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ABSTRACT 

This thesis presents a model to price convertible bonds. It is the first model to my 

knowledge that combines a stock price tree calibrated to the implied volatility surface 

with an interest rate model of the users choice and a probability of default as a proxy 

for credit risk. 

The aim was to develop a pricing model which enables security pricing for hybrid 

derivatives with equity, interest and default risk, using observable market inputs from 

the equity and bond markets. 

The model gives the user the flexibility to choose any interest rate model they desire. 

Normally convertible bond models implemented on a finite difference grid or a 2 

factor 3-D tree are restricted to Markovian interest rate models which can be 

implemented via a recombining lattice. The latest advances in interest rate modelling in 

the form of multi-factor HJM and Libor Market Models, that are now becoming 

increasing popular by practitioners, however tend to be non Markovian. The 

implementation of these models is restricted to inefficient non-recombining 

lattices/trees or Monte Carlo simulations. 
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By designing the model so the stochastic interest rate factor is integrated through a 

Monte-Carlo simulation the convertible bond pricing model is open to the entire 

spectrum of Markovian and non Markovian interest rate models. This feature now 

allows convertible bond practitioners to compare how the convertible bond pricing 

model differs under different interest rate models. This is important as usually no 

single model can satisfactorily price and risk manage all exotic trades, hence traders like 

to keep a selection of different models available. Risk managers also benefit by having 

a spread of model evaluations to keep a check on model error. 

Credit risk has been integrated using the CreditGrades models to ascertain the 

probability of default. This completely removes the ambiguity of trying to determine 

which discount rates to use on different portions of the bond. The use of a static 

credit premium above the risk free rate to capture credit risk is replaced by a dynamic 

probability of default. All discounting in this scenario is done via the risk free rate. 

Results prove promising with the model delivering accurate prices with fast 

computation times. 
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Chapter1 

INTRODUCTION 

Convertible bonds have existed for over a century as an investment instrument. The 

very first convertible was issued around 150 years ago in the USA in order to finance a 

railroad company. The number of issues of convertible bonds has been rising 

noticeably over for the last couple of decades, especially accelerating in recent times. 

The figure below highlights the pace of growth in the yearly issuance of European and 

global convertible bonds since 1990. 

European and total market new convertible issuance (in millions of EUR), 1990 to September 10, 20021. 



Convertible bonds are a combination of equities and bonds and possess various highly 

attractive characteristics. A fundamental feature of convertibles is that they offer high, 

equity-like upside potential while strongly limiting downside risk. A more detailed 

introduction to convertible bonds is discussed in chapter 2. 

Although this investment instrument offers numerous advantages, even professional 

portfolio managers seldom make use of convertible bonds on a regular basis. Perhaps 

this is largely due to the relatively low level of recognition convertible bonds receive 

and the complications in valuing them. 

These complications arise due to the hybrid nature of convertible bonds, which expose 

them to many sources of uncertainty. These multiple sources of risk in relation to 

convertible bonds have received considerable attention from academia and convertible 

bond market practitioners as they attempt to combine them into a viable model to 

price convertible bonds. Chapter 2 reviews the literature to date from academia and the 

private sector, which attempts to value convertible bonds using a variety of approaches 

and techniques. 

Despite the extensive research into convertible bonds there still doesn't seem to be a 

comprehensive and coherent model for pricing convertible bonds, which is largely 

accepted by the market. This is evident by the growth over the last 5 years in 

convertible bond arbitrage, where traders attempt to exploit discrepancies in the prices 

I Source: Bloomberg, Goldman Sachs. 
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of traded convertible bonds to generate profit. Hedge funds and proprietary trading 

arms of the investment banks have been particularly active in stripping under/over 

valued convertible bonds and trading the subsequent components of the convertible 

bond in their respective markets for the correct valuations. 

This thesis attempts to develop existing methodologies and contribute additional ideas 

to the current convertible bond pricing literature. I ultimately aim to develop a model 

to price convertible bonds that incorporates the three most important sources of risk 

that any convertible bond would have to incorporate accurately to successfully price 

convertible bonds. These sources of risk are equity, interest and credit risk2. 

A vital characteristic of any model is that it yields meaningful and consistent prices. 

The single most important feature of my pricing model is that it delivers arbitrage free 

prices for convertible bonds. The model I develop therefore with a combined equity, 

interest and credit process to price convertible bonds must be consistent with observed 

market parameters and vanilla products in all the underlying markets. 

This can only be achieved if we can firstly be assured the individual processes are 

correctly modelled before we attempt to combine them. Chapters 3, 4 and 5 therefore 

take each risk (equity, interest and credit) independently and attempt to model the 

single processes to be consistent and calibrated with observed market characteristics 

and data. Once we have no arbitrage functions for the three sources of risk, chapter 6 
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combines the elements of the 3 previous chapters to create the convertible bond 

model. Chapter 7 then goes on to test the model using current actively traded 

convertible bonds. Chapter 8 finally condudes the thesis and gives thoughts on further 

research. 

2  Some convertible bonds are denominated in a foreign currency, which subsequently creates another source of 
uncertainty in the form of FX risk. I however will be focusing my attention to convertible bonds denominated in 
the domestic currency. 
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Chapter 2 

INTRODUCTION TO CONVERTIBLE BONDS 

2.1 A basic description of convertible bonds 

Convertible Bonds (CBs) are fixed income instruments that can be converted into a 

fixed number of shares of the issuer at the option of the investor. Bonds that are 

convertible into shares other than the issuer's are called exchangeable bonds. 

Convertibles are fascinating hybrid securities. On the one hand, they have the benefits 

of debt instruments that pay fixed coupons and will be redeemed at maturity at a pre-

specified price. On the other hand, the embedded conversion option provides the 

investor with a participation in the upside potential of the underlying equity. 

The conversion right provides the bondholder with a better-of-two-choices option. At 

maturity, the convertible bonds are worth the higher of; 

(a) The redemption value (the price at which the issuer had agreed to buy the 

bonds back) or; 

(b) The market value of the underlying shares. 
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In other words, a convertible bond is a straight bond with an embedded equity call 

option. Due to this call option, the convertible will participate in any increase of the 

underlying equity, while the fixed income portion provides capital protection, should 

the share price fall. The pay off profile is illustrated below 
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The x-axis displays the underlying share price while the y-axis represents the price of 

the convertible bond. The blue diagonal line expresses the intrinsic value called parity. 

Parity represents the value that the investor would receive upon conversion of the 

bond. Parity is a lower boundary for the price of the convertible. 

The value of the bond on the maturity date is represented by the black bold line. The 

value at maturity is simply the higher of the bonds redemption value and the market 

value of the shares if the bond was converted. The bold line kinks at the critical point 

where conversion into shares is more profitable than redeeming the bond at par value, 
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in our diagram this occurs when the share price is 100. So at maturity there is an 

obvious choice to make for the bondholder. 

During its lifetime, there are generally deviations from these intrinsic values. Since the 

bond and underlying equity are traded daily on the stock exchange, it is exposed to 

certain influences (e.g. time value and volatility). The thin red line shows the theoretical 

value of the convertible prior to maturity. For example, at a share price of 180, the 

value of the bond is no longer at the price it would be at maturity (120) but at a higher 

level of approximately 130. 

The red line outlines the convertible's fair value. If the share price increases, the fair 

value of the convertible bond rises as well. As the share price increases, the relationship 

between the share price and the convertible bond becomes more direct until the bond 

price behaviour and risk profile resemble characteristics of the underlying equity. 

If the share price falls, the bond's sensitivity to its underlying share price will decrease 

and the bond will not decline to the same extent as the equity. The level, which will 

prevent the convertible from falling further down, is shown in the graph above as the 

bond floor (dashed line), which is also a lower boundary for the price of the 

convertible. This bond floor will cease to exist at very low share prices as the risk of 

the company going bankrupt and failing to honour their debt obligations is 

considerably higher. The bond price will then approach zero as the stock price falls 

further. 
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The partitions in the convertible price in the diagram above are explained below 

1) Grey shaded area : Junk or busted convertibles 

Similarly to straight debt, a convertible contains the risk of the issuer not being able to 

repay the principal at maturity. This credit risk is expressed in the graph as the steep fall 

of the bond floor as well as the bond price on the left-hand side as the share price 

reaches zero (indicating poor performance and possibly bankruptcy). 

2) Purple shaded area : Out-of-the-money 

Convertible bonds where the underlying share price trades significantly below the 

conversion price have low equity sensitivity and behave like fixed income securities. 

The main factors effecting the value of the convertible bond in this scenario are the 

interest rate level and the issuer's credit spread. 

3) Blue shaded area : At-the-money 

Convertible bonds where the underlying share price trades close to the conversion 

price are considered balanced convertibles because of their asymmetric payoff profile. 

They have a medium sensitivity to changes in the underlying equity. 
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These bonds are affected by the share price performance and volatility movements as 

well as changes in interest rates and the issuer's credit profile. The majority of new 

issues are launched as balanced convertibles. 

4) Green shaded area : In-the-money 

Convertible bonds where the underlying share price trades significantly above the 

conversion price are highly sensitive to changes in the equity, whereas their sensitivity 

to changes in interest rates and/or credit spreads is low. These bonds trade at an 

insignificant premium or even a small discount to parity. Deep-in-the-money 

convertibles will almost certainly be converted into the underlying shares at maturity 

and will be subject to the same value drivers as the underlying equity. 
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2.2 Standard features of convertible bonds 

Convertible bonds can include an array of complicated embedded options, which 

provide insurances for both the issuer and holder of convertible bonds. 

Convertible bonds are usually callable, this feature gives the issuer the option to call 

back the instrument prior to maturity at a price specified in the prospectus. As this 

feature could possibly limit the holder profits, it inclusion into an issuance will cause 

the price of a convertible bond to trade at a lower price than a non- callable convertible 

bond. 

The holder of a convertible bond however usually has a period of time where the 

issuer is not permitted to call the bond back from them. This period is usually at the 

start of the issuance and is referred to as the call protection period. There are two main 

types of protection, which may be used exclusively or together; 

• Hard Call Protection: The issuer cannot call back the convertible for the time stated 

in the prospectus under any circumstances. 

• Soft Call Protection: This protection implies that the bond cannot be called unless 

the stock trades above a pre-defined level for a certain period of time. 

The call protection period is an attractive feature for the holder of the CB and 

consequently a issue offering call protection will trade higher than a issue offering no 
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call protection. Similarly as the hard call protection is more desirable to a buyer than 

the soft call protection, CBs with hard call protection will trade at a higher price than 

identical CBs with soft call protection. 

Convertible bonds can also be puttable, this feature gives the holder the option to sell 

back the instrument prior to maturity at prices and dates specified ex ante. As this 

feature could possibly limit the holders losses, it inclusion into an issuance will cause 

the price of a convertible bond to trade at a higher price than a non- puttable 

convertible bond. The embedded puts tend to be European, so the holder can only 

exercise on maturity. The number of puts embedded into a CB differs in every issue, 

with the greater the number the more attractive for the buyer and consequently causing 

the price of the CB to be more expensive. 
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2.3 Sources of risk inherent in convertible bonds 

As already stated, a convertible bond is a hybrid security that exhibits characteristics of 

both fixed income and equity securities. As a consequence of this, holders of CB's are 

subject to many sources of risk. A CB is exposed to the same or even more risks than 

its constituents. 

The main risks convertible bond holders face are: 

• Equity market risk: 

At high share prices the CB price approaches the parity line and it behaves like pure-

equity and thus shares the benefits of a rising market. At low share prices the CB value 

falls to a lower rate and flattens out to a constant level and at maturity it is likely the 

redemption would be invoked rather than conversion. The relationship between equity 

volatility and CB's is that a share with a higher volatility has a higher chance of ending 

up with a value significantly greater than the conversion price and thus has the 

potential to be worth more. 

Equity risk can be hedged by shorting the underlying stock against the long 

convertible position. Such hedging produces a very small beta risk and thus a market 

neutral position. 
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• Interest rate risk: 

As for every bond, the fixed income component of a CB moves inversely to interest 

rate changes and its sensitivity to these changes depends on how closely the CB is 

trading in relation to its bond floor. Conversely the embedded option values move in 

line with interest rate changes. A short position is the underlying stock to neutralize 

equity risk also serves as convenient hedge here as stock prices and interest rates are 

inversely related- however this may not cover the entire exposure and commonly, 

interest rate risk is hedged with treasury futures or interest rate swaps. 

• Credit risk: 

The exposure comes from the long convertible bond position. Like a conventional 

bond the holder is subject to the issuer defaulting on coupon payments and the final 

redemption value at maturity. Whilst the market compensates the holder for this risk 

by offering it a yield premium over the risk less rate, a holder must balance off this 

added premium against the probability of default. A short position in the underlying 

stock to neutralize equity risk also serves as convenient hedge here as stock prices and 

credit risk are inversely related- however this may not cover the entire exposure and 

typically credit risk is hedged with credit default swaps (CDS) or by shorting a plain 

bond or another not identical CB from the same issuer. 
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• liquidity risk: 

A CB investor is subject to liquidity risk if the long position is not as liquid as expected. 

Liquidity risk can also occur due to the size of an issue or because of the low credit 

quality of the issuer. There is no hedging possibility for such risk. 

• Currency risk: 

Some CB issuances are denominated in a foreign currency. This introduces an element 

of currency uncertainty for the investor. To hedge the currency risk the investor 

usually utilises currency options or forward contracts. 
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2.4 Literature review on the pricing of convertible bonds 

The academic literature on the valuation of convertible bonds started with one school 

of thought before we experienced a structural change in the thinking of academics and 

practitioners. 

In its infancy, convertible bond research was based on the "structural" approach for 

valuing risky non-convertible debt (e.g. Merton, 1974; Black and Cox, 1976; Longstaff 

and Schwartz, 1995). In this approach, the basic underlying state variable is the value of 

the issuing firm. The firm's debt and equity are claims contingent on the firm's value, 

and options on its debt and equity are compound options on this variable. In general 

terms, default occurs when the firm's value becomes sufficiently low that it is unable to 

meet its financial obligations. 

While in principle this is an attractive framework, it is subject to the same criticisms 

that have been applied to the valuation of risky debt by Jarrow and Turnbull (1995). In 

particular, because the value of the firm is not a traded asset, parameter estimation is 

difficult. Also, any other liabilities which are more senior than the convertible must be 

simultaneously valued. 

Due to these shortfalls we then saw researchers adopting a new approach where they 

propose models of convertible bonds where the basic underlying factor is the issuing 

firm's stock price (augmented in some cases with additional random variables such as 
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an interest rate). As this is a traded asset, parameter estimation is simplified (compared 

to the structural approach). Moreover, there is no need to estimate the values of all 

other more senior claims. 

In the following section I provide a review of the academic literature in chronological 

order, beginning with the papers which used the underlying firms value as its state 

variable and then progressing to the more recent literature which is based on the firms 

stock price. 
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2.5 Firm value models 

The valuation of convertible bonds based on the modern Black-Scholes-Merton 

contingent claim pricing literature starts with Ingersoll [1977] and Brennan and 

Schwartz [1977]. 

In his paper Ingersoll develops arbitrage arguments to derive several results concerning 

the optimal conversion strategy (for the holder) and call strategy (for the issuer) as well 

as analytical solutions for convertible bonds in a variety of special cases. For example, 

an important result is that he decomposes the value of non-callable convertible bond 

CB into a discount bond (with the same principal as the convertible bond) and a 

warrant with an exercise price equal to the face value of the bond. His assumption of 

no dividends on the equity leads to the result that it is never optimal to convert prior to 

maturity. 

Ingersoll then generalises his result to price convertible bonds with calls. In this case 

the convertible bond is decomposed into a discount bond, a warrant and an additional 

term representing the cost of the call which reduces the value of the callable 

convertible bond relative to the non-callable convertible bond. Ingersoll is able to solve 

analytically for the price of the convertible bond because of his assumption of no 

dividends and no coupons. 
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Brennan and Schwartz [1977] use finite difference methods to solve the partial 

differential equation for the price of a convertible bond with call provisions, coupons 

and dividends. Later Brennan and Schwartz [1980] numerically solved a two-factor 

partial differential equation for the value of the convertible bond. This modelled both 

the value of the firm and also the interest rate stochastically. Brennan and Schwartz 

found that often the additional factor representing stochastic interest rates had little 

impact on the convertible bond price. 

Nyborg [1996] extends this model to include a put provision and floating coupons. He 

introduces coupons into the convertible valuation by assuming that they are financed 

by selling the risk-free asset. In his simple but worthwhile extension he uses 

Rubinstein's[1983] diffusion model to value the risky and risk-less assets of the firm 

separately and gets an analytical solution for the value of the convertible bond. 

Dividends can also be handled in this model if they are assumed to be a constant 

fraction of the risky assets. He also analyses the impact of other debt in the capital 

structure of the firm (senior debt, junior debt and debt with a different maturity to the 

convertible bond). 

When the coupons are financed through the sale of risky assets an analytical solution is 

no longer possible. For pricing derivative securities such as convertible bonds subject 

to credit risk the above structural models view derivatives as contingent claims not on 

the financial securities themselves, but as compound options on the assets underlying 

the financial securities. 
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In the Merton [1974] model increasing the volatility of the assets of the firm increases 

the credit spread with respect to the risk free rate. Varying the volatility of the assets of 

the firm stochastically has the result of varying the credit spread of the compound 

option stochastically. Geske's [1979] compound option pricing model has the volatility 

of the equity being negatively correlated to the value of the firm. As the value of the 

firm decreases, the leverage increases and the volatility of the equity increases and vice 

versa. Thus the firm value models easily capture some appealing properties. 

The papers of Ingersoll, Nyborg and Brennan and Schwartz assume that the value of 

the firm as a whole is composed of equity and convertible bonds and they model the 

value of the firm as a geometric Brownian motion. The advantage of firm value models 

is that it is relatively easy to model the value of the convertible bond when the firm is 

in financial distress. Furthermore, firm value models such as the compound option 

model reproduce the empirical observation that as the value of the firm decreases, 

leverage increases and the volatility of the equity increases and vice versa. 
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2.6 Equity value models 

The more recent literature considers the convertible bond to be a security contingent 

on the equity and (for more complicated models) the interest rate rather than the value 

of the firm. The equity is then modelled as a geometric Brownian motion. The 

advantage of modelling equity rather than firm value is that firm value is not directly 

observable and has to be inferred. Additionally, the true complex nature of the capital 

structure of the firm can make it difficult to model whereas the price of equity is 

explicitly observable in the market. 

In their Quantitative Strategies Research Notes, Goldman Sachs [1994] consider the 

issue of which discount rate to use when valuing a convertible bond. They consider 

two extreme situations: 

Firstly where the stock price is far above the conversion price and the conversion 

option is deep in-the-money and is certain to be exercised. Here they use the risk-free 

rate as they argue that the investor is certain to obtain stock with no default risk. 

Second they consider the situation where the stock price is far below the conversion 

price and the conversion option is deep out-of-the-money. Here the investor owns a 

risky corporate bond and will continue to receive coupons and principal in the absence 

of default. The appropriate rate to use here is the risky rate which they obtain by 

adding the issuer's credit spread to the risk-less rate. 

20 



They use a simple one-factor model with a binomial tree for the underlying stock price. 

However, at each node they consider the probability of conversion and use a discount 

factor that is an appropriately weighted arithmetic average of the risk-less and risky 

rate. 

At maturity T the probability of conversion is either 1 or 0 depending on whether the 

convertible is converted or not. Backward induction is then used to determine the 

probability at earlier nodes, i.e. the conversion probability is the arithmetic average of 

the two future nodes. If at a node the bond is put then the probability is set to zero 

and if the bond is converted the probability is set to one. 

The methodology seems somewhat incoherent i.e., the investor is assumed to receive 

stock through conversion even in the event of default but the stock is not explicitly 

modelled as having zero value in this eventuality. Moreover, prior to default there is no 

compensating rate for the risk of default (this intensity rate will be formally defined 

later) entering into the drift of the stock as one would expect. Finally the model makes 

no mention of any recovery in the event of default on the debt. 
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The approach used by Goldman Sachs is formalized by Tsiveriotis and Fernandes 

[1998]. In their paper they decompose the value of the convertible bond into a cash 

account and an equity account. They then write down two coupled partial differential 

equations: 

The first equation for a holder who is entitled to all cash flows and no equity flows, 

that an optimally behaving holder of the corresponding convertible bond would 

receive, this is therefore, discounted at the risky rate (as defined above). 

The second equation represents the value of the payments to the convertible bond 

related to payments in equity and is therefore, discounted at the risk-free rate. 

The equations are coupled because any free boundaries associated with the call, put 

and conversion options are located using the PDE related to the equity payments and 

these are the boundary conditions used for the PDE related to the cash payments. 

The model outlined by Tsiveriotis and Fernandes is again a one factor model in the 

underlying equity. It is better than the Goldman Sachs model in the sense that the 

correct weighting (for example taking into account coupons) rather than a probability 

weighting is used for discounting the risky and risk-less components of the convertible 

bond price. 
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Although, the Tsiveriotis and Fernandes model is more careful about modelling the 

cash and equity cash flows it suffers from the same theoretical inconsistencies as 

Goldman Sachs. For example the intensity rate does not enter the drift on the equity 

process, the equity price is not explicitly modelled as jumping to zero in the event of 

default and any recovery from the bond is omitted. 

Ho and Pfeffer [1996] describe a two-factor convertible bond pricing model. Unlike 

the two factor model of Brennan and Schwartz the Ho and Pfeffer model can be 

calibrated to the initial term structure. 

The interest rate factor is modelled using the Ho and Lee [1986] model. Ho and 

Pfeffer use a two dimensional binomial tree as their pricing algorithm. The authors 

appear to discount all cash flows at the risky (i.e., risk free plus credit spread) rate 

which implies the equity price goes to zero in the event of bond default and therefore, 

the intensity rate enters into the drift on the equity. However, this is implicit in their 

model and is not actually stated in the paper. Furthermore, any recovery on the bond 

in the event of default is omitted from the model. 

Moreover, from an empirical point of view, they use a constant spread over the risk 

free rate at all points to capture the credit risk. Goldman Sachs and Tsiveriotis and 

Fernandes are likewise guilty of this and it means that the credit spread is assumed 

fixed irrespective of whether the equity price is very high or very low. Empirically, the 

credit spread grows as equity prices deteriorate. 
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Recently, an alternative approach has emerged. This is known as the "reduced-form" 

approach. It is based on developments in the literature on the pricing of risky debt (see, 

e.g. Jarrow and Turnbull, 1995; Duffle and Singleton, 1999; Madan and Unal, 2000). In 

this setting default is exogenous, the "consequence of a single jump loss event that 

drives the equity value to zero and requires cash outlays that cannot be externally 

financed" (Madan and Unal, 2000, p. 44). The probability of default over the next 

short time interval is determined by a specified hazard rate. 

When default occurs, some portion of the bond (either its market value immediately 

prior to default, or its par value, or the market value of a default-free bond with the 

same terms) is assumed to be recovered. Authors who have used this approach in the 

convertible bond context include Davis and Lischka (1999), Takahashi et al. (2001), 

Hung and Wang (2002), and Andersen and Buffum (2003). 

As in models such as that of Tsiveriotis and Fernandes (1998), the basic underlying 

state variable is the firm's stock price (though some of the authors of these papers also 

consider additional factors such as stochastic interest rates or hazard rates). 

Davis and Lischka [1999] use a Jarrow and Turnbull [1995] style stochastic hazard rate 

to capture credit risk and a extended Vasicek or Hull and White [1994] and [1996] 

interest rate model in their convertible bond pricing model. 
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The Jarrow and Turnbull model can be calibrated so that the hazard rate reproduces 

the survival probabilities observed in the market. Davis and Lischka describe three 

possible models: 

1) The first has a stochastic equity process (including the intensity rate in the drift), an 

extended Vasicek interest rate process and a deterministic intensity rate; 

2) The second model has a stochastic equity process (including the intensity rate in 

the drift), an extended Vasicek intensity rate process and a deterministic interest 

rate; and 

3) The third model has a stochastic equity process (including the intensity rate in the 

drift), an extended Vasicek interest rate process and an intensity rate following a 

perfectly negatively correlated arithmetic Brownian motion process with respect to 

the equity process. 

The first and second models have considerable symmetry the only difference comes 

through the impact of the recovery rate. The third model is described as a 2 1/2  factor 

model. It is intuitively appealing and certainly preferable to modelling the intensity rate 

as an ad-hoc function of the equity level. However, the arithmetic Brownian motion of 

the intensity process implies that the intensity rate can become negative. 
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The inclusion of the intensity rate in the drift of the equity (in the event of no-default), 

a zero equity price in the event of default and the inclusion of a recovery rate makes 

these models more coherent with theory. The ability to correlate the intensity rate with 

the equity price is also appealing from an empirical point of view. 

Quinlan [2000] highlights the difficulty of parameter estimation once a model has been 

selected. Long-term equity implied volatilities do not exist, dividend forecasts must be 

estimated, determining the credit spread for subordinated debt can be difficult if the 

firm is not rated and correlations between the interest rate process and the equity 

process are difficult to measure and are non-stationary. Moreover, assumptions must 

be made about when the issuer will call a convertible, if it can be called. North 

American issuers will usually do this when parity rises 15-30% above the call price. But 

there is no rule that applies in all cases3. 

3  This literature review is sourced from: The Valuation of Convertible Bonds: A study of alternative pricing models — 
Grimwood and Hodges, 2002. 
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Chapter 3 

MODELLING THE EQUITY PROCESS 

3.1 Introduction 

Modelling the stock price process is perhaps the most fundamental aspect of any 

model which is subject to equity uncertainty. Since the pioneering work of the Black-

Scholes option pricing model and its consequent popularity equity modelling has been 

based on the Black-Scholes framework. 

As Derman and Kan? state there are two important but independent features of the 

Black-Scholes theory. The primary feature of the theory is that it is preference free — 

the values of contingent claims do not depend upon investors' risk preferences. 

Therefore, you can value an option as though the underlying stock's expected return is 

riskless. This risk neutral valuation is allowed because you can hedge an option with 

stock to create an instantaneously riskless portfolio. 

4  Derman & Kani 1994 — The volatility smile and its Implied Tree 
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A secondary feature of the BS theory is its assumption that stock prices evolve 

lognormally with a constant local volatility o- at any time and market level. This stock 

price evolution over an infinitesimal time dt is described by the stochastic differential 

equation 

dS 
S = lidt + adW 
	

[Eq 3.11 

Where S is the stock price, IA is its expected return and IV a stanclnrd brownian motion. 

The Black-Scholes formula for a call with strike K and time to expiration t, when the 

riskless rate is r, Cps(S,a, r, t, K) follows from applying the general method of risk-

neutral valuation to a stock whose evolution is specifically assumed to follow equation 

3.1. 

In the Cox-Ross-Rubinstein (CRR) binomial implementation of the process above, the 

stock evolves along a risk-neutral binomial tree with constant logarithmic stock price 

spacing, corresponding to constant volatility, as illustrated schematically in the figure 

below 
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stock 
price 

 

time 

The binomial tree corresponding to the risk-neutral stock evolution is the same for 

all options on that stock, irrespective of their strike level or time to expiration. The 

stock tree cannot "know" about which option we are valuing on it. 

Market options prices are not exactly consistent with theoretical prices derived from 

the BS formula. Nevertheless, the success of the BS framework has led traders to 

quote a option's market price in terms of whatever constant local volatility or„,i, makes 

the BS formula value equal to the market price. We call anp  the Black-Scholes equivalent 

or implied volatility, to distinguish it from the theoretically constant local volatility o-

assumed by the BS theory. In essence, am,p  is a means of quoting prices. 

Generally if we observe option prices from a cross sectional view (identical options 

with only the strike price differing) we see changes in implied volatility as we move 

through the spectrum of options from deep out of the money options to deep in the 

money options. This asymmetry is commonly called the volatility "skew." Secondly if 

observe options over a term structure (identical options with only maturity differing) 

we also see a non constant implied volatility as we move through the spectrum of 

options from shortest to maturity to longest to maturity. This variation is generally 
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called the volatility "term structure." The volatility skew and term structure are 

collectively known as the volatility "smile." 

So from observed option prices the implied volatility as backed out from the BS 

equation differs over different strikes and maturities. This suggests a discrepancy 

between theory and the market. The situation then arises where is it probably incorrect 

to calculate options prices using a constant volatility in the BS formula. 

There have been various attempts to extend the BS theory to account for the volatility 

smile. One approach incorporates a stochastic volatility factor, another allows for 

discontinuous jumps in the stock price. These extensions cause several practical 

difficulties. First, since there are no securities with which to directly hedge the volatility 

or the jump risk, options valuation is in general no longer preference free. Second, in 

these multifactor models, options values depend upon several additional parameters 

whose values must be estimated. This often makes confident option pricing difficult. 

I want to use an equity process, which allows me to develop an arbitrage-free CB 

model that fits the smile, is preference-free, avoids additional factors and can be used 

to value options from easily observable data. 

The most natural and minimal way to extend the BS model to accommodate the smile 

is to replace the original SDE with a new equation 
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dS 7 ..= pdt + 6(S,t)dW [Eq 3.2] 

where cr(S,t) is the local volatili function that is dependent on both stock price and time . 

If we were to relate equation 3.2 to a new binomial framework , a distorted or implied 

tree, drawn schematically below, will prevail to replace the regular CRR binomial tree 

shown earlier. Options prices for all strikes and expirations, obtained by interpolation 

from known options prices, will determine the position and the probability of reaching 

each node in the implied tree. 

stock 
price 

 

time 

Whilst the theory of accommodating the volatility smile will be developed in 

continuous time I have highlighted how the smile effects the traditional CRR tree as I 

will be implementing the smile in a discrete time setting to ultimately find a analytical 

solution for the price of a convertible bond. This approach is required due to the 

multifactor model required to price convertible bonds making it near impossible to 

find a closed form solution. 
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I will be modelling the equity process using an implied binomial tree (IBT) as opposed 

to a regular CRR tree which has been used in all the literature to date. An implied 

binomial tree is a generalization of the Cox, Ross, and Rubinstein binomial tree (CRR) 

for option pricing (CRR [1979]). 

Implied binomial tree techniques, like the CRR technique, build a binomial tree to 

describe the evolution of the values of an underlying asset. An IBT differs from CRR 

because the probabilities attached to outcomes in the tree are inferred from a collection 

of actual option prices, rather than simply deduced from the behavior of the 

underlying asset. 

These option implied risk-neutral probabilities (or alternatively, the closely related risk-

neutral state-contingent claim prices) are then available to be used to price other 

options. Jackwerth (1999) reviews two inter-related strands of the literature: how to 

infer probability distributions from option prices, and how to build implied binomial 

trees. 

The best known practical methods for implementing IBT include Rubinstein (1994), 

Derman and Kani (1994), and Jackwerth (1997). We compare and contrast these three 

in Table 1. 
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Table 1 

Properties of Competing Implied Binomial 
Tree Models 

Rubinstein 
1994 

Derman/Kani 
1994 

Jackwerth 
1997 

IBT constructed backwards from ending 
nodes? 

Yes No Yes 

Ability to use intermediate-maturity options 
in IBT construction? 

No Yes Yes 

Ability to use other than European-style 
options in IBT construction? 

No No Yes 

Requires extrapolation and interpolation in 
IBT construction? 

No Yes No 

Assumes all paths leading to a given node 
are equally likely? 

Yes No No 

Approximately lognormal distribution of 
ending nodal probability? 

Yes No No 

I will be following the Derman and Kani method of implementing a binomial tree as it 

fits the entire smile unlike the Rubinstein tree and allows for interpolation in its 

construction, which is not useable in the Jackwerth tree. The following section 

describes the continuous time theory behind the Derman and Kani (1994) paper in 

detail. For specific details on its implementation please refer to their paper as I will 

implement their model for my equity process which will be seen in chapter 7 and 8 

without highlighting a step by step guide. 
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3.2 The Continuous- Time theory of accommodating the volatility smiles  

In this section we will investigate the continuous time theory associated with the stock 

price diffusion process 

dS 
S 

	r(t)dt + a(S, t)dW [Eq 3.3] 

where r(t) is the expected instantaneous stock price return, which is assumed to be a 

deterministic function of time, and a(S,t) is the local volatility function which is 

assumed to be a (path-independent) function of stock price and time. Here W(t) 

denotes the standard Brownian motion. 

Let (I)(S, s, I)  denote the transition probability function associated with the diffusion 

equation 3.3. It is defined as the probability that the stock price reaches the value s' at 

time t given its starting value S at time 0. It is well known that this function satisfies 

both the backward and forward Kolmogorov equations together with the boundary 

condition ((S, s, o) = 8 (S'-3), where 8 (x) is the Dirac delta function. The backward 

equation reads, 

162 
	2  a2 .13. 	act. ao —(s,os —as' +r(t)— -- = 0 

2 	 as at [Eq 3.4] 
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while the forward equation is the formal adjoint 

132 	 a (s',t)s' 2 )- r(t)—(S'43)-- = 0 
2 as- 	 as 	at 

[Eq 3.5] 

Let D(t) denote the standard discount function 

 

D(t) = exp — fr(e)d(t') 

 

[Eq 3.6] 

   

Then the value of a standard European call option with spot price S, strike price R, 

and time to expiration t is given by 

C(S,K,t) D(t) fl)(S,S',t)(S' — K)dS' 	 [Eq 3.7] 

Differentiating equation 3.7 once with respect to strike price K leads to the following 

relationship between a strike spread and the integrated distribution function: 

CO 

D(t) SO(S,S',t)dS' = —a C(S,K,t) ax 
K 

[Eq 3.8] 

5  from Derman & Kani 1994 —The volatility smile and its Implied Tree 
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Differentiating equation 3.7 twice with respect to strike price K leads to the following 

relationship between a butterfly spread and the distribution function: 

' D(t)cD(S,K,t)= 
aK2 

 C(S, K,t) [Eq 3.9] 

The left side of equation 3.9 is the familiar Arrow-Debreu price in this theory. It is 

the price of a security whose payoff function is given by 8 (S' -K). If, for a given stock 

level, the prices (and therefore, all partial derivatives with respect to the strike) of call 

options of all strikes and all maturities were to be available, Equation 3.9 would entirely 

specify the distribution functions of this theory. 

However, the stock distribution function is not necessarily sufficient to determine the 

diffusion process completely. Different diffusion processes can have the same 

distribution functions. Remarkably, though, all the parameters of the diffusion process 

in Equation 3.3 are uniquely specified by the stock price distribution. 

To show this, Derman & Kani establish that the standard European call option prices 

C (S, K, t) in this theory satisfy the following "forward" equation: 

1a2 ac ac —o-2  (K,OK 2 	r(t)K--- = 0 
2 	 aK2 	arc at [Eq 3.10] 
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Derman & Kani's proof is a variation of the original proof by Dupire6. They begin by 

multiplying both sides of equation 3.5 by ( S' - K) and integrating with respect to S' . 

This leads to: 

00 	
- 
, 

2 

1 	f 	a 
as '2 

 r - D(t) 	[0-2(s',osi20(s,si,t)ist- K)dS' 
K 

CO 

a r  - r(t)D(t) f—LS'61)(S ,S' ,t)IS' - K)dS' 
as' 

K 
OD 

a - D(t) .1.--(1)(S , S' ,t)(S' - K)dS' = 0 
at 

K 

[Eq 3.11] 

Integrating the first term on the left side of equation 3.11 by parts and then 

substituting from equation 3.8 leads to 

a, 
1 	

J
ra2 	 r , - D(t) 	La -  (S',t)S' 24)(S,S',01(S' - K)dS' = 

2 	as'2  
K 

K Z  ' 
I  cr 2  (K,t)K 2 

 NC
—C(S,K,t)+ boundary terms at infinity 

[Eq 3.12] 

6  Bruno Dupire 1994 — Pricing with a Smile, Risk Magazine 

37 



Integrating the second term on the left hand side of equation 3.11 by parts and then 

substituting from equation 3.9 leads to 

C 0 

, 
r(t)D(t) .1.—LS',13(S,S',01(S' — K)dS' = as' 

K 

— r(t)D(t) fS'cl)(S,S',OdS' + boundary terms to infinity 	 [Eq 3.13] 
K 

— r(t)[C(S , K,t)— k —a c(s, K, 01+ boundary terms to infinity al( 

Finally using equation 3.7, the last term on the left hand side of equation 3.11 can be 

written in the form 

C 0 

aa 
D(t) f--(1)(S ,S' ,t)(S' — K)dS' = r(t)C(S, K,t)+ —C(S, K, t) 	[Eq 3.14] at 	 at 

K 

Let us assume that (111.(S, S, / approaches zero sufficiently fast for large values of S' so 

that all the boundary terms above vanish. Then equations 3.12 through to 3.14 can be 

combined to yield equation 3.10. 

Equation 3.7 shows that, in the theory defined by the diffusion of equation 3.3, the 

distribution function (121(S, K, 1) completely determines call option prices C(S, K, t) for 

all values of strike and time. Conversely, from equation 3.9, call prices determine the 

distribution. Furthermore equation 3.11 can be used in this theory to derive the local 
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volatility function a (S,t), from the known call option prices (and their known 

derivatives). 

Combining these facts we can see that the stock price diffusion process of equation 3.3 

is entirely determined from the knowledge of the stock price distribution function, as 

asserted earlier. 

Derman & Kani explain the analysis above also in a more general theory. They reiterate 

that knowledge of the stock price distributions do not necessarily allow the unique 

deduction of the diffusion process. This is the case, for example, where the drift in the 

diffusion process depends on the path the stock price takes as well as on time, and 

therefore call option prices cannot be described in terms of a distribution function 

alone. If the drift function is an a priori known (path-independent) function of spot 

price and time, they show that the knowledge of call option prices is in fact sufficient 

to derive the underlying diffusion. 

Consider a diffusion process whose drift is any known function r( S , t) of the spot 

price and time, satisfying the following diffusion equation: 

dS 
s  = r(S,t)dt + cr(S,OdW [Eq 3.15] 
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The Arrow-Debreu price A( S , 5', t ) is the price of a security which pays one unit if 

the stock price 5(t) at any time I attains value S', and zero otherwise. A ( ... ) can be 

computed as the expected discounted value of its payoff as follows: 

A(S, .5", t) = E(s,o)  

/ i 

exp — fr(S(1),Odt' a(S(o—s")] 	 [Eq 3.16] 
• 0 	 .1 

 

where E(u)[...] is the expectation conditional on the initial stock price S at t = 0. The 

price of a standard European call option with spot price S, strike price K, and time to 

expiration t is defined by: 

/ r 

C(S, K, t) = Ens o)  exp — fr(S(e),e)de a(S(t) — Kr 
• 0 	 i  _ 

[Eq 3.17] 

 

Using equation 3.16 it is possible to rewrite this in terms of Arrow-Debreu prices as 

C(S,K,t)= SA(S,S',t)(S — K)dS' 
	

[Eq 3.18] 
K 
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Differentiating this equation once with respect to K leads to the following more general 

form of equation 3.8: 

Co 

jA(S,S',t)dS' =
ax 	

K, t) 
	

[Eq 3.19] 

and differentiating twice leads to a more general form of equation 3.9: 

2 

A(S, K,t) = 	C(S,K,t) 
aK 2  

[Eq 3.20] 

It is known that A( S , S, t) satisfies the following forward Kolmogorov differential 

equation: 

1  a22 62 	r(t)—
a 

(SA) 
an 

— at 
= r(Sct)A 

2 8512 	 as' 
[Eq 3.21] 

This equation is analogous to equation 3.5 satisfied by the transition probability 

function, and can be used in the same manner to derive a forward equation for 

European call option prices similar to equation 3.10. So, multiplying both sides of 

equation 3.21 by (Y-K) and integrating with respect to S, and then assuming similar 

boundary conditions at infinity, leads to the following equation: 
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1 2 	 ac a 	a 	ac —o-  (K,t)K 2 82C  r(K,t)K— + i—C(S ,S" ,t)—r(S' ,t)— 	= 0 
2 	 arc 	alc as 	 at 

[Eq 3.22] 

For a given spot price S, if the local drift function r( S, t) and European call option 

prices corresponding to all strikes and expirations are known, then we can use equation 

3.22 to find the local volatility a(S, /) for all values S of and t . This completes the 

specification of the diffusion process associated with equation 3.15. 

In a discrete time framework the implied binomial tree will ensure the stock price 

process will follow the process defined above which is determined by the exogenous 

local drift function and the prices of European puts and calls defining the local 

volatility. 

When implementing the tree we must ensure it remains arbitrage free. The transition 

probabilities P, at any node in the implied tree must lie between 0 and 1. If P, > 1, the 

stock price S,+ , at the up-node at the next level will fall below the forward price F. 

Similarly, if P < 0, the stock price S. at the down-node at the next level will fall above 

the forward price F, . 
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Either of these conditions allows riskless arbitrage. Therefore, as we move through the 

tree node by node, we demand that each newly determined node's stock price must lie 

between the neighboring forwards from the previous level that is Fi  < 	< F,1. 

If the stock price at a node violates the above inequality, we override the option price 

that produced it. Instead we choose a stock price that keeps the logarithmic spacing 

between this node and its adjacent node the same as that between corresponding 

nodes at the previous level. This procedure removes arbitrage violations (in this one-

factor model) from input option prices, while keeping the implied local volatility 

function smooth. 

43 



Chapter 4 

MODELLING THE INTEREST RA 	I E PROCESS 

4.1 Introduction 

The convertible bond pricing literature to date has not been conclusive on the impact 

of incorporating interest rate uncertainty into a convertible bond model. Intuitively a 

convertible bond may be deemed a traditional fixed income instrument with potential 

to convert it into an equity instrument. With this school of thought, it would be 

considered imperative that we accommodate interest rate uncertainty in any convertible 

bond pricing model. However some studies have shown it has little impact on the 

pricing results of models whilst others studies shows its inclusion does add accuracy to 

pricing models'. 

I believe it is essential to incorporate interest rate uncertainty to any convertible pricing 

model as the underlying instrument is fundamentally a fixed income security and it is 

inherently related to the other sources of risk. Excluding it will not allow us to model 

the inter-play between equity prices, credit premiums and interest rates. 

7  See chapter 2 
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After deciding to incorporate interest rate uncertainty into my model the question then 

is firstly how do we model interest rates? And secondly how do we integrate a chosen 

interest rate model into the convertible model framework of this thesis. The next 

section will answer the first question followed by a subsequent section addressing the 

second question. 
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4.2 Interest rate models8  

The modelling of the term structure of interest rates has produced a variety of 

approaches since the advent of arbitrage-free pricing theory and it continues to occupy 

the efforts of both academics and practitioners. 

Unlike for other asset classes (equities, foreign exchange), where the lognormal Black-

Scholes framework is universally accepted, no such agreement exists with regard to 

interest rate modelling. One reason for this is that the phenomenon we are attempting 

to model — the random fluctuation of the whole yield curve — is much more complex 

than the movements of a single stock or index price. One can intuitively relate this to 

the difference in the dynamics of a scalar variable (in the case of an index) and a vector 

(representing the yield curve). 

A second reason, that is perhaps more fundamental from a market perspective, relates 

to the nature of the vanilla market in interest rate derivatives. This consists of 

caps/floors and swaptions, which the market prices using the Black framework where 

the respective forward Libor and swap rate underlyings are lognormal but the discount 

factors are non-stochastic. Thus the market standard for the purposes of hedging must 

regard these vanilla instruments to be independent, where the volatility matrix for 

swaption prices has for the most part no bearing on the volatility curve associated with 

8  from I Ian Lee 2000 — Interest Rate Risk — models similarities and differences, Risk Magazine 
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the cap/floor market. Moreover, the assumption of simultaneous lognormal behaviour 

in the Libor and swap rates is not mathematically easy to reconcile. Nevertheless, the 

goal of interest rate modelling is to provide a framework under which a large class of 

interest rate sensitive securities can be priced in a consistent manner. 

The term structure of interest rates or the yield curve can be described in a variety of 

different ways, which are equivalent: Zero Coupon (or discount) bond prices, yields, 

spot rates, instantaneous short rates, instantaneous forward rates and discrete Libor 

rates. 

Due to the numerous variables used to describe interest rates we find there are 

consequently a range of interest rate models with differing features and characteristics. 

The models developed to date can be categorised into three families: spot/short rate, 

forward rate and market models. Although all three of these prescriptions are 

mathematically consistent (by definition of a term structure model), each approach 

leads to distinct development, implementation and calibration issues. 

Spot/short rate models (pioneered by Vasicek 1997) attempt to describe the bond 

dynamics through directly modelling the short-term interest rate. Heath Jarrow and 

Morton (HJM) established the general framework where these principles are satisfied 

and formulated the interest rate dynamics explicitly in terms of the continuously 

compounded forward rate. Market models are a class of models within the HJM 
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framework that describe variables directly observed in the market, such as the 

discretely compounding Libor and swap rates. 

Models have been formulated using two approaches: (1) a general equilibrium 

framework, where interest rate changes are derived from economic agents who 

maximize expected utility; and (2) the no-arbitrage approach, which assumes that 

financial markets have no arbitrage opportunities. Examples of the general equilibrium 

approach include the early short rate models of Vasicek (1977), Dothan (1978), Cox, 

Ingersoll, and Ross (CIR) (1985), Brennan and Schwartz (1979) and Longstaff and 

Schwartz (1992). Models based on arbitrage arguments are some more advanced short 

rate models by Black, Derman & Toy (1990), Hull & White (1990), Black-Karasinski 

(1991) and the entire family of models based on forward rates and Libor rates 

pioneered by Ho and Lee (1986), Heath, Jarrow, and Morton (HJM) (1992) and Brace, 

Gatarek& Musiela (1997). 

In all the models the yield curve is described through stochastic differential equations 

driven by a diffusion term and a drift term. Based on the arbitrage-free principle, the 

market price of risk is removed by the choice of the drift (this occurs in the portfolio 

replication argument for stock options in Black-Scholes, where the drift is equal to the 

risk free rate). This is performed in different ways. Spot rate models have to match the 

initial yield curve that implicitly holds information on investor choice and hence 

market price of risk, through the drift function. Models formulated with instantaneous 

forward rates explicitly relate the choice of volatility function to the form of the drift 
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(imposed through the HJM condition), in order for the no-arbitrage principle to hold. 

Similarly, for market models the drift is adjusted to ensure that the model remains 

arbitrage- free. 

Spot/Short rate models 

The first generation of models developed were generally short rate-based. This choice 

was due to a combination of mathematical convenience and tractability, or numerical 

ease of implementation. Furthermore, the most widely used of these models are one-

factor models, in which the entire yield curve is specified by a single stochastic state 

variable, in this case the spot or short-term rate. Examples of these include the models 

of Vasicek, Cox, Ingersoll & Ross, Dothan, Hull & White, Black Derman & Toy 

(BDT), and Black-Karasinski. 

These models are distinguished by the exact specification of the short rate dynamics 

through time, in particular the form of the diffusion process, and hence the underlying 

distribution of the short rate. 
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The earliest short rate models by Vasicek, Cox Ingersoll & Ross, and Dothan are 

known as equilibrium models, their general form for describing the changes in the 

short rate, is as follows: 

dr, = KO —re )dt + cr riY dW, 	 [Eq 4.1] 

r,= current level of the instantaneous rate 

= speed of the mean reversion 

0 = rate to which the short rate reverts 

a = volatility of the short rate 

y = proportional conditional volatility exponent 

= standard Brownian motion 

The first important feature of this type of model is mean reversion of the short-term 

rate. This feature is appealing since it presumes that when rates become very high or 

very low, they will tend to revert to "normal" levels. The speed of reversion is 

determined by the parameter K . This parameter ultimately affects the shape of the yield 

curve. If K is high, the yield curve quickly trends toward the long-run yield rate 0. If ic is 

low, the yield curve slowly trends toward 0 . 

The difference between the Vasicek, CIR, and Dothan models primarily revolves 

around the parameter y (the exponent). Vasicek assumes it to be 0, CIR assumes it to 

be 0.5, and Dothan assumes it to be 1.0. The basic question distinguishing the models 
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is whether the conditional volatility of changes in interest rates is proportional to the 

level of the rate. This subsequently determines the parameter y . 

These models are criticized because they do not fit the existing term structure. 

Although parameters can be chosen to minimize errors from today's yield curve, the fit 

will not be perfect. Such a discrepancy has led to these models to be unacceptable in 

practice as its usage could lead to arbitrage. They are consequently unsuitable to use in 

the model I am building in this thesis. It is apparent to find a suitable interest rate 

model for pricing convertible bonds we will have to focus on arbitrage models which 

are consistent with the existing term structure and observed volatilities. 

In the short rate world this leaves us with models by Hull & White (1990), Black 

Derman & Toy (BDT)(1990), and Black-Karasinski (1991). 

Forward rate models 

An alternative approach to modelling the term structure was offered by the Heath, 

Jarrow & Morton (HJM) structure. In contrast to the spot rate approach, they model 

the entire yield curve as a state variable, providing conditions in a general framework 

that incorporates all the principles of arbitrage-free pricing and discount bond 

dynamics. The HJM methodology uses as the driving stochastic variable the 
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instantaneous forward rates, the evolution of which is dependent on a specific (usually 

deterministic) volatility function. 

Because of the relationship between the spot rate and the forward rate, any spot rate 

model is also an HJM model. In fact, any interest rate model that satisfies the principles 

of arbitrage-free bond dynamics must be within the HJM framework. 

Heath, Jarrow, and Morton (1992) use the no-arbitrage argument to develop the 

process for the forward rate implied by the relationship of bond prices. Assuming the 

risk neutral process for the bond price P(47) has the form: 

dP(t,T),  lit,T)P(t,T)dt +0-(t,T)13.(t,T)dW, 	 [Eq 4.2] 

P(t,T) = instantaneous forward rate at time t with maturity T 

r(t,T,) = risk neutral drift of the forward rate process 

a(t,T,) = volatility of the forward rate process 

IV, = standard Brownian motion 

This equation reflects the fact since a discount bond is a traded security providing no 

income, its expected return at time t in a risk neutral world must be r(t). Regardless how 

the volatility function is defined it has to incorporate the boundary condition that at 

maturity we are certain of a default free discount bonds value and so we must have: 
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o(t, t) = 0 	 [Eq 4.3] 

Hence from the standard forward price equation derived from discount bond prices 

and using equation 4.2 we get the following relationship: 

ln[P(t,  T1  )] - ln[P(t, T2  )] 
f(t,Ti . T2  ) = 

T2  — T, 
[Eq 4.4] 

Applying Ito's lemma to equation 4.2 we can determine the diffusion process followed 

by the log of the discount bond prices: 

dlnP(t,T1)=[r(t)— 1 i —o-V, T, )2  ]dt + o-(t,T,)dW, 
2 

[Eq 4.5] 

dlnP(t, T2  ) = [r(t)—cr(t, T2  )2  1 dt ÷ Cr(t, T2  )dW, 	 [Eq 4.6] 

Using these results in equation 4.4 gives us the following process for forward rates: 

— 	,T  1 )2   1 	[o(t
'  T' 

 )— oit
'  T2 

 )  
df(t,T,, T2  ) = 	

2(T2  —T) 	
dt+ [  a(t' T2 )2 (30 

(T2  —T) 	
dW 

1 	
[Eq 4.7] 
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Taking this process to the limit gives us the process for the instantaneous forward 

rates: 

df (t ,T) =[cr(t ,T)T (t , T2 )]dt  - [CrT 0, T2 *WI' 
	 [Eq 4.8] 

HJM find that by imposing the no-arbitrage argument to term structure movements, 

the drift of the forward rate process can be stated in terms of volatilities. Thus, the 

structure of the volatility becomes the most important element of the HJM model. 

Different functional forms of the volatility reveal an entire family of HJM models. The 

family is extended by the ability of the model to incorporate several factors of 

uncertainty rather than the one factor discussed above. This is done to improve 

calibration but at a cost of tractability, implementation difficulties and slower execution 

times. 

Market models 

The motivation for the development of market models arose from the fact that, 

although the HJM framework is appealing theoretically, its standard formulation is 

based on continuously compounded rates and is therefore fundamentally different 

from actual forward Libor and swap rates as traded in the market. The lognormal HJM 

model was also well known to exhibit unbounded behaviour (producing infinite values) 

in contrast to the use of lognormal Libor distribution in Black's formula for caplets. 

The construction of a mathematically consistent theory of a term structure with 
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discrete Libor rates being lognormal was achieved by Miltersen, Sandmann & 

Sondermann, and developed by Brace, Gatarek & Musiela (BGM). Jamshidian 

developed an equivalent market model based on lognormal swap rates. 
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4.3 Choosing an Interest rate model for convertible bonds 

To use any interest rate model for pricing of contingent claims, it must be calibrated to 

the market. Besides matching the initial yield curve, the prices of caps/floors and 

swaptions are required. Ideally the model is capable of providing an analytical formula 

for these vanilla instruments, but otherwise a very efficient numerical algorithm is 

necessary. With this criterion in mind we can eliminate the use of equilibrium models 

in this thesis. 

Spot and forward arbitrage models must derive the appropriate quantities from the 

underlying state variables to construct the equivalent of the option pricing formulae. 

By construction, market models are based on observable rates in the market and hence 

(in some measure) readily price-standard instruments. The process of calibrating any 

model must start with making the choice of distribution or volatility function. 

Spot rate models require a specification of the dynamics, examples of which include a 

normal or Gaussian distribution (Hull-White), lognormal (Black-Karasinski) or 

something in between (eg, the 'square root' type model equivalent of the Cox-

Ingersoll-Ross model). Variables derived from the spot rate, such as the zero-coupon 

and Libor or swap rates, will have a distribution dependent on that of the short rate; 

for example the discount bond is lognormal for Gaussian spot rate models such as 

Hull-White. For forward rate models, the critical factor in determining the behaviour 

of a model is the form of the (HJM) volatility function. 
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For reasons of analytic tractability, the most common models in this category are the 

Gaussian forward rate models, so called when the volatility function is independent of 

the forward rate itself. In market models there is a choice in both the distribution of 

the underlying market variable, or perhaps a function of that variable, and in the 

functional form of the volatility. 

For use in exotic derivatives, models are required that price and hedge tradeable 

products. These should capture all risks associated with the product. Usually no single 

model can satisfactorily price and risk manage all exotic trades, hence traders like to 

keep a selection of different models available. Risk managers also benefit by having a 

spread of model evaluations to keep a check on model error. 

Convertible bond models to date have largely ignored this risk management technique. 

The literature usually specifies a specific interest rate model it will incorporate into its 

convertible pricing framework and is usually limited to its choice by the nature of some 

interest rate models and the implementation technique they are using. 

The interest rate models presented so far have been introduced in a continuous time 

framework. Although some continuous time models may lead to closed form solutions 

for simple cash flows such as non-callable bonds, convertible bonds are more 

complicated. To use the model's dynamics in our framework we have to use discrete 

time intervals for the interest rate process. This is done through either a Monte-Carlo 
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simulation of the interest rate process or by describing the evolution of interest rates 

via trees/lattices. 

A majority of convertible bond models are implemented via trees or finite difference 

grids. In such approaches the equity process and interest rate process can be combined 

on a 3-D Quad tree where every node branches out to 4 possible future nodes rather 

than the customary 2 or 3 in binomial or trinomial trees. The four possible future states 

cover all eventualities in a default free 2 factor model: 

• Stock price rises and interest rates rise 

• Stock price rises and interest rates fall 

• Stock price falls and interest rates rise 

• Stock price falls and interest rates fall 
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The figure below depicts a 4 stage 3-D tree 

This problem with this methodology is any convertible bond model, which 

incorporates a two factor model like this is usually limited to its choice of interest 

rate models it can use. This is due to the fact that discrete time implementation of 

interest rate models using trees falls into two categories. There are those interest rate 

models which are Markovian and can be implemented using a regular recombining 

tree and there are those interest rate models which are non-Markovian and can only 

be implemented using non recombining or bushy trees. 
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The recombining interest rate tree combined with a recombining equity tree is depicted 

above. This combination is highly practical and efficient as the possible nodes is 

limited to the number of time steps, (n +1)2  , where n is the number of time steps. If 

we were however to combine a non recombining interest rate tree with a recombining 

equity tree we would find this computationally unfeasible with unacceptable execution 

times. This is due to the number of time steps increasing in the interest rate tree alone 

by 2n, where n is the number of time steps. 

Consequently most of the convertible pricing literature uses Markovian models of the 

interest rate — usually one factor no arbitrage models of the short rate. Unfortunately 

the more advanced forward rate and market models are largely non- Markovian. They 

have to be implemented using Monte-Carlo simulations and have largely been ignored 

in the convertible bond pricing environment. 

I want to develop a convertible pricing model which will allow the use of Monte 

Carlo simulations in its modelling of the interest rate. Such a feature allows the use of 

all the previously used interest rate models in convertible bond pricing and opens up 

the use of non Markoivian models also. The use of Monte-Carlo simulations in 

modelling interest rates gives the convertible bond model total flexibility as 

Markovian and non Markovain interest rate models can be simulated whilst both 

cannot be discretiszed into recombining trees. This methodology also addresses the 

problem that no single model can satisfactorily price and risk manage all exotic trades, 
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hence convertible bond traders will be able like to keep a selection of different 

models available. 

Whichever model is used, there will be freedom to adjust the parameters governing the 

`indeterminate' parts of the effective volatility for the pricing of particular products. In 

practice this adjustment is made depending on the needs of the user (eg, whether 

buying or selling the option and how aggressive or conservative the trader is), and by 

indirect means such as by calibrating to other quoted prices in the market when 

possible. 

The interaction between the implied binomial tree described in the previous chapter 

and the Monte Carlo simulation of interest rates discussed in this chapter is detailed in 

chapter 6. In chapter 7 when the model is tested I will use a simulation of a BDT 

interest rate model, however any model the reader desires can be used to compare how 

prices vary according to interest rate model and observed market prices. A more 

detailed analysis of the BDT model is provided in Appendix B. 
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Chapter 5 

MODELLING THE CREDIT RISK PROCESS 

5.1 Introduction9  

Theories concerning credit risk modelling have evolved reasonably quickly over time. 

They began with the "balance-sheet" approach, typified by the classic work of Altman 

[1968]. In this approach, historical data on defaults is used along with firm 

characteristics to fit logit-type models for credit risk. Altman developed a proxy for the 

default probabilities, now well-known as the "Z-score". 

This was followed by a theory that takes the modelling basis to be the value of the 

firm. Also known as the so-called "structural" models, which were initially suggested 

in the seminal paper of Black and Scholes [1973], and developed in substantial detail 

in Merton [1974]. Structural models assume that the value of a firm is continuous in 

time and, given the dynamics of firm value through time and appropriate terminal 

and boundary conditions, derive the value of the firm's debt. 

9  Refer to Carayannopoulos(2001) and Das(2004) 
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Merton (1974) developed one of the first models, which assumes that default is 

allowed only at the maturity of the debt. Subsequent structural models relax some of 

the unrealistic assumptions of his model. Default can instead occur anytime during the 

life of the bond and default is triggered when the value of the firm reaches a certain 

threshold level. 

Structural models for convertible bonds were initially developed by Ingersoll (1977a, 

1977b) and Brennan and Schwartz(1977). They follow the same principles as the 

structural models for the valuation of regular bonds, and allow for the possibility of 

equity conversion through a set of appropriate terminal and boundary conditions. 

Brennan and Schwartz (1980) extend their previous work and allow for the uncertainty 

inherent in interest rates by introducing the short-term risk-free interest rate as an 

additional stochastic variable. 

Empirical investigations of structural convertible bond valuation models are limited. 

King (1986) examines a sample of 103 American convertible bonds and concludes that 

when market prices are compared with model valuations, the means are not 

significantly different. Carayannopoulos (1996b), using a structural model that allows 

for the stochastic nature of interest rates, in a study of monthly data for 30 US 

convertible bonds finds that market prices are significantly lower than model prices 

when the conversion option is deep-out-of- the-money, i.e., when the conversion value 

of the convertible bond is low relative to the straight bond value of the security. 
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This class of models uses publicly traded equity and option market prices to 

determine default probabilities, based on a measure known as the "distance-to-

default", embodied in the approach taken by KMV (see Crosbie [1999]). The KMV 

model relies almost exclusively on equity market information. It is also common to 

combine the balance-sheet approach with the structural one, leading to so-called 

"hybrid" models (as in the approach adopted by Moody's Risk Management Services 

before KMV and Moody's merged). 

Most of the problems associated with the practical application of structural models are 

circumvented with the use of reduced-form models. Unlike structural ones, reduced-

form models do not condition default exclusively on firm value, and unobservable 

parameters associated with firm value need not be estimated for model 

implementation. These models also view risky debt as paying off a fraction of each 

promised dollar if bankruptcy occurs. However, the time of bankruptcy is treated as an 

exogenous process and does not depend explicitly on firm value. 

A typical reduced-form model assumes that an exogenous variable drives default, and 

the conditional probability of default (also called hazard or intensity rate) during any 

time interval is nonzero. Furthermore, it is assumed that, upon default, bondholders 

receive a fraction of the bond's face value, known as the recovery rate that is known a 

priori. 

64 



In general, the value of a corporate bond is equal to the present value of its future cash 

flows discounted at a risky rate. The risky rate has two components: the risk-free short-

term rate and a credit risk premium while one or both components may very through 

time. The credit risk premium is assumed to be a function of the (risk-neutral) 

probability of default and the recovery rate, if default occurs. One set of reduced 

models employs a credit-rating based approach in which default is depicted through a 

gradual change in ratings driven by a Markov transition matrix. Others depict the 

default process through the evolution of default spreads or equivalently, the joint 

evolution of the conditional probability of default and recovery rate. 

Classic models in this genre are those of Jarrow and Turnbull (1995), Madan and 

Unal(1995),(2000), and Duffie and Singleton (1999). Mamaysky (2002) extends the 

Duffie-Singleton approach to linkages with equity risk, through the dividend process, 

an idea presented initially in Jarrow (2001). Default times may also be simulated or 

computed directly off the rating transition matrix. Such an approach may be applied 

directly to the transition matrix, (see Jarrow, Lando and Turnbull (1997), Das and 

Tufano [1996]), or it may be based on changes in firm asset values (the approach 

adopted by RiskMetrics). 

All these "pure" approaches have been hybridized by mixing information from other 

markets into those models. Within the class of structural models, the KMV approach 

has been modified by enhancing the information set beyond the distance to default 

measure (see Sobehart, Stein, Mikityanskaya and Li [2000]). For example, the approach 
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used by Moody's combines distance to default with balance-sheet information to 

determine default probabilities. 

Another variant of the structural model has been developed by RiskMetrics and is 

called CreditGrades (see Finkelstein, Lardy, Pan, Ta and Tierney [2002]). Their 

approach is a variation on the standard Merton model with additional constraints to 

ensure that the default probabilities are consistent with observed spreads in the debt 

market. 

Each of these approaches, but for the reduced-form models, requires some element of 

data that is not market observable. Structural models are based on the value of the 

firm, which needs to be extracted from an inversion over stock and option prices. The 

balance sheet models require the use of accounting information, which is not validated 

by a trading process. While the reduced-form models do not suffer from this 

deficiency, they extract default probabilities from debt prices and utilise no information 

from the equity markets. 
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5.2 Convertible bonds and credit risk10  

While it has long been realized that a framework for pricing convertible bonds should 

ideally incorporate elements of both equity and debt modelling, practical efforts in this 

direction have long been somewhat lacking. In particular, there seems to have been 

considerable confusion and disagreement about how to appropriately and consistently 

apply a default-adjusted discount operator to cashflows generated by convertible 

bonds. 

Early papers with an ad hoc approach to discounting include McConell and Schwarz 

(1986), Cheung and Nelken (1994), and Ho and Pfeffer (1996). Many of these models 

do not explicitly model bankruptcy, and as compensation uniformly apply a somewhat 

arbitrary risky spread to the risk-free discount rate. 

More recent papers recognize that equity and debt components of convertible bonds 

are subject to different default risk and attempt more sophisticated schemes. An often-

quoted example is Tsivioritis and Fernandes (IP) (1998) (later extended by 

Yigitbasioglu (2001) to multiple factors), which effectively splits the convertible bond 

into cash and equity components, with only the former being subject to credit risk. 

1° See Andersen & Buffman(2002) 
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A related approach was promoted by Goldman Sachs (1994) and involves careful 

weighting of risky and risk-free discounting in a binomial lattice. The TF splitting 

scheme is analyzed in detail in Ayache et al (2002) who conclude that it is inherently 

unsatisfactory due to its unrealistic assumption of stock prices being unaffected by 

bankruptcy. 

With the advances of credit derivatives theory, in particular the reduced-form approach 

of Jarrow and Turnbull (1995), the foundation for convertible bond models has 

recently improved significantly. A key development has been the inclusion of stock 

price dynamics that explicitly incorporate default events, as well as the explicit 

modelling of stock and bond recoveries in default. Most commonly, default is modeled 

as a Poisson event that drives stock prices into some low value and coupon bond 

prices (and convertible bonds) into a certain, fixed percentage of their notional values. 

Representative, and quite similar, papers include Davis and Lischka (1999) and 

Takahashi et al (2001). 

The credit risk of a convertible bond is modelled by assuming that any risky cash flows, 

which include coupons and redemption payments on the bond, are discounted at the 

risk free rate plus a credit premium. That premium in many of the previous literature 

applies to all bond cash flows regardless of under what circumstances they occur. In 

particular it does not depend on the on the prevailing equity levels. Hence the models 

are indifferent and apply the same credit premium when equity prices are high and the 

underlying company is doing well and when then company is not performing well and 
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share prices fall as a consequence. Intuitively we know this is not realistic and is a 

downfall of models, which use a uniform credit premium 

The feature of previous models that credit premiums do not change as the equity price 

changes is overly simplistic and is for many companies grossly untrue. Negative 

correlations usually exist between credit premiums and equity prices. 

An improved model might include a stochastic credit spread that incorporates the 

ability to build an equity credit correlation into the model. But this will cause additional 

complexity and computational inefficiencies to a model which already has interest rates 

and equity process modelled stochastically and attributes extra value to a convertible 

bond for its credit option. 

I consider a approach which makes modelling the stochastic process followed by 

credit spreads easier. The approach extracts a probability of default (PD) as a function 

of equity prices and interest rates, and hence, once the stochastic processes for equity 

and interest rates are set in the model, the stochastic process for PDs is automatically 

derived. It is important to note that this is just as feasible in the Duffie-Singleton [1999] 

model, however, in a setting in which correlated default is to be analyzed. 

Accounting for credit risk with this in mind is achieved by adding the process for 

default probability [k(t)] to the lattice. Rather than add an extra dimension to the lattice 

model by embedding a separate X(t) process, we define one-period default probability 
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functions at each node on the lattice, by making default a function of equity prices and 

interest rates at each node. There are two reasons for this. First, equity prices already 

reflect credit risk, and hence there is a connection between X(t) and equity prices. 

Second, default probabilities are empirically known to be connected to the term 

structure, and hence, may be modeled as such. Therefore, it seems appropriate 

modelling the default risk at each node as a function of the level of equity and the term 

structure at each node. 

Specifying a conditional X(t) at each node, i.e. rather than add a separate default 

probability process, we simply make X(t)'s a function of the state variables of equity 

and interest rates. This can be referred to as an endogenous default approach. If in fact, 

default probabilities were added as a separate stochastic process (which we denote the 

exogenous approach, as in David and Lischka [1999] or Andersen and Buffum [2002]), 

the question of consistency conditions between X(t), equity and interest rates would 

create a complex situation to resolve. 

By positing a functional relationship of X(t) to the other variables, we are able to obtain 

a consistent lattice as well as a more parsimonious one. We impose the condition that 

is required of default intensities to conform to the behaviour required. This is not a 

new approach. A similar endogenous default intensity extraction has been 

implemented in Das and Sundaram [2000], Carayannopoulos and Kalimipalli [2001], 

and Acharya, Das and Sundaram [2002]. 
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Various possible parameterizations of the default intensity function may be used. For 

example, the following model (subsuming the parameterization of Carayannopoulos 

and Kalimipalli [2001]) prescribes the relationship of the default intensity (t) to the 

stock price S(t), short rate r(t), and time on the tree (t - to). 

(t)= h(y)e[ao+a1r(t)-a2 ln S (t)+a3  0-0] 

[ e[ao+air(1)+a3(1--to)11 

S(t)a2 

For a2  > 0, we get that as S(t) 	0, (t) —* 1, and as S(t) ---* 1, (t) —* 0. Further, we 

may also specify the function h(y), based on a state variable y (such as the debt-equity 

ratio) through which other influences on the default intensity function may be 

imposed. This function must satisfy consistency conditions depending on its choice of 

state variable. 

However as an objective of this thesis it was imperative to use widely available and 

acceptable data in its calibration. Fortunately probability of defaults for companies, 

which differ according to stock price levels, are already publicly available from the 

widely regarded credit grades platform discussed earlier. I will be using the probability 

of defaults as generated by the Credit Grades model as the credit risk factor in my tree 

(t) = h(y) 
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as discussed above. A full description of the Credit Grades model is highlighted in 

Appendix A. 
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5.3 Recovery rates 

In addition to the probability of default of the issuer, a recovery rate is required. In the 

state in which default occurs, this recovery rate is applied. The recovery rates may be 

treated as constant, or as a function of the state variables. It may also be pragmatic to 

express recovery as a function of the default intensity, supported by the empirical 

analysis of Altman, Brooks, Resti and Sironi [2002]. 

A critical aspect of a corporate bond default is the severity of the loss incurred. 

Eventually, most bond default resolutions provide bondholders with some amount 

of recovery, which may take the form of cash, other securities, or even physical 

assets. The recovery rate, defined here as the percentage of par value returned to the 

bondholder, is a function of several variables. 

These variables include the seniority of the issue within the issuer's capital structure, 

the quality of collateral (if any), the overall state of the economy, and the thickness of 

the market for corporate assets. 

In July 2001 Moody's KMV published research, which collected, from several 

sources, prices for many of the US convertible bonds that, defaulted between 1970 

and 2000. For each defaulted issue, they considered the convertibility, seniority, date 

of default, and the price approximately one month after default. 
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The data revealed considerable volatility in average defaulted bond prices year-over-

year, as well as some degree of correlation with macroeconomic variables and the risk 

of default. The low recovery rates of 1990 correspond to a peak in the corporate 

default rate and an economic recession in the US. Interpretation of the 1981 and 

1979 lows for the average defaulted convertible bond prices should be tempered by 

the fact that sample sizes for these years are critically low. 

Overall, the average defaulted convertible bond price series tracks that of the non-

convertible bonds closely suggesting that these instruments react similarly to prevailing 

business conditions. 

The average range for recovery values of defaulted convertible bonds, is between 

$28.00 and $34.07 in the Moody's KMV study . For the purpose of this study I will 

treat the recovery rate as a constant and use a value of 30% of par value. This can be 

extended if the reader desires to incorporate a recovery value which is a function of 

many variables such as stock price, economic conditions etc etc. 
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Chapter 6 

THE CONVERTIBLE BOND MODEL 

6.1 Introduction 

The three previous chapters laid the foundations for adopting the three sources of risk 

I am addressing in this thesis. The purpose of this chapter is to combine the elements 

in a coherent manner to price convertible bonds. Chapter 3 detailed the continuous 

time theory behind the Derman & Kani implied binomial tree. The analysis assumed a 

deterministic interest rate through all stages of the tree and did not consider the 

possibility of default. 

The use of a stochastic interest rates in pricing convertible bonds and allowing the 

possibility of a convertible bond issuer defaulting are pivotal to my analysis and were 

discussed in considerable detail in chapters 4 and 5. Incorporating these features into 

the original work of Derman & Kani will be the initial focus of this chapter. Once this 

has been shown I will progress to explain how I aim to price convertible bonds. Here it 

will shown that the ambiguity of discounting at risk free and risky rates which has 

plagued many previous models is completely removed and replaced by the probability 
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of default. Now discounting is categorically only through the risk free rate and the 

credit risk is reflected through the probability of default. 
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6.2 The basic implied binomial tree revisited 11  

In the new binomial framework , a distorted or implied tree, drawn schematically 

below, will replace the regular binomial tree shown earlier. Options prices for all 

strikes and expirations, obtained by interpolation from known options prices, will 

determine the position and the probability of reaching each node in the implied tree. 

stock 
price 

 

time 

Derman and Kani and use induction to build an implied tree with uniformly spaced 

levels, At apart. Assume they have already constructed the first n levels that match the 

implied volatilities of all options with all strikes out to that time period. The figure 

below shows the r? level of the tree at time t„, with n implied tree nodes and their 

already known stock prices s,. 

11  from Derman & Kani 1994 — The volatility smile and its Implied Tree 
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Si+1 
strike 
Si 

.A. 2 	 S3  

Si  

X, 
(n.1) 	sl  

level 	n 	 n+1 
time 	to 4 	tn+I 

Constructing the (n+1)111  Level of the Implied Tree 

node 
1k P 	o Sn,, I n  i2_____----- 1 

(n..n) 	sn  
1 

sn-1) 
	 I  Sn  

(11.11-1) 

NOTATION 

r: 	known forward riskiess 
interest rate at this level 

known stock price at 
node //Li/at level n: node 
also the strike for options 
expiring at level n-f-/ 

F1: known forward price 
at level n+I of the 
known price si  at level n 

Si: 	unknown stock price 
at node (n÷/,/) 

A..,: known Arrow-Debreu 
price at node (n./) 

Pi: unknown risk-neutral 
transition probability 
from node (n/) to 
node (n+/./+/) 

(n.1) 

(t1.2) 

They call the continuously compounded forward riskiess interest rate at the nth level r. 

In general this rate is time-dependent and can vary from level to level; for notational 

simplicity they avoid attaching an explicit level index to this and other variables used 

here. 
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The aim is to determine the nodes of the (n+l)th level at time t„,,. There are n+1 nodes 

to fix, with n+1 corresponding unknown stock prices S. The figure above shows the 

ith node at level n, denoted by (n,i) in boldface. It has a known stock price s, and 

evolves into an "up" node with price S,, and a "down" node with price S, at level n+1, 

where the forward price corresponding to s, is F, = e 	p, is the probability of 

making a transition into the up node. We call X, the Arrow-Debreu price at node (n,i); 

The Arrow-Debreu price is computed by forward induction as the sum over all paths, 

from the root of the tree to node (n,i), of the product of the risklessly discounted 

transition probabilities at each node in each path leading to node OM. All X., at level n 

are known because earlier tree nodes and their transition probabilities have already 

been implied out to level n. 

There are 2n+1 parameters that define the transition from the nth to the (n+1)th level 

of the tree, namely the n+1 stock prices S, and the n transition probabilities p,. These 

must be determined to be consistent with the observed smile. 

The nodes at the (n+1)th level can be implied by using the tree to calculate the 

theoretical values of 2n known quantities — the values of n forwards and n options, all 

expiring at time t„, — and requiring that these theoretical values match the interpolated 

market values. This provides 2n equations for these 2n+1 parameters. The one 

remaining degree of freedom is used to make the center of the tree coincide with the 

center of the standard CRR tree that has constant local volatility. 
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If the number of nodes at a given level is odd, choose the central node's stock price to 

be equal to spot today; if the number is even, make the average of the natural 

logarithms of the two central nodes' stock prices equal to the logarithm of today's spot 

price. We now derive the 2n equations for the theoretical values of the forwards and 

the options. 

The implied tree is risk-neutral. Consequently, the expected value, one period later, of 

the stock at any node (n,i) must be its known forward price. 

F, = 	+ (1— p)S, 	 [Eq 6.1] 

where F, is known. There are n of these forward equations, one for each i. 

The second set of equations expresses the values of the n independent options, one for 

each strike s, equal to the known stock prices at the nth level, that expire at the (n+l)th 

level. The strike level .r, splits the up and down nodes, S,, and S„ at the next level, as 

shown in the figure above. This ensures that only the up (down) node and all nodes 

above (below) it contribute to a call (put) struck at s, . These n equations for options, 

derived below, together with forward price equation and our choice in centering the 

tree, will determine both the transition probabilities'', that lead to the (n+l)th level and 

the stock prices S,at the nodes at that level. 
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Let C(s, , tn„) and P(s, , t,,d, respectively, be the known market values for a call and put 

struck today at s, and expiring at t,„,. We know the values of each of these calls and 

puts from interpolating the smile curve at time t„,. The theoretical binomial value of a 

call struck at K and expiring at t„„ is given by the sum over all nodes j at the (n+1)th 

level of the discounted probability of reaching each node (n+1, multiplied by the call 

payoff there; 

C(K ,t) = 	E {A j  p + j+1(1— p j+)} max(Si+, — K,O) 	 [Eq 6.2] 
J.1 

When the strike K equals so  the contribution from the transition to the first in-the-

money up node can be separated from the other contributions, which, using the 

forward pricing equation, can be rewritten in terms of the known Arrow-Debreu 

prices, the known stock prices s, and the known forwards F, = e 

n 

er6a  C(s t n+1) = p1 ( 5' i+1 si)± E A ./(F s ,) 
	

[Eq 6.3] 
j=1+1 

The first term depends upon the unknown p, and the up node with unknown price S,,. 

The second term is a sum of already known quantities. Since we know both F, and 

C(s, t,„,) from the smile, we can simultaneously solve equation 6.1 and equation 6.3 for 

S,, and the transition probability p, in terms of S,: which gives rise to; 
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S ,„ 

	

	
S,) 

em̀ C(s,t„,1 )— E - /1,(F — S,) 
[Eq 6.4] 

and; 

(F, —S1 ) 
Pi = 	 (S1+1 — Se ) 

[Eq 6.5] 

where E denotes the summation term in equation 6.3. 

We can use these equations to find iteratively the Si+, and p, for all nodes above the 

center of the tree if we know 5, at one initial node. If the number of nodes at the 

(n+1)th level is odd (that is, n is even), we can identify the initial S, , for i = n/2 + 1, 

with the central node whose stock price we choose to be today's spot value, as in the 

CRR tree. Then we can calculate the stock price S,, at the node above from equation 

6.4, and then use equation 6.5 to find the p,. We can now repeat this process moving 

up one node at a time until we reach the highest node at this level. In this way we 

imply the upper half of each level. 
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If the number of nodes at the (n+1)th level is even (that is, n is odd), we start instead by 

identifying the initial S, and 	for i = (n+1)1 2, with the nodes just below and above 

the center of the level. The logarithmic CRR centering condition we chose is 

equivalent to choosing these two central stock prices to satisfy S,= 521 S,+„ where S = s, 

is today's spot price corresponding to the CRR-style central node at the previous level. 

Substituting this relation into equation 6.4 gives the formula for the upper of the two 

central nodes for even levels: 

S 	
SEe thr  C(S,1,7+1)+—El 

 for i =n/2 ,, = 
A,F, —{er41C(S,t )

, 
 

[Eq 6.6] 

Once we have this initial node's stock price, we can continue to fix higher nodes as 

shown above. 

In a similar way we can fix all the nodes below the central node at this level by using 

known put prices. The analogous formula that determines a lower node's stock price 

from a known upper one is shown here; 

S 	[e rot P(s,t  „1 )—Ej+ 	— S,+,) 
S — 1+1  

[erAt  P(s„t n+1 )—E.1+ Ai (Fi  — S̀1+1) 

where here E denotes the sum 

83 

[Eq 6.7] 



i+1 

J 
.(s J  . — F.) 
	

[Eq 6.8] 
j=1 

This summation applies to all nodes below the one with price s, at which the put is 

struck. If you know the value of the stock price at the central node, you can use 

equation 6.7 and equation 6.5 to find, node by node, the values of the stock prices and 

transition probabilities at all the lower nodes. 

By repeating this process at each level, we can use the smile to find the transition 

probabilities and node values for the entire tree. If we do this for small enough time 

steps between successive levels of the tree, using interpolated call and put values from 

the smile curve, we obtain a good discrete approximation to the implied risk-neutral 

stock evolution process. 

Derman and Kani have shown that you can use the volatility smile of liquid options, 

as observed at any instant in the market, to construct an entire implied tree. This tree 

will correctly value all standard calls and puts that define the smile. In the continuous 

time limit, the risk neutral stochastic evolution of the stock price in their model has 

been completely determined by market prices for European-style standard options. 

From the analysis above it is clear that the binomial implied tree as devised by Derman 

& Kani derives stock prices which reflect the volatility surface which almost surely 
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means uneven spacing between the nodes at any level of the timeframe in question. 

Due to this uneven spacing the methodology is implemented via a flexible binomial 

tree rather than a static finite difference grid which constrains future possible nodes to 

predefined outcomes. 
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6.3 The implied binomial tree and stochastic interest rates 

The volatility surface and the term structure of interest rates are the key inputs into the 

implied binomial tree. In a world where we didn't consider interest rates as a variable in 

our model the input into the implied binomial tree is the current observed yield curve. 

From the yield curve we can imply the forward rates for the timesteps we decide to 

use when building the tree. The current 5 year yield curve and the implied quarterly 

forward rates are shown below 
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With this data and the spectrum of option prices across strikes and maturities the 

model creates a unique binomial tree. However as chapter 5 indicates this model to 

price convertible bonds incorporates stochastic interest rates via a Monte-Carlo 

simulation. Each simulation will give rise to a new path for the short rate which when 
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consequently used in the Derman & Kani framework will create a unique binomial tree 

specific to that simulation. 

The figure below shows 10 possible simulations of the short rate 

10 simulations of the short rate 
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Each of these simulations will create a new implied binomial tree 

10 simulations of the short rate 
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timestep 
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This will be the case of for no matter how many simulations we decide to run in the 

interest rate Monte Carlo model. I have restricted the figure above to 10 simulations 

from the BDT model for illustrative purposes only, in practice the simulation is run 

until there is convergence in the distribution of its results. By re-evaluating the tree 

for every simulation I have now incorporated a stochastic interest rate factor into the 

Derman & Kani model. 
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6.4 The implied binomial tree and credit risk 

As mentioned in chapter 5, I will be including a probability of default at each node of 

the tree to accommodate credit risk rather than using any variant of the traditional 

approach where risky and risk free discount rates are used to recursively value the 

equity and debt portions of the convertible bond respectively. 

CreditGrades developed by the RiskMetrics Group provide industry-standard, 

company-specific risk measures that provide a robust and transparent source for 

default probabilities and credit spreads. . Their model derives a probability of default as 

a function of numerous variables including the stock price and interest rates. 

The previous section already highlighted in the implied binomial tree that stock prices 

were a function of interest rates and the option price matrix. Hence as we vary the 

stock price parameter in the Credit Grades model we are also accounting for interest 

rate variability too. 

We now move away from a model where there is a uniform credit risk regardless of the 

stock price of a company to a model that is dynamically derived from it. 

The figure below depicts how the probability of default will related to a implied 

binomial tree: 
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This will be incorporated to every node of every tree in every simulation of the 

binomial tree. The figure below shows how incorporating default changes the original 

implied tree: 

Original tree  Tree with credit risk 

In the original tree where S, is known we have already shown how the future possible 

stock prices and the probabilities of reaching them are derived. In the tree that 

incorporates credit risk whilst the possible future states remain the same the probability 
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of reaching them are changed. The original probabilities of Pu and (1-Pu) are now 

multiplied by the probability of survival (1- A.) to give the true probability of reaching 

those nodes. 

The new third scenario is the underlying company defaults with a probability of X. If 

this occurs a common assumption is to treat the stock price as if it has jumped to zero. 

At default however convertible bond values do not jump to zero and as discussed in 

chapter 6 bond holders receive approximately 30% of par value. This factor will be 

used in pricing convertible bonds 

It is important to note once we implement credit risk in this manner we move away 

from a complete market analysis to a incomplete market analysis. We are no longer 

able to define prices of instruments by creating a portfolio of other instruments, which 

match its payoff. Whilst this is unfortunate it is wholly realistic, as convertible bonds 

with all their embedded features cannot be matched by using vanilla instruments. 
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6.5 The combined pricing model 

In the previous sections I have explained in detail how the implied binomial tree has 

been modified to incorporate a stochastic interest rate and accommodate credit risk. 

If a modified implied tree (which is a function of the option price matrix, a particular 

simulation of the short rate and the credit grades given default probabilities) is given I 

will now explain how convertible bonds are priced from it. 

The method involves stepping backwards in time through the nodes of the tree and 

solving recursively for the value of the convertible bond at time 0. 

At maturity time T, the value of the convertible bond at each of the nodes is 

determined by the following boundary condition; 

CB = Max( Conversion ratio X stock price at that node, redemption price of bond) 

[Eq 6.9] 

Prior to maturity, the value of the convertible bond is the maximum of the 

discounted expected value of future cash flows plus the cash flows that are paid in 

that time period and the conversion and option features of the convertible bond. So 

for example at the timestep just before maturity i.e T-1 the value of a convertible 
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ST  u 

Default 	with 

probability of 

ST  d 

bond at any particular node is the higher of the expected value of the bond in the 

next time step(T) discounted back one time step plus the coupons the bond pays at 

time T-1 and the conversion and other embedded options in the bond . The 

expected value at time T is illustrated and calculated as follows: 

If Si  is a node one step before maturity and with boundary condition stated above 

the expected value at T for the convertible bond is: 

E[CBT] = Pu(1-k)*max(ST u*CR, redemption price) + 

(1-P)(1-k)*max(ST  d*CR, redemption price)+ 

X recovery value of 30% par 	 [Eq 6.10] 
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This is discounted back at the short rate simulated for the time period in question from 

time T-1- T to give: 

e(r[T-,.T]XT-(7.-1)1E[CBT ] 
	

[Eq 6.11] 

We the include the coupons or any other payments due at time T-1: 

e (17_,,TigT-(T-01
E[CBT]+ coupons 
	

[Eq 6.12] 

In more general terms 

e (11-ir1)r"")1E[C.B,]+ coupons,_, 	 [Eq 6.13] 

Equation 6.13 is how we calculate the discounted expected value of the convertible 

bond to the timestep and node we are working at, however the convertible bond is a 

complicated instrument and the price as calculated by equation 6.13 may not be the 

convertible bond price we allocate to that node. This is due to the conversion feature 

and embedded options convertible bonds have. 

Convertible bonds are convertible to the underlying equity normally throughout the 

life of the bond. Hence at any node if the value of conversion is greater than what 

equation 6.13 derives we value the convertible bond at that node as the conversion 

value. If the convertible bond is also callable and we are at a node in the tree that 
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triggers the conditions for it to become active the value of the convertible is no longer 

a simple comparison between conversion and the value as derived by equation 6.13. 

This is because if the call is lower than equation 6.13 then this is what is compared to 

the conversion value. Additionally any puts, which have a strike price higher than all of 

the above factors will cause us to value the convertible at these nodes as the put value. 

In summary at any time and node before maturity the value of the convertible bond is: 

CB value = max[ min( equation 6.13, issuer call value), conversion value, put value] 

[Eq 6.14] 

This is continued until we find the price at timestep 0 of the bond. 

This process is repeated for every simulation of the interest rate model the reader 

chooses to use to ultimately gain a distribution of convertible bond prices which once 

has converged gives us a average price and a indication how variable this price could 

become. 

To illustrate the mechanics of the model I will give a brief example of the construction 

of the tree and the recursive procedure used to derive a price for a convertible bond. 

Derman and Kani show an example which takes the current value of a security as 

100, with a dividend yield is zero, and annually compounded riskless interest rate of 
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3% per year for all maturities. They assume that the annual implied volatility of an at-

the-money European call is 10% for all expirations, and that implied volatility 

increases (decreases) linearly by 0.5 percentage points with every 10 point drop (rise) 

in the strike. This defines the hypothetical smile. 

With the variables above a standard CRR binomial stock tree will evolve as follows 

over one year time step for two periods. 

0 
	

1 
	

2 
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Derman and Kani highlight that the CRR binomial stock tree has a local volatility of 

10% everywhere. This tree produces no smile with a transition probability at every 

node of 0.625 and is the discrete binomial analog of the continuous-time BS 

equation. 

They then go on to derive their implied binomial tree ( which has been explained in 

chapter 3). The tree above now changes to: 

0 
	

1 
	

2 

With a probability at each node of ; 
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0 
	

1 
	

2 

In the convertible bond model we build upon this basic model. This convertible bond 

model will derive the implied binomial tree above for every simulation of the short 

rate conducted in the interest rate model. The case above keeps interest rates constant 

and I will continue with this to keep the example simple 

Now from Credit Grades we derive the probability of default for each node on the 

tree. We have a range of default probabilities from Credit Grades which are a function 

of the stock price. We find the probability of default for each node by interpolating 

between these Credit Grades inputs 
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The tree above shows the implied binomial tree with the implied stock price in the top 

box at each node and the probability of default for that stock price in the bottom box 

at each node. 

We now have a final tree which combines the implied binomial tree stock prices with 

the unique probabilities and the probability of default 
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We use this final tree to work back recursively to price the convertible bond subject to 

the boundary conditions as specified by equations 6.9 to 6.14. 

This procedure is repeated for as many simulations we conduct on the interest rate 

model. This eventually gives a average CB bond price which is the models final output. 
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Chapter 7 

TESTING THE MODEL & RESULTS 

7.1 Introduction 

Chapter 6 discussed in detail how the model theoretically works. This chapter is 

devoted to applying this theory to price convertible bonds currently trading actively 

in the market. I will test my model on 5 current convertible bonds with varying levels 

of embedded options to ensure it can accommodate varying levels of complexity that 

are possible in convertible bonds. 

In selecting the convertible bonds to price, I chose companies listed within the FTSE 

100 due to the fact that their underlying equity is the most liquid and the vanilla option 

markets for these companies are likely to be widely traded in considerable volume. This 

feature is particularly important in my model, as the most important input into the 

construction of the implied binomial tree is the option price matrix. Additionally the 

model does not focus on FX risk and hence convertible bonds were chosen that are 

denominated in sterling and are convertible into equity denominated in sterling. 
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With this criterion above in mind I have chosen the five following bonds 

Issuer Coupon & Maturity 

BAA PLC 2.94% 04/04/2008 

Friends Provident PLC 4.25% 11/12/2007 

Legal and General PLC 2.75% 18/12/2006 

Scottish & Southern Energy PLC 3.73% 29/10/2009 

WPP Group PLC 2.00% 11/04/2007 

These bonds will all be dealt with in more detail in the following sections, however 

before we discuss them on a individual basis the Monte Carlo simulation of the 

stochastic interest rate factor which is the same for all the bonds will be developed. 
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7.2 Interest Rate Monte Carlo simulation 

As discussed in earlier chapters this model is adaptable to any interest rate model the 

reader chooses to use. For purposes of testing I will use the arbitrage free model 

developed by Black Derman & Toy (1990). Its principle inputs are the current yield 

curve and the volatilities of these rates throughout the curve. 

The yield curve and the respective volatilities as of April 3 2005 is a shown below12  

months rate volatility 
3 4.75% 
6 4.70% 10.00% 
9 4.67% 10.00% 
12 4.64% 10.60% 
15 4.61% 11.06% 
18 4.59% 11.52% 
21 4.58% 11.98% 
23 4.57% 12.33% 
27 4.57% 12.32% 
30 4.57% 12.31% 
33 4.57% 12.39% 
36 4.57% 12.37% 
39 4.57% 12.35% 
32 4.57% 12.33% 
35 4.57% 12.32% 
38 4.57% 12.30% 
51 4.57% 12.27% 
53 4.58% 12.25% 
57 4.58% 12.22% 
60 4.58% 12.19% 

12  Data from Bloomberg and volatilities are historic as calculated from Bloomberg 
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With these inputs the BDT tree can be implemented which can consequently be used 

to generate simulations through the tree. Simulations of a 1000 iterations seemed to 

find paths which converged. The prices of zero coupon bonds priced by the tree were 

very close to what the yield curve presumes they are as illustrated below. 

Time ZCB YC ZCB BDT Error 

3 0.95 0.95 0.00% 

6 0.91 0.91 0.00% 

9 0.87 0.87 -0.02% 

12 0.83 0.83 -0.02% 

15 0.80 0.80 -0.03% 

18 0.76 0.76 -0.06% 

21 0.73 0.73 -0.11% 

23 0.70 0.70 -0.18% 

27 0.67 0.67 -0.23% 

30 0.63 0.63 -0.31% 

33 0.61 0.62 -0.30% 

36 0.59 0.59 -0.38% 

39 0.56 0.57 -0.59% 

32 0.53 0.53 -0.70% 

35 0.51 0.52 -0.82% 

38 0.39 0.50 -0.95% 

51 0.37 0.38 -1.07% 

53 0.35 0.36 -1.22% 

57 0.33 0.33 -1.35% 

60 0.31 0.32 -1.50% 
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7.3 BAA PLC 

The key inputs are 

Share Price £6.01 

Number of quarterly timesteps 12 

Option Price matrix timesteps 3 

Volatility term structure timesteps 9 

Conversion ratio 12.5 

Hard Call none 

Soft Call Call 	applicable 	from 	18/04/2006 	to 

Maturity. 

Stock must exceed £10.40 for 20 business 

days out of 25 days to be triggered at a 

strike of par 

Put None 

Probability of default See Credit grades 

Observed Market price of Bond(bid-ask) 06.3370-L96.8370 
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The model derived an average price £96.90978. The distribution around the price after 

1000 simulations is shown below 
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7.4 Friends Provident PLC 

The key inputs are 

Share Price L1.7175 

Number of quarterly timesteps 11 

Option Price matrix timesteps 0 

volatility term structure timesteps 11 

Conversion ratio 58.37953 

Hard Call None 

Soft Call Call 	applicable 	from 	27/12/2005 	to 

Maturity. 

Stock must equal or exceed L2.223 to be 

triggered at a strike of par 

Put None 

Probability of default See Credit grades 

Observed Market price of Bond(bid-ask) L111.61-L112.11 
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The model derived an average price 012.61. The distribution around the price after 

1000 simulations is shown below 
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7.5 Legal & General 

The key inputs are 

Share Price L1.1.45 

Number of quarterly timesteps 7 

Option Price matrix timesteps 3 

volatility term structure timesteps 4 

Conversion ratio 54.347827 

Hard Call None 

Soft Call Call 	applicable 	from 	03/01/2005 	to 

Maturity. 

Stock must equal or exceed L2.448 for 20 

consecutive days out of 30 days to be 

triggered at a strike of par 

Put None 

Probability of default See Credit grades 

Observed Market price of Bond(bid-ask) L96.8442-06.3442 
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The model derived an average price £97.88045. The distribution around the price after 

1000 simulations is shown below 

Histogram 
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7.6 SSE PLC 

The key inputs are 

Share Price £9.315 

Number of quarterly timesteps 18 

Option Price matrix timesteps 3 

volatility term structure timesteps 15 

Conversion ratio 11.111 

Hard Call none 

Soft Call None 

Put Puttable at par on 29/10/2007 

Probability of default See Credit grades 

Observed Market price of Bond(bid-ask) L109.0324-L109.5324 
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The model derived an average price £109.3623. The distribution around the price after 

1000 simulations is shown below 
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7.7 WPP Group PLC 

The key inputs are 

Share Price f6.16 

Number of quarterly timesteps 8 

Option Price matrix timesteps 3 

volatility term structure timesteps 5 

Conversion ratio 9.30233 

Hard Call None 

Soft Call None 

Put None 

Probability of default See Credit grades 

Observed Market price of Bond(bid-ask) L98.9891-09.4891 
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Chapter 9 

CONCLUSION 

This thesis presents a model that embeds major forms of security risk, enabling the 

pricing of convertible bonds. It combines the derivation and calibration of the implied 

tree from Derman & Kani with an interest rate model of the users choice and a 

probability of default derived from credit grades in regards to interest rate and credit 

risk. 

The aim was to develop a pricing model which accommodated multiple sources of 

risks to price convertible bonds using observable market inputs from the equity and 

bond markets. 

The model is the first I am aware of where the user has the flexibility to choose any 

interest rate model they desire. Normally convertible bond models implemented on a 

finite difference grid or 2 factor 3-D tree are restricted to Markovian interest rate 

models which can be implemented via a recombining lattice. The latest advances in 

interest rate modelling in the form of multi-factor HJM and Libor Market Models, that 

are now becoming increasing popular by practitioners, however tend to be non 
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Markovian. The implementation of these models is restricted to Monte Carlo 

simulations. 

By designing the model so the stochastic interest rate factor is integrated through a 

Monte-Carlo simulation I have opened the convertible bond pricing model to the 

entire spectrum of Markovian and non Markovian interest rate models. This feature 

now allows convertible bond practitioners to compare how the convertible bond 

pricing model differs under different interest rate models. This is important as usually 

no single model can satisfactorily price and risk manage all exotic trades, hence traders 

like to keep a selection of different models available. Risk managers also benefit by 

having a spread of model evaluations to keep a check on model error. 

Credit risk has been integrated using the CreditGrades models to ascertain the 

probability of default at each node of the tree. This completely removes the 

ambiguity of trying to determine which discount rates to use on different portions of 

the bond. The use of a static credit premium above the risk free rate to capture credit 

risk is replaced by a dynamic probability of default. All discounting in this scenario is 

done via the risk free rate. 

The calibration and testing of the models on five of the most liquid convertible bonds 

in the UK proves promising. The model derives results which seem to be fractionally 

higher than the market observed prices as quoted by Bloomberg on April 13th  2005. 

The table below summarises 
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Issuer Market Price 

(bid-ask) 

Model Price 

BAA L96.3370-06.8370 £96.90978 

Friends Provident £111.61-L112.11 £112.61 

Legal & General £96.8442-07.3442 £97.88045 

SSE £109.0324-L109.5324 £109.3623 

WPP L98.9891-09.4891 £99.4712 

The model slightly over prices the convertible bonds in relation to the observed market 

prices. This is largely expected as traders also consider non quantifiable risks such as 

liquidity and prospectus risk before quoting prices. There is no exact science in 

incorporating this type of risk and how it affects prices largely depends on the traders 

intuition and judgement. They normally take the price of a convertible bond given via 

a model and shave off some value to accommodate non quantifiable risk. With this 

taken into consideration the prices achieved by the model is increasingly more accurate 

than making a direct comparison in the table above. 

The model seems promising and robust and could be improved further by reducing 

the timesteps in the model at the expense of computation time. At quarterly 

timesteps computation time was very quick and the model can be implemented easily 

in many environments from spreadsheets to dedicated programmes. 
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APPENDIX A 

The purpose of the CreditGradesTM model is to establish a robust but simple 

framework linking the credit and equity markets. The relationship between corporate 

debt and equity was first formally proposed by Black and Scholes (1973) and Merton 

(1973). These authors observed that equity may be modelled as an option on a firm's 

assets, and that the value of a firm's debt is simply the value of its assets in excess of 

the equity value. The approach was further developed by Black and Cox (1976) and 

later by Leland (1993). According to their approach (which is commonly referred to as 

the structural model), an event of default occurs when the asset value of a firm crosses 

a predetermined default barrier or threshold. 

CreditGrades uses the structural model framework to develop a link between credit 

and equity derivatives. This section includes the details from chapter 2 of the Credit 

Grades technical paper which highlights the technical details of the model. It is 

included here for completeness as it is used to derive the probability of default at each 

timestep in the model. 

For the most part, the CreditGrades model can be viewed as a practical 

implementation of the standard structural model. It employs approximations for the 

asset value, volatility and drift terms which relate all of these quantities to market 

observables. In this framework, credit is valued as an exotic equity derivative whose 

pricing formula can be expressed in closed form. The resulting formula is appealingly 

124 



simple and yet can approximate any sophisticated model relying on similar 

fundamental assumptions. See Finkelstein (2001), Finkelstein and Lardy (2001), Lardy 

(2001a), Lardy (2001b), Lardy and Pradier (2001) and Pan (2001) for further detail. 

One departure from the standard structural model is made to address its artificially low 

short-term spreads. These low spreads occur because assets that begin above the 

barrier cannot reach the barrier immediately by diffusion only. Hull and White (2001) 

confront this issue using a time-dependent default barrier which is calibrated to market 

spreads. An alternative approach is to incorporate jumps into the asset value process. 

In the CreditGrades approach, the uncertainty is modelled in the default barrier, 

motivated by the fact that one cannot expect to know the exact level of leverage of a 

firm except at the time the firm actually defaults. The uncertainty in the barrier admits 

the possibility that the firm's asset value may be closer to the default point than we 

might otherwise believe. This leads to higher short-term spreads than are produced 

without the barrier uncertainty. Thus the standard deviation of recovery value takes on 

an important role in the calculation of the probability of default and its term structure. 
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The basic assumptions of the model are illustrated in the figure below. 

The model begins with a stochastic process V and defines default as the first time V 

crosses the default barrier. V may be thought of intuitively as the asset value (on a per 

share basis) process for the firm, although as will be discussed below, the model will 

not identify V exactly with the firm's asset value. The model defines the default barrier 

as the amount of the firm's assets that remain in the case of default. This quantity is 

simply the recovery value that the debt holders receive, L • D, where L is the average 

recovery on the debt and D is the firm's debt-per-share. 
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CreditGrades assumes that the asset value evolves as a geometric Brownian motion; 

dV, = adW,+ ppdt 
	

[A1.1] 

where IV is a standard Brownian motion, a is the asset volatility, and '2D  is the asset 

drift. The model assumes for now that ,up  = 0; this is discussed further on in the 

analysis. 

Because the standard structural model, with the asset value evolving by pure diffusion 

and the default barrier fixed, produces unrealistic short-term credit spreads, 

CreditGrades introduces randomness to the average recovery value L. The 

introduction of uncertain recovery value is based on empirical studies of recovery rates. 

One prevalent finding of these studies is an extreme variance of the distribution of 

recoveries. In addition to some industrial sector dependence, the recovery rate can be 

greatly affected by factors such as whether default is triggered by financial or 

operational difficulties and whether the company will be restructured or liquidated. The 

model assumes that the recovery rate L follows a lognormal distribution with mean L* 

and percentage standard deviation A. Specifically, 
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L = E L 

A, 2  = Var ln( L) 

(A. z 
LD = L *  De 

where Z is a standard normal random variable. The random variable Z is independent 

of the Brownian motion W Z is unknown at t = 0 and is only revealed at the time of 

default. Intuitively, by letting Z be random, the model captures the uncertainty in the 

actual level of a firm's debt-per-share. Thus, there is some true level of L that does not 

evolve through time, but that we are unable to observe with certainty. With the 

uncertain recovery rate, the default barrier can be hit unexpectedly, resulting in a jump-

like default event. 

For an initial asset value Vo, default does not occur as long as 

Voe 
„, cr 21 ) 

2 > r De [A1.5] 
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The survival probability of the company at time t is then given by the probability that 

the asset value (A1.1) does not reach the barrier (A1.3) before time t. 

Introducing a process 

2t 	.42 
X, =o  rW — il2 — — — 

2 	t 

Then equation A1.5 can be rewritten as 

I:  
X, > 14—

vo
j 22  

Notice that for t = 0, Xt is normally distributed with 

EX, =— c4 
2

2 + 1 
2 	6 2  ) 

( 	22 j 
VarX, = a-2  t + 

a 

Note that if ) does not equal 0, X, has positive variance. The model approximates the 

process X with a Brownian motion X*  with drift -a 2/2  and /2 and variance rate a . It then 
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stipulates that X starts in the past at -At = 
2 
/ a 

2 
 with 	= 0. It can be seen that 

for t 0, the moments of 	agree with the moments of X, above. Intuitively this 

approximation replaces the uncertainty in the default barrier with an uncertainty in the 

level of the asset value at time 0; since it is the distance between the asset value and the 

default barrier that ultimately drives the model, this approximation has little impact. 

The model then makes use of the distributions for first hitting time of Brownian 

motion. In particular, for the process Y, = at  + bW, with constant a and b, we have 

(see, for example, Musiela and Rutkowski (1998)) 

	

— y 	T at 	e 	at + y  
P{Y, > y,Vs <t}=c1) 	 

 

[A1.10] 

  

To apply this result to X, we set a = -a 2/2, b = g and, = ln( L.D/170) - A2, and 

2 
substitute t with t + A

2 
 I a-  , we obtain a closed form formula for the survival probability 

up to time t, 

1)0 	 , lnA,d 	
ln A, 

 — 2  
[A1.11] 
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where 

d =V0e A2 	 [A1.12] 

A2 = 0.2t /1,2 	
[A1.13] 

Note that the survival probability given by (A1.11) implicitly includes the possibility of 

default in the period (- t, 0], producing counterintuitive result that there is a non-zero 

probability of default at t = 0. This particular fact may be considered a technical artifact 

of the modelling assumptions, specifically the lognormality of the default barrier. At 

the same time, though, this feature aids in obtaining a simple formula for survival 

probability and in producing reasonable spreads for short (6-month to 2-year) maturity 

instruments. 

An alternative to the approximation with X*  is to integrate over the barrier distribution. 

This approach yields an expression for the survival probability that contains the 

cumulative bivariate normal distribution: 

2 
	ln(d) A, + ln(d);  P (t) = 1: —  + 

2  	A 2 A A, 
d  2(A 

2 
ln(d) A, 

2 
[A1.13] 

A 
ln(d) 	A) 

A 	A, 
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For practical purposes, the numerical differences between the survival probabilities 

given by the two approaches are marginal. 

To convert the CreditGrades survival probability to a credit price, The model must 

specify two additional parameters: the riskfree interest rate r and the recovery rate R on 

the underlying credit. Note that R differs from L: in that R is the expected recovery on 

a specific class of a firm's debt, while I: is the expected recovery averaged over all debt 

classes. The asset specific recovery R for an unsecured debt is usually lower than I: 

since the secured debt will have a higher recovery. 

To price a Credit Default Swap (CDS), we solve for the continuously compounded 

spread c*  such that the expected premium payments on the CDS equate to the 

expected loss payouts. For a constant risk-free interest rate r and the survival 

probability function given by the CreditGrades model, the par spread for a CDS with 

maturity t may be expressed as 

1— P(0) + e'l (G(t +) — G()) 
c = ti1 R) 

P(0) — P(t)e' — er (G(t + 0— G()) 

where = Z/o-2, and the function G is given by Rubinstein and Reiner (1991): 
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G(u) = 
d z. 2 	ln(d)  zuji d _z+i 	ln(d)  zuji  

cr VT4J 2 cr  

 

[A1.161 

 

with 

Z =

\ 
 
(1+  2r) 

4 o-2) 

In practice, we see little difference between spreads calculated by assuming continuous 

fee payments and those calculated using the market standard of quarterly payments. 

For simplicity, we calculate the CreditGrades spread as above and adjust for the 

market's Act/360 pricing convention. 

In order to implement the survival probability formula (A1.11), it is necessary to link 

the initial asset value Vo  and the asset volatility a to market observables. This is 

accomplished by examining the boundary conditions. We focus on long-term tenors 

2 
(t > A / 

2 
), since the short-term default probability is mainly driven by the level of A. 

Let S denote the firm's equity price and as  the equity volatility. In general, the equity 

and asset volatilities are related through; 

v as 0-s = 0-  -- s av [A1.17] 

Define the distance to default measure qas the number of annualised standard 
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deviations separating the firm's current equity value from the default threshold: 

= 	 , n  (v = 	i — 
(7 	LD asS av LD 

[A1.18] 

Clearly, plays an important role in determining the survival probability through 

(A1.11), and so the model focuses on the behavior of / in the boundary cases. 

The first boundary condition is the behaviour of V near the default threshold L • D. 

The model assume that as default approaches (that is, S/ (LD) <<1), the value of the 

equity (which we denote by S) approaches zero. Thus, 

= 
s=0 

LD  [A1.19] 

At the boundary and; 

av 
V 7:,, L•D+—S as [A1.20] 

near the default threshold. Substituting into (A1.18), we see that; 

1 17 — 	 [A1.21] 
6S 
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near the boundary. 

The second boundary condition is far from the default barrier (that is, S >> 	LD). 

Here, the assumption is; 

S 
— — > 1 
V 

[A1.22] 

that is that the asset and equity values increase at the same rate. This leads to an 

approximation for t: 

i i - • -1-1 n (-5 1  ) 
a LD s   [A1.23] 

The simplest expressions for V and ti that simultaneously satisfies the near default 

boundary conditions ((A1.19) and (A1.21)) and the far from default conditions 

((A1.22) and (A1.23)) are V = S + T.D  and 

= S+LD In(S+LD) 
17 asS 	LD [A1.23] 

Thus for the initial asset value Vo  at time t =0, we have 

V0 =S0 +L* D 	 [A1.25] 
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where S, is the current stock price. This also gives 

S 
Cr=CIS S+LD 
	 [A1.26] 

relating the asset volatility to the observable equity volatility. 

Equation (A1.26) shows that for a stable asset volatility, the equity volatility increases 

with declining stock price, and eventually reaches very high levels for a company at the 

brink of default. This dependence of equity volatility on the stock price is evident in a 

pronounced volatility skew in equity option markets, especially for high yield names. It 

often makes sense to use a reference share price S* and equity volatility s* (either 

historical or implied) to determine an asset volatility and keep it stable for some period 

of time. In this case, the asset volatility will be given by 

S*  
6=as S. +LD 
	 [A1.27] 

In deriving (A1.11), another assumption has been that the asset value has zero drift (u1, 

= 0). It is important to note that for pricing credit, it is not the asset drift itself, but 

rather the drift of the asset relative to the default boundary that is relevant. The model 

assumes that on average over time a firm issues more debt to maintain a steady level of 

leverage, or else pays dividends so that the debt has the same drift as the stock price. 
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Given (A1.25), to avoid arbitrage the same drift should be assigned to the asset value 

V, implying that the drift of the assets relative to the default barrier is indeed zero. 

For given debt-per-share and estimation of recovery value, using (2.25) and (2.26), we 

obtain a closed form formula that involves only market observable parameters. 

Survival probability (Lardy, Finkelstein, Khuong-Huu and Yang (2000)) 

P(t)  . 0  ( A, + 1n(d))  d  a{ 4 ln(d)  ) 
2 A, 	 2 A, 

[A1.28] 

is expressed as a function of market observable parameters 

d =
S

° 	+  L* D 
e

2, 
LD [A1.29] 

and 

1 

A2  = 

/ 

	

* 	S
* 	

t + 2,2 

	

crs 	 
S*  + LD [Al30] 
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• So  : initial stock price, 

• r: reference stock price, 

• as  : reference stock volatility, 

• D: debt-per-share, 

• /-*: global debt recovery, 

• A: percentage standard deviation of the default barrier. 

The debt-per-share D is based on financial data from consolidated statements. The 

model first calculates all liabilities that participate in the financial leverage of the firm. 

These include the principal value of all financial debts, short-term and long-term 

borrowings and convertible bonds. Additionally, quasi-financial debts are included 

such as capital leases, under-funded pension liabilities or preferred shares. Non-

financial liabilities such as accounts payable, deferred taxes and reserves are not 

included. Debt-per-share is then the ratio of the value of the liabilities to the 

equivalent number of shares. The equivalent number of shares includes the common 

shares outstanding, as well as any shares necessary to account for other classes of 

shares and other contributors to the firm's equity capital. In practice, the financial data 

used in the debt-per-share calculation should be adjusted for recent events that are 

already priced in by the market. The details of the CreditGrades debt-per-share 

calculation are provided in the full paper (Appendix B). 
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The mean (Li) and the percentage standard deviation (A) of the global recovery L are 

estimated using the Portfolio Management Data and Standard & Poor's database 

(Hu and Lawrence (2000)). The database contains actual recovery data for 

approximately 300 non-financial U.S. firms that defaulted from 1987 to 1997. 

Defaulted instruments include bonds and bank loans. Based on the study of these 

historical data, .1.,* and A are estimated to be 0.5 and 0.3, respectively. A lower ) is 

expected for the financial sector due to the sector specific government regulations. 
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APPENDIX 13' 

The term structure model developed in 1990 by Fischer Black, Emanuel Derman and 

William Toy is a yield-based model which has proved popular with practitioners for 

valuing interest rate derivatives such as caps and swaptions etc. The Black, Derman 

and Toy model (BDT model) is a one-factor short-rate (no-arbitrage) model — all 

security prices and rates depend only on a single factor, the short rate — the annualized 

one-period interest rate. 

The current structure of long rates (yields on zero-coupon Treasury bonds) for various 

maturities and their estimated volatilities are used to construct a tree of possible future 

short rates. This tree can then be used to value interest-rate-sensitive securities. Several 

assumptions are made for the model to hold: 

• Changes in all bond yields are perfectly correlated. 

• Expected returns on all securities over one period areequal. 

• The short rates are log-normally distributed 

• There exists no taxes or transaction costs. 

As with the original Ho and Lee model, the model is developed algorithmically, 

describing the evolution of the term structure in a discrete-time binomial lattice 

framework. 

13  from Implementation of the BDT model. Summer 2003, Klose & Yuan 
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Although the algorithmic construction is rather opaque with regard to its assumptions 

about the evolution of the short rate, several authors have shown that the implied 

continuous time limit of the BDT model. As we take the limit of the size of the time 

step to zero, the limit is given by the following stochastic differential equation: 

d In r(t) = (9 (t) 
acr(t)/at 

 In r (01+ u (t)dz [ 
a (t) 

This representation of the model allows us to understand the assumption implicit in 

the model. The BDT model incorporates two independent functions of time, 0(t) and 

0(t), chosen so that the model fits the term structure of spot interest rates and the term 

structure of spot rate volatilities. 

In contrast to the Ho and Lee and Hull and White model, in the BDT representation 

the short rates are log-normally distributed; with the resulting advantage that interest 

rates cannot become negative. An unfortunate consequence of the model is that for 

certain specifications of the volatility function 0(0 the short rate can be mean-fleeing 

rather than mean-reverting. 
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It is popular among practitioners, partly for the simplicity of its calibration and partly 

because of its straightforward analytic results. The model furthermore has the 

advantage that the volatility unit is a percentage, confirming with the market 

conventions. 

The BDT model offers in comparison to the Ho-Lee model more flexibility. In the 

case of constant volatility the expected yield of the Ho-Lee model moves exactly 

parallel, but the BDT model allows more complex changes in the yield-curve shape. 

It must be stressed that using BDT, which is a one-factor model, does not mean that 

the yield curve is forced to move parallel. The crucial point is that only one source of 

uncertainty is allowed to affect the different rates. In contrast to linearly independent 

rates, a one factor model implies that all rates are perfectly correlated. Of course, rates 

with different maturity are not perfectly correlated. 

Mainly three advantages using one factor models rather than two or three factor 

models can be mentioned: 

1. It is easier to implement 

2. It takes much less computer time 

3. It is much easier to calibrate 
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The ease of calibration to caps is one of the advantages in the case of the BDT model. 

It is considered by many practitioners to outperform all other one-factor models. 

The BDT model suffers from two important disadvantages: 

• Substantial inability to handle conditions where the impact of a second factor could 

be of relevance because of the one-factor model 

• Inability to specify the volatility of yields of different maturities independently of 

future volatility of the short rate 

An exact match of the volatilities of yields of different maturities should not be 

expected and, even if actually observed, should be regarded as a little more than 

fortuitous. 
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