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Abstract 

This thesis is concerned with the study of Stochastic Vehicle Routing Problems (SVRP). 

We first consider the Vehicle Routing Problem with Stochastic Demands (VRPSD) in 

which a set of vehicles with fixed capacity must be routed at minimum expected cost 

over a series of customers with stochastic demands. In a first stage, planned routes are 

designed. In a second stage, whenever demand exceeds capacity along a route, a recourse 

cost is realised as the vehicle returns to the depot to refill before continuing along its 

pre-defined route. 

We develop a new exact algorithm, the Paired Tree Search Algorithm (PTSA), for 

solving the VRPSD. The problem is formulated within the framework of stochastic integer 

programming and lower bounds are obtained for both the first stage deterministic problem 

and the second stage stochastic recourse problem. This algorithm is used to optimally 

solve randomly generated test problems of medium size and to provide heuristic solutions 

of known quality to VRPSDs of larger size. In addition, a series of VRPSD extensions 

that incorporate different levels of demand-related information disclosure and route-related 

reliability are solved to optimality. 

The remainder of the thesis is concerned with alternative SVRPs. Algorithms are 

presented for the multiple Travelling Salesman Problem with Stochastic Travel Times (m-

TSPST) and the VRP With Stochastic Service Times (VRPSST). Moreover, a real life 

application of the VRPSST to a maintenance problem in the utilities sector is presented. 

The computational implementation of the planning model is described and results are 

obtained with reference to a pilot study. 

Finally, we consider the issue of reoptimisation. An empirical study is completed that 

assesses the usefulness of a priori strategies (obtained by solving individual SVRPs) as a 

practical alternative to a posteriori solutions (obtained by successively solving determin-

istic VRPs). The computational results reported support the hypothesis that the SVRP 

is a good alternative to the reoptimisation strategy. 
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Chapter 1 

Introduction 

For a number of practical applications, in fields as varied as design, construction, main-

tenance and engineering, the technique of optimisation, i.e. the selection of a "best" con-

figuration of parameters (decisions) that satisfy a number of specified requirements (con-

straints) to minimise or maximise the desired benefits (objectives), is of substantial impor-

tance. In route planning and scheduling, a large group of such problems are combinatorial 

in nature in that the decision-making process involves locating an optimal (ordered) combi-

nation of items, e.g. places to visit on a tour or commodities to manufacture on a machine. 

Such problems are referred to as Combinatorial Optimisation Problems (COPs). 

This thesis describes, demonstrates and analyses the creation and implementation of 

a new algorithmic method for solving a class of complex stochastic combinatorial op-

timisation problems. These problems incorporate elements of uncertainty within their 

associated problem environments that, if not in conception then in interpretation, are or-

dinarily considered to be entirely deterministic. In this study, the specific COP for which 

stochasticity is introduced is the well-known transportation problem, the Vehicle Routing 

Problem (VRP). 

1.1 The Vehicle Routing Problem 

The vehicle routing problem is the generic name given to a large class of problems involving 

the distribution of goods, services, information or personnel. The standard interpretation 

of a VRP concerns a group of customers, geographically dispersed around a single depot, 

that require a certain amount of known demand. The solution to such a VRP involves 

1 
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determining how a fleet of vehicles, limited in capacity and stationed at the central facility, 

must be routed at minimum cost in order to serve the set of customers. 

The vehicle routing problem has enjoyed an intensive and successful period of research 

over the past two or three decades, together with an associated proliferation of related 

articles. This interest has been fuelled by both academics, rising to the challenge of a com-

plex VRP solution belying a simple original concept, and practitioners, profitably applying 

VRP modelling techniques to a large number of commercial and industrial applications. 

It is estimated that transportation costs account for approximately one sixth of the gross 

national product of the USA [167] and although many theoretical advances and associated 

algorithms lack the robustness to optimise all of these problems, economic motivation to 

attempt to do so is certainly more than justified. Moreover, the huge spectrum of practical 

transportation systems for which VRP analysis can be applied are not all directly related 

to the physical delivery of commodities. Applications including the transport of units of 

stock from a warehouse to particular retail outlets, the collection of cash by a security 

company from a number of geographically dispersed banks, the collection of mail from 

postboxes and the inspection of gas meters across a range of customer sites, are all exam-

ples of VRPs in which the deliveries can be interchanged with collections (or services) and 

in which the vehicles and commodities can vary in form. Clearly, due to the large number 

and variety of constraints and/or objectives that can arise in such cases, the existence of 

a standard, underlying version of the vehicle routing problem, together with a series of 

alternative practical interpretations of this basic definition, is of inevitable value to the 

researcher and practitioner; comprehensive classifications and surveys of the VRP can be 

found in a number of articles in the literature, e.g. [78, 34, 160, 35, 43, 141, 105, 33, 140, 82]. 

The vehicle routing problem, which has also been studied under the auspices of the ve-

hicle scheduling problem [49, 92, 78, 87, 211], the vehicle dispatch problem [56, 44, 102, 101] 

and the vehicle delivery problem [9, 202, 165], is a generalisation of the Travelling Salesman 

Problem (TSP) in which one vehicle of unlimited capacity is used to visit all the customers. 

Currently, optimal TSP solution methods exist for problems of a few hundred customers 

[45, 53, 208]. However, despite the amount of alternative vehicle routing formulations and 

solution methods, current VRPs can only be solved exactly for up to fifty customers in rea-

sonable computational time [164, 81, 6, 114]. This follows solution algorithms for VRPs of 

up to twelve customers [102], twenty-five customers [46, 47] and forty customers [159, 153]. 
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Needless to say, there exist a large number of heuristic solution methods that locate near-

optimal VRP solutions in comparatively small computational times yet without typically 

providing more than an empirical guarantee on solution quality, e.g. [49, 87, 84, 37]. 

1.2. The Stochastic Vehicle Routing Problem 

In the classical definition of the vehicle routing problem it is assumed that the associated 

parameters, concerning factors such as cost, customer demands and vehicle travel times, 

are deterministic. This conjecture is often too simplistic in today's dynamic environment 

where there exist increasing requirements on levels of productivity and service and a corre-

sponding commitment to enlarged and more elaborate transportation systems. In parallel 

with the need to manage such a growing number of indeterminate systems there exists an 

increased amount of data augmentation and volatility. Moreover, although our tools to 

manage these systems are becoming more sophisticated, our ability to collect and use such 

incoming data is restricted by our ability to absorb, synthesise and analyse the informa-

tion made available. Despite increasing computational power, the manual/deterministic 

methods that are still in use today remain ill-suited to respond in real time to last minute 

changes and disruptions. It is natural, therefore, that there should be an emerging em-

phasis on intrinsically allowing for uncertainty and consequently dealing with everyday 

variations that one encounters in a fast changing dynamic environment. An acceptance of 

uncertainty implies a movement towards dynamic and stochastic models, characterised by 

their versatility, which will provide useful and practical information for complex indeter-

minate systems. These models should be adept at coping with change as opposed to their 

deterministic counterparts which, apart from fixed mechanical processes, can only remain 

useful for a limited time-span. 

The Stochastic Vehicle Routing Problem (SVRP) differs from the VRP by the intro-

duction of some element of variability within the system in question. In modelling terms, 

this alteration is usually in the form of some parameter, which was deterministic and 

known in the VRP, being replaced with a random variable that describes the range of 

possible values available to the particular parameter. Examples include the Vehicle Rout-

ing Problem With Stochastic Demands (VRPSD), the Vehicle Routing Problem With 

Stochastic Service Times (VRPSST) and the Vehicle Routing Problem With Stochastic 
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Customers (VRPSC). Each type of problem has its own set of characteristics that are 

unique to the problem concerned however several concepts and properties overlap and can 

be applied to some or all of the individual SVRPs. For example, all SVRPs belong to a 

class of a priori optimisation problems for which it is impractical to consider an a posteriori 

approach that computes an optimal solution whenever the random variables are realised. 

Instead, prior to a "perfect information" state and the recognition of any single deter-

ministic realisation, i.e. "scenario" or "state of nature", an a priori strategy attempts to 

obtain the "best" solution possible, over all realisations of the random variables involved. 

In fact, this inherent stability of a SVRP solution may provide an added benefit in certain 

practical cases due to the possible presence of inflexible labour assignments and/or a need 

to provide a seamless service in a customer-driven environment. 

The SVRP, in all its guises, has seen relatively little research compared to its well known 

deterministic parent problem. Correspondingly, solution methods for such problems are 

scarce. Indeed, only a small number of both heuristic and optimal solution methods for 

Stochastic Combinatorial Optimisation Problems (SCOPs) of any kind can be found in the 

literature, e.g. the Stochastic Shortest Path (SSP) problem [89, 161, 188, 5, 90, 118], the 

SSP problem with recourse [52, 5], the stochastic bottleneck spanning tree problem [124, 

122, 123], the probabilistic project evaluation and review technique [206, 11], the stochastic 

delivery man problem [7] and the stochastic location problem [88, 209, 158, 79]. The 

article that first considered a vehicle routing problem with stochastic elements appeared 

thirty years ago, [201], however only a very small number of similar SVRP studies have 

since been completed. For the most part, optimal solution methods have been designed 

for special cases of individual SVRPs of very small size and simple VRP-based heuristic 

approaches have been designed for practical applications involving SVRPs of medium size. 

Without doubt, the enormous advances experienced in the analysis of the deterministic 

VRP has not coincided with a similar furtherance in the study of its stochastic equivalent. 

Given the number of potential applications, this lack of parity is conjectured to be for a 

number of reasons.. Firstly, there exists no classification of individual SVRPs, together with 

their unique and generic characteristics, with which to corroborate the few studies that 

have been completed. Secondly, there exists no considered outline concerning the possible 

implications of applying stochastic routing problems in practice. Consequently, there exist 

no concurrent series of extensions or interpretations of individual SVRPs that correspond 
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to problems involving the various practical constraints and characteristics arising out of 

the presence of these different stochastic occurrences. Thirdly, and most importantly, 

the enormous complexity that the addition of a stochastic element brings to an already 

difficult COP has hindered research in terms of motivation and possibilities. This can 

be seen both mathematically, in terms of the scarcity of related theoretical approaches, 

and practically, in terms of the absence of any algorithms that can find optimal, solutions 

to such problems in reasonable time and without experiencing problems with computer 

memory requirements. 

1.3 Research Motives and Goals 

This thesis is concerned with the study of stochastic vehicle routing problems. Initially, we 

introduce individual forms of the SVRP before considering one particular representation 

in more detail. Apart from creating a platform with which to test the principal SVRP 

algorithm presented in the thesis, this reduction in problem scope will lead to a greater 

understanding not only of the particular problem involved but also of how to classify and 

properly study any other SVRP. The final part of the research will involve the expansion 

of the methods and concepts established in the study to explore SVRP in a wider and 

more applicable context. 

The SVRP variation which forms the basis for much of the work in the thesis is the 

vehicle routing problem with stochastic demands. This problem is the most researched 

problem of its kind and, during the initial survey and classification process, serves as an 

ideal framework with which to consider the fundamental structural changes that occur 

to a routing problem once a stochastic element has been added and the broad planning 

issues that need to be addressed when optimising such a stochastic problem. These char-

acteristics, which are unique to stochastic routing problems, have never been formally 

classified in so thorough a fashion that ambiguity should not continue to cloud the associ-

ated mathematical modelling process. By considering the emblematic issues surrounding 

an individual SVRP and creating a series of appropriate substitute problems or extensions, 

this continual hindrance to research will be addressed. 

The main objective of this research is to create a new algorithmic method for solving 

a series of stochastic routing problems. Initially, algorithm development will be directed 
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towards solving a basic interpretation of the VRPSD, defined in the earlier classification 

process, before attempting to generalise the procedure in the latter half of the study. Im-

portantly, during the development of the algorithm, priority will be given to the optimality 

of the derived solution, even at the expense of increased computational time. This is due 

to a number of factors given as follows. 

• SVRP is a comparatively young COP and exact algorithms offer the best method 

to learn about the properties and characteristics of such problems for current and 

future research purposes. Sensitivity analysis can be carried out without concern 

for ambiguity and/or the presence of sampling errors and empirical conclusions hold 

more weight with the added guarantee of solution optimality. Furthermore, only one 

or two SVRP variations have ever been solved to optimality and no interpretations of 

an individual SVRP have ever been contrasted, hence an optimal solution method is 

also more beneficial than a near-optimal method from the point of view of uniqueness 

and originality. A standard group of test problems can, for example, be produced 

for future reference. 

• An a priori SVRP solution involves a fixed routing strategy in a problem environment 

that contains a component which is usually stochastic over time. Therefore, since 

the duration of such a time interval will ordinarily not be insignificant due to the 

inherent uncertainty, "in most cases it is not necessary to solve [a stochastic] vehicle 

routing problem....in real time" [197]. 

• Optimisation for vehicle routing in general is increasingly considered to be a more 

practical approach for real problems since associated "algorithms offer the best 

promise for achieving robustness" [82]. This is because of three main reasons: 

(i) Rapidly decreasing costs of computation make higher quality solutions 

more obtainable. 

(ii) Even if an exact algorithm is not run to completion, the best available 

solution will often be better than what existing heuristics can provide. 

(iii) During the implementation of an exact algorithm, a precise bound between 

the best current solution and the theoretical optimum is maintained. 
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In addition to a pre-requisite of solution optimality, the new algorithmic procedure will 

be designed to be generic in nature due to a number of reasons given as follows. 

• An attempt is to be made to extend the method to solve a full cross-section of 

VRPSD interpretations. 

• An attempt is to be made to extend the method to solve a number of alternative 

SVRPs. 

• The method is to be adapted for use in an applied setting that may require an 

additional number of unique constraints. 

Following the design and empirical analysis of the modified algorithm in the cases of 

particular VRPSD extensions, alternative SVRPs and an applied example, the aim of the 

final part of the study is to consider the effectiveness of the SVRP approach in comparison 

to the "hypothetical" approach of perfect information, i.e. how close is the "stochastic" a 

priori solution to the "deterministic" a posteriori solution, obtained by averaging optimal 

VRP solutions for all possible "scenarios"/"states of nature" arising out of the uncertain 

problem environment. Such a conclusion to the thesis will provide a performance measure 

for the stochastic routing approaches studied previously. 

In summary, our main goals in this research are fivefold: 

(i) We intend to classify and survey the field of stochastic vehicle routing before 

deriving a group of practical extensions for one SVRP, namely the VRPSD. 

(ii) We aim to create and implement a new algorithm designed primarily to find 

optimal solutions to the VRPSD. 

(iii) We aim to extend the algorithm to solve different VRPSD extensions and 

alternative SVRP variations. 

(iv) We hope to demonstrate the usefulness of studying stochastic routing problems 

by applying the algorithm to a practical case study. 

(v) We hope to demonstrate the performance of the algorithm by empirically eval-

uating the quality of its associated solution against a theoretical "best". 
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1.4 	Outline of the thesis 

The goal of this chapter has been to introduce the general concept of vehicle routing as an 

important research field in operations research and to very broadly describe the state of 

the art. Moreover, the introduction of a stochastic emphasis to the orthodox deterministic 

vehicle routing approach has been discussed and the considerable practical justification 

for studying such problems has been highlighted. Specifically, the detailed motivation 

for embarking on this research, together with associated aims and objectives, has been 

outlined. The remaining chapters of the thesis will further explore the SVRP and will 

describe the creation of a new algorithmic technique for solving such a class of problems. 

The chapters are organised as follows. 

In Chapter 2, a revised version of Roberts and Hadjiconstantinou [177], we provide 

an overview of the deterministic vehicle routing problem before reviewing SVRP in de-

tail. Formulations and basic definitions are given for individual SVRPs before a thorough 

survey of associated methods, properties, concepts and applications. Particular atten-

tion is given to the VRPSD as the model for describing most of the algorithmic work in 

this thesis. There is an extensive discussion concerning the conflicting objectives, varied 

constraints and inherent subjectivity of the "basic" VRPSD. Concentrating on the broad 

planning issues involved, this discussion encourages the production of a more complete 

problem definition and, consequently, the attainment of a clearer VRPSD (and SVRP) 

methodological perspective. In addition, a group of standard VRPSD extensions is in-

troduced and, together with the holistic framework given for the SVRP in general, this 

taxonomic process provides a suitable basis from which to structure the remainder of the 

thesis. 

In Chapter 3, a revised version of Roberts and Hadjiconstantinou [180], we describe 

a new algorithm, known as the Paired Tree Search Algorithm (PTSA), that has been 

designed to find exact solutions to a number of stochastic vehicle routing problems. The 

PTSA, which has its foundations in a dynamic stochastic decision tree approach, operates 

with the use of two linked trees. The nested branching scheme adopted by the PTSA is 

fully described, together with its associated notation. The new algorithm, in its crudest 

form, is tested on a small number of randomly generated problems and issues concerning 

computational complexity and sensitivity analysis are addressed. 

In Chapter 4, VRPSD lower bounds that can be applied to the PTSA are formulated, 
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see Roberts and Hadjiconstantinou [178, 181]. Computational results are given for a large 

number of randomly generated test problems and the efficiency and performance of the 

algorithm is highlighted in comparison with the only similar work in the literature. In 

addition, the PTSA is used to provide heuristic solutions of known quality for VRPSDs 

of larger size. 

In Chapter 5)  we solve a number of extensions of the VRPSD that are first defined in 

Chapter 2. A number of issues are discussed including different levels of demand-related 

information disclosure and route-related reliability. Emphasis is also placed on empirically 

testing a number of properties that were conjectured earlier using a number of randomly 

generated test problems. 

In Chapter 6, a condensed version of which is to appear in Hadjiconstantinou and 

Roberts [115], the relevant modifications of the PTSA for other SVRPs is discussed. Al-

gorithms based on the PTSA are presented for the multiple Travelling Salesman Prob-

lem with Stochastic Travel Times (m-TSPST) and the Vehicle Routing Problem with 

Stochastic Service Times (VRPSST). Moreover, a real life application of the VRPSST 

to a maintenance problem in the utilities sector is presented, see Roberts and Hadjicon-

stantinou [179]. The computational implementation of the planning model is described 

and results are obtained with reference to a pilot study. 

In Chapter 7, we consider the issue of reoptimisation, see Roberts and Hadjiconstanti-

nou [182, 183]. An empirical study is completed that assesses the usefulness of a priori 

strategies (obtained by solving individual SVRPs) as a practical alternative to a posteriori 

solutions (obtained by successively solving deterministic VRPs). The necessary VRP sam-

pling procedures are detailed and a thorough testing process, using test problems from the 

literature, is described. This final part of the study is used to highlight the validity of the 

hypothesis that the SVRP approach is a good alternative to the reoptimisation strategy. 

In Chapter 8, we provide a summary of the entire thesis. The main contributions 

derived from this thesis are highlighted. Some issues related to this research, including 

current limitations of this work, are discussed. Finally, we provide several suggestions for 

future research. 



Chapter 2 

The Stochastic Vehicle Routing 

Problem 

2.1 Introduction 

In this chapter we formally define the basic version of the vehicle routing problem be-

fore reviewing existing heuristic and exact VRP solution methods. Then, following the 

introduction of a number of formal "basic" SVRPs, stochastic vehicle routing is compre-

hensively reviewed. The vehicle routing problem with stochastic demands is considered 

in particular detail, together with a classification of the issues that arise in its associ-

ated practical problem environment and the introduction of a concurrent set of substitute 

problems known as VRPSD extensions. 

2.2 The Basic Vehicle Routing Problem 

The standard interpretation of the VRP which has developed over the years to be known 

as the Basic Vehicle Routing Problem (BVRP) is the problem of designing a minimum 

cost set of routes for a fleet of homogeneous delivery vehicles of limited capacity in order 

to satisfy a set of given customer demands. The routes must be designed so that: 

(i) Each customer demand location is served exactly once by one vehicle. 

(ii) Total demand on any one route is less than or equal to vehicle capacity. 

(iii) Each route begins and ends at the central depot. 

10 
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Figure 2.1: An Example of a VRP Solution 

2.2.1 Definition 

The BVRP is defined on a graph G = (V, E) where V = 	v2, ..., vri} corresponds to 

the set of vertices and E = {(vi, vi) : vi, vi E V} corresponds to the set of edges. The 

vertices have known and fixed locations and every edge (vi, vi) has an associated non-

negative distance, or travel cost, cii. It is assumed that the graph is symmetrical and the 

matrix C = (cii) satisfies the triangular inequality, i.e. (vi, vi) is only defined for i < j 

and (cik Ck j > cij V i, j, k). Vertex v1  represents a depot, indexed by i = 1, at which 

a homogeneous fleet of m vehicles, each of capacity Q, is based. The remaining vertices, 

V \vi , correspond to a set of customers, indexed by i E {2, ..., n}, with known demands 

qi. The objective is to design a minimum cost-set of routes such that all demands are 

satisfied, each route starts and ends at the depot, each customer is visited exactly once 

by one vehicle and total demand on any individual route does not exceed capacity Q. 

Figure 2.1 shows the shape of a typical BVRP solution; in this case there are four vehicle 

routes and fifteen customers, i.e. m = 4 and n = 16. 

2.2.2 Practical Interpretations 

There are a large number of practical VRP applications in which the definition of the 

BVRP fails to satisfy particular requirements. This has resulted in the development of a 
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number of practical interpretations of the BVRP that incorporate additional constraints, 

alternative objectives and/or applied assumptions. For instance, objectives of the BVRP 

that may be more applicable in practice include minimising the sum of fixed and variable 

routing costs or simply minimising the total number of vehicles used. Such BVRP inter-

pretations are referred to as fleet size and mix problems [106, 10]. Moreover, a whole new 

class of problems that are usually referred to as Vehicle Scheduling Problems (VSPs) have 

arisen following the addition of temporal constraints into the original BVRP definition, 

see [63]. A number of these and other practical conditions are further specified as follows.' 

1. Drivers (vehicles) may have overall time (distance) restrictions where the duration 

(length) of a route must not exceed a given time (distance) limit T, e.g. T equates 

to an operating time limit where there exist travel times (tij) between customers. 

This problem is referred to as the distance constrained routing problem [155]. 

2. Customers may have particular time intervals within which a service must take 

place. This problem is known as the VRP with Time Windows (VRPTW) and is 

comparatively well-researched in the literature [136, 61, 191, 60, 63]. 

3. Precedence relations may exist between sets of customers, i.e. vertex vi must be 

visited before vi, see [65, 173, 174, 175]. 

4. Customers may have to be serviced periodically, i.e. a customer that requires a 

delivery once every t days should be visited on T/t occasions during a period T. 

The latter interpretation of the BVRP arises a great deal in practice and is known 

as the Period Vehicle Routing Problem (PVRP), see [185, 93, 40, 113]. 

5. Vehicles may be based at a number of depots, i.e vehicles can begin and end at 

different locations, and so each depot cannot be considered in isolation. This prob-

lem, known as the Multiple Depot Vehicle Routing Problem (MDVRP), is another 

well-researched BVRP interpretation [101, 151, 156]. 

6. Vehicles may be heterogeneous in nature, i.e. each vehicle has a distinct capacity. 

This problem is often referred to as the Vehicle Routing Problem with Multiple 

Vehicle Types (VRPMVT). Alternatively, there may exist multiple vehicle capacity 

'The citations given are not exhaustive and correspond in the main to recent papers and/or surveys. 
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restrictions where each vehicle has a number of distinct compartments. This can 

occur when vehicles are delivering different commodities or there exists a number of 

attributes relating to one commodity, e.g. weight and volume. 

7. Deliveries may be allowed to be split between vehicles, i.e. customers can be serviced 

by more than one vehicle. This problem is known as the Vehicle Routing Problem 

with Split Deliveries (SDVRP), see [73, 74, 71]. 

8. Mixed customer collections and customer deliveries may be allowed, i.e. the Pickup 

and Delivery Problem (PDP), see [65, 75]. Alternatively, if vehicles must complete 

a series of collections before completing a series of deliveries or vice versa then 

the problem is known as the Vehicle Routing Problem with Backhauls (VRPB), 

see [204, 163]. 

9. Customer demands may be homogeneous [116, 3]. 

Table 2.1 displays a complete list of these practical characteristics and is based on similar 

classifications given in the literature. The characteristics of the TSP, the TSP variation 

that employs m vehicles of unlimited capacity, known as the multiple Travelling Salesman 

Problem (m-TSP), and the BVRP are also highlighted. 

2.2.3 Computational Complexity and Solution Approaches 

Like the majority of COPs, the BVRP and all its practical interpretations belong to a 

set of NP-complete problems, see [134, 91, 154, 169]. Problems in this set share the 

characteristic that all currently known algorithms for finding optimal solutions to these 

problems require a number of computational steps that, in the worst case, grows as an 

exponential (nondeterministic polynomial2 ) function of the "size" of the given problem. 

In the case of the TSP and the VRP, problem "size" generally refers to the number of 

geographical locations that must be visited, i.e. n. 

The members of the set of NP-complete problems are equivalent in the sense that, 

if a solution algorithm can be developed that performs in a polynomial number of steps 

then such an algorithm can be developed for all the members of the set. It is, however, 

conjectured that no algorithm will ever be developed that is actually capable of solving 

2 NP is an abbreviation for nondeterministic polynomial. 
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Characteristics Options TSP m-TSP BVRP 
Objectives Minimise variable routing costs 

Minimise fixed and variable costs 
Minimise total vehicles required 

• • • 

Depot types Single depot 
Multiple depot (MDVRP) 

• • • 

Fleet sizes Single vehicle 
Multiple vehicle 

• 
• • 

Fleet types Homogeneous 
Heterogeneous (VRPMVT) 

• • • 

Vehicle types Unlimited capacity 
Single compartment 
Multiple compartments 

• • 
• 

Vehicle operations Deliveries (collections) 
Split deliveries (SDVRP) 
Mixed deliveries and collections (PDP) 
Backhauls (VRPB) 

• 

Vehicle properties Maximum route times 
Maximum customer visits 

Customer types Precedence relations (priorities) 
Definitive service times 
Time windows (VRPTW) 
Multiple services (PVRP) 
Demands-equal (complete) 
Demands-unequal (complete) 
Demands-unequal (not binding) 

• 

Table 2.1: The Characteristics of Practical Vehicle Routing Problems 

NP-complete problems in a polynomial number of steps. For this reason, a considerable 

number of polynomial-bounded heuristic (near optimal) algorithms have been developed 

for a range of NP-complete problems including the VRP. Loss of solution quality in the 

use of such heuristics is countered by increased computational efficiency. Nevertheless, 

exact approaches are far from redundant for solving such problems. Although restricted 

to solving problems of modest size, optimal methods may be more beneficial as a solution 

approach, especially for a comparatively new problems (see Section 1.3). In addition, 

it should be noted that NP-completeness is a worst-case phenomenon and the average-

case may be polynomial, e.g. the Simplex algorithm for linear programming problems. 

Indeed, even though they are usually treated separately, exact and heuristic approaches 

can often complement each other, see Section 2.3.2. Many exact algorithms contain intu- 
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itive/heuristic rules that shorten the search for an optimum and the attempt to construct 

optimal solution methods can yield a series of insights into a problem that can lead to an 

efficient heuristic. 

2.3 VRP Formulations and Solution Methods 

The connection between theory and practice in vehicle routing began in 1959 when an 

article was written that described an application of VRP to the delivery of gasoline to gas 

stations [56]. This study outlined the first generic formulation of the VRP and suggested a 

possible heuristic solution method for the particular case study involved. Five years later, 

a general extension of this algorithm was used in another practical application involving 

the delivery of nondurable commodities to wholesalers in the UK [49]. The greedy heuristic 

presented in this study has since become known as the Clark-Wright Savings Algorithm 

and is still in use today. 

Before reviewing the solution methods available for tackling the vehicle routing prob-

lem3 , we will introduce a number of mathematical formulations for the VRP that form the 

basis for some of the heuristic and exact approaches to be discussed in the next section. 

2.3.1 Formulations 

The following review of VRP formulations is not exhaustive and many other versions can 

be found in the literature, e.g. the vehicle flow-related integer program introduced by 

Golden [107], the commodity flow based formulation presented by Gavish and Graves [94, 

95] and the modified assignment formulation presented by Laporte [148]. 

A Three-Index Vehicle Flow Formulation 

Fisher and Jaikumar [83, 84] consider a three-index vehicle flow VRP formulation where 

Xijk variables indicate whether or not the arc (vi, vj) is traversed by vehicle k. The variables 

can be defined as follows: 

xiik  = 

{

1 if vehicle k travels directly from node vi to vi, 

0 otherwise. 

 
(2.1) 

3In the following discussion, the "vehicle routing problem" can be taken to refer to the BVRP unless 
stated otherwise. 
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A compact formulation for the VRP can then be given as follows. 

min z,EE, 	 (2.2) 
i,j k 

subject to 

E qiXijk C Q 	(k = 1, . , TTI 	 (2.3) 

x .[xiik ] E Sm • 
	 (2.4) 

where 8, corresponds to the set of feasible solutions to the m-TSP and constraints (2.3) do 

not allow vehicle capacity to be exceeded along any one route. Moreover, by introducing 

binary yik variables that indicate which customers are assigned to particular vehicles, i.e. 

Yik = 
1 	if node vi is visited by vehicle k, 

0 	otherwise, 
(2.5) 

Fisher and Jaikumar expand (2.2)-(2.4) to explicitly formulate the VRP as follows. 

min z = E E ciixiik 
i,j 	k 

subject to 

(2.6) 

1, (i = 2, ... , n), 
E Yik = 

{ 
(2.7) 

k 	 m, (i =1) ,  

Eqiyik (k = 1, 	, m), (2.8) 

E xijk = Y jk (j = 1, . . . , n; k = 1, . . . , m), (2.9) 

Exiik = Yik (i = 1, . . 	n; k = 1, . . 7n), (2.10) 

E Xijk 5_ !SI - 1 
i,jES 

(S c V; 151 > 2; k = 1, , m), (2.11) 

Yik E {0, 1} 

xijk E {0, 1} 

(i = 1, ...,n; k = 1, . . . 
(i, j = 1, 	, n; k = 1, . 

, m), 

, m). 

(2.12) 

(2.13) 

These constraints specify that every customer is assigned to one vehicle (and that the 

depot is visited by all vehicles), constraints (2.7), that every vehicle which enters a node 

will also leave the same node, constraints (2.9 - 2.10), and that subtours are eliminated, 

constraints (2.11). The latter constraints, which work since a cycle over the set of nodes 
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S must contain ISI arcs, can be represented in a number of ways, see [55, 162, 107]. 

Note, by replacing Q with the variable Qk in (2.8), this construction allows a hetero-

geneous vehicle interpretation of the BVRP to be modelled. 

A Two-Index Vehicle Flow Formulation 

Laporte et al [150] present a two-index vehicle flow formulation that is obtained by re-

moving index k from the variables introduced in. (2.1). More specifically, variables xii 

correspond to how many times an edge (vi, vi) is traversed by a vehicle and can be defined 

as follows: 
1 if (vi, vi) is used in the solution and 1 < i < j < n, 

ii = 

{

X 2 if (vi, vi) is used as a return trip and i = 1, j > 1, (2.14) 

0 otherwise. 

If v(S) is a lower bound on the number of vehicles required to service all the vertices of S 

in the optimal solution, given by: 

di. 
v(S) = iES  

Q 
(2.15) 

  

where [41 represents the smallest integer not less than *, then the VRP can then be 

formulated as follows. 

subject to 

min z = E ciixii  
i<, (2.16) 

E xi, = 2m, 	 (2.17) 
j=2 

E Xik E xk, = 2 	(k = 2, ... , n), 	 (2.18) 
i<k 	j>k 

E xii  5_ ISI - v(S) 	(S c VVvi}; 2 5_ ISI 5_ n — 2), 	(2.19) 
i,jES 
xij E {0,1,2} 	 (i = 2, ... , n), 	 (2.20) • 

xii E {0,1} 	 (i, j = 2, . . . , n). 	 (2.21) 

The constraints (2.17) specify that m vehicles enter and leave the depot, the vertex 

degree constraints (2.18) specify that a customer receives a visit exactly once and the 
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classical connectivity constraints (2.19) specify that individual routes disconnected from 

the depot are prohibited. The latter constraints are obtained by observing that for any 

S C 	3  < ISI < n — 3, we must have: 

xi, > 2v(S), 	 (2.22) 
*ES,3E75 

or ieS,iET 

and that the following identity holds: 

(E Xik E xk,)= 2 E xi, + E xii. 
IcES i<lc 	k<j 	 i,jes 	jEs,3E7 

or iEs,iEs 

A Set Partitioning Formulation 

(2.23) 

Balinksi and Quandt [9] introduce a set partitioning formulation for the VRP. Let R = 

{1, 	f-} represent the family of possible feasible routes in the VRP and let the index set 

of the customers in route r be Nr . Let dr  be the cost of a route and let Qr  be the total 

load of a route given by: 

Qr = E qi. 	 (2.24) 
iENr 

Now, if A corresponds to the index set of routes visiting customer i and the binary 

variables yr  take the value 1 if and only if route r is used in the optimal solution, then the 

VRP can be formulated as follows. 

subject to 

min z = > dryr 
rER 

E Yr = 1, 
rEM, 

E Yr= m  
rER 
yr  E {O, 1} 

(i = 2, . . . , n), 

(r E R). 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

The constraints (2.26) express the fact that every customer must be served by exactly one 

vehicle (route) and the constraint (2.27) expresses the fact that the number of vehicles 

used is fixed and equal to m. 
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A Dynamic Programming Formulation 

The Dynamic Programming (DP) formulation for the VRP was first presented by Eilon et 
al [78]. Let X' = { 2 , 	, n} represent the set of customers and for any T C X': 

(i) let f (k, T) be the minimum cost of servicing the customers in T using only 

k < m vehicles, 

(ii) let v(T) be the minimum cost of a solution to the TSP defined by the depot 

and the customers in T, and, 

(iii) let q(T) = E qi. 
iET 

The minimum cost VRP solution can then be obtained through the following recursion: 

subject to 

f (k,T) = 	
v(T) 	 (k = 1) 

min
T  [f (k — 1, T — T*) v(T*)] (k > 1) 

Sc 

(2.29) 

q(T) — (k — 1)Q 5 q(T*) < Q 	 (k = 1, . . . , m), 	(2.30) 

77,1  k q(X' — T) < q(T*) < tq(T) 	(k 0 rn), 	 (2.31) 

q(X') — (m — k)Q < q(T) < kQ 	(k = 1, . . ., m). 	(2.32) 

The solution cost is equal to f(m, X') and the optimal solution corresponds to the opti-

mising subsets T* in (2.29). 

2.3.2 Solution Methods 

In the last thirty years, three main branches of study have developed in the research of 

vehicle routing problems. Fisher [82] refers to three separate generations of methodolo-

gies. The first relates to the development of simple heuristics to obtain computationally 

fast VRP solutions of varying quality. The second applies the tools of Mathematical 

Programming (MP), together with associated formulations, to find optimal solutions of 

sub-problems to the VRP which can be used as a foundation for good quality heuristics 

to the overall problem. The third involves two very different solution approaches: the 

development of expert systems and Artificial Intelligence (AI) search techniques, such as 

simulated annealing and tabu search, to obtain near-optimal solutions of good quality, and 
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the development of optimisation algorithms, based on polyhedral combinatorics and relax-

ation techniques, to locate exact solutions to VRPs of medium size. These two disparate 

approaches are grouped together since they are both in active development today. 

Here, we review the three methodologies in turn4. 

Generation 1: Simple Heuristics 

Simple VRP heuristics can be categorised into three different methods: route building, 

route improvement and two-phase. Route building heuristics are straight-forward in that 

arcs along a vehicle route are selected sequentially until a feasible solution is found. There 

will usually exist some minimisation criteria on the selection of appropriate arcs and 

such arcs will be chosen so that they do not violate the vehicle capacity constraints. 

The simplicity of these algorithms can be illustrated by using the Clarke-Wright savings 

algorithm as an example. The algorithm begins with an infeasible solution that relates to 

the pairing of vehicles with customers. Single routes are then combined to use one less 

vehicle and to contribute a saving to the overall cost of the problem, denoted by sii. For 

two customers, i and j, served individually, si3  is given by: 

sii = (Cii Cil 	Cij 	Cid — 	Cii 	Ci1) = Cli Cij — Cii 	(2.33) 

The savings algorithm simply selects the arc (vi, v3 ) that provides the maximum value of 

si3  given that the derived route is feasible, i.e. vehicle capacity is not exceeded. Then, 

customers i and j are considered to correspond to one individual customer k such that 

another customer 1 can be connected to k at a cost of min[cii, cid. The route building 

process continues iteratively, either by completing one vehicle then the next or by adding 

a customer sequentially to each vehicle route. Recent modifications of this original method 

all retain the essential structure of the algorithm, see [92, 215, 107, 4]. 

Route improvement heuristics for the VRP involve selecting a random m-TSP tour 

and improving on the current solution by the deletion and insertion of arcs such that the 

capacity constraints are not violated. Christofides and Eilon [44] were the first to use such 

an approach for the VRP by adapting work by Lin [157] for the TSP. In contrast to Lin's 2-

optimal approach, the authors derived a 3-optimal method which involves reaching a final 

4For the third generation, Al and exact methods will be treated separately as 3A and 3B. 
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solution such that no improvement is possible by eliminating three links and replacing 

them by three others. Clearly, the probability that a r-optimal tour is minimal increases 

with r but the amount of computations required to produce such a tour increases rapidly 

with r. Setting r to 3 is usually preferred although considerable improvements can be 

obtained by a selective exchange of more than three arcs, see [184]. Recent research on 

similar methods have been completed by Thompson [199] and Savelsberg [186]. 

Two phase VRP heuristics involve assigning customers to vehicles (phase 1) before 

a travelling salesman algorithm is used to optimally route such assignments (phase 2). 

The most famous two-phase method for the VRP is the "sweep" algorithm presented 

by Gillet and Miller [102] following studies by Wren [212] and Wren and Holliday [213]. 

Customers are first represented in a polar coordinate system with the origin at the depot. A 

circular sweep then occurs and customers are assigned to a vehicle. Once vehicle capacity 

is exceeded, the most recent customer is assigned to a new vehicle and the algorithm 

proceeds. Another two-phase approach includes the use of user-controlled parameters in 

the construction of a least cost insertion criteria that can lead to different solutions in 

different trials, see [45]. 

In a comparison of these simple approaches, see [82], the heuristic that selectively 

extended Christofides and Eilon's 3-opt algorithm appeared to provide the best results but 

Clark and Wright's algorithm remains the most widely used method to obtain reasonable 

solutions in very short computational times. Certainly, one aspect that unites all these 

heuristics is the omission of an effective procedure for dealing with differences in customer 

demands; poor quality solutions can be obtained when capacity constraints are tight. 

Generation 2: MP-based Heuristics 

Mathematical programming based heuristics involve formulating and solving a VRP sub-

problem to obtain a good near optimal solution of the overall problem. Indeed, MP-based 

approaches blur the boundary between exact and heuristic solution methods since the 

associated algorithms will often obtain optimal solutions if they are run to completion. 

The MP-based two-phase method proposed by Fisher and Jaikumar [84] operates in a 

similar manner to the "sweep" algorithm given above. Customers are assigned to vehicles 

before the cost of an optimal travelling salesman tour is derived for each assignment. 

In phase 1 however, the optimal solution to a Generalised Assignment Problem (GAP) is 
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utilised. This VRP sub-problem is a well known COP which involves finding the minimum 

cost assignment of n jobs to m agents such that each job is assigned to exactly one agent, 

subject to the agent's available capacity. GAP is well-researched in the literature, see [39], 

and has been solved optimally for problems of up to ten agents and fifty jobs, see [112]. 

The transfer of GAP to the assignment problem in the VRP is fairly intuitive. First, m 

customers are chosen to be the "seeds" of the customer clusters and a vehicle is allocated 

to each of them. The GAP is then optimised following the inclusion, for each customer i 

and each cluster k, an insertion cost, dik , relative to the cluster seed, ik, where dik  is given 

by: 

di* = Cly 	Cii, — clik . 	 (2.34) 

The mathematical programming nature of this approach can be highlighted using Fisher 

and Jaikumar's corresponding three-index vehicle flow formulation given in Section 2.3.1. 

Constraints (2.7), (2.8) and (2.12) actually define the generalised assignment problem 

described above. Furthermore, whenever the variables yik are fixed to satisfy these con-

straints, the constraints (2.9), (2.10), (2.11) and (2.13) define a TSP over the customers 

assigned to that vehicle. Although the two phase MP-based heuristic does not optimise 

the VRP based on this formulation, it does optimise the associated GAP, which uses an 

approximation of the cost of routing each assignment (using the dik 's), and the associated 

TSPs over each of the final assignments. In fact, Fisher and Jaikumar's heuristic, which 

is based on Bender's decomposition [17], operates in exactly this way however they do 

not run the algorithm to completion, i.e. they provide a heuristic solution to a heuristic 

interpretation of the VRP5. 

Another MP-based heuristic is the set-partitioning approach that operates by enu-

merating the cost of a number of candidate vehicle routes, see [9, 87, 2]. Once again, 

the Set Partitioning Problem (SPP), which involves the partitioning of a set of charac-

teristics (customers) into a number of activities (routes) such that each characteristic is 

included exactly once among the chosen activities, is a well known COP and exact solu-

tions can be found for problems of large size, see [120]. The related formulation for the 

VRP is given in Section 2.3.1. Needless to say, if all feasible routes are initially included 

in this formulation then an optimal solution to the VRP would be found, however the key 

'Fisher and Jaikumar's algorithm actually solved the VRPTW, not the VRP. 



2.3 VRP Formulations and Solution Methods 	 23 

behind a successful heuristic of this type is the efficient selection of candidate solutions 

due to the excessive memory requirements that occur in the complete case. 

Both these heuristic methods outperform the simple heuristics given above. In general, 

the assignment heuristic provides better quality solutions however the set-partitioning 

heuristic is more applicable since certain kinds of complex constraints can be added without 

too much difficulty, i.e. the more constrained a VRP becomes, the smaller the overall 

number of routes that need to be considered. 

Generation 3A: Expert Systems and AI-based Heuristics 

In recent years, due to a reticence for applying existing VRP solution methods in practice 

because of a lack of robustness in dealing with practical constraints and assumptions, 

an increasing number of studies describe the implementation of interactive methods and 

expert systems in the arena of vehicle routing. The former involves routing systems that 

allow the user to input customers into routes or to alter delivery sequences within a 

heuristic solution, see [171]. The latter involves the tuning and selection of particular 

heuristics for use in different types of problems, see [62, 130]. 

AI search techniques involve constructing a neighbourhood of solutions "around" an 

initial starting solution according to a number of specified rules. Ordinarily, the procedure 

operates in an iterative fashion with a new solution being created from particular neigh-

bourhood solution by the combination of routes, e.g. by transferring a customer from one 

route to another or by alternating two customers in one route with another two customers 

in a different route. Each solution in a neighbourhood is assessed via a cost function which 

is usually a simplified version of the exact TSP-based cost since to find optimal solutions 

in a large number of cases would require excessive computational time. 

An example of an AI-based heuristic is Simulated Annealing (SA), see [135, 176]. SA is 

a probabilistic hill-climbing technique that, according to some probability function, allows 

a "downhill move" (the selection of an inferior solution) during the neighbourhood search 

process. Typically, the probability that a non-improving solution is accepted reduces 

as the number of successive changes in the objective function value decreases and as 

computational time increases. SA algorithms stop when a fixed number of searches have 

failed to obtain a suitable new incumbent solution. Tabu search is another example of 

an AI-based heuristic, see [103, 104, 176]. The basis of this approach concerns the use of 
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flexible attribute-based memory structures that are designed to exploit historical search 

information. Restrictions are placed in the algorithm to prevent cycling and tabu search 

algorithms stop after a fixed number of iterations. A number of successful applications of 

this approach to the VRP can be seen in the literature, see [168, 195, 96]. 

The main advantages of these heuristics over those defined previously is that a range 

of possible solutions is maintained as the search progresses and it is possible to select 

non-improving solutions under certain conditions. Additionally, the methods are simple to 

implement, conceptualise and enhance which is especially important for VRP practitioners. 

Generation 3B: Exact algorithms 

Following the survey by Laporte and Norbert [141], exact algorithms for the VRP can be 

classified into three broad areas: Integer Linear Programming (ILP), direct tree search 

methods and dynamic programming. The number of algorithms contained in each classi-

fication is huge and we only provide a selection of such methods in this review. 

ILP Methods: The first two ILP methods described here involve approaches that 

were previously discussed with reference to MP-based heuristics. The set partitioning 

formulation (2.25)-(2.28) and the generalised assignment formulation (2.6)-(2.13) both 

represent a MP framework with which to find an optimal solution to the VRP. However, 

for the set partitioning approach, exact methods are hindered by two problems: (i) there 

usually exist millions of yr  variables which can cause problems relating to excessive compu-

tational storage requirements, and, (ii) huge numbers of optimal TSP solutions, relating 

to dr  where Q, < Q from (2.24), must be found which can cause problems relating to 

excessive computational time requirements. A similar difficulty to (ii) arises in the GAP-

based approach. Clearly, it is for these reasons that heuristics were originally considered 

however corresponding optimal algorithms have been utilised. Agarwal [1] and Agarwal et 

al [2] employ a column generation technique that forms a reduced problem containing only 

a restricted subset of all possible variables (columns). In this case, optimal solutions were 

found for VRPs of between 15 and 25 customers. In addition, Desrosiers et al [64] and 

Desrochers et al [60] obtain solutions of VRPTWs of a slightly larger size using a similar 

method. The latter are easier to solve using such an approach since the number of feasible 

routes is lessened. 

The first clear success using an ILP method came about following the introduction of 
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the two-index vehicle flow formulation given in Section 2.3.1. Utilising this formulation 

and employing a general purpose integer programming algorithm that operates accord-

ing to constraint relaxation, VRPs of medium size were solved to optimality. The algo-

rithm successively solves subproblems containing (2.16), (2.17) and (2.18), introduces any 

subtour elimination constraints (2.19) if they are violated and introduces the integrality 

constraints (2.20) and (2.21) if the current solution is non-integer. Computationally, the 

algorithm works very well for VRPs that are not tightly constrained, due to the presence 

of fewer subtour elimination/capacity constraints, and has solved such problems for up 

to fifty vertices [150]. Similar methods have been utilised by Fleischmann [85, 86] and 

Laporte et al [149] to solve different types of VRPs of similar size. 

The last ILP method to be considered here concerns a formulation for the TSP that 

can be obtained by combining (2.16), (2.18) and (2.21) with the following constraint: 

E 	181- 1. 	 (2.35) 
2 ,9 ES 

This formulation can be strengthened by the addition of additional valid inequalities called 

comb inequalities [48, 111]. Following work by Laporte and Norbert to generalise these 

constraints for the VRP, Cornuejois and Harche [51] were able to solve the first tightly 

constrained, fifty customer vehicle routing problem. 

Direct Tree Methods: Direct tree search methods consist of sequentially building 

vehicle routes by means of a branch and bound tree. An important factor in the efficiency 

of such an approach is in the quality of the bound at each branching stage. It is possible 

to branch on arcs or routes and exact VRP algorithms have been developed for both these 

cases. Further details of this type of approach are given in the early stages of Chapter 3 

and so will be omitted here. 

Early research work was concerned with branching on arcs. Christofides and Eilon [44] 

consider the formulation of a bound on the VRP given by the Shortest Spanning Tree 

Problem (SSTP) and solve very small size problems employing a tree search technique. 

Laporte et al [148] consider the use of a bound based on the Assignment Problem (AP) 

and use a sophisticated algorithm to solve medium size VRPs. Christofides [42] was the 

first to consider branching in terms of vehicle routes. In this construction, each tree has at 

most m levels and branching is completed by considering a list of possible feasible routes 
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after the addition of one customer that has not yet been routed. Needless to say, such a 

method requires a set of criteria to eliminate potential routes from consideration. 

To highlight the construction of a direct tree search method in more detail, the work 

of Christofides et al [46] to derive high quality bounds on the VRP based on shortest path 

calculations will be considered. The first of these bounds is based on the use of k-degree 

centre trees. These are trees in which the degree of vertex vi is k, i.e. d(v1) = k. Consider 

a m-TSP defined on a graph G where the edge set E is partitioned into four subsets given 

as follows. 

(1) El: edges forming a k-degree centre tree, i.e. a spanning tree over G where 

d(vi) = k (where k = 2m — y). 

(ii) E2: y edges incident to vertex v1. 

(iii) E3: (in — y) edges not incident to v1. 

Let ci be the cost of edge 1 E E, let Ei represent the set of edges incident to vertex vi 

and let (S, S) be the set of all edges with one vertex in S and the other in 3. Given that 

xl V t = {1, 2,3}, l E E are binary variables that take the value 1 if and only if edge 1 

is in the optimal solution, then the m-TSP relaxation of the VRP can be represented as 

follows. 

subject to 

min z = E• 	+ 4 + 4) 
1€E 

(2.36) 

E xi > 1 	 (S C V;  ISM > 1), 	 (2.37) 
1E(S,S) 
E xi = 2m — y, 	 (2.38) 
IEEI 

E xj = n — 1, 	 (2.39) 
/EE 

E xi = y, 	 (2.40) 
i€E1 
E 4 = m - y, 	 (2.41) 

1EE\EI 

E 	+ x? + 4) = 2 	(i = 2, ..., n), 	 (2.42) 
/E.Et 
xi E {0,1} 	 (t = 1, 2, 3; / E E), 	 (2.43) 

y > 0 and integer. 	 (2.44) 
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Now, for the three distinct problems that arise for 4, 4 and 4, constraints (2.42) can 

be relaxed in Lagrangean fashion. The objective is therefore rewritten in the following 

manner where oz(/) and 0(1) are the two terminal vertices of edge 1 and A i  = 0. 

V(A, y) = 
lEE 

(CI + A,(1) + A0(0 ) - 2 E Ai. 	 (2.45) 

A lower bound on the VRP is then given by: 

max {max E Vt (A, y)} , 
m l  <y<ni l A 	t  

(2.46) 

where ml  is a lower bound on the number of single customer routes in the optimal solution 

and can be chosen so that: 
71 

(in MOD E qi. 	 (2.47) 
i=mi 

The second bound employed by Christofides et al is based on q-routes, a route weighting 

concept first derived by Houck et al [121] for the TSP. Let w be the weight of a route 

and let q(1) be the value of the l t h element of w. Let 01(i) be the value of the least cost 

"q-route" that starts and ends at the depot, passes through vi, has no loop of the form 

vi — vk  — vi and has a total weight of q(l). A lower bound on the VRP is then given by: 

0n 
min (  /(i)di\ 

i=1 	 q(l) 
(2.48) 

where the 1/) / (i)'s can be calculated recursively and the computational effort to find the 

lower bound is clearly related to 	During tests, the q-route bound was found to be 

superior to the k-degree tree bound in an arc-based branch and bound however the best 

results were actually obtained by using the latter in a route-based branch and bound. 

This original work has recently been extended by Hadjiconstantinou et al [114] by 

employing lower bounds that are based on q-paths and k-paths. The use of iterative com-

binations of such paths results in lower bounds of high quality and a set of corresponding 

reduction tests reduces the size of the problem even further. Embedding the lower bounds 

into a tree search procedure, based on a new branching strategy, enables optimal solutions 

to be found for up to fifty customers. Fisher [81] derive new lower bounds based on k-trees 

and provide exact solutions of VRPs of similar size in short computational times. 
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Dynamic Programming: DP methods usually provide lower bounds for direct tree 

search methods; they are classified separately due to the different nature of the methods 

involved. The primary problem with such an approach is in the reduction of the huge 

number of different states that need to be completely enumerated. The basic formulation 

for a VRP-based DP has been given in Section 2.3.1 and, in this section, one DP method 

called state-space relaxation will be briefly reviewed. Other methods include the use of 

feasibility constraints or dominance criteria. 

State space relaxation operates with the use of a mapping function and was introduced 

by Christofides et al [47]. First, the original state (k, T) that appears in (2.29) is relaxed 

to [k,g(T)] where g is a mapping function from the space of all subsets T to a lower 

dimensional space. Let: 

g(T)=Eqi EtV T C X', and, 	 (2.49) 
2E7' 

g(T*) = E qi  —= t* V T* C X'. 	 (2.50) 
JET. 

The relaxed problem can then be represented in the following way, where T(t*) is the 

minimum cost of a circuit that starts and ends at the depot and has a total load of t*. 

f(k,t) = 	[f (k — 1, t — t*) 	F(t*)] 	 (2.51) 

subject to 

t — (k —1)Q < t* < Q, 	 (2.52) 

m l 	k  [q(X') — < t* < 
	

(2.53) 

q(X') — (m — k)Q < t < kQ. 	 (2.54) 

A lower bound on r)(t*) can easily be obtained and successive substitutions of this kind can 

be incorporated into (2.51) to obtain recursive lower bounds on a VRP given by (2.51)-

(2.54). Christofides [43] reported that VRPs of up to fifty customers could be solved 

employing this DP-approach. 

2.4 Basic Stochastic Vehicle Routing Problems 

Stochastic vehicle routing problems arise whenever elements of a VRP are random. As 

a result, there exist many possible problem alternatives otherwise known as SVRP vari- 
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ations. In general, solution concepts are more intricate and solution methodologies are 

more complex in the stochastic case, even though the latter predominantly originate from 

the same approaches used in the deterministic VRP. Before discussing such issues and 

completing a comprehensive review, five basic versions of the stochastic vehicle routing 

problem are formally defined. In each case however, the objective of the problem is omitted 

since the issues concerning the meaning of a stochastic optimum in a routing environment 

are discussed in the following section. At this stage, each objective can be taken to signify 

the minimisation of expected routing costs. 

Stochastic routing problems that are not considered in this thesis, since they are not 

seen as direct stochastic extensions of the BVRP, include the stochastic inventory routing 

problem [205], the problem of finding the least expected travel time path between two cus-

tomers [117], a location problem with stochastic demands [144] and a dynamic stochastic 

routing problem with random arrival times [26, 28, 27]. 

2.4.1 The VRP With Stochastic Demands 

The vehicle routing problem with stochastic demands was the first stochastic interpretation 

of the VRP to be studied [201] and remains the most widely researched SVRP. Indeed, the 

VRPSD is often simply referred to as the SVRP. Specifically, the Basic Vehicle Routing 

Problem with Stochastic Demands (BVRPSD) retains all the characteristics of the BVRP 

except that the customer demands, originally corresponding to the deterministic qi's, are 

represented by discrete, independent, non-negative random variables, ei E e, with finite 

means, pi, and finite variances, ai. Each customer i > 1 is defined as having Si possible 

demand values or demand realisations, denoted by d E i V l E {1, 	In addition, 

each set of demand realisations, 	= 	 V i > 1, is assumed to be ordered 

in ascending size, i.e. Ei < 	1 < k and min(d) = 	max(d) = 	V i > 1, and has 

a corresponding probability distribution set, (pi = fp! , , . , p.siq V i > 1 where the 

following sum holds, 
Si 
~pi =1Vi> 1. 	 (2.55) 
1=1 

The term pi can then be interpreted as the probability that the demand value d arises from 

the set ei. By definition, each customer requires a service and the maximum demand of 
8 any customer is always equal to or less than vehicle capacity, i.e. El > 0, eis < Q V i > 1. 



2.4 Basic Stochastic Vehicle Routing Problems 	 30 

2.4.2 The VRP With Stochastic Customers 

The vehicle routing problem with stochastic customers, sometimes referred to as the Proba-

bilistic Vehicle Routing Problem (PVRP), involves customers which have deterministic de-

mands but are present with a given probability. The VRPSC has received almost as much 

attention in the literature as the VRPSD and is an extension of the TSP with Stochastic 

Customers (TSPSC), or Probabilistic Travelling Salesman Problem (PTSP), first studied 

by Jaillet [125]. Specifically, the Basic Vehicle Routing Problem with Stochastic Cus-

tomers (BVRPSC) retains all the characteristics of the BVRP except that each customer 

has a probability of being present denoted by pi V i > 1, where 0 < pi < 1. 

2.4.3 The VRP With Stochastic Customers and Demands 

The Vehicle Routing Problem with Stochastic Customers and Demands (VRPSCD) is an 

obvious offshoot of the VRPSC. Specifically, the basic version of this problem, i.e. the 

BVRPSCD, retains all the characteristics of the BVRPSC except that the customer de-

mands, for those customers that are present, are represented by discrete, independent, 

non-negative random variables, i ,  with finite means, pi, and finite variances, cri. 

2.4.4 The VRP With Stochastic Travel Times 

The vehicle routing problem with stochastic travel times, sometimes referred to as the mul-

tiple Travelling Salesman Problem with Stochastic Travel Times (m-TSPST)6, is a direct 

extension of the TSP with Stochastic Travel Times (TSPST), first studied by Kao [133]. 

Specifically, the Basic Vehicle Routing Problem with Stochastic Travel Times (BVRPST) 

retains all the characteristics of the BVRP except that in addition to the costs, cij, cor-

responding to the edges in set E, there also exist travel times which are represented by 

discrete, independent, non-negative random variables, 	with finite means, pii, and fi- 

nite variances, aii. Each edge is defined as having yij possible time values denoted by .  

V l E 11,...70 in the set rii. This set of travel times is assumed to be ordered in 

ascending size, i.e. 72c < rikj, 1 < k V i,j, and has a corresponding probability distribution 

6It is clearly possible to consider the VRPST with stochastic demands however this problem, which has 
never been solved, is largely ignored in lieu of the VRPST with stochastic service times, i.e. the VRPSST. 
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set, (j = 	, co7P1 V i , j = 1, ..., n, where the following sum holds, 

j 
WZ~ = 1. 	 (2.56) 

1=1 

The term 44 can be taken to refer to the probability that the time realisation rjj arises 

from the set 7r2j and the capacity Q should be interpreted as an overall time restriction. 

2.4.5 The VRP with Stochastic Service Times 

The vehicle routing problem with stochastic service times is an offshoot of the VRPSD in 

which there exist service time demands at each customer point. Specifically, the definition 

of the basic version of this problem, i.e. the BVRPSST, retains all the characteristics of the 

BVRPSD except that the customers have service times that are represented by discrete, 

independent, non-negative random variables, 	with finite means, , and finite variances, 

oj. In this case, of course, the capacity Q is a restriction on both travel and service time. 

2.5 	Characteristics of a Stochastic Vehicle Routing Problem 

In a similar fashion to the generic SVRP, the VRPSD, VRPST, VRPSC, VRPSST and 

VRPSCD are all collections of sub-problems that extend from an original interpretation. 

The reason behind this extra intrinsic ambiguity lies in the inherent structural subjectivity 

involved with any stochastic problem. In this section therefore, all the important general 

issues surrounding stochastic vehicle routing are clarified using the VRPSD as an illus-

tration. This complete dissemination of ideas will lead to a substantive understanding of 

the structure of the problem that will create an unambiguous basis from which to define a 

comprehensive series of practical problem extensions of the BVRPSD and to outline clear 

objectives of the other SVRPs given in the last section. 

There are two key issues that effect the construction of a clear SVRP definition. The 

first concerns the appropriate form an associated solution should take and how the objec-

tive of the problem is to be perceived. The second concerns the effect that information 

disclosure has on the associated problem environment and how the timing of variable 

realisation relates to the optimisation process. The former is discussed once the role of 

problem scenarios and solution viability in a stochastic vehicle routing environment have 
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been highlighted. Following this, the concept of information-disclosure and its influence 

on the practical uses of SVRP modelling in different planning systems will be considered. 

2.5.1 Problem Scenarios and Solution Viability 

In the BVRP, where all the demands are fixed in advance, provided that there are enough 

vehicles to meet customer demand, a solution can always be found such that vehicle 

capacities are not exceeded, each vehicle starts and ends at the depot and each customer 

is visited exactly once. The key to understanding stochastic vehicle routing lies in the 

acceptance that, unlike its deterministic equivalent, its solution is not practically viable 

(implementable) at all times. To clarify this point, a number of definitions are required. 

Definition 2.5.1 (Problem Scenario) Given that xr , r E {1, ..., f'}, corresponds to 

the discrete random variables involved in any stochastic vehicle routing problem, let a 

problem scenario, Os , s E {1, ...,§}, be a complete set of any single realisations of these 

random variables, i.e. 	= i;• 

Definition 2.5.2 (Realisation Index) Let c(r, s) denote the realisation index of the dis-

crete random variable, xr , r E {1,...,0, in a given problem scenario, Os , s E 

A full set of realisations of the random variables involved in the VRPSD would, therefore, 

correspond to Os  = {EL2(2's) ,E3t(3's)  ...,Etn(n's)}, where t(i, s) corresponds to the index of 

the realised demand value of customer i in the problem scenario indexed by s, i.e. the 

demand of customer i in scenario s is di's) . Of course, each problem scenario has an 

associated probability of occurrence, Ps . For any VRPSD scenario indexed by s, this 

would correspond to the following: 

where: 

n 

Ps = 	t(2's) ), 
i=2 

E 	= 1. 
s=1 

(2.57) 

(2.58) 

Now, consider a simple VRP (rt = 8, m = 2, Q = 24, qi = {14,3,10,10,4,2,4},i = 

2, ..., 8) where the optimal solution involves two routes, shown in Figure 2.2, given by 

— v5  — v2  — v1  and v1  — v3  — v6  — v7  — v8  — v4  — v1. The cost matrix can be ignored for the 
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Figure 2.2: A VRP Solution 

requirements of this discussion. If the VRP is transformed into an elementary VRPSD by 

converting the demand at customer i = 4 to a discrete uniform stochastic demand varying 

from 10 to 12, i.e. S4 = {10, 11, 12} with (4 = {A, 3, D, how is the existing optimal VRP 

solution effected? There are three different problem scenarios that occur, namely 01  = 

{14, 3,10,10, 4, 2,4}, 02  = {14, 3,11,10, 4,2, 4} and 03  = {14, 3,12,10, 4,2,4} with 

A.V.sE {1, 2, 3}. In the first two cases the original VRP solution remains practically viable, 

however if the latter arises then the demand of one customer is not satisfied (customer 

i = 3 or i = 4 depending on the direction of travel). In fact the whole problem becomes 

practically non-implementable since the total demand required (49) is greater than the 

maximum capacity of the two vehicles (48), i.e. (42'3)  -I- E343'3) 	E848'3)) > 2Q. 

Clearly, a VRPSD solution cannot simply represent the solution to a corresponding 

VRP where the demands relate to the average demands of the VRPSD. Furthermore, it is 

evident that the only way to achieve viability over all problem scenarios is to assume each 

customer demand is at its maximum realisation, i.e. El ,  V i > 1, then solve the VRPSD as 

a deterministic VRP (this would require at least three vehicles in the example). Unfortu-

nately however, due to issues of impracticality and expense, this trouble free, completely 

viable routing method would not seriously be considered except in the most extreme of,  

cases when service deficiencies are never allowed to occur. Indeed, the impracticality of 

these types of solutions and the need to incorporate unviability into the evaluation of a 

route is the very reason why stochastic-type solutions are sought at all. 
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2.5.2 A Priori Optimisation and Planning 

The motivation for studying a stochastic system is to find a solution which copes best with 

uncertainty, and subsequent solution unviability, without actually solving each problem 

scenario as it arises. In this way, SVRPs belong to a set of a priori optimisation problems 

defined as follows. 

Definition 2.5.3 A Priori Optimisation A priori optimisation is the act of optimising 

over all possible problem scenarios, prior to full information and the realisation of any 

single scenario. 

Following this definition, consider the role of a priori SVRP modelling both in a long 

term planning context, i.e. when a single solution is required over time, and a short term 

planning context, i.e. when many solutions are required over time. If there exists any 

uncertainty within either planning system then optimisation occurs a priori and a SVRP 

model should be used. (The only exception to this occurs when customer service is vital 

and no unviable solutions are allowed, e.g. medical services.) Moreover, depending on 

certain attributes of the system involved, even if the system is deterministic then SVRP 

modelling may also be of use. These practical attributes are discussed below. 

• Long term planning: Given that relevant data is available and of adequate quality, 

a VRP model can be used. If not, the fixed system is in essence stochastic and a 

SVRP model should be utilised. 

• Short term planning: Given that data is available and of suitable quality, the com-

putational power continually required to evaluate and model such data is present, 

the associated labour assignments are of a flexible nature and a fixed system is not 

desired, then a VRP model would be used as this would always guarantee an optimal 

solution. If either of these five conditions does not apply then a SVRP model should 

be used. (The last two conditions are satisfied in the case of a priori optimisation 

since by definition a fixed, single solution is always obtained.) 

2.5.3 Optimality, Route Failure and the Cost of Recourse 

The use of SVRP, a priori optimisation lies in the role of planning so that, over a period of 

time, the most cost effective solution can be obtained. However, what conditions does the 
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search for such a cost effective solution enforce on the structure of a SVRP objective? What 

are the consequences to such an objective on the inability to maintain practical viability? 

Indeed, what do we mean by an "optimal" solution to such a stochastic planning problem? 

Consider the VRPSD once more. Its objective is highly subjective since its optimal so-

lution exists somewhere between total serviceability/maximum transportation costs (i.e. a 

VRP-based solution where the customer demands are set at their maximum values) and 

zero serviceability/minimum transportation costs (i.e. a VRP-based solution where the 

customer demands are set at their minimum values). If total service is not to be guaran-

teed explicitly, there must be some element of trade-off between cutting cost and supplying 

an allowable level of customer service. A VRPSD solution addresses this aspect of balance 

with the use of two possible solution outlooks, both related to the concept of route failure. 

Forming the basis of all work concerning the SVRP, route failure can be interpreted as the 

action that occurs if the random variables involved in a stochastic routing problem exceed 

a certain level (previously referred to as the "unviability of a solution" or the "inability to 

serve a customer"). In the case of the VRPSD, a route failure occurs when a vehicle can-

not complete all the deliveries in a designed route because its supply has been exhausted 

at some point along that route. Since each customer will not necessarily be serviced in 

practice by the designed routes alone, SVRP solution outlooks differ due to how route 

failure is incorporated into their objectives and how the trade off, mentioned earlier, is 

addressed. The first solution outlook regards serviceability. A VRPSD objective could be 

to fully service customers a certain percentage of the time, i.e. transportation costs can 

be reduced as much as possible given that a certain service level is maintained. In the 

example given in Section 2.5.1, an average demand (VRP-based) solution provides a com-

plete service 66% of the time (route failure occurs 33% of the time) and so this would be 

an adequate solution if the required serviceability level was 66%. The second outlook in-

volves the addition of a recourse cost (R), sometimes referred to as the penalty cost, to the 

overall cost of the system that is contemporaneous with a route failure. The importance 

of customer service differs for different problem situations and the cost of route failure 

differs depending on where, when and how the route fails. Therefore, incorporating these 

costs into a SVRP, by for example including the extra "transportation" costs necessary to 

re-serve the customer in question, the subjectivity of its objective can be reduced. Possible 

recourse cost factors include the location of the route failure, translating into the cost of 



2.5 Characteristics of a Stochastic Vehicle Routing Problem 	 36 

Figure 2.3: The Cost of Recourse in a VRPSD 

a vehicle returning to the depot from that specific location and continuing on its journey, 

individual customer dissatisfaction costs (the supplier may regard particular customers as 

more important than others) and recourse costs relating to the extent of failure. 

A transportation-based recourse situation is shown graphically in Figure 2.3 for the 

previous example where a route failure occurs at customer i = 4. The cost of recourse in 

this situation is given as follows: 

R = 2c1i 	 (2.59) 

where i is the index of the customer at which there exists a route failure,. i.e. 2c14. 

2.5.4 Information Disclosure 

The final subjective issue concerning stochastic routing involves the timing of informa-

tion disclosure and how different temporal definitions can effect a SVRP solution. In the 

VRPSD, the timing of customer demand information disclosure, in relation to when the 

fixed/a priori routes are determined, is integral to the effectiveness of the solution itself. 

Random demands, which by definition arise out of given distributions, can be interpreted 

as withheld pieces of information that are disclosed at particular time slots in a system. 

For example, if the time slot occurs before routing, even though we initially had random 

demands, we have time to route the system as a VRP. At the other extreme, individual 

demands may not be known until exactly the moment a vehicle arrives at the given cus- 
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tomer point, after routing has occurred. In between these two cases, there are a myriad 

of other possibilities. Indeed, on a wider scale, information disclosure essentially traverses 

the spectrum between the deterministic case, through the stochastic case, to the com-

pletely dynamic case. In the latter, information is consistently being disclosed and action 

is continuously being taken, the problem redefined and the solution redesigned. 

One possible classification of information disclosure for the VRPSD was introduced by 

Laporte and Louveaux [141, 142] and involves the recognition of late and early information. 

In this discussion, these initial definitions are augmented with knowledge-based factors and 

are generalised for use over all SVRPs. 

• Late information disclosure involves the realisation of discrete information after the 

vehicles have been routed and at the last possible moment once the routes are put into 

practice, e.g. for the VRPSD, demand values are only disclosed when a vehicle arrives 

at a customer point. Clearly, this disclosure specification is still fairly fallacious 

since routing could have originally occurred with the use of some form of system 

knowledge. For example, do we know the customer demand distributions, their mean 

and variance and, if so, can we estimate the maximum, minimum, or average demand 

possible for a typical customer before the routes are devised? Such system knowledge 

could lead to a form of decision making taking place whilst the vehicles are on their 

respective routes but it would not require any on-line information transfer since only 

existing knowledge is in use. Two separate cases of SVRP late information disclosure 

are defined: (i) late information with no knowledge, in which no knowledge is retained 

concerning the nature of the random variables involved, and (ii) late information with 

existing knowledge, in which some form of general knowledge about the system is 

put to use once the routes have been devised. 

• Early information disclosure involves the realisation of discrete information at some 

point during the time frame between when the vehicles are routed and the moment 

before the variables are required to be realised, i.e. for the VRPSD, demand values 

are realised sometime before vehicles arrive at a relevant customer point. Early in-

formation covers a whole range of practical possibilities including an initial "total 

knowledge" state that involves the realisation of all the associated random vari-

ables before putting the previously determined routes into practice. Once again, 

two separate knowledge-based cases are defined: (i) early information with dynamic 
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Figure 2.4: A Route Break in a VRPSD 

knowledge, in which random variable information is realised while the vehicles are on 

their specified routes, and (ii) early information with total knowledge, in which ran-

dom variable information is realised before vehicles set out on their specified routes. 

In practice, unlike an early information with dynamic knowledge system, the latter 

does not require an on-line procedural set-up since pre-emptive action can be taken 

at a secondary planning stage. In addition, note that early information with dynamic 

knowledge is a multi-stage definition in that it is not specified when information is 

made available while the vehicles are on their routes. Throughout this thesis, this 

definition is therefore taken to denote the decision stage before the decision stage 

involving the realisation of the random variables. In the case of the VRPSD, this 

translates into realising a customer demand one customer before arriving at the 

customer in question. 

2.5.5 Decision Points and Route Breaks 

The disclosure of information can allow a routing decision to be made while a driver is 

on a previously determined route. Customers can form a series of decision points where, 

by making some form of decision, an attempt can be made to reduce the effect of route 

failure. The latter is achieved by disconnecting a previously defined route and forming 

what is known as a route break. Intuitively, for the VRPSD, these breaks will always 

involve returning to the depot to refill before continuing on a route. In a system of late 
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information with no knowledge, a vehicle can only return to the depot and refill from 

and to the point of route failure. This has been shown previously in Figure 2.3 for the 

previous example where a route failure occurs at customer i = 4. As shown in Figure 2.4, 

with the inclusion of a decision point (either by late information with existing knowledge 

or either of the early information systems), a more cost-effective situation can arise. A 

decision concerning the requirements of customer i 4 can be made at customer i = 8 

which allows a route break to be implemented and a saving, compared to the previous 

cost of recourse, which is given as follows, 

2c14 — (c14 + Cis — c48) = c14 + C48 — C18. 	 (2.60) 

This comparative saving, i.e. c13  + cis  — c1i where a failure occurs at j and j is preceded 

by i in the vehicle route, is always greater than zero due to the triangular inequality. In 

general, the cost of recourse in this situation is given as follows: 

R = cij  — ci j 	cli. 	 (2.61) 

Needless to say, when information disclosure is considered and decision points are in 

place, the possibilities of enhanced recourse through predicting route failure and imple-

menting route breaks are practically endless. 

2.6 A General Framework of BVRPSD Extensions 

A standard group of extensions, with clear and widely applicable objectives, need to be 

defined for any basic SVRP variation so that they can provide the unambiguous basis for 

associated research. As shown in Section 2.5, stochastic vehicle routing is linked to its role 

in practice in such a distinct way that this linkage cannot be ignored in related theoretical 

work. This section introduces a standard and definitive set of BVRPSD extensions. Similar 

classifications can easily be used for the analysis of other SVRPs given in Section 2.4. 

2.6.1 Introduction 

The fundamental structural characteristics of a SVRP that require distinct classification 

fall into two separate categories. The first, arising out of the discussion concerning ser- 
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viceability and the cost of recourse given in Sections 2.5.1 to 2.5.3, involve the objectives 

of the problem and will usually depend on the role of management decision making and 

strategic planning. The second, arising out of the discussion concerning information dis-

closure, associated knowledge and route breaks given in Sections 2.5.4 to 2.5.5, can be 

directly linked to the system in which the routing operation is to function since it will 

largely depend on the existing procedural environment. 

It is important to note that a SVRP solution does not arise out of tinkering with a 

corrective recourse action or with an alteration in the timing of information disclosure. 

The key is to extend any basic interpretation of the SVRP so that the subjectivity required 

in any particular practical example does not cloud the solution procedures and technical 

aspects of the general problem. Indeed, the invention of new and wonderful system re-

quirements is like changing the problem to reach the desired answer; one does not win a 

sporting contest by changing the opponents. 

2.6.2 BVRPSD Extensions 

The standard extensions of the BVRPSD are shown in Table 2.2. In each case, the optimal 

solution involves finding a minimum cost set of routes, including any associated recourse 

costs, given that there exists a fixed system of information disclosure and fixed objective-

related criteria. The first extension is the most straightforward. P1 is the problem of 

finding a set of routes which meet a limited service requirement regardless of the particular 

effects of any individual route failures. There exists a probability of a group of solution 

routes being unviable and this equates to a serviceability percentage. The optimal solution 

is a set of routes that provides this percentage of expected service at least cost. 

Problems P2, P3 and P4 involve clearer definitions of the BVRPSD. If a route fails, a 

penalty cost is added to the overall routing cost. In P3 this cost is taken as a fixed number 

regardless of where or how the relevant route failure arises. In P4 this cost is enhanced 

by taking into account various cost elements involved in the theoretical re-serving of the 

customer. P3 would serve well in practice if knowledge of the cost of route failure, and 

the system in general, was very limited. P4 could be used when more about location 

and recourse possibilities are known. P2 corresponds to a combination of P1 and P4. In 

contrast to P1 that minimises cost while controlling the probability of route failure, P2 

minimises expected cost while controlling the probability of route failure. 
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BVRPSD 
Extension 

Information 
Disclosure 

Knowledge Decision 
Points 

Additional Costs 
per Route Failure 

P1 Fixed 
serviceability 

Late None None None* 

P2 Fixed 
Serviceability 
with recourse 

Late None None Variable* 

P3 Fixed costs 
of recourse 

Late None None Fixed 

P4 Variable costs 
of recourse 

Late None None Variable 

P5 Existing 
knowledge 

Late Minimum demand 
of next customer 

Yes Variable 

P6 Dynamic 
knowledge 

Early Exact demand of 
next customer 

Yes Variable 

P7 Total 
knowledge 

Early Exact demand of 
all customers 

Yes Variable 

n this case there exists a constraint on the percentage chance of route failure.) 

Table 2.2: The Standard Extensions of the BVRPSD 

The "VRPSD with Knowledge" problems, P5, P6 and P7, differ from the recourse 

cost problems by the inclusion of specifications relating to system design and the presence 

of information disclosure. Decision points arise in these problems and so their analysis 

should be applied towards slightly more dynamic situations where decisions can be made 

after the vehicles have left on their respective routes. In the first case, P5, there exists no 

on-line system as only existing knowledge is required; this is further specified as a vehicle 

returning to the depot if its load is below the minimum possible demand of the following 

customer. In this case, a route failure is predicted without any information being received 

whilst the vehicles are on their specific routes. P6 involves a similar situation to P5 but 

relies on a dynamic on-line system being in place. There must exist an early information 

system where decision points are present and the exact demand of the next customer 

on the route is known. Notice that P5 and P6 offer only two examples stemming from 

the wide class of possible information-disclosure interpretations. P7 involves the "final" 

information disclosure example and the most interesting case where demands are known 

after routing however before the drivers set out on their specified routes. This problem 

effectively develops the concept of variable recourse since drivers can "choose" where to 

fail along a route. 
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BVRPSD Extension Transportation Costs per Route Failure 
P2 Fixed serviceability with recourse ci3  
P4 Variable costs of recourse cii 
P5 Existing knowledge Cij or Cli — Cij + C1i 
P6 Dynamic knowledge cia — cii + cli 
P7 Total knowledge cii — Cu + Clk 
Note: A route failure occurs at customer j j is preceded by i on the given route and / is any 

customer before j on the route where / is preceded by k.) 

Table 2.3: Costs per Route Failure of the BVRPSD Extensions 

2.6.3 Route Failure Costs 

In the above extensions, except P1 and P3, costs per route failure have been loosely defined 

as "variable". As stated in Section 2.5.3, possible route failure costs come in a variety 

of forms, e.g. costs per extent of failure and individual customer dissatisfaction costs. In 

the remainder of the thesis, these costs will always translate into the transportation costs 

related to the theoretical reserving of the customer involved. Provided as examples in 

Section 2.5, these costs are more formally defined in Table 2.3. The following two points 

should be noted, (i) two possible costs are present in the existing knowledge case since a 

vehicle may or may not pre-empt a route failure, and, (ii) transportation costs per route 

failure are complicated in the case of the total knowledge case since a route failure can be 

pre-empted at any point in the route. 

2.6.4 Summary 

Seven standard VRPSDs have been constructed that differ in their respective objective, 

handling of recourse or information-disclosure specifications. These extensions are consid-

ered in greater depth in Chapter 5. The adaptation of such a classification process for the 

other SVRPs defined earlier should be fairly intuitive. For the remainder of this thesis, 

particular extensions of alternative SVRPs will be constructed whenever necessary. 

2.7 SVRP Formulations and Solution Methods 

As in Section 2.3.2 for the VRP, in this section a variety of SVRP formulations are pre-

sented before introducing existing solution methods and completing a comprehensive lit- 



2.7 SVRP Formulations and Solution Methods 	 43 

erature review. The general methodologies used to formulate SVRPs fall into two separate 

categories: Stochastic Programming (SP) and Markov decision processes. Stochastic pro-

gramming is by far the most important SVRP-related research field, especially with regard 

to this thesis, and remains the most widespread and well-researched methodology used to 

consider such problems. For this reason, SP will initially be briefly summarised below. 

For a more in depth review see [57, 131, 210, 132, 31]. 

2.7.1 Stochastic Programming 

In their most basic form, mathematical programming problems are of the following type: 

Minimise f (x) 

subject to gi(x) < 0 

xESCIRs 

V i = 1, ..., (2.62) 

where the real functions f and g are assumed to be deterministic and known, i.e. they 

are given by the modelling process. Including random parameters in (2.62) leads to the 

following stochastic program: 

`Minimise' 

subject to 

f(x, 

gi(x,e) < 0 

x ESC 1Rs 1 

Vi= 1,...,r (2.63) 

where e is a vector of random variables varying over a set E C /R1'. More specifically, con-

sider a family of complete events F that are subsets of FL where the probability distribution 

P on F is given, i.e. there exists a distinct chance of a particular event occurring. This 

arrangement forms what is known as an induced probability space (S2, F, P) where there 

exists some space S2 of outcomes, a collection of subsets F of these outcomes called events 

and a probability measure P assigning each f C F with the probability with which it 

occurs. Given certain measurability conditions on the set of outcomes, this reduces to an 

induced probability space (E, F, P) where e represents a random vector and e corresponds 

to one possible realisation of e. 

The practical consequence of this stochastic construction is that the objective func-

tion and constraints of (2.63) become random variables themselves. The requirement of 
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choosing x E S is not clearly specified and this makes the definition of such a problem 

ambiguous in nature. Kall [131] mentions the idea of a solution concept which should 

be appropriate for each particular instance of the problem in question. Indeed, the ma-

jority of Section 2.5 involved the nature of problem subjectivity and the need to define 

this solution concept for the SVRP and, more specifically, for the VRPSD; an element 

of each standard BVRPSD extension is an appropriately defined solution concept. It has 

been shown that the practical ambiguity involved in modelling stochastic problems can 

be reduced by considering serviceability or by the introduction of a recourse cost. Sim-

ilarly, in stochastic programming, we consider either chance constrained (probabilistic) 

programming or stochastic programming with recourse. 

For purposes of simplicity, in the following discussion we will refer to the following 

linear program. 

Minimise 

subject to 

z E 
E aid  xi < bi  

x 3• > 0 - 

V i = 1, .. , m 

V = •••,n 

(2.64) 

    

A stochastic program is formed if either of the objective function coefficients cj, the con-

straint coefficients aij or the right-hand side values bi in (2.64) are converted into random 

variables. [Note that if the only stochastic component corresponds to the cg's then it is 

possible to consider the minimisation of the expected objective function value since the 

solution concept remains clearly defined. It is only when either the aid's or the bi's are ran-

domised that the latter has no explicit meaning and one of the two stochastic programming 

variants must be employed.] 

Chance-constrained programming 

Chance-constrained stochastic programming, first considered by Charnes and Cooper [41] 

in 1959, involves replacing the constraints in (2.64) with a series of probabilistic constraints. 

Consider the probability that constraint i is satisfied, i.e. 

P[Eaiixi 	 (2.65) 
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Now, if ai denotes the maximum allowable probability that constraint i is violated, a 

chance constrained programming formulation of (2.64) can be formed by substituting the 

original constraints with the following chance constraints. 

P [E aii xi  < bil > 1 — cei  V i = 1, 	, m. 	 (2.66) 

Given that the cj's are known, this formulation minimises the objective function where 

the constraints are not allowed to exceed certain threshold/violation values, ai. Needless 

to say, it is possible to consider a formulation where all constraints are bounded by the 

same probability, i.e. 

P[ 
	

< bi, i = 1, . . .,m > 1 — a 	 (2.67) 

Many authors, including Charnes and Cooper, show how the probabilistic constraints 

given above can be transformed into equivalent deterministic constraints for stochastic 

variables of a given type, see Section 2.7.2. These constraints may or may not be linear 

however existing mathematical programming techniques can still be applied and optimal 

solutions can, therefore, be obtained. 

Stochastic programming with recourse 

With the use of Lagrangean multipliers, it is possible to move the constraints (2.66) into the 

associated chance-constrained objective function. In this manner, a number of alternative 

formulations, known as stochastic programs with recourse, can be obtained. 

Denoting Ai as the fixed penalty cost incurred by bringing a constraint i into feasibility, 

a stochastic program with fixed recourse can be presented as follows. 

Minimise 	E[z] = E cjxj  + > A,P E aiix j  > bi I , 	
(2.68) 

subject to 	xj> 0 Vj= 1,...,n. 

Likewise, it is possible to consider a variable recourse interpretation of the above that 

incurs a penalty cost depending on how badly a particular constraint is violated. If Ai 

now denotes the cost of bringing constraint i one unit closer to feasibility, a stochastic 
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program with variable recourse can be given as follows. 

Minimise 

subject to 

E[z] = E 	+ 	E 1.P E aiixi — 	1 , 
i>o 	i 	 (2.69) 

xi > 0 V j= 1,...,n. 

A General Recourse Model 

Stochastic programs with recourse belong to a set of two-stage stochastic programs that 

contain two component parts in their objective functions. In the first stage, before re-

alising the random variables involved, a decision on x is taken. In the second stage, 

having realised the associated random variables, a second "decision" is taken to correct 

any infeasibilities that have arisen because of x. (A-priori optimisation is a form of two-

stage stochastic programming.) Generalising this process further, it is possible to consider 

multi-stage stochastic programs that involve a successive number of decision points and a 

corresponding number of successive random variable realisations. It is important at this 

stage to distinguish between a regular multi-stage stochastic problem and a special case 

of the problem that can still be modelled as a two-stage stochastic program. Such special 

cases, known as having a block-separable property, refer to multi-stage stochastic problems 

in which corresponding decisions can be made at the outset and the future only involves 

specific reactions to these outcomes. 

We now describe a general two-stage stochastic program with recourse that is based 

on the original stochastic program given in (2.63). Consider the 	constraint of (2.63). 

This constraint is only violated if the function given by: 

giE(x,E) = 	
0 	if gi(x,E) < 0, 	

(2.70) 
gi(x,$) otherwise. 

is greater than zero for a given decision x and a given realisation e. To compensate for 

constraint violation a recourse or second stage activity yi(e) can be chosen so that it 

satisfies: 

g i(x , E) — yi(E) < 0 	 (2.71) 

If this extra effort is assumed to cause an extra cost or penalty of qi per unit, total 
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additional costs would amount to: 

Q(x, e) = min { E giyi l  yi(E) > g+(x, e), i = 1, . .., r 
Y 	

i=1 
(2.72) 

So, if go(x, e) corresponds to a solution at the first stage, total cost becomes: 

fo  (x, E) = go(x,E)+ Q(x, E) 	 (2.73) 

The general stochastic program shown in (2.63) can then be reduced to the following 

two-stage stochastic program with recourse: 

min Edo  (x, = ruin E.(go(x, + Q(x,e))• 
xEX 	 TEX 

(2.74) 

Clearly, given a deterministic first stage, this can be reduced to: 

mjn [go(x) Q(x)], 	 (2.75) 

where Q(x) = E(Q(x,)) corresponds to second stage solution values, "min go(x)" is 

the objective function of the first stage problem and "min E(Q(x, V" is the objective 

function of the second stage problem. 

Summary 

The majority of work on stochastic programming involves the solution of two-stage re-

course problems that have an adequate and computationally tractable representation of 

their second stage. As we shall see in the following section, such a representation is not al-

ways possible to find. The remainder of research on stochastic programming involves either 

approximation techniques (that approximate the second stage recourse function), see [32], 

or Monte Carlo sampling methods (that use statistical estimates to obtain confidence in-

tervals on associated results), e.g. the quasi-gradient [80] method and the decomposition 

method [119]. In this thesis, the latter statistical methods are not considered. 

2.7.2 SVRP Formulations 

We now consider three different types of formulations that can be used to model SVRP: 
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• Chance-constrained stochastic programs. 

• Stochastic programs with recourse. 

• Markov decision process models. 

For purposes of clarity and without loss of generality at this stage, we use a selection of 

existing VRPSD formulations to provide an illustration of the more general SVRP formu-

laic issues. This treatment of the literature is reasonable because of a number of reasons. 

Firstly, formulations for particular SVRP interpretations can in general be interchanged 

with the minimum of difficulty. This is due primarily to the use of general SP-based formu-

lations in virtually all types of SVRP modelling. Secondly, and most importantly, SVRP 

formulations are rarely used explicitly in any associated solution method and, therefore, 

from the outset they are often left in their most ambiguous and transferable form. This 

point is made clear in the following discussion. Thirdly, we present a representative num-

ber of each formulation type (two chance-constrained formulations, three recourse-based 

formulations and one Markov decision process model) and this range of formulaic structure 

is unavailable for any SVRP other than the VRPSD. 

A Three-Index Chance-Constrained Formulation 

The first formulation for the VRPSD, relating to the BVRPSD extension P1, was pre-

sented by Stewart [192] and is a loosely defined combination of the most basic three-index 

VRP formulation given by (2.2)-(2.4) and the chance-constrained stochastic programming 

approach described above. If, as before, Sm  corresponds to the set of feasible solutions to 

the m-TSP and the random variables ei correspond to the customer demands, the proposed 

VRPSD formulation is given as follows: 

subject to 

min E ECijxijk 
i,j k 

[ P E eix,k < Q > 1 - a, (k =1, • • • , m), 
ii 

x = [xiik ] E Sm . 

(2.76) 

(2.77) 

(2.78) 

The constraints (2.77) imply that the maximum allowable probability that a vehicle on 

any one route cannot serve all customers to which it has been assigned is equal to a. 
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As stated earlier, these constraints can be transformed into deterministic equivalents in 

a straightforward manner. Given that the means and standard deviations of the ei's are 

given by pi's and cri's respectively, a vehicle route k has a mean demand Mk and a standard 

deviation of demand Dk, where Mk and Dk are given as follows: 

Mk = 	 (2.79) 
ij 

Dk = (2.80) 

Clearly, the constraints (2.77) can be replaced by the deterministic constraints: 

Mk + DkT < Q V k = 1,...,m 

given that there exists a constant T such that: 

P[(Eeixiik — Mk) IDk < d --= 1— a V k = 1, . . . , m. 

A Two-Index Chance-Constrained Formulation 

ij 

(2.81) 

(2.82) 

Laporte et al [145] present a similar two-index chance-contrained formulation that incor-

porates greater simplicity but does not for allow hererogeneous vehicle capacities. Let 

Va (S) correspond to the minimum number of vehicles required to serve the customers in a 

customer set S such that the probability of route failure in serving S is less than or equal 

to a, i.e. Va(S) satisfies the following: 

P 
 [

E Ei > Qv,(s)1< a. 	 (2.83) 
ies 

P1 can then be represented as follows: 

subject to 

min Cijxij x (2.84) 

E xii > Va (S) 	 (S C {2, ..., n}, ISI > 2) 	 (2.85) 
ies Jos 
x = [xii] E Sm . 	 (2.86) 
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Clearly, the constraints given by (2.85) constitute a simple extension to the deterministic 

connectivity constraints given by (2:22), see [150]. 

A Three-Index Fixed Recourse Formulation 

The first penalty function-based formulation for the VRPSD, relating to BVRPSD exten-

sion P3, was presented by Stewart [192] and combines the basic VRP foithulation given 

by (2.2)-(2.4) and the fixed recourse formulation given above. Given that Ak  corresponds 

to a fixed penalty incurred every time the vehicle route k fails, then the VRPSD can be 

given as follows. 

subject to 

min E E CiiXijk E Akp E 	> Q . 
x,j k 	 k 	ij 

X E Sm. 	 (2.88) 

(2.87) 

A Three-Index Variable Recourse Formulation 

Likewise, a simple stochastic program with variable recourse can be adapted for the 

VRPSD. Stewart [192] consider a version of the BVRPSD extension P4 where variable 

recourse is taken to correspond to the extent of failure, not the location of failure. Given 

that Ak corresponds to a penalty per unit of demand in excess of Q on a vehicle route k 

and E[lk ] is the expected number of units by which demand will exceed Q on a vehicle 

route k where E[lk ] is given as follows: 

E[4] E ik.p [E bixijk — Q = lk 
ik >O 	ij 

then the VRPSD can be represented as follows. 

, k =1, ...,m, 	 (2.89) 

 

subject to 

min E E ciixia, + E Ak•E[4], . 	. 
z,3 k 

X E Sm. 

(2.90) 

(2.91) 

General Variable Recourse Formulations 

Following from the general recourse model with a deterministic first-stage given in (2.75), 

if Q(x,08 ) represents the recourse cost associated with x over a problem scenario denoted 
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by Os , s = 1, ..., .§, a general recourse model of the SVRP can be written as follows: 

mjn [cx E49,e(Q(x, 04)] 
	

(2.92) 

subject to 	x E Sm 	 (2.93) 

There are many possible ways to practically represent this recourse function, see Sec-

tion 2.6.3. Indeed, since evaluating x E Sm  is "obligatory" for the deterministic VRP, the 

primary modelling question in stochastic vehicle routing attenuates to dealing with the 

recourse function E s E(Q(X , Os )) which in itself is a minimisation. 

Not only is it unreasonable to expect to adequately describe the exact sequence of 

decisions and events in a stochastic program, constraining the expected recourse function 

to be the result of a computation based on a system in steady state (i.e. a fixed first stage 

in a two-stage stochastic program), the recourse function itself is often so complex that 

it is not always available in a computationally tractable form, i.e. in the form of a simple 

equation. This complexity applies to the SVRP because of the nature of the problem and 

in the recognition that stochastic vehicle routing is, in fact, a multi-stage problem (see 

Section 2.7.1) that is modelled using two-stage stochastic programming. 

All SVRPs are multi-stage in nature since random variables are recognised at succes-

sive stages during routing and recourse action is successively being taken. Nevertheless, 

for almost all SVRP interpretations (with late or early information and with existing 

knowledge), although no decision making is allowed whilst a vehicle is on a route, reac-

tions to particular stochastic outcomes are pre-specified. Due to a corresponding property 

of block-separability, two-stage stochastic programming can, therefore, be applied. How-

ever, this is at the expense of incorporating a second stage recourse function that is far 

from easy to mathematically define. (For SVRPs that allow explicit second stage decision 

making, multi-stage stochastic programming needs to be applied.r) In stochastic program-

ming methodology, there are two possibilities that exist to allow some treatment of such 

intractable recourse functions: 

• Developing a closed form expression for the expected second stage value function 

Q (x) • 

7The only BVRPSD extension that is actually multi-stage is the BVRPSD with Total Knowledge. This 
is because in the dynamic knowledge case, a limit was set that a driver would only return to the depot at 
the customer before a failure was due to occur, see Section 2.5.4. 
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• Developing an expression that allows the computation of the expected second stage 

value function Q(x) given a first stage decision x. 

In SVRP modelling, the exact closed form representation of Q(x) for specific problem 

extensions is (rarely) obtainable and, even if available, such a formulation is incredibly 

cumbersome and of no obvious practical use. Although similarly complex, the expected 

second stage value function, which translates into the expected length of a series of routes, 

can be computed when the initial routes (x) are given. Since specific computational 

versions of the latter are presented throughout the thesis, we now only present a version 

of the former. Inspired by the commodity flow formulation for the VRP, first presented by 

Gavish and Graves [95], this formulation was introduced by Laporte and Louveaux [142]. 

Laporte and Louveaux present a VRPSD model that contains a form of existing knowl-

edge. The formulation corresponds to a form of P5 where a vehicle driver pre-empts route 

failure if and only if a vehicle has zero load (as opposed to a general minimum demand 

level). To describe the recourse problem, let z 6  = the commodity flow on arc (i, j) in Os  

for i, j E V, i 	 j, s E {1, ..., 4, and let: 

1 	if a route break on arc (i, ,j 

0 otherwise, 

1 if 3 a depot return trip from i in Os, 

0 otherwise. 

j 	V\vo,i 	 j, s E {1, 	, :§}), 

(i, j E 	vo, i 	j,  s E {1, • • •, 4), 

Given that xii, i, j E V, i 	 j, are variables that take the value 1 if arc (i, j) is in the 

optimal solution, then the recourse model can be represented by (2.92)-(2.93) where: 

[ Q (x , Os ) = Tinos  E 2,„oiss + E E (chi+ cli  
wi 	,wi., iEv\v, 	iEnvi jEV \v1 

— Cij ) Wtis  I 	(2.94) 

subject to 

E z 	E 	> s:(i ,$) (243 — 2Q E 
jEV 	jEV\vi 	 jEV\vi  

E 	E 	< S, 	1— 1 — E 	, 
jEV 	Jo/ 	JEv\v, 

Ez  s > e,(i,$) 1_ E 45 — Q(1 — 45 ), 
jEV 	 jEV \v1 

(2.95) 

(2.96) 

(2.97) 
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(2.98) 

Q ( 48  + E 143 < E . (i' s)  + E 4,3, 	 (2.99) 

(2.100) 
jEV 

wc ' 	wit6  < 1, 	 (2.101)  
jEnvi 

zti8  < Qxij, 	 (2.102)  

(2.103) tv°. 3  < i3, 

E zt; = 0, 	 (2.104) 
jEV\vi 
zOs > 0, 	 (2.105)  

0 < w`bs < 1 and integer, 	 (2.106) 

(2.95)-(2.101) for i E V \vi, i 	j, s E {1, • • •,:s1, 

(2.102)-(2.103) for i, j E V\vi, i 	j,  s E {1, • • • , •§}, 

(2.104)-(2.106) for s E {1, ..., 

Notice that, for purposes of convenience, customer demand is interpreted as implying a 

series of collections as opposed to deliveries. Although fairly complicated, the recourse 

function can then be interpreted as follows: constraints (2.99) imply that wt' and 41 
both equal zero V j E V\ vi  if, after a collection at i, vehicle load is strictly smaller than 

Q. Constraints (2.95) and (2.96) imply that the flow leaving i is then equal to the flow 

entering i plus the amount collected at i and, in addition, the remaining constraints are 

all satisfied. Constraints (2.100) and (2.101) imply that wt,  = 1 and wt; = 0 respectively 

V j E V\ v i  if, after a "collection" at i, vehicle load is strictly greater than Q. Constraints 

(2.97) and (2.98) imply that the vehicle load is then equal to di' s)  and, in addition, the 

remaining constraints are all satisfied. Constraints (2.99)-(2.101) imply that wt' = 0 and 

Ei 	= 1 if, after a "collection" at i, vehicle load is exactly equal to Q (this is the case 

when C = (cii) satisfies the triangular inequality and when v1, vi and vi are not collinear). 

( E zts < E(i's) 1— E 	+ Q(1- 48 ) - Q E wt', 
jEV  jenvi 	 jeV\vi  

jEV\vi 	 jEV 

E Li(i's)  E 	< Q(1 + 43 ), 
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A Markov Decision Process Model 

As an alternative to stochastic programming, it is possible to model SVRP as a Markov 

decision process where optimal actions are taken at discrete points in time. Actions are 

influenced by random outcomes and states change over different stages. Here, we briefly 

summarise how to form a related state space for a SVRP Markov decision process. For 

more information see [70]. 

Consider a one vehicle version of P3. A vehicle that arrives at a customer site has only 

one possible decision action, i.e. replenish the customer (either fully or partially) and move 

to another location. The latter location is the depot when either all the customers have 

been serviced or vehicle load is zero. The initial state corresponds to a full vehicle with all 

customers to be served and the final state of the system corresponds to all the customers 

having been served and the vehicle, by definition, returning to the depot. An observation 

occurs each time a vehicle arrives at a location for the first time. Let Ti , i E {1, 	, n}, 

correspond to the total distance travelled up to the point of the i th  observation, i.e. Ti = 0 

and Ti < ri+1. These transition distances are analogous to the orthodox transition times 

in Markov notation and correspond to the distance travelled up to the points at which 

decisions are taken. The state of the system at a given transition (distance) is described by 

s = {r, 1, x l , 	xn} where r denotes the location of the vehicle, / denotes the commodity 

level of the vehicle and xi represents the remaining demand of customer i (if i is not yet 

visited then xi = —1). The state space is a subset of: 

[{1, ..., n} x [0, Q] x ({-1} U [0, Q])"] 

which satisfies the above conditions. 

A decision is taken at each transition (distance) so that a vehicle goes to a customer 

whose demand is undetermined and, on its route, replenishes, on a shortest path, a subset 

of customers whose demand is already known. Consequently, if the system is in a partic-

ular state when a decision is taken, the distance corresponding to the next transition is 

deterministic. The next state is then generated according to the probability distribution 

of the demand variables. Needless to say, the aim of the decision maker is to find a policy 

that minimises the expected distance of a decision sequence. 
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2.7.3 Computational Complexity 

The SVRP is clearly at least as difficult as the VRP. The presence of nonlinearities in 

the constraints (or the objective function) makes it considerably more difficult in most 

cases. Chance-constrained programs are easier to resolve compared to their recourse-based 

counterparts since they can often be modelled as single-stage deterministic equivalents. As 

stated in the previous section, the primary issue of complexity for recourse representations 

of the SVRP, in contrast to the deterministic case, revolves around the expected second-

stage recourse value function. Closed form representations of the latter are highly complex 

and almost impossible to formulate. 

In general, a recourse-based stochastic programming SVRP model is a highly complex 

composite programs of two parts. Initially, a first stage integer program needs to be solved 

to find a feasible solution structure (one of a number of feasible sets of routes) that can 

be implemented into the next stage of the solution method. Then, a stochastic recourse 

formulation must be utilised to find the cost of the penalty function for the given first stage 

solution and so enabling the derivation of a solution value for the entire. SVRP. Clearly, 

finding an optimal solution to such a complex problem in reasonable time and avoiding 

computer memory problems is a difficult task. 

2.7.4 Solution Methods 

Due to the intrinsic difficulty of SVRPs, the few existing studies in the literature have 

focused on heuristic methods. Indeed, apart from the work in this thesis, only one other 

exact algorithm has ever been developed for the SVRP and has been used to solve the 

VRPSD, VRPSC, VRPSCD and VRPST. We therefore simplify Fisher's review method-

ology for the VRP, see Section 2.3.2, by referring to two generations of research. The first 

corresponds to the use of simple heuristics, based exclusively on previous techniques for 

the deterministic VRP, that obtain computationally fast solutions of comparatively poor 

quality. The second is similar to the third VRP generation and refers to a combination 

of two attempts: to tune existing AI-based approximate methods for the SVRP and to 

develop existing MP and SP formulaic approaches to obtain exact stochastic routing so-

lutions. Notice that the corresponding approach for the deterministic problem features 

prominently in each case. 
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Generation 1: Simple Heuristics 

Simple SVRP heuristics can be categorised into the same three methods described for the 

deterministic case (see Section 2.3.2): route building, route improvement and two-phase. 

The most straight-forward heuristic for the VRP is the Clark-Wright savings algorithm. 

Least cost insertions are successively incorporated into an existing feasible solution so that 

the capacity constraints (2.3) in the VRP formulation given by (2.2)-(2.4) are not violated. 

A simple extension of this method for a SVRP is to substitute the capacity check for a 

separate criteria. Tillman [201] introduces the dual cost aspect of a SVRP by considering 

the stochastic demand case and including the cost of hauling an amount of commodity 

which is not needed (excess) and the cost of not hauling enough to satisfy the demands 

of the customers on a particular route (route failure). More specifically, if g i.(L) is the 

cost of hauling excess commodity and g 2(L) is the cost of not hauling enough commodity, 

where L = (6+ ...-1- k) corresponds to the sum of the random demand variables at the k 

stops on a given route and h(L) is the probability density function of L then, for a given 

number of stops on a proposed route, the expected cost of L, E(L), is given by: 

Q 	 00 
E(L) = E gf'h(L) 	E gl'h(L). 	 (2.107) 

L=13 	 L=Q+1 

Tillman solves the first SVRP by using this cost function embedded in a savings algorithm 

to obtain a heuristic solution to a small (7 customer) multiple depot VRPSD. The extra 

cost criteria were given the following values: g i  (L) = 30(L — Q)2  and g2(L) = 10(L — Q) 2 . 

Stewart [192] extends this and other work [108, 109] by introducing the concept of an 

artificial capacity Q that satisfies a VRP, i.e. the Clark Wright algorithm can be used in 

the normal way where the probabilistic chance-constraints given by (2.77) are replaced by 

an equivalent set of constraints that are linear in pi. In Section 2.7.2, it was shown how 

corresponding probabilistic constraints can be converted into deterministic equivalents. 

Under special conditions8  the distribution of Dk in (2.82) can be given as follows: 

Dk = 	 rit i4k Ali Mk ' 	 (2.108) 
ij 

5Several important distributions, e.g. Poisson, binomial and gamma, satisfy the relevant conditions. 
Often, route demand distributions may be approximated by a normal distribution by appealing to the 
central limit theorem and the value T can be replaced by the appropriate standard normal deviate z. 
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By (2.81) we have: 

Mk + T Vir Mk < Q • 

Therefore, the artificial capacity can be given by: 

2Q + T27r — VT47r 2  4QT27r = (7.  
Mk < 2 

(2.109) 

(2.110) 

Stewart also considers a savings approach for the three-index fixed and three-index 

variable recourse formulations given in Section 2.7.2. Both require a change in the existing 

savings function given by (2.33). For the fixed recourse case, the new saving that is 

obtained by joining i and j on the same route is given as follows: 

sip = cii + 	— cii + AP, + APi — APii, 	 (2.111) 

where Pk is equal to the probability that the route customer k is on fails and Pki is equal 

to the probability that the route connected by arc (k, j) fails. 

For the variable recourse case, si j  is given by: 

sii 	— cii ALi ALi — ALij, 	 (2.112) 

where Lk is equal to the number of units "short" on the route that customer i is on and 

Lkl is equal to the number of units "short" on the route that is connected by the arc (k, j). 

More recent route building heuristic work has been completed to incorporate the location 

of route failure in the savings approach [72, 36]. 

A route improvement heuristic for the VRP [193] is also adapted for the SVRP by 

Stewart. A 3-opt exchange is used to find heuristic solutions to successive m-TSPs formed 

by moving the capacity constraints into the objective function. The application of this 

method to the chance-constrained case with an artificial capacity requires no explanation. 

For the recourse case, the Lagrange multipliers involved become the penalty multipliers 

given in (2.87) and (2.90). Stewart found that the savings heuristic was computationally 

faster but numerically outperformed by the 3-opt heuristic. 

One of only two 2-phase heuristics proposed for the SVRP is given by Teodorovic et 

al [196]. They consider a route-first cluster-second approach where a giant TSP tour is 

constructed before vehicles are assigned to parts of the tour. This method was originally 
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proposed for the VRP by Beasley [15]. The second 2-phase method is given by Teodorovic 

and Pavkovic [198] where,a fuzzy logic approach is used to shrink a stochastic routing 

problem before applying a general sweep algorithm. 

Generation 2A: AI-based Heuristics 

Two AI-based heuristics have been used to solve SVRPs: Teodorovic and Pavkovic [197] 

apply simulated annealing to the VRPSD and Seguin [187] applies tabu-search to the 

VRPSCD. Both methods essentially follow their corresponding approaches for the deter-

ministic case, see Section 2.3.2, however extensive testing has only been completed for the 

tabu search approach. We therefore omit the algorithmic details and concentrate on the 

performance of the latter approach. 

The tabu search presented by Seguin is an adaptation of a method used by Gendreau et 

al [96] for the VRP. The main contribution of this work is in the construction of a suitable 

proxy objective function that approximates the total routing cost of a first stage solution. 

For a series of VRPSCDs, the average error between values obtained with the heuristic 

and associated known optimal solutions is reported to be 0.4%. These results appear to 

be highly encouraging, however it is important to note the following points: 

(i) Approximately 50% of the tests completed were for problems where n < 10 

(in fact over 90% of the tests completed were for problems where n < 19). In 

such cases, optimal solutions (see the next section) were found within the same 

computational time limit that was used for the tabu-search algorithm. 

(ii) The test problems only involved VRPSCDs that had been solved exactly and 

the majority of these were of relative simplicity, i.e. the constraints are set so 

that the problem is in essence deterministic. 

More extensive testing on a group of standard, computationally difficult test problems 

need to be completed before concrete conclusions can, therefore, be drawn about the 

performance of this algorithm. It should be noted that the same algorithm was also used 

for the VRPSD and the reported gap between the optimal solution and the heuristic 

solution averaged 9% and could be as high as 30% [100]. 
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Generation 2B: Exact Methods 

Prior to this research, only one exact solution method has ever been developed to solve 

the SVRP in any form. Laporte et al [145] and Laporte et al [146] use a simple branch 

and cut approach for a depot location version of the VRPSD and a VRPST respectively. 

Laporte et al [147] and Seguin [187] describe an enhancement of this algorithm that can 

be applied to the VRPSC and VRPSCD respectively. In all four reported cases, the 

branch and bound algorithm used is based on the 1973 Land-Powell code for integer linear 

programming [139]. For convenience, we summarise this algorithm before detailing the 

respective contributions of these studies. 

Land-Powells B&B Algorithm 

1. Let z* = o o. Define an initial subproblem and define upper bounds on the variables 

involved. Insert this subproblem in a list. 

2. If the list is empty, stop. 

3. Select the next subproblem to be solved from the list. 

4. Solve the subproblem using the Simplex method. Let "2" be the solution value. If the 

problem is infeasible or e < z then goto 2. If the solution is integer then goto 6. 

5. The solution is non-integer. Partition the current subproblem into a number of sub-

problems: this is done by branching on a fractional variable according to a criterion 

set by Land-Powell. For each problem, compute a lower bound z on the value of its 

objective. If z* < z discard the subproblem. Insert all non-dominated subproblems 

in the list then goto 3. 

6. The current solution is feasible and z* > -2". Set z* = z and goto 2. 

Laporte et al (1989,1992): The importance of the branch and cut approach in this 

context is only realised in it forming the basis to the first exact results reported for any 

kind of SVRP. Laporte et al simply include a feasibility check before step 6 in the above 

algorithm that differs for particular problems. They consider two VRPSDs, both of which 

incorporate a variable specifying possible depot locations, and one VRPST. These three 

problems are further specified as follows: 
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(i) The two index chance-constrained VRPSD formulated in Section 2.7.2. 

(ii) A version of the fixed recourse VRPSD formulated in Section 2.7.2 that is 

sometimes referred to as a bounded recourse VRPSD. In this case, the cor-

responding fixed cost arises when a bound on the size of the recourse cost is 

exceeded (this model uses the return trip back to the depot as the cost per 

route failure that contributes to the bounded recourse cost). 

(iii) A fixed recourse version of the VRPST formulated in a similar manner to the 

bounded recourse model given above. In this case, the amount of travel time 

over a particular given amount (capacity) corresponds to the cost per route 

failure that in turn contributes to the bounded recourse cost. 

The authors solve (i) by incorporating "connectivity constraints", given by (2.85), into 

the feasibility check. If all the constraints are satisfied then the algorithm proceeds to 

step 6, otherwise each violated constraint is included in the current subproblem and the 

algorithm returns to step 4. In (ii) and (iii) such a feasibility check involves ordinary 

subtour connectivity constraints and a recourse limit, i.e. a check occurs to see whether 

the current solution is connected to the depot and that it does not have too large a penalty. 

The authors solve (i) for selected problems of up to INI = 30, where INI represents the 

number of customers and possible depot locations, and they solve (ii) for selected problems 

of up to 	= 20. In both cases, the parameters are set so that the problem is almost 

deterministic in nature. For example, in problem (i), the maximum probability of route 

failure was set to at 10%. This essentially means that the solution will be very similar to 

the solution obtained if the demands are set to their maximum value and the problem is 

solved as a deterministic VRP. Problem (iii) is solved for selected problems up to n = 20. 

Laporte et al (1994): Laporte et al utilise the general recourse formulation given 

in Section 2.7.2 and consider an early information VRPSC9. In this problem, a negative 

cost arises when a customer is not present, i.e. a "failing" customer is bypassed and an 

associated saving is realised. Laporte et al extend Land-Powell's algorithm presented 

above by the implementation of an additional feasibility check known as an optimality 

cut. The procedure involved is known as the integer L-shaped method, first presented by 

9By definition, the VRPSC assumes the presence of early information. 



Y > 
p(xk)  — L)  

2 	 xii — n +Q(xk ). 
( vi,vi)EEk  

(2.115) 
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Laporte and Louveaux [143], and is an extension of the classical L-shaped solution method 

for stochastic programming problems introduced by Van Slyke and Wets [189] in 1969. 

Consider a variable y that is a lower bound on the expected recourse function Q(x) = 
E'03G Q(x, Os ) in (2.92). Initially equal to zero, it is gradually increased in the course of 

the algorithm through the introduction of lower bounding optimality cuts. This cut is 

obtained as follows for the one vehicle VRPSC. Let xk  (with edge set Ek) be an optimal 

solution to a subproblem. Then: 

E 	x= n, 	 (2.113) 
(vi,vj)E.Ek 

and any other solution xk'  (with edge set Ek') is such that: 

E 	< n — 2, 	 (2.114) 
(vi ,meEk 

Therefore, if Q(xk ) is the value of the expected penalty, then y must satisfy y > Q(xk) 

for solution xk , and y > L for any solution xk` , where L is a simple lower bound on the 

expected recourse function. This is expressed as the following optimality cut: 

The resulting algorithm is tested on a series of randomly generated one vehicle VRPSCs 

and selected problems were solved to optimality for n = 50. 

Seguin (1994): Seguin simply extends the optimality cut given above for the general 

VRPSC and includes stochastic customer demands in associated test problems. In the 

latter, as well as negative recourse costs that arise due to bypassed customers, there exists 

the original positive recourse costs that arise when vehicle capacities are exceeded, i.e. a 

route break to the depot occurs before "failing" customers. 

For the VRPSCD, since y must satisfy y > Q(xk) for a solution xk , and y > 0 for any 

solution x k' , a simpler optimality cut is given as follows: 

y 	Q(xk ) 	E xii _nd-m+ 2) . 
(vi,vi)EEk 

(2.116) 
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Seguin considers a series of randomly generated problems. The only reported complete 

results for all problems, tightly constrained or not, are found for n = 10. Some selected 

problems are solved for n = 70. In these problems however, the solution equates to the 

solution of the m-TSP. Seguin also solves similar size VRPSDs. 

2.8 	Summary of Main Contributions to svRr Research 

In this section, all known work on stochastic vehicle routing is gathered together and each 

SVRP is classified in turn. A tabular summary of all the contributions to SVRP research 

is given in Table 2.4 and the important contributions are collected together in Table 2.5. 

A comprehensive summary of dynamic vehicle routing and vehicle routing with stochas-

tic customers can be found in Powell et al [172] and Bertsimas and Schmi-Levi [29]. The 

only other survey for the SVRP is given by Gendreau et al [98]. 

2.8.1 VRPSD 

Tillman [201] was the first to consider a stochastic vehicle routing problem of any kind by 

developing an adapted Clark-Wright Savings algorithm to account for stochastic demands. 

A very small size problem of seven customers with Poisson demands was used in the 

testing process. Golden and Stewart [108] introduce artificial capacities and are the first 

to apply stochastic programming to the VRPSD. They consider one large scale VRPSD of 

75 customers with Poisson demands. Golden and Yee [109] extend this work and consider 

correlated demands and alternative demand distributions. Yee and Golden [214] are the 

first to consider the location of route failure and present a dynamic programming recursion 

that can be used to compute full recourse values. 

A major contribution to VRPSD research is Stewarts PhD thesis [192]. Full stochas-

tic programming formulations for the chance constrained and penalty function cases are 

presented and possible heuristic approaches are compared. Stewart and Golden [194] sum-

marise the work found in Stewart's thesis. Dror and Trudeau [72] consider route failures 

in• a VRPSD and investigate an extension of the Clark-Wright algorithm to include the 

location of route failure. Apart from two exceptions, a savings approach for the VRPSD 

with split deliveries [36] and a two-phase approach for the VRPSD [196], this paper marks 

the end of the use of simple heuristics for the VRPSD. 
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VRPSD VRPSC 
Tillman (1969) 

Golden and Stewart (1978) 
Golden and Yee (1979) 
Yee and Golden (1980) 

Stewart (1981) 
Stewart and Golden (1983) 
Dror and Trudeau (1986) 

Larson (1988) 
Laporte et al (1989) 

Dror and Trudeau (1989) 
Laporte and Louveaux (1990) 

Bastian and Kan (1992) 
Teodorovic and Pavkovic (1992) 

Bouzaiene-Ayari et al (1993) 
Dror (1993) 

Dror et al (1993) 
Popovic (1995) 

Gendreau et al (1995) 
Teodorovic et al (1995) 
Gendreau et al (1996) 

Teodorovic and Pavkovic (1996) 

Jaillet (1985) 
Jezequel (1985) 
Jaillet (1988) 

Jaillet and Odoni (1988) 
Berstimas (1988) 

Waters (1989) 
Jaillet (1989) 

Bertsimas et al (1990) 
Bertsimas (1992) 

Jaillet (1993) 
Benton and Rossetti (1993) 

Bertsimas and Howell (1993) 
Laporte et al (1994) 

Bertsimas et al (1995) 
VRPST 

Kao (1978) 
Cook and Russell (1978) 

Sniedovich (1981) 
Carraway et al (1989) 
Laporte et al (1992) 
Lambert et al (1993) 

VRPSCD SVRP 
Seguin (1994) 

Gendreau et al (1995) 
Gendreau et al (1996) 

Powell et al (1995) 
Gendreau et al (1996) 
Bertsimas et al (1997) 

Table 2.4: Contributions to SVRP Research 

Paper Description 
Tillman (1969) Savings heuristic - First SVRP paper 

Golden and Stewart (1978) Savings heuristic, CC approach 
Stewart (1981) Heuristics, SP formulations, application 
Jaillet (1985) Solution properties 

Jezequel (1985) Simple heuristics 
Dror and Trudeau (1986) Savings heuristic, properties of route failure 

Bertsimas (1988) Heuristics and solution properties 
Laporte et al (1989) Branch and cut (first exact SVRP solutions) 

Teodorovic and Pavkovic (1992) Simulated annealing (first SVRP AI-heuristic) 
Laporte et al (1992) Branch and cut (selected VRPSTs up to n=20) 
Laporte et al (1994) L-shaped method (selected TSPSCs up to n=50) 

Seguin (1994) L-shaped method (complete VRPSCDs up to n=10) 
Seguin (1994) Tabu-search (complete VRPSCD heuristic results) 

Table 2.5: The Important Contributions to SVRP Research 
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The first of many articles proposing a VRPSD formulation but without any associated 

solution method was given by Dror and Trudeau [70]. In this paper the authors present a 

number of SP models and a Markov decision process model, together with some properties 

relating to the solution of a VRP that do not apply to a solution of a VRPSD since a 

stochastic routing solution may intersect itself. Further formulations have been developed 

by a number of authors, these include: 

(i) an early information model by Laporte and Louveaux [142], 

(ii) a late information model by Laporte and Louveaux [142], 

(iii) a full service model by Bastian and Kan [13], 

(iv) a full service model by Dror [68], 

(v) a model with a limit on the number of route failures by Dror et al [69], and, 

(vi) a Bayesian model by Popovic [170]. 

These have yielded no exact solutions apart from a special location-routing model pre-

sented by Laporte et al [145] and a special case of the PVRP with stochastic demands and 

deterministic customer presence by Seguin [187] (this work is summarised in Gendreau et 

al [97]). In the former paper, problems are solved to optimality for N = 1301, where N 

represents both the number of customers and possible depot sites. In the latter paper, 

exact solutions are given for problems of up to 70 customers however the parameters set 

such that the problem is in essence deterministic. 

Teodorovic and Pavkovic [197] present a simulated annealing AI-heuristic and a fuzzy 

logic approach is employed by Teodorovic and Pavkovic [198]. In addition, there are some 

isolated cases where the problem has been investigated and documented for real-world 

applications. Stewart [192] considers bus-routing where the amount of people to pick-up 

at stops are given as a random variable and Larson [152] investigates the problem of sludge 

disposal where accumulation in any plant is a random process. 

2.8.2 VRPSST 

The VRPSST has never before been formulated or solved in the literature, however the 

problem has very close links to two other stochastic routing problems: the Vehicle Routing 
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Problem with Stochastic Travel Times and the Vehicle Routing Problem with Stochastic 

Demands. The only study to deal with the VRPST in its complete form, including de-

mands that may or may not be stochastic, is given by Cook and Russell [50] who consider 

a simulation approach. 

2.8.3 VRPST 

The objective of the VRPST - and its one vehicle counterpart, the Travelling Salesman 

Problem with Stochastic Travel Times (TSPST) - usually involves finding an a priori solu-

tion such that the probability of completing a tour within a given deadline is maximised. 

As such, the VRPST is interchangeable with the multiple vehicle TSPST (m-TSPST). 

Kao [133] proposes two heuristics for the TSPST, the first based on dynamic program-

ming (DP) and the second based on implicit enumeration. Sniedovich [190] shows that 

obtaining optimal solutions using the former DP approach is reliant on the property of 

monotonicity and Carraway et al [38] presents a generalised DP method that overcomes 

this problem. Lambert et al [138] derive a heuristic solution algorithm for the m-TSPST, 

based on the well-known Clark-Wright savings procedure, and find cost effective cash-

collection routes through bank branches where the amount of cash collected is limited by 

an insurance company and late arrival incurs a penalty relating to lost interest. Laporte 

et al [146] are the first to consider an alternative objective for the VRPST. They present a 

three-index simple recourse model and a two-index recourse model for a VRPST based on 

finding a minimum cost a priori solution where the penalty for late arrival is proportional 

to the length of the delay. Using the branch and cut method previously described they 

present exact results for selected VRPSTs of up to twenty customers. 

2.8.4 VRPSC 

The VRPSC is a direct multiple vehicle extension of the TSPSC, see [125]. Here we 

review both types of problems. Several simple heuristics have been proposed for the 

TSPSC including a savings approach and a 2-opt method [129]. These two studies are 

summarised by Jaillet [126] and Jaillet and Odoni [128]. The main contribution to the 

study of VRPSC however, is the PhD thesis of Bertsimas [21]. The array of bounds and 

properties presented are outside the scope of this thesis, however for reference the work 

is summarised by Bertsimas et al [25] and Bertsimas [22]. Using the L-shaped method, 
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Laporte et al [147] solve medium size TSPSCs and Seguin [187] (summarised in Gendreau 

et al [97]) solve small size VRPSCs. Other theoretical studies have been completed by 

Jaillet [127] and Bertsimas and Howell [24]. 

Waters [207] discusses an application to cost cutting for a wholesale distributor and 

provides the only case where customers are treated with non-binary demands. In addition, 

Waters empirically compares strategies including following the planned route, skipping 

absent customers and reoptimising the remaining route whenever the customer is revealed. 

A similar simulation approach is used by Benton and Rossetti [18]. Bertsimas et al [23] 

considers an empirical study of the reoptimisation strategy and compares it to the original 

a priori solution, see Chapter 7. 

2.8.5 VRPSCD 

The only authors to treat this problem are Gendreau et al [97, 99]. In the former, a tabu-

search heuristic has been applied and comprehensively tested. In the latter, the integer 

L-shaped method has been used to obtain complete optimal results for small size problems. 

2.9 Summary 

The purpose of this chapter has been to introduce deterministic vehicle routing as a re-

search field in operations research before detailing its more applicable stochastic equivalent. 

Existing VRP solution methods were considered in detail at this stage since the adapta-

tions of such techniques form the basis to practically all existing research in stochastic 

vehicle routing. 

Stochastic vehicle routing was introduced and a series of basic interpretations were 

defined, together with appropriate notation. The characteristics of a SVRP solution were 

discussed and this highlighted a number of practical difficulties that arise when consider-

ing stochasticity in a routing context. During this description, a number of definitions, 

e.g. problem scenarios, route failure and a priori optimisation, were presented and sub-

jective issues, e.g. information disclosure and the cost of recourse, were clarified. Such 

a discussion eventually led to the development of a series of extensions that would ade-

quately describe the appropriate practical forms of a stochastic vehicle routing problem. 

The particular SVRP variation that was used to illustrate this process was the VRPSD. 
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In Chapter 5 such problems will be explored further. 

The final part of this chapter has considered the solution of SVRPs. Stochastic pro-

gramming was introduced before detailing possible SVRP formulations and solution meth-

ods and completing a comprehensive literature review. Clearly, finding optimal solutions 

to SVRPs is a difficult task. Without doubt, the limited amount of associated research in 

the literature and the predominance within such studies for heuristic methods attests to 

such a fact. Nevertheless, several indicators, over and above the more practical reasons 

given in Chapter 1, point to exploring a new exact method for the problem. Firstly, de-

signing a good heuristic is no easy task in a stochastic context. Gendreau et al [99] state 

that major difficulties arise when designing efficient heuristics for the SVRP because the 

"shape of optimal solutions is quite often counter intuitive from a geometric standpoint." 

Since both simple and AI-heuristic approaches rely heavily on geometric propositions to 

construct and alter routing configurations, highly sub-optimal solutions can result from 

approximate methods. In addition, heuristic methods are not well equipped to include 

stochasticity in their algorithmic construction and in many ways it may be more bene-

ficial to solve an "average-value" deterministic equivalent. On the other hand, the only 

exact method produced has also largely ignored the presence of associated stochastic dis-

tributions. More specifically, no exact solution method has ever included any criterion 

based around the presence of stochastic demand or, apart from two exceptions, has ever 

actually found solutions to stochastic routing problems that are computationally difficult 

(in the stochastic sense): Seguin's very small size VRPSCDs and Laporte's medium size 

one vehicle VRPSCs. Both these contributions only accounted for the stochasticity in 

customer presence. Moreover, the exact (and heuristic) methodologies produced thus far 

have been based predominantly on similar VRP approaches and have therefore failed to 

create genuinely new, useful and applicable techniques for a particularly new, useful and 

applicable stochastic combinatorial optimisation problem. 

In summary, in addition to the reasons for developing an exact approach as opposed to a 

heuristic approach (see Chapter 1), it was considered that these considerable algorithmic 

omissions in the literature provided added research impetus towards developing a new 

exact method for SVRP. In addition, during the construction of the algorithm, emphasis 

was placed on the applicability and generic nature of the model for the reasons already 

disclosed in Chapter 1. 



Chapter 3 

The Paired Tree Search Algorithm 

3.1 Introduction 

This chapter describes a new exact algorithm, known as the Paired Tree Search Algo-

rithm (PTSA), which forms the basis of the theoretical and practical work in this thesis. 

Throughout the chapter, the component parts of the algorithm are demonstrated using 

the simplest BVRPSD extension that incorporates variable recourse, namely P4. In Sec-

tion 3.2, a complete formulation for this problem is developed and the motivation behind 

the creation of the PTSA approach is described. In Sections 3.3 and 3.4 respectively, 

the foundations of the methods employed in the algorithm are presented and algorithmic 

details are described. Following the introduction of a set of test problems in Section 3.5, 

computational results in Section 3.7 show the effectiveness of the PTSA and of the specific 

procedures used by the algorithm. 

3.2 A Two-Stage VRPSD Formulation (Extension P4) 

From Chapter 2, a general two-stage stochastic program with recourse can be described 

as follows: 

min Ef o(x,e) = min Et  (go(x, + Q(x, e))• xEX 	sEx 

Given a deterministic first stage, this can be reduced to: 

min [go(x) Cd(x)i, 

(3.1) 

(3.2) 

68 
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where Q(x) = EeEc(Q (x , e)) corresponds to second stage recourse value function, min go(x) 

is the objective function of the first stage problem and "min Eeec(Q(x,E))" is the objective 

function of the second stage problem. 

The general recourse model for the SVRP is then given as follows. 

min 	[cx 	E6,€c (Cd (x, cbs))], 	 (3.3) 

subject to 	x E Sm 	 (3.4) 

where Sm  corresponds to the set of feasible solutions to the m-TSP and Q (x , Os ) represents 

the recourse cost associated with a set of routes x over a problem scenario denoted by 0,, 

s = 1, . . . , s. It has been shown that there are many possible ways to represent this recourse 

function, both mathematically (e.g. closed form representations and computational form 

representations) and practically (e.g. fixed and variable costs of recourse). The former 

is, to a certain extent, governed by the latter which in turn depends on the particular 

SVRP extension being modelled. Here we consider the BVRPSD with Variable Costs of 

Recourse, P4. 

The two practical stages of P4 can be stated as follows. In a first stage, a set of m 

vehicle routes of minimal cost are determined so that (i) each route starts and ends at 

the depot and (ii) each customer is visited exactly once by one vehicle. In a second stage, 

the first stage routes are followed as planned but whenever capacity is exceeded along a 

route vehicles return to the depot to refill and then continue along their pre-defined route. 

Given that second stage recourse costs are represented by the values of such return trips 

to the depot (see Table 2.6.3), the objective is to design a minimum expected cost-set of 

routes such that demand is met, (i) and (ii) are satisfied and exactly in vehicles are used. 

In formulaic terms, these two stages are presented independently below. 

3.2.1 The First Stage Problem 

The first stage solution corresponds directly to the solution of a m-TSP where a complete 

feasible set of routes are required to minimise cx. A simple two-index formulation for 

this problem, similar to Laporte et al's two-index vehicle flow VRP formulation given in 

Section 2.3.1, is presented here. 

With cij and xii interpreted as cji and xai whenever i > j, we define integer decision 
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variables xij as follows: 

{1 

	if (i, j) is used in the first stage solution and 1 < i < j < n, 
xii = 	2 if (i, j) is used as a return trip and i = 1, j > 1, 

0 otherwise. 

(3.5) 

A feasible set of routes is then obtained by solving the following: 

subject to 

min go (x) = cx 

E x i, 2m, 
j=2 

E Xik E Xkj = 2 
i<k 	j>k 

E xi„ < 151-1 
i,Jes 
o < xi„ < 2 

0 < xij < 1  

(3.6) 

(3.7) 

(vk E V\{171}), 
	 (3.8) 

(S C 17Vvil , 3 .5 IS( 5_ n — 2), (3.9) 

(vj E V\{vi}), 	 (3.10) 

xii integer, (1 < i < j < n). 	(3.11) 

These first stage deterministic constraints specify that m vehicles enter and leave the 

depot, (3.7), that every customer receives a visit exactly once, i.e. the vertex degree 

constraints (3.8), and that individual routes disconnected from the depot are prohibited, 

i.e. the classical connectivity constraints (3.9). 

3.2.2 The Second Stage Problem 

The second stage solution, relating to EosEe(Q(x, Os)) in (3.3), is less well defined. In 

Section 2.7.1, it was shown that it is very difficult to formulate a function corresponding 

to the recourse value in closed form. Indeed, no such closed form formulation has ever been 

presented for P4 in the literature. It is generally considered to be more useful to consider 

the value of the recourse cost in computational form given a fixed first-stage solution. 

We present two possible formulations: 

• A new closed form representation of the recourse value function for P4, and, 

• A new recursive-based formulation that can be used to compute the value of the 

recourse cost function for P4 given a fixed first-stage set of routes. 



1 if 3 a depot return trip from i in Os , 

{ 0 otherwise. 
E V\vo,s E {1, 	,q)• 

3.2 A Two-Stage VRPSD Formulation (Extension P4) 	 71 

A Closed Form Representation of Q(x) 

The following formulation is adapted from the commodity flow based formulation (2.94)-

(2.106) that was originally proposed by Laporte and Louveaux [142] for a different VRPSD 

extension. Notice that, for the sake of convenience, customer demand is interpreted as 

implying a series of collections as opposed to deliveries. 

To describe the recourse problem, let z; = the commodity flow on arc (i, j) in Os  for 

j E V, i 	 j,s E {1, ..., 4, and let: 

The recourse value function can then be given as follows: 

Q (x , Os ) = min E 
	

(3.12) 
tui iGv 

subject to 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

z`I's > 0, 	 (3.22) 

0 < w03 < 1 and integer, 	 (3.23) 

(3.13)-(3.21) for i E 	 j, s E {1, ..., 

(3.22)-(3.23) for s E {1, ..., 

E 	> E:(i's)  — QI4s , 
jEV 	jEnvi 

E 	_ E < 
jEV 	jEV 
E 	> es) _ Q(1 - 
iEv 
E 	< e ì(i' s)  + Q(1  — 43 ), 
jev 

Qwt' < d i's)  + E 
jEV 

+ E 4; < Q(1 + 48 ), 
jEV 

tuts + E wts < 1, 
.EV\vi 
Qx,,, 
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By considering the following three occurrences at customer i, the second stage constraints 

(3.13)-(3.23) can be interpreted in the following way: 

• If, after collection at customer i, the vehicle load is strictly smaller than the vehicle 

capacity, i.e. (amount to be collected -I- amount before entering) < Q, by (3.17) 

= 0 V i E V\ vi. Then, by (3.13) and (3.14), the vehicle load when leaving 

customer i is equal to the amount collected plus the amount of vehicle load when 

entering the vertex, i.e. the vehicle collects and continues as required. The remaining 

constraints (3.15), (3.16), (3.19)-(3.23) are satisfied. 

• If it is not possible to load customer i's supply, i.e. (amount to be collected + amount 

before entering) > Q, assuming that: 

E 4: < 2Q, 	 (3.24) 
jEV 

by (3.19) 46  =1Vi E V\ vi. Then, by (3.15) and (3.16), the vehicle load when 

leaving customer i is equal to the amount collected, i.e. the vehicle has returned to 

the depot to deposit its load. The remaining constraints, (3.13), (3.14), (3.19)-(3.23) 

are satisfied. 

• If, after collection at customer i, the vehicle load is exactly equal to the vehicle 

capacity, i.e. (amount to be collected + amount before entering) = Q, constraints 

(3.17) and (3.18) are redundant and w`ts = 0 or 1 V i E V\vl. Therefore, since 

we are dealing with a minimisation and tucib s is present in the objective function, no 

failure will occur at i. Clearly, however, there will always be a failure at the following 

customer. 

A Recursive Formulation For Q(x) 

The following dynamic programming-based recursive formulation is adapted from a sim-

ilar formulation given by Bertsimas [22] for the VRPSCD. It should be noted that the 

formulation corresponds to a computational form of the recourse function in that it can 

only be used to evaluate the value of Q(x) for a fixed first-stage solution x. 

Consider a first-stage feasible solution characterised by the vector xv = [xyi]. Given 

that the problem scenario Os , s E {1, ..., .§}, is realised from the random demand variable 
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let T (xv) denote the expected second stage costs where: 

T (xv) = E0,,E(T (xv,  Os )). 	 (3.25) 

Let Tk(xv, 05) denote the cost of route k in xv and let the expected cost of any route k 

be computed in the following way: 

T k  ( v) = Eos  Ee  (T (x v, )). 	 (3.26) 

The expected cost of m vehicle routes with a fixed xv is then given as follows: 

m 
T(xv) =- ETk(e). 	 (3.27) 

k=1 

From the definition of the VRPSD given in Section 2.4.1, let p4 represent the probability 

of occurrence of the ith  ordered demand level El originating from the demand set ei of 

customer i. In addition relabel the vertices of the kth route of xv so that the route 

becomes (v1, v2, ..., vtk , vt,+1  = vi). Now, if d is the load of the vehicle upon arrival at 

customer i, the expected cost of a route k is as follows: 

where 

Tk(xv) = E 	(xv , Os )) = c4(Q) 

aitck (d) = 2c11 	E 	pltk 	 (0 < d < Q), and, 

(3.28) 

(3.29) 
/leltk  >d 

ai (d) = 	a/41 (0) + 

E p4(a41(Q — 	+ 2c1i) 

/ 	k 
Piai+1 d — 	(i = 2, ..., tk_i; 0 < d < Q). (3.30) 

Ile! <d 

and 

= 
if e! = d, 

(3.31) 
0 	otherwise. 
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The proof of (3.28)-(3.30), which represents the expected total of the extra costs incurred 

(when a vehicle exceeds capacity) on an original a priori routing sequence, follows directly 

from the definition of a%(d) which represents the expected penalty cost from vertex vi of 

route k given that the load of the vehicle before entering vertex vi is d. 

Consider a customer i where i < tk . For a vehicle entering i with load d, the expected 

recourse cost is made up of three component parts: 

(i) The cost, 4+1(0), that is incurred when the load at the following customer 

will be exactly zero, i.e. vehicle load has been exhausted (to zero) at i but no 

failure occurs at this customer because of the presence of late information. 

(ii) The cost, ce141 (Q — 	+ 2c1i, that is incurred when the load at the following 

customer will be Q — Eli, i.e. a route failure has occurred at i and a trip back 

to the depot is necessary. 

(iii) The cost, cul4i (d —el), that is incurred when the load at the following customer 

will be d — El, i.e. no route failure has occurred at i and the vehicle continues 

along its route. 

From these observations, (3.30) follows since the probabilities attached to each respective 

cost are given as follows: 

(i) The probability that vehicle load at customer i is exactly equal to the demand 

at customer i, i.e. pr. 

(ii) The probability that vehicle load at customer i is strictly less than the demand 

at customer i, i.e. Etiod pi 

(iii) The probability that vehicle load at customer i is strictly greater than the 

demand at customer i, i.e. Eik i<d  

The corresponding function for a vehicle with load d entering the last customer (i = tk) 
on a route is simply made up of the costs incurred when a route failure has occurred at 

i. This is expressed by (3.29). Hence, it follows that the recourse cost can be computed 

recursively from (3.28) using (3.29) and (3.30). 
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3.2.3 Summary 

The resulting stochastic programming model for P4 is a highly complex composite program 

of two parts. Initially, a first stage integer program, (3.6)-(3.11), needs to be solved to find 

the cost of a feasible solution structure (one of a number of feasible sets of routes) that 

can be implemented into the next stage of the solution method. Then, either an integer 

program (3.13)-(3.23) or a recursive dynamic program (3.27)-(3.30) must be solved to 

optimality to obtain the recourse cost of the first-stage solution. 

For the reasons discussed in general in Section 1.3 and more specifically in Section 2.9, 

optimisation appears to be the more obvious research tool for SVRP over approximation: 

to the best of our knowledge, only one exact solution method exists in the literature, 

rapidly decreasing costs of computation make optimisation more attractive (indeed reduc-

ing computational time is not usually seen as being a priority for SVRPs) and heuristics 

have struggled to find high quality solutions to SVRPs and stochastic problems in general. 

Clearly, there remains a lot to understand about stochastic routing as a research field and 

optimisation will play a very important role in the learning process. 

It was shown in Section 2.9 that a new solution method, optimal or not, should some-

how allow for the presence of stochasticity so that for the first time computationally 

difficult SVRPs can be solved. Since the SVRP is at least as difficult as the VRP (and 

therefore the complexities that the deterministic problem encounters will be at least as 

restricting in the stochastic case) the size of attempted problems does not necessarily need 

to be particularly large. VRPs have, after all, only been solved exactly up to fifty cus-

tomers. However, it was considered that a new solution algorithm could be devised to 

incorporate and therefore counter stochasticity in a way that was not previously possible. 

In addition, it was hoped that such an approach could also be generic enough to cope with 

a range of previously defined stochastic extensions, problem variations and applications. 

To summarise, research was directed towards developing a new, generic, exact method 

for SVRP (initially P4). From the outset, the algorithm was to be in the form of a direct 

tree search, to provide a suitable structure for the two stage problem, however a new 

stochastic emphasis was to be included. More specifically, while operating in reasonable 

time and retaining a suitable limit on computer memory requirements, the algorithm was 

to locate optimal solutions by providing an adequate structure for (i) the mathematical 

implementation of the first stage problem and (ii) the formation of a method to evalu- 
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ate and limit the computation of the second stage problem by somehow incorporating 

stochasticity in a dynamic setting. 

3.3 Algorithmic Foundations 

The PTSA is based on a direct tree search method, see Section 2.3.2, that is adapted for 

stochastic problems. The new method is also referred to as the stochastic branch and 

bound method.1  The algorithm has its foundations in a stochastic decision tree approach 

and therefore, before detailing the PTSA, general dynamic solution structures will be 

summarised with respect to their role in modelling stochastic problems. 

3.3.1 Dynamic Solution Structures for Deterministic Problems 

The dynamic environment that is used to solve most combinatorial optimisation problems 

is the general tree search method or branch and bound approach. This method is based on 

the idea of intelligently enumerating all the feasible solutions of a COP. For all but the most 

elementary examples it is a hopeless task to investigate all the points in a feasible set and 

the efficiency of the method arises in the effective manner in which the possible solutions 

are enumerated. Effective enumeration depends on two factors, the quality of the bound 

and the proficiency of the branching strategy. At each node of a search tree the calculation 

of the bound on the value of the optimal solution to the sub-problem corresponding to 

that node forms the basis to any associated algorithm. As well as limiting the tree search, 

calculating bounds helps to guide the partitioning of the feasible solution subsets and 

subsequently identifies the optimal solution. The branching strategy corresponds to the 

decision, at each node in the search tree, to choose or reject an arc which would branch 

from a node of the search tree and extend a partially completed solution. During the 

expedient traversal of a tree, the search method can be limited through the process of 

fathoming. A node is fathomed (during minimisation) when the lower bound at a certain 

stage is greater than or equal to the current upper bound (the best available solution so 

far). Backtracking can then occur in a similar manner to when a feasible solution has been 

found at a leaf of the tree. 

1The PTSA or stochastic branch and bound is not to be confused with probabilistic tree search methods 
that incorporate probability-driven approximate methods to achieve heuristic solutions. 
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For the SVRP, each node can refer to the depot or an individual customer and the 

branching process can correspond to the choice of whether or not a partial route is al-

lowed between one location and another. Notwithstanding the simplicity of this structure, 

difficulties arise concerning how the cost of each partial route, or arc, is to be explicitly 

evaluated and indeed implemented in such a dynamic procedure. Each arc coincides with 

the construction of the two separate sub-problems given by (3.6)-(3.11) and (3.28)-(3.30), 

if the recursive formulation for Q(x) is used. If the ascendent node corresponds to customer 

i and the descendent node corresponds to customer j, the former involves the simple addi-

tion of the primary travel cost, cij, to the composite objective function (3.3) given none of 

the first stage constraints are violated. The contribution of the latter recourse function to 

the composite objective function is not so easily calculated dynamically however. In fact, 

it is neither easy enough to be evaluated explicitly nor simplified enough (dynamically 

speaking) to be used as the basis for any necessary bounding procedures. Indeed, it is this 

sub-problem complexity that means the general tree search approach, if taken in isolation, 

is obsolete apart from tiny SVRP problems. For example, to obtain the complete arc cost 

from a vertex representing customer i to a descendent vertex representing customer j in 

a VRPSD tree search, the following expression is required. 

cii  RFj.2c13 	 (3.32) 

where 
j-2 

RFj= > P[qk-Ei = kQ]•P[gk+2 > kQ Tvd-1 = k(2] 
k=1 
j-2 

E P[kQ < qk+i  < (k 1)(2].P[qk4.2  > (k + 1)Q I kQ < qk.4.1  < (k 1)Q]. (3.33) 

RFi denotes the conditional probability of route failure "between" i and j and can be 

proved in the following way. Given that qi  denotes the total demand on a particular fixed 

routing sequence up to and including customer 1, consider qi. There are three possibilities 

relating to comparison between qi and Q: 

(A) > Q 	> kQ for k E {1,...,i — 1}. 

(B) qi < Q. 

(C) qi = kQ for k E {1, . , i 1}. 
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Condition C imposes the only definite failure at j. If the capacity of the vehicle is met 

exactly at i, the vehicle will travel to j and fail since the demand at j must be greater 

than zero. Condition B corresponds to the only case where the number of previous route 

failures is definitely zero and imposes a failure at j if qi > Q. Condition A implies that 

a route failure has definitely occurred previously and, like condition B, may or may not 

imply a route failure at j. This is expressed by (3.33). 

3.3.2 Dynamic Solution Structures for Stochastic Problems 

Stochastic solution structures have been developed to aid the solution search process for 

problems of indeterminacy. In the case of the PTSA, they also provide an appropriate 

background for efficient tree search sub-problem construction. Three possible stochastic 

solution structures are briefly introduced below. 

Stochastic Decision Trees: Stochastic Decision Trees (SDT) are direct stochastic 

extensions of their deterministic counterparts. A SDT requires a tree that branches for 

each possible decision and each possible realisation of the stochastic variables involved. 

The tree is then built up of a series of decision nodes and chance nodes where the outcome 

of a problem scenario is obtained at each leaf of the tree. 

Stochastic Dynamic Programming: Dynamic programming requires a decision to 

be made for each possible state in each stage. These decisions are used to produce a series 

of optimal solutions, one for each stage. In the stochastic case, decisions depend on what 

has happened previously. A continuous state space can be developed however, creating a 

flexibility in terms of the random variables involved, but the process is clearly limited to 

a relatively small number of states, see [132]. 

Scenario Aggregation: Scenario aggregation is a dynamic process that is event-

based. Clearly, if there exists a finite number of problem scenarios (see Definition 2.5.1), 

each with a deterministic optimal solution, it is possible to find the most common optimal 

solution. This corresponds to an approximation of the "stochastic" optimal solution since 

not all feasible solutions are considered and even if other feasible sets are considered then 

not all solutions may be implementable at all times. It is possible to successively aggregate 

a number of similar scenarios and eventually locate an overall optimal solution though, due 

to a large number of associated deterministic problems, such a method is almost always 

employed as a heuristic using a simplified objective function. 
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Figure 3.1: A Stochastic Decision Tree 

3.3.3 A SDT Approach For The VRPSD 

Due to the similarity between the SDT method and the branch and bound approach in 

general, stochastic decision trees were selected to form the basis of the PTSA. However, 

an alternative design structure and a parallel binary tree search significantly modify the 

original method. The reasoning behind such an adaptation is discussed in pedagogical 

stages below. 

Stochastic Decision Trees (SDT) 

The stochastic decision tree approach is an extension of the deterministic decision tree 

procedure. Figure 3.1 displays a SDT for a two stage problem. The square nodes repre-

sent decision nodes and the circular nodes represent chance nodes. Starting at the first 

decision node, representing event EO, two decisions are possible, A and B. Following 

decision A, two events can occur depending on the outcome of chance node Cla. Each of 

these events, Ela and Elb, have a corresponding conditional probability of occurrence, 

P(Ela EO) and P(Elb EO) respectively. Similarly, every decision node in a SDT has 

an associated probability of occurrence that is conditional on the previous 'decisions' and 

`chances', e.g. the probability of E2j occurring is P(E2j I Elc (1 EO). Importantly, as 

the objective of a decision tree is to maximise a function over a series of decisions, all the 

leaves corresponding to a set of decisions need to be grouped together to form an accurate 

solution structure and to evaluate the correct solution value. The role of the tree is then 

realised when all the leaves have been evaluated, the decision sets compared and the best 

group of decisions chosen. 
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Figure 3.2: A SDT Representation Of The VRPSD 

A SDT-VRPSD Approach 

For the VRPSD, SDT decision nodes can represent the choice of an arc on a graph con-

tributing to a vehicle route, as in the general tree search method, and SDT chance nodes 

can correspond to independent events generated after the customer demands have been 

realised. Clearly however, the latter approach for the VRPSD soon leads to dimensionality 

problems unless the events themselves are properly limited. One such "reduced" event is 

the occurrence or non-occurrence of route failure, i.e. the "probability" present at a given 

chance node will be based on RF.i. The first few branches of such a SDT can be seen in 

Figure 3.2. Following the decision to branch from v1  to v2  for example, the correspond-

ing chance node uses RF2  to create either a "failure at v2" (yr) or a "no failure at v2 ' 

(v2 F'). In addition, the first node corresponds to yr and, by definition, RF3  RF3 and 

RF4 	RF4 since the preceding decision nodes are dissimilar. As in all SDTs, each leaf of 

the tree corresponds to a feasible solution potentiality. 

Due to the nature of such an event-based tree and the lack of an obvious structure 

to evaluate feasible solutions, the SDT method in its current form still remains computa-

tionally difficult to implement. Further modifications are two fold: (i) by constructing the 

SDT around a general tree search, the "solution grouping" complication can be overcome 

and the first stage problem can be properly represented, (ii) by introducing a load-based 

emphasis to SDT branching, second stage recourse representation can be simplified. 
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SDT Modification I: A Parallel Binary Tree Search 

Due to the possibility of recourse, a VRPSD solution refers to a set of planned routes that 

may not be completed in practice. However, analogous to all tree search methods is the 

principle that each node should refer to a partial or complete feasible solution, i.e. it is not 

possible to form any kind of alternative primary tree structure for a VRPSD that could 

not apply to a VRP. To represent the first-stage problem therefore, a search tree is linked 

to a SDT, i.e. a group of SDT nodes index a single node on a separate tree. 

SDT Modification II: A Load-leaving Approach 

Unless events are properly limited, the branching from SDT chance nodes can lead to di-

mensionality problems. Previously, the SDT was considered in terms of branching accord-

ing to RFC however such reduced events are not simplistic enough to envisage a clarified 

second stage problem construction. In the PTSA therefore, SDT branching occurs accord-

ing to the possible load a vehicle can have after satisfying the demand of the customer 

in question, i.e. events equate to alternative load-leaving levels. In this way, chance node 

branching is limited by the capacity of the vehicles involved irrespective of the stochastic 

demand requirements in the problem and therefore the search is additionally restricted 

by the distinct number of load-states possible in practice. [Note, it is still not possible to 

find the best descendent in such a load-based SDT system and use it as a feasible solution 

construct since the branching process does not operate according to divisions of poten-

tial feasible solution subsets. There still remains the need, therefore, for a binary tree 

search to act as an index to the SDT-type tree that results out of the discrete load-leaving 

possibilities.] 

The PTSA: A Precis 

In an effort to find a generic and efficient method for solving the VRPSD exactly, several 

conditions were classified as being the most influential in designing the algorithmic proce-

dure. Most importantly, at this stage, the structure of the PTSA needed to be such that 

bounds to the first stage deterministic problem as well as the stochastic recourse second 

stage problem could be efficiently implemented. Also, however, it was important to find 

a method that simplified the solution procedure in the absence of a non-complex second 

stage problem. This has been achieved with the twin methodology highlighted above. 
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3.4 Algorithmic Details 

Although many different data structures are utilised to overcome computational difficulties 

in the PTSA and additional parameters are included to represent the VRPSD accurately, 

the basic SDT methodology remains unchanged. The chance nodes and decision nodes 

present in a stochastic decision tree are established along with the ordinary tree search 

necessary for representing the first-stage problem with the use of two linked trees. 

3.4.1 The Linked Trees 

Figure 3.3 displays the pair of search trees associated with the PTSA. One, a binary search 

decision tree (OUTER tree), relates to the first-stage deterministic problem and the other, 

a SDT-based tree (INNER tree), relates to the second stage stochastic recourse problem. 

The OUTER tree conforms exactly to the simple branch and bound method described in 

Section 3.3.1. Every branch, corresponding to a possible routing segment in the VRPSD, 

divides the feasible solution subset into two independent sets. On the OUTER tree, each 

decision node p is identified by a customer index c(p) that refers to a vertex vi in the 

VRPSD, i.e. c(p) = vi or c(p) = 7Ti, where the latter refers to a not-node. For example, no 

route constructed below the node p = 6 can include the arc v2v3  however it must include 

the arcs vi v2  and v2 v4. In addition, each node in the OUTER tree indexes at least one 

event node on the INNER tree. Such pointers are shown as dotted lines in the diagram. 

3.4.2 The INNER Tree 

The INNER tree is a modified SDT where chance nodes branch according to the load-

leaving level of the next customer following from the demand of the given customer and 

the load-leaving level of the preceding customer. 

Decision Nodes 

Each INNER tree decision node A is denoted by a series of indices: 

(i) the load-leaving level, /(A) E {0, 	, Q}, 

(ii) the OUTER tree index, 0(A), 

(iii) the INNER tree index, 1(A), 
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(iv) the probability p(A) of leaving customer c(0(A)) with load /(A) (depending on 

the characteristics of the parent chance node), and 

(v) the recourse cost, r(A). 

All these indices are self-explanatory except /(A) which corresponds to the unique index 

specifying the current node within the set of all possible nodes on the INNER tree that 

correspond to OUTER tree node 0(A). By the definition of the VRPSD, note that 1(A) = 

Q V A where c(0(A)) = v1, i.e. the amount with which a vehicle leaves the depot always 

corresponds to the vehicle capacity Q, and, 0 < /(A) < Q — 1 V A where c(I(A)) 	v1, 

i.e. the load-leaving level of all other INNER tree event nodes must be less than the vehicle 

capacity since at each customer in a VRPSD a delivery of some kind must be made. [The 

total number of decision nodes on the INNER tree representing one vertex on the OUTER 

tree varies depending on the number of customers on the partial route of which c(0(A)) is 

a part and the respective levels of stochasticity of their demand values, see Section 3.4.6.] 

Chance Nodes 

Each INNER tree chance node has an associated series of branches relating only to the 

stochastic demand at the customer represented by the descendent vertex and the discrete 

event load-leaving state at the customer represented by the ascendent vertex. Hence, 

creating descendent nodes that result from the alternative values of corresponding load-

leaving states is a relatively explicit task. Indeed, on the INNER tree, each decision node 

has a independent probability of occurrence, in comparison with other nodes with the 

same parent chance node, namely p(A) for a decision node A with load /(A). 

Probabilities of Contribution 

It has been shown that feasible solutions of a SDT are formed by combining groups of 

decision nodes on the INNER tree, hence the need for an OUTER tree index. Clearly, 

during an INNER tree branching process, it is important to consider the contribution of 

each decision node to the corresponding node on the OUTER tree. In parallel to each 

p(A) therefore, a probability of contribution is introduced to each decision node on the 

INNER tree. These probabilities correspond to the total contribution of each INNER tree 

node A to a node of the OUTER tree 0(A) and are denoted by the index cp(A). For 
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OUTER TREE SEGMENT 	AN ASSOCIATED INNER TREE SEGMENT 

Figure 3.4: The Crossover Between Linked Trees In The PTSA 

example, if in Figure 3.3 the probability of an event occurring from each chance node is 

distributed equally then the probability of contribution of the nodes A = 2 and A = 7 to 

the OUTER tree node p = 2 is 1 in total and 0.5 individually, i.e. cp(1) = 1, cp(2) = 0.5 

and cp(7) = 0.5. Similarly, the event nodes A = 3, 4, 8, 9 have associated probabilities of 

contribution of 0.25 each to the decision set (routing segment) that they complete, namely 

viv2v3, i.e. p(3) = p(4) = p(8) = p(9) = 0.5 and cp(3) = cp(4) = cp(8) = cp(9) = 0.25. 

3.4.3 Creating INNER Tree Nodes 

The creation of INNER tree event nodes can be generalised as follows. If there exists a 

branch from vertex T to p on the OUTER tree, corresponding to customers c(r) and c(p) 

in the VRPSD, then this will point to any number of branches on the INNER tree that 

connect an associated node AA, where O(AA) = r , to (y + 1) other nodes (starting with 

[tit) such that 0(p,p, 1t) = p V µ = 0, 	y. One such branch is shown in Figure 3.4. 

Now, if P(1' , 1" , d, Q) represents the probability of a load-leaving level, 1", being realised 

after entering a node with a vehicle of capacity Q and current load-level and encountering 

a demand of d (see Figure 3.5), then: 

P(1' , 1" , d, Q) = 
	Prob[l' — d = 	if 1' > d, 	

(3.34) 
Prob[Q 	— d = 11 if l' < d. 



1 0 	if P(/(AA),k, c(p) , Q) = 0, 
f (k) = where 

1 otherwise. 
(3.41) 
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Figure 3.5: The Factors Affecting The Load-Leaving Level of an INNER Tree Node 

In the generalisation therefore, each chance node will split the new decision nodes, pp + 

pc V Ec = 0, 	y according to the following 

POLY + 	= 	(1  (AA) ll ,c(p), 

for 	Ec(p) E .ec( p) 

11=0,... 	Q-1 

where 	

{

P(1(AA), 11 , G(p),  Q) = 

Clearly, the following sum holds: 

Q-1 E 

probabilities: 

Q) 

Prob[l(AA) — e c( p ) = ii] 

Prob[Q + 1 (AA) — 	c(p)  = ii] 

p(i(AA),//,ec( p ) , Q) = 1. 

if l(AA) > 	c(p), 

if /(AA) < ec(p)• 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
11=0 

There will be y+ 1 < Q discrete events that result from the branching from node AA, each 

corresponding to an alternative load-leaving level of customer c(p), such that: 

Q-1 

y = E f (k) 
k=0 

(3.40) 

Hence, the probability of contribution at each decision node /L/L + p V i = 0, 	y is given 

by cp(pu 1) = cp(AA)p(pp /L) where cp(AA) > cp(pA p) V u = 0, 	y since: 
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cp(AA) = E cpcuy + 	 (3.42) 
0=0 

Clearly, each branch on the INNER tree has a finite cost that is dependent on the load- 

leaving states relating to the two corresponding adjacent nodes. These recourse costs 

r(itit+ it) V /./ = 0, 	y are given by: 

= { 0  
2 .c1c(p) 

if l(pia+ it) < /(AA), 

otherwise. 
(3.43) 

Each node then contributes a cost of cp(pii+ bt)r(piud ,u) to OUTER tree node O(up,d-p). 

3.4.4 Linkage and Crossover 

The dynamic linkage between a node on the OUTER tree and a series of nodes on the 

INNER tree is computationally non-trivial. A fairly complicated search is required to 

locate and branch from ascendent nodes on the INNER tree. For example, OUTER tree 

node p = 3 in Figure 3.3 corresponds to four nodes A = 3, 4, 8, 9 on the INNER tree with 

respective load-leaving levels given by 1(A). A search would require first the location of all 

those INNER tree nodes that correspond to node p = 2 on the OUTER tree and second, 

a series of branches to form the new load-leaving nodes. 

3.4.5 The PTSA Computational Procedure 

The algorithm adopts a nested branching scheme and can be summarised as follows. At 

each OUTER tree decision-node p, which has a customer index c(p) and a parent node 

7, an arc (vc(T), vc(p) ) is assigned to a current partial route k. If a feasible first stage set 

of routes containing k cannot be found then backtracking occurs; otherwise the current 

solution value zP is updated, i.e. zP 	zP-I-ccmc(p) , and the search continues by transferring 

to the INNER tree. The set of INNER tree nodes, AT , that has previously been developed 

and used to index the parent of p, are located. Full branching occurs on the INNER 

tree from all nodes in AT to generate a series of new nodes linked to p, namely AP, 

with alternative non-unique load-leaving levels. The current solution value zP is updated 

accordingly. If zP is feasible and greater than the best incumbent VRPSD solution value 

z*, the node p is fathomed; otherwise the search is transferred to the OUTER tree and 
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Figure 3.6: A Reduced INNER Tree 

the iterative branching process continues. 

The OUTER tree is based on the depth-first branching scheme and requires a branching 

strategy to aid the search process (see later). The INNER tree is based on a depth-first 

branching scheme but, to conserve computational storage space, no chance nodes are 

explicitly generated. Instead, the branching from decision nodes in the INNER tree to 

alternative descendent nodes is considered without the explicit extension of a series of 

chance nodes. All the relevant mechanics of the INNER tree procedure remain in place 

since the properties of each chance node can be incorporated into their ascendent event 

nodes. For example, the INNER tree segment shown in Figure 3.3 reduces to the segment 

shown in Figure 3.6 without a concurrent loss of information. 

To highlight the full procedure in detail, the algorithm is given in two parts, relating 

to the OUTER tree (Algorithm 3.1) and the INNER tree (Algorithm 3.2). The latter is 

connected to the former following the fathoming test (2a) in Algorithm 3.1. 

3.4.6 Computational Complexity and Rebranching 

In its current form, the PTSA is limited in those problems it can solve by two factors. 

Firstly, bounds are required to speed up the search process and secondly, the number of 

INNER tree nodes that must be generated to find a feasible solution to the VRPSD limits 

the performance of the PTSA due to high computational storage requirements. If each 

customer in the VRPSD has (Si discrete demand values and m = 1, the number of INNER 

tree nodes required to find a feasible solution, IT% is as follows: 

1  + 71E1 1  ( 11  (Sj 
i=2 	j=2 

 

(3.44) 
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Algorithm 3.1 The PTSA: OUTER tree 

1 Initialisation  
initialise the cost matrix C = (cij); 
set the OUTER tree node from which branching will commence to p = 1, c(p) = 1; 
set the level of the tree to Lo = 1; 
set zP = 0 and z* = co; 
set the vertices available to branch to as V' = {v2 , ..., vr,}; 
initialise the first INNER tree node A = 1, 0(A) = 1; 

2 Branching  
while (V' 0 0) and (z' < z*) do,  

choose a customer vi E V' to branch to; 
branch and number the new node accordingly, i.e. p = p +1, c(p) = i; 
set 7 as the parent of p 
set Lo = Lo + 1; 
calculate zP (first stage), i.e. zP 	z" 	cc(T),(p) ; 
2a Fathoming Test  
if (z" < z*) then 

complete INNER Tree Branching (Algorithm 3.2); 
calculate zP (second stage); 
2b Feasibility and Optimality Test  
if (zP is feasible) and (zP < z*) then 

set z* = zP; 
record routes; 

end if 
end if 
update C and V' for node p; 

end while 

3 Backtracking 
repeat 

set Lo = Lo — 1; 
if Lo = 0 then 

return z*; 
return routes; 
stop; 

end if 
until (alternative not node has not been examined) 
backtrack to new node; 
update C and V'; 
goto 2; 
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Algorithm 3.2 The PTSA: INNER tree 

1 Initialisation  
set the INNER tree node from which tree search will commence to A = 1; 
set the level of the tree to L I  = 1; 
set Ao to be the number of nodes generated on the INNER tree; 

2 Initial Search  
while (0(A) 0 r) do 

if (A corresponds to the last node on level Li) then 
set L I  = L I  + 1; 

end if 
goto next INNER tree node on level Li; 
set current node as A; 

end while 

3 Branching  
set Y to be the set of load-leaving possibilities from node A; 
while (Y 0) do 

choose a load-leaving possibility l to branch to; 
branch and number the new node accordingly, i.e. A = Ao  + 1; 
set L I  = Li + 1; 
set 0 (A) = p; 
set /(A) = /; 
calculate p(A), cp(A) and r(A); 
calculate zP (second stage), i.e. zP 	zo cp(A)r(A); 

end while 
return to parent node; 
set LI = Li —1; 

4 Lateral Search  
if (current node corresponds to the last node on level Li) then 

stop; 
else 

repeat 
goto next INNER tree node on level Li; 
set current node as A; 
if (0(A) = r) then 

goto 3; 
end if 

until (all INNER tree nodes on level L I  have been examined) 
end if 
stop; 
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If m > 1, the maximum value of Ilzlfor  all feasible solutions involves one route with 

n — m — 1 customers, another route of two customers and, if m > 2, another m — 2 single 

customer routes. More specifically: 

n-m-1 	i 	 n-1 	i 	 n-1 	i 	n-m-1 
E 	[pi )± E 	)=i+E 	+ fl i=2 j=2 	i=n-m-1 j=2 	i=2 j=2 	j=2 

(5j  (3.45) 

Given that several indices are stored at each INNER tree node, storage requirements can 

become enormous, e.g. if n = 11, m = 2 and 5i = 5 V i, II z l = 12, 207, 031 and if n > 12, 

1/z1 > 1 billion. In its present form, therefore, limits would need to be set on 5i, m or n. 

Resulting from a need to reduce PTSA storage requirements even further, a branch-

ing extension is added to the INNER tree. An aggregation process is established where 

the load-leaving level of each INNER tree node contributes to new nodes formed in a 

re-branching procedure. Once full INNER tree branching has occurred, all recently con-

structed nodes (indexing p on the OUTER tree) are replaced by a series of new nodes, 

each corresponding to a unique load-leaving level. The explicit procedure requires one 

level of the INNER tree to be ascended before all the nodes that have just been formed, 

now below the active level, are deleted. Following this, the first node on the current level 

is located and a new branching scheme is incorporated where each new node, a son of the 

current node, corresponds to a load-leaving level. Each of the "re-branched" nodes then 

corresponds to a unique load-leaving level, thereby limiting the number of nodes retained 

on each level of the INNER tree to Q. 1/z1 is now given by 1/.1= 1 + Q(maxi[Si] n —.1). 

In the earlier example, with any value of m, n = 11, Si = 5 and Q = 100, IPI = 1501. 

A new version of the PTSA (Algorithm 3.2) that incorporates rebranching is given in 

Algorithm 3.3. The original branching process now involves forming a series of temporary 

nodes which are later deleted. The contribution of these nodes, in terms of probability 

and cost, is stored so that a series of permanent nodes can be created in their place. 

3.5 Test Problems 

The following set of test problems were formed to assess the performance of the PTSA, 

together with the impact of a number of parameters. They derive from similar tests used 

by Gendreau et al [97] for the VRPSCD. 
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Algorithm 3.3 The PTSA: INNER tree (with rebranching) 

1 Initialisation  
as Algorithm 3.2 

2 Initial Search  
as Algorithm 3.2 

3 Branching  
set Y to be the set of load-leaving possibilities from node A; 
while (Y 0) do 

choose a load-leaving possibility / to branch to; 
branch and number the new node accordingly, i.e. A = Ao  + 1; 
set Li- = LI + 1; 
set 0(A) = p; 
set /(A) = 1; 
calculate p(A), 
calculate and record cp(A) and r(A) for the relevant /(A); 
calculate zP (second stage), i.e. zP <— zP cp(A)r(A); 

end while 
return to parent node; 
set L/  = LI  — 1; 

4 Lateral Search  
if (current node corresponds to the last node on level Li) then 

goto 5; 
else 

repeat 
goto next INNER tree node on level Li; 
set current node as A; 
if (0(A) = r) then 

goto 3; 
end if 

until (all INNER tree nodes on level L1  have been examined) 
end if 

5 Rebranching  
backtrack to earliest node on Li- where 0(A) = p; 
delete all other nodes on Li- where 0(A) = p; 
rebranch from A for all load-leaving levels using recorded values; 
stop; 
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3.5.1 Problem Generation 

Ten test problems were created as follows: n vertices vi are generated in the [1, 99]2  

square according to a continuous uniform distribution and each ci7is  then computed as 

the Euclidean distance between vi and vi. Customers are arbitrarily assigned to one 

of three groups with discrete demands of mean µi = 5, 10, 15 respectively. A uniform 

distribution is utilised and Si values of demand are randomly generated in the intervals 

[1, 9], [5, 15] and [10, 20] where the probability of each customer demand value el arising 

is identical, i.e. pi = 1/8i V i and 1. For all tests, the ten problems were solved for each 

setting of the associated parameters. 

3.5.2 Vehicle Utilisation 

During the testing process, problem tightness is controlled by selecting the vehicle capacity 

Q (integer) in order to achieve a pre-specified expected 'vehicle utilisation coefficient' U, 

where: 
6, 

E E /IX 
U = i=2 1=1  

mQ (3.46) 

3.6 An Example of the PTSA 

To further illustrate the PTSA, a worked example is now presented. The example involves 

a simple seven customer, one vehicle problem. The input data describing the example is 

shown in Table 3.1. The depot is located at (17, 9), vehicle capacity Q is set at 47 and 

Si =7 V i, i.e. pil  = 1/7 V i and 1. 

3.6.1 Branching on the INNER Tree 

Following an initial branch on the OUTER tree from the depot to customer v8, i.e. p =1 

to p = 2 where c(1) = 1 and c(2) = 8, initial branching takes place on the INNER tree 

according to the demand set es as shown in Table 3.1. Figure 3.7 displays the resulting 

tree and the characteristics of the relevant nodes are shown in Table 3.2. Following the 

rebranching procedure, the (temporary) nodes are deleted and new permanent nodes are 

formed. In this case, since branching previously took place from a single node (A = 1), 

INNER tree structure remains identical. 
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t x y e, ef e; c, e, e': e" 
2 24 5 5 6 7 8 12 13 15 
3 83 69 5 6 7 9 10 13 15 
4 51 20 1 2 3 4 5 6 9 
5 94 37 1 2 3 5 7 8 9 
6 42 41 11 12 14 16 17 19 20 
7 26 75 11 12 14 16 17 18 20 
8 60 93 6 8 9 11 12 13 14 

Table 3.1: Input Data 

A 0(A) 1(A) P(A) cp(A) r(A) 
1 1 47 - 1 0 
2 2 33 0.1428570 0.1428570 0 
3 2 34 0.1428570 0.1428570 0 
4 2 35 0.1428570 0.1428570 0 
5 2 36 0.1428570 0.1428570 0 
6 2 38 0.1428570 0.1428570 0 
7 2 39 0.1428570 0.1428570 0 
8 2 41 0.1428570 0.1428570 0 

Table 3.2: INNER Tree Data I 

A 0(A) 1(A) P(A) cp(A) r(A) 
9 3 13 0.1428570 0.0204081 0 
10 3 15 0.1428570 0.0204081 0 
11 3 16 0.1428570 0.0204081 0 
12 3 17 0.1428570 0.0204081 0 
13 3 19 0.1428570 0.0204081 0 
14 3 21 0.1428570 0.0204081 0 
15 3 22 0.1428570 0.0204081 0 
16 3 14 0.1428570 0.0204081 0 
17 3 16 0.1428570 0.0204081 0 
18 3 17 0.1428570 0.0204081 0 
19 3 18 0.1428570 0.0204081 0 
20 3 20 0.1428570 0.0204081 0 
21 3 22 0.1428570 0.0204081 0 
22 3 23 0.1428570 0.0204081 0 
23 3 15 0.1428570 0.0204081 0 
24 3 17 0.1428570 0.0204081 0 
25 3 18 0.1428570 0.0204081 0 
26 3 19 0.1428570 0.0204081 0 
27 3 21 0.1428570 0.0204081 0 
28 3 23 0.1428570 0.0204081 0 
29 3 24 0.1428570 0.0204081 0 
30 3 16 0.1428570 0.0204081 0 
31 3 18 0.1428570 0.0204081 0 
32 3 19 0.1428570 0.0204081 . 	0 
33 3 20 0.1428570 0.0204081 0 
34 3 22 0.1428570 0.0204081 0 
35 3 24 0.1428570 0.0204081 0 
36 3 25 0.1428570 0.0204081 0 
37 3 18 0.1428570 0.0204081 0 
38 3 20 0.1428570 0.0204081 0 
39 3 21 0.1428570 0.0204081 0 
40 3 22 0.1428570 0.0204081 0 
41 3 24 0.1428570 0.0204081 0 
42 3 26 0.1428570 0.0204081 0 
43 3 27 0.1428570 0.0204081 0 
44 3 19 0.1428570 0.0204081 0 
45 3 21 0.1428570 0.0204081 0 
46 3 22 0.1428570 0.0204081 0 
47 3 23 0.1428570 0.0204081 0 
48 3 25 0.1428570 0.0204081 0 
49 3 27 0.1428570 0.0204081 0 
'50 3 28 0.1428570 0.0204081 0 
51 3 21 0.1428570 0.0204081 0 
52 3 23 0.1428570 0.0204081 0 
53 3 24 0.1428570 0.0204081 0 
54 3 25 0.1428570 0.0204081 0 
55 3 27 0.1428570 0.0204081 0 
56 3 29 0.1428570 0.0204081 0 
57 3 30 0.1428570 0.0204081 0 

A 0(A) 1(A) cp(A) r(A) 
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 3 13 0.0204081 0 

3 14 0.0204081 0 
3 15 0.0408162 0 
3 16 0.0612244 0 
3 17 0.0612244 0 
3 18 0.0816325 0 
3 19 0.0816325 0 
3 20 0.0612244 0 
3 21 0.1020406 0 
3 22 0.1020406 0 
3 23 O.uolpozo 0 
3 24 0.0816325 0 
3 25 0.0612244 0 
3 26 0.0204081 0 
3 27 0.0612244 0 
3 28 0.0204081 0 
3 29 0.0204081 0 
3 30 0.0204081 0 

Table 3.4: INNER Tree Data III 

A 0(A) 1(A) P(A) cP(A) r(A) 
27 4 0 0.1428570 0.0029154 0 
28 4 3 0.1428570 0.0029154 0 
29 4 4 0.1428570 0.0029154 0 
30 4 6 0.1428570 0.0029154 0 
31 4 7 0.1428570 0.0029154 0 
32 4 8 0.1428570 0.0029154 0 
33 4 45 0.1428570 0.0029154 178.4 

Table 3.5: INNER Tree Data IV 

A O(A) 1(A) cP(A) r(A) 
27 4 0 0.0087463 0 
28 4 1 0.0116618 0 
29 4 2 0.0145772 0 
30 4 3 0.0233235 0 
31 4 4 0.0262390 0 
32 4 5 0.0291544 0 
33 4 6 0.0437316 0 
34 4 7 0.0466471 0 
35 4 8 0.0583089 0 
36 4 9 0.0670552 0 
37 4 10 0.0641397 0 
38 4 11 0.0670552 0 
39 4 12 0.0787170 0 
40 4 13 0.0641397 0 
41 4 14 0.0699706 0 
42 4 15 0.0641397 0 
43 4 16 0.0553944 0 
44 4 17 0.0524780 0 
45 4 18 0.0437316 0 
46 4 19 0.0291544 0 
47 4 20 0.0262390 0 
48 4 21 0.0174927 0 
49 4 22 0.0145772 0 
50 4 23 0.0087463 0 
51 4 24 0.0058309 0 
52 4 25 0.0029154 0 
53 4 45 0.0029154 178.4 
54 4 46 0.0029154 178.4 

Table 3.6: INNER Tree Data V 
Table 3.3: INNER Tree Data II 
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Figure 3.7: Temporary INNER Tree Nodes Corresponding to OUTER Tree Arc (1, 8) 

09 10 11 12 13 14 15 16 17 IN 19 20 21 22 23 24 25 26 

Figure 3.8: Temporary INNER Tree Nodes Corresponding to OUTER Tree Arc (1, 8, 7) 

Figure 3.9: Rebranched INNER Tree Nodes Corresponding to OUTER Tree Arc (1, 8, 7) 

Now, consider another branch on the OUTER tree, from node p = 2 to node p = 3 

where c(3) = 7. Temporary branching takes place on the INNER tree as shown in Fig-

ure 3.8. The characteristics of the newly formed nodes are shown in Table 3.3. Following 

the next rebranching procedure, the new INNER tree is as shown in Figure 3.9 and the 

indices of the new nodes are shown in Table 3.4. Now, consider another branch on the 

OUTER tree, from node p = 3 to node p = 4 where c(4) = 3. The newly formed tem-

porary nodes total 126. Consider only the branch from node A = 9. Seven nodes are 

formed and their characteristics, according to the demand set 6 given in Table 3.1, are 

shown in Table 3.5. Notice that a recourse cost from the node A = 33 contributes to the.  

relevant OUTER tree node and vehicle load increases following a "trip back to the depot" 

to 1(33) = 45. Following the next rebranching procedure, the indices of the new nodes on 

level di = 4 of the INNER tree are shown in Table 3.6. 
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3.6.2 Branching on the OUTER Tree 

Figure 3.10 displays the initial construction of the OUTER tree for the example given 

above. The first few nodes correspond to the 1 — 8 — 7 — 3 branch utilised in Section 3.6.1 

to describe the INNER tree. 

Each INNER tree node A contributes a recourse cost r(A), to the OUTER tree node 

0(A). The total recourse cost attributed to each OUTER tree node is therefore given by 

the following. 

E r(A)cp(A) 
	

(3.47) 
REAP 

where AP corresponds to the set of all INNER tree nodes for which 0(A) = p. 

Figure 3.10 corresponds to the formation of the first three leaves of the OUTER tree 

and Table 3.7 displays all the relevant OUTER tree node information. This includes 

fixed arc costs, recourse costs, obtained by (3.47), and overall routing costs given by zP. 

Each of the final OUTER tree nodes, p = 8, 11, 15, include an additional cost referring to 

the final trip back to the depot so that the feasible solution cost in each case is actually 

425.4, 466.7 and 427.5 respectively. The best feasible solution obtained after the branching 

process shown in the figure therefore corresponds to node p = 8. If the PTSA is run to 

optimality, using approximately 20 seconds of computational time and generating 12, 219 

and 1, 580, 267 OUTER tree and INNER tree nodes respectively, z* = 368.5 and the 

optimal route is 1 4 5 3 8 7 6 2 1. 

3.7 Computational Results 

The paired tree search algorithm has been coded in FORTRAN and run on a Silicon 

Graphics Workstation Indigo R4000 (100MHz). This CPU is roughly 25% faster than a 

100MHz Pentium, see Dongarra [67]. 

The results for the basic version of the PTSA for P4 are split into two sections. Firstly, 

we consider the overall results. The effect that a number of parameters, e.g. n, m, U and 

6j, have on the performance of the algorithm (in terms of computational time and IN-

NER/OUTER tree node generation) is discussed, together with an evaluation of particu-

lar PTSA components such as fathoming and rebranching. Secondly, we consider possible 

branching strategies and how they can be used to enhance the search process. 
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Figure 3.10: Example OUTER Tree 

Node 
P 

Customer 
c(p) 

Fixed Cost 
_=-. cij 

Recourse Cost 
E ep(A)r(A) 

Total 
= cii + E cp(A)r(A) 

Overall Cost 
z" 

1 1 0 0 0 0 
2 8 94.4 0 94.4 94.4 
3 7 38.5 0 38.5 132.9 
4 3 57.3 1.0 58.3 191.2 
5 5 33.8 18.1 51.9 243.1 
6 6 52.2 62.3 114.5 357.6 
7 4 22.8 5.4 28.2 385.8 
8 2 30.9 0.6 31.5 417.3 
10 2 40.2 1.8 42.0 399.6 
11 4 30.9 0.5 31.4 431.0 
13 4 46.2 14.6 60.8 303.9 
14 6 22.8 51.9 74.7 378.6 
15 2 37.6 3.2 40.8 419.4 

Table 3.7: OUTER Tree Data 
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3.7.1 Results I: Parameters and PTSA Components 

Numerical experiments were completed to assess the effect of four problem characteristics: 

problem size - n, vehicle utilisation - U, vehicle number - m and the number of discrete 

demand values per customer - Si. In addition, two specific algorithmic components, fath-

oming (F) and re-branching (R) were tested by examining four cases of the PTSA.2  These 

are given as follows (X refers to the omission of procedure X): 

• complete enumeration and no-rebranching - (F, 

• complete enumeration and rebranching - (F, R), 

• fathoming and no-rebranching - (F, R), 

• fathoming and re-branching - (F, R). 

The ten test problems, described in Section 3.5, were run for a number of problem 

instances where n = 5, 6, 7, m = 1, 2, 3, Si = 5, 6, 7 and U = 0.5, ..., 1, i.e. (10 x3x 3 x3x 

6) = 1620 separate stochastic problems were solved. Tables 3.8, 3.9 and 3.10 display the 

average values of these tests and compare the number of OUTER tree nodes used (101), 

the number of INNER tree nodes used (VD and the computation time in seconds over the 

four cases of PTSA. The values in each table are averages of 540 problem instances. 

Complete Enumeration 

Testing the PTSA against complete enumeration provided not only an indication of the 

performance of the algorithm but also of the computational complexity of the problem 

in general. Clearly for (F, R), the number of OUTER tree nodes is independent of the 

customer demand characteristics (Si and U), and only alters with the number of vehicles 

(m) and the number of vertices (n). [The reason for the slight variation in the value of 

101 in the table is due to the requirement of choosing an integer Q which can slightly vary 

for different demand characteristics.] For complete enumeration, 101, 	and cpu increase 

most sharply over n. As expected, this implies that problem size is the biggest hindrance 

to the performance of the algorithm at this stage. Notice also that in cases where m > 1 

2The PTSA with no fathoming both on the INNER and OUTER trees (complete enumeration) was 
tested to highlight the size of stochastic problems of this kind and to highlight the complexity involved in 
evaluating all problem scenarios. 
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(r, To (F ,R) (F, R) (F, R) 

101 111 cpu 101 1I1 cpu 101 In cpu 101 III cpu 
n 5 141.7 65815.3 0.95 141.7 8776.0 0.23 135.6 48252.8 0.78 135.6 7157.7 0.22 

6 1054.3 3150685.6 40.93 1054.3 76974.0 1.24 919.3 1656476.3 23.38 919.3 53202.0 0.95 
7 8340.2 161491238.3 2116.74 8340.2 706522.3 10.75 6281.6 49509291.1 733.39 6281.8 377391.7 6.28 

Table 3.8: Results for Variable n (m = 1, 2, 3, Si = 5, 6, 7, U = 0.5, ... , 1) 

(F , R) (F, R) (F, R) (F, R) 
1 01 In cpu 101 III cpu 101 III cpu 1 01 1I1 cpu 

m 1 1069.7 17238804.8 221.87 1069.7 170012.7 2.44 933.1 6438958.4 96.70 933.2 103281.9 1.64 
2 4092.1 70007636.9 926.88 4092.1 357283.5 5.41 3117.0 19854910.3 296.15 3117.1 181360.9 3.04 
3 8430.0 154455651.0 2017.18 8430.0 534301.3 8.63 6289.0 48835855.8 716.24 6288.9 298614.7 5.27 

Table 3.9: Results for Variable m (n = 5, 6, 7, bi = 5, 6, 7, U = 0.5, ... , 1) 

(F, 17) (F, R) (F, R) (F, R) 
101 III cpu 10 1 III cpu 101 111 cpu 101 III cpu 

Si 5 3825.9 18480390.9 231.61 3825.9 254911.0 3.97 2921.9 6002570.2 88.10 2921.9 139000.4 2.42 
6 3873.9 54037498.2 715.23 3873.9 322450.9 4.98 2968.8 16985562.9 246.48 2968.8 177219.2 2.98 
7 3847.1 131623427.3 1728.78 3847.1 386467.2 5.86 2959.6 40349297.2 602.47 2959.7 213225.1 3.55 

Table 3.10: Results for Variable Si (n = 5, 6, 7, m = 1, 2, 3, U = 0.5, ... ,1) 

co co 



3.7 Computational Results 	 100 

problem complexity increases significantly. This is due to the huge increase in the number 

of routes that need to evaluated in the VRPSD where, unlike the VRP, the direction of 

travel also must be taken into consideration. 

Rebranching 

Rebranching effects the amount of INNER tree nodes that are required to find an optimal 

solution. In the worst case, i.e. where (Si = 7, the reduction between complete enumeration 

without rebranching and complete enumeration with rebranching can be as much as over 

130 million INNER tree nodes. If fathoming is in place, such a reduction totals over 

40 million nodes. The effect on computational time is no less significant. For example, 

comparing cpu in the cases where algorithm construction was given by (F, R) to (F, R) 
and (F, R) to (F, R) respectively, the reduction was by as much as 99.6% and 99.4%. 

Problem Parameters 

In general, using the complete algorithm (F, R), problem size is the most important pa-

rameter. The value of n effects 101,111 and cpu almost in equal measure. The parameter 

of secondary importance is m. In the main, this parameter effects 101 and cpu. The 

number of discrete demand values (Si) predominantly effects 1/1 but also slightly effects 

computational time. 

An interesting part of the PTSA can be highlighted in the consideration of U. Ta-

ble 3.11 displays the changing values of 101, 1/1 and cpu, using (F, R), as U increases for 

problems where n = 6. As U increases and the problem becomes increasingly harder to 

solve in the conventional sense, computational time decreases. This unusual result is due 

to the manner in which the PTSA constructs INNER tree nodes. This is highlighted by 

considering the case where U = 0.9 and U = 1.0. At the point where U = 1.0, the amount 

of INNER tree nodes generated is less than the case where U = 0.9, even though 101 has 

increased. In this case, the problem is harder to solve due to increased recourse costs, 

i.e. OUTER tree nodes increase, however the problem is easier to solve on the SDT due 

to a reduced value of Q, i.e. INNER tree nodes decrease. 
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U 101 cpu 
0.5 1013.8 60068.3 1.10 
0.6 998.1 55835.1 0.99 
0.7 985.2 53349.8 0.97 
0.8 867.1 50658.8 0.90 
0.9 769.8 48288.8 0.85 
1.0 775.0 46778.2 0.84 

Table 3.11: 101, 1/1 and Time (secs.) for the (F, R) - (n = 6, m = 1, 2, 3, Si = 5, 6, 7) 

Strategy 101 Ill cpu 
CLOSEST 15889 1425619 23.3 
LOWEST 16214 1474704 24.3 
HIGHEST 16221 1475164 24.6 

FARTHEST 16757 1558723 26.1 

Table 3.12: PTSA Components For Different Branching Strategies 

3.7.2 Results II: Branching Strategies 

The branching strategy - deciding which customer to examine next in the OUTER tree - is 

based on the choice of OUTER tree arcs, i.e. if an arc viva is chosen for branching at a 

node of the search tree in order to extend a partially completed route (vi , vk , 	vi), an 

alternative branching is to reject arc viva as a possible extension of the partially completed 

route. This process was highlighted in 3.3.1 and utilised in the backtracking section of the 

PTSA. The branching strategy is of significance in the level of efficiency of the algorithm 

and has two separate applications, in the choice of which customer to branch to on the first 

route (i.e. from the depot) and in the choice of which customer to branch to from another 

customer. Depending on the algorithm, these may or may not be the same strategy. 

Four elementary strategies were considered: CLOSEST customer, FARTHEST cus-

tomer, LOWEST average demand and HIGHEST average demand. Each strategy was 

partially incorporated into the complete PTSA (F, R), i.e. the choice of where to branch 

to from the depot was random, and run for 240 problem instances where n = 7, 8, m = 1, 2, 

Si = 7, U = 0.5, ..., 1. The results are shown in Table 3.12. Broad generalisations are 

speculative since the above alterations are so problem specific. In addition, any improve-

ments will be small due to the fact that PTSA tree node construction and computational 

time is largely reliant on the parameters discussed earlier. Nevertheless, it is possible to 
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Strategy 101 1/1 cpu 
CLOSEST 16006 1418209 24.1 
HIGHEST 16180 1479907 24.3 
LOWEST 16275 1458606 24.6 

FARTHEST 16708 1540799 25.0 

Table 3.13: PTSA Components For Different Initial Branching Strategies 

see that the most successful strategy is branching according to the CLOSEST customer. 

On average, the number of nodes generated is reduced by at least 3.3% compared with 

any of the other strategies. Tests were also completed using only the initial branching 

strategy as a parameter, i.e. randomising the general strategy. These results can be seen 

in Table 3.13. Once again, the CLOSEST customer to the depot proved to be the most 

effective strategy. Needless to say, this strategy is now fully incorporated into the PTSA. 

3.8 Summary 

The algorithm presented in this chapter has been constructed as an optimal solution 

method for a range of stochastic (routing) combinatorial optimisation problems. The 

primary computational difficulties to overcome in tackling such problems is to adequately 

represent the second stage problem and obtain an optimal solution in reasonable time 

while still retaining a suitable limit on computer memory requirements. The PTSA, based 

around a stochastic branch and bound methodology, has overcome these complications by 

dynamically accounting for stochasticity (INNER tree) and simultaneously maintaining 

the basic structure of a normal branch and bound (OUTER tree). 

The problem used to illustrate the particular components of the PTSA and to highlight 

initial results has been the BVRPSD extension P4. Small size problems have been solved 

exactly (for the first time) without the use of any bounding procedures and the approach 

has maintained its generic outlook throughout the development phase. 



Chapter 4 

Lower Bounds For The Paired 

Tree Search Algorithm 

4.1 Introduction 

The PTSA is based around a stochastic branch and bound methodology and its primary 

operation is to dynamically account for stochasticity while retaining the basic structure of 

an orthodox branch and bound. The problem used to illustrate the particular components 

of the PTSA and to highlight initial results has been the BVRPSD extension P4. In 

this chapter, we continue to consider P4 by deriving and embedding new bounds for 

both the first stage and the second stage of the problem into the PTSA before solving 

computationally difficult, medium size VRPSDs for the first time. The strength of the 

algorithmic procedure, especially in the dynamic incorporation of the second stage bound 

within the INNER tree, is made apparent during the description. 

In Sections 4.2 and 4.3 respectively, lower bounds on the first stage and second stage 

problems of P4 are derived. In each case, the computational implementation of the relevant 

bounds on the PTSA is fully detailed. In Section 4.4, the PTSA is updated and a simple 

upper bound used to obtain an initial feasible solution at the root node of the PTSA is 

detailed. In the first part of the testing phase, a large number of medium size, randomly 

generated problems and large size, (VRP) benchmark problems are solved to optimality. 

Finally, in the second part of the testing phase, we provide heuristic solutions of known 

quality to VRPSDs of larger size. 

103 
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4.2 	A Lower Bound on the First Stage of P4 

The PTSA has so far been used without directly considering the sub-problem of P4, defined 

on a graph GS = (Vs, Es), which is present at each OUTER tree node. In the same manner 

as the overall problem, such a sub-problem has a first stage and second stage. The only 

difference arises because certain branches of the OUTER tree, corresponding to edges in 

the edge-set of a graph describing P4, are fixed. 

As described in Section 3.2.1, the first stage of P4 corresponds directly to a m-TSP. In 

the following section, we present a straight forward lower bound for the m-TSP, denoted 

by Ll, that is transformed during the computational implementation phase to become 

an effective tree search limiter. The bound has significantly helped to solve larger size 

VRPSDs as the computational results will testify. 

4.2.1 Lower Bound Li 

Before describing the lower bound, the two-index formulation for the m-TSP is restated. 

Let: 

xij = {1 2 

0 

if (i, j) is used in the first stage solution and 1 < i < j < n, 

if (i, j) is used as a return trip and i = 1, j > 1, 

otherwise. 

(4.1) 

In what follows, cij and xi j  are interpreted as cji and xji whenever i > j, i.e. we have a 

symmetric graph. The first stage problem can then be given as follows. 

min go(x) = cx 
	

(4.2) 

subject to 

x i , = 2m, 	 (4.3) 
j=2 

Exik + E xki  = 2 	(vk E 	 (4.4) 
i<k 	 j>k 

E xij 5_ ISI — 1 	(S C V\{vi} , 3 < ISI < n — 2), (4.5) 
i,jES 
0 < xij < 2 	 (vj E V\{vi}), 	 (4.6) 

0 < xij < 1 	 xij integer, (1 < i < j < n). 	(4.7) 
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As stated earlier, these first stage deterministic constraints specify that m vehicles enter 

and leave the depot (4.3), that every customer receives a visit exactly once (4.4) and that 

individual routes disconnected from the depot are prohibited (4.5). 

Consider the relaxation of the vehicle number constraints (4.3) and the subtour elimi-

nation constraints (4.5) from this problem. The following problem is obtained. 

subject to 

min cx 
S 

(4.8) 

• = 2, 
j=2 

E Xik E xkj = 2 
i<k 	j>k 

0<xi  <2 

(vk E V\{vi}), 

(vi E V\{vi}), 

0 < xij < 1 	 xij integer, (1 < i < j < n). (4.12) 

The problem described by (4.8)-(4.12) corresponds to what is known as a minimum cost 

2-perfect matching problem. This problem belongs to a well-known set of graph theoretic 

problems which are all extensions of the 1-matching problem. The latter problem involves 

choosing a subset of edges from a graph which "pair" (match) the vertices of the graph 

so that no two edges are adjacent. The problem is of considerable interest because of the 

existence of efficient polynomial algorithms that can be used to obtain its optimal solution. 

We now describe the 1-matching problem and its b-matching extension as a pre-

requisite for detailing the computational implementation of the 2-perfect matching bound. 

We also outline the advantages and disadvantages of employing such a bound in the PTSA. 

For more information on general matching problems and their solution see [110, 200]. 

1-Matching Problems 

Given a simple non-directed graph G" = (Vm, E") where Vrn corresponds to the set of 

vertices and E" corresponds to the set of edges, a 1-matching of G" is a subset of edges.  

K C En' such that no two edges of K are adjacent, i.e. each vertex is incident with exactly 

one arc. An example 1-matching of a graph Gm, shown in Figure 4.1(a), is displayed in 

Figure 4.1(b). Clearly, an objective-driven adaptation of this problem corresponds to 

finding a minimum/maximum cost 1-matching K* of G. 
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(a) ,(b) (c) 

Figure 4.1: Example Matchings 

b-Matching Problems 

Let Gm denote a non-directed multi graph (V m  , Em ) where Vrn corresponds to the set 

of vertices, E" corresponds to the set of edges, and the degree of vertex i E Vm  is given 

by dG . (i). Let there exist an associated subset of edges K c Em  such that in a partial 

multi-graph of Gm , denoted by GM'  = (vm', Km'), the expression 0 < bi < dGm(i) is 

satisfied where bi are integer values associated with each vertex i E Vrn. A b-matching of 

Gm is then given by a set of edges K such that 0 < dam , (i) < bi. A b-matching is known 

as a perfect b-matching if dGm , (i) = bi V i E V. Needless to say, the 1-matching problem 

is a b-matching where bi = 1 and the 1-perfect matching problem is a b-matching where 

dGm , (i) = bi = 1. An example 1-perfect, 2-perfect and 3-perfect matching of graph Gm , 

shown in Figure 4.1(a), are displayed in Figures 4.1(b), 4.1(c) and 4.1(a) respectively. 

Solution Methods For Perfect Matching Problems 

The ease with which a perfect matching problem can be solved depends on the nature of 

the underlying graph involved. Indeed, finding a 1-perfect matching of a bipartite graph -

G = (V' U Vb  ,E) where V' n Vb = 0 and E = {(i, j)I i E Va ,j E Vb} - is equivalent to 

solving the well-known Assignment Problem (AP). Therefore, the first exact algorithms 

for 1-perfect matching problems were AP-based. The Hungarian method was devised by 

Kuhn [137] as early as 1955. Primal methods that use the concept of polyhedral combina-

torics have been devised by Barr [12] and methods based on a shortest augmenting path 

approach have been presented by Tomizawa [203]. For a 1-perfect matching of a complete, 
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non-bipartite graph (describing the type of graph involved in the m-TSP), each of these 

methods have been extended by Edmonds [77, 76] (blossom algorithm), Cunningham and 

Marsh [54] and Derigs [58, 59] respectively. 

The b-perfect matching problem on complete, non-bipartite graphs can be solved by 

either of the following two methods. 

• Generalisation: Generalising one of the three methods given above. 

• Conversion: Converting the underlying graph into a separate graph for which a 

corresponding 1-perfect matching is equivalent to a b-perfect matching of the original 

problem. 

2-Perfect Matching as a Lower Bound 

The relaxation of the m-TSP given in (4.8)-(4.12) describes a 2-perfect matching of any 

sub-problem defined on a graph GS. This means that if the problem is solved to optimality, 

every vertex in VS will have exactly two adjacent edges. The problem is a relaxation of 

the original problem since subtours are allowed, i.e. customers can be disconnected from 

the depot, and the requirement that there are m vehicle routes that start and end at the 

depot is omitted. Nevertheless, the optimal solution to (4.8)-(4.12) is a lower bound to the 

m-TSP since the additional constraints will always increase, never decrease, the value of 

the associated objective function. [Notice that a tighter bound can easily be obtained by 

adding (m — 1) artificial depots to the graph describing the sub-problem on the OUTER 

tree. If this is the case and each depot has an inter-connecting arc of infinite cost, then m 

vehicle routes will by definition be established. In essence, this adaptation simply converts 

the constraint given by (4.9) to the original constraint given by (4.3).] 

The matching problem has been used to heuristically solve vehicle routing problems, 

see [20], however to our knowledge the 2-perfect matching problem has never been used as 

the lower bound to a VRP-based sub-problem. Indeed, it has been suggested that to obtain 

optimal solutions to such a problem (using Edmond's blossom algorithm) and incorporate 

them into a branch and bound approach of any kind is computationally expensive, see [16, 

8]. Procedures to obtain fast lower bounds of the 2-perfect matching problem itself have for 

this reason been presented in recent years, see [166]. Nevertheless, after due consideration, 

to obtain a minimum cost 2-perfect matching lower bound for a first-stage sub-problem 
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in the PTSA, the "conversion" approach was used along side Derigs' shortest augmenting 

path method for the 1-perfect matching problem. The reasons for taking this approach 

were as follows. 

• Only medium size VRPSDs are to be solved, thereby restricting corresponding 2-

perfect matching sub-problems to a manageable size. In addition, transformation 

methods can be applied to reduce associated 1-perfect matching problems (see later). 

• Irrespective of the fact that computational time is not of top priority for SVRP 

in general, the method proposed by Derigs is considerably faster than the blossom 

algorithm. 

4.2.2 Computational Implementation of Ll 

It is straightforward to incorporate a lower bound (value) of the first stage problem into 

the OUTER tree of the PTSA (see Section 4.4). Therefore, the computational steps that 

remain are five fold. 

(i) Graph Expansion: Artificial depots, corresponding to m vehicle routes, are 

added to the original graph which currently only represents a TSP sub-problem. 

The new graph is denoted by Ga .  

(ii) Graph Reduction: A simple reduction process is applied to Ga to shrink fixed 

arcs into one "new" substitute arc. The new graph is denoted by Gb. 

(iii) Graph Conversion: Graph Gb, representing a m-TSP sub-problem, is con-

verted into an incremental graph, Gc, from which only a 1-perfect matching is 

required. 

(iv) Graph Transformation: The new graph is transformed into a smaller, more 

manageable graph. The new graph is denoted by Gd . 

(v) Matching Solution: The transformed graph Gd  is solved by Derigs' shortest 

augmenting path method. 

Each stage is described independently below for an original sub-problem described by the 

simple three vertex graph Gs shown in Figure 4.2. 
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Figure 4.2: Original Graph G8  

Figure 4.3: Graph Expansion 

Graph Expansion 

This is a very simple stage where (m — 1) vertices are added to G8  to obtain a new graph 

Ga where Ga = (Va, Ea). The number of vertices in Ga is given by na = n m — 1 and 

the new vertex and edge sets correspond to Va = 	, v7i.} and Ea = EU {(i, 	j E 

Va, i j, i or j E V' \ V} respectively. The extended cost matrix Ca = (c`li ) associated 

with Ea  is given as follows: 

ci f 	if i, j E V, 

eil 	if i E V\{1},;jE Va VV}, 

elj 	if i E V a\V,;jE VV{1}, 

co 	if i,j E (Va\V) U {1}. 

The graph Ga for the original graph G where m = 2 is shown in Figure 4.3. 

c3 = (4.13) 

Graph Reduction 

Graph reduction corresponds to shrinking any fixed arcs in Ga into one arc (with a corre-

sponding summation of arc costs). Such a reduction is possible if the number of fixed arcs 

is greater than one. This simple arrangement is shown diagrammatically in Figure 4.4 for 
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a • 
b 

d 

 

   

e • 
Figure 4.4: Graph Reduction 

2b 
	

3a 

Figure 4.5: Graph Conversion 

a set of arcs {(a, b), (b, c), (c, d), (d, e)} where {(a, b), (b, c), (c, d)} are fixed. Note that the 

new cost of arc (a, d) is given by (Cab + cbc Cad)• 

Graph Conversion 

It is possible to obtain a 2-perfect matching solution of Gb by generating an incremental 

graph Gc. The importance of Gc stems from the fact that solving a 1-perfect matching over 

the incremental graph corresponds to the solution of a b-matching of Gb , see Berge [19]. 

The graph Gc is defined as follows. With each vertex i E V of Gb, associate two disjoint 

sets of vertices of Gc: 

Ai: A vertex set of cardinality dGb(i) where each element ay of At  corresponds to an 

edge u of Gb  incident with i. 

Bt : A vertex set of cardinality dT = dGb(i) — bi where each element of Bi is denoted by 

/31-  Vr = 1, ..., di . (For 2-perfect matching, a reduced version of the incremental 

graph, denoted by Gci , can be obtained by setting di  = 2.) 
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The set of vertices of GC is then given by Ai U Bi V i E V. The edges of GC are obtained for 

each i E V, by joining every vertex of Ai with every vertex of Bi and for each u = (i, j) E E 

by joining the vertices ay with ail. Berge proved that every matching of GC which saturates 

all vertices of Bi (i = 1, ..., n) induces in Gb  a b-matching and conversely. An incremental 

graph GC', for the original 4-vertex graph given in Figure 4.3, is shown in Figure 4.5. The 

cost matrix of Gc` is altered in the following way: each a to a arc has a cost of zero, each 

a to Q  arc has a cost equalling half of the arc cost on Gb that corresponds to vertex as 

Graph Transformation 

To provide an additional computational advantage, the expanded, reduced and incre-

mented graph is finally transformed before a 1-perfect matching solution is found. The 

transformation process, first presented by Thornton [200] and shown here in revised form, 

operates by exploiting the symmetry of an incremental graph (for every distinct 2-matching 

on Gb there are 24  equivalent 1-matchings on Gc`). 

The transformation works by forming a string of assumptions and subsequent reduc-

tions. For instance, start by assuming that if vertex 1 is connected to vertex 2 in Gb  then 

either vertex la or vertex lb is connected to vertex 2a in Gc`. The incremental graph 

shown in Figure 4.5 can then be reduced to that shown in Figure 4.6. Similarly, by as-

suming that if vertex 2 is connected to vertex 3 in Gb  then either vertex 2a or vertex 2b 

is connected to vertex 3a in Gc', the incremental graph can be transformed even further 

to that shown in Figure 4.7. Repeating this process for 3a or 3b to 4a (Figure 4.8) and 4a 

or 4b to la, results in a significantly reduced graph, Gd , that is shown in Figure 4.9. 

Matching Solution 

The exact minimum cost 1-perfect matching solution method used in the PTSA is the 

same as that first presented by Derigs [58, 59]. The method involves solving successive 

shortest paths, using Dijkstra's algorithm [66], and the specific details are omitted here. 

4.2.3 Summary 

The above 2-perfect matching solution method has been implemented at each OUTER 

tree node of the PTSA so that a lower bound of the first stage of a sub-problem of P4 can 

be found. The excessive computational requirements of using such an incremental method 
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Figure 4.6: Transformation I 
la 	 4a  

Figure 4.7: Transformation II 
la 

Figure 4.9: Transformation IV 
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Graph IVY IEI 
Ga = Gb  

Gc 
GC' 
Gd  

n 
n(2n — 4) 
n(n + 1) 
n(n — 1) 

n/2(n — 1) 
n2/2(n — 3)(n — 1)2  

n/2(5n — 5) 
n/2(5n — 11) 

Table 4.1: The Computational Improvements of the Matching Transformations 

are to some extent overcome by a series of reductions and transformations. As opposed 

to the original incremental graph Gc, in the final transformed graph the number of arcs 

1E1 are reduced by a factor of five and the number of vertices 1V1 are reduced by a factor 

of two. The specific details are shown in Table 4.1. 

4.3 	Lower Bounds on tile Second Stage of P4 

Following the derivation and computational implementation of a first stage bound that 

can be embedded on the OUTER tree, attention is given to second stage bounds that can 

be applied to both the OUTER tree (L2) and the INNER tree (L3). L2 and L3 are both 

formed by considering the minimum total demand to be satisfied through recourse at any 

customer in a sub-problem defined on a graph G8 . 

4.3.1 Lower Bound L2 

A second stage bound can be obtained by examining the sub-problem at each OUTER 

tree node p in which a set of customers S has previously been served. Consider the 

minimum total demand to be satisfied through recourse at p. Such a quantity depends on 

the remaining customer demand and the combined capacity of the remaining vehicles. If 

the set of customers still needing a service is S' = V\(S fl {vi}), the number of vehicles 

available is m* and each demand set ei = {E1,...,E,6:,} is ordered in ascending size, then 

the minimum remaining demand d(p) to be satisfied through recourse is given by: 

(ED - Q(m* + 1) + 1 if c(p) 01, 
d(p) = 	Vk ES'  

E (El) - Q(m* + 1) 	if c(p) = 1. 
vkEsi 

(4.14) 
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The proof of 4.14 is straight-forward and can be given as follows. We examine two cases: 

when a vehicle is situated at a customer and when a vehicle is situated at a depot. 

• c(p) = 1: If the current vehicle is situated at the depot then its vehicle load is given 

by its capacity, Q. In addition, there are m* remaining vehicles, all of capacity 

Q. Therefore the total "capacity" of the remaining vehicles available to serve the 

remaining customers is given by Q m*Q. The minimum remaining demand to be 

satisfied through recourse is then: 

E 	-Q(i+ re). 
	 (4.15) 

vk ES' 

• c(p) 0 1: If the current vehicle is situated at a customer then its its vehicle load 

is less than its capacity, Q, i.e. its maximum is Q — 1. In addition, there are m* 

remaining vehicles, all of capacity Q. Therefore the total "capacity" of the remaining 

vehicles available to serve the remaining customers is given by Q(1 m*) — 1. The 

minimum remaining demand to be satisfied through recourse is then: 

E (E)) - Q(i+ m*) +1. 	 (4.16) 
vk  

Now, if d(p) > 0 then a route failure will definitely occur regardless how the remaining 

customers are routed. Indeed, the number of route failures, f (p), that must occur while 

serving the remaining customers is given by: 

f(P) = [d(P)/Q] 
	

(4.17) 

where H  represents the smallest integer not less than *. Given that co  represents the 

remaining least-cost single-trip to the depot, i.e. 

co  = min[cik  vk E 	 (4.18) 
Vk 

the lower bound L2 is then given as follows: 

L2(p) = 	 f (P).2co + z2 if d(p) > 0, 

zT 
2 	 otherwise. 

(4.19) 
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where ,z2 is the contribution of the recourse cost to the overall cost at the parent of p 

denoted by T. 

4.3.2 Lower Bound L3 

The lower bound L3 operates in a similar manner to L2 however the construction of f 

is now a function of an INNER tree node. As the INNER tree nodes are scanned, L2 

is successively applied to each individual node based sub-problem and L3, occurring at 

different stages in the scanning process, is incremented accordingly. The most important 

computational improvement from such an arrangement, as well as time efficiency, is in the 

construction of INNER tree nodes. The bound is described below in conjunction with the 

derivation of L2 given above. (Note the bound offers no new information in comparison 

to L2 when c(0 (A)) = 1.) 

To obtain L3, consider the sub-problem at an INNER tree node A in which a set of 

customers S has previously been served and the load of the vehicle is /(A). The minimum 

total demand to be satisfied through recourse at A, d(A), is given by: 

(4) - Q (m*) + /(A) if c(O(A)) 0 1, 
d(A) = 	

vkES' 

E (ED - Q(m* + 1) 	if c(O(A)) = 1. 
vk  

(4.20) 

The proof of 4.20 is similar to that given for L2 in Section 4.3. 

Now, given that f(A) = [d(A)/Q1 where 1*1  represents the smallest integer not less 

than *, A' corresponds to the set of all INNER tree nodes where 0(A) = p and cp(A) 

corresponds to the probability of contribution of A to the OUTER tree node 0(A), then a 

new lower bound L3, defined on an OUTER tree node p, can be given as follows: 

L3(p) = z."" 	E 77(A)cp(A) (4.21) 
AEAP 

where 

71(A) = 
{f (A) .2co 	if d(A) > 0, 

0 	otherwise. 
(4.22) 

where .4 is the contribution of the recourse cost to the overall cost at the. parent of p 

denoted by T. 
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4.4 Computational Implementation 

The implementation of each of the lower bounds, Ll and L2 on the OUTER tree and L3 

on the INNER tree, requires little explanation. In this section, a simple upper bound to 

be placed at the root node of the OUTER tree is briefly highlighted before detailing an 

updated version of the PTSA that includes all the relevant bounds. 

The upper bound used at the beginning of the PTSA is based on the 2-perfect matching 

solution obtained at the root note. The upper bound is not a bound in the conventional 

sense since all that is provided at the root node is a feasible set of routes (based on the 

matching solution) that is then used as a first feasible solution. Any illegal subtours are 

connected to the depot in a heuristic fashion. 

The new updated version of the algorithm, given in detail in Algorithms 4.1 and 4.2, 

can be summarised as follows. At each OUTER tree decision-node p, which has a customer 

index c(p) and a parent node 7, an arc (v,(7), vc(p)) is assigned to a current partial route k. 

If a feasible first stage set of routes containing k cannot be found then backtracking occurs; 

otherwise the search continues and lower bounds on the first stage problem, Ll, and the 

second stage problem, L2, are computed on the OUTER tree. If (L1 + L2) is greater 

than the best incumbent VRPSD solution value, z*, then node p is fathomed; otherwise 

the current solution value zP is updated and the search continues by transferring to the 

INNER tree. The set of INNER tree nodes, AT, that has previously been developed and 

used to index 7, are located and an improved lower bound, L3, of the recourse problem 

can then be obtained. Given that (L1 + L3) < z*, full branching occurs on the INNER 

tree from all nodes in AT to generate a series of new nodes linked to p, AP, with alternative 

non-unique load-leaving levels; otherwise node p is fathomed. The current solution value 

zP is updated accordingly at each new branch and, once branching is completed, the search 

is transferred to the OUTER tree. 

4.5 An Example of the PTSA With Lower Bounds 

In this section we briefly update the example given in Section 3.6 and include the con-

tribution of the bounds presented in this chapter. Needless to say, the only changes that 

occur to the example arise after the first feasible solution is found (assuming that the first 

feasible route obtained at the root node of the OUTER tree is the same as that given 
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Algorithm 4.1 The PTSA: OUTER tree 

1 Initialisation  
initialise the cost matrix C 	(cif); 
set the OUTER tree node from which branching will commence to p = 1, c(p) = 1; 
set the level of the tree to L0 = 1; 
set zP = 0 and z* = oo; 
set the vertices available to branch to as V' = {v2 , ..., v4; 
initialise the first INNER tree node A = 1, 0(A) = 1; 
calculate L1 and calculate L2; 

2 Branching  
while (V' 0 0) and (L1 + L2 < z*) do 

choose a customer vi E V' to branch to; 
branch and number the new node accordingly, i.e. p = p 1, c(p) = i; 
set r as the parent of p 
set Lo = L0  + 1; 
calculate L1, i.e. zP = L1; 
2a Fathoming Test  
calculate L2, i.e. zP = L1 + L2; 
if (L1 + L2 < z*) then 

complete INNER Tree Branching (Algorithm 4.2); 
if (L1 + L3 > z*) then 

goto 3; 
end if 
calculate zP (second stage), i.e. zP = max(L1 + L2, Ll + L3); 
2b Feasibility and Optimality Test  
if (zP is feasible) and (zP < e) then 

set z* = zP; 
record routes; 

end if 
end if 
update C and V' for node p; 

end while 

3 Backtracking  
repeat 

set L0  = Lo — 1; 
if L0  = 0 then 

return z*; 
return routes; 
stop; 

end if 
until (alternative not node has not been examined) 
backtrack to new node; 
update C and V'; 
goto 2; 
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Algorithm 4.2 The PTSA: INNER tree (with rebranching) 
1 Initialisation  

set the INNER tree node from which tree search will commence to A = 1, set L1  = 1; 
set Ao  to be the number of nodes generated on the INNER tree; 

2 Initial Search  
while (0(A) 7) do 

if (A corresponds to the last node on level Li) then 
set L1  = LI  + 1; 

end if 
goto next INNER tree node on level LI and set current node as A; 

end while 
3 Bounding (L3)  

calculate L3; 
while (L1 + L3 < z*) do 

goto next INNER tree node on level L1  and set current node to A; 
if (0(A) = 7) then 

calculate L3; 
end if 

end while 
if (L1 + L3 > z*) then 

stop; 
end if 

4 Branching  
set Y to be the set of load-leaving possibilities from node A; 
while (Y 0) do 

choose a load-leaving possibility 1 to branch to; 
branch and number the new node accordingly, i.e. A = Ao  + 1; 
set LI  = 	+ 1, 0(A) = p, /(A) = 1 and calculate p(A), 
calculate and record cp(A) and r(A) for the relevant /(A); 
calculate recourse cost (second stage), i.e. cp(A)r(A); 

end while 
return to parent node and set Li = L1  — 1; 

5 Lateral Search  
if (current node corresponds to the last node on level Li) then 

goto 6; 
else 

repeat 
goto next INNER tree node on level LI  and set current node to A; 
if (0(A) = 7) then 

goto 4; 
end if 

until (all INNER tree nodes on level L1 have been examined) 
end if 

6 Rebranching 
set LI = L1 + 1 and backtrack to earliest node on L1 where 0(A) = P; 
delete all other nodes on Li where 0(A) = p; 
rebranch from A where 0(A) = T for all load-leaving levels using recorded values, stop; 



Figure 4.10: Updated OUTER Tree Example 
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2(8) 

3(7) 

4(3) 

5(5) 

earlier). We therefore first consider the OUTER tree node p = 10 and refer to the new 

version of the OUTER tree for this example given in Figure 4.10. 

Before the INNER tree nodes corresponding to OUTER tree node p = 10 are formed, 

the two bounds L1 and L2 at p = 10 are calculated. Note at this point that the cost up 

to the parent of p = 10 is 357.6 and the best feasible solution so far obtained is z* = 425.4 

(see Section 3.6). Now, the solution to the two perfect matching problem at node p = 10 

is Ll = 383.0. The first second stage lower bound is L2 = 81.4. Therefore, the initial 

total lower bound is z10  = Ll + L2 = 464.4 > 425.4. The node is fathomed before 

calculating L3 and before branching on the INNER tree. The search then proceeds to 

node p = 12 on the OUTER tree. At this node, Ll = 341.3 and L2 = 19.1. Consequently, 

z12 = Ll + L2 = 360.4 < 425.4 and the INNER tree algorithm is activated to first 

obtain L3. The INNER tree nodes which have OUTER tree indices 0(A) that correspond 

to the parent of node p = 12, i.e. node p = 5, are scanned and L3 = 31.1. The new 

total lower bound z12  = Ll + L3 = 372.4 remains less than z* and temporary branching 

continues on the INNER tree. Following the construction of the next OUTER tree node, 

p = 13, L1 = 341.3, L2 = 33.6, and L3 = 59.7. Therefore, neither L1 + L2 = 374.9 nor 

Ll + L3 = 401.0 are significant enough to fathom the node. Next, OUTER tree node 
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p = 14 is constructed and Ll = 341.3, L2 = 85.6. Ll + L2 = 426.9 > 425.4 and the node 

is fathomed. Consider one more leaf of the tree. Nodes remain unfathomed until p = 17. 

Here, L1 = 381.9, L2 = 41.4 and L3 = 49.6, therefore Ll + L2 = 423.3.4 < 425.4 but 

Ll + L3 = 431.4 > 425.4 and the second recourse based bound contributes to fathoming 

the node. 

If the PTSA is run to optimality, the exact solution is found after approximately 6 

seconds of computational time and after the construction of 2, 199 OUTER tree nodes and 

80, 164 INNER tree nodes. Needless to say, this compares favourably with the case for the 

PTSA with no lower bounds used in Section 3.6. 

4.6 Computational Results 

The lower bounds presented in this chapter, all coded in FORTRAN, were added to the 

paired tree search algorithm. The testing process took place in five separate stages and, as 

in Chapter 3, all tests were run on a Silicon Graphics Workstation Indigo R4000 (100MHz). 

The tests can be summarised as follows: 

• T1: The tests used in Chapter 3 are repeated for the full PTSA (n < 7). 

• T2: The tests used in Chapter 3 are extended and the PTSA is run to optimality 

for medium size problems (n < 20). The tests created in T2 form a series of original 

VRPSD benchmark test problems known as Test Data I. 

• T3: A new set of randomly generated problems of medium size (n < 20), where 

customer demands are described by Poisson distributions and large Si values, are 

run to optimality using the full PTSA. The tests created in T3 form a series of 

original VRPSD benchmark test problems known as Test Data II. 

• T4: A set of larger size VRP-based benchmark problems (n < 25), with stochastic 

demands added, are run to optimality using the full PTSA. 

• T5: A set of large randomly generated problems (11 < 40) are solved heuristically 

using the full PTSA under a given time limit. 

Each set of tests and their corresponding results, none of which have been obtainable 

previously, are described respectively below. 
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(F,717,R) (F, R, B) (F, R, B) 
101 111 cpu 1 01 111 cpu 101 III 	cpu 

n 5 141 65815 1.0 136 7158 0.2 36 718 0.2 
6 1054 3150686 40.9 919 53202 1.0 103 1703 0.4 
7 8340 161491238 2116.7 6282 377392 6.3 355 4879 1.3 

m 1 1070 17238805 221.9 933 103282 1.6 93 2588 0.4 
2 4092 70007637 926.9 3117 181361 3.0 235 3215 0.8 
3 8430 154455651 2017.2 6289 298615 5.3 301 2476 1.2 

Si 5 3826 18480391 231.6 2922 139000 2.4 186 2006 0.7 
6 3874 54037498 715.2 2969 177219 3.0 193 2770 0.7 
7 3847 131623427 1728.8 2960 213225 3.6 196 3590 0.8 

Table 4.2: Results for Tests T1 (n =5 to 7, m =1 to 3, 6i =5 to 7, U =0.5 to 1) 

4.6.1 Tests T1 

Numerical experiments based on those given earlier were re-run to assess the effect of 

the bounds. One specific algorithmic component, bounding (B), was added to the PTSA 

and the following three cases of the PTSA were examined (X refers to the omission of 

procedure X): 

• no fathoming, no re-branching and no bounding - 	B), i.e. (F, TO in Chapter 3, 

• fathoming and re-branching and no bounding - (F, R, B), i.e. (F, R) in Chapter 3, 

• fathoming and re-branching and bounding - (F, R, B). 

The tests described in Section 3.5 were run for 1620 problem instances where n = 5, 6, 7, 

m = 1, 2, 3, Si = 5, 6, 7 and U = 0.5, ...,1. Table 4.2 displays the average values of 

these tests and compares the number of OUTER tree nodes used (101), the number of 

INNER tree nodes used (1/1) and the computation time in seconds over the three cases 

of PTSA. The computational savings that are realised by the construction of the PTSA - 

(F, R, B) -> (F, R, B) - and the use of the bounds - (F, R, B) 	(F, R, B) - are evident. 

The contribution of L2 and L3 are observed in the reduction of 101 and 1/1 respectively. 
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n\U 0.7 0.8 0.9 1.0 
6 0.003 0.004 0.004 0.005 
7 0.005 0.005 0.007 0.009 
8 0.008 0.008 0.011 0.016 
9 0.020 0.019 0.024 0.044 
10 0.030 0.032 0.043 0.111 
11 0.081 0.081 0.093 0.316 
12 0.212 0.211 0.239 0.729 
13 0.393 0.419 0.452 1.288 
14 0.481 0.505 0.609 2.269 
15 1.174 1.184 1.336 8.885 
16 2.058 2.082 2.621 16.998 
17 16.933 6.765 17.805 72.416 
18 35.142 34.371 36.715 166.598 
19 81.609 61.432 64.470 325.347 
20 50.141 50.597 51.881 409.063 

Table 4.3: Tests T2(m = 1, Si = 3, Uniform): Average Computation Times (mins.) 

4.6.2 Tests T2 

The tests in T1 were extended to form a new series of tests with larger values of n where 

Si is fixed at 3, i.e. pi = 1/8i = 1/3 V i and /. The ten underlying problems used in 

Tests T2 have been documented as Test Data I and form a series of original benchmark 

problems that can be found in Appendix A.1 (selected results can be found in Appendix C). 

Tables 4.3 and 4.4 display average computation times in minutes over the ten problem 

instances of T2 using (F, R, B) where the parameters m, n and U are set as follows: 

m = 1, n = 6, ..., 20, U = 0.7, ..., 1 and m = 2, n = 6, ..., 16, U = 0.3, ..., 1. Table 4.5 

shows the average time when eventual optimum solutions were located. Primarily, these 

results show that the PTSA is an effective procedure to solve medium size VRPSDs to 

optimality. On average, one vehicle VRPSDs where n = 20 and U < 0.9 can be solved 

within one hour and fifteen customer VRPSDs where m = 2 and U < 0.9 can be solved 

within six hours. Moreover, in the latter problems, the average time required to locate 

the eventual optimal solution is less than one hour (the maximum time was 5.86 hours). 

As well as indicating the effectiveness of the PTSA, Tests T2 have also been used to 

investigate the relative difficulty of obtaining solutions to particular VRPSDs. Table 4.6 

displays the average optimal solution value for all ten problem instances of T2 depending 

on n and U where m = 2. Figure 4.11 displays the percentage increase in the average 
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n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
6 0.004 0.004 0.004 0.005 0.006 0.007 0.007 0.009 
7 0.006 0.006 0.007 0.010 0.016 0.019 0.024 0.027 
8 0.012 0.013 0.014 0.023 0.041 0.076 0.074 0.122 
9 0.028 0.028 0.035 0.086 0.207 0.236 0.274 0.387 
10 0.049 0.049 0.080 0.311 0.679 0.917 1.142 1.586 
11 0.128 0.129 0.180 0.756 1.498 2.023 3.085 5.503 
12 0.376 0.373 0.570 1.758 3.342 5.731 8.755 20.140 
13 0.935 0.911 1.074 3.392 7.895 10.106 15.080 33.309 
14 1.301 1.227 1.569 6.277 18.389 27.569 38.878 134.034 
15 2.891 2.890 3.214 17.818 69.769 70.288 184.744 473.826 
16 4.534 4.330 5.970 41.659 176.137 187.798 353.427 1385.142 

Table 4.4: Tests T2 (m = 2, Si = 3, Uniform): Average Computation Times (mins.) 

n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
6 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.004 
7 0.004 0.004 0.004 0.005 0.006 0.006 0.006 0.005 
8 0.006 0.006 0.007 0.007 0.011 0.015 0.008 0.030 
9 0.011 0.011 0.010 0.025 0.062 0.024 0.028 0.048 
10 0.012 0.013 0.034 0.113 0.180 0.211 0.070 0.123 
11 0.037 0.037 0.066 0.276 0.130 0.253 0.064 0.057 
12 0.172 0.170 0.314 0.609 1.069 1.177 0.200 5.298 
13 0.172 0.198 0.245 0.728 3.059 0.153 0.293 1.286 
14 0.246 0.198 0.356 1.914 4.633 0.850 7.571 26.498 
15 0.550 0.550 0.517 1.308 16.730 13.851 41.651 119.645 
16 0.430 0.373 0.916 9.056 42.556 35.150 41.719 245.123 

Table 4.5: Tests T2 (m = 2, 8, = 3, Uni.): Avg. Time to Locate Optimal Sols. (mins.) 

n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
6 249.9 249.9 252.1 260.3 275.1 292.1 312.4 334.3 
7 267.4 267.4 269.1 280.7 295.7 307.5 329.6 349.8 
8 275.0 275.0 277.0 292.6 310.8 327.3 344.2 364.0 
9 288.8 288.8 291.1 310.4 329.5 339.8 351.3 374.8 
10 295.4 295.4 298.2 318.5 335.7 344.5 360.2 383.6 
11 311.0 311.0 314.5 337.4 353.5 360.7 374.8 401.4 
12 321.3 321.3 323.7 344.3 357.6 370.5 383.9 409.5 
13 343.5 343.5 346.5 370.5 381.5 389.0 401.9 427.0 
14 348.4 348.4 351.5 376.6 389.3 396.1 410.1 437.3 
15 354.7 354.7 358.1 382.9 394.9 401.4 417.4 444.8 
16 358.2 358.2 362.4 387.3 401.6 408.8 422.3 451.5 

Table 4.6: Tests T2 (m = 2, 6i = 3, Uniform): Average Optimal Solution Values 
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Figure 4.11: % Increase in the Value of the Optimal Solution (m = 2, n = 6 to 16) 

value of the optimum over U compared to the average optimum value at U = 0.3. It is 

clear that to solve VRPSDs of certain characteristics, e.g. extension P4 where U < 0.5 

and m = 2, may have no practical significance. Although stochasticity is present in these 

problems, vehicle capacity is set at such a high level that failures do not occur. Such 

problems have a solution equating to their corresponding m-TSP and can, therefore, be 

classed as computationally easy stochastic routing problems.' Indeed, in many cases where 

U = 0.5 and m = 2, the relevant optimal set of routes still do not differ from the case 

where U < 0.5, i.e. although the optimal solution value changes, the decisions required to 

obtain that optimum do not. For one vehicle VRPSDs, computationally difficult problems 

arise where U > 0.9. Note, apart from this chapter, no computationally "easy" problems 

are solved in the remainder of the thesis. 

4.6.3 Tests T3 

Tests T3 correspond to a new set of randomly generated test problems. Tests were con-

structed in a similar manner to T1 and T2, i.e. n vertices vi were generated in the [1, 99]2  

square according to a continuous uniform distribution, each cii was then computed as the 

Euclidean distance between vi and vj and customers were arbitrarily assigned to one of 

'A similar situation arises in the VRP where a large value of Q covers the demands involved and the 
problem transforms into a m-TSP. 
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three groups with discrete demands of mean ,ui = 5, 10, 15 respectively. In T3, however, 

Poisson demands were utilised and Si  = 11, 16, 19 for each customer group since pi was 

set to be not less than 0.01. The ten underlying problems used in Tests T3 have been 

documented as Test Data II and form a series of original benchmark problems that can 

be found in Appendix A.2 (selected results can be found in Appendix C). Tables 4.7 

and 4.8 display average computation times in ,-",utes over the ten problem instances of 

T3 using (F, R, B) where m = 1, n = 7, ..., 20, U = 0.7, ...,1 and m = 2, n = 7, ...,16, 

U = 0.3, ..., 1. Although computational times are comparable, it is clear that problems 

in Tests T3 are harder than those in Tests T2 due to the extra generation of INNER tree 

nodes. Table 4.9 shows the number of INNER tree nodes created (in millions) for T3 

problems where m = 2. It is clear that an exponential-type relationship exists between U 

and III and a symmetry exists between the complexity of the problem as U and n increase 

respectively. For example, the increase in I as U increases where n = 16 is almost identical 

to the increase in I as n increases where U = 1.0, i.e. to solve a problem where n = 13 

and U = 1.0 is equal in difficulty to solving a problem where n = 16 and U = 0.7. This 

behaviour is shown clearly in Figures 4.12 and 4.13 which show the increase in average 

computation times for different n (for specific values of U) and different U (for specific 

values of n) respectively. 

4.6.4 Tests T4 

T4 involves a different set of problems that have been solved to optimality using the PTSA. 

The data for these tests are given by subsets of the two well known 50 and 75 customer 

VRP test problems given by Eilon et al [78]. Demands take the form of discrete uniform 

distributions generated in the same manner as in Tests T2. The data corresponding 

to these two tests can be found in Appendix B. Tables 4.10 and 4.11 display average 

computation times in minutes over the two problem instances of T4 using (F, R, B) where 

m= 1, n= 15, ..., 25, U = 0.7, ... , 1 and m = 2, 72 = 15, ... , 25, U 	0.3, ... , 1. 

Randomly generated vehicle routing problems are known to be significantly harder 

to solve to optimality than ordinary benchmark problems. This is highlighted in the 

comparison between the average computational times in Tests T4 and those in Tests 

T2/T3. For instance, consider two "similar" VRPSD problems (m = 2, n = 16, U = 1.0): 

one from T4, one from T2. Their solutions are given in Figures 4.14 and 4.15 as VRPSD 
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n\U 0.7 0.8 0.9 1.0 
7 0.006 0.008 0.009 0.020 
8 0.009 0.012 0.013 0.031 
9 0.016 0.021 0.024 0.075 
10 0.029 0.036 0.047 0.147 
11 0.072 0.086 0.114 0.392 
12 0.101 0.118 0.173 0.632 
13 0.246 0.270 0.371 1.366 
14 0.389 0.431 0.571 2.438 
15 0.748 0.769 1.203 6.580 
16 1.780 1.840 2.324 14.708 
17 2.240 2.333 3.057 34.333 
18 6.051 5.991 8.821 130.396 
19 11.844 12.302 16.641 175.130 
20 44.180 44.691 62.514 526.366 

Table 4.7: Tests T3 (m = 1, Si E {11, 16, 19}, Pois.): Avg. Computation Times (mins.) 

n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
7 0.007 0.008 0.010 0.026 0.035 0.040 0.055 0.073 
8 0.011 0.013 0.020 0.060 0.112 0.129 0.179 0.283 
9 0.019 0.021 0.043 0.184 0.312 0.497 0.765 1.190 
10 0.047 0.047 0.096 0.748 1.352 1.515 2.413 5.522 
11 0.129 0.117 0.244 1.531 4.482 6.221 9.828 18.390 
12 0.220 0.230 0.473 4.167 9.198 14.551 23.996 54.527 
13 0.343 0.319 0.662 5.261 15.542 24.703 51.316 138.843 
14 0.494 0.445 0.921 9.764 35.444 69.744 127.840 353.345 
15 1.220 1.098 2.117 24.420 88.768 162.536 318.390 817.663 
16 2.010 1.859 3.449 74.250 190.079 410.981 922.778 2086.770 

Table 4.8: Tests T3 (m = 1, 5 E {11,16,19}, Pois.): Avg. Computation Times (mins.) 

n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
7 0.00 0.01 0.01 0.04 0.05 0.05 0.07 0.09 
8 0.01 0.01 0.02 0.07 0.14 0.13 0.18 0.29 
9 0.01 0.01 0.03 0.20 0.31 0.44 0.64 1.03 
10 0.03 0.03 0.08 0.84 1.29 1.14 1.72 3.59 
11 0.06 0.05 0.16 1.21 3.62 4.00 5.65 11.07 
12 0.10 0.09 0.31 2.95 5.27 7.07 10.69 26.02 
13 0.14 0.11 0.38 2.31 7.29 9.65 18.32 50.51 
14 0.18 0.11 0.38 3.71 14.24 22.70 36.70 98.99 
15 0.31 0.24 0.66 8.26 29.19 45.13 68.95 175.37 
16 0.41 0.37 0.65 20.21 49.30 86.40 176.42 407.80 

Table 4.9: Tests T3 (m = 1, Si E {11,16,19}, Poisson): Average Value of III (millions) 
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n\U 0.7 0.8 0.9 1.0 
15 0.251 0.255 0.334 1.565 
16 0.393 0.394 0.498 3.611 
17 0.317 0.316 0.527 5.253 
18 0.920 0.922 1.174 21.144 
19 1.659 1.661 2.011 46.005 
20 4.532 4.541 5.094 125.133 
21 10.070 10.092 11.522 212.312 
22 3.155 3.139 4.525 100.691 
23 9.565 9.575 12.099 332.861 
24 15.233 14.879 18.598 484.283 
25 26.939 27.042 32.987 1507.607 

Table 4.10: Tests T4 (m = 1, bi = 3, Uniform): Average Computation Times (mins.) 

n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
15 0.348 0.348 1.075 1.589 3.035 3.819 6.684 49.224 
16 0.886 0.887 1.764 3.687 4.944 4.427 12.359 85.286 
17 1.564 0.915 2.241 4.370 9.826 11.062 17.612 395.820 
18 1.797 1.799 3.329 8.620 8.096 17.997 25.850 396.784 
19 1.868 1.932 4.480 26.318 21.722 20.233 33.899 771.785 
20 7.138 7.141 11.992 36.392 30.961 30.834 64.024 3153.863 
21 19.994 18.557 55.475 107.139 149.816 146.429 531.678 
22 14.142 14.237 26.835 93.840 89.175 111.693 342.151 - 
23 21.751 22.481 48.939 195.613 169.536 162.727 488.556 - 
24 38.762 38.766 83.099 440.172 468.912 471.492 1267.995 - 
25 34.765 34.797 77.547 375.351 321.985 601.418 2022.673 - 

Table 4.11: Tests T4 (m = 2, 8j = 3, Uniform): Average Computation Times (mins.) 

Problem Fixed Cost Recourse Cost (% of Overall Cost) Overall Cost 
VRPSD I (T4) 238.6 18.8(7%) 257.4 
VRPSD II (T2) 393.6 42.5(10%) 436.1 

Table 4.12: A Comparison of Randomly Generated and VRP-based Problems 
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Figure 4.13: Tests T3 (m=2): The Effect of U on Computational Times 

4.6 Computational Results 	 128 

2500 
'U=0.7' -0— 
'U=0.8' -+— 
'U=0.9' -0-- 
'U=1.0' -e< 	 

2000 

1500 

1000 

500 

0■ 	 tb 	 

Av
er

ag
e  

C
om

pu
ta

tio
n  

Ti
m

es
  (

m
in

s.
)  

16 

1 

2500 

2000 

1500 

1000 

500 

... 
. 	... 	x 	. ........ 	.......... . ... -EF 

0 II 	  11.., 	. 	, 

Av
er

ag
e  

C
om

pu
ta

tio
n  

Ti
m

es
  (m

in
s.

)  

'n=13' -e— 
'n=14'  
'n=15' -o...  
'n=16' -.)( 	

.... ..... 43- 	 ........-- 
.. -1-- ...................... ...„ ............. 

.--•"-------- 	..---- 



4.6 Computational Results 	 129 

Figure 4.14: VRPSD Solution I 

Figure 4.15: VRPSD Solution II 
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n\m 1 2 
20 4.9 11.8 
25 4.0 11.1 
30 10.6 17.2 
35 14.0 19.7 
40 12.8 17.8 

Table 4.13: The Quality (G) of the PTSA Heuristic 

Solution I and VRPSD Solution II respectively. Unlike the deterministic VRP, the even 

spread of customers around the depot in VRPSD Solution I indicates an easier problem 

since, in such cases, the original matching based upper bound usually coincides with 

the m-TSP and the best routes in terms of recourse are easy to find. This difference 

is highlighted in respective running times of 52.87 minutes and 3278.09 minutes. [The 

randomly generated problem concerned was, in fact, the hardest problem of its kind in 

Tests T2.] In harder problems, the comparative contribution of the recourse cost to the 

overall routing cost is also in general higher, see Table 4.12. 

4.6.5 Tests T5 

T5 involves the use of the same set of problems that were used in T2, i.e. Test Data I. In 

this set of tests, however, larger size problems have been solved heuristically by setting a 

computational time limit of 3 hours on the PTSA. In addition, the lower bounds given in 

this chapter were used to obtain a measure of quality on the heuristic solution obtained. 

We define Gib  as the percentage gap between the best lower bound (lb) and the best 

feasible solution obtained (z), i.e. Gib  = 100(z — lb)/z. Table 4.13 displays average values 

of Gib over the ten problem instances of T5 where m = 1, ri = 20, 25, 30, 35,40, U = 0.9 

and m = 2, n = 20, 25,30,35,40, U = 0.7. In most cases the gap between the best 

obtained solution and the lower bound is fairly large; for n < 30 the gap is approximately 

4.4% where m = 1 and 12.5% where m = 2. 

4.7 Summary 

In this chapter large size, computationally difficult VRPSDs have been solved for the first 

time. This has been made possible due to the structure of the PTSA and the use of three 
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lower bounds on both the first stage and second stage of P4. A large number of problems 

have been solved to test the use of the bounds and the computational performance of 

the PTSA including randomly generated problems, VRP-based benchmark problems and 

problems incorporating a large amount of stochasticity. The only comparable work in the 

literature, see Seguin [187], has solved similar computationally difficult VRPSDs where 

n < 10. 



Chapter 5 

Applying the PTSA to Extensions 

of the BVRPSD 

5.1 Introduction 

A standard group of problem extensions, with clear and widely applicable objectives, have 

been defined for the VRPSD in Section 2.6.2. In this chapter, the adaptability of the 

PTSA is recognised as an entire class of these extensions are solved to optimality for the 

first time. 

Each BVRPSD extension involves finding a minimum cost set of routes, including any 

associated recourse costs, given that there exists a fixed system of information disclosure 

and fixed objective-related criteria. In the following discussion, all the extensions specified 

in Table 2.2 are analysed apart from P1 (a simplified version of P2) and P3 (a simplified 

version of P4). For each extension we first describe how the PTSA was adapted before 

presenting associated computational results. 

5.2 BVRPSD Extension P2 

P1 corresponds to a VRPSD in which a set of routes must be found that meet a particular 

service requirement, regardless of the specific effects of any individual route failures. There 

exists a probability of a group of solution routes being unviable, i.e. failing, and this equates 

to a serviceability percentage. The optimal solution corresponds to a set of routes that 

provides this percentage of expected service at least cost. P2 involves a clearer definition 

132 
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of the BVRPSD since routing costs take into account the theoretical re-serving of failed 

customers. More specifically, P2 represents a VRPSD that minimises expected costs while 

controlling the probability of route failure. 

For serviceability related problems such as P1 and P2, the PTSA must be adapted 

to somehow incorporate a measure for the probability of route failure. This measure 

then needs to be constrained to obtain appropriate feasible solutions. Before specifically 

describing how the PTSA can be adapted for BVRPSD extension P2, the probability of 

route failure and its incorporation into the PTSA is discussed below. 

5.2.1 The PTSA and the Probability of Route Failure 

In the paired tree search algorithm, INNER tree nodes are created according to a branching 

process that is dependent on the load leaving level of the particular customer involved. 

A range of indices specify this and other characteristics of each node, e.g. recourse costs 

and various probabilities. It is comparatively simple to include another set of indices to 

represent different practical occurrences and one such index can correspond to the possible 

occurrence of route failure. 

Refer to the notation introduced in Section 3.4.3 and consider an INNER tree node A 

branching to another INNER tree node lc. Let a new index for y be defined as follows. 

r f (11 ) = 
1 

0 	if 1(A) 	c(o(p.))• 

1 if 1(A) < c(0(0), 
(5.1) 

The index r f (p) corresponds to a binary variable that takes the value 1 if and only if the 

INNER tree node it represents a route failure, i.e. the probability of it representing a route 

failure (given a particular load-leaving level of A) is p(p)r f (it). 

Following this, it is possible to introduce another new index cr f (A) that corresponds 

to the contribution of the INNER tree node A to the OUTER tree node 0(A) with regard 

to the probability of route failure. It is easy to see that cr f (y) is given as follows. 

cr f (A).p(p) if (r f (p) = 1 and r f(A) = 0) or (rf (A) = 1), 
cr f 0.1) = 	 (5.2) 

0 	otherwise. 

Note that from (5.2), in addition to the case where r f (y) = 1, an INNER tree node ,u, 
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will contribute its probability of route failure to the OUTER tree node 0(,u) if r f (A) = 1, 

i.e. if the previous node corresponds to a route failure then the new node will by definition 

be recognised as a "failing" node. This construction means that we are interested in 

the probability of any kind of failure along a route; a route that fails six times will be 

equivalent to a route that fails once. 

Now, given that A corresponds to the set of all INNER tree nodes where 0(A) = p 

and cr f (A) corresponds to the route failure probability of contribution of A to the OUTER 

tree node 0(A) = p, then the probability of route failure at node p is given by: 

RF(p) = E cr f (A). 	 (5.3) 
AGAP 

Therefore, without loss of generality, the probability of route failure corresponding to a 

customer c(p) on a particular route is given by RF(c(p)) = RF(p). (Note this is different 

to the meaning of RFi given in (3.33) that corresponds to the probability of failure at 

customer j in a VRPSD. In this context, the meaning is extended to define a failure up to 

and including a particular customer in a VRPSD.) Moreover, for any feasible set of routes 

z, the maximum value of this summation for any customer in z can be given as follows, 

RP.  = max[RF (k)] 	 (5.4) 

where k is a customer in a route of z. The probability of route failure in an optimal set of 

routes z* is therefore given by RFz*  

Now, before using a constraint on RFz to model P2, it is important to consider the 

values RFz*  takes for different unconstrained problems. This can be illustrated using P4. 

5.2.2 P4 and the Probability of Route Failure 

We have solved a whole range of problems relating to extension P4 in Chapter 4. For each 

problem, the maximum probability of route failure of any route in each optimal set of 

routes was obtained using the method described in the previous section. In the following, 

we present the corresponding results to Tests T2 and T3. 

For one vehicle VRPSDs the probability of route failure can be determined before an 

optimal set of routes is found. Nevertheless, RFz*  can be used to provide some measure of 

the difficulty of a problem. The average value of RFz.  for Tests T2 and T3 where an = 1, 
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U T2 T3 
0.7 0.00 0.01 
0.8 0.06 0.70 
0.9 4.62 10.44 
1.0 46.02 47.08 

Table 5.1: Tests T2 and T3 (m = 1): Average Value of RFz*  (%) 

n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
6 0.00 0.00 2.59 4.44 16.17 20.00 42.22 85.19 
7 0.00 0.00 4.07 12.14 16.50 16.05 55.93 81.73 
8 0.00 0.00 5.95 20.10 16.54 27.41 36.05 81.60 
9 0.00 0.00 6.60 15.41 25.44 7.08 38.27 77.37 
10 0.00 0.00 7.38 17.90 24.70 23.15 34.29 76.60 
11 0.00 0.00 8.91 13.41 4.99 10.68 19.05 70.21 
12 0.00 0.00 5.90 25.17 21.19 12.13 29.69 87.49 
13 0.00 0.00 6.79 20.39 15.17 19.94 28.65 76.43 
14 0.00 0.00 7.36 20.68 10.57 10.57 38.49 76.31 
15 0.00 0.00 7.96 8.69 1.06 11.25 32.13 83.81 
16 0.00 0.00 7.89 11.60 5.98 13.81 19.03 79.53 

Average 0.00 0.00 6.49 15.45 14.39 15.64 33.98 79.66 

Table 5.2: Tests T2 (m = 2): Average Value Of RFz*  (%) 

n\U 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
7 0.00 0.14 13.34 31.81 24.25 27.88 56.79 77.72 
8 0.00 0.11 12.47 37.55 22.39 23.82 52.50 80.60 
9 0.00 0.11 13.90 35.70 19.37 38.85 48.51 75.89 
10 0.00 0.05 16.02 35.33 32.21 11.86 46.31 83.95 
11 0.00 0.05 15.38 26.45 24.83 16.91 49.51 85.15 
12 0.00 0.03 16.23 47.58 11.45 12.21 41.13 80.12 
13 0.00 0.02 12.00 38.61 22.00 15.47 33.05 77.50 
14 0.00 0.01 12.41 38.52 16.66 16.21 33.05 77.23 
15 0.00 0.00 12.93 42.97 6.44 15.17 35.75 74.70 
16 0.00 0.00 14.76 34.89 19.58 10.02 26.98 80.80 

Average 0.00 0.05 13.94 36.94 19.92 18.84 42.36 79.37 

Table 5.3: Tests T3 (rn = 2): Average Value Of RFz*  (%) 
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U = 0.7, ..., 1 and n = 6, ..., 16 are shown in Table 5.1. 

Tables 5.2 and 5.3 display the average value of RFz*  for Tests T2 and T3 respectively 

where m = 2, U = 0.3, ..., 1 and n = 6, ..., 16. As n increases, the average value of 

RFz*  remains largely unchanged. However, not unexpectedly, this is not the case as U 

increases. Figure 5.1 displays the average value of RFz*  for both T2 and T3. It is clear 

that for both cases the overall probability of route failure increases, then decreases and 

eventually increases sharply up to its value at U = 1.0. This may seem to be a counter 

intuitive result until one considers the trade-off between service and transportation costs 

first mentioned in Chapter 2. Clearly, as vehicle capacity decreases, route failure increases 

until it costs more to continuously fail (and return to the depot) than it does to "cover" the 

customers (and not return to the depot). Whenever this occurs, the percentage chance of 

route failure will decrease slightly before increasing once again as U becomes increasingly 

large. 

Additionally, the reason for the difference in RFz.  over Tests T2 and T3 provides 

another explanation as to why problems in T3 are harder to solve than those in T2, 

see Section 4.6.3. The percentage chance of route failure for each n is always larger in 

T3 due to a greater spread of customer demands (a Poisson distribution is used with 

many more discrete demand possibilities). The service/cost trade-off mentioned above is 

much more pronounced in T3 and, hence, the "decline" is greater. Indeed, there is less 

percentage chance of route failure on average if U = 0.7 and U = 0.8 than if U = 0.6. 

Furthermore, unlike problems in T2, T3 problems where U = 0.4 have optimal solutions 

that actually involve a small amount of route failure. Also, in no problems where U = 0.3 

(and U = 0.3, 0.4 for T2) is there any percentage chance of route failure within the optimal 

set of routes, i.e. the m-TSP solution is being used and no demands are left unsatisfied. 

This corresponds to the case where recourse costs are zero and the VRPSD involved can 

be referred to as computationally easy, see Section 4.6.2. 

Figure 5.2 displays the changes in RFz*  for different values of n in Tests T2. A series 

of extra problems have been added to allow for the case where U = 1.1. There appears 

to be no connection between the change in RFz*  for different n but, needless to say, 

U > 1.0 	RFz* 	100%. 
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5.2.3 P2 and the Probability of Route Failure 

P2 involves a constraint limiting the amount of route failure in a feasible solution. It 

was shown in Section 5.2.1 how the probability of route failure for a set of routes can be 

obtained. It is, therefore, straight-forward to introduce a constraint on the OUTER tree 

that prohibits the value of RP' = maxk[RF(k)] to be above a certain value RFz for any 

customer k in a feasible set of routes, i.e. 

RFz < RFz 	 (5.5) 

Since this implies that RFz*  < RFz, (5.5) equates to a constraint on the serviceability of 

an optimal set of routes and can therefore be used to model BVRPSD extension P2. 

5.2.4 Computational Results 

By incorporating the constraint (5.5) into the OUTER tree of the PTSA and implementing 

a simple demand-based heuristic at the root node (to obtain a first feasible solution), it 

is possible to obtain exact solutions to chance constrained VRPSDs such as P2 for the 

first time. The heuristic obtains an initial feasible set of routes by assigning customers to 

particular routes so that the maximum total demand along all routes is minimised. Two 

sets of eleven customer VRPSDs from Tests T2 and T3 respectively have been used to 

illustrate the problem. 

Firstly, it is important to note from the discussion in Section 5.2.2 that depending 

on the value of U for a particular problem, constraint (5.5) may be unnecessary, i.e. the 

optimal set of routes may have a value of RFz*  which is already below RFz. Similarly, 

setting too low a value for RFz may render a problem infeasible. The choice of RFz is 

therefore particularly problem specific and in the following tests we are most interested 

in how a change in the value of RFz affects the overall routing cost for a given instance 

of P2. [Note, if RFz = 0% then P2 is equivalent to a VRP, with associated demands 

corresponding to Et` V i, and if RFz = 100% then P2 is equivalent to BVRPSD extension 

P4.] Given that for a particular test problem t, RFz*  (t) corresponds to the route failure 

of the (unconstrained) optimum solution of t and RFz (t) corresponds to the minimum 

possible route failure for any set of routes in t, then RFz(t) is clearly constrained in the 
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following way. 

RFz(t) < RFZ (t) < RFz*  (t) 	 (5.6) 

From Table 5.2, for example, over the ten problem instances of T2 where m = 2, n = 

12 and U = 0.7 (denoted by t1 , 	tio), the minimum, average and maximum values 

for RFz*  are 0.00%, 21.19% and 88.84% respectively, i.e. mini RFz(ti) = 0.00% and 

maxi RFZ*  (ti) = 88.84% V i = 1, ..., 10. In addition, from Table 5.3, over the ten 

problem instances of T3 where m = 2, n = 12 and U = 0.6 (denoted by t11, • • • t20), 
the minimum, average and maximum values for RFZ*  are 0.18%, 47.58% and 87.74% 

respectively, i.e. mini RFZ  (ti) = 0.18% and maxi RFZ*  (ti) = 87.74% V i = 11, ..., 20. 

To analyse P2, each test ti E {ti,..., t2o} was solved for different upper bounds on 

the percentage chance of route failure given by (5.6) where RFZ (%) E {0, 10, 20, ..., 100}. 

The results are shown in Tables 5.4 and 5.5. In all cases, RFZ = 0.0. From Table 5.4, 

RFZ*  < 10% for four out of ten problems in T2 whereas from Table 5.5, despite a lower 

value of U, RFZ*  < 50% for only four problems in T3. Once again, this is because a 

Poisson distribution is being used instead of a uniform distribution. Needless to say, the 

optimal solution of any particular problem always decreases as RFZ increases. This is 

shown clearly in Figure 5.3 that displays the optimal solution value for three tests over 

differing values of RFZ. As the constraint on serviceability is weakened, the cost of the 

optimal set of routes decreases. 

Clearly, the interesting measure in these types of chance constrained problems is the 

relative "loss" in terms of the additional routing costs incurred when extra serviceability 

is required. For a given upper bound on route failure R, such a measure, denoted by g(R), 

can be established by considering the gap between the optimal solution when RFZ = R, 

i.e. z(R), and the unconstrained optimal solution z*. We denote g(R) as follows. 

g(R) = z(R) — z* 

For the test problems presented here, the average value for this measure in the most severe 

case, i.e. total serviceability, is g(0.0) = 3.33% for T2 and for g(0.0) = 7.85% for T3. For 

a given problem, g(0.0) can be as much as 20%. Table 5.6(a) and 5.6(b) show the values 

of g for all values of R for Tests T2 and T3. In addition, the number of problems that 

have reached the optimal value of their test, N(Optimal), is also shown. 

ti (5.7) 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ti\RFz 
1 405.5 397.7 - - - - - - - - 
2 329.9 - - - - - - - 
3 331.5 327.1 322.1 - - - - - 
4 370.2 347.1 345.5 - - - - - 
5 395.8 361.8 - - - - - - 
6 358.9 358.9 348.8 - - - - 
7 379.6 379.6 379.6 378.5 - - - - 
8 434.5 427.2 - - - - - - 
9 400.4 396.6 392.6 392.6 379.4 - - - - 

10 288.4 288.4 288.4 288.4 288.4 286.5 286.5 286.5 286.5 285.3 

Table 5.4: Tests T2 (m = 2, n = 12, U = 0.7): Optimal Solutions for Different RFz 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ti\RFz 
11 430.9 382.6 382.0 382.0 378.4 - 
12 449.6 429.0 - - - - - 
13 413.1 413.1 413.1 413.1 413.1 413.1 405.3 - - - 
14 341.9 341.9 338.4 338.4 338.4 338.4 338.4 338.4 338.4 334.4 
15 410.6 394.9 394.9 394.9 392.3 392.3 392.3 392.3 388.4 - 
16 451.5 403.9 403.9 403.9 403.9 403.9 378.1 378.1 373.3 - 
17 369.1 339.1 - - - - - - - 
18 461.4 414.5 414.5 414.5 414.5 414.5 405.7 - - - 
19 348.6 333.0 - - - - - - - - 
20 413.0 387.6 387.6 387.6 385.0 385.0 385.0 385.0 385.0 382.6 

Table 5.5: Tests T3 (m = 2, n = 12, U = 0.6): Optimal Solutions for Different RFz 

R g (RFz) N(Optimal) 
0.0 3.33 1 
0.1 1.06 4 
0.2 0.50 7 
0.3 0.48 8 
0.4 0.08 9 
0.5 0.01 9 
0.6 0.01 9 
0.7 0.01 9 
0.8 0.01 9 
0.9 0.00 10 

(a) Tests T2 

R g(RFz) N(Optimal) 
0.0 7.85 0 
0.1 1.85 3 
0.2 1.75 3 
0.3 1.75 3 
0.4 1.52 4 
0.5 1.52 4 
0.6 0.40 6 
0.7 0.40 6 
0.8 0.19 8 
0.9 0.00 10 

(b) Tests T3 

Table 5.6: Average Values of g(R) For Tests in T2 and T3 (%) 
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Figure 5.3: Test problems t = 15,16,20: Optimal Solution Values for Different RF2  

RFz = 0.0 RFz = 0.9 
101 (thousands) 117.5 44.4 

1/1 (millions) 19.7 5.1 
cpu (seconds) 3214.4 1161.2 

Table 5.7: Average Computational Results For Tests {t11, 	t20} 
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Finally, it should be noted that corresponding computational times and node con-

struction in the use of the PTSA for extension P2 is comparable with that for extension 

P4. This is illustrated by Table 5.7 which displays the average number of OUTER tree 

nodes used (101), the number of INNER tree nodes used (Ill) and the computation time 

in seconds over {t11 , 	t20} where RFz = 0.0 and RFZ = 0.9 respectively. Moreover, 

two larger size chance constrained VRPSD problems have been solved using the PTSA. 

Two problem instances of the VRP-based Tests T4, see Chapter 4, have been solved to 

optimality where m = 2, n = 20, U = 0.9 for RFZ = RFZ  0. The value of g(RFZ)  in 

these two problems is 2.53% and 3.38% respectively. 

5.3 BVRPSD Extensions P5/P6/P7 

The "VRPSD with Knowledge" problems - P5, P6 and P7 - differ from P4 by the inclusion 

of specifications relating to system design and the presence of information disclosure. In 

P5 there exists no on-line system as only existing knowledge is required; this is further 

specified as a vehicle returning to the depot if its load is below the minimum possible 

demand of the following customer. P6 involves a similar situation to P5 but relies on 

a dynamic on-line system being in place. There must exist an early information system 

where decision points are present and the exact demand of the next customer on the route 

is known. P7 involves the case where demands are known after routing however before 

the drivers set out on their specified routes. This problem effectively develops the concept 

of variable recourse since drivers can "choose" where to fail along a route. 

Dror and Trudeau [72] were one of the first to consider a route failure in terms of its 

location. They stated that previous VRPSD models that did not account for particular 

return trips to the depot "required modification". This, however, is mistaken since it is 

clear that each extension P5, P6 and P7 (and P4) are essentially different models and 

each has its own practical use. Primarily, the important issue is to model all the problems 

individually and for the first time provide a measure corresponding to how "improved" 

(in terms of cost) one system is compared to another. This has a practical benefit since 

a decision-maker may, for instance, be interested in i) training drivers to make certain 

decisions on a route or ii) incorporating an on-line system into the routing operation. For 

either of these cases, the comparative savings in total routing costs are of importance. 
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Clearly, if an optimal solution to P4 is represented by z4, an optimal solution to P5 is 

represented by z5  and so on, then the following conjecture holds: 

z4  > z5  > z6  > z7. 	 (5.8) 

The proof of (5.8) involves the straight-forward use of the triangular inequality and is 

similar to that shown in Section 2.5.5 for an example recourse cost. 

Obtaining solutions to extensions P5 and P6 involve relatively simple extensions of 

the PTSA. In each case, the recourse cost function associated with each INNER tree 

node, given by (3.43) for P4, must be altered according to the particular definitions given 

in Table 2.3 from Section 2.6.3. P7 is more complex and only heuristic solutions can 

be obtained. In the following, each extension is considered in turn. A subset of Tests 

T2 are used to illustrate each problem and primary interest is given to optimal solution 

"performance" relative to that for P4, i.e. 

5.3.1 BVRPSD Extension P5 

For P5, (3.43) must be altered to allow for the case when a route break occurs if the load 

in the vehicle falls below the minimum demand of the following customer. Consider an 

INNER tree node A branching to another node the new recourse cost index can then 

be given as follows. 

0 	 if 1(A) > c(0 (A)), 
r (p) = 2c1c(o(A)) 

	 if /(A) < c(o( w )) # 4(0 (OP 
	(5.9) 

clow) + cioN) - co(Amo(o) if 1(A) < c(o(p)) = q(o(0)• 

To test P5, in relation to P4, optimal solutions were first obtained using the original 

PTSA (solving P4) over the ten problem instances of T2 where m = 1, n = 10, 12, 14, 16, 

U = 1.0, 1.1, 1.2 and m = 2, n = 10, 12, 14, 16, U = 0.9, 1.0, 1.1. Following this, the above 

recourse cost index was incorporated in to the INNER tree and the same set of problems 

were solved to optimality using the new PTSA. The results are shown in Tables 5.8 and 5.9. 

The percentage cost improvement in using P5 in comparison with P4 is shown on average 

in Table 5.10. From this table, z5 	(0.996)z4. 
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n U P4 P5 P6 P7 
10 1.0 291.1 290.4 287.1 286.3 

1.1 313.0 311.0 302.0 300.2 
1.2 327.5 324.7 315.3 312.5 

12 1.0 317.1 316.7 313.7 313.0 
1.1 339.6 337.8 330.3 329.4 
1.2 353.4 351.8 344.7 340.5 

14 1.0 345.1 344.6 341.0 340.5 
1.1 368.9 366.8 358.8 357.5 
1.2 383.2 381.7 375.2 371.3 

16 1.0 356.2 355.7 352.3 351.3 
1.1 382.4 380.0 373.1 370.4 
1.2 398.7 396.3 387.8 383.8 

Table 5.8: Tests T2 (m = 1): Average Value of the Optimal Solution 

n U P4 P5 P6 
10 0.9 360.2 359.4 354.5 

1.0 383.6 381.1 370.2 
1.1 403.6 401.7 386.3 

12 0.9 383.9 383.7 381.0 
1.0 409.5 407.3 399.0 
1.1 430.3 428.1 413.8 

14 0.9 410.1 409.9 407.9 
1.0 437.3 436.3 430.0 
1.1 460.4 458.5 446.4 

16 0.9 422.3 422.1 419.9 
1.0 451.5 449.6 441.6 
1.1 471.4 469.3 459.5 

Table 5.9: Tests T2 (m = 2): Average Value of the Optimal Solution 

Extension m = 1 in = 2 
P4 348.0 (0.00%) 418.7 (0.00%) 
P5 346.5 (0.43%) 417.2 (0.36%) 
P6 340.1 (2.27%) 409.2 (2.27%) 
P7 338.1 (2.84%) - 

Table 5.10: Average Cost Improvements In Comparison To P4 (%) 
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5.3.2 BVRPSD Extension P6 

For P6, (3.43) must be altered so that whenever a route failure occurs a route break is 

actioned. Consider an INNER tree node A branching to another node it, the new recourse 

cost index can then be given as follows. 

0 	 ;fl  ('\) 	c(o(p)), r(A) 	 (5.10) 
ciow) eic(o(A)) — eic(00.0) if /(A) < c(c.(0)• 

To test P6, in relation to P4 and P5, we incorporated the above recourse cost index into 

the PTSA and ran the new algorithm over the ten problem instances of T2 where m = 1, 

n = 10, 12, 14, 16, U = 1.0, 1.1, 1.2 and m = 2, n = 10, 12, 14, 16, U = 0.9, 1.0, 1.1. The 

results are shown in Tables 5.8 and 5.9. The percentage cost improvement in using P6 in 

comparison with P4 is shown on average in Table 5.10. From this table, z6  ti (0.98)z4. 

5.3.3 BVRPSD Extension P7 

The final extension operates in a similar manner to P6 however a vehicle can break its 

route at the most cost-effective point. Clearly, such a problem is very difficult to model 

since an element of memory must be retained so that once a route failure occurs a route 

can be "traversed backwards" to find the least cost route break. Moreover, there is a 

constraint on how far back along a route a break can be actioned since by definition a 

vehicle must retain enough load to service the remaining customers that follow the route 

failure. This convoluted situation can be illustrated with the use of a simple example. 

Possible route breaks for a portion of a route are shown in Figures 5.4, 5.5 and 5.6. In all 

these examples, a route failure occurs at the final node. Figure 5.4 corresponds to the most 

simple case (P4) where a return trip back to the depot occurs. Figure 5.5 corresponds to 

the dynamic knowledge case (P6) where one arc of the original route is skipped. Figure 5.6 

corresponds to the total knowledge case, where one arc of the original route is skipped but 

at the most advantageous point possible (assuming Euclidean distances between vertices). 

The complex issue, in terms of using the PTSA to model P7, arises because it is possible 

that breaking at such a point (and therefore servicing two extra customers before the failed 

customer) may result in not being able to service a set of subsequent customers. Since some 

form of dynamic memory is required in cases of more than one route to achieve an accurate 



5.3 BVRPSD Extensions P5/P6/P7 	 146 

d 
Figure 5.4: Route Break I: No Knowledge 

O 

Figure 5.5: Route Break II: Dynamic Knowledge 

Figure 5.6: Route Break III: Total Knowledge 
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routing cost, it is therefore only possible at this stage to use the PTSA to model P7 where 

m = 1. In addition, the PTSA can only approximate the value of the optimal solution 

since an earlier route break is permitted if and only if the subsequent customers never 

fail. Nevertheless, a solution of this problem has never been produced before and so the 

corresponding heuristic will still provide an invaluable method to obtain a measure for the 

improvement using total knowledge over other extensions of the BVRPSD. Importantly, 

total knowledge provides the most cost-effective form of stochastic vehicle routing apart 

from VRP-based reoptimisation. 

For P7, (3.43) must be altered so that whenever a route failure occurs the least cost 

route break is actioned such that the maximum demands of the following customers are 

less than total vehicle capacity. Consider an INNER tree node A branching to another 

nodeµ and assume that an OUTER tree node p corresponds to a routing segment in which 

a set of customers SP has previously been served according to the edge set EP. If the set 

of customers still needing a service at an OUTER tree node p is S' '  = V\(SP  n {v1}) and 

each demand set ei = 	, 6,8. 2 1 is ordered in ascending size, then the new recourse cost 

index would be given as follows. 

(it) = 	
0 if 1(A) 	c(o(A)), r  
ct if 1(A) < G(0(0)• 

where ct is obtained from the following minimisation. 

Let (k* , 1*) be the value of (k, 1) that minimises the expression: 

(5.11) 

ct  = mi
1
n(cii 	— eki) 	 (5.12) 

where 

(k, 1) E E°(") 
	

(5.13) 

E 	(4i) < Q. 
	 (5.14) 

viEsp'ic(p9=1. 

To test P7, in relation to P4, P5 and P6, we incorporated (5.11) into the PTSA and 

solved the previous set of test problems, i.e. the ten problem instances of T2 where m = 1, 

n = 10, 12, 14, 16 and U = 1.0, 1.1, 1.2. The results are shown in Table 5.8. The percentage 

cost improvement in using P7 in comparison with P4 is shown on average in Table 5.10. 
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Figure 5.7: Tests T2 (m = 1): Average Optimal Solutions Per Extension Over n 

From this table, z7 	(0.97)z4. Figure 5.7 displays the difference in average optimal 

solution cost between the four extensions over n for m = 1. 

5.4 Summary 

In this chapter, a number of extensions of the VRPSD that were first defined in Chapter 2 

have been solved to optimality using adaptations of the PTSA. A number of issues have 

been discussed including different levels of demand-related information disclosure and 

route-related reliability. Clearly, the extensions are defined to cross the spectrum between 

serviceability and cost and, for the first time, it has been possible to quantify the relative 

costs of the particular trade-offs involved. 
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Chapter 6 

A VRPSST Application in the 

Scheduling of Field Service 

Engineers 

6.1 Introduction 

The PTSA has been shown to be an effective procedure to find optimal solutions to the 

vehicle routing problem with stochastic demands. The VRPSD with Variable Costs of 

Recourse has been used to illustrate its capabilities and a group of alternative extensions 

have been analysed and solved to optimality for the first time. In this chapter, we discuss 

the adaptation of the PTSA to solve other SVRPs highlighted in Section 2.4. Algorithms 

are proposed for the VRPST and the VRPSST. Furthermore, the PTSA is employed within 

a VRPSST-based model applied to the scheduling of field service maintenance engineers. 

6.2 The VRP With Stochastic Service Times 

Let G = (V, E) be a graph where V = 	v2, , v7,1 is a set of vertices and E = 

{(vi, vj) : vi, vj E V} is a set of edges. The vertices have known and fixed locations and 

every edge (vi, vi) has an associated non-negative cost cij and non-negative travel time 

tij. It is assumed that the graph is symmetrical and the matrices (cij) and (tij) satisfy the 

triangular inequality, i.e. (vi, vj) is only defined for i < j and (cik Ckj > cii, tik tkj > 

tij V i , j, k). Vertex v1  represents a depot at which a homogeneous fleet of m vehicles, each 

149 
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with an overall working (service and travel) time restriction of T, is based. The remaining 

vertices correspond to a set of customers where each customer vi has associated service 

time requirements given by discrete, independent, non-negative random variables 6 with 

finite means sui and variances cq. In a first stage, a set of m vehicle routes of minimal 

cost are determined so that (i) each route starts and ends at the depot and (ii) each 

customer is visited exactly once by one vehicle. In a second stage, the first stage routes 

are followed as planned but whenever T is exceeded along a route, as a consequence of the 

deterministic travel times tip and the stochastic service times z, the vehicle returns to the 

depot and then continues along its pre-defined route with a replenished time allowance of 

T. Given that second stage recourse costs are represented by the values of such return 

trips to the depot, the objective is to design a minimum expected cost-set of routes such 

that all service time requirements are met, (i) and (ii) are satisfied and exactly m vehicles 

are used. 

The similarities between the VRPSST as it is described here' and the VRPSD are 

clear. The only real complication arises in the incorporation of deterministic travel times 

in the constraint on total working time. Indeed, the VRPSST can be represented by a 

similar first stage and second stage as that given for the VRPSD in Section 3.2. The only 

alteration stems from the second stage which can be represented as follows. Consider 

a first-stage feasible solution characterised by the vector xv = [xy.i ]. Given that the 

problem scenario Os, s E {1, ..., .§}, is realised from the random service time variable 

let W(xu) = EosEe(W(xv, Os)) denote the expected second stage routing costs and let 

Wk(xv, Os) denote the expected recourse cost of route k in xv given Os  The expected cost 

of K vehicle routes given a current feasible solution x" is then simply: 

W (xi') = 	Wk (xv ) 
	

(6.1) 
k=1 

where the expected cost of any route k can be computed separately, i.e. W k(xv) = 

Eo3ec(wk(xv, sb.))• 

Let 	represent the probability that the Ph  service time Eli  originates from the set of 

realisations {El, ...,E1„ 	Ea'} of customer vi, such that 	< EfF V 1 < k. In addition, 

'Alternative interpretations of the recourse cost are possible; these include a fixed cost of route failure 
or a penalty per unit of time in excess of T along a route. 
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relabel the vertices of the kth  route of xv so that the route becomes (v1, v2, 	, vtk , vtk+1 = 
v1). By denoting g to be the remaining working time available for a vehicle upon arrival 

at a customer vi, the expected cost of a route k is then as follows (the proof is similar to 

that given in Section 3.2.2 for P4). 

W k (xv ) = EqcsE(W k (xv , 45z)) = c4(T) 
	

(6.2) 

where: 

cel:k (g) = 2c1i E Pit, 	(0 < g < T), and 	 (6.3) 
/1Elk  >g 

celiF (g) = 	4+1(0) + > pli (cel,F+1(T — 	2cii) 	 (6.4) 
Ifel>g 

+ E 
	

(i = 2, ..., tk_i; 0 < g < 71 ). 
ik!<g 

and 

if Eli  = g, 

otherwise. 
(6.5) 

In an appropriate PTSA therefore, SDT branching occurs according to the residual 

working time a vehicle can have after satisfying the service time requirements of the 

customer in question, i.e. events equate to alternative service time leaving levels. The 

bound on the first stage remains identical to that for the VRPSD. The second stage bounds 

are similar but require modification. Only L2 is described here since the adaptation of L2 

into the INNER tree based bound of L3 is straight-forward. 

A second stage lower bound on the VRPSST can be obtained by considering the 

recourse problem at each OUTER tree node p in which a set of customers S has previously 

been served. Let c(p) denote the customer associated with node p. Consider the minimum 

total service time to be satisfied via return trips to the depot at p. Such a quantity of 

time depends on the service time distributions of the remaining customers, the combined 

total time restriction of the remaining vehicles and the minimum travel time required to 

cover the remaining customer locations. If the set of customers still needing a service at 

node p is S' = V\(S fl v1}), the number of vehicles available is m', the minimum travel 

time required to visit the customers in S' is P' (a lower bound of which can be obtained 

using a 2-perfect matching approach) and each service time set, {E, 	en, is ordered 
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in ascending size, then the minimum remaining working time g(p) to be satisfied through 

recourse is given by: 

E (ED - T(mi  + 1) + 1 if c(p) 0 1, 
vk  es' 

P` 	E (4) - 71(mi  + 1) 	if c(p) = 1. 
vkES,  

(6.6) 

If g(p) is greater than zero then a route failure will definitely occur irrespective of how 

the remaining customers are routed. Indeed, the number of route failures, f (p), that 

must occur while serving the remaining customers is given by f (p) = g (p) IT] where [*1  
represents the smallest integer not less than *. Now, given that co  represents the remaining 

least-cost single-trip to the depot, i.e. co = min„ 	vk E 	the lower bound L2  is 

given by: 

1,2  (p) = 
	 f (P).2c0 if g(p) > 0, 	

(6.7) 
0 	otherwise. 

The version of the paired tree search algorithm that incorporates the above alterations 

and can therefore solve the VRPSST has been coded in FORTRAN and run on a Silicon 

Graphics Workstation Indigo R4000 (100MHz) for a range of real-life problems. The 

computational results can be found in the description of the applied model. Significantly, 

computational times and PTSA tree search structure is similar to that for the VRPSD 

version of the PTSA. 

6.3 The VRP With Stochastic Travel Times 

Let G = (V, E) be a graph where V = {v1, v2, 	, vn} is a set of vertices and E = {(vi, vi) : 

vi, vi E V} is a set of edges. The vertices have known and fixed locations and every 

edge (vi, vi) has an associated non-negative cost cij and travel times given by discrete, 

independent, non-negative random variablesij with finite means Ecij and variances 4. 

It is assumed that the graph is symmetrical and the matrices C = (cii) and E = 

(for average values) satisfy the triangular inequality, i.e. (vi, vi) is only defined for i < j 

and (cik  cki > 	 > pij V i, j, k). Vertex v1  represents a depot at which a 

homogeneous fleet of m vehicles, each with an overall working (service and travel) time 

restriction of T, is based. The remaining vertices correspond to a set of customers where 
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each customer vi has associated non-negative, service time si. In a first stage, a set of m 

vehicle routes of minimal cost are determined so that (i) each route starts and ends at 

the depot and (ii) each customer is visited exactly once by one vehicle. In a second stage, 

the first stage routes are followed as planned but whenever T is exceeded along a route, 

as a consequence of the deterministic service times si and the stochastic travel times eii, 

the vehicle returns to the depot and then continues along its pre-defined route with a 

replenished time allowance of T. Given that second stage recourse costs are represented 

by the values of such return trips to the depot, the objective is to design a minimum 

expected cost-set of routes such that all service time requirements are met, (i) and (ii) are 

satisfied and exactly m vehicles are used. 

The similarities between this interpretation of the VRPST and the VRPSST given 

in Section 6.2 are evident. The difference arises since the stochastic and deterministic 

interpretation of the service and travel times have been alternated. This results in more 

random variables in the case of the VRPST and a minor modification in both the second 

stage formulation and the second stage lower bound L2. The latter is straight forward 

in that the interpretation of (6.2)-(6.4) is changed so that the stochastic service times, 

i.e. Ei E Os, now include the deterministic service times and the stochastic travel times, 

i.e. (sj E 	si where Ei corresponds to the travel time up to customer i in the route 

k. The lower bound on the second stage would correspond to that given in Section 6.2 

except that the summation of service times in (6.6) would equate to a summation of the 

deterministic service times and P' would correspond to a lower bound on the minimum 

possible travel times over the remaining customers. 

The version of the paired tree search algorithm that incorporates the above alterations 

and can therefore solve the VRPST has not been implemented since the corresponding 

model is very similar in terms of complexity to the model described in Section 6.2 for the.  

VRPSST. 

6.4 The Applied Maintenance Scheduling Problem 

The PTSA has been used to solve a real-life operational problem at a utility company, 

which has been modelled as a VRPSST. The company has a large number of major assets, 

including depots, work sites, buildings and machinery, and employs Field Service Engineers 
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(FSEs) to maintain all of these assets. FSEs are home-based and work independently in a 

set geographical region. An average day for a FSE involves eight hours and fifteen minutes 

work and overtime is paid for work completed over this allotted time. Typically, a number 

of jobs (usually less than ten) are completed per day at a number of alternative sites 

(usually less than five). Accordingly, a FSE may complete up to thirty jobs per week at 

up to twenty different locations. 

6.4.1 The Maintenance Scheduling System in Practice 

Jobs are assigned to a FSE in a variety of ways, however each job has a basic form 

of prioritisation and, for all but the most reactive jobs, requires some form of localised 

scheduling and routing. Currently, before deciding which jobs to complete each day, a 

FSE considers a variety of factors including: 

• priority which is a known upper limit of time before which a job must be completed, 

• site location which is known and fixed, 

• travel time which is estimated based on FSE knowledge of the geographical area and 

local traffic systems etc., and, 

• service time which is the length of time taken to complete a job and is estimated 

according to 'incomplete' knowledge and FSE experience. 

In this study, FSE jobs are defined according to their associated priority and belong 

to one of the following three categories: (i) reactive (R) - emergency call-outs with a 

priority given in terms of hours, (ii) pre-planned (P) - regular jobs with a priority given in 

terms of months, and, (iii) unplanned (U) - irregular jobs that require some form of local 

prioritisation usually given in terms of days and/or weeks. The characteristics of these 

job-types, obtained from a database storing information for eight months of FSE work, are 

shown in Table 6.1. Specifically, column 2 shows the proportion of jobs that have been 

classified under a particular job type during this time period (Total Number), column 3 

displays the proportion of total time spent completing jobs of a particular job type (Total 

Time), column 4 highlights the average duration of time taken to complete individual jobs 

of a particular job type (Average Service Time) and column 5 displays approximations of 

the upper limits of priority per job type that accord with FSE efficiency targets. 
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Job Type Total Number Total Time Average Service Time Priority 
Pre-planned-P 59% 23% 1 hour 3 months 
Unplanned-U 11% 19% 5 hours 2 weeks 
Reactive-R 30% 58% 6 hours 1 hour 

Table 6.1: Job Characteristics for an Engineer at the Utility Company 

6.4.2 The Stochastic Problem Setting 

In any stochastic environment, there exists a specific 'information' state that refers to the 

amount of information available to the decision makers at the time of decision making as 

opposed to the time when full information becomes available. In this study, the decision-

makers are the engineers, decision-making refers to local scheduling/routing and full in-

formation occurs 'with hindsight' after a job is completed. The presence of a stochastic 

`information state' is highlighted by the fact that: (i) service times are deemed stochastic 

as opposed to fixed, and, (ii) there exist inconsistencies in the way jobs are reported, e.g. a 

qualitative study with FSEs revealed an estimated ratio of 20:70:10 in the 'Total Number' 

of I", U and R jobs in contrast to the actual ratio of 59:11:30 (see Table 6.1). In practice, 

there also exist a variety of reoptimisation methods, i.e. operational systems, that can be 

utilised in such a problem environment. 

Table 6.1 shows that over 50% of a FSE's work time is spent doing reactive jobs. Such 

jobs, however, total only 30% of all the total number of jobs completed. Indeed, as P 

and U jobs are large in number and have shorter duration's which are stochastic in nature 

they are seen as `schedulable'. Conversely, reactive jobs are seen as uncontrollable and 

reducible only by improved engineering techniques and preventative maintenance, i.e. an 

increased number of planned 'maintenance' jobs should decrease the overall number of 

emergency cases. 

To summarise, two uncertainties are present in the FSE scheduling/routing system. 

Firstly, certain maintenance jobs completed by FSEs can arise in a probabilistic manner 

and, secondly, the time required to complete individual jobs is unknown, i.e. the occur- • 

rence of FSE jobs can be stochastic and the completion times of FSE jobs is stochastic. 

Consequently, the problem of determining optimal schedules is very complex. To simplify 

the approach, consider a finite period of time within which a series of P, U and R jobs, 

have to be completed by a FSE (note that the geographical boundary of such jobs will be 
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specified by the site locations themselves.) Specifically, one such list would start with a 

set of U jobs (by definition arising in' the previous week) and end with a long list of P jobs. 

R jobs would not be included as they arise instantaneously. The basic routing/scheduling 

problem can then be described as follows: if a FSE has a list of U and P jobs to complete 

within a finite planning horizon (e.g. a five day working week), how should those jobs be 

scheduled to minimise overall cost taking into account both reactive call-Guts (R jobs) and 

the uncertain nature of job service times? 

6.5 Modelling the Applied Problem as a VRPSST 

The main objective of the study was to examine the possible restructuring and refinement 

of the existing FSE scheduling and routing system with a view to reducing costs and/or 

improving productivity and the level of service associated with maintenance operations 

at the utility company. These issues have been addressed by developing a VRPSST-

based optimisation model of the basic FSE scheduling/routing problem given above and 

validating the model using historical information. More specifically, the optimisation 

model can be used to identify optimal schedules of P/U jobs for a given FSE and, therefore, 

can be used to recommend the most efficient daily routes taking into account stochastic 

service times (and reactive call-outs). The relative performance of the model can then be 

evaluated by analysing existing FSE schedules, i.e. model output can be used to predict 

schedules based on historical information and a comparison can then be made between 

results obtained manually and results that could have been obtained with the use of the 

model. Finally, it is possible to investigate the impact of using the model at two different 

stages of implementation. Such analysis provides a measure of the comparative efficiency 

of the current 'manual' system against that of the model at two stages of practical use 

primarily concerned with reactive call-out recognition. 

To model the FSE problem as a VRPSST, each "vehicle" corresponds to a "day" in 

a given planning horizon. The time restriction, T, then equates to the normal hours of 

each working day. In addition, VRPSST "customers" correspond to "jobs" that require a 

service and, as before, each job has an assigned geographical location, each route starts 

and ends at a fixed point (the depot) and each job is serviced on one day only, i.e. each 

customer is visited exactly once by one "vehicle". The time matrix represents the travel 
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times between customer sites and the cost matrix may represent either travel time, travel 

cost or travel distance between customer sites. The objective of the VRPSST described in 

this context is then to design a minimum expected "cost-set" of routes given that recourse 

costs (represented by return trips back to the depot) are interpreted as the cost incurred 

to return to a location to complete a particular job on a day outside the planning horizon. 

6.6 Model Input 

The implementation of the optimisation model requires the availability of input data in 

the format required by the model. The primary operations involved in scheduling a FSE 

include the prioritisation of jobs to be scheduled, the classification of individual job times 

from a host of job characteristics and the inclusion of geographical site locations. Such 

processes are essentially independent of the model which, because of its generic nature, 

can be utilised in a variety of operational systems. Nevertheless, the accuracy of two of the 

inputs required - job locations (hence travel times/distances) and job durations (service 

times) - becomes the sole determinant in the exactness of the results and such data issues 

are, therefore, further discussed below. 

6.6.1 Job-Locations and the Road Network 

The processing power and storage ability of computers enable the storage on a computer 

of the road network for a specific geographical area. This network can be processed and 

used to calculate accurately the distance between any two points. Typically such computer 

based road maps store a large number of road junctions (identified by grid references) and 

details of the links (roads) between such junctions, see Beulens [30] and Beasley [14]. 

The results presented in this case study are based on real distances calculated between 

any two site locations using a real Road Network System (RNS). The scope of this system 

is to cover the pilot study region of the utility company and, for this reason, ten figure 

OS references were obtained for all pilot study-based sites and FSE home locations. The 

road network contains over 4000 road segments (arcs) and about 1600 intersections of road 

segments (nodes identified by grid references). Basically, for each pair of site locations to 

be considered in the routing problem, the RNS first identifies these locations in the road 

network and then provides accurate corresponding time, distance and path information. 
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The RNS stores a considerable amount of information about the links between road 

junctions, not only the length of the link but also the type of road that makes up the link, 

e.g. a motorway, A road or B road. With such information, it becomes possible to adjust for 

differing vehicle speeds on different types of road and, hence, to calculate accurate vehicle 

travel times between any two locations. Route planning, therefore, is based on actual map 

distances and actual average speeds used on a motorway (60mph), A road (40mph) and 

B road (20mph). Note that the route that gives the minimum vehicle travel time between 

any two sites may well be different from the minimum mileage route between the same two 

sites. In this study, vehicle routes are planned on the basis of a minimum vehicle travel 

`cost' between sites which represents an equally weighted combination of both factors. 

Shortest routes between any two site locations on the road network and associated path 

information are determined using a shortest path algorithm, see Dijkstra [66]. 

6.6.2 Service Times 

A standard mathematical distribution is required to describe the service time of a partic-

ular job and act as input into the VRPSST maintenance model. For our purposes, a FSE 

job is not defined by precise engineering detail but by what a FSE predicts a particular job 

to entail since, for all but the most trivial of jobs, the precise specifics of a job are unknown 

until the problem is diagnosed on site. Indeed, the definition of a job needs to be rich 

enough to take into account what is estimated by an experienced FSE whilst not defining 

the job explicitly. Initially, we examined the service time distributions representing the 

P, U and R job-types described earlier (together with more detailed job specifiers such 

as asset type and asset fault), using data across the whole of the utility company. The 

latter consisted of data for every FSE over the whole of the company for an eight month 

period. Totalling 65, 923 jobs and 201, 841 man-hours, this information was deemed to 

be broad enough to give accurate service time distributions. Nevertheless, it was found 

that the lack of a human factor (and indeed a regional factor) influenced the distributions 

with more significance than the type of jobs themselves and, accordingly, no matching 

mathematical distribution could be found. Figure 6.1, for example, displays the service 

time distribution for U jobs company wide. This hypothesis proved correct following an 

analysis of the service time distributions for the same job-types using data for individ-

ual FSEs. Log-normal distributions with differing means and standard deviations were 
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found to fit with adequate statistical confidence (using the student's t-distribution test). 

Figure 6.2 (using information for one FSE only) shows this graphically for one particular 

example. 

Presently therefore, when a service time distribution is required, the FSE's mean ser-

vice time, and standard deviation, for a given job-type contribute to a discretised log-

normal distribution that can be entered into the model. An example of such an input 

distribution, where there exists twelve discrete service time possibilities, is shown in Fig-

ure 6.3. Notice that for modelling purposes, a limit of 6 hours is maintained, i.e. the 

probability that a time above 6 hours is realised contributes to a summed discrete proba-

bility of occurrence corresponding to exactly 6 hours. 

6.7 Model Output: Computational Considerations 

The model was coded in FORTRAN and run on a Silicon Graphics Workstation Indigo 

R4000 (100MHz), see Section 6.2. The evaluation of the computational performance of 

the model is based on twelve scenarios (each scenario corresponding to one week's data) 

from one months historical data for three FSEs based in the pilot study region. 

6.7.1 A Framework for the Analysis of Results 

The actual input for each scenario, obtained from historical information, displays when 

and where each job was completed, what its priority was and how long each job took to 

be completed (in hours) for a given FSEs working week. The following information can 

be obtained from such a weekly input: (i) a list of all P and U jobs to be scheduled on 

Monday morning, (ii) the actual service time per day (with/without reactive call outs), 

(iii) the actual travel time per day (with/without reactive call outs), (iv) the actual dis-

tance travelled per day (with/without reactive call outs) and (v) the actual overtime per 

day (with/without reactive call outs), i.e. the time beyond 8 hours and 15 minutes. 

The manual sequence of jobs completed (`scheduled') in practice by a given FSE for 

each day of the week will be referred to as the manual schedule. The corresponding optimal 

sequence of P/U jobs, obtained by the optimisation model at the beginning of the planning 

week, will be referred to as the optimal schedule. Note: days in the optimal schedule are 

not ordered over the planning period and, for that reason, a secondary ordering process is 
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Service Time (Hours) 

Figure 6.1: Service Time Distribution For U Jobs Over The Entire Company 
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Figure 6.2: Service Time Distribution For U Jobs For One FSE 
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Service Time (Hours) 

Figure 6.3: Example FSE Service Time Distribution Input 

established based on the number of jobs per day and the expected service time per day. 

When the actual job completion times obtained from the manual data for a particular 

scenario are entered into the optimal schedule, then the latter becomes the actual-optimal 

schedule which can be compared to the existing manual schedule. The following assump-

tions have been used in developing actual-optimal schedules based on the optimal model 

output. 

1. All P/U jobs completed in the manual schedule are available for scheduling at the 

beginning of that week. 

2. There exists a fixed limit of overtime allowed per day within the actual-optimal 

schedule that corresponds to the average amount of overtime used in the historical 

data, i.e. a job in an actual-optimal schedule will only create overtime when the 

total time used in that day, plus the expected time of the new job, is less than the 

working day plus the fixed amount of overtime allowed on average per day in the 

manual schedule. 

3. If a FSE does not have time to complete a P/U job, even allowing for overtime, then 

the job will be completed at the end of any permitted subsequent daily schedule. 
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Conversely, if a FSE has some spare time at the end of a day then the last scheduled 

job in the week will be completed. 

4. If a reactive call-out occurs in the historical data, then the reactive job is completed 

in the actual-optimal schedule and the current P/U job is abandoned to be completed 

later on in the week (see Section 6.7.2). 

By finding the optimal schedule at the beginning of each scenario and using the above 

framework to compare the manual schedule with the actual-optimal schedule, it is possible 

to find estimates for the reduction in total travel time, distance travelled and overtime, 

that can be obtained by using the optimisation model instead of the manual method. In 

addition, by investigating the impact of implementing the model in two stages, described 

below, it is possible to consider the issue of reoptimisation and the 'cost' of going on-line. 

6.7.2 Reoptimisation 

The model initially schedules P/U jobs allowing for stochastic service times. Reactive call-

outs are not included as they do not 'exist' at the time of scheduling. Indeed, one possible 

manifestation of the model is to exclude the contribution of reactive call-outs entirely and 

to only consider jobs that can be scheduled; this would correspond to a FSE system in 

which reactive call-outs are never encountered and would therefore partially invalidate any 

associated results. Two different levels of inclusion of reactive call-outs, which correspond 

to two different stages of model implementation, are therefore included: 

• Simple Inclusion - Jobs occur as scheduled however when reactive call-outs arise they 

are implemented just as they occur in reality and when they end the original schedule 

is continued. No secondary optimisation is completed once the original schedule has 

been interrupted and so the method is similar to the manual system of dealing with 

reactive call-outs. [This system corresponds to one run of the optimisation model at 

the beginning of the planning horizon.] 

• Reoptimisation - Jobs occur as scheduled however whenever reactive call-outs arise, 

and have been completed, reoptimisation occurs. [This system corresponds to the 

running of the model within an on-line system by, for example, continually re-running 

the model following the completion of a day which has included a reactive call out.] 
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6.8 An Example Scenario 

Table 6.2 displays data for a week of FSE work in the pilot study region. Five reactive 

jobs occur during the week: one on Monday morning, one in the middle of the day on 

Monday, one on Tuesday, one on Thursday morning and one on Friday afternoon. Table 6.3 

displays the corresponding inputs to the VRPSST model. Reactive jobs are omitted 

since they do not exist at the time of scheduling. The index column is simply used to 

identify inputted jobs and allows for a combination of P jobs when total expected service 

time is small2. For example, indices 7a and 7b are used to identify two small jobs that 

are combined to generate a single service time distribution which should be inputted 

into the model and represented as job 7. The expected service times (pi), the standard 

deviations (cri) and the number of discrete service time values (Si) describing each log-

normal distribution of a given job are also shown. 

When no reactive call-outs are considered, the output of the optimisation model is 

the optimal schedule shown in Table 6.4. This list would have been used to schedule 

the FSE in an implemented system. Notice that there is a 5.1% difference between the 

expected service time and the actual service time (ST) over the whole week. Using the 

list of assumptions given in Section 6.7.1, this optimal schedule can now be used to obtain 

the actual-optimal schedule shown in Table 6.5. The corresponding manual schedule is 

also shown in Table 6.5. Notice that the actual-optimal schedule differs from the optimal 

schedule due to the fact that, since extra time was available on Thursday, jobs 5 and 

11 could be added to Thursday's schedule. Contrasting the actual-optimal schedule with 

the manual schedule, the following points can be noted: (i) the five day original schedule 

becomes a four day schedule in the optimised case, (ii) the spread of jobs is more even 

in the optimised schedule and, hence, overtime (OT) is cut from 3.17 hours to a total 

of 0.08 hours (a reduction of 97.5%), (iii) travel time (TT) decreases dramatically in the 

optimised schedule from 7.17 hours to 4.83 hours (a reduction of 32.6%), and (iv) travel 

distance (TD) decreases in the optimised schedule from 460 to 320 kilometres (a reduction 

of 30.4%). 

Employing simple inclusion in the example scenario results in a 5.9% reduction in travel 

time, an 11% reduction in overtime and a 5% reduction in distance travelled; profiles 

'Small jobs are defined as having a mean time of less than 30 minutes. 
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Day Job-type Service Time (hrs.) Index* 
Monday R 1.50 

U 2.25 3 
R 2.50 - 
U 2.00 4 

Tuesday R 3.25 - 
U 1.50 5 

Wednesday U 5.00 2 
U 3.25 6 

Thursday R 4.00 
U 1.50 8 
P 0.25 7a 
P 0.25 7b 
U 2.25 12 

Friday P 0.50 11a 
P 0.25 9a 
U 2.25 10 
P 0.25 llb 
P 0.25 11c 
P 0.25 9b 
P 0.50 9c 
U 2.00 13 
U 1.00 14 
R 1.00 - 

(*Index 1 represents the depot.) 

Table 6.2: Actual Data For The Example Scenario 

Job-type Index 
(*combined jobs) 

Probability Distribution 
pi(hrs.) o Si 

U 2 3.04 1.80 34 
U 3 3.04 1.80 34 
U 4 3.04 1.80 34 
U 5 3.04 1.80 34 
U 6 3.04 1.80 34 
P 7* 0.61 0.46 17 
11 8 3.04 1.80 34 
P 9* 0.92 0.69 24 
U 10 3.04 1.80 34 
P 11* 0.92 0.69 24 
U 12 3.04 1.80 34 
U 13 3.04 1.80 34 
U 14 3.04 1.80 34 

Table 6.3: Input Data For The Example Scenario 
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Sequence of Jobs Expected Service Time (Hours) 
M H-7-9-10-8-H 6.40 
T H-4-14-6-H 7.30 
W H-2-13-H 4.87 
T H-12-3-H 4.87 
F H-11-5-H 3.35 

26.79 

Table 6.4: The Optimal Schedule For The Example Scenario 

ST 
(hrs) 

TT 
(hrs) 

OT 
(hrs) 

TD 
(km) 

4.25 1.33 0.00 80 
1.50 0.67 0.00 40 
8.25 1.00 1.00 80 
4.25 1.00 0.00 60 
7.25 3.17 2.17 200 
25.50 7.17 3.17 460 
5.25 1.33 0.00 110 
6.25 1.33 0.00 80 
7.00 0.83 0.00 60 
7.00 1.33 0.08 70 
25.50 4.83 0.08 320 

Manual 
schedule 

M 
	

H-3-4-H 
T 
	

H-5-H 
W 
	

H-2-6-H 
T 
	

H-8-7a-7b-12-H 
F H-11a-9a-10-11bc-9bc-13-14-H 

 

   

	

Actual- M 
	

H-7-9-10-8-H 

	

optimal T 
	

H-4-14-6-H 

	

schedule W 
	

H-2-13-H 

	

T 
	

H-12-3-11-5-H 

Table 6.5: Schedules For The Example Scenario With No Reactive Call-outs 

ST 
(hrs) 

TT 
(hrs) 

OT 
(hrs) 

TD 
(km) 

8.25 1.83 1.83 120 
4.75 1.00 0.00 70 
8.25 1.00 1.00 80 
8.25 1.33 1.33 70 
8.25 3.33 3.33 200 
37.75 8.50 7.50 540 
7.75 2.67 2.17 190 
9.50 1.67 2.92 100 
6.75 1.33 0.00 80 
9.00 1.00 1.75 70 
4.71 1.00 0.00 70 

37.75 7.67 6.83 510 

Manual 
schedule 

M 
	

H-R-3-R-4-H 
T 
	

H-R-5-H 
W 
	

H-2-6-H 
T 
	

H-R-8-7a-7b-12-H 
F H-11a-9a-10-11bc-9bc-13-14-R-H 

 

   

	

Actual- M 
	

H-R-7-9-R-10-11 

	

optimal T 
	

H-R-4-14-6-H 

	

schedule W 
	

H-3-5-11-13-H 

	

T 
	

H-R-2-H 

	

F 
	

H-8-12-R-H 

Table 6.6: Schedules For The Example Scenario With Reoptimisation 
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M T W 
	

F 

Days of the Week 

Figure 6.4: A Time Profile of Manual and Actual-Optimal Schedules 

of the use of FSE time in this case are shown in Figure 6.4. Table 6.6 displays both 

schedules if reoptimisation is employed. The three re-runs of the VRPSST model, that 

occur due to reactive call-outs on Monday, Tuesday and Thursday, alter the nature of the 

original optimal schedule and result in a 9.8% reduction in travel time, a 8.9% reduction 

in overtime and a 5.6% reduction in distance travelled. Notice that, in this particular 

scenario, although travel time decreases under reoptimisation, the percentage reduction 

in overtime is slightly less than in the case of simple inclusion. 

6.9 Overall Computational Results 

The results for all scenarios are shown in Tables 6.7-6.9. These tables display the percent-

age reduction in travel time, overtime and distance travelled achieved when the optimisa-

tion model is used for each scenario in the case of no reactive call-outs, reactive call-outs 

with simple inclusion and reactive call-outs with reoptimisation. Computation times re-

quired to obtain the optimal schedule for each scenario, together with their associated 

VRPSST problem sizes, are shown in Table 6.10. 

If reactive call-outs are ignored, see Table 6.7, the average results over all scenarios 

indicate a substantial reduction in travel time (14%) and distance travelled (18%), together 
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Scenario TT (% Reduction) OT (% Reduction) DT (% Reduction) 
1 21.4 9.8 20.3 
2 0.0 26.4 5.2 
3 15.3 25.0 18.0 
4 6.5 17.9 14.5 
5 7.1 0.0 19.2 
6 6.5 81.0 9.7 
7 20.6 38.6 20.0 
8 12.5 0.0 18.8 
9 10.7 80.0 12.5 
10 25.0 0.0 28.3 
11 0.0 0.0 23.1 
12 32.6 97.4 30.4 

Average 13.6 32.5 18.2 

Table 6.7: Results: Reactive Call-outs Ignored 

Scenario TT (% Reduction) OT (% Reduction) DT (% Reduction) 
2 0.0 0.0 3.4 
3 10.9 22.9 14.9 
5 2.9 14.8 6.7 
6 16.7 26.2 11.1 
7 21.4 30.7 21.1 
8 14.7 0.0 18.8 
9 5.9 44.0 7.7 
10 8.3 38.8 15.7 
11 0.0 2.8 8.3 
12 5.9 11.1 5.6 

Average 8.3 20.1 11.0 

Table 6.8: Results: Reactive Call-outs - Simple Inclusion 

Scenario TT (% Reduction) OT (% Reduction) DT (% Reduction) 
2 0.0 0.0 3.4 
3 10.9 22.9 14.9 
5 8.8 7.4 6.7 
6 22.2 23.1 22.2 
7 21.4 30.7 23.7 
8 14.7 0.0 18.8 
9 5.9 30.8 7.7 

10 8.3 38.8 15.7 
11 0.0 41.7 4.2 
12 9.8 8.9 5.6 

Average 9.6 19.6 11.7 

Table 6.9: Results: Reactive Call-outs - Reoptimisation 



6.9 Overall Computational Results 	 168 

Scenario Jobs 
(n - 1) 

Days 
(m) 

Computational Times 
(hours) 

1 13 5 8.41 
2 14 6 11.16 
3 10 5 8.87 
4 16 6 13.58 
5 11 5 11.64 
6 10 5 8.46 
7 10 5 8.73 
8 6 4 0.00 
9 9 4 4.99 
10 11 4 3.70 
11 13 5 7.58 
12 13 5 8.38 

Table 6.10: Problem Data and Computation Times For Each Scenario 

Reactive Call-outs TT (% Reduction) OT (% Reduction) DT (% Reduction) 
Ignored 10.8 19.8 14.5 

Simple Inclusion 5.5 11.5 9.2 
Reoptimisation 5.5 11.5 9.2 

Table 6.11: Average Results: FSE 1 

Reactive Call-outs TT (% Reduction) OT (% Reduction) DT (% Reduction) 
Ignored 11.7 29.9 16.9 

Simple Inclusion 13.9 17.9 14.4 
Reoptimisation 16.8 15.3 17.9 

Table 6.12: Average Results: FSE 2 

Reactive Call-outs TT (% Reduction) OT (% Reduction) DT (% Reduction) 
Ignored 17.1 44.4 23.6 

Simple Inclusion 5.0 24.2 9.3 
Reoptimisation 6.0 30.0 8.3 

Table 6.13: Average Results: FSE 3 
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with a dramatic reduction in overtime (33%). Table 6.8 displays the results when reactive 

call-outs are implemented using simple inclusion. No results are available for scenarios 1 

and 4 as no reactive call-outs occurred during these two weeks. Notice that, although the 

optimal schedule clearly outperforms the manual schedule, the improvements over current 

practice are slightly less than in the previous case (8%, 11%, and 20% respectively). This 

decrease is due to the fact that reactive call-outs occur at random points of the week and 

no secondary optimisation is completed once the original schedule has been interrupted. 

Once reoptimisation is implemented only minor increases in the reductions beyond the 

simple inclusion case are achieved. Clearly, these results indicate that reoptimisation may 

be unnecessary in certain practical cases when large amounts of un-scheduled reactive jobs 

disrupt the optimal routing system. Nevertheless, results were only completed up to the 

end of the planning horizon, not on a more practical rolling weekly reoptimisation basis. 

Hence, depending on costs and efficiency targets, reoptimisation may still be comparatively 

important to management. 

Finally, Tables 6.11 to 6.13 display the average improvement per FSE for all types of 

reactive call-out inclusion (scenario 1-4 corresponds to FSE 1, scenario 5-8 corresponds to 

FSE 2 and scenario 9-12 corresponds to FSE 3). It is clear that the three FSEs used in 

the case study incur similar results. 

6.10 Summary 

The modelling approach presented in this applied chapter involved the construction of a 

VRPSST-based model and the application of a new solution method to identify optimal 

schedules of jobs for a FSE and to recommend the most efficient routes for the FSE taking 

into account stochastic service times and reactive call-outs. The performance of the model 

was evaluated by analysing existing FSE schedules and investigating the impact on FSE 

performance of using the model at two different stages of implementation, one of which is a 

simulated on-line system. The results of the optimisation model show that improvements 

of approximately 8% and 11% in total travel time and distance travelled respectively can be 

achieved when stochastic service times and reactive call-outs are included in a FSEs weekly 

schedule. In addition, the average reduction in overtime in such cases is approximately 

20%. 



Chapter 7 

Measuring the Performance of an 

A Priori Optimum Using A 

Posteriori Optimisation 

7.1 Introduction 

It was shown in Chapter 2 that the SVRP, unlike its deterministic equivalent, belongs 

to a class of a priori optimisation problems for which it is impractical to consider an a 

posteriori approach that computes an optimal solution whenever the random variables are 

realised, see Bertsimas et al [25]. Instead, an a priori approach attempts to obtain the best 

solution, over all possible problem scenarios, prior to the realisation of any single scenario. 

In this chapter, we use the PTSA to obtain optimal results for VRPSD test problems that 

we can use to investigate the computational performance of such an a priori approach. The 

quality of the a priori solutions obtained are compared with sample averages of solutions 

obtained using an a posteriori strategy of reoptimisation in which each problem scenario 

is solved as a separate VRP. 

In Section 7.2, a literature review of the few similar methods employed. in the area 

of stochastic vehicle routing is presented. In Section 7.3, the method of sampling indi-

vidual VRP solutions to obtain an approximation of the a posteriori solution is outlined, 

together with the method with which the quality of an a priori solution is tested. Fi-

nally, comprehensive results and conclusions are given in Sections 7.4 and 7.5 respectively. 

170 
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The former includes an example of the complete computational solution procedure and an 

investigation into the effect of different demand distributions on a priori solution quality. 

7.2 Literature Review 

The only other relevant work in the literature considers the VRPSC. Bertsimas et al [23] 

show, for a selection of one vehicle VRPSCs, that the gap between an a priori heuristic 

solution and an a posteriori approximation, based on an average of heuristic solutions for 

a number of associated VRP scenarios, falls between —3% and 5% (negative values were 

obtainable in practice due to the absence of optimality). Since an a priori solution method 

involves a single routing strategy, designed in advance of specific demand information 

though still incorporating knowledge of the demand distributions, in this study emphasis 

is given to the optimality of the vehicle routes obtained. The work presented here will 

provide an accurate evaluation of the gap between an a priori exact solution to the VRPSD 

and an a posteriori approximation based on an average of exact solutions for a number 

of VRP scenarios. This is made possible through the availability of a fast exact VRP 

solution method and, now, an optimal SVRP solution method. For the first time, therefore, 

accurate results can be obtained that attest to the performance of stochastic routing 

problems as relevant problems to be studied in certain contexts. The SVRP chosen to 

illustrate this is the VRPSD. 

7.3 The A Posteriori Approximation 

The purpose of this section is to describe the method used to test the a priori strategy, using 

results for the VRPSD obtained from the PTSA, against the a posteriori strategy, using 

results obtained from scenario-based VRP solutions. We first describe the deterministic 

VRP solution method used to solve an individual problem scenario, before describing the 

sampling procedure and how the quality of an a priori solution is assessed. 

7.3.1 A VRP Solution Method 

The exact algorithm used in this study, developed by Hadjiconstantinou et al [114], involves 

the use of lower bounds that are based on the computation of q-paths and k-paths. The 

use of iterative combinations of such paths results in lower bounds of high quality and a set 
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of corresponding reduction tests reduces the size of the problem and improves the quality 

of the bounds even further. Embedding the lower bounds into a tree search procedure, 

based on a new branching strategy, enables optimal solutions to be found for problems of 

up to fifty customers. Further information on direct tree search VRP algorithms is given 

in Section 2.3.2. 

Hadjiconstantinou et al's algorithm was used to solve individual problems on a Silicon 

Graphics Workstation Indigo R4000 (100MHz). 

7.3.2 The A Posteriori Solution 

An exact evaluation of an a posteriori solution to a VRPSD is impractical due to pro-

hibitive computational problems that arise following the evaluation of a huge number of 

VRP-based scenarios. A sampling method is therefore required to simulate the reopti-

misation based, a posteriori solution. This involves creating a number of independent 

problem scenarios from the set of possible customer demand realisations and computing 

the associated probability of occurrence for each scenario. 

For a given test problem, if s E { 1 , 	< s} denotes a problem scenario Os  from a 

sampled set of size s, P, denotes the probability that a scenario s arises, t(i, s) denotes the 

discrete demand level realised per customer i in scenario s, pi(i,$)  represents the probability 

of the demand level indexed by t(i, s) arising for customer i and the optimal VRP solution 

of s is Cs , the a posteriori approximation, A, can be given as follows: 

E Ps  Cs  
A= 
	

(7.1) 

E Ps 
8=1 

where 

(7.2) 
i> 2 

Note, since each scenario arises with an equal chance for test problems utilising the uniform 

distribution, for such problems (7.1)-(7.2) reduces to the following. 

E Cs 
A  8=1  (7.3) 
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Needless to say, the important question in such a sampling procedure is what value the 

parameters should take? In addition, note that for any one VRPSD, the value of m will 

vary depending on the set of problem scenarios involved. 

7.3.3 The Quality of an A Priori Solution 

It was shown in Chapter 5 that different knowledge-based VRPSD extensions can be 

more "cost-effective" than the simplest recourse extension P4. Clearly, if we denote an 

a posteriori solution by za, then we can extend the conjecture given by (5.8) from Sec-

tion 5.3, referring to the optimal solutions of particular extensions to a given VRPSD, in 

the following way. 
z4 > 	> z6 > z7 > za . 	 (7.4) 

In this study, both extensions P4 and P6 are used to evaluate the performance of a VRPSD 

solution. To obtain the a priori solution, P, the PTSA is used to solve a number of VRPSD 

(P4 or P6) corresponding to the values of m (number of vehicles) used in the associated 

sampling procedure. The value of P is then given by min,,,, z4  and min,,,, z6  for P4 and P6 

respectively. 

The quality of the a priori solution is then measured by the gap G between the a priori 

solution and the a posteriori solution. This is denoted by G4 for extension P4 and G6 for 

extension P6 and can be given as follows. 

G— P — A 
A (7.5) 

7.4 The Computational Study 

In the following section, the type of test problems used to find G are described, a fully 

worked example is given as an illustration of the computational procedure involved and 

full computational results are presented. 

7.4.1 The Test Problems 

The data for the tests used in this study are subsets of the well-known 50 and 75 cus-

tomer VRP test problems given in Eilon et al [14]. The same tests were also used as the 

basis to Tests T4 in Chapter 4. For each test set, summarised in Table 7.1 and detailed 
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Test Set . n — 1 Q Customers 
Test la 15 55 v2, • • • , vis 
Test lb 20 58 v12, • • • , vat 
Test lc 25 48 v17, • • • , v41 
Test 2a 15 56 v2, • • • , vis 
Test 2b 20 71 v12, • • • , vii 
Test 2c 30 68 v2, • • • , v31 

Table 7.1: Test Problems Taken From The Literature 

in Appendix B (test 1 data is taken from Eilon et al's 50-customer problem and test 2 

data is taken from their 75-customer problem), a number of alternative problems have 

been created according to different combinations of the vehicle capacity Q and the cus-

tomer demand distribution. In addition, the number of vehicles used in each problem is 

quantified. 

Demand distributions: Customer demand distributions took the form of either the 

discrete uniform, the discretised normal or the Poisson. The mean demand tti per customer 

in each test set remained identical across all distribution types. In the uniform case, Si 

demand values were generated according to a spread of one third around the mean, i.e. a 

range of demand values from [2,ui/3] to 14,(4/3] +1 was created where each demand has a 

probability of occurrence given by pi = 1/8i V i > 2, 1 E {1,..., bi}, and Lxi represents the 

highest integer not greater than x. As before, for the Poisson and discretised normal case, 

demand values per customer were generated so that > 0.01 V i > 2, 1 E 

Vehicle Capacity: For certain problems, vehicle capacity was altered so that three 

possible values for each test set varied around the original values given in Table 7.1. Vary-

ing Q in this manner effects problem tightness and alters the expected vehicle utilisation. 

Vehicle Number: In the a posteriori strategy of reoptimisation, in varied over the 

range of problem scenarios generated in each sampling procedure. The value of m in a 

VRP-based solution to a single scenario was given by the minimum number of vehicles 

required to satisfy the customer demand requirements of that scenario. Conversely, for 

a single solution to a VRPSD, the number of vehicles available is fixed. To obtain the 

best a priori solution for a given test problem therefore, m was varied within the range of 

possible values used in the associated a posteriori approach, provided such a value had a 

frequency of occurrence within the sampled VRP scenarios which was greater than 10%. 
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i pi  di El 4` 

2 7 7 4 10 
3 30 22 20 41 
4 16 13 10 22 
5 9 8 6 13 
6 21 16 14 29 
7 15 12 10 21 
8 19 15 12 26 
9 23 17 15 31 
10 11 9 7 15 
11 5 5 3 7 
12 19 15 12 26 
13 29 21 19 39 
14 23 17 15 31 
15 21 16 14 29 
16 10 9 6 14 

Table 7.2: Example Demand Characteristics For A Test Set la Problem 

The best value of the VRPSD optimal solution for a given m was then selected as P. 

7.4.2 An Example of the Computational Procedure 

The basic problem arising from Test la is the 15 customer problem with Q = 55 and 

a discrete uniform demand distribution. The mean demands pi, the number of demand 

values 8i, the minimum demand Et and the maximum demand 4,  for each customer in 

this example are shown in Table 7.2. To obtain the a posteriori solution, 211 scenarios 

were sampled from a possible total of 2.721 x 1016  and each scenario was then solved 

independently as a VRP. A graph of the solutions to these scenarios is shown in Figure 7.1. 

Scenarios with high values of U usually incurred higher costs and required six vehicles 

whereas "easier" scenarios incurred lower costs and required five vehicles. This increase 

in cost can clearly be seen in the figure where scenarios numbering over 150 correspond 

to problems requiring six vehicles. Figure 7.2 displays the moving (weighted) average of 

VRP solutions for the example, together with the final a posteriori approximation given 

by A = 333.1. It was found that a choice of N ti 200 provided a good approximation of 

the a posteriori solution. This observation was based on the fact that the moving average 

of the VRP cost for all test problems converged to a gap of approximately ±0.4% away 

from the overall average once s was greater than 100. 
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Figure 7.1: Individual VRP Solutions for the Example 

Figure 7.2: The Moving Average For The Example 
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Figure 7.3: The A Priori Solution with Simple Recourse (P4 = 360.6, G4 = 8.26%) 
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Figure 7.4: The A Priori Solution with Dynamic Recourse (P6 = 348.7, G6 = 4.68%) 
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Test Set n - 1 Q m %U % A P4 G4 
la 15 55 5 94 75 326.7 361.3 

6 78 25 352.8 360.6 
Total 333.1 360.6 8.26 

2a 15 56 5 3 337.0 
6 86 360.6 398.7 
7 11 395.6 401.3 

Total 364.0 398.7 9.53 
lb 20 58 5 113 1 389.2 

6 95 81 436.5 469.4 
7 81 18 465.8 478.4 

Total 441.6 469.4 6.30 
2b 20 71 5 1 382.6 

6 78 413.9 470.7 
7 21 467.5 477.4 

Total 425.0 470.7 10.75 
lc 25 48 7 90 1 582.6 - 

8 79 72 628.5 722.6 
9 70 27 665.1 733.2 

Total 637.8 722.6 13.30 
2c 30 68 8 108 2 575.8 - 

9 96 64 601.3 693.7 
10 87 34 624.4 718.9 

Total 608.8 693.7 13.95 

Table 7.3: Results of the Basic Test Problems 

To obtain the two a priori solutions, for P4 and P6, the PTSA was run twice for 

m = 5, with an optimal cost of z4  = 361.3 (z6  = 348.7), and m = 6, with an optimal cost 

of z4  = 360.6 (z6  = 357.4). The latter was then chosen to be P4 and the former to be P6. 

These solutions are also shown in Figure 7.2 and their associated routes are displayed in 

Figures 7.3 and 7.4. Using (7.5), G4 was found to be equal to 8.26% and G6 was found 

to be equal to 4.68%. This means that implementing the solution to P6 would result in 

an overall cost that was less than 5% away from the theoretical best that can be achieved 

when full information is available. 

7.4.3 Results 

A summary of the results to all the uniform demand problems for extension P4 with the 

original capacities is shown in Table 7.3. In each case s > 200. Note that for problems 

involving more than twenty customers, the PTSA requires a high computational time to 
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find an optimal solution. In such cases, the a priori solution is given by the best feasible 

solution obtained within an imposed time limit. Since the PTSA is an exact solution 

method, it is important to observe that any feasible solution obtained in such a manner 

is always of known quality. 

Overall for these problems, the quality of the a priori solution, represented by G, varies 

between 6% and 14%. In the majority of cases, the smallest allowable value of .m corre-

sponds to the chosen a priori solution. In examples such as these, additional computational 

work should be completed to assess the serviceability of such routing solutions since a small 

increase in cost may result in a considerable reduction in the percentage chance of route 

failure along any one route. As expected, the a posteriori solution increased in parallel 

with an increase in m. 

To test the effect of differing values of U on the quality of results, Q was varied for tests 

la and lb. The results shown in Table 7.4 highlight that changing Q makes very little 

difference to the quality of results. The average gap in these problems, where n = 15, 20, 

is less than 6%. In addition, results corresponding to different demand distributions over 

tests la, lb, 2a and 2b can be seen in Table 7.5. As expected, the VRPSDs requiring the 

highest cost occur when normal distributions are present as these are more "stochastic". 

Poisson and uniform distributions appear to incur similar costs. Overall, the average gap 

increases from 6.7% to 7.3% to 8.8% as the distributions change from Poisson, to uniform, 

to normal respectively. 

Finally, we present comparative results for extensions P4 and P6. All the 15 customer 

tests were run for P6, including those for different demand characteristics. The compara-

tive percentage gaps are shown in Table 7.6. When P6 is employed, the average reduction 

in the gap between the a priori solution and the a posteriori solution is approximately 3%. 

7.5 Summary 

The work in this chapter has shown that stochastic vehicle routing problems, in this case 

where demand is uncertain, can have a very useful role in a large number of practical 

situations when an organisation does not possess real time parameter information, does 

not possess enough flexibility in its labour assignments and/or cannot analyse data in an 

on-line manner. Following a simple a priori strategy involves a single VRPSD solution 
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Test Set n - 1 Q A P4(m) G4 
la 15 50 355.5 378.1(5) 6.36 

55 333.1 360.6(6) 8.26 
60 319.9 333.4(5) 3.26 

lb 20 52 472.8 497.6(6) 5.25 
58 441.6 469.4(6) 6.30 
64 421.3 444.4(5) 5.48 

Table 7.4: The Effect of Q on the Gap 

Test Set Dist. n - 1 Q A P4(m) G4 
la U 15 55 333.1 360.6(6) 8.26 

N 342.1 368.1(6) 7.60 
P 325.2 354.0(5) 8.86 

2a U 15 56 364.0 398.7(6) 9.53 
N 363.4 393.5(5) 8.28 
P 367.2 390.3(7) 6.29 

lb U 20 58 441.6 469.4(6) 6.30 
N 445.3 489.8(7) 9.99 
P 447.5 467.8(6) 4.54 

2b U 20 71 425.0 470.7(6) 10.75 
N 419.3 446.6(6) 6.51 
P 411.4 440.4(6) 7.05 

Table 7.5: The Effect of the Distribution Types on the Gap 

Test Set Dist. n - 1 Q A P4(m) G4 P6(m) G6 
la U 15 55 333.1 360.6(6) 8.26 348.7(5) 4.68 

N 342.1 368.1(6) 7.60 355.4(5) 3.89 
P 325.2 354.0(5) 8.86 347.1(5) 6.73 

2a U 15 56 364.0 398.7(6) 9.53 377.9(6) 3.82 
N 363.4 393.5(5) 8.28 367.6(5) 1.16 
P 367.2 390.3(7) 6.29 373.4(7) 1.69 

Table 7.6: Results of the Tests For P4 and P6 
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which is comparatively easy to implement and can result in only a small increase in cost 

in comparison to an a posteriori, reoptimisation-based, strategy. For problems of medium 

size, an average gap of 8% (no more than 14%) occurs between an optimal a priori solution 

and an a posteriori approximation. Furthermore, these results only account for the most 

simple VRPSD that incorporates a fixed cost of route failure with no route breaks. In 

general, incorporating a VRPSD with dynamic knowledge reduces the quality gap by 

approximately 3%. 



Chapter 8 

Conclusions 

In this final chapter, we will briefly summarise the entire thesis and highlight the main 

contributions derived from our research. We will then consider some issues related to this 

research and discuss some current limitations of our proposed methods. Finally, some 

potential avenues for future research are suggested. 

8.1 	Summary of the thesis 

This thesis began by describing a class of difficult Combinatorial Optimisation Prob-

lems (COPs) known as Vehicle Routing Problems (VRPs). Such problems have enjoyed 

an intensive period of research over the past two or three decades in an effort to provide 

practically useful solutions. The outcome has been a variety of exact and heuristic solution 

techniques. Exact methods aim to provide optimal solutions, but they are often limited 

to solving problems of small sizes or of particular structures. Heuristic methods, on the 

other hand, seek to provide approximate solutions for large-sized problems under limited 

time constraints, but the quality of the solutions they obtain can sometimes be very poor. 

In the classical definition of the VRP, it is assumed that the associated parameters 

such as cost, customer demands and vehicle travel times, are deterministic. This conjec-

ture is often too simplistic in today's dynamic environment where there exists increasing 

requirements on levels of productivity and service and a corresponding commitment to 

enlarged and more elaborate transportation systems. In parallel with the need to manage 

such a growing number of indeterminate systems there exists an increased amount of data 

augmentation and volatility. Hence, due to insufficient capital, a lack of computing facili- 
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ties and/or fixed labour assignments, deterministic models cannot always be implemented 

and stochastic models need to be considered. 

The Stochastic Vehicle Routing Problem (SVRP) differs from the VRP by the introduc-

tion of some element of variability within the system in question. Unlike its deterministic 

equivalent, the SVRP belongs to a class of a priori optimisation problems for which it 

is impractical to consider an a posteriori approach that computes an optimal solution 

whenever the random variables are realised. Instead, an a priori approach attempts to 

obtain the best solution, over all possible problem scenarios, prior to the realisation of 

any single scenario. Needless to say, the SVRP is particularly complex and few related 

solution methods, reviews or surveys exist in the literature. Indeed, the broad mission of 

this thesis was to fill this gap and to investigate ways to overcome the inherent difficulties 

found in examining stochastic problems of this type. 

Following a necessarily comprehensive review of the VRP, individual SVRP variations 

were classified. These included the Vehicle Routing Problem with Stochastic Demands 

(VRPSD), the Vehicle Routing Problem with Stochastic Customers (VRPSC) and the 

Vehicle Routing Problem with Stochastic Service Times (VRPSST). Using the VRPSD as 

the main illustration, many concepts unique to stochastic vehicle routing, such as route 

failure, route breaks, recourse costs and information disclosure, were introduced in an 

attempt to classify a stochastic routing environment. Seven practical extensions of the 

VRPSD were defined (P1-P7). These extensions were then used throughout the thesis 

as an applicable and relevant group of VRPSD models that could provide the basis to a 

similar study for any other SVRP. To finish the classification and review process, a survey 

of all stochastic routing research was completed. Only one exact SVRP method could be 

found in the literature and, for the VRPSD, complete solutions had been found for up to 

nine customers for a broad class of computationally difficult problems. 

The main objective of the research was to develop a new SVRP solution algorithm. 

For the following reasons, the algorithm was designed to provide exact solutions at the 

expense of computational time (and an alternative heuristic approach). Firstly, SVRP 

is a young problem and few optimal methods, which could enable a learning process 

around the problem and generate a series of original benchmark tests, had previously 

been devised. Secondly, since a priori routing problems involve a fixed routing strategy in 

a problem environment that is usually stochastic over time, solving stochastic problems 
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in real time is rarely necessary. Thirdly, optimisation is increasingly being considered as a 

more practical approach for real problems due to decreased costs of computation. Finally, 

heuristic attempts to solve stochastic problems are often highly sub-optimal due to the 

shape of optimal solutions often being counter intuitive from a geometric standpoint. 

Although the algorithm was originally developed to solve one extension of the VRPSD 

(P4), the process was designed to be as generic as possible to allow for solving alternative 

VRPSD extensions, other SVRPs and an applied case study. 

The VRPSD was formulated using a two-stage stochastic programming approach. The 

primary difficulty involved with such an approach is to adequately represent the second 

stage problem and this was achieved using a new recursive-based formulation that could 

compute the value of the recourse cost function given a fixed first-stage set of routes. 

A new algorithm known as the Paired Tree Search Algorithm (PTSA) was developed to 

obtain optimal solutions to extension P4 for the first time. The primary operation of the 

algorithm, based around a stochastic branch and bound methodology, was to dynamically 

account for stochasticity (INNER tree) and simultaneously maintain the basic structure 

of a normal branch and bound (OUTER tree). Rebranching was introduced as a method 

to limit both computational time and the number of INNER tree nodes. After the first 

development phase, small size VRPSDs were solved without the use of any bounding 

procedures. 

Following the initial construction of the algorithm, three lower bounds were introduced 

for use within the PTSA. Firstly, a 2-perfect matching based lower bound on the first 

stage problem (m-TSP) was implemented on the OUTER tree. This bound, which was 

most useful in reducing computational time, involved the generation of a transformed 

incremental graph before solving an associated 1-perfect matching problem. A new lower 

bound on the second stage recourse problem was also introduced on the OUTER tree. This 

lower bound was then applied successively on the INNER tree to limit computational time 

and the concurrent production of INNER tree nodes. Due to the success of the PTSA in 

providing an adequate solution structure and the ability of the bounds to speed up the 

search process, computationally difficult medium size VRPSDs (n < 20) were solved to 

optimality for the first time. A large number of problems were used to test the quality of 

the bounds and the computational performance of the PTSA including randomly generated 

problems, VRP-based benchmark problems and problems incorporating a large amount of 
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stochasticity. In addition, the PTSA is perfectly capable of providing good approximate 

solutions to large VRPSDs that involve too great a computational effort to be solved 

exactly. 

The remainder of the thesis involved adapting and applying the PTSA for a range 

of problems. We had previously been applying the PTSA to solve a single extension of 

the VRPSD, therefore we began by considering alternative extensions that incorporated 

different levels of demand-related information disclosure and route-related reliability. By 

solving these extensions (P1-P7) a complete picture of one particular SVRP could be 

presented for the first time. Empirical observations compared each extension and showed 

how optimal routing costs varied across the spectrum between maximum and minimum 

serviceability in a stochastic routing environment. 

Following the introduction of a number of other SVRPs, the adaptation of the PTSA 

for the Vehicle Routing Problem With Stochastic Travel Times (VRPST) and the VRPSST 

was described. Only minor changes were required to adapt the algorithm and the origi-

nal computational times observed for the VRPSD remained largely unchanged. Indeed, 

the PTSA was used to solve an operational problem, modelled using the VRPSST, at 

a utility company. Optimal schedules for maintenance engineers working in a stochastic 

environment were produced and, by using the PTSA, large savings of approximately 10% 

in travel time and travel distance were realised. Lastly, we considered the issue of reopti-

misation. Using the PTSA, an empirical study was completed that assessed the usefulness 

of an a priori approach compared to an a posteriori approach (simulated by solving a 

sampled number of deterministic VRPs). It was found that the SVRP approach provided 

an excellent alternative to the reoptimisation strategy. For example, employing a VRPSD 

with dynamic knowledge instead of reoptimisation reduces the quality of the a posteriori 

solution by only 3%. 

The main contributions of the work contained in this thesis can, therefore, be sum-

marised as follows: 

• A new Paired Tree Search Algorithm (PTSA) that can provide optimal solutions to 

solve a range of stochastic vehicle routing problems. 

• New lower bounds, developed in conjunction with the PTSA, that enable larger 

problems to be solved with the use of less computational time. 
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• A framework for studying SVRPs that involved a full review of existing methods and 

the formation and solution of a range of problem extensions. 

• A SVRP application that showed that through the use of a thorough and original 

modelling process, the study of complex stochastic problems can be particularly 

beneficial in an applied context. 

• A comparison between a priori and a posteriori optimisation that showed the perfor-

mance of a stochastic solution against that of a "best-case" reoptimisation strategy. 

8.2 Suggestions for further research 

Suggestions for further research fall into two broad areas. One, based around compu-

tational improvements, concurs with a number of current PTSA-based algorithmic lim-

itations, while the other involves a more general furtherance of study that only limited 

research time prevented us completing ourselves. 

8.2.1 Further Computational Study 

The PTSA was developed over time in parallel with a considerable learning process. Not 

only is the algorithm original in its coding but also in its structure and design and, to 

our knowledge, such a stochastic-handling technique has never before been utilised. As 

a result of such learning-based algorithmic development, a number of computational im-

provements could, in future, be made to the coding of the algorithm that would improve 

both computational efficiency and, most importantly, computational time. Two obvious 

examples of this correspond to the construction and implementation of the INNER tree. 

The current structure is fairly dynamic and it may be more efficient to use a pointer system 

that references INNER tree nodes without the need for an explicit search. Moreover, fol-

lowing the introduction of rebranching on the INNER tree, it may be possible to transfer 

from the OUTER tree to the rebranched INNER tree in a more direct fashion. 

In addition to improvements to the INNER tree, the more orthodox OUTER tree could 

be improved through the enhanced computation of the first stage lower bound Li. Cur-

rently, the matching-based bound is calculated in a particularly time-consuming manner. 

It may be possible to improve this process through alternative computational techniques. 
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8.2.2 Further Research Directions 

There are two main areas of further work which would be beneficial to the research com-

munity. The first concerns the generalisation and theoretical documentation of the work 

contained in this thesis and the second involves more empirical work and the adapta-

tion of the PTSA for alternative SVRPs and, moreover, different stochastic optimisation 

problems. We consider these areas separately below. 

Theoretical Study 

The majority of this thesis has been concerned with the construction of an algorithm and 

a series of empirical investigations to test its applicability and its ability to teach us more 

about stochastic routing environments. Further theoretical work on the behaviour of the 

algorithm could be completed and systematic research could be undertaken in order to 

broaden understanding of the behaviour of such a stochastic solution method in a more 

general environment. We propose that the PTSA could be a new stand alone, general 

stochastic solution method. In this study, the problem used to highlight such the method 

was predominantly the VRPSD, however, through follow-up theoretical work, it is hoped 

that the construct of the algorithm is such that the basic approach could be used to solve 

many other stochastic optimisation problems. 

Empirical Study 

Following on from the work in this thesis, and perhaps using a more theoretical and 

generalised foundation of the PTSA, the amount of empirical studies and applications 

that could be developed using the same methodology are practically endless. Not only 

could all the SVRP variations be solved in a similar manner, many practical applications 

involving stochasticity could be modelled, e.g. finance. 



Appendix A 

The VRPSD Benchmark Test 

Problems 

A.1 Test Data I 

Test Data I is made up of 10 sets of 40 randomly generated vertices, each with a set of 

randomly generated demands. Each vertex is generated in the [1, 99]2  square according to 

a continuous uniform distribution and customers are arbitrarily assigned mean demands 

of jai E {5, 10, 15}. A uniform distribution is utilised and three values of demand are 

randomly generated in the intervals [1, 9], [5, 15] and [10, 20] Where the probability of each 

customer demand value arising is identical, i.e. p/i  = 1/6i = 1/3 V i and 1. Tables A.1 

and A.2 display the (x, y) coordinates and the possible demand values for the vertices in 

each of the ten tests. 

A.2 Test Data II 

Test Data II is made up of 10 sets of 40 randomly generated vertices, each with a set of 

randomly generated demands. Each vertex is generated in the [1, 99]2  square according to 

a continuous uniform distribution and customers are arbitrarily assigned mean demands of 

E {5, 10, 15}. Poisson demands are utilised and 6i  = 11, 16, 19 for each customer group 

since pi was set to be not less than 0.01. The demand sets for different values of pi are 

given in Tables A.3, A.4 and A.5 respectively. Table A.6 displays the (x, y) coordinates 

and the corresponding mean demand value for the vertices in each of the ten tests. 
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Test 1 Test 2 Test 3 Test 4 Test 5 

t x 	y el e? q a. y c! e? q. x 	yelqq x ye! e? q s 	y el e? q 

1 29 54 8 9 12 44 63 5 6 10 81 68 6 7 10 36 60 9 11 15 76 49 9 10 12 
2 36 77 14 15 17 7 30 12 13 15 57 37 11 16 18 90 13 11 12 17 52 61 11 13 15 3 45 91 2 4 8 20 54 1 7 8 88 49 5 6 9 11 17 2 3 9 38 13 2 3 5 
4 37 16 8 11 15 23 58 10 11 14 93 15 6 7 14 11 81 7 10 13 87 69 8 10 13 
5 8 33 11 12 13 95 57 15 17 18 77 10 11 12 18 97 44 15 18 19 51 17 13 18 20 6 45 38 2 3 5 87 34 6 7 8 98 21 3 7 10 49 85 1 2 5 98 24 1 6 9 
7 98 90 5 13 19 96 29 6 10 13 89 64 6 10 13 37 86 6 7 13 85 40 11 13 14 8 83 25 11 12 17 75 74 15 16 18 69 11 14 15 17 74 9 13 14 15 10 39 18 19 20 
9 4 84 1 5 8 7 56 2 8 10 91 3 1 2 6 39 74 2 4 6 27 88 5 8 9 
ID 54 69 6 11 12 75 18 5 7 15 71 61 6 12 15 57 73 8 9 12 25 47 10 12 13 11 26 98 12 14 17 28 93 14 17 18 44 46 15 16 17 28 36 13 17 18 39 2 12 14 17 
12 89 53 4 9 10 61 70 1 2 8 11 37 1 5 10 88 28 1 2 4 98 81 1 5 7 13 98 12 7 10 11 61 4 5 6 13 26 74 6 12 14 5 47 5 9 10 65 95 5 11 14 
19 11 78 12 14 20 77 32 15 16 17 55 72 13 17 19 83 15 16 18 20 59 37 17 18 20 
15 63 98 1 2 5 15 42 5 7 9 7 39 2 4 5 73 5 1 3 7 47 71 1 2 4 16 20 72 6 8 11 22 20 8 11 13 28 27 5 11 15 17 92 6 10 12 44 45 5 12 15 
17 83 45 16 17 19 95 85 16 17 20 15 54 12 14 17 87 59 15 16 20 2 74 14 15 18 
18 47 90 2 5 9 48 12 4 8 9 33 99 2 3 8 22 34 4 5 9 49 51 5 7 8 
19 84 4 5 8 11 91 42 5 10 15 59 37 11 13 15 46 38 6 7 11 95 7 10 14 15 
20 65 8 12 14 15 28 48 11 16 19 79 93 12 16 17 31 86 14 16 17 22 71 12 19 20 
21 60 64 2 4 5 65 16 3 4 5 9 37 2 7 10 29 39 1 4 6 92 51 3 6 9 22 69 70 9 10 11 45 8 5 10 14 12 26 5 6 7 68 1 7 8 10 78 88 5 9 15 
23 62 13 15 16 18 50 33 13 16 20 89 90 13 15 18 55 36 11 13 15 49 79 13 18 20 24 81 23 4 7 9 93 15 1 4 5 34 68 1 8 9 58 27 6 7 8 93 47 2 6 9 
25 79 41 6 7 14 79 20 8 10 13 18 19 5 6 9 89 35 7 8 11 83 41 7 10 13 
26 1 76 12 17 20 74 53 13 16 19 99 1 11 13 16 29 30 11 13 16 65 39 14 15 18 27 17 62 13 9 72 43 3 5 9 79 90 4 6 9 20 93 1 4 5 10 74 1 9 10 
28 68 78 9 14 15 69 38 5 6 10 3 67 5 9 13 9 40 7 9 11 11 83 5 12 15 29 53 18 11 17 20 43 65 11 13 20 80 35 13 15 16 37 12 17 19 20 34 22 11 12 16 30 45 28 4 6 7 67 45 7 8 9 91 34 3 5 8 78 89 6 8 9 23 45 5 7 8 
31 9 48 5 7 11 29 54 8 9 12 44 63 5 6 10 81 68 6 7 10 36 60 9 11 15 32 75 70 13 16 17 36 77 14 15 17 7 30 12 13 15 57 37 11 16 18 90 13 11 12 17 
33 9 67 2 8 9 45 91 2 4 8 20 54 1 7 8 88 49 5 6 9 11 17 2 3 9 
34 41 11 7 10 14 37 16 8 11 15 23 58 10 .11 14 93 15 6 7 14 11 81 7 10 13 35 9 63 11 18 20 8 33 11 12 13 95 57 15 17 18 77 10 11 12 18 97 44 15 18 19 
36 26 74 5 6 8 45 38 2 3 5 87 34 6 7 8 98 21 3 7 10 49 85 1 2 5 
37 50 58 7 8 9 98 90 5 13 14 96 24 6 10 13 89 64 6 10 13 37 86 6 7 13 
38 9 52 11 15 16 83 25 11 12 17 75 74 15 16 18 69 11 14 15 17 74 9 13 14 15 39 70 79 6 8 9 4 84 1 5 8 7 56 2 8 10 91 3 1 2 6 39 74 2 4 6 
40 15 43 11 12 13 54 69 6 11 12 75 18 5 7 15 71 61 6 12 15 57 73 8 9 12 

Table A.1: Test Data I: Tests 1-5 
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Test 6 Test 7 Test 8 Test 9 Test 10 

t x y el e? q x y el ei q x y el q 4 x y el .2 , x y et e? 
e. 

1 19 66 8  12 19 89 48 5 8 15 2 83 8 11 13 98 28 6 8 9 9 48 5 7 11 2 85 19 13 15 20 94 85 13 18 20 21 61 11 12 18 26 75 11 15 16 75 70 13 16 17 3 13 89 2 5 6 92 86 2 6 9 27 25 1 4 8 82 30 2 3 4 9 67 2 8 9 4 87 77 9 10 15 32 50 9 11 13 93 60 5 7 9 35 12 11 13 14 41 11 7 10 14 5 79 85 12 14 16 99 58 19 15 16 1 2 12 18 19 50 46 11 15 18 9 63 11 18 20 6 86 74 7 9 10 33 87 3 9 10 81 20 1 3 9 9 13 3 6 7 26 74 5 6 8 7 97 80 6 12 19 69 3 6 8 13 50 83 7 11 13 61 43 8 9 15 50 58 7 8 9 8 50 43 15 18 19 83 40 11 15 16 16 83 12 13 18 28 98 16 17 20 9 52 11 15 16 9 49 48 2 7 8 19 34 2 7 8 24 39 2 4 6 45 58 2 5 7 70 79 6 8 9 10 87 91 8 12 13 46 9 6 8 14 75 28 10 11 14 93 48 9 12 13 15 43 11 12 13 11 42 92 13 15 16 2 15 14 19 20 87 72 13 14 16 32 97 11 16 20 19 94 11 19 20 12 30 59 5 8 9 73 92 2 9 10 71 40 2 3 10 85 30 5 6 7 9 43 6 7 8 13 12 32 7 9 12 4 90 7 9 11 30 99 10 11 13 57 13 7 10 12 57 39 6 7 14 19 75 33 18 19 20 4 37 11 16 20 83 7 15 16 19 91 72 13 19 20 27 42 13 14 16 15 87 80 1 4 8 16 76 2 8 10 41 58 3 6 7 23 13 5 8 10 72 42 3 4 8 16 21 70 6 12 13 32 67 7 10 12 39 25 9 19 15 48 7 6 8 10 52 63 5 13 15 17 89 23 11 17 19 67 79 12 15 16 21 56 11 17 20 60 91 13 14 18 56 26 14 16 19 18 37 16 1 4 8 17 22 3 4 10 25 36 3 6 10 22 3 1 2 6 97 13 2 4 8 19 73 29 7 10 15 80 60 8 12 15 74 87 5 7 13 24 80 12 14 15 42 20 9 .13 15 20 82 44 11 12 17 39 69 12 17 19 91 54 13 17 19 30 16 12 17 18 42 89 12 16 19 21 49 65 3 9 10 36 90 1 4 6 29 57 1 3 7 67 5 4 5 6 52 90 3 4 7 22 61 79 10 13 15 76 15 6 12 15 30 19 5 10 13 87 94 5 9 11 11 63 7 9 12 23 91 68 11 13 18 83 63 11 13 14 17 69 13 19 17 44 28 13 15 17 16 78 12 14 19 24 32 80 3 7 8 56 70 5 6 9 14 52 6 9 10 10 99 2 8 10 7 91 3 4 8 25 16 41 6 9 13 17 91 10 12 15 66 26 9 13 15 88 32 8 10 13 23 60 5 12 14 26 17 11 12 17 18 36 61 13 15 19 81 51 11 16 20 39 9 13 14 15 79 70 11 13 18 27 14 5 6 8 9 5 25 4 5 6 94 22 7 9 10 23 16 1 2 3 39 28 1 3 5 28 40 76 10 12 15 38 73 5 8 13 76 55 11 13 15 99 18 6 9 12 82 90 8 10 12 29 94 8 12 14 19 20 96 15 16 17 63 73 11 15 18 21 12 11 17 19 94 72 11 16 17 30 45 45 1 4 6 39 28 4 7 8 92 34 2 4 9 50 32 3 6 9 74 38 1 2 6 31 76 49 9 10 12 19 66 8 12 14 89 48 5 8 15 2 83 8 11 13 98 28 6 8 9 32 52 61 11 13 15 85 19 13 15 20 94 85 13 18 20 21 61 11 12 18 26 75 11 15 16 33 38 13 2 3 5 13 89 2 5 6 92 86 2 6 9 27 25 1 4 8 82 30 2 3 4 34 87 69 8 10 13 87 77 9 10 15 32 50 9 11 13 93 60 5 7 9 35 12 11 13 14 35 51 17 13 18 20 79 85 12 14 16 99 58 14 15 16 1 2 12 18 19 50 46 11 15 18 36 98 24 1 6 9 86 74 7 9 10 33 87 3 9 10 81 20 1 3 9 9 13 3 6 7 37 85 40 11 13 14 97 80 6 12 14 69 3 6 8 13 50 83 7 11 13 61 43 8 9 15 38 10 39 18 19 20 50 43 15 18 19 83 40 11 15 16 16 83 12 13 18 28 98 16 17 20 39 27 86 5 8 9 49 48 2 7 8 19 34 2 7 8 24 39 2 4 6 45 58 2 5 7 90 25 97 10 12 13 87 91 8 12 13 46 9 6 8 19 75 28 10 11 14 93 48 9 12 13 

Table A.2: Test Data I: Tests 6-10 
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k= 1 2 3 9 5 6 7 8 9 10 11 

1:5 1 2 3 9 5 6 7 8 9 10 11 

pi: 0.040928 0.084224 0.140379 0.175967 0.175967 0.196223 0.109995 0.065278 0.036266 0.018133 0.013695 

Table A.3: Poisson Demand Characteristics: pi = 5 

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

el: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

p' 0.010336 0.018917 0.037833 0.063055 0.090079 0.112599 0.12511 0.12511 0.113736 0.09978 0.072908 0.052077 0.034718 0.021699 0.012764 0.014278 

Table A.4: Poisson Demand Characteristics: yi = 10 

k 1 2 3 9 5 6 7 8 9 10 11 12 13 14 15 16 

c i: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

pi: 0.007632 0.01037 0.019444 0.032407 0.048611 0.066287 0.082859 0.095607 0.102436 0.102936 0.096034 0.089736 0.070613 0.055797 0.04181 0.029865 

k 17 18 19 

d: 22 23 29 

p): 0.020362 0.01328 0.019465 

Table A.5: Poisson Demand Characteristics: aui = 15 
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Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 

1  Ni x 9.x 9 x 9 x 5.x 9x 9 T 9x 5 x 9 x 9 

1 5 24 78 99 74 45 1 42 65 23 18 89 15 42 79 84 27 83 35 17 9 2 10 96 30 86 49 4 42 69 92 4 81 92 23 48 79 48 65 12 27 24 5 3 15 45 77 66 66 3 59 69 23 14 10 25 95 77 17 99 86 95 78 83 69 
4 5 92 8 9 16 57 99 50 9 27 29 35 32 87 37 25 97 79 70 51 20 5 10 36 7 26 63 74 70 55 30 1 42 50 83 81 62 4 24 49 2 94 37 6 15 82 59 97 42 28 63 36 13 62 13 87 62 93 63 42 24 96 47 42 41 7 5 41 52 90 9 71 84 19 42 89 95 5 46 7 13 91 21 20 75 26 75 8 10 90 89 64 97 ' 8 31 51 41 35 41 71 47 68 17 13 73 77 60 60 93 9 15 23 26 77 22 91 '93 16 11 98 52 29 87 47 49 18 87 44 7 70 94 10 5 58 22 1 53 57 21 34 12 28 79 95 86 54 44 25 57 68 7 76 37 11 10 34 2 11 26 19 19 11 46 97 60 38 96 62 46 15 78 36 43 30 46 12 15 30 84 51 15 37 55 56 7 60 60 94 15 47 7 88 94 70 31 57 52 13 5 90 28 99 12 52 96 93 79 66 77 99 43 42 69 85 25 76 61 6 16 14 10 5 65 59 90 38 40 65 13 76 4 61 32 14 33 10 22 38 87 89 40 15 15 34 59 80 38 20 7 54 92 33 71 78 47 18 81 50 83 1 79 62 2 16 5 20 49 22 58 90 96 44 52 62 37 17 23 2 43 98 31 71 99 93 64 17 10 63 17 56 75 27 69 65 31 44 11 27 58 47 93 18 70 56 92 81 70 18 15 85 16 51 27 36 56 49 51 40 83 5 26 97 50 51 49 35 63 73 66 19 5 92 61 40 58 22 86 23 58 6 54 94 46 30 22 46 64 76 2 31 9 20 10 86 47 34 69 10 83 36 35 87 95 11 58 50 7 47 66 78 53 53 81 21 15 84 74 55 71 64 90 97 80 72 9 6 39 52 65 93 9 57 5 59 60 22 5 57 53 54 96 85 92 56 44 41 88 52 74 22 2 56 68 95 74 17 50 23 10 89 30 60 89 84 45 15 97 11 99 54 13 69 15 28 97 14 90 41 74 24 15 49 58 7 80 72 83 37 39 23 21 12 99 32 17 36 65 33 8 68 82 25 5 15 52 3 16 83 28 10 23 20 58 98 21 22 98 84 7 43 34 91 72 26 10 96 32 93 13 89 14 83 43 44 16 29 65 86 42 85 65 33 15 99 65 27 15 42 3 56 76 69 33 33 41 36 31 11 60 39 99 28 69 18 39 54 94 28 5 65 70 77 79 67 84 28 14 74 77 48 17 77 53 12 29 44 12 84 10 29 10 96 77 57 74 21 49 41 74 93 35 52 52 67 48 30 89 12 3 19 97 30 15 19 28 75 82 17 13 39 91 83 61 61 13 47 1 90 96 7 43 59 52 31 5 72 64 62 30 22 77 94 57 8 86 83 46 20 18 94 49 20 23 25 34 32 10 21 72 90 23 62 47 64 26 45 21 17 47 71 53 77 69 4 95 49 26 33 15 63 95 38 89 79 2 78 89 57 57 84 21 46 84 83 51 40 2 71 9 34 5 71 65 76 75 52 26 44 17 7 26 79 6 16 79 23 58 9 86 74 80 35 10 8 36 17 48 85 47 99 34 16 66 82 94 20 2 45 62 46 73 81 83 36 15 70 16 13 6 60 4 17 84 89 80 77 78 3 38 91 12 92 71 85 14 37 	. 5 95 93 51 29 19 33 8 29 71 66 88 64 31 65 5 22 83 61 98 82 38 10 25 4 65 17 77 28 14 92 8 74 98 74 52 73 12 34 95 92 69 45 39 15 26 58 92 70 41 42 82 69 38 52 85 52 4 80 43 83 99 3 92 58 40 5  53 10 74 28 89 60 88 11 41 52 65 25 42 57 4 64 28 93 _ 68 61 

Table A.6: Test Data II 
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Appendix B 

The VRP-Based Test Problems 

The following tests are made up of 2 sets of 40 vertices that are subsets (customers 1-40) of 

the two well known 50 and 75 customer VRP test problems given by Eilon et al [78]. The 

demands are identical to those in Test 6 of Test Data I for each specific vertex. Table B.1 

displays the (x, y) coordinates for each vertex in the two tests. 

50 Customer VRP 75 Customer VRP 
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40 40 
2 37 22 22 
3 49 36 26 
4 52 21 45 
5 20 45 35 
6 40 55 20 
7 21 33 34 
8 17 50 50 
9 31 55 45 

10 52 26 59 
11 51 40 66 
12 42 55 65 
13 31 35 51 
14 5 62 35 
15 12 62 57 
16 36 62 24 
17 52 21 36 
18 27 33 44 
19 17 9 56 
20 13 62 48 
21 57 66 14 
22 62 44 13 
23 42 26 13 
24 16 11 28 
25 8 7 43 
26 7 17 64 
27 27 41 48 
28 30 55 34 
29 43 35 16 
30 58 52 26 
31 58 43 26 
32 37 31 76 
33 38 22 53 
34 46 26 29 
35 61 50 40 
36 62 55 50 
37 63 54 10 
38 32 60 15 
39 45 21 36 
40 59 21 36 

Table B.1: VRP-Based Tests: Vertex Sets 
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Appendix C 

Results of the VRPSD Benchmark 

Test Problems 

A range of test results, including optimal routes, computational times and optimal solu-

tion values from Test Data I and Test Data II are presented in Tables C.1 to C.4. The 

information provides a series of original benchmark tests for future reference. 

Test Q Solution RF'z' cpu (mins.) Optimal Routes 
1 144 439.2 48.1 11.8 1-5-4-6-8-13-12-7-15-3-11-9-14-16-2-10-1 
2 154 346.1 46.0 1.6 1-11-4-3-9-15-2-16-13-10-14-6-7-5-8-12-1 
3 150 305.3 46.8 4.9 1-10-14-13-15-12-16-11-2-8-5-9-4-6-3-7-1 
4 144 364.3 47.0 36.5 1-10-5-12-2-14-8-15-11-3-13-4-16-7-6-9-1 
5 160 387.8 45.0 5.5 1-4-12-13-9-15-2-16-10-8-3-11-5-14-6-7-1 
6 165 336.7 48.0 36.4 1-3-11-5-10-7-15-4-6-2-14-8-9-13-12-16-1 
7 160 382.3 46.2 1.0 1-8-7  10 11 14  9-4 - 16-15-13-6-12-3-2-5-1 
8 150 408.1 44.5 21.5 1-2-15-9-5-3-16-14-6-10-12-4-11-7-13-8-1 
9 158 320.0 48.0 50.4 1-10-7-5-9-14-11-8-2-6-15-4-16-13-3-12-1 

10 156 272.8 48.4 0.4 1-8-5-3-11-6-7-16-9-2-15-13-4-14-10-12-1 

Table C.1: Test Data I (Tests T2) Results: n = 15, m = 1, U = 1.0 
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Test Q Solution RFz•  cpu (mins.) Optimal Routes 
1 72 505.1 92.1 664.8 1-10-15-7-12-13  8 6 4 5 1 2 3 11-9-14-16-1 
2 77 430.6 61.4 193.9 1-13-10-14-6-7-5-8-12-1-11-9-2-16-15-3-4-1 
3 75 385.9 86.1 225.8 1-2-8-5-9-4-6-3-7-1-14-13-15-12-16-11-10-1 
4 72 465.6 73.0 2658.8 1-15-8-14-2-12-5-10-1-11-3-13-4-16-7-6-9-1 

• 5 80 448.2 45.7 182.1 1-4-12-13-9-15-2-14-1-16-10-8-3-11-5-6-7-1 
6 83 436.1 95.1 3278.1 1-6-4-15-7-10-5-11-3-16-1-13-2-14-8-9-12-1 
7 80 529.4 98.5 1678.5 1-4-9-14-11-10-7-8-1-16-15-13-6-12-3-2-5-1 
8 75 544.2 78.7 2006.0 1-12-10-6-14-4-11-7-13-8-1-15-16-3-5-9-2-1 
9 79 443.0 67.0 2886.5 1-13-16-4-15-6-5-7-12-1-10-11-8-2-14-9-3-1 

10 78 326.5 97.7 77.1 1-7-16-9-2-15-13-4-14-10-12-1-8-5-3-11-6-1 

Table C.2: Test Data I (Tests T2) Results: n = 15, m = 2, U = 1.0 

Test Q Solution RFz•  cpu (mins.) Optimal Routes 
1 150 375.7 47.4 4.9 1-14-16-15-7-9-11-5-10-4-13-2-6-8-3-12-1 
2 150 400.9 47.4 52.1 1-8-14-3-5-16-10-11-4-12-9-7-13-15-2-6-1 
3 150 358.3 47.4 18.8 1-15-11-8-2-3-6-13-4-16-9-7-5-12-14-10-1 
4 150 318.8 47.4 37.5 1-15-2-13-8-5-3-14-12-4-6-10-9-11-7-16-1 
5 150 401.1 47.4 4.6 1-3-5-2-10-15-12-13-7-11-9-14-6-16-8-4-1 
6 150 355.0 47.4 15.7 1-15-8-14-4-16-7-9-3-11-5-10-6-13-2-12-1 
7 150 325.4 47.4 1.7 1-15-16-14-7-12-8-3-4-6-5-11-10-9-13-2-1 
8 150 356.4 47.4 1.8 1-6-14-5-10-8-11-9-4-15-2-12-3-16-7-13-1 
9 150 378.4 47.4 2.9 1-6-8-13-4-3-16-14-7-15-11-2-9-5-10-12-1 

10 150 366.4 47.4 7.2 1-2-15-4-6-12-10-14-5-16-3-9-8-7-11-13-1 

Table C.3: Test Data II (Tests T3) Results: n = 15, m = 1, U = 1.0 

Test Q Solution RP' .  cpu (mins.) Optimal Routes 
1 75 478.7 85.0 2389.6 1-10-4-13-2-6-8-3-12-1-14-16-9-11-5-7-15-1 
2 75 525.7 85.0 2558.2 1-12-4-11-10-16-5-3-14-8-1-6-13-7-9-15-2-1 
3 75 522.7 94.1 2866.7 1-13-4-16-9-7-5-10-1-14-12-6-3-2-8-11-15-1 
4 75 413.4 68.8 2411.1 1-11-7-9-10-6-5-8-16-1-4-12-14-3-13-2-15-1 
5 75 498.2 68.8 798.6 1-6-14-9-11-7-13-8-4-1  16 12 15 10  2-5-3-1 
6 75 495.9 100.0 2866.7 1-5-11-3-9-7-16-4-14-8-15-6-10-13-1-2-12-1 
7 75 431.2 68.8 1312.7 1-10-11-8-3-4-6-5-2-1-15-16-14-7-12-9-13-1 
8 75 485.1 68.8 2088.0 1-4-9-11-8-10-5-14-6-1-2-15-12-3-16-7-13-1 
9 75 473.1 68.8 709.4 1-11-14-7-15-2-9-5-10-12-1-8-13-4-16-3-6-1 

10 75 498.6 100.0 2866.7 1-11-7-8-9-3-16-12-6-4-10-14-5-15-2-1-13-1 

Table C.4: Test Data II (Tests T3) Results: n = 15, m = 2, U = 1.0 
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