5) and thus P(s) are

concentrated on the pencil P4(s) we must have
i.z. G(s) = i.z. P(s) = i.z. B(s) = i.z. P4(s) = {ki} ,ierx

with r = rank C(sI-a) 'B [2.4].
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Remark 2.2:

1) We have proved that the infinite-zero structure of G(s)

coincides with Morse's list I K6, without resorting to the notions

4’

of almost controlled invariant subspaces as in [2.2-3].

2) The decomposition of the pencil P(s) in (2.7) corresponds
to the classical decomposition of a singular pencil described by
Gantmacher [2.5]. The controllability indices of the pairs (A2,Bz)
and (Ag,cg) correspond ' to the minimal column indices and minimal

row columns, respectively.

3) o The finite-zeros of P(s), represented by the eigenvalues
of Al' constitute the transmission zeros of the triple (C,A,B).
From (2.5-6), it follows that the transmission-zeros and the infinite-—

zeros are invariant .under state

represented by the maps F and L, respectively.

I1.1.4 Sliding Subspaces and Infinite-Zaros

In this section we show that a prime subsystem can be

constructed from any sliding subspace Ra of maximal dimension in

ker C. It 1s then easy to see the connection between the list I4

{equivalent to the infinite-zero structure) defined in the previous
section and the structure of ﬁa'

We first recall the concept of a prime system [2.14].

For this, let R be called a prime controllability subspace if
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a) dim(Rn B) =1
b) there exists some F : X > U and b € R n B such that
k-1 \
R=b+ab+...+2a. b, k :=dimR
F B
‘CA;_lb =0, ie{1,2,...,k=1}
k-1
CAF b # 0.

Definition 2.3: A controllable system, represented by its triple

(C,A,B) is called prime if there exist prime controllability subspace

Ri, i € m, satisfying

X = R1 ) R2 P...9 Rm

and
Y =cR, ® CR, &... CR_ .
1 2 m
Remark 2.3:
a) A prime system has the same number of inputs and outputs.
b) The notation used for the triple of Definition 2.3 should

not confuse the reader : the only property required for the

triple (C,A,B) in (2.3) is that rank B = m, rank C = 0.

*
Let G be a group transformation [2.14], with an element

*
of G given by (H,L,T,F,G), where K : ¥ > X and F : X > U are
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arbitrary. The maps H,T and G are automorphisms of ¥, X and

*
u, respectively. The action of G on the triple (C,A,B) is defined by
-1 -1
(c,a,B) -~ (HCT ,T(A+BF+LC) , TBG) . (2.12)

The above transformation has been used by Morse to identify
important invariants associated with a triple (C,A,B). The inform-
ation about such invariants is contained in the pencil (2.7).

Let K := ker C in algorithms (1.3-4) and (1.9-10) of

. u 2 oLu
Chapter I. It can be easily shown that the subspaces V~, Ré¥ S
and R” in those algorithms are all invariant under the trans-
' *
formation G .
In the sequel we describe decompositions of some subspaces

introduced in the previous chapter in order to display structural

features of the linear system (2.3)..

*
a) Decomposition of Vb K

14

*
. o™ *
Consider VK and define a map F on VK so that AFVK <

* *
C‘VK and so that the minimal polynomial of AFlRK is coprime with

. * *
o (A}, the minimal polynomial of AFIVK {(mod RK).

Then, as in [2.14] define

X1 1= V; n ker a(AF). (2.13)
Hence

* *

VvV, =X &R (2.14)

~
v
~



88 ; : g

and

Note that Xl is a coasting subspace. The invariant
polynomials of AFle constitute the set of transmission polynomials

of the triple (C,A,B).
Let Ea K be a sliding subspace of maximal dimension given
K

- *
by the sequence (1.13). From Lemma 1.2f we have that Ra g N VK =0
’

which implies that F can be defined on'?-Za g as in Theorem 1.4c.

(4

Hence by (1.8) and Lemma 1.2 a-b

By using (2.14) and noting Remark l.la, it now follows

that

* =X eR.efR

Vb,K =X @ K & b K (2.15a)
where

RD,K = AFRa,@ B (2.15b)

and F is the map above defined.
b) Decomposition of ﬁb K and the construction of a prime subsystem
r

Qur next step is to obtain a decomposition of the subspace

Rb K into a direct sum of singly-generated subspaces Mi’ with the form
14

n

M =b, +ab, +...+A b, for some n., i € q
1 i F i F i 1
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where q := dim B and B is as in (1.11).

The set {ni} , 1 € g, could be defined in an analogous
way to that of Section 2.3 in Chapter I. However, to emphasize
an aspect on infinite-zeros later, we shall define such a set
through a slightly different way.

. _ *
For this, let p := dim(B n K)and let B be any subspace

such that
= * =
B=B eBnK. (2.16)
Let
R
r :=dim |—2 , uen (2.17)
u ﬁu—l
a

where the subspaces R: are given by (1.13).

From the proof of Theorem 1.4 we have that

for some k € n and 31:= B nK.

Since Bl > B. o...o Bu' it follows that

R
\
K
| v
v
]
| v
o

and

1 2 ) n a, K’
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Let
ni ;= number of integers in the set (2.18)
{r , r.,.-.,r } which are > i .
1 2 n -
Then
D> eel> > 1 R
n, __n2 > _.np > (2.19a)
and
+ ... = dim R . .
n, +n, + nP dim Ra,K (2.19Db)

Proceeding with the definition of the set {ni}, iegq, let

:= number of integers in {g-p} (a set of a

=

p+i

single element) which are > i.

Then
A, =48 _=...=8 =1 2.2
foe1l T Tpw2 g (2.20)
and write
nyy = Bmt=00ie L2, g (2.21)

*
Since dim B = g-p, it follows from (2.17-8) and (2.21) that

B
ni+1 = g-p +.z ni+l.

: q
* _ -
dim(B eﬁleAFRa’K) = dim Rb,K = 51' L

i

By (2.17-8), the subspace Ra K can be decomposed into the
r

following direct sum

R =L1eLze...eLp (2.22)

a,kK
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with

, b,...,.b }=8,.
and span {bl P} >y

2’

From Lemma 1.2e

Since dim(Ru) and dim(?:) are invariant under the group
a

* u o, . .
transformation G , it follows that dim Ra is also invariant. Therefore,

%k
the indices n, i = p, are invariant under G and also do not depend on

the sliding subspace chosen. Recall that the sliding subspace

Ra K depends on the subspace B chosen.
’

From (2.15b) it is now clear that

R =M oM & ... M (2.23)
b,K 1
where
n,
M =b. +a0b, +...+a_"bh., iep
i 1 F 1 =
and
*
M, =b, ,b, B, ie{p+tl,...,q}
1 1 h
with
ni—l
+...+H = i . .
bi + AFbi A bi Ll <K, iep (2.24)

From Lemma 1.2d, Ra,K==K n Rb,K' Thus

n,
ca’™ #0 , i=p (2.25a)
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and obviously

*
Cb, £ 0, bi e B, ie {p+1,...,q}. (2.25b)

It is also clear that the set (2.25) constitutes a basis
for the space CR . Thus, we can defi L : CR - X
() space Rb,K us, can define a map L Rb,K

in the following way.

= = A
LCA bl AF P b r1€p
and
= -A
LCbi Fbl
whe nce
ni ni
+ = i -
(AF 1.C) AF bi 0 +1iep (2.26a)
and
(AF+Lc)bi =0 , i e{p+l,...,q} . (2.26b)

Since bi € K, i € p, it follows that

(A_+LC)b.
F i

I
hj{l’
o

If it is true that (A +LC)£—1b. £-1
' B i B

L _ -1, _ L
(A #LC)"b, = (A +LC)A_ "b, = AD (2.27)

since Aﬂ—lb_ e K, for 2 < £ <n, .
F 1 - -1

Therefore, the subspaces Mi are not altered by the output

injection map L abkove defined and hence
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M, o b, @0 My (2.28)

o

where
n;
b, + (a_+1C ER + i
b+ (a+LO)b, (A +LC) b, , iep

-
Py
]

and
M, = bi, i e {p+1,...,q}.
By (2.26-7), it follows that the subspaces Mi' ieq,
are controllability subspaces with respect to the pair (A+LC,B), Then

(A+BF+LC)ﬁb'K <Rk - (2.29)
Let B be the insertion map of B = B n ﬁb,K in Eb,K ,
C := Clﬁb’K and A := (A+BF+LC)|ﬁb'K . It is clear from (2.23)
and (2.25) that the triple (C,A,B) so defined has the same number of
inputs and outputs.
It now follows from definition 2.3, remark 2.3a, (2.24-5)

and (2.29) that the triple (C,A,B) is prime.
c) Decomposition of X

We just sketch here the derivation of the subspace { which
* v
complements Vb K to X and to which there corresponds another list
14

of invariants.

* * *
From (1.75) we have that b, K = NB , i.e., Vb,K is the

infimal complementary observability subspace which covers B.

This means that there exists a map Ll : ¥ » X such that
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* *
(a + BF + Llc)(/b’K c Vb,K (2.30)
and

- *
ofA + BF + Llc) (mod Vb,K)] = A (2.31)

. *
where A is a symmetric set of n-dim |, g complex numbers.
14
The property (2.31) is equivalent to the observability of

the subsystem (El,il) where

C. :=C : X>VY (mod cv;

1 K :

and
—_ V*
A1 = (A+BF+L1C) (mod b,K)

The list I3 in Morse's cancnical form corresponds to the

controllability indices of the pair (Ef, Ef), which as shkown there,
are invariant under G* as well.

Following the above ideas it is possible to define maps Fl' L1
and a subspace Z such that

*

X = Vb,K e Z
*
y = CRb,K,@ cZ
(A+BF1+L1C)Z c

Ve = FlU
Fl‘b,K_Fl

L leR, (= zle Ry g =LlcR ¢ -

We summarize below all the results obtained thus far in a

theorem, which is in fact, Theorem 4.1 in [2.14], The differences
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o
between the proofs will be commented after the statement of the theorem.

Let

2%
ﬁ
3

N
=
><
w
i
~N
>
N
W
~

c,lz  =clz
*
c1|(/b'K =0
c,|z =0
* *
¢,V k = <IR,

Theorem 2.1 (Morse) : Let (C,A,B) be a fixed triple. There exist

subspaces Xi,.i €4, Vj, je2andmaps F, : X > U, L ¥ >X,

1 1

C. :X+V.;
] J

L.

€ 2 ., for which the following conditions hold:

X = X1 @ X2 @ X3 ® X4

(a+BF +L C) X. < X, . ied
11 i i

B=2Bn X2 @ B n X4
y = V1 ® V2

C = C1 & C2

X1 ® X2 o X3 c ker c2

X1 ® X2 o X4 c ker C1

X4 = M1 @ M2 B ... @ Mq
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where the Mi' is g, are controllability subspaces with respect to
the pair LA+L1C,B) and q := dim B n X4.
Write Bi for the insection maps of B n Xi in X, i «{2,4},
i

A = (a+BF +L.O) (X, i € 4, ¢, = ¢, _|X , i e{3,4}. Then
i 171 i - i

i-2'717

a) the invariant polynomials of A1 coincide with the transmission

*
polynomials of (C,A,B), which are invariant under G .

b) (AZ,BZ) is controllable, with controllability indices invariant
. .

under G .

c) (C3,A3) is observable and the controllability indices of

T T %*
(A3,C3) are invariant under G .

d) (C4, A4, B4) is prime and the dimensions of the controllability

*
subspaces M,, i € q, are invariant under G
l —

d
Remark 2.4: The subsystems defined in a-d are the same as those
in (2.8-9).
Comments:
The difference between the proof here and the proof in [2.14]

concerning the prime subsystem lies in the description of the complement
fR* *
o] to .
K TRy«
From Lemma l.2a
* R eoR, 2.32
= @ .
Rb,K KD,K K ( )
and ﬁb K is described in [2.14] by means of an output injection

map L : Y+ X, i.e.



Rk =

<a+Lc|B>.

In our derivation, by Theorem 1.4 and Remark 1l.1a,

i.e., ﬁb K is described by a state feedback map F
4

In our opinion the prime subsystem shows up more naturally by

the use of description (2.33).

N*

: X = U.

(2.33)

. *
The identification of Vb K with

[4

B also provides more insight in the derivation of the subspace

Z, which has been obtained by Morse by pure duality arguments.

In bases provided by the subspaces Xi' i € 4, the maps (A+BF

B and C can be represented as

Mat (A+BF

1+L1C)

Mat C

0 0 )
0 0
A
; O
0 a
4J
0
3
0 c

Mat B

9

1

7

+L1C),
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<

with
A4 = diag[Al,...,Ap, Ap+1 yeees Aq]
~ ~ ~ ~ -
== i «esy «say 2.3t
B4 dlag[bl, bp, bp+1' bq] ( 5)
c, = diag[el,..., Ep, 6p+1,..., Gq]
0 1 ... o) (0 )
0 0 . .. 0 .
N ~
A = . . « o . b = -
i i
0 . S | 0
LO . e . 0 1]
(n,+1)x(n.+1) (n. +1)x1
1 1 . 1 )
¢, = [1 0 e . O](lx(ni+1)

for i € p and

A. =0, b . =1, & =1
1 1 1

for i e{p+1,...,q}.

It is clear from the above representation and Proposition 2.1
that ni+1 = ki' ieg,and g = x,i.e., the set {ni+1}, i € g describes the
infinite-zero structure of G(s) = C(SI-A)_lB.

According to the subspace B chosen in (1.11) a different
subspace ﬁb,K is obtained as complément of R; to R;,K in (2.32).

For this reason the infinite-zero structure is associated with the
quotient space R;,K/R; or eguivalently, it can also be obtained

*

*
from the gquotient space Vb /VK as in [2.2-31].

K

Based on the above discussion, the following "geometric"

definition may be adopted for the infinite-zero structure of G(s)= C(sI-A)_lB.
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* L]
B+Y
Definition 2.4;: Let dim — = ¢ and let n, .
Vk
i1 e 4 be defined as in (2.18) and (2.21). Then G(s)} is said to

have q infinite-zeros of respective orders ni+1.

Remarks 2.5:

a) From the above definition and (2.19a), it follows that

the orders of the infinite-zeros which are higher than one, are deter-
mined from the dimensions of the sliding subspaces in the decomposition
(2.22). Any sliding subspace of maximal‘dimewmnowxin K admits

a decomposition as in (2.22), where the decomposing subspaceshave

always dimensions ni, i € p. Thus the important entity for the
*

K

*
infinite-zeros of order higher than one is Ra K/R

14

b) Definition 2.3, expression (2.21) and the nature of the
*

mivhmmama R Am L imaAd e 1D 14\ immdzr Fhat Fha stk Aantd cornas~a .B_+.IS

DU I M AL W WAL L LT il NCs sy p —diaps A ¥ Thid b Ll Y e bii e oGl K

contributes only to first order infinite-zeros.

c) It is remarkable the richness provided by the geometric

approach in theoretical terms. It might be argued that the Smith-

McMillan decomposition of G(s) at infinity or the structure of a column

reduced G(s) (see [2.23-4])yield the infinite-zero structure. However
amn . .

suchsapproach does not provide a§clearspicture of the structure of

the triple (C,A,B) as the geometric approach does. Moreover, the

geometric definitions of finite and infinite-zeros have been and will

be very important in the search for solutions of control synthesis

problems.
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A dynamical interpretation for the infinite-zeros can be
easily derived. For this, consider the transfer matrix of (2.34)

which is clearly given by

, -1 .
xc4(sI A4) 34 = diag

Consider the equation

vi(s) = C4(sI—A4)-1B u(s) + C4(sI—A4)_1x

4 0

where x ., € Rb is a givan initial condition.
0 K

Suppose that a control u(s) is required so that y(s) = 0.

From the representation of (C

4’ A4, B4) in (2.35), it follows that
vy(s) = O implies yi(s) =0, i¢e€ g, which in turn implies
n, n, -1 —
u. (S) = _{:S 1 r S 1 ,--.,S,l}X,, i"e q (2.3!)’
i i d
where
( 3
*y
= . e M di = + i € .
xq , Xy Ni ' im %, =mn, 1, iegq
X
{ q)
Hence from (2.35-6)
n, n, -1
w o =-8 5,8, 0% s1x, iep
i i 1%
(2.37)
u, = - 6xi , ie{p+l,...,q}



N &
where ¢ is the delta functional and G(J), J € n, is the j h

deFivative of § in the distributional sense.

This shows that an impdlsive control type is necessary
to drive XO T e ﬁb,K.tO ker C.

To conclude, if xO € R;,K ; but XO d RE , then an
impulsive control is needed to achieve y(s) = 0. The quotient
space R;,K /RZ_ is related to the infinite-zero structure.

On the other hand, if XO € V; » theh there exists a piece-
wise corttinuous contreol so that y(s) = 0. The quotient space

* *
VK/RK is related to the finite-zero structuvre [2.27].

I1.2 ROOT-LOCI FOR MULTIVARIABIE LINEAR SYSTEMS : A STATE-SPACE -

APPROACH

1r.2.1 Introduction

Consider the linear system

X = AxX + Bu (2.38)

y = Cx (2.39)
with

dim U = dim Y = m

rank B = rank C = m.

The control law considered here is given by

Uu=gRy (2.40)

101
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for some map R : Y + U and a real scalar parameter gq.
Classical root-loci theory is concerned with asymptotic

properties of the closed-loop map
(A+gBRC) ‘ (2.41)

obtained by application of (2.40) to (2.38) as g - o,
The. first results for multivariable linear systems appeared
in [2.8, 2.9] and from there on a great attention has been paid to
the subject, especially on the part of the Cambridge school [2.6,
2.10-11] which has developed the theory mainly in the frequency domoum..
Apart from the work by Young et al [2.28] which have used
the technique of singular perturbation to study the asymptotic
behaviour of (2.41) (for R = I, the identity map) in the special case
rank CB = m, little has been done in the state-space domain.: The
reason for this is very simple. We had not had, until the work by Willems
[2.26T, hiéh gain concepts in the state-space to allow a development
of the root-loci theory in this domain.
Our aim is to give a contribution to the state-space theory
of root-loci by making use of the notions of almost controlled in-
variant subspaces introduced by Willems.
We shall restrict our attention to linear systems described
by (2.38-9) and for which the transfer matrix G(s) = C(sI-A)_ls is
invertible over the field of the rationals. Accordingly, we shall
sometimes refer to an invertible linear system.
The limit behaviour of those eigenvalues of (2.4'1) which

go..to infinity is closely related to the subject of infinite-zeros.



In Section 2.4 we give a procedure for the assignment of
the asymptotes which, as far as we know, differs from those existing
in the literature and has some advantages. We shall compute a map
R : X > U such that the asymptotes of (2.41) are assigned and such
that they have the same arders as the infinite-zeros. . Moreover,
the assignment of asymptotes of distinct orders is done independently
and the corresponding limit eigenvectors can also be assigned.

When R = I, the identity map, the asymptotes of the closed-
loop map (2.41) may not have the same orders as the infinite-zeros.
A condition has been given by Owens [2.i5] to ensure that both
entities (asymptotes and infinite-zeros) have the same orders. His
condition is derived from automorphisms G and H of U and V,A-
respectively, used.to obtain Morse's canonical form (see Section 1.4).
In Section 2.5, we show a condition derived directly from the maps

B and C. The condition gives simultaneously a way to compute

which iec not very clear in [ 2.1.51,

Part of the material presented in Sections 2.2-2.6 is

based on [2.1].

IT.2.2 Properties of Invertible Linear Systems

We describe in the following, properties of invertible
linear systems, il.e., systems represented by (2.38-9) with an in-
vertible transfer matrix G(s) = C(sI—A)_lB. The properties mentioned
here are fundamental for the root-locus study in state-space.

Let again K := ker C in the algorithms of Section 2.1,

Chapter I.

103
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A necessary and sufficient geometric condition for G(s)

to be invertible is that [2.27].

* + * _

VK KD,K = X (2.42)
and

VAR =0

K n b, K = . (2.43)

*
From (2.43) .and Lemma 1.1b, it follows that RK = 0. Thus

a multivariable invertible linear system can be considered as an
extension of a single-input, ‘single-output linear system when we
restrict our attention to K. Recall thatisingle-input systems
do not possess controllability subspaces other than 0 and X.
. * *
Since RK = 0, it now follows from Lemma 1.2e, that Ra K’
’
the supremal almost controllability subspace in K, is a sliding
subspace.

In fact, we can show that
K=V, aoR 2
= Ve Rk - (2.44)
Just note from (2.42-3) that
Ve R |, =X |
K & Rb,K = . (2.45)

By Lemma l.la and Proposition 1.1.



105

|

* R B
Rb,K A a, K @

with {2.46)

. R* . R*
dim A a,K dim a,k

® V*

K) = n-m

*
Thus, from (2.45-6) we have that dim(Ra K
r

and since rank C = m, (2.44) follows.
In the sequel we obtain a decomposition of the subspace

*
Rb K For this, let k-1 be a nonnegative integer such that
4

* k-1
R = . Then from Theorem 1.4c
a,K a

k-1_
Ra = B1 @ AFB2 8 ... 8 AL B

for some chain {Bi} in B and some F.

Let B;, ie {1,2,...,k-1} be subspaces such that
B. #B3, =8B ; B. :=8 . (2.47)

Hence, from Theorem 1.4c

-1
RE =Lyel e..0L | (2.48)
with
= 1 t i-1 ' 3 -
Li+1 Bi+1 ) A.FBi+1 8...9 A Bi+1, ie{1,...,k-2}
and
- k-2
Lk = Bk_1 ) AFBk_1 B. .. AF Bk_1

for some F which obeys (1,17-8).
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To facilitate the notation let Bﬁ ;= Bk—l' It is then

not difficult to see from (2.46-7) that

S =Ry = AR ©B
] F arK
=M, o Mze...@Mk (2.49)
where
Mi =B e AFBi 8. . @A;_iB' , iek

Note that S 5 B and that from (2.47)
R = Rt t R
B 31 & 32 &...8 Bk (2.50a)
which yilelds the decomposition

U= ui 8 ué @...@Uﬁ (2.50b)

where

Since Rz_l 1s the supremal subspace with the form (2.48)

in K and since K n Bi = 0, it follows from (2.45) and (2.49) that

V = cX = s¥
and

= cX= Y, e Y, 6.0 (2.51)
where

Yy =i, iex
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Let di := dim Bi, i € k. It is then clear from (2.23)
and Definition 2.3 that the transfer matrix G(s) of (2.38-9) has
,th NP .
{d.} i™ order infinite-zeros, i € k.
i =
The decomposition (2.49) is obviously not unique, but any
decomposition will display the infinite-zero structure. If, for
example, G(s) has no second order infinite-zeros, then the resulting
deéomposition will show no subspace of the M2 type ({(equivalently
L
82 o).
The decompositions(2.49, 2.50-1) will be used in Section 2.4

to obtain representations for the maps A, B and C.

I1.2.3 The Case Rank CB = nm

This section reviews the limit behaviou: of the closed-loop
eigenvalues of (A+gBC), g > ®©, for the special case rank CB = m.
Such a case has already been analysed in {Z2.8] by the use of the
spectral decomposition of the map BC and in [2.28] through the
singular perturbation technique.

It is our opinion that from a state space viewpoint, neither
of the above approaches provide a deeper insight. For this reason
we could not resist the temptation of presenting ﬁhis simple case,
before tackling the more general case, i.e. rank CB < m. It is our
objective to show that the use of suitable concepts, i.e., notions
of (almost) controlled invariant subspaces, makes the analysis of
this special case to be trivial.

The consequences of rank CB = m are as follows :
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a) KnB=o0

b) Since dim B = m and dim K = n-m, there follows by

a) that K @ B = X,

*
c) AK ¢ X = K @ B, Thus VK =K.
*
d) A(KnB) < B, which implies Rb K= B.

* %
Since VK o Rb K==X ; it follows from (2.42-3) that rank

CB = m implies that G(s) is invertible.
Let then
X=KeoB (2.52)
and consider Q : X + X, . the projection on K along B.
We claim that 0(QA|K) = ol@+BRIKI, wF « F(K) .

This is easily shown by using matrix arguments. In the

decomposition (2.52)
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By P 0
Mat A = Mat B = B (2.53)
Bar P2 2
Mat ¢ = [ 0 c, ]
where A11 = Mat QAlK and B2, 02 are nonsingular matrices of dimension m.

Let F ='[F1 F2] be a compatible partition of a map

F: X=U. Then from (2.53)

b}
A1 Ao
Mat A+BF = (2.54)
A21+B2F1 A22+B2F2
and any F € F(K) is such that F1 = —B; A21, which verifies the

claim.

It follows from [2.4] that olQA|K] constitute the set of
transmission zeros of the triple (C,A,B).

From (2.53) we have that the closed-loop map A + ¢ BC

admits the following representation

A 3

Mat A+gBC = . (2.55)

+
Bt ByaT9B,C,

Since BZCZ is nonsingular, it follows from Lemma A.l1 in the

Appendix that as g =+ =

O(By5*gB,Cy) > g T(ByC)) .
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Therefore, the closed-loop map is characterized by two coupled
"subsystems", one with finite eigenvalues and. the other one with
eigenvalues which tend to infinity. It is then easy to show
[2.13, 2.28] that one eigensubspace of (2.55) with dimension n-m

approaches K so that n-m eigenvalues tend to C(A

= G(QalK), as
g + . The remaining m eigenvalues go to infinity with asymptotes

given by O (B C2) and the corresponding eigensubspace approaches B.

2
The closed-loop map (A+gBC), g + *, is then said to have
m first order asymptotes in the sense that m eigenvalues go to
infinity with power one in g. It is also to be noted that rank
CB = m implies that the infinite-zero structure of G(s) is given by
m first order infinite-zeros.
An interpretation of the above results is described in
the following.

The class of maps L(B) can be easily characterized.. For this

let Llw be a compatible partition of a map L: ¥ -+ X. Hence

L
2

from (2.53).

3
+
All A12 L1C2
A+LC =
+
Ba1 By *haCy
, -1
and any L € L(B) is such that L, = a,__C_".
1 12 2
Define the following maps:
a) L € L(B) such that (A+LC)B = 0, i.e. set L_ = -A C_1 .

2 2277
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b) F € F(K) such that F|B =0, i.e. set F, =0 in (2.54).

Then

(A+BF+LC) K . = (a+BF)Lc K
and

(A+BF+LC)B = (A+LC)B = 0.

The map (A+BF+LC+gBC) admits the following representation.

)]
A11 0

Mat (A+BF+LC+gBC) = (2.56)
0 gB2C2

and we can see that the limit behaviour of (2.55) coincides with
the behaviour of (2.56). The explanation for this is simple.

Just note that as g >

Il a .l el
21 +0  and 12 >0 .

| 2,,*a,c, |l | a,,+g8,¢, |l

The above discussion has shown that a suitable state feed-
back map F and a suitable output injection map L can help in the
comprehension of limit properties. This observation will be extended

in Section 2.5 for systems with rank CB < m.
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*

II.2.4 Independent Assignment of-Asymptotes‘of~Distinct

Integer Qrders

This section deals with the assignment of asymptotes by
output feedback for an invertible system described by (2.38-9).
The assignment procedure suggested here is applicable to all
invertible systems, i.e., rank CB can be any integer between zero
and m.

If A is an eigenvalue of (A+gBC), g * < and its behaviour

is given by
£
A +3on,g+°°,oceE,ZEK

then o is said to be an asymptote of order Z£.

To begin with our constructive method , we first identify
the transmission zeros of (C,A,B) as the eigenvalues of a certain
map. For this, let (W be any subspace such that Sk =BelWl,
where S* is as in (2.49) .

Let Q  : X - X be the projection on VE along Sk. Analo-
gously to the previous section we claim that G(QAIV;) = O[(A+BF)|VE] ,
¥F e F(V*).

K

To see this consider the decomposition

X=VKeBew.

Then in some basis provided by the above decomposition we obtain
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( ) ( )
Boo Por Poz 0
Mat A =| 210 P11 Poo Mat B = | D1 (2.57)
L 0 A21 A22 ) L 0 )
Mat ¢ = [0 <, c, ]
*
where AOO = Mat QAIVK and B1 is a nonsingular matrix.
Let F : X+ U be any map and write F = [FO, Fio F2],
according to the partitioning of Mat B in (2.57). Then
( A a A
00 01 : 02
= +B F + + .
Mat RHBF = | Ajg*B Fg B BFy Rp*BT,
. ° A21 : A22
* -1 _
It is clear that any F € F(VK) is such that FO = -Bl Alo.
This shows that ADO is a representation of (A+BF)|V& , ¥F € F(Vk )

and consequently O (A

*
OO) = G(QAIVK ) constitute the set of trans-

mission zeros of the triple (C,a,B) [2.4].

We now use the decompositions (2.49, 2.50-1) and Theorem l.4c
to obtain suitable representations for the maps A, B and C.

Let G and H be automorphisms in U and Y, respectively,

such that

BG = dlag(Bl,...,Bk) ] (2.58)

where
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and
HC = diag(Cl,..;,Ck) (2.59)
where
Imc, =car ' B, iek.
1 F -

Note that the matrices Bi and Ci are nonsingular and of

dimension di, i e k.

* 3
For simplicity of presentation, suppose that Rb K =8 in
14

(2.49). We shall see that there is no loss of generality in doing

this. Hence

* 3
X = VK @S
and using (2.49)

*

; 2
— ' ' 1 ' ' '
X VK o 81 @ 32 ® AF82 & B3 @ AF53 @ AFB3 . (2.60)
From (1.16-8), it follows that

a Aﬂ—le £

-1
= ' _ ' 1 ' 1
F o Bis T PpPis BERgB] , © Al * Byte-4Bi

i+l (2.61)

1

i
forﬂei.,ie}g.am,o( Bo::O.
From (2.50-1) and (2.61), it follows that the maps B, C and

A admit the following representations.



115

' , ) { )
(§99_},_}_§_ 0 x 0 0 x 0 0 0
1 '
X | ¥ x x X X X B 0 0
o 1
% x{10 x! 0 0 x 0 B, 0
‘ ‘
0 X 3 Id2 X E 0 0 x 0 0 0
‘Mat. A= | = -—-—=ZX c———— ---| Mat BG = (2.62)
. 0 0 B3
X x 0 =x! 0 0 x
! 0 0 0
0 b4 0 b4 ;Id 0 x
V3 0 0 0
0 X 0 x! 0 Id p:4
{ 3 0 0 0
\ y
0 C1 0 -0 0 0 0
Mat HC = 0 0 0 C2 0 0 0
0 0 0 0 0 0 C3
The symbols x denote matrices which are possibly nonzero-
and Id denotes the identity map of dimension di. It is readily seen
i

that in general, Mat A will have k diagonal blocks Ai with the form

o o . . . . 0 x)

(2.63)

g
)i
o7}
'_J
m
-

id, xid,
i i

Note that Ai has the structure of a block companion matrix.

Consider the following maps
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k k
:= alS™ ; := BG ; ¢ := Hc|S
As Qs I Bs Qs S Cl

’ *
where Q_ : X + X is the projection on sk along VK.
Hence, the characteristic matrix of A+gBC on Sk has

the following representation

+ - ' )
X gBlc1 XIdlz X X X X X
"“““““T ““““““““ '
-— ¥
x | Md x+gB,C, | O 0 x
2 '
. N '
b4 VI X-AI : 0 0 b3
e T T
ey T T T T T T T T T T T s s
+ - = 0 -
Mat(AS gBSCS AL) x X | AId 0 x+gB3C3
, 3
:
X 0 X ' I -AI
! d3 d3 X
L[]
L]
0 ! 0 I x-AL
X 4 : d3 d3 |
\ ]
1
(2.64)
It will be shown next that the eigenvalues of AS + gBSCS,
as g + <3 tend to the asymptotes which are determined from
i .
|]A'1, -B.C.|] =0, i€k, (2.65)
d i1 -

i

From (2,65), it follows that there are di ith order asymptotes.
This implies that the structure of the asymptotes is isomorphic to the
infinite-zero structure (see Section 2.2).
.th .
Let the i diagonal block of AS + ngCs be denoted by

Ni’ i € k, where
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(AT e ... )
ALy 0 0 xii+gBici
1
Id_ —Md. . . . . .
1 1
_ ) (2.66)
N, = 0 L . .
1
. . ] . ) —Md. x21
1
0 0 . . . I X, -
a. *1iMg,
\ 1 1 J

It can be easily seen that

i i-1 i-2
= I - - e = -
INil A a MRy T A TRy %337 9B G

where the matrices in, j € 1 , denote the matrices symbolized by
X in (2.63).

Hence, by Lemma A.1 in the Appendix, it follows that the

-

- B, i . - e v s S .
elgenvalues Aj r J s g;js0r a nlock Ni approach ule asyupioles givei
by (2.65), as g > =,

Note that the eigenvalues of distinct diagonal blocks go to

infinity with distinct rates, where the rate associated with an
1

eigenvalues of the block N 1is QI . Also note that the norm of the
i

off-diagonal matrices are finite (see the example in (2.64)).
It follows that the Gerschgorin sets [2.20] associated
with any two distinct diagonal blocks Ni and Nj, i # 3, are disjoint

as g -~ o, Further, the distance between any two sets i and j,

1.1

J

i # j, tends to g * , as g > o,

This shows that the eigenvalues of AS + gBSCS approach the
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t
asymptotes given by (2.65), as g = =, The di i h order asymptotes

are determined from the eigenvalues of the nonsingular matrix Bici'

Since all the eigenvalues of As + ngCs go to infinity, as
g > ®, it follows by the same arguments used in [2.9, 2.13] that
the finite eigenvalues of A + gBC tend to the eigenvalues of AOO
(the transmission zeros), whereas the infinite eigenvalues tend to
the asymptotes given by (2.65)-

A simple procedure to assign the asymptotes of all orders
is described next. The method used here is similar tQ the one used by
Kimura [2.7] for the a;signment of the first order asymptotes in the
case rank CB = m.

Since ciBi is nonsingular, there are vectors v ;0 a S di'
q hy

i € k, so that the matrix

T, ={¢cB,v,.,...,C B v .1, i ek (2.67)
i i i 1i ii dil -
is nonsingular.
Let
, i . 2.
rgylraeg v 1ok (2.68)

be a set of complex numbers such that for each i € k, the set {Yqi} is
symmetric with di distinct complex numbers.

Let
. -1 .
zZ, = Evli,...,vdii]dlagEYli,...,Ydii]Ti , iek (2.69a)

Hence

B,Z2.C.B. Vv =Y

. Z2,C.B,.V_, ;9 € 4d,, iek (2.69b)
i7i7iTi gl =i

B.v_,
giigi
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which means that (Yéi' Bivéi)' is an eigenvalue—eigenvéctor pair

of B, 2, C..
i i i
Define
Z := diag(zl,...,zk)
and

R := GZH.

Then the closed-locp map (A+gBRC), g - ©, will possess di
ith order asymptotes given by Yqi' q € éi' ie E.

In the sequel, we discuss some properties of the eigenvectors
associated with the asymptotes. Since the eigenvalues of Gmwv twer

blocks Ni and Nj' i # J, go to infinity with distinct rates, it

follows that as g » », G(Ni) n G(Nj) = ¢, and thus the eigenvectors
of a block Ni are eigenvectors of A + gBRC, as g - «. Also from
the structure of Ni in (2.66) and Lemma A.l, it can be concluded that
the limit behaviour of the éigenvectors associated with ith orderxr

asymptotes can be extracted from the following characteristic equation

(- Y )
AId, . . . 0 0 gBiZiCi x1’i
i
Id, . . . . 0 x2'l
i
o . . . . . 0 . =0 (2.70)
o o . . . I -AI X
. dl dl / N dl ¢ L J
1
Let ((qui)l,x) be a pair eigenvalue-eigenvector in (2.70),

where
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Then, from (2.70)

- I +gB.Z2.C, . =0 .
( ngi g i i l)xdi,l (2.71)
1
xd -1,i - (ngi)l Xdiii
) i-1
_ i
Xl,i = (ngi) lei . (2.72)

From (2.71), it can be concluded that the vector X3 3
i’
corresponds to the eigenvector Bi vqi in (2.6%Db).

From (2.72) we have that as g » «©

I

I,

I =,

Jio __ +0 e {2,3,...,4}

which shows that the eigenvector x approaches Im Bi vqi' since
Xl,i € Bi according to the basis chosen for the representation
of the map A.

Another conclusion to be drawn from (2.72) is that the i
eigenvectors associated with the i eigenvalues A; -> ng, q € éi'
converge to the direction given by Im Bi ti.

We summarize below all the results cobtained so far in a

proposition.
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Proposition 2.2: Consider an invertible system described by (2.38-9) with

infinite-zero Structure’{di}, ie E, shown in the decomposition
(2.49). Let {Yqi } , qge 91 + 1 € k be a set of complex numbers as
described in (2.68).

Then, there exists a map R : Y - Y such that the closed-loop
map (A+gBRC),g > «, has di ith order asymptotes given by {Yqi} '
qged,, ie€k.

Zi pia

Moreover, the 1 eigenvectors associated with the i

eigenvalues %; > ngi ; 4 € d,,i€k. approach Im Bi vqi < B;, where

the ti' ge éi' are chosen so that Ti in (2.67) is nonsingular, i e k.

a
Comments:
1) In our opinion, the method for assignment of asymptotes suggested
here has two advantanges when compared to the approach in [2.11],
namely
a) the procedure proposed in [2.11] requires the knowledge of

all asymptotes of A+gBC, g > ©, and the eigenvectors of the so-called
Markov parameters. Moreover, such procedure is valid only in case that
the orders of the asymptotes of A+gBC, g > ©, coincide with the orders
of the infinite-zeros.

The method proposed here does not have such a limitation, i.e.,
we assign the asymptotes (with the same orders as the infinite-zero
orders) without previous knowledge of the asymptotic structure

of A+ gBC, g > &,
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b) The assignment of asymptaotes of different integer orders
can be done independently, i.e. the map Zi' i € k, which assigns

the asymptotes of order i, can be computed separately from Zj' i# 3.

2) From a state space viewpoint, the assignment of asymptotes
via (almost) controlled invariant subspaces is the most natural,
for a simple reason : the eigensubspace associated with finite
*
eigenvalues tends ta VK and the eigenvectors associated with infinite
eigenvalues converge to subspaces of B whose structure is determined
from R
ro .
S 4 .

The conclusion that the eigenvectors coresponding to the infinite
eigehvalues approach B had already been obtained in [2.22]. The
advantage of the approach adopted_here is that we have been able to cbtain
a much richer information. It follows from (2.47) that the limit

t
eigensubspace assocliated with the asymptotes of i h order is related

to the quotient space Bi/Bi— ie{0,1,2,...,k-1}, which is completely

1!
determined from the structure of R;,K' In other words, any subspace
Bi which yields a direct sum in (2.47) can be chosen as a limit eigen-
subspace. Such a flexibility may be important, for example, in

connection with the assignment of "pivots" [2.111, which are the

points of radiation of asymptotes.

3) If the system (2.38-9) is not invertible, then the state

space can be decomposed as

X=V

b,K ® Xc

*
where X 1is any subspace that complements Vb K and
c K
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where the above subspaces are as in (2.15a).

It can be shown in a similar way as we did before that a map
R : Y > U can be defined so that a set of dim ﬁb,K eigenvalues
approach pre-specified asymptotes with the same orders as the infinite-
zero orders.

It can also be shown that a set of dim X1 eigenvalues approach
the transmission zeros of the triple (C,a,B)-

But the more important point to be emphasized here is that
now K has a controllability subspace and that V;,K is a complementary
ohservability subspace. This means that there exist F : X »> U and

L : Y- X such that

*
csE(A+BF)|RK 1 =4

and
ol (A+LC) (mod V;,K )l = A2

where A1 and A2 are symmétric sets of dim R; and n-dim V;,K
complex numbers, respectively.

Unfortunately, it is not true, in general, that the subspaces
R; and V;,K are (A+BRC)-invariant for some R : ¥ - U, i.e. that they
are simultaneously A(modB) and Alker C invariant subspaces.

This poses a great difficulty as to how to choose R : ¥ - U

that not only assigns the asymptotes but which alsc ensures pre-

*
specified complex numbers for a set of dim (XC & RK-) eigenvalues, as



124 | =

g * =, As far as we know there has been no progress in this area.
pProg

II.2.5 Some Asymptotic Properties

Consider the invertible system (2.38-9). We shall give
here a sufficient condition for the asymptotes of the closed-loop
map (A+gBC), g * *©, to have the same orders as the infinite-zeros orders
of G(s) - The main difference of the analysis here when compared to
that of the previous section is that we shall not make use of the
automorphisms G and H in (2.58-9).

Consider again the case k = 3 and the decomposition (2.60).
In such a decomposition the map A is represented as in (2.62) andA-

the maps B and C admit the following representations.

Mat B = : Mat C = [0 C 0 c 0 0 c.]

*
Let Q_ : X > X be the projection on sk along VK and consider

the following maps

A, =0 a|s® gs = QB ES = c|S
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Hence, the characteristic matric of A + gBC on S* has

the following form.

‘ )
(x+gB, C,-AT_ ¢ *  ¥t9B,C, * X x+gB,Cq
171 77g,!
—— 11
1 1
+ - 1
X giazc1 | ! Mdz x+g132c2 : 0 0 x+gBZC3
] ]
\ 1
x VI x-AL ! 0 0 x
4 4 !
2 2
‘ A x+gB_C 0 x+gB_C .
. + —-— == - .
Mat(As ngcs AI) 371 372 Axda 0 x+q133c3
X 0 X I ~AI X
d3 d3
' x 0 x 0 I_ . x-AI
| dq dy
cee (2.73)
By comparing the matrices in (2.64)and (2.73), we see
that the closed-loop matrix in (2.73) displays couplings among the
input maps Bi and the output maps Cj' i# 5.
Form the nonsingular matrix T
8,c, BC,. . . B,.C)
171 172 17k
32C1 . . . . Bzck
T :=
LBkC 1 Bk.C‘2 - BkaJ
Agsume that the matrices Ti
[ )
B_1C1 Bic2 . . . Bici
B.C . . . . B.C,
o= |21 254 e{1,2,...,k-1} (2.74)
Blcl BiCZ Blcl J
L
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are nonsingulax.

Let the Gauss generalized algorithm {2.5] be applied to
[', where the pivots are sgquare matrices of dimension di' i e{l,2,..¥,k-1}.
The assumption (2.74) ensures that the pivots obtained during the
application of the algorithm are nonsingular. Hence, the block

triangular matrix [I' aobtained is

r A
Fi1 Figm =0 Fiy
. 0 0o Fo (2.75)

\ 0 0 FkkJ
where
Fii 7B G
F =BC—BCF_1BC.
22 272 2717117172
F._ = (B.C -—BCF—lBC)-'(BCF_lBC)F..l(BC—BCF—lBC)
33 373 3717115173 3711171727722 273 T2 117173

and so on.

The matrices Fij' i # j, which result from the application
of the algorithm do not play any role here. Note that the matrices
Fii' i € k, {(the pivots) are nonsingular.

. . th
It will be shown next that the i order asymptotes

are determined from

AT, -F,..| =0, i€k . (2.76)
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Such a result is expected since we are replacing the
nonsingular matrices Bi Ci' i € k, in (2.64) by the nonsingular
. , ) , . th
matrices Fii' 1 € k, which ensures the existence of di i order
asymptotes.
To illustrate the derivation of (2.76), consider the

case k = 2. From (2.73)

( - ' \
x+gB1C1 AQ%’ X x+gB1C‘2
___________ S
A A . |x+gB_C 1=AI X+gB_C
Mat(A +gB C -)AI) = 21 ! dz 22 < (2.77)
s * s s \
1
X voI x-AI
1
b9 4
\ J

By Lemma A.Z in the Appendix, it follows that the diagonal
block of dimension 2d2 cannot have asymptotes of order less than two.

Therefore by Lemma A.l all the first order asymptotes are given by
AI_ - B, C | =0.
g

Consider now the application of the Gauss generalized
algorithm to (2.77) and take the matrices (gB,C —AId ) and —AId

171
A _ 1 2
as pivots. Hence, for-a - 0 , it follows that

Hence, after the pivoting and consideration of g > >,

the matrix in (2.77) is transformed to the following matrix
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N - \ \
.gslcl ld { x X
1 t
B S — —————
0 3 A +H F
iTALg TRy
2
N
]
1 =)
0 : I 4 AT a +H2
\ 2 2 )

where H1 and H2 denote matrices obtained in the pivoting process

and F22 is as in (2.75).
The remaining asymptotes are then given by the limit
of the roots of the determinant of the diagonal block of dimension
2d2, which is
Az -\ +H) +H, H, - gF__| = 0. (2.78)
d2 1 2 172 22

By Lemma A.l, it now follows that the roots of (2.78)

tend to second order asymptotes given by

2
|AI—F22 = 0.
The successive application of the Gauss generalized
algorithm together with LemmasA.1, A.2 and the hypothesis (2.74)
lead to .(2.76). The above result is stated in the next proposition.

Proposition 2,3: Consider an invertible system decribed by (2.38-9)

with infinite—zero structure {di} 1 €k, as shown in the decom-

position (2.49). If the condition (2,74) holds, then the closed-
.th

loop map (A+gBC), g = ® has di i order asymptotes, i € k, given

by (2.76).
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Comments:

1) The condition (2.74) is similar to that one given by Owens
[2.15] , except that our condition is expressed directly in terms

of the map B and C.

2) The expressions for the matrices Fii show that there is a
nested influence from the faster "subsystems" to the slower ones.
For example, the first order asymptotes influence all the asymptotes
of higher orders. This influence has been avoided in the assign-
ment of the asymptotes by making use of suitable automorphisms
G and H.

Note that if the transfer matrix G(s) has no infinite-zeros
of order i, i e k, then Bi = Ci = 0 and the condition (2.74) is
not required at i. This simply implies Fii = 0, which shows that

(e

otes of 1 order are present. We point out this fact
because Owens [2.16] has shown that the results in [2.8] were not

valid in case of absence of infinite-zeros of order £, 1 < £ < k.

3) A decomposition.of the spaces U and y has been obtained
in E2;6]; The decomposition is related tqQ the way in which the system
(2.37) responds to the delta functional and its derivatives and it
has been obtained by applying the techniques of singular value decom-
position to the so-called Markov paramefrers.

We have seen that the concept of almost controllability sub-
spaces has led to very simple and natural decompositions described in
(2.50-1). The point we want to make is as follows : geometric

concepts such as (almost) invariant subspaces provide a clear theoretical

Picture which should be distinguished from theoretical aspects obtained
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by using a numexical technique such as the singular value decompos-

ition.

For single input-single systems we have that [2.26]

R K = b+ab +...+25 1

b, for some k e n.

a,

Hence from (2.46)

R; (= b ab s 2%,

In the decomposition

the maps A, b and ¢ admit the following representations

Mat A = AOO AOl Mat b = 0
b
B0 Py !
Mat ¢=1[ 0 <, ]
*
where AOO = Mat QV A[VK has as its eigenvalues the transmission

zeros of the triple (c,A,b) and
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(0 o . . 0o x)
1 0. . . 0 X
Mat All = . . . . . .
00 T X Gy x ket
(1)
O .
Mat b1 = Mat cl= (o o . . 0 lex(k+1).
L0 J(k+1) %1

where ¢ = cAkb # 0.
By using Lemma 13.2 in [2.27] it follows that the asymptotes of

+gb and hence (analogously to the analysis of (2.55)) the asym-

Byytabycy

ptotes of A+gbc, g > ®, are .given by the roots of

Xk+1 +1-0 : (2.79)

where obviously, k+1 = n - dim U;.

Equation (2.79) is a classical one for the root-locus of
single-input, single-output systems. It shows that such systems
have fixed asymptotes which cannot be altered. This is a striking
contrast with multi-input, multi-output linear systems, where it
has been shown that there exists freedom to assign all the asymptotes
of orders coinciding with the infinite-zero orders.

In the sequel we discuss a property concerning the invariance
of the asymptotic behaviour under state feedback and output injection
for an invertible system.

From Theorem 2.la we know that the transmission zeros are
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invariant under state feedback and output injection. In other words,
the map QV(A+BF+LC)lVZ is fixed for any P : X>Uand n : ¥ > X,
AOO in (2.57) is just a representation of this map.

We have mentioned in Section 1.4 that the subspaces RZ in
the algorithm (1.4) are invariant under state feedback and output
injection and from Theorem 2.1 we know that the orders of the
infinite-zeros are also invariant under such transformations. These
facts imply that under condition (2.74), the asymptotes have their
orders and magnitudes invariant under state feedback and output
injection, since the magnitude depend only on a structural partition
of the maps B and C, which is determined from RZ.

Due to the above invariance, it follows that we may obtain
the asymptotic behaviour of (A+gBC), g - «, from another map
(A+BF+LC+gBC) , for suitable maps F and L. This fact has also_been
pointed out in [2.15].

Sincg Li ckK, i E{Z,3,...,k}, we can proceed as in Section 1.4
and define a map L : ¥ - X so that
1

— ] - i-
M. =B'eo (AF+LC)BJE_ D...0 (AF+LC)

B', i €k
1 1 1

with

(A *LC) l73»'i =0 , ik

k
As a conseqguence, the subspace S gets decomposed into
controllability subspaces Mi’ iesk, with respect to the pair
* *
(A+LC,B) . Also, since Ra K;n VK = 0, the map F can be chosen
*

* * Tk -
so that AEVK c VKf Thus (_AF+LC)VK c VK and for the case k = 3, the

map (A+BF+LC+gBC) admits the representation below.
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( 1 ).
Pooy % o000
t ) 0 c
0 : gB1C1: gBlc2 Q gB1 3
tTTmTTTYTTTTTTTTTTY
1 C
0 gB2C1: 0 ng o 0 0 gBZC3
t t
0 0 114 0 : a 0 0
vo2
[ S — L e e —
]
[}
0 gB3C1 0 gB3C2= 0 0 gB3C3
{
0 0 0 0 E Id 0 0
: 3
0 0 0 o 0 I 0
\ ; 4 j

Note that the above representation displays only the necessary ihf .
formation to extract limit properties and it'corresponds to the
extension promised in Section 2,3,
A nice interpretation for the asymptotes assigned in Section
2.4 is that the set {Yai} r 9 € éi' i € k, in Proposition 2.2,
corresponds to a set of {idi}, i € k, eigenvalues assigned to the
contreollability subspaces Mi with respect to the pair (A+LC,B), i.e.
L
oL{A + BF + LC + BRC)IMi] =‘{Y;'}, qed,,ick.
i
To conclude this section, we would like to point out that

the analysis of the closed-loop system
x= (A +gBCx, g+

is equivalent to the analysis of a generalized singularly perturbed system
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* 1
E(e)x = A(€)x, < o, =-§
where in the case k = 2
f . { 1
Idolt 0] 0] 0] AOO : % --.O X
T
te t 0 ' et
° 1T, o I Pl SN e
E(e) = Y A(e) t
)
0 0 : e 0 €X €x+B2C1: 0 ex+32c2
1 d2 '
t ]
{ 0 Q : 0] Id . Q x ' x X
2 L
*
Here do = dim VK and the matrices E(€) and A(€) are obtained

from (2.53). This way of visualizing the closed-loop system may have
some significance in connection with recent studies of generalized
singularly perturbed systems, mainly for the case where condition
(2.74) does not hold. For a discussion about the case where the
asymptotes do not have the same orders as the infinite-zeros, see [2.10].

II.2.6 An Example

The following system is taken from an example in [2.15].
The example is simple but it serves the purpose of illustrating
what has been revealed so far.

Consider the invertible system defined by the triple (C,A,B)

0o o 0 1) (1 o)
1 0 0 0Y)
c - A= |t O 1 0 s - 0 0
-l 100 0 0 0 1 0 o0
0 0 0 0| L0 1|
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*x
where VK = 0.

It can be shown that B n'K = span } =B .

The subspace - Bl is chosen as spanr 1
0
0
L0 )
So
1
Ra = B1
R2=Kn(AB +B) = K n (B,+aB, +B')
a 1 1 171
where
(1 )
AB1 = span
0
\O/
Choose
r1\ l'_1W
Ab1 =10 e ABl and bl = 0 € Blf
1 0
0 0
\ J L 4
Hence
0o o)
R2 = span ¢ 0 = K
a
a 1
SR
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Bu = b!,

Now, 1

Define P

= H!
BFb1 bl

and

BF(Ab, + b')

Thus

where the subspace span

implies u

o -

l_

: 34 - EZ so that

has been chosen arbitrarily

as well as the action of F on this subspace.

Hence
0 0
F= 0o o0
and
o o
1 0
" 0 0
Lo o

-

’Ow
0
AFBl = span
1
L 0
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B, = span

o

The representation of the maps C, A, B in the basis

(1 o o -1 )
) 0O 0 0 1
{—bl,bl,AFbl,AFb1}= 0 o 4 , (2.80)
is given by
1 0 0 -1 (1 1 1 1)
Mat C = Mat A =
-1 0 0 2 0 0 © 0
0 1 o0 0
. 1 0 1 -1
(1 o) (2.81)
0 1
Mat B =
0 0
L0 0
Thus
[(A-(1-g) ¢ -1 =1 -1+g )
1
1
-g ! A 0 29
AI-(A-gBC) = '
o ' -1 A 0
1
L -1 1 0 -1 A+l |
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The characteristic polynomial A(A) of (A-gBC) is given by

A = 2 g Ziogiig? = (A P+g) Otg) - A2 + g

Hence
A g (A0 '
S s e TR - (). (2.82)
3 A3+
AT+g .79

Set A = gt in (2.82) and divide by g. Then

2
LICV gtB—t .
g gt +1

(?.83)
From (2.83) it follows that
VOB, 11 as g + «, wiformly for i < | t | <2
g 2 — -2
Hence
P(A) > A+g, g > o

It follows that A(A) has a first order asymptote in -1 and a
third order asymptote in -1.

Note that the term —gkz does not play any role in the
determination of the asymptotes.

Define L so that

2 3
. = -4 \ b = -
LCbl Fb1 and LCAF i AFb1



whence
(o o0 }
L=|-1 1 .
0 0
. 0 Q)

[0 0 0
0 0 0
Mat (A+BF+LC)Y =
0 1 0
{ 0. 0 1
Hence

det (AI-A~-BF-LC+gBC) = >\4

. 2
and we can note that the term -gA” has been eliminated.

The asymptotes can also be determined from the process

described in Section 2.3. Just note from (2.81)
Blcl Bch 1 -1
BBC1 5393 -1 2

and

+ gk3 + 2gA .+ g2

139
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To assign the asymptotes consider

so that

HC = .

Hence the matrix Z = z 0

assigns one first order asymptote in -z1 and one third order

asymptote in -z, to the closed-loop map (A-gBZHC), g = .

2

APPENDIX

Lemma A.l: Let L(A) be a matrix polynomial given by

LA = Aotk st ax

+ +
1 o1 TR TR

1
where I 1is the identity matrix of dimension n, xj are square
matrices of dimension n, Jj E{l,2,...,i+1 }, g is a scalar and Xi

+1

is nonsingular.

Then as g =+ <, all the roots of ]L(A)| =0 go to infinity
and they tend asymptotically to the roots of |>\l]:+gxi+1 = 0.
Proof: |L(A)| = 0 implies lx;ilL(A)| = 0. Hence
X1 Ln] = e + 2|
i+l
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where

.o-1 - - -
1. i-1 1 1

A=K g P AT X g K et X X

But, [2.5]
n ° n-k
lgI + A(A)I =g + z Yy 9 . (A1)
k=1

where Yy is the sum of the principal minors of order k of A(M\).

Let Bk, k € n, be the sum of the principal minors of order
-1 o A .
k of Xi+1' Hence, on dividing (Al) by gn and setting-% = t,'tﬂ&

reauklt i

| o x 1
Yit,g) =1 + 2 Bt +0 |—
k=t K

b

9

as g >~ «, uniformly for 0 < -M + Imin 0(}(:_L )| f‘]t] f_| max G(Xi+1)|+M

+1
where M 1s some positive constant.
n
k *
Let ¢(t) :=1 + Z Bkt and let t be a root of ¢(t) of

k=1
multiplicity O. Then for § > O small and fixed, there exists

9 > 0 such that
luit,g) - o(t)| < |o(t)|

*
for all t such that |[t-t | = § and all g2 9, By Rouché's

*
theorem [2.21], Y(t,g) has exactly O roots in [t—t | < 4. Let

*
t (g) be one of these roots. Then
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satisfies
Si
}\*
LP(E ) =0
and .
* * }\*l *
[t @) -t ] = LE -t ] <8,

Thus, in the limit all the roots of Y(t,g) approach the

roots of ¢(t). The result follows on noting that

i n ik
¢ (t) =0<=>¢(%)- A

il
—
<+

t~1
o)
~
N
L
it
(=)

ot

i_
<==>
IgI + A X1

0 <=> AT +gx, | = 0.
i+

1

Lemma A.2: Let L{(A) be a matrix as in Lemma A.1l, where now Xi+1

~

is an arbitrary square matrix of dimension n. Let A be a root

of |L(A)[ = 0 which goes to infinity as g > <. Then, there is no
Xr
real number r € (0,i) such that lim—= =qa, o # 0, a0 € [.
g9
g—)OD
A ' AT
Proof: Suppose that there is a A + © with lim-g =0, 0 #0,
g
r € (0,i).
~ 1 ~
Then IL(A)l = 0 implies l E L(A)l = 0. This and 1lim
g
A . N o _
—~ = ¢ imply llmlL(a,g)l = 0, where
g g
i i-r i-1 i-r-1
~ r r r
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- i r—-i
Since ¢ * # 0 and g r o 0, we then have
L r-i _~i  r-iyn
limla” ¥ g ¥ L(a,9)] = lim {oc gt ] |Z(a,0) | = o.
g g’ '
Hence
lim |T + ala,9) | >~ 0 (a2)
g—)OO
with
_r 1 -2 _2 i r-1
r r r r i —

ala,g) =0 - g X, +0a g

i+l
By the Gerschgovintheorem [2.20] , it follows that the eigen-

values of T + A(0,g) are located in one of the discs Dj' jen,

given by

n

k#3j

t
where ajk is the jk h element of A(d,q).

From the form of A(c,g), it follows that as g = ®, the centres
of the discs tend to one while their radii go to zero. Hence
I + A&, g) is nonsingular for g = <, which contradicts (a2).

~
r
Therefore-a cannot converge to o # 0, for r € (0,1).
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CHAPTER III

GENERALIZED LINEAR SYSTEMS

IITI.1 INTRODUCTICN

Consider a time-invariant system described by

t
b
Ii

Ax + Bu (3.1)

where

rank B = m; rank C = ¢

and E 1is a singular map.

A system described by (3.1) is termed a generalized state

space system, a singular system, or even a descriptor system,

£3.
to

by

be

in

13, 3.3] . The term '"generalized linear system" is adopted here
recall that (3.1) is a linear system and it is "géneralized"
the fact that E is singular.

It has been suggested in {3.13] that the eguation (3.1) can
used to describe the behaviour of systems in which a sudden change

structure or, parameter values occurs. The reasoning used is as

follows : 1let X(t) be the state of a system, not necessarily described

by

(3.1), and let x(t) ~ X, as t >0 . Suppose that at t = 0 a switching
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occurs and the system is now modelled by (3.1). Then X, may be
considered a initial condition for (3.1) which together with u(t)
will determine its response fot t > 0. It is clear that X, may assume
any value since nothing has been said about the system structure for
t < 0.

It has been shown in [3.8], that when an arbitrary initial

condition is allowed then the solution of (3.1) belongs to the class of

distributions and that we should instead consider the equation

Ex = Ax + GExo + Bu : (3.2)
y = CX
where &8 is the delta functional (see [3.18] , for example). It

can be concluded from the results in [3.13] that with u :=0, the
solution of (3.2) is a distribution of Bohl type (see Definition 1.3)

given by

7 (1)
x= ] x67 +x' (3.3)
2 _ i 2
i=0
Lt~ . ~ .
where 5' :t>e x, t > 0. Here xi, ien, and x are vectors and
L is a matrix.

In this chapter and in the next one we shall adopt the formul-
ation (3.2), for we are chiefly interested in properties such as
controllability and observability for the system (3.1) when subject to
an arbitrary initial condition 5(0—) = xo. To facilitate the notation
and exposition we shall sometimes refer to the system (3.1), which

should then be understood in the sense of (3.2).
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Assume that the pencil (sE-A) is regular (3.9, vol II],
i.e. (sE-A) is invertible over the field of the rationals. Then by
taking the Laplace transform of (3.2), it follows that its unique

solution, for a given x. and a given u(t), t > O, is given by

0

(sE-A)'ltExO + Bu(s) ] (3.4)

x(s)

Cx(s)

y(s)

where S denotes the complex variable.

The main features of a generalized linear system are

a) The number of zeros of the pencil, which determines the

free response of (3.2))is given by h := rank E < n. .

b) The transfer matrix of (3.4), G(s) = C(sE—A)—lB, consists

of the sum of a strictly proper rational matrix and a peolynomial matrix.

c) The degree of det(sE-A) :=r < h < n, and if r < h, then the
regular pencil (sE-A) has h-r infinite-zeros which correspond to h-r

impulsive motions in the free-response.

The above features of a generalized linear system have been
discussed by Verghese et. al [3.13] who have also established tests
for the controllability and observability of the infinite-zeros.
The tests are then used in a method, based on the Jordan cancnical
form, to extract a contxollable and observable subsystem relative

to the controllable and observable infinite-zeros.
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One of the aims of this chapter is to present the concepts

of controllability and observability of the infinite-zeros from a

am
geometric point of view. Suchiapproach has then led us to obtain
necessary and sufficient conditions for the controllability and observa-
bility of those zexos in terms of the maps E, A, B and C. The
conditions obtained here correct erroneous‘ones in the literature.

The geometric language used here also provides an alternative
way of obtaining a controllable and observable subsystem without
resorting to a canonical form as in [3.13] and in our opinion it
gives a clearer picture of the controllable and unobservable infinite-zeros.

We also give an interpretation for the controllability and
observability of the finite-zeros which is based on the concept'of
invariant subspaces associated with the pencil (sgE-3). For this
réason,and because invariant subspaces play a major role in Chapter Ig

a detailed study of the subject is carried out here.

A penefit of the geometric approach is that it facilitates
new.resultsin zero placement (we shall refer to zero placement
instead of pole placement) by state feedback and output feedback.

In [3.3], a necessary and sufficient condition has been given so that
the infinite-zeros can be converted into finite ones by state feedback,
without pre-specification of the resulting. finite-zeros. We show here
in a simple way that such%bondition corresponds to the controllability
of the infinite-zeros. We also obtain the stronger result that
controllability of the infinite-zeros implies the existence of a state
feedback map that assigns pre-specified complex values to those zeros.

This is simply an extension of the celebrated result by Wonham [3.17].

It is also shown here that controllability and observability
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of the infinite-zeros are necessary and sufficient conditions for :

a) - the existence of an output feedback map which converts those

Zeros into finite ones.

b) the assignment of the infinite-zeros to pre-specified

complex values via an observer.

The chapter is organized as follows. In Section 2, some
properties of invariant subspaces associated with the pencil (sE-A)
are discussed. Section 3 describes the concepts of controllability
and observability of the infinite-zeros from a geometric point of
view. In Section 4, tlie issue of zero placement by state feedback is
studied, while Section 5 deals with the assignment of the infinite-

zeros by means of an observer.

I1T.2 INVARIANT SUBSPACES

In order to obtain invariant subspaces associated with the
regular pencil (sgE-A), we decompose it into two pencils such that one
of them has only finite-zeros and the other one has infinite-zeros.

Let O(E,A) := {Ai} , 1 €k, denote the set of finite-zeros
of the pencil (sE-3a). Write

k n

det(sE-A) = ¢ T (s-A.)
i=1 +

i (3.5)

where O # ¢ € F, ki # Kj for i # j and n, is the multiplicity of Ai.
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Let o € L - G(E,RD). Then (QE-A) is invertible. Define
k -1 AL
= YE- - —1
VS .e ker| (GE-RA) E Y (3.6)
i=1 i
and
o T
wf := ker[ (0E-A) "E] (3.7)
where
k
r = 2¢y= degree of det(sE-A).
i=1*
The following theorem yields the desired decomposition. It

has been obtained by Cobb [3.3] and its proof is based on the theory
of regular pencils described by Gantmacher [3.9].

Theorem 3.1

1) VS ) wf = X, dim VS = r
2) There exists a nonsingular map M : X = X such that :
a) VS and wf are ME and MA-invariant

b) ME[US = I, MAlwf =1

c) J :

MEIU& is nilpotent.
n,
d) L : +

k
MA]VS is such that det(sI-L) = T (s-A,)
i=1
We describe now how the above map M has been obtained by

Cobb and we shall show later that it can be easily interpreted with

the help of invariant subspaces. Let
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M= (0E-B) ~ E|V
(3.8)
M, :5 (E-A)  E|W_
Define M : X » X as
M_lx , xelV
S
Mx = 1 (3.9)
(QMZ—I) 7 X € wf
and finally,
- -1
M := M(QE-3) . 7 (3.10)

Hence, if the pencil (sE-A) is pre-multiplied by M, its

representation in the basis Us @ wf is given by

sI-L 0
Mat (sME-MA) = . (3.11)
0 sJ-1

The representation (3.11) corresponds to the decomposition of

the pencil (sE-A) into the pencil (sI-L) which has only finite-zeros

and the pencil (sJ-I) characterized by infinite-zeros only [3.14]

map M

Cobb [3.4] has also shown that the subspaces VS, Wf and the

are independent of o € [ - O(E,3). Consequently, the maps

L and J are independent of & as well.

Corollary 3.1

a)

b)

ker J ker E

ker L ker A
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c) W. o ker E
£
d) V o5 ker a
s
e) rank J= rank E-r
Proof:
a) ker E = ker ME = ker MEIVS ® Wf = ker MEl@% = ker J

Il
i

b) ker A = ker MA = ker MA]VS ® Wf ker MA|VS = ker L.
The items c¢) and d) follow immediately from the proofs of
a) and b).

For the item e) just note that rank J = rank ME - r and

the result follows.. O

We are now in a position to start the study about invariant

subspaces. Let x = x + x_where x € V and x_e€W_. Let A,
S s S £ i

£ £

be an eigenvalue of L, or equivalently a finite-zero of (sE-A).

Then from (3.11)

ALI-L o X
1
0 AJ-I X
1

implies x_ = 0, since J 1is nilpotent.

£

Now let ¥ = ©® be an infinite-zero. Then

YI-L 0 } X

0 YJ-1 b4
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implies xs = 0, since YI-L is nonsingular and aJ-I is singular
[3.14].

This shows that eigenvectors associated with finite-zeros
are contained in (Vs and that eigenvectors corresponding to infinite-
zZeros are contained in Wf.

In fact, the subspace Vs is spanned by the generalized eigen-
vecters of the map L. A typical chain of k eigenvectors asso-

ciated with a finite-zero Xi is given by
v =0, 3 €k (3.12)
or equivalently by theorem 3.1
(A—XiE)vj =BV, o+ Yy=0, jek . (3.13)
Note that the subspace V spanned by Vj, J € k 1is characterized by
AV < eV
Based on the above considerations the next definition is very

natural.

Definition 3.1: A subspace V is said to be (A,E) invariant if

aV < el.
Since the class of the (A,E) invariant subspaces is closed
under addition then it possesses a supremal given by

VEl = sup{V|AV c EV} - (3.14)
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It has been shown in [3.1] that for a regular pencil VD = VS
and an algorithm is proposed for the computation of VD. Note that
for a regular pencil VD n ker E = 0.

From Theorem (3.1) we then have
LY ¢V <> mly < mMEV <> al c EV . (3.15)
s s 5 s s

It has been shown in [3.14] that to each Jordom block of
dimension £ in the map J, there corresponds an infinite-zero
of multiplicity £-1. We can therefore associate with such in-

finite-zero a chain of £ eigenvectors given by
v, =0, 1ed . (3.16)

Since W, € (%, ie @,’it follows from Theorem 3.1 and (3.16)

that

Ew, = 0 (3.17)

EW. = AW, i e{2,3,...,8} .

. !
i i-1

Observe that the subspace W spanned by W ied, is

characterized by
EW < all, WnkerE#0 (3.18)

which leads to the following.definition.
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Definition 3.2: A subspace W is said to be (E,A) invariant if

EW ¢ al and W n ker E # O.

In Chapter IV we shall define a family of subspaces closely
related to that described in the above definition. It will then
be possible to obtain wf as the limit of a sequence of subspaces.

From Theorem (3.1) we also obtain that

= { = X
wacwf<>ME:waMA.,Uf<>wacAwf . (3.19)

We can now describe the structure of the map M in Theorem 3.1.

Proposition 3.1:

M 1x = (3.20)

Proof: We have first to show that EVS & Awf = X
Suppose that Ev = Aw, for some v € US and w € wf. Then by

Theorem 3.1, it follows that

which is not possible since VS n Wf = 0.

By Coreollary 3.1 ¢,d we have that

dim EV = dim V and dim alW_ = dim W
s s £ £

and thus EV o all_ = X
s £
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Now let
X = Vs & wf (3.21)
and let Ex and Ax be represented in the basis
X=©tV & aW . (3.22)
s £

By (3.15) and (3.16), it follows that in the above bases

the maps E and A admit the following representations.

Mat E = Mat A = (3.23)

The expression (3.20) follows from (3.22).
g
Remark 3.1: We could have obtained (3.20) directly from Theorem

3.1. Just note that

-1
¥ <> M x=Ex, xel

B
»
I

and

E _

-1
x <M x=2ax, xeW_.

However, the purpose of Proposition 3.1 has been to show
that there is no need for the complex number <« used in the
definition of M (see (3.8 - 10)). M 1is just the inverse of a map

whose columns span EVS and AM@ (see (3.22)).
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Let

Q0 : X~ Vs be the projection on US along wf

and (3.24)

Q. - X > Wf be the projection on Wf along Us.
Consider the free-system

Ex = AX . (3.25)

The pre-multiplication of (3.25) by QSM and by QfM and the

use of Theorem 3.1la results in the following decomposition

x = Lx (3.26)
s s
and
fo = xf (3.27)
with
xS = st and xf = Qfx.

The dynamical interpretation for a initial condition }S(O_) €
Ve Us' where AV c EV is obvious : it implies x(t) € V, t > 0.

The "dynamical" interpretation for a initial condition
£0

xf(O_)== X e W c wf, where JW < V is as follows. Consider the equation

Jx_ = x_ + 8Jx . (3.28)

It has been shown in [ 3.13] that the solution for (3.28) is

the distribution
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x.=- 7 &Mt (3.29)

where g is the index of nilpotency of J(_Jq = 0).

From (3.29), it follows that if Xco e [ with Jw c W
then X < W, i.e. the distribution also lies in W.

Note from (3.26) and (3.27) that the free-response of (3.25)
subject to an arbitrary initial condition x(0) = xS(O_) + xf(o'),

}S(O ) € ‘g, gf(O ) € Wf, is given by

12
i

X ot Xg , (3.30)

with
L

+
x :telf > e

t - .
X KS(O ) and §f given by (3.29).

The solution (3.30) represents .the distribution mentioned in
the introduction of this chapter.

Cobb [ 3.5] has obtained some very interesting results concerning
the solution (3.29) as the limit solution of a singularly perturbed

system
J x_=X ’ xfO given (3.31)

where Jn -+ J, for integer n and n - ®.

He proves that the limiting solution of (3.31) is unique and
is given by (3.29).
This section is closed with a discussion about the eigensubspaces

which appear in (3.6). It can be easily shown that
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| it n,
-1 1 i
ker| (qE-A) E - — I = ker(AiE—A)

oA,
1

holds for ni = 1;
Since VS is independent of o, the above fact makes one wonder

whether the equality remains for ni > 1, Unfortunately this is not

true in general. The next proposition gives a sufficient condition

for the eguality to hold with ng > 1.

Proposition 3.2: If AE = EA then

n

-1 1 i n,
ker| (aE-A) E - I = ker(AE-A) -~ , n. > 1.
i i
a-A,
- i
Proof:
n,
n. -1 i
ker (A.E-A) ' = ker| (aE-A) ((GE-A) E - 1) .
i
o=A,
i
It is clear that if (0E-A) and ((iE—A)—lE - L ) commute,
o-A,
i

then the desired equality holds. It can be shown that if AE = EA,
then the above maps commute.
a
The above proposition shows that although VS does not depend
onae€ L~ g(E,A), it has in general, to be computed with the help of
o, which is rather awkward. The same thing holds for wf. |
We have already identified the structure of the map M,

eliminating the need of da for its computation. In Chapter IV
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we shall do the same for the subspaces VS and Wf, by describing
them as limits of suitable algorithms. Once they are computed,
the maps L and J can be determined and the finite-zeros can be
computed as eigenvalues of L. This avoids the computation of
the finite-zeros as roots of det(sgE-A).

A final remark should be made regarding the regularity

of the pencil (sE-3). It is clear that if (sE-A) is regular then

ker E n ker A =0 (3.32)
and

InE + ImA = X . (3.33)

A necessary and sufficient condition for the .regularity of

the pencil {(sE-A) will be given in Chapter IV.

III.3 A GEOMETRIC STUDY OF CONTROLLABILITY AND OBSERVABILITY

Let M be a map as described in Proposition 3.1 (which is
the same as the one in Theorem 3.1). Also consider Q ¢ X~ VS
and Qf : X - wf, the maps described in (3.24).

Pre-multiplying (3.1) by QSM and QfM, it follows from Theorem

3.1 that the system (3.1) is decomposed as

; =Lx +Bu (3.34)
s s

and

fo =x_+B (3.35)
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%
_ S
y = [cs c.l i (3.36)
£

where

Xs = st and xf é Qfx

B, = QMB B, = QMB

c, = c|v, cp = c|wf .

From (3.34-6) it follows that

G(s) = C(sME - MA)—IMB = R(s) + D(s)
wherxe

o1
R(s) = C (sI-L) "B
S S

and

D(s) = C_(sJ-1) 'B

s) = C.(s £

Thus, as pointed out in [3.13], the transfer matrix G(s)
is decomposed into a sum of a strictly proper matrix R(s) and a poly-
nomial matrix D(s).

If the control U belongs to the class of the g-1 differentiable
functions, where g is the index of nilpotency of J, then the unique
solution of (3.34) in the class of functions is given by [3.2]

g i
X (k) ==- ) IB_W(t) , £>0 . . (3.37)
-f , £ - -

i=0
It is also shown in [3.2, 3.4] that the solution of (3.1) is

given by
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X(t) = x (&) + x_(t)
- -s -f

with §f(t) given by (3.37) and fé(t) given by

X (t) = et x_(07) + ft L (E8)
0

X Bsg(e)da . (3.38)

It can be easily seen from (3.37) and (3.38) that the

reachable subspaces in Vs and wf are, respectively

~
Il

<L|B >
S

and

'<J|Bf> .

It is shown next that we may have a situation where Rf c wf
and yet all the infinite-zeros are controllable. Henceforth control-

ability will mean modal controllability.

II1.3.1 Infinite-Zeros Controllability

We shall show that controllability is equivalent to reach-
ability of certain quotient spaces. For this let Wi c Wf be any

subspace such that
w1 ® ker J n ImJ = ker J . (3.39)

Note that Wl provides only simple eigenvectors to the map

J, in the sense that if {wi}, iet, t:= dim‘wl, is a basis for
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wl, then Jwi =0, i € t, and there are no generalized eigenvectors

starting from wi, i € t. In other words, the subspace W1 is asso-

ciated with all the simple elementary divisors of J.

Let W = W'f/w1 and let P : Wf + W be the canonical projection.

Let J be the unique map induced in (' such that JP = PJ. define

o}
I

Bf(mod Wl) s U > W

and (3.40)

9]
1l

Cf(mod Wl) : W cwf/cw1 .

Matrix representations for 3, ﬁf and Ef can be readily

obtained. For this, write

wf = w1 ) w2
Bf =B n w1® 82 (3.41)
cwf = cw1 ® V2

where wz, 52 and V2 are any subspaces which yield a direct sum, res-
pectively, for Wf, Bf and wa.

In the bases provided by the subspaces in (3.41) it follows
that -

12 11 12
Mat J = ' Mat Bf =

11 12|
Mat C_ = . (3.42)




167

In the above representation

Note from (3.39) that le 0c w1 and there is a subspace

W _. The last statement can be

ey ~ A w Fal
W_. such that sz c W2 and ) ) W2 c

2

verified quickly by thinking of the eigenvector chains of J and

(3.39). Thus by Proposition 0.5 in [3.16 ], it follows that the

elementary divisors of lel' with those of J in W, together, give .

Ql

all the elementary divisors of J. Hence is a map which possesses

all the elementary divisors of order greater than one of J.
Let W2 be a subspace as described above. Then, by using
as basis W1 ® Wz, it follows that in this basis the subsystem (3.35)

can be represented as

xf1 = _Bflu (3.43)

and

J22xf2 = xf2 + szu (3.44)

N

W W, . i
where xf1 € n and ng W, Here J22 and sz are representations

of J and Bf' respectively.

Note that the subsystem (3.43) is "static", in the sense

that at each instant t, X 1(t) is a linear combination of the control

£
variables g(t). So, all the dynamics are concentrated in the sub-
system (3.44).

Consider the system determined by the pair (3,%}. Then this

system is reachable if and only if
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<3J §f>=1'3f+3§f SRS §f=w . (3.45)
Test 4.2 in [3.13] describes a necessary and sufficient

condition for the infinite-zeros to be observable. The dual

of this test gives a necessary and sufficient condition Ffor

controllability of the infinite-zeros. The test is described

in the following.

Test 3.1: Bpply nonsingular transformations on the right of the

pencil (sE-A B) so as to bring it to the form
(sE,-A A B)

with E, of full column rank and A = [Al Az} . Then the system

is controllable at infinity if and only if
(E A B) (3.46)

has full row rank, or ImE1 + ImA2 + B = X.

We are now in a position to show the link between (3.45)

and (3.46).

W if and only if the system

Theorem 3.2: <3|Bf>

4l
wlie
Il
B
+
los]
[

is controllable (at infinity).

Proof: It is well known [3.16] that <3|§f> = if and only if
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Im(AI-J) + éf =0 , el | (3.47)
Since J is nilpotent it is clear that (3.47) holds for

A # 0. Therefore
<3|§f> =W <=mmI+B_=W . (3.48)

Applying test 3;1 to the pencil (sa—I Ef) and taking J
in Jordan canonical form it is readily seen that the condition
(3.46) reduces to (3.48).
d
Based on the result of Theorem 3.2, a procedure can be given
to obtain the controllable subsystem of @ system described by (3.35).

Procedvye 3.1:

1. Choose any subspace W1 according to (3.39) and choose

any subspace WZ such that Wl o W2 = wf .

2. Compute the subsystem induced in Wz(see (3.42)).

3. Compute the least J22—invariant subspace Wc which contains

. - < s . .
822, i.e., wc J22|822 Taking Wc as part of a basis for

Wz, the following representation is then obtained.

A

3
T 1o , 1
Mat J22 = Mat B22 = (3.49)

22
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so that the subsystem

>

~ =/'\+A .
J11 X1 xl‘ Blu (3.50)

is controllable.

Remark 3.2

1) According to (3.39) there are many subspaces wl which can
complement ker J n ImJ. Therefore, controllability of the
infinite-zeros is associated with reachability of any quotient space

defined according to the choice of Wl.

2) Procedure 3.1 described above is not based on the Jordan
canonical form as in [3.13] and it is an alternative way to obtain

a controllable subsystem.

3) In general, the subspace Wc = <J22l322> does not decompose

w2, i.e. the union of the elementary divisors of J11 and J22 in (3.49)

does not yield the set of the elementary divisors of J22. Consedquently,

although J

22 has only elementary divisors of order > 2, it is possible
that 311 has some simple elementary divisors {order one). This
follows from Lemma 1 in [3. 6]. If this is the case, the controllable

subsystem (3.50) will have some static variables which are induced

by the process of extraction of the uncontrollable subsystem.
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The ensuing theorem provides a test for controllability
of the infinite-zeros in terms of the maps A, E and B.
Theorem 3.3: The infinite-zeros of system (3.1) are controllable

if and only if
ImE + Aker E + B =X (3.51)

Proof: Let wl be a subspace as in (3.39) and consider the canonical
projection P : W - W/W1 =W. Let J and ﬁf be the maps induced by
J and Bf in W (see (3.40)).

A

Consider a subspace W2 c wf such that wl ] W2 = wf and

J@Z c @2. The representations for J and gf are given by J22 and

A

B in (3.42). Note that since JW. c wz, then J

29 5 = 0 in (3.42).

12

The space X is now decomposed as
X=V oW oW ) (3.52)

Let M be a map as in Theorem 3.1. Hence, since
ImE = EX and Wl Cc kexr J = ker E < wf, it follows that pre-multiplication

of (3.51) by M results in
A
ME(VS e'wz) + MA ker E + MB.

From Theorem 3.1, (3.39) and (3.42) the above expression is

equal to

VS + ImJ + ([Jt)1 ® ker J n ImJ) + ImB . (3.53)

22 22
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But ker J n ImJ = ker J22 and since J22 is nilpotent it

follows that ker J22 c Im J22.

From (3.52), it follows that (3.53) can be rewritten as

+ Im B,..) .

Vo e, e (ImJ,, 22

Hence

M(ImE + &2 ker E + B) = X

A

if and only if Im J22 + Im B22 =.w2, or by (3.48) if and only if

the infinite-zeros are controllable.

;
Remark 3.3:
1) Corocllary 4.1 of Chapter IV shows that the regular pencil
(sE-A) has no static variables if and only if A ker E < ImE.
In this case condition (3.51) reduces to
mE + B = X = <3|B> @\/S » (3.54)

which is the condition given by Rosenbrock [3.11] and cobb [3.3].
This shows that their condition is correct if no static

variables are present.

2) From (3.51) and Theorem (3.1) it follows that
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ImJ +kerJ+Bf=W_f . (3.55)
Thus, conditions (3.48), (3.51) and (3.55) are equivalent
necessary and sufficient conditions for controllability of the infinite-

Zeros.

It is possible to give a characterization of the reachable
subspace in terms of (E,A) invariant subspaces for the case Wf = w,
i.e. the map J in (3.35) has all elementary divisors of order

greater than one (no static variables).

Proposition 3.3: If the map J has all elementary divisors of order

greater than one, then the reachable subspace associated with the

controllable infinite—-zeros is the least subspace Wc = Wf such that
EW < all and Al + EV - B .
c c o] s

Proof: By hypothesis, the subspace Wl = 0 in procedure 3.1. Hence,
by (3.45) the reachable subspace Wc is the least J-invariant subspace

Wc which contain Bf, i.e.

Jv < W (3.56)
and

Wc > Qf MB . (3.57)

But (3.56) is equivalent to Ewc c AWC and (3.57) implies by

Theorem 3.1

—_— —1 —
QfMBCQfMAWC<>BC(QfM) QfMAWc—AWC+M v .
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-1
But by (3.20) M VS = EVS and the result follows.

a
ITI.3.2 Infinite-Zexos Qbservability:
Consider the system
X_ = + 0 .
fo X 6J§f£ ) (3.58)
y =C_ X .

£ £

Write Wf = wl & w2 where wl is as in (3.39) and w2 is such
that sz c w2. Then in the basis wl o @2 the above system can be

represented as

0 o % x.. ) 0
| £1 N ]
0 Ty U %g X0 § T,y Xep(0)
X
£1
y = [Cf1 Cf2] 3
£2

That is, the variables x

=0 = .
Hence xfl and y Cf2 xf2 £1

are nondynamic (there are no impulsive motions in wl) and the infinite-

zero observability is then related to # and to the pair (Cfg)&) induced

in W.

The system (3.58) is said to be observable if there are

no impulsive motions in W which are simultaneously in ker Cfi
This is a simple extension of the observability of finite-zeros.

Theorem 3.4: <ker Cf43> = 0 if and only if the system (3.58) is

observable (at infinity).
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Proof: Identical to the proof of Theorem 3.2, on considering the
pair (37, Cp,) and test (4.2) in [3.13]
u
Theorem 3.3 leads to a procedure to obtain an observable

system from (3.58).

Procedure 3.2: The first two steps are identical to those in Procedure

3.1. The third one can be described as follows : compute the

largest J22—1nvar1ant subspace Wu contained in ker Cﬁz, Wu =
= < > . . ’ t .
ker Q€2|J22 By taking wu as part of a basis for W2, the

following representation is then obtained

~

J

11 Jyg
Mat J22 = o 3
22
= Lo c.. 1
Mat C., = €50

so that the subsystem

3 T
R =2, +87,, X,(0)

(S

22

~N
Y = Cyy %y

is observable and the subsystem

=P
W

1 %= R, +63,, %,(0) | (3.59)

is unobservable.

It should be noted that the unobservable impulsive motions
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in (3.58) will in general consists of delta functionals and their
derivatives. This is emphasized here because the definition of
unocbservable impulsive motions in4[3.13] seems to indicate that they
consist only of delta functionals. This is so because the
definition in [3.13] is based on a Jordan canonical form which does

not occur here,

The following thegrem shoes how observability of the
infinite-zeros can be tested directly from the maps E,A and C.
Its proof follows from Theorem 3.4 and the result is a simple dual-
ization of (3.51).
Theorem 3.5: The infinite-zeros of the system (3.1) are observable

if and only if

ker E n A ' (ImE) n ker C = 0 (3.60)
a

Remark 3.4: Proposition 4.2 in Chapter IV shows that the subspace
ker E n A-l(Im E) is the subspace of ker E responsible for the
generation of the infinite-zeros in the pencil (sE-3). It is also
shown in Corollary 4.2 of Chapter IV that a regular pencil (sE-3) -
has no infinite;zeros if and only if ker E n A—l(lmE) = 0.

When the regular pencil has no static valuables, i.e.

A ker E ¢ ImE, then (3.60) reduces to
ker E nker ¢ =0 . ' (3.61)

The dual of Proposition 3.3 gives the unobservable subspace
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in terms of an (E,A) invariant subspace.

Proposition 3.4: If the map J has all elementary divisors of

order greater than one, then the unobservable subspace associated
with those unobservable infinite-zeros is the largest subspace

W <cw such that
u £

EW < al and W c ker C.
u u u

Proof: Analogous to the proof of Proposition 3.3, by using Theorem 3.4.
u

It should be emphasized that only under the hypothesis of
Proposition 3.3 (3.4) there is a unique correspondence between
controllable (unobservable) infinite-zeros and a reachable (unobser-
vable) subspace. If J has at least one simple elementary divisor,
then there are many reachable (unobservable) subspaces assoclated
with those controllable (unobservable) infinite-zeros.

To conclude this section, a characterization in terms of
(A,E) invariant subspaces is given for the reachable and unobservable
" subspaces relative to the system (3.34).

Proposition 3.5:

a) The reachable subspace of the system (3.34) is the least

subspace Vc c VS such that

al < EV anda EV + alW_o B
c c c £

b) The unobservable subspace of the system (3.34) is the largest
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subspace Vu = Vs such that
al < EV and V < ker C
u u u

Proof: Analogous to the proof of Proposition 3.3.

a

Note that when Vs =X, wf = 0 and E = I, then a) and b)
simply give the reachable and unobservable subspaces for the

system x = Ax + Bu; Y = CX.

e el . . - ,

III.4 ZERO ASSIGNMENT BY STATE FEEDBACK

This section will deal with the issue of zero placement by
state feedback. It is a tradition in the control literature to
term pole placement instead of zero placement. The reason for this
is that when the systems (3.34) and.(3.35) are controllable then the
Zero structure of the pencils (sI-L) and (sJ-I) is isomorphic to
the pole structure of R(s) = Cs(sI—L)-lBs and D(s) = Cf(sJ—I)_le,
respectively [3.12, 3.15] .  Thus the matrix D(s) is polynomial and
has all its poles at infinity.

We prefer the term "zero placement' , because we shall be
dealing all the time with the pencil (sE - (A+BF)) resulting from a

state feedback map F and it is the zero structure of such trans-

formed pencil which determines the dynamical response of the system

EQ . = (A+BF) x
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The first theorem of this section is concerned with a
necessary and sufficient condition to bring all the infinite-zeros
to finite positions of the complex plane without pre-specification
of those positions. Cobb [3.3] has shown that such a condition
is given by (3.55) but he has not recognized that it corresponds to
the contreollability of the infinite-zeros. Our proof parallels his
proof but it contains some modifications to take into account the
concept of controllability developed here and in [3;13].

Consider the system (3.35) and the state feedback law u = Fx_.
The pencil associated with the closed-lcoop system is then given by
(SJ-I-BfF) .

As mentioned in the introduction of this chapter, the number
of zeros of the regular pencil (sE-A) is h = rank E. Since the
pencil (sI-L) in (3.11) has r finite-zeros, it follows that the
pencil (sJ-I) has Y := h-r infinite-zeros. Therefore, the maximum
degree of det(sJ—I—BfF), ¥F : wf -+ U is given by Y = rank J(see
Corollary 3.le).

Let wl be a subspace as in (3.39), t := dim wl and let

W = W/[U1 be the associated quotient space. Let J and §f be the

induced maps by J and Bf in W, Clearly rank J

Y.
Theorem 3.6: There exists a map F : wf - U such that deg(sJ-I-BfF) =y

if and only if ImJ + Bf =l

Proof: We restrict ourselves to an example, where dim J = 5. The
general case only causes complication of notation and. does not yield

more insight.

Recall that all elementary divisors of J are greater than one.
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2
Thus, in our example they must be 53 and s .

. Choose

Let WQ be any subspace such that Wl & W2 = Wf

a basis {e e,., e

117 12 e22} for wz such that in this basis

137 ©21’
J22 = mat J displays two Jordan blocks, one of dimension three and

the other one of dimension two.

Let F : W > U be an arbitrary map and in the above basis write

B.F) = + F = i j .
Mat(I+BF) = I + B,y Fy=h,  , 1,3<5

Note that

Im J22 = span{ell, e12. e21}

ker J,, = span{ell, e21}

Let T := span{e13, e22} . In fact T is the span of two

2 _
any cyclic subspaces associated with 53 and s of J [3.9, vol I,

page 200].
Hence
[hyy  Bypys hyy o By, by
Boy Byp Pygms By, Byg
4B, 0F 800, = | Byy By Piz By Bys :
by By, By By, BygTs
| P51 Pso Bsy3  Pgg Psg |
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It can be seen by Laplace expansion that in order for
deg det(I+B22F2—sJ22) = rank J22 = rank J = Y, the following con-

dition must hold

h h

get| 1 3 o | (3.62)
By Bgy
Let Q. be the projection on T along Im J,5- Then (3.62)
is equivalent to the requiremeht that the map
Q. (I +B,, F2)|ker T, (3.63)
is invertible. Now
+ . = .
Q, (I B22F2)|ker . Qthzelker 3,5 (3.64)
i J_ ..
since Im J22 > ker 22
Let F2 = F2 ker J22. A map F2 exists such that Qt B22 F2

is invertible if and only 1if

In Q, B,, = Q£ ImB.. =T (3.65)

22 22

which is equivalent to

Im J22 + Im 322 = w2 . (3.66)

From (3.66) it follows that
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If (3.66) holds, choose a suitable F2 which renders (3.63)
invertible. From the representation (3.42) define F according to

the partitioning of Mat Bf, i.e.

Note that FIW1 = 0. Hence

)
I F_—-
o BaFreIy,
Mat(I+BfF—sJ) =
0 I+B22F2—sJ22
and
+ — =
deg det(I B.F sJ) Y 0
Remark 3.5: Note that expression (3.65) is equivalent to the require-

ment that the rows of B22 corresponding to the  last position of each
Jordan block are linearly independent. This is simply the controll-
ability test based on the Jordan form described in [3.13].

The next theorem shows that controllability does not only
imply that the infinite—zeros can be moved as stated in Theorem 3.6.
Controllability of the infinite-zeros is in fact equivalent to the
assignment of those zeros to pre-specified values in the complex

plane by a suitable state feedback map.

Let-./‘-.f =_{Kf } , i €Y be an arbitrary symmetric set of
i .
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Y complex numbers,
Theorem 3.7: <3|§f> = W if and only if there exists a map

F : Wf - U suchvthat the set of roots of det(sJ—I—BfF) = 0 is Af.

Proof:
=>) Let Wl be again a subspace as in (3.39) and consider any
subspace W2 such that Wl & W2 = Wf. Let J22 and By, be representations
J B i . . i < > = ]
of J and Bf, accoxrding to (3.42) Since J22lIm B22 Wz, the
basis constructed by Wonham [3.16] can be used so that J22 and B,
are represented as
d
(3 ) S T
11 P
- b .. .b !
J22 22 2p
. . .
Mat J22 . Mat 322 . '822
L
m . m . .
J b
. U 129 [ pp '
(3.67)

th
where J,i is ecyclic with minimal polynomial equal to ai, the i
i

invariant polynomial of dJ. Since J is nilpotent, (i.e. has all

Z,

eigenvalues = 0) it follows that ai =3 l, for some ﬂi, with

It is also shown in [3.16] that the pair (Jif'bii) is con-

~
trollable. Thus we may assume that Jii and bi,are represented as
i
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0 1 0. . 0 0
O O 1 « e o O O
~
J.. = - . L - . . - b.. = .
11 11
o . .... 0 1 )
L 0 . ... .0) 1
L. xL. £ x1
i1 1 1

- The submatrix 522 plays no role in the present analysis.

Define F : Wf -l as

o]
1l

(3.69)

where the partitioning follows that one of B_. in (3.42) and F_ is

£ 2
given by
[ fT 3
1
T
£
F2 = (3.70)
fT
p
d
\ J
with
T T _
fi = Efil, fi2""'fi£i 1] »ie€p

From (3.42) and (3.69), it follows that

T B F89,,

Mat(I+BfF-SJ) = . (3.71)

0 I+B_ _F_-8J

22 2 22
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From (3.67), (3.68) and (3.70) it follows that I + B22 F2 -

- sJ,., is upper triangular with matrices Pi(s),ieg in its diagonal

22
given by
(1 -s 0..0 )
0 1 -s . 0
B - . - e e . )
i(,s) iep .
0 . «. . -8
CEy o B fie J

i £.xE,
iR iR

It can be readily seen that the expansion by the last row

of Pi(s) yields

zi'l 2i_2+ +f
p;(s) := det P (s) = £48 T+ £ 8 1£i
whence
b
det(I+BfF—SJ) = 121 pi(s) .

It is clear that the zexros of pi(s) can be assigned to Af
T
by a suitable choice of the vector fi.
<=) Assume that <3|Bf> is a proper subspace of v, This implies
that Im J + Bf‘is a proper subspace of w, which in turn imply by
Theorem 3.6 that there is no F such that deg det(sJ—I—BfF) =Y,

which contradicts the hypothesis.,
O

N
Remark 3.6: As mentioned in Section 2, to each matrix J'i there
—_— i

corresponds an infinite-zero of order £ -1. The above theorem
i
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thus shows that each infinite-zero is converted into ﬂi-l finite--
zeros, which are the roots of pi(s).

ﬁe describe now a procedure of zero placement including the
assignment of the finite and infinite-zeros. Such a procedure is
similar to the one in [3.3], but we include the result of Theorem
3.7 and some new interpretations.

”~ ”~
Let u = FX + v where v is an external variable and F 1is

defined by
FIV, =0 (3.72)
and
FlU_=F
F| c
where F 1is given by Theorem 3.7.
It follows that
~ sI-L -BSF '
Mat M(sSE-A-BF) = . (3.73)
0 sJ-I-B _F
The expression (3.73) shows that the pencil has now
h = rank E finite-zeros which are given by O(E,A) U Af.
Let Af be such that
O(E,A) N Af= 0. (3.74)
Let o€ I - 0(E,A) U Af and define
~ 9 -1 R
V= e ker|(cE-A-BF) E - I (3.75)
i=1 op—kf
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§
where mi is the multiplicity of Af € Af, z m, =Y = rank E-x.
i . *
i=1
From (3.72), it follows that
(a+BF)V_ = aV_ < BV (3.76)
s s s

~
S0 VS is also ((A+BF),E) invariant and by Theorem 5 in [3.3] we

have
k 1 B3
@& ker|(QE-A-BF) E - 1 =V . (3.77)
i=1 a-X. s
1
From (3.75) and (3.77) it follows that
V nV=0
S .
with
dim(V_ e ) = rank E . (3.78)

From (3.77) and by the fact that the pencil (3.73) is regular

it follows that the space X is decomposed as

~

X = US &V ®kerE . (3.78a)

Define the new map M : X = X from its inverse
EX r o xel_ o v

R ~
(A+BF)x , x € ker E

From (3.76) and (3.77) it is clear that

Ma+BE) |V = malV = L.
S S
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Thus the closed-loop system

AN . ~N ~ ~
MEx = M(A+BF)x + MBv

can be decomposed as

y ( 3\ ( \
x1 L 0 0 x1 B1

x2 = 10 L 0 x2 + B2 v (3.79)
0 0 0] I x3 L B3 ]

~

e |/, Xy € ker E

L := ﬁ(A+B§)|O o(@) = A
~ B2 ~
B, = Q M8 = (I-)MB
B3

where QS is the projection on VS along V@ ker E.
It has been shown in [3.11, 3.12] that a finite-zero

Ai € 0(E,A) is controllable if and only if
Im(AiE—A) +B =X . (3.80)

Since

Im(AiE—ArBF) + B = Im(AiE—A) + B, ¥F : X > U

it follows that state feedback does not alter the controllability
property.

It can now be easily shown that the set O(E,A), which
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coincides with the set of eigenvalues of L, is controllable if and

only if

Im(AiI—L) + B1 = Us _ ‘ (3.81)

or equivalently

<wL|B>=V_ .

If (3.81) holds define a map F : X » U

~
FIV @ ker E =0

and (3.82)

FIVS = 1

where ;1 is such that 0(L+BIE1) = As and As is a set of pre-specified
symmetric complex numbers.

The advantage of having (3.74) satisfied is that the subspace
VS and the map L are preserved and then a suitable map ; , as in
(3.82), can be defined so as not to alter the zeros already assigned

(the eigenvalues of L) and so as to assign the eigenvalues of

+ h .
L B1 Fl to As

The following assignment procedure can be established:

Procedure 3.3:

1) Compute the decomposition of Theorem 3.1 and obtain the systems
(3.34) and (3.35). (In Chapter IV we suggest an alternative way to

obtain the same decomposition).



190

2) Assign the zeros to the system (3.35) according to Theorem 3.7.

3) Compute M  and Bl. Assign the zeros to the system

x = Lx + B;‘-U..

We proceed with an interesting and amusing study of the form
of closed-loop eigenvalues in systems described by (3.35). We shall
see that such a form reflects once more the symmetry between systems
described by (3.34) and (3.35) which had already shown up through the

concepts of (A,E) and (E,A) invariant subspaces.

Suppose that a feedback map F : wf -+ U has been defined according

tg. Theorem 3.7 and that A # 0 is- a finite-zero of multiplicity one
obtained by means of this feedback map.
Let w be the closed-loop eigenvector correspondingﬁthe

finite-zero A. Then it satisfies

(r + B F)w = Adw

which implies

w € ()xJ—I)“1 Bf

or

g-1 _g-1
w€3f+>\JBf+“.+?\ J Bf. (3.83)

Since the map F in Theorem 3.7 has been chosen so that

the pencil (SJ—I—BfF) is regular, it follows w £ ker J = ker E
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and W1
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Consider a single-input system

J and Ef are the maps induced by J and bf in @ = Wf/w1
is a subspace as in (3.39).

If the system is controllable, then by Theorem 3.2 <3|Ef> =

and thus J is cyclic with Sf a cyclic generator. Hence J and

bf admit the following representations

since

[0 1 0 . . 0 ) (0 )
0 0 1 0 0
Mat J = | . . . . . . Mat5f= 0
0 . . . 1 0
Lo o o 0o 0o 0j . SN
.o (3.84)
J is nilpotent. Here k = n-r-t, with t = dim Wl.
From (3.83) and (3.84)
fkk—l\
we Im- and w¢ ker E (3.85)
A
\ 1 J

For purpase of illustration suppose that dim L = k in (3.34)



192
and that the pair (L, bs) is controllable. Take L 1n companion

form. Then any closed-loop eigenvector v with associated closed-

loop eigenvalue O # 0 of multiplicity one is such that

v € Iml| * and v ¢ ker A . (3.86)

The symmetry between (3.85) and (3.86) is obvious.

We now turn our attention for an extension of a result in
[3.10] concerning simultaneoﬁs zero (in our terminology) and
eigenvector assignment by state feedback.

Proposition 3.6: Consider a controllable generalized linear system

given by (3.1). - Let {Ai} » i€h, h=rank E, be any set of

(finite) h distinct complex numbers, Let {vi}, ie E, be
*

v, if
J

*
A= Aj. Let V:= span {Vi} be such that VV n kex E = 0. Then

nonzero vectorxs such that vi e X if Ai is real and vi

i
there exists a map F : X > U such that ,(A+BF)Vi = Ai Evi and the

pencil (sE-A-BF) is regular if and only if

i) the vi, 1 € h, are linearly independent



193

Proof: Conditions i) and ii) are the generalizations of Proposition 1
in {3.10] obtained by replacing (Ai I-3) by (Ki E-3a). The require-
ment V n ker E = 0 follows from the regularity of any pencil. Modal
controllability is necessary and sufficient for the assignment of
all zeros (finite and infinite).
As in [3.107] associate with each number X € [ the matrix
1
Py, = [Ae - a!-B] .
From (3.80). it follows that rank Py = n for any finite A.

Let .

Q =
A
RK

be a compatible partitioned matrix whose columns span ker PA'

It ecan be shown that rank B = m implies that the columnsof NK

are linearly independent.

=>) From

(A+BF)v. = A, Ev. , ie€hn {3.87)
1 1 R
it follows that

LA, E—A)E—B] =0
1

Since the columns of QA form a basis for ker PA , it follows

1l 1



194 o

that € an N. = X
at vy = span &y A, -

i i
From (3.87) and the fact that the pencil (sE-A-BF) is regular
it follows that

(GQE-A-BF) ‘Ev, = —— v. , ieh (3.88)

T e, *
pR
where o # A, . Since (o0-A.) # (a-A.) whenever A, # A., (3.88)
i 1 J 1 J

implies that the Vi, ie h, must be linearly independent.

<=) Since v, € X(A,) = span N i € h, then the v, can be
i i Ai' - i

expressed as Vi = NA ki for some ki which is unique, Hence
T i

(AiE—A)NA. k., - B Rk.ki =0
i i
and define Fy ¢ V> U by
FO vl = —RA ki r ieh

It remains to define a suitable extension to FO such
that the pencil (sE-A-BF) is regular.
Since dimV = h, dim ker E = n-h and V n ker E = 0, it follows

that

VeokereE =X . (3.89)

Also note that
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EV = E(V @ ker E) = EX = Im E.

Let x € X be represented in (3.89) and consider any extension

E : X > U to Fo. Let Ex and (A+BF)x be represented in the basis

BV @ X (3.90)

~

where X 1is any subspace of dimension n-h which complements Im E.

In the basis (3.89) and (3.90) the maps E and A+BF can

be represented as

I 0 o A A
Mat E = Mat A+BF = | LI 12
0 0 0 A
22
where dim I = h and O(All) = {Ai} , i eh.

It is clear that the pencil (sSE-A-BF) is regular if and only

if A22 is nonsingular.

Consider Qﬁ, the natural projection on X along EV = Im E.
Then A22 nonsingular is equivalent to the nonsingularity of

Qg (A+BF) Jkex E . (3.91)

Now

A+~ = A k + A F
Qp ( BF) |ker E = Q4 Alker E + 0 BF,

with F1 = §|ker E.

There exists a map F : ker E - U such that (3.91) is
1
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nonsingular if and only if the zero eigenvalues of Qﬁ Alker E

are controllable by Q% B, i.e.
Qﬁ(A ker E + B) = X . (3.92)

Since the system (3.1) has no uncontrollable infinite-zeros,

ir follows from Theorem 3.3 that
ImE + A ker E + B =X

which then implies (3.92). Therefore, an appropriate F, can be

1
chosen so as to make (3.91) nonsingular, Finally define

F: X=>U by

FIU,=FO

and

Fiker E = F_ .

The definition of a real map F in case conjugate complex
numbers are assigned, can be handled in the same way as that in
[3.103 . a

The above proposition constitutes an alternative way of
zero assignement to that one described in Procedure 3.3. All
the zeros are assigned together with their eigenvectors and no

decomposition or special basis (as in Theorem 3.7) are necessary.
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ITI.5 ZERO ASSIGNMENT VIA OBSERVERS

This section is concerned with zero assignment via an

observer in systems described by

(]
b
If
b
+
w
o

(3.93)

We start the section by showing an expected result, namely,
that the infinite-zeros can be brought to finite-positions of the
complex plane by output feedback if and only if they are controll-

able and observable through Ef.

Theorem 3.8: There exists a map K : ¥ - U such that deg

det(sJ—I—BfKCf) =Y only if the system (3.93) is controllable

and the pair (C,,,J,,) is cbservable.

Proof: The proof follows the same lines as those of Theorem 3.6

up to the expression (3.64) where now it is required that the map

0, By, K, C22]ker 35, (3.94)

is invertible for some K2, where 322 and C22 are as in (3.42).

. Since the pairs (J2 ; B_.) and (C22, ) are controllable and

2’ 22 T22

observable, respectively, then

i) Im Qt B

9 = T (as in 3.65)), which is the controllability

condition and

ii) ker C22 n ker J22 = 0
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Qr

ker Ef nker J =0

which is an observability condition derived from Theorem 3.4.
On the other hand, if i) and ii) above hold then the pairs

(Q, Qt B22) and (C22|ker J22, 0) are controllablg'and observable at

the mode A = 0. It then follows by Lemma 3 in [3.7] that there exists
K, so that (3.94) is nonsingular and hence define K : ¥ + U by

0 0

0 K2

where the partitioning accords with that one of B¢ ard Cf in (3.42).
Thus
c -
T B
Mat (I+B. K Cf—sJ) =
0 Byy Ky G789y,
and the result follows. 0

*Remark 3.7 (see page 204).
In the following we shall construct an observer for the

system (3.93). We shall show that the new system formed by the
combination of (3.93) and the observer has zeros freely assignable
if and only if (3.93) is controllable and observable.

Consider the following observer
Jz = Nz - Ky_ + B_u (3.95)
with N := I + KC_, for some K : ¥ - 7 .

£

Consider a control law
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u = Fz (3.96)

for some F : Z > U , and define the error between Xe and z by

e =X; -2z . (3.97)

, From (3.93) and (3.95-7), it follows that
fo = (I+BfF)xf - BfFe (3.98)
and

Je = (I + ch)e (3.99)

or in matrix form

(3.100)

It is clear that the zeros of (3.100) can be assigned by
suitable choice of F and K if and only if the system (3.93) is
controllable and cbservable. The zero assignment to (3.99)
can be accomplished by a dual procedure to the one shown in the
proof of Theorem 3.7.

Note that observability is equivalent to the -fact that the
observer (3.95) can be constructed with pre-specified finite-zeros.

Assume that the system (3.93) is observable and let the

zeros associated with (3.99) be assigned to L Decompose (3.99)

as in Theorem 3.1. Hence
e, = Le e1 (3.101)
e, = 0 r e, € ker E (3.102)
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where L_ is a map such that O(Le) c r-

Equation (3.10})shows that the error between the dyﬁamic
variables of (3.98) and the dynamic variables of (3.95) goes to
zero as t - %, Equation (3.102)shows that the observer gives
at each t > 0 the exaqt value of §f(t) in ker E. However, if the
ultimate purpose is to assign zeros via an observer and not to
recover the value of gf(t) in ker E, then an observer of reduced
dimension equal to dim {/ can be constructed,(¥)Here W= wf/wl,

with wl given by (3.39).

(*) provided that the pair (Ef, J) is obsexvable,

Let P : Wf + { and let J be the unique map induced in

W such that PJ = JP. Let gf = PBf and consider the following observer

Jz = Nz - PK yf + ﬁfu . (3.103)

From (3.93) it follows that

=P . .
PJ xf xf + Bfu (3.104)
Let Pxf = Ef. Then from (3.104) we have
fo = xf + Bfu . (3.105)

Define the error as
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Kle_ W, =0 . (3.106)

Then

(T + ch)w1= W, .

Let

N : (I+KC_) (3.107)

i.e., N is the map induced by (I+ch) in W.

From (3.103), (3.105) and (3.107), it follows that

Je = Ne. (3.108)

Consider the control law u = Fz. Then from (3{105)

fo :% (I+BfF)xf - B_Fe. (3.109)

J o % I+BF =B_F x} . (3.110)

I

O
[
Da
o
21
®

It suffices now show._that all the zeros associated with
(3.110) can be arbitrarily assigned by the choice of F and X, with

K.lcfw1 =0
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The proof of Theorem 3,7 shows that there always exists F

such that the zeros associated with the system

are assigned to pre-specified values, provided that the pair

(S,Ef) is controllable.

Dually, if the pair (Ef, 3) is observable then the zeros of the

pencil (ﬁ - 53) can be assigned.

The above discussion can also be translated into matrical

language. Consider the representation (3.42) and define

F=1" K = (3.111)

according to the partitioning of Bf and Cf.

In (3.111), F, W2 + U, where wl ] W2 = wf and K, : V2 - wf,

where Vzvis such that ch ® Vz =
Thus ‘

£

MatLI+BfF -sJ) =1+ B22 F2 - sJ22

and

Mat(N -sJ) =I + K, C_, - sJ;

Hence

I+BfF‘-sJ=
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and

I + KC_ -~ sJ =

0 I+K2C22-SJ22

Once the triple (sz, J 2) is controllable and observable,

22" By

then maps F2 and K2 can be computed from Theorem 3.7 so as to assign

the zeros of (I + B

22 F2 - sJ22) and (I + K2 C - sJ,_ .).

22 22

There are basically two alternatives to assign zeros in a system
described by (3.34) and (3.35) by dynamical output feedback. The
first one is suggested by Theorem 3.8 and is as follows : use an
output feedback map so as to convert all the infinite-zeros into

finite ones.
Then compute the
decomposition of the closed loop system as in Theorem 3.1 to obtain

a system with the form

"

i

£

E
n

+

w
n

o

where dim L = rank E.

A standard zero placement by dynamical output feedback
may now pbe carried in the above system.

The second way, which is not worked out here, consists of
constructing one observer for the subsystem (3.34) and another one
for the subsystem (3.35) according to the procedure described
previously. What remains to be researched is a procedure by

which the observer constructed for the subsystem (3.34) does not
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interfere with the zeros - already assigned by the cbserver (3.103)
to the subsystem (3.35).

To conclude this section we would like to point out a simple
fact about output feedback and the regularity of a pencil (sE-A).
Given a singular pencil, it may be desirable to try to modify it
by output feedback so as to render it regular. A sufficient con-
dition for this to be possible is that A + BKC is nonsingular for
some K : ¥ > U . Such a map exists if and only if the zero

eigenvalues of A are controllable and observable, i.e.

ImA + B =X
and

ker ¢ n'ker A = 0.

Given that the above conditions hold, then almost any output

feedback map will make A + BKC nonsingular [3.71.

*REMARK 3.7: By using analogous reasoning to that in the proof of
Theorem 3.8 it can be shown that if J has all elementary divisors of
 order greater than one (i.e. no static variables) then there exists K
such that degree det(sJ—I;BfKCf) =Y if and only if the system (3.93)
is controllable and observable. Note that in this case w1 =0 in

(3.39) and then K must be such that Qt Bf K.Cf'ker J 1s nonsingulaxr,
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CHAPTER IV

THE GEOMETRIC STRUCTURE OF A REGULAR PENCIL AND THE USE OF P. D-

LAWS IN THE THEORY OF ALMOST INVARIANT SUBSPACES

iv.1 INTRODUCTION

This chapter begins with a geometric description of a
regular pencil which includes the identification of the subspaces
associated/respectively, with the finite-zeros and infinite-zeros,
as limits of suitable sequences of subspaces.

We then turn our attention to the study of a proportiohél-

derivative (P.D.) state feedback law, u = F x + F x, for the linear

1
System ; = Ax + Bu. We present several geometric properties of
the closed-loop pencil s(I-BFz) - (A+BF1) and we also show how to

choose F1 and.F2 so that the distributional response of the closed
loop system belongs to a prescribed almost controlled invariant
subspace. An application is then made for the disturbance de-
coupling . problem and we also stress the importance of a P.D. law
in the solution of the almost disturbance decoupling problem.

Finally, we show the use of P.I.D. observers in the context of almost

conditionally invariant subspaces.
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Iv.2 THE REGULAR PENCIL (sE-A)

Iv.2.1 Introductian

The main features of a regular pencil are nowadays fairly
well known [4.1, 4.3, 4.7, 4.10, 4.16]. A pencil (sE-3A) is said
to be regular if it is Invertible over the field of the rationals.
This implies that the maps E and A are square. We also assume
that E is a singular map.

Associated with a pencil (sE-A) we have an autonomous gen-

eralized linear system described by
Ex = Ax T (4.1)

where x € X:= En.

Because some of the results described here have application
in linear systems theory we shall emphasize dynamical interpretations
- relative to (4.1).

Recall from Section ITI.! that if the initial condition
5(0_) := x_ for (4.1) is arbitrary thenlwe should consider the dis-

0]

tributional differential equation

EX

]

ax + SEx (4.2)

where § denotes the delta functional.
We shall stress geometric features of a regular pencil for

this kind of pencil plays an important role in subsequent sections

Al
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but we shall also pay some attention to singular pencils.

For a regular pencil there exists .o« € £ gsuch. that
det (aE-A) # 0 and we have seen in Section III.2 that such a pencil
has in general finite and infinite-zeros. We have also shown
there a modal decomposition of the state space X obtained by
Cobb [4.3]. The decomposition is given by a direct sum of two

subspaces

such. that on !é there is a dynamical motion of (4.2) characterized
by the finite-zeros and on (% there occur impulsive motions due
to the infinite-zeros.

We recall below the expressions for % and Wf so as to

facilitate the comments that follow.

X o
V=98 k -1 ! ’
/= er |(aE~-A) E - — 1 (4.3)
i=1 G-A;
i
-1 T
(% = ker[(aE~A) E ) (4.4)

where r = dim'lg = deg det(sE-A) and {Ki}, i € k, is the set of
finite-zeros (Ai has multiplicity ni) of the regular pencil (sE-A).
Al though VS and wf do not depend on 0, so long as
(0E-A) is nonsingular, the above expressions do not show clearly
how VS and u%'are re;ated to the original maps E and A.

Further, the computation of VS requires the knowledge of the finite-zeros.



Several questions can then be posed:

a) Is it possible to obtain characterizations for Vs and

Wf from the geometry of the maps E and A and at the same time

compute them without the knowledge of the finite-zeros?
b) What is the geometric source of the infinite-zeros?

cj What is the condition for a regular pencil (sE-A) not

to have infinite-zeros?
d) What is the condition for a pencil (sE-A) to be regular?

We shall provide answers to the above questions and we

shall see in Section IV.3 that the analysis developed here has

importance in the study of a proportional-derivative state'feedback
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law. We also believe that the answer to some of the above questions

and our presentation constitute an original contribution to the theory

of pencils.

IV.2.2 A Useful Representation for the Maps E and A

We have seen in Section III.2 (see Proposition 3.1) that by

a choice of two distinct decompositions in the state space X, the

maps E and A admit the following decompositions

I 0 L 07
Mat E = Mat A = (4.5)
0 J 0 I
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where J is a nilpotent map whose Jordan decomposition yields
the number and order of the infinite-zeros and L 1is a map whose
eigenvalues coincide with the finite-zeros of the regular pencil
(SE-A) .

In the sequel we shall obtain a representation for the
maps E and A which does not require regularity of the pencil

(sE-A) and that helps to ‘develop some intuition. For this let
E :=InE ; N := ker E
and consider the following decompositions of the space X

X=C1eN (4.6)
and

X=EeLC(, , (4.7)

where C1 and C2 are any subspaces which yield a direct sum.

Let x € X be represented in the decomposition (4.6) and
let Ex and_Ax be represented in the decomposition (4.7). Note
that EC1 = E._ Thus if {ci} »ied, L :=dinm C1 is a basis for

C1 we may take {Ec,} , 1 e l, as a basis for E. This implies that if
i - .

X=c+ v c e Cl' veN {4.8)
with

c= ) o, c, (4.9)
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then

Ex = Ec = Z Ec. (4.10)
. i
iel

so that both ¢ and Ex have the same representation

T T
[al, Oreens aZJ = Z (4.11)

with respect to the bases {ci} and {Ebi}, iel.
Hereafter, the bases {ci} and {Eci}, ieg, are fixed so
that the vector 2z can be identified with ¢ and Ex.

It then follows that in the decompositions (4.6-7)

1 o0) A B
Mat E = Mat A = N N (4.12)
0 o) ‘ C D

where I 1is the identity map of dim C1 = dim £ and the partitioning
of Mat A follows that of Mat E.

The representation (4.12) presents some interesting features,

namely :
SI"g “g ~ A
1) |sE-a| = . N = |si-a| |-G(s)]| .
-C -D

Thus, the pencil (sE-A) is regular if and only if the
proper rational matrix G(s) is invertible over the field of the

rationals with

G(s) = S(sI-2) B + D (4.13)
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Fal
2) If D is nonsingular, then by using (4.8), (4.11-2),

the system (4.1) becomes

. ~ AA-—]_ N
z = (A - BD C)z
and
A__l ~
D Cz . (4.14)

T«
1}

It is easy to see that this situation implies regularity
of the pencil (sE~A) and absence of infinite-zeros. The regularity

is implied by

lim 8(5) = 5

g0
so that 8(5) is invertible, whereas the absence of infinite-zeros
follows (see Section III.1) from the fact that the number of zeros
of a regular pencil is given by dim E and that (4.14) has dim E
finite-zeros, which are the eigenvalues of (g—ﬁﬁ— 8). For this

reason (absence of infinite-zeros) we have used equation (4.1)

and not (4.2).

3) The separation of the variables*v = N. The initial con-
dition E(O-) does not influence the distributional response of

4.2). By using (4.8), (4.11-2) in (4.2) we obtain

z =2z + Bz + §2(07) (4.15)

Cz + Dv

o
Il
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and it is clear that g(O—) is immaterial for the response of (4.15).
It is easy to obtain explicit expressions for z(s) and
v(s), the Laplace transforms of the distributions Z and V 1in

case the pencil is regular. To see this let

T, (s) T, ,(8) ]

Ty (81 Tyy(s)

where E and A are as in (4.12) and the above partitioning

accords with that one of E and A. From (4.2)

x(s) = (sE-A) lEx(07) (4.16)
or
z(s) ) Tll(s) 0 z(0 )
v(s) T21(s) 0 v(0 )

By using (4.15) we obtain

T (s) = (sI-A) ‘[1-Be l(s) &(sI-m) 1]

1 (4.17)

_l\ ~ A -1
T21(s) =-G(s) C(sI-A)
The expressions (4.17) can also be found in the work
by Francis [4.6] who has studied the distributional convergence

of the singularly perturbed system.

R(,e)z + E(e)v + 8 20

cle)z + D(s)v

N
1]

m
<
1]
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when € , a positive scalar, goes to zero. When € = 0, the
above system becomes identical to that one in (4.15).

We can also see from (4.15) that the variable v € N
"controld' the variable z € E (recall that 2z determines EX).
Here "controld means that the Bohl distribution v with support
on E? (see Definition 1.3 and Section III.1) is such that it
drives the distribution 2z (also Bohl with support on R+) so as

to obey the constraint

IV. 2.3 Geometric Features of the Regular Pencil

We start this section by discussing the distributional

solution of the autonomous generalized system
Jx. = x_ + 5fo(0‘) , x. €W (4.18)
which results from the modal decomposition (4.5) (see also
Section III.2).
From Corollary 3.la, ker J = N and let J be taken in

Jordan canonical form, i.e.,

.J = diag(Jl,...,Jp, 0) (4.19)
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where

(n,+1)%x(n_ +1)
i i

In (4.19) the map J 1is decomposed into p (p > 0) Jordan

blocks of size ni+1(ni31) and a zero block of dimension m so that

J n, +m=dimW_ . (4.20)
i £
iep

T ~ ~ ~ T ~
= i ; =n,+1, i
Let xf [xl, ,xp, xp+1] with dim xi ni 1, i€p, and

~

dim x = m.
p+l
The block diagonal structure (4.19) implies that the equation

(4.18) becomes decomposed into a set of p equations
J. X =%, + 647, Tci(o') (4.21)

and a trivial equation

~

xp+1 = 0. (4.22)

The variables §p+1 are 'called static variables by Verghese
[4.15] in the sense that they exhibit no dynamical behaviour. It
is also shown in [4.15] that the distributional solution of (4.21)

is given by
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~ - - 2 P7h
X, = =% 500008 - .. - Ki.ni+1(° )8
. (4.23)
Ei,n, = X +1(O )8
i
Ei,n,+1 =0
i
where 6(3) is jth distributional derivative of the delta functional.

We have seen in Section III.2 (see (3.16-7)) that to each
Jordan block there-corresponds a chain. of generalized eigenvectors

given by

Ew, =0 , iep
(4.24)

E = A ‘ ie je 2,... +1

wi,j wi,j"l’ g ] { ' rni }
and the regular pencil (sE-A) has p infinite-zeros of respective
orders ni; iep. We shall identify in a moment such nonnegative
integer p.

In the sequel we define maps which are of importance
in the geometric analysis of a pencil.

Let

a) T := A : X > X(mod E), which denotes x - Ax{mod E)
(4.25)

b) D:=A:N-=~> X(mod E), which denotes x =+ Ax{mod E), x € N .
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In the decompositions (4.6—7) the maps above defined

admit the following representations

Q>
0>
[
ct
[w)
]
[w 2

Mat T = [ (4.26)
The ensuing proposition identifies the geometric sources
of those variables in N which are static.

Proposition 4.1: Let NecN be any subspace such that

~

NnkerTo N=N.

~

Then the regular pencil (sE-A) has m := dim N static variables.

Proof: First note that

ker T = A_l(E)

and
Ni=Nnker T=Nna (E) =ker D . (4.27)
Consider now the following decompositions for X
X=cleNeﬁ (4.28)
and
X=Eteo C3 o aN. (4.29)

Here C1 is as in (4.6) and C3 is any subspace which com-

o
plements A X in the decomposition (4.29). Note that
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dim aN = dim N
since N n ker A = 0, which is implied by the regularity of the
pencil (sgE-3). Also note that

and

Let x € X be represented in the decomposition (4.28) and

Ex and Ax be represented in the decomposition (4.29). Hence

I 0 0 A, B, O
MatE=| 0 0 O mat A= |A, O o0 |. (4.30)
0o 0 0 Ay, O I

The identity matrix in Mat E has dim € and the identity
matrix in Mat A has dim m.
Consider the pencil (sE-A) with E and A as in (4.30)

and post-multiply it by the following nonsingular matrix

(1 0 0
0 I 0
-y, 0 I

This eperation-does not alter the finite and infinite-zero

structure and the resulting pencil is represented as
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[ ero _ : \
sI-Ayy EC R
]
~Ba1 ° .0 (4.31)
S R
1
1
o o ' 1 |

It is clear from the block diagonal structure of (4.31)
that the finite and infinite-zero structure of (sE-3A) can be

obtained from the reduced pencil

We have thus far shown that the number of static variables

is > m. The next proposition shows that the number is indeed

m, and it is important enough to be stated separately.

a

~

Proposition 4.2. Let p := dim N. Then regular pencil (sE-3)

has p infinite-zeros.
~

Proof: Let {wi 1, iep, be a basis for N. To prove the above

.1

statement it is enough to show that there are generalized eigen-

vectors starting from {wi 1, iep (see (4.24)).

1

14
~

First recall that 28N ¢ E and N n ker A = 0. This implies

that the vectors
e, = Aw R iep

are in E and are linearly independent. This in turn implies that
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e, = BEw, ' ie
i i, 2 ! 2

for some set {w, .} , i€p, of linearly independent vectors.

i,2
It remains to show that the sets {wi 1} and {wi 2}

’ r

are mutually independent, or equivalently that span {wi 1} N span

r

{w, .} =o0. Suppose that there exists 0 # x € span {wi 1} N span
r

{w, .} Then

= - AN = W
x= 1 Biwy 4 I v, i,2
iEE iEE
for some real scalars Bi and Yi' where at least one Bi and Yi-

are different from zero. This yields

which con tradicts the fact that the vectors e iep, are £.i. .

O

Remark 4.1

a) Proposition 4.2 has shown that there are p generalized
eigenvectors starting from {wi 1} and thus p infinite-zeros.

14
We do not know yet the orders of the infinite-zeros, since the

positive integers ni in (4.19) have not been specified. We shall

do it later.

b) Proposition 4.2 has also shown that the number of static

variablesis exactly m, as defined in Proposition 4.1, since N
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generates dynamic variables which behave impulsively.

Corollary 4.1 : The regular pencil (sE-A) has no static variables

if and only if AN < E.
Proof: Immediate from Proposition 4.1, . O

Corollary 4.2: The regular pencil (sE-A) has no infinite-zeros

- : -1
if and only if D is nonsingular, i.e. N n A “(E) = 0.
Proof:
=) If the pencil has no infinite-zeros then by Proposition 4.2

N=NnatE =0

<=) If D is nonsingular, then AN n E = 0. By using the
decompositions
X=C oN
1
and
X=Eeo2aN

where C1 is as in (4.6), we obtain

I 0 A, O

Mat E = Mat A =

0 0 A21 1

so that the regular pencil (sE-A) has dim E finite-zeros which are

the eigenvalues of All'
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We shall analyse now in detail two families of subspaces

similar to those introduced in III.2, namely

&3]
Il

{V < X|aV < BV, V < M} (4.32)

&
I

Wexlw = Knoetaw)) (4.33)
a a a

where M and K are given subspaces.

is closed under

It is easy to see that the family F1

addition. This implies that F, contains a supremal element

1
d] c M which can be computed through the following sequence

L 4.1].

oo P 0 = a2 @™, wen; V0= X

(4.34)

Hereafter we shall assume that M := A_l(E). Thus

is the supremal subspace of the family F1 which is contained in X.

The family F, also appears in [4.1] but it is not given
the meaning and importance that we show such a family possesses.

The next proposition states that F_ has a unique least element.

2

*
Proposition 4.3: There is a unique element wa e F2 such that

* s
W cW for every W e F_.
a a a 2

Proof: Define a sequence by
@Y, wen; 00 =o0. (4.35)
a = a

First note that the sequence is nondecreasing. We have
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w; > wg and 1f WY 5 w:‘l , then wZ*l - Kne tea W > Ko g !
(Aw“;l ) = Ul

u ’
Thus there exists k € n such that Wa = Wz ’ u.z k.

* . *% *
Set Wa := wz} Then wa e F_. To show that Wa is infimal let

2

W erF_. Then wa o wg and if Wa 2 W:, we obtain

W =Kne taWw) > Kne t@wh = ot
a a a a

*
Thus W > W" , Yuen and hence W = W
a a = a a

-1
From now on we take K := A. ~(E) in the sequence (4.35)-.
* *
In the sequel -we consider the subspaces wb and T , which

belong to F

2
a pencil. Such subspaces are defined by the following sequences.
* _.n _u -1 u-1 o9
wb 1= wb ; Wb =E (AWb ), u e n; Wb = 0 (4.36)
* - —
=7 = Wast e, uenm =0, 437

The next lemma shows properties of the sequences above
defined and some relations among them.

Lemma 4.1:

a) ETu=ATu—1;TuCVD,T*EF nF
1 2

b) T - djfww;

and play an important rcle in the geometric theory of



226

c)

d)

e)

Proof:

a)

*

ET =

b)

-
=
I

E

il

c)

u u
wa =K n Wb
T BT
a
u u-1
EWb = AWa

The equality ETY = ATu_l is shown in [4.1]. Thus

* * * * * *
AT which implies AT < ET and ET < AT so that T e F, n F_.

-1

1

Note that T1 = VD nN-= ¢D n Wé and if Tu"1 = VD n wg'l, then

d] n E-l(A(anW;_l))= VD n E-l(A(A—l(EVD))‘n wu—l)
Ta E_l(_M};_1 n 2l

d] n E_l(AW;—l) n E—l(EVD)

b

W (E-l(AW;-l yon o+ NY)

d] n (E—i(A W;_l) n VD + Ny

(Aw“‘l) n d] + d] n N

b

E—l(Aw;-l) T SRy S WZ

The proof is analogous to b) by replacing VD by K = &

1

(E).
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a) From b) and c)

a
e) Note that EWl = 0=a0° and if 50® ! = A" ? , then
b a b a
B = gl aw™ Yy = awt g E
) b b
and
u-1 -1 - -1 u-1
Awa = A(A “(E) nE (Ewb V)
= A(zsfl(E)n(w;:_1 + N
-aa @ n w]‘;‘l)
e
b 0

Let (sE-A) be a singular pencil whose columns are linearly

independent over the ring of the polynomials. Let x(s) be a solution for

(sE-a) x(s) =0 . . (4.38)

with

k k
s x

2
x(s) = xk - sxk_1 + s Xk—2 - ...+ (1) o

Substituting this solution in (4.38) and equating the

coefficients of the same power in s we obtain

Axk = 0-; Exk = Axk_1 Feees Ex1 = Axo s Ex. =0 . (4.39)

It has been shown by Gant macher [4.7] that the vectors X,
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i e {0,1,...,k} are linearly independent. ©Let D = span,{xi}.
Then from (4.,39), it follows that ED = AD, whence D < d]. This
simple observation suggests that the subspace T*(recall that
ET* = AT* by Lemma 4.1 a) is the subspace which provides vectors
for a polynomial basis for ker{sE-3). In other words, if

xi(s), ie g, is a basis for ker(sE-3a) with

= - -+
X (8) =%, TSR
1 1

. *
for some set of nonnegative integers {ki}, ied, then T =

span {xi j}, iel, je {0,1,...,ki}.

14

*
To show this we proceed with a decomposition of T .

* *
First, note from Lemma 4.la that ET = AT , which implies

1]

* *
dim(N n T ) dim(ker A n T ). Also from Lemma 4.1b, it follows

that N n T°

I

d] n N, which implies d@im(N n TY) = constant.

Let

u
t :=dim ’ Uen.,

u-1

T

u-1 .
Since ET" = aT , we then obtain

dim T - aim(N n T% = aim %! - aim(kera n T4
whence

tu = constant - dim(ker A n Tu_l).
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Thus
u
t =t + dim Eff;fﬁil__
u u+l u-1
ker anT
. u u-1 .
and since T = T , it follows that t > t , U € n.
u— utl
Now let
q; := number of integers in the set
{t,, £ ,...,t } which are > i.
1 27 n —
Then
« . > >
429 2921

where £ := dim(N n T*) = dim(ker A n T*).

Write
Kp_ipq =9l ied (4.40)
Then O f-kl f_kz < ... f.kﬂ' It now follows from

(4.40) and Lemma 4.la that there exist a set of linearly independent

*
vectors {t,l j}' ik js {0,1,...,ki} such that T = span

’

{t, .} with

Eti,o =9

= At
B TRt iel ek (4.41)
Bt k=0
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We can now state the following theorem.

Theoxem 4.1: Let (sE-A) be a singular pencil. Then:
a) ker (sE-A) = span{xi(s)},i s {, where

£ = aimN n T*) = dim(ker A n T*)

2 k, k

1 i
X.({s8) = t, - st + s t,
. ( ) i ,k._:g

lrk. i’k._l —.-.+(—1) S t'
1 1

The set {ki} , i € £, is termed the set of minimal column

indices.
b) Let A be a map such that

A chmod T*) - EVD(mod ET*) .
Then

o(a) = {finite-zeros of the singular pencil (sE-a)}

*
Proof: Let t € T be represented in the basis {ti 3, ik,

14
j = {O,l,.-.,ki} and let At and Et be represented in the basis
{Eti j} ,1iek, je k,. Then from (4.41) it follows that
, = b

*
Mat[ET*I(sE—A)lT'j==diag[Pi(s)] , ied

where
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s 1+ . . 0o o)
0] s . 0 0
P.(s) = . . . . . . .
i
0 Q . 1 0
L Y Y
1 1
We now show that P(s) := diag[Pi(s)] corresponds to the

set of canonical blocks associated with minimal column indices in
Gantmacher's decomposition of a singular pencil.

For this let Vl be any subspace such that

*
(}j =T @ U1 (4.42)

*
and note that Ul n N=0 since N n VD cT .
*
It can also be shown that ET wn.EUl =0,

._‘* P
For, suppose that Et = Ev for t e ] , v e V1. Then

*
v-telN n,dD and thus v € T , which is impossible.

Thus we may consider the direct sum
*
EVD =T o El/1 (4.43)

so that in the decomposition (4.42-3)

P(s) -A
Mat[EVDI(sE—A)|VD] = 12 (4.44)
0 sI-A
22
B1o
where = Mat[EVDIAIUlj.
A

22 )
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Since (sI—Azz? is a regular pencil it follows that xi(s),

i€ g, as given in the theorem's statement is indeed a basis for
" ker (sg-A). The set {ki }, ie @, is the set of minimal column

indices due to the unigueness of the canonical form of singular
pencils under strict equivalence transformation [4.7].

Since the eigenvectors associated with the finite-zeros
belong to dD(Av = AEv => v € dD), it follows that the finite-zeros
of the pencil (sE-2) are the eigenvalues of A

22°

As a matter of fact, A is the representation of the map

22

1

* *
: VD(mod T) ~ EVD(mod ET ). The following diagram shows how

hd

is defined.

VD EVD |A|VD | EUD

VD (,modT*) A EVD (mod ET*)

In the above diagram P and Q are the canonical projections.

Fa)
To show that the diagram commutes, let A := EM]]AIV]. Then since
”~ N

* ”~ * - ”~
t € T implies At = Et, for t € T , it follows that AP = QA and the

map A is well defined.

a
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We turn now our attention to a geometric criterion for regularity
of the pencil (sg-3).

Theorem 4.2: The pencil {sE-A) is regular if and only if
Hew =x 4.45
oW = (4.45)
Proof:
=>) If the pencil is regular, then by Theorem 4.1 and Lemma 4.1b

* *
we obtain T = QD n wb = 0. The regularity of the pencil also

implies that its number of zeros is dim E.

~

* *
Now, from Lemma 4.lc, Wa c wb . Let wb be any subspace

such that
W =W oW . : (4.46)

We show next that dim wb = dim N. From Lemma 4.1le, it

follows that
* *
dim BEW = dim AU .
b a

. * VD VD *
Note that N c wb and ker A < . Since n wb =0

*
then ker A n wa = 0. Thus
* *
dimW =dim W + dim N
b a

which confirms our claim.
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We shall prove in Theorem 4.3 that the number of zeros of
the regular pencil is
*
dim d] + dim Wa = dim E.

Therefore from (4.46)

1l

* * ~
dim d] + dim.wb dim VD + dim Wa + dim Wb

= dim E + dim N

n
so that

VDew*=X
b

dj * VD *

- - * y
Thus dim EV~ = dim and dim Awb = dim Wb.

Now suppose that
Ev = Aw, VEVD, wel .

This implies that w € d] which is not possible since

* *
J] n Wb = 0. Thus w = 0 and hence Ev = 0. Since N ¢ Wb and
*
d] n Wb = 0 it follows that v = O.
Therefore

VD n AW* =0

E
b

and hence
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a Wt _
EV- o Aﬂb X

Now define a map M : X ~» X as in Proposition 3.1, i.e.

Ex ,l X € dD

B e gH e
Since AV- < E and Ewb c Awb, it follows that in the
decomposition
*
x="Heu

sI-L 0
Mat M(sgE-aA) = (4.47)
0 §J-1I

0 0
where L := EV|A|V and 7 :

* *
AWbIEIwb. It will be shown in the
next theorem that J is a nilpotent map. Consequently ISJ-II =
= o # 0 and hence from (4.47)
-1
det (sE-A) = af|sI-L| , B= M " #o0 (4.48)
and the pencil is regular.
The next theorem describes the fundamental elements of a
regular pencil.

Theorem 4.3: For a regular pencil (sE-A):

*
a) There are subspaces JD and wb such that

VD@w*=X
b
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*
EVD 9 Awb = X
with
Ad] = EVD ' U] > ker A
W < Al W, >k
E‘b < Al b p b > ker E
b) There are dim d] finite-zeros which are the eigenvalues of

the map L := EUD1A]¢].

* *
c) The map J := Awb[E|wb is nilpotent and there are

-1 .
p :=@im ker E n A "(E)) infinite-zeros of respective orders ne LEps

which are shown to be determined from the seguence (4.35). Further

* * -1 -1 *
- n, =dim W withW =2 "(E) nE “(al} ).
1 a . a a

i=1

- *
a) A 1(E) = VD 2] wa
Proof:
a) See Theorem 3.1 and Section IIT.2
b) This is clear from (4.47-8).

-1

c) We recall again the notation K = A "(E) and N = ker E.

Proposition 4.2 has already shown that there are dim(K n N)infinite-zeros.

Now define
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Since dim AW: = dim W: , it follaows from (4.35) that max
wu < p, as it must be, for we already know that the pencil has p
infinite-zeros.

Let

ni := number of integers in the set

{w,, w., ... , w } which are > i.
1 2 n —

Then

with

Note that the definition of n, allows one to identify the
size of an eigenvector chain associated with an infinite-zero i,

i e p. By using (4. 35) it follows from (4.24) that

*
= i & ] €
span{wi,.} Wa r iep, jeED
We may also find the ni's by using Kalman's crate [4.8]
which is a method absolutely equivalent to the above described.
To see that J is nilpotent, suppose Ew = AAw, A # 0, for
- H
some W € Wb. This implies w € , which is impossible, since
"o H H
Wb n = 0 (recall that is the supremal subspace of the family

F1 contained in X).
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* ~
a) First note that VD ] wa c K and let Wb be any subspace

* * ~ ~
such that wb = Wa‘e wb. From Lemma 4.lc Wb n K=0. Thus

* ~
X = d] 2} Wa 2} wb and the result follows.

0
Remark 4.9:
a) Note in (4.23) that the components ;i 5 jEni belong to
, .

~

* ~ . E
wa and that X, is a component on a subspacefas wb. This

0, +1
i

*
shows that the distributional response occurs in wa.

) *
b) It is clear from Theorem 4.2 that VD = Vs and wb = wf, where

Vs and wf are the subspaces given in (4.3-4).

c) There are basically three distinct situations for the initial

condition X(07) in (4.2).

1) x(07) e VD. In this case the response X in(3.3)is a function
and it consists of exponential motions determined by those infinite-

zeros which are excited (see equation (3.26)).

- *
2) x(0) e wb. This is the situation where the response
X in (3.3) consists only of impulsive motions, namely, the delta

functional and its distributional derivatives (see (3.28-9)).

- —_ *
3) x(0) ¢ d] and x(0 ) ¢ wb. In this case the response

X in (3.3) consists of impulsive and exponential modes.
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The geometric condition for the regularity of a pencil
involving the direct sum of two subspaces, as given by Theorem
4.2, is somewhat expected if we recall that pencil is regular
if and only if a(s) defined in (4.13), is invertible and noting
the geometric criterion for this to occur given in (2.42-3).

It is however not simple to work with a(s) and obtain a condition
which displays clearly the geometry of the maps E and A.

By introducing suitable sequences of subspaces and analysing
their properties we have been able to develop a compact geometric
theory of regular pencils. We do not claim that the work developed
here is completely new. But we believe to have given a contribution
by providing a geometric condition for the regularity of a pencil,
by identifying the number and order of infinite-geros along with their
source and by analyzing the origin of static variables.

The Remark 4. .a on the distributional response will be shown to

A AF 3w b
oo OL [

the ensuing section wien we study some properties

of a proportional-derivative state feedback for linear systems.
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IV.3 PROPORTIONAL~-DERIVATIVE (P.D.) STATE FEEDBACK LAWS AND

ALMOST CONTRQLLED INVARIANT SUBSPACES

IvV.3.1 Introduction

Consider the multivariable linear system

Ax + Bu (4.49)

~
1l

Cx.

=
Il

The solution of several control synthesis problems such as,
for example, disturbance decoupling, tracking and regulation involve
the use of proportional-integral (P.I.) dynamic compensators. Such
compensators operate with the output vy and its integral as inputs
and produce as output thevcontxol u for the system (4.49).

The need for P.I. compensators has stimulated a great deal
of research (see [4.12] ‘and the references therein) which has led
to a very good understanding of structural properties of such
compensators.

lIt is surprising to note how scarce is the literature on the
theory of P.I.D. compensators, namely, compensators which also use
the derivative 9 as input. Apart from some results on pole
placement [4.13] it seems that little is known about P.I.D. com-
pensatdrs. Qur surprise comes from the well known fact that P.I.D.

compensators have been employed successfully in some industrial aplications.

Most classical control books dedicate a few pages {0 the
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subject and explain, usually by means of an example, the qualitative
effect caused by the derivative on the closed-loop time response.
They also point out the anticipatory feature of a control law which
makes use of the derivative. Willems [4.18] has also pointed out
the importance of P.I.D. compensators in the synthesis of a controller
in the disturbance decoupling problem.

We consider the study undertaken in the following sections as
the beginning of a theory for P.I.D. compensators and as such we
start by the simplest control law which is given by u = F,x + F é,

1 2

for some maps F1 and F2. Such a law is termed a proportional-der-
ivative (P.D.) state feedback law.
We concentrate almost totally our attention on the role
of such a law in connection with the theory of almost controlled
invariant subspaces.
Willems [4.17]1 has shown that under a certain condition there
exists a high gain state feedback law, u = Fx, F * « which solves
the almost disturbance decoupling problem in the sense that the
influence of the disturbance variables d on the regulated variables
2z = Dx is arbitrari%small.
It is shown here that under the same condition there exists
a P.D. law involving finite maps which achieves the same objective.
We also solve the exact disturbance decoupling problem (the
disturbance d has no influence on 2z) by a law of the type
u=F,x +F ; + F_d. It is important to note that we can solve the

1 2 3

problem with such a law in a situation where the law u = le + F3d

cannot do it.
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Iv.3.2 Regular P.D. Laws and-Almost Controlled Invariant

Subspaces

Cansider again the linear system

»

A
it

BAx + Bu (4.50)

where

xeX:=F; u elU:=F" rank B = m

and a P.D. law

1

U=F.X +FX +V (4.51)

1 2
for some maps Fl' F2 and an external control variable wv. The

resulting closed loop system is then given by

(I-BFZ)Q = (A+BF )x + BV, _ (4.52)

Note that when (I-BF2) is singular and the pencil
s(I-BFZ) - (A+BF1) is regular, then (4.52) becomes a generalized
linear system. Hence the connection among regular pencils, generalized
linear systems and P.D. laws. This leads to the following definition.

Definition 4.1: A P.D. law, u = le + F2x, is termed regular if

(I—BFZ) is a singular map and the closed loop pencil s(I—BF2) -
(A+BF1) is regular for some maps F1 and F2.

Our next theorem establishes the link between regular
P.D. laws and almost controlled invariant subspaces. It describes

a holdability property of a "trajectory" in an almost controlled

invariant subspace Va by means of a regulaxr P.D. law.
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Theorem 4.4: Let Va be a given almost controlled invariant subspace
and let the pair (A,B) be controllable. Then there exists a regular

P.D. law such that the closed loop system
<
(I—BFZ)X = (A+BF1)x

has the property that the distributional response X with support

* .

+
in B belorgs to Va, ¥x(0-) = Vb,Vé'

Proof: The proof is a little long and for this reason we have

organized it by steps -

Step l: Decomposition of the state~space

Consider Va and its associated L —almost controlled

*
invariant subspace Vb y - From (1.8) with K := Va, we have
* * V*
Vo v, =Rpy VW - (4-53)
a a

Let B ¢ B be any subspace such that

* -
B=BnV, & B

and consider the subspaces R

b'va and Ra,V obtained through the
sequences (1.12-3). Then by Lemma 1.2, it follows that :
R R :
a) : = ] & R
b,V b,V v



244

- *
b) Rb,va n Vva =0 (4.54)
c) Rb,V = ARa,V e B
a a
a) Ra,Va = Va n Rb.Va
* _ *
e) R v Ra,Vae RV
a a
_ *
£) R n V¥V, =0.
a,Va Va

vV =R e (4.55)

and from (4.53), (4.54 a,b) it follows that

* _ *
Vb,V =Rb,Va@ VV (4.56)
a a
* *
since RU c VV .
a a

Since the pair (A,B) is controllable then by Theorem 1.8
there exist a controlled invariant subspace ( and a map

FC e F(C) such that

X =V e C (4.57)
and

ol (a+sF )|C1 = A (4.58)
c - o4
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where Ac is a symmetric set of dim C complex numbers such that
*

v

a
From (4.56-7) it now follows that

* *
A nA =¢, wvhere A = ol(a+BF) ]V, (mod R, )], wF € F(V,, ).
c A A Va v .

a

%

which constitutes our desired decomposition.

_ Step 2: Definition of the maps F1 and Fz.

We now define the maps F1 and.F2 on some subspaces above

constructed and we shall check later the consistency of the definition

with the desired result.

Let g := dim B with {bi}' i e g, a basis for B. Then

5. = Bu,, 1 =
i i’ d

for some uy .

Also let £ := dim AR = aimR (recall that R
a,Va a,Va a,Va

is a sliding subspace) and consider the set '{fi}, ie é, a basis for

R . Thus {ar.} , i € £, is a basis for aR .
a,Va i = a,Va
Define F_ i Rb,V > U (see (4.54c)) by
a
F b =u,, i¢e€g (4.60a)
S 1 1 -
and
FAr, =0, ied . ‘ (4.60b)
s i =
Thus

(I-BFS)Ei =0 (4.61a)
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and

(x—BFS)AEi = AEi . (4.61b)

Define F, : X > U by

2
LS AL I .62
a a
*
legvva @C) =0 . (4.62b)

We now proceed towards the definition of Fl. For this

let F Dbe a map specified by

FlCc=F_|C
o}
~ ¥ * *
FlVV =F |V, F_eFl,) (4.63)
a a a
Flﬁb'v = 0.
a

*
Let JD = VV ® C. Then in the decomposition

a
x="e Rb,Va (4.64)
we obtain
Mat (A+BF) = Al1 Alz : , (4.65)
0 A22
o~ ~
where All = Mat(A#BF)IJ] and A22 = Mat (A+BF) (mod ).

In the same decomposition (4.64) we obtain from (4.54c)

and (4.61-2)
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(4.66)

]
H
o

i

Mat(I—BFz)

where dim I = dim u] and E is a singular map.

22
From (4.65) and (4.66) we see that the pencil s(I—BFz)

~

- (A+BF) admits the following representation in the decomposition (4.64).

)= (a+BF) ] = [sI-a -AL ) (4.67)

Mat[ls (I-BF 1 12

pl

0 SE22—A22

The representation (4.67) shows that if A is nonsingular

22
then the above pencil is regular (we shall show later that the regul-

~

arity of the pencil, with F defined by (4.63), also implies A22
nonsingular).

Our next step consists of the definition of F, such that

the map (A+BFleod d]) is nonsingular. For this, note from (4.54b,c) that

Rb,V = ARa’V & B = Ra,U e R v (4.68)

wnere Rb v is any subspace which yields a direct sum.
I
a
Consider the decompositions

X=WHoR o R (4.69a)

and

=<
I

d] ® ARa’V ® B . (4.69b)

a

Let x € X be represented in (4.69a) and (A+BF)x be

represented in the decomposition (4.69b). Then
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0 ! )
. A1 A3 By 0
Mat (A+BF) = 0 I A Mat B =10 O (4.70)
23
0] B
0] a
0 33 3

where A

Mat(A+Bg)|d]

11
E ]
B1 = MatB n UV
a
B. = B
3 MatB
dim I = dim R .
a,Ua

~
It is easy to see that if As := Mat (A+BF) (mod VD) then

I A
A =p 23 (4.71)

0 A33
for some nonsingular matrix P2 of dim ﬁb Ve For this, let Q@ and P
14
a

be nonsingular matrices composed of linearly independent vectors from

the decompositions (4.6%a) and (4.69b). Note that
P 0
P =20 1
0 P
2
for some nonsingular matrices P1 and P2 such that dim P, = dim Us and

dim P2 = dim Rb,Va'

Hence from (4.70)
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. p, 0} f(a,. A
(A+BF)Q = O 1 11 12
0 P a
2 0 As
with
A12 := [0 A13]
A 1= A
S L 23
0
A33
which establishes the claim (4.71).
Note that dim ﬁb p = dim B and that By is nonsingular.. .
14
a

Thus the pair (A33, B3) is controllable and hence there exists F3

such that A33 + B3F3 is nonsingular. Egquivalently, there exists

+ U such that (P_ A|R + P BF) is nonsingular, where
B 2% g

PRy
“a

P is the projection on B along VI:1 9 Aﬁa Ve
?

B a

Finally, define

|

il
>
+
2

(4.72)

|
-
E;U
<z

I

A
E;U
<
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It follows now from (4.71) that (A+BF1) (mod [/D) is non-
singular and consequently the pencil s(,I—BFz) - (A+BF1) is regular.
Step 3: Geometric validation

Let

E := (I—BFz)

)
i
W
'+
93]
S
-

T Ky v

*
=
]
<<
*
2]
(@}

Now, if (SE—A) is a regular pencil with a subspace |):I
spanned by eigenvectors associated with the finite-zeros and a subspace
*

wb which contains the eigenvectors associated with the infinite-zeros,

we must have by Theorem 4.3

x
a) x=WHe w,
b) Xx=5He Zw; (4.73)
such that

~ ~ ~
c) AVD r:EVD r VD > kera
~ % ~ % X ~
a) IE:W};1 c A(Ub ' wb > kerE .
We proceed with the verification of items a-d.

a) It is true by (4.64) .

b) Note that by (4.62b)

(I:‘—BFz) [)3 = ‘):' . (4.74)
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Let (A+BF1) be represented in the decomposition (4.64).

Hence
Mat(A+BF1) = All Ay T (4.75)
0 A22
where Ay = Mat(A+BF1)lUD and Ay, = Mat(A+BF1)(mod VD) which is

nonsingular by canstruction.

Hence for 0 # s = Pb v we have
7
a

= | 4 H (4.76)

2
Hence from (4.75), (4.76)

since A 2s # 0. Also from (4.76) it follows that ker(A+BF1) < d].

1 -
X=Ve (A+BF1)Rb’V
a
c) From (4.62b) and (4.72)

(I—BF2)VD = VD > (A+BF1)VD .

We have already shown in b) that d] ivker(A+BF1).

d) For any F, : XU

ker (I—BF2) < B,

*
But from (4.62b), F21 (B n VV ) = 0. Thus from (4.61a)
‘a
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kerLI-BFZ) =B c Rb,Va .

In fact, it can be readily seen from the definition of

F. that

Im(I—BFz) = ARa’V e:VD . (4.77)

a

Furthermore, by (4.54b)

(A+BF1)§b’V > (A+BF1)ﬁa’V =aR_ |, = (I-BFz)ﬁb'V
a a a
which verifies 4).

Step 4: The zeros of the pencil s(I-BFz) - (A+BF1).

From (4.77) we have that the number of zeros of the regular
pencil (SE—X) is equal to dim ﬁa,V + dim VD. We shall check in
the following that the number of finite-zeros is dim VD and that the
number of infinite-zeros is dim ﬁa,V . This will confirm that the

a

subspace d] is spanned by eigenvectors associated with finite-zeros

and that the eigenvectors corresponding to infinite-zeros belong to
*

-Wg. For this, we proceed by proving that
N e ~ -
'& =%, o
a,V
. a
i.e.,

R y @ H - {x|a+BF,)x < AR o M} .
a

a, a,va

— S e ~
From the definition of F1 we obviously have Ra v <3 c A 1(E).
14
a

Now cansider the decomposition (4.69a) and let x .= r + r+v with

~ - = ~—] e~
r e Rb , ¥ R , V € VD. Then if x € A ~(E) we must have
'Va a,Va
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(A+BE ) x =»A}_1 vy (4.78)

for some r, € R and some v, € l)];
1 a,Va 1

From the definition of F1 we obtain from (4.78)

)

a

(A+BF, )z € AR
1 a

1

Hence

(A+BF1)r = (A+BF1)r2 + v2
or

(AA+BF1) (r-r,) = v,

for some r. € Tza and v_ € ()j By (4.73b)

-

~

Il

-
"
3
[o})
32

|
1

1l
D

~

<

Is)

which implies T € R. ., and thus A *(E) = R o 1
a'Va a'Va

From (4.73) it follows that the number of finite-zeros of
the pencil (sE-A)is at least dim ()j To show that it is exactly
dim VD suppose that there exists a pair eigenvalue-eigenvector

*
(A\,s), 0 # s € Wb such that

(A+BF1)S = A(I-BFZ)S.

By (4.77) it follows that
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i
)]
=31

(A+BF.)s = AMAr + Av, r e R
1 ’ a 7

T v € V] (4.80)

and from the definition of F1

(A+BF1)(s-AE) = Av.

Thus by (4.73b) Av = 0 and s = Ar , so that (4.80) reduces

to
Mr = M\Ar

which corresponds to the trivial equality

(A+BF1)Ra'U = (I-BF

a
a a

We shall now establish that the number of infinite-zeros

(counting their orders or multiplicities) is indeed dim ﬁa voc
r

a
By Proposition 4.2 we have that the regular pencil (sE-A)

has

p:= aimlBna *(F)1 = dim B n (ia y @ A
! a

infinite-zeros. (We recognize that this is a little confusing.
What we mean is that there are p infinite-zeros of respective orders

ni, ie o1 for positive integers ni).
* * *
let b € B, where B is any subspace such that

- . *
B=BnRa'V ® B .

a

*
Then as in (4.78-9) we have that (A+BF1)b € Im(I—BFZ) implies

* - ~— ~ -

b 0. Thus BnaA (E)=8nR

]

v and consequently the number of
1"
a
infinite-zeros is p = dim(B n Ra v ). It is not difficult to show that
1
a
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- *
the subspace Ra Y is equal to the subspace Wa defined by the
" !

sequence (4.35). From the sequence (1.13) we have that

R VoS ﬁn ; ﬁu =l n (Aﬁu—l + B)} ﬁo = 0 and from (4.35) with
a,V, a a a a a
~—l o~ - * _ B a S
K = a1 E _Rarvaev‘]_va@c W= 0= e 0) 0 (3-BE)
(=1 o -
((A+BF1)Wa ),wa = 0.
Hence as above
=y nB=uw :
a a
and if Wu_l = ﬁu—l, then since ker F, o R
a a 1 a,Va
W= (v o0 n (1-Br.) l@aR*> Y
a a 2 a
=W e0 n @R+ B
a a
=V o0 @t e B =R . (4.81)
a a a
-1 . _ *
Since R = (Ul'l , 4 € n, it follows that R = ' and that
a a - a,Va a

the orders of the infinite-zeros of (SE—Z), n, . i € p, as defined by

Theorem 4.3 coincide with the positive integers defined by (2.18)

with § n, = dim R .
. i a,V
i=1 a

1
Then by (3.29) and (3.30) the distributional response

*
Let x(0-) € Va, x(0-) = x,(0-) % x,(0-) with x (0-) €V, and
a
X0y = Ry y -
. a
of (I-BFZ)x = (A+BF1)X is given by
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with

o-1
i-1 i
e 1
i=1
Lt "
X :t=>e’ x,0-), tekF
-s o

where ¢-1 is the largest order of the infinite-zeros:, J 1is a

nilpotent map and Lv is a map given by

*
L, = (A+BF1)IVVa.

*
The function gs(t) clearly remains in VV and by Remark 4. a,
_ a
the distribution X_ lies in R . Thus X e V o
~f alV - a
a
Remarks 4.3:
1) It should be noted that the controllability hypothesis has

been used only to find the controlled invariant subspace C and

therefore it is unnecessary in case Vb o= X..
7
a
2) From (4.66) and (4.75) we obtain
|sE - a] = |sT - A11| ]sE22 -3,

and since the pencil (sE—X> has dim.d] finite-zeros and is regular
we must have lsE22 - A221=eonst¢# 0, which implies that the pencil
(.sE22 - A22) has only infinite-zeros and therefore A = Mat(A+BF1)

22
(mod J]) has to¢ be nonsingular. We stress this point to show that
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the nonsingularity of (A+BFll(mod dj), for F1 e F(UD) and F, as in

(4.62), is a necessary and sufficient condition for the regularity

of the pencil s(I-BF,) - (A+BF1)-

3) let F € F(ﬁa v ) be a map as in Thecrem l.4c and let
r
a
AF:E A+BF, for such a map F. From (1.29) we have that

Thus the sequence R: is not altered by the change of A
by AF.

From the above equality and Lemma 1.2c¢c it follows that the
sequence gu'is also invariant under the ahove feedback traﬁsformation.
Moreover, the sequence VJ‘1 in (1.3) is invariant under the transformation
A - A+Br.

Thus, by the above considerations, we may replace the map
A in Theocrem 4.3 by AF. This leads to a simple visuvalization ©f an
eigenvector chain associated with an infinite-zeros of the pencil
s(I-BFZ) - (AF+BF1) .

Note from (2.22) that

A
Il

a,V Lle L2e...e Lp

with
ni-l
b, + +.uot : i
i AFbi AF b, , i€ p

h
1

and span{ b, b2,...,bp} =B n Ra:Va .
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From the definition of F1 and F2 in the previous theorem we

obtain
(I-BF_ )b, =0
2" 1

J J j-1 . .
.
(I BF2)A b, = A~ b, (A +BF1)A b., jeny iep

so that the vectors {Agbi}, jE{O,K,...,ni} constitute an eigenvector

chain associated with an infinite-zero of order n..
i

4) The result of the above theorem may be interpreted as a
way of holding a "trajectory" in a given almost controlled invariant
subspace, provided that we admit a initial condition for (I—BFz)i =
= (A+BF1)x as specified in the statement of the theorem.
In the sequel we emphasize some aspects which appeared
in the proof of the previous theorem and which concern general relation-

ships between almost controlled invariant subspaces and a BD.law.

Proposition 4.3co.: Let K be a giwen subspace and let ﬁb =AR B

K
B ,R R i .11-3). i
B 'Rb,K and Ra,K be given by (1,11-3) Then there exist maps F

a;KQ

1
X > U and F2 : X » U such that

a) (I—BF2) ’%,K_ c (A+BF1)Ra_’K

b) (_I—BFZ)TZ (4.82)

2K c (A+BF1)Ra

K

- -1 -

7 14
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Proof: The. construction of the maps F, and F, is identical

1 2
to that shown in (4.62) and (4.72). The proof of (4.82a) is

analogous to that of (4.73d). To see (4.82b5 note that

K © (_I—BFZ)Rb K = aR = (A+BF1)R K

(,I—BFZ)Ra’ ) A K a,

since Rb,K o) Ra,K and ker F1 > Ra,K' (4.82¢c) follows from the

definition of F2 and Lemma 1.24. It is interesting to note

that the sliding subspace Ra K in (4.82¢) is characterized by
r

a pure derivative feedback which is represented by the map F

2

Let F1 and F2 be given maps and consider the pencil
s(I—BFZ) - (A+BF1). We show now that the invariant subspaces
of such a pencil correspond - to the controlled and almost controlled
invariant subspaces associated with the system ; = Ax + Bu. The

statement of the next properties is essentially trivial.

Proposition 4.4: Consider the (not necessarily regular) pencil

s(I—BFz) - (A+BF1) for certain maps Fl and F2 and let V be a

subspace such‘that (A+BF1)V c (I—BFZ)V. Then V is a controlled
invariant subspace. Conversely , let / be a given controlled
invariant subspace. Then there exist maps F1 and F2 such that
(.A+BF1)V c (I—BFZ)V.

Proof: (a+BF)V ¢ (1-8F,)V implies aV c V + B and if V is

controlled invariant subspace then there exists F, such that

1

(A+BF1)V c V. Define F, so that ker F, > V. Hence (A+BF1)U c

c (I—BFZ) V.
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Now let Fl and F2 be maps such that the pencil s(I;BFz) -
(A+BF1) is regular and consider the supremal subspace of the
family (4.32) which is contained in K , i.e.

V = sup{V < K| (a+BF, )V < (I—BFz)V}.

We then have

Proposition 4.5: Let s(I—BFz) - (A+BF1) be a regular pencil for
some maps F, and F, and let K be a given subspace. Let Wa c K

. "N
be a subspace such that (I-BFz)wa c (A+BF1)wa, wa nV =0. fThen

~

* *
V< VK and wa c Ra,K'

~

Proof: By proposition 4.4, V is a controlled invariant subspace

~

*
and hence V < V.

K

Note that (I-BF. )W < (A+BF )W and W nV = 0 imply
2 a *1 a a
*
by Theorem 4.3 that wa c Wb, where Wb is defined by the sequence

(4.36) with respect to E := (I—BF2) and A := (A+BF1).

Also note that B := ker(I-BFz) c B and since the pencil

is regular B a V = 0.

Since wa is a subspace associated with infinite-zeros, it

follows that Wa = span{w, j} where the Wi 3 are linearly independent
: 1, ]

and satisfy

5
w
!
Il
o

=
]
o]
]
5
]
»
o
o]
=

where i € £, j € m, such that z m, = dim W .
= -i . i a
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A
Consider the sequence (1.4). Hence, since B = B, it follows

that ¥, . € K n B = RY and if W, € Ru_l, then
i, a i,u-1
- W = <+ w
(L BF2) iu (A BFl) i,u-1

whence

*
and thus W < R
a a

1v.3.3 Modal Controllability under Regular P.D. Law

Consider a regular P.D. law as given by (4.51) and the
corresponding closed-loop system (4.52). We then obtain the following
expected modal controllability property.

Theorem 4.5: Let the pair (A,B) be controllable and consider

a regular P.D. state feedback law. Let F2 : X Ube a map

such that ker(I—BFz) = % < B, with dim % = £. Then the resulting
n-{ zeros of the pencil s(I—BFZ) - (A+BF1) are controllable.
Proof: It is well known [4.11, page 100] that the uncontreollable

finite modes of a generalized linear system

Ex = Ax + GEXO + Bu xo = ;(0—)
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are the reoots of the invariant polynomials (or the finite-zeros)

of the pencil [sE-A!-B].

Now, note that with

E := (I—BFZ) ; A = (A+BF1)
we have
[s(I-BF,) - <A+BF1);-B] = [sI-a}-B]l | I 0
sF2+F1 I
... (4.83)

Since the last matrix on the right of (4.83) is unimodular

it follows that the invariant polynomials of

[s(I-BFZ) - (A+BF1)§-B]
and

[sI-A;;B]
coincide [4.7].

But the pair (A,B) is controllable, which implies that
the Smith form of [sI—AS-B] is [IEO],[4.11], where I is the
identity matrix of dimension n. Thus the resulting finite
modes associated with the closed-loop system (4.52) are controllable.
Note that the above discussion has also shown that if the system
(4.52) has uncontrollable modes, then they remain uncontrollable,
i.e. they cannot be converted into infinite modes.

It remains to be shown that the infinite-zeros associated
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with the system (4.52) are also controllable, This follows from
Theorem 3.3, i.e,

(I-BF,)X + (A+BF1)B +B =X

Remarks 4. .:

a) It is interesting to note that we could have applied
the sufficient condition for the controllability of the infinite-
zeros given by (3.54). Note that

(I—BFZ)X++ B = X. (4.84)

The sufficient condition is applicable in this case

due + tha gnacial form nf the gincnlay man ; = T-—RF
e e TEERS SLON R et W AT S sl g et s e - “"2
* -
b) Consider the subspaces Wb = Rb v and JD of the Theorem 4.3.
14
Let a
* *
:= +BF - -
3 := (a+BF )W, | (1-BF,) ] (1-BF,) |W_

B,f = QfB

*
where Qf : X >~ X is the projection on (A+BF1)Wb along (I—BF2)VD.

It follows from (4.84) and (3.54) that

¥
<J|Bf> = wb.



264

Iv. 3.4 Disturbance Decoupling by a Regular P.D. Law

Consider the linear system

X = Ax + Bu + G4 (4.85a)

N
I

Dx (4.85b)
where

x e X := En; u e U:=;Em; ae?D :=F§ ; ze€ 2 :=R" .

The term d in (4.85a) represents an unknown disturbance
signal and the output variables =z are the regulated variables.
The disturbance decoupling problem (DDP) consists of finding

a law u = Fx such that the response of the closed loop system.
x = (AR+BF)x + G4 Xx(0) =0

belongs to K := ker D, for all signals d.
Wonham [4.20] has shown that DDP has solution if and only if

¥*

Gc VK , G .= InG (4.86)

*
where VK is the supremal controlled invariant subspace contained in K.

Willems [4.17] has introduced a relaxed version of the above
problem in the sense that the regulated variables are only required to
have Lp-norm arbitrarily small. Such a problem is called the almost
disturbance decoupling problem (ADDP) and it consists of finding a

law.u = F_x for (4.85a) such that with §(O)=0 for the closed loop system,



265

thereholds |zl <<l d|l, ®#<>0, 1 <p <, It nas been

p .
proven in [4.17] that ADDP has solution if and only if

*
G c Vb;K” (4.87)

*

where V

b.K is the supremal LP-almost controlled invariant subspace
14

"contained" in K.
The solution of ADDP requires high gain feedback and to

*

obtain a small LP-norm for 2Z we must approximate Vb K by controlled

r
invariant subspaces [4.14, 4.17].

A natural question then arises : what can be achieved
in terms of disturbance decoupling by the use of a regular P.D. law

such as that of Theorem 4.4 ? The aim of this section is to examine

some aspects of this gquestion.

*
Let Va K be the supremal almost controlled invariant subspace
14 .
contained in K .  Then by (i1.1i5) we can write
* *
=V, e R
Va,K K a,K

where Ra K is a sliding subspace of maximal dimension in K.
14

From (2.15) we can also write

vV .=V eR P (4.88)

where

Rb,K,= ARa,K & B (4.89)

and B is a subspace such that
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Let u = le + F2X be a regular P.D, law as in Theorem 4.4

i.e., the distributional response of

(I—BFl); = (A+BF1)x

* *
belongs to V , ¥X(0-) € V
a, - b

K K

Also, from the proof of theorem 4.4, we obtain the following

decompositions of the state space

x=He R, ¢ (4.90)

X=F o (A+BF1)ﬁb'K (4.91)

where

¢]==U; e C

and C is a controlled invariant subspace.

Morecver, for the maps F, and F2 defined there, we have that

1
(I—BFz)d] = VD > (A+BF1)d] (4.92)
and

(A+BF1)Rb’K ] (A+BF1)Ra’ =aR = (I—BF2)Rb (4.93)

K a,K IK.

The above regular P.D. law yields the following generalized

linear system

LI—BF2)§ (A+BF1)x + G4 (4.94Db)

z Dx.
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Hence, as in Chapter III (see (3.20), define the invertible map

-

M x= . (4.94c)

(A+BF1)X , X € ﬁb,K

Let 9 : X+ dD be the projection on JD along ﬁb
v , K

and Qr X - Rb,K be the projection on Rb K along d]. Also let

’

1= =" R . - i i
X, Qv X € d] and x2 Qr X € b, K Then by pre-multiplying

the system (4.94a) by QVM and QrM’ respectively, the following

decomposition is obtained.

x1 = Lx1 + Gld (4.95)
sz = x2 + G2d
z = Dlx1 + Dix2

where
L := lvxat(;xﬂapl)ll/[l

Mat M(I-BF,) [R_

J 2

= M = M -

G QV G, G2 Qr G
Since we want z = 0, for all possible disturbance signals
g, it follows that the rational transfer function G(s) from d'to z

must be zero. From (4.95) it follows that

G(s) = R(s) + P(s)
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where
R(s) = D, (sI-L) G
S 1
and
p(s) = D (s3-1) G
S 9] ~
Since R(s) is strictly proper and P(s) is polynomial, _
it is easy to see that'G(s) = 0 implies R(s) = 0 and P(s) = 0.

Thus, we say that the system (4.95) is disturbance decoupled if
= = 0.
Dlx1 0 and D2x2

Since ker F2 > VD, it follows from Proposition 3.5a that

the subspace Ud c J], which is influenced by the disturbance is

the least subspace such that
(A+BF1)Vd S Ud and Vd @ (A+BF1)Rb'K 56 (4.96)

and since Q, MUd = Ud and QVM(A+BF1)Rb,K = 0, then (4.96) is

equivalent to

= < >
v, A+BF |G, (4.97)

which is clearly a controlled invariant subspace. Thus, as in the

proof of Theorem 4.2 in [4.20}, we have that Dlx1 = 0 if and only if

G, c VK' : (4.98)

At this point we establish a connection with the solvability
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criterion for the ADDP as given hy (4.87),

*
Unfortunately, we cannot ensure that Gl < VK when

E
GeVyk

which implies that we cannot guarantee that Dlx1 =0 in (4.95).

*
To see this let ge G < b K Then from (4.88) and since
r

ker F, = R , it follows that
1 a,kK

g =v+Ar+b = (I-BF,)V + (A+BF )T + b, (4.99)

where
* - - -
v € VK, r € Ra,K and b € B,
Hence

Mg = v + r + Mo
and

QMg =v+Q o e P ’ (4.100)

is asg in

-~ 1
-~ o - 13

(4.94c).

_ *
From (4.100) we see that Q  Mb may not belong to VK, i.e.

the component of G on B gives rise to a certain difficulty.
The above discussion is the basis for the next theorem
which gives a condition to achieve exact disturbance decoupling

by a regular P.D. law.

* -
Theorem 4.6: Let G c VK + ARa K for some sliding subspace Ra,K

!
of maximal dimension in K and let the pair (A,B) be controllable.
Then there exists a P.D. law u = F1X+F2i such that the response

X(t) of the closed-loop system

(I-BFz)% = (A+BF )x + Gd ;i x(0-) =0
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+
belongs to K, t € B .

Proof: Consider the decomposition (4.90) and let F1 and F2 be

as in Theorem 4.4. Then as in (4.99)

- - * _ -
g = V+tAr = (I—BFZ)V + (A+BF1)r, v € VK’ r e Ra,K .
Hence
Mg = v+r
and since r € ﬁb K we obtain
*
G1 =Q MG < VK (4.101)
and
G2 =Q MG <R K -
From (4.93) and Theorem 3.1 b,c, it follows that
M(,I—BFZ)Ra,K c M(.A+BF1)Ra,K
and
JRa,Kc Ra,K (4.102)

where J 1s as in (4.95).
The inclusion (4.102) now implies that the response of the

. -
subsystem Jx, = %, + G2d, belongs to Ra,K (see (3.37)). Also

from (4.105) we have that the response of the subsystem %1 = Lx + Gld’

*
belongs to VK. Consequently the total response is contained in
* _ *
= c K.
Yk ® Rak = Yk
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* -
The candition G < VK~+ ARa K is not easily checked
. K

because there are plenty of sliding subspaces of maximal dimension
in K, unless the system represented by the triple (D,A,B) is
invertible (see II.2.2), in which case R:,K , the supremal almost
controllability subspace in. K ,is a sliding subspace. This
suggests that for a non-invertible system it is better to start
the examination of the condition by testing if 7. . ... -
* * * . * *
G*C UK + ARa,K and G n ARK = 0, since Ra,K ='RK & Ra,K' where
RK is the supremal controllability subspace in K. Even so,
it does not seem trivial to continue with the checking of the condition.

Despite the difficulty above mentioned it is interesting
to:note that by the use of a regular P.D. law we have achieved exact
disturbance decoupling in a situation where by the use of a law
u = Fx we can only obtain almost disturbance decoupling dnvolving
high gain feedback.

The reader is probably wondering if there is a control law
involving the derivative of the state which corresponds to the condition
(4.87). This is the object of the next theorem.

Theorem 4.7: Let the pair (A,B) be controllable. Then
G c U;,K if and only if there exists a law u = Fox o+ Fzé + F_d

3
such that the response X(t) of the closed-loop system

(1-BF,)% = (A+BF )% + (BF;4G)d, X(0-) = 0

+
belongs ta K, t € B and the pencil s(I—BFz) - (A+BF1) is regular.
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Proof: =>) Consider again the decomposition (4.90) and the maps
*
d F, of Th 4.4, Since G c + AR + B
F1 an F2 eorem ince VK A 2K ,
- * — -
a. = + Ar. + B e |/
Gdj = vy * Ay By vy €y SR g

for some set of linearly independent wvectors {di}, i € s, such that
span {di} = D.

Define F, : D >+ U by

3
F3di = -ui + 1 e s.
Then
(BF, + G)d, = v, + Ar,
3 i i i
whence
* -
+
Im(BF3 G) c VK ® Ra,K .

The rest of the "only if" part is identical to the proof

of Theorem 4.6.

<=) By hypothesis there exists a law u = le + in + F3d such
that the closed loop response with %(O-) = 0 satisfies z(t) =
Dx(t) = 0, .t > O.

Since the pencil sLI—BFZ) - (A+BF1) is regular, there exists

by Theorem 4.3, subspaces MD and w5 such that

* *
x/]ewxb= X ; EvDeAwb=x

% *
(AA+BF1H}:| c (I—BFZ)VD; ('I'BFz)Wb c (A+BF1)Wb
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Let M : X > X be the usual map defined by

(IéBFz)x P X € J]
N *
(A+BF1)x ' X € wb
d] *
Let Qv : X > be the projection on VD along wb and
* *
Qw : X +’Wb be the projection on wb along MD. Then pre-multiplying

the equation

(I-BFz)% = (A+BF)x + (BF,*G)d

respectively, by QVM and QWM we obtain the following decomposition.

= <+ d ’ =
x1 Lx1 G1 x1 va
J%Z = x2 + G2d. P x2 = wa

where
. .

J = M(I-BF)) W ; L = M(A+BF )IVEj

2 b 1
G, = QVM(BF +G) ; G, = Q M(BF_+G).

3 2 W 3

Since z(t) = 0, t > 0, we must have
Vii= <0|6> « Kand W := <3[6,> < K

*
and note that V c dj and W < wb.
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Thus

. ' *
QM Im(,BF3+G) c V <=> M In(BF.4G) < V o wb.

3
QWM Im(BF3+G) clW<=wnM ImLBF3+G) c VD e W .

From (4.103-4) it follows that

n

M Im(BF_+G)

* a
3 V o wb) n (Ve W

W+<Vew;)..nd3=wev

since W: n VD =0 and V c Jj .

(4.103)

(4.104)

(4.105)

From (4.105) and the definition of M it now follows that

Im(BF3+G) c (I—BFZ)V + (A+BF1)W.

By Proposition (4.4), V is controlled invariant and

* *
T . i C
V c VK. By Proposition 4.5, { Ra,K .

There fore

* *

Im(BF3+G) c (.I—BFZ) UK + (A+BF1)Ra

K

whernce

thus
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Remarks 4. :

1) The reason for the controllability hypothesis in Theorems 4.6

and 4.7 is the same as that mentioned in Remark 4. 3..

2) It should be noted that the proof of the "if" part of Theorem
4.7 is applicable (set F3 = 0) to the situation of Theorem4.6.

In other words, if we achieve exact disturbance decoupling by a

: . *
regular P.D. law, u=F,x + F_x, then G c V

1 2 ’b,K * However, as pointed

out before, we cannot ensure the converse statement. It should be
noted that the role of the feedback map F3 is to eliminate the component

%
of G on B(mod VK).

*
3) It is interesting to remark that the condition G < Vb K
’

- a’“ s — . - - - - - - - . - n
corresponds toj other type OI cgontrol iaw whlch achleves exact distur-

bance decoupling. Willems [4.19] has shown that the law
u = F.d + Fx (4.106)

attains the same objective, i.e. exact disturbance decoupling from

*
d to z if and only if Gc V. .
b,K

The law suggested in Theorem 4.6 1s somewhat easier than (4.106)
since it avolds the measurement of derivatives of the disturbance. But,
of course, there are practical situations where the disturbance is

unmeasurable and neither of such laws is applicable.
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4) 1f we consider the law u = le + F3d then the disturbance decoupling
" ,
problem is solyable if and only if ImG c VK + B (see exercise 4.10 in
* *
[4.200]). SinceVb K> VK + B it follows that the law introduced
¥

in Theorem 4.7 can solve DDP in a situation where the above law cannot

do it.

Iv.4 NONSINGULAR P.D. LAWS AND ALMOST CONTROLLED INVARIANT SUBSPACES

Thus far we have dealt with P.D. laws for which the map (I—BF2)
is singular ana the pencil s(I—BF2) - (A+BF1) is regular. By using
this type of law we have.been able tc obtain exact results in problems
involving almost controlled invariant subspaces.

Henceforth we consider the sequence of controlled invariant
subspaces Veintroduced in [4.14] such that VE 238'V:,K . It is shown
that there exists a sequence of P.D. laws, u = F . x + F Eé, such that

1 2

-1
" (I-BF (A+BF1)VE c VE where (I-BF is nonsingular.

26) 26)

We shall see that F,_ ———> F_ where F_ is as in Theorem 4.4. In this
2e 0 2 2
sense the regular P.D. law defined in Theorem 4.4 may be regarded as a
limit case of the above sequence of P.D. laws.
The following definition simply establishes: a terminology to be

followed in the text.

Definitjon 4.2: A P.D. law, u = le + Fzé, is termed nonsingular if

(ImBF2) is a nonsingular map for some F2

We first show some simple properties of invariance under a non-

singular P.D. law,

*
Let G be a transformation induced by a nonsingular P.D. law, i.e.
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* -1 -1
G : (A,B) ™~ ((I*BFz) LA+BF11, (I*BFZ) B} and denote

~ -1
A := (I*BFZ) (A+BF1).

u
Proposition 4.6: Let ¢ =B + AB+... A'B, u e n. Then ¢u is

*
invariant under G .

Proof: First note that

(I—BFZ)_l(B +T) =B +T (4.107)

for any subspace T.

Hence

~

(I-BF )*18 + A{I-BF )_1B+...+Au(IrBF )*18
2 2 2
:(I—BFZ)—lfB + A(...(B + aB))...]

=B + (A+BF1)B+.,.+(A+BF1)u B

Corollary 4.3: The reachable subspace <A]B> and the controllability

indices of the pair (A,B) are invariant under G¥

Proof: The statement about <AlB> follows from Proposition 4.6 and the
statement on the controllability indices follows. from the fact that
such indices are determined from dim ¢u [4.20]. 0

The above invariance property can alsco be extended to the

u u
sequences of (almost) controlled invariant subspaces V, R:, sY, rY,
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u € n, defined in (1.3-4) and (1.9-1).

* *
Also consider the fixed map At 1= ((A+BF)]VK)(mod RK), ¥F € F(VK)
(see Section I.2.5. for an interpretation of such map) where K is a
given subspace.
.. u u u LU
Proposition 4.7: The sequences V-, Ra’ S, R, ue n and the map
*
At are invariant under G.
Proof:
u
a) Invariance of V
Consider the sequence
" ~-1 -1 -1 =0
V' =Kaa " + (I-BF,) B)y; V =X
By (4.107) it follows that
u ~-1 Tu-1
Vi=Kna “(V + B) (4.108)
, 1 ~1
Then from (1.3) and (4.108) we obtain V™ = V™ = K. Suppose
that yat oo yet Hence

Wik e q cx'—BFZ)'l(AmFl,)x = v+b, vel)u'l, beBr}

u-1 -
which implies ax € ¥V = + B, so that V' < y°.

u 11—
Now let x € V. Then, Ax = v+b, for some v € V

b  B. Hence

and some
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(AR+BF, )x = v + b' b' := BFlfi-b/ VF,
and
(A+BF )x = (I-BF,) (v+b)
~5
for any F, such that LI—BFZ) is nonsingular and where b € B is dgiven

by b = (I—BFz)—l(b'+BF2v).

Thus (I—BFZ)—l(A+BF1)x 15 Vu_l + B, i.e.,Vu c V™ and the result

follows.

u u *

u
The invariance of the sequences Ra' S, R7, under G is

proved in a similar way.

b) Invariance of A,

* *

Let F_ be a map such that (I-BF )_1(A+BF +BF )V, < V, and
a 2 a’ K K

1

-1
denote A .= (I—BFZ) (A+BF +BFa). Bnalogously, let F,_ be a map

F 1 b
a * * .
. 3 A := A+BF .
such that (A+BFb)VK c VK and denote - b
' _ _b o * %
Also consider the maps A_ and A induced in V_ /R
F F, K"K
* * %k a b
and let P : VK > VK/RK be the canonical projection.  Then
AF X - AF X = PAF X - PAF X = P(AF X - AF %) .
a b a b a b

-1
Let (I—BFZ) Ax := W, which implies w = Ax + Bsz.

Hence
— -1 * 3
P(AF x—AF;;) = P[B.(,Fzm—Fbx) + (I-BFZ) < (BF1)5‘+BFaX) le P(BnVK‘) by using
(4.107) and by noting that (A_ -A_ )x € V*.
F, Fy K

* *
But P(BnVK)C PRK = 0 and the claim follows.
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Corollary 4.4: Let K := ker C.. Then the set of transmission poly-

nomials of the triple (C,A,B) and the set of infinite-zeros of
-1 ¥

C(sI-A) B are invariant under G

Proof: By definition (see II.1.4), the set of transmission poly-

nomials of (C,A,B) is the set of invariant polynomials of the map

A .

t
- %
The set of infinite-zeros of C(sI-A) 1B is invariant under G
*
. (B, Y} .
since there are dim K infinite-zeros (see Definition 2.3) with
*
v *
K $%4
orders determined from dim — [4.5]. 0
v
K

The above results have shown that a nonsingular P.D. law
preserves all important structural features of a pair (A,B) relative

to a given subspace K.

Iv.4.1 Approximation of Almost Controlled Invariant Subspaces

Let K be a given subspace and consider the supremal Lp—

almost controlled invariant subspace "contained" in K and denoted,
*

as usual, by‘Vb’K .

Trentelman [4.14] has constructed a sequence of controlled

*
invariant subspaces Ve which approach Vb K as € » Q. In the
. r .

approximation process the state feedback maps FE for which
(A+BF€)VE < Ve are such-that F_». This is an intrinsic property

*
of the almost contrelled invariant subspace Vb K’ namely, one requires
’

high gain state feedback to approach it.
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In this section we show that the subspaces VG can be made

-1
invariant under a nonsingular P.D. law of the type (I-BF (A+BF‘)VE

26)

- c VE. The main difference with respect to using state feedback

only is that the sequence of derivative feedback maps F ‘converge

2e

to a finite map F This can be useful in application in which one

o
wishes to avoid high gain state feedback.
To facilitate the notation we now denote the state feedback
map by F and not by Fi as we had been doing previously.

Let K := ker D. From Section II.1.4 we have that

* * * *
Vb,K = VK + Rb,K = VK~® Rb,K' (4.109)

From (2.23) and Definition 2.3 it follows that

= - ..o 4.
Rb,K M1 & eaMp ® Mp+1 ® qu (4.110a)
*
VK + B -1
where g = dim ———— is the number of infinite-zeros of D(sI-a) "B.
v
K

From (2.22-4) we also have that

n
i
= + +o..t , i .
M, = b, +ab A b, iep (4.110b)
Mi = bi , i e{p+1,...,q} (4.110¢)

where p = dim(B n K) and B is a subspace such that
_ *
B =Ba@&Bn VK .

*
In (4.110c) span {bi} = B where
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- . *
B=BnKaoB

and in (4.110b) F is defined on Ra KLsee Theorem 1.4) with
. ]

= & L
Ra,K. Ll 5] L2 ... o (4.111)
b ni-l
Li =b AFbi oot B bi, iep.
* *
Since V, n R = 0 we can define F on V, so that
. . K a,K K
AFVK c VK and
*_ :
c[AFIVK] =AU A (4.112)

* *
where Ar := OEAFIRK] is a pre-specified symmetric set of dim RK

* *
complex numbers and A := OE(AFIVK)(mod RK)] is fixed for all

*

F e F(VK).

Let A, := {A, .(e)}, ieq be a set defined by
i,e j,i =

4

—
1l

{A. i(e)}, iep, jE{l,Z,...,ni+1}

i,e J

—
Il

i:E ; {}\l/l(E)}’ ie{p+l’-..,q}

such that A, ,(€) is a real number with |A, , (€)]| —— = .
J.1 J.x 0
*
Also let Ac be a symmetric set of n - dime K complex numbers
Radl

such that A n A = ¢,
c P4

We then obtain :
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Theorem 4.8; Let the pair (A,B) be controllable and consider the

* -
subspacest’Kbe’K and the set Ai e i=a A, Ar and A above

’ -

defined. Then there exist

a) a sequence of controlled invariant subspaceSVE such that
- * *
hich i i ]
VE =3 Rb,K (which implies VE VK =3 Vb,K)

. -1
b) maps F and F such that (I-BF2€) AFQE c UE,

2e e F2

r -1 _ k. 5 =
ol (z-BF, ) AFIVE] = i:1 A, . and (I—BFZ)Rb’K.C AFRb,K'
Morever
-1 5 A uh uAd
GE(I-BFZE) AF] = 8 A VA UA U

Proof: This involves two steps:

i) Definition of the map F .,

- *
Let F be defined on Ra K and also on Uk so that (4.112), holds.

!

As in (4.68) we can write

Rb,K B ?a,K ® ﬁb,K (4.113)

where by (4.110-111)

Rb,K =B o span{AF bi}, i e p.



284

Since the pair (A,B) is controllable, then by Theorem 1.8
there exist a controlled invariant subspace ( and a map FO such

that

and
ol(a+BF.) [C] = A .
0 c
Let F|C = FOlC and note from (4.109) and (4.113) that we obtain the

following decomposition

with

Note that we have not defined yvet F on Rb K* Thus, as
r
in Step 2 of Theorem 4.4, it follows that F can be defined on
Rb K so that P A'ﬁb K is nonsingular, where P_ is the projection
s 5 F 7

B B
on B along ARa K @ d]. This implies (see (4.73)) that
14

X=Hoe AFTQb'K. (4.114)

The reason for the above definition will become clear in the
next step.

Step 2: Construction of V€ and definition of er.
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The sequence of subspace VE used here is similar to that

constructed in [4.,1437,

1 .
Let §. . () := ij—————- and consider vectors v. . (€) defined
j.i . . (€) i
J/x
by
-1 . -1
.= - B (e) = (-8 (€ ) b,
vy 18 = (I8y (DA TALV, Ly (S (9) (r=0, ;(%)Ag) by
e (4.115a)
for iEE’ j€{1,2,...,ni+1} and .
-1
1= -8 , 3 +1,..., . 4.115b)
vy e (T al,i(E)AF) b, ie{p+1, gl _(,

Note that (I—Sj',(E)AF) is invertible for |6j i(E)l >0 and
’

rd

j=1
v, ;{8) — Ap b, -
e e>0

Furthermore, for e sufficiently small, the vectors v, . (€)
14

introduced in (4.115), are linearly independent (See [4.8] on convergence of

subspaces) .

Thus, let

and

Note that VE is a subspace spanned by real vectors, since
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' Aj’i (s).is real, and that VeE:b* .Rb,K. = Ml e..v.eM.q (see (4.110)).
It has been shown in [4.14] that Ve is a controlled invariant

subspace.

For € sufficiently small we can write
X=l/DeaVE .

Define F,_ : X>U by

2
BF v, () =b; » i<g
Foe¥y,i(8) =0, iep] ={2,...,n +1} (4.116)

FZEI' VD = 0.

From (4.115 - 116) we now obtain

(I-BF, Jv, (<) = é J8a v, (S, i eg (4.117)

2e 1, 1, J'r

and

(I-BF e)vj,i(r—:) = Gj’i(e)AF Vj,i(E) + Ay Vig,if

iep, jelt,iiim+D]

Assume for the moment that (I-BF is nonsingular. Then

26)
from (4.116-117) it follows that in the basis {vj i(e)} » L eg
14

-1 Lo
Matl (I-BF, ) AFlﬁi'EJ =m
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where
ru.l () u () .oLood (€) w
1,1 2,1 ni+1,1
i i
0 uZ,Z(E) .. uni+1’2(e)
Mi,ez= 0 0 . .
P
| 0 0 : Uy 41,0 +1(S) )
i i
with
e = ~DIRA (@) ... A L (e) for k < ]
ik J.,1 k .i
uwy .= A . (e)
J.,3] J,2
Since the subspaces Ri <’ ieqg, are independent it follows
, 2
that
(z-r. ) ta v <V
2e F € €
with
-1 q
of(x-BF, ) A_|VI=u A, .
2¢e F' e . i,e
i=1
Also, from the definition of F and FZE' it follows that
(I-BF. ) 'a H e H
2e F
with

r -1 _
ol (I-BF,) AF|¢D] =A Uuh Ul

which establishes the c¢laim on the configuration of eigenvalues.

Since v, .(g) - b., it follows that F > F_ such that
1,i i 2€ 2
e->0 0
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[s)]

and

b, =0, iep jE{l,...,ni+1}

sa that

(I—BFz)ﬁb,K < AFﬁa,K < AFrzb,K

It remains to show that (I-BF E) is indeed nonsingular.

2
From (4.116) it follows that

Im(I—BFZE) = V1 + (V2 @ VD) (4.118)
where
V1 := span{vl,i(ﬁ) -bi} ¢ 1eg
V2 1= span{vj'i(e)}, iep, 3 6{2,...,ni+1}.
From (4.115) we obtain that
Vl,i(E) - b, = Gi,L(E)AF Vl,'(E)' ieg
and
€ = (=S +6 A r j j 2,..- '+1 -
vy, (S = AV, (9 5,0 9B vy (S0 1< py 3ed /m +1}

(4.119)

J .
- = A t
E span{AFbi} b, K’ it follows that

for e sufficiency small the vectors{Aij i(E)} are linearly independent
4

Since span{a_v,_ i(E)}
!

F 3

and also independent from dD (see (4.114)).

Therefore the sum in (4.118) is a direct one, i.e.
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Im(I-BF

e =V eV, 0 VD = X

so that (I-BF E) is nonsingular

2

Comments:

1) The theorem also holds if the sets Ai <’ i € p are taken to be

= R L4 =

sets of n.+1 symmetric complex numbers. In this case the vectors
i . :

v. . (=) shown in (4.115) are in general complex. In order to
3,1

avoid the definition of complex feedback maps, Trentelman [4.14] has
suggested a nice procedure to compute real vectors Gj i(e) from the
i ’

vectors v, . (€). The only modification in the proof of the theorem
J.1 ’ '

is that the maps er are now defined on the real vectors Gj i(E).
r

2) Theorem 4.4 may be considered the limit case of Theorem 4.8

in the sense of convergence of the maps F F, and VF-——+

g 265—:5 = =€)
Rb K * The action of the map F defined in Theorem 4.8
is entirely analogous to the action of the map Fl of Theorem 4.4.
Note that if we set §, () = 0 in (4.119) then F_, is replaced by

] 2e

1,
"F. with ker(I-BF.) = B and Im(I-BF.) = A_R
2 2 F a

5 K & dj, as in Theorem 4.4.

It is not difficult to see from Theorem 4.4. and 4.8, Corollary
4.4, and Lemma 2.2. that the strictly proper transfer matrix
G (s) = D(sI~(I-BF )—lA )-1(1 BF )-113
P 2" 'F 2e

has p infihite-zeros of respective orders n +!, i-€ p, and g-p
l —

infinite zeros of order one (see (4.110)),
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3) We have not considered the distributional convergence of
the system under the nonsingular P.D. law of Theorem 4.8 to the

system under regular P.D. law of Theorem 4.4. This remains to be
worked out and we suggest the reference [4.4] for a good analysis

on a related subject.

* .
A similar result holds for the subspace Va K" the supremal
’

almost controlled invariant subspace contained in K .

Let A,
i e

1= {Aj i(E)}, iep, je n., be a set of real numbers
7 r -

such that |K. .(E)I > o and let A be a symmetric set of npn-
2 [==e") c
* ~
dim Va g complex numbers such that Ac;n AZ = ¢ . Hence we have :
r’

Theorem 4.9: Let the pair (A,B) be controllable and consider the
* ' ~ ~

subspacesVa’K, Ra,K and the sets Ai,e’ i€ p, Ac' Ar and AZ.

Then there exist

a) a sequence of controlled invariant subspaces Ve'such that

= * *
V_ o Ra,K(whlch implies V_ @ VK <o Va,K) .

such that (I-BF )-1A V <V,
F e €

b) maps F  and er egb F2 e

p
...1 ~ — -
ol (I-BF_ ) AFIVE] = 131 Ai and (I—BFz)Ra caR

2¢e ,K F a,K ~

’

Moreover



Proof:

. 1. ~ ~
OL(I-BF, ) Al = v Ao u_!\.c uA A

The subspaces VE and the maps F2

to those of Theorem 4.8,
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care constructed identically

We shall just point out a fact about the definition of - F.

By Theorem 1.8 there exist a controlled invariant subspace C and a

map FC such that

and

ol(a+BF )|C1 = & .
C C

From Theorem 1.4 we have that

. -1
R ,=R'=B.©0aB.o® ... AE B , for some u € n
K a i F 2 u -

f

where {Bi}, i eu is a chain in B and from the proof of such

a theorem Bl = B n K.

a
F

u-lg

By Remark 1.1b we have that F need not be defined on

Thus, analogously to step 2 of Theorem 4.4 consider the

following decompositions

where

X=HoR%!ea%!

a F u

u-2 :
= JD ® AFRa & B

>
I

1

vU==vZec.
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By using identical arguments we have that F can be defined

on A;-lBu so that PB (A+BF)]A;'1 Bu_is invertible, where PB is the
1 1
.- — 2 . -
projection on B, along dj ® A R" . This implies that P a_|R
' e R FakK
14

a,K

is nonsingular and then as in (4.73b) we can write

Let F be defined on Ra,KaS shown above.g Further, define
F on V; so that (4.112) holds and also F|C = FCIC.
The rest of the proof is identical to that of Theorem 4.8.
0

Iv.4.2 Almost Disturbance Decoupling by a Nonsingular P.D. Law

Consider again the linear system

Ax + Bu + Gd

»
il

{4.120)

where

The almost disturbance decoupling (ADDP) by state feedback
has already been introduced in Section IV.3.4.(ADDP) requires a
state feedback map FE such that in the closed loop system with

x(0) = 0 there holds || ZHL <e | g”L .
P P
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*

1= . I )
Let K ker D £fImGCc Vb,.K

and the state feedback map FE involved in the solution is such

then ADDP is solvable

2> ©
that FE 30~

The main objective of this section is to show that if

*
Im G ch K then we can also-use a nonsingular P.D. law to achieve
14

the same goal, i.e. “ EIE <= I@ IE o The main difference in using

P,
a nonsingular P.D. law, u = Fx + erx' is that the maps involved in

the solution are such that F is finite and F , Where

2e &5 0 T2

F2 is also a finite map. Such a result is expected in view of

Theorem 4.7 on exaect disturbance decoupling by a regular P.D. law

*
and, in view of Theorem 4.8 on the approximation of Vb KT by making
r

use of a nonsingular P.D. law,
We first recall a lemma stated in [4.14].

Lemma 4.2: Fix 1 < p < =, Suppose there exists a sequence of state

A
o ‘Eet
feedback maps F_ such that ” De ~ G“ 3 0. Then (ADDP) is solvable.
i o]
Proof: Since the Lp—induced norm of a convolution operator is bounded

L
by the L1 - norm of its kernel
A

F_t .

z < - a .

hzll < lioe - ol 4l

Lp 1 P
g
The above lemma shows that (ADDP) requires the Ll—norm of

the closed loop impulse response to be arbitrarily small.

We mow introduce a modified version of (ADDP) which makes

use of a nonsingular P.D. law and which we shall denote by (ADDP)O.

Definition 4.3: For fixed 1 < p < « the almost disturbance decoupling

o)
in the Lp~sense, (ADDP) ~, is said to be solvabe if We > 0 there exists a

nonsingular P.D. law, represented by the pair (F,F such that

be) s
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in the closed loop system with X(0) = O

Izl =< 1lgll -
P p

-1
26) (A+BF). We then have the following

result analogous to that described in Lemma 4.2.

Let Ae := (I-BF

Lemma 4.3: Fix 1 < p < o, Suppose there exists a sequence of

nonsingular P.D. laws represented by the pair (FZE'FZ) such that

At~ 1

ive € (z-8F, )" G|

ve + 0. Then (aDDP)® is solvable.

L <0
P

Proof: Identical to that of Lemma 4.2.
The following definition is also needed:

Definition 4.4: For € > 0, let A’: = D (9,2 (@} be a multi-

plicity set such that Ai(E) is real, Ai(E) = Aj(e) = A(e) for i # j k.
We shall say that A: is a set of infinite root loci with common
‘ growth o and asymptotic direction X in E-, if there is a real o > 0

such that Eak(s) —> A, whenever A(E)EA:.
>0

Let M be an almost controllability-subspace described Dby

k-1

M=be AFb+...+AF b

and define the following vectors

1 -1 1 -1
v.(g) := (I-— A ) A_ v, ., v (g) := (I-— A) Db
i A (€) oy F oi-1 1 A(€)

where A(e) = A:.
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Let VE := span {viLE)}, i € k. Then as in the proof of
Theorem 4.8 we have that Ve — M and that there exists a sequence of
0
derivative feedback maps F2€ such that

-1
(I-BF._ ) AF UE c UE

2e
with
-1
Mat[ (I-BF, ) AFIVE] = M_
where
(u, (&) u, (€ u o (e) )
1,1 2,1 ' k.1
0 U, o8 o ()
0 0 .
M :=
€
0 0 uk'k(e)
L J
with
- ‘_'+
u (@ = 0TI er g <
4

Let I_ := diag(u1 1(6),..

’ "uk,k(e)) and let NE be the nilpoten?

matrix defipgdﬂby M_i=M_-I_. Note that NZ = 0. We then have the

following lemma:
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b-
Aosame Yok b A 4@ ... 0 A: b c b D. TRem

.

It . : :
<
Lemma 4.4:/{‘” De - t? N’ vi(e)lk 0 for ik ] <{0,...,k-1}
b

<
and 1 f.P,< B
Proof: This result is proven in [4.14 , Lemma 6.2, 6.31].

The next lemma establishes that the Lp-norm of the closed
loop impulse response in the direction of the vectors vi(E), iesk,
can be made arbitrarily small.

-1

Let Ae 1= (IfBF2€) AF' Hence

Lemma 4.5: - Assume that b @ AFb 9...9 Ai—zb c ker D. Let A: be a

set as given in Definition 4.4. Let F and Vi(e) as described above.

2

Then for i e k and all 1 < p < ®

| oe < v, 0,
De V_ (-e) — 0.
I 1 Lp e+(

Proof: For IE and Ne as previously defined there holds

I N = Ne I (4.121)

which implies [4.27

(I +N )t It Nt
€ € € €
e = e e
Thus
At M_t
e . (e) = e v, ()
1
It k-1
= e ° (I+EN_+... = N];_l)v, (e).
(k-1)! 1

By Lemma 4.4, the result follows. O
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Comments:

1) Note that the commutativity in (4.121) plays an important role.
It is for this reason that we have chosen the rather poor multiplicity
set A:. In [4.14] (see Lemmas 6.2 and 6.3) the set A: in Definition

4.4 is replaced by the more general set Ae:={A1(E),...,XkE} where now AE'is

symmetric set of k complex numbers, €aki(€)~—* Xi' ie k, and,
R a O ..
apart from the symmetry, we can choose Ki@ey # Aj(e) for i # §.

In this case the elements of the matrix Me are given by

g
—~
m
St
I

(-1) 173 Al A (e, for <

o
o
I

A (e)
L

and it is easy to see that if I := diag(ll(e),..., Ak(e)) with Ai(e)
. €
# A;Q't-:). i#3jand N_ :=M_=-I_then N I_and I_ N_ do not commute.
J ) = —_— — — =3 S — .
This seems to show that the asymptotic configuration of eigen-

values (as for example, that given by Definition 4.4) in the closed

loop system is important to achieve the result of Lemma 4.5.

2) Lemma 6.3 in 4.14 states that, relative to A: ; there exists

a sequence of state feedback maps Fe such that
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where as usual AF = A + BFE and Fe.is a high gain map such that
[
. - m
w = .
A, V_ <V with cEAFeLUEJ A .
(=3

Lemma 4.5 has shown that we can attain the same objective,

in the sense that ” De(')t vi(E)Ik E;a 0, by either using the
b

-1

A

high gain operator A+BFE(.FE —> ®©) or the operator (I-BFZE) -

0

where F is finite and F2€ _233 F2, where F2 is also finite. In

m
any case we can choose Al(e) e AE to go to - ® along any real asymptote A.
The next theorem is a combination of the results obtained in

Theorem 4.8 and Lemma 4.5 and it is a key one for the solution of (ADDP)O.

Theorem 4.10: Let (A,B) be controllable and consider the subspaces
* = . Let A, A and A be as in Theorem 4.8 with A c C .
? 14

m . s . - .
For i € g, let Ai - be a multiplicity set of n,+! infinite root loci
- ’

with common growth ui and asymptotic direction Ai in F . Then there

exist
. s V .*
a) a sequence of controlled invariant subspaces E‘Eib Vb,K
‘ -1
b) maps F and F, —> F, such that (I-BFZE) AFVE c VE ,
>0
olI-BF )—1A [V 1= 3 A®  and (1-BF,)R < AR
2e Fllet o, i,= 2 Rb,K F a,K’
-1
Let A_ := (I-Ber)w AF. Then for such maps F and Fée
Aet *
€ D ‘ =~ 0 1< <
) I e ubrK“L - =P
p €0
9 m
a) olal= u A, uh Ul uA
€ j=p 1 c r z
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Proof:; Items a, b and Jd have been proved in Theorem 4,8.
It is also clear from the proof of Theorem 4.8 that
* *
A€VK S VK. Thus by using (4.109) it follows that we have to

show that

where

R, o= spanlv, (9}, icg 3 ell,2,... 1)

with n, = 0 for i €{p+1,...,9} (see (4.110c) and also (2.21)) and

v, (&)— allp .
3l Ty F i

Let A
i,€

[4

:= A |R, and note that from (4.110-111)
€ 1,€

b_+AFbi+...+Al b, <« K, ie
1

|
',_l.
el

Hence by Lemma 4.5 we have that

| pe 1€ v, (e l, —0,i<p<x 3¢ {1,2,...,n +1}.

p €0

From the proof of Theorem 4.8 we also have
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*
where C is a controlled invariant subspace such that Vb K
14

and G[AFCICJ = A_-

To prove item ¢, it follows from Gf ) . that it suffices if

Aet 2-1
| pe = A b |E —> 0 segq, £e{1,2,...,n +1} ,
F ] o €0 = i

Now, for € sufficiently small we can write
*
X = UK o Col_ (4.122)
which implies that the vector AF_l bs can be written as

R
L oo, (v, (&) +w(e) + cle)

’ 14

*
where aj i(E) are real scalars, w(e€) € VK' c(e) € C.
14
Aﬂ-l

i &)—r
Since Vﬂ,s( ) P

b , we must have
>0 S

% i(e)— 0 for (§,1) # (L,s), a, (e)— 1 ,w(e) —> 0 and c(s) —» O
>0 rS 0 >0 >0

Also note that since c{€) + 0 and G[AF |C]1 ¢ I then

Be ¢ °
[pe © e, — 0o .
p €0
Hence
At n +1
e= L~ i t L
|| pe A IE < 53 |aj,i(€)[ I D i,€ v ,i(E)” .
P i=1 j=1
A_t
* flpe " e, — o0
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and c) is proved.

The arguments used in the proof of the above theorem are
similar to those used in Theorem 6.1 [4.14].

We finally obtain

*
Corollary 4.5: 'Suppose that Im G < Vb K" Then (ADDP)o is solvable.
14

* *
implies Im G + B < Vb

Proof: Note that Im G < V and that

b,K K

-1 *
Im(I-BF_ ) GcIm G+ BclVl
2e b

K

The result now folllows from Theorem 4.10c¢ and Lemma 4.3.
* -0

The final conclusion is that given that Im G c Vb K" then
r

we can almost decouple the disturbance (” E”L 5.6“ é”L ) by either

p p
using high gain state feedback:.or a finite gain nonsingular P.D. law .

V.5 P.I.D. OBSERVERS

where

*
Let [ be a given subspace and let SL be the infimal con-
ditionally invariant subspace that contains L . We have seen in

obs
Chapter I that there exists an observer z described by
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: w = Kw + Ly (4.123)

zObS

: * *
such that w(0) = x(0) (mod SL) yields w(t) = x(t) (mod SL)' ¥t € R.

b ,
Note that zo ® is an integral (I) type observer in the
sense that w = f(fy).
*

Now consider Sb L the infimal L - almost conditionaly
’ p

invariant subspace "containing" L, 1 < p < (see Definition 1.13

and Theorem 1.3 (dual)). it is clear from the comments in [4.181]
*
that in order to arbitrarily accurately estimate x(mod Sb L)' i.e.
14
*
| w- x(moas

b,L)“Lp < €, the integral observer ZObS has to be @ high
gain one (K - ®, L & o),

In this section we show that there exists a P.I.D. observer
which exactly estimates X(mod S:,L)' P.I.D. observers are those
which in addition to integral action also admit a proportional (P)
and differentiating (D) action, i.e. if w is the state variable
of the obkserver then w = f(fy, v, §,...,y(n)).

It is clear that if w(s) =T(s) y(s) is the equation of
a P.I.D. observer in the complex variable s, then T(s) is a rational
matrix.’ (For integral observers, T(s) is is strictly proper).

Since a rational matrix can be realized by a generalized linear

systemx[4.16] we shall say that an observer is a P.I.D typeobserver

if it is described by

=
1l

L le + Ly (4.124a)

. (n)
= M y+M.y +...4M )
5 AL ' (4.124Db)

z
|
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T T T T,
where w = (w ,w2) 1s 'the state variable of the P.I.D. observer.

1
Note that (4,124b) corresponds to the forced response of a subsystem
of the type Jw2 = W,+My where J is nilpotent map (see (3.35)).

The main objective of this section is to give a dual inter-

bPretation to theorems 4.4 and 4.8 which leads to :

a) the construction of a P.I.D. observer which exactly estimates

¥»*
x (mod Sb [ yand

I

b) the construction of an observer which exactly estimates
* * *
x (mod SE) where SE =3 Sb,K'

*
The following lemma shows a decomposition of X/Sb L
7

Lemma 4.6: Let N

b L be a subspace as in (1.78). Then

X _X_ 4 X _
® -
L N, L

%

Sp1

%)

Proof: The above direct sum is to be considered as an external direct
sum of two vector spaces, which in thi§ case are quotient spaces.

By Lemma 1.2'-a we obtain

* -
b,L b,L

=
Il
=

i
n NL . (4.125)

Now, from (1.70) and (4.125)

* * o *
Sb,L=Nb,LnSL=NbLn N nSL
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and by using (1.67) and Lemma 1,2'-b, it follows that

* _ * _ *
Sb,L = Nb,L n SL with Nb,L + SL = X
and the result follows. 0

For a geometric interpretation of Lemma 4.6., recall that
for x € X and for a given subspace K, the element x € X/K is the
coset of X(mod K) and x = x + K. Geometrically, x is the

hyperplane passing through x obtained by parallel translation of

Z
y

X
yez:=N

b,L

*
x®z :=8§
. *®
ze= Sy 1

*
In the above figure, the cosets of X/SL are all the two
dimensional planes which are parallel to SL and similarly for the

cosets of X/Nb,L .

“Whenye perform the externaldirect sum of the two guotient
*

spaces we obtain all the lines which are parallel to Sb L’ which are
14

*

exactly the cosets of X/Sb L
4

K.
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We know how to construct an integral observer for X/SL'

The question that arises now is whether we may define an observer on

a subspace Z such that

The answer is yes and we shall see in a moment that the

observer defined on { is in fact a P.D. observer. Note that if

{z,} is a basis for Z thenz, =2z + N is a basis for
i i i b,L
X/Nb,L .
. Thus by adding the output of such an observer with the output
*
of observer for X/SL we then obtain by Lemma 4.6 an estimate of
*
x {mod Sb,L)'

In order to facilitate the presentation of the ensuing theorem
we Stafe a trivial fact from linear algebra.
g L
Fact (*): Consider the dual space X' and let W' and U be subspace

of X' such that

1
X =weV
Then .
X=UVeoW.
Proof: First note that (X')' = X and let {xi,...,xﬁ,x£+1,...,x$}

be a basis for X' such that

L ]
— 1 ' = ' '
W = span{xl,...,xk} and V span {xk+1,...,xn}.
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Let {xj} ;, j € n, be the unigque set such that xlf_xj =48, .
=z i3
Then {xl,...,xk,xk+i,...,xn} is a basis for X with

~

sPan{xl,...,xk} = V and sPan{xk+1,...,xn} =W,

The next theorem is a mere dualization of Theorem 4.4.

Theorem 4.11: Let the pair (C,A) be observabfe. Then there exists

a P.I.D. observer

=
I

K + L
w1 4

(n)

3
[

= M y+M y+.. .+
p = MoytMyy My

*
such that @1(0) = 0, w2(0—) = Q yields for all Xx(0) € Sb L
* ’
b,L

-+

w, (£) + w, () = x(t) (mo@a S ) , tek.

Proof: Our aim is to define a system on a subspace Z which complements

N

oy is it
b,L or this write

(1-L2C)% = (AL C)x - Ly - L v (4.126)

2

where L1 and L2 are maps to be defined.

From the duality principle established by Willems [4.18]
we have that the subspace N; L is the "ﬁb L" of the sequence (1.12)
r 7
, T T
with respect to the pair (A ,C ).

T T
Since the pair (A ,Cc ) is controllable, then as in the

proof of Theorem 4.4 (see (4,59)) it follows that the dual space X'



307

admits the following decomposition

o -t
X'=§ o Nb L (4.127)
where
L *.L
H o s, @ Li (4.128)

Lo . ; . T T
and L is a controlled invariant subspoace relative to (A ,C7).
i

T
Moreover, by the proof of Theorem 4.4 there are maps L1 and

Lg such that

1
Vol T, T-1
X'= (1 ch.) S & (A+L1C) Nb,L @.129)

T T
and such that the pencil s(I—L2C) - (A+L1C) is regular. Hence

by Theorem 4.3 there are maps

1 L
Lt - (I-L C)TSD | (A+L C)T]SD (4.130a)
v 2 1
T T—AJ_ ~ 7= L .
.= - , (4.130Db)
J (A+L1C) Nb,LI(I L2C)L]NbIL

. T
such that the eigenvalues of Lv and the Jordan structure of the
T
nilpotent map J  determine, respectively, the finite-zeros and the

T T
infinite~zeros of the pencil s(I-L2C) - (A+L1C) .

Let Z := SD. Then by using fact(s«) we obtain from (4.127-8)

the following decomposition for X

X=R, 81 (4.131)
where

* *
l = SL n Li , with SL + Li = X,
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The decomposition of (4.129) also yields

1-

X = (A+L1C) Nb,L e Z . (4.132)

Let Xl and'Xé denote, respectively, the decompositions (4.127)

and (4.129) and, similarly, let X1 and X2 denote the decompositions

(4.131-2). Hence, by using (4.130) it follows that if
(A+L c)T' : XU > X! (I-L c)T : X > X!
: 1 1 21 2 B | 2
then
Mat(Aa+L.C)T = (LT 0}  Mat(z-L.o)T = (1 0
1 v 2
I 0 JT

By considering the dual bases X1 and X2 we then obtain

(a+n.cy : X, > X, (I-L.C) : X =+ X

1 2 1 2 2 1
with
Mat(A+L1C) = LV 0 Mat(I-LZC) = I ot. (4.133)
0 I Q J

Let P, be the projection on Z along NbVL' Then from
Z "
(4.126) and (4.133) we obtain the following generalized linear system

on [Z

Jz =2z - Ly - LY (4.134)
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The solution of (4.134) has the form shown in ( 3.37) and

is given by

q-1
20 = § omoyg e, £>0
i=0 *

where
= M, := + Geees r= + ;
My i= L, M (JL, + L) Mz P=ET LRI L) M
and g 1is the nilpotency index of J.
*
Define an integral observer for X/SL (see (1.60)) by
L) - +
w1 le Ly
where
* , *
K := (A+L'C) (mod SL) ; L := L' (modSL)
*
and L'EL(SL).

it follows that w, (0) = 0, @2(0-) = 0 yields for all 5(0) e 8

Also define a P.D. observer for X/Nb L by

r

g-1
w2 = Z M, y(l) .
i=0 *
*
Let e := (w1+w2) - (x(modSL)+z). Then by using Lemma 4.6

*

1 b,L’

e(t) =0, £t >0, i.e.

»*
b,L)'

W, (&) + W, (t) = X(t) (mod S
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Comments:

1) Note that the error dynamics are dictated by the eigenvalues

of X, i.e., e =‘Ke.

2) It can also be shown that there exists a P.I.D. observer

* *
which estimates X/SaAL,where Sa L is the infimal almost conditionally
f [ 4

invariant subspace which contains L.
The next theorem contains dual interpretations of some
results shown in Theorem 4.8. By dualing result a) we obtain that

there exists a sequence of conditionally invariant subspaces SE such

C . '
that SE =3 Nb,L' This 1Tplles by Lemm: 1.2'-b that, for =

*
sufficiently small, S + S, = X. ILetS :=S n38§, . Hence as
€ L € € L

in Lemma 4.6 we define the following external direct sum

* *
S, S SL
* * * *
Note that SE =3 Sb,L - Hence x + S_ =5 *t Sb,L

»* *
so that X/SE =3 X/Sb'L. We then obtain

*
Theorem 4.12: Let SE be as defined above. Then there exists an

observer described by

\
)
il
-~
B
+
e
N

]
I
~
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¥

such that w, (0) = 0, % (0) = Q yields foxr all x(0) Sé,

*
w (e) + 2 (£) = x(t) mod S ).

Proof: By dualizing result b of Theorem 4.8 we obtain maps L and
-1

L -1 L =15
- [ A - .
Loe ;:f L, such that A (I L2€C) Se Se and Nb,L c (I ch) Nb,L
We recall the notation AL := A+LC and we remark that
(I-L2€C) is nonsingular.
Now write
(I-L_ C)x = &% - Ly - L_ 3
2e x= X Y 26!
and let %X := (I—LzeC)x. Hence
% =at1L o - Iy = L.y . (4.133)
2€ 2e

-1
_C) "S_ <« §S_ then there exists a map K,_ (which

=

L
Since A (I-L

[\

, -1
is unique) such that X, P = PAL(I—L2€C) where P : X >~ X/S_ is the

canonical projection. Let MO := -PL and M1E = —PLze' Then from

(4.133) it follows that
%(mod S_) = Kzex(modse) + MY + My
Since

ﬁ(modse) = (I-L GC)x + SE = x(modSE) - L.y

2 2

them
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represents an observer for g(t)(modSE).

Let

Wy T RgWy P Ly

*
be an observer for X(t)(mod SL)(seg (1.60)) with

*®

*
K, := (A+L'C) (modS,); L, ;= -L'(modSL)

1 L 1
%
and L' € L(SL).
*
Let e =w, - x(modSL) and e, := z - x(modSE). Hence
e =K Poey TRy, -
* . x» =0 *

Since SE = SE n SL, then }(0)(mod$e%<implies &(O)(modSL) =

='§(0)(modSE) = 0. Since (@1(0), Z (0)) = 0 we then obtain

[—

(gl(O), %0) = 0) so that ef(t) := e, (t) + gz(t) =0, t >0.

Comments:

1) It is easy to see that the transfer function matrix X2(s) from

y to % 1is given by

X_(s) = (sI-K )—1(M + sM.) + L
2% T W e 0 1¢ 2e
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and note that X2(s) is proper, Thus we can exactly estimate
}(t)(modse), SE =3 Nb,L , by using an observer with a proper transfer

matrix whereas Theorem 4,11 has shown that to exactly estimate

E(t)mod(ﬂ (s) degenerates into a polynomial transfer matrix.

p,L ) %

2) Let Ae := o[k, T = GEAL(I-L EC)-l(modse:l. Then by using again

2e 2

a duality argument (see the proof of Theorem 4.8) we have thatIA l ey 0O
. 0

3) It should be noted that the controllability hypothesis of

Theorem 4.8 (relative to the pair (AT,CT)) has been used only to find

the controlled invariant subspace Li (see (4.128)). Since the

observer constructed in Theorem 4.12 is not concerned with the estimation

of x(t) (mod Li)’ it follows that the observability of the pair (C,A)

(equivalent to the controllability of (AT,CT)) is not needed as

hypothesis in such a theorem.

4) £ can also be shown that there exists an observer of the

*
same type shown in Theorem 4.12 which estimates lc(t)(modSe n SL)
» *
where S_n SL — S Lo
€ €+O a,
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CONCLUSIONS

The intention of this final section is to give some general
comments about the thesis and also to point out some directions of
future research which are connected with the work developed here.

By using geometric properties of sliding subspaces described
in Chapter I and a suitable state space decomposition for an invertible
system, we have constructed in Chapter II an output feedback map
R such that the asymptotes of the closed loop map (A+g BRC), g + <,
take on pre-assigned values. We have also seen that the. i eigen-

. L1
vectors associated with an asymptote a(A ——> g0) converge to a
, goos

direction which can be chosen to belong to any subspace Bi c B

such that Bi ) Bi = Bi—l (see the comments after Proposition 2.2).

It would be interesting in this context to investigate in more
detail the limiting process of the sequence of (A+g BRC)-invariant
subspaces associated with eigenvalues that go to infinity in order
to find out the reason for the collapsing of the i eigenvectors
into only one direction.

In the simple case with rank CB = m, such a collapse does
not occur : we have m first order asymptotes and the m-dimensional
(A+g BRC) -invariant subspace associated with such asymptotes converge
to the m-dimensional subspace B. It isworthwhile to note that an
(A+g BRC) -invariant subspace is an (A,B,C)-invariant subspace
[4.12, 1.16 ], i.e., it is simﬁltaneously a controlled and a condition-
ally invariant subspace. Thus in the case rank CB = m we have a

sequence of m-dimensional (A,B,C) invariant subspaces (with arbitrary
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spectrum) canverging to the subspace B which is simultanecusly an
almost controlled invariant subspace and a conditionally invariant
subspace (see the consequences of rank CB = m in II.2.3). It would
be valuable to have similar interpretatious for the case rank

CB < m.

The work carried ocut here on the topics of generalized
linear systems (Chapter III) and regular pencils (Chapter IV) was
partly guided by the suggestions given by Verghese et al [3.13].

They have pointed out the need for a geometric language to deal with
such subjects and the usefulness of such an approach is clearly
manifested at various points in the text For example, we have
obtained a clearer picture of the controllable and unobservable
infinite-zeros due to the association of such zeros with controllable
and uncobservable subspaces. This vyields an alternative way of
computing a controllable and observable generalized linear system.

As another example, we have obtained a constructive regularity con-
dition for a pencil in the sense that one can establish computational
algorithms based on the sequences (4.34) and (4.36) to check for the
regularity and if the pencil turns out to be regular one can easily
obtain the maps L and J which yield the modal decomposition of
the regular pencil.

The primary objective of Chapter IIT has been that of
understanding more about geometric structural properties of a plant
which is natﬁrally modelled by a generalized linear system. The
results on zero placement by state feedback and output feedback have

illustrated the possibilities of altering the dynamical structure
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and have also demonstrated the similarities with ordinary linear
systems: for example, the infinite-zeros can be assigned if and
only if they are controllable. Thus a generalized linear system with -
controllable infinite-zeros (and of course, a rational transfer matrix
C(sE—A)-lB) can be converted into a linear system with proper
transfer matrix. It is also worthwhile to note that a generalized e&wa,m#j%n
can be transformed into a linear system with strictly proper transfer
matrix by state derivative feedback and for this to occur it is
necessary and sufficient that Im E + B = X. This follows immediately
from the equivalence : JF such that (E+BF) is nonsingular <> zero
eigenvalues of E a?e controllable <=> Im E + B = X. |

The other important reéson for studying generalized linear
systems and regular pencils is that an ordinary linear system
(; = Ax + Bu) may become a generalized linear system under a PD law.
Indeed, several results in Chapter IV inVolve a regular PD law which
yields a generalized linear system.

The sections concerning PD laws and PID observers are
perhaps the most interesting from the synthesis point of view
because they point to an area of research, namely the use of PID
compensators in multivariable control problems, which apparently
has not been exploited yet.

It would be very interesting .to have general constructive
principles for a PID compensator in the same spirit as those described
by Schumacher [4.12] with respect to PI compensators. By a PID

compengator we mean a time invariant linear system with the form
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£
]

Kw + Lly + ’L2y (Cc.1)

u = Mw + Fly + F2y . (C.2)

We believe that the properties described in Chapter IV concerning
the relationship bétween a linear system under a (regular and non-
singular) PD law and (almost) invariant subspaces will be of utility
in obtaining those principles.

Regarding the disturbance decoupling problem we also believe
that the results of Theorems 4.7 and 4.10 could be useful in the

search of solution for the following extensions

1. Consider the linear system

X = Ax + Bu + Gd

z = Dx

where, as usual, d is a vector of disturbances and 2z denotes the
to-be-controlled outputé;

We can then formulate the following problem which we term
the disturbance decoupling problem by a PID compensator and distur-
bance feedforward : does there exist a PID compensator given by

(C.l) and

= v o+ +
u Mw + Fly F2y F3d

such that in the closed loop system the transfer matrix from 4 to

2 is zero? If so, give existence conditions and a procedure for the
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computation of such a compensator.

2. Willems [4.18] has formulated and solved the almost disturbance
decoupling problem by measurement feedback (ADDPM) which is as

follows : does there exist a PI compensator & = Kw + Ly;

u = Mw + Fy such that in the closed loop system with (5(0), @(O)) =0

there holas ||zl << | af »
p

He has shown that (ADDPM) is solvable if and only if

* ' *

I c V c . .

m G b, ker D and Sb’ImG ker D (C.3)
By keeping symmetry with (ADDP)o (see Definition 4.3) we

are then led to the following problem : does there exist a PID

compensator given by (C.l1l}and(C.2) andwhich involves finite maps such

that in the closed loop system with (&(O),@(O)) =.- 0 there holds

||z|£ < € “ dHL ? If so, find existence conditions and give a
p p

procedure for the construction of such a P.I.D. compensator.

It is reasonable to conjecture (by analogy between (ADDP) and
(ADDP)O) that under the same conditions (C.3) there exists a P.I.D.
compensator with the required properties that solves the last problem.

It is our opinion that in order to construct the above PID
compensator we shall have first to understand‘more about the state
space synthesis of a high gain compensator which solves (ADDPM) -

Such a svnthesis procedure does not exist at the present time. In

[4.18] the PI compensator which solves (ADDPM) is obtained through
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a realization of a transfer matrix which is computed as the solution
of an equation.

We then conclude this thesis in the hope that the above
guestions are significant and interesting, and that they peint to

valuable future research.
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