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Abstract 

The research reported in this thesis focuses on the assessment of modelling tech-
niques for the sub-grid scale quantities incorporated in Large Eddy Simulations (LES) 
of turbulent reacting flows. 

Direct Numerical Simulation (DNS) has been utilised for the model free solution 
of methane combustion in a turbulent flow field, i.e. a time evolving planar jet and 
also in decaying homogeneous and isotropic turbulence. The algorithm uses a high-
accuracy pseudo-spectral method for the solution of the transport equations for the 
mixture fraction and the momentum. A finite difference methodology is used for the 
solution of the reacting scalars. The numerical algorithm has been parallelised in order 
to meet the computational power demands of the simulations. Finally, a four step 
chemistry mechanism has been used to capture extinction and re-ignition in methane 
combustion. 

The resulting DNS database is used for the evaluation of micromixing modelling 
in LES. In particular, zero equation models for the scalar dissipation rate and the scalar 
variance are compared to the results from the DNS simulations. Both quantities serve 
as a coupling between the LES flow field solution and standard mixture fraction based 
combustion modelling approaches. In addition, the methane combustion simulation is 
used for the investigation of extinction and re-ignition modelling by the Conditional 
Moment Closure (CMC) methodology. Doubly conditioned CMC equations have been 
introduced to model the local extinction and re-ignition phenomena, which cannot 
be captured by singly conditioned CMC. In this study, the doubly conditioned CMC 
equations are solved, and the performance of this methodology is tested and compared 
to the singly conditioned CMC and DNS results. 
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Nomenclature 

Roman symbols 

Symbol 	Description 

A 	 Pre-exponential factor 

a 	 Proportionality of the model predictions 

C 	 Model constant 

C p 	 Constant pressure heat capacity 

c 	 Correlation of the model predictions 

D Molecular diffusion coefficient 

Ea 	 Activation energy 

Ek 	 Turbulent kinetic energy spectrum 

e 	 Efficiency, Energy 

G LES filter function 

11 	 Enthalpy 

hi 	 Total enthalpy 

hs 	 Sensible enthalpy 

J 	 Diffusion in conditional space 

K Arrhenius forward constant 

k 	 Turbulent kinetic energy 

Z 	 Leonard term 



L Jet width 

Large turbulent scales 

M 	 Number of species, timesteps 

M 	 Model term 

N 	 Square of the mixture fraction gradient, number of nodes 

NL 	 Non linear terms vector 

X 	 Spectral solver unknowns 

P Probability Density Function 

P Probability 

p 	 Pressure 

Q 	 Heat release 

Qk 	 Conditional average 

R 	 Ideal gas constant 

R 	 Autocovariance 

R, 	 Two-point correlation 

S Rate of strain 

s 	 Mass stoichiometry ratio 

T 	 Temperature 

Ta 	 Activation temperature 

t 	 Time 

u, v, w 	 Velocity 

✓ Diffusion velocity 

W 	 Molecular weight 

X 	 Species molar concentration 

x, y, z 	 Spatial coordinates 

xi, yj, Zk 	 Spatial coordinates on the DNS mesh 

Xi , Y1, Zk 	 Spatial coordinates on the filtering mesh 

Y 	 Species mass fraction 

ZA, ZB 	 Control points transverse coordinate 
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Zi Z2 	 Shear layer transverse positions 

Greek symbols 

Symbol 	Description 

a 	 Thermal diffusion coefficient 

Kronecker's delta 

50.9 	 Shear layer thickness 

Shear layer momentum thickness 

A 	 Filter width 

E Dissipation of turbulent kinetic energy 

Enthalpy sample space, similarity transverse distance 

Kolmogorov length scale, mixture fraction sample space 

0 	 Non-dimensional enthalpy 

Wavenumber magnitude 

K Wavenumber vector 

A 	 Integral length scale 

AT 	 Taylor length scale 

A 	 Thermal conductivity coefficient 

Viscosity 

✓ Stoichiometry coefficient, kinematic viscosity 

Mixture fraction 

II 	 Dynamic pressure 

p 	 Density, autocorelation function 

Two-point corelation coefficient 

Timescale 

Stress tensor 

(I) 	 Arbitrary scalar field 
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X 	 Scalar dissipation rate 

/if 	 Fine-grained Density Function 

w 	 Source term 

to 	 Vorticity 

Superscripts 

Symbol 	Description 

* 	 Non dimensional 

Turbulent fluctuation 

0 
	

Initial stream 

b 
	

Backward 

f 
	

Forward 

Subscripts 

Symbol 	Description 

0 	 Reference value 

ad 	 Adiabatic 

d Diffusion 

F 	 Fuel 

0 	 Oxidiser 

P Product 

r 	 Reaction, Resolved 

S Smagorinsky 

T 	 Taylor scale 
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t 	 Turbulent 

Abbreviations 

Symbol 	Description 

CFFT 	 Complex Fast Fourier Transform 

CMC 	 Conditional Moment Closure 

DPP 1 	 Discrete Fourier Transform 

DNS 	 Direct Numerical Simulation 

DCMC 	Doubly Conditioned Moment Closure 

FDF 	 Fine-grained Density Function 

1-1.1 	 Fast Fourier Transform 

LES 	 Large Eddy Simulation 

MMC 	 Multiple Mapping Conditioning 

NS 	 Navier Stokes 

PDF 	 Probability Density Function 

RFFT 	 Real Fast Fourier Transform 

RANS 	 Reynolds Averaged Navier-Stokes 

SGS 	 Sub-Grid Scale 

SCMC 	 Singly Conditioned Moment Closure 

Operators 

Symbol 	Description 

Reynolds average 

Favre Reynolds average 

LES filter 
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........ 

Favre filter 

Test filter 

Favre test filter 

Conditional average 

Conditional filtering 

Conditional Favre filtering 

Double conditional average 

Double Conditional filtering 

Double Conditional Favre filtering 

Averaging over homogeneous directions 

Non-dimensional numbers 

Symbol 	Description 

Da 	 Damkohler number 

Re 	 Reynolds number 

Sc 	 Schmidt number 

Pr 	 Prandtl number 

St 	 Strouhal number 

12 



Contents 

Abstract 

Acknowledgements 

Nomenclature 

3 

4 

6 

1 Introduction 26 

2 Background 32 

2.1 Governing equations 	  32 

2.2 Turbulence 	  37 

2.2.1 	The turbulent kinetic energy spectrum 	  41 

2.2.2 	The spectral distribution of a scalar quantity 	  43 

2.3 Chemical kinetics 	  44 

2.4 Flame structure 	  47 

2.4.1 	Flame thickness 	  53 

2.5 Direct Numerical Simulation in CFD 	  56 

2.5.1 	Computational cost of DNS 	  56 

2.5.2 	Review of DNS 	  60 

2.6 Modelling methodologies for turbulence in CFD 	  66 

2.6.1 	Reynolds Averaged Navier-Stokes equations (RANS) 	 66 

2.6.2 	Large Eddy Simulation 	  68 

2.7 Sub grid scale modelling in LES 	  73 

2.8 LES of turbulent reacting flows 	  77 

2.8.1 	Flamelet modelling 	  77 

13 



3 

	

2.8.2 	Micromixing modelling in LES 	  

	

2.8.3 	Conditional Moment Closure 	  

	

2.8.4 	Double Conditioning 	  

The structure of the DNS code 

80 

88 

95 

103 

3.1 Governing equations 	  104 

3.1.1 	Non-dimensionalised transport equations 	  105 

3.2 The numerical method 	  106 

3.2.1 	Re-formulation of the governing equations 	  107 

3.2.2 	The Fourier transform of the flow field 	  108 

3.2.3 	Spatial representation 	  11 l 

3.2.4 	Initial and boundary conditions 	  113 

3.2.5 	The time advancement 	  113 

3.2.6 	Computer implementation 	  115 

3.3 The parallel pseudospectral algorithm 	  117 

3.3.1 	Parallelisation technique 	  118 

3.3.2 	Evaluation of the parallelisation 	  121 

4 The numerical experiments 124 

4.1 DNS of reacting mixing in homogeneous isotropic turbulence 	 126 

4.1.1 	Initialisation of the velocity field 	  127 

4.1.2 	Initialisation of the mixture fraction field 	  127 

4.1.3 	The reaction mechanism 	  128 

4.1.4 	The initialisation of the reacting scalar fields 	  130 

4.2 Test cases 	  132 

4.3 Combustion in homogeneous isotropic turbulence 	  137 

4.4 DNS of mixing in a planar jet 	  137 

4.4.1 	Initial conditions 	  138 

4.4.2 	Cases studied 	  141 

4.4.3 	Velocity field 	  141 

4.4.4 	Spectra and turbulence scales 	  146 

4.5 DNS of reacting planar jets 	  147 

14 



4.5.1 	Cases studied 	  

4.6 	Summary 	  

5 	"A priori" tests of LES models for the scalar mixing 

148 

151 

156 

5.1 The filtered DNS flow field 	  157 

5.1.1 Energy resolution 	  159 

5.1.2 Double filtering 	  162 

5.1.3 Spatial derivatives and commutation error 	  163 

5.2 Scalar variance transport 	  164 

5.3 Micromixing modelling 	  168 

5.3.1 Scalar dissipation rate modelling 	  169 

5.3.2 Comparison of the gradient and the dynamic models and dis- 

cussion of their performance 	  173 

5.3.3 Scalar variance modelling 	  177 

5.3.4 Comparison of the gradient and the similarity models of scalar 

variance and discussion of their performance 	  180 

5.4 

5.5 

Effect of the differentiation error on SGS scalar dissipation rate modelling182 

Summary  	183 

6 CMC modelling of extinction and re-ignition in turbulent non-premixed 

flames 185 

6.1 Singly conditioned CMC 	  185 

6.2 Doubly conditioned CMC 	  189 

6.3 Comparison of the SCMC and DCMC predictions 	  193 

6.4 Summary 	  197 

7 Closure 198 

7.1 Summary 	  198 

7.2 Suggestions for future work 	  199 

7.3 Conclusion 	  200 

15 



List of Tables 

	

2.1 	Estimations of CPU time, memory, and number of nodes for a DNS, 

as a function of the turbulent Reynolds number 	  59 

	

2.2 	LES filter functions [26]   	70 

	

3.1 	Memory usage per processor, and average CPU time per time step for 

the two test simulations 	  121 

	

4.1 	The parameters of the reduced chemistry mechanism for CH4  combus- 

tion. 	  130 

	

4.2 	The parameters of the test cases HReactive-T1, HReactive-T2, and 

HReactive-T3. 	  133 

	

4.3 	The parameters of the test cases HReactive-A, HReactive-B, HReactive-C 

and HReactive-D. 	  138 

	

4.4 	The parameters of the planar jet mixing cases JMixing-A and JMixing-B.142 

	

4.5 	The parameters of the test cases JReactive-A, ]Reactive-B, JReactive-C 

and JReactive-D. 	  150 

	

5.1 	The values of the correlation coefficient c for the predictions of the 

gradient model and the corresponding proportionality coefficient a of 

the the linear interpolation    172 

	

5.2 	The values of the correlation coefficient c for the predictions of the 

dynamic model and the corresponding proportionality coefficient a of 

the the linear interpolation 	  172 

16 



5.3 The values of the correlation coefficient c for the predictions of the 

gradient model for the scalar variance and the corresponding propor- 

tionality coefficient a of the the linear interpolation 	  178 

5.4 The values of the correlation coefficient c for the predictions of the 

similarity model I for the scalar variance and the corresponding pro- 

portionality coefficient a of the the linear interpolation. 	  179 

5.5 The values of the correlation coefficient c for the predictions of the 

similarity model II for the scalar variance and the corresponding pro- 

portionality coefficient a of the the linear interpolation. 	  179 

17 



List of Figures 

	

2.1 	Turbulent kinetic energy spectrum and turbulent length scales. Adapted 

from Tennekes and Lumley [25] 	  43 

2.2 Three dimensional energy spectrum for a scalar quantity. Adapted 

from Tennekes and Lumley [25] 	  45 

	

2.3 	(a) Topology of a premixed flame. (b) Topology of a non-premixed flame 48 

	

2.4 	Distribution of temperature and reactants across a flame front in a dif- 

fusion flame. 	  50 

	

2.5 	Distribution of temperature and reactants along the mixture fraction 

space. 	  54 

	

2.6 	Diffusion and reaction lengths in a non premixed reaction zone. . 	55 

	

2.7 	The shapes of the filtering functions and the transfer functions 	70 

	

2.8 	The filtering and the discretisation of a fluctuating quantity on one di- 

mension 	  74 

	

2.9 	Scale similarity modelling  	87 

	

3.1 	The flow field domain, defined on the (a): (x, y, z)-space, (b): (kx, y, z)- 

space, (c): (kx, ky, z)-space, (d): (kx, ky, kz)-space 	  110 

	

3.2 	Structure of the pseudospectral DNS code    117 

	

3.3 	Structure of the parallel pseudospectral DNS code. 	  120 

	

3.4 	Efficiency of the parallelisation for the CPU time. Symbols; 0, 2563  

mesh, x 5123  mesh 	  122 

	

3.5 	Efficiency of the parallelisation for the memory usage. Symbols; 0, 

2563  mesh, x 5123  mesh 	  122 

18 



	

4.1 	Initial distribution of the mixture fraction across a cross-section of 

the domain used for the homogeneous turbulence simulations. . . . . 128 

	

4.2 	The SLFM solution used for the initialisation of the reactive species as 

a function of the initial mixture fraction distribution. Continuous line, 

— non-dimensionalised temperature T*, symbols; x methane YcH, ,O 

carbon monoxide 10 • Yco, A hydrogen 100 • YHZ. 	  131 

4.3 Mixture fraction distribution across the x-axis. Symbols; 0, implicit 

scheme, x central differences, and continuous line, — spectral. (a) at 

t* = 8.32 and (b) at t* = 10.53 	  133 

4.4 Instantaneous distribution of the methane CH4  concentration at time 

t* = 8.32 eddy turnover times. Symbols; 0, implicit scheme, x central 

differences, and continuous line, — spectral.(a) along the x-axis (b) 

zoom on the reaction region at x = 0.5 	  135 

	

4.5 	Instantaneous distribution of the non-dimensionalised temperature T* 

(a), and the methane reaction rate (b), along the x-axis at time r = 8.32 

eddy turnover times. Symbols; 0, implicit scheme, x central differ- 

ences, and continuous line, — spectral. 	  135 

4.6 Contour plots of the reaction rate for the methane WCH4  on the iso-y 

plane. at t* = 8.32. (a) central differences solver (b) pseudospectral 

solver 	  136 

4.7 Contour plots of the reaction rate for the methane cocw, on the iso-y 

plane. at r = 10.53. (a) central differences solver (b) pseudospectral 

solver 	  136 

	

4.8 	Time evolution of the non-dimensionalised temperature T*, averaged 

on the stoichiometric mixture fraction 4st = 0.333, for the four combus-

tion simulations in homogeneous and isotropic turbulence. Symbols; 

+ HReactive-A, x HReactive-B, 0 HReactive-C, A HReactive-D 139 

	

4.9 	Setup of the initial conditions in the case of the planar jet. 	 140 

4.10 Comparison of the experimental configuration, with the time evolving 

DNS setup 	  143 

19 



4.11 (a) The mean velocity profiles for several time steps as a function of 

the similarity variable 4" case Mixing-B. Dots from the experiment of 

Bell and Mehta [157]. (b) Autocorrelation coefficient as a function of 

r at 4.  = 0, case Mixing-B. Dots from the experiment of Wygnanski 

[75] 	  144 

4.12 Turbulent intensities at time step r = 60.0 from the case JMixing-B, 

compared to the experiments of Bell and Mehta [157] 	  145 

4.13 Vorticity tubes during the transition period. Case JMixing-B at r = 
172 	   146 

4.14 Turbulent kinetic energy spectra on the shear layer plane, 4" = 0. . . 	 147 

4.15 The distribution of the integral length scale A, the integral length scale 

A for the mixture fraction distribution, the Taylor length scale AT, the 

Kolmogorov length scale ri and the mesh resolution of the simulation 

for the case Mixing-A, across the planar jet. (a) at t* = 14.7 (b) at 

t* = 51.5 	  148 

4.16 The distribution of the Integral length scale A, the integral length scale 

A for the mixture fraction distribution, the Taylor length scale AT, the 

Kolmogorov length scale ti and the mesh resolution of the simulation 

for the case Mixing-B, across the planar jet. (a) at t* = 26.9 (b) at 

t* = 60.0 	  148 

4.17 Initialisation of the species, the mixture fraction and temperature, along 

the z-axis. 	  149 

4.18 Time evolution of the non-dimensionalised temperature T*, averaged 

on the stoichiometric mixture fraction est  = 0.333, for the four combus- 

tion planar jet simulations. Symbols; + JReactive-A, x ]Reactive-B, 

0 ]Reactive-C, A JReactive-D 	  151 

4.19 Time evolution of the theoretical reaction thickness 4. Symbols; + 

JReactive-D, x JReactive-C, 0 ]Reactive-B, A JReactive-A 

,line - mesh size for the 5123  and 2563  cases. 	  151 

4.20 Contour plots of the scalar fields for case JReactive-D and the corre- 

sponding reaction rates for the reacting scalars at * = 17.2. 	 152 

20 



4.21 Contour plots of the scalar fields for case ]Reactive-D and the cone- 

sponding reaction rates for the reacting scalars at r = 36  6 	153 

4.22 Contour plots of the scalar fields for case JReactive-D and the corre- 

sponding reaction rates for the reacting scalars at r = 72  9 	154 

	

5.1 	LES and DNS meshes for the jet configuration 	  158 

	

5.2 	Notations of the DNS and the LES discretisation 	  159 

	

5.3 	Time evolution of the energy resolution for the case Mixing-A on 323  

nodes (x), 163  nodes (0) and 83  nodes (A). (a), for Z, = zA , (b), for 

= ZB• 	  

	

5.4 	Time evolution of the energy resolution for the case Mixing-B on 643  

nodes (x), 323  nodes (e) and 163  nodes (A). (a), for Z, = zA , (b), for 

= ZB• 	  161 

	

5.5 	Time evolution of the energy resolution for the case HMixing on 323  

nodes (x), 163  nodes (0) and 83  nodes (A). 	  162 

	

5.6 	Setup of a single box filtering and the test filtering of the DNS data. 	163 

	

5.7 	First spatial derivative of the mixture fraction distribution along the 

transverse axis discretised on 32 nodes, case JMixing-A at t* = 23.8. 

Symbols; afrom equation (5.7)(0), aZfrom equation (5.8) (x) and 

continuous line, (—) 2 from the DNS solution. 	  164 

	

5.8 	Time evolution of the terms of equation (5.9), from case ]Mixing-A 

filtered on 323  LES nodes at Zi  = zA, (a) production (0), dissipation (x) 

and residual (—), of the variance transport equation, (b) time derivative 

(x), convection (0), diffusion (A) and diffusion of large scales (o). . . 166 

	

5.9 	Time evolution of the terms of equation (5.9), from case ]Mixing-B 

filtered on 323  LES nodes at Zi  = zA, (a) production (0), dissipation (x) 

and residual (—), of the variance transport equation, (b) time derivative 

(x), convection (0), diffusion (A) and diffusion of large scales (o). . . 166 

5.10 Time evolution of the terms of equation (5.9), from case HMixing fil- 

tered on 323  LES, (a) production (0), dissipation (x) and residual (—), 

of the variance transport equation, (b) time derivative (x), convection 

(0), diffusion (A) and diffusion of large scales (o). 	  167 

21 

161 



5.11 Time evolution of the terms of equation (5.9), from case JMixing-B 

filtered on 323  LES nodes at Z, = zB, (a) production (0), dissipation (x) 

and residual (—), of the variance transport equation, (b) time derivative 

(x), convection (o), diffusion (A) and diffusion of large scales (*). . . 168 

5.12 Energy spectrum for the mixture fraction fluctuations (a), and for the 

scalar dissipation rate (b). 	  169 

5.13 Vorticity tubes shown in red during the transition period, surrounded 

by scalar dissipation structures shown in gray. Case JMixing-B. . . . 170 

5.14 Scatter of the pairs xsTss  and A/1'9,cm  for the predictions for the gradient 

model, case JMixing-B 	  171 

5.15 Scatter plot of the predictions for the scalar dissipation rate, averaged 

over the homogeneous directions, at all the time steps and for all mix- 

ing simulations, (a) gradient model (b) dynamic model 	  173 

5.16 Time evolution of the sub-grid scale scalar dissipation rate (—), the 

production (--), the predictions of the gradient model (x), and the 

dynamic model (A), case HMixing, (a) on 323, (b) on 163  and (c) on 

83  nodes. 	  175 

5.17 Time evolution of the sub-grid scale scalar dissipation rate (—), the 

production (--), the predictions of the gradient model (x), and the 

dynamic model (A), case JMixing-A, (a) on 323, (b) on 163  and (c) on 

83  nodes. 	  175 

5.18 Time evolution of the sub-grid scale scalar dissipation rate (—), the 

production (--), the predictions of the gradient model (x), and the 

dynamic model (A), case JMixing-B, (a) on 643, (b) on 323  and (c) on 

163  nodes. 	  175 

5.19 Time evolution of the sub-grid scale scalar dissipation rate (—), the 

production (--), the predictions of the gradient model (x), and the 

dynamic model (A), case JMixing-A, (a) on 643, (b) on 323  and (c) on 

163  nodes. 	  176 

22 



5.20 Time evolution of the sub-grid scale scalar dissipation rate (—), the 

production (--), the predictions of the gradient model (x), and the 

dynamic model (A), case JMixing-B, (a) on 6e, (b) on 323  and (c) on 

163  nodes. 	  176 

5.21 Probability density function ofxs  Gs for the DNS field of case Mixing 

filtered on 323  nodes. Symbols; (0) dynamic model (x) gradient model 

and continuous line (—) DNS result, (a) at t* = 8.09 and (b) at r = 9.03 .177 

5.22 Probability density function ofxsGs  for the DNS field of case 3Mixing-B 

filtered on 643  nodes, across homogeneous plane on the shear layer. 

Symbols; (0), dynamic model (x) gradient model and continuous line, 

(—) DNS result, (a) at t* = 17.2 and (b) at t* = 26  9 	   177 

5.23 Scatter plot of the prediction for the scalar variance averaged over ho- 

mogeneous planes, (a) gradient model, (b) similarity model I, (c) sim-

ilarity model II    180 

5.24 Time evolution of the scalar variance (—), the predictions of the gradi- 

ent model (x), the similarity model I (0) and the similarity model II 

(A), case HMixing, (a) on 643, (b) on 323  and (c) on 163  nodes. 	 181 

5.25 Time evolution of the scalar variance (—), the predictions of the gradi- 

ent model (x), the similarity model I (0) and the similarity model II 

(A), case JMixing-B, on the mixing layer, (a) on 643, (b) on 323  and 

(c) on 163  nodes. 	  181 

5.26 Time evolution of the scalar variance (—), the predictions of the gradi- 

ent model (x), the similarity model I (0) and the similarity model II 

(A), case JMixing-B, off the mixing layer, (a) on 643, (b) on 323  and 

(c) on 163  nodes. 	  181 

5.27 Scatter plot of the predictions for the scalar dissipation rate, averaged 

over the homogeneous direction at Z = zA, at all the time steps of the 

simulation JMixing-B (a) on the fine mesh (b) on the intermediate 

mesh. Symbols; (x) the filtered field discretised on the DNS mesh, (0) 

The filtered field discretised on the LES mesh 	183 

23 



6.1 Scatter of Yco  on ri space from case HReactive-D. Continuous line 

(—), (YcA) 	  186 

6.2 Time evolution of < YcH, > Symbols; (0) SCMC model and contin- 

uous line (—) DNS result. (a) for the case HReactive-D . (b) for the 

case JReactive-B and JReactive-D 	  188 

	

6.3 	Time evolution of < YcH4  > Symbols; (0) SCMC model and continu- 

ous line (—) DNS result. (a) for the cases HReactive-A and HReactive-C. 

(b) for the cases JReactive-B and JReactive-D 	  189 

6.4 (a) Scatter of Yco  on 77  space from case HReactive-B. Continuous 

line ( Ycolq).  (b) Scatter of ( 17co171) on 4" space for i i = es, from case 

HReactive-B. Continuous line (Ycol77, 4.) 	  190 

6.5 Initial conditions for the doubly conditioned fields interpolated from 

the flamelet solution. 	  192 

	

6.6 	Distribution of the unclosed dissipation terms of the DCMC equation. 192 

	

6.7 	Time evolution of < Ycli, >. Symbols; (0) DCMC model and continu- 

ous line (—) DNS result. (a) for the cases HReactive-A to HReactive-D. 

(b) for the cases JReactive-A to JReactive-D . 	  193 

	

6.8 	Case JReactive-C. Conditional average of the chemical reaction rates 

for the four step chemistry mechanism. Symbols; (0), single condi- 

tioning, (x) double conditioning, and continuous line, (—) DNS results. 194 

	

6.9 	Case ]Reactive-C. Conditional average of the methane, carbon monox- 

ide and hydrogen mixture fraction plotted against the mixture fraction. 

Symbols; (0), single conditioning, (x) double conditioning, and con- 

tinuous line, (—) DNS results. 	  194 

6.10 Case JReactive-C. Time evolution of the reactive species close to the 

stoichiometric mixture fraction. Symbols; (0), single conditioning, (x) 

double conditioning, and continuous line, (—) DNS results. 	 195 

6.11 Case JReactive-D. Time evolution of the reactive species close to the 

stoichiometric mixture fraction. Symbols; (0), single conditioning, (x) 

double conditioning, and continuous line, (—) DNS results. 	 195 

24 



6.12 Case HReactive-D. Time evolution of the reactive species close to the 

stoichiometric mixture fraction. Symbols; (0), single conditioning, (x) 

double conditioning, and continuous line, (—) DNS results. 	 196 

6.13 (a) The distribution of the joint probability density function, P(77, 4') for 

77 = est, from the homogeneous turbulence simulations at r = 8.5. (b) 

The distribution of the doubly conditioned methane chemical source 

term, at r = 8.5. Symbols; + HReactive-A, x HReactive-B, 

HReactive-C, A HReactive-D 	  196 

25 



Chapter 1 

Introduction 

Combustion remains the most common way to exploit the chemical energy of fossil 

fuels [1]. In a flame, oxidiser, usually the oxygen in the air, reacts with fuel. The 

resulting exothermic reaction produces thermal energy that can then be used either "as 

is", or be transformed to another form of energy with the help of a thermal engine. 

In modern economies, combustion is inevitably related to energy production, with 

90% of the energy consumed in the United Kingdom being produced by the com-

bustion of fossil fuels [2]. Combustion-free energy production, such as energy from 

nuclear and hydroelectric power or from renewables, is mainly used in electricity pro-

duction. However, in the UK 72% of the electricity production comes from the com-

bustion of fossil fuels. This can be split into contributions from natural gas (37%), coal 

(34%) and oil with just 1%. 

The main challenge that energy production faces is the reduction of its effect on 

the planet. Although the atmospheric pollution due to the energy production is mainly 

caused by the combustion generated energy, the contribution of fossil fuels to energy 

production is not expected to reduce. In fact, fossil fuels are expected to increase their 

contribution to the electricity production reaching 75% in the UK until 2020 [2], due to 

the expected increase of energy consumption. In the developing world the increase of 

energy production is expected to be much higher. The second crucial challenge for the 

UK energy policy is the security of the energy supply, threatened by the depletion of 

hydrocarbon resources. This condition is promoting domestically available coal-fired 
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generation of electricity and demands an increased efficiency of the energy production. 

Given the importance of combustion in energy production both now and in the future, 

research on combustion should provide the technology for cleaner, more efficient and 

more secure energy supply. 

Combustion is responsible for the emission of pollutants which cause a series of 

effects on the environment. Acid rain, reduction of atmospheric visibility, production 

of tropospheric ozone and depletion of stratospheric ozone is caused by sulfur and ni-

trogen oxides found in the exhaust gases during fossil fuel combustion [3]. In addition, 

the above mentioned pollutants along with fine organic and inorganic particulates pose 

a threat to the public health. The scientific evidence that climate change and more pre-

cisely global warming is augmented by the anthropogenic carbon dioxide emissions 

continues to strengthen [2]. The emission of carbon dioxide cannot be dealt with by 

any other means than achieving high thermodynamic efficiency of energy production 

from hydrocarbons [3], and by devising ways to apply carbon capturing methods on 

energy plants [4]. In response to the environmental challenges, research in combustion 

aims to reduce the emissions of pollutants by means of understanding the mechanism 

of their formation , and at the same time to provide technologies for efficient energy 

use [5] and production [6]. 

Given that the vast majority of combustion applications, especially in energy pro-

duction, take place in a turbulent flowfield [7], combustion needs to be understood as a 

complex phenomenon that involves interactions with the turbulent flow field, turbulent 

mixing of the reactants, chemistry and the thermodynamics in a flame. This set of phe-

nomena is summarised under the term of "turbulent combustion" where the oxidiser 

and the fuel transport, mix, and react in a turbulent flowfield. Scientific research in 

turbulent combustion, intends to solve the combustion problem challenges by deriving 

models to predict the performance of combustion applications, and to understand and 

to manipulate the mechanisms of pollutants formation. 

Combustion modelling in practical applications of non-premixed combustion re-

quires the mastering of turbulence [7]. In pursuit of modelling the effect of turbu-

lence on combustion, or rather the interaction between the two, several conceptual 

approaches have emerged. The mixing control concept argues that non-premixed com- 
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bustion is controlled by the reactants' mixing, and the flame lies in the areas where 

the reactants have mixed to stoichiometric proportion [8]. This perception leads to the 

very common mixture fraction based modelling approaches. 

The concept of laminar flamelets appeared in the early 1980s [9]. Following 

this approach, species transport is locally modelled by a Stationary Laminar Flamelet 

(SLFM) equation. The underlying idea is that the reaction regions are thin compared 

to the turbulent scales, and the reactions take place in a laminar flowfield. Then, the 

effect of turbulence on the flame is characterised by the scalar dissipation rate that 

appears explicitly in the SLFM formulation. The SLFM method has now evolved to 

incorporate a Lagrangian viewpoint [10], and also to include transient effects [11]. 

Occurrences of compositions outside those assumed by the SLFM equations are 

common for hydrocarbon flames. In response to that, the Probability Density Functions 

(PDF) methodology provided a more general modelling approach to the fluctuations 

of compositions [12, 13]. PDF methods make the representation of the independent 

turbulent fluctuations feasible for each one of the species concentrations. 

Conditional Moments Closure (CMC) [14, 15] is based on the observation that 

fluctuations of the species mass fractions and the temperature are low among the values 

that correspond to the same mixture fraction. First order CMC neglects the conditional 

variations, whereas second order closures [16] can be incorporated in CMC providing 

better modelling in flames with significant local extinction and re-ignition. A more 

direct approach to model the physics of ignition and re-ignition in turbulent combustion 

is the Doubly Conditional Moments Closure (DCMC) [17, 18] which includes a second 

conditioning dimension, preferably sensible enthalpy, reducing the magnitude of the 

doubly conditioned fluctuations caused from local extinction of the flame. 

An effort to unify the PDF and CMC concepts results in the Multiple Mapping 

Conditioning (MMC) [19]. Instead of using a single conditioning variable as in CMC, 

MMC considers a set of reference variables. MMC lies between the one- or two-

dimensional approach for the dimensionality of the composition space as implied by 

SLFM and CMC, from the one side, and the full dimensions description introduced 

by PDF methods, on the other side, however many issues such as the modelling of the 

diffusion coefficients in reference space remain unsolved. 
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The modelling of turbulent flow is a formidable task by itself [7]. Given the ad-

ditional computational cost of combustion modelling by either SLFM, CMC, MMC 

or PDF methods, Reynolds Averaged Navier-Stokes (RANS) equations have been 

broadly used for the simulation of the turbulent flowfield. However, the implemen-

tation of the current combustion models has started to be coupled with Large Eddy 

Simulation (LES) during the last decade. This transition to LES is not straightforward. 

The two methodologies, RANS and LES, incorporate different modelling strategies, 

thus new techniques must be provided for the coupling between LES and a combus-

tion model. 

DNS and experimental work is expected to address some crucial questions on the 

spatial structure of premixed and non premixed flames. Very accurate, simultaneous 

measurements of all species and flow structures are necessary to assess the validity of 

closures and modelling assumptions needed for CMC, and hence, DNS is better suited 

than experimental measurement for evaluation [7]. 

The aim of this study is to investigate the accuracy of the zero equation models 

used in LES to model crucial unclosed quantities related to the turbulent micromixing 

and the performance of the CMC methodology in modelling local extinction and re-

ignition phenomena. In order to achieve this, the tools for creating a DNS database 

of isotropic and non-isotropic turbulent flames, characterised by Reynolds numbers as 

realistic as possible and by incorporating a chemistry mechanism that can account for 

extinction have been derived. 

The main contributions of this study can be summarised as follows: 

1. The realisation of a parallel pseudospectral DNS code which is capable of deal-

ing with the discretisation problem arising from the introduction of exponential 

chemistry source terms. A crucial criterion for the design of the code was the 

necessity to keep a balance between memory allocation demands and speed of 

calculations. This balance enables the computation of demanding turbulence 

simulations given the current computational power available. 

2. The assembly of a DNS database designated to identify the mechanisms of the 

interaction between turbulence, mixing, and combustion. This DNS database 
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consists of two families of flows, i.e. homogeneous isotropic turbulence and pla-

nar jet cases which transit to turbulence and can be characterised by two different 

Reynolds numbers. A simple mixing scenario and different scenarios of reacting 

flows with varying degrees of extinction have been simulated individually for 

each of the two flow field families. 

3. The assessment of zero equation models used in LES for the closure of the sub-

grid scalar dissipation rate and the scalar variance, and the evaluation of the 

underlying assumptions. The modelling of both quantities is crucial for the cou-

pling between the flowfield solutions and the combustion modelling in CMC. 

4. Doubly conditioned CMC equations have been introduced to model the local 

extinction and re-ignition phenomena which cannot be captured by singly con-

ditioned CMC. In this study we solve the doubly conditioned CMC equations 

and test its performance in relation to the singly conditioned CMC and the DNS 

results. 

This thesis begins with a review of the fundamentals of turbulent combustion mod-

elling. In particular, emphasis is given to the evolution of DNS in turbulence and 

combustion research, and the current status that DNS has reached. Further the CMC 

methodology is presented for both single and double conditioning. 

The third chapter presents the numerical approach to the problem of solving a 

turbulent flow field with DNS. The pseudospectral methodology utilised and the chal-

lenges associated with the parallelisation of pseudospectral codes are discussed in de-

tail. 

The next chapter is an introduction to the numerical experiments carried out for 

the investigation of the modelling methodologies in turbulent combustion. Here both 

mixing and reacting problems are discussed in parallel, and the details of each separate 

case are outlined. A short evaluation of the results is shown. 

The fifth chapter comprises a discussion of the computed pure mixing cases. At 

this point the problem of micromixing modelling is addressed and the accuracy of 

standard sub-grid scale mixing models is investigated. The sixth chapter deals with 

the modelling of extinction and re-ignition in turbulent reacting flows by the CMC 
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methodology, where the single and double conditioning approaches of CMC are dis-

cussed. For this the singly and doubly conditioned CMC equations are solved and the 

results are compared with the DNS solution. Finally, chapter seven summarises the 

findings of the previous chapters. 



Chapter 2 

Background 

Fluid mechanics is the science of the mechanics of liquids and gases which is based on 

the same fundamental principles employed in the solid mechanics. Following a segre-

gation equivalent to the branches of solid mechanics, fluid mechanics may be divided 

in statics, fluid kinematics and fluid dynamics. Hydrostatics deals with the study of 

forces and pressure fields in fluids at rest. Fluid kinematics studies the velocity and the 

streamlines in fluid flows, using the kinematic constrains of a fluid flow, regardless of 

force and energy distribution. Finally, fluid dynamics studies the flow of a flow field 

representing the kinematic part in relation to the energy and pressure distribution of 

the flow field. This relation between forces and kinematics in mechanics is expressed 

with the momentum transport, or the equivalent momentum impulse law used in solid 

dynamics. The analytical formulation of the momentum transport, mass transport and 

energy transport provides a closed system of equations for the velocity, density, tem-

perature and pressure fields of a fluid. 

2.1 Governing equations 

A gaseous flame is governed by the transport equations of the momentum, mass, 

species and energy. The chemical mechanism will provide the source terms in the 

transport equations of the species and the heat release of the reactions. The governing 

equations are presented and used here in differential formulation in orthogonal Carte- 
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sian coordinates for a three-dimensional flow field. The Cartesian coordinates of a 

vector are denoted by a numeric subscript, i.e. u1 , u2, /43  for the three components of 

the velocity u along the x1, x2  and x3  axis, respectively. Also, throughout this thesis 

the Einstein notation is followed, implying addition over all terms where an index is 

repeated. The mass conservation in differential form is expressed by the equation 

alpaPui  — 0 
at + axi 

(2.1) 

where p is the density of the fluid, which may be a single phase mixture of several 

species and, in general, may vary over space and time. 

The transport of momentum in fluid mechanics is modelled by the Navier-Stokes 

equations. For a three-dimensional flow, the momentum transport is modelled as 

apui  apu jui  ap ar,j 
	 = 	+ 	for i = 1, 2, 3 , 	 (2.2) at ox, dx, ax;  

where no body forces, such as gravity, electromagnetic or centrifugal forces, are 

considered. In equation (2.2), p is the pressure field and Ty represents the i,j-element of 

the viscous part of the stress tensor. The stress tensor T includes the viscous forces due 

to the velocity gradients, and it can be expressed for a Newtonian fluid as a function of 

the spatial gradients of the velocity field u as 

2 auk 	au. au 

	

T • = --p--o, + 	+ 	 (2.3) 
`i 	3 axk 	ax;  ax, 

where p = pv is the viscosity and v is the kinematic viscosity of the fluid. An 

alternative formulation of the stress tensor T, can be defined to include the normal 

forces of the pressure, T, = Tif  — dup. It is common practice that the stress tensor T is 

rearranged as, 

2 r  aU k  Tii  = 21IS — -j poij axk  . 	 (2.4) 

Here the terms containing the normal and the cross derivatives have been segre-

gated. The tensor S ij  is rate of strain, and expresses the viscous forces in the momen-

tum transport, 
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1   
Si 	

( 
2 axi

ui 
 axi  

• = — — + 
ax! ) 

 . 	 (2.5) 

Using the expression of the stress tensor for a Newtonian fluid, the Navier-Stokes 

equations are obtained, viz. 

opui ± Opuiui 	Op 	0 { rui  auk  2 auk  
	= 	+ 	 + 	— 	) 	for j = 1, 2, 3 . 	(2.6) at ox; 	ox, ox;  ox;  ox, 3 uxk 

Turbulent combustion problems also involve the transport and mixing of the react-

ing species. The species involved in a flame are largely defined, by the compositions 

of the fuel and the oxidiser. Furthermore, the chemistry kinetic mechanism, which 

is utilised to model the reactions taking place, introduces a number of intermediate 

species. The reaction rate for each one is also provided by the mechanism itself. In 

addition to the mass and momentum transport equations, the transport equations for 

non-reactive and reactive scalars need to be solved so that the modelling of the trans-

port phenomena taking place in a flame is closed. The transport equation of the k-th 

species in a mixture of M species can be written in the following form: 

apYk a + —(p(ui  + 	= Wk for k = 1, M M. 	 (2.7) at 	ax, 
Here, Yk is the mass fraction of the k-th species in the mixture, Vk is its diffusion 

velocity, and Wk  is the source term, which represents the production and depletion of 

the scalar due to chemical reactions. The diffusion velocities are defined by the solution 

of the algebraic system, 

M X I X 	 VP 
VX1  = L—

D k  (Vk —171) + Or —  XI) 
k=1 	l'k  

for 	1 = 1, M , 	(2.8) 

where DIA is the binary mass diffusion coefficient of the species 1 into the species k, 

and Xk is the mole fraction of the k-th species in the mixture and the volume forces are 

neglected [20]. The derivation of the above system of equations can be found in Kuo 

[21]. In this formulation, the diffusion of mass due to temperature gradients, which is 

known as the Soret effect, is neglected. In addition, the complex expression in equation 
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(2.8) is not implemented in most codes. According to the common practice, the much 

simpler Fick's law is employed for the approximation of the diffusion velocity. The 

simplified expression of the diffusion velocities can be written as 

(2.9) n
axi 

 

where the diffusion velocity is proportional to the concentration gradient. The 

coefficient Dk  is the diffusion coefficient of species k into the mixture. Finally, a sim-

plified expression of the species transport equation is obtained, 

apYk  aptl iYk a aY k  
	 = —(pDk —)+ col, for k = 1,M . at 	axi 	dxi 	axi 

(2.10) 

The energy transport problem is modelled by the enthalpy h transport equation 

aph 	 ap a [aT 	vim  „ 	 au, 
at + — ax, (push) = at + Tx. ATx.-  P  L"Vk'ilik) Tif— P  k=1 	 k=i 

(2.11) 

where A is the thermal conductivity of the mixture, and T(x; t) is the temperature 

field. For the derivation of equation (2.11) it has been assumed that heating due to 

viscous forces, the heat source term due to radiative fluxes, and the body forces are not 

taken into account. Although the enthalpy may be defined in multiple ways in order 

to include various forms of energy contained in the fluid, a form of the enthalpy h is 

related to an equivalent form of energy e as 

h=e+plp, 	 (2.12) 

showing that the enthalpy includes the dynamic energy of the fluid due to its pres-

sure. The total enthalpy h quantifies the thermal energy of the fluid due to its temper-

ature, the dynamic energy due to its pressure, the chemical energy of its species and 

the kinetic energy due to its velocity 

h, = TT°  CycIT + pl p +ZAh fcl kYk  + 
2 
—
1 

uiui 
k=1 

(2.13) 
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The energy due to the fluid pressure is usually merged with the thermal energy as 

ITS 
T C pdT , where the constant pressure heat capacity C p  of the mixture is used instead 

of the constant volume heat capacity Cy. The enthalpy difference Ah f'k  is the enthalpy 

of formation, which is the energy needed for the formation of the species k at standard 

conditions P0  and To. 

Sensible enthalpy h, can also be used for the modelling of the energy transport 

problem and is defined as 

h, = h — E Ahcfl,k yk 	 (2.14) 
k=1 

The transport equation for the sensible enthalpy can be formed from the enthalpy 

transport equation (2.11), using the definition (2.14), as 

aphs  c 	 ap a [aT 	 au. ,-,,,,u,„s, = toT ++— A— — p 	(hs,kVk ,iYk ) 	-Fp E(Ykfk,ivk,i) at axi 	 at oxi 	 "xj k=1 k=1 
(2.15) 

where W T  is the heat release due to combustion, thus, the enthalpy formulation 

(2.11) is preferred in CFD applications since it is a conserved scalar, i.e. it lacks a 

source term. 

For the derivation of modelling methodologies in turbulent combustion, but also 

for the solution of simplified flows, the enthalpy transport equation can be replaced 

by the following temperature transport equation, where constant heat capacity C p  and 

conductivity A, equal for all the species of the mixture has been assumed, 

apT aui 	 (  +  p„ T  + a 	 , aT ) + coT  , 
at oxi  axi  oxi  

where a, is the thermal diffusion coefficient 

A a, = pC p  

(2.16) 

(2.17) 

The temperature transport equation can be derived from the sensible enthalpy 

transport equation (2.15) for constant pressure and low speed flames, where all heat 
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capacities C p,k  of the species k are assumed to be equal, i.e. C p,k  = C p. 

Equations (2.6, 2.8, 2.11) provide a set of differential equations for the modelling 

of reacting flows. However, this system can be solved analytically only for a small 

number of simple problems. The objective of Computational Fluid Dynamics (CFD) 

is the computational solution of the mathematical model of a fluid using numerical 

methods. 

Significant simplification for models in turbulent combustion occur when all species 

and the temperature diffuse equally, thus the ratio of Schmidt and Prandtl numbers 

known as the Lewis number, 

Sc 
Le = — , 

Pr 
(2.18) 

is equal to unity. The number S c = 	is the Schmidt number, and expresses 

the relation between the diffusion of the momentum due to viscous forces and the 

diffusion of the species due to molecular diffusion. Also the Prandtl number, Pr = , 

in equation (2.18), quantifies the relation between the diffusion of temperature and the 

dissipation of momentum. In fact, in hydrocarbon flames with high Reynolds numbers 

the molecular and the atomic hydrogen are the only species with a Lewis numbers 

deviating significantly from unity. However, their concentrations are low, since they 

are intermediate species in hydrocarbon flames, and unity Lewis number assumptions 

do not affect significantly the flame structure. 

2.2 Turbulence 

In most engineering applications, the combustion process is turbulent [1]. It is now 

quite important to present some of the characteristics of the turbulent flow, so as to en-

sure a better understanding of some of the characteristic phenomena that take place in a 

turbulent flame, and also to better describe the methods used in CFD for the modelling 

of turbulent combustion. 

Any of the variables f(x; t) of a turbulent flow field, i.e. the velocity components, 

the species concentration and the temperature field, can be expressed as the summation 

of a mean plus a turbulent contribution [22] 
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f(x; t) = f(x; t) + f' , 	 (2.19) 

where in the above expression, the bar 7 denotes an average value. The single prime 

represents the fluctuation so that u', Yi  and T' are the fluctuations around the average 

value of 14, Y, and T respectively. The averaging operation can be either defined in time 

or in space [22]. 

Richardson [23] introduced a conceptual approach to the understanding of tur-

bulence, where he suggested that turbulence can be understood as a superposition of 

coherent flow structures, i.e. eddies of different sizes. The size is the principal charac-

teristic of the structure and eddies can therefore be classified according to their char-

acteristic length scale [24]. 

Generally speaking, turbulence is generated by velocity gradients [25]. The fun-

damental process responsible for the existence of different scales in turbulence is the 

energy cascade [26]. The velocity gradients can be regarded as the large scale eddies. 

The large scale eddies break up producing eddies of smaller size. According to the 

same mechanism the eddies break up to smaller and smaller sizes until they dissipate 

since the viscous effects increase disproportionately with decreasing size. As a conse-

quence of this common mechanism of production, cascade and, finally, dissipation of 

turbulence, it can be expected that equally sized eddies should have a similar intensity. 

Apart from the intensity of the turbulent motion, eddies of the same order of size 

tend to exhibit some other similarities. Such similarities apply to the homogeneity of 

the motion, to the effect on the scalar mixing and to the dissipation of the turbulent 

kinetic energy. As a result, it becomes quite evident that the size of the eddies can be a 

characteristic property, according to which the turbulent motion could be categorised 

into turbulent scales. Therefore, a specific length scale, 1, and a velocity u(l) can char-

acterise an eddy. A characteristic time r can be derived from the above quantities and 

can be expressed as T(/) = //u(/). 

Transition to turbulence occurs at high Reynolds numbers. Considering a macro-

scopic turbulent flow, e.g. grid turbulence or a shear layer with a characteristic velocity 

U and length scale L, the Reynolds number Re = U LI v should be large and the effect of 

viscosity minimal. The biggest scales in a turbulent flow field, namely to, are compara- 
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ble to the scale of the macroscopic flow. Their characteristic velocity /40  is comparable 

to the amplitude of the turbulent fluctuations u' and it is usually expressed by the r.m.s 

of the fluctuations, u'2"2.   The r.m.s. of the fluctuations is also related to the turbulent 

kinetic energy k, 

k  = 	d2 	1 ,2 	1 ,2 	3 

	

2 1 	—2 u2 	143 = _14,2 
2 	2 

(2.20) 

This energy, rather than dissipating directly to heat due to the viscosity, cascades 

to smaller eddies. In these large energy containing scales, the Reynolds number Reo  = 

is quite big, comparable to Re , for the viscosity to have an effect. The amount 

of the dissipation of the kinetic energy from the large scales to the smaller scales is 

proportional to the energy of the large scales divided by their time scale 

2 Uo ttO E 	= 
TO tO 

(2.21) 

In general, the dissipation rate e expresses the loss of the kinetic energy of the fluid 

to heat due to the work of viscosity and is given by the expression 

aui  But 	au- au - 
E = 2v (S ,JS ii) = v 	4_ 	 (2.22) 

ax;  ax;  ax;  ax, 

The above definition of the kinetic energy dissipation rate is accurate since it has 

been derived as the work of the viscous forces. If the turbulent kinetic energy of the 

large scales was dissipating, rather than cascading to smaller scales, then the dissipa-

tion would have been proportional to v4/4, following a dimensional analysis based 

on the equation (2.22). Instead, by identifying the small scales as the scales at which 

the dissipation takes place, expression (2.21) is obtained. This is done by assuming 

that the rate in which the energy cascades from the large scales equals the rate that the 

energy dissipates in the small scales. This underlines the importance of Richardson's 

ideas. 

The physics of the small scales of a turbulent flow field can be investigated by 

the local isotropy hypothesis and by the two similarity hypotheses introduced by Kol-

mogorov [27]. The isotropy hypothesis states that the small scales of a turbulent flow 

with sufficient high Reynolds number are isotropic. The important consequence of this 
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hypothesis is the loss of any directional information of macroscopically non-isotropic 

flows as the turbulent scales become smaller. Thus, there is a universal behaviour of 

a turbulent field whether it is found in a jet or in grid turbulence. The first similarity 

hypothesis states that the small scale motion has a universal form defined by the en-

ergy dissipation, E, and the viscosity, v. The dissipation rate expresses the amount of 

the energy transfer from the large scales to the smaller ones. The characteristic length, 

time and velocity are called Kolmogorov scales and dimensional analysis gives, 

It can easily be seen that the Kolmogorov Reynolds number is Reri  = quq /v = 1. 

This implies that the viscous forces are significant at the Kolmogorov scale, leading 

to the dissipation of the turbulent fluctuations to heat. As a result, the Kolmogorov 

scale is synonymous with the smallest scale of a turbulent flow field. The ratio of the 

Kolmogorov scale to the large energy containing length-scales expresses the range of 

scales, and can be derived using expression (2.21) and (2.23) giving, 

71 — = Re-3/4  . 	 (2.26) 
to 

The ratio of the two limits provides the range of scales in a turbulent field. This is 

a very important parameter since, ideally, all scales must be resolved in computational 

mechanics and therefore it defines the computational complexity of the problem to be 

analysed. As the Reynolds number increases more computational power is required 

for the simulation of such a flow field. 
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2.2.1 The turbulent kinetic energy spectrum 

If a turbulent flow field is transformed into spectral space, it can be argued that the 

wavenumber denotes the size of an eddy. Consequently it is advantageous to study the 

characteristics of the turbulent scales in wavenumber space. However, the association 

of Fourier modes with instantaneous eddies should be treated with some skepticism, 

given that eddies are localised structures, whereas Fourier modes are not [29]. 

The Fourier, or spectral space, is a three-dimensional space defined by the wavenum-

ber vector K = {Ki, K2, K3). Given that the wavenumber is closely related to the size of 

the eddies, each turbulent scale can be characterised separately. A definition of the 

velocity spectrum can be based on the correlation function Ri , which provided by the 

following equation [26], 

Rii(r, x; t) = u;(x; t)u (x + r; t) . 	 (2.27) 

The velocity spectrum tensor t is the three-dimensional Fourier transform of the 

corresponding two-point correlation function. Other formulations for the derivation of 

the turbulent kinetic energy spectrum are based on the time correlation [26]. This tem-

poral spectrum is often used in experimental research and in studies in RANS method-

ology. However, for non-stationary flow fields spectra expressed on the wavenumber 

space should be used instead of the frequency space [28]. The velocity spectrum tensor 

is a Fourier transform pair with the two-point correlation function 

0,f 	
(271)3 

(K;,)= 	 Rii(r; t)e-ik rdr 	 (2.28) 

which varies in time for a non-stationary turbulent flow field, but remains un-

changed in time for stationary fields. The above equation transforms the flow field 

correlation function from the three-dimensional physical space r = {r1 , r2 , r3 ) to the 

three-dimensional wavenumber space K = (Ki, K2, K3). The three-dimensional turbulent 

kinetic energy spectrum can be derived from the velocity spectrum tensor IN, accord-

ing to the equation 



2.2. Turbulence 	 42 

Ek(K) = 	7(pii(K)dS(K) , 	 (2.29) 

where K is the magnitude of the wavenumber vector, i.e. K = IKI = K21 + K22 + 

The idea behind equation (2.29) is that the energy contribution 03,„ of each wavenum-

ber combination is added up for each of the combinations that have the same three-

dimensional wavenumber K. In the Fourier space all these points are located in a sphere 

with radius equal to K. 

The turbulent scales can be divided into four categories, which can be best illus-

trated in spectral space. A typical appearance of a three-dimensional energy spectrum 

is depicted in figure 2.1. In the same figure the relative position of the large scales 

k and Kolmogorov scale I is presented for homogeneous turbulence in wavenumber 

space. According to Von Karman, the energy per wavenumber for small K, i.e. the 

large scales, increases as e [30], whereas the Kolmogorov spectrum gives a K2  de-

pendence [31] for the same region. Nevertheless, this area of the energy spectrum 

is numerically resolved, rather than modelled both in LES and in RANS. The latter 

methodology though, does not fully resolve the energy containing scales. However, 

the inner structure of this part of the energy spectrum is subject to the boundary con-

ditions and other macroscopic factors and therefore it is not global. As a result, the 

modelling methodologies introduced in RANS do not have a global character [32]. 

The energy containing scales with characteristic length equal to to  lie close to the 

area of the maximum turbulent kinetic energy in the energy spectrum. The smallest 

and least energy containing range consists of the viscous subrange. This scale starts 

at the area of the viscous cutoff, commonly characterised by the Kolmogorov scale 77. 

In this area, the energy per wavenumber decreases exponentially with respect to the 

wavenumber. Finally between the energy containing range and the Kolmogorov scale 

lies the inertial subrange, and is characterised by a decline of the turbulent kinetic 

energy with respect to the wavenumber following the KA law. This law can be derived 

from dimensional analysis for the turbulent kinetic energy and applying the second 

similarity hypothesis of Kolmogorov. 
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Figure 2.1: Turbulent kinetic energy spectrum and turbulent length scales. Adapted 
from Tennekes and Lumley [25] 

2.2.2 The spectral distribution of a scalar quantity 

Turbulence affects any scalar field which is transported by the flow field and it there-

fore creates not only velocity fluctuations but also induces the fluctuations of the scalar 

field. This scalar field can be the temperature or the concentrations of chemically in-

active or reactive species. The definition of the spectral representation of turbulence 

can be extended to any scalar quantity that is transported by a turbulent flow field. 

The autocorrelation coefficient formulation and the spatial spectrum are identical to 

the corresponding definitions used for the derivation of the velocity spectrum. Gener-

ally speaking, the scalar energy spectrum follows the scales of the turbulent velocity 

field. The viscosity, v, controls the turbulent velocity scales that in turn control the 

convection of the scalar field. In contrast, the diffusivity, D, controls the diffusion of 

the scalar and the dissipation of its fluctuations. The ratio of the viscosity over the 

diffusivity governs the divergence of the scalar spectrum from the velocity spectrum 

[25]. This ratio is non dimensional and is given by the Prandtl number, Pr = v/a, , 

for thermal diffusivity, or the Schmidt number, Sc = v/D, for the molecular diffusion 
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coefficient. 

In the case of high Prandtl or Schmidt numbers, such as dyes in liquids [26], a fifth 

characteristic range for length scales can be identified [25]. It is called viscous convec-

tive subrange and extents to even finer scales than the Kolmogorov length scale. In this 

case, i.e D < v or a, < v, the smallest scales of the scalar fields are characterised by 

the Batchelor microscale [33], which can be expressed as a fraction of the Kolmogorov 

microscale as, 

11B = 77 S C-1/2 
	

(2.30) 

When the Prandtl number is smaller than unity, i.e D > v or a, > v, then the scalar 

diffuses faster than the momentum. This would create a less fine structure for the scalar 

than for the velocity field itself. In this case the smallest scales of the scalar fields are 

characterised by the Oboukhov-Corrsin scale [34, 35] given by the equation, 

710C = 77 SC-3/4  . 	 (2.31) 

A graphical representation of the scalar energy spectra for cases of scalar fields 

with high and low Prandtl numbers is provided in figure 2.2. 

2.3 	Chemical kinetics 

A flame is the result of an exothermic reaction between fuel and oxidiser. The struc-

ture of flame is described and modelled by a chemical mechanism. In most gaseous 

flames the fuel consists of hydrogen, carbon monoxide and gaseous hydrocarbons. 

The oxidiser in most industrial applications is air. Air is a mixture of oxygen, nitrogen 

and some trace species such as Ar, CO and CO2. The main products of a hydrocar-

bon flame are carbon dioxide and water. However, other products depending on the 

fuel may be carbon monoxide, sulfur oxides, nitrogen oxides, soot and unburnt hy-

drocarbons. While carbon dioxide is unavoidable, all other harmful emissions can in 

theory be reduced. Increasing the efficiency of the combustion process, understand-

ing the mechanisms responsible for the formation of pollutants and eliminating their 
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Figure 2.2: Three dimensional energy spectrum for a scalar quantity. Adapted from 
Tennekes and Lumley [25] 

emissions is the main goal of combustion modelling. In addition to fuel, oxidiser and 

products, intermediate species are produced by the combustion process but they are 

usually found in very small concentrations in the final products. However, they play 

an important role in the chemical mechanism itself and are crucial for sustaining the 

combustion process. The chemical mechanism provides a set of n reactions for the 

chemical conversion of all m species, Mk: 
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(2.32) 

In the above set of reactions, the stoichiometric mass coefficients v j  and v2  define 

the amount of moles consumed or produced by each reaction. The reaction rate wi  of 

each reaction is related to the reaction rate cok  of each species Mk, by 

1 	2 
= kvic1 Vkj)WP 	 (2.33) 

j=i 

The reaction rates for each reaction j are functions of the forward and backward 
Yk rate 	the species molar concentrations [Xk ] = 	 d of the .1' 	 k 

absolute temperature T, 

„.j. 	Y1 vij 	Yk vk' 	Ym vnij  „b 	Y1 if 	Yk )'?`' 	Ym v2m1  

	

1 	 1 	 1 	 V2 
[ 

CO j  = A • p— •...• p— •...• p— —Ai  p— •...• p— •...• p— 
J  Wi 	Wk 	Wm 	Wi 	Wk 	Wm  

(2.34) 

where Wk is the molecular weight of species Mk. The calculation of the forward 

rate constant, K jf., is usually based on the Arrhenius formulation, 

Ea.  
bK f. = A  J f.T je- ./ . (2.35) 

In the above equation the pre-exponential factor Afj, the exponent 15 and the acti-

vation energy Eti,i  depend on the reaction and are parameters provided by the reaction 

mechanism. The activation energy is directly related to the activation temperature 

= ER'' Also R is the universal gas constant. The backward rate constant K9 is 

computed from the reaction equilibrium as a function of the forward constant lei [36]. 
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Kf. 
= 

• 
(2.36) KJ J1  

Pa 	Ek_1 Vkj el 	R R1 

Where, Ari  and Aliy refer to the entropy and enthalpy changes for the j — th 

reaction. 

2.4 Flame structure 

Gaseous flames are divided in two major categories, premixed and non-premixed flames. 

In premixed flames, the oxidiser and the fuel react after they are well mixed and have 

formed a homogeneous mixture. The topology of a premixed flame is presented in 

figure 2.3(a) [37]. In premixed combustion, a flame front propagates towards the un-

burned mixture and combustion products or burnt gases are left behind. Figure 2.3(a) 

shows is one of a typical Bunsen burner, which represents one of several typical setups 

for premixed combustion. In other cases, there is no mean flow of the reactants, instead 

the flame propagates into a stagnant mixture of fuel and oxidiser after being ignited by 

a spark. Such a scenario is typical for a gasoline engine [1]. 

In non-premixed or diffusion flames, the fuel and the oxidiser are kept separated 

before entering the combustion chamber. Then, the two are mixed in the reaction re-

gion. As a result, mixing must be done fast enough for combustion to proceed [20]. 

Mixing plays a major role in non-premixed flames since it is the conversion rate con-

trolling step. The topology of a typical diffusion flame is presented in figure 2.3(b). 

Other topologies of diffusion flames include the combustion of fuel spray in cylinders 

of diesel engines or jet engine combustors. In the combustor shown in figure 2.3(b) the 

fuel is issues from the orifice at a certain speed. The oxidiser enters the combustor and 

the two start mixing. The fuel stream forms a jet where the concentration of the fuel 

is high along the centreline. The reaction region is located on the surface, where the 

reactants have mixed to a stoichiometric mixture. In the vicinity of that surface, the 

oxidiser and the fuel are fully burnt, and the temperature is expected to be the high-

est [1]. Therefore, the reaction region in the diffusion flame is formed by a thin layer 

located around the stoichiometric surface. 
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Figure 2.3: (a) Topology of a premixed flame. (b) Topology of a non-premixed flame 

When modelling a combustion process, a first rather crude but computationally 

cheap approximation is often used. A simple one-step reaction of fuel, F, oxidiser, 

0, and products P, is assumed and the chemical conversion can be expressed by the 

reversible reaction 

vF F + v00 	vpP + Q , 	 (2.37) 

where vp moles of fuel and vo  moles of oxidiser react to vp moles of products and 

vice versa. The symbol Q denotes the amount of heat produced per vp moles of fuel 

burnt, and is a positive quantity for an exothermic reaction. The values of vp., vo  and 

Vp result from the necessary quantity of oxidiser for the stoichiometric combustion of 
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vF  moles of fuel. 

In non-premixed combustion, the mixing of the reactants is quantified by a scalar 

variable, which is the mixture fraction 	and is defined in a such way that it is not 

affected by the chemistry of the phenomenon. Mixture fraction is defined as a linear 

combination of the reacting species in a flame, so that the reaction rate is eliminated. 

The transport equations for the mass fractions of fuel, YF, and oxidiser, Yo, can be 

written as, 

and 

aPYF aPitYF 	a I aYF\ 
at + ax, 	Tx.,V)1) ,T,)"F (2.38) 

apY0apuiY0 	a ( aY0\ (2.39) at + ax, 	—axifjp 	+ w —ax, )°  
From the stoichiometry of reaction (2.37) and the molecular weights of the oxi- 

diser and the fuel Wo  and WF respectively, the relation between the reaction rates is 

given by 

too  = swF , 	 (2.40) 

where s is the mass stoichiometry ratio s = "„,w" From equations (2.38) and (2.39) vF,, F • 

it is obvious that the linear combination f3 = sYF  — Yo  is a scalar, which varies from sYF 

in the pure fuel region to —Yo in the pure oxidiser region. Also, its chemical source 

term is zero. The mass fraction n stands for the mass fraction of the fuel in the pure 

fuel or initial stream, which is equal to unity unless it is diluted. Whether the diluted 

fuel is considered as the fuel F in reaction (2.37) or not is a matter of definition. The 

same is valid for the oxidiser, where n stands for the mass fraction of the oxidiser in 

the pure oxidiser region. Thus, in both cases, the zero exponent stands for the stage 

where the fuel and the oxidiser are not mixed. The scalar /3 can be normalised by 

constraining its value between 0 and 1, 

sYF  — Yo YO 

 

(2.41) 
sYF°  + 11) 	• 
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The variable e is the mixture fraction. It quantifies the mixing between the fuel and 

the oxidiser, and it is a conserved scalar because it is neither produced nor consumed by 

chemical reactions. The transport equation of the mixture fraction 4  can be expressed 

by the following non-dimensional expression, 

apc_ 	D k\ (2.42) at 	ax, 	axi kP ax,) 
where constant properties have been assumed. 

The values of vary from unity, identifying the areas of pure fuel, to zero for the 

areas of pure oxidiser. Figure 2.3(b) shows the expected distribution of mixture fraction 

across a typical diffusion flame. Along the centreline of the jet, the concentration of 

the mixture fraction is expected to be high. Therefore, the value of the mixture fraction 

should be closer to unity, while it reduces to zero in areas distant from the centreline 

where the oxidiser has larger concentrations. 

Figure 2.4: Distribution of temperature and reactants across a flame front in a diffusion 
flame. 

Figure 2.4 shows the flame structure in a diffusion flame in more detail. The 

coordinate r represents the distance from the centreline for a jet flame. At the stoi-

chiometric surface the fuel mass fraction equals YF  = sY0. From expression (2.41) the 

corresponding value for the mixture fraction at the stoichiometric point is found to be 
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SY°  ± Y°  • F 0 
Provided that the mixture fraction quantifies the mixing between the reactants in 

a flame, and that the mixing controls a diffusion flame, it is common practice in non-

premixed combustion to express the variables of a diffusion flame in mixture fraction 

space. In order to make this feasible, one must make the assumption that the mass 

fraction of the species and the temperature have the same one-dimensional structure 

across the flame front in each cross-section of the flame. Assuming that species and 

temperature are functions of and time only, T = T(4, t )  and Yk  = Yk(., 1), the species 

mass fraction transport equation (2.10) can be expressed in mixture fraction space [1] 

as, 

ac)321,, 
p 	= (Lk — at 	p" (axi  axi 	' 

and the temperature equation (2.17) is rearranged to, 

(2.44) 

aT 	a, (9 a a2T 
at — wT  ± DP—

n 
  kax, ax;  ) ae2 • 

Where the convective term has been neglected, assuming that the flame structure 

is constant in space. This formulation introduces the scalar dissipation rate termx, that 

is defined by 

X = 2pD„, 	 (2.46) oxi  
which expresses the effect of mixing on the structure of a diffusion flame. 

Equations (2.44) and (2.45) are known as the flamelet equations. A flamelet is an 

elementary flame which is laminar with a one-dimensional structure akin to the one 

depicted in figure 2.4 and depends only on the axis perpendicular to the flame front, 

i.e. on the mixture fraction. Equations (2.44) and (2.45) can be simplified further 

following some assumptions. A first assumption made is the steady state assumption 

at = 0, which leads to the steady flamelet concept, 

est = 
0  (2.43) 

(2.45) 
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and, 

1 	a2  Y,, 
2 de cok = 	x 	, 

1 o2T 
tor = -- 2X k • 

2  

(2.47) 

(2.48) 

The introduction of the mixture fraction can be viewed as a coordinate transfor-

mation from physical to mixture fraction space. The flame structure is projected on 

the mixture fraction space, as shown in figure 2.5, rather than in the physical space 

shown in figure 2.4. Under the CMC concept the mixture fraction space is known as 

the ri-space. 

The simplest scenario for the structure of a steady flamelet is the "frozen" chem-

istry scenario. In this case, the reaction rates are zero. Although this is a non corn-

busting case, it can nevertheless be observed in areas of the flame that are extinct and 

the reactants just mix without reaction. For tok  = 0, and coT  = 0 equations (2.47) and 

(2.48) reduce to v = 0 and ca = 0 throughout the mixture fraction space, thus Ye  is 

a linear function of e. In this pure mixing case, the mass fractions of the species and 

the temperature are the mean of the respective values in pure oxidiser and pure fuel 

weighted by the mixture fraction, as can be seen in figure 2.5. 

The complement to the frozen chemistry structure is the fast irreversible chem-

istry shown in mixture fraction space in figure 2.5. In this model, the chemistry is 

much faster than the mixing. The flame has an infinitesimally small thickness where 

the reaction rates are non zero, and is located on the stoichiometric mixture fraction 

contour. Because of the irreversibility of the chemistry the reactants do not coexist. 

The oxidiser is zero on the rich side of the flame, where e > e„, and the fuel is zero on 

the lean side of the flame, where e < est. The reaction rates outside the flame front are 

zero, thus the distribution of the mass fractions and the temperature is linear with a dis-

continuity of the first derivative at stoichiometric. The maximum temperature equals 

the adiabatic temperature Tad [20], because in the fast chemistry scenario the mixing 

rates are small compared to the reaction rates, 
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0 Tad = T CFl est + Tg(1 — est) + Q  Ype • cp 

The above expression is the sum of the temperature of the un-burnt mixture at the 

stoichiometric mixture fraction, and the increase of the temperature due to the heat 

released by the exothermic reaction. Assuming that a diffusion flame takes place under 

constant pressure, the specific heat C, for the burnt gases can be used in expression 

(2.49). 

When the chemistry and the time scales are comparable, the flame structure be-

comes more complex and depends on the effects of the flow on the chemical conversion 

rates. This condition lies between the frozen and the fast chemistry scenarios [20]. and 

the reaction region is characterised by a finite flame thickness, as shown in figure 2.5 

2.4.1 Flame thickness 

Figure 2.6 depicts a schematic topology of a flame front in a turbulent non premixed 

flame. The reaction zone is characterised by a finite width, €r, surrounding the stoichio-

metric mixture fraction contour. The reaction takes place within the diffusion region 

where the oxidiser and the fuel are mixed, having a width equal to t d.The diffusion 

and reaction thicknesses can be projected into the mixture fraction space as La and 477  

respectively, as shown in the figure 2.5. Several authors have proposed ways to define 

a characteristic length for diffusion flames. 

The procedure, is however, not as straightforward as in premixed flames where the 

flame speed provides a characteristic velocity magnitude [1]. Following Vervisch [38] 

the width of the diffusion region is controlled by the mixture fraction distribution and 

can be estimated as 

I'd (2.50) 
Feist , 

from the spatial gradient of e on the stoichiometric mixture fraction. Another 

approach is based on the diffusion coefficient and the velocity strain rate a, €d — (4 

[1]. In ri space the diffusion thickness ed  can be extracted from €d, 

(2.49) 

1 
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Figure 2.5: Distribution of temperature and reactants along the mixture fraction space. 

Cd = IVZisted 	 (2.51) 

which is equivalent to expression (2.50), assuming that the diffusion thickness 

expands throughout the mixture fraction space, rd  = 1. The width of the reaction region 

Pr  depends on both the chemistry time scales and the scalar mixing. As mentioned 
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Figure 2.6: Diffusion and reaction lengths in a non premixed reaction zone. 

above, the reaction region for a fast chemistry scenario is infinitensimaly thin, whereas 

the reactions occur in a confined area around the stoichiometric mixture fraction when 

the diffusion times become comparable to the chemistry time scales. The Damkohler 

number quantifies the ratio of the turbulent flow time scales Tt  to the chemistry time 

scales Tr , i.e. Da = • The inverse of scalar dissipation rate on the stoichiometric 

mixture fraction st  is used for the definition of the flow or of the mechanical time scale 

rt  for the turbulent mixing. The chemical time scale is often based on the inverse of 

maximum reaction rate. According to Lilian and Crespo [39] and Cuenot and Poinsot 

[40], the general formulation of the Damkohler number is, 

32vFAf svopvo+vF-i svo 0  _ 	
„0  VF— 1 yg VO Tad  CP 

 e Tad st 	WF 	WO 	T,,,Q1A-F1  
Da =  	(2.52) 

7,,Yst 

where the numerator in the above fraction is the maximum reaction rate for the 

specific reaction mechanism, calculated as the reaction rate for the stoichiometric mix-

ture burning at adiabatic temperature. Simpler definitions of the Damkohler number 

use the pre-exponential factor to estimate the maximum reaction rate [41], 

(2.53) 

for the maximum temperature Tad. Having defined the Damkohler number, the 

thickness of the reaction zone can then be determined as a fraction of the diffusive 

zone width [38], 
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-1  
fr 	ed DavF,Yo+1 , 

for the simple one-step chemical mechanism (2.37). 

(2.54) 

2.5 Direct Numerical Simulation in CFD 

The aim of Computational Fluid Dynamics is to predict the evolution of a flow field by 

the numerical integration of the governing equations, as they appear in section (2.1). 

The most straightforward approach to this problem is the Direct Numerical Simulation 

(DNS) where a direct numerical solution of the governing equations is carried out. This 

approach is common practice in laminar stationary flow fields. However, a turbulent 

flow field presents a great variety of scales which extend to much smaller length scales 

than the scales of the boundary conditions and the macroscopic characteristics of the 

flow. A simulation of a turbulent flow field must account for all the scales of turbulent 

fluctuations, thus the numerical discretisation must be smaller than the smallest turbu-

lent scale. Following equation (2.26), the number of grid nodes in each direction is a 

function of the flow Reynolds number. 

2.5.1 Computational cost of DNS 

The computational cost of a DNS is proportional to the number of the mesh nodes 

used for the discretisation of the computational domain for the proper resolution of a 

turbulent flow field. Considering a cubic domain with edges of length X, and an equally 

spaced discretisation with N nodes in each direction, the grid spacing in physical space 

Ax is simply ..E/N. According to Pope [26], the mesh spacing Ax needed for resolving 

the smallest turbulent scales represented by a Kolmogorov length scale 77 is 

Ax 2.1q. 	 (2.55) 

This formulation derives from the observation that the spectrum of the dissipation 

of energy, for wavenumbers of the fluctuations k bigger than 1.5/77 [42, 43] reduce 

dramatically. Given that the corresponding length spacing in physical space for the 
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wavenumber k is it/k, equation (2.55) is formed. For a model free simulation of ho-

mogeneous isotropic turbulence the appropriate size of the computational domain is 

defined by the integral length scale. Pope states that the computational domain should 

be eight times the integral length scale. Following Pope [26], this constrain can be 

expressed as 

8A 	3.6€0  . 	 (2.56) 

For the derivation of the above expression it has been assummed that in homo-

geneous isotropic turbulence of high Reynolds number the longitudinal integral scale 

asymptotically reaches a constant fraction of to. This results in the following estimate 

for the number of nodes needed to resolve a turbulent flow field 

.L 8A , to , i D  N — — — i .u— = .une3/ 4  . 	 (2.57) 
Ax 2.1q 

Another estimate for the required total number of nodes in three dimensions is 

provided by Reynolds [44] and Givi [45], 

N3 ••- •• 0.1Re912  , 	 (2.58) 

and is based on the Taylor Reynolds number. Using the relation Reo 	ARel 
between ReA  and the turbulent Reynolds number Reo, rule (2.57) can be expressed as, 

N3  --:-.10.06Re912  . 	 (2.59) 

Although both rules are estimates of the resolution requirements for a DNS calcu-

lation, a comparison of the two rules (2.58) and (2.59) shows that (2.59) is stricter. 

The total number of nodes N3  — 0.06Re9A/2  defines the memory requirements of a 

three-dimensional DNS simulation. The time needed for a DNS calculation depends 

on the number of time steps M required for the integration of the governing equations. 

A typical duration, for a DNS of homogeneous isotropic turbulence, varies from three 

to four T, where T is the eddy-turnover time. This observation can provide an estimate 

of the total computational time depending on the Courant number. The Courant num- 
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ber formulation constrains the computational time step At so that each fluid element 

will move only a fraction of the grid spacing each time step. Several formulations of 

this constrain have been proposed for DNS [26]. An expression can be based on the 

turbulent kinetic energy 

or the turbulent time scale T77, 

Atk1 /2 	1 
Ax — 20 

At 1 = 
T 10 

(2.60) 

(2.61) 

The number of time steps M needed for a duration of four eddy-turnover times, is 

M 	9.2ReA3/2  , 	 (2.62) 

or alternatively, following equation (2.61), 

M 	15.5ReA  . 	 (2.63) 

From the above analysis it is evident that there is a steep increase of the compu-

tational power demands with increasing turbulent Reynolds number. Furthermore, the 

primary aim of DNS calculations is to investigate real life turbulence in order to facil-

itate the research on turbulence modelling. Flows in real life applications are highly 

turbulent, making the effort to apply DNS to realistic turbulent flow regimes a compu-

tationally challenging task. In order to succeed in shifting the field of DNS research 

from low Reynolds turbulence to the simulation of more realistic cases, a DNS cal-

culation should be set up in a such way that makes most of the computational power 

available and to achieve the highest Reynolds number possible. This relation between 

turbulent Reynolds number and the corresponding computational cost is presented in 

table (2.1) adapted from Pope [26]. 

This table shows three numerical examples of the analysis presented in this sec-

tion for the computational cost of DNS. The CPU time, is estimated assuming 1000 

operations for each node and each time step. The presumed processor is able of 
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Table 2.1: Estimations of CPU time, memory, and number of nodes for a DNS, as a 
function of the turbulent Reynolds number. 

Re A  Reo N N3  M N3  M CPU time Memory 
allocation 

30 135 64 2.3 • 105  1.5 • 103  4.0 • 108  10m 6Mbyte s 
120 2145 512 1.3 • 108  1.2 • 104  1.6 • 1012  20days 3Gbytes 
478 34325 4, 096 6.8 • 1010  9.6 • 104  6.6 • 1015  200years 1.5Tbytes 

1 GigaFLOPS (Floating Operations Per Second), a number close to the capabilities of 

modern processors assuming double precision numerics. For the memory allocation, 

double precision is also assumed, and refers to the three components of the velocity 

field, thus 3 x 8 bytes per node. It must be mentioned that table (2.1) accounts for 

the integration of the momentum equation only. Depending on the numerical method 

used, the flow field is stored in the computer memory for more than one time, and the 

computational demands shown in table (2.1) are expected to be higher, for example 

accounting for the previous and the current time step, pressure terms or spatial deriva-

tives. 

As it will be seen in the next section, the characteristics of the DNS presented in 

literature deviate from the values provided in the table 2.1. It must be noted that the 

information of this table is indicative of the computational costs involved in the DNS 

of turbulent flows and of their dependence to the turbulent Reynolds number. Given 

that these values are theoretical estimates, the resolution of a DNS simulations is as-

sessed by the analysis of the statistics of the final solutions. In addition, numerical 

techniques like the forcing of the large scales, that models the effect of the energy con-

taining scales, relax the constrains for the upper limit of the spatial resolution of DNS 

simulations. On the other hand, DNS of flows other than the homogeneous isotropic 

turbulence have special characteristics such as the total time of the simulation, which 

may be significantly larger, and cause divergence from the theoretical analysis pro-

vided in this section. 
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2.5.2 Review of DNS 

Given that the computational cost in terms of both CPU-time and memory allocation 

is the bottleneck of DNS, an efficient and accurate algorithm is needed. Such a choice 

makes most of the memory used, and the accuracy leads to bigger time steps reducing 

the computational time. Spectral algorithms were the only choice of CFD engineers 

for DNS applications until the mid nineties. They offered a reduced need for memory 

allocation and permitted larger time steps compared to a finite differences code [45]. 

The numerical methods that have been proposed in DNS have to deal with four 

main features: the spatial representation and approximation of the spatial derivatives; 

the treatment of the boundary conditions; the time evolution algorithm; and the tech-

nical part of the computer implementation. The features mentioned above refer to the 

treatment of the velocity field of the a turbulent flow. However, a numerical simulation 

can be enhanced to include other phenomena which interact with turbulence. as is the 

case with DNS of pollutants transport, flames , and two phase flows. 

The foundations of DNS were laid in the late sixties when a simulation of de-

caying isotropic and homogeneous turbulence in a box was carried out by Orszag and 

Patterson [46, 47]. This first simulation was also the first implementation of a Galerkin 

spectral algorithm for the integration of the Navier-Stokes equations. The calculations 

were performed on a CDC 6000 computer, allowing a realistic simulation of a homo-

geneous isotropic turbulent flow field with a maximum Taylor scale Reynolds number 

of about AT = 35 on a computational mesh consisting of a cube with 32 nodes in each 

direction [45]. After this first stage there was a steady increase of the number of grid 

nodes and consequently simulations of higher turbulent Reynolds numbers aided by an 

equivalent increase of computational power. By the early eighties, calculations using 

643  nodes for homogeneous isotropic turbulence had become common, starting with 

Patterson and Siggia in 1981, [48] and then Brachet et al. in 1983 [49] and Kida and 

Murakami in 1987 [50]. During this period, the next big step in DNS after Orszag was 

taken by Rogallo in 1981. Rogallo's study examined the effects of mean shear, irrota-

tional strain, and rotation on homogeneous turbulence and compared simulations with 

theory and experimental data. The algorithm used by Rogallo was an extension of the 

Orszag and Patterson spectral method, combined with a transformation of the govern- 
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ing equations. Subsequent DNS have essentially been based on Roggalo's algorithm 

[51], including the code utilised in this study. At that time Rogallo [52] and later Kerr 

[42] had performed numerous 1283  simulations. A flow Reynolds number simulation 

of Re = 3000 had been achieved by Brachet et al. [49] at as early as 1983. However 

this was achieved by exploiting the symmetries of the Taylor-Green vortex reaching to 

an effective but not actual resolution of 2563  nodes. A DNS with an actual resolution 

of 2563  nodes was carried out by Vincent and Meneguzzi in 1991 [53]. The increase of 

the computational power made available to researchers induced the next step of bigger 

simulations with 5123  nodes, from Chen [54], Jimenez [55, 56, 57] and Meneguzzi 

[53] in the mid-nineties. The codes used for homogeneous isotropic turbulence were, 

following Rogallo, all pseudospectral, with periodic boundary conditions and a low 

storage Runge-Kutta algorithm for the integration time [58]. In the mid-eighties the 

primary goal of researchers was the investigation of the inertial range of turbulence. 

The inertial scale had been established experimentally, but for Reynolds numbers not 

less than 10, 000. Seeking to establish a subrange, researchers were directed to the 

technique of the external forcing of the low wavenumbers [59]. The energy provided 

to the large scales allowed the evolution of the smaller scales before they dissipate, 

leading to a developed inertial subrange. One should note the contrast to LES where 

the large scales are simulated and the small scales are modelled. In forced DNS the 

small scales are directly simulated, while the energy cascade from the large scales is 

modelled with the forcing [51]. 

During the next decade, DNS computations that incorporate meshes of large sizes 

have been witnessed. Fukayama and Gotoh carried out homogeneous turbulence sim-

ulations on a mesh of 10243  nodes and Taylor Reynolds numbers between of 38 and 

478. The results were published in 2000, and among other conclusions the inertia sub-

range was established and the universality of the fluctuations was discussed [60]. The 

biggest simulation of homogeneous isotropic turbulence was announced by Kaneda 

et al. [61]. The mesh used is the finest resolution ever used reaching to up to 40963  

nodes. The Earth Simulator supercomputer was employed for this task. 

The increase of the computational power not only lead to an increase of the size of 

the meshes employed, but also caused an enrichment of the variety of the turbulence 
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phenomena studied with DNS. As a result DNS has evolved from the computation of 

homogeneous isotropic turbulence for relatively small Reynolds numbers to turbulent 

flows of more complicated geometries such as boundary layers and wall interactions, 

jets and mixing layers. Furthermore, researchers have started studying interactions 

between turbulence and other phenomena as species transport, compressible flows or 

combustion. 

During the seventies the computational power available did not allow DNS of wall 

bounded flows; however, coarse grid computations of free-shear layers were available 

at the end of the decade [62]. The simplest wall bounded flow and also the first to be 

studied with DNS was the plane channel flow by Mosser and Moin [63], and Kim et 

al. [64]. These turbulent flows presented at least one homogeneous direction. This 

setup makes the use of periodic boundary conditions, possible. Later advances in the 

development of inflow boundary conditions led to DNS of flows with more compli-

cated geometries. Such examples are either the backward facing step simulation of Le 

and Moin [65], or the turbulent boundary layer with an adverse pressure gradient and 

separation of Na and Moin [66]. 

DNS of mixing layers and scalar mixing have been widely used for the study of 

in-homogeneous turbulence [67, 68, 69] featuring a three-dimensional mesh of max-

imum 128 x 128 x 257 nodes. The DNS of Rogers et al. [70, 71] was the first 

three-dimensional simulation with adequate resolution of the turbulent scales. The 

Reynolds number based on the momentum thickness was Reo  = 500. However, the 

scope of this simulation was the study of the instability mechanism leading to transi-

tion, rather than the developed turbulence itself. A more detailed simulation of Rogers 

and Moser [72] involved the study of the inhomogeneous turbulent flow field induced 

by a mixing layer. A Galerkin spectral methodology was utilised for the integration 

of the governing equations on a mesh of 512 x 210 x 192 spectral nodes. In addition 

to the simulation of momentum transport, the evolution of a passive scalar with unity 

Schmidt number was also simulated. The boundary conditions were periodic in the 

streamwise direction, leading to a temporal evolving shear layer. Another DNS of a 

spatially evolving mixing layers had been utilised for deriving tools for LES [73]. 

Other examples of fundamental shear flows simulated with DNS are wakes and 
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planar or cylindrical jets. A DNS setup closer to the mixing layer rather than the 

classical cylindrical jet is the planar jet, incorporating two parallel shear layers. A 

temporal evolving planar jet simulation, characterised by a bulk Reynolds number of 

ReD  = 6800, was used for the derivation and assessment of a turbulent viscosity dy-

namic model, carried out by Akhavan et al. [74]. The discretisation used involved 128 

Chebysev nodes in the transverse direction, whereas 128 x 258 Fourier nodes where 

used in the spanwise and streamwise directions. The DNS results where evaluated and 

compared with the planar jet experiments of Wygnanski and Fiedler [75]. Results from 

the planar jet DNS of Klein et al. [76] were published in 2003. The orifice Reynolds 

number for this simulation ranges from 1000 to 6000, and the Navier-Stokes equa-

tions were integrated on a mesh of 360 x 128 x 512 grid points. The jet was spatially 

evolving, and the effect of inlet boundary conditions was assessed. A laborious DNS 

of a spatially evolving planar jet was undertaken by Stanley et al. [77] with an flow 

Reynolds number of 3000 providing comparisons with equivalent experimental results. 

An original DNS setup of an inhomogeneous mixing layer is the simulation of 

Knaepen et al. [78]. This simulation deals with scalar mixing in stratified turbulence, 

where the flow is a shear free mixing layer characterised by a zero mean streamwise 

velocity. DNS of circular jets were carried out by Brachet in the mid-nineties [79] 

where the vortex induction in circular jets was studied. In addition, other simulations of 

circular jets were the DNS of Verzicco with a orifice Reynolds number of ReD  = 1500 

on a cylindrical mesh of 48 x 128 x 128 [80] and the similar setup of Mathew and Basu 

[81]. 

As mentioned above, DNS, apart of more complicated geometries, has also been 

extended to cover the study of the interaction between turbulence and other phenom-

ena. The study of the effect of compressibility on turbulence was initiated with DNS of 

homogeneous isotropic turbulence by Feiereisen in 1981 [82], whereas buoyancy gen-

erated turbulence, was simulated by Girimaji in 1997 [83]. The interactions between 

turbulence and reactive scalars, transported in a turbulent flow field, are of great inter-

est for combustion modelling. The understanding of these interactions is expected to 

provide better predictions and more precise modelling of combusting systems. Since 

the mid-eighties DNS has played a significant role in studying the structure of flames. 
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Reactive flows present a major difficulty for the full resolution of all the scales of 

the combined turbulence-combustion problem. A complete DNS solution for practical 

devices, is not possible and modelling methodologies, such as RANS and LES, are 

utilised instead. However, the need of DNS simulations that will provide the simul-

taneous spatial structure of a flame has led to DNS of artificial turbulent flames [38] 

incorporating various levels of assumptions [20]. Such flames are test cases set up in 

such a way that the range of scales, from macroscopic to Kolmogorov and flame thick-

ness, are all resolved. Starting with the first attempt of Hill in 1979 [45], there has been 

a long list of researchers who carried out DNS of turbulent flames. 

The assumptions employed in combustion DNS deal with the modelling of density 

variations, the range of the Lewis numbers among the reactants, the dependence of the 

diffusivity coefficients and the viscosity of the mixture on temperature variations and, 

finally, the simplified chemistry mechanisms involved. 

Most of the DNS of pure mixing and scalar transport use incompressible constant 

density formulations. In DNS, the modelling of flame density variations may be omit-

ted in cases of minimal heat release. Such an assumption is valid in the case of a fuel 

diluted in a passive gas as described by Mell [84]. The next step is the low Mach 

number assumption where the density depends solely on temperature. Finally, a fully 

compressible code can be used in DNS, leading to long computational times due to the 

CFL restrictions for the time advancement. 

The chemical kinetics mechanism determines the number of species to be solved, 

having a direct effect on the computational cost of the simulation. It is claimed that a 

realistic computation requires at least twenty species for the modelling of hydrocarbon 

oxidisation [36]. The numerical issues arising from a such complicated chemistry 

mechanism lead to a prohibitive computational cost. 

The flow field chosen for combustion DNS may vary from homogeneous isotropic 

turbulence case to more complicated inhomogeneous cases, mirroring the variety of 

DNS simulations for non-reacting flows. Jets and mixing layers can be treated either 

as time evolving with periodic boundary conditions or as spatially evolving where the 

inlet boundary conditions should be treated accordingly. For spatially evolving simu-

lations significant difficulties arise for the treatment of the inlet boundary conditions 
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which should be precise solutions of the Navier-Stokes equations [85]. An example of 

a Lagrangian DNS of a mixing layer was the simulation of de Bruyn Kops et al. [86] 

where a parallel pseudospectral code had been used for a mesh of 512 x 512 x 1024 

nodes and the flame was modelled with a single step reaction mechanism. The first 

effort to model an reacting inhomogeneous turbulent flow, was the reacting mixing 

layer DNS of Riley et al. [87]. The chemistry was also modelled using a single step 

mechanism and negligible heat release was assumed. This, combined with a low Mach 

number assumption, led to constant density, viscosity, and diffusion coefficients. The 

low resolution of the simulation with the finest grid reaching 64 x 64 x 64 did not 

allow the computations to develop further than the transitional period. Pantano [88] 

performed a DNS simulation that deals with a reacting inhomogeneous flow involving 

relatively few assumptions. The flow field was a spatially evolving planar jet. The flow 

Reynolds number was ReD  = 3000 and the mesh utilised consists of 1024 x 512 x 192 

nodes in the streamwise, transverse, and spanwise, directions respectively. The in-

flow boundary conditions were artificially synthesised with a procedure described by 

Stanley [77]. The heat release was not negligible and the density variations due to 

temperature are treated using a fully compressible algorithm. The fuel consists of 

methane and the chemistry mechanism employed accounts for eight species in total, 

i.e. two final products, three intermediate species, one passive scalar, the oxidiser and 

the fuel. Furthermore, the Lewis number vary for each species, and both diffusivity 

and viscosity change with temperature. A temporal configuration of a planar jet of a 

CO/H2  flame had been simulated by Hawkes et al. [89]. The chemical mechanism 

utilised is incorporating eleven species, thus being able to account for extinction and 

re-ignition. The flow field is integrated by a fully compressible CFD code and the 

numerical resolution can handle flow Reynolds numbers from 2510 to 9079. An ex-

plicit differentiation scheme based on 8th-order finite difference had been used while a 

fourth order Runge-Kutta is utilised for the time advancement. 

One way of drastically reducing the computational cost in a DNS is to perform two 

dimensional computations [90]. Such an approach sacrifices the realistic simulation of 

the three dimensional turbulent structure, but, on the other hand, it allows detailed 

chemistry mechanisms. Depending on the priorities and the nature of the study, two 
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dimensional simulations have been proved quite useful for the parametric analysis for 

turbulent combustion modelling. 

Premixed flames have also been studied with DNS. A detailed literature review of 

the simulations carried out for premixed flames can be found in the book of Poinsot 

and Veynante [20]. 

2.6 Modelling methodologies for turbulence in CFD 

In the previous section it became clear that the computational cost of a direct simu-

lation of a real life turbulent flow is prohibitive. The need for numerical simulations 

of turbulent flows with high Reynolds number in complicated geometries had led to 

modelling methodologies such as the Reynolds Averaged Navier-Stokes simulations 

(RANS) or the more demanding Large Eddy Simulation (LES). Both approaches are 

based on the idea of solving for either an averaged or a filtered turbulent flow field. 

Such a flow field contains less information and its variables exhibit a much smaller 

range of turbulent scales compared to the unfiltered and instantaneous values found in 

the governing equations. 

2.6.1 Reynolds Averaged Navier-Stokes equations (RANS) 

One way to reduce the resolution requirements for the integration of the governing 

equations of a turbulent flow field is to apply a time averaging operation on the velocity 

and the scalar field. This averaging operator (•) for the field variable f(x; t), is defined 

as 

ro+At 

(f)(x) = lim —
1 

f (x; t)dt , 	 (2.64) 
At-3. At in  

where (2.64) is the Reynolds average of the turbulent field variable, while the 

operation itself is the Reynolds averaging operation. In the present study the brackets 

are used to denote Reynolds averaging in order to avoid confusion with the filtering 

operation introduced in the next section for the LES methodology. For a statistically 

stationary flow field, (f)(x) is expected to be independent of time. The properties of 



2.6. Modelling methodologies for turbulence in CFD 	 67 

the Reynolds averaging operator can be easily derived from (2.64) and be summarised 

as 

(a) = a 

(aF) = a(F) 

(F + G) = (F) + (G) 	
(2.65) 

((F)) = (F) 

((F)G) = (F)(G) 
idF N _ d(F) 

dx 	dx 

where F and G are random variables, whereas a denotes a constant parameter. 

The RANS equations can be derived by applying the averaging operator to the 

Navier-Stokes equations (2.2) and making use of the averaging operator properties 

(2.65) 

a(p)(t7i) a((19)(iTi)(17;)) 	8(p) a(T)i; &MITI) — (10(iTa)  for j = 1, 2, 3 , 
at 	ax; 	ax; 	ax i 	 axi  

(2.66) 

where (T,,) is the averaged viscous stress tensor provided by the equation (2.3). 

The operator (7) is the Favre average [91], introduced for variable density flows and is 

defined as 

(7)  _ (P.f) 
(P) 

which reduces to the Reynolds average operator (), if constant density is assumed. 

Here it must be noted that the notations of the Reynolds averaging and the Favre av-

eraging operators are not the common notations found in RANS literature. However, 

these averaging operations are incorporated in this study in order to avoid any confu-

sion with the equivalent LES filtering operations which is dealt with in the next section. 

The average of the velocity product (uiui ) that appears in equation (2.66) is a part 

of the Reynolds stresses, (urui ) = 	- (iii )(14- ), which expresses the dissipation 

of turbulent kinetic energy due to turbulent fluctuations. This term remains unclosed 

and its closure is the aim of RANS modelling. This is a task of enormous complexity, 

(2.67) 
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given that all the scales of the turbulent flow field, from the highly anisotropic inertial 

scales to the smallest more uniform scales remain unmodeled and have to be captured 

by the models employed. RANS modelling remains a successful methodology for the 

simulation of turbulent reactive flows and has been the subject of a vast literature [92]. 

In comparison to DNS the computational cost of RANS is much smaller, given that 

the resolution requirements are more relaxed for the averaged flow field, and, the flow 

field may be treated as stationary. In addition, taking advantages of the symmetries 

of the flow, the flow field can also be simulated with two-dimensional computations. 

According to Jones [92] the inadequacies of RANS modelling stems from the implicit 

attempt to parametrise all the scales of the turbulence energy spectrum using a single 

length scale and a single time scale. 

2.6.2 Large Eddy Simulation 

A new approach to the problem of simulating turbulent flows has come to the fore 

during the past four decades. It aims to improve the description of turbulent scales 

based on the ideas of scale separation. The large turbulent scales are strongly affected 

by the macroscopic characteristics of the specific flow. Specifically, these scales are 

governed by the interaction with walls, boundaries, recirculation regions and shear 

layers, thus making it very difficult to derive a global model which could describe 

them. On the other hand, the smaller scales, according to Kolmogorov's ideas, are 

characterised by a universal structure making them ideal for parametrisation. Large 

Eddy Simulation (LES) is based on the idea of directly solving the bigger scales while 

providing models for the effect of the smallest dissipative scales on the flow. This 

can be achieved by applying a spatial filter which cuts off the turbulent scales with 

small wavenumbers, and then solving the governing equations for the time dependent 

problem of the filtered flow field. The effect of the smaller scales enters the filtered 

equations in the form of unclosed terms. However, because of their global character, 

their modelling is expected to be simpler. 

The computational cost is much bigger compared to the equivalent cost for the 

RANS methodology. Some part of the turbulence spectrum is solved for, making LES 

strictly time dependant, even for statistically stationary fields. The symmetries of the 
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boundary conditions or of the macroscopic problem cannot be exploited, ever since 

the large scales may exhibit non symmetric instabilities. Finally, taking into account 

that the large scales are highly three-dimensional, two-dimensional LES is simply in-

accurate. However, because the small scales comprise most of the range in a turbulent 

spectrum, their modelling leads to significant savings in the computational cost when 

compared to DNS. 

In contrast to RANS time averaging, LES filtering is applied in space rather than 

in time. The governing equations for LES are derived by applying the filtering operator 

to the Navier-Stokes equations. The spatial filtering for a variable of a turbulent field, 

f(x; t), is expressed as its convolution with a filter function G [93], 

	

f (xo; = f G(xo  — x, A(xo))f (x; t)dV 	 (2.68) 
xEv 

The integration is applied for the whole flow field denoted by, the volume, V. The 

filter function G(xo — x, A(x0)) is normalised in a such way that its integral equals to 

unity, 

	

/Ey G(xo — x, A(xo))dV = 1 V.ro E V . 	 (2.69) 

The parameter A is the filter width, which may vary in space. Usually the filter 

function is defined as a product of three one-dimensional filters, 

3 
G(r, A) = 	Gi(ri ; Ai(xj)) 

	
(2.70) 

e=i 

The filter width is the length scale that separates the large from the smallest scales. 

Applying a filtering operation with filter width A will smoothen the flow field by cut-

ting off the small scales with wave number smaller than 7r/A, while having a negligible 

effect to the large scales. Given that the turbulent scales appear in the turbulent kinetic 

energy spectrum, the effect of the filtering operation can be investigated in spectral 

space. The Fourier transform of the filtered field f, for wavenumber x is, 

1 
f(K) = 27r ci(K)J(K) (2.71) 
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Table 2.2: LES filter functions [26]. 

Filter 	Filter function Transfer function 
G(r) 	2÷,G(K) 

Box 

Gaussian 

Sharp spectral 

fH(iA — 

( 6 ) 2 
e
- A2 A2 I 	6r2  

sin( IcA) 
!KA 

,c2A2 
e-  24 

H( A1  - IKI) 

 

,rr 

 

making use of the convolution identity for the Fourier transform. The "hat" symbol 

denotes the Fourier transform. The expression r0'(K) is the transfer function of the fil-

tering operation. In spectral space, the filter width corresponds to a critical wavenum-

ber Kc  = o. The shape of the filtering function is not strictly defined, however, there 

are three types of filters which are commonly used: the spectral cutoff, the Gaussian 

and the spatial box filter. The details of the three LES filters are shown in table (2.2), 

where H(r) is the step function being zero for negative values and unity for positive 

values. 

The spectral cutoff filter eliminates all the eddies with wavenumbers bigger than 

the one corresponding to the filter width A while the box filter simply averages the 

field values within a box of width A. Figure 2.7 shows the shapes of the three, one-

dimensional filter functions in physical space and the corresponding transfer functions. 

G • A 

Figure 2.7: The shapes of the filtering functions and the transfer functions. 
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The derivation of the LES governing equations is based on the mathematical prop-

erties of the filtering. The rules for manipulating the filtering operator can be easily 

proven using the definition (2.68), the properties of the filtering operator are: 

= a 

aF = aF 

F + G =T 
	 (2.72) 

dF cif- 
dt 	dt 9  

for the constant value a, the field variables F(x; t) and G(x; t) 

The above properties are also valid for the RANS averaging operator. However, 

not all properties of RANS averaging are valid for LES, i.e., 

= 
F # F 

FG # FG • 	 (2.73) 
dF 4  dT 
dx dx 

In general, as seen in the set on inequalities (2.73), filtering does not commute 

with the spatial derivative. In fact, the spatial derivative of a field variable is found to 

be, 

di. OF 	 OG(x — r; t) 
dx 
— = — + F(x — r; t) 	dr . 

i  
(2.74) 

OG(x—r;t)  

	

However, if a homogeneous filter function is used, i.e 		 = 0, which does 9 	• 	ax, 
not change within the flow field, then the integral on the r.h.s. of equation (2.74) 

becomes equal to zero and the spatial derivatives commute with spatial differentiation. 

Taking into account that LES is generally used for inhomogeneous turbulent flows, it 

is common to use a filter width that follows the length scales of turbulence, and varies 

along the domain. In such a realisation the filter width should vary modestly in space 

to keep the commutation error to a minimum [93]. 

An alternative way of filtering has been derived in order to deal with variable 

density flows. In turbulent reacting flows such as flames, large density variations occur 

and must be accounted for. Conventional filters lead to an explicit treatment for the 

sub-grid terms arising from the density fluctuations. In response to this problem the 



2.6. Modelling methodologies for turbulence in CFD 	 72 

fluctuations are weighted with the local density, 

:fix; t) = Pf 	 (2.75) 

The filter introduced by equation (2.75) is known as Favre filtering. For constant 

density flows, Favre filtering becomes identical to the simple filter, shown in equation 

(2.68). Imposing the filtering operation on the Navier-Stokes equations (2.2), mak-

ing use of the filtering operator properties listed in equation (2.72) and assuming the 

commutation with spatial derivatives, equation (2.74), the momentum transport for a 

filtered flow field can be expressed as 

pii 	 o p af-i;  a p (u u — 
 	for j = 1, 2, 3 . 	(2.76) 

at 	axi 	ax;  axi ax;  

The same procedure is followed for the transport equations of any scalar field 

subject to turbulence. Following the same rules as for the Navier-Stokes equations, the 

transport equations for the filtered mass fractions of the reacting species can be derived 

by filtering the species transport equations (2.7) and can then be expressed as, 

15 fk + a Txi k
( 
ptli A k) = 

a 
Tcjiv

u 
,jYk p (u — ITT; k)] + Tjk for k = 1,N . 	(2.77) 

Using the same procedure, the mixture fraction and enthalpy transport equations 

can be written as 

and, 

ais ± a coTiz (±[ vk,g — at ax, 	axi  (2.78) 

ad; a 
+—(puin) = 

ap 
at 

a 
p 

( 
Vk I krik 

ap 	a aT 
A— 

aui  
at axi  axi 	axi  — p uin — uin axi  -Fri • — ax;  k=1  

(2.79) 
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The above set of equations (2.76) to (2.79) is used to describe the evolution of 

the LES filtered flow fields in turbulent combustion. However, due to the filtering 

operation, new unclosed terms have appeared. These terms account for the effect of the 

small scales of turbulence on the flow field. In LES, the unclosed terms are known as 

unresolved or sub-grid scales. Although the grid size in a LES simulation is not directly 

connected to the filtered width which separates the resolved from the unresolved scales, 

the term "sub-grid" is commonly used in LES literature. The closure of the unresolved 

terms is the subject of the LES sub-grid scale modelling. 

In the previous description of the LES approach no reference has been made to 

the discretisation for the numerical solution of equations (2.76) to (2.79). Having 

assumed that the LES solution should directly account for all scales larger than A, the 

discretisation should employ a grid spacing smaller or equal to A. Following Deardorff 

[94] the grid spacing is quantified by a characteristic length based on the volume of the 

computational cell (Ax1Ax2Ax3)1/3. The usual practice is to keep the grid spacing equal 

to the separation length A, therefore keeping computational cost to a minimum. As a 

result, the grid spacing and the filter width are practically treated as identical entities. 

It can be stated that a LES numerical representation is accomplished in two stages, at 

first, the filter is applied and secondly a discretisation is supposed, making sure that 

the length scales of the filtered flow field are fully resolved. Figure 2.8 depicts the 

effect of the filtering operation on a fluctuating variable. The filtered field is defined 

continously across the one-dimensional space. Ideally the discretisation of the flow 

field should be such that 80% of the energy fluctuations are resolved [95, 96, 26]. 

However, the equations (2.76) to (2.79) are accurate for the filtered values f (x) which 

are defined continously across the field. Inevitably, the commutation of the spatial 

derivatives with the filtering operator is affected by the discretisation error introduced 

by expressing the filtered field with a finite number of values on a grid [93]. 

2.7 	Sub grid scale modelling in LES 

The unresolved Reynolds stresses Ili  =—p(u;u1 — 	appear in the momentum trans- 

port equation of the LES filtered field (2.76), and need closure. The name "stress" 
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Figure 2.8: The filtering and the discretisation of a fluctuating quantity on one dimen-
sion 

stems from the way Tiui  is treated in LES modelling rather than from its physical na-

ture [20]. Reynolds stresses express the momentum flux due to the small eddies. The 

earliest and most commonly used model for the closure of the Reynolds stresses is the 

Smagorinsky model [97]. The Smagorinsky model belongs to the "family" of eddy 

viscosity models. In this family of models the effect of the unresolved Reynolds stress 

is described by an increase of the fluid viscosity due to the sub-grid turbulent motion, 

and for a constant density simulation it is expressed as, 

u  1 u 	 2 drik 	— 	1— 
rij  — 	= Pt (—ax  + ax,— 56ii—axk ) = 41t (S — S kk) . 	(2.80) 

The above expression is common for all the eddy viscosity models introduced by 

Boussinesq [22, 98]. The parameter pr  = pv, is the turbulent viscosity, a quantity intro-

duced to model the effects of the small scale eddies as a virtual increase of the viscosity. 

Prandtl's formulation provides an approximation of the kinematic eddy viscosity [22] 

as: 

	

,ut -pPV. 	 (2.81) 

where V and P are a velocity and a length scale respectively. The integral length 

scale is chosen for eddy viscosity models and the filter width A is mainly taken as a 
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measure of the representative length scale € in LES [94]. For the characteristic velocity 

V the turbulent kinetic energy of the fluctuations is used and V is approximated by 

V — ViksGs. The term ksG s in a LES context is a measure of the turbulent kinetic 

energy of the sub-grid fluctuations, and is directly related to the trace of the Reynolds 

stress tensor, kscs = zukuk — -1-akakp-4kuk . Thus, the turbulent viscosity can be expressed 

as pi  = CpA 	introducing a proportionality coefficient C. 

Solving a transport equation for the sub-grid kinetic energy has been practised in 

LES [99], however, it has been commented that it is against the "philosophy" of the 

LES methodology. Such an approach increases the already significant computational 

cost, but it does not exploit the benefits of LES modelling, where only the small sub-

grid scales are left unresolved [32]. The Smagorinsky model is a zero equation model 

based on the assumption that the energy provided to the small scales is equal to the 

dissipation of energy to heat. The "production equals dissipation" assumption stems 

from turbulent kinetic energy transport equation, where local equilibrium for ksGs  is 

assumed. This can be expressed by 

Tijg ij = —PESGS • 
	 (2.82) 

The dissipation of the sub-grid scales, Escs , is then expressed as the sub-grid ki-

netic energy over a time scale, i.e. A/V, that provides a dissipation term which corre-

sponds to V and A. Using the constant CE, the expression of the dissipation is, 

k312  SGS 
ESGS CE (2.83) 

From the Boussinesq approximation (2.80) and assuming incompressibility, g Ick = 

0 and g = 	an expression for the residual stress can be derived, 

u 	1 
rii  — f3kscs6ii = —2CpAksasg • (2.84) 

This expression, along with equation (2.83), can then be introduced to equation 

(2.82), 
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k3/2 

	

3 	 Sy 

	

(-1 	 Ic di PkSGS — 2C .AlospAS' 	= —pC, SGS  . 
A 

(2.85) 

For constant density flows equation (2.85) can provide a model for ksGs based on 

the filtered flow field, 

ks  Gs = C,25' AI§ I 9 	 (2.86) 

where the constant Cs  is the so called Smagorinsky constant and IS I = -V2S iiS 

is the magnitude of the resolved rate of the strain tensor. Although expression (2.86) 

is valid for constant density flows only, it is widely used for variable density flows 

[32]. Equation (2.86) can now be used to provide the Smagorinsky model for the eddy 

viscosity, as 

ur = CIPA2I51 • 	 (2.87) 

A typical value for the Smagorinsky constant is Cs  = 0.2, as determined by Lilly 

[100] using theoretical arguments. The same value has been proposed by Clark et al. 

[101] using computational results and Kwak et al. [102] using experimental results 

on decaying turbulence. On the other hand, it has been argued by Deardoff [94] and 

Schumann [99] that a value of 0.2 for the Smagorinsky constant is too dissipative in 

simulations of channel flows and proposed a smaller value of Cs  = 0.1 [24]. 

Turbulent viscosity expresses the effect of the small eddies on momentum trans-

port along the fluid and can also be used for the closure of the scalar transport equation. 

The unclosed term u1  Yk  — 	appears in the transport equations of both reacting and 

passive scalars (see equations (2.77) and (2.78)) and also in the enthalpy transport 

equation (2.79). This term, known as the turbulent flux of the scalar Yk can closed with 

a turbulent viscosity model as, 

v, aYk  
"'ilk — UV' k 

S et  (2.88) 

where  Sci  is the turbulent Schmidt number, which taken as constant, [103, 104, 

105]. The introduction of a turbulent Schmidt number implies that the sub-grid scale 
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flux of the momentum and the scalar have similar length and velocity and velocity 

scales, thus S ci  must be close to unity [105]. For the LES simulation of Pitch [103]S c, 

is taken as equal to 0.4, whereas it is taken as equal to 0.7 for the LES of Branley 

et al. [32]. For the DNS of Kops et al. [104] S c, is assumed equal to unity. The 

above equation (2.88) is the classical gradient assumption for the modelling of the 

scalar fluxes [106] through an eddy diffusivity D1  which can be introduced instead of 

the turbulent viscosity, and is given by 

vt D, = 
S c, 

(2.89) 

2.8 	LES of turbulent reacting flows 

The LES modelling approach for the integration of a turbulent flow field and the so-

lution of the transport equations for the energy and all species has been described in 

the previous section. However, two aspects of the turbulent combustion have to be ad-

dressed. Firstly, the closure of the reaction rate terms cok  and WT  based on the filtered 

values and secondly, the treatment of the complexity of the chemical mechanism. A 

chemical mechanism may model the combustion process incorporating up to hundreds 

of species. Solving the LES transport equations for all the species in a turbulent flame 

leads to prohibitive computational cost. Flamelet modelling, Conditional Moment Clo-

sure and PDF methods address the problem of capturing the inner structure of a flame 

front. At the same time SLFM and CMC simplify the solution of the species transport 

equations [7]. 

2.8.1 Flamelet modelling 

Flamelet modelling is based on the idea that a small instantaneous flame element em-

bedded in a turbulent flow field has the structure of a laminar flamelet. This assump-

tion requires that the reaction region is significantly thinner than the smallest turbulent 

scales so that the combustion occurs in laminar flow even for a turbulent flame. The 

flame structure can be described by the distribution of the temperature T(4) and the 

mass fractions of the species Yk(), together with the corresponding source terms cok(e) 
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and coT(f), for defined along the mixture fraction space R. Following the flamelet 

methodology, the structure of a laminar one-dimensional flame is governed by equa- 

tions (2.47) and (2.48). Together with the boundary conditions for Yk( = 0), 	= 1), 

T(4 = 0) and T(. = 1) the flamelet equations constitute a boundary value problem for 

the unknown flame structure. 

Following the Stationary Laminar Flamelet Modelling (SLFM) methodology, the 

effect of the scalar mixing on the flame structure is introduced by the distribution of 

scalar dissipation rate x(), where x is a function of the mixture fraction. For a lam-

inar, one-dimensional flame this distribution can be parametrised with one degree of 

freedom. The distribution of x(e) is expressed as a function of the scalar dissipation 

rate at the stoichiometric mixture fraction, est , viz. 

F() 
X() = X(G) 

F( G) 
(2.90) 

where F() = e-2[erf-10-12 

represents the function for the dependence ofx in q-space [20]. Solving the bound-

ary value problem for the steady flamelet equations (2.47) and (2.48), for fixed value of 

Xst, one can come up with solutions for the species distribution Yk(6) and temperature 

T(4) in mixture fraction space. The solution for the mass fractions and the temperature 

can be tabulated in a so called "flamelet library" as Yk(4,xst ) and T(6,x,) respectively. 

The derived flamelet library is dependent on the specific chemistry mechanism. 

Assuming that the flame structure within a LES cell is represented by laminar 

flamelets, the filtered mass fractions and the temperature can be related to the integral 

of the equivalent distributions along the mixture fraction space as 

and, 

pyk=r
3f1P17k(z,Xst)P(,Xst)ckdXsi 

o 	o 

J 
PT = 	pT(z,xst)P(C,xst)dedxst • 

0 	0 

(2.91) 

(2.92) 

where P is the joint Probability Density Function (PDF) for the scalar dissipation 



—2 
Xst 

' 
„ 	, 77-2 

cr2  = lnA/vs'  (2.98) 
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rate and the mixture fraction [1]. If and Xst  are statistically independent, P can 

be expressed as the product of the two probabilities P(C,Xst) = 13(0 • P(.',) [20]. 

The mixture fraction PDF is presumed using a/3-function, defined by two degrees of 

freedom 

F(a +  b)  
P(e) = F(a)r(b)

a(i ob-1 (2.93) 

The two degrees of freedom a and b are defined in a such way that the presumed 

PDF corresponds to the mean value 4  and the variance 4."2 of the mixture fraction, 

a  = ee( 1-6  11 , 	 (2.94) 

	

b =
a 

 — a . 	 (2.95) 

As far as the PDF of the scalar dissipation rate is concerned, two different ap-

proaches are normally utilised in LES combustion. Firstly there is a detailed approach 

where a lognormal distribution is assumed [107, 20], 

1 	(In y ci-1)2  

PU/St) = 	 e 	 (2.96) 
X st0 VT7t- 

The lognormal PDF is characterised by two degrees of freedom which are defined 

by the values of the mean scalar dissipation rate at stoichiometric and its variance. The 

parameterµ in equation (2.96) is related to the filtered scalar dissipation Xst  as [108], 

cr2  
p = lnxs, — 2  , (2.97) 

whereas the parameter a-  is related to the variance of the scalar dissipation loga-

rithm, 

Several models for a-  or the variance of the scalar dissipation have been proposed, 

although a-  is often assumed constant and equal to unity. The parameter a-  can also be 
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related to the turbulent Reynolds number a- = 0.51n (0.1Re:/2) [109]. However, it is 

stated that the influence of the scalar dissipation variance does not have a significant 

effect on the final results. 

The second and simpler approach for the modelling of the PDF of the scalar dissi-

pation rate is a Dirac-delta function [110, 20], i.e. 

P(V51) = (5G sr —TO • 	 (2.99) 

Having defined the PDF of the scalar dissipation and the mixture fraction in equa-

tions (2.91) and (2.92), the values for the reactive species and the temperature can be 

retrieved by utilising the flamelet libraries Yk(,,y,,,) and T(e,x„). The implementation 

of flamelet modelling within a LES algorithm requires the LES solution of the mo-

mentum transport and the mixing problem as described by equations (2.76) and (2.78), 

respectively. In flamelet modelling the unsteady and random nature of the turbulent 

flow field is introduced to the combustion mechanism by the mixing problem. The 

LES of the scalar mixing explicitly provides the filtered mixture fraction -e. However, 

the mixture fraction variance e"2, the scalar dissipation on the stoichiometric mix-

ture fraction A--;;, and the filtered scalar dissipation rate k  remain unclosed. The three 

unclosed values can be reduced to two, providing the following model for the scalar 

dissipation rate at the stoichiometric mixture fraction 

= xs, fi  F()  P ode Re.) 
(2.100) 

The above relation between 	and ;y-  derives from the integration of (2.90) over 

the mixture fraction space. 

2.8.2 Micromixing modelling in LES 

Closures fork and e"2 cannot be based solely on the filtered scalar field The scalar 

dissipation rate and the variance are unresolved, and depend on the sub-grid fluctua-

tions of the mixture fraction, caused by the interaction of the fine turbulent scales with 

the mixing problem. 

Scalar variance is a measure of the intensity of the mixture fraction fluctuations, 
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et,2 = 	e-2 	 (2.101) 

e"2 can be regarded as the sub-grid scalar energy, where e2 represents the magni-

tude of the energy of the mixture fraction fluctuations. The filtered scalar dissipation 

rater is decomposed into the dissipation of the filtered fieldx„ i.e. the resolved scalar 

dissipation, plus the tine scale, or sub-grid contribution XS GS 

,„_ae zi9— = Lop-- + zDp 	. 
axt  axt 	axe  axe 	oxi  ax, (2.102) 

T 	 Xr 
	

XS GS 

The first term of the right hand side in equation (2.102) can be evaluated from the 

filtered flow field. However, the sub-grid part is unresolved and has to be modelled in 

LES. 

The two quantities e"2 and xsas,  describe the same phenomenon; the effect of the 

small scales of the turbulent fluctuations on the mixture fraction distribution. Thus, 

these two terms can be related through dimensional analysis arguments. In fact, scalar 

dissipation rate and scalar variance provide the time scale of the sub-grid scale mixing, 

T 

,2 

= 	 . 	 (2.103) 
S GS 

An estimate for the time scale can be retrieved from RANS modelling [106, 

111, 112], where it is related to the filtered turbulent kinetic energy k and the filtered 

kinetic energy dissipation rate E. In LES, an approximation for -7-r  can be based on the 

resolved rate of strain 	[1051, 

— 	— CIS , k 
where the constant C is introduced in order to provide a relation between the sub-

grid scale "I"g and the turbulent time scale E. 

An insight into the physics of turbulent micromixing is obtained from the scalar 

variance transport equation. The starting point for the derivation of this equation, is 

(2.104) 
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the mixture fraction transport equation (2.42). The transport equation for the square of 

the mixture fraction derives from equation (2.42), using the identity c= 2 -a7, and 

assuming constant density for the mixing problem, viz. 

42 	4,2 (9 p—at + pui—, =Dp aax?axi oxi — zDp—, —„ 

Rate Convection Diffusion  Dissipation 

(2.105) 

The transport equation for 4  derives from the transport equation for the filtered 

mixture fraction by applying the same procedure used for the derivation of equation 

(2.105) and this results in 

_a? _4-2 n-4.2 a pui— = Dp---x7a  — 21)4(?, 	2—ian + 27-1— , 	(2.106) 

	

ax; 	 ox;  ox; 	ox; 	ax;  
Rate ConvectionDiffusion  Dissipation SGS Dif- SGS Ds- 

fusion 	sipation 

where Ti = p—(--"ug — ITZ is the turbulent flux for the mixture fraction. Finally, from 

equations (2.105) and (2.106) the scalar variance transport equation is obtained, 

a 	- e) cle2 2 	
82 (e e) 

U l  

	

at 	OXi 	ax; 	 ax? 

        

        

Rate 	Convection 	Diffusion 

2D13  ax; ax; oxi 
(af + 2—, — 

0x, 	0x, 

a (2.107) 

        

Dissipation 	Diffusion Production 
of large 	by large 

scales 	scales 

Equation (2.107) is a typical transport equation where the energy of the sub-grid 

fluctuations for the mixture fraction e2 - e2 convects, diffuses, and dissipates along the 

turbulent flow field. The effect of the resolved flow field is represented by the last two 

terms of equation (2.107), i.e. the diffusion of large scales and the production by large 

scales [113]. 
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The main step for the derivation of zero equation models for LES is the local 

equilibrium assumption which is supposed to be valid for the small sub-grid scales 

of a LES. This requires that the turbulent flow field is stationary, homogeneous and 

isotropic, thus all the linear combinations of the spatial gradients and the time rates 

reduce to zero. Assuming local equilibrium for the equation (2.107) all the terms 

but the production by large scales and the dissipation are negligible and the equation 

reduces to 

— 
2DP 	 - 

2r 
 1 8x1  • 

(2.108) 

  

XS GS 

  

Equation (2.108) is the expression of the production equals dissipation assumption 

for the energy of the turbulent fluctuations of the mixture fraction and is valid under a 

local equilibrium assumption. The scalar flux Ti in equation (2.108) can be modelled 

using the gradient model shown in equation (2.88), for the mixture fraction, i.e. Ti = 

D(74. This leads to a first model for the sub-grid scalar dissipation rate, 

TYSGS = 2PDt— ax;  ax;  x, ox, 

where the turbulent diffusivity D, is modelled as 

Ept  (C,A)2 1s1  
S ct  

(2.109) 

(2.110) 

The model described by equations (2.109) and (2.110) provides an explicit, zero 

equation closure for the scalar dissipation rate. A decomposition of the total scalar 

dissipation rate leads to the same conclusion as shown by Girimaji and Zhou [112] 

A closure for the scalar variance can be obtained from the relation between e,2 
and Xs-76:s shown in equation (2.103). The estimate for the time scale of the sub-grid 

scale mixing in equation (2.104) is inserted into equation (2.103). Using the gradient 

model for Y SGS yields a gradient model for the scalar variance, viz. 

= 2C A2 (9e (9--  
v  ax;  ox;  
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the constant C. can be calculated, assuming the Oboukhov-Corrsin spectrum for 

the scalar fluctuations [105]. This leads to a value of C, = 0.2 for the constant of the 

scalar variance model (2.111) [104, 114, 20]. 

The closures for the scalar dissipation rate (2.109) and scalar variance (2.111) 

mentioned above incorporate constant coefficients, Cs  and Cv. This leads to nonzero 

sub-grid values for xs Gs  and 6"2 , when the gradient of the scalar distribution V6V6 

is not zero. However, in the transitional area of turbulent jets the mixture fraction 

gradients are large while the flow field remains laminar, and the sub-grid fluctuations 

are not yet developed. The constant model coefficient should vary depending on the 

flow type, the Reynolds number and the characteristics of the filter [115]. In practice, 

the Smagorinsky constant has to be changed in different flows for optimal performance, 

it cannot limit its effect close to walls or in laminar shear flows [115]. In order to treat 

these deficiencies, the dynamic modelling technique was developed [116, 117]. 

The concept of test filtering is introduced for the implementation of the dynamic 

modelling procedure. A test filter is applied on the LES filtered field, and it is char-

acterised by the test filter width A which in general is larger larger than the LES filter 

width. Typically, the test filter width is taken twice the size of the grid filter width, i.e. 

A = 2A [118]. The test filtering operator is then defined as 

f(xo  ; t) = 	G(xo  — x, A(x0 ))f(x; t)dV , 	 (2.112) 
xEv 

where the test filter G is applied to the already filtered LES field variable f. For 

variable density flows an alternative definition of the test filtered field which includes 

Favre averaging is introduced, 

= 14: 	 (2.113) 

Following the procedure for the closure of the scalar dissipation rate (2.109), the 

derivation of a dynamic model starts from the modelling of the scalar fluxes ri. For the 

singly filtered LES flow field, the scalar fluxes are defined as 

Ti = pui6 — pui6 , 	 (2.114) 
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whereas, for the doubly filtered flow field the unresolved scalar fluxes Ti  are 

Ti = Pute 	• 	 (2.115) 

A gradient model for the closure of the scalar fluxes for the filter and the test 

filtered flow fields can be expressed as 

1,-1 
Ti = cTA-2  P I 

T  = CI;02 	• oxi  

(2.116) 

(2.117) 

It must be noted that in the gradient models shown in (2.116) and (2.117), the 

Schmidt number and the Smagorinsky constant have been included in the model con-

stant C. The aim of dynamic modelling is to provide an estimate of the constant C, 

calculated for the specific flow type, and spatial location. According to the dynamic 

modelling procedure [116], the model constant C must be the same for both closures 

shown in equations (2.116) and (2.117). The system of equations (2.116) and (2.117) 

is solved by test filtering equation (2.116) and subtracting the result from equation 

(2.117). Assuming that C varies slowly in space, so that Cf = Cf = Cf the following 

expression for the model constant C is obtained, 

Li  = CA4i  , 	 (2.118) 

where the Leonard term, Li , and the model term, Ali, appear. The Leonard term 

is expressed as 

Li = 	, 	 (2.119) 

while, the model term is equal to 

= A2(15  rg I A2i5  I 	• 5r,  
Expression (2.118) consists of three equations, suggesting that the definition of 

(2.120) 
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C is overdetermined. Thus, the the least squares method [119] is used to provide the 

value of the dynamic coefficient C, 

C= 	A , 
	 (2.121) 

The constant C may take negative values which in some LES realisations need 

to be neglected, due to stability reasons [120]. This is called a "clipped" dynamic 

model. Another practice [120, 114] to avoid negative turbulent diffusion is to average 

the dynamic constant along homogeneous directions of the flow and assume a unique 

value for C among them. 

It shall be noted that the derivation for the dynamic model started from the scalar 

flux closure. Even though an appropriate scaling law for the scalar dissipation rate can 

be derived, the dynamic procedure cannot be applied directly to this problem given 

that all the dissipation occurs at the smallest scales [114]. Thus, an indirect approach 

is utilised for the dynamic modelling of the scalar dissipation rate, based on the pro-

duction equals dissipation assumption. 

The starting point for the derivation of the dynamic scalar variance model of Pierce 

et al. [114], is the expression of the gradient model for e"2 , 

a-e a-e 71,72 = c°275 

	

	 (2.122) 
oxi  ax 

Applying the dynamic procedure following the equation (2.121), the Leonard 

term can be obtained from 

(2.123) 

while the model term M is defined by expression, 

a-e A.2 ,ae 
A2  P  oXi ax; 	ax, oXi 

Finally the dynamic coefficient is calculated from the single equation, 

(2.124) 

C = M , 	 (2.125) 



inertial 
subrange 

energy 
containing 

Large 	integral 
Scales 	scales 

i Know. in LES 

To he modeled in test filtered field 

I 	To be modeled in Filtered field 

wavenumber log k 

F. A 
A 

log Ek 

2.8. LES of turbulent reacting flows 	 87 

which will provide a dynamic coefficient for the gradient model shown in equation 

(2.122). 

Another family of models, applicable to the closure of the scalar variance, consists 

of the scale similarity models. This methodology employs to the fractal nature of 

turbulence and assumes that the small scale statistics can be inferred from somewhat 

larger scale structures [121] as shown in figure 2.9. 

Figure 2.9: Scale similarity modelling 

According to the similarity model, the scalar variance is taken as proportional to 

the difference of the energy of the scalar fluctuations between the filtered and the test 

filtered scalar field, 

ee;;-2 = CZ  ((e2) — 
	 (2.126) 

Here the constant C„ can be assumed constant [121, 122, 123]. In fact, a value 

of 0.2 is proposed for C, where the typical value for the Smagorinsky constant Cs  is 

assumed. According to Germano et al. [116] the constant C, depends on the size of the 

degree of resolution for a specific LES. Cook et al. [123] propose a methodology for 

the calculation of the constant C„ for a similarity model of the unresolved turbulent 

kinetic energy in LES. According to this model, the parameter C, can be calculated 

numerically as a function of the test filter width A and the integral length scale Af . At 

first, the following form, for the scalar energy spectrum is assumed, 
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E(k) — k-513e-1.73(kAE)-4/3-2.25(1a/z)4/3, 	 (2.127) 

as proposed by Corrsin [124]. Following the analysis of Cook [123], where a 

similarity model of the unresolved turbulent kinetic energy is derived, the unclosed 

terms in the expression of the similarity model in equation (2.126) can be modelled as 

Fi = 2 f m(1 — 62(k; ADEgk)dk , 	 (2.128) 
o 

and, 

( 2) — 2 
 f 

 . 
(1 — 62(k; A))62(k; A)E(k)dk , 	(2.129) 

o 

where, 62(k; A) and 62(k; A) are the transfer functions for the test and the LES fil-

ters respectively, shown in the table 2.2. Following the equation (2.126), the similarity 

coefficient C, can be computed as the ratio of the above integrals (2.128) and (2.129). 

The range of values for C, is between 0.5 and 1.75 [125], and shows a weak de-

pendence on the integral length scale Reynolds number (2.127), with increasing values 

for larger Reynolds numbers. Furthermore, it shows a stronger dependence on the ratio 

between the integral length scale and the filter width, f/A. 

Pierce et al. [114] showed the relation between similarity and dynamic modelling 

assumptions, where the similarity model is simply expressed as 

(2.130) 

The above model for scalar variance has also been investigated by Jimenez et 

al. [106] where for the similarity model expressed by equation (2.126), the dynamic 

constant C in equation (2.125) was used. 

2.8.3 Conditional Moment Closure 

The underlying hypothesis in CMC methods is that most of the turbulent fluctuations 

of the scalars can be associated with the fluctuation of at least one key quantity [15]. 

Specifically for non-premixed flames, the concentrations of the species and the temper- 
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ature can be related to the mixture fraction variable e. Assuming that the mass fraction 

Yk of species k in a turbulent flame is a stochastically fluctuating variable, its properties 

are characterised by its probability. A Probability Density Function (PDF), P k(y), is 

defined for the concentration Yk so that 

P(Yk < Y) = r P k(Y' WY' , 	 (2.131) 
-0, 

where y and y' take values along the domain of Yk, and P(Yk  < y) is simply the 

probability of Yk  being smaller than y [15]. For the definition of a mean for Yk con-

ditioned on a reference variable, the joint-PDF P(y, 7)) is utilised. Using the mixture 

fraction as a reference variable, P(y, 7)) is defined so that 

P(Yk <aVe<77)=Y f ..ri  P(y 0 , go )chiody 0  , 
-co -co 

(2.132) 

where P(Yk < a V e < 77) is the joint cumulative probability for (Yk  < a V e < 77) 
to be valid. Although definitions (2.131) and (2.132) have been provided for Yk, and 4, 
this does not mean that they cannot be applied to any other variable. 

The conditional mean of the concentration Yk, conditioned on the mixture fraction 

space 77 is defined as, [15] 

(Y de = 77) = (37 do = (Y de = 77) = 1  r°  
P(77) 

J_. Y NY , 77)dY • 	(2.133) 

where, ri is the mixture fraction space coordinate. CMC is based on the integration 

of the transport equations for the conditional means (Yk177). The derivation of the CMC 

equations can be achieved either with the decomposition method presented by Bilger 

[126, 127] or with the joint PDF method by Klimenko [14]. 

According to the decomposition method, the instantaneous value of the mixture 

fraction Yk(x; t) for the reacting species k at a point x of the flow field and at time t can 

be expressed as 

Yk(x; t) = Qa(x; t), x, t) + Mx; t) . 	 (2.134) 

Here the conditional fluctuation Yk" is the fluctuation with respect to the conditional 



2.8. LES of turbulent reacting flows 	 90 

mean. The conditional mean Qk, is defined on the physical space of the flow field plus 

the mixture fraction space at a specific time. Many implementations of the method in 

the context of the RANS methodology can be found in literature [128, 129, 130, 131, 

16]. 

For the LES methodology, the conditionally filtered representation is used instead 

[132, 133]. The definition of the conditional filtering operation is based on the Fine-

grained Density Function (FDF), /iii . The FDF is defined for each point of the physical 

space and expands to a fourth dimension, i.e. the mixture fraction space. For singly 

conditioned CMC, its formulation is based on the mixture fraction of the combustion 

problem at specific point of the physical space, viz. 

tk = 0(x; t, q) = 6 (q — (x',t)) 	 (2.135) 

The symbol 6 represents the Dirac function, which is a generalised function, thus 

it is implicitly defined by the convolution with a good function [15], 

F(e)6()de = F(0) . 	 (2.136) 

The term good function is used to describe real functions with two properties: F(77) 

must be a smooth enough function, C", thus having as many derivatives as needed, and 

it must tend to zero when ri —> ±co. 

As seen in (2.135) the fine-grained density function is also a generalised function. 

For the derivation of the transport equations for the FDF, the differentiation of gen-

eralised functions needs to be addressed, given that the definition of the derivative of 

a generalised function is not straightforward. The following identities regarding the 

differentiations of FDF for single conditioning are presented in [15], 

dtli del
dt —aiAtfrc7i) 

v • (ftfr) = tfr • Vf + f7 • tfr 
difrfdip df 

= dt 	f dtdt 

(2.137) 

(2.138) 

(2.139) 
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vc = -- aq a (Ave) 

2 	
ad,726. 021frve  . ve  v /1. _ 	`,"  

aq 	a7077 ' 

(2.140) 

(2.141) 

for f being a CI  real function. The derivatives shown in equations (2.137) to 

(2.141) are not valid under the mathematical definition of a derivative in real analysis. 

They rather serve as definitions of the differentiation for the generalised function tfr. 

However, the above properties are valid when convoluted with a good function. In 

fact, the above properties will be used for the derivation of the transport equation of 

the conditionally filtered variables. Two more identities used for the derivation of the 

transport equations in CMC include the density and diffusivity coefficients, 

V • (pDVIl) = V • (V(ITD))- V • (tfrV(pD)) 	 (2.142) 

v . (01)V) = (kV • (PDVe) -  aii---(0D( 7  'Ve)) • 	(2.143) 

CMC combustion modelling in LES can be applied using the conditionally filtered 

variables instead of the conditional means. If the filter function G has a width A, the 

unconditionally filtered field for an arbitrary field function 1 is 

(T)(x; t) = 1 (1)(x' ; t)G(x — x', A)dV' , x E V , 	(2.144) 
x,Gii,  

and is defined for every LES cell. The conditionally filtered field introduced by 

the CMC methodology is defined as, 

f (1)07(e(x' ; t) — ri)G(x — x', A)dV'
(1)177 = 	v 	 (2.145) 

T3(71) 
The variable 0:1:1 represents any scalar field transported in the flow field. Usually, 

this can be the mass fraction of any of the reacting species, the enthalpy or the tem-

perature. Its transport equation can be written in a similar way to the equation (2.10), 

as 
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as 
	apui

xi 

	

ax,  
o 	a ( 

= — D—) + LIAD , 	 (2.146) 
t 	o 	 Oxi  

The integration is done over a volume V depending on the domain of the filter 

function. Finally T3(77) is the Filtered Probability Density Function (FPDF) for e. Given 

that in LES the filtering operation is governed by the filter function G rather than being 

a time average, the FPDF is a PDF weighted by the filter function, 

P(R) = 
x, 

N(e(x'; t) — 77)G(x — , A)dV 	 (2.147) 
Ev 

The coupling between the LES filtered field and the conditionally filtered field 

provides a relation between the conditionally filtered and the LES filtered value. This 

is achieved by integrating orrolg in ri space and results in 

(T)  = f 0111/3(71)th7 • 	 (2.148) 

For variable density flows a Favre filtered value, (1)77, for conditional variables can 

be defined as 

13,76b0  = P01 71 	 (2.149) 

where the notation for the Favre conditional filter has been simplified to (1)- 77  = (1:0177. 

As for the conditional mean, the conditional filter of a turbulent flow field introduces an 

extra dimension to the description of the filtered fluctuation fields, but similar to CMC 

in the RANS context, it will allow improved closure of the filtered chemical source 

term. 

The starting point of the derivation of the LES-CMC coupling are the transport 

equations for the fine grained PDF ty and the product 04, found in the expression of 

the conditionally filtered field in equation (2.145). To obtain the transport equation for 

ci', the mass conservation equation (2.1) is multiplied by IA and using the differentiation 

identities, the final equation is given by 

l* 	 32 a 	 a 
+v • pv = -(1)M11) — 877 v • (pviDve) ail 

(2.150) 
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where, N is defined as N = DV • 	Multiplying the generic scalar field by ti, 

the governing equation of 't/f, can be obtained as 

dpOtfr 
+V • pv(1)1,1/ = tfrwo+V • (pDV(tfri:1)))+ —

a 
[21//pDV • Vil) — —(Aravi)]. (2.151) 

dt 	 017 
4 

Equations (2.150) and (2.151) are valid for any scalar t, where neither high-

Reynolds number, nor incompressibility had been assumed. However, unity Lewis 

numbers are assumed for all scalars. The term J, in equation (2.151), represents dif-

fusion in q-space. 

The LES filter is applied by integrating the above equations over a volume V 

weighted by the filter function G, i.e. by applying the operation fv(•)GdV to equa-

tion (2.151), while a constant filter width has been used. Applying identity (2.145) to 

the filtered (IV transport equation, the full expression of the transport equation for the 

conditionally filtered scalar  I derives, viz. 

0 
	+ V V. (Ai  i3071)71) = 	—8774 + V • (5,1PuDvo,, — 077 (57,15,,Dvaii7)) . 

at 
(2.152) 

According to the above equation, the conditionally filtered scalar field (1)71  trans-

ports and diffuses in a four dimensional space consisting of the physical space and the 

mixture fraction or ti space. The conditionally filtered flux 4, for equation (2.152) 

takes the form, 

a  _ 
= 2-A,(Dv •vap)„p,-. 7 [p„p,(No),] . (2.153) 

The primary closure hypothesis assumes a Brownian nature for the diffusion in 

conditional space [15]. Thus, a closure for the conditional flux .70  can be based on the 

following diffusion approximation as 
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= /143077  + Ba(1) . 	 (2.154) 

The values of A and B should be independent of 431. Their value can be derived 

by applying the relations (2.153) and (2.154) for a conserved scalar F = a + bc. The 

resulting model for the conditionally filtered flux 4 from equation (2.154) is then 

formulated as 

a 	\ 	 ,7  
— 	 an 

a43 • 
	 (2.155) 

By introducing the model for the filtered flux (2.155) into equation (2.152) the 

leads to the final LES-CMC model [133], takes the form. 

ad) 	 (92 (13, 
— 	ii • V = (Do + Nri 	e D 	 (2.156) at 

The term eo accounts for the correlation of the conditional fluctuations for the 

velocity field and the scalar field of the mass fraction (1). 

T„P(11)eo = V V.  ( 743  — 1761)P(71)] 	 (2.157) 

and eD  is defined as 

i5,713,7 eD  = V *Pq13(17)(DV013.)1 — .-V • [(51./3,7 (DVC(1))] + 4, 7"9  [V •15,7 P,I(DVC)77 ] , (2.158) 

The unclosed terms in the above CMC formulation are the conditional distribution 

of the scalar dissipation rate, the conditional reaction rate wq, ea. and eD. A first order 

closure is usually chosen for the closure of the conditional reaction rate, where the 

conditional means for the mass fractions and the enthalpy are employed in order to 

obtain the conditional reaction rate, from the chemical mechanism, 

(7577 = (t)(Yk ; h,1) • 	 (2.159) 

Although a first order closure does not account for the fluctuations around the 
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conditional mean, the expansion of the flame structure along the mixture fraction space 

introduced in CMC significantly reduces the fluctuations and the error of the prediction 

of the conditional reaction rate. The conditional fluctuation term eq, is modelled using 

a gradient-type approach similar to LES modelling of the sub-grid contributions, 

eq. = —V • (D,VQ) , 	 (2.160) 

where DI, the conditional turbulent diffusivity, can be taken as constant and equal 

to the turbulent diffusivity D,. The term eD  is usually neglected in CMC implementa-

tions. The first of the three terms scales with Re-1  while the second term scales with 

Re-1/ 2N 1 / 2. Thus, eD  is expected to become negligible for high Reynolds numbers. 

The conditional scalar dissipation rate modelling is based on the filtered values from 

the LES simulation X. The conditionally filtered and the LES filtered scalar dissipation 

rates are related by 

TY = f A7713(17)chl , 	 (2.161) 

and the modelling of ,f /  is based on the inversion of the above integral (2.153). 

The conditional distribution of x can be assumed common for all LES cells contained 

in a larger CMC control volume [133]. The distribution of the pairs for the LES fil-

tered values ff,---e] can then be interpolated to provide a smooth distribution for x,i  in 

the mixture fraction space. This approach is quite generic since it does not require 

a presumed PDF for the inversion of (2.153). This characteristic makes the method 

applicable to flows with intermediate local minima and maxima in the mixture fraction 

space such as lifted flames [133]. 

2.8.4 Double Conditioning 

Although CMC remains one of the most promising combustion submodels [128, 134], 

simulations of methane-air flames show some discrepancies between predictions and 

experiments [16]. This behaviour is undisputedly credited to the inability of the CMC 

methodology to account for extinction and re-ignition of the flame [18] . Local ex-

tinction and re-ignition causes significant fluctuations of the temperature around its 
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conditional mean. However, the flame structure is considered as unique inside a CMC 

volume. This results to misleading predictions for the reaction rates. One approach to 

account for the fluctuations of the temperature and the diversity of the flame structure 

is the second order closure of the reaction rates. Expanding the temperature using a 

Taylor series, the temperature variance and the species-temperature correlations are 

used for the predictions of the reaction rates [135, 136]. 

An alternative approach dealing with the extinction and re-ignition of the flame in 

CMC has been proposed by Bilger [137, 15], introducing a second conditional coordi-

nate to describe the flame structure. Bilger derived the transport equations for the reac-

tive species conditioned on the mixture fraction and an appropriately chosen progress 

variable. Temperature, enthalpy or scalar dissipation can be chosen as conditioning 

variables [138, 132, 17, 18]. 

Following Kronenburg [18], the sensible enthalpy hi., governed by the transport 

equation (2.15), is chosen as a second conditioning variable, while equation (2.42) 

governs the transport of the mixture fraction e. For double conditioning the conditional 

average of a reactive species Yk is defined on a five dimensional space, consisting of 

the physical space x, the mixture fraction space 77, and the enthalpy sample space 4', 

Qk(x; t, 7 i , 4) = KY k(x; Ole(x; t) = 77, hs(x, t) = 0 , 	(2.162) 

at each instant t. The decomposition of the instantaneous mass fraction Yk is ex-

pressed as 

Yk = Qa , 71, X; t) + Yi','(x; 0 , 	 (2.163) 

where, Qk is now the doubly conditioned average and Yk" the conditional fluctua-

tion. The transport equation for the conditional average can be derived by substituting 

(2.163) into the species mass fraction equations (3.4) and taking the conditional aver-

age [18]. 

However, for the coupling of the CMC equations with the LES methodology the 

conditionally filtered values [133] are used instead. The derivation of the doubly con-

ditioned filtered CMC equations can be based on the alternative derivation of the CMC 
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equations as proposed by Klimenko and Bilger [15]. At first, a fine grained PDF with 

n = 2 is assumed, 

cfr,g  = +k(x; t, i1, 4") = 6 (7 — (x; t)) 6  (- — hs(x; t)) , 	(2.164) 

Using the above fine grained PDF, the doubly conditional filtered scalar field 0,7,4-

can be expressed as [132] 

fli  olyt(x' ; t, ri, ‘)G(x — x' , A)dr 
0171, 4.  = 	  

P(71, 4.) 

P(q, 4') is the joint filtered density function 

1.3(77, 4') = 1 11/(x' ; t, fl,  4- )G(x — x', A)dV , 
yo,  

(2.165) 

(2.166) 

defined in a similar way to the singly conditioned FPDF in equation (2.147). 

= 1_,:cfc° OW, 41-3(R, NT/4 . 	 (2.167) 

The coupling between the LES filtered field and the conditionally filtered field is 

achieved by integrating 4:13177 int? and 4" space in a similar way to equation (2.148), and 

results in 

(I) = f l  f l  0177,4'P(77, Ochick . 	 (2.168) 
o o 

For variable density flows a Favre filtered value, ,74, for the doubly conditioned 

variable D can be defined as 

Tj,b4.4)77 ,4- = P0177,4" . 	 (2.169) 

The properties of the fine grained PDF for n = 1 shown in equation (2.137) can be 

extended for n = 2. The basic properties used for the derivation of the filtered CMC 

equations are 

	

otfrf = f a 
 +ViT
li 	of 

at 	t T   (2.170) 
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and, 

a 	a 
"9V = —.( tfry) — a4. —(07  hs) . 	 (2.171) 

 

Furthermore, it must be noted that although the conditional values (120,7,4-, prg  and v,74  

are functions of the conditioning value i and 4', the equivalent unconditioned stochastic 

fields (0, p, v), depend solely on the coordinates of the physical domain x and t. Thus, 

the derivatives of the unconditioned fields with respect to q and 4' are zero. 

For n = 2 and Y1  = , Y2 = hs, Z1 = 77, Z2 = 4., W1  = 0 and W2  = LOhs  the 

expression for the fine grained PDF, tfroi, gives 

aptk + V V. (pv1,0 + 
aii  
—o 	

a‘ 	
alko)h

fry • (pEV7C)) + —
a 

ofry • (pa,Vh)) = 	s , 
at   

(2.172) 

where no assumptions on the Lewis number have been made. As mentioned be-

fore, the present derivation follows the joint PDF method. Multiplying the expression 

(2.172) by (I) and taking into account the identities (2.170) and (2.171) for the differ-

entiation of the double conditioning fine grained PDF, the evolution equation for pi:DIA 

is obtained, viz. 

apO 
at 

 ilf 
	 + V • (przDtfr) + 10:01frV • (PW70) + 

—a 
((NAV • (ParVh)) — VV • (oDV41)) 

ati 	 (94.  
a 

= —(otfrtohs)+44 , 	 (2.173) 
a4.   

where the transport equation (2.146) for the generic scalar field 1:1) has also been 

taken into account. 

Assuming unity Lewis numbers all diffusivity coefficients are equal, D = D = ci i, 

and also equal to the thermal diffusivity. The last three terms of the lhs in equation 

(2.173) can be further expanded. The first two of the three can be expressed as 

a 	
a  

—
aq

oufry • (pD fV) + —
a
4. 	 a
(olfry • (pa,Vh)) = --

q
(lfrpDV(1) • ve)- a4.  

—(1ApDvo • Oh) 
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a2 
82 (th9(1)(7/ • O) + -v • (pD(19' VI \ 1 + al.97; D 	V 	 (ITDO(Vh • Vh)) 

2 	2 	Docc• • Vh )) , (2.174) _—(VIP  + 0
8
77N" 

while the third term is expanded as 

lify • (pDVIED) = V • (ifrpDVO) + a —
(377

OfrpDVI:1) • V) + —
a

(11TDVO • Vh) . (2.175) 

Both expressions expressions (2.174) and (2.175) can be derived from the basic identities 

(2.170) and (2.171). The final equation for 4V/ is obtained by inserting the expansions 

(2.174) and (2.175) into (2.173), 

8P(fr  + V ( sprufr) at 

—V • (pDV(tlfil))) — 

82 	 a2 
+ 	

agar! 
 (IITD(1)(V VO) +

80 
	OltpD0(Vh • Vh)) - 

2 
+ 2—

a04-
(tkpDO(Ve • V11)) 

a 	 3 
2—

or/
(1//pDVO • V) — 2-

4, 
(tfrpDV(1) • Vh) 

= —(000 /15 ) + *vo • ‘ (2.176) 

Here, the last term on the lhs of equation (2.176) originates from the third term on 

the rhs of equation (2.174) and the first term on the rhs of equation (2.175), as 

V • (pDV(013.)) = V • (pDtfrVO) + V • (pDOVIk) , 	(2.177) 

by using the identity (2.170). 

Applying the filtering operator fv(•)GdV, shown in equation (2.165), on the trans-

port equation (2.176), it gives: 

a 	a 	 p 43.14 7 11 815'7447"  ot'P"'‘ + V. (Pq4171; 13  ) — 7977 4,117,4-  — a4..4,4c — V V. (1377,4-DV ( \ 	.74 i l  774 174 
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= 
- Cjo 	

(2.178) 
174 

where the terms 4,1,74  and 4,2,14- are defined as 

- -a-e°  (5,,d5„Dove • vh,,,,) - 	(i5,,,P„,,,Dove • ve„,,) + 2p-77,4-P77,4-D7 RD • ve 
(2.179) 

41),2,7,4, 	(p,74/377 ,4•DalVe • Vh,a) — 	(577,4-P,74DOVh • Vhq,‘) + 2)5,74P,7,‘DV(I) • Vh 

Pig ])  ig 
r )774 

	 (2.180) 

And they can be modelled using the primary closure assumption with a similar 

way to the singly conditioned CMC equations. Assuming Brownian diffusion, the 

terms J7,1 ,74  and ./7,2,74  should be defined as, 

= A ;:--1;q4   F  114.'74 for = 1,2 	 (2.181) 

and the constants A, B, and F must remain unchanged for every distribution of 

43,7,4•. Inserting a linear distribution Ct = a + flu + y4" into the expressions (2.179) and 

(2.181) for 70,1g, and into the expressions (2.180) and (2.181) for J0,2770  the values 

for A, B, and F can be defined providing the following expressions for the fluxes on the 

conditional space, viz. 

_(7.7 	ver,4) 	- .(7-4,19  (13,7,443,7,4-ve • vh,g) 6,74  

+,5,,,-P„,,,ve • ve,,, 	+ (5„,,,P„,„ve • vhig  as 	(2.182) 

a 	 a 
- (7  (P,1,4-13vve vhn,4-) (1),b4" 	(P'/41)'14v h 	h7g) 11)77,4" 

------- a6v 	---- 
+p,1,4-P, Vh • V r 	+ p,b4-Pigve • Vh,g aTi  (2.183) 
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5 ( cal,,) 
P71,4.1- 	wn,4" • (2.184) 

After inserting the 4 terms the equation (2.178) can be further simplified using 

the fine grained PDF transport equation (2.172), which when filtered with the operator 

fv(.)GdV gives, 

ariq,4-1)77,4-  
at 	( 51,4:P '741'77,4) 

(92 
a4,a4,( f-3,77 ,4-p,Dvh • v h,74 )) + 	 (pq 4-15,7  4-Dv • v 

aliaq " 

a 	 a 
+ — ( 7 • 05,7 ,4-P77 ,4-DVel  d) + — (V • (15,7 ,4T77 ,41;orli,g )) 

077 	 04" 

28718  (P.7 , ,P77 ,4-DV • Vh,b4.)) 

(91317,4-PrazL5 774 

a4.  
(2.185) 

• 

Finally subtracting the equation (2.185), multiplied by 6,a, from the equation 

(2.178) the final doubly conditioned CMC-LES model can be written as, 

_ 
at 	/377,4- P77,4-v7a (1),g 

TermV, Convection Term!, Time rate  

▪ 	Pig -n  
r )77,‘ 

TermIll, Reaction rate 

_ (ohs ) 80,14  7, TO 

P 	a4' 
TermIV, Heat release 

a2-4377,4, 

- PR,4-1-3,7,4-(PDv • V agog 
TermV, dissipation 

(92 
1▪ 	577 ,41:177 ,4-(pDVh • Vh) 	 

a(a4.• 
TermV, hs  dissipation 

a243 
• 2)577,413,14(pDV • Vh) 	71'4'  

TermV, Cross dissipation 

(• A741)77.4- kv77,4w77,4" 171;77,0) 

TermVI, 
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\ 	 a v • (,5„,4-Dv (p,gii; 7,4)  + —(v • ( f3„,j2)„,41lik,„)) + —(v • ( o„,,P„,,DV4,,,,)) a4- 
Term VII, 

(2.186) 

The above equation governs the transport of the filtered doubly conditioned value 

0,1,4- for any arbitrary variable (1:1 governed by the transport equation (2.146). The for-

mulation (2.186) presents some analogies to the equivalent transport equation (2.156) 

for the singly conditionally filtered field I. In particular, both equations include the 

time rate, the convection term, the source terms, the dissipation terms. Finally the term 

eo  which accounts for the corelation of the conditional fluctuations and the term eD, 

which describes the diffusion of the conditionally filtered scalar field in physical space 

[133] are found in both expressions. 



Chapter 3 

The structure of the DNS code 

In certain areas of CFD, spectral methods have become the prevailing numerical tool 

for large scale calculations [139]. More specifically, spectral methods are used for sim-

ulations of homogeneous turbulence, shear flows and global weather modelling as an 

alternative to finite differences and finite elements techniques. The spectral technique 

for solving partial differential equations can be traced back to the analytical method-

ologies introduced in the nineteenth century. 

Meteorological applications of spectral Galerkin methods appeared in the mid-

twentieth century with Blinova [140], Haurwitz et al. [141] and Silberman [142]. The 

expense of dealing with nonlinear terms was a severe drawback and was addressed with 

an the development of the transform methods introduced by Orszag [143]. In contrast 

to the spectral Galerkin methods where the unknowns are the expansion coefficients 

and the equations are solved by the techniques used in classical analysis, in the spectral 

collocation technique the unknowns are the values on an alternative discretisation of 

the physical space, and the spectral series expansion is used for the calculation of the 

derivatives [139]. 

The benefits of spectral solvers are mainly associated with reduced memory de-

mands and high accuracy of the spectral representation, leading to larger time steps and 

smaller computational times [45]. This explains the popularity of these methods for the 

solution of large scale computational problems used in theoretical research on turbu-

lence and transition. However, a wider application in practical cases is prevented due 

103 
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to the difficulties arising from the geometrical restrictions of a spectral representation 

and the sensitivity to boundary conditions [139]. 

The structure of the computational code used for the present numerical experi-

ments on turbulent mixing and combustion is discussed in this chapter. The Navier-

Stokes solver uses a de-aliased pseudospectral algorithm [42]. The proposed technique 

for its parallelisation is also presented. Finally, the performance of the parallel code on 

a Linux computer cluster is assessed. 

3.1 	Governing equations 

For the simulations presented in this study constant properties, i.e. density, viscos-

ity, thermal conductivity and heat capacities have been assumed. This contradicts the 

observation of significant fluctuations of the mixture properties in flames due to the 

temperature variations and the mixing of the reactants characterised by different prop-

erties. 

However, as it will be shown in the chapter four, following Swaminathan and Bil-

ger [41] the composition of the fuel and the oxidiser streams are chosen so that both 

fuel and oxidiser have the same molecular weights and similar thermodynamic and 

chemical properties, close to those of air, making this configuration attractive to in-

compressible simulations. Density variations due to heat release are also neglected. 

Although density variations due to heat release plays a significant role in turbulent 

combustion, incompressible DNS of flames[45] can capture qualitatively important 

features of phenomena such as extinction [144]. However, the temperature field in-

teracts with the reactive species transport through the chemistry mechanism and the 

modelling of the chemical source terms. 

In a constant fluid property formulation, where the density is constant over time, 

(ap)/(8t) = 0 and space (ap/axi ) = 0, the mass conservation equation (2.1) simplifies 

to 

au, n  
axl  

(3.1) 

which is equivalent to the kinematic condition that the velocity field should be 
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a solenoidal field, V • u = 0. For constant density and viscosity the Navier-Stokes 

equations (2.2) can be further simplified to 

2 au; 	au; 	ap 	a u
; i p— + pui — = 	+ 	or j = 1, , , 	 (3.2) at 	ax, 	ax; 	ax,
2  

using equation (3.1), while the viscous stress tensor reduces to 

T1 	= 21.IS 1.1 • 

	 (3.3) 

Finally, a simplified expression of the species transport equation is obtained, 

2 aYk 	 i„ 
p— + pui aYk — = pDk 

8 
+ 	for k = 1, M M. 	 (3.4) at 	ax, 	, 

In addition, the energy transport can be modelled by the temperature transport 

equation (2.16), which simplifies to, 

aT aT 82T 
— + 	= +a, (7.  + GOT , at 	ax, (3.5) 

for a constant property simulation. The set of governing equations provided in 

this section will be used to model the momentum and species transport for a diluted 

methane flame and for scalar mixing simulations in turbulent flow fields. It is worth 

noting that variable density formulations have been used for the DNS of turbulent 

combustion [88, 145] however a such configuration has a dramatic effect on the com-

putational cost and further restricts the resolution requirements of the simulations [41]. 

3.1.1 Non-dimensionalised transport equations 

The reactive flow field solved in the present study is modelled by a non-dimensional 

set of equations. The momentum, species and temperature transport equations (3.2, 

3.4, 3.5) can be non-dimensionalised. This is done by choosing a set of characteristic 

values for time, length, pressure and temperature. The non-dimensional variables are 

then given by 
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* 
t 	xi 	* ui 	* 	p 	T — To  

t = 	 ; x7 = 	; ui 	= ; p= 	2  ; T* =  	(3.6) 
Lo/uo 	Lo 	up 	 puo 	T1  — To ' 

where a unity Strouhal number, St = -1)  , is implied. The variables denoted with uoto 
an asterix .* have no dimensions. Applying the substitutions in (3.6), the transport 

equations in a dimensionless form can be written as 

* ate 	J 	op. 	1 8211; J  
ll• - = 	- 	 (3.7) 

at* 	ax7 	axe Re axe 2  

aYk  .an 1  a2Yk Lo 

	

U• 	= 	± -60k 9 	 (3.8) 
at* 	ax: scRe af 2  uo 

	

ar * or 	1 a2r Lo 	 
+

u 	= 	 toT 	 (3.9) 
at. 	ax;k 	PrRe ax7 2  uo(Ti — To) 

given that the mass fraction is a dimensionless variable. The Reynolds number, 

Re = 	, expresses the ratio between the convection and viscous forces. 

Given that a constant property simulation is assumed and the DNS solutions pro-

vide a qualitative analysis of the mixing and the turbulent combustion problem, the 

results presented in this thesis are expressed in non-dimensional form. However, it is 

worth noting that for the specific fuel and oxidiser composition, which resembles this 

of air, a dimensional configuration of the flow field can be provided as it will be seen in 

the next chapter, where the simulations set up is presented. Assuming that the time is 

provided in seconds, i.e. to = 1 sec, and the kinematic viscosity of the air at 20° can be 

taken as equal to 1.5 • 10-5:4, the reference length Lo  is found to be equal to 3.87cm. 

3.2 The numerical method 

The DNS solver is based on the pseudospectral algorithm introduced by Rogallo [52]. 

Its main characteristic is the storage of the flow field information in a hybrid space 

consisting of both spectral and physical coordinates. This setup facilitates the transfor-

mation of the field to physical space and back to spectral space without having to store 

the information of the flow field more than once. The specific Rogallo pseudospectral 
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technique aims to minimise the memory storage the CPU time and the input/output 

costs of the pseudospectral algorithm [139]. 

3.2.1 Re-formulation of the governing equations 

The momentum transport is modelled by an incompressible constant property formu-

lation of the Navier-Stokes equations,(3.7). This formulation of the Navier-Stokes 

equations incorporates the vorticity field. Vorticity co(x; t) is the field vector defined as 

a function of the velocity field, 

co(x; t) = V x u(x; t) , 	 (3.10) 

where ' x' is the cross product operator. Then, the convection term of the momen-

tum transport equation (3.7) can be expressed as, 

au j 	 1 
ui 	= [(u • V)u] j  = [V(Iu12) — u x 	, 	 (3.11) 

axi  

making use of the identity 

V(u • u) = 2 u x (V x u) + 2 (u • V)u , 	 (3.12) 

valid for any C1  vector field u, where • is the inner product of two vectors. Apply-

ing the above transformations, the momentum transport equation (3.7) can be finally 

formulated as a system of the following three equations, 

au 	 1 — = u x 0.) - vll + —v-,  u , 
Re 

v211 = 	, 

(3.13) 

(3.14) 

w = V x u 	 (3.15) 

where H is a scalar variable which includes the term 012  arising from (3.12) and 

can be related to the dynamic pressure 
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H =p + —2 *12  • 	 (3.16) 

The first of the three equations, i.e. equation (3.13), derives directly from the mo-

mentum transport equation (3.7) using the expression (3.11) for the convection term. 

Equation (3.14) results, from the divergence of the momentum transport equation, and 

utilising the mass conservation equation. Finally, the last equation (3.15) is just the 

definition of the vorticity. The system of equations (3.13) to (3.15), constitute the rota-

tional form of the incompressible Navier-Stokes equations. The rotational formulation 

is favoured in spectral methods because it guarantees the conservation of kinetic en-

ergy. According to Orszag [47] this is also important for numerical reasons, assuring 

that nonlinear instabilities will not occur if the time step advancement is kept below 

the stability limit. 

An equivalent manipulation can be applied to the transport equations of the mix-

ture fraction , equation (2.42), the reactive species yk, equation (3.8), and the temper-

ature, equation T (3.9). In fact, in the case of scalar transport in a turbulent flow, the 

derivation is somewhat simpler, since the governing equations are second order com-

pared to the fourth order Navier-Stokes equations. For an arbitrary scalar field 0 the 

transport equation can be rearranged as: 

ao w. = -(1 • v)o + —SclReV 2(I) + coo  . (3.17) 

If al represents temperature, the Schmidt number needs to be replaced by the 

Prandtl number, Pr. 

The system of equations presented in this section is valid for an incompressible, 

constant property flow. For the description of a turbulent flame, the only unclosed 

terms are the reaction rates which are modelled as a function of the species mass frac-

tions and temperature according to the chemical mechanism employed. 

3.2.2 The Fourier transform of the flow field 

In spectral methods, the field variables are represented by a weighted sum of eigen-

functions [139]. The unknowns, i.e. the weights, are calculated by integrating the 
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approximation series in space and using the orthogonality properties of the eigenfunc-

tions. The differentiation of the field variables is obtained analytically from the deriva-

tives of the eigenfunctions. For problems with periodic boundary conditions Fourier 

series are a natural choice [146]. 

In pseudospectral methods, a discretisation of the physical space is assumed. For 

the cubic computational domain of a turbulent flow field with edges of length 27r shown 

in figure (3.1)(a), the physical space (x1 , x2, x3) can be discretised as: 

27ri • 27rj 	27rk 
N 	2 	N x3 	N  for i, j,k = 0, N — 1 , 	(3.18) 

where N3  collocation points are assumed, consisting a cubic, Cartesian, and uni-

form mesh in each direction of the computational domain. This discretisation can be 

expressed in spectral space with a series of three consecutive Discrete Fourier Trans-

forms (DFT), 

-1 
k3, t) = 	f (xi 	t)eixk3k3  

k=0 
N-1 

h(xi , k2, k3, 1) 	—
1 

N 
E g(xl; , 	k3 , t)et  . j=0 
N-1 

1 

i=o 

2 

k2, k3, h(xi, k2 , k3 , t)ei  

In the above equation, i is the imaginary unit, g, h are the intermediate DFT of the 

field f, and f is the final DFT of f. Each Fourier node is characterised by a vector 

of three wavenumbers, k = 	k12 , 14], for each direction. Equations (3.19) to (3.21) 

impose a discretisation on the spectral space, which is expressed by using a finite 

number of N Fourier modes for each direction, 

ki = i, kZ = j, k3 = k, for i, j, k = 1 — N/2, . . N/2 , 	(3.22) 

given that any higher wavenumber than N/2 can be aliased with the wavenumbers 

in the interval [1 — N/2, N/2]. The domain of the spectral representation is presented 
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in figure (3.1)(d). In the same figure, the domain for the intermediate representations 

g and h are shown in (b) and (c) respectively. 

Using equations (3.19) to (3.21), the finite set of values f , x2, x3, t) defined on 

discrete points in the physical space is transformed to a finite set of weights f(kii , kir  /4, t) 
defined by a finite set of wavenumbers. Furthermore, the range of the real values 

f(x1; , x2 , 4, 0 is tranformed to a complex space C. Given that f is a real function, it 

can be shown that the values of g for negative wavenumbers are defined by 

, 	= —g*(xi, x-12 , k3k,  t) for k3  = 1 — N/2, . . . , —1 	(3.23) 

where g* is the conjugate of g. As a result the negative part of the domain of 

g is redundant and the upper part of the cube, highlighted in figures (3.1)(b) to (d), 

contains all the information needed for the reproduction of f in physical space. Also 

, t) and g(xii , x2, k372, t)  must also be purely real numbers for f to be real. 

Figure 3.1: The flow field domain, defined on the (a): (x, y, z)-space, (b): (kx, y, z)-
space, (c): (kx, ky, z)-space, (d): (kx , ky , kz)-space 

The inverse Discrete Fourier Transform, denoted here as DFT-1, provides the spa-

tial discretised distribution of the three dimensional field f as a function of the eigen-

function weights f. This can be expressed in a compact vectorised formulation as 

(N/2,N/2,N/2) 

; t )1  = 
	

Ak; 	ixiJk  . 	 (3.24) 
k=(1-N/2,1-N/2,1-N/2) 

Evaluating all the values of f demands N2  operations for each direction. How-

ever, the introduction of the Fast Fourier Transform (FFT) by Cooley and Tukey [147] 
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reduced the computational cost to Nlog(N) for both DFT and DFT -1. 

This procedure is summarised in figure (3.1), where a real 141-T (RFFT) and two 

complex FFT (CFFT) are applied to provide the representation of the flow field in spec-

tral space. The reverse is achieved by using the same series of inverse transforms, i.e. 

RFFT-1  and CFFT-1, summing up to N3  log3  N operations. The alias errors occurring 

during the FT are removed using the 2/3 rule, where the high wavenumber part of the 

spectrum is removed [42]. 

3.2.3 Spatial representation 

The interpolation of the unknowns, i.e. the velocities u j, the dynamic pressure H, the 

non-linear term (u x co), the temperature T and the species mass fractions Ye, of the 

differential system, which describes the turbulent combustion problem, and consists of 

the equations (3.13), (3.14), (3.15), and (3.17), is expressed as: 

N N 
2 	2 

E 
	

j(k; t) • eik.X4k  for j = 1, 2, 3 , 	(3.25) 
k2=1-1k3=1-1 

2 • 	2 	7 
(x"k; 	 E E rii(k;t)  

1(1=1- 14 k2=1— i  k3=1-4 
N 	N 	N 
2 	2 2 

 (u X CO 	 E z ( u x w);(k; t) • eik.xl'Ijc  for j = 1, 2, 3 , 
k1 =1-4k2.1-4 k3.1- 4 

(3.27) 
N N 	N 

T  T (x"k ;t) = 	E ET 	T(k; t) • eik.xi'j'k 	 (3.28) 
k1=1-1 k2=1-14 k3=1-11 

N N 	N 

	

72 	7 

k (X"k 	 E Fe(k; t) • eik'xi''' k  for k = l . . . M . (3.29) 
k1 =1-1 	k3=1-4 

The momentum transport equation can be expressed in spectral space by introduc-

ing the interpolations (3.25) and (3.26) in equations (3.13), (3.14),and (3.15). Applying 

the standard procedure imposed by the Strum-Louiville methodology, i.e. taking the 

(3.26) 
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convolution of the eigenfunction eikx  corresponding to a single wavenumber k, inte-

grating across the computational domain x, and accounting for the orthogonality of the 

basis functions, the momentum transport is expressed by the following two equations: 

au;  
= (u x (of  — 	— R—e

11‘1211 
at 	 -1 

for j = 1, 2, 3 , 	(3.30) 

—11c1211 = ike(u x co)e 	 (3.31) 

In general, the main difficulty when integrating the Navier-Stokes equation is the 

elimination of the pressure term. To achieve this in equation (3.13) expression (3.14) 

must be integrated. However, expressing momentum transport with the system of the 

Navier-Stokes equations (3.30) and (3.31), the pressure can be eliminated analytically. 

In fact one of the advantages of spectral representation is that any differentiation can 

easily be expressed as a simple algebraic multiplication with the wavenumber. After 

the elimination of the pressure, the momentum transport equation in spectral space is 

written as 

all.;  
= (u x to) i ki

ke(u x 
	

w)e 	1 
Re at 	

*1
2
11-
' 
 for j = 1, 2, 3 . 	(3.32) 

11c12   

Following an equivalent procedure, the transport equations for the temperature T 

and the species mass fractions 1'1,  are given by 

at  
at 	= co T (U • V)T 	 

PrRe 
T , 

 
and, 
af t  
at 	7--  6-4 — (u • 19')Yx S cReak2kk 

for k 1 M . 

(3.33) 

(3.34) 

(3.35) 

The governing equations (3.32) to (3.34), provide the numerical solution of the 

time evolution for a turbulent flow field based on a known initial distribution of the 

velocity, species and temperature field. The initial and boundary conditions which 

define the boundary value problem are to be discussed in the next section. 
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3.2.4 Initial and boundary conditions 

The flow and scalar fields must be periodic in all directions. From the spectral repre-

sentation (3.19), (3.20), and (3.21) it can be deduced that, 

f (xi , x2, x3) = f (xi + 27r, x2, x3), 

f (x1,  x2 , x3 ) = f (xi , x2  + 27r, x3 ), 

f(X1 X2 x3) = f , x2 , x3  + 270. 	 (3.36) 

Although the need of periodicity is a huge constraint of the Fourier representation, 

periodic boundary conditions do not prevent us from carrying out realistic simulations 

of turbulent flows. Indeed, producing artificial turbulence to simulate non-periodic in-

flow and outflow conditions is a complicated task [45] and may introduce inaccuracies. 

On the other hand, artificial turbulent fluctuations are needed for the initial condi-

tions. For homogeneous isotropic turbulence calculations, the spectral reconstruction 

method [42] is used. According to this methodology, the initial flow field is the result 

of the superposition of Fourier modes. Here, the intensity of the modes is defined by 

the energy spectrum used by Orszag and Paterson [47], 

E(Ik1) = ciki4e-1k121a2 
	

(3.37) 

where the constants c and a are suitably chosen, such that all the scales are well 

resolved [43]. The phase for each of these modes is then chosen randomly, subject to 

consistency with the mass conservation equation [139]. 

Another way of deriving initial conditions for turbulent flow-field is to assume a 

laminar initial field. If this flow field has a significantly high Reynolds number and is 

unstable, we can expect that it will develop to a fully turbulent field. 

3.2.5 The time advancement 

Starting from an initial flow field at time t the pseudospectral solver provides a numer-

ical prediction of the flow field at the next time step t + At. 
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Following the typical factorisation method for linear homogeneous differential 

equations, the system consisting of the equations (3.32) to (3.34) is multiplied by ekikl 21 

and the linear terms of the right hand side can be factorised as, 

U1 

112 
113 

(u x (01 	k2 k1 
kfluxtof 

x 	k, kr(ix ,)[ (u 	(02 	k2 

x 	L ici(ux(0)( (u 	(03 	k2 

at (DT (t) Y1 

m 

T 

) = DT (t) col — (u • v)Yi 

cum — (u • V') Ym 

c~T — (u •V)T 

(3.38) 

X( r) Nonlinear terms: Tv7,0) 

where the vector D(t) is defined by 

D(t) =  

eRiek2t 

dek2t 

ekk2t 

e Ak21 (3.39) 

e ScR —e k2t 

ePr k2, Ite  

Thus, a first order Taylor approximation of the field variables at time t +At is given 

by 

DT (At)I(t + At) = AtNL(t) + 2'40 . 	 (3.40) 

The time advancement is achieved with the minimal storage time-advancement 

scheme for spectral methods of Wray [148]. The specific algorithm is a third order 

Runge-Kutta algorithm where three approximations of the flow field at three different 

intermediate time steps are used to provide a final prediction of X at the time step At+ t. 

The special characteristic of this method is that only two memory locations are used 
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for the storage of the realisations of the flow field, during every step of the algorithm. 

Low storage time advancement algorithms are popular for large scale simulations [42, 

149, 61] where an economical memory usage is crucial. 

In equation (3.40) the vector of the non-linear terms, NL, cannot be derived ex-

plicitly from the spectral representation of the field variables X. The unknowns of 

equation (3.40) are expressed in spectral space, whereas the terms of NL are a func-

tion of the field variables expressed in real space. In order to evaluate NL at each time 

step the field I must be transformed to the real or physical space, and NL can then be 

computed from X. 

After its calculation in the physical space, the vector of the nonlinear terms NL 

is transformed back to spectral space, where it is introduced to equation (3.40) for 

calculation of the approximation of if at the time step At + t. This procedure results 

to two three dimensional Fourier transforms, i.e. one 141-'1' and one FFT-1  each time 

equation (3.40) is evaluated. Thus, using a third order Runge-Kutta algorithm, the 

three dimensional 1-1-'1' is called six times per single time step. In fact, the FFT is 

known to consume most of the computational time in a spectral Navier-Stokes solver 

[139, 61]. 

3.2.6 Computer implementation 

It has been made clear that an efficient implementation of the Fourier transform is a 

vital factor for the performance of the spectral solver. Apart from the speed of the 

calculations the memory requirements need to be considered. 

A characteristic of the Fourier representation is the fact that the value of any vari-

able at a specific point in physical space is a function of the weights of all the wavenum-

bers. This characteristic imposes some difficulties if the field is stored in the spectral 

space [lc, ky, kJ. In a scenario like that, all the values of the flow field in spectral space 

must be used for the evaluation of the nonlinear terms NL at a single point in phys-

ical space. Since this must be done for all points of the physical discretisation, the 

computational cost is excessive. Another approach would be to evaluate all the points 

of the physical space instantaneously. However this approach would occupy a double 

amount of memory. 



3.2. The numerical method 	 116 

Following the latter approach one memory allocation is needed to store the field 

in the physical space X and a second one for the field in spectral space X. Keeping in 

mind that DNS is usually operated close to the maximum available memory capacity, 

such an approach affects the finest resolution of turbulent scales that the solver can 

achieve. 

A popular strategy to tackle the performance problem described in the previous 

paragraphs is the Rogallo technique, described in figure 3.2. The approach of Rogallo 

lies between the two scenarios mentioned and balances the CPU time and memory 

allocation needs. The field variables at time t for the whole computational domain are 

stored as a single array X, expressed in spectral space for the x and y directions and in 

physical space for the z direction as shown in figure 3.1(c). The array X defined in the 

(kx , k% , z)-space is the starting point of the Rogallo algorithm shown in stage 1 of figure 

3.2. The next step is to compute the nonlinear terms NL. Having stored the flow field 

in the above semi-spectral space, any variable in the physical space is a function of the 

weights of the wavenumbers stored at the same z-coordinate at stage 1. 

Using a loop along the z-axis, (stage 2), each iso-z plane of g is extracted and then 

transformed to the (kx , y, z)-space, (stage 3), and finally to the physical (x, y, z)-space at 

stage 4. At stage 5 the plane contains the field variables in physical space X, and NL, 

is evaluated and stored in the plane containing X. The plane containing the nonlinear 

terms is transformed back to the (kx , y, z)-space, (stage 6), and stored, (stage 7). The 

iso-z loop continues for all the N planes along the z-axis. 

At stage 8 the domain is being swiped across the kx —direction. Each iso-kx  plane is 

transformed to spectral space [kx , ky, kj ,(stage 9). Having expressed the specific plane 

in purely spectral space k, the time advancement equation (3.40) can be evaluated, 

(stage 10). Then the approximation of the field for the intermediate Runge-Kutta step 

can be transformed, (stage 11) and stored back, (stage 12) using the minimal storage 

time advancement scheme until the final Runge-Kutta step is achieved, (stage 13). 
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Figure 3.2: Structure of the pseudospectral DNS code. 

3.3 	The parallel pseudospectral algorithm 

It is apparent that computational power is crucial for DNS of turbulent combustion. 

The need of simulations with Reynolds number as high as possible lead to increased 

memory and CPU time demands. DNS simulations on single processor machines yield 

low to moderate Reynolds numbers only. In contrast, modelling methodologies for 

turbulence and combustion, usually assume that the Reynolds number is high. 

Furthermore, the introduction of reactive species for the modelling of combustion 

processes increases the computation costs significantly if detailed chemistry needs to 

be used. A realistic investigation of the extinction and re-ignition phenomena means 

that the flame cannot be modelled by a simple one-step chemistry mechanism, as is 

often employed for DNS of reacting flows. The four-step mechanism used for the 

modelling of methane combustion in the present study demands the solution of five 

additional transport equations together with the three momentum transport equations 

on a 5123  grid, resulting in a simulation of 109  independent variables. 

Given that typical flames configurations involve shear flows like jets and shear 
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layers, turbulent combustion is best investigated in inhomogeneous transitional flows. 

Such cases require more computational power because the large velocity gradients 

in the shear layer that demand reduced computational time steps and thus increased 

demand for computational power. 

A parallel DNS algorithm has therefore been developed that allows for increased 

computational power and memory allocation, and DNS solutions of relatively high 

Reynolds number shear flows with multistep chemistry become feasible. 

3.3.1 Parallelisation technique 

A parallelisation of a computational algorithm aims to split the computational domain 

into segregated partitions which are to be solved separately by different computers. 

This reduces the memory allocation needs on each computer to a fraction of the total 

memory needs. Also, the computational cost for each processor reduces to the solution 

of each partition, instead of the whole domain. Domain splitting, however, introduces 

a need of communication between the computers which is an extra computational cost 

that all parallelised codes share. 

Specific issues arise for the parallelisation of pseudospectral codes. Spectral repre-

sentation lacks spatial characteristics. As mentioned before, the weights of the eigen-

functions for a field expressed in spectral space affect all the points in physical space. 

This characteristic of the Fourier transform introduces some difficulties for the parti-

tioning of the computational domain. At some point of the computations information 

from the whole computational domain must be exchanged across the processors. In 

contrast to finite differences or finite volume algorithms where the communication be-

tween the partitions takes place only along the boundaries of the partitions, the weights 

of the basis functions are important for the evaluation of the governing equations to all 

the points inside each partition. 

It will be shown in the next section that the memory allocation and output stor-

age remain the bottlenecks of the DNS simulations, even for parallel computations. 

The parallelisation presented in this study has been designed in order to demand the 

least possible communication of fields and the smallest possible allocation of memory. 

To achieve this the communication takes place during the calculation of the nonlin- 
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ear terms, where only NL is returned back to the nodes at the stage 5 of figure 3.2. 

Furthermore, the structure of the Rogallo technique is respected, so that the memory 

allocation remains low, not exceeding the limit of 1GByte per node for the calculations 

presented in this study. 

Parallel pseudospectral solvers have been used in local and shared memory ar-

chitectures by Iovieno et al. [149], where a maximum grid of 2563  was achieved. 

However, for this case a speed oriented strategy had been followed where the matrix 

of the field is transposed before each time advancement loop. This demands a sec-

ond array to be allocated for the transpose of the field. The parallel implementation 

of Itakura et al. [61] for the Earth Simulator supercomputer was based on a hybrid 

memory architecture where clusters of eight nodes share the same memory, whereas 

these clusters are connected with two switches of 12.3GBytes/ sec each. 

The parallel code is based on the single process DNS code of Kerr [42], written in 

FORTRAN77. The Message Passing Interface (MPI) has been used for the manage-

ment of the communication between the nodes. The computations were carried out on 

non-shared memory Linux computer clusters. 

In the case of the Rogallo code used in the present study, the computational domain 

consists of the flow field variables stored in the hybrid space (kx, ky, z)-space. The 

domain is split along the kx  axis into np  partitions, where n p  is the number of processors 

employed. Thus, each partition consists of local domains with dimensions nx/np, xy, nZ  

as seen in figure (3.3). 

The reason of partitioning along one of the directions only is to avoid any need for 

communicating information across the processors during the FFT loops that transform 

real space into spectral space. According to this setup there should be exchange of 

information only during the stage of the calculation of the non-linear terms, (stage 5). 

The starting point of the parallel algorithm is stage 1 in figure (3.3). At this 

point, each node has the information for its own partition of the domain expressed 

in (kx, ky, z)-space and this information is stored in the local memory. 

Each one of the processors undertakes the task of calculating the non linear terms 

for one iso-z plane. However, the information of the whole iso-z plane is split among 

the processors. At this point (stage 2), all the other processes send the information 
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Figure 3.3: Structure of the parallel pseudospectral DNS code. 

to the node that has undertaken the calculation of the non-linear terms for the spe-

cific plane. The necessary information is gathered and assembled in the node. This 

exchange of information is implemented for all the nodes. 

After this stage all the nodes engaged have obtained an entire plane, stage 3. Each 

process can proceed to the transformation of the k, — ky  planes to physical space x — y 

and the calculation of the nonlinear terms. After the transformation of the calculated 

nonlinear terms to the (ks, ky, z)-space, the information must be scattered back to the 

nodes and stored, in order to be used for the calculation of the time evolution of the 

field, stage 4. Then a new iso-z plane is appointed to each processor, the iso-z plane 

is assembled in each node and the calculated non linear terms are stored back to each 

node. 

When all the iso-z planes have been read through, the algorithm proceeds to the 

next stage where the time evolution equation (3.40) must be evaluated. Each process 
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undertakes the task of calculating the estimate for the time advancement for one iso-k, 

plane. At this point, stage 5, there is no need for communication among the nodes. The 

nonlinear terms and the field variables are stored in the local memory of each node. 

When the calculations for all the Nlnp  iso-k, planes are finished in each processor, the 

algorithm is ready to advance to the next time step. 

3.3.2 Evaluation of the parallelisation 

In order to evaluate the efficiency of the parallelisation DNS simulations, on one, two, 

four, eight, and sixteen processors where performed using two different meshes. The 

details of the simulations are not of any particular interest here. The specific simula-

tions are DNS computations of homogeneous and isotropic turbulence where only the 

velocity field is integrated in time. During these calculations the allocated memory 

and the average time needed for each time step were measured. The CPU time per 

time step, Tn, and the allocated memory per processor Mn  are presented in table 3.1, 

as functions of the numbers of processors. 

Table 3.1: Memory usage per processor, and average CPU time per time step for the 
two test simulations 

5123  mesh 2563  mesh 
Number of 
processors 

Memory Used 	CPU time 
[Mbytes] 	[sec/cycle] 

Memory Used 	CPU time 
[Mbytes] 	[sec/cycle] 

1 4171 771 603 80 
2 2151 405 348 38 
4 1135 279 220 27 
8 638 203 158 25 
16 390 171 125 23 

The assessment of the parallelisation performance shown in table 3.1 has been 

carried out on a cluster of AMD Opteron dual processors. The CPU clock frequency 

for the specific machine is 2393MHz while the memory corresponding to each pair of 

processors is 2GBytes. 

The efficiency of the parallelisation can be expressed in comparison to an ideal 

parallelisation. An ideal parallelisation of an algorithm on n p  processors is expected to 
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be exactly np  times faster and to allocate np  times less memory than the single process 

algorithm. Thus, the parallelisation efficiency for the CPU-time ecpu, and the memory 

allocation eMEM can be defined as a percentage of the ideal values. 

Tz , 	 Mn . eCPU 1 	100% , eMEM = 	• 100% m, 	 (3.41) 
ftp Tt 	 np 

As mentioned above, the implementation of a parallel algorithm, introduces addi-

tional memory allocation, and extra array manipulations. Moreover, the computational 

time is increased due to the communication needed across the processors. These extra 

costs, cause a deviation of the speed and memory allocation from the ideal. The effect 

of the parallelisation on the performance of the parallel algorithm used in this study 

can be seen in figures 3.4 and 3.5. As the number of processors increases, the need of 

communication and extra memory allocation increases, affecting both parallelisation 

efficiencies. 

Figure 3.4: Efficiency of the paralleli-
sation for the CPU time. Symbols; 0, 
2563  mesh, x 5123  mesh 

Figure 3.5: Efficiency of the paralleli-
sation for the memory usage. Sym-
bols; 0, 2563  mesh, x 5123  mesh 

As seen in figure 3.4, the increase of communication due to the increase of the 

number of the nodes, causes a dramatic reduction of the parallelisation efficiency. This 

is common to pseudospectral codes where all the information for the calculation of 

the non linear terms must be scattered and gathered among the nodes. In contrast to 

finite difference codes where information is exchanged only across the boundaries of 

the partitions, in spectral codes each process needs information from the whole field in 

order to execute the integration of the flow field. 
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Given that a typical memory capacity for available Linux clusters is 1GByte, paral-

lelisation is the only way to achieve DNS of 5123  nodes, where the use of 8 processors 

reduces the memory demands to less than 1GByte per node. Furthermore, simulations 

of combustion incorporating a four step chemistry mechanism requires an additional 

166% of memory allocation and 16 processors are needed to reduce the memory allo-

cation to less than 1GByte per node. Note that emEm stays above 80%. 



Chapter 4 

The numerical experiments 

The present study includes the DNS of both reacting and non-reacting mixing of 

methane and air in turbulent flow fields. In this chapter, the details of these simula-

tions are outlined and the results of the simulations are evaluated in comparison to 

experimental results and theoretical principles. 

The turbulent combustion DNS cases are characterised by two types of initialisa-

tions for the velocity field, that represent two typical "families" of flow fields. The first 

is the velocity field of decaying homogeneous and isotropic turbulence. The second is 

the transition of a double shear layer from laminar to fully turbulent. For the double 

shear layer case, two simulations with different orifice Reynolds number and momen-

tum thicknesses of the shear layer have been carried out. However, the turbulence 

intensity does not vary for the homogeneous isotropic turbulence case. 

For the non-reacting mixing cases an initial distribution of a single conserved 

scalar, or contaminant, is assumed. In the simulations of mixing in homogeneous 

isotropic turbulence the conserved scalar is initialised as pockets of a contaminant sur-

rounded by ambient fluid. For the shear layer simulations the contaminant is contained 

in the jet, surrounded by quiescent ambient fluid. 

The chemistry of the reacting simulations of methane is modelled by a four-step 

mechanism for hydrocarbon flames. The four-step mechanism has been chosen since 

it allows for extinction and re-ignition without adding too much overhead to the com-

putations due to an excessive number of reactive species. One should be aware, how- 
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ever, that a four-step mechanism will certainly not capture all flame dynamics due to 

extinction and re-ignition, but is likely to approximate the mean and the variance of 

temperature and major species concentrations rather well [17]. 

This mechanism is common for all the reacting simulations. However, the pre-

exponential factors included in the formulation of the chemistry reaction rates are 

scaled in order to provide simulations of different levels of extinction. Specifically, 

four reacting cases with different levels of extinction have been simulated for each one 

of the two families of velocity initialisations, more detail is given in section 4.1.3. 

The initialisation of the species distribution for the reacting cases is based on the 

initialisation of the mixing problems, where the contaminant is replaced by the mix-

ture fraction. The reacting species distribution is provided as a function of the mixture 

fraction using a precomputed flamelet solution. This leads to pockets of methane sur-

rounded by oxidiser for the homogeneous turbulence case, and a jet of diluted methane 

issuing in a quiescent air environment for the planar jet cases. 

The momentum and scalar transport is modelled assuming constant density, vis-

cosity and diffusivities. Thus, the solution for the mixture fraction mixing in the re-

acting cases does not differ from the solution for the mixing of the contaminant in 

the non-reacting simulations. The solution of the mixing problem is contained in the 

reacting problem. The reason for running a separate pure mixing case is that more fre-

quent data probing is needed for the capturing the performance of LES micromixing 

modelling during the transition period. 

In the first section of this chapter, the setup of the reacting mixing of homoge-

neous isotropic turbulence is discussed, starting from the initial conditions for the ve-

locity field and the initialisation of the mixture fraction. Then, the four-step reaction 

mechanism used is presented along with the initialisation of the reacting species. 

Next, three differentiation schemes used for the solution of the reactive species 

transport are assessed. The performance of each solution is assessed on the basis of 

performance, (i.e. properly capturing the reaction rates in the flame front), and compu-

tational cost. The presentation of the homogeneous simulations is completed with the 

description of the details of the four methane combustion cases with different levels of 

extinction that have been carried out. 
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The last sections of this chapter deal with the cases of pure mixing and methane 

combustion in a planar jet. The results for the velocity field are compared with experi-

ments, while the proper resolution of the reaction region is also discussed. 

The DNS database extracted from the non-reacting cases are used for the investi-

gation of the turbulent mixing and the assessment of the closure techniques used for the 

turbulent mixing in LES. The simulations with reaction are also used for the investiga-

tion of the closure of the reaction rate terms in CMC and the effect of local extinction 

and re-ignition on the performance of singly and doubly conditioned CMC. 

4.1 DNS of reacting mixing in homogeneous isotropic 

turbulence 

Combustion in homogeneous isotropic turbulence and the performance of singly con-

ditioned CMC has been investigated by Mell et al. [43], using DNS with a simple 

one-step reaction. Also, Swaminathan and Bilger [41] have used DNS for the assess-

ment of CMC and SLFM closures in turbulent combustion using a two step reaction 

mechanism. Furthermore, DNS solutions with two-step chemistry have been used for 

the investigation of single and double conditioning closures in flames with local ex-

tinction and re-ignition by Kronenburg [18]. The homogeneous turbulence simulation 

presented in this section is similar to the above mentioned simulations as far as the 

flow field and the mixture fraction initialisations are concerned. However, the chem-

istry initialisation and the chemistry mechanism is the four step mechanism of Jones 

and Lindstedt [36], which has been used in the DNS of Kronenburg and Papoutsakis 

[17]. This relatively more complicated chemistry mechanism is introduced for the 

more appropriate capture of the local extinction phenomenon. 

In short, the momentum transport is solved using the pseudospectral code de-

scribed in chapter three for a cubic domain, with dimensions (2703  and periodic bound-

ary conditions. For the species transport, both spectral and finite differences methods 

are used. 
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4.1.1 Initialisation of the velocity field 

The initial velocity field of homogeneous and isotropic turbulence is achieved in two 

stages. At first, a synthetic turbulent flow field is constructed using equation (3.37). 

However, this flow field is not derived from a solution of the Navier-Stokes equations 

in time. Thus, it is not characterised by an organised inertial range and does not respect 

high order velocity correlations [42]. In order to derive a homogeneous isotropic tur-

bulent flow field, the synthetic flow field is integrated in time, while the large eddies are 

forced. The forcing procedure mimics the energy cascade from the large scales and al-

lows the flow field to be integrated in time without reduction of the absolute turbulence 

levels due to viscosity [42]. In the cases simulated here, the forcing is implemented by 

artificially increasing the energy of the fluctuations for the two lowest wavenumbers 

Ikl = 1 and Iki = 2 when the total turbulent kinetic energy becomes smaller than its 

initial value. This procedure lasts for seven eddy turnover times and the final velocity 

field is integrated for just half an eddy turnover time without any forcing in order to 

eliminate the effect of forcing on the large scales. The resulting flow field serves as 

an initial condition for the simulations presented here and is characterised by a Taylor 

Reynolds number of RA  = 54. 

4.1.2 Initialisation of the mixture fraction field 

The initialisation of the reacting species and of the temperature field is based on 

a SLFM solution, where the scalar dissipation rate at the stoichiometric has been 

matched with the mean scalar dissipation at stoichiometric in the DNS. Following Mell 

et al. [43], the mixture fraction is initialised as a distribution of large scale areas with 

size close to the integral length scale of the velocity field, where the mixture fraction 

is constant and equal to zero or unity. On the borders between these areas the mixture 

fraction decays to zero gradually providing a smooth mixture fraction profile as seen 

in figure 4.1. 
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Figure 4.1: Initial distribution of the mixture fraction across a cross-section of the 
domain used for the homogeneous turbulence simulations. 

4.1.3 The reaction mechanism 

Although a two step chemistry mechanism has been used to simulate extinction and 

re-ignition [18], such a choice does not allow a realistic simulation of the phenomenon 

[17]. When a two step mechanism is used, the temperature remains high and the mix-

ture always re-ignites when the turbulence intensity drops sufficiently. For this reason, 

the reduced four-step mechanism for hydrocarbon combustion of Jones and Lindstedt 

[36] is used for the simulations presented here. 

The flame modelled in the present simulations is a diluted methane flame. The fuel 

consists of methane, diluted with nitrogen and argon, while the oxidiser consists of a 

mixture that corresponds to the composition of air. The reduced reaction mechanism 

of Jones and Lindstedt [36] consists of the following four reactions, 

CH4 +"102 --4 CO ± 2H2 	(I) 

CH4 + H2O —) CO + 3H2 	(II) 	
(4.1) 

H2 + 02 ,----' H2O 	(III) 

CO + H2O 
	

CO2 ± H2 . (IV) 

The species that appear in the reactions shown above are methane, CH4, hydro- 
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gen, H2, carbon monoxide, CO, oxygen, 02, water, H2O, and carbon dioxide, CO2. 

According to the stoichiometry of this reaction mechanism the concentrations of the 

six above species can be expressed as a function of four independent variables. The 

independent variables chosen are the mass fractions of methane, Y -CH4  9 hydrogen, YH2 , 

carbon monoxide, Yco, and the mixture fraction, e. Following equation (2.41) for Yo 

and 11, the mixture fraction can be expressed as, 

e = sYF  — Yo  + 1 
s + 1 

(4.2) 

where s is the stoichiometry ratio, YF  is the mass fraction of the fuel and Yo  is 

the mass fraction of the oxidiser. The fuel mixture consists of CH4, N2, and Ar with 

a composition of 15%,34% and 51% respectively. The oxidiser is also a mixture, 

which consists of 02  and N2  with a composition of 30% and 70% respectively. This 

composition of fuel and oxidiser provides two streams with similar properties close to 

the ones of air. In addition this combination has been chosen in order to increase the 

value of the stoichiometric mixture fraction which is equal to es, = 1, given that an 

increased numerical resolution is needed for a smaller value, [41]. 

Following Jones and Lindstedt [36], the forward reaction rate for each one of the 

reactions 4.1(I-IV) is provided by the formulae 

cAfiTbi EII RT [CH4]1/2[02]5/4 	 (4.3) 

= 	cAfjb"e-EHIRT [cH4][H20] 

(1111 = cA f  T b"1 e-EmIRT [H2]112[02 ]914[H201-1 

v = 	cA f  TbN CENIRT[co][H20]. 

According to the above expressions, the reaction rate is a function of temperature, 

the ideal gas constant R, the activation energy E, and the pre-exponential factor Af for 

each reaction i. The parameters that appear in the expressions (4.3) for the reaction 

rates, are provided in table 4.1. The backward reaction rates are defined according to 

the equilibrium constants for each one of the reactions, following Jones and Lindstedt 
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[36]. Note that the reactions 1 and II are supposed unidirectional, and as such, the 

backward reaction is not considered at all. 

Table 4.1: The parameters of the reduced chemistry mechanism for CH4  combustion. 

Reaction Af b E 

I 0.44 x 10-12  0 3 x 104  
II 0.30 x 10-9  0 3 x 104 
III 0.68 x 10-16  —1 4 x 104  
IV 0.275 x 10-10  0 2 x 104  

In equations (4.3) the pre-exponential factor Af is multiplied by a non-dimensional 

scaling factor c, which varies between 0.00045 — 0.003 for the homogeneous combus-

tion DNS cases, and between 0.003 — 0.018 for simulations of the jet flames. The 

introduction of this scaling aims to provide a series of simulations, characterised by 

different levels of local extinction, a phenomenon governed by the ratio between tur-

bulent and chemical length scales, i.e. the Damkohler number provided in equation 

(2.52). Reducing the turbulence time scales leads to a prohibitive increase of the com-

putational cost for the DNS. For example, simulations in Sandia Flames D-F give some 

indication of the local turbulent Reynolds numbers when extinction occurs, and it is 

estimated to be of the order of 0(104) [18], whereas in turbulent DNS an order of just 

0(102) can be reached. Following Swaminathan and Bilger [144] or Kim et al. [150], 

the level of extinction can be controlled by adjusting the chemistry scales instead. As 

a result, using a series of values for the coefficient c, a series of simulations with de-

sired levels of extinction is achieved, that can be used for a qualitative analysis of the 

phenomenon. 

4.1.4 The initialisation of the reacting scalar fields 

In all the reacting cases presented here, the initialisation of the reacting scalar fields is 

based on the initial distribution of the mixture fraction field, and a flamelet solution is 

used. In the case of methane combustion in a homogeneous turbulent flow field, the 

initialisation of the reactive species is based on the mixture fraction profile, shown in 
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figure 4.1. As mentioned in the presentation of the chemistry mechanism, the solution 

of transport equations for three reactive species are needed. Here methane, hydrogen 

and carbon monoxide are solved for explicitly. In addition, the evolution of sensi-

ble enthalpy hs  or temperature will be computed. The flamelet solution used for the 

initialisation of the reacting scalar fields is shown in figure 4.2. 

Figure 4.2: The SLFM solution used for the initialisation of the reactive species 
as a function of the initial mixture fraction distribution. Continuous line, — non-
dimensionalised temperature T*, symbols; x methane YcH4  ,0 carbon monoxide 
10 • Yco, A hydrogen 100 • YH, 

For the constant properties simulations carried out, the sensible enthalpy is simply 

proportional to the temperature of the mixture, 

hs  = CDT . 	 (4.4) 

The non-dimensional temperature, T*, shown in figure 4.2 is normalised by the 

adiabatic temperature Tad defined in equation (2.49) and the ambient temperature To. 

T — To  
T* = 	 

Tad — TO 
(4.5) 

Alternatively, a non-dimensional expression for the sensible enthalpy, Co, can be 

used 



4.2. Test cases 	 132 

C p(T — To ) 
C p(T — Tad ) 

which is equal to T* for the current constant property simulations. 

(4.6) 

4.2 	Test cases 

In order to assess the numerical methods used for the solution of the reacting species 

transport in DNS, three test cases have been carried out. In each of the test cases, 

the momentum transport equation is integrated with the same pseudospectral code, 

described in chapter three. However, two alternative numerical methods have been 

used for the solution of the reacting species transport problem. 

The details of these three test simulations are shown in table 4.2. The first test case, 

HReactive-T1, is solved using the spectral representation for the solution of both 

the momentum and the species transport equations. As it will be pointed out below, 

the pseudospectral scheme shows some disadvantages for the solution of the reacting 

scalars due to over and under shoots beyond the physical limits, and therefore two 

more test cases, i.e HReactive-T2, and HReactive-T3 that employ finite difference 

algorithm instead, are also used for the discretisation of the reacting species. 

The differentiation scheme for the HReactive-T2 simulation is a simple cen-

tral differencing scheme of fourth order, similar to the differentiation scheme used 

by Cant et al. [145] for DNS of reacting flows. The differentiation scheme for the 

HReactive-T3 is the implicit sixth order scheme described by Lele [151]. Both dif-

ferentiation schemes are popular for DNS simulations. 

All three cases have common initial conditions and parameters. The mesh used 

in the finite difference approaches identical to the spectral solver, with 256 equiva-

lent nodes in each direction. The three test cases have been integrated for three eddy 

turnover times starting from the forced homogeneous turbulence initial conditions at 

time t* = 7.5. Given that the same problem is modelled, the instantaneous solutions 

must be identical and deviations due to different algorithms can easily be assessed by 

comparison of the test cases results. 

The predictions of the mixture fraction distribution exhibit minor difference be- 
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Table 4.2: The parameters of the test cases HReactive-T1, HReactive-T2, and 
HReactive-T3. 

CASE HReactive-T1 HReactive-T2 HReactive-T3 

VELOCITY 
FIELD 
Re, 54 54 54 
CHEMISTRY 
Scaling c 0.0015 0.0015 0.0015 
NUMERICAL 
Mesh 
Nodes 
Velocity solver 
Species solver 
Differentiation 

2563  
16,777,216 

Spectral 
Spectral 

N/A 

2563  
16,777,216 

Spectral 
Finite differences 

Central differences 

2563  
16,777,216 

Spectral 
Finite differences 

Implicit Lele 

tween the three test cases. In figure 4.3(a)-(b) the distribution of the mixture fraction 

is presented along the x-axis, at y = 7r and z = 7r, for two instances of all three test 

simulations at r = 8.32 and t* = 10.53 eddy turnover times. At both instances the 

three numerical methods provide the same solution. 

&u. 

	

2 3 4 5 6 
	

2 3 4 5 6 

	

x-axis 	 x-axis 

(a) 
	

(b) 

Figure 4.3: Mixture fraction distribution across the x-axis. Symbols; 0, implicit 
scheme, x central differences, and continuous line, — spectral. (a) at r = 8.32 and 
(b) at r = 10.53 

As far as the instantaneous distributions of the reactive species are concerned, the 

three solvers give the similar results, as seen in figure 4.4(a) for the methane mass 

fraction. However, the spectral method is limited when dealing with reacting scalars, 



4.2. Test cases 	 134 

where the gradients for the reacting species are relatively steeper due to the effect of 

the flame front [26]. A closer look at the methane distribution provided in figure 4.4(a), 

is presented in figure 4.4(b) for 0.4 < x < 0.65. The spectral representation of a steep 

gradient causes some overshoot on the lean side of the diffusion flame front, as seen 

in figure 4.4(b). Across this flame front the methane mass fraction reduces rapidly 

due to the reaction rate term /J ohn. Given that a central difference scheme is used, 

negative values may appear for all three test cases. These negative concentrations have 

very small values of the order of 0(10-4), and are set to zero for the calculation of the 

reaction rates [36]. The major difference in the behaviour of the spectral method lies 

in the positive overshoot of the order of 0(10-5) — 0(10-6) exhibited on the lean side 

of the flame front and can be attributed to the Gibbs phenomenon. However, as seen 

in figure 4.5(a), this small but positive value is located in areas where the temperature 

is still high due to convection from other flame fronts. Furthermore, the oxidiser mass 

fraction is also high and leads to a very high but spurious reaction rate, as seen in figure 

4.5(b). 

In cases where the oxidiser and the fuel are not well mixed, the spurious reaction 

rates may appear as filaments parallel to the flame front as is shown in figure 4.6. 

This happens during the initial time steps of the homogeneous and isotropic turbulence 

simulation and throughout the combustion simulation of a planar jet. In regions where 

the reactants are mixed, spurious reaction rates appear as spots as seen in figure 4.7. 

Due to this inaccuracy of the spectral solver when dealing with reactive species, 

the finite differences methodology is used for the integration of the reacting species 

transport equations. Both central differences and implicit differentiation schemes, de-

liver the same results when used for the solution of simple transport equations of the 

species as seen in figures 4.4 to 4.5. However, the implicit differentiation scheme de-

mands the solution of an algebraic system of equations to provide the first and second 

derivatives along each direction. In a parallel code the derivatives along the directions 

that cross the partition boundaries can be calculated by solving the above mentioned 

system instantaneously for all the collocation points at each time step. This demands 

the allocation of memory space for all the first and second derivatives of the field. 

Solving the algebraic system that is derived from the implicit expression of the deriva- 
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Figure 4.4: Instantaneous distribution of the methane CH4  concentration at time t* = 
8.32 eddy turnover times. Symbols; 0, implicit scheme, x central differences, and 
continuous line, - spectral.(a) along the x-axis (b) zoom on the reaction region at 
x = 0.5 
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Figure 4.5: Instantaneous distribution of the non-dimensionalised temperature T* (a), 
and the methane reaction rate (b), along the x-axis at time t* = 8.32 eddy turnover 
times. Symbols; 0, implicit scheme, x central differences, and continuous line, -
spectral. 

tives leads to the transmission of short but frequent messages in the cases of parallel 

computations. Due to the latency time needed to initiate a communication among com-

putational nodes in a distributed memory cluster, the communication time becomes 

disproportional to the size of the exchanged information, and has a dramatic effect on 

the performance of the algorithm. Taking into account that the computational power 

available is marginal compared to the computational needs of the DNS carried out, the 

much simpler and economical fourth order central difference method has been chosen 

here and is used for all computations that are analysed in the remainder of this study. 
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Figure 4.6: Contour plots of the reaction rate for the methane wcw, on the iso-y plane. 
at t* = 8.32. (a) central differences solver (b) pseudospectral solver 
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Figure 4.7: Contour plots of the reaction rate for the methane Loci', on the iso-y plane. 
at t* = 10.53. (a) central differences solver (b) pseudospectral solver 

Although the high accuracy implicit scheme is quite popular in DNS algorithms 

[152], it is used for the integration of the momentum transport equations in variable 

density flows. Given the efficiency of the pseudospectral code for the integration of 

the incompressible momentum transport equations for both homogeneous turbulence 

and well resolved shear layers and jets [87], this code is retained for the integration of 

the velocity field. The finite difference methodology is coupled with the pseudospectral 

code to provide the solution for the much simpler fourth order reactive species transport 

equations. The resulting hybrid solver is used for the derivation of the final DNS 

database presented in this study. 
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4.3 	Combustion in homogeneous isotropic turbulence 

Four DNS of methane combustion in homogeneous and isotropic turbulence have been 

carried out. In these simulations, the momentum transport equation is integrated using 

the parallel pseudospectral code. In this code, a finite differences solver is coupled with 

the momentum transport solver for the integration of the reacting species, as discussed 

in the previous section. 

In order to study the modelling of local extinction and re-ignition, each case is 

characterised by different extinction levels. This is controlled by adjusting the pre-

exponential scaling coefficient c. The details of the four simulations are presented in 

table 4.3. Apart from the scaling coefficient, all the other details of the simulation 

are identical. The initial conditions for these simulations have been achieved from 

synthetic turbulence initial conditions, forced for t* = 7.5 eddy turnover times, as dis-

cussed in section 4.1.1. The initial field for the methane combustion in homogeneous 

isotropic turbulence is then integrated for four eddy turnover times until r = 11.5. . 

In figure 4.8 the time evolution of the non-dimensional temperature T* of the mix-

ture located around the area of the stoichiometric mixture fraction, 6t  — 0.01 < < 

+ 0.01, is presented. Depending on the magnitude of the scaling coefficient c each 

case is characterised by different levels of extinction. Case HReactive-A totally extin-

guishes, whereas HReactive-B, and HReactive-C show high to medium extinction, 

while they re-ignite later on. Finally case HReactive-D presents very low levels of 

extinction. Given that the solution of the mixing problem for all the reacting cases is 

the same, the DNS data containing the solution of the velocity field and the mixture 

fraction consists the mixing case HMixing, which will be used for the investigation of 

scalar mixing in homogeneous and isotropic turbulence. 

	

4.4 	DNS of mixing in a planar jet 

The planar jet case is a simulation of a jet stream issuing into an quiescent fluid of 

the same properties. The jet is supposed to consist of a non-reacting contaminant 

with mass fraction equal to unity around the centreline and equal to zero within the 
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Table 4.3: The parameters of the test cases HReactive-A, HReactive-B, 
HReactive-C and HReactive-D. 

CASE HReactive-A HReactive-B HReactive-C HReactive-D 

VELOCITY 
FIELD 
Ret  54 54 54 54 
CHEMISTRY 
Scaling c 0.00045 0.00100 0.00150 0.00300 
NUMERICAL 
Mesh 2563  2563  2563  2563  
Nodes 
Total time 
Timesteps 
stored 
Data size 

16,777,216 
13.7 

22 
17Gbytes 

16,777,216 
13.7 

22 
17Gbytes 

16,777,216 
13.7 

22 
17Gbytes 

16,777,216 
13.7 

22 
17Gbytes 

Velocity 
solver 

Spectral Spectral Spectral Spectral 

Species 
solver 

Finite 
differences 

Finite 
differences 

Finite 
differences 

Finite 
differences 

Differentiation 
scheme 

Central 
differences 

fourth order 

Central 
differences 

fourth order 

Central 
differences 

fourth order 

Central 
differences 

fourth order 

quiescent fluid. 

The transport equations that have to be solved are the momentum transport for 

the three components of the velocity field plus the scalar transport equation for the 

contaminant concentration. The computational domain of this simulation consists of 

a cube with dimensions (2702  and is represented in a Cartesian coordinate system of 

three orthogonal axis. 

4.4.1 Initial conditions 

The setup of the initial conditions for the planar jet is illustrated in figure 4.9. This 

figure depicts a cross-section of the initial flow field on the iso-y plane. A hyperbolic 

tangent profile is used for the initialisation of the velocity and the scalar field distribu-

tions. A similar setup has been simulated by Stanley et al. [153], where a hyperbolic 
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Figure 4.8: Time evolution of the non-dimensionalised temperature T*, averaged on 
the stoichiometric mixture fraction G = 0.333, for the four combustion simulations in 
homogeneous and isotropic turbulence. Symbols; + HReactive-A, x HReactive-B, 
0 HReactive-C, A HReactive-D 

tangent profile has been used for the boundary conditions of the DNS for a spatially 

evolving planar jet. In the case presented in this study the boundary conditions for all 

the quantities are periodic in all directions as imposed by the spectral algorithm, dic-

tating a simulation of a planar jet evolving in time rather than space. The jet is issuing 

parallel to the x-axis, along the stream-wise direction, while the profile of the velocity 

is distributed along the z-axis defining the tranverse direction. This two dimensional 

velocity field does not vary in the span wise direction along the y-axis. 

This setup initially consists of two laminar shear layers. However, this type of 

flow is unstable, and it is expected to exhibit a transitional stage until it becomes fully 

turbulent at the later stages of the mixing process, where the two shear layers will start 

merging into a fully turbulent jet. 

The initial velocity field is a parallel flow, characterised by a one dimensional 

velocity profile. The initial profile is provided by equation 4.7 as a function of the z 

direction. The u component of the velocity along the x-axis is independent of the x and 

y directions and is defined as, 
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Figure 4.9: Setup of the initial conditions in the case of the planar jet. 

AU
2 [ 	

z — L/2 	z 26  3L/2  
11 	(4.7) , u(x, y, z; t = 0) = —tanh  26. 	tanh 	.  

where L is the width of the jet, dm  is the initial momentum thickness of each mixing 

layer and AU is the difference of the mean initial velocity between the two streams. 

This is illustrated in figure 4.9. The other two components of the velocity vector i.e. v 

and w, are zero. 

The setup of the initial velocity field as described in equation (4.7) provides a 

parallel unidirectional laminar flow. A Kelvin-Helmholtz instability is expected to 

arise [154, 155], and the transition to turbulence is expected to occur [155]. In order 

to trigger the instability of this shear flow some perturbations have been added to the 

velocity field. The perturbations consist of the synthetic homogeneous and isotropic 

turbulent field described in section 3.3.2, and it is superimposed on the laminar planar 

jet flow field. The magnitude of the added perturbations is constant across the flow 

field and equal to 2% of the mean velocity field. Similar perturbations are introduced as 

inflow boundary conditions for the spatially evolving DNS of a planar jet by Stanley et 

al. [153] or as fluctuations included in the initial conditions of the temporally evolving 

DNS of a mixing layer by Rogers and Moser [154]. 

The contaminant distribution is initialised in a similar way to the u component of 

the velocity field according to, 
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1 [ 	(z — L/2 	z — 3L/2  
(x, y, z; t = 0) = 2 tanh 	2(5.  ) tanh ( 26.  )1 . 	(4.8) 

The distribution of the contaminant provided by equation (4.8) results in a constant 

concentration in the core of the jet, which is equal to unity, and smoothly decays to zero 

in the surrounding air as seen in figure 4.9. This setup provides a spatially correlated 

initial distribution of the momentum and the scalar concentration. 

4.4.2 Cases studied 

Two simulations of a non-reacting planar jet have been carried out. The details of the 

two cases are presented in table 4.4. Each case is characterised by a flow Reynolds 

number defined as 

Re = AUL (4.9) 
V 

Case JMixing-A is characterised by a low Reynolds number of Re = 3141.5 and 

is resolved on a cubic orthogonal equivalent mesh of 2563  nodes. The flow Reynolds 

number for the case JMixing-B is, equal to Re = 6283.0. The mesh used for the full 

resolution of case JMixing-B, has 512 nodes in each direction. 

4.4.3 Velocity field 

The planar jet cases presented consist of two mixing layers lying on two iso-z planes, 

located at positions zi  = 7r/2 and z2  = 37r/2 respectively, shown in figure 4.9. The so-

lution of the current DNS simulation can be compared with results from experiments 

of spatially evolving shear layers [156, 75]. A typical experimental setup of a plane 

shear layer is presented in figure 4.10. The two streams issue from the orifice or splitter 

plate and are characterised by almost uniform velocity profiles Ui and U2 with low tur-

bulence intensities. Within the mixing region, the time averaged streamwise velocity 

changes smoothly and monotonically from U1  to U2, and a mean convection velocity 

can be appointed to the mixing layer, defined as the mean of the velocities for each 

stream Um  = (U1 + U2)/2. A non-dimensional streamwise velocity is then defined as, 
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Table 4.4: The parameters of the planar jet mixing cases Mixing-A and Mixing-B. 

CASE JMixing-A JMixing-B 

VELOCITY FIELD 
L 7r Jr 
AU 10 20 
dm  1/10 1/20 
Refer 3141.5 6283.0 
u' 0.01AU 0.01AU 
arms 0.015 0.015 
NUMERICAL 
Mesh 2563  5123  
Nodes 16,777, 216 134, 217, 728 
Total time 52.7 50.1 
Timesteps 
stored 55 83 
Data size 8.4Gbytes 100Gbytes 

U*  = 	 

	

U — U2 
 

Ul  — U2 	
(4.10) 

A characteristic length for each streamwise position x of the shear layer, is the 

shear layer width 60.9, defined as the distance on the x-axis between the locations 

where U* = 0.1 and U* = 0.9. The width 50.9  increases proportionally to the stream-

wise distance x from the jet orifice [156]. Thus, a non-dimensional expression for the 

transverse distance from the shear layer centreline on the z-axis can be written as, 

= —x • 	 (4.11) 

In contrast to DNS of spatially evolving planar jets [88, 153], the simulation pre-

sented in this study evolves in time rather than in space. For this reason the mean 

velocity at each tranverse position on z-axis is calculated as the mean of the spatial dis-

tribution of the the turbulent velocity across the homogeneous directions perpendicular 

to the z-axis, i.e. the iso-z planes. The shear layer thickness in computations of time 

evolving jets increases in time [74], whereas it remains constant across the the stream-

wise direction, as imposed by the periodic boundary conditions. In order to make a 
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Figure 4.10: Comparison of the experimental configuration, with the time evolving 
DNS setup. 

comparison with experimental results, a virtual distance from the orifice can expressed 

as the product of the convection speed of the shear layer with the time, thus a similarity 

variable for the tranverse wise distance from the shear layer is defined as 

z — zi =  	 (4.12) 
Urn  • t 

where t is the time from the beginning of the simulation, and zi  is the position of 

the shear layer on the z-axis. The current initialisation dictates that the velocity of the 

jet is AU/2, whereas the surrounding fluid is moving in the opposite direction, with 

the same velocity magnitude. However, it can be supposed that the jet is issuing with 

a velocity U2  = AU on the centreline, whereas the surrounding fluid is quiescent i.e. 

Ul  = 0. In this case, the mean velocity introduced in equation (4.10) is the mixing 

layer convection speed, i.e. Um  = 	= AU/2. The equivalent length AUt/2 is 

the distance that the shear layer would have conveyed from the start of the mixing, 

assuming that the surrounding fluid is quiescent, and can be related to the streamwise 

distance from the orifice in a spatially evolving experimental setup, as seen in figure 

4.10. 

Orifice 60.9 

x  
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The typical time scale for a DNS of a turbulent flow is the eddy turnover time. This 

is defined as the time scale of the large turbulent structures at the initial conditions. 

For the planar jet case, the initial eddy turnover time definition is based on the velocity 

difference AU and the shear layer initial momentum thickness 6„2  as 

6„, 
to = 	, AU 

Time is then normalised by this new eddy turnover time, 

(4.13) 

t*  = — . 
to 

(4.14) 

Given that the experiments for planar jets and shear layers are characterised by rel-

atively high Reynolds numbers, the results from the high Reynolds number simulation 

case JMixing-B are compared with actual experiments. The self similarity of the tur-

bulent mixing layer is exhibited in figure 4.11(a). In this figure it can be seen that the 

mean velocity profiles for a series of time steps of the simulation from the early stages 

to the final time step, collapse when transformed to 4--space using equation (4.11). In 

addition, the velocity profiles are in good agreement with the experimental results of 

Bell and Mehta, [157] as shown in the same graph. 

(a) 
	

(b) 

Figure 4.11: (a) The mean velocity profiles for several time steps as a function of the 
similarity variable 4' case Mixing-B. Dots from the experiment of Bell and Mehta 
[157]. (b) Autocorrelation coefficient as a function of r at 4' = 0, case Mixing-B. 
Dots from the experiment of Wygnanski [75]. 

The next figure 4.11(b) depicts the distribution of the autocorrelation coefficient of 
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the streamwise component of the velocity field at time t* = 60.0 in comparison to the 

distribution of the experimental results of Wygnanski [75]. Furthermore, the turbulence 

intensities at r = 60.0 are in good agreement with the experimental results of Bell 

and Mehta [157]. The comparison of the computational results with the outcomes of 

experimental research shows that the DNS database is a realistic, model free simulation 

of a shear flow. 
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Figure 4.12: Turbulent intensities at time step r = 60.0 from the case ]Mixing-B, 
compared to the experiments of Bell and Mehta [157] 

The mixing layer is well known for its coherent structures [72]. During the first 

stage of transition vorticity tubes also known as rollers appear [71]. These cylindri-

cal regions are characterised by large vorticity magnitudes, exhibit a two dimensional 

structure and extend along the span wise direction as predicted by linear stability analy-

sis for the Kelvin-Helmholtz instability [29]. In the later transitional stage, the vorticity 

tubes become interconnected with three dimensional structures, the so-called rib vor-

tices as shown in figure 4.13. In this figure the iso-surface of the vorticity magnitude 

equal to 100 is depicted at t* = 17.2 identifying high vorticity areas in the shear flow. 

The domain shown in figure 4.13 spans from 0 to 5 on the x-axis, from 0 to 5 on 

the y-axis and from a  to *r on the z-axis, covering one sixteenth of the computational 
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domain. The pairing and later the cascade of the resulting turbulent structures finally 

results in a fully turbulent shear layer [154]. 

Figure 4.13: Vorticity tubes during the transition period. Case ]Mixing-B at r = 17.2. 

4.4.4 Spectra and turbulence scales 

The spectra for the turbulent kinetic energy distribution in the wavenumber space are 

depicted in figure 4.14, for the high Reynolds simulation at e = 26.9, r = 36.6, 

t* = 47.8 and t* = 60.0. In the same graphs the —5/3 exponential decay is also 

illustrated, expressing the theoretical distribution of the turbulent kinetic energy for 

the inertial turbulence scales. 

These spectra are calculated on planes parallel to the shear layer covering the ho-

mogeneous directions of the flow. The drop of turbulent kinetic energy by five orders 

of magnitude guarantees the proper resolution of the small scales by the pseudospectral 

code [42]. The absence of a peak near the region of the high wavenumbers indicates 

that the turbulent kinetic energy dissipates naturally and that the smallest scales present 
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Figure 4.14: Turbulent kinetic energy spectra on the shear layer plane, 4' = 0. 

negligible fluctuations. The proper resolution of the DNS calculations can also be in-

vestigated by calculating the Kolmogorov length scales as defined by expression 2.23. 

The turbulent mixing layer is characterised by three turbulence scales, the inertia, 

the Taylor and the Kolmogorov length scales. The distribution of the turbulence length 

scales across the z-axis of the planar jet for the case Mixing-A is presented in figures 

4.15 at two representative times, r = 14.7 and r = 51.5. The turbulence scales for 

case Mixing -B are also shown in figure 4.16 for t* = 26.9 and t* = 60.0. The results 

presented are based on the analysis of the turbulence length scales found in section 2.2. 

Given that the Kolmogorov scale remains always larger than the mesh spacing for both 

cases, the proper resolution of the turbulence scales in the DNS computations carried 

out is demonstrated. 

4.5 	DNS of reacting planar jets 

The initialisation of the velocity field for the reacting jet cases is identical to the non-

reacting mixing problem described in the previous section, where the non-reacting 

scalar field represents the mixture fraction defined in equation (2.41). In addition, the 

temperature transport equation and the mass fractions of methane, carbon monoxide 

and hydrogen are also accounted for. Based on the initialisation of the mixture frac-

tion in equation (4.8), the normalised temperature field and the reactive species are 

initialised using a flamelet solution that corresponds to the scalar dissipation rate for 

the initial distribution of the mixture fraction on the stoichiometric surface. Given that 

the initialisation of the mixture fraction is one-dimensional, an example of the initial 
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Figure 4.15: The distribution of the integral length scale A, the integral length scale 
for the mixture fraction distribution, the Taylor length scale AT, the Kolmogorov length 
scale n and the mesh resolution of the simulation for the case ]Mixing-A, across the 
planar jet. (a) at t* = 14.7 (b) at t* = 51.5 
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Figure 4.16: The distribution of the Integral length scale A, the integral length scale /16  
for the mixture fraction distribution, the Taylor length scale AT, the Kolmogorov length 
scale 77 and the mesh resolution of the simulation for the case ]Mixing-B, across the 
planar jet. (a) at r = 26.9 (b) at t* = 60.0 

distribution along the tranverse direction, of the species, the mixture fraction and the 

non-dimensional temperature is provided in figure 4.17. 

4.5.1 Cases studied 

Four simulations of a reacting planar jet have been carried out. The details of the simu-

lations are presented in table 4.5. The velocity field initialisation for cases ]Reactive-A 
and JReactive-B is identical based on the mixing case JMixing-A and characterised 



4.5. DNS of reacting planar jets 	 149 

0.1 
0.08 
0.06 
0.04 
0.02 

0 

	

2 
	

4 	5 	6 
Z-axis 

	

H2O 	 - 112 

0.3 
0.25 
0.2 

0.15 
0.1 

0.05 
0 

1 	2 	 4 	5 	6 
Z-axis 

-- CH4 	02 	------ CO2  - CO 

g• 

E 0.8 
o= 0.6 

0.4 
0.2 

2 	3 	4 	5 	6 
Z-axis 

Conserved Scalar 	- Temperature 

Figure 4.17: Initialisation of the species, the mixture fraction and temperature, along 
the z-axis. 

by a relatively lower flow Reynolds number, Re = 3141.5. The flow field initialisa-

tion for the cases ]Reactive-C and JReactive-D is based on the pure mixing case 

JMixing-B where the Reynolds number is Re = 6283.0. Due to the higher Reynolds 

number a finer mesh of 5123  nodes has been utilised for the cases ]Reactive-C and 

]Reactive-D. 

The magnitude of the pre-exponential scaling coefficient, c, varies and this pro-

vides a series of cases with different levels of extinction and re-ignition. Cases JReact ive-B 

and ]Reactive-D have higher Damkohler numbers in comparison to the equivalent 

cases JReactive-A and JReactive-C, respectively. Due to the variation of Da along 

the simulations, these four simulation present different levels of extinction as shown in 

the figure 4.18. 

The resolution of the flame front can be exhibited with the comparison of the the 

thickness of the reaction region, Er , to the mesh resolution of the simulations. Fol-

lowing the analysis of section 2.4.1 the Damkohler number has been calculated based 

on the relations (2.52) and the theoretical reaction region thickness has been derived 

using the expression (2.54). Due to the variability of the scalar dissipation rate across 



4.5. DNS of reacting planar jets 	 150 

Table 4.5: The parameters of the test cases JReactive-A, Reactive-B, 
Reactive-C and ]Reactive-D. 

CASE ]Reactive-A JReactive-B JReactive-C JReactive-D 

VELOCITY 
FIELD 
L IT 7r Jr IT 

AU 10 10 20 20 
(5„, 1/10 1/10 1/20 1/20 
Re jet 3141.5 3141.5 6283.0 6283.0 
u' 0.01AU 0.01AU 0.01AU 0.01AU 
arms 0.015 0.015 0.015 0.015 
CHEMISTRY 
Scaling c 0.003 0.006 0.009 0.018 
NUMERICAL 
Mesh 2563  2563  5123  5123  
Nodes 16,777,216 16,777,216 134,217,728 134, 217,728 
Total time 52.7 52.7 73.6 73.6 
Timesteps 
stored 10 10 18 18 
Data size 6.4Gbytes 6.4Gbytes 107Gbytes 107Gbytes 

the stoichiometric mixture fraction, the thickness of the reaction region 4 changes in 

time as shown in figure 4.19. 

The mesh spacing, depicted in the same figure, always remains smaller than the 

theoretical flame thickness 4. However, for case JReactive-D, which is the case 

presenting the highest reaction rates, this difference is marginal especially in the initial 

stages of the flow. The next two figures 4.20 and 4.21 depict the distribution of the 

four reactive scalars and the mixture fraction across a cross-section of the flow field 

along the x — z plane for z varying from 34to 1. This area focuses on one of the two 

shear layers of the planar jet. In addition, the contour plots of the source terms for each 

one of the reactive scalars are presented across the regions highlighted in the contour 

plots of the scalar fields. This area has been blown up so that the mesh starts to be 

visible. From the reaction rate contour plots it can be stated that the reaction region is 

captured by at least four DNS cells even in the initial time steps where the theoretical 

flame thickness has the smallest value. 
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Figure 4.18: Time evolution of the non-dimensionalised temperature T*, averaged 
on the stoichiometric mixture fraction 6, = 0.333, for the four combustion planar 
jet simulations. Symbols; + JReactive-A, x ]Reactive-B, O JReactive-C, A 
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Figure 4.19: Time evolution of the theoretical reaction thickness tr. Symbols; + 
JReactive-D, x JReactive-C, 0 JReactive-B, A JReactive-A ,line - mesh size 
for the 5123  and 2563  cases. 

4.6 Summary 

In this chapter the details of the numerical experiments that have been carried out 

have been presented. In addition, an analysis of the resolution of the turbulence and 

chemical scales is also provided. The resulting realisations for selected time steps of 
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Figure 4.20: Contour plots of the scalar fields for case JIZeactive-D and the corre-
sponding reaction rates for the reacting scalars at * = 17.2. 
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Figure 4.21: Contour plots of the scalar fields for case ]Reactive-D and the corre-
sponding reaction rates for the reacting scalars at r = 36.6. 
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Figure 4.22: Contour plots of the scalar fields for case ]Reactive-D and the corre-
sponding reaction rates for the reacting scalars at t* = 72.9. 
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the solutions consist the DNS database, which will be used for the assessment of the 

mixing and combustion models, presented in the next two chapters. The number of 

the time steps stored for each simulation and the size of each set of files are shown 

in the tables 4.3, 4.4 and 4.5 for both mixing and reactive simulations. As far as 

the homogeneous turbulence mixing simulation is concerned, the flow-field data is 

included in the solution of the reacting simulations outlined in table 4.4. 



Chapter 5 

"A priori" tests of LES models for the 

scalar mixing 

The modelling methodologies for diffusion flames in turbulent combustion are based 

on the observation that the mixing of the reactants is the controlling step of the reaction 

process [1]. In LES of non-premixed flames, the mixing of the resolved scales is mod-

elled by the transport equation (2.78)for the filtered mixture fraction .. The closure of 

the mixture fraction transport requires sub-grid scale (SGS) models to account for the 

effect of the unresolved scales on the resolved ones. In addition, information for the 

sub-grid distribution of the mixture fraction is also important for the closure of com-

bustion models. As discussed in the second chapter, the effect of scalar mixing on the 

chemical reactions in SLFM and CMC is quantified through the SGS scalar dissipation 

rate, xscs,  and the SGS scalar variance, r2, defined in equations (2.101) and (2.102) 

respectively. This chapter aims at presenting an assessment of the performance of zero 

equation sub-grid scale models for the two SGS terms. 

The assessment of closures forxsGs  and r2 is based on the filtered DNS solutions 

of the mixing problems presented in chapter four. The predictions of the models are 

then compared to the SGS quantities, that can be obtained directly from the DNS data. 

Given that the assessment is made before any actual LES simulation, this procedure is 

known as "a priori" testing [158, 159]. "A priori" tests of LES and RANS modelling 

methodologies have been used to provide an insight in the behaviour of models for 
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turbulent viscosity [158, 159], scalar mixing [160, 161] and passive scalar turbulent 

diffusion [83]. In contradiction to "a priori" investigation of closures for turbulent 

simulations, "a posteriori" assessments involve the comparison of the final results from 

LES with experimental data or DNS results [158, 162]. 

In this study the three non reacting DNS presented in chapter four are used for "a 

priori" testing. The first is the scalar mixing simulation in homogeneous and isotropic 

turbulence. As discussed in chapter four the solutions of the velocity field and the 

mixture fraction are not affected by reaction and are common for all cases presented 

in table 4.3. The velocity and mixture fraction fields of these cases constitute the 

mixing case HMixing. The other two DNS are the planar jet cases Mixing-A and 

Mixing-B, where Mixing-B has a higher Reynolds number as indicated in table 

4.4. 

5.1 	The filtered DNS flow field 

Following the "a priori" testing practice, the filtered velocity and scalar fields are ex-

tracted from the the DNS database by applying a spatial filter. The spatial filter im-

posed is the box filter [163] with a filter width equal to A. For this reason a paral-

lel postprocessing code has been developed. The DNS data, being stored in spectral 

space, are transformed to real space, as described in chapter two. Then, the filtering 

operation is applied on the flow field. A spectral filtering procedure [112, 74] has not 

been chosen given that the jet cases studied are spatially localised whereas the Fourier 

representation is not [29]. 

The filtering operation presented in equation (2.68) is defined continuously for 

every point of the turbulent flowfield. Given that the turbulent flow field from the DNS 

solutions is inevitably discretised on the DNS mesh, the filtering operation provided 

by equation (2.68) can then be written as, 

(5.1) 

2L 
NDNS 

where a box filter with width A is assumed. In the above equation, Ax = 
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Figure 5.1: LES and DNS meshes for the jet configuration 

is the grid spacing of the DNS mesh and NDNS  is the number of nodes for the DNS 

discretisation in each direction. The discrete values f(x j ), which are defined on the 

spatial discretisation x1  ... xi  . xN,,„„ of the x-axis, represent the distribution of an 

arbitrary variable of the DNS solution. For the orthogonal structured grid with equal 

spacing which is used here, the x-axis is discretised as xi  = Ax • (i — ••). The control 

volumes of the filtering operation shown in equation (5.1) are depicted in the figure 

5.1(c). 

However, in the present study an alternative discretisation of the filtered flow field 

is also used. For reasons of computational cost the filtering operation is not always 

applied to all the cells of the DNS discretisation. Instead, a coarser mesh, that can be 

assumed to correspond to an LES configuration, is introduced. The turbulent flowfield 

from the DNS database consisting of ND NS nodes is reduced to a filtered field with 

AiL3Es  nodes. The filtered field defined in equation (5.1) is discretised on the coarser 

LES mesh X1 . . . X, . X N,,s , where the filtered value 7(Xi, Zk ) is computed for each 

cell with its centre located at X. This coarser mesh of the filtered field is discretised as 

= AX • i. Finally, the definition for the discretisation X, forces the centre of the LES 

cells to be located in the shear layers at, z = L/2 and z = 3L/2. The two discretisations 

of the filtered field are compared for an one dimensional setup, in figure 5.2. 

The calculated filtered values correspond on this orthogonal mesh that covers the 
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Figure 5.2: Notations of the DNS and the LES discretisation 

DNS domain. This configuration is shown in figure 5.1(a) for the planar jet configu-

ration. However, the same setup is used for the homogeneous turbulence simulation 

too. 

5.1.1 Energy resolution 

The flow field of each of the three mixing simulations has been filtered on three LES 

grids characterised by a different number of nodes, AlL3Es . Case JMixing-B is filtered 

on three different meshes with ATL3Es  = 643, 323  and 163  nodes each. The low Reynolds 

number jet simulation JMixing-A and the homogeneous mixing case }Mixing are 

filtered on three meshes of NLEs = 323 , 163, and 83  nodes, respectively. Thus, three 

filtered fields with fine, intermediate and coarse resolutions are extracted from each 

DNS simulation. 

The planar jet simulations are characterised by homogeneous directions located 

on the iso-Z planes, parallel to the stream and span-wise directions. The turbulent 

kinetic energy resolution, a', for the homogeneous plane located at z = Z0  on the LES 

discretisation, is defined as, 
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trallzo  - 
a(Zo) = 	 , 	 (5.2) 

[lull=z0  - 

which is the ratio of the resolved over the total turbulent kinetic energy where 

the kinetic energy due to the mean jet velocity along a homogeneous direction, i.e. 

[1/71C4, has been subtracted. The brackets H z.,z0  imply averaging over the iso-Zo 

homogeneous plane, viz. 

	

1 	NLES NLES 

	

1-71z.zo  N2 	 f (Xi , Y Zo) • 	 (5.3) 
LES 

The time evolution of the energy resolution for the case Mixing-A, averaged 

along the LES nodes located on the homogeneous plane in the shear layer, i.e. at zA = 

zi  = 2, is presented in figure 5.3(a), for each one of the three LES discretisation on 83, 

163  and 323  LES nodes. The energy resolution on the shear layer, for the high Reynolds 

number case JMixing-B, filtered on 163, 323  and 643  LES nodes, is presented in the 

next figure 5.4(a). Each one of the coarse, intermediate and fine discretisation of the 

LES flow field results in filtered DNS fields, which are characterised by the same 

approximately levels of energy resolution, i.e. 0.8-1.0 for the finest grid, 0.6-0.8 for 

the intermediate grid and 0.2-0.6 for the coarse grid at the end of the simulation. 

In addition to the planes at zA  = Z, the "a priori" tests carried out are also focused 

on iso-Z planes located outside the shear layer. For the planar jet simulation Mixing-A 

this plane is at zA  = —28L, while, for the case Mixing-B the position is at zB  = 3g. These 

positions have been selected so that their distance from the shear layer equals 5/4 of the 

momentum thickness on,. The time evolution of the turbulent kinetic energy resolution 

for the three LES discretisations on the zB  planes, is presented in figures 5.3(b) and 

5.4(b) for the cases Mixing-A and Mixing-B, respectively. Again the same levels of 

energy resolution are observed for each type of LES grid. 

The homogeneous and isotropic turbulence mixing case HMixing is not charac-

terised by mean flow velocity, and the energy resolution is therefore defined as the 

ratio of the kinetic energy of the filtered velocity flow field over the kinetic energy of 

the DNS flowfield, 

i=1 j=1 
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Figure 5.3: Time evolution of the energy resolution for the case Mixing-A on 323  nodes 
(x), 163  nodes (0) and 83  nodes (A). (a), for Z, = zA, (b), for Zi  = zB. 

Figure 5.4: Time evolution of the energy resolution for the case Mixing-B on 643  nodes 
(x), 323  nodes (0) and 163  nodes (A). (a), for Zi  = zA, (b), for Z, = zB• 

a=  [H , 	 (5.4) 
ilul2  

where the brackets [.] in the homogeneous turbulence case imply averaging over 

the whole DNS domain. The time evolution of a for case HMixing, filtered on 83, 163  

and 323  LES nodes is presented in figure 5.5. 

Given that an acceptable energy resolution for an LES simulation is thought to be 

around 0.80 [95, 96, 26], the LES fields extracted from the filtering of the DNS field 

on the fine, intermediate and coarse LES meshes would correspond to relatively poor, 

acceptable and over resolved LES discretisations. 
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Figure 5.5: Time evolution of the energy resolution for the case HMixing on 323  nodes 
(x), 163  nodes (0) and 83  nodes CO. 

5.1.2 Double filtering 

Apart of the box filtering defined by equation (5.1), additional test filtering of the LES 

field is required for the dynamic and similarity models. The definition of the test 

filtering operation presented in equation (2.112) is based on the non discrete filtered 

turbulent flow field. However, following the common practice in DNS "a priori" testing 

[118], the test filtered field f is calculated from the box filtered flow field f, discretised 

on the LES mesh, as 

f (Xi , Y j, Zk ) = E 	 fx+,,,Yi -F€1,Zk+6 • Ael,e2,e3 • 
	 (5.5) 

el-112=-1 f3=-1 

From the above equation it can be noted that the test filtered field is the weighted 

average of the filtered values f of the neighbouring cells around the i, j, k cell, shown 

in figure 5.6. The three dimensional matrix Ai,j,k contains the weight coefficients for 

the test filtering operation. Following Zang [118], the matrix A for the test filter with 

width A equal to twice the box filter width A, is defined as 

1 2 1 2 4 2 
64 64 64 64 64 64 

A1,1,_1 = A1,1,1 = 2 
64 

4 
64 

2 
64 A = 4 

64 
8 
64 

4 
64 (5.6) 

1 2 1 2 4 2 
64 64 64 64 64 64 
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Figure 5.6: Setup of a single box filtering and the test filtering of the DNS data. 

5.1.3 Spatial derivatives and commutation error 

The spatial derivatives of the filtered flow field are computed using the finite difference 

formulation discretised on the LES mesh, 

of 	_ f(X1,1) - f (X1-1)  (5.7) 
Ox 

X=A1 	
2AX 

as shown in the figure 5.1(b). However, the differentiation error introduced in-

validates the commutation of the spatial derivatives with the filtering operation, even 

for equally spaced LES meshes [164]. In cases where the differentiation error has to 

be kept to a minimum, the computation of the spatial gradients using the equation 5.7 

should be avoided and the spatial derivatives are computed from filtered values on the 

DNS field Kxj). Following this approach the spatial derivatives are computed as 

.7(xi+i) —  
2Ax 

(5.8) 
Of 
dx 

X=XI 
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where x, corresponds to the X1  coordinate on the LES discretisation as shown in 

figure 5.2 and 5.1(c). Due to the smaller grid spacing Ax which is used in expression 

5.8 the differentiation error is minimised, so that the spatial derivative commutes with 

filtering as shown in the figure 5.7. In this figure, the filtered value of first spatial 

derivative of the mixture fraction, along the tranverse direction a  1 is presented for each 

LES cell. The first spatial derivative of the filtered distribution of the mixture fraction 

for each LES cell calculated numerically using the finite difference expressions (5.8) 

and (5.8) is also presented. From this graph it is obvious that the differentiation on the 

LES mesh invalidates the commutation for the spatial derivatives with the filtering op-

eration. As a result, in cases where the commutation error is important the expression 

(5.8) is used for the calculation of the first and second spatial derivatives. 

N 

3 

2 

-1
0  

0 	0.5 
	

1 	1.5 	2 	2.5 	3 
z-axis 

Figure 5.7: First spatial derivative of the 
verse axis discretised on 32 nodes, case 

equation (5.7)(0), dZfrom equation (5.8) 
solution. 

mixture fraction distribution along the trans-
Mixing-A at r = 23.8. Symbols; g from 

d z 

(x) and continuous line, (—) dcl from the DNS 

5.2 Scalar variance transport 

The scalar variance transport equation (2.107) is the starting point for the derivation 

of zero equation models for the scalar dissipation rate [1141. From this equation, the 

production equals dissipation assumption can be derived, if local equilibrium is as-

sumed. The local equilibrium assumption is not confined to cases of homogeneous and 

isotropic turbulent flows only. Given the universal character of the small unresolved 
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scales in LES, the local equilibrium assumption is also applied to non-homogeneous 

flows. The hypothesis of local equilibrium between the large and the small scales of 

motion in turbulent flows is one of the most frequently used in turbulence modelling 

[165]. In this section an investigation of the scalar variance transport equation and 

an assessment of the local equilibrium assumption is presented, and it focuses on the 

transitional period of the planar jet simulations. 

The time evolution of each one of the terms of the scalar variance transport equa-

tion (2.107) is presented in figures 5.8 to 5.10. The variance transport equation is eval-

uated on the filtered DNS flow field from the three mixing cases on 323  LES nodes. 

For the planar jet cases, equation (2.107) has been averaged along the homogeneous 

planes zi  parallel to the mixing layer, giving 

a  (F2 	)1 

2  +7 11 . e at 	 el ax;  
z=4 z=Z; 

Rate 	 Convection 

+12Dp

_re ae  — —„ 
(ax; ax; 	ax; ax; )1,=zi  

-[2LTi° 	+[ 18  • z=z, 	Oxf z=z;  
= [R]z=zi  , 

Residual 

(5.9) 

           

Dissipation Diffusion Production 

of large 

scales  

by large 

scales 

whereas the results for the homogeneous cases have been averaged on the whole 

DNS domain. In the above equation, R, is the residual from the numerical evaluation 

of the above scalar variance transport equation on the flow field. In order to keep the 

magnitude of the residual R low, the first and second derivatives are calculated using 

the finite difference formulation (5.8). 

For both planar jet cases, Mixing-A and Mixing-B, the magnitudes of the pro-

duction and the dissipation terms is kept at the same levels as seen in figures 5.8(a) 

and 5.9 (a). However, during the transitional period and until t* = 15 eddy turnover 

times, where the flow field is not fully turbulent, the production term is close to zero 

and the production equals dissipation assumption does not hold. In addition, the other 
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Figure 5.8: Time evolution of the terms of equation (5.9), from case JMixing-A fil-
tered on 323  LES nodes at Zi  = zA, (a) production (0), dissipation (x) and residual (—), 
of the variance transport equation, (b) time derivative (x), convection (o), diffusion 
(A) and diffusion of large scales (o). 

Figure 5.9: Time evolution of the terms of equation (5.9), from case JMixing-B fil-
tered on 323  LES nodes at Z1  = zA, (a) production (0), dissipation (x) and residual (—), 
of the variance transport equation, (b) time derivative (x), convection (o), diffusion 
(A) and diffusion of large scales (o). 

terms of the scalar variance equation, i.e. the convection, the time derivative and the 

diffusion terms remain high, and are comparable in magnitude to the the levels of the 

production and dissipation terms as seen in the figures 5.8(b) and 5.9(b). This contra-

dicts the local equilibrium assumption described in the section 2.8.2, where the small 

scales are considered to be homogeneous in space, and all terms incorporating spatial 

derivatives should reduce to zero. 

In the homogeneous and isotropic turbulence mixing case the production equals 
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dissipation assumption seems to hold, and the two terms have the same magnitude 

from the initial stages of the simulation, as seen in figure 5.10(a). Furthermore, the 

homogeneity of the flow leads to relatively small values for the rest of the terms of 

equation (5.9), (see figure 5.10(b)). 

          

0.04 

0.02 

         

         

         

          

-0.02 

-0.04 

         

         

         

         

          

 

7 	8 	9 	10 	11 

(a) 
	

(b) 

Figure 5.10: Time evolution of the terms of equation (5.9), from case I-Mixing filtered 
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Figure 5.11 depicts the time evolution of the terms of equation (5.9), based on 

the DNS data from the high Reynolds number planar jet case Mixing-B, averaged 

over the homogeneous direction outside the shear layer, at Z, = zB. In this case, the 

turbulent shear layers of the jet expand and reach the laminar core of the jet at around 

t* = 20 eddy turnover times. At this position of the jet domain the production and 

the dissipation terms increase together to the same levels, thus the production equals 

dissipation assumption holds. However, the other four terms of equation (5.9) are 

not small. Although the time derivative, the convection and the diffusion terms are 

characterised by high magnitudes, comparable to the production and dissipation rate 

terms, they seem to cancel each other and the local equilibrium hypothesis seems to 

hold at all times. 
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5.3 Micromixing modelling 

In this section, SGS scalar dissipation rate and scalar variance models are assessed. As 

mentioned above, the scalar variance represents the energy of the turbulent fluctuations 

of the mixture fraction, within an LES cell. Given that in LES most of the energy 

spectrum is resolved, its sub-grid contribution can be extracted by similarity arguments 

from the resolved scales [121]. On the other hand, virtually all the dissipation of the 

the scalar field occurs within the smallest unresolved scales [114], leading to modelling 

techniques based on local equilibrium assumptions. 

The spectrum of the energy of the fluctuations of the scalar distribution for the 

mixing case 3Mixing-B at time t* = 42.2 is presented in figure 5.12(a). In the same 

figure the turbulent kinetic energy spectrum (scaled by a factor of 10-5) is also pre-

sented for comparison. The vertical lines represent the cut off wavenumbers k for the 

three filters imposed on the planar jet case JMixing-B. 

From this figure, it is evident that the cutoff wavenumbers for the three box filters, 

are located within the inertial subrange of the turbulent kinetic energy spectrum. Thus, 

most of the energy of the scalar fluctuations are resolved. The energy spectrum for the 

scalar dissipation fluctuations is presented in figure 5.12(b), but here only the finest 

LES discretisation captures the ranges where the dissipation of the scalar fluctuations 
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take place. 

Figure 5.12: Energy spectrum for the mixture fraction fluctuations (a), and for the 
scalar dissipation rate (b). 

The fine structure of the scalar dissipation rate as exhibited in its spectral distribu-

tion can also be identified in the figure 5.12. For the planar jet case, the high values 

of the scalar dissipation rate appear as thin structures around the vorticity tubes on the 

shear layer as seen in figure 5.13. The domain depicted in figure 5.13 is the same do-

main shown in the figure 4.13. The scalar dissipation rate isosurfaces shown in white 

are plotted at x = 5, surrounding the the vorticity tubes of figure 4.13 at an angle of 

around 45°. Similar behaviour has been observed in measurements of the scalar dis-

sipation rate in a non reacting turbulent jet by Everest et al. [166], and in the LES 

results of Pitsch et al. [103]. 

5.3.1 Scalar dissipation rate modelling 

The assessment of the scalar dissipation rate modelling is based on the comparison of 

the filtered scalar dissipation rate, 	extracted from the filtered DNS flow field, 

with the estimates of the zero equation models presented in section 2.8.2. The zero 

equation models are evaluated on the filtered flow field which represents the resolved 

scales in an LES simulation. The spatial derivatives are calculated using a second 

order central difference approximation based on the expression 5.7. The test filtering 

operation is carried out as described in the section 5.1.2 where a test filter with twice 



z 
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Figure 5.13: Vorticity tubes shown in red during the transition period, surrounded by 
scalar dissipation structures shown in gray. Case Mixing-B. 

the filter width is chosen. 

At this point it must be mentioned that the predictions of SGS modelling are 

stochastic in nature [167] and a perfect match between model and DNS cannot be 

expected for a particular instance in time and space. The instantaneous scatter plot for 

the pairs for the filter scalar dissipation rate and the predictions of the gradient model 

for the LES cells at one homogeneous plane located in the shear layer is presented in 

figure 5.14. The SGS scalar dissipation rate for each LES cell in the shear layer is 

characterised by a wide range of values. However, from this figure it can be concluded 

that a value of xisv in a specific LES cell may be over or under estimated by at least 

one order of magnitude. For small unimportant values of xscs this deviation is even 

greater. 

Given the stochastic nature of the SGS modelling, the assessment of each model 

is not focused on the predictions for each one of the individual LES cells. The per-

formance of each SGS model is assessed by comparison of the mean values for all 

the LES cells on each homogeneous plane [162]. In addition, a sub-grid term may 
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range within an interval where extremely high values may be observed. In the case 

of scalar dissipation rate, these extreme values may account for local extinction of a 

flame. Thus, an SGS model must be able to predict the number of the LES cells which 

are characterised by such extreme values. For this reason the PDF of the predictions 

and the DNS results are also compared. 

101  

100  

101  

101  

5° 101  

101  

105  

10
to' 10' 104  100  101  101  10° 101  

Xs, DNS 

Figure 5.14: Scatter of the pairs xsDGNss  and yModel 
— S GS for the predictions for the gradient 

model, case Mixing -B 

Gradient model 

The gradient model for the scalar dissipation rate is described by equations (2.109) 

and (2.110). The values of the constants Cs  and S c, incorporated in the gradient model 

have been chosen as 

Sc, = 0.7 and Cs  = 0.2 . 	 (5.10) 

Figure 5.15(a) depicts the scatter of the predictions of the gradient model [xsGseilz=z, 

and the corresponding DNS results [„DNs 
z=z5 averaged over all homogeneous planes S GS  

Zi. The pairs of predictions shown in the scatter plot 5.15(a) are extracted from all the 

timesteps of the three mixing simulations for all homogeneous planes. 

These predictions of the mean SGS values can be interpolated by a simple linear 

function as y = ax using linear regression. The deviation of the proportionality coef-

ficient a from unity quantifies the predictive behaviour of the model. Furthermore, the 

linear correlation coefficient c describes the scatter of the model predictions from the 
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linear fit. For the gradient model, the values of a and c for each mixing case and grid 

resolution are presented in table 5.1. 

Table 5.1: The values of the correlation coefficient c for the predictions of the gradient 
model and the corresponding proportionality coefficient a of the the linear interpola-
tion.  

Gradient model for X s Gs 

Mesh Fine Intermediate Coarse 
a 	c a 	c a 	c 

HMixing 
Jlii.xing-A 
JPIixing-B 

	

0.9385 	0.9186 

	

1.7418 	0.6888 

	

1.4836 	0.7339 

	

0.6922 	0.8279 

	

1.7352 	0.7141 

	

1.3204 	0.7427 

	

0.4483 	0.6473 

	

1.7488 	0.8087 

	

1.3102 	0.8177 

Dynamic model 

The dynamic model for XsGs is described by equations (2.109) and (2.121) and results 

are shown in figure 5.15(b). In this figure, the pairs of the predictions and the DNS 

results for the scalar dissipation rate averaged over the homogeneous directions of each 

mixing DNS case, i.e. [„S GS 	 SGS 
Modell 	and  [,DNs1 	are presented for all the simulations 

z=Zi  
and for all the three LES grid resolutions. The results of the linear interpolation of the 

dynamic model predictions, for each simulation and each grid resolution are presented 

in table 5.2. 

Table 5.2: The values of the correlation coefficient c for the predictions of the dynamic 
model and the corresponding proportionality coefficient a of the the linear interpola-
tion. 

Dynamic model for xscs 
Mesh Fine Intermediate Coarse 

a 	c a 	c a 	c 
HMixing 
JMixing-A 
JMixing-B 

	

1.5649 	0.9375 

	

1.2684 	0.8985 

	

1.3515 	0.8876 

	

1.6078 	0.8455 

	

0.9043 	0.8368 

	

1.2221 	0.8663 

	

1.1357 	0.7887 

	

0.4453 	0.6945 

	

0.5881 	0.8586 
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Figure 5.15: Scatter plot of the predictions for the scalar dissipation rate, averaged over 
the homogeneous directions, at all the time steps and for all mixing simulations, (a) 
gradient model (b) dynamic model. 

5.3.2 Comparison of the gradient and the dynamic models and dis-

cussion of their performance 

The time evolution of the SGS scalar dissipation rate from the DNS data averaged 

along the homogeneous plane in the shear layer is presented in the figures 5.17 to 5.18. 

In these figures, the results from the two planar jet cases Mixing-A and Mixing-B, 

filtered on the three different types of grids are presented. In the same plots, the time 

evolution of the predictions of the gradient and the dynamic models is also depicted. 

Figures 5.19 to 5.20 depict the time evolution of the same terms averaged along the 

homogeneous plane outside the mixing layer, i.e. for z = zB. In addition to the scalar 

dissipation rates, the production term 2T1  is also shown in figures 5.17 to 5.20. 

As seen in table 5.1, the gradient model performs well for the homogeneous, 

isotropic mixing case HMixing. The correlation between the prediction and the DNS 

results is very high for the fine discretisation and deteriorates as the resolution reduces, 

remaining above 0.8 for the intermediate LES grid. Furthermore, its proportionality is 

very close to unity for the fine LES filter where the energy resolution is around 0.95 

but the model becomes under-predictive for the coarser grids. 

For the planar jet cases, the gradient model is always overpredictive not being able 

to adjust to the high rate of strain tensor observed in the shear layer. Surprisingly, the 

correlation coefficient for the predictions of the gradient model in both planar jet cases 
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improves as the grid gets coarser. This behaviour can be attributed to the extremely 

over predictive behaviour of the model around the shear layer which can be observed 

in the figures 5.17(a-c) to 5.18(a-c). As the grid becomes coarser the resolved gradi-

ent of the shear layer reduces, thus providing a reduced over prediction of the scalar 

dissipation rate and improving the correlation of the model. 

The dynamic model for the scalar dissipation rate is over-predictive for the ho-

mogeneous cases, and the proportionality coefficient falls close to unity for the coarse 

filtered field. The correlations of the predictions of the model remain high for the 

homogenous case, becoming smaller as the resolution decreases. Although the corre-

lation, c, for the dynamic model remains at the same levels with the gradient model, it 

does not exhibit the same sensitivity to the grid resolution remaining close to 0.8 for 

the coarsest grid. 

For the two jet cases the dynamic model performs clearly better than the gradient 

model as seen in the tables 5.1 and 5.2. For the fine and the intermediate meshes, the 

correlation coefficient remains larger than 0.8 while the proportionality of the predic-

tions is close to unity. As expected, its performance declines rapidly for the coarse 

grid. 

It can be concluded that the gradient model performs well for the homogeneous 

and isotropic turbulence case using C s  = 0.2, however, it fails to predict SGS dissi-

pation in the shear flow, accurately. In contrast the dynamic model manages to adjust 

to the different types of flows, but it is overpredictive for the homogeneous turbulence 

case. 

The behaviour of the gradient model can be analysed in more detail in figures 5.16 

to 5.20. In both types of flow, the gradient model succeeds to predict the trends of the 

time evolution of the sub-grid scalar dissipation rate. However, in the planar jet cases 

and for the planes located on the mixing layer, see in the figures 5.17 (a-c) and 5.18(a-

c), the gradient model is dramatically overpredictive during the transition period and 

until around 25 eddy turn over times for both planar jet simulations. 

On the other hand, the dynamic model follows the trends of xsDGNss  in all types of 

flow. During the transitional period for the planar jet simulations the dynamic model 

follows the trends of the production term rather than the dissipation rate. This be- 
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haviour can be attributed to the failure of the production equals dissipation assumption, 

for the first 15 eddy turnover times. 

Figure 5.16: Time evolution of the sub-grid scale scalar dissipation rate (—), the pro-
duction (--), the predictions of the gradient model (x), and the dynamic model (A), 
case HMixing, (a) on 323, (b) on 163  and (c) on 83  nodes. 

(a) 
	

(b) 
	

(c) 

Figure 5.17: Time evolution of the sub-grid scale scalar dissipation rate (—), the pro-
duction (--), the predictions of the gradient model (x), and the dynamic model (A), 
case JMixing-A, (a) on 323, (b) on 163  and (c) on 83  nodes. 
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Figure 5.18: Time evolution of the sub-grid scale scalar dissipation rate (—), the pro-
duction (--), the predictions of the gradient model (x), and the dynamic model (A), 
case JMixing-B, (a) on 643, (b) on 323  and (c) on 163  nodes. 

The probability density function (PDF) for the logarithm of scalar dissipation rate 

P(xsTss ) across the LES cells filtered on the finest mesh for the homogeneous turbu- 
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Figure 5.19: Time evolution of the sub-grid scale scalar dissipation rate (-), the pro-
duction (--), the predictions of the gradient model (x), and the dynamic model (A), 
case JMixing-A, (a) on 643, (b) on 323  and (c) on 163  nodes. 
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Figure 5.20: Time evolution of the sub-grid scale scalar dissipation rate (-), the pro-
duction (--), the predictions of the gradient model (x), and the dynamic model (A), 
case JMixing-B, (a) on 643, (b) on 323  and (c) on 163  nodes. 

lence simulation, is presented in the next figure 5.21(a) at r = 8.09 and in the figure 

5.21(b) at t* = 9.03. In the same graph, the PDFs of the predictions P(ystr) for 

the scalar dissipation rate by the gradient and the dynamic models are also presented. 

The PDF functions depicted in the figure 5.22, are extracted from the distribution of 

the scalar dissipation rates across the LES cells on the mixing layer at r = 17.2 and 

t* = 26.9, respectively. 

As discussed before, the SGS models fail to predict the SGS scalar dissipation 

rate for every LES cell exhibiting a wide scatter of predictions, as seen in the figure 

5.14. Nevertheless, both models capture the distribution of the PDF for es ' a, as seen 

in the figures 5.21 to 5.22. This means that the SGS model fails to provide a correct 

value for the sub-grid distribution of the scalar field in turbulent mixing. However, the 

SGS models predict the number of nodes characterised by specific value of the scalar 

dissipation rate. 
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Figure 5.21: Probability density function of XSGS  for the DNS field of case HMixing 
filtered on 323  nodes. Symbols; (0) dynamic model (x) gradient model and continuous 
line (—) DNS result, (a) at t* = 8.09 and (b) at t* = 9.03 . 

Figure 5.22: Probability density function ofXsGs for the DNS field of case ]Mixing-B 
filtered on 643  nodes, across homogeneous plane on the shear layer. Symbols; (0), 
dynamic model (x) gradient model and continuous line, (—) DNS result, (a) at t* = 17.2 
and (b) at r = 26.9. 

It can be concluded that the gradient model provides a PDF distribution relatively 

close to the DNS result, In contrast, the dynamic model yields a wider distribution with 

significantly lower probability of the most likely SGS dissipation values and increased 

probability for very large dissipation. 

5.3.3 Scalar variance modelling 

The procedure followed for the the assessment of models for the scalar dissipation 

rate is also followed for the investigation of the performance of the scalar variance 
—DNS 

modelling. The scalar variance for the filtered fields e"2 	is extracted from the DNS 
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data. The zero equation models for the scalar variance presented in the section 2.8.2 

are then evaluated on the resolved scales of the filtered field. The assessment of the 
—DNS 	— Model 

models is based on the comparison of e"2 	and "2 	for each model assessed, 

separately. The spatial derivatives are calculated using a second order central difference 

approximation on the LES discretisation, using equation (5.7). 

Gradient model 

The scalar variance gradient model has been introduced by equation (2.111). Now, 

a constant of Cy = 0.2 has been used to evaluate e'2  for the filtered DNS results. 

The comparison of the gradient model with the values from the DNS scalar field 

is presented in the figure 5.23(a). This scatter plot depicts pairs of scalar variance 
[F2Modell 	[6-7,DNS1 

, for all simulations, grid resolutions and timesteps. 
z= 

and 2  
z, 	 z=z, 

Table 5.3: The values of the correlation coefficient c for the predictions of the gradient 
model for the scalar variance and the corresponding proportionality coefficient a of the 
the linear interpolation. 

Gradient model for F2  

Mesh Fine Intermediate Coarse 
a 	c a 	c a 	c 

HMixing 
]Mixing -A 
]Mixing-B 

	

1.5510 	0.9921 

	

1.1986 	0.9523 

	

1.2114 	0.9672 

	

0.9742 	0.9568 

	

0.7193 	0.9040 

	

0.7128 	0.9370 

	

0.6840 	0.8935 

	

0.4740 	0.8885 

	

0.5158 	0.9278 

Imposing a linear fit on the scatter of the predictions presented in figure 5.23(a), 

the proportionality coefficients a for each grid resolution and for each DNS mixing case 

are calculated. The results of the linear regression and the linear correlation coefficient 

c for the gradient model are presented in the table 5.3. 

Similarity model 

The similarity model for the scalar variance is given by equation (2.126). For the first 

implementation of the model, named "similarity model I" the constant Cz  is defined as 
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C, = 0.2-
A 
	 (5.11) 

where the test filter A is taken as twice the LES filter width A. 

Table 5.4: The values of the correlation coefficient c for the predictions of the similarity 
model I for the scalar variance and the corresponding proportionality coefficient a of 
the the linear interpolation. 

Similarity model I for "2  
Mesh Fine Intermediate Coarse 

a 	c a 	c a 	c 
HMixing 
Mixing -A 
Mixing -B 

	

1.2098 	0.9849 

	

0.9241 	0.9075 

	

0.9393 	0.9391 

	

0.7355 	0.9403 

	

0.5195 	0.8446 

	

0.5322 	0.9007 

	

0.4830 	0.8768 

	

0.3055 	0.8228 

	

0.3751 	0.8826 

The assessment of the similarity model defined by equations (2.126), (2.128) and 

(2.129), named "similarity model II" is presented in the table (5.5). 

Table 5.5: The values of the correlation coefficient c for the predictions of the similarity 
model II for the scalar variance and the corresponding proportionality coefficient a of 
the the linear interpolation. 

Similarity model II for e'2  

Mesh Fine Intermediate Coarse 
a 	c a 	c a 	c 

HMixing 
Mixing -A 
]Mixing -B 

	

1.4999 	0.9767 

	

0.8199 	0.9125 

	

1.1848 	0.9702 

	

1.4140 	0.9282 

	

0.6154 	0.8075 

	

1.0394 	0.9476 

	

1.4734 	0.8682 

	

0.5784 	0.6858 

	

1.1127 	0.9289 

Figures 5.23(b) and 5.23(c) present the scatter plot of the predictions of the two 
- 

similarity models averaged on homogeneous planes, i.e. [ef2
Modell 	

and k"2  
DNSI 

z=Z, 	 z=Z, 
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(a) 
	

(b) 
	

(c) 

Figure 5.23: Scatter plot of the prediction for the scalar variance averaged over homo-
geneous planes, (a) gradient model, (b) similarity model I, (c) similarity model II. 

5.3.4 Comparison of the gradient and the similarity models of scalar 

variance and discussion of their performance 

The gradient model predictions present a high linear correlation coefficient c for the 

prediction of the scalar variance, which remains close or higher than 0.9 for all the flow 

geometries and all grid resolutions as seen in table 5.3. Although the scalar variance 

in the homogeneous flow field is overpredicted, the proportionality factor, a, for the 

gradient model does not vary significantly for the different flow geometries. However, 

it reduces with the grid resolution. 

The same behaviour is observed for the "similarity model I", where the correla-

tions of the predictions of the model remains high, regardless of the grid resolution. 

However, the proportionality of this model shows a strong dependence on the grid res-

olution, while being insensitive to Reynolds numbers. This behaviour is very similar 

to the gradient model. The "similarity model II", also shows a high linear correlation 

coefficient, which also declines as the grid resolution becomes coarser. However, the 

proportionality coefficient is much more sensitive to the grid resolution when com-

pared to the gradient model and the similarity model I. 

Z=ZA 

and the predictions of the three models ir2  
-- Modell 

presented in this section, averaged 
z=zA 

over the homogeneous plane at Z, = zA  for Mixing-A and Mixing-B. Figures 5.24 

(a) to (c) show the results from the DNS simulation I-111ixing. 

Figures 5.25 to 5.26 depict the time evolution of the scalar variance k"2  
DNS 
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Figure 5.24: Time evolution of the scalar variance (-), the predictions of the gradient 
model (x), the similarity model I (0) and the similarity model II (A), case HMixing, 
(a) on 643, (b) on 323  and (c) on 163  nodes. 
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Figure 5.25: Time evolution of the scalar variance (-), the predictions of the gradient 
model (x), the similarity model I (0) and the similarity model II (A), case JMixing-B, 
on the mixing layer, (a) on 643, (b) on 323  and (c) on 163  nodes. 

Figure 5.26: Time evolution of the scalar variance (-), the predictions of the gradient 
model (x), the similarity model I (0) and the similarity model II (A), case JMixing-B, 
off the mixing layer, (a) on 643, (b) on 323  and (c) on 163  nodes. 

In contrast to the SGS scalar dissipation rate, the magnitude of the scalar variance 

exhibits a strong dependence on the grid resolution. It can be seen in figures 5.16 to 

5.20 that for each one of the DNS realisations, xsDGNss  remains at the same level when 
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the grid resolution changes. However, the scalar variance from the DNS simulations 

increases proportionally to the filter width A, as seen in the plots 5.24 to 5.26 of time 

evolution of e'2. This behaviour can be attributed to the reduction in resolution leads 

to a large increase in SGS energy of the scalar fluctuations, as seen in figure 5.12(a). 

In contrast, most of the scalar dissipation rate arises from fluctuations with length 

scale smaller than the filter width, as seen in figure 5.12(b) and differences between the 

coarse and the intermediate are indeed minor. Thus, a decrease in resolution demands 

the capability of the variance model to capture a wide range of length scales and their 

different characteristics while the modelling of scalar dissipation needs to account for 

a smaller range of scales only. 

5.4 	Effect of the differentiation error on SGS scalar dis-

sipation rate modelling 

In section (5.1.3) it has been pointed out that finite differences approximation of the 

spatial derivatives on the LES grid introduces a differentiation error. However, fol-

lowing the common practice in the LES methodology and in "a priori" testing, the 

zero equation SGS models have been assessed using the LES discretisation depicted in 

figure (5.1)(b). In this section the performance of the gradient model for the scalar dis-

sipation rate is assessed using the finite difference approximation provided by equation 

(5.8) calculated on the discretisation shown in figure (5.1)(c). 

In figures (5.27)(a) and (5.27)(b) the scatter plot of the predictions of the gradient 

model when the filtered field is discretised on the DNS mesh is compared with the 

predictions of the model evaluated on the LES mesh. The comparison of the scatter 

of the predictions with the straight lines depicted in the figures 5.27(a-b) shows that 

the discretisation depicted in the graph (5.1)(b) provides overpredictive results by two 

or three times, depending on the filter width. This behaviour of the gradient model 

when the fine discretisation is used can be attributed to the better capture of the high 

gradients of the shear layer. 



Lz) ca 1 

0.8 
<I) 

o 
0.6 

0.4 

43  0.2 
Ca 

con 0 

0 	0.2 	0.4 	0.6 	0.8 
Scalar dissipation rate DNS 

0.2 	0.4 	0.6 	0.8 
Scalar dissipation rate DNS 

Sc
al

ar
  d

is
s i

pa
tio

n  
ra

te
  M

O
D

EL
 

5.5. Summary 	 183 

(a) 
	

(b) 

Figure 5.27: Scatter plot of the predictions for the scalar dissipation rate, averaged over 
the homogeneous direction at Z = zA, at all the time steps of the simulation ]Mixing-B 
(a) on the fine mesh (b) on the intermediate mesh. Symbols; (x) the filtered field 
discretised on the DNS mesh, (0) The filtered field discretised on the LES mesh. 

5.5 Summary 

In this section, the main findings for the investigation of the turbulent mixing problem 

carried out in this chapter, are presented. 

The production equals dissipation assumption has been found to be valid for all 

cases with the exception of the shear layer regions of the planar jet simulations, dur-

ing the initial stages of the flow field evolution. In addition, for the non-homogeneous 

simulations and for the areas outside the mixing layers, the rest of the terms of the 

scalar variance transport equation exhibit large magnitudes which are comparable to 

the ones of the production and the dissipation terms in contradiction to the local equi-

librium assumption, however they cancel each other. The approximation of the spatial 

derivatives for the transport equation of ef2  has been carried out on the DNS mesh. 

Using a coarser LES mesh with grid spacing comparable to the filter width introduces 

a differentiation error that results in a high residual for the terms of the scalar variance 

transport equation. 

This discretisation error causes a significant divergence of the spatial derivatives 

of the filtered quantities to the corresponding filtered derivatives from the DNS. This 

behaviour influences the final predictions of the models, as shown for the case of the 

gradient model. The gradient model becomes systematically over-predictive when the 
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differentiation error is avoided. It must be noted, though, that a simple reduction of the 

model constant would correct the final predictions. 

The "a priori" tests of the gradient and the dynamic scalar dissipation models has 

shown that they provide reasonable predictions. However, during the initial time period 

in the planar jet simulations the models deviate from the DNS results. The gradient 

model overestimates the SGS contribution of x due to the high resolved gradients of 

the transitional flow field. The dynamic model, being able to adapt to laminar flows 

[114], predicts the production of the energy of the scalar fluctuations rather than the 

dissipation term. In addition, the gradient model exhibits better predictions of the PDF 

of the scalar dissipation rate, in relation to the similarity model. Finally, the predictions 

of the models for the scalar variance show sensitivity to the energy resolution, with 

the exemption to the similarity model II, where the distribution for the energy of the 

fluctuations of the scalar field is modelled by the Oboukhov-Corrsin spectrum. 



Chapter 6 

CMC modelling of extinction and 

re-ignition in turbulent non-premixed 

flames 

In chapter four the details of the simulations for diluted methane combustion in homo-

geneous and turbulent shear flows were presented. In this chapter, the singly and the 

doubly conditioned CMC methodologies are used to model the reaction rates and the 

time evolution of the conditioned mass fractions for the simulated flow field. Since 

the DNS database comprises of flames with varying Damkohler numbers, the relative 

performance of the two CMC methodologies can be assessed for flames with varying 

degrees of local extinction and re-ignition. 

6.1 Singly conditioned CMC 

The difficulties of turbulent combustion modelling arise from the fact that the rates 

of reaction are highly non-linear functions of temperature and species concentrations 

[15]. Given that large spatial and temporal fluctuations of the scalar quantities occur 

in turbulent flames, the efforts to express average rates of reaction in terms of average 

values of the scalars prove to be inadequate. The CMC methodology is based on 

the representation of the scalar quantities conditioned on selected variables such as 

185 
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Figure 6.1: Scatter of Yco  on 77 space from case HReactive-D. Continuous line (—), 
(Ycolq). 
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the mixture fraction. Taking into account that the fluctuation of the scalar quantities 

can be associated with the fluctuations of one key quantity, the fluctuations around 

the conditionally averaged or conditionally filtered variable provided by the equation 

(2.145) are reduced. 

The variation of carbon monoxide mass fraction inside a filtering volume of the 

LES discretisation, as presented in chapter five, is depicted in figure 6.1 as a function 

of the mixture fraction. As it can be seen that the unconditioned fluctuations of Yco 
are high, however the fluctuations around the conditional average are reduced. For the 

carbon monoxide mixture fraction, the conditionally averaged value, (Yco171),  is also 

presented in figure 6.1. 

The singly conditioned CMC closure for the DNS simulations presented here is 

based on the averages of the scalar field conditioned on the mixture fraction for the 

whole computational domain. Following Klimenko et al. [15], the conditional average 

of the field quantity (1) can be expressed as 

1 r 

(VX; 0111) = 	 j_.  cbli(cb,  11)0 	 (6.1) 

where, 77 and ¢ are the sample space and (I), respectively and P is the joint PDF 
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of e and (1). As mentioned in chapter two, the field variable I represents the enthalpy 

or temperature field or any other reacting scalar, which transports within the flow field. 

Taking into account that in the present study a diluted methane flame has been simu-

lated and constant properties are assumed, the conditional average defined in equation 

(6.1) is equal to the expression of the conditionally filtered variable shown in equa-

tion (2.145), i.e. (OW) = (11,7, assuming a box filter function G that covers the whole 

DNS domain. This results in the following expression for the singly conditioned CMC 

equation (2.156) (SCMC), 

(10  (90)171) 
 = (a)010 	

828 
	 + (N177) 	 (6.2) 

at 	 772 

In the above equation the spatial gradients of the conditioned moments have been 

neglected since the CMC cell covers the whole DNS domain and the boundary condi-

tions of the simulated flow field are periodic. In addition to the differential equation 

(6.2), the boundary conditions for the species mass fractions and the conditional en-

thalpy are written as, 

(0177 = 0) = 	, (OW = 1) = F , 	 (6.3) 

where c°  and CIF  are the values of the scalar (I) in the areas of the pure oxidiser and 

fuel, respectively. Equations (6.2) and (6.3) define an initial value problem. The initial 

conditions (0177)(t = 0) consist of the same flamelet solution used for the derivation of 

the initial distributions of the scalars fields for the DNS simulations shown in figure 

4.2. 

In order to evaluate the performance of the SCMC model, equation (6.2) is solved 

in time using a finite difference numerical algorithm for the simulations, with reac-

tions that are listed in tables 4.3 and 4.5. The conditional fields are solved implicitly 

in space while time advancement is solved explicitly. In addition, a fractional step al-

gorithm [168] is used for the implicit evaluation of the conditional reaction rate. The 

conditional reaction rate is evaluated using a first order closure, 

(cool q) = f ((YcH4177), (Ycolq), (YH2177), (010) 
	

(6.4) 
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based on the the singly conditioned mass fractions and enthalpy using the four-

step chemistry mechanism presented in chapter four. The remaining unclosed quantity 

is the conditional scalar dissipation term (NW). For the assessment of the SCMC mod-

elling methodology, the (NI77) term is closed using the data from the DNS simulation. 

The time evolution of the mean distribution for the methane mass fraction < 

YCH4  >, which is defined as 

1 
< I'm >= J (17cH4171)P(17)th1 , 	 (6.5) 

o 
is presented in figure 6.2(a) for the low extinction case HReactive-D. In this 

figure, the results from the solution of the SCMC model are compared with < YCH4  > 

calculated from the DNS. In figure 6.2(b), the results from the planar jet simulations 

JReactive-B and JReactive-D are also presented. 

Figure 6.2: Time evolution of < YcH4  > Symbols; (0) SCMC model and continuous 
line (—) DNS result. (a) for the case HReactive-D. (b) for the case JReactive-B 
and lReactive-D 

Although the SCMC model provides good predictions for the low extinction sim-

ulations, this is not the case for the simulations that present significant local extinction 

i.e. HReactive-B, JReactive-A and JReactive-C as seen in figure 6.3. In the 

cases with high rates of extinction, the SCMC model predicts a faster depletion of the 

methane mass fraction. This behaviour can be attributed to the inability of the SCMC 

model to capture the dependence of the reaction rates on the temperature [17]. Fi-

nally, the SCMC model provides good predictions for the case HReactive-A, which 
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presents total extinction. 

Figure 6.3: Time evolution of < 17  cH4  > Symbols; (0) SCMC model and continuous 
line (—) DNS result. (a) for the cases HReactive-A and HReactive-C. (b) for the 
cases JReactive-B and JReactive-D 

6.2 Doubly conditioned CMC 

Important combustion phenomena like flammability limits, flame stabilisation and wall 

quenching, require accurate modelling of extinction and re-ignition events [17]. Con-

ventional CMC methodologies are based on the fact that fluctuations of the reactive 

scalars can be associated with those of one key quantity. However, this is not valid 

in flames with local extinction. The scatter plot, presented in figure 6.4 (a), depicts 

the carbon monoxide mass fraction as a function of the mixture fraction for the DNS 

cells within an LES filtering volume. In contrast to figure 6.1, this plot is from the 

case HReactive-B, which is characterised by high extinction. As it can be seen, the 

fluctuations of the mass fraction around the conditional value are much higher than 

the ones observed in case HReactive-D, where the extinction is smaller. These high 

fluctuations around the singly conditioned mean (Ycolg) introduce large errors for a 

first order closure of the reaction rates using the expression (2.159) [17]. 

However, the fluctuations of (ICA)  are correlated with the normalised sensible 

enthalpy (), since they are caused by the local extinction of the flame. In places where 

the flame is extinct within the filtering volume, the flame structure cannot be repre- 
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Figure 6.4: (a) Scatter of Yco  on rl space from case HReactive-B. Continuous line 
Ycol77). (b) Scatter of (Yco171) on 4" space for q = S, from case HReact ive-B. Contin-

uous line (Yco177, 

sented by a unique distribution of the mass fractions in 77-space. Introducing a second 

conditional direction, i.e. the 4"-space as discussed in chapter two, the field variables 

can be in addition conditioned on the normalised enthalpy as, 

	

1 	r (4)(x; 	T) = 
P(11,4.) 	

OP(0, rl, OdO 	 (6.6) 

following the expression (6.1) of the singly conditioned field. The fluctuations 

around the resulting doubly conditioned (DCMC) mass fraction Ycol77, 4-) become 

smaller in relation to the fluctuations around the singly conditioned value, as seen 

in the scatter plot (6.4)(b) of Yco  against 4" for 77 = G. The DCMC equations (2.186) 

for the constant property simulations discussed in this chapter can be expressed as, 

8(1177,4") 	 a2(1)177, 4") 
= (tool q, 4.) 	(wolil, 4- ) 

a(q)171, 4")  pD(V V611,0 at 	 (94- 	 877 2  
(92(071, 4- ) +pD(VO • Vein, 	84-2 

+ 	2pD(W velq, 4.)(92(0177,0 
 (63) (904" 

where the spatial gradients have been neglected, a box filtering operation is as-

sumed, and the ea, and eD  terms, along with the convection term, have been discarded. 

Although expression (6.7) has been derived by the conditional filtering operation de- 
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fined in equation (2.165), it is worth noting that it is identical to the DCMC equations 

for the conditional averages derived by the decomposition method [17]. 

The DCMC model is used for the modelling of the time evolution of the condi-

tional mass fractions for the reacting DNS simulations. Following a similar approach 

to SCMC, equation (6.7) is integrated numerically in time using the same algorithm as 

for the solution of equation (6.2). A finite difference scheme is used for the discreti-

sation of the doubly conditioned values on the two dimensional conditional space. In 

addition, the fractional step algorithm is used for the evaluation of the chemical source 

term, and the time step advancement is calculated explicitly. The boundary conditions 

of each one of the conditional fields are expressed as: 

(0177 = 0, 	, 	, 

(0177, = 0) = 

(0177, =1) = 

(ow = 1, o = 
+ 	— 00) 

{ 0 	if  r) < es, 
if77 > 'st 

(6.8) 

where frozen chemistry is assumed for 4' = 0 and fast chemistry for = 1. The 

initial conditions (OW, 4")(t = 0) are synthesised using the initial flamelet solution, 

shown in figure 4.2, and is therefore consistent with the initial conditions of the DNS 

simulations. Given that the flamelet solution provides a one dimensional expression 

of enthalpy as a function of mixture fraction, a spline interpolation [18] is used to 

interpolate the initial conditions in the two dimensional conditional domain, as shown 

in figure 6.5. 

The remaining unclosed terms of equation (6.7) are the three dissipation terms. 

Their distribution in 77-4"-space is shown in figure (6.6). In order to evaluate the primary 

modelling assumption the unclosed terms, (V07elq, 	(VO-VOIri,4") and (Ve.V0117,4") 

are evaluated from the DNS simulation and modelling is not attempted here. Models 

based on the Multiple Mapping Conditioning (MMC) approach have recently been 

tested [169] but the evaluation of conditional dissipation is beyond the scope of this 

thesis. 
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Figure 6.5: Initial conditions for the doubly conditioned fields interpolated from the 
flamelet solution. 
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Figure 6.6: Distribution of the unclosed dissipation terms of the DCMC equation. 

The solution of the DCMC model in time provides the time evolution of the doubly 

conditioned fields for the whole DNS domain. The depletion of the methane mass 

fraction due to combustion is presented in figure 6.7. In this plot, the time evolution of 

the average of the methane mixture fraction defined as, 

f 
1 f 1 

< 	CH4 >= 	CH41719 OP(R,  4- )chick, 	 (6.9) 
o o 

is presented for both homogeneous turbulence and planar jet simulations. Com-

parison of the DCMC results with the values in figure 6.3 shows that the DCMC model 

manages to provide the correct time evolution for the methane mass fraction in both 

homogeneous and inhomogeneous turbulent fields, regardless of the amount of local 

extinction in each flame. 
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Figure 6.7: Time evolution of < YcH4  >. Symbols; (0) DCMC model and continuous 
line (—) DNS result. (a) for the cases HReactive-A to HReactive-D. (b) for the cases 
]Reactive-A to ]Reactive-D. 

6.3 	Comparison of the SCMC and DCMC predictions 

The SCMC predictions, i.e. (olos cmc, can be compared to the equivalent prediction 

(0177)Dcmc of the DCMC model. Results are conditioned on the 7/-space only, using 

the expression 

(0177)Dcmc  =
J  
	OP( 17, Ocg • 	 (6.10) 

In figure 6.8 the DNS results for the progress rates of the four chemical reactions 

at r = 37.60 from the high extinction jet simulation ]Reactive-C are compared with 

the SCMC and DCMC predictions. Due to the high fluctuations around the singly 

conditioned mean, the SCMC model fails to account for local extinction, thus over 

predicting the rates WO for all four reactions of the four step chemistry mechanism. 

This behaviour leads to the underprediction of the conditional averages for the species 

mass fractions shown in the figure 6.9, where the methane mass fraction is depleted on 

the lean side. In addition, the mass fractions of the intermediate species, i.e. CO and 

H2, are under predicted. However, The predictions of the DCMC model provided in 

the same figures are close to the DNS results, given that the conditional fluctuations of 

the doubly conditioned values are reduced. 

A more general comparison of the SCMC and DCMC models is presented in the 
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Figure 6.8: Case ]Reactive-C. Conditional average of the chemical reaction rates 
for the four step chemistry mechanism. Symbols; (0), single conditioning, (x) double 
conditioning, and continuous line, (-) DNS results. 
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Figure 6.9: Case ]Reactive-C. Conditional average of the methane, carbon monoxide 
and hydrogen mixture fraction plotted against the mixture fraction. Symbols; (0), 
single conditioning, (x) double conditioning, and continuous line, (-) DNS results. 

figures 6.10 to 6.12. In these figures the time evolution of the predicted mass fractions 

on the stoichiometric mixture fraction is compared to the DNS result for the cases 

JReactive-C, JReactive-D and HReactive-D respectively. As it can be seen, even 

for the low extinction case ]Reactive-D the SCMC model fails to capture the time 

evolution of the species mass fractions accurately. The DCMC model manages to cap- 
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ture the evolution of the species mass fractions for all the cases of different extinction 

levels. 

Finally the case HReactive-D both models provide satisfactory results. As seen 

in the figure 4.8 this case exhibits minor extinction, thus the SCMC assumption for 

reduced conditional fluctuations around the singly conditioned average holds. 

Figure 6.10: Case JReactive-C. Time evolution of the reactive species close to the 
stoichiometric mixture fraction. Symbols; (0), single conditioning, (x) double condi-
tioning, and continuous line, (—) DNS results. 

Figure 6.11: Case JReactive-D. Time evolution of the reactive species close to the 
stoichiometric mixture fraction. Symbols; (0), single conditioning, (x) double condi-
tioning, and continuous line, (—) DNS results. 

Figure 6.13 (a) shows the distribution of the P(ri, 4") at 77 = es[ for the homo-

geneous turbulence simulations. As it can be seen for the cases HReactive-B and 

HReactive-C the shape of the PDF presents two peaks for the low and the high en-

thalpy areas. The intermediate interval, i.e. for 0.3 < < 0.7, is sparsely populated. 

It can be said that this interval consists of cells that transit from the high to the low 

temperature areas during extinction or to the opposite direction during the re-ignition. 

As expected the PDF for the fully burning case HReactive-D and the extinct simula- 
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Figure 6.12: Case HReactive-D. Time evolution of the reactive species close to the 
stoichiometric mixture fraction. Symbols; (0), single conditioning, (x) double condi-
tioning, and continuous line, (-) DNS results. 

tion HReactive-A does not present this shape. The PDF for the planar jet simulations 

shows the same bimodal shape. As seen in the next figure 6.13 (b) the maximum re-

action rates are located in this sparsely populated area around 4' = 0.6. As a result 

the SCMC model which implicitly assumes a Dirac PDF distribution along the ‘-space 

distribution, which is located at the value of the singly conditioned enthalpy or temper-

ature, provided in the figure 4.8 is bound to overpredict the depletion of the methane 

mass fraction as shown in this chapter. 

Figure 6.13: (a) The distribution of the joint probability density function, P(r7, 4') for 
77 = est, from the homogeneous turbulence simulations at r = 8.5. (b) The distribution 
of the doubly conditioned methane chemical source term, at r = 8.5. Symbols; + 
HReactive-A, x HReactive-B, O HReactive-C, A HReactive-D 
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6.4 Summary 

The SCMC and DCMC methodologies presented in the second chapter of this thesis 

have been tested as far as the closure of the chemical reaction rates of a diluted methane 

flame is concerned. It was shown that the SCMC methodology fails to predict the 

reaction rate for flames with significant local extinction, leading to the over prediction 

of the fuel depletion. In contrast, the DCMC methodology manages to capture the 

effect of local extinction and re-ignition, thus providing better results for flames with 

different Damkohler numbers. 



Chapter 7 

Closure 

The work presented in this thesis has dealt with the numerical investigation of scalar 

mixing and combustion modelling in turbulent flows. In this chapter the main findings 

are summarised and suggestions are made for future work. 

7.1 Summary 

The work carried out in the present study can be summarised as follows: 

• The background on turbulent combustion modelling in CFD has been presented. 

In addition, a review of the evolution of DNS for the solution of turbulent re-

acting and non-reacting flows has been described. Finally, a derivation of the 

governing equations for the filtered doubly conditioned moments has been pre-

sented, that is based on the conventional filter function used in LES. 

• A parallelisation approach for a pseudospectral solver has been derived and pre-

sented in chapter two, that allows the realisation of DNS of turbulent reactive 

flows with low memory allocation. 

• The problems arising from the spectral representation of reactive species in the 

DNS of turbulent combustion have been identified, and a finite differences solver 

has been used for the integration of the reactive species in time. In addition, a 

series of DNS solutions of reacting and non-reacting flows has been carried out 

198 
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constituting a DNS database of diluted methane combustion with different rates 

of extinction and re-ignition. 

• Zero equation models for the scalar variance and the scalar dissipation rate have 

been assessed based on the DNS solutions. 

• Finally the suitability the SCMC and DCMC models for the solution of the di-

luted methane combustion with varying degrees of extinction by comparison 

with the DNS results. 

7.2 Suggestions for future work 

Open questions and un-investigated topics have arisen from the present study. More 

specifically, some of the areas that should be subject of future research are: 

• The diluted methane combustion DNS database can be used for the investiga-

tion of alternative turbulent combustion models other than the CMC, such as the 

multiple mapping conditioning (MMC). 

• "A posteriori" tests are expected to provide better insight into the predictive ca-

pabilities of the micromixing models and they can answer questions on the effect 

of the discretisation on the LES modelling and the nature of the filtering operator 

in LES. 

• A CMC solver that accounts for possible spatial variation of the conditional mo-

ments may be used for the modelling of the reactive species evolution. A finer 

discretisation of the conditional averages is expected to provide better results to 

the singly conditioned closure. 

• The modelling of the doubly conditioned scalar dissipation, dissipation of en-

thalpy and cross dissipation terms. These terms remain unclosed for the doubly 

conditioned CMC equations. 
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7.3 Conclusion 

The results of the present study have been assessed and discussed in the previous chap-

ters. In the following, the most important conclusions are summarised. 

• It has been shown that the derived DNS database is characterised by proper res-

olution of the turbulent scales, and the flame front thickness is captured well. 

Furthermore, the comparison of the DNS results to similar experiments for the 

velocity fields shows that the DNS solutions are realistic representations of the 

turbulent flow field. 

• The "a priori" tests of the zero equation models for the scalar mixing showed 

that - with the exception of the transitional period - the models tested provide 

reasonable results when averaged over homogeneous directions. The probability 

distribution of scalar dissipation rates predicted by the gradient model approxi-

mate the corresponding PDF for the DNS well. In addition, the gradient model 

does not show sensitivity to the mesh size and resolution. The main inefficiency 

of the gradient model in relation to the dynamic model derives from the inability 

of the model to adapt to shear flows during the transitional period. The need 

of a modelling constant for the gradient model is an additional drawback. The 

differentiation error plays a significant role in the predictive capabilities of all 

scalar dissipation models changing its behaviour significantly. 

• The singly conditioned CMC equation fails to predict the evolution of the reac-

tive species mass fractions for flames with mild extinction. The reason of this 

performance for the singly conditioned model lays on the inability to capture the 

distribution of the flame structure for flames with extinction. The doubly con-

ditioned CMC model works well for all the simulations with various degrees of 

extinction. 
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