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To my Family 



ABSTRACT 

This thesis is concerned with the study of location and routing problems in 

distribution systems. 

In the first part of the thesis we consider the Capacitated p-median Problem (CPMP) 

in which a set of n customers must be partitioned into p disjoint clusters so that the total 

dissimilarity within each cluster is minimized and constraints on maximum cluster 

capacities are met. The total dissimilarity of a cluster is computed as the sum of the 

dissimilarities existing between each customer of the cluster and the median associated 

with the cluster. 

We develop both an exact and a heuristic algorithm for solving the CPMP. The exact 

method is based on a set partitioning formulation of the problem and the heuristic 

method on a recently proposed metaheuristic, namely, the Bionomic algorithm. The 

computational results for test problems obtained from the literature show the 

effectiveness of both algorithms. 

In the second part of the thesis we consider a class of routing problems. 

We describe a two-commodity network flow approach to derive new integer 

programming formulations for the Vehicle Routing Problem (VRP), the Traveling 

Salesman Problem (TSP) with mixed deliveries and collections and the TSP with 

Backhauls. These formulations are used to derive new lower bounds based on linear 

relaxation strengthened by new valid inequalities. 

An exact algorithm is developed for the VRP with Backhauls based on a set 

partitioning formulation. Problems of large size can be solved to optimality. 

Finally, a real-life application of the Multi-Depot Period VRP to resource planning in 

the utilities sector is presented. The computational implementation of the planning 

model is described and results are obtained with reference to a specific case-study. 
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CHAPTER 1 

INTRODUCTION 

1.1 DISTRIBUTION SYSTEMS 

Logistics is described by Eilon et al. (1971) as "the provision of goods and services 

from a supply point to a demand point". A complete logistics system covers the entire 

process of moving raw materials and input requirements from suppliers to plants, the 

conversion of the inputs into products (or outputs) by a manufacturing process, and the 

delivery of these products to the final customers through intermediate stores or depots. 

The Distribution System covers the supply of goods from the plants to the customers. It 

is concerned with the movement and storage of goods via various distribution channels 

to the supply chain endpoint. The distribution process represents the most costly part of 

this chain (see Christofides (1981)). 

The management of a distribution system involves a variety of decision-making 

problems at both the strategic and tactical operational levels. Decisions relating to the 

number and location of facilities (plants, warehouses or depots) may be viewed as 

strategic, while the problem of routing the vehicles to deliver goods from depots to 

customers could be classified as tactical. The distinction between strategic/operational 

Location Problems and Routing Problems does not only depend on the nature of the 

decisions involved but is also associated with the time-span and frequency of the 

decisions. The problem of depot location is considered by management once every few 

years and once such a decision is taken and implemented it cannot be easily changed 

without incurring major capital investment. The vehicle routing problem, on the other 
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hand, arises on a regular basis (e.g. daily), needs to be resolved repeatedly and routes 

may have to be altered from one-time period to another. 

Location and Routing Problems cannot always be treated in isolation; they are 

interlinked and a solution to the one may affect the other. Efficient solutions to tactical 

and operational problems such as route planning can be successfully incorporated in 

providing satisfactory solutions to strategic problems. 

This chapter provides general concepts relevant to Combinatorial Optimization 

Problems and briefly surveys some known methodologies used by the algorithms 

developed in the thesis. The motives and goals for the research in location and routing 

problems are clearly stated. An overview of the thesis is presented at the end of this 

chapter. 

1.1.1 LOCATION PROBLEMS 

The depot location problem is not a single problem, but a combination of inter-

related sub-problems. The number of depots in the system, their respective sizes, their 

locations, the allocation of customers to depots - all these are inter-related problems 

which need to be closely examined. Furthermore, in determining the location of depots 

it may be necessary to take account of the availability of suitable sites, the proximity of 

trunk roads (or access to other means of transport) and the availability of labour, as well 

as numerous other factors. Consequently, the general approach has been to treat the 

problem as a multi-stage decision process in which the parameters are optimized in 

sequence, each time assuming the other parameters to remain constant. 

A basic location decision problem with many practical applications involves 

determining the location of facilities, such as industrial plants or depots, to minimize the 

cost (or maximize the profit) of satisfying the demand for some commodity. In general 

there are fixed costs for locating the facilities and transportation costs for distributing 

the commodities between the facilities and the customers. This problem has been 

extensively studied in the literature and is commonly referred to as the plant location 

problem, or facility location problem. Variations of this problem have been considered 

in the literature. When each potential facility has a constraint on the maximum demand 

that it can supply (known as capacity), the problem becomes the capacitated facility 
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location problem. When capacity constraints are not considered, the problem is referred 

to the simple or uncapacitated facility location problem, or, for short, the UFL problem. 

If the number of facilities to locate in the UFL problem is specified the problem is 

known as the p-facility location problem. When there are no fixed costs associated with 

the facilities the problem is known as the p-median problem. 

There is a vast literature on the UFL problem (see Krarup and Pruzan (1983)). An 

interesting review of key aspects of Location Theory and its applications in real-world 

discrete location problems is given in the book edited by Mirchandani and Fransis 

(1990). 

The UFL problem has several applications: locating a bank account (see Cornuejols 

et al. (1977)), clustering analysis (see Mulvey and Crowder (1979)), lock-box location 

(see Kraus et al. (1970)) and portfolio management (Beck and Mulvey (1982)). This 

problem also arises as a subproblem in several contexts, such as in network design, 

vehicle routing and, of course, location theory when additional constraints, such as 

capacity constraints, are present. This latter problem is known as the Capacitated p-

median problem (CPMP). The CPMP is the subject of chapters 2 and 3 of this thesis, 

where both heuristic and exact methods are presented. 

1.1.2 ROUTING PROBLEMS 

The Vehicle Routing Problem (VRP) was originally posed by Dantzig and Ramser 

(1959) as the Truck Dispatching Problem and has grown to be an important area of 

Operations Research. It has been estimated that transportation costs account for nearly 

half, 47.5%, of the total logistics cost (Institute of Logistics and Distribution 

Management (1985)), and approximately 70% of the value-added costs in the soft drink 

industry (see Golden and Wasil (1987)). This percentage is on average 20% of any 

product value, but it varies widely with the type of product. There is, therefore, a clear 

incentive for organizations to use transport as efficiently as possible and a variety of 

computerized routing software has been implemented for this purpose. 

In its basic version the VRP can be stated as follows. A set of customers, each with a 

known location and a known requirement for some commodity, is to be supplied from a 
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single depot by delivery vehicles of known capacity. The problem is to design routes for 

the vehicles, subject to the following constraints: 

(a) the requirements of all customers must be met; 

(b) vehicle capacity must not be violated, i.e. the total load allocated to each vehicle 

must not exceed its capacity. 

The objective of this problem may be stated as that of minimizing the cost of 

completing the delivery routes. 

There is a vast literature on the VRP. For recent surveys of VRP solution methods 

and their applications see Magnanti (1981), Bodin et al. (1983), Christofides (1985), 

Golden and Assad (1986,1988), Bodin (1990), Laporte (1992b) and Fisher (1995). See 

also the recent bibliographies by Laporte and Osman (1995) and by Laporte (1997). 

If the fleet consists of a single vehicle having a sufficiently large capacity, so that 

constraint (b) can be ignored, the problem consists of finding the shortest tour to visit all 

customers and this is the same as the classical Traveling Salesman Problem (TSP). The 

first major algorithmic study of the TSP is that of Dantzig et al. (1954). The TSP is NP-

hard (see Garey and Johnson (1979)) and its study has given rise to several theoretical 

and algorithmic results, some having far reaching effects in other areas of combinatorial 

optimization. Polyhedral theory (see GrOtschel and Padberg (1985)) is probably the 

most significant of these and has led to the development of powerful exact algorithms. 

The book by Lawler et al. (1985) contains an account of the main results on the TSP 

until 1985. For a more recent survey, see Laporte (1992a). 

Real VRPs usually include complications beyond the basic model. Typical 

complications include the following. 

(a) The objective function in real problems can be quite complex, including terms 

dependent on the distance travelled, the number of vehicles used, the time duration 

of routes (as with overtime pay for drivers) and penalties for not delivering to all 

customers. 

(b) The time of delivery to a customer may be constrained to fall within defined time 

windows. 

(c) In many situations the same vehicles used for goods delivery are also used to collect 

pallets, empty bottles, etc. for return to the depot. When these activities are 

particularly significant they are often referred to as backhauls. 
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(d) The characteristics of the vehicles can introduce a variety of constraints beyond the 

simple vehicle capacity constraints. The vehicle fleet can be heterogeneous, with 

each vehicle having a distinct capacity. There can be multiple capacity constraints 

because of both weight and volume restrictions. Sometimes vehicles are divided into 

compartments for storage of different products (such examples include the delivery 

of petrol to gas-stations, delivery of refrigerated and non-refrigerated items to 

supermarkets, etc.). Customer/vehicle compatibility constraints may restrict the set 

of customers that a vehicle can feasibly service. 

(e) Routes may extend over more than one day and/or a vehicle may perform more than 

one trip in a day returning to the depot several times for reloading. 

(f) There may be more than one distribution depot and these depots may be interacting 

in a way that makes it impossible to consider any one in isolation. For example, 

vehicles may leave from one depot, supply some customers, return to a second depot 

to reload (perhaps with a product not available at the first depot), visit another set of 

customers and finally arrive back at the first depot (or at a third depot). 

(g) Periodic routing problems arise in the distribution of products such as soft drinks, 

snacks foods, beer and bread. In these applications the distributing firm is interested 

in developing a set of daily routes for some T day period so that each customer 

receives delivery at a designed frequency. 

(h) Inventory routing problem arise in the distribution of liquid products such as 

industrial gases or gasoline. In these problems, each customer has an inventory of 

the product, and the distributor must determine the timing and amount of deliveries 

so that the customer does not run out of product. 

1.2 COMBINATORIAL OPTIMIZATION 

This section provides general concepts relevant to Combinatorial Optimization (CO) 

Problems. 

CO is a term that describes those areas of mathematical programming that are 

concerned with discrete structure. A large number of practical problems can be 

formulated and solved as CO problems. 
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Very generally, a mathematical programme is an optimization problem subject to 

constraints in Rn  of the form: 

MM f (x) , 

subject to xe S clr , 

where R n  is the set of all n-dimensional vectors of real numbers and f is a real-valued 

function defined on S. The set S is called the constraint set and f is called the objective 

function. The vector x E lf8 n  has components 	x2  ,..., xn  which are the variables of 

the problem. Every x E S is called a feasible solution to (1.1). If there is an x°  E S 

satisfying: 

— 	< f (x°  ) f (x) , for all x G S , 

then x°  is called an optimal solution (or also a global optimal solution to (1.1)). Notice 

that considering only the case of minimization of (1.1) is not restrictive, since the search 

for a maximum of function f reduces immediately to the problem of minimization of 

g = - f . 
The objective in a mathematical programming problem is to establish whether an 

optimal solution exists and then to find one, or perhaps all, optimal solutions. In an 

applied context, it is convenient to think of (1.1) as a model of decision making in 

which S represents the set of all permissible decisions and f assigns a utility or profit to 

each x E S . Applications of this model abound in the real world and are relevant to 

various branches of engineering, business, and the physical and social sciences. 

Different classes of problems can be obtained by placing restrictions on the type of 

function under consideration and on the values that the variables can take. Problems in 

which the decision variables are discrete, i.e. where the solution is a set, or a sequence, 

of integers or other discrete objects, are called combinatorial problems. The problem of 

finding optimal solution to such problems is therefore known as Combinatorial 

Optimization. 

Some examples of this kind of problems are as follows. 

Example 1.2.1 The 0-1 Knapsack Problem. 

Given a set of n items and a knapsack, with: 
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p j  = profit of item j, 

wj  = weight of item j, 

c = capacity of the knapsack, 

determine the subset J of items which should be packed in order to maximize 

jEJ 

such that 

yw J • <c .  
jEJ 

Here the solution is represented by the subset J c{1,2,...,n} . 

Example 1.2.2 The Vehicle Routing Problem. 

A set of M identical vehicles of capacity Q is located at a central depot and must be 

used to supply a set of n customers. Each customer i requires a supply of qi  units from 

the depot. Every route performed by a vehicle which starts and ends at the depot and the 

load carried must be smaller or equal than Q. Each customer must be visited exactly 

once by a vehicle route. The distance between customer i and j is du  . 

The problem is to assign customers to vehicles and find the order in which each 

vehicle visits its customers so as to minimize 
M nk 

yydni k k 
k=1 i=0 

such that 
nk  
E qnik 	k =1,2,...,M 
i=1 

and Ink  = n . 
k=1 

Here, vehicle k visits nk  customers and T i  k  is the i-th customer visited along the k-th 

	

route. The solution is represented by the permutation 	 im  ,...,nnmm  1. 

Notice that the depot is represented by the customer nok  and by the customer 7I nk+1 k  , 

for each k. 
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1.2.1 INTEGER LINEAR PROGRAMMING PROBLEMS 

Combinatorial problems, such as those described above, can be solved by (i) 

formulating the problem as an integer linear programming problem (e.g., by introducing 

integer variables) and (ii) by using the solution techniques developed for solving integer 

linear programming problems. 

An integer linear programming problem (ILP) is a mathematical programming 

problem in which: 

f (x) = cx 	 (1.2) 

and 

S = {x I Ax = b,x 0 and integer} , 	 (1.3) 

where A is an mx n matrix, b is an m-vector, c is an n-vector and 0 is an n-vector of 

zeros. In more standard form the ILP is written as 

Min cx 

subject to Ax = b 

x 0 integer 

In summation notation (1.4) is 

Mill I c J  • 
j=1 

subject to Eaux, = bi , i =1,...,m 
j=i 

xi 	0 integer, j =1,...,n 

A linear programming problem (LP) is a mathematical programming problem in 

which f (x) is given by (1.2) and 

S = {x Ax = b,x 0} 

The LP obtained by dropping the integrality constraints from the ILP (1.3) is referred 

to as the corresponding LP, or the linear relaxation of the ILP. 

In general, the problem 

P1: Min f (X) , xE S1  
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is said to be a relaxation of the problem 

P2: Min f (x), XE S2  

if S1  D S2  . Similarly, P2 is said to be a restriction of P1. 

Notice that if x°  is an optimal solution to P1 and x*  is an optimal solution to P2, 

then f 	5_ f (x*  . Furthermore, if x°  E S2 , then x°  is an optimal solution to P2. 

An important special case of the ILP (1.5) is the binary ILP, where x 0 and 

integer is replaced by x j  = 0 or 1. A generalization of the ILP is the mixed integer 

linear program (MILP), where only some of the variables are constrained to be integer. 

The following terms are used in the description of the solution space of a discrete 

optimization problem. 

The set of all possible solutions of a MILP or ILP may be described by a set of linear 

constraints. Finding these constraints and their properties is the subject of polyhedral 

theory. For a detailed treatment of this subject see Rockafellar (1970), Padberg and 

Grotschel (1985) and Nemhauser and Wolsey (1988). 

Given a set S cRn , a point x e DV is a convex combination of points of S if there 

exists a finite set of points {xi  , x2 ,..., xt} in S and a vector XE ll of non-negative 

values with Eh;  =1 and x = yxix, . The convex hull of S, denoted by conv(S), is the 
i=i 

set of all points that are convex combinations of S. An important result is that conv(S) 

can be described by a finite set of linear inequalities. Further 

min{cx : XE S} = minicx : x E conv(S )} . Thus any MILP or ILP can be represented as a 

LP, provided we know a set of linear inequalities that represent the solution space. 

A polyhedron P can be represented in the form P = {XE R : Ax S b}. A polyhedron 

of the form P = {XE n  : IIXII b} for some b > 0 , where 114 is a norm (e.g. euclidean) of 

x, is bounded. A bounded polyhedron is a polytope. 

A nonempty set S c [Rn  is called affinely independent, if for every finite set 

k 	 k 
S , the equations 	aixi  =0 and 	at  =0 imply at  = 0 , i =1 ..... k ; 

i =1 

otherwise S is called affinely dependent. 
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A polyhedron P is of dimension k, denoted by dim(P)=k, if the maximum number of 

affinely independent points of P is k+1. P c [18 n  is full-dimensional if the dimension of 

P is n. 

The inequality irx no  is called a valid inequality for P if it is satisfied for all points 

in P. Given an ILP, a linear inequality that cut out part of the feasible region of the 

corresponding LP while leaving the feasible region of the ILP intact is called a cutting 

plane. If itx 'o  is a valid inequality for P, and F = {x E P : 7EX = /Co , then F is called 

a face of P. A face of P is a facet of P if dim(F) = dim(P)— 1. This leads to the results 

that for each facet F of P, one of the inequalities representing F is necessary in the 

description of P. Thus the use of facets in the description of the solution space yields a 

system of inequalities of smallest number. Also, if P defines the convex hull of integer 

solutions of a discrete optimization problem, then the use of facet defining inequalities 

is most likely to give the tightest lower bound in a branch and cut scheme. 

In the case of the 0-1 Knapsack Problem, we can formulate the problem as a binary 

ILP by defining: 

{1 if item j is packed 
xi = 0 otherwise 

The problem then reduces to the following integer program: 

Max IP ixj 
j=1 

subject to Y IN .1  •X • <C 
j=1 

x • = 0 or 1, j E {1,2,...,17} 

There is an important class of binary ILP's in which ay  = 0 or 1 for all i and j, and 

bi  =1 for all i. Special methods have been developed for these so-called covering and 

partitioning problems. 

The set covering problem is the zero-one integer program 

Min cx 

subject to Ex e 
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xi  = 0 or 1, j E {1,2, .. . , n} 

where E = [eu ] is an m x n matrix whose entries eii  are 0 or 1, c = [c j ], j = 1,...,n , is 

a cost row with positive components, x = [xi  ] , j = 1, . . . , n , is a vector of zero-one 

variables and e is an m vector of 1 ' s. If the Ex e constraints are replaced by the 

equalities 

Ex = e , 

the integer program is referred to as a set partitioning problem. If we think of the 

columns of E and e as sets, the set covering problem is equivalent to finding a cheapest 

union of sets from E that covers every component of e, where component i of e is 

covered if at least one of the selected sets (columns) from E has a 1 in row i. In the set 

partitioning, we seek a cheapest union of disjoint sets from E which covers e. The set 

covering and the set partitioning problem are representative of numerous real world 

situations. These include applications in the areas of airline crew scheduling, vehicle 

routing, stock cutting, map coloring, and other instances. 

Detailed formulation and analysis of various other CO problems can be found in 

Garfinkel and Nemhauser (1972) and Christofides at al. (1979a). 

1.2.2 COMPUTATIONAL COMPLEXITY OF CO PROBLEMS 

The theory of Computational Complexity has been developed for evaluating and for 

classifying problems as "hard" or "easy". 

Generally, a problem can be solved by a step by step procedure, called algorithm. In 

order to evaluate the running time of an algorithm we count "steps" instead of 

"machines cycles", and we use an 0-notation to express the running time function. 

The size of an instance of a problem is measured by the length of the shortest coding 

necessary to specify the data completely. Given an instance of size n and a real function 

g(n) of n, we say that the complexity of an algorithm is 0(g(n)), if fin), the maximum 

time required to execute the algorithm is such that: 

I f (n)I < clg(n)l 

where c is a constant. The precise value of c depends on the computer used. Algorithms 

with complexity 0(n) are called linear; those with complexity 0(nk ) are called 
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polynomial (e.g. algorithms of complexity 422 ), 0(nlog(n)), etc). On the other hand, 

an algorithm is called exponential if its complexity is not of polynomial order (e.g. 

algorithms of complexity 0(2n ), 0(n!), etc). 

Problems are classified into four classes based on their computationally complexity: 

P, NP (Non-deterministic Polynomial), NP-complete and NP-hard. 

Problems for which polynomial time algorithms are known belong to the class P. By 

this definition and intuitively, we can think of P as a class of "easy" problems since 

efficient (polynomial time) algorithms exist for solving this class of problems. The class 

NP encompass all problems in P as well as other problems which can be solved by a 

non-deterministic algorithm in polynomial time. 

The concept on a non-deterministic polynomial algorithm can be viewed intuitively 

as follows. First observe that problems in NP are decision or recognition problems: that 

is, for example, rather than ask for the optimal length of the TSP tour, one may ask "is 

there a tour of length less than L?". The recognition and the optimization version of a 

problem are closely related since if we can solve the recognition version of a problem, 

we can also solve its related optimization version. Now imagine a computer which has 

the property that each time it faces a choice it divides into several copies of itself, with 

each copy being explored in parallel. The recognition problem is solved if and only if 

one of the copies answers the recognition problem in the affirmative. If the maximum 

time taken by a copy is polynomially bounded, then the problem is in NP. Another way 

of looking at this intuitively is to suppose that we could "guess" a solution to the 

problem, and require that checking the answer could be carried out in polynomial time. 

The class NP-complete is a subset of NP having the property that all problems in NP 

can be reduced in polynomial time to one of them. A problem P1 can be reduced to 

problem P2 in polynomial time if any instance of P1 can be transformed in polynomial 

time into an instance of P2, such that the solution of P1 can be obtained in polynomial 

time from the solution of the instance of P2. A problem is NP-hard if every problem in 

NP is polynomially reduceable to it. Whether polynomial time algorithms exist for all 

problems in NP is currently an open question. Figure 1.1 shows the commonly believed 

relationship among P, NP, NP-complete, and NP-hard problems. 
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NP-complete 

P 

NP 

NP-hard 

Figure 1.1. Relationship among P, NP, NP-complete and NP-hard 

For a more complete discussion on computational complexity, the interested reader is 

referred to Garey and Johnson (1979), Lewis and Papadimitriou (1981) and 

Papadimitriou and Steiglitz (1982). 

The fact that many CO problems are NP-hard, suggests that there is no guarantee 

that an optimal solution will be found in a reasonable amount of computing time. Thus, 

algorithms can be classified into two broad categories: 

(i) exact solution algorithms that guarantee an optimal solution at the possible 

expense of high computational time and memory requirements, thus possibly 

allowing only small-size instances to be solved; 

(ii) heuristic algorithms that produce a feasible solution in a reasonable amount of 

computing time with the risk that it may be sub-optimal. 

For the detailed discussion about heuristic techniques for CO problems one can refer 

to Reeves (1993). 

1.3 METHODOLOGICAL PRELIMINARIES 

In this section we provide a brief description of some known methodologies used in 

the development of the algorithms presented in the thesis. 

13 



1.3.1 LAGRANGEAN RELAXATION AND SUBGRADIENT OPTIMIZATION 

Finding good solutions to hard problems in CO by using an enumerative procedure 

such as branch and bound method, involves the calculation of upper bounds and lower 

bounds on the objective function, in order to accelerate the fathoming process and 

thereby curtail the enumeration. General techniques for generating good upper bounds, 

in the case of minimization problems, are essentially based on heuristic methods. One of 

the most efficient techniques for obtaining good lower bounding functions consists of 

solving the problem obtained by relaxing some of the constraints of the initial problem 

in the Lagrangean fashion. The use of Lagrangean relaxation in CO originates in the 

work of Held and Karp (1970, 1971) concerning the TSP. 

Consider the following general zero-one problem which we shall refer to as problem 

P: 

(P) 	 Min cx 

subject to Ax > b 

Bx >_d 

xi  e {0,1}, j =1,...,n 

The Lagrangean relaxation of problem P with respect to the constraint set Ax b is 

defined by introducing a Lagrangean multiplier vector X 0 which is attached to this 

constraint set and brought into the objective function to give the following problem 

called Lagrangean lower bound program (LLBP): 

(LLBP) 	 Min cx + A(b — Ax) 

subject to Bx d 

xi  E {OM, j =1 ..... n 

It can be easily shown that problem LLBP provides a lower bound on the optimal 

solution to the original problem P for any X 0 . Notice that we are interested in finding 

the value for the multipliers that give the maximum lower bound, i.e. the lower bound 

that is as close as possible to the value of the optimal integer solution. This involves 

finding multipliers which correspond to the following maximization problem called the 

Lagrangean dual program: 
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Min  

subject to  Max Bx > d Ain  
X?.0 

x e {0,1}, j =1,...,n 

Applications of Lagrangean relaxation to CO problems can be found in Geoffrion 

(1974), Fisher (1981) and Beasley (1993). 

One approach to deciding values for the Lagrangean multipliers {Xi} is to use 

subgradient optimization. Subgradient optimization is an iterative procedure which, 

starting from an initial set of Lagrangean multipliers, modifies them in a systematic 

fashion. It can be viewed as a procedure which attempts to maximize the lower bound 

value derived from LLBP (i.e. to solve the Lagrangean dual program) by a suitable 

choice of multipliers. 

Consider the relaxed constraints in summation notation, that is: 

I CluX 	=1,...,m 

The basic subgradient optimization procedure is as follows. 

Algorithm 1.1: Subgradient optimization 

Step 1. Let it be a user-defined parameter satisfying 0 < It 5_ 2 . 

Let ZUB  be an upper bound to the optimal solution cost of problem P. 

Decide upon an initial set {X1  } of multipliers. 

Let zmax  (= —00) be the maximum lower bound found. 

Step 2. Solve LLBP with the current set of multipliers {Xi  } to get a solution {xi  of 

value z.LB  . Set zniax  =max(zniax ,z z,B ). 

Step 3. Define subgradients Gi  for the relaxed constraints, evaluated at the current 

solution, by: 

Gi  =bi  -E x =1,...,m 

Step 4. Define a (scalar) step size T by 
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T =  t(ZUB Z LB) 
m 
i=1 

Step 5. Update Xi  using 

= max(0,X i  +TGi ), i =1,...,m 

and go to Step 2 to resolve LLBP with this new set of multipliers. 

Generally, the termination rule is based either upon limiting the number of iterations 

that can be done, or upon the value of TC where rc is reduced during the course of the 

procedure. At the end of the procedure, z,nax  represents the best lower bound found. 

For more information on this subject, the interested reader is referred to Held et al. 

(1974), Sandi (1979) and Beasley (1993). 

1.3.2 BRANCH AND BOUND METHODS 

Enumerative (branch and bound, implicit enumeration) methods solve a CO problem 

by breaking up its feasible set into successively smaller subsets. The origins of the 

branch and bound idea go back to the work of Land and Doig (1960). 

The basic principle of a branch and bound method is the partition of an initial 

problem P0  into a number of subproblems P1, P2  , . , Pk , whose totality represent 

problem 130  . Each one of these subproblems is resolved separately by: 

either (i) 	finding its optimal solution, 

or 	(ii) showing that the value of the optimal solution to the subproblem is worse 

than the best solution for the original problem Po  obtained so far, 

or 	(iii) showing that the subproblem is infeasible. 

Partitioning a problem P0  into a number of subproblems allows easier problems to 

be resolved, either because of their smaller size, or because of their structure which may 

not be shared by the initial problem P0. However, in general, a subproblem which is 

difficult to resolve, can be further partitioned into yet smaller subproblems 

P11 ,P12 ,...,P1 . This partitioning, (also called branching), can be repeated for 

subproblems at different levels. An example is shown in Figure 1.2. 
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Figure 1.2. A branch and bound tree 

Branch and bound methods make use of bounds on the objective function in order to 

discard certain subproblems from further consideration and thereby curtail the 

enumeration. The bounds are obtained by replacing the problem over a given subset 

with an easier (relaxed) problem. The branch and bound procedure ends when each 

subproblem has been resolved. The best solution found during the procedure is a global 

optimum. 

For any problem P, let v(P) be the value of an optimal solution to P. The essential 

ingredients of any branch and bound procedure applied to a CO problem P of the form 

Min{ f (x) I X E S} are: 

(i) a relaxation of P, i.e. a problem R of the form Min{g(x)IxE T} , such that S c T 

and for every x, yE S, f (x) < f (y) implies g(x) < g(y) ; 

(ii) a branching or separation rule, i.e. a rule for breaking up the feasible set {Pi  } of the 

current subproblem Pi  into subsets {Ph  },{13i2 	{Pi,  such that Uri=1{Pii  }= {Pi  , 

where {P} is used to represent the set of all feasible solutions to problem P; 

(iii) a lower bounding procedure, i.e. a procedure for finding (or approximating from 

below) v(R i ) for the relaxation R i  of each subproblem Pi  ; and 

(iv) a subproblem selection rule, i.e. for choosing the next subproblem to be processed. 

Additional ingredients, not always present but always useful when present, are: 

(v) an upper bounding procedure, i.e. a heuristic for finding feasible solution to P; and 
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(vi) a testing procedure, whereby it is possible to fix the values of some variables 

(reduction, variable fixing) or to discard an entire subproblem (dominance tests) 

using the logical implications of the constraints and bounds. 

The general branch and bound procedure for solving a given problem P, can be 

described as follows: 

Algorithm 1.2: Branch and bound 

Step I. (Initialization) Put P on the list of active subproblems. Initialize the upper 

bound at zuB  

Step 2. (Subproblem selection) If the list is empty, stop: the solution associated with 

ZUB is optimal (or, if ZUB "5 P has no solution). Otherwise choose a 

subproblem Pi  according to the subproblem selection rule and remove Pi  from 

the list. 

Step 3. (Lower bounding) Solve the relaxation R i  of Pi  or bound v(R ) from below, 

and let zisi  be the value obtained. 

ZUB go to Step 2. 

If zui  < zuB  and the solution is a feasible a solution for P, store it in place of 

the previous best solution, set ZuB = ZIA and go to Step 5. 

Step 4. (Upper bounding: optional) Use a heuristic to find a solution for P. If a better 

solution is found than the current best, store it in place of the latter and update 

ZUB • 

Step 5. (Reduction: optional) Apply variable fixing and dominance tests. 

Step 6. (Branching) Apply the branching rule to Pi  , i.e. generate new subproblems 

P11 , P12 	, Pig  , place them on the list, and go to Step 2. 

For general surveys on branch and bound methods see Garfinkel and Nemhauser 

(1972, Ch. 4), Balas (1975), Garfinkel (1979), Spielberg (1979) and Balas and Toth 

(1985). 
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1.3.3 BRANCH AND CUT METHODS 

Branch and cut methods combine cutting-planes and search-tree methods to solve 

integer programs to optimality. The problem to be solved is first formulated as an 

integer program on a subset of some linear space DV . Then this problem may be solved 

using a linear programming relaxation embedded in a branch and bound technique to 

get integer solutions. The cutting-plane phase and the enumeration phase are integrated 

in a branch and cut algorithm and new information about the known partial linear 

description of the polytope associated to the problem can be exploited during the 

enumeration phase. This approach gives dramatic savings, both in terms of time and 

memory allocation, compared to a standard branch and bound incorporating linear 

programming relaxation procedures. 

The branch and cut method was introduced by Padberg and Rinaldi (1991) to solve 

large instances of the TSP. In the procedure of Padberg and Rinaldi the only cutting 

planes that are used correspond to inequalities that are valid for the polytope associated 

to the problem, preferably facets. In contrast with many previous algorithms which 

solve the identification problem only when the solution of the current relaxation is 

integral, they use identification procedures even if the current solution is fractional and 

the identification of the cutting planes is tried at all the nodes of the search tree. 

The first phase of a branch and cut algorithm is simply a cutting plane approach. If 

one reaches the point when the optimal solution for the current linear programming 

relaxation is not feasible for the integer program and no more cutting planes can be 

identified, then one must start branching and creating a search-tree. A branching 

procedure is executed, but at each node of the search-tree one must keep trying to 

identify more cutting planes before trying to branch again. If the cutting planes that are 

used correspond to valid inequalities for the polytope associated with the problem, they 

are globally valid, i.e. across the entire search-tree, and can be kept in the linear 

programming relaxation of the problem. 

The core of each branch and cut method is the cutting planes procedure used for 

generating lower bounds. Consider the general ILP formulation as being of the 

following form: 
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(P) 	 Min cx 

subject to Ax ..?. b 

Bx > d 

x ?.. 0 integer 

A possible relaxation of this problem is given by: 

(LP) 	 MM cx 

subject to Ax __ b 

x>_ 0 

A valid lower bound to P can be generated using the following procedure. 

Algorithm 1.3: Cutting planes 

Step 1. Initialize the LP-relaxation constraint set with Ax ..>. b . 

Step 2. Solve problem LP and let ik be its solution. 

Step 3. If ik satisfies constraints Bx d of problem P and is integral, then solution is 

also an optimal solution of P, Stop. Otherwise proceed to Step 4. 

Step 4. Find one or more valid inequalities that are violated by Ti . 

Step 5. If none is found, Stop. Otherwise add the violated inequalities to problem LP 

and go to Step 2. 

The above procedure terminates when no further valid inequalities can be found or 

an optimal solution has been found. The problem solved in Step 4 is called the 

separation problem. The separation problem can be solved by an exact procedure or a 

heuristic procedure that may find violated inequalities, but that in case it cannot find 

any, is unable to guarantee that no violated inequalities exist. 

When embedded in a branch and bound procedure, a check that the lower bound 

generated at Step 2 is less then the best upper bound must be included. If the lower 

bound is at least equal to the best known upper bound then the subproblem is fathomed. 

Step 3 is modified so that the integral solution becomes the best known solution and the 

upper bound is set accordingly. 
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1.4 RESEARCH MOTIVES AND GOALS 

This thesis is based on the development of new exact methods for the CPMP and the 

VRP. To this end, we wish to focus our attention on mathematical models which can be 

easily extended to deal with a wide range of constraints without changing the original 

nature of the model. We have chosen the Set Partitioning (SP) approach to model these 

problems since adding a few additional constraint to the original SP formulation does 

not change the original structure. In the CPMP each column of SP represents a feasible 

cluster for a given median and the additional constraint limits the number of clusters in 

any feasible solution. In the VRP, each column is a feasible route and it is sufficient to 

add an extra constraint to limit the number of routes of the solution. In both cases, 

practical cluster constraints in the CPMP (route constraints in the VRP) can be easily 

incorporated by removing from the SP model the infeasible clusters (routes). The 

resulting SP problem cannot be solved directly since the number of variables can be too 

large but it can be used to compute a lower bound without generating the entire SR 

matrix as it has been proposed by Mingozzi et al. (1994) for the basic VRP. This 

method combines in an additive manner dual ascent procedures that explore different 

relaxations of the problem in order to compute a dual solution of the LP-relaxation of 

the SP model. One of the procedures proposed allows to deal with any practical route 

constraint. Our goal is then to extend this technique for solving to optimality complex 

location and routing problems and to derive new exact methods for the CPMP and the 

VRP with Backhauls that are competitive with the exact methods already proposed in 

the literature. 

The detailed study of the VRP literature inspired us to further investigate the two 

commodity network flow formulation of the TSP proposed by Finke et al. (1984). This 

formulation is interesting in different ways. It can be shown that its LP-relaxation 

satisfies a weak form of the subtour elimination constraints. As part of this research, we 

will examine several ideas to modify the original TSP formulation of Finke et al. in 

order to incorporate additional constraints for the TSP. This will lead to the design of 

new exact methods for TSP and VRP with additional constraints. We hope to 

demonstrate that the new exact methods are competitive with, if not better than, other 

exact methods proposed in the literature for the same problems. 
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As far as new heuristic methods is concerned, we will concentrate our attention on 

techniques which can be applied to a wide range of problems. The Bionomic algorithm 

proposed by Christofides (1994) is a new entry to operations research and, in our 

opinion, provides an important generalisation and improvement of genetic based 

techniques. It allows a better exploration and exploitation of the search space to be 

performed, is robust and less problem specific and it is capable of generating good 

solutions within reasonable computational times. Our main goal in this research is to 

design a Bionomic algorithm for the CPMP that can be used also for solving problems 

with additional constraints. We aim to demonstrate that the new heuristic technique is 

computationally competitive with other sophisticated heuristic methods. 

Finally, a case-study will examine the use of heuristic methods, specifically designed 

for routing/location problems, in providing high quality solutions to real-life problems. 

For this purpose, we will consider the resource planning problem of an utility company 

which provides preventive maintenance services to a set of customers using a fleet of 

mobile gangs based at some depots. Our goal is to design a heuristic algorithm for this 

problem and to test the usefulness of the method by applying it to a real case. 

1.5 THESIS OVERVIEW 

This section provides a detailed overview of the thesis. 

In Chapter 2, a revised version of Maniezzo et al. (1998), we consider the 

Capacitated p-Median Problem (CPMP) in which a set of n customers must be 

partitioned into p disjoint clusters so that the total dissimilarity within each cluster is 

minimized and constraints on maximum cluster capacities are met. The total 

dissimilarity of a cluster is computed as the sum of the dissimilarities existing between 

each entity of the cluster and the median associated to the cluster. We describe a 

heuristic algorithm based on the Bionomic Algorithm as an effective method to solve 

the CPMP. The chapter also presents an effective local search technique for the CPMP. 

Computational results show the effectiveness of the proposed approach, when compared 

to the best performing heuristics so far presented in the literature. 

In Chapter 3 we present an exact algorithm for solving the CPMP based on a Set 

Partitioning formulation of the problem. A valid lower bound to the optimal solution 
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cost is obtained by combining two different heuristic methods for solving the dual of the 

LP-relaxation of the exact formulation. The computational performance of the new 

exact algorithm has been evaluated on two classes of test problems proposed in the 

literature and on two new classes of difficult CPMP instances with additional 

constraints. The results show that the exact algorithm is able to solve exactly CPMP's of 

size up to 100 customers. 

In Chapter 4 we describe a two-commodity network flow approach to derive new 

integer programming formulations for different routing problems. The basic Vehicle 

Routing Problem (VRP) is examined in which a fleet of M vehicles stationed at a central 

depot is to be optimally routed to supply customers with known demands subject to 

vehicle capacity constraints. We present a new integer programming formulation for the 

VRP based on a two-commodity network flow approach. A lower bound based on a 

linear relaxation of the new formulation strengthened by a set of valid inequalities is 

derived. The bound is embedded in a branch and cut procedure to solve the problem 

optimally. The computational results on a set of problem instances derived from the 

literature show that the lower bound obtained is tight and that the branch and cut 

algorithm has been able to solve to optimality problems up to 100 customers. We extend 

the two-commodity network flow approach to derive new integer programming 

formulations for other routing problem like the TSP with mixed deliveries and 

collections and the TSP with Backhauls. These formulations are used to derive new 

lower bounds based on linear relaxation strengthened by new valid inequalities. The 

resulting cutting plane procedure has been applied to a set of instances taken from the 

literature and involving problems up to 150 customers. The results show that the branch 

and cut algorithm has been able to solve to optimality problems up to 150 customers. 

In Chapter 5, a revised version of Mingozzi et al. (1999), we consider the Vehicle 

Routing Problem with Backhauls (VRPB) in which a fleet of vehicles located at a 

central depot is to be optimally used to serve a set of customers (called Linehaul 

customers) requiring deliveries from the depot and to collect products from a set of 

customers (called Backhaul customers) to be unloaded at the depot. Each route starts 

and ends at the depot and the Backhaul customers must be visited after the Linehaul 

customers. A new (0-1) integer programming formulation of this problem is presented. 

We describe a procedure that computes a valid lower bound to the optimal solution cost 
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by combining different heuristic methods for solving the dual of the LP-relaxation of 

the exact formulation. An algorithm for the exact solution of the problem is presented. 

Computational tests on problems proposed in the literature show the effectiveness of the 

proposed algorithms in solving problems up to 100 customers. 

In Chapter 6, a revised version of Hadjiconstantinou and Baldacci (1998), we 

consider the resource planning problem of a utility company, which provides preventive 

maintenance services to a set of customers using a fleet of mobile gangs based at some 

depots. The problem is to determine the boundaries of the geographic areas served by 

each depot, the list of customers visited each day and the routes followed by the gangs. 

The objective is to provide improved customer service at minimum operating cost 

subject to constraints on frequency of visits, service time requirements, customer 

preferences for visiting on particular days and other routing constraints. The problem 

has been approached as a Multi-Depot Period Vehicle Routing Problem (MDPVRP) and 

a heuristic algorithm has been developed to solve it. The computational implementation 

of the complete planning model is described with reference to a pilot study and results 

are presented. 
Finally, in Chapter 7, we provide a summary of the entire thesis highlighting the 

main contributions of the completed work. Current limitations and suggestions for 

further research are also discussed. 
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CHAPTER 2 

A BIONOMIC APPROACH TO THE 

CAPACITATED P-MEDIAN PROBLEM 

2.1 INTRODUCTION 

The Capacitated p-Median Problem (CPMP) is a particular location problem in 

which a set of n customers must be partitioned into p disjoint clusters so that the total 

dissimilarity within each cluster is minimized and constraints on maximum cluster 

capacities are met. The total dissimilarity of a cluster is computed as the sum of the 

dissimilarities existing between each customer of the cluster and the median associated 

to the cluster. This problem, which appears also under the names of the Capacitated 

Warehouse Location Problem, Sum-of-Stars Clustering Problem and others, is NP-hard 

(Garey and Johnson (1979)) and has already been extensively studied in clustering and 

location theory. A number of exact algorithms have been proposed in the literature for 

the CPMP. Pirkul (1987) describes a branch and bound method which uses the 

Lagrangean relaxation of the partitioning constraints. An exact technique based on a set 

partitioning formulation of the CPMP with side constraints has been investigated by 

Hansen et al. (1994). In Chapter 3 we present a new exact method for solving the CPMP 

based on the set partitioning approach and we compare its computationally performance 

with Pirkul's algorithm (which we implemented). 

Heuristic algorithms have been proposed by Mulvey and Beck (1984) and Pirkul 

(1987). Metaheuristic approaches are described in Golden and Skiscim (1986) and in 

Osman and Christofides (1994). 
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A problem closely related to the CPMP accepts multiple partial assignments of 

customers to clusters and give rise to a mixed integer formulation of the problem. For 

this latter problem, exact algorithms have been proposed by Christofides and Beasley 

(1983), Leung and Magnanti (1989) and Aardal (1994), while heuristic methods have 

been investigated by Van Roy (1986) and Beasley (1988). 

In this chapter we propose the use of a metaheuristic technique recently presented by 

Christofides (1994), called Bionomic Algorithm, as a viable method for solving the 

CPMP. The resulting algorithm integrates the main steps of the Bionomic approach with 

a Lagrangean-based lower bound to the CPMP. 

The chapter is structured as follows. In Section 2.2 we present a classical 

mathematical formulation of the CPMP and in Section 2.3 we summarize the heuristic 

and exact methods proposed in the literature. In Section 2.4 we describe a new heuristic 

algorithm based on the Mulvey and Beck approach. In Section 2.5 we describe the main 

steps of the Bionomic algorithm, while in Section 2.6 our new heuristic method for the 

CPMP is presented. Computational results are shown in Section 2.7. 

2.2 A MATHEMATICAL FORMULATION OF THE CPMP 

Let N = {1,...,n} be a set of n customers and [du ] be a n x n matrix indicating the 

dissimilarities between pairs of customers of set N. We assume that du  0 and dii  = 0 

for all i, j E N . A positive integer weight qi  is associated with each customer i, i E N . 

Any subset B c N is called a cluster. Given a cluster B, the customer j*  E B such 

that 

Edu  Vie B\{/*} 
iE B 	iEB 

is called the median of B and will be denoted with Tt(B) . 

A positive integer weight Q3  is associated with each customer j, j E N , which 

denotes the capacity of j when it is used as the median of a cluster. 
A cluster B is feasible if 

qi Q*13 ) , 
iEB 
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°Mediums 
• Customers 

Figure 2.1. Example of a CPMP solution 

where Q,c(B) denotes the capacity of median n(B) 

For a given integer p, 2 p.n, a feasible CPMP solution is represented by a 

partition S {B1 , B2 , . . , B p } of N into p feasible clusters and its cost is given by the 

sum of the cluster dissimilarities, that is : 

P 
Z(S)= E  

iel3i 

where n(Bt ) denotes the median of cluster Be . An optimal CPMP solution corresponds 

to a partitioning of the customer set N into p feasible clusters of minimum cost. Figure 

2.1 shows an example of a CPMP solution. 

Let 4,i  be a (0-1) variable that is one if and only if a customer i is assigned to a 

cluster whose median is j. We assume that ji  =1 means that customer j is chosen to be 

a median of a cluster. A mathematical formulation of the CPMP is as follows. 

(F) z(F) = Min E Ei c/Au  
iENiEN 

(2.1) 
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subject to E .1, 	Vie N 	 (2.2) 
jEN 

EqA.i 5Qj jj ' 	Vje N 	 (2.3) 
iEN 

	

= P 	 (2.4) 
jeN 

	

ij E {04 , 	 Vi,jEN 	 (2.5) 

Constraints (2.2) force each customer to be assigned to a cluster, constraints (2.3) 

impose that the total capacity of a median must not be exceeded, constraint (2.4) 

specifies that the total number of clusters must be equal top and constraints (2.5) are the 

integrality constraints. 

Different relaxations of formulation F have been proposed in the literature to derive 

lower bounds to CPMP. Mulvey and Beck (1984) proposed a Lagrangean relaxation of 

constraints (2.2), while Beasley (1988) used a Lagrangean relaxation of constraints 

(2.2), (2.3) and (2.4). 

We briefly describe below the lower bound proposed by Mulvey and Beck (1984) 

and used by Pirkul (1987) to obtain an exact branch and bound method. We will use 

also this lower bound in the Bionomic heuristic method proposed in Section 2.6. 

The Lagrangean relaxation of the assignment constraints (2.2) using multipliers Xi, 

iE N, leads to the lower bound LB, which is based on the following formulation LR: 

(LR) 	 LB =Min E EP:). iij+ Ea i 	 (2.6) 
ieN jeN 	 iE N 

subject to (2.3), (2.4) and (2.5). 

The value of LB can be computed as follows. 

Let 	hi = Min Ep, -xi :s.t. yqi yi 5 and yi E 	i E 
N I 

and let 
:E N 	 iE N 

thh ,h12 ,...,hip be the p-least cost values of {h1, 	, then 

LB =~h jk + EX i A classical subgradient optimization technique can be used to 
k=1 	iE N 
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maximize the value of the lower bound. We use procedure MT2 of Martello and Toth 

(1990) for solving n knapsack problems at each subgradient iteration. The order of 

complexity, C(LR), of each lower bound iteration is equal to the sum of the complexity 

of procedure MT2 plus 0(n log n) which is the time required for ordering the n 

knapsack values. Procedure MT2 is a branch and bound method which is very fast, 

requiring on average a few hundredth of seconds, to solve any of our knapsack 

instances. 

2.3 A LITERATURE REVIEW FOR THE CPMP 

In this section we briefly describe the heuristic and exact algorithms proposed in the 

literature to solve the CPMP. 

2.3.1 HEURISTIC ALGORITHMS FOR THE CPMP 

In this section we outline the heuristic algorithms for the CPMP proposed by Mulvey 

and Beck (1984) and by Osman and Christofides (1994), against which the new 

Bionomic approach is compared. 

2.3.1.1 MULVEY AND BECK'S HEURISTICS 

Mulvey and Beck (1984) proposed two related heuristic algorithms for the CPMP. 

The first one (hereafter called MB1) aims at minimizing the total customer assignment 

regret, where the regret of the assignment of a customer is defined to be the absolute 

value of the difference in dissimilarity between the customer's first and second nearest 

medians. MB1 starts by randomly generating p medians and assigning customers to 

them in an order specified by decreasing regrets. When (and if) all customers are 

assigned, that is, customers are clustered around the respective medians, an infra-cluster 

phase re-assigns each cluster to the median that minimizes the sum of dissimilarities 

between the specific median and all other cluster members. Possibly, a new set of 

medians is identified, in this case the assignment/re-assignment process is repeated. 

When the medians remain stable across iterations, pairwise interchanges of customers 
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between clusters are used to optimize the solution locally. MB1 simply repeats the 

above process for a predetermined number of iterations. 

The second heuristic (hereafter called MB2) is a modification of MB1. It is based on 

the subgradient optimization of problem LR described in Section 2.2. The starting set of 

medians, randomly selected at each iteration in MB1, is substituted in MB2 by the 

median set identified by the corresponding subgradient iteration. The following phase of 

assignment of customers to medians is the same as in MB1. MB2 terminates either after 

a predefined number of iterations or when the difference between the lower and upper 

bound is less than a given threshold. 

2.3.1.2 OSMAN AND CHRISTOFIDES' HEURISTIC 

Osman and Christofides (1994) presented a heuristic algorithm for the CPMP, 

hereafter called OC, which is based on a hybrid Simulated Annealing (SA) / Tabu 

Search (TS) metaheuristic technique. The essential features of this technique are drawn 

from the probabilistic acceptance of solutions of SA and the neighborhood exploration 

of TS. Specifically, the probabilistic SA acceptance is combined with three TS-derived 

features. The first is a non monotonic cooling schedule that occasionally increases the 

temperature, in order to escape from local optima but without starting the search from 

scratch. The second is a systematic neighborhood search, as opposed to the random 

exploration that is typical of SA. The third is the terminating condition, which is not 

based on the number of iterations, as it is usually the case in TS, but on the number of 

temperature resets performed without improving the best solution. 

This algorithm has been applied to a variety of combinatorial optimization problems, 

consistently yielding improved performance over standard SA (Osman and Laporte 

(1996)). In particular, its application to the CPMP, containing a specific local 

optimization technique results in a very effective heuristic. 

2.3.2 EXACT ALGORITHMS FOR THE CPMP 

Exact methods for solving the CPMP have been proposed by Pirkul (1987) and by 

Hansen et al. (1994). 
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Pirkul (1987) describes two heuristic methods and an exact branch and bound 

method for the Capacitated Concentrator Location Problem. The problem arises in the 

topological design of computer communication networks and deals with the design 

process of dividing network nodes into groups, and selecting a concentrator location for 

each group so that all the nodes in a group can be assigned to the same concentrator 

without violating its capacity constraint. Pirkul makes use of the Lagrangian relaxation 

approach to develop optimal and heuristic solution procedures for the problem. The 

exact method is based on a branch and bound procedure which uses the Lagrangean 

relaxation of the partitioning constraints (2.2). In Chapter 3 we computationally 

compare Pirkul's algorithm (which we implemented) with our new exact algorithm. A 

detailed description of Pirkul's algorithm can be found in Section 3.5.2. 

Hansen et al. (1994) proposed an exact technique based on a set partitioning with 

side constraints formulation of the CPMP. The algorithm combines the column 

generation technique of linear programming with branch and bound. Column generation 

was originally proposed by Gilmore and Gomory (1961). This technique extends the 

revised simplex algorithm of linear programming and allows the solution of linear 

programs with an extremely large number of columns by determining the entering 

column using the solution of an auxiliary combinatorial problem. This last problem 

depends on the type of problem considered. For the CPMP, the entering column of the 

linear program corresponding to each node in the branch and bound tree, is determined 

by solving a knapsack problem with incompatibilities for which a specific algorithm is 

proposed. Hansen et al. made a theoretical comparison between the lower bounds 

obtained by column generation and by Lagrangean relaxation (see Section 3.3.1). The 

computational results show that the overall algorithm allows solution of medium-sized 

problems (with number of customers n=75 or 81). 

2.4 THE HEURISTIC PROCEDURE HEUMED 

In this section we describe a new heuristic, called HEUMED, which is based on the 

Mulvey and Beck approach. HEUMED is an iterative multistart procedure where, at 

each iteration, a new set of p medians is randomly generated. Given this set of medians, 

the algorithm loops over two phases. 
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In the first phase the customers are assigned to the medians selected by solving a 

Generalized Assignment Problem (GAP). The second phase uses the clustering resulting 

from the first phase and tries to find a better median for each cluster, by solving an 

assignment problem. If a better solution is found, then both phases are iterated. 

A step-by-step description of HEUMED is given below. 

Algorithm 2.1: HEUMED 

Step O. Initialization 

Set -Zia = co and t = 1. 

Step 1. Iteration t 

Randomly generate an initial set of p medians J' . 

Step 2. Phase 1 (GAP) 

Assign the n customers N to the medians in J' by solving a GAP that is 

obtained from problem F by removing constraint (2.4) and by setting X11  =1 if 

j E ,/' , 0 otherwise, Vj E N. 

Let 	' be the GAP solution of cost 4. 

Update -4, = Min[Zp, 4.] . 

Let Ck = {i J i E N and ik  =1} be the subset of customers assigned to median 

k E J' in the GAP solution. 

Step3. Phase 2 (Local improvements) 

Let cki  = EiEck  du  be the cost of assigning cluster Ck to median j E N . 

Solve the Assignment Problem (AP) on matrix [cki ] and let x*  be an optimal 

AP solution of cost zAp*  (we assume xk*f  =1 if cluster Ck is assigned to 

median j E N and 4 =0 otherwise). 

— * Update *4 = Min[Zp Z AO . 

{P * 
If -z-p < z'fi then set J' = j uE Nand Exk;  =1 , return to Step 2. 

k =1 

Step 4. Termination condition 
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Set t=t+1; if t does not exceed an a-priori fixed number of iterations go to Step 

1, otherwise stop. 

We use the heuristic algorithm MTHG of Martello and Toth (1990) for solving the 

GAP in Step 2. Each HEUMED iteration requires O(np log p + n2 ) time (Step 2) for 

solving the GAP and 0(n2 ) time (Step 3) for solving the assignment problem. Hence, 

the overall time complexity is O(np log p+ n2  ). 

2.5 OUTLINE OF BIONOMIC ALGORITHMS 

Bionomic Algorithms (BAs), introduced by Christofides (1994), are a class of 

metaheuristic techniques that provide the main steps for a global optimization method, 

which must be completed and specified in a way tailored to the particular optimization 

problem one has to solve. 

Bionomic algorithms are closely related to other optimization techniques already 

presented in the literature. In particular, they share the core of their approach with 

Genetic Algorithms (GAs) (see Holland (1975) and Goldberg (1989)) and Evolution 

Strategies (ES) (see Rechenberg (1973) and Back et al. (1991)). BAs, GAs and ESs are 

in fact evolutionary metaheuristic algorithms that update a whole population of 

solutions (the solution set) at each iteration. Moreover, the updating process in all of 

them consists of defining a child solution from a set of parent solutions of the previous 

generation, where the exact definition of the child often goes through some 

randomization step. Within this general framework, the BA shares with the evolutionary 

scatter search approach of Glover (1977) (see also Glover (1997)), the possibility of 

having variable-sized solution sets and the use of multiple parents, whereas GA limit the 

number of parents to two (a recent version of ES allows a random sampling of the 

population to select more than two parents). On the other side, the BA formally requires 

a local optimization of the solutions (called maturation), an activity first introduced in 

the scatter search approach that was excluded from GAs until the late-1980s, though it 

has now become standard practice in GAs applied to combinatorial optimization 

problems. We assume, for convenience, that the local optima produced by the 
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maturation step are all distinct, although it is possible that different source solutions will 

be improved to yield the same local optimum. 

The steps specific to BAs are those for defining a parent set. Both GAs and ESs in 

fact, essentially let the user free to decide how to define the parent sets and the standard 

practice is to choose them randomly from the population (certain forms of GAs bias the 

randomization to favor higher quality solution in selecting one or both of the parents). 

The BA instead, defines a procedure based on the identification of maximal independent 

sets of a graph defined on the solution set. Such an approach constitutes a refinement of 

the scatter search proposal of generating parents with reference to clustering strategies, 

and explicitly introduces a special diversification criterion into the selection of parents. 

This aspect, together with the generality of the method used for generating child 

solutions, make BAs well-suited to combinatorial optimization. On the other hand, GAs 

can hardly exploit the structure and the properties of the solutions and ESs are ill-

adapted since they are directed towards continuous spaces. 

The structure of BA is as follows. 

Let g =1 ..... g max  be the index of generations, s =1,...,sg  be the index of solutions in 

/ generation g, x  gs .(x  gs kl h . . . , xg s  (n)) be an n-dimensional 0-1 vector representing 

solution s of generation g and, finally, let z(xgs  ) be the evaluation function of a 

solution xgs  . Given two solutions xgk  and Xgh  , the Hamming distance between Xgk  

n  and xgh  is defined as the number E I X gk  (i)--  X 811 (i)1. 
=1 

The BA algorithm goes through the following five steps. 

Algorithm 2.2: Bionomic Algorithm 

Step I. Initialization 

1.1 Set g =1. 

1.2 	Choose s1  (number of solutions in generation 1). 

1.3 Create si  distinct initial feasible solutions (randomly or using a 

heuristic). 
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1.4 	Let 50 = { ,-xAs 1 s = 1, . . . , si  } be the solution set. 

Step 2. Maturation 

	

2.1 	Improve each solution in 5-ig individually by a process based on a local 

optimization. 

	

2.2 	Let xgs  be the local optimum associated to jcgs  and let erg be the set of 

local optima derived from 4 g . 

	

2.3 	Let z(xgs) be the cost of solution xgs  E Ng . 

Step 3. Propagation, definition of parents sets 

	

3.1 	Allocate frequency of inclusion 0 gs  to each solution xgs  by mapping 

z(xgs) onto a suitable positive integer value. 

	

3.2 	Choose a positive Hamming distance A . Generate the solution adjacency 

graph G(X g) by considering adjacent any two solutions whose Hamming 

distance is not greater than A . 

	

3.3 	Generate the rth parent set Pg, as a maximal independent set of G(X g) 

(there may be many such sets, but we seek only one). 

	

3.4 	Update Ogs  = O gs  —1, Vxgs  € Pg, . If O gs  = 0 for some xgs  , remove 

the corresponding vertex from G(Xg) (in general, to assure a vertex will 

be removed, 0gs  may be reduced by the minimum positive value over the 

set rather than by 1). 

3.5 Repeat steps 3.3 and 3.4 to generate the next parent set until G(Xg) is 

null or is a complete graph (which implies Pg, is null). Let 

Pg = {Pgr I r = 1, . . . , rg  } be the family of the generated parent sets. 

Step 4. Propagation, definition of child solutions 

	

4.1 	Let n(S,$) be a many-to one mapping of S c Xg to a solution 

x E N''g+1, where E is a random vector that affects the mapping. The 

new generation is then 54g +1 = {XI 70gr ,Ei ),r =1,...,rg  , j =1,...,10, 

where ri r  is the number of offspring of parent set r. 
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Step 5. Termination 

	

5.1 	Repeat steps 2 to 4 until the generation limit is reached. 

	

5.2 	Choose the best solution found as the answer. 

The parameters of the algorithm are: gmax  , the number of generations, s1, the 

number of elements of the first population, A, the Hamming distance to be used as a 

threshold for the definition of the adjacency graph G used in Step 3, and li r  , the number 

of offspring of each parent set. Moreover, to complete the algorithm, it is necessary to 

specify the frequency of inclusion function, that maps the values z(xgs) onto the 

corresponding Ogs  , and n(S,E), i.e., how to obtain child solutions from parent sets. 

Moreover, the maturation phase includes a local optimization-based procedure, such as 

steepest descent, tabu search, simulated annealing or any other method which has to be 

detailed for the specific problem. 

2.6 A BIONOMIC ALGORITHM FOR THE CPMP 

This section describes the BA we developed and implemented for the CPMP. A 

CPMP solution s of generation g is denoted by es  = (V s  ), where cgs  is an nx n 

dimensional (0-1) vector representing a feasible solution of problem F. 

The evaluation function z(xgs) is computed as z(xgs) = 	yd,v; . 
ie N jEN 

Following the description of the BA presented in Section 2.5, we have the following 

algorithm. 

Algorithm 2.3: Bionomic Algorithm for the CPMP 

Step 1. Initialization 

Set g =1 and s1  =100 . 

Create s1  feasible solutions as follows. 
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i) Randomly select a subset J' of p medians from set N and set liSi  =1, j E J' 

and 	 11/  = 0, jE N\J' . 

ii) Assign the customers N to medians J' by solving the corresponding GAP 

and set -C =1, if customer i E N has been assigned to j E J' , J = 0 

otherwise. 

Let Rg =kgs I s = 1, ... , s g  } be the solution set of the first generation. 

Step 2. Maturation 

Improve each solution in j70 individually by applying steps 2 and 3 of 

algorithm HEUMED as described in Section 2.4. 

Denote with Xg the set of local optima derived from 4g and by z(xgs) the 

cost of solution xgs  E erg  . 

Step 3. Propagation, definition of parents sets 

3.1 Define the frequency of inclusion values for each 0 gs  for each solution 

xgs  by ranking the population solutions of set X 8  in decreasing values 

1  rank(xgs  ) of z(xgs) and setting Ogs  =  
5 

Steps 3.2 to 3.5 are the same as in the BA algorithm of Section 2.5, 

except that we only consider rg  5_ rmax  , Vg , where rmax  is a system 

parameter. 

Step 4. Propagation, definition of child solutions 

For each parent set Pgr  E Pg , denote by J' the subset of medians used in the 

solution belonging to Pgr  , that is: J' = {j I u =1, vus E Pv.}. 

Compute the lower bound LB by setting E>j = 0 , Vj E N \ J' in problem LR 

and select the lir  best different solutions produced by the subgradient 

optimization method used for computing LB (see equation (2.6)). 

Each solution proposed by the lower bound consists of a set J of p medians 

and of an assignment of the customers to such medians. The assignment may 
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be infeasible due to the relaxation of constraints (2.2). To construct a feasible 

CPMP solution xg +Is  we proceed as follows: 

• A customer i is assigned to a median j E J if in the bound solution it was 

assigned only to j, the median capacity is accordingly decreased. Let 

N c N be the subset of customers that in the bound solution were either 

not assigned to any median or assigned to more than one median. Assign 

N to J by solving the corresponding GAP. 

Step 5. Termination 

	

5.1 	Repeat steps 2 to 4 until the generation limit is reached. 

	

5.2 	Choose the best solution found as the answer. 

In the computational results shown in Section 2.7, we used the following setting of 

the parameters: s1  =100 , gmax  =10 , rmax  = 200 , r = 1, ter . To compute 0 we 

calculated the average dAVG  and the standard deviations dSTD  of the Hamming 

distances between each pair of solutions in Xg , and we set E = dAVG 0.7dsm • In 

Step 4 we performed 20 subgradient iterations to compute bound LB on each parent set 

Pgr • 

For each generation g of algorithm BA, Step 2 requires OPEs Knp log p + n2  )) time, 

Step 	3 	requires 	0(rg  Rg I log 

 

time and Step 4 requires 

  

0(rg  (C(LR) +11r (np log p + n2 ))) time. Hence the overall time complexity of the BA 

for a generic generation g is 

°V°  AnP log p + n2 )+ rg loOgl)d- rg (C(LR)+1r (nplog p + n2  ))). 

Since rg rmax  and, 1 j-Eg  rmaxri r  ,V g, the order of complexity is 

 

0(np log p + n2  + C(LR)). Moreover, since p << n, the overall complexity becomes 

O(n2  + C(LR)). 
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2.7 COMPUTATIONAL RESULTS 

In order to provide computational results and to validate the algorithm proposed we 

used five classes of problems, called class A, B, C, D and E, respectively. The first and 

second classes, A and B, consist of the 20 problem instances used by Osman and 

Christofides (1994); class A contains 10 problems of size n=50 and p=5 while class B 

contains 10 problems of size n=100 and p=10. In these two classes of problems the 

dissimilarity matrices correspond to Euclidean distance matrices. 

As it is known (Aardal (1994)) that instances with cost randomly generated in the 

unit square are in general more difficult than instances with costs representing the 

Euclidean distances between points randomly generated in the unit square (the latter is 

the case of the Osman and Christofides' problems), we generated three other classes of 

problems with random costs. 

Problem classes C and D contain 10 symmetric instances each, of size n=50 and p=5 

for class C and n=100 and p=10 for class D. 

The last class of problems, E, contains 10 asymmetric instances of size n =50 and 

p=5. 

For problem classes C, D, and E the values of the dissimilarity matrix [du] are 

integers randomly generated in the interval [1,200], the customer weights are integers 

randomly generated in the interval [1,50] while the median capacities were computed as 

follows: 

Eqi 
Q = iE N 	 j =1,...,n 7 p(0.82 + rand(1)•0.14)' 

where rand(1) indicates a random number generated with uniform probability density 

on the interval [0,1]. 

The algorithms were coded in Fortran 77 and run on a IBM PC equipped with a 

Pentium 166 MHz CPU. Most instances of the five classes of problems have been 

solved to optimality by means of the exact branch and bound procedure described in the 

next chapter (see Section 3.5.2). 

In tables 2.1 to 2.5, we compare the results obtained by algorithms BA and 

HEUMED to the optimal or best known solution cost, to the best solution obtained by 
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the Osman and Christofides' algorithm and to the best solution obtained by our 

implementation of the two versions of the Mulvey and Beck heuristics, zmBi and 

zmB2 , respectively. Since the Osman and Christofides' algorithm has one of its 

essential features in the terminating condition (see Section 2.3.1.2), and since the 

parameter setting for this condition allowed the Osman and Christofides' code to take 

less CPU time than that used for the other algorithms, we modified the stopping 

criterion in order to make a fair comparison. Let zoc  denote the results obtained by the 

modified Osman and Christofides' algorithm and let zoc2 denote the results obtained 

by the original code. Moreover, to provide information on the speed of converge of the 

BA, BA2 represents the results obtained by BA after two generations. 

We report for BA, BA2, OC,OC2, HEUMED and MB1 the average of the best 

solutions obtained over five runs, the average time needed to obtain those best solutions 

and, every second line, the best of the five values produced by the corresponding 

algorithm for the problem considered. The results of MB2 are obviously relative to a 

single run. 

All the heuristics, except 0C2, were run for 600 seconds. 

Tables 2.1, 2.2, 2.3 and 2.5 show the following columns, where all times are in 

seconds: 

Probl.: a problem instance identifier; 

z*  : optimal solution of the corresponding instance obtained by using the exact branch 

and bound method described in Section 3.5.2; 

zBA  : average of the best solutions obtained by the bionomic algorithm; 

tBA  : average time taken by the bionomic algorithm to get its best solutions; 

zBA2: average of the best solutions obtained by the bionomic algorithm after 2 

generations; 

t BA2 : average time taken by the bionomic algorithm to get its best solutions in the first 

2 generations; 

zoc  : best solution obtained by the modified OC algorithm; 

toc  : time taken by the modified OC algorithm to get its best solution; 
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zoc2  : best solution obtained by the original OC algorithm; 

t oc2: time taken by the original OC algorithm to get its best solution; 

tOCtot2 : total time taken by the original OC algorithm; 

zHEu : average of the best solutions obtained by the HEUMED algorithm; 

t HEu : average time taken by the HEUMED algorithm to get its best solutions; 

zmin  : average of the best solution obtained by the MB1 heuristic; 

tmm  : average time taken by the MB1 heuristic to get its best solution; 

zmB2: best solution obtained by the MB2 heuristic; 

tmB2: time taken by the MB2 heuristic to get its best solution; 

LB: value of lower bound LR. 

Table 2.4 shows the same columns except that we substituted column z*  by column 

zBEsT . This is because not all problems of class D could be solved to optimality, in fact 

we imposed a limit of 100000 to the number of tree search nodes explored during the 

branch and bound. Therefore in the table we report the best known solutions for each 

problem and we indicate by an asterisk which solutions are optimal. 

In the last four lines of all tables we report: 

• the average percentage distance from optimality, computed on the ten problems of 

each problem class, of the average of the best solutions obtained over the five runs 

(average percentage avg. error); 

• the average of the best of the five values produced by the corresponding algorithm 

for the problem considered (average percentage min. error); 

• the average CPU time, computed on the ten problems, of the average time taken by 

each heuristic to solve the corresponding problem (average CPU time); 

• the number of problems for which the corresponding heuristic was capable of 

finding the optimal solution cost (number of optimal solutions). 

Table 2.1 shows that BA, OC, 0C2 and HEUMED are able to find the optimum for 

all 10 problems, while both versions of Mulvey and Beck failed to solve to optimality 

some problems. The BA was also very efficient on all instances, in fact, it always finds 

the optimal solution within its first two iterations, as it is shown in the BA2 columns. 
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Table 2.2 presents the results obtained by the same algorithms on problem class B. 

The results obtained by the BA are comparable to those obtained by the OC 

algorithm in terms of quality of the solution provided. On this problem class OC was 

the better performing code and HEUMED has also been very effective. 

Problems reported in tables 2.1 and 2.2 do not really demonstrate the superiority of 

BA over OC, 0C2 or HEUMED. 

Table 2.3 presents the results obtained by the same algorithms on problem class C. 

On this more difficult problem class, BA was the only one capable of finding all the 

optimal solutions. The average percentage errors on both the best solutions found and 

the average solutions on the five tests are better for BA than for any other heuristic. 

The inherent difficulty of these instances is testified by the average distance of bound 

LB from optimality. The fact that, despite the degraded quality of the bound indication, 

our propagation procedure obtains good results testifies to the robustness of the 

approach proposed. 

Table 2.4 presents the results obtained by the same algorithms on problem class D. 

Also for this problem class, whose complexity is testified by the fact that only three 

out of ten problems could be solved to optimality, BA shows a superior performance. 

No other heuristic has been able to provide such good solutions. The time bound of 600 

seconds proved to be too tight for OC, HEUMED, MB1 and MB2. 

Table 2.5 presents the results obtained on problem class E. We could not provide a 

comparison with the OC algorithm, since it requires symmetric instances. 

On this problem class BA shows a very good performance, considering the best 

solutions found, with respect to the other tested heuristics, even though its average 

results do not dominate those of MB1. 

As a general comment on all five tables, note that MB1 is by far the most stable of all 

heuristics: only in one case in fact (see problem CCPX19) the average is different from 

the best solution found. 
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Table 2.1. Computational results of problem class A 

Probl LB z* ZBA tBA ZBA2 tBA2 ZOC tOC ZOC2 tOC2 tOC2tot ZHEU tHEU ZMB1 tMB 1 ZMB2 tMB2 

CCPX1 705 713 713.00 0.14 713.00 0.14 713.00 1.58 713.00 1.58 4.34 713.00 0.06 713.00 0.05 740 0.33 
713 713 713 713 713 713 

CCPX2 740 740 740.00 0.02 740.00 0.02 740.00 0.58 740.00 0.58 3.94 740.00 0.22 740.00 0.02 740 0.28 
740 740 740 740 740 740 

CCPX3 749 751 751.00 0.12 751.00 0.12 751.00 1.25 751.00 1.25 4.10 751.00 0.17 751.00 0.02 751 7.09 
751 751 751 751 751 751 

CCPX4 651 651 651.00 0.05 651.00 0.05 651.00 0.58 651.00 0.58 3.39 651.00 0.05 651.00 0.05 651 0.33 
651 651 651 651 651 651 

CCPX5 664 664 664.00 0.13 664.00 0.13 664.00 1.70 664.00 1.70 3.77 664.00 24.00 664.00 0.33 666 1.27 
664 664 664 664 664 664 

CCPX6 778 778 778.00 0.00 778.00 0.00 778.00 1.00 778.00 1.00 5.52 778.00 0.30 778.00 0.02 778 74.34 
778 778 778 778 778 778 

CCPX7 779 787 787.00 0.10 787.00 0.10 787.00 2.42 787.00 2.42 5.15 787.00 0.26 787.00 0.53 789 40.22 
787 787 787 787 787 787 

CCPX8 771 820 820.00 0.20 820.00 0.20 820.00 5.80 820.00 5.80 10.18 820.00 0.89 820.00 3.93 820 25.05 
820 820 820 820 820 820 

CCPX9 713 715 715.00 0.14 715.00 0.14 715.00 3.98 715.00 3.98 11.43 715.00 0.65 715.00 0.05 715 4.18 
715 715 715 715 715 715 

CCPX10 816 829 829.00 0.01 829.00 0.01 829.00 5.21 833.40 1.56 3.40 829.00 0.38 832.00 87.58 837 33.13 
829 829 829 829 829 832 

Average percentage avg.error 0.00 0.00 0.00 0.06 0.00 0.04 0.52 
Average percentage min.error 0.00 0.00 0.00 0.00 0.00 0.04 
Average CPU time 0.09 0.09 2.41 2.05 2.70 9.26 18.62 
Number of optimal solutions 10 10 10 10 10 9 6 
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Table 2.2. Computational results of problem class B 
Probl  LB z ZBA tBA ZBA2 tBA2 ZOC tOC ZOC2 tOC2 tOC2tot ZHEU tHEU ZMB1 tMBI ZMB2 tMB2 

CCPX11 1000 1006 1006.00 25.22 1006.00 25.22 1006.00 24.58 1006.00 24.58 100.57 1006.00 7.33 1007.00 222.64 1071 2.09 
1006 1006 1006 1006 1006 1007 

CCPX12 958 966 966.00 105.18 966.20 41.32 966.00 44.28 966.00 44.28 128.67 966.00 30.42 966.00 6.37 972 1.10 
966 966 966 966 966 966 

CCPX13 1022 1026 1026.00 167.60 1026.80 94.68 1026.00 23.21 1026.00 23.21 106.13 1026.00 37.68 1026.00 7.03 1105 1.59 
1026 1026 1026 1026 1026 1026 

CCPX14 972 982 982.00 101.02 982.00 101.02 983.80 43.00 985.60 13.23 74.36 982.00 20.54 985.00 64.73 998 1.26 
982 982 982 985 982 985 

CCPX15 1079 1091 1091.80 127.42 1092.40 57.30 1092.60 44.81 1092.60 44.81 129.85 1092.00 33.20 1092.00 348.11 1102 1.21 
1091 1092 1091 1091 1092 1092 

CCPX16 947 954 954.20 219.99 954.80 40.68 954.60 57.65 954.60 57.65 136.88 954.00 49.46 954.00 14.43 1072 2.09 
954 954 954 954 954 954 

CCPX17 1024 1034 1034.00 256.51 1035.40 137.42 1034.80 186.83 1039.00 60.87 122.47 1034.00 221.02 1034.00 93.37 1122 1.92 
1034 1034 1034 1039 1034 1034 

CCPX18 1032 1043 1043.00 88.70 1043.00 88.70 1043.80 105.54 1045.20 31.75 94.73 1043.00 72.64 1043.00 38.42 1266 1.76 
1043 1043 1043 1045 1043 1043 

CCPX19 1024 1031 1031.40 231.25 1032.80 125.24 1032.60 36.40 1032.60 36.40 82.87 1031.20 412.73 1033.40 331.32 1067 1.59 
1031 1031 1031 1031 1031 1032 

CCPX20 972 1005 1013.00 291.98 1014.60 70.51 1007.60 140.80 1009.00 26.41 70.60 1010.00 159.01 1014.00 65.39 1014 391.43 
1013 1013 1005 1005 1008 1014 

Avg. percentage avg.error 0.09 0.16 0.10 0.18 0.06 0.16 6.42 
Avg. percentage min.error 0.08 0.09 0.00 0.10 0.04 0.15 
Average CPU time 161.49 78.21 70.71 36.32 104.40 119.18 40.60 
Number of optimal solutions 9 8 10 7 8 5 0 
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Table 2.3. Computational results of problem class C 

Probl IJ3 z* ZBA tBA ZBA2 tBA2 ZOC t4DC ZOC2 tOC2 tOC2tot ZHEU tHEU 401 401 402 4/1B2 
RSYM1 812 886 886.00 79.07 898.80 19.30 924.60 123.88 925.20 14.79 30.91 904.00 406.37 940.00 48.89 910 147.04 

886 886 886 886 886 940 
RSYM2 638 770 770.00 103.98 804.40 24.06 806.00 7.2971 820.80 5.33 12.42 786.40 418.86 776.00 43.69 804 28.85 

770 778 776 794 770 776 
RSYM3 722 844 844.00 54.77 874.40 11.99 874.80 15.57 874.80 15.57 33.34 860.80 316.25 876.00 48.56 844 344.12 

844 844 844 844 844 876 
RSYM4 686 716 716.00 8.05 716.00 8.05 766.50 51.583 768.40 4.16 10.92 729.60 266.62 726.00 66.24 726 21.43 

716 716 716 716 722 726 
RSYM5 680 778 781.20 260.81 854.40 22.21 867.20 91.023 897.60 5.34 11.65 828.80 550.55 778.00 74.21 868 56.16 

778 814 778 814 794 778 
RSYM6 676 784 785.20 108.74 798.00 10.69 807.60 155.18 859.60 5.09 12.48 790.40 470.04 790.00 44.67 796 114.78 

784 784 784 802 784 790 
RSYM7 754 844 844.00 35.39 860.80 7.76 858.40 9.0874 872.80 7.55 18.27 853.60 369.46 882.00 35.80 886 110.55 

844 844 844 844 844 882 
RSYM8 632 690 690.00 15.80 696.00 13.26 713.20 26.132 716.00 9.56 22.46 690.00 347.33 704.00 45.88 692 15.88 

690 690 690 692 690 704 
RSYM9 648 774 774.00 141.29 818.40 11.03 809.60 119.61 812.00 5.41 11.80 804.80 296.34 802.00 34.67 808 24.18 

774 802 780 780 782 802 
RSYM10 646 742 742.00 48.83 788.00 17.26 762.80 97.813 802.40 7.87 15.14 764.00 276.17 812.00 12.43 760 29.67 

742 786 742 742 742 812 
Avg. percentage avg error 0.06 3.59 4.63 6.66 2.36 3.30 3.40 
Avg. percentage min.error 0.00 1.48 0.15 1.10 0.38 3.30 
Average CPU time 85.67 14.56 69.72 8.07 371.80 45.50 89.27 
Number of optimal solutions  10 6 8 5 7 1 
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Table 2.4. Computational results of problem class D 

Probl LB ZBEST ZBA tBA ZBA2 tBA2 ZOC tOC ZOC2 tOC2 tOC2tot ZHEU tHEU ZMB1 tMB1 ZMB2 tMB2 
RSYM11 760 936 959.60 432.73 1063.60 92.32 1069.60 217.96 1098.40 131.25 318.35 1352.00 239.22 1144.00 104.09 1748 1.16 

936 998 1010 1074 1302 1144 
RSYM12 770 948 975.60 433.35 1099.60 92.95 1042.40 192.60 1043.60 170.30 410.21 1328.80 276.30 1210.00 177.72 1650 3.35 

948 1058 1002 1006 1196 1210 
RSYM13 754 822 * 832.40 367.75 914.40 92.72 949.20 256.14 949.20 256.14 467.51 1341.60 475.46 1198.00 80.12 1874 1.26 

822 874 906 906 1318 1198 
RSYM14 778 910 960.40 484.92 1095.60 70.67 1058.80 219.07 1078.40 244.27 517.66 1363.20 333.48 1220.00 73.50 1820 1.10 

910 1054 1006 1032 1306 1220 
RSYM15 768 870 * 950.40 517.66 1090.40 57.35 1054.80 176.49 1068.40 134.20 379.99 1354.40 476.00 1158.00 28.15 1734 1.93 

924 1032 998 998 1296 1158 
RSYM16 688 762 * 773.20 487.90 891.60 61.49 923.60 231.93 970.40 194.06 426.21 1230.80 233.27 1068.00 96.72 1476 1.21 

764 818 880 888 1152 1068 
RSYM17 706 816 834.80 371.39 964.40 97.54 959.20 197.71 970.40 162.07 359.41 1278.40 296.45 1098.00 24.68 1478 1.98 

816 928 920 920 1274 1098 
RSYM18 676 850 876.80 440.19 1008.00 66.10 953.20 189.83 953.20 189.83 337.49 1210.00 242.42 1078.00 23.49 1724 1.15 

850 1000 916 916 1130 1078 
RSYM19 736 870 906.40 536.22 1018.80 72.29 1036.00 242.22 1036.00 242.22 404.91 1331.20 189.42 1108.00 148.25 1616 1.21 

870 946 992 992 1324 1108 
RSYM20 748 888 938.00 444.93 1039.20 72.60 1043.60 266.06 1055.60 217.40 442.25 1303.20 156.92 1222.00 153.83 1542 1.27 

888 994 990 1020 1232 1222 
Avg. Percentage avg.error 3.87 17.45 16.36 17.89 50.99 32.66 92.14 
Avg. Percentage min.error 0.65 11.88 10.93 12.45 44.49 32.66 
Average CPU time 451.70 77.60 219.00 194.17 291.89 91.05 1.56 
Num. best known solutions 8 0 0 0 0 0 0 
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Table 2.5. Computational results of problem class E 

Probl LB z ZBA tBA ZB A2 tBA2 ZHEU tHEU ZMB I tMB 1 ZMB2 tMB2 

BMM1 955 1058 1109.20 90.15 1126.60 3.80 1092.40 249.08 1086.00 66.30 1097 433.41 
1058 1058 1086 1086 

BMM2 862 1025 1065.40 302.44 1109.60 19.31 1064.40 259.90 1036.00 19.93 1125 185.82 
1025 1077 1036 1036 

BMM3 927 1081 1081.00 158.98 1115.00 28.66 1117.20 287.91 1130.00 60.07 1171 77.86 
1081 1110 1111 1130 

BMM4 841 933 941.00 41.09 1044.80 4.45 969.00 165.76 933.00 76.56 974 336.37 
933 973 933 933 

BMM5 878 1045 1045.00 222.41 1124.40 15.05 1110.60 414.30 1060.00 50.84 1094 299.56 
1045 1060 1094 1060 

BMM6 886 1006 1051.20 355.46 1084.60 11.29 1054.20 260.34 1012.00 61.90 1074 63.90 
1008 1025 1009 1012 

BMM7 870 983 1054.80 321.43 1085.00 11.56 1030.00 206.10 983.00 47.71 1101 69.06 
984 1038 983 983 

BMM8 839 939 939.00 18.70 943.80 11.47 984.20 343.19 967.00 52.38 965 370.72 
939 939 963 967 

BMM9 909 1021 1039.00 289.60 1089.20 13.98 1046.20 292.96 1029.00 26.98 1054 111.10 
1021 1021 1031 1029 

BM1VI10 838 1014 1017.00 104.95 1102.00 9.86 1031.00 396.36 1055.00 62.50 1043 152.75 
1014 1065 1014 1055 

Average percentage avg.error 2.35 7.13 3.90 1.84 5.87 
Average percentage min.error 0.03 2.58 1.53 1.84 
Average CPU time 190.52 12.94 290.59 52.52 210.06 
Number of optimal solutions 8 3 3 2 0 
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2.8 SUMMARY 

The chapter describes the results obtained by applying a new metaheuristic 

technique, called the Bionomic Algorithm, to the capacitated p-median problem 

(CPMP). Bionomic Algorithms are evolutionary metaheuristic algorithms that update a 

whole set of solutions (a population of solutions) at each main cycle. They differ from 

similar previously presented algorithms, namely Genetic Algorithms and Evolution 

Strategies, because they explicitly direct the choice of the solutions to combine in order 

to define an offspring, that is, a solution in the population of the next iteration. This 

feature introduces a diversification mechanism for clustering by reference to maximal 

independent sets, carried out over progressively smaller domains, to provide a specific 

refinement of the scatter search proposal for generating parents from clustering 

strategies. The parent selection process, together with the use of problem-specific ways 

to produce an offspring from the parents, makes Bionomic Algorithms well-suited to 

combinatorial optimization applications. 

The implementation of the Bionomic Algorithm presented for the CPMP in this 

chapter has the following characteristics. Maturation is based on a state-of-the-art 

heuristic for the Generalized Assignment Problem (GAP), a problem to which CPMP 

reduces once the p medians are chosen. Propagation, specifically the definition of a 

child solution once a parent set is assembled, is based on the computation of a 

Lagrangean lower bound for the CPMP. 

The computational results, presented both on standard data sets from the literature 

and on more difficult symmetric and asymmetric cost instances, attest the effectiveness 

of the approach. Our findings can motivate future research that could examine 

additional types of clustering strategies (e.g., incorporating intensification criteria as 

well as diversification criteria) for choosing and combining multiple parents. 
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CHAPTER 3 

AN EXACT ALGORITHM FOR SOLVING 

THE CAPACITATED P-MEDIAN 

PROBLEM BASED ON A SET 

PARTITIONING APPROACH 

3.1 INTRODUCTION 

The purpose of this chapter is to present a new exact method for solving the CPMP. 

In this chapter the CPMP is formulated as a Set Partitioning Problem with a side 

constraint (SP). Each column of the SP corresponds to a feasible cluster and the 

additional constraint forces any feasible solution to contain exactly p clusters. Also, in 

this chapter, a valid lower bound to the CPMP is developed. This lower bound is 

computed as the cost of a feasible solution to the dual of the LP-relaxation of SP (called 

DSP). The procedure for computing the lower bound, called HDSP, combines two 

different heuristic algorithms. Each of these heuristic procedures finds a feasible 

solution to DSP without requiring the entire set of the dual constraints. The dual 

solution obtained and a valid upper bound to the CPMP are then used to eliminate a 

large number of clusters that cannot belong to any optimal CPMP solution. However, 

the size of the reduced SP problem might still be too large for a branch and bound 

method. In this case, we develop a procedure, called EHP, for solving problem SP 

where the set of clusters is replaced with a subset of limited size. The optimal solution 
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of the resulting problem might not be an optimal CPMP solution, however, the solution 

obtained from EHP allows us to estimate how far this solution is from the optimal 

solution to the CPMP. Furthermore, the EHP is readily extendible to deal with 

additional constraints, such as the maximum cluster cardinality, customer 

incompatibility, etc. 

The chapter is structured as follows. In Section 3.2 the set partitioning mathematical 

formulation of the CPMP is presented. Section 3.3 describes the heuristic procedure 

HDSP for solving problem SP. Section 3.4 presents the method used for generating the 

clusters, i.e. the columns of the set partitioning formulation of CPMP. The EHP method 

for solving the CPMP is described in Section 3.5. In Section 3.6, computational results 

are presented for a number of problems drawn from the literature and for a new set of 

problems with additional constraints. Finally, conclusions are presented in Section 3.7. 

3.2 A SET PARTITIONING FORMULATION OF THE CPMP 

The CPMP can be formulated as a set partitioning problem with an additional 

constraint as follows. 

• Let P- be the index set of all feasible clusters whose median is customer j, j E N , 

and let B = L.) P2  • •UP„ . 

• Let B;  be the index set of all clusters containing customer i E N . 

• Let ct , ge  and Itt indicate the cost, the subset of customers and the median of 

cluster .e E B, respectively. 

• Let xi  be a (0-1) variable that is equal to 1 if and only if cluster E B belongs to 

the optimal solution. 

The resulting mathematical formulation, called SP, of problem CPMP is as follows : 

(SP) 	 z(SP) --= Min E Qx, 
tEw 

(3.1) 

subject to Vi E N (3.2) 

(3.3) 
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xf  E 10,11, 	Vt 	 (3.4) 

Equations (3.2) impose the requirement that each customer i E N is assigned to one 

cluster. Equation (3.3) forces the solution to contain p clusters and constraints (3.4) are 

the integrality constraints. The formulation SP is easily extendible to deal with 

additional cluster constraints simply by removing from B any infeasible cluster. 

Hansen et. al (1994) have shown that solving the LP-relaxation of formulation F 

described in Section 2.2 cannot yield a larger lower bound than the one obtained by 

solving the LP-relaxation of formulation SP. 

Problem SP cannot be solved directly since the number of columns may be enormous 

even for CPMP instances of moderate size. In the following, the dual problem (called 

DSP) of the linear relaxation of SP, is used in order to generate a valid lower bound to 

the CPMP. The method used to solve DSP is heuristic (which of course does not affect 

the optimality of the final CPMP solution) and it does not require the explicit generation 

of the cluster-index set B. Moreover, the dual solution obtained is used to reduce the set 

B by removing those clusters that cannot belong to any optimal CPMP solution. 

Let ui  , i E N , be the dual variables associated with constraints (3.2) and w be the 

dual variable of constraint (3.3). The dual of the LP-relaxation of SP, called DSP, is as 

follows: 

(DSP) 	z(DSP) = Max Eui + pw 	 (3.5) 
iEN 

subject to Eui +w5.C e , 	WEB 	 (3.6) 
lE Be 

ul  unrestricted, i E N 
w unrestricted 

Like problem SP, problem DSP is impractical to solve, since the number of 

constraints is equal to the number of variables in SP. 

3.2.1 VARIABLE REDUCTION OF PROBLEM SP 

Let (u', w') be a feasible solution of DSP of cost z'(DSP) and let x' be a feasible 

solution of SP of cost zi(SP) . It is well known, from linear programming duality theory, 
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that z'(DSP) z'(SP) and, consequently, any feasible solution of DSP provides a valid 

lower bound to SP. 

Let c; be the reduced cost of cluster .e E B corresponding to the dual solution 

(u', w') , that is: 

c, = c,—E,u,— w, 	 (3.8) 
iE Bt 

This dual solution (u',w') can be used to reduce the number of variables of SP as it 

is established by the following theorem. 

Theorem 3.1. Let S' = {t: i e B, s. t. 4= 1} . The following relationship holds: 

z'(SP) = z'(DSP) + E C'.e 
	 (3.9) 

teS' 

Proof. From equation (3.8), we have: 

E cL  . E ce  — E I ut — E w' 
teS' 	teS' 	teS'ieB, 	PeS' 

Since x' is a feasible solution of CPMP, we have: 

E E 4 + E w' . E tii + p14/ 
teS'ieB, 	teS' 	iEN 

and hence, 

E c't  . E ct  — E u; — pw' 	 (3.10) 
iEs• 	IES" 	iEN 

Noticing that z'(SP) = E ct  and that z'(DSP) = E is! + pw' , from equation (3.10) 
tEs' 	 iEN 

we obtain equation (3.9). 

Corollary 3.1. Let z(UB) be the cost of a feasible CPMP solution and (u', w') be a 

feasible solution of DSP of cost z'(DSP) . Any optimal solution of SP of cost less than 

z(UB) cannot contain any cluster £ E B whose reduced cost is greater or equal to 

z(UB) — z'(DSP) . 

Proof. It follows directly from Theorem 3.1•  
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Corollary 3.1 states that an optimal CPMP solution can be obtained by replacing in 

problem SP the set B with the subset B' defined as follows: 

B' = : t E B, s.t. c't  < z(UB)— z'(DSP)} 	 (3.11) 

therefore, an optimal solution of problem SP can be obtained by replacing set B with 

B' . However, the size of B' might still be too large for solving problem SP, even if the 

gap z(UB) — z'(DSP) is small. In this case we propose to solve problem SP by using a 

subset 5" cB' containing a limited number of clusters so that the resulting problem is 

solvable by an integer programming solver (e.g. CPLEX (1996)). 

The optimal solution obtained for the resulting problem SP is not guaranteed to be an 

optimal CPMP solution. However, the method used to choose the subset F allows us to 

estimate the distance of the solution obtained from optimality. 

3.3 A HEURISTIC PROCEDURE FOR SOLVING PROBLEM DSP 

In this section we describe a heuristic procedure (called HDSP) for finding a feasible 

solution to DSP that is based on the following observation. 

Consider the integer program P: 

Min z(P) = (P) 	 ex 

subject to Ax = b 

x 0 integer 

The dual D of the LP-relaxation of P is: 

(D) 	 Max z(D)= wb 

subject to wA c 

w unrestricted 

A feasible solution Tv of D of cost ."( -i) can be obtained by means of the following 

simple observation. Assume that w is a feasible solution of D of cost z(D) and that w' 

is a feasible solution of cost z'(D') of the following problem D': 

(D' ) 
	

Max z'(D') = w'b 

subject to w'A 5_ c — wA 

w' unrestricted 

53 



Since D' imposes that (w + w')A 5 c , it is easy to see that W = w + w' is a feasible 

solution of D of cost (D) = z(D)+ z'(D'). This observation justifies the validity of the 

following algorithm HDSP for solving problem D. 

Algorithm 3.1: Algorithm HDSP for finding a feasible solution of D 

Let H1, H2  ,...,Hk  be k different heuristic procedures for solving D. 

Step 1. Set W = 0 and "f(D) = 0. 

Step 2. Repeat Step 3 for r = 1,2,..., k . 

Step3. Use the heuristic procedure fi r  for finding a solution w' of cost z'(D') to the 

following problem D': 

(D') 	Max z'(D') = w'b 

subject to w'A 5_ c' 

w' unrestricted 

where c' = c — WA . Update W = W + w' and 7f(D) = '(D)+ z'(D'). 

The application of procedure HDSP to CPMP involves, at each iteration r , the use of 

a heuristic procedure Hr  to solve the following problem DSP'. 

(DSP' ) 	z'(DSP') = Max I u; + pw,  
ieN 

subject to Ii ti1  + III— .e  g , 	t E B 
ieBe 
, ui  unrestricted, i E N 

w' unrestricted 

where ct  = ct  — I ui — W and (ii, TO is a feasible solution to DSP of cost .f (DSP) 
iE Be 

provided by the first (r —1) iterations of HDSP. 

Notice that DSP' is the dual of the linear relaxation of problem SP' that is obtained 

from SP replacing in the objective function (3.1) each cost ci  with the reduced cost cif , 

v.e e B. 
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The cost .(D) of the solution W of D obtained by HDSP is limited from above by 

the optimal solution cost of the LP-relaxation of SP, hence, the lower bound (DSP) to 

the CPMP obtained by HDSP is not better than the optimal cost of the LP-relaxation of 

SP. This method has been applied by Mingozzi et al. (1994) for solving the Vehicle 

Routing Problem, by Bianco et al. (1994) for the Multiple Depot Vehicle Scheduling, 

by Mingozzi et al. (1995) for the Crew Scheduling Problem and is used in Chapter 5 for 

solving for the Vehicle Routing Problem with Backhauls. 

The procedure HDSP involves two heuristics. The first, called H1, solves problem 

DSP1(m DSP) and does not require the generation of set B while the second procedure, 

called H2  , solves DSP2  and requires the generation of a limited subset of set B. 

3.3.1 PROCEDURE H1  

Procedure HI  is based on the lower bound obtained from formulation F of Section 

2.2 by relaxing the set partitioning constraints (2.2) in a Lagrangean fashion. (Hansen 

et. al (1994) have shown that the optimal solution of this relaxation and of the LP- 

relaxation of the SP formulation have the same value). Let X = (X1,X2 ,...,X,, ) be the 

lagrangean multipliers associated to constraints (2.2). The relaxed problem, called 

LR(X), is as follows : 

(LR(X)) z(LR(X)) = Min I (d,,, 	Exi  
ieN jeN 	 ieN 

subject to 
iEN 

P 
jeN 

ij E 10,11, 

Vj E N 

V i, j E N 

For a given set of multiplier vector X, problem LR(X) can be decomposed into n 

independent knapsack problems, called 1CPi  (X), j = 1,...,n , of the form : 

(KY j (X) ) 	z(KP (X)) = Min E(d, 
iE N 
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subject to I qi ij  5- Qi 
ieN 

E {OA, i E N 

An 	optimal KP3  (X) solution corresponds to a cluster B 	such that 

{ .e; = arg mintEpj  ce  — Exi  . An optimal solution of LR(X) is obtained as follows. 
ieBi  

Let z(KPii  (X)), z(KPi2 	 (x)) be the p-least cost solutions of the n 

Knapsack problems KPi(X), j =1,...,n . It is easy to see that the optimal LR(X) solution 

is given by: 

= 0, k— p+1IkJk  

and 

4uk  =1 if iE B * ,
k 
 = 0 otherwise, Vi E N , k =1,..., p 

ilc  

and 

Jk 
=0, Vi E N,k=p+1,...,n. 

The value of the objective function for this solution is 

z(LR(X)) = z(KPik  (4+ E xi • 
k=1 	ieN 

Theorem 3.2 shows that the solution of LR(X), for any vector X, can be transformed 

into a feasible DSP solution. 

Theorem 3.2. Let V be the optimal solution of LR(X) of cost z(LR(X)) for a given 

vector X. A feasible solution (111, w1 ) of DSP of cost z(DSP1 )= z(LR(X)) is obtained 

by setting, for every customer i E N : 

..1 = {Xi 	 if 	= 0 
ui 	 (3.12.a) 

X i  + z(KPi  (X)) - a, if 47 =1 

W1 = 6 
	 (3.12.b) 
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where a= maxlz*Pi  (X))1 : j E N}. 

Proof. It is sufficient to show that, for any j E N : 

+w1  _< ct , 	E Pi 
iE Bt 

We must consider two cases: 

(a) = 0 . 

Using equations (3.12.a) and (3.12.b), inequalities (3.13) can be written as: 

G 	— EX i  , Vi E Pj  
iE Be 

(3.13) 

(3.14) 

As 	J j  = 0 , from the definition of a, we have 

z(KP (X)) 6. 	 (3.15) 

Moreover, since z(l(Pi  (x)) is the optimal solution cost of problem KPi  (X) we have 

Z(i(Pi (X)) Ct — 	X i  , 	E Pi . 
iE Bt 

Hence, from (3.15) and (3.16) we obtain inequalities (3.14). 

(b) Vij  = 1 . 

Using equations (3.12.a) and (3.12.b), inequalities (3.13) can be written as 

X i  + z(l(Pi  (X))— + 	, 	e Pi  
ie Bt 

that is equivalent to 

z(1(13j  (X)) 	— 	X i , Vt E P j  

(3.16) 

(3.17) 
iE Bp 

and this latter inequality is verified since z(KPi  (X)) is an optimal solution of problem 

Algorithm H i  for solving DSP1  is an iterative procedure that finds a feasible 

solution of the problem Max[z(LR(X))] . An iteration of H1  consists of computing a 

new vector X and of finding a new solution of the resulting problem LR(X). The method 

used for updating X, at each iteration, is as follows. 

57 



Let V be the optimal solution of LR(X). Let hi  be the number of medians that 

customer i E N is assigned to, in the solution V , i.e. hi  = 	In any feasible 
jEN 

CPMP solution we have hi  =1, i E N , hence, a subgradient optimization method can be 

used to change X as follows: 

z(UB)— z(LR(X))/ Xi  = Xi  e 	 ViEN EN -1)- 
kE N 

where z(UB) is a valid upper bound to the optimal CPMP solution cost and £ is the step 

size (and is a parameter). A feasible DSP1  solution (ul ,w1) of cost z(DSP1 ) is given 

by equations (3.12) using the vector X*  that has produced, within a priori fixed number 

of iterations, the best approximate solution of the problem Max[z(LR(X))] . 

3.3.2 PROCEDURE H2  

Procedure H2  is a heuristic procedure based on linear programming that finds a 

feasible solution of the following problem : 

( DSP 2  ) 	z(DSP 2  )= Max 

subject to 

E ui  + pw 
iEN 

Eui  +14,5.d, 
iEB, 

vtEB 

u • unrestricted, Vi E N 

w unrestricted 

where ci is the reduced cost of cluster t E B computed according to the dual solution 

(u1,w1) produced by procedure H1, that is : 

c = _ u 14)1 

iEBe  

Problem DSP2  could not be solved directly as it might involve a huge number of 

constraints. In this section we describe a procedure called H2  , for reducing the number 
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of constraints of DSP2  so that the resulting problem, called RD, can be solved directly 

and any solution of RD is a feasible DSP2  solution. Problem RD is obtained from 

DSP2  as follows: 

(i) The number of constraints (3.6) are reduced by replacing B with a subset F of limited 

size; 

(ii) Constraints are added to force any RD solution to satisfy constraints (3.6) for any 

E B\F. 

Reduced problem RD 

Let Ff  be a subset of Pi  ,jeN, that satisfies the following two conditions : 

ct2  < z(UB )— z(DSP1 ) V t e Fi 	 (a) 

Max[cg] Min [d] 	 (b) 
(EFi 	 fEPV. I J 

A procedure for computing the sets Fp j E N , is presented in Section 3.4. The 

reduced dual problem RD is obtained from DSP2  by replacing the cluster set B with the 

subset F= u F f . 
jEN 

Problem RD is as follows: 

( RD ) z( RD) = Max E 	ply 	 (3.19) 
ieN 

subject to E ui  w 	, 	VteF 	 (3.20) 
iEBL  

Ui , 	 ViE N 	 (3.21) 

w 0 	 (3.22) 

where the upper bound Ui  , iEN, are chosen such that : 

EUi 	B\F 
iE 

(3.23) 

Theorem 3.3. Any feasible solution of RD is also a feasible solution of DSP2. 

Proof. Constraints (3.21) and (3.23) imply that every feasible solution to RD satisfies 

the following inequalities : 
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ui  +wS YUi + W C.1 W, Vt E B\ 
ieB, 	ieB, 

From inequalities (3.22) and (3.24), the theorem is proved. 

Problem RD can be considered to be the dual of the following problem RP: 

(RP) 	 z(RP) = Min I dx, + EU i y i  
£e5 	iEN 

subject to I xi  + yi  = 1, 	Vi e N 
EE; 

Ixt  + yo  = p 
tEg 

(3.24) 

	

0, 	 VtEF 

	

yi  > 0, 	 ViE Nu{0} 

Procedure H2  finds an optimal solution (x* ,y* ) of RP of cost z*(RP) and the 

corresponding optimal dual solution (u*  , w* ) of RD. Hence, we have  

z(DSP2 )= z*  (RP) and u2  = u*  , w2  = w*  . 

An optimal CPMP solution 

Procedure HDSP finds a solution 	w') of DSP of cost 

z'(DSP) = z(DSP1 )+ z(DSP2 ) by setting u' = u1  + u2  and w' = w1  + w2 . 

The cases where the optimal solution (x* , y ) of RP corresponds to an optimal 

solution of problem SP are as follows: 

(a) x*  integer, y*  = 0. 

This solution is also an optimal CPMP solution of cost z*  (SP) = z'(DSP) . 

(b) x*  not integer, U i  = 00, Vie N , y*  = 0 . 

In this case the clusters of any optimal CPMP solution are in set .T, hence, the 

solution (u', w') is an optimal solution of problem DSP and an optimal CPMP 

solution can be obtained by solving problem SP where set B is replaced with F. 
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(c) y*  0 . 

The RP solution achieved is not feasible for CPMP even if variables 4, £ E 7" , 

have integer values. In fact, 	> 0 , for some i E N , implies that vertex i is not 

fully covered by the clusters that are in the optimal RP solution, i.e. set .T might not 

contain an optimal or even a feasible CPMP solution. 

3.3.2.1 THE COMPUTATION OF U,,ieN 

A valid method for computing U i  , ieN, in order to satisfy constraints (3.23) is as 

follows. Let crx = Max{c1}, Vj E N and let j*  be such that: 
te Fj 

= Min[c7 Q j ]. 
jE N 

Up, i E N, is assigned the following value: 

x 	 ,, lQi  

It is easy to show that the values assigned to U i  , i E N according to expression 

(3.25) satisfy inequalities (3.23). In fact, for any 	B\F, 
(3.26) EUi  = E qi  cn..z*ax/Q  .* 

iEBe 	iE Be  

since 

c" / Q 	C max  1Q7ci, 	/IQTct  

From (3.26), we obtain: 

Eui  < Eqi  ci/Qice  
iE Bt 	iE Be  

Moreover, as Eqi/Q„, 5 1, from inequalities (3.27) we have : 
ie Be 

tEB\FE 
ieSt  

(3.27) 
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3.4 GENERATION OF SET 5" 

In this section, a procedure, called GEN( Fi  ), that generates, for a given median j, a 

cluster set Fj  satisfying conditions (3.18a) and (3.18b) is described. GEN(Fi  ) is 

derived from an exact dynamic programming procedure for generating set Pi  by 

limiting the size of the state space graph in such a way that the states generated at the 

last stage of the recursion correspond to a set Fi • 

Let c2  (B) = (dir,(,)  - )— w1  be the reduced cost of cluster B for median n(B) 
iE B 

with respect to the dual solution (u1,w1) produced by procedure 111  . Let 

N = (i1 ,i2 ,...,in_i ) be the ordered set of the (n —1) customers obtained from N by 

removing the median customer j. From a computational point of view, the vector N is 

ordered so that (dik./  — ulk  )15-  (dik+if —14k+i)' k =1,...,n — 2. 

Consider a feasible cluster B c{j,i1 ,i2 ,...,ik } and let fk  (B) be the reduced cost of 

the feasible cluster of minimum reduced cost that can be obtained by expanding B with 

the customer subset i { k+1, i k+2 ,  • • • ,in-1} • The value of fk  (B) can be computed as 

follows: 

fk (B)=  C2  (B)+ g ki4(13) 
	 (3.28) 

where, 

g k+1(B)=  

subject to 

n-1 
Min  E( 1 i • —u  r r1 	r 

r=k+1 

n-1 	( 

E qir  r 	Qi 	qi 
r=k+1 	 iEB 

yr  E 10,11, r=k+1,...,n-1 

We assume gn  (B) = 0 so that fn_i (B) = c2  (B). It is easy to verify that function 

fk  (B) has the following properties 

(P1) 
	

f k (B)_ f k+i (B), k =1,...,n — 2 	 (3.29) 
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(P2) 
	

f k  (B) < fk+1(B V fik+11), k =1,...,n — 2 	 (3.30) 

Let R k  be the set of all feasible clusters that can be obtained by using the first k 

customers {4 ,i2 ,...,ik  } of N and such that: 

fk (B) < z(UB) —  z(DSP1 ), dB E Rk  

We assume that j e B and Eqi 	VBE R k  . Every cluster B such that 
ieB 

it(B) # j is removed from R n_1 . It is evident that the resulting set R n_i  is a subset of 

P1, that is: R n_1  = {B E Pi  : c2  (B) < z(UB) — z(DSP1 )}, and therefore, R n_i  can be 

used instead of Pi  for generating 5 . However, the size of each R k  , k =1,...,n —1, 

might be too large even if the gap z(UB) — z(DSP1 ) is small. To overcome this 

problem, we propose a procedure called GEN( Fi  ) that generates, for a given median j, 

a sequence of subsets Rk , k =1,...,n —1, satisfying the following two conditions: 

'Ric I 5- a 
(3.31) 

MPLx[fk (B)] < Min [fk(B)] 

	

BERk 	BeRk\Rk 

The cluster set Fi  corresponds to Rn_1  after having removed any cluster B such 

that n(B) j . 

Procedure GEN( Ff  ) makes use of a temporary set Tk  representing, at each stage k, a 

subset of Rk  such that Max[f k (B)] 	MM [f k (B)]. The set Rk  is then extracted 

	

BETk 	 BERk\Tk 

from Tk . At each stage k of GEN( Fi  ), Rk CTk C Rk • 

Algorithm 3.2: GEN( Fl  ) 

Step 0. Set To  = full and k=0. 

Step 1. (Define the subset Rk  CTk ) 

if ITk  I A , then set Rk  = Tk  and define hk  = z(UB)— z(DSP1 ). 
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if ITkl> A  , then let Rk be the largest subset 

1Rk  (<_ A and Max[ f k  (B)] 	Min [f k  (B)] . Set 
BERk 	BE Tk \Rk 

of Tk such that 

hk  = Max [fk (B)] 
BE 12k 

and Tk+1 = 

Step 2. (Generate Tk+i) 

For any B E Rk , consider the two clusters B and B' = B v  {ik+i } as 

possible elements of Tk±i. 

If fk+i  (B) hk  , then add B to Tk+i . 

If I qi  5_ Qi  and fk+i  (B') hk  then add B' to Tk+1 . 
iE B' 

Step 3. 	Set k = k +1. If k <n-1, then go to Step 1. 

Step 4. (Define F j ) 

Remove from R„_1  every cluster B such that n(B) # j 
Set Fi  be the largest subset of qtn_1  such that 	A and 

Max[c 2  (B)]5. Min [c2  (M]. Set hn_i  = Max[c 2  (4. 
BE 5J 	 BEN,n_ff 	 BE 5.  • 

It is easy to note that h1  h2 	ha_i  since fk+1 (B) hk VB E Tk+1  while 

Rk+1 C Tk+i. In order to prove that every Rk  , k =1,...,n -1, satisfies conditions 

(3.31), it is sufficient to show that 

f k  (B) hk , VB E Rk \Tk 	 (3.32) 

In fact, due to Step 1 if condition (3.32) holds, f k  (B) hk  , VB e Rk \Nk  and 

fk  (B) hk  , VB E Tk  \R,k  

Assume that Rk_i satisfies condition (3.31). This is true for k = 2 if A 2 since 

!Rd = 2. By contradiction, assume that there exists a cluster B*  E Rk \Tk  such that 

fk  (B* )< hk  . There are two cases: 

1. 	ik E B*  . For property P2, fk-1 (B*  k 5- fk  (B*  ) • Since f k  (B*  )< hk  and 

hk  , 	(B*  \ {ik  })< hk _1  and (B*  \ fik  1)E Rk-1. Consider Step 2 at stage 
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k —1. The expansion of cluster (B*  \{ik })0 Rk_i produces B*  that is added to 

Tk since f k  (B* )< hk _i  and this show the contradiction. 

2. 	ik  0 B*  . Due to property P1 and hk-1  ?_ hk  , f k _1 (/3*  )< hk_1  and, hence, 

B*  E Rk_i. Therefore, at Step 2, the cluster B*  is added to Tk  and this shows the 

contradiction. 

3.5 METHODS FOR SOLVING THE CPMP 

In this section, two methods for solving the CPMP are described. The first, called 

EHP, consists of reducing the number of variables of the integer program SP so that the 

resulting problem can be solved by an integer programming solver (e.g. CPLEX). The 

second is the branch and bound method proposed by Pirkul (1987) which has been 

implemented in order to compare the computational performance of algorithm EHP. 

3.5.1 THE EHP PROCEDURE 

Whenever procedure H2  ends without having found the optimal solution, it is 

necessary, as described in Section 3.2, to solve the following problem SP' : 

(SP') 	 z(SP') = Min Ectx, 
tEB,  

subject to Ex, .1, 
t'EBinB' 

EXt = p 
GI3' 

xt  E 10,11 Vt E B' 

Vi e N 

where set B' is computed according to expression (3.11). However, the size of B' may 

be still too large. In this case, set B' is replaced with a subset F c B' in such a way 

that the resulting problem becomes solvable by an integer programming code. The 

solution achieved might not be an optimal CPMP solution, but it is possible to evaluate 

its distance from optimality. 
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Let (u', w') be the heuristic solution of DSP of cost z'(DSP) produced by the 

bounding procedure HDSP. Also let Q = cP  — yui- w' be the reduced cost of cluster 
iEBe  

E B with respect to (u', w') . Let Fi  be the subset of Pi  , jE N , that satisfies 

conditions (3.18), where the reduced costs Id I are replaced with lc; and z(DSP1) is 

substituted with z'(DSP) . The subsets Fi  , jeN, are computed by means of procedure 

GEN( Fi  ) using the dual solution (u', w') instead of (u 1, wl  . 

Let x*  be an optimal integer solution, of cost z*(SP'), of the set partitioning 

problem SP' where set B' is replaced by set _7" (we assume z*  (SP') = ()a if set F does 

not contain any feasible CPMP solution). Notice that, if z*  (SP') < 00 , the solution x*  is 

a feasible CPMP solution. The following recognizes if x*  is an optimal CPMP solution. 

Let L j  be a lower bound to the reduced cost of the least reduced cost cluster in the set 

Pi\ Fj, jEN and assume that Li  = oo if  IFil< A . Let GAPMIN = 	The 
jE N 

following two cases exist: 

(a) z*(SP') z'(DSP)+ GAPMIN : x*  is optimal for the CPMP, since any feasible 

CPMP solution involving some cluster of set B\F would have a cost greater 

or equal than z'(DSP) + GAPMIN 

(b) z*  (SP') > z'(DSP)+ GAPMIN : x*  might not be an optimal CPMP solution, and 

z'(DSP) + GAPMIN is a valid lower bound to the optimal CPMP solution cost. 

In constrained clustering, as described in Hansen and Jaumard (1997), additional 

requirements are imposed on the clusters such as bounds on clusters cardinality, 

incompatibility between customers, etc. Additional constraints can be easily 

incorporated both in the bounding procedure H2  and in the solution method EHP by 

changing Step 2 of algorithm GEN( Fj  ) to reject any infeasible cluster B. 
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3.5.2 THE BRANCH AND BOUND METHOD BB 

In order to evaluate the computational performance of algorithm EHP we 

implemented the Branch and Bound procedure (BB) proposed by Pirkul (1987). BB 

makes use of the lower bound LR(X) obtained from formulation F (see Section 2.2) by 

relaxing the partitioning constraints (2.2) in a Lagrangean fashion (see Section 3.3.1). 

The tree-search is a two level binary tree-search in which the first level of the tree is 

formed by fixing variables .ij  , j =1 	n , which define the medians of the solution. 

Whenever a leaf node of this top level tree is reached, it can be treated as the root of a 

new sub-tree which is explored by fixing variables 	i, j =1,...,n,i # j , which 

correspond to assigning the customers to the medians defined at the top level of the tree. 

At each tree node, a lower bound is computed by means of the subgradient procedure 

applied to the Lagrangean relaxation LR(X). The values of the multipliers A are 

initialized with the penalties associated with the lower bound found at the predecessor 

node. 50 subgradient iterations are carried out at each tree node, with the exception of 

the root node where 300 subgradient iterations are performed. 

3.5.3 A NUMERICAL EXAMPLE 

In this section we describe a numerical example to illustrate procedure EHP. The test 

problem chosen for the example was CCPX16 (see Section 3.6). The number of 

customers is n=100, among which p=10 must be chosen as medians. The capacity Q of 

each median is equal to 120 and the total demand of customers (i.e. Eqi  ) is equal to 
iE N 

1060. The data corresponding to this problem test can be found in Appendix A.1. The 

upper bound z(UB) was set equal to 955, that is, the cost of the heuristic solution found 

by the Bionomic algorithm (see Section 2.7), plus 1. 
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Figure 3.1. Example: solution to procedure 111  of cost 950.2 

Table 3.1. Example: details of the lower bound obtained by procedure H1  

Median Load Cluster 

1 68 109 {1,11,17,33,34,39,56,62,68,81,84,95 } 
2 49 87 {15,24,48,49,55,74,77,78,83,88} 
3 64 107 {2,8,12,61,64,71,73,75,93} 
4 63 100 {16,27,29,43,44,54,63,91} 
5 20 110 {4,18,20,31,37,47,52,53,72,79,86} 
6 50 85 {3,13,30,40,46,50,65,66,76} 
7 35 117 {4,19,20,31,35,42,60,80,89,98,100} 
8 4 118 { 4,18,20,25,37,47,53,72,79,86,96,99 } 
9 80 117 {6,19,26,32,35,42,58,60,80,89,98} 
10 85 94 {21,25,45,59,70,79,85,99} 
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Mediems 
• Customers 

The lower bound z(DSP1) was computed by performing 300 iterations of procedure 

H1  using an initial value of the step size E equal to 3.0. A value equal to 950.2 was 

obtained within 3.2 seconds on a Silicon Graphics Indy machine (MIPS R4400/200 

MHz processor). Table 3.1 reports the details of the lower bound computation and 

Figure 3.1 shows the corresponding solution. 

The value z(DSP2) of the lower bound obtained by procedure H2  was equal to 1.1, 

hence, the value of the final lower bound obtained by procedure HDSP was 951.3. The 

number of clusters (i.e. I FI) generated by procedure GEN( F.!  ) (see Section 3.4) was 

2311. The total computing time of procedure HDSP was 4.9 seconds. Table 3.2 reports 

the details of the lower bound solution produced by H2  and Figure 3.2 graphically 

displays the corresponding solution. 

Figure 3.2. Example: solution to procedure H2  of cost 1.1 
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Table 3.2. Example: details of the lower bound obtained by procedure H2  

{xt  } variables 

Median Load Value Coefficient Cluster 

4 118 0.33 0.10 {96,25,47,14,53,79,37,86,20,72,18,4} 
6 71 0.67 0.00 {7,41,100,32,58,26,6} 
9 120 0.33 0.00 {55,69,28,97,82,92,23,94,67,51,57,9} 
9 111 0.33 0.10 {83,28,5,97,92,23,94,67,51,57,9} 
10 120 0.33 0.00 {82,96,36,90,22,38,14,87,10} 
20 110 0.33 0.10 {53,52,31,47,86,79,37,72,4,18,20} 
22 117 0.33 0.00 {52,69,5,82,90,38,87,10,22} 
25 113 0.33 0.10 {4,18,70,96,53,59,45,21,86,85,99,25 } 
35 113 0.33 0.00 {20,47,89,19,42,31,98,80,60,35} 
35 119 0.33 0.00 {72,100,89,19,42,31,98,80,60,35} 
38 113 0.33 0.00 {52,37,14,90,87,22,10,38} 
45 91 0.33 0.80 {99,41,85,21,59,70,45} 
49 87 0.67 0.00 {78,15,77,83,48,55,88,74,24,49} 
50 85 1.00 0.00 {3,13,46,30,76,66,65,40,50} 
63 111 0.33 0.00 { 48,27,91,43,29,16,54,44,63 } 
63 115 0.33 0.00 {88,27,91,43,29,16,54,44,63} 
63 117 0.33 0.00 { 77,27,91,43,29,16,54,44,63 } 
64 118 0.33 0.00 {74,93,8,73,2,61,71,75,12,64} 
64 120 0.33 1.10 {49,78,93,8,73,2,61,71,75,12,64} 
67 115 0.33 0.00 {69,28,92,97,5,94,23,51,9,57,67} 
68 109 0.33 0.00 {34,56,81,1,17,84,33,39,11,95,62,68} 
68 115 0.67 0.00 {36,34,56,81,1,17,84,33,39,11,95,62,68} 
71 118 0.33 0.80 {7,24,15,93,8,73,61,2,75,12,64,71} 
80 117 0.33 0.20 {26,32,58,89,42,6,19,35,60,98,80} 
85 94 0.33 0.00 {79,25,99,70,21,59,45,85} 

The cost of the integer solution found by CPLEX 4.0 was 954, obtained in 1.44 

seconds. The cardinality of the set of clusters generated (i.e. I 51) was 1160. The value of 

GAPMIN was equal to 4.8. Therefore, the solution found was also the optimal solution 

of the problem since 954 951.3 + 4.8 (=956.1). The total computing time of procedure 

EHP was 6.4 seconds. Table 3.3 reports the details of the optimal solution found which 

is presented graphically in Figure 3.3. 
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Figure 3.3. Example: optimal solution found by procedure EHP 

Table 3.3. Example: details of the optimal solution of cost 954 

Median Load Cluster 

1 10 114 {10,14,22,36,38,53,87,90,96} 
2 20 118 {4,18,20,25,31,37,47,52,72,79,86,89} 
3 49 108 {7,15,24,48,49,55,74,77,78,83,88,94} 
4 80 117 {6,19,26,32,35,42,58,60,80,98,100} 
5 68 109 {1,11,17,33,34,39,56,62,68,81,84,95 } 
6 63 100 {16,27,29,43,44,54,63,91} 
7 64 107 {2,8,12,61,64,71,73,75,93 } 
8 45 91 {21,41,45,59,70,85,99} 
9 50 85 {3,13,30,40,46,50,65,66,76 } 
10 97 111 {5,9,23,28,51,57,67,69,82,92,97} 
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This test problem has also been solved to optimality using the branch and bound 

method BB described in the previous section. The total computing time of the branch 

and bound method BB was 1912 seconds and the total number of nodes in the tree 

search was 2690. 

3.6 COMPUTATIONAL RESULTS 

Algorithms EHP and BB described in Section 3.5 have been coded in Fortran 77 and 

run on a Silicon Graphics Indy machine (MIPS R4400/200 MHz processor) on four 

classes of test problems, called A, B, C, D, respectively. Classes A and B are drawn 

from the literature and classes C and D are two new sets of test problems generated in 

order to evaluate the performance of EHP on CPMP instances with additional 

constraints. CPLEX 4.0 is used as the LP-solver in procedure H2  and as the integer 

programming solver in EHP. 

The problems of classes A and B correspond to the CPMP instances used by Osman 

and Christofides (1994); set A contains 10 problems of size n=50 and p=5 while set B 

contains 10 problems of size n=100 and p=10. In these two sets of problems the 

dissimilarity matrices correspond to Euclidean distance matrices. Both test problem 

classes A and B were used to evaluate the computational performance of the Bionomic 

Algorithm for the CPMP in Chapter 2. 

The problems of classes C and D are derived from problems of class A by imposing 

additional constraints on the clusters. These constraints are bounds on the cluster 

cardinality and incompatibilities between customers. The incompatibilities are defined 

by an incompatibility matrix [tki] where tki  = 1 if customer k cannot be in the same 

cluster of customer j, 0 otherwise. We impose a maximum cluster cardinality of 6 for 

problems of class C and 11 for problems of class D. The incompatibility matrices are 

generated by randomly defining 5 incompatibilities in such a way that the optimal 

CPMP solution of the corresponding class A problem becomes infeasible (see Table 

3.4). For solving problems of classes C and D, algorithm BB has been modified by 

changing the branching strategy of the second level of the tree so that branches that lead 

to infeasible solutions are rejected. 
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Figure 3.4 shows examples of CPMP solutions with additional constraints. Figure 

3.4(a) presents the optimal solution of problem CCPX5 of class A. Figures 3.4(b) and 

3.4(c) display CPMP solutions obtained by considering 5 incompatibilities between 

customers and by imposing a maximum cardinality of 6 and of 11 for problem C5 of 

class C (Figure 3.4(b)) and for problem D5 of class D (Figure 3.4(c)), respectively. In 

the figures, the customers with the same letter (A, B, C, D or E) are incompatible, i.e. 

cannot be in the same cluster. 

Table 3.4. Problem classes C and D: incompatibilities between customers 

Problems Incompatibilities 
C1,D1 {3,7} {8,43} {11,41} {19,47} {33,48} 
C2,D2 {1,7} {3,19} 110,371 {11,32} {20,50} 
C3,D3 {2,25} {5,49} {8,39} {14,45} {27,50} 
C4,D4 {2,42} {9,46} {10,17} {11,16} {24,48} 
C5,D5 {3,12} {6,48} {7,9} {18,31} {21,44} 
C6,D6 {2,8} {4,14} {10,46} {12,47} {18,45} 
C7,D7 {2,6} {4,18} {10,36} {15,49} {27,50} 
C8,D8 {3,8} {4,6} {9,49} {22,44} {23,46} 
C9,D9 {2,15} {8,42} {9,41} {13,50} {17,40} 

ClO,D10 {1,6} {5,41} 00,461 {15,50} {28,45} 

The results obtained are presented in tables 3.5 to 3.8. The columns in these tables 

are defined as follows: 

Probl.: 	a problem instance identifier. 

z(UB): 	cost of the best CPMP solution found by the heuristic algorithms of Chapter 

3 (see Section 2.7), plus 1. The upper bounds for problems of classes C and 

D were computed using the heuristic algorithm MB1 (see Section 2.3.1.1) 

which has been modified in order to incorporate the additional constraints. 

z* (SP'): cost of the optimal CPMP solution found by algorithm EHP (or cost of the 

best solution found). 

z(DSP1): lower bound produced by procedure H1  after 300 subgradient iterations. 

tH1 	computing time of bounding procedure H1. 

%ErisPl: percentage error of the lower bound z(DSP1) (i.e. 

%EDsp1=100z(DSP1)/ z*  (SP') ). 
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z'(DSP): final lower bound produced by procedure HDSP. 

tHDSP: 	total computing time of procedure HDSP. 

%Eusp: percentage error of the lower bound ADSP) (i.e. 

%Elmsp=100ADSP)/ z*  (SP') ). 

LS: 	= z'(DSP) + GAPMIN, where GAPMIN is the value defined in Section 3.5.1. 

(The solution of cost z*  (SP') produced by EHP is optimal if 

z*  (SP') 5_ LS ). 

151 
	number of clusters generated in EHP. 

tEHp: 
	total computing time of procedure EHP including tHDSp. 

z*  (BB) : cost of the optimal CPMP solution found by algorithm BB (or cost of the 

best solution found). 

tBB: 	computing time of algorithm BB. 

A time limit of 3600 CPU seconds has been imposed in both the EHP and BB 

algorithms for all test problems. The parameter 6,, used in GEN( Fi  ), has been set to 

2000 in both procedures H2  and EHP for all test problems. 

Table 3.5 shows that most of the problems of class A are relatively easy, with the 

only exception of problem CCPX8. In fact, bound z(DSP1) is already close to the 

optimum and bound z'(DSP) is capable of finding four optimal solutions. The good 

quality of the bound enables both EHP and BB to be very effective on all problems, 

except CCPX8. Note that on this set, BB has been able, within the time limit of 3600 

sec., to prove the optimality of all instances, while EHP was unable to find an optimal 

solution for CCPX8. 

Table 3.6 shows the results of problems of class B. For these problems, z'(DSP) does 

not improve much over z(DSP1), z(DSP1) being already very close to the optimal 

solution cost on all instances. Algorithm EHP proves to be superior to BB in fact it is 

able to prove the optimality of eight solutions, while BB is able to solve to optimality 

only four problems. Furthermore EHP finds an improved solution of problem CCPX18 

without proving its optimality, since its cost is higher than the corresponding LS value. 
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Algorithm BB cannot improve the upper bound of six out of the ten instances. 

Moreover, EHP finds the optimal solution in a much smaller computing time. 

Table 3.7 presents the results for the instances of class C that include additional 

constraints. Algorithm EHP is able to prove the optimality of nine solutions out of ten, 

while BB can solve only one problem. Notice that the quality of lower bound z(DSP1) is 

much worse than on the class A problems (from which the class C problems are drawn) 

and that z'(DSP) makes an important contribution in filling the gap z* (SP')-z/(DSP). 

Table 3.8 shows the results for problems of class D. The problems of class D are 

harder than the corresponding ones of class C for both algorithms EHP and BB. This 

reflects a worse quality of lower bound H1  even though z'(DSP) continues to contribute 

significantly over z(DSP1). EHP finds, for all problems, a better solution than the initial 

upper bound, but cannot prove the optimality of any of the solutions obtained. 

Algorithm BB, on the other hand, is unable to improve over the initial upper bound for 

any of the ten instances. 

3.7 SUMMARY 

In this chapter, a new method for the Capacitated p-Median Problem (CPMP) based 

on a Set Partitioning formulation of the problem has been presented. A valid lower 

bound to the optimal solution cost is obtained by combining two different heuristic 

methods for solving the dual of the LP-relaxation of the exact formulation. The dual 

solution obtained is used for generating a reduced set partitioning problem that can be 

solved by an integer programming solver. The solution achieved might not be an 

optimal CPMP solution, however the new method allows us to estimate its maximum 

distance from optimality. The computational performance of the new exact algorithm 

has been evaluated on two classes of test problems proposed in the literature and on two 

new sets of difficult CPMP instances with additional constraints. The results show that 

the exact algorithm is able to solve exactly CPMP's of size up to 100 customers. 
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°Medians 	 °Medians 
• Customers 	 • Customers 

(b) Solution of Problem C5 
	

(c) Solution of Problem D5 

°Medians 
• Customers 

(a) Solution of Problem CCPX5 

Figure 3.4: Example of CPMP solutions with additional constraints 
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Table 3.5. Computational results of problem class A 

HDSP EHP BB 

Probl. z(UB) z(DSP1) till %EDsP1  z'(DSP) tHDSP %EHDSP Z*  (SP') LS VI tEHP Z*  (BB) tBB 

CCPX1 714 704.2 0.9 98.8 705.0 1.4 98.9 713 715 570 . 	1.7 713 5.4 
CCPX2 741 739.5 0.3 99.9 740.0 0.4 100.0 740 a 742 10 0.4 740 0.8 
CCPX3 752 748.2 0.7 99.6 749.0 0.9 99.7 751 753 64 1.0 751 2.4 
CCPX4 652 650.2 0.4 99.9 651.0 0.6 100.0 651 a 653 23 0.6 651 0.7 
CCPX5 666 663.1 0.5 99.9 664.0 0.7 100.0 664 a 667 19 0.7 664 4.1 
CCPX6 779 777.6 0.4 100.0 778.0 0.5 100.0 778 a 780 41 0.6 778 2.0 
CCPX7 788 778.1 1.7 98.9 778.3 2.6 98.9 787 788 1915 4.7 787 29.3 
CCPX8 821 770.8 1.9 94.0 772.1 26.7 94.2 821 c 789 30491 3600.0 820 1990.3 
CCPX9 716 712.1 1.2 99.6 712.6 1.6 99.7 715 717 355 1.8 715 14.3 

CCPX10 830 815.1 2.3 98.3 818.4 4.5 98.7 829 834 2511 12.2 829 288.5 
Averages 	 1.0 

	
98.9 
	

4.0 
	

99.0 
	

362.4 
	 233.8 

(a) optimal solution obtained by procedure HDSP. 

(c) no solution found of cost smaller than z(UB). 
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Table 3.6. Computational results of problem class B 

HDSP EHP BB 
Probl. z(UB) z(DSP1) tHi %Epspl z'(DSP) tHDSP %EHDSP Z * (SP') LS 191 tEHP Z*  (3B) tBB 

CCPX11 1007 1000.1 3.6 99.4 1001.1 6.4 99.5 1006 1008 2551 11.7 1006 1099.3 
CCPX12 967 958.2 4.1 99.2 958.5 11.6 99.2 966 968 17458 832.8 967 c 3600.0 
CCPX13 1027 1021.1 2.8 99.5 1021.6 3.7 99.6 1026 1028 995 5.1 1026 88.3 
CCPX14 983 971.1 4.2 98.9 971.8 12.0 99.0 982 984 17362 304.3 983 c 3600.0 
CCPX15 1092 1079.1 4.8 98.9 1079.8 16.6 99.0 1091 1092 19394 558.4 1092 c 3600.0 
CCPX16 955 950.2 3.2 99.6 951.3 4.9 99.7 954 956 1160 6.4 954 1911.6 
CCPX17 1035 1024.1 4.7 99.0 1025.3 11.8 99.2 1034 1036 10252 280.5 1035 c 3601.0 
CCPX18 1044 1031.2 4.3 98.9 1031.7 15.9 98.9 1043 b 1040 23211 1137.8 1044 c 3600.0 
CCPX19 1032 1025.1 4.3 99.4 1026.3 7.5 99.5 1031 1033 3105 22.2 1031 3115.8 
CCPX20 1006 972.2 6.7 96.6 972.8 77.3 96.7 1006 c 984 62872 3600.0 1013 c 3600.0 

Averages 	 4.3 
	

99.0 
	

16.8 
	

99.0 
	

675.9 
	

2781.8 

(b) this solution was not proved to be optimal. 

(c) no solution found of cost smaller than z(UB). 
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Table 3.7. Computational results of problem class C 

HDSP EHP BB 

Probl. z(UB) z(DSP1) tHi %Epspl z'(DSP) tH-Dsp %EHDSP z*  (SP') LS ICI tEHP z*  (BB) tBB 

Cl 477 423.2 1.5 88.9 435.0 72.9 91.4 476 476 46392 2644.6 477 c 3600.0 
C2 519 472.2 1.8 97.6 480.3 2.6 99.2 484 486 240 2.7 484 909.0 
C3 504 440.1 1.7 87.5 468.6 35.2 93.2 503 b 499 26695 74.8 504 c 3600.0 
C4 464 422.1 1.9 94.0 441.8 8.7 98.4 449 468 809 9.9 464 c 3600.0 
C5 521 474.1 2.0 96.8 490.0 3.3 100.0 490 492 91 3.3 491 b 3600.0 
C6 564 513.2 1.8 92.5 544.9 20.9 98.2 555 572 1312 23.5 564 c 3600.0 
C7 536 487.3 2.6 92.1 501.0 26.0 94.7 529 531 16714 369.2 536 c 3600.0 
C8 479 436.1 1.9 93.4 461.9 5.6 98.9 467 469 298 5.7 479 c 3600.0 
C9 497 452.3 2.8 91.9 489.7 21.1 99.5 492 513 269 21.4 497 c 3600.0 

C10 544 495.1 2.5 94.5 512.5 5.2 97.8 524 526 709 5.7 544 c 3600.0 
Averages 	 2.0 

	
92.9 
	

20.1 
	97.1 
	 316.1 

	
3330.9 

(b) this solution was not proved to be optimal. 

(c) no solution found of cost smaller than z(UB). 
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Table 3.8. Computational results of problem class D 

HDSP EHP BB 

Probl. z(UB) z(DSP1) tHi  %Epspl ADSP) tHDSP %EHDSP z*  (SPA) LS VI tEHP z*  (BB) tBB 

D1 819 704.3 1.5 86.1 738.7 126.1 90.3 818 b 763 39487 478.2 819 c 3600.0 
D2 835 739.3 1.6 93.8 758.7 68.4 96.3 788 b 771 39837 85.9 835 c 3600.0 
D3 857 747.4 1.7 87.3 768.7 138.6 89.8 856 b 787 46250 249.0 857 c 3600.0 
D4 734 650.1 1.6 90.5 682.3 81.5 95.0 718 b 697 37240 94.7 734 c 3600.0 
D5 776 663.2 2.2 85.6 723.9 108.3 93.4 775 b 742 39930 126.1 776 c 3600.0 
D6 878 777.3 1.6 91.6 810.9 87.2 95.5 849 b 831 41040 172.9 878 c 3600.0 
D7 878 777.2 2.2 91.2 818.4 113.6 96.1 852 b 832 46663 131.4 878 c 3600.0 
D8 870 770.4 1.9 90.3 801.6 108.0 94.0 853 b 818 44253 224.3 870 c 3600.0 
D9 804 712.1 2.0 92.7 736.4 85.1 95.9 768 b 746 40311 170.8 804 c 3600.0 

D10 922 816.2 4.2 91.2 845.9 111.1 94.5 895 b 869 46395 568.5 922 c 3600.0 
Averages 	 4.2 

	
90.0 
	

102.8 
	

94.1 
	 230.2 

	
3600.0 

(b) this solution was not proved to be optimal. 

(c) no solution found of cost smaller than z(U) 
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CHAPTER 4 

NEW EXACT ALGORITHMS FOR 

ROUTING PROBLEMS BASED ON A 

TWO-COMMODITY NETWORK FLOW 

FORMULATION 

4.1 INTRODUCTION 

Routing problems require the determination of optimal sequences subject to a given 

set of constraints. The best known problem of this type is the classical Traveling 

Salesman Problem (TSP), calling for a minimum cost Hamiltonian cycle on a given 

graph. Another well known routing problem is the Vehicle Routing Problem (VRP) that 

involves the optimization of the distribution of goods from a single depot to a given set 

of customers with known demands using a given number of vehicles of fixed capacity. 

Both the TSP and the VRP play a central role in distribution planning and have been 

studied extensively over the past four decades. For the TSP, see the book edited by 

Lawler et al. (1985), Laporte (1992a) and Ringer et al. (1995). For the VRP, see 

Magnanti (1981), Bodin et al. (1983), Christofides (1985), Golden and Assad 

(1986,1988), Bodin (1990), Laporte (1992b) and Fisher (1995). See also the recent 

bibliographies by Laporte and Osman (1995) and by Laporte (1997). 

The TSP has been proven to be NP-hard by Karp (1972). The VRP is a 

generalization of the TSP and is also a NP-hard problem. 
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In this chapter we investigate new integer programming formulations for routing 

problems which are based on the two-commodity network flow formulation of the TSP 

described by Finke et al. (1984). This formulation is interesting in many different ways. 

It can be shown that its LP-relaxation satisfies a weak form of the subtour elimination 

constraints. The formulation can also be modified to accommodate different constraints 

and, therefore, is capable of being extended to different routing problems. The two-

commodity formulation has been used by Lucena (1986) to derive new lower bounds 

for the VRP and by Langevin et al. (1993) for solving the TSP and the Makespan 

Problem with time windows. In this chapter, we use the two-commodity approach to 

derive new integer programming formulations for the VRP, the TSP with mixed 

deliveries and collections (TSPDC) and the TSP with Backhauls (TSPB). New lower 

bounds are obtained from the linear relaxation of these formulations which are further 

strengthened by new valid inequalities. 

The chapter is organized as follows. In Section 4.2 the original two-commodity 

network flow formulation of Finke et al. (1984) is described and a new formulation for 

the symmetric TSP is presented. In Section 4.2, a lower bound for the TSP based on the 

LP-relaxation of the new formulation strengthened by valid inequalities is described. In 

Sections 4.3 the new TSP formulation is extended to derive a new integer programming 

formulation and an exact branch and cut algorithm for the VRP. In Section 4.4 new 

formulations and exact branch and cut algorithms for both TSPDC and TSPB are 

described. In Sections 4.3 and 4.4, computational results of the new algorithms are also 

presented. Finally, conclusions are presented in Section 4.5. 

4.2 A TWO-COMMODITY FORMULATION OF THE TSP 

Let G = (V, A) be a directed graph where V = 11,2,...,0 denotes the set of vertices 

and A the set of arcs. A non-negative cost cal  is associated with each arc (i, j) E A . The 

TSP is the problem of finding a minimum cost Hamiltonian circuit on graph G. 

Finke et al. (1984) introduced the following two-commodity network flow 

formulation for the TSP. 
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Pt = —1 	otherwise 
{(n — 1) for i = 1 

(4.1) 

and 

qi  = 
1 	otherwise 

{—(n-1) for i = 1 
(4.2) 

Figure 4.1. Flows in the Hamiltonian circuit 

For each i e V , the amount pi  of a commodity P and the amount q1  of a commodity 

Q are defined as follows: 

The idea behind the formulation is that the salesman, when traversing a Hamiltonian 

circuit, should always carry with him, through any arc, the same total combined amount, 

n —1, of the two-commodities. Let us suppose, for instance, that his tour starts from 

vertex 1, with n-1 units of P and 0 units of Q. This makes a total combined amount of 

n —1 units of flow. At the following vertex in the tour, the salesman leaves one unit of 

P and picks-up one unit of Q, as implied by (4.1) and (4.2). Once again, the total 

combined amount of flow he will be carrying will be equal to n —1 units. Proceeding in 

this way, the salesman finally arrives back to vertex 1 carrying 0 units of P and n —1 

units of Q. One interpretation that could be made is that, at any arc of the Hamiltonian 

circuit, the amount of commodity P represents the number of vertices left to be visited 

by the salesman. Conversely, the amount of commodity Q represents the number of 

vertices that have already been visited. This process is illustrated, for a 5-vertex 

Hamiltonian circuit, in Figure 4.1. 
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Let xiP and xiQ  be the units of commodity P and commodity Q carried by the 

salesman in traversing arc (i, j)E A, respectively. Let 4i;  be a binary variable that is 

equal to 1 if arc (1, j)E A is in the optimal TSP solution, 0 otherwise. 

The formulation of the TSP proposed by Finke et al. (1984) is as follows: 

(TSP) 	z(TSP)= Min 	cyij 	 (4.3) 
(i,DEA 

subject to Exii; — Exci  
j€17 	jEV 

	

qi  , 	 Vi E V 	(4.5) 
jEV 	 jeV 

1k +.0=n-1, 	 (4.6) 
jEV 

xiP

xi; +4 = (n 	, 	 (4.7) 

> 0 x9 > 0 — 	— 	 V(i, j)E A 	(4.8) 

ij E {0,1} , 	 (4.9) 

Constraints (4.4), (4.5) and (4.8) define a feasible flow for commodity P and a 
feasible flow for commodity Q. Constraints (4.6) and (4.7) ensure that there is exactly 

one arc leaving each vertex i E V which carries a combined total flow of n —1 units. 

There is also exactly one leaving arc with n —1 units at each vertex since equations 

(4.4) and (4.5) add up to 0. In addition, there must be a path from vertex 1 to every other 

vertex j and a path from j back to 1 because of the supply-demand pattern. Hence (4.3)-

(4.9) characterize exactly a Hamiltonian circuit of cost z(TSP) . 

Using the flow variables {4} and 14 } only and eliminating constraints (4.7), the 

above formulation can be rewritten as follows: 

(TSP) 	z(TSP) = Min 	1 ,..( 
U 
 xf -Fx9) 

(n —1) (i,j)EA 	1-1  

subject to (4.4), (4.5), (4.6), (4.8) and 

4 +4 E 10,n —11, 

(4.10) 

V(i, j)E A 	(4.11) 
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(4.4) = pi ,  

  



Then, a valid lower bound for the TSP can be obtained by replacing the integer 

conditions (4.11) with the inequalities xi; +4 (n —1) . However, these constraints 

are redundant because of (4.6). Consequently, we have the following LP-relaxation: 

(LRTSP) z(LRTSP) . Min  	1
') 	

+ x9) 
(n 	AEA  

subject to (4.4), (4.5), (4.6) and (4.8) 

A comparison of the lower bound derived from the two-commodity formulation 

LRTSP and from the Assignment Problem (AP) yields Theorem 4.1. 

The AP problem associated with the TSP is defined as follows. 

(AP) 	 z(AP) = Min 
(i,i)EA 

=1, 
jeV 

E4ii =1, 
jeV 

 

subject to 

Vi e V 

   

0 , 	 V(i, j)e A 

Theorem 4.1 (Finke et al. (1984)). The two lower bounds for the TSP satisfy the 

inequality z(LRTSP) z(AP). Both bounds coincide for indistinguishable commodities 

P=Q. 

Proof. Consider the combined flow ij  per unit of flow 

ij = (xi; + 	An 	. 	 (4.12) 

	

Constraints (4.6) imply that yi 	=1 and (4.4), (4.5) imply E ji  =1. Hence 

	

jeV 	 jEV 

4 = [4u ] is a feasible solution of the assignment problem AP. Thus, 

z(LRTSP) > z(AP). 

Now suppose we have identical commodities P and Q. Let E  be an integer valued 

assignment solution. The arcs with 4,i  =1 form a collection of circuits. Since P and Q 

are interchangeable, we have a total requirement of zero units at each vertex. It is 

therefore easy to find numbers xi; and x , satisfying xi; + 4 = (n —1) whenever 
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ail = 1 , which satisfy constraints (4.4), (4.5) and (4.8). Hence z(LRTSP) = z(AP) for 

identical commodities P and Q. 

A circuit of graph G is called prehamiltonian if it passes at least once through all 

vertices of G. A prehamiltonian graph is a graph that possesses such a circuit. Consider 

a feasible solution xP  and xQ of the two-commodity LP-relaxation LRTSP and define 

its flow supporting graph G x  = (V ,Ax ) where Ax  = j)E AI xi; + 	> 01. 

For simplicity, we will use the following notations. For given subsets of nodes 

S, S' c V , the set (S : 5') (cut between S and S') is the set of arcs with one end-node in 

S and the other in S' ((S : S')= {(i, j)E A : i E S, j E S'}), y(S) is the set of arcs with 

both end-nodes in S ( y(S)= {(i, j)E A: i, j E S}). For any subset F of arcs, x(F) denotes 

the sum of the 	values over all arcs (i, j)E F . 

Theorem 4.2 (Finke et al. (1984)). The graph G x  = (V, Ax ) is prehamiltonian. 

Proof. G x  is prehamiltonian if, and only if, G x  is strongly connected. Suppose 

j E V. A vertex i # 1 has a supply of one unit of Q. Since the vertex 1 is the only sink 

for Q, there must be a path in G x  from i to 1. Similarly, a vertex j #1 has a 

requirement of one unit of P. Vertex 1 is the only source for P, i.e., there is also a path 

in G x  from 1 to j. Hence one obtains a path from i to j for all pairs of vertices. 

Theorem 4.3 (Finke et al. (1984)). Let xP  and xQ be a feasible two-commodity flow. 

Then the associated assignment solution = (xi)  + xQ An —1) satisfies the following 

weak version of subtour elimination constraints: 

x((W : V — W)). min(IWI,IV — WI)/(n —1) 	 (4.13) 

x(Y(W )) < IWI min(IW I,  IV — 1471)/(n —1) 	 (4.14) 

for all W c V with 2 5_ [WI n— 2. 

Proof. Let (W,V —W) be a partitioning. Suppose that vertex le W . The set V — W has 

a requirement of IV —WI units of commodity P. Hence at least IV —WI units are sent 
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from W to V —W , i.e., x((W : V —W 	IV — WIAn —1) . Similarly, if lE V -W , at least 

the total supply of IWI units of Q has to be sent out of W. Hence  

x((W : V —W)) 	—1). Thus (4.13) is valid. Inequality (4.14) is an immediate 

consequence of (4.13)m  

An optimal integer solution to the assignment problem corresponds to a collection of 

circuits or subtours. One characteristic property of this configuration, including the case 

of a single (Hamiltonian) circuit is the symmetry 

x((W :V —147))= x((V —W :W)) 	 (4.15) 

for all subsets W c V . 

Theorem 4.4 (Finke et al. (1984)). The associated assignment solution 

= (x13  + xQ)/(n —1) possesses the symmetry property. 

Proof. The theorem is true for the trivial cases 	1 and IWI n —1. For the 

remaining subsets W one may assume that le V —W . Then there are exactly IWI more 

units of P entering W than there are units of P leaving W. Similarly, there is exactly an 

excess of IWI units of Q leaving W. Hence we have the same total two-commodity flow 

in both directionsm  

4.2.1 A NEW FORMULATION FOR THE SYMMETRIC TSP 

In this section we describe a new integer programming formulation for the 

symmetric TSP (STSP) based on the two-commodity flow formulation of Finke et al. 

(1984) described in the previous section. 

The formulation of Finke et al. for the STSP would require to define a directed graph 

containing two arcs ((i,j) and (j,i)) for each edge {i, j} E E . In this case the formulation 

of Finke et al. requires 2n(n-1) variables {xI; } and {x? } , and n(n-1) variables 	} . 

The new formulation we are going to describe requires half the number of variables 

of the Finke et al. formulation. 
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xi) 

X J1  

Figure 4.2. The symmetric TSP 

Consider the STSP on the complete undirected graph G = (V , E) , with vertex set 

V = {1,2,...,n} and edge set E = 	j} : i, j E V, i < j} . 

Let 	be a 0-1 binary variable equal to 1 if edge 	j}E E is in solution, 0 

otherwise. Let xu  be the flow value of arc (i, j), i, j E V ,i # j . The new formulation is 

obtained from the observation that the flows of both commodities P and Q carried by 

the salesman in traversing edge j} E E can be represented by the variables 	and 

xii  , respectively, as shown in the example of Figure 4.2. 

For simplicity, we will use the following notation. For given subset of nodes S c V , 

the set 8(S) (coboundary of S) is the set of edges with one end-node in S and the other 

in V \ S (8(S) = {{i, j}E E:iE Sd EV -S}), y(S) is the set of edges with both end-

nodes in S ( y(S). j}c E j E Sp. For any subset F of edges, x(F) denotes the 

sum of the 	values over all edges {i, j}E F . 

The new mathematical formulation for the STSP is as follows: 
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(STSP) z(STSP)= Min Eck& 	 (4.16) 
{i,j)EE 

subject to y xi., - E x ii  = —2 , 	i # 1 	 (4.17) 
jEV 	jEV 

E 	
} 

Vi E V 
x j., — E xfi  = 2(n —1), i =1  (4.18) 

jEV 	jEV 

xii  + xii  = (n — l) i,  , 	V{i, j} E E 	 (4.19) 

x(8(0)= 2, 	 Vi c V 	 (4.20) 

xu 	0, 	 Vi, je V,i # j 	(4.21) 

i•i E OA , 	 V{i, j}e E 	 (4.22) 

Constraints (4.17), (4.18) and (4.21) define a feasible flow for variables {xu} and the 

supply-demand pattern impose that there is a path from vertex 1 to every other vertex j 

and a path from j back to 1. Constraints (4.19) and (4.20) force the degree of each vertex 

to be 2. Constraints (4.22) are the integrality constraints. Hence (4.16)-(4.22) 

characterize exactly a Hamiltonian cycle of cost z(STSP). 

Note that formulation STSP can be written in terms of variables {xii  } only since each 

i.i  can be replaced by (xu  + x ii  )/(n —1). Hence, the number of variables of the STSP 

formulation is n(n —1) which is half the number of variables of the original formulation 

for the STSP. Similarly, the number of constraints has been reduced from 3n (original 

formulation) to 212 (STSP formulation). 

A valid lower bound for the TSP can be obtained by replacing the integer conditions 

(4.22) with the inequalities xu  + xu  (n —1). Consequently, we have the following LP-

relax ati on : 

(LRSTSP) 	z(LRSTSP) = Min 	1  	I c, (x j., + xii  ) 
(n-1) fi, iieE  

subject to (4.17), (4.18), (4.20), (4.21) and 

xu  + xii  (n —1), V{i, j}C E 
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4.2.2 VALID INEQUALITIES 

In this section we describe some valid inequalities that are satisfied by any feasible 

integer solution of the STSP formulation, but that are not necessarily satisfied by a 

feasible LRSTSP solution. Hence, the lower bound derived from the LP-relaxation can 

be further improved by introducing such violated inequalities. 

Trivial inequalities 

The inequalities 0 	5_ 1, for 	E , are referred to as the trivial inequalities. 

Flow inequalities 

Consider xif + x~i = (n 	, V{i, j} E E, i # 1, j # 1. In any feasible integer 

solution, if 	=1, then xu 1 and xii 1, while in a feasible LRSTSP solution, we 

might have y > 0 and either x1 = 0 or xii = 0 . Therefore in LRSTSP we can impose 

the following constraints. 

} 
Vli, E E,i 	j 1 

or, using equation xq + x ji = (n 	: 

xij (n — 2) — xii 0 

xfi (n — 2)— xu 0 

 

Vi,jE V,i < j,i 1 	(4.23) 

  

We define inequalities (4.23) to be the flow inequalities. 

Subtour elimination inequalities 

The classical subtour elimination inequalities for the two-commodity flow 

formulation of the TSP can be expressed in terms of the txu variables used in 

formulation STSP. The original subtour elimination inequalities introduced by Dantzig 

et al. (1954) are given by: 
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x(y(W)) 'WI —1, VW c V, 2 IWI n — 2 

or 

x(8(W)) 2, VW c V, 2 IWI n— 2. 

The variables 	can be expressed as tj = (xij + x ji )1(n —1) in formulation STSP 

and, therefore, the subtour elimination constraints become: 

E(xii d-x.,i)(1w1-1)(n —1), VW c V, 2 	'WI 	n— 2 
i,jew 
i<j 

(a)  

(4.24) 
or 

E 	E(xt, 1-xii ) 	2(n-1), VW c V, 2 	'WI 	n — 2 
ieW jeV—W 

(b)  

The LP-relaxation violates a subtour elimination inequality if and only if the 

minimum weight cut in G x has weight less than 2. Since the minimum weight cut in a 

graph with nonnegative edge weights can be found in polynomial time with the 

algorithm proposed by Gomory and Hu (1961), the separation problem for the subtour 

elimination inequalities can be solved in polynomial time. The Gomory-Hu algorithm is 

based on the computation of n —1 maximum flow problems on some weighted graphs 

derived from G x . The complexity of a maximum flow algorithm is 

O~VIIEI Iog 	(see Goldberg and Tarjan (1988)), and so the complexity of the 

algorithm is 471 21EI/ogV12 AE1)). For large instances of the TSP such a complexity is 

expensive in terms of actual computation time, since the separation problem has to be 

solved several times in a branch and cut algorithm. For this reason many heuristic 

procedures have been proposed to find violated subtour elimination inequalities within 

short time (see, e.g., Crowder and Padberg (1980) and Grotschel and Holland (1991)). 

The procedure we implemented for the identification of violated subtour elimination 

inequalities is based on the method proposed by Padberg and Rinaldi (1990). Padberg 

and Rinaldi describe an exact algorithm that finds the minimum weight cut in a graph 

with a drastic reduction in the number of maximum flow computations. Even though the 

algorithm has the same worst case time bound as the Gomory-Hu algorithm, it runs 

much faster in practice and it allows the execution of an exact separation algorithm at 

every iteration of a branch and cut procedure. The idea of this algorithm is to exploit 
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some simple sufficient conditions on Gx  that guarantee that two nodes belong to the 

same shore of a minimum cut. If two nodes satisfy one of these conditions then they are 

contracted. The contraction of two nodes in Gx  produces a new weighted graph where 

the two nodes are identified into a single node; loops are removed and any two parallel 

edges are replaced by a single edge with weight equal to the sum of their weights. The 

resulting graph has one node less and the shores of a minimum cut in it can be turned 

into the shores of a minimum cut in G x , by replacing the node that results from the 

identification with the two original nodes. The contraction of a pair of nodes can be 

applied recursively until no more reductions apply. At this point the Gomory-Hu 

algorithm can be applied to the resulting reduced graph. 

A different algorithm also based on the contraction of pairs of nodes is proposed by 

Nagamochi and Ibaraki (1992a, 1992b). The algorithm does not require the computation 

of a maximum flow and runs in 4711E1+11712  log(IVI)) time. Another algorithm for the 

minimum cut is proposed in Hao and Orlin (1992). This is a modified version of a 

maximum flow algorithm and it is able to compute the minimum cut within the same 

running time required by the computation of a single maximum flow 

( OfrIlEllogV12  AEI))). Karger (1993) proposed a randomized algorithm for computing 

a minimum cut with high probability. The algorithm runs in *111712  log 3  (IVI)). An 

improved version ( 06712  log 3 (IVI))) of the same algorithm has been proposed by 

Karger and Stein (1993). 

4.3 THE VEHICLE ROUTING PROBLEM 

In this section the VRP is formulated by using a two-commodity network flow model 

and an exact branch and cut method for solving the problem to optimality is described. 

The VRP is the problem of designing, for a vehicle fleet located at a central depot, a 

number of feasible routes such that each one starts and ends at the depot and vehicle 

capacity is not exceeded. The objective is to supply a set of customers requiring 

deliveries at minimum total distribution cost. In real-world VRPs the distribution cost 

includes many elements, such as the cost of fuel, tyres, maintenance costs, driver wages, 
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the cost of distance travelled and time spent to visit all customers. In addition to vehicle 

capacity restrictions, real-world VRP's (see Christofides and Mingozzi (1990)) involve 

complicated constraints like time-windows to visit customers, customer-vehicle 

incompatibilities, mixed deliveries or collections on the same route, multiple interacting 

depots, etc. The practical importance of the problem provides the motivation for the 

effort involved in the development of heuristic algorithms (see Bodin et al (1983), 

Christofides et al. (1979b) and Fisher and Jaikumar (1981)). The reader can refer to 

Christofides (1985), Magnanti (1981) and Osman (1993) for a survey of vehicle routing 

applications, model extensions and solution methods. 

The VRP has been shown to be NP-hard. The fact that few algorithms have been 

produced to date, which can solve the VRP optimally reflects the difficulty of this 

problem. During the past fifteen years, exact algorithms have also been developed to 

solve capacitated routing problems of reasonable size to optimality. For example, 

Agarwal et al. (1989) and Mingozzi et al. (1994) use a set partitioning and column 

generation approach and Fisher (1994) uses a lagrangian approach based on the 

minimum k-tree relaxation. Hadjiconstantinou et al. (1995) proposed an exact algorithm 

that uses lower bounds obtained from a combination of two relaxations of the original 

problem which are based on the computation of q-paths and k-shortest paths. Other 

exact approaches are presented in the surveys of Christofides (1985) and Laporte 

(1992b). Fisher (1994) reports on the solution of some test problems with up to 100 

customers to optimality using a lagrangian relaxation approach embedded in branch and 

bound. On the other hand, one standard test problem with 76 customers (see 

Christofides and Eilon (1969)) have never been solved to optimality. 

Another approach to optimally solve VRPs is the polyhedral approach which has 

proved to be efficient for large TSP instances (see for example, Padberg and Rinaldi 

(1991)). This approach extends to the VRP the successful results of polyhedral 

combinatorics developed for the TSP by Chvatal (1973) and by GrOtschel and Padberg 

(1979,1985). Initial investigations in the polyhedral aspects of the identical customer 

VRP and in the similarities between the TSP and VRP polyhedra were performed by 

Laporte and Nobert (1984), Laporte et al. (1985), Araque (1990), Araque et al. (1990) 

and by Campos et al. (1991). A more complete description of the VRP polyhedron can 

be found in Cornuejols and Harche (1993) and in Augerat and Pochet (1995). 
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Computational results using the polyhedral approach are reported in Araque et al. 

(1994) (for the identical customer case), Cornuejols and Harche (1993) and Laporte et 

al. (1985). They solved moderate size problems involving up to 60 customers. Augerat 

et al. (1995) present a branch and cut algorithm to solve the VRP which is based on the 

partial polyhedral description of the corresponding polytope. The valid inequalities used 

in their method can be found in Cornuejols and Harche (1993) and in Augerat and 

Pochet (1995). Augerat et al. concentrated mainly on the design of separation 

procedures for different classes of valid inequalities. Several separation heuristics have 

been implemented and compared for the capacity constraints (generalized subtour 

elimination inequalities). The computational results show that the capacity constraints 

play a crucial role in the development of a cutting plane algorithm for the VRP. Augerat 

et al. also implemented heuristic separation algorithms for other classes of valid 

inequalities that also led to significant improvements: comb and extended comb 

inequalities, generalized capacity inequalities and hypotour inequalities. The resulting 

cutting plane algorithm has been applied to a set of instances taken from the literature. 

Some branching strategies have been implemented to develop a branch and cut 

algorithm that has been able to solve large VRP instances (up to 135 customers). 

4.3.1 A TWO-COMMODITY FORMULATION OF THE VRP 

The VRP can be formulated as follows. A complete undirected graph G = (V ,E) is 

given where V = {0,1,...,n} is the set of vertices and E is the set of edges. 

To every edge {i, j} E E is associated a non-negative cost cu  . V' = V1{0} is a set of 

n vertices, each vertex corresponding to a customer and 0 is the vertex corresponding to 

the depot. Henceforth, i E V' will be used interchangeably to refer both to a customer 

and its vertex location. Each customer i requires a supply of qi  units from depot 0. A 

set of M identical vehicles of capacity Q is located at the depot and must be used to 

supply the customers. It is required that every route performed by a vehicle starts and 

ends at the depot and that the load carried is less than or equal to Q. The cost of a route 

corresponds to the distance travelled (computed as the sum of the costs of the arcs 

forming the route). The problem we consider is to design M routes, one for each vehicle, 

so that all customers are visited and the sum of the route costs is minimized. 
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	 Pa  

	P13  

Depot 
Figure 4.3. Flow circuits for a three customers route 

The idea behind this formulation is to use two flow variables, xi,  and x ji  , to 

represent an edge j} of a feasible VRP solution. If a vehicle travels from i to j then 

xi./  represents the load of the vehicle and xi, represents the empty space on the vehicle 

(i.e., x ji  = Q — xii ), whereas, if the vehicle travels from j to i then xu  and x11  represent 

the empty space on the vehicle and the load, respectively. 

The flow variables 	define two flow circuits for any route of a feasible solution: 

one circuit is defined by the flow variables representing the vehicle load, while the 

second one is defined by the flow variables representing the empty space on the vehicle. 

In Figure 4.3 is shown a three customer route for a vehicle of capacity Q=15 and the 

two circuits Pa  and Pa represented by the flow variables xu  defining the route. 

Circuit Pa  is formed by the variables representing the vehicle load: the flow x08  =14 

indicates the total demand of the three customers, x82  = 1 1 represents the load of the 

vehicle in traveling from 8 to 2 after having unloaded 3 load units at customer 8, 

x29  = 4 represents the load of the vehicle in traveling from 2 to 9 after having unloaded 
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7 load units at customer 2, finally x90  = 0 represents the load of the vehicle in returning 

to the depot after having unloaded the remaining 4 load units at customer 9. Note that 

for every edge {i, j} of the route we have xij  + x ji  = Q . 

Let xij  be a 0-1 binary variable equal to 1 if edge fi, jlE E is in solution, 0 

otherwise. Let xu  be the flow value of arc (i, j), i, j E V. i # j . 

The mathematical formulation for the VRP is as follows: 

(VRP) z(VRP) = Min EciAu 
fi,A€E 

subject to Exu —Exii  = —2qi , 	i 0 
jEV 	Jo,  

Exu —Exii  = 2 E q.;  , 
jEV 	jEV 

i = 0 

 

(4.25) 

(4.26) 

(4.27) 
Vi E V 

  

Xii 

x(8(i)) = 2 , 

x(6(i)) = 2M , 

xu 	0 , 

E {0,1} , 

Constraints (4.26), (4.27) and (4.31) define  

Vli, E E 
	 (4.28) 

i 0 
	 (4.29) 

Vie V 
i = 0 
	 (4.30) 

Vi, je V 	 (4.31) 

E 	 (4.32) 

a feasible flow for variables fxu  1. 

Constraints (4.28) together with (4.29) and (4.30) force the degree of each customer to 

be 2 and the degree of the depot to be 2M, respectively. Constraints (4.32) are the 

integrality constraints. The supply-demand pattern involved ensures that there are paths 

from vertex 0 to any vertex in V', and back from these vertices to vertex 0. Since, from 

(4.28) and (4.31), xu  + x ji  = Q ij  , V{i, j} E E , the capacity of the vehicle will never be 

exceeded in the route allocated to it. 

Note that the STSP formulation described in Section 4.2.1 can be derived from the 

VRP formulation by setting qi  =1, ViEV' , M =1 and Q = n-1. 
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4.3.2 A LOWER BOUND FROM THE LP-RELAXATION 

A valid lower bound for the VRP can be obtained by considering the LP-relaxation 

of formulation VRP. Using equations (4.28), we can eliminate {4,} variables and the 

LP-relaxation can be written as follows: 

(LRVRP) z(LRVRP) = Min 1 Ec„.•(x„.-Fx.,.) 
	

(4.33) 

subject to (4.26), (4.27), (4.29), (4.30), (4.31) and 

xu  + xfi  Q, 	j} E E 	 (4.34) 

As described for the TSP case, some valid inequalities can be added to the LP 

relaxation of formulation VRP in order to improve the lower bound. These inequalities 

are satisfied by any feasible integer solution of the VRP formulation, but they are not 

necessarily satisfied by a LRVRP solution. Hence, the lower bound can be strengthened 

by identifying violated inequalities and adding them to the LP relaxation. For the 

LRVRP formulation we consider the trivial inequalities used for the STSP formulation 

and we modify the flow inequalities and the subtour inequalities as described below. 

Flow inequalities 

Consider xu  + xfi  = 	V{i, 	E, i # 0, j # 0 . In any feasible integer solution, if 

= 1 , then xy q j  and x ji  > qi . Hence, any feasible LRVRP solution where 4u  > 0 

and either xu  = 0 or xfi  = 0, for some edge 	j}E E, cannot be a feasible VRP 

solution. Therefore, we can force any LRVRP solution to satisfy the following 

constraints. 

 

Vti, E E,i # 0, j # 0 

  

or, using equation xu  + x fi  = Q Ij : 

xu (Q— q j  )— q ix ji  

x ii (Q— qi )— qi xij  

  

Vi, je V,i < 	0 
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Capacity constraints 

Denote by r(S), S c , a lower bound on the minimum number of vehicles needed 

to satisfy the customers demand in a set S in any feasible solution, that is: 

r(S) = [IE qi VQ1 
) 

where [xl is the smallest integer greater that or equal to x. 

We obtain the following valid inequality: 

x(15(S)). 2r(S) 

also called generalized subtour elimination constraint. 

Harche and Rinaldi (1991) showed that the separation problem for the capacity 

constraints is NP-Complete and designed several heuristics. Augerat et al. (1995) used 

different heuristics to identify violated capacity constraints. They compare the heuristics 

of Harche and Rinaldi (1991) with a greedy shrinking algorithm and a tabu search 

based heuristic. The computational results for the lower bounds obtained using the 

different identification heuristics on a set of instances taken from the literature show 

that the best performance is achieved by combining the greedy shrinking algorithm and 

the tabu search algorithm. 

We identified violated capacity constraints by means of the greedy shrinking 

algorithm proposed by Augerat et al. Given an initial subset of customers S, at each 

iteration, a customer k is added to S in such a way that x((S : k)) is maximized. 

Customer subsets are randomly generated and the number of initial subsets is fixed to 

ten times the number of customers. 

4.3.3 A BRANCH AND CUT METHOD FOR THE VRP 

We implemented a branch and cut algorithm based on the one proposed by Augerat 

et al. (1995). The cutting plane algorithm, for the identification of the valid inequalities 

described in the previous section, is applied to every subproblem until no violated 

inequality is found or the solution does not increase during an apriori fixed number of 

iterations. A subproblem is fathomed if an integer feasible solution is found or the lower 

bound obtained is not less than the current upper bound. If a subproblem is not 
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fathomed, it is divided in two subproblems by branching on a given inequality as 

explained below. The subproblem to be explored is selected as the one having minimum 

lower bound. 

The branching strategy used is the following. Let S be a subset of customers for 

which x(8(S))— 2r(S) = p(S), 0 < p(S) < 2 , then we can create two subproblems: one 

adding constraint x(8(S)) = 2r(S) and the other adding constraint x(8(S)) ?.. 2r(S)+ 2 . 

The selection of subset S is carried out in two steps: firstly, a candidate list of subsets is 

build heuristically and, secondly, one of them is selected from this list according to 

some strategy. The list of candidate subsets is build by the same heuristic algorithm 

used for the identification of the capacity constraints. An initial subset of customer 

subsets is randomly generated and then the greedy shrinking algorithm is used to 

expand this subset in order to generate a new list where each subset S 

satisfies 0 < p(S) < 2 . In order to have a balanced tree search, we force each candidate 

subset to satisfy 0.75.p(S).1. We select four subsets according to the following criteria 

that are exactly the same used by Augerat et al. (1995). 

• Select set Si  with maximum demand. 

• Select set S2  which is farthest from the depot. 

• Select set S3 such that x(8(S3 )) is as close as possible to 3. 

• Select set S4 such that x(8(S4 )) is as close as possible to 2.75. 

Then, one out of four subsets ( Si  , S2  , 53, and S4) is chosen for branching using 

the method described by Applegate et al. (1994) for the TSP. For each subset 

SE {S1,S2, S3, 54 } we solve the two corresponding subproblems and compute the 

minimum of the increases in the lower bounds with respect to the lower bound of the 

current node. Then, we choose the subset which leads to the maximum of these 

minimum increases. 

4.3.4 COMPUTATIONAL RESULTS 

The branch and cut algorithm described in the previous section has been coded in 

Fortran 77 and experimentally evaluated on a set of 16 difficult VRP instances taken 

from the literature. All computations were performed on a Silicon Graphics Indy (MIPS 
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R 4400/200 MHz processor), using CPLEX 4.0 (1996) as the LP-solver. For each 

problem the vertices of graph G are located in the plane and the cost cif  is computed as 

integer value equal to [ ei. +1  , where eel  is the Euclidean distance between points i 
i  2 

and j. This is the same cost function used by Mingozzi et al. (1994), Augerat et al. 

(1995) and it is the one proposed in the TSPLIB (Reinelt (1991)). 

The tables show the following columns: 

Prob: 	problem name identifier; 

n: 	 number of customers; 

Q: 	vehicle capacity; 

M: 	number of vehicles; 

RQ%: 	percentage of tightness of the capacity constraints computed as 

100 yqi IMQ . 

Reference: 	reference from which each instance has been taken and where the 

complete data can be found; 

z(UB): 	cost of the best known heuristic VRP solution found in the literature; 

LBO: 	lower bound z(LRVRP); 

%EL/30: 	percentage error of lower bound LBO; 

LB1: 	final lower bound at the root node of the branch and cut algorithm 

obtained by the cutting plane algorithm for the identification of the valid 

inequalities; 

%Eun 	percentage error of lower bound LB1; 

t LB1: 	 total computing time of lower bound LB1; 

%E5,: 	percentage error of the lower bound produced by Augerat et al. (1995) by 

considering only the identification of capacity constraints; 

t 
EA

: 	total computing time of the lower bound produced by Augerat et al. by 

considering only the identification of capacity constraints (seconds of a 

Sun Sparc 10 machine); 

%EA : 	final lower bound produced by Augerat et al.; 

100 

ie V 



t 
EA 	

total computing time of the final lower bound produced by Augerat et al. 

(seconds of a Sun Sparc 10 machine); 

%Em : 	percentage error of the lower bound produced by Mingozzi et al. (1994); 

t Em  : 	total computing time of the lower bound produced by Mingozzi et al. 

(seconds of a Silicon Graphics Indy, MIPS R4400/200 MHz processor); 

%EF : 	percentage error of the lower bound produced by Fisher (1994); 

t EF  : 	total computing time of the lower bound produced by Fisher (seconds of 

an Apollo Domain 3000 machine); 

Z : 	 cost of the optimal VRP solution; 

nodes: 	number of nodes generated by the branch and cut algorithm; 

tBC: 	total computing time of the branch and cut algorithm; we impose a time 

limit of 3600 CPU seconds. 

The percentage errors are computed as the ratio of the lower bound divided by 

z(UB) and multiplied by 100. 

Table 4.1 shows the data of the test problems. Table 4.2 shows the comparison of 

different lower bounds, while Table 4.3 shows the number of cuts generated for 

computing the lower bound LBI. Table 4.4 shows the problems solved to optimality 

within the imposed time limit of 3600 CPU seconds and reports the number of nodes of 

the branch and cut algorithm and the total computing time required for finding the 

optimal solution. In the last 4 lines of Table 4.2 we report the average percentage errors 

of lower bounds LBO and LBI on all the problem instances and on the problem instances 

solved by Augerat et al. (1995), by Mingozzi et al. (1994) and by Fisher (1994), 

respectively. Note that the Apollo Domain 3000 is about 15 times slower than the 

Silicon Graphics Indy we used. The costs used by Fisher are real ones and therefore the 

lower bounds should not be compared directly because the optimal solution costs may 

not be the same; nevertheless, the comparison between the respective percentage errors 

may override this difficulty. 

The results show that the average percentage error computed on all the problem 

instances of lower bound LBI is equal to 98%. By observing Table 4.2 we note that the 
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addition of the valid inequalities substantially improves the value of the lower bound 

LBO. A comparison between lower bound LB1 and the one computed by Augerat et al. 

shows that the average percentage errors %ELB1  and %Eiq are the same. Moreover, the 

results show that the improvements on the quality of the lower bounds obtained by 

Augerat et al. after considering other classes of valid inequalities (comb and extended 

comb inequalities, generalized capacity inequalities and hypotour inequalities) is on 

average equal to 0.3. Three instances were solved using the cutting plane algorithm at 

the root node of the branch and cut tree. Table 4.4 shows that the branch and cut 

algorithm has been able to solve problems up to 100 customers. 

Table 4.1. Test Problems 

Prob n Q M RQ% Reference 

1 15 55 5 93.8 CMT81 
2 15 90 3 95.6 CMT81 
3 20 58 6 94.5 CMT81 
4 20 85 4 96.7 CMT81 
5 21 60 4 93.7 CMT81 
6 21 40 6 93.7 CMT81 
7 25 48 8 95.6 CMT81 
8 50 160 5 97.1 CE69 
9 75 140 10 97.4 CE69 

10 75 220 7 88.6 CE69 
11 75 180 8 94.7 CE69 
12 100 200 8 91.1 CE69 
13 100 200 10 90.5 CMT79 
14 44 2010 4 89.8 FIS94 
15 71 30000 4 95.7 F1S94 
16 134 2210 7 94.5 FIS94 

CMT81: Christofides et al. (1981a). 
CE69: 	Christofides and Eilon (1969). 
CMT79: Christofides et al. (1979b); 
FIS94: 	Fisher (1994). 
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Table 4.2: Comparison of lower bounds 

TWO-COMMODITY AUGERAT ET AL. MINGOZZI ET AL. FISHER 

Prob z(UB) LBO %LBO LB1 %LB1 tI,B1 %4 tEA , %EA  tEA  %EM  tM  %E F  tF 

1 333 290.5 87.2 321.4 96.5 2 - - - - 97.9 2 - - 
2 277 243.3 87.8 265.5 95.8 1 - 97.4 2 - - 
3 430 371.8 86.5 426.8 99.2 3 100.0 2 - - 
4 358 309.7 86.5 346.1 96.7 2 - - - - 100.0 3 - - 
5 375 311.0 82.9 375.0 100.0 2 100.0 1 100.0 5 100.0 2 - - 
6 495 395.6 79.9 484.0 97.8 4 - - - - 97.4 3 - - 
7 606 511.4 84.4 606.0 100.0 5 100.0 2 
8 521 500.6 96.1 514.5 98.8 51 98.8 17 99.3 129 99.3 84 96.7 5745 
9 832 773.0 92.9 791.3 95.1 117 94.9 347 95.4 1919 97.8 206 90.5 11038 

10 683 650.5 95.2 660.7 96.7 182 96.8 147 97.3 1052 97.4 320 
11 735 693.5 94.4 711.6 96.8 109 96.8 258 97.1 1282 97.8 251 - - 
12 817 775.6 94.9 795.0 97.3 232 97.5 294 97.9 1708 97.4 404 
13 820 770.1 93.9 819.8 100.0 120 99.9 180 100.0 167 99.5 382 99.8 15578 
14 724 614.3 84.8 724.0 100.0 20 100.0 8 100.0 12 - 99.6 2984 
15 238 205.1 86.2 232.5 97.7 43 97.7 11 98.7 59 - - 98.3 6301 
16 1165 1005.1 86.3 1155.8 99.2 2271 99.4 1513 99.5 2024 - - 97.4 15230 

Averages: 
ALL INSTANCES 88.7 98.0 

AUGERAT ET AL. 90.8 98.2 98.2 98.5 
MINGOZZI ET AL. 89.4 97.8 98.6 

FISHER 90.0 98.5 97.0 
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Table 4.3. Details of the number of cuts of lower bound LB1 

Prob Trivial 	Flow 	Capacity 
Inequalities Inequalities Constraints 

Total 

1 17 48 77 142 
2 13 19 35 67 
3 19 45 151 215 
4 17 44 81 142 
5 16 33 137 186 
6 24 45 258 327 
7 24 28 410 462 
8 33 100 399 532 
9 56 206 710 972 

10 47 138 772 957 
11 48 165 559 772 
12 62 196 774 1032 
13 72 256 1061 1389 
14 27 103 457 587 
15 42 126 440 608 
16 53 564 2711 3328 

Table 4.4. Problems solved to optimality 

Prob z* nodes 	t BC 

1 333 14 	10 
2 277 58 	26 
3 430 4 	7 
4 358 68 	67 
5 375 0 	2 
6 495 90 	144 
7 609 0 	5 
8 521 66 	660 

13 820 4 	149 
14 724 0 	20 
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4.4 THE TSP WITH DELIVERY AND COLLECTION CONSTRAINTS 

In this section we extend the two-commodity STSP formulation described in Section 

4.2.1 to deal with the TSPDC and the TSPB. 

The TSPDC is defined as follows. We are given a complete undirected graph 

G = (V, E) where V = {0, n +1} u D u C is the set of vertices and E is the set of edges. 

Vertices 0 and n+1 represent the depot location, the set D corresponds to the delivery 

customers (requiring delivery from depot 0) and the set C corresponds to the collection 

customers (sending goods to depot n+1). To every edge {i, j}E E is associated a non- 

negative cost cu  and a quantity q1  is associated with each customer i E D U C (we 

assume that the qi  values are non-negative integers and that q0 = qn+i  = 0 ). A vehicle 

of capacity Q is located at depot 0 and must be used to supply the delivery customers 

and to collect goods from the collection customers. The TSPDC consists of determining 

a path starting at depot 0 and ending at depot n+1, serving each customer exactly once, 

and having minimum length, defined as the sum of the costs of the arcs forming the 

path. The total load of the vehicle along the tour must never exceed the vehicle capacity, 

[ Q. To ensure the feasibility of the problem we assume that Q Max yqi ,E qi  . 
iel) 	iE C 

The TSPDC is NP-Hard in the strong sense since it generalizes the TSP. The 

problem has many practical applications in the design and management of distribution 

systems, like the transportation of under-privileged children from home to vacation 

locations described in Mosheiov (1994). Mosheiov (1994) proposed a mathematical 

model for TSPDC and heuristic algorithms based on the extension of methods for the 

standard TSP. For one of the proposed algorithms a worst-case performance ratio equal 

to 1+a was also proved, where a is the worst-case performance ratio of the TSP 

heuristic used. Anily and Mosheiov (1994) described a new heuristic with worst-case 

performance ratio equal to 2 based on the solution of Shortest Spanning Trees. 

Gendreau et al. (1997) proposed two heuristic algorithms for the TSPDC. The first is 

based on the optimal solution of a special case of TSPDC arising when graph G is a 

cycle. In particular, they derive a linear time algorithm for the optimal solution of this 
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special case and use it as a base for developing a heuristic for the general TSPDC. The 

worst-case performance of the proposed algorithm is studied, and a tight ratio of 3 is 

derived. The computational results show that this heuristic generally produces better 

solutions with respect to those previously proposed in the literature. A further 

improvement is obtained by means of a second heuristic based on the tabu search 

approach (see, Glover (1989,1990) and Glover and Laguna (1997)) that uses a 

neighborhood based on exchanges of two arcs. Computational results show that the tabu 

search of Gendreau et al. (1997) outperforms the previous heuristics. 

The special case of TSPDC, known as TSPB, where in any feasible solution all 

delivery customers must precede the collection customers has been studied by Gendreau 

at al. (1996) who presented the extension to TSPB of the GENIUS heuristic for the TSP. 

The generalization of TSPDC related to the VRP, where several vehicles are available, 

has been considered by Halse (1992) who proposed a mathematical formulation and a 

heuristic algorithm based on a Lagrangian relaxation of the problem. To our knowledge, 

no exact methods have been proposed for the optimal solution of the TSPDC and the 

TSPB. 

4.4.1 A TWO-COMMODITY FORMULATION OF THE TSPDC 

Following the idea used in formulating the VRP as a two-commodity network 

flow model, each feasible TSPDC path from depot 0 to depot n+1, can be represented 

by two flow circuits: the first one representing the vehicle load and the second one 

representing the vehicle empty space. As an example, consider the tour of Figure 4.4. 

Let the vehicle capacity Q be equal to 10. The flow xo  on arc (i, j) of the flow circuit 

(0,1,2,3,4,5) represents the vehicle load, while the flow xii  on arc (j,i) of the flow 

circuit (5,4,3,2,1,0) represents the vehicle empty space. Note that the flow on arc x01  of 

the example is the total demand of the delivery customers, that is, QD  =Eqi = 9 , 
ieD 

while, the flow on arc x45  is the total demand of the collection customers, that is, 

Qc  = yqi  =10 . Moreover, for each edge {i, j}E {{0,1},{1,2},{2,3},{3,4},{4,5}} we have 
iEC 

x•--Ex-=Q. 
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Delivery 

0 Collection 

111 Depot 

Figure 4.4. Flows in the TSPDC 

Let V' .--DuC and let bij be  a 0-1 binary variable equal to 1 if edge {i, jleE is in 

solution, 0 otherwise. Let xy be the flow value of arc (i, j), i, j E V,i # j . 

The mathematical formulation for the TSPDC is as follows: 

(TSPDC) z(TSPDC) = Min 	Cijij 
	 (4.35) 

subject to y xij  - Exii  = —2q1 , 	Vie D 	(4.36) 
jeV 	jeV 

E xi, — Exii  = 2.71 , 	Vi e C 	(4.37) 
jeV 	jeV 

Exo;  = QD 	 (4.38) 
jEV'  

I xi° = Q — QD 	 (4.39) 
fey' 

E Xn+lj = Q —  QC 	 (4.40) 
jeV' 
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jn+1 = QC 
	 (4.41) 

jEV' 

xij  + xii  = Q ij , 	 V{i, j} e E 	(4.42) 

x(8(i)) = 2 , 	 Vie V' 	(4.43) 

x(8(i)) =1 , 	 i = 0, n + 1 	(4.44) 

x(8(S)) 2 , 	 VS c V' s.t. 	(4.45) 

Eqi = Eqi 
ieS nD iESnC  

Vi, j e V, i j 	(4.46) 

ij E {04 , 	 V{i, j} E E 	(4.47) 

Constraints (4.36) to (4.41) and (4.46) define a feasible flow for variables 	}. 

Constraints (4.42) together with (4.43) and (4.44) force the degree of each customer to 

be 2 and the degree of both depots 0 and n+1 to be 1. Constraints (4.45) are the subtour 

elimination constraints. Constraints (4.47) are the integrality constraints. 

Note that in the TSPDC formulation, due to the supply-demand patterns of the 

delivery and collection customers, it is necessary to introduce the subtour elimination 

constraints as shown in the example of Figure 4.5. In fact, the solutions shown in Figure 

4.5(a) and 4.5(b) are feasible for the TSPDC formulation without constraints (4.45). 

4.4.2 A TWO-COMMODITY FORMULATION OF THE TSPB 

The mathematical formulation of the TSPB can be easily derived from the one 

described for the TSPDC in the previous section. We can assume, without loss of 

generality, that qi  =1, Vi E D u C (since all deliveries must be made by the single 

vehicle before any collections), Q= Max[01,1C1] and that IDI 	. Figure 4.6 shows an 

example of a TSPB feasible tour in terms of the two-commodity flows. 

Let V' = D u C and letij  be a 0-1 binary variable equal to 1 if edge {i, j} e E is in 

solution, 0 otherwise. Let xij  be the flow value of arc (i, j), i, j E V. i # j . 
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C I Delivery 	Collection 1. Depot 

Figure 4.5: Subtours in the TSPDC 
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Delivery 

0 Collection 

■ Depot 

Figure 4.6: Flows in the TSPB 
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The mathematical formulation for the TSPB is as follows: 

(TSPB) 	z(TSPB) = Min E 	 (4.48) 
{i, j EE 

subject to Exu  — Exii  = —2, 	Vi E D 	(4.49) 
jEV 	jEV 

Exu  — Exii  = 2, 	Vi e C 	(4.50) 
jEV 	jEV 

Exo; =IDI 	 (4.51) 
jEV' 

	

xjo =0 	 (4.52) 
jeV' 

E X n+1 j = I DI -ICI 	 (4.53) 
JEW 

E X jn+1 = I 	 (4.54) 
jEV' 

x ji = 11)14ii 

x(8(i))= 2 , 

x(8(0)=1, 

E Exu  = 0 
iE DjE C 

V{i, j}E E 	(4.55) 

ViE V' 	(4.56) 

i = 0,n +1 	(4.57) 

(4.58) 

xu 	0, 	 Vi, je V,i # j 	(4.59) 

ij E {04, 	 j} E E 	(4.60) 

Constraints (4.49) to (4.54) and (4.59) define a feasible flow for variables txu l. 

Constraints (4.55) together with (4.56) and (4.57) force the degree of each customer to 

be 2 and the degree of both depots 0 and n+1 to be 1. Constraints (4.58) avoid subtours 

and force deliveries to precede collections. Constraints (4.60) are the integrality 

constraints. 

Note that the TSPB can also be solved as an Asymmetric TSP. This can be done by 

setting the asymmetric cost matrix [cu  ] as follows: 

Cij  = 00 
	ViE C, VjE D 

cio = coi = 00 cn+i i = 
	Vie C 
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Cin+1 =  Cn+1i =0°  Ci0 =c3.° ViE D 

4.4.3 LOWER BOUNDS FROM THE LP-RELAXATION 

Valid lower bounds for the TSPDC and for the TSPB can be obtained by means of 

the LP-relaxation of the corresponding formulations. Similarly for the STSP case, the 

value of the lower bound can be strengthened by the trivial inequalities, the flow 

inequalities and the subtour elimination inequalities. The flow inequalities, described 

for the STSP in Section 4.2.2, can be generalized for the TSPDC and for the TSPB as 

described below. 

Flow inequalities 

Consider xy  + x fi  = Qtij  , V{i, j} E E, i 0, j # 0 . In any feasible integer solution, if 

xij  =1, then we must consider the following three cases: 

a) i, je D . 

Then xu  qAu  and x1 	, or, using equation xij  + xfi  = Q4u , 

Qxii(Q—q1)—qixii:. 	x 0 and ••( — qi )—qi xij• >_0.   

b) iE D and jE C 

Then x fi  >_ q& or, using equation xi• + xJI  = 	, J  

Q- X J1 (  

c) i,jE C . 

Then xy 	and xfi  q j  ij  , or, using equation xij  + x ji =  Q ij , 

xij (Q— qi )— qi x ji  0 and x fi(Q — q j )— q j  xij >_0.   

(4.61) 

(4.62) 

(4.63) 

Therefore, inequalities (4.61), (4.62) and (4.63) can be added to the LP-relaxation of 

formulations TSPDC and TSPB to eliminate infeasible fractional solutions. 
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4.4.4 A BRANCH AND CUT METHOD FOR THE TSPDC AND THE TSPB 

The branch and cut method described for the VRP in Section 4.3.3 can be easily 

adapted for solving the TSPDC and the TSPB. The tree search is a binary tree search in 

which at each node the procedure for the identification of the trivial inequalities, flow 

inequalities and subtour elimination inequalities is applied until no violated inequality is 

found or the solution does not increase for a certain number of iterations. A forward 

branching at a certain node involves the selection of a subset of customers S for which 

0 < x(8(S))— 2 < 2 , and the generation of two new subproblems: one of them adding 

constraints x(8(S))= 2 and the other adding constraint x(o(S)) 4 . The branching 

subset selection is carried out similarly for the VRP as described in Section 4.3.3. 

Firstly, a candidate list of subsets is build heuristically and, secondly, one of them is 

selected from this list according to some strategy. The list of candidate subsets is build 

by the same heuristic algorithm used for the identification of the capacity constraints. 

An initial subset of customer subsets is randomly generated and then the greedy 

shrinking algorithm is used to expand this subset in order to generate a new list where 

each subset S satisfies 0 < p(S) < 2 . In order to have a balanced tree search, we impose 

that each candidate subset satisfy 0.755_p(S)5_1. We select four subsets according to the 

following criteria. 

• Select set S1  with maximum cardinality. 

• Select set S2  which is farthest from the depot. 

• Select set S3  such that x(8(S3 )) is as close as possible to 3. 

• Select set S4  such that x(8(S4 )) is as close as possible to 2.75. 

Then, one out of four subsets (S1 , S2 , S3 , and S4 ) is chosen for branching using 

the method described by Applegate et al. (1994) for the TSP. 

4.4.5 A NUMERICAL EXAMPLE 

In this section we present a numerical example to illustrate the lower bound 

computation for an instance of the TSPDC. We have used one of the 20 test problems 

generated by Mosheiov (1994) for simulating the problem arising in the transportation 
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0 Delivery locations 	0 Pick-up locations 	NI Depot 

Figure 4.7. Example: customer locations 

of under-privileged children from home to vacation locations. All locations were 

randomly generated from a uniform distribution in the square [(-500,500)x(-500,500)] 

and the central station was located at the origin. The number of children at pick-up and 

delivery locations were generated from a uniform distribution in [1,8] and the bus 

capacity was set equal to 45 seats (i.e. Q=45). The example we consider has 24 

customer locations, 13 of which are delivery locations (i.e. IDI =13) and 11 are pick-up 

locations (i.e. ICI =11). The distances between customer locations were computed using 

the Euclidean distance as proposed in the TSPLIB (Reinelt (1991)). The total delivery 

demand is equal to 45 and is equal to the total pick-up demand (i.e. QD  = Qc  = Q = 45). 

Table 4.5 presents the data of the problem and Figure 4.7 shows the customer locations. 

The cost of the assignment solution is 3873 and the cost of the optimal TSP solution, 

that is a valid lower bound on the cost of the optimal solution of the problem, is 4430. 

The optimal TSP solution is shown in Figure 4.8. 
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Table 4.5. Example: problem data 

Delivery locations Pick-up locations 
X-coordinate Y-coordinate demand X-coordinate Y-coordinate demand 

1 -211.651 -147.830 2 14 -90.618 299.859 4 
2 -265.178 499.830 2 15 -480.287 -366.363 6 
3 -126.376 330.654 4 16 -106.647 -202.037 2 
4 -267.075 88.573 7 17 -134.373 -364.665 6 
5 -486.620 56.890 2 18 -196.116 -43.097 4 
6 -368.762 -466.753 5 19 455.724 -383.012 4 
7 66.033 -456.440 3 20 -232.731 -467.685 4 
8 234.876 57.177 6 21 -138.385 -61.276 5 
9 22.466 -263.939 6 22 247.014 -461.857 2 

10 349.490 -205.735 1 23 74.257 373.238 7 
11 302.043 -70.028 2 24 -95.265 164.968 1 
12 23.194 432.094 1 
13 384.468 11.208 4 
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• Customer locations 	■ Depot 

Figure 4.8. Example: optimal TSP solution of cost 4430 



0 Delivery locations 	0 Pick-up locations 
	■ Depot 

Figure 4.9. Example: heuristic solution of cost 4631 found by Mosheiov (1994) 

20 

0 Delivery locations 	0 Pick-up locations 	■ Depot 

Figure 4.10. Example: optimal TSPDC solution of cost 4464 
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Table 4.6. Example: flows of the optimal TSPDC solution 

X ji i j xl f  Xji 

1 10 45 0 8 23 36 9 
1 22 0 45 9 14 10 35 
2 17 7 38 9 24 29 16 
2 19 36 9 11 12 41 4 
3 4 33 12 11 20 3 42 
3 13 10 35 12 14 39 6 
4 15 29 16 13 24 9 36 
5 6 27 18 15 25 33 12 
5 25 11 34 17 18 9 36 
6 16 25 20 18 21 15 30 
7 16 14 31 19 22 40 5 
7 21 26 19 20 23 7 38 
8 10 6 39 

The cost of the heuristic solution found by the algorithm proposed by Mosheiov is 

4631 (see Figure 4.9). 

The value of the LP-relaxation of formulation TSPDC was 3975.6 and the value of 

the final lower bound obtained after the application of the separation procedures for the 

identification of valid inequalities was 4464.0. The solution found was integer, 

therefore, 4464 was also the cost of the optimal solution of the problem. The separation 

procedures found 13 trivial inequalities, 10 flow inequalities and 7 subtour elimination 

inequalities. The total computing time was 1.46 seconds on a Silicon Graphics Indy 

(MIPS R4400/200 MHz processor). We have used CPLEX 4.0 (1996) as the LP-solver. 

Figure 4.10 and Table 4.6 show the optimal solution found and the values of the {xii  } 

variables, respectively. 

4.4.6 COMPUTATIONAL RESULTS 

In this section we present the results of the branch and cut algorithm described in 

Section 4.4.4 on both TSPDC and TSPB instances. The algorithm has been coded in 

Fortran 77 and run on a Silicon Graphics Indy (MIPS R4400/200 MHz processor). We 

have used CPLEX 4.0 (1996) as the LP-solver. 
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For the TSPDC we consider two classes of test problems, called A, B, respectively. 

The classes correspond to a subset of the TSPDC instances proposed by Gendreau et. al 

(1997). The problems of class A is made up of instances derived from symmetric VRP 

instances from the literature; set A contains 27 instances with n ranging between 16 and 

151. 

The problems of class B consist of random Euclidean instances. The original sets of 

instances of class B generated by Gendreau et al. is composed of 300 problems. We 

select a total of 40 instances, with n ranging between 26 and 151. Problem input data of 

class A and B have been kindly provided by Gendreau et al. 

For the TSPB we consider two classes of test problems, called A and B, respectively. 

Both classes of test problems we examine is made up of TSPB instances derived from 

VRPB instances from the literature. For each VRPB instance we obtain a TSPB 

instance where the customer set is composed of delivery and collection customers, the 

depot and the cost matrices are the same as in the VRPB instance. The problem class A 

is made up of 21 instances derived from the VRPB instances generated by Toth and 

Vigo (1996) from 11 VRP test problems proposed in the literature. The problem of class 

B is made up of instances derived from randomly generated Euclidean VRPB instances 

proposed by Goetschalckx and Jacobs-Blecha (1989). Set A contains 21 instances with 

n between 22 and 100 while set B contains 14 instances with n varying between 26 and 

151 

Tables 4.7 to 4.10 show the following columns: 

Prob: 	problem name identifier; 

number of customers; 

number of delivery customers; 

number of collection customers; 

Tables 4.7 and 4.8 show the following columns: 

z(UB): 	cost of the TSPDC solution found by the heuristic algorithm of Gendreau 

et al. (1997); 

z : 	cost of the optimal TSPDC solution (or cost of the best solution found by 

the branch and cut algorithm); 

LBO: 	lower bound obtained by the LP-relaxation of formulation TSPDC; 

n: 

I DI

IdI 
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%ELIA): 	percentage error of lower bound LBO; 

LB1: 	final lower bound at the root node of the branch and cut algorithm 

obtained by the cutting plane algorithm for the identification of the valid 

inequalities; 

%ELB1 : 	percentage error of lower bound LBI; 

tLB1: 	total computing time of lower bound LB1; 

t Etc: 	 total computing time of the branch and cut algorithm. We impose a time 

limit of 3600 seconds. If the time limit is reached, the instance is marked 

with an asterisk; 

Tables 4.9 and 4.10 show the following columns: 

z : 	cost of the optimal TSPB solution (or cost of the best solution found by 

the branch and cut algorithm); 

LBO: 	lower bound obtained by the LP-relaxation of formulation TSPB; 

%ELBO: 	percentage error of lower bound LBO; 

LB1: 	final lower bound at the root node of the branch and cut algorithm 

obtained by the cutting plane algorithm for the identification of the valid 

inequalities; 

%Eun  : 	percentage error of lower bound LB1; 

t LB1: 	total computing time of lower bound LB1; 

t BC: 	 total computing time of the branch and cut algorithm. We impose a time 

limit of 3600 seconds. If the time limit is reached, the instance is marked 

with an asterisk; 

The percentage errors are computed as the ratio of the lower bound divided by z*  

and multiplied by 100. 

Table 4.7 shows the computational results for the TSPDC on problem instances of 

class A. The results show that the lower bound is tight, as shown by the average 

percentage error equal to 99.4. By observing Table 4.7 we note that the branch and cut 

algorithm has been able to improve significantly on the quality of the heuristic solutions 

found by Gendreau et al. In fact, the average over the 27 instances of the percentage 
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ratios of the heuristic solution with respect to the TSPDC solution found by the branch 

and cut algorithm is 103.9. Only one instance (e-151-d) has not been solved to 

optimality within the imposed time limit, but, the cost of the solution has been reduced 

from 801 to 703. 

Table 4.8 shows the results obtained on problem instances of class B. On this more 

difficult problem set, only 16 instances out of 40 have been solved to optimality. The 

inherent difficulty of these instances is testified by the percentage error %ELBi . 

Nevertheless, the branch and cut algorithm has been able to substantially improve the 

quality of the heuristic solutions as testified by the average, equal to 108.0, of the 

percentage ratios of the heuristic solution with respect to the TSPDC solution found by 

the branch and cut algorithm. 

Tables 4.9 and 4.10 show the computational results for the TSPB on problem 

instances of class A and B, respectively. For the computation of the optimal solutions 

using the branch and cut algorithm, we have used an upper bound equal to 1.015 the 

value of lower bound LB1 obtained at the root node of the branch and cut tree. From the 

results we can draw the following conclusions. The lower bounds computed are tight, as 

shown by the average percentage errors equal to 99.7 and 99.6 for problems of class A 

and B, respectively. The addition of the valid inequalities substantially improves the 

value of the lower bound LBO. Because of the good quality of the lower bound LB1, the 

branch and cut algorithm has been able to solve to optimality all the 35 instances in 

reduced computing time. Problems up to 150 customers have been solved to optimality. 

119 



Table 4.7. TSPDC: computational results of problem class A 

PROBLEM DATA TWO-COMMODITY 

Prob n IDI 	ICI z(UB) z* LBO %Eu30  LB1 %E LB1 LB1 t LB1 t BC 

e-016-b 16 7 8 221 218 202.3 92.8 218.0 100.0 1 1 
e-016-c 16 7 8 223 221 202.3 91.5 218.0 98.6 1 2 
e-016-d 16 7 8 228 221 202.4 91.6 218.0 98.7 1 2 
e-026-b 26 12 13 320 306 238.5 77.9 305.0 99.7 1 1 
e-026-c 26 12 13 320 308 238.5 77.4 305.0 99.0 1 3 
e-026-d 26 12 13 340 313 238.7 76.3 305.0 97.4 1 31 
e-036-b 36 17 18 364 351 320.2 91.2 349.5 99.6 2 3 
e-036-c 36 17 18 364 351 320.3 91.2 349.5 99.6 2 3 
e-036-d 36 17 18 369 351 320.3 91.3 349.5 99.6 2 3 
e-045-b 45 22 22 619 619 398.7 64.4 619.0 100.0 4 11 
e-045-c 45 22 22 620 619 399.3 64.5 619.0 100.0 4 7 
e-045-d 45 22 22 620 619 	i 400.6 64.7 619.0 100.0 4 9 
e-051-b 51 25 25 442 426 376.4 88.3 422.5 99.2 2 44 
e-051-c 51 25 25 439 426 376.4 88.3 422.5 99.2 2 35 
e-051-d 51 25 25 445 426 376.5 88.4 422.5 99.2 3 43 
e-076-b 76 37 38 565 538 484.2 90.0 538.0 100.0 5 15 
e-076-c 76 37 38 554 539 484.3 89.8 538.0 99.8 5 38 
e-076-d 76 37 38 580 539 484.4 89.9 538.0 99.8 5 26 
e-101-b 101 50 50 505 501 326.6 65.2 496.5 99.1 58 1021 
e-101-c 101 50 50 507 501 326.6 65.2 496.5 99.1 43 1830 
e-101-d 101 50 50 513 502 326.7 65.1 498.5 99.3 49 1348 
e-121-b 121 60 60 554 535 349.3 65.3 532.0 99.4 43 1322 
e-121-c 121 60 60 549 535 349.2 65.3 532.0 99.4 44 3540 
e-121-d 121 60 60 556 535 348.2 65.1 532.0 99.4 43 2872 
e-151-b 151 75 75 748 698 572.3 82.0 696.0 99.7 22 280 
e-151-c 151 75 75 763 699 572.4 81.9 696.0 99.6 24 1990 
e-151-d 151 75 75 801 703 * 572.4 81.4 696.0 99.0 51 3600 

Averages 	 79.5 	99.4 

120 



Table 4.8. TSPDC: computational results of problem class B 

PROBLEM DATA TWO-COMMODITY 

Prob n 	IDI 	ICI 	z(UB) z * LBO %.ELB0  LB1 %ELM t LB1 t BC 

el_25_b 26 12 13 434 407 309.3 76.0 392.5 96.4 2 540 
el_25_c 26 12 13 459 412 * 309.5 75.1 392.6 95.3 3 3600 
el_25_d 26 12 13 433 433 * 310.0 71.6 392.8 90.7 4 3600 
el_25_e 26 16 9 401 401 311.3 77.6 392.5 97.9 2 4 
e2_25_b 26 12 13 477 462 343.3 74.3 457.0 98.9 2 9 
e2_25_c 26 12 13 477 462 354.1 76.7 457.0 98.9 2 3 
e2_25_d 26 12 13 477 462 354.3 76.7 457.0 98.9 3 4 
e2_25_e 26 13 12 462 460 346.5 75.3 457.0 99.3 2 2 
el_50_b 51 25 25 646 592 459.3 77.6 587.5 99.2 4 71 
el_50_c 51 25 25 710 601 * 454.4 75.6 587.5 97.8 4 3600 
e 1_50_d 51 25 25 645 597 * 454.8 76.2 587.5 98.4 4 3600 
e 1_50_e 51 25 25 662 634 * 458.9 72.4 587.5 92.7 3 3600 
e2_50_b 51 25 25 635 599 490.2 81.8 599.0 100.0 4 5 
e2_50_c 51 25 25 635 599 490.2 81.8 599.0 100.0 4 4 
e2_50_d 51 25 25 635 599 495.3 82.7 599.0 100.0 3 3 
e2_50_e 51 22 28 684 612 498.1 81.4 600.3 98.1 3 1594 
el_75_b 76 37 38 807 710 538.3 75.8 705.7 99.4 15 46 
el_75_c 76 37 38 806 710 538.4 75.8 705.7 99.4 16 95 
el_75_d 76 37 38 807 710 538.8 75.9 705.7 99.4 19 62 
el_75_e 76 42 33 769 728 * 550.9 75.7 711.7 97.8 11 3600 
e2_75_b 76 37 38 716 658 555.3 84.4 655.0 99.5 8 36 
e2_75_c 76 37 38 716 660 555.4 84.2 655.0 99.2 10 73 
e2_75_d 76 37 38 721 677 * 555.7 82.1 655.0 96.8 17 3600 
e2_75_e 76 36 39 766 706 * 557.9 79.0 661.0 93.6 11 3600 

el_100_b 101 50 50 832 797 625.4 78.5 790.0 99.1 28 270 
el_100_c 101 50 50 851 805 * 625.6 77.7 790.0 98.1 34 3600 
el_100_d 101 50 50 847 805 * 626.0 77.8 790.0 98.1 41 3600 
el_100_e 101 52 48 903 812 * 628.0 77.3 790.0 97.3 17 3600 
e2_100_b 101 50 50 900 810 * 676.1 83.5 781.5 96.5 23 3600 
e2_100_c 101 50 50 941 835 * 676.2 81.0 781.5 93.6 24 3600 
e2_100_d 101 50 50 980 856 * 674.3 78.8 781.5 91.3 66 3600 
e2_100_e 101 43 57 886 809 * 678.1 83.8 789.5 97.6 23 3600 
el_150_b 151 75 75 1059 980 * 768.2 78.4 952.5 97.2 108 3600 
e 1_150_c 151 75 75 1147 982 * 768.3 78.2 952.5 97.0 108 3600 
el_150_d 151 75 75 1155 1010 * 783.5 77.6 956.5 94.7 127 3600 
e 1_150_e 151 61 89 1060 984 * 773.7 78.6 952.5 96.8 58 3600 
e2_150_b 151 75 75 974 918 * 687.3 74.9 894.6 97.5 218 3600 
e2_150_c 151 75 75 984 938 * 687.4 73.3 894.6 95.4 204 3600 
e2_150_d 151 75 75 993 947 * 687.6 72.6 877.7 92.7 182 3600 
e2_150_e 151 77 73 986 920 * 697.6 75.8 894.6 97.2 89 3600 
Averages 	 77.8 

	
97.2 
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Table 4.9. TSPB: computational results of problem class A 

PROBLEM DATA TWO-COMMODITY 

Prob n 	IDI 	ICI z* LBO %.E LB0  LB1 %E LB' t LB1 t BC 

ei12250 22 11 10 360 310.4 86.2 360.0 100.0 1 1 
ei12266 22 14 7 350 317.9 90.8 350.0 100.0 1 1 
ei12280 22 17 4 350 277.7 79.3 347.5 99.3 1 2 
ei12350 23 11 11 647 609.5 94.2 647.0 100.0 1 1 
ei12366 23 15 7 626 531.1 84.8 618.0 98.7 1 2 
ei12380 23 18 4 639 587.6 91.9 639.0 100.0 1 1 
ei13050 30 15 14 529 381.1 72.0 529.0 100.0 2 2 
ei13066 30 20 9 504 363.1 72.0 504.0 100.0 2 2 
ei13080 30 24 5 510 360.8 70.7 510.0 100.0 2 2 
ei13350 33 16 16 575 518.2 90.1 572.3 99.5 2 3 
ei13366 33 22 10 579 517.5 89.4 574.0 99.1 2 2 
ei13380 33 26 6 543 458.9 84.5 543.0 100.0 2 2 
ei15150 51 25 25 561 500.8 89.3 560.0 99.8 3 4 
ei15166 51 34 16 522 459.0 87.9 522.0 100.0 2 2 
ei15180 51 40 10 537 476.5 88.7 533.5 99.3 3 8 

eila7650 76 37 38 683 622.0 91.1 681.0 99.7 6 12 
ei1a7666 76 50 25 711 651.0 91.6 709.5 99.8 5 12 
ei1a7680 76 60 15 661 595.1 90.0 659.0 99.7 5 48 

eila10150 101 50 50 809 685.1 84.7 804.9 99.5 13 227 
eila10166 101 67 33 814 715.8 87.9 813.3 99.9 12 14 
eila10180 101 80 20 793 690.4 87.1 790.0 99.6 14 71 

Averages 	 85.9 
	

99.7 
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Table 4.10. TSPB: computational results of problem class B 

PROBLEM DATA TWO-COMMODITY 

Prob it 	IDI 	ICI z* LBO %ELIA)  LB1 %E - - - LB1 t - LB1 t  BC 

Al 26 20 5 147639 122783.1 83.2 147005.0 99.6 1 2 
B1 31 20 10 176414 151422.7 85.8 176414.0 100.0 2 2 
Cl 41 20 20 188006 160470.3 85.4 188006.0 100.0 2 2 
D1 39 30 8 165101 139427.7 84.4 165101.0 100.0 2 2 
El 46 30 15 204970 169430.3 82.7 204198.0 99.6 3 3 
Fl 61 30 30 226396 172594.9 76.2 226396.0 100.0 4 5 
G1 58 45 12 213732 165548.0 77.5 212251.8 99.3 4 6 
H1 69 45 23 248858 200245.3 80.5 247744.5 99.6 5 7 
Il 91 45 45 287499 228182.8 79.4 285643.5 99.4 9 31 
Jl 95 75 19 266839 211802.4 79.4 264295.0 99.0 11 496 

K1 114 75 38 304183 257096.9 84.5 303840.5 99.9 16 18 
Ll 151 75 75 366616 296481.0 80.9 364714.5 99.5 75 222 

M1 126 100 25 312814 265271.6 84.8 310524.0 99.3 37 795 
N1 151 100 50 349013 290647.6 83.3 347695.5 99.6 36 55 

Averages 	 82.0 
	

99.6 

4.5 SUMMARY 

We have investigated new integer programming formulations for routing problems 

which are based on the two-commodity network flow formulation of the TSP described 

by Finke et al. (1984). This formulation is interesting in many different ways. It can be 

shown that its LP-relaxation satisfies a weak form of the subtour elimination 

constraints. The formulation can also be modified to accommodate different constraints 

and, therefore, is capable of being extended to different routing problems. In this 

chapter, a new two-commodity network flow formulation for the symmetric TSP 

(STSP) has been derived and extended to derive new integer programming formulations 

for a class of different routing problems. The VRP has been examined in which a fleet 

of M vehicles stationed at a central depot is to be optimally routed to supply customers 

with known demands subject to vehicle capacity constraints. We investigated a new 
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integer programming formulation for the VRP and a new lower bound based on the 

linear relaxation of the two-commodity formulation. The lower bound, strengthened by 

a set of valid inequalities, has been embedded in a branch and cut procedure to solve the 

problem optimally. The computational results on a set of problem instances derived 

from the literature show that the lower bound obtained is tight and that the branch and 

cut algorithm has been able to solve to optimality problems up to 100 customers. 

The STSP formulation has also been extended to deal with other routing constraints 

such as delivery and collection constraints. We considered the TSP with mixed 

deliveries and collections (TSPDC) in which a vehicle located at a central depot must be 

optimally used to serve a set of customers partitioned into two subsets of delivery and 

collection customers. The vehicle capacity must not be exceeded along the tour and the 

total length of the tour must be minimized. A new mathematical formulation has been 

derived for the TSPDC and another one for the special case, known as TSP with 

Backhauls, where in any feasible solution all delivery customers must precede the 

collection customers. New lower bounds have been obtained from the linear relaxation 

of these formulations which have been further strengthened by valid inequalities and 

embedded in a branch and cut procedure to solve the problems optimally. The resulting 

cutting plane procedure has been applied to a set of instances taken from the literature 

and involving problems up to 150 customers. The results show that the branch and cut 

algorithm has been able to solve to optimality problems up to 150 customers. 

Future research can focus on the investigation of other valid inequalities and on the 

extension of the two-commodity network flow model to other routing problems such as 

the VRP with Backhauls and the Multi-Depot Vehicle Routing Problem. 
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CHAPTER 5 

AN EXACT METHOD FOR THE 

VEHICLE ROUTING PROBLEM WITH 

BACKHAULS 

5.1 INTRODUCTION 

The Vehicle Routing Problem with Backhauls (VRPB) considered in this chapter is 

an extension of the Vehicle Routing Problem (VRP) and is defined as follows. A set of 

capacitated vehicles stationed at a central depot are to be used to design a number of 

routes, each one starting and ending at the depot, in order to supply a set of customers 

(called Linehaul customers) requiring deliveries from the depot and to collect products 

from a set of customers (called Backhaul customers) to be unloaded at the depot. Each 

customer is visited exactly once and in each feasible route the Backhaul customers are 

visited after all Linehaul customers are supplied. The total load supplied to the Linehaul 

customers as well as the total load collected from the Backhaul customers must not 

exceed, separately, the vehicle capacity. The objective is to minimize the total distance 

travelled. The VRPB is known to be NP-hard in the strong sense. 

Several heuristic algorithms for the solution of VRPB have been presented in the 

literature. Deif and Bodin (1984) proposed an extension of the well-known Clarke-

Wright VRP heuristic, where the saving of the arcs connecting Linehaul to Backhaul 

customers are modified so as to delay the formation of mixed routes. Different 
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extensions of the Clarke and Wright algorithm have been presented by Casco et al. 

(1988), and Golden et al. (1985) (in this latter paper the precedence constraint between 

Linehaul and Backhaul customers is not present). Goetschalckx and Jacobs-Blecha 

(1989) proposed an algorithm that builds initial routes with customers of the same type 

by using a spacefilling curves heuristic; these routes are then merged to form the final 

set of vehicle routes. More recently, Goetschalckx and Jacobs-Blecha (1993) described 

an extension to VRPB of the Fisher-Jaikumar VRP heuristic. Toth and Vigo (1996) 

proposed a different cluster-first-route-second heuristic based on a Lagrangean 

relaxation of a new formulation of the VRP:B, which starts from a (possibly infeasible) 

solution, and tries to improve it through a local search procedure based on inter-route 

and intra-route arc exchanges. Computational results show that the algorithm of Toth 

and Vigo outperforms both the heuristics of Goetschalckx and Jacobs-Blecha (1989) 

and (1993). Anily (1996) describes a heuristic method for the VRPB that converges to 

the optimal solution, under mild probabilistic conditions and when there are no 

restrictions on the order in which the Linehaul and Backhaul customers are visited. A 

1.5 approximation algorithm for the single vehicle version of the VRPB is given by 

Gendreau et al. (1997). 

Yano et al. (1987) proposed an exact, set-covering based, algorithm for the special 

case of VRPB in which the number of customers of each type in a circuit is not greater 

than four. The variant of VRPB where time window constraints are present has also 

been considered in the literature (see, e.g., Kontovradis and Bard (1995), Duhamel et al. 

(1994) and Gelinas et al. (1995)). Toth and Vigo (1997) present an exact approach for 

the solution of the VRPB with both symmetric and asymmetric cost matrices. They first 

give a new integer linear programming model where the VRPB is reformulated as an 

asymmetric problem. The model is used to derive a Lagrangian lower bound, based on 

projection of the solution space, which requires the determination of the shortest 

spanning arborescences with fixed degree al the depot vertex, and the optimal solution 

of min-cost flow problems. The Lagrangian lower bound is strengthened in a cutting-

plane fashion, by separating valid inequalities, and is combined, according to the 

additive approach proposed by Fischetti and. Toth (1989), with a lower bound obtained 

by dropping the capacity constraints. A branch-and-bound algorithm which makes use 
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of reduction procedures, dominance criteria, feasibility checks and a heuristic algorithm 

are also presented. 

In this chapter we describe a new (0-1) integer programming formulation of the 

VRPB based upon a set-partitioning approach. 

We use a heuristic procedure to solve the dual problem, called D, of the LP-

relaxation of the formulation in order to obtain a valid lower bound to the VRPB. This 

procedure, called TADS, combines two different heuristic algorithms each one finding a 

feasible solution to D without requiring the entire set of the dual constraints. The dual 

solution thus obtained and a valid upper bound to the VRPB are then used to reduce the 

number of routes (e.g., the variables of the integer formulation) which may form an 

optimal solution. However, the size of the reduced integer problem might still be too 

large for solving it by a branch and bound method. In this case we propose a procedure, 

called EHP, that consists of reducing the number of variables of the integer program so 

that the resulting problem can be solved by an integer programming solver. This method 

may terminate without having found an optimal solution. However, procedure EHP 

provides a means to estimate the maximum deviation from optimality of the VRPB 

solution obtained. 

The chapter is organized as follows. Section 5.2 describes the basic VRPB. Section 

5.3 gives the new integer programming model for VRPB and presents different pricing 

procedures for reducing the variables of the ILP model. Section 5.4 presents the 

bounding procedure HDS, while algorithm EHP is described in Section 5.5. 

Computational results are given in Section 5.6, followed by a summary in Section 5.7. 

5.2 THE BASIC VRPB 

Let G=(V, A) be a directed graph such that V = {0} uLuB, where L={1,..., n} 

corresponds to n Linehaul customers, B= +1,...,n + ml corresponds to m Backhaul 

customers and the vertex 0 represents the depot. A non-negative cost du  is associated 

with each arc (i, E A and a non-negative integer quantity qi  is associated with each 

customer iELuB.A fleet of M identical vehicles of capacity Q is located at the depot 
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and must be used to supply the Linehaul customers and make collections from the 

Backhaul customers. 

Linehaul customer 

A Backhaul customer 

Figure 5.1. Example of a VRPB solution 

It is required that every route performed by a vehicle starts and ends at the depot and 

that the load of all Linehauls and Backhauls does not exceed, separately, the vehicle 

capacity. Furthermore, in any feasible route, all Linehaul customers must precede all 

Backhaul customers. The cost of a route corresponds to the sum of the cost of the arcs 

forming such route. The problem we consider is of designing M routes, one for each 

vehicle, so that each customer is visited exactly once and the sum of the route costs is 

minimized. Figure 5.1 shows an example of a VRPB solution. 

It is easy to see that if L= 0 or B = 0 then the VRPB reduces to the VRP, proving 

that the problem is NP-hard (see Garey and Johnson (1979)). 

In order to ensure feasibility, we assume that M Max[M L ,M 13 ], where M L  (resp. 

M B ) is the minimum number of vehicles needed to visit all the Linehaul (resp. 
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GB = (Bo , AB ) 

......... 

.... ......... ........ 

Linehaul 
..... 111 ........ .................................................... 	.............................. 	 

GL  = (Lo, A ) 

AO 

.... /". 	 .. .... ......... 

Backhaul) customers. The values M L  and M B  can be computed by solving the Bin 

Packing Problem (see Martello and Toth (1990)) associated with the Linehaul and 

Backhaul customers. Following Toth and Vigo (1997), we assume that routes containing 

only Backhaul customers are not allowed (that is M L ?_ M B ). We must point out that 

the method we are going to describe for solving the VRPB can be easily extended to 

deal with the case where M L  <M B . 

Depot 

Figure 5.2. The arc set of graph G 

Let us denote by GL  = (1.0 , AL ) and GB  = (BO , AB ) the two subgraphs of G induced 

by the Linehaul and Backhaul customers, respectively, where : 

Lo  = L u{0} and AL  = {(i, j) : (i, j) e A s.t. i,j E Lo} 
(5.1) 

Bo  = B u {0} and AB  = {(i , j) : , j) E A s.t. j E Bo} 

Let us define AO  = {(i, j) : (i, j) e A s.t. iEL jeBol. Figure 5.2 shows the arc set 

of graph G. 

An elementary path P in G L  starting at vertex 0 (resp. in GB  ending at vertex 0) is 

called a feasible path if its load satisfies the following inequalities : 

Qtnin Eqi  < Q (resp. Qmin < qi  < Q) 	 (5.2) 
iE P 	 iE P 
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where Q,/,-:,in  (resp. Q,11,, ) represents the minimum load of Linehaul customers (resp. 

Backhaul customers) of any feasible path in GL  (resp. GB ). 

The values Qnijin  and QiniB  n  are computed as follows : 

[  Q,Lin  = Max 0, Eqi  -01 —1)Q and Q.Bin  = Max 0, Eqi  -(f -1)Q 
iEL j 	 i€13 i  

We will use t(P) to indicate both the terminal vertex of a feasible path P in GL  and 

the starting vertex of a feasible path P in G B . Note that any pair of feasible paths P in 

G L  and P' in GB  and the arc (t( P),t(P')) E Ao  form a feasible route that is obtained 

by appending to the end of P the arc (t(P),t(P')) and the path P' . Furthermore, any 

feasible path P in GL  leads to a feasible route involving Linehaul customers only by 

appending to P the arc (t( P),0) E A0  . Since we assume M L . M B , no feasible route 

exists involving Backhaul customers only. Finally, we observe that the M routes of any 

feasible VRPB solution consist of M feasible paths in GL , at least M B  feasible paths in 

GB  and M arcs of the subset A0  . 

5.3 A MATHEMATICAL FORMULATION OF THE VRPB 

Let L be the index set of all feasible paths in G L . We denote with Li  c L (resp. 

LE c L) the index set of all paths passing through (resp. ending at) customer i e L. 

Let B be the index set of all feasible paths in GB . We denote by Bi  cB (resp. 

BSc B) the index set of all paths passing through (resp. starting at) customer i E B . 

We indicate with ci  the cost of path teLuB. In the following we will use t(Pt ) 

and/or ti  , to denote the terminal vertex of path Pe  , if E L , or the starting vertex of 

path Pt  , if 

Let us define the following binary variables : xt ,tEL, ye , f E B and 

ij , (i, j) E Ao  . We have xt  =1, ye = 1 and ij  =1 if and only if paths 	L , t' E B 

and arc (i, j) E Ao  are in the optimal VRPB solution. 
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An integer programming formulation of the VRPB is as follows : 

(IP) 	z(IP) = Min co, 	E dijbij 
teL 	tEB 	(i,J)EA0 

subject to Ixe  =1 5  
.eet, 

lye  =1 , 
feB • 

- 	.0 , 
jEB0  

Eye 	=0, 
tEgyl 	IEL 

= m 
(i,J)EA, 

xe  E 10,11, 	L , Y e  E 10,11, 	E B 	E 104 , 

Equations (5.4) and (5.5) require that each vertex i E L and j E B be visited by one 

route. Equation (5.6) forces the solution to contain an arc of Ao  starting at vertex i E L 

whenever such solution contains a feasible path in GL  ending at vertex i E L . Equation 

(5.7) requires in the solution an arc (i, j) with i E L if such a solution contains a 

feasible path in GB  starting at vertex j E B . Equation (5.8) forces the solution to 

contain M routes by requiring that M arcs of the set Ao  are in solution. Since the set Ao  

contains all arcs (i3O), Vi E L , routes containing only Linehaul customers are allowed. 

Problem IP cannot be solved directly, even for problems of moderate size as the 

number of variables may be too large. In this chapter we describe a heuristic procedure 

that finds a feasible solution of the dual problem D of the linear relaxation of IP, thus 

providing a valid lower bound to the VRPB. This procedure does not require the explicit 

generation of the path set L and B. Moreover, this dual solution is used by the exact 

procedure that solves the VRPB to reduce drastically sets L and B removing those paths 

that cannot belong to any optimal VRPB solution. 

Let ui  , i E L and vi  , j E B , be the dual variables associated with constraints (5.4) 

and (5.5), respectively. Indicate by oci  , i E L , and pi , j E B , the dual variables 
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Vi E L (5.4) 

Vi E B (5.5) 

Vi E L (5.6) 

VjE B (5.7) 

(5.8) 

V(i, j)E Ao (5.9) 



associated with constraints (5.6) and (5.7), respectively. Finally, associate with 

constraint (5.8) the dual variable w. 

The dual of the LP-relaxation of IP is the following : 

(D) z(D) = Max ui + Ey, mw 
ieL 	JEB 

subject to It Uk ai 	, 
kEP, 

Evk  +pi  c.e , 
kepi  

—a•-13•+w<d•• — 

ui  , ai  unrestricted , 
v • 	13 J  unrestricted , 
w 	unrestricted 

(5.10) 

WE LE  ,iE L 	 (5.11) 

WEBs  , 	EB 	(5.12) j 

v(i, i)E A0 	 (5.13) 

ViE L 

VjE B (5.14) 

Note that we assume 130  = 0 in the dual constraints (5.13), V(i3O) E A0 . 

5.3.1 VARIABLE REDUCTION OF PROBLEM IP 

Let (u', v', a', (3', w') be a feasible solution of D of cost z'(D) and let (X', y', t') be a 

feasible solution of IP of cost z'(IP). We denote by c't  and dt, the reduced costs 

according to (u',‘,/,a',13', w') of each path P E LuB and each arc (i,j)EA0, 

respectively, that is : 

c't  = Q — Eti;, 
kEP, 
Ev„ _ 13;  , 	tEB`j , 	EB 

kEP, 
di"/  = dy + a; +13'i  — w' , (i, j)E Ao  

(5.15) 

From linear programming duality we have z'(D) 5_ z'(IP). Furthermore, we can use 

these two solutions to reduce the variables of IP as is established by the following 

theorem. 
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Theorem 5.1. Let X = It : teL , s.t. 	=11, Y = : E B , s.t. 	=11 and 

H = {(i, j) : 	j) E Ao , s. t. 	= . The following relationship holds : 

ZOO = z'(D)+ E + Ec"e  + E d;./ 	 (5.16) 
LEX 	LEY 	(i,jW/ 

Proof. From equations (5.15) we have : 

lc; + E c't  + Eat; 
tEx. 	LEY 	(i,j)EH 

= Ice  - 	Edk  +icd 
LEX 	LEX Ice'', 

( 

+ Ect  - E 	+R;, 
LEY 	fEY,kEP, 

+ E du  + I (a; + 13'./  — w') 
(i,j)EH 	(i,j)EH 

Since (x', y',0 is a feasible solution of IP, we have : 

(5.17) 

E 	I uk  + a;,) 
tEx kEP, 

=+ Eat, 
iE L 	LEX 

(5.18) 

Evk + Rtr  
LEY keP \ 	e 

 

= Ey; + I 0;, 
iEB 	LEY 

= 	air + RIr  - 
LEX 	LEY 

(5.19) 

  

E (a; + 13; -w) 
0,AEH 

(5.20) 

and, hence, from expression (5.17) we obtain : 

+ I + Ed ]  
LE X 	LEY 	(i,j)EH 

= 	+ 	+ 	du  
LEX LEY 

- 	- 	- M-14/ 
ieL 	jeB 

(5.21) 

Note that z/(11)) = ct  + I cL  + I du  and z'(D) = E u; + I + Mw' , 
LEX 	LEY 	(i,jWi 	 iEL 	 jEB 

therefore, from equation (5.21) we obtain equation (5.16)m  
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Corollary 5.1. Let z(UB) be the cost of a feasible VRPB solution and (11',v',o:',13', 

be a feasible solution of D of cost e(D) . Any optimal solution of IP of cost less than 

z(UB) cannot contain any path EELuB or any arc (i, j) E Ao  whose reduced cost is 

greater or equal to z(UB) — e(D) . 

Proof. Follows directly from Theorem 5.1. 

Corollary 5.1 states that an optimal VRPB solution can be obtained by replacing in 

problem IP sets L, B and Ao  with subsets L' g L , B' cB and A6 c Ao  defined as 

follows. 

L'= {2:2E L , s.t. c'e  < OW— zi(D)} 

B' = te:.eE B 	< z(UB))-- z'(D)} 

AP =1(i , j):(i , j)E A0  , S.t. 	< z(UB)— z'(D)} 

(5.22) 

  

Note that expressions (5.22) require the computation of the reduced costs of the paths 

of L and B and of the arcs of Ao  . The effectiveness of expressions (5.22) increases if the 

gap between upper bound z(UB) and lower bound z'(D) is small. 

5.3.2 FURTHER VARIABLE REDUCTION 

A further reduction of sets L' , B' and A6 can be achieved by means of the 

following observation. 

Reduction of L' 

Consider a VRPB solution containing a given path £ E L' . If this solution is feasible, 

it must also contain a path from t,e  E L to the depot to complete the route emerging from 

. We have two cases : 

(i) the path completing E consists of arc (tE ,0). In this case, from Theorem 5.1, the 

resulting VRPB solution cannot be smaller than 
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e(D)+ 4 + dI 0  ; 	 (5.23) 

(ii) the path completing £ starts at ti  , goes directly to some Backhaul customer (say j) 

and returns to the depot passing through Backhaul customers. This VRPB solution 

has a cost not smaller than 

[ z'(D) + ct, + Min d'ti + Min[cd 
fEB 	reg3 s ' I 

where BSS J 	J =B •s  nB , • E B 

(5.24) 

 

Corollary 5.2. An optimal VRPB solution cannot contain any path t E L' such that 

[ c't, +Min
o 
 d;

1  i 
	

93  
+ Minktr ] z(UB)— z'( D), 

jE B 	rE's 

where we assume rEaMink. = 0.  

Reduction of B' 

(5.25) 

Observations similar to those made to establish Corollary 5.2 lead to the following 

corollary. 

Corollary 5.3. An optimal VRPB solution cannot contain any path .e E B' such that : 

ett  +Min[Min[c'r ]+dci_ z(UB)— zt(D), 
L. JE 	rE L:E  

where LIE  = n L', i E L. 

Reduction of A6 

(5.26) 

Any VRPB solution containing arc (i, E Atf)  must contain either a path of set LIE  

and a path of Bt.i s  , if j # 0 , or arc (i3O) , if j = 0 . Hence, from Theorem 5.1 we have the 

following corollary. 
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Corollary 5.4. An optimal VRPB solution cannot contain arc (i, j) E Ao  if 

Minkit 1+ cli• + Minsk'r  I z(UB)— z'O) . 
EE 	J regri   (5.27) 

Note that the tests described might be insufficient to reduce the size of sets L' and 

B' so that problem IP can become solvable. This might happen even if the gap 

z(UB) — e(D) is small. In section 5.5 we describe a procedure to reduce L' and B' so 

that the resulting problem IP can be solved but without any guarantee that the solution 

obtained is an optimal VRPB solution. However, the reduction of sets L' and B' is 

such that it is possible to estimate the maximum distance from optimality of the solution 

obtained. 

5.4 A HEURISTIC PROCEDURE FOR SOLVING PROBLEM D 

It is well known, from linear programming duality, that the cost of any feasible 

solution to D is a lower bound to the optimal solution cost of IP. In this section we 

describe a heuristic procedure (called HDS) for finding a feasible solution to D that is 

based on the following general idea. A feasible solution w = wl  + w2  +. • •+w k  of the 

linear program : 

(LP) 	 Max wb 

subject to wA c 

w unrestricted 

can be obtained by successively solving a sequence of k linear programs 
Lp 1 , Lp 2 , Lp k by means of k different heuristic procedures H1  ,H2 	Hk 

Procedure W finds a feasible solution W r  of the linear program LPr  defined as 

follows: 

(LP') 	 Max W ril 

subject to w r A cr 

W r  unrestricted 

where C r  = C — (W o  + W 1  -F• • -1-w r-1)A and NO = 0 . Note that linear program LP1  

coincides with LP. 
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This general method has been applied by Mingozzi et al. (1994) for solving the 

Vehicle Routing Problem, by Bianco et al. (1994) for the Multiple Depot Vehicle 

Scheduling, by Mingozzi et al. (1995) for the Crew Scheduling Problem and has been 

used in Chapter 3 for the CPMP. 

The procedure HDS that we propose for solving problem D involves two heuristic 

procedures H1  and H2  used in sequence. Procedure 111  finds a feasible solution 
(ui ,vi ,oc t ,01,wil ) of problem Di  (-=- D) without requiring the generation of sets L and 

B. The second procedure, 112  , solves problem D2  that is obtained from D by replacing 

the path costs cE  ,teLuB and the arc costs du , (i, j)e Ao  with the reduced costs cE  

and d;i  computed according to the solution (u1 , v 1  ,a 1,(31, wl  ) obtained by procedure 

H. Procedure H2  requires the generation of limited subsets of sets L and B. 

Linehaul 

4_ Backhaul 

Depot 

Figure 5.3. Structure of a feasible VRPB solution 

5.4.1 PROCEDURE Hl  

This procedure is based on the observation that any route of a feasible VRPB solution 

contains an arc of set Ao  (see Figure 5.3). A lower bound to the VRPB can be obtained 

as follows. Associate to each arc (i, j) E Ao  a cost representing a lower bound to the 

cost of the least cost route passing through it. Therefore the sum on the costs of the M 
vertex-disjoint arcs of minimum cost of Ao  is a valid lower bound to the VRPB. 

This problem, called PR (X,µ) , is defined as follows. 
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Let X = 	 and µ = 	 ) be two vectors of unrestricted real 

numbers associated with the Linehaul and 13ackhaul customers, respectively. 

Let us associate with each arc (i, j) E A a cost dij  as follows : 

d_ 	{ u  —Xi  if j E L 
d- = v 	du —µ j  if j e B 

(5.28) 

Denote by (pi  (resp. (pi ) a lower bound to the cost of the least cost feasible path 

ending at vertex i of GL  (resp. starting at vertex j of GB ) using arc costs {du} defined 

by expressions (5.28). Therefore, the values (pfr , i E L, and (pil , j E B , satisfy the 

following inequalities : 

(pi  5 — I Xk ,tELEi ,iEL 
keP, 

S • (p 	 tEBi ,JEB 
IcePt  

(5.29) 

 

A valid lower bound bu  to the cost of the least cost route passing through arc 

(i, j) E Ao  can be computed as follows. 

bij  = 	+ dij  +(pi; , v(i, j) E Ao 	 (5.30) 

where we assume (pg = 0 . In subsection 5.4.1.2 we describe a method for computing 

L  and 	that does not require the enumeration of path sets L and B. 

The mathematical formulation of PR (x, µ) is as follows. 

	

PR (X,µ) z(PR(X,A)) = Min E biAu 	+ 	 (5.31) 
(i,f)E110 	ieL 	:FEB 

subject to 	, 	 Vi e L 	(5.32) 
jeBo  

E ij < 1 , 	 E B 	(5.33) 
iEL 

Iij  = M 	 (5.34) 
(i, j)EA0 
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E 10,11 , 	 V(i,j)E Ao 	(5.35) 

Constraints (5.32) and (5.33) force the arcs of a feasible PR(X,µ) solution to be 

vertex-disjoint and constraint (5.34) requires that exactly M arcs are in the solution. 

Let rl = 	n ) and v = 	 ) be two vectors of dual variables 

associated with constraints (5.32) and (5.33), respectively, and let 8 be the dual variable 

associated with constraint (5.34). 

The dual of the LP-relaxation of PR(A,14, called DPRPk.,,t,t), is then : 

DPR(X,R) OP*, µ)) = Max DI + ED;  + M8 +IA1 + [if 	(5.36) 
iEL 	jeB 	 iE L 	fEB 

subject to rl i + D +8 by , 	V(i, j)E Ao 	(5.37) 

rli 	 0 , 	 ViE L 

D<_0,  	 Vje B 	(5.38) 

8 unrestricted 

Note that we assume vo  = 0 in the inequality (5.37). 

In the following theorem we prove that a feasible solution of D can be obtained from 

any feasible solution of DPR(X,µ) and the predetermined vectors A and 1.1, showing 

that z(PR(X,µ)), for any A and pi , is a valid lower bound to the VRPB. 

Theorem 5.2. Let (ri,D,8) be a feasible solution of DPR(X,R) of cost z(DPR(X,A)) 

for a given pair of vectors A and pt, . A feasible solution of D of cost 

z(D) = zODPR(X,µ)) is given by : 

ui  = 	, 

vi  =pi  +.0./  , 

ai  = (pf• 

13 j  
, i E 

, jEB (5.39) 

w= 8 
hence, z(DPR(X,µ)) is a valid lower bound for IP for any A and j.t. 

Proof. Firstly it is easy to see that the values of the dual variables of D computed 

according to equation (5.39) satisfy constraints (5.14). 

Consider now a path .eE4. Substituting into the left-hand-side of inequalities 

(5.11) the values of u and ai  given by equations (5.39) yields : 

139 



uk 	ai = 	2/ 	+ (Pi 	Tli • 
kEP, 	kEP, 	kEP, 

(5.40) 

Note that I% — rii  = 1 rik  and, since ilk  S 0 , kEL, we have /ilk  5_ 0 
kEP, 	kePi \fil 	 kEP,\{i} 

Therefore, from equation (5.40), we obtain : 

/uk + ai  S DI  +(p . 	 (5.41) 
kEP, 	kEP, 

From inequalities (5.29) and (5.41) we have 

yuk  +a, .5_ yAk  +c,- I Xk  (-= c). 	 (5.42) 
kEP, 	kEP, 	kEP, 

Inequality (5.42) shows that the values of u and a given by equation (5.39) satisfy 

constraints (5.11). In a similar way it is easy to show that the values of v and 13 given 

by equations (5.39) satisfy inequalities (5.12). Finally, let us prove that the values of a , 

and w given by equation (5.39) satisfy inequalities (5.13). In fact, for each arc 

(i, j) E Ao  we have : 

Or 

— ai 	+ w = 	+ —(pi  + ui  +S . 

From inequalities (5.37) and the definition of bid  we obtain : 

11i  + 	+ 	(pt' + (pi] + dy  

—(pi  + — + 'of  +85.4 

From equations (5.43) and inequalities (5.45) we obtain inequalities (5.13)m  

(5.43) 

(5.44) 

(5.45) 

5.4.1.1 IMPROVING VALUE z(PR(X, 

Algorithm H1  is an iterative procedure that finds a feasible solution of problem D1  

by finding a feasible solution of the following problem: 

max[z(pR(x,0)]. 	 (5.46) 
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An iteration of H1  consists of computing new vectors X and µ and of finding a new 

solution of the resulting problem PR (X, pt). The method used for changing X and , at 

each iteration, is as follows. 

Let 	be an optimal PR (X, µ) solution for given X and tt and 

H*  ={(i,j): (i, j) E Ac  , 	=1} . Denote with L*  (resp. B* ) the set of Linehaul (resp. 

Backhaul) terminal vertices of the arcs of H*  (i.e. L*  = : (i, j) e H* } and 

B*  =fj:(i,j)EH 1). We indicate with Pi L  , i E L , and PiP ,jEB, the paths of cost 

(pf and (p i' , respectively. Let h1  be the number of times that vertex i E Lu B appears 

in the paths PI' , k E L*  and pkB  , k E B*  . It is obvious that in any feasible VRPB 

solution we have hi =1,iELuB, hence, a subgradient optimization method can be 

used to change X and 1.1 as follows : 

Xi = Xi 6 	
Zi (UB)— Z(PR (X, j.1))  

(hi 	1), iE LuB. 	 (5.47) Visi  —1)2  + 	(hi  — ir 
JEL 	JEB 

The solution of D1  is given by equation (5.39) using the values of X and µ that 

produces the best approximate solution of problem (5.46) and the values of ri , 1.) and 6 

of an optimal solution of the corresponding problem DPR(X,[1). 

5.4.1.2 THE COMPUTATION OF 	, i E L AND (p lf , j E B 

We describe a method for computing q ' , i E L, an equivalent method can be used 

for computing (p li ,jeB. A path (not necessarily elementary) 0 = (0,4 , i2 ,...,i,c ) in 

graph GL  and such that Eqi  =q is called a q-path (see Christofides et al. (1981a)). 
iE 

Let fi (q) be the cost of the least cost q-path in GL  from depot 0 to vertex i E L, using 

arc costs {di;  I defined by expression (5.28). Christofides et al. (1981a) describe a 

dynamic programming algorithm of complexity O(Qn2 ) for computing value fi (q) , for 
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1 	2 

1 

-M BM n +1 	❑  

each i E L, and q = q1 , qt  +1,...,Q with the restriction that the q-path corresponding to 

f l  (q) should not contain loops formed by three consecutive vertices. Using function 

fi (q), the lower bound (pi' , i E L, can be computed as 

= Min [f i (q)]. 	 (5.48) 

origins 	 destinations 

quantity 	 Linehauls Backhauls 	demand 

1 1 

2 1 

m 1 

m+1 	- NIB 

m+2 	n—M 

0 Dummy vertex 

Figure 5.4. Transportation problem TP(X,pt) 

5.4.1.3 SOLVING PROBLEMS PR (X.,11) AND DPR(X,R) 

Problem PR(., µ) can be transformed into a balanced transportation problem 

TP(X,µ) with (n +1) origins and (m+ 2) destinations as follows (see Figure 5.4). 
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Origins {1,...,0 correspond to the Linehaul customer set L while origin n+1 is a 

dummy one. Destinations {1,...,m} correspond to the Backhaul customer set B while 

destination m+ 1 represent the depot and m+ 2 is a dummy vertex. 

A cost matrix y1  , i = 1,...,n +1, j =1,...,m+ 2 is defined as follows : 

Yy 
Yu 
Yij 

Yy 

Yij 

=by 	i=1,...,n, j =1,...,m 

=b10 	i=1,...,n, j = m+1 

=0 	i=n+1, j=1,...,m+1 

=0 	i =1,...,n, j = m+2 

i=n+1, j=m+2 

(5.49) 

 

Note that the set of arcs {(i, j), i =1,...,n, j =1,...,m+1} corresponds to the arcs set Ao  . 

We assume that a quantity equal to 1 is available at each origin i, i =1,...,n , while a 

quantity equal to m — M B  is available at origin 11+1. The demand of each destination j, 

j=1,...,m is equal to 1, while the demands of destinations m+1 and m+2 are equal to 

M — M B  and n — M , respectively. 

Let 	denote the quantity transported from origin i to destination j. 

Problem TP(X,µ) is as follows. 

TP(X,µ) z(TP(X,µ)) =Min 

subject to 

n+lm+2 

i=1 j=1 

nt+2 

Xij = 1  , 
j=1 

m+1 

E Xn+lj = m — MB 
j=1 

n+1 

Exu  =1, 
1=1 
n+1 

= M - MB 
i=1 

i=1,...,n 

j=1,...,m 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

n 

E Xim+2 	M 	 (5.55) 
i=1 
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Xij? 0 ,  	 i=1,...,n+1,j=1,...,m+2 	(5.56) 

Note that constraints (5.51) and (5.53) impose xij  S 1, i =1,...,n,j=1,...,m+2 and 

i = n +1, j =1,...,m . Constraint (5.55) impose that n — M units are transported 

from the origins {1,...,n} to the dummy destination m+2. Due to constraints (5.51) we 

have that M units must be transported from the M distinct origins {1,...,n} to the 

destinations {1 ..... ni+1} and, due to constraint (5.54), at least MB units are forced to 

go from the origins {1 ..... n} to the destinations {1, ...,m}. Hence, any feasible TP(X,µ) 

solution contains M arcs of set Ao  and at least MB arcs of set 

{(i, j):(i, j)E A s.t. ie Ld E Bl. 

Theorem 5.3. Problems PROs„µ) and TP(X, pi) are equivalent and 

z(PR(A„µ)) = z(TP(X,µ))+ yxi j 	 (5.57) 
iEL 	jEB 

Proof. We first prove that any solution x of TP(X,µ) can be transformed into a 

solution 	of 	PR(X,µ). 	Setij  =xi 	 j=1,...,m 	and 

io = Xim+i i = 1,...,n . Note that in any optimal solution we have Xn+i m+2  = 0 

n+lm+2 
From expressions (5.49) we have I biAy = E E7,x, , hence, equation (5.57). 

(i,j)€A0 	i=1 j=1 

It is easy to see that 	satisfy inequalities (5.32) and (5.33). By adding equations (5.51) 

we obtain : 
n m+1 

E Exu 	= n • 	 (5.58) 
1=1 j=1 	i=1 

From equations (5.55) and (5.58) we obtain 
n m+1 
EIxo- n—M =72. 	 (5.59) 
i=1 j=1 

From equation (5.59) and the definition of we have equation (5.34). 

Any solution 	of P0,41) can be transformed into a solution x of problem 

TP(A.,µ) by setting : 
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Xij = ij 1 

Xim+1 = i0 1 
n 

Xn+lj =1— Eij 1 
i=1 

n 

Xn+lm+1 = M— MB — E io 
i=1 

m 
Xim+2 =1 j, 

J=0 

i=1,...,n, j=1,...,m 
i=1,...,n 

j = 1,..., m 

(5.60) 

i =1,...,n 

It is easy to show that this solution x satisfies all the constraints of problem TP(X,µ). 

Problem TP(X,µ) can be solved by the Hungarian method that also provides an 

optimal solution of the dual of TP(X,µ). We can show that an optimal dual solution of 

TP(X,µ) can be transformed into an optimal solution of DP12(X,µ). 

The dual of problem TP(X,µ), called DTP(A,µ), is as follows : 

n 	 m 
DTP(X,µ) zODTP(X,µ)) = Max EPi +(m — MB )Pn+i + EcT i ± 

i=1 	 j=1 

(M — M B )(3n2+1 + (n — M)cF m+2 

(5.61) 

subject to 
Pi +aj  

i=1,...,n+1 
5-lii  ' j=1,...,m+2 } 

(5.62) 

pi 	unrestricted , i =1,...,n +1 
a J • unrestricted , 	 j =1, . . . , m+ 2 } 

(5.63) 

Let (p * , a *) be an optimal DTP(X, p.) solution and let us define : 

pm' = Max[pil and amax  = Max [01i 	 (5.64) 
1.1.i5m 	 1.j5m+1 

We denote by imax  the index such that pi  = pmax  . 

We assume that amTh = a max  (this is possible since the constraints of problem 

TP(X,µ) are not independent). 

Theorem 5.4. In any optimal DTP(X,µ) solution (p*  ,a* ) such that am*  +1  = a max  we 

have : 
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r  max 
Pn+1 

max 
m+2 - —1)  

} (5.65) 

Proof. By definition I imax S n (see expressions (5.64)), therefore, from the dual 

constraint (5.67) and expression (5.49), we have : 
max 

Pn-fi + 	0  
Amax + am*  +2 

i=n+1,j=m+1 
i=imax  , j = m+ 2 } (5.66) 

hence, p:÷1  —6max  and 6m+2  :5_ —pmax  . Since both variables pn.fi  and 6m+2  have a 

positive coefficient in the objective function (5.61) we have pn*+i  = —a max  and 

„.* 	_ „ max 
u m+2 	■ 

Theorem 5.5. Any optimal DTP(X,µ) solution (p* ,a*) of cost z(13T13(X,14) can be 

transformed into an optimal DPR(X,µ) solution (ii* ,•u* ,8*) of cost 

z(DP12(X,A))= z(DTP(X,14)+ Ex, + 
iE L 	jEB 

by setting : 
* * max 

= — 10  , 
1) • 

* 	* 	ax = CY • — CT
m  

.1 
8* = pmax ulna): 

i E L 
j E B 

} 
(5.67) 

Proof. By substituting i* , u*  and 8*  into the dual constraints (5.37) we obtain : 

p*  — pmax  + — amax  + p" + a" 5 bu  , ( i , j) Ao  

or p: + 	<— bid  , (i, j) E A0. These correspond to the dual constraints of DTP( ,,µ) 

that, by definition, are satisfied by p*  and cr*   . It is obvious that the values of 	D
* 

and 8*  satisfy constraints (5.38). 

	

The cost z(DPR(X41,)) of a DPR(X,µ) solution 	*)can be written as 

follows: 

z(DpR(x,,))=zA +Ex, + I 
ie L 	 jEB 

146 



x---,  where zA  =  2111 + Lui  + M6* . From expression (5.67) we obtain : 
iEL 	jEB 

ZA = Epi* + Ea*i  —(n— M)p" —(m— M)csmax . 
tEL 	 jEB 

From Theorem 5.4 we have p,:+1  = —a n' , a*m+2  = —rax  and, therefore : 

ZA = IR* + Ea.; +(n- M)0„,* +2  +(m— M)pn+1 . 
JEL 	 jEB 

As m — M = (in — M B ) - (M - M B ), equation (5.69) becomes 

zA = ER + E6 , +(n —  M)a*,+2 + (m — MB )Pn+i — (M — MB )P:+1 • 	(5.70) 
JEL. 	fEB 

* 	* From Theorem 5.4, we have 6m 1 = —pn+i  , hence from equation (5.70) we deduce 

that zA  = z(DTP(X,µ)). 

5.4.2 PROCEDURE H2 

Let (u l  , v1 ,a1 431 ,w1 ) be a feasible solution of DIL  of cost z(D1 ) produced by 

procedure H1 . The reduced costs of the variables of problem IP are given by : 

ci = c f  — Eul -al , t E L 
kEPt  

d  =C,- Evi, -pti, , 	.D E B 
keP, 

d 	= du  + a i i + pl i  _ w l , (i,  j) e Ao  

(5.71) 

  

We denote by D2  the problem obtained from D by replacing {c1  } with {d} and 

{du} with {4}. 

Problem D2  cannot be solved directly as the number of constraints may be too large. 

In this section we describe a heuristic procedure, called H2  , for reducing the number of 

constraints of D2  so that the resulting problem, called D2 , can be solved directly and 

any solution of D2  is a feasible D2  solution. Problem D2  is obtained from D2  as 

follows: 
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(i) reduce the number of constraints (5.11) and (5.12) by replacing L and B with subsets 

c L and N c B of limited size; 

(ii) add constraints to force any D2  solution to satisfy constraints (5.11) for any 

E L\Z and constraints (5.12) for any .e E B\ 

Reduced problem D2  

Let LC L and N c B be the subsets of paths satisfying the following conditions : 

Max[4] S Min [4] 	 (a) 
teZ 	ieL\L 

Max[cl] S Min [d] 	 (b) 	 (5.72) 
PEN 	tEB\B 

cQ < z(uB)- z(E)1), teZuN 	(c) 

We set Er =LnLf ,iEL and B1 = NnIrj , jE B. 

For generating the two sets T, and N we used a procedure similar to the one used by 

Mingozzi et al. (1995) for the VRP which will be summarised in section 5.4.2.2. Note 

that real-world VRPB constraints can, at this stage, be easily considered by removing 

from L and N any infeasible path. The reduced problem D2  is as follows: 

(D2 ) z(52 )= Max Eui  + Ey;  + Mw 	 (5.73) 
ieL 	jEB 

subject to Euk  +a, 4 , 	We zr. ,V i E L (5.74) 
/cc/3, 

Evk  + p;  5.c3 
kEp, 

Vi E BF ' V jE B (5.75) 

—13j  + w 5.; 	 V(i, j)E A0 	(5.76) 

ui  +Si  5. Ui  , 	 ViE L 	 (5.77) 

a i —Si  5_0 , 	 ViE L 	 (5.78) 

vi  +0 i  .17.i  , 	 VjE B 	 (5.79) 

13j  —0 i  5_ 0 , 	 VjE B 	 (5.80) 
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ui , ai unrestricted , Si 0 ViE L 
v./ , Pi unrestricted , Of 0 V jc B (5.81) 
w 	unrestricted 

Constraints (5.77), (5.78), (5.79) and (5.80) ensure that any solution of 52 is a 

feasible D2 solution if the upper bounds U i , i E L and Vi , j E B are chosen such 

that : 

Evi c..2,,tELAr 
iEp, 
Ey; Scl,,tEB\T3 
jEPe 

(a)  

(b)  
(5.82) 

   

Theorem 5.6. Any feasible solution to D2 is also a feasible solution of D2 with the 

same objective function value. 

Proof. Let us consider the dual constraint (5.11) of path £ E LE \TLF for a given i E L. 

From inequalities (5.77) and (5.78) we have : 

Euk +ai < EUk — E8k -Foi 
kEp, 	kEp„ 	kePt 

and from inequalities (5.82.a), since 8i 0 , Vi E L , we have : 

EUk 	— ~Sk + Si 	. 
kEp, 	 kEp, 

— Hence, any solution of D2 satisfies the dual constraint (5.11) for any E 1,11. In a 

similar way we can show that a feasible D2 solution satisfies constraints (5.12) for any 

tEB\N E 

5.4.2.1 THE COMPUTATION OF Ui E L AND Vi E B 

In computing Ui , Vi E L, we must consider two cases : 

A) ci z(UB) — 01) , Vi E L \ L . From Corollary 5.1 no path t E L\Z can belong 

to an optimal VRPB solution, hence, we can set Ui = 00 , Vi E L. 
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B) 4 < z(uB) — z(o) , for some E LAT, . In this case every optimal VRPB solution 

might contain some path E L \L . We can set : 

	

L/ i  = 	IQ, ViEL 	 (5.83) 

where 

3L  = Max[cd . 	 (5.84) 
iE27 

It is easy to show that the fui  } defined according to expression (5.83) and (5.84) 

satisfy inequalities (5.82-a). For any E 	we have : 

= 	qi  I" 1 Q 	 (5.85) 

	

iEPe 	iEPt  

Since from (5.84) we know that 31  d ,tEL\ --.-6, equation (5.85) then becomes : 

EUi c2€  Eqi  I Q 2  e  
iEP1 	iePt  

Also for the computation of Vi  , VjE B , we must consider two cases. 

C) d z(UB) — z(Di ) , Vt E B\N. This case is analogous to case (A) above. We can 

set Vi  = , Vj E B 

D) d < z(uB) — z(D1 ) , for some t E B1N. 'We can set : 

where 

v.I  =41.J " B  IQ, 

-B = A maX[Ce2 C 
iET3 

'VjEB (5.86) 

. 	 (5.87) 

The proof that the frj  } computed according to expressions (5.86) and (5.87) satisfy 

inequalities (5.82-b) is similar to the one given in case (B) above. Problem D2  can be 

considered to be the dual of the following problem IP
2 
 . 

(y)2 ) z(rT32 min  2 z dye  + Vi •• ii + y, ux1 E17.37P I 
L'EE 	tEN 	j)EA0 	iEL 	feB 

(5.88) 
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subject to 	e  + .x°` =1 , 	 Vie L 	(5.89) 
/El.; 

Eye y.  =1, 	 VjEB 	(5.90) 
tEN
- F  
; 

yx,- 	-Fv =0 , 	 Vi E L 	(5.91) 
teir 	 jEB0  

VjE B 	(5.92) 

= M 	 (5.93) 
(i,j)EA0 

.41  — 	> 0 , 	 Vi E L 	(5.94) 

y7 — 411 > o , 	 Vj E B 	(5.95) 

x, y, xa ,y13 ,4 	0 	 (5.96) 

Procedure H2  consists of finding an optimal solution (x* ,y* ,x a* 	e*) 

of IP
2 

of cost z IP
2 
	and the corresponding optimal dual variables 

IN 	 * 
U* ,17*  ,a*  ,p*  ,w ). Hence, we have z(D2 )=z(D2 ) and u2  = u* , v2  = v* , cc2  = cc*  , 

p2 p* 2 = 	, w  = w  

Procedure HDS finds a solution (u', v',oc',13', w') of D of cost e(D) = z(D1 ) + z(D2 ) 

by setting u'= +112 , 17, = v i + v2 , 	= at +a2 ,  = 01 +  p2 w/ = wl w2 

An optimal VPRB solution 

We observe that an optimal T.2 
solution, under certain conditions, corresponds to an 

optimal VRPB solution. In fact the following cases may arise: 

(A) x* ,y* , *  integer and xa*  = 4a*  = 0, y(3*  = 413* = 0. 

This solution is an optimal VRPB solution of cost z(IP) = z'(D). 

(B) x*  or y*  or 4* not integer and Ui  = 00 , i E L , and Vi  = oo , j E B. 
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In this case all paths of any optimal VRPB solution are contained in the two sets Z 

and T3 and an optimal VRPB solution can be obtained by solving problem IP after 

having replaced sets L and B with Z and T3 . 

(C) xa*  # 0 or 343*  # 0 . 

This f  P
2 

solution is not feasible for the VRPB. Furthermore, sets :C7 and N might 

not contain any feasible and/or optimal VRPB solution. 

5.4.2.2 GENERATING SETS L AND B 

In this section we describe a method for generating sets I and N satisfying 

conditions (5.72) with the additional restrictions that III Maxsize and IB1 Maxsize , 

where Maxsize is a predefined positive integer to ensure that no memory overflow 

occurs. In the following we give the description of an algorithm for generating set 

being obvious that an equivalent procedure can be used for computing N. 

The method for generating set r is based on the following observation. 

Let P be a feasible path in GL  from vertex 0 to some vertex t(P) . We denote with 

LB(P) a lower bound to the reduced cost of any feasible path in GL  that can be 

obtained by expanding P from t(P) to some other vertex iE Lo 

Theorem 5.7. Let P a subset of the path set L such that : 

Max[LB(Pe )] Min[LB(pe )]. 

	

LET 	tEL\P 

The subset L of P defined as : 

	

Tc,= {.e: 	 Min[LB(PM} 
tEL\P 

satisfies inequality (5.72-a). 

Proof. From the definitions of I and of LB(P) , we have : 

Max[ci?] Min[LB(Pjl Min[en . 
Eel 	ieL\P 	- LeL\P 

Moreover, from the definition of I we have : 

(5.97) 

(5.98) 

(5.99) 
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Max[d] Min[ci] . 	 (5.100) 
.eEL. 	.eET\L 

Hence, from inequalities (5.99) and (5.100) we obtain : 

Max[cli5._ Min [4]. 	 (5.101) 
.eer, 	.eE(L\T)u(T\Z) 

Inequality (5.101) corresponds to inequality (5.72-a) since (L\P)u(P \Z) = L11 • 

In the following we describe an algorithm, called GENT, for generating set P that is 

analogous to the Dijkstra's algorithm in an expanded state-space graph. Let S(P) be the 

set of vertices visited by path P. 

In algorithm GENP we use LB(P) as a label and set T to denote a temporary set of 

paths (i.e. it is not known if P E T is a least cost path starting at 0, visiting the subset of 

vertices S(P) and ending at t( P)). 

Algorithm 5.3: GENP 

We use Ti  and Pi  to denote the subsets of all paths terminating at vertex j of sets T 

and P, respectively. 

Step O. Set T =1(0)1 , LB((0))= 0 and P = 0 . 

Step I. If T = 0, then go to Step 6. 

Step 2. Let P*  E T be such that LB(P* ) = Min
T 

 [LB(P)] and denote with i*  the 
PE 

terminal vertex of P*  . Update T = T\IP* 1 and P = P u {P } . 

If 'PI = Maxsize , then go to Step 6. 

{ 

	

Step 3. For any vertex jE j: jE L\S(P* ) s. t. Eqi  + q j 	repeat Step 4. 
iEP* 

Step 4. Let P' be a path obtained by appending vertex j to the end of path P*  . 

We have two cases : 

1. 	LB( P') z(UB) — z(D1) , then P' is rejected. 
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2. 	LB(P') < z(UB) — 01), then we have three subcases : 

(i) S(P') # S(P), VP e PJ  u , then update T= Tu{P'} . 

(ii) S(P') = S(P), for some PEPi, then P' is dominated by P (i.e. 

LB(P) S LB(P') , hence, P' is rejected). 

(iii) S(P') = S(P), for some P E T./  . If LB(P') LB(P) then P' is 

dominated by P and is not stored in T, otherwise update T =T1{P} 

and T= Tv{ P'} . 

Step 5. Return to Step 1. 

Step 6 Let LBMAX = Max[LB(P)] Remove from P any path P such that 
PEP 

	

qi  < an  and/or c(P)— E 	alt( p) > LBMAX 
iEP 	 iEP 

Set L corresponds to the indices of the paths contained in Pat the end of GENT. 

Concerning the computation of Ui  , i E L , we note that if GENT terminates with 

T = 0 , 	then 	c.2, ?. LB(PP ) > z(UB) — (Di ) , W E L 	, 	hence, 	we 	set 

Ui  = 00 , Vi E L . If GENT terminates with !PI = Maxsize, then we set 

Ui = qi  LBMAX/Q. 

Reducing sets L and T3 

Once the two sets L and T3 have been generated, we can remove from Tt, according 
to Corollary 5.2, any path £ such that : 

ce2  d 2 j  + Mink 2 ] z(UB)— z(D1 ) 
JEB0 	rE131 

and, according to Corollary 5.3, we can remove from T3 any path t such that : 

Min[Min[ci]+ dit, + 	z(UB)— z(D1 ). 
ie L rE zr 
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LB(P)=C"(13 )+ 	Min 
qmin(p)qq„,,,,,(P) gil (q) , if 7111 (0 E P 

(q) , if mi  (q) e P 
(5.102) 

Computing lower bound LB(P) 

In the following we use Q(P) to denote the load of path P (i.e. Q(P) = > qi ). 
JET. 

Associate with each arc (i, j) of graph G L  the following cost du  : 

- u; , iEL0 ,jeL 

-at, iEL,j= 0 

Let fi-1(q) be the cost of the least cost q-path from vertex i E L to depot 0 and let 

-it 	 -1 / w) be the vertex just prior to i on the path corresponding to fi  kg) 

Let g; 1(q) be the cost of the least cost q-path from vertex i E L to depot 0 with 

pit (q) ,TETti 1 , w) where pl1(q) is the vertex just prior to i on the path corresponding to 

git (q) 

Functions f11(q) and gil(q) can be computed by means of a dynamic 

programming algorithm in a similar way as functions f1 (q) described in section 5.4.1.2. 

Let P be a feasible path in G L  starting at depot 0 and ending at vertex i = t(P) . We 

denote with -6(P) the cost of P using arc costs {Ju} . 

A lower bound LB(13 ) for the reduced cost -e(P') of any feasible path P' in GL  

that can be obtained by expanding path P is given by : 

d13 

where groin  (P) = Max 	Eqk,q1 and q.(P). Q— E qk  + qi. 
L 	kEP 	 keP 

A computationally better method for calculating LB(P) , avoiding the minimization 

problem required by expression (5.102), involves the definition of the following 

functions Fi(q) , i (q) and G1(q) that are computed, for each q (q1  < q .Q), as 

follows. 

(q) = Min 
Max[Qui -q,q; ]54-g+qi  [ft 

-t(gli 
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1  cri (q) = 	(q* ) , where q*  is such that Fi  (q) = f1-1(q* ) 

, if n-i-i(q) 

6111(0 if nil  (q) = (q) 

The lower bound LB(P) can be computed as : 

LB(P) =
r(P)+ Fi(Q(P)) , if c y i (Q(P)) P 

a(P)+ Gi(Q(P)) , if a i(Q(P)) E P 

Gi(q)= 	Min 
Max[Q,nin —q,qi ]q'5Q—q+qi  

(5.103) 

5.5 AN EXACT METHOD FOR SOLVING THE VRPB 

In this section we describe an exact method for the VRPB, called EHP, that consists 

of reducing the number of variables of the integer program IP so that the resulting 

problem can be solved by an integer programming solver (CPLEX (1993)). This method 

may terminate, under certain circumstances, without having found an optimal solution. 

Let (u', v', a', (3', w') be the solution of D of cost e(D) obtained by procedure BIDS 

and let c't  , teLuB, and d1 ,(i,j) E Ao  be the reduced costs corresponding to this 

dual solution. We could attempt to solve IP as indicated by Corollary 5.1, that is, we 

might generate L', B' and A6 according to expressions (5.22) and then solve IP using 

L', B' and Ai5 instead of L, B and A0  . However, the size of L' and/or B' may be too 

large, hence we propose generating L' and B' so that their size is limited and the 

resulting problem IP' becomes solvable. By means of the procedure described in 

section 5.4.2.2, we generate L', B' satisfying conditions (5.72) where the reduced costs 

Id } are replaced with Ic.'e  and z(D1) is substituted with z'(D) . Note that the size of 

each set L' and B' is limited by the value of Maxsize used in algorithm GENT. 

Moreover, the sets L' , B' and AL can be further reduced by applying Corollaries 5.2, 

5.3 and 5.4 of section 5.3.1.1. 

Let x* , y*,4*  be an optimal solution of IP' of cost z(IP') (we assume z(IP') = co if 

the sets L' and B' do not contain any optimal VRPB solution). 
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If z(IP') < .0 then solution x* , y* , V is a feasible VRPB solution and it may be also 

an optimal one. Let A = Min{Max[cd, Max[c't if . 
iEL' 	iEB1  

We have the following cases : 

1. z(IP/). z'(D)+ A . In this case the optimal solution of IP' is also an optimal 

VRPB solution. This derives from Theorem 5.1 as any VRPB solution involving 

at least one path of L \ L' or B \ B' has a cost greater or equal to z'(D) + A . 

2. z(111 > 413)-F A . The optimal solution of IP' might not be an optimal VRPB 

solution. However, it is easy to note that, in this case, z'(D) + A is a valid lower 

bound to any optimal VRPB solution. 

The optimal solution of IP' is obtained by means of the integer programming code 

CPLEX 3.0. 

5.5.1 A NUMERICAL EXAMPLE 

In this section we show a numerical example to illustrate the new exact procedure 

EHP. The test problem used is problem eilA10166 (see section 5.6). The number n of 

Linehaul customers is 67 (i.e. I L I= 67 ), while the number m of Backhaul customers is 

33 (i.e. I B I= 33). The number M of vehicles is 6, each one with a capacity Q=200. The 

total demand of the Linehaul and Backhaul customers is 1003 and 455, respectively. 

Therefore, the minimum number of vehicles needed to visit the Linehaul customers and 

the Backhaul customers is 6 and 3, respectively (i.e. M L  = 6 and MB = 3). The data 

corresponding to this problem test can be found in Appendix A.2. The cost of the 

heuristic solution found by the algorithm of Toth and Vigo (1996) is 879. 

The value of lower bound z(D1 ) computed by procedure H1  was equal to 841.2. 

The lower bound has been obtained by a total number of 300 iterations of procedure H1  

in 201 seconds on a Silicon Graphics Indy (MIPS R4400/200 Mhz processor). The M-

vertex disjoint arcs of Ao  in the lower bound solution and the corresponding Linehaul 

and Backhaul q-paths are given in Table 5.1. Figure 5.5 shows the lower bound solution, 

where the arcs forming the solution are indicated as bold. 
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6  Linehaul customer A Backhaul customer 

Figure 5.5. Example: lower bound solution to procedure H1  of cost 841.2 

Table 5.1. Example: details of the lower bound solution obtained by procedure H1  

046 
018 

038 
A81 

017 	 04 
039 

029 
028 

Delivery q-path Collection q-path 

(1,20,52,35,2,48,22,60,43,8,23,15) (90,71,85,79,95,94,69,79,95,94,69,76,86,72,1) 

(1,36,22,48,8,43,60,22,48,2,35,52,53,54,21) (76,86,72,1) 

(1,2,35,53,47,55,21,54,24,25,45,49,15,23) (89,98,78,91,77,1) 

(1,61,57,5,13,42,12,59,31,27,11,30) (73,87,82,97,1) 

(1,19,55,47,53,52,35,2,48,8,43,9,44,34) (80,84,89,98,78,91,77,1) 

(1,10,64,65,66,63,41,67,26,68,62,58) (99,101,100,70,1) 

Arc 

(15,90) 

(21,76) 

(23,89) 

(30,73) 

(34,80) 

(58,99) 
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The value z(D2 ) of the lower bound obtained by procedure H2 was 2.1, hence, the 

value of the final lower bound obtained by procedure HDS was z'(D) = 843.3. The total 

computing time for procedure HDS was 373.0. Table 5.2 reports the details of the lower 

bound solution produced by H2  and Figure 5.6 shows the solution, where the bold arcs 

represent the gif  } variables that have a value greater than 0 in the lower bound 

solution. 

Linehaul customer A Backhaul customer 

Figure 5.6. Example: lower bound solution to procedure H2  of cost 2.1 
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Coefficient 
0.01 
0.34 
0.02 
0.00 
0.01 
0.01 
0.00 
0.00 
0.02 
0.08 
0.30 
0.73 
0.40 
0.51 
0.00 

Path 
(1,20,52,35,2,48,22,60,43,8,23,15) 
(1,36,22,60,6,56,7,32,33,14,9,43,8,23,15) 
(1,19,55,47,53,54,24,25,45,49,15,23) 
(1,61,57,5,13,42,12,59,31,27,11,30) 
(1,61,57,5,42,12,59,27,31,11,30) 
(1,36,6,56,57,5,13,42,12,59,31,27,11,30) 
(1,19,55,47,53,52,35,2,48,8,43,9,44,34) 
(1,20,52,35,2,48,22,8,43,14,9,44,34) 
(1,61,36,22,60,6,56,7,32,33,14,9,44,34) 
(1,36,22,60,6,56,7,32,33,14,9,44,34) 
(1,20,52,35,2,48,8,43,60,6,56,7,32,33,34,44) 
(1,20,2,35,52,53,47,55,21,54,24,25,49,45) 
(1,20,19,28,40,3,50,51,16,39,17,46) 
(1,37,40,28,3,50,51,16,39,17,46) 
(1,10,64,65,66,63,41,26,67,68,62,58)  

Value 
0.20 
0.20 
0.60 
0.60 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.80 
1.00 

Value 
1.00 
0.20 
0.80 
1.00 
0.20 
0.80 
1.00 
1.00 

Path  
(73,87,82,97,1) 
(80,84,89,98,78,91,77,1) 
(80,84,83,96,88,74,1) 
(81,93,92,75,1) 
(83,96,88,74,1) 
(89,98,78,91,77,1) 
(90,71,85,79,95,94,69,76,86,72,1) 
(99,101,100,70,1) 

Coefficient 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.03 
0.00 

Table 5.2. Example: details of the lower bound solution obtained by procedure H2  

{xe  } variables 

{ye  } variables 

gu l variables 
Arc Value Coefficient 

(13,83) 0.20 0.04 
(15,90) 0.40 0.00 
(23,89) 0.60 0.00 
(30,73) 1.00 0.00 
(33,80) 0.20 0.00 
(34,80) 0.80 0.00 
(44,89) 0.20 0.07 
(45,90) 0.40 0.01 
(46,81) 1.00 0.00 
(49,90) 0.20 0.01 
(58,99) 1,00 0,00 
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Linehaul customer A Backhaul customer 

Figure 5.7. Example: optimal solution of cost 846 

The cost of the integer solution found by CPLEX was 846, which has been obtained 

in 61 seconds. The cardinality of the sets of Linehaul and Backhaul paths generated (i.e. 

I L' I and I B' I) were 20187 and 15371, respectively. The cardinality of set I Ao  I was 

equal 	to 	1076. 	The 	value 	of 	A 	was 	equal 	to 

A = Mintillax[c'L ],MaxVi i} = Min{3.31,9.66} = 3.31, hence, LS=846.6. Therefore, the 
tEB' 

solution found is also the optimal solution of the problem since z(IP') LS . Figure 5.7 

shows the optimal solution of the problem. The total computing time of procedure EHP 

was 434 seconds. 
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5.6 COMPUTATIONAL RESULTS 

The algorithm EHP described in Section 5.5 has been coded in Fortran 77 and run on 

a Silicon Graphics Indy (MIPS R4400/200 Mhz processor) on two classes of test 

problems. We have used CPLEX 3.0 as the LP-solver in procedure H2  and as the 

integer programming solver in EHP. 

The problems of class A correspond to a subset of the randomly generated Euclidean 

VRPB instances proposed by Goetschalckx and Jacobs-Blecha (1989). The problems of 

class B have been generated by Toth and Vigo (1996) from VRP problems known in the 

literature. For each VRP problem three VRPB instances have been generated, each one 

corresponding to a Linehaul customer percentage of 50%, 66% and 80%, respectively. 

Problem input data of class B have been kindly provided by Toth and Vigo. 

To our knowledge, the only exact method presented in the literature for solving these 

problems has been proposed by Toth and Vigo (1997). 

The tables show the following columns : 

z(IP) : 	cost of the optimal VRPB solution (or cost of the best known solution). 

z(UB) : cost of the VRPB solution found by the heuristic algorithm of Toth and 

Vigo (1996). 

z(D1) : 	lower bound produced by procedure 111  after 200 subgradient iterations. 

tHi : 	computing time spent by the bounding procedure H1 . 

z'(D) : 	final lower bound produced by procedure HDS. 

t HDS 	total computing time of procedure HDS. 

%Ems  : percentage error of the lower bound z'(D) computed by procedure RM. 

number of Linehaul paths generated in EHP. 

: 	number of Backhaul paths generated in EHP. 

LS 	= z'(D) + A , where A is the value defined in Section 5.5 and it is used by 

EHP 	to show the optimality of z(IP) (we set LS = co if 

c't  > z(uB)—z/(D), vt (L B) \ (L' B') ). 
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tEHp 	total computing time of procedure EHP including tims . We impose a time 

limit of 25000 CPU seconds. If the time limit is reached, the instance is 

marked with an asterisk. 

%ETV 	percentage error of the lower bound produced by Toth and Vigo (1997). 

tTV 	computing time of the exact method TV proposed by Toth and Vigo 

(seconds of a Pentium 60 Mhz personal computer). If an imposed time limit 

of 6000 CPU seconds has been reached, the instance is marked with an 

asterisk. Instances not attempted by Toth and Vigo are marked with n.a.. 

The percentage errors %EHDs  and %En, are computed as the ratio of the lower 

bound divided by z(IP) and multiplied by 100. The parameter Maxsize, used in GENP, 

has been set to 70000 in both procedures H2 and EHP. 

Tables 5.3 and 5.5 show the quality of the lower bounds produced by procedure HDS 

and by Toth and Vigo for the two classes of problems. Columns %EHDs  and %ETV  of 

both tables show that the lower bound obtained by EDS is greater than the lower bound 

produced by Toth and Vigo, the average values being %EHDs  = 98.2 and 

%ETV  = 97.4 for problems of class A and %EHDs  = 98.3 and %En, = 96.8 for 

problems of class B. In fact, out of 64 cases for which comparison is possible, only in 

three of these did the procedure of Toth and Vigo gave a superior lower bound. Tables 

5.4 and 5.6 report the results obtained by the exact method EHP and the exact algorithm 

of Toth and Vigo. Note that it is difficult to compare directly the computing times 

required by the two methods since they are relative to different machines. In our 

experience the Pentium 60 Mhz used by Toth and Vigo is about four times slower than 

the Silicon Graphics Indy we used. Tables 5.4 and 5.6 indicate that EHP is capable of 

solving problems up to 90 customers of class A and up to 100 customers of class B. For 

some problems EHP cannot prove the optimality of the solution produced (this happens 

when LS < z(IP)), however, the distance between z(IP) and LS is small. The computing 

time required by CPLEX in procedure EHP to solve problem IP' is given by 

tEHp — /Him . We can observe that the CPU time consumed by CPLEX becomes the 

main component of the total time required by EHP to solve some problems of both 

classes A and B. We note here that for algorithm EHP it is better to have only a few 
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customers per path (say, an average of 15 customers/path) and that the problem should 

be "tight" (i.e. the ratios (Eqi  / (M LQ) and (E qi  / (M BQ) should be greater than, 
JEL ) 	 ieB 

say, 0.9). In this case the sizes of L' and 13' are small and EHP can be a potentially 

useful tool for solving practical VRPB problems. 

5.7 SUMMARY 

In this chapter we have described an exact algorithm for the basic Vehicle Routing 

Problem with Backhauls (VRPB) based on a new (0-1) integer programming 

formulation. We have presented a method for computing the lower bound by finding a 

feasible solution of the dual of the LP-relaxation of its integer program. Such a dual 

solution is obtained by combining two different bounding procedures where the 

structure of the second bound is such that additional constraints found in real-world 

VRPB's can be considered. The exact method uses the dual solution and a method for 

limiting the variables of the integer program so that the resulting problem can be solved 

by CPLEX. The overall bounding procedure proved to be effective, being able to 

produce a lower bound whose value on average was at least 98.2% of the optimum. 

Computational results show that the proposed method is able to solve exactly VRPB's 

of size up to 100 customers within the imposed time limit of 25000 seconds. 
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Table 5.3. Problem class A : lower bounds 
PROBLEM DATA HDS TV 

Prob n m M M B  z(IP) z(D 1 ) t H I Z1(D) trips %EHDs  %ETV  

Al 20 5 8 2 229886 215233 2.1 227079 4.0 98.8 98.3 
A2 20 5 5 1 180119 170474 1.2 177869 3.4 98.8 98.1 
A3 20 5 4 1 163405 154512 5.8 163405 9.1 100.0 100.0 
A4 20 5 3 1 155796 148452 5.2 155796 11.6 100.0 100.0 
B1 20 10 7 4 239080 233869 10.6 233869 13.2 97.8 96.0 
B2 20 10 5 3 198048 193176 29.9 193880 39.1 97.9 97.4 
B3 20 10 3 2 169372 169372 3.9 169372 3.9 100.0 100.0 
Cl 20 20 7 6 249448 236825 9.4 244857 13.6 98.2 95.7 
C2 20 20 5 4 215020 207305 10.8 208495 13.9 97.0 96.5 
C3 20 20 5 3 199346 197522 18.8 199346 24.5 100.0 99.8 
C4 20 20 4 3 195366 193542 18.7 195367 24.4 100.0 100.0 
D1 30 8 12 3 322530 306565 3.7 318671 6.2 98.8 97.0 
D2 30 8 11 3 316709 292534 3.6 310929 8.5 98.2 94.5 
D3 30 8 7 2 239479 224657 4.5 231931 17.6 96.8 95.9 
D4 30 8 5 2 205832 194225 21.9 198301 49.4 96.3 95.4 
E1 30 15 7 3 238880 229614 5.7 238880 11.2 100.0 95.1 
E2 30 15 4 2 212263 206362 21.3 212263 40.9 100.0 97.9 
E3 30 15 4 2 206659 199031 32.8 204360 62.2 98.9 98.2 
Fl 30 30 6 6 263173 248195 6.4 256287 66.4 97.4 96.6 
F2 30 30 7 6 265213 254285 6.5 262342 27.6 98.9 98.3 
F3 30 30 5 4 241120 229452 9.1 238221 74.8 98.8 98.0 
F4 30 30 4 3 233861 221136 11.2 227576 91.3 97.3 97.3 
GI 45 12 10 3 306305 292859 14.2 299522 43.3 97.8 91.1 
G2 45 12 6 2 245441 237618 24.3 242423 63.6 98.8 93.3 
G3 45 12 5 2 229507 221566 30.7 223205 80.7 97.3 96.2 
G4 45 12 6 2 232521 223271 30.9 226712 71.6 97.5 96.5 
G5 45 12 5 1 221730 213131 38.2 217204 81.7 98.0 97.9 
G6 45 12 4 1 213457 204187 49.4 207116 102.8 97.0 96.6 
H1 45 23 6 3 268933 262397 98.7 264609 130.5 98.4 96.6 
112 45 23 5 3 253365 249237 67.4 251972 143.7 99.5 99.4 
H3 45 23 4 2 247449 242391 79.6 245860 171.3 99.4 99.2 
H4 45 23 5 2 250221 244114 32.1 249239 176.4 99.6 99.7 
H5 45 23 4 2 246121 239537 94.8 244450 263.4 99.3 99.3 
H6 45 23 5 2 249135 243664 74.1 247832 169.4 99.5 99.4 
Il 45 45 10 9 353021 338580 56.5 342376 193.2 97.0 n.a. 
12 45 45 7 7 309943 301904 80.2 305923 198.3 98.7 n.a. 
13 45 45 5 5 294833 281061 122.7 285158 274.0 96.7 n.a. 
14 45 45 6 5 295988 286849 121.1 289314 299.6 97.7 n.a. 
15 45 45 7 5 301226 293773 120.6 295935 304.6 98.2 n.a. 
J1 75 19 10 3 335006 323922 94.6 329466 150.5 98.3 n.a. 
J2 75 19 8 2 315644 295532 123.4 299069 217.2 94.7 n.a. 
J3 75 19 6 2 282447 268495 185.2 271767 362.8 96.2 n.a. 
J4 75 19 7 2 300548 281414 147.2 285203 259.8 94.9 n.a. 
K1 75 38 10 5 394637 379113 104.9 385215 187.2 97.6 n.a. 
K2 75 38 8 4 362360 351581 117.7 357327 223.3 98.6 n.a. 
K3 75 38 9 4 365693 354651 115.7 360365 219.4 98.5 n.a. 
K4 75 38 7 3 358308 336260 142.3 340958 264.1 95.2 n.a. 

	

Average %dev 	98.2 	97.4 

	

Minimum %dev 	94.7 	91.1 

165 



Table 5.4. Problem class A : exact method EHP 
PROBLEM DATA EHP TV 

Prob n m M M B  z(UB) Z(IP) LS I L'I IB1 tEHp try 

Al 20 5 8 2 229886 229886 00  125 7 5 902 
A2 20 5 5 1 180119 180119 00  242 13 4 209 
A3 20 5 4 1 163405 163405 a co - - 10 3 
A4 20 5 3 1 155796 155796 a co - - 12 3 
B1 20 10 7 4 239080 239080 oo 307 69 14 148 
B2 20 10 5 3 198048 198048 00  386 126 40 151 
B3 20 10 3 2 169372 169372 a co - - 4 1 
Cl 20 20 7 6 253318 249448 00  945 574 17 227 
C2 20 20 5 4 215020 215020 00  1144 772 18 322 
C3 20 20 5 3 199346 199346 a co - - 25 84 
C4 20 20 4 3 195367 195366 a co - - 25 5 

D1 30 8 12 3 322705 322530 00  339 32 9 289 
D2 30 8 11 3 318476 316709 00  1158 47 13 491 
D3 30 8 7 2 239479 239479 00  4132 160 51 * 
D4 30 8 5 2 205832 205832 . 14696 191 161 * 
El 30 15 7 3 238880 238880 a co - - 12 476 
E2 30 15 4 2 212263 212263 a co - - 41 788 
E3 30 15 4 2 206659 206659 00  996 288 64 482 
Fl 30 30 6 6 263929 263173 268630 7201 12019 2049 756 
F2 30 30 7 6 265214 265213 00  805 978 44 891 
F3 30 30 5 4 241121 241120 246458 1115 1981 76 468 
F4 30 30 4 3 233862 233861 234671 22708 33442 173 3523 
G1 45 12 10 3 306959 306305 308396 24678 271 3556 * 
G2 45 12 6 2 245441 245441 247176 13705 105 229 * 
G3 45 12 5 2 230170 229507 b 227049 38180 351 967 4225 
G4 45 12 6 2 232647 232521 b 230648 21336 115 89 * 
G5 45 12 5 1 221899 221730 b 220508 17556 434 157 3433 
G6 45 12 4 1 213457 213457 c 209922 18946 763 103 840 
H1 45 23 6 3 270719 268933 b 265930 2202 374 454 1344 
H2 45 23 5 3 253365 253365 256154 6654 534 221 5020 
H3 45 23 4 2 247536 247449 249200 5987 1724 177 1465 
H4 45 23 5 2 250221 250221 253120 2194 872 179 1287 
H5 45 23 4 2 246121 246121 247526 13356 2156 277 406 
1-16 45 23 5 2 249135 249135 250351 3462 1086 173 416 
Il 45 45 10 9 354410 353021 b 349787 55702 57332 20225 n.a. 
12 45 45 7 7 315184 309943 310965 16854 16678 6395 n.a. 
13 45 45 5 5 298367 294833 b 285787 37767 19714 18045 n.a. 
14 45 45 6 5 295988 295988 b 293375 46873 40119 20055 n.a. 
15 45 45 7 5 302709 301226 b 300060 48245 40870 8642 n.a. 
J1 75 19 10 3 343476 335006 b 331204 1298 9769 1640 n.a. 
J2 75 19 8 2 315644 315644 c 300485 1318 29849 218 n.a. 
J3 75 19 6 2 282447 282447 c 272889 827 26266 363 n.a. 
J4 75 19 7 2 300548 300548 c 286404 504 25603 260 n.a. 
K1 75 38 10 5 408303 394637 b 387804 3713 58698 * n.a. 
K2 75 38 8 4 372423 362360 b 359157 2693 54446 2618 n.a. 
K3 75 38 9 4 374417 365693 b 362516 4556 52029 3812 n.a. 
K4 75 38 7 3 358308 358308 c 342184 1166 47759 265 n.a. 

(a) Optimal solution obtained by procedure HDS. 
(b) z(IP) is the cost of the best VRPB solution found by procedure EHP. 
(c) No solution found by algorithm EHP of cost smaller than z(UB). 
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Table 5.5. Problem class B : lower bounds 
PROBLEM DATA HDS TV 

Prob n m M M B  z(IP) z(D1 ) t H i z'(D) tHDs %EMS %ETV 

ei12250 11 10 3 2 371 369 2.8 371 5.1 100.0 100.0 
ei12266 14 7 3 1 366 366 1.0 366 3.0 100.0 100.0 
ei12280 17 4 3 1 375 366 3.5 372 5.8 99.2 98.9 
ei12350 11 11 2 1 682 682 0.4 682 0.4 100.0 100.0 
ei12366 15 7 2 1 649 604 4.5 645 7.6 99.4 98.8 
ei12380 18 4 2 2 623 610 5.5 615 8.9 98.7 98.1 
ei13050 15 14 2 2 501 473 7.7 501 7.7 100.0 100.0 
ei13066 20 9 3 1 537 492 6.4 524 14.1 97.6 98.5 
ei13080 24 5 3 1 514 488 7.7 503 24.7 97.9 100.0 
ei13350 16 16 3 2 738 737 21.8 738 45.4 100.0 98.4 
ei13366 22 10 3 1 750 746 15.3 750 26.6 100.0 94.8 
ei13380 26 6 3 1 736 727 18.0 731 42.2 99.3 93.9 
ei15150 25 25 3 3 559 550 38.7 557 65.2 99.6 99.3 
ei15166 34 16 4 2 548 541 40.2 544 60.6 99.3 97.8 
ei15180 40 10 4 1 565 552 47.5 554 104.0 98.1 98.0 

ei1A7650 37 38 6 5 739 730 67.0 733 110.0 99.2 98.2 
ei1A7666 50 25 7 4 768 756 75.0 760 135.0 99.0 95.4 
ei1A7680 60 15 8 2 781 758 89.3 763 195.0 97.7 90.5 
ei1B7650 37 38 8 7 801 794 45.0 795 62.5 99.3 97.6 
ei1B7666 50 25 10 5 873 860 54.8 864 97.7 99.0 91.2 
ei1B7680 60 15 12 3 919 908 65.6 914 115.0 99.5 85.2 
ei1C7650 37 38 5 4 713 699 88.5 705 186.0 98.9 98.9 
ei1C7666 50 25 6 3 734 725 100.0 728 196.0 99.2 97.6 
ei1C7680 60 15 7 2 733 713 62.3 717 131.0 97.8 93.7 
ei1D7650 37 38 4 3 690 684 109.3 688 182.0 99.7 99.7 
ei1D7666 50 25 5 2 715 704 119.0 705 236.0 98.6 98.5 
ei1D7680 60 15 6 2 694 683 140.0 687 310.0 99.0 95.6 
eilA10150 50 50 4 4 843 800 167.5 812 363.2 96.3 96.3 
ei1A10166 67 33 6 3 846 841 201.0 843 373.0 99.6 99.2 
eilA10180 80 20 6 2 908 830 222.9 833 430.9 91.7 89.5 
eilB 10150 50 50 7 7 933 888 96.0 892 210.0 95.6 n.a. 
eilB10166 67 33 9 5 1056 937 118.8 941 292.6 89.1 n.a. 
eilB10180 80 20 11 3 1022 992 132.5 993 306.9 97.2 n.a. 

	

Average %dev 	98.3 	96.8 

	

Minimum %dev 	89.1 	85.2 
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Table 5.6. Problem class B : exact method EHP 

PROBLEM DATA EHP TV 

Prob n m M M B  z(UB) z(IP) LS IL'I IB1 tEHP tTV 

ei12250 11 10 3 2 389 371 a 00 6 3 

ei12266 14 7 3 1 366 366 a 00 - 3 6 

ei12280 17 4 3 1 375 375 00 196 6 6 55 

ei12350 11 11 2 1 682 682 a 00 - 1 2 

ei12366 15 7 2 1 649 649 00 157 33 7 65 

ei12380 18 4 2 2 625 623 00 657 4 9 36 

ei13050 15 14 2 2 501 501 a 00 8 3 

ei13066 20 9 3 1 542 537 00 2442 136 17 119 

ei13080 24 5 3 1 519 514 00 7948 12 31 13 

ei13350 16 16 3 2 764 738 a 763 - 46 292 

ei13366 22 10 3 1 763 750 00 - 27 1338 

ei13380 26 6 3 1 761 736 748 6745 93 44 1655 

ei15150 25 25 3 3 561 559 00 420 925 66 441 

ei15166 34 16 4 2 551 548 553 4366 463 68 2754 

ei15180 40 10 4 1 584 565 566 32322 236 691 4436 

eilA7650 37 38 6 5 756 739 743 5127 14206 884 15931 

eilA7666 50 25 7 4 776 768 770 35299 5635 1205 13464 

ei1A7680 60 15 8 2 839 781 b 772 44942 718 596 * 

ei1B7650 37 38 8 7 836 801 00 2669 9183 124 16345 

eilB7666 50 25 10 5 897 873 00 20246 1879 2918 12990 

eilB7680 60 15 12 3 951 919 927 28181 349 821 10413 

ei1C7650 37 38 5 4 714 713 715 12061 27537 16659 10344 

ei1C7666 50 25 6 3 748 734 736 44074 2100 952 

ei1C7680 60 15 7 2 757 733 b 724 42230 1314 * * 

eilD7650 37 38 4 3 704 690 695 4753 9050 197 401 

eilD7666 50 25 5 2 730 715 b 711 37745 16371 5023 * 

eilD7680 60 15 6 2 715 694 b 691 41252 827 20148 * 

eilA10150 50 50 4 4 849 843 c 816 4402 8835 364 * 

eilA10166 67 33 6 3 879 846 847 20587 15371 434 10913 

eilA10180 80 20 6 2 908 908 c 835 1159 55640 431 * 

eilB10150 50 50 7 7 954 933 b 900 22571 16152 * n.a. 

eilB10166 67 33 9 5 1056 1056 c 946 4331 28666 293 n.a. 

eilB10180 80 20 11 3 1076 1022 b 996 4939 64198 20199 n.a. 
(a) Optimal solution obtained by procedure HDS. 
(b) z(IP) is the cost of the best VRPB solution found by procedure EHP. 
(c) No solution found by algorithm EHP of cost smaller than z(UB). 
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CHAPTER 6 

AN APPLICATION OF MULTI-DEPOT 

PERIOD VEHICLE ROUTING TO 

EFFICIENT RESOURCE PLANNING 

6.1 INTRODUCTION 

The Period Vehicle Routing Problem (PVRP) involves the design of effective vehicle 

routes that satisfy customer service frequencies over a specified planning horizon. The 

PVRP generalizes the classical VRP by extending the planning period from a single day 

to p days. Over a p-day period, each customer must be visited at least once with some 

customers requiring several visits. For example, a customer might requires two visits 

during the period (say a 5-day week) and the allowable combinations for the visits might 

be Monday-Friday or Monday-Thursday. 

The PVRP has been used to model many practical problems. Beltrani and Bodin 

(1974) and Russell and Igo (1979) encountered the PVRP in refuse collection where the 

routing is planned weekly and each site requires a different number of collections during 

the week. Ball (1988) and Dror and Ball (1987) discussed applications of the PVRP to 

fuel oil delivery and industrial gas distribution problems. Golden and Wasil (1987) 

discussed an application of the PVRP to the distribution of soft drinks where customer 

demands may be stochastic. In addition, the PVRP can be applied to mail collection and 

delivery problems, as well as scheduled retail and wholesale delivery problems. In one 

variant of the PVRP that is proposed by Raft (1982), customer demand is stochastic. 
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Whether or not a customer will be visited during the p-day period is also stochastic, and 

the fleet of vehicles may be stationed at more than one depot. Gaudioso and Paletta 

(1992) model a variant of the PVRP that determines the scheduling and routing policies 

of vehicles so that the maximum number of vehicles (i.e., the fleet size) simultaneously 

deployed over the entire planning period is minimized. 

Algorithms for the PVRP have been published by Christofides and Beasley (1984), 

Tan and Beasley (1984), Russell and Gribbin (1991), Chao et al. (1995) and Cordeau at 

al. (1995). Christofides and Beasley (1984) developed two heuristics that consist of an 

inizialization step followed by an improvement procedure. The first heuristic is based 

upon the idea that minimizing the sum of the radial distances from the customers to a 

center that is specified for each day of the planning period would also tend to minimize 

the distance travelled in the underlying PVRP. The second heuristic is based upon the 

idea that minimizing the total distance for TSP's on each day of the planning period 

would also serve to minimize the total distance for the PVRP. Christofides and Beasly 

generated 11 test problems which they solved using both heuristics. Tan and Beasley 

(1984) developed a solution procedure for the PVRP that uses the generalized 

assignment heuristic of Fisher and Jaikumar (1981b) initially designed to solve the 

VRP. Tan and Beasley used their procedure to solve five problems drawn from 

Christofides and Beasley (1984). Russell and Gribbin (1991) proposed a four-phase 

solution approach for the PVRP that makes use of the interchange heuristic of 

Christofides and Beasley (1984) to solve a surrogate TSP. Russell and Gribbin solved 

eight problems taken from Christofides and Beasley (1984) and two new problems that 

they generated. Chao et al. (1995) presented a new heuristic for the PVRP based on the 

notion of record-to-record improvement. These authors use integer linear programming 

to assign a visit combination to each customer. They then solve a VRP for each day by 

means of a modified version of the Clarke and Wright algorithm (1964). Local 

improvements are then obtained by using the record-to-record approach of Dueck 

(1990) and 2-opt interchanges. Reinitializations are finally performed to diversify the 

search. Chao et al. have applied the heuristic to problems from the literature as well as 

to new test problems. Courdeau et al. (1995) describe a tabu search heuristic method for 

the PVRP. Computational results show that the algorithm proposed by Courdeau et al. 
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outperform the heuristics of Tan and Beasley (1984), Christofides and Beasley (1987), 

Russell and Gribbin (1991) and Chao et al. (1995). 

The application described in this chapter is concerned with a utility company, which 

is responsible for the preventive maintenance of a geographically dispersed network of 

customers. In the specific area examined, a fleet of 17 mobile gangs is dispatched from 

9 depots to call on 162 customers with frequency that can vary from once per day to 

once every four weeks. Each gang, consisting of two field service workers in a van, 

visits on average four customers per day. A depot is assumed, for planning purposes, to 

be both the start and finish point for a gang's daily route. The number of mobile gangs 

based at each depot varies at present between 1 and 3. The depots operate independently 

and serve their own designated set of customers. There are limits on the length of the 

working day imposed by working practices. The company's objectives are to examine 

its mobile resource planning system in view of making it more cost effective, that is, 

provide improved customer service at lower cost. 

In this chapter we present an algorithm for solving the above problem, which is 

formulated as a Multi-Depot Period Vehicle Routing Problem (MDPVRP). The 

computational implementation of the complete planning model is described with 

reference to the pilot study and results for selected model runs are presented. 

The chapter is organized as follows. In the next section we describe the MDPVRP. In 

the third section, we develop a new heuristic for solving the MDPVRP. Section 6.4 

describes the computational implementation of the complete planning model. In Section 

6.5 we explore the performance of the MDPVRP algorithm and evaluate the results of 

various runs of the model. Finally, conclusions and future work are presented in Section 

6.6. 

6.2 PROBLEM OVERVIEW 

There are three major decision problems associated with the maintenance operations 

provided by the utility company that involve different levels of planning: strategic and 

tactical/operational. The first problem is to find the most efficient boundaries of the 

geographical area served by each depot in order to achieve a specified level of service. 
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The second problem is to determine, over a given time period, optimal visiting patterns 

for the fleet of gangs, that is, to plan the scheduling of the gang visits to all customers 

within each depot service area in the best possible way. The third problem is to perform 

efficient route planning for the mobile gangs within the optimal depot territories subject 

to a variety of constraints. Some of the goals identified in these problems may conflict 

and this must be accounted for in the solution methodology. The underlying theme is the 

integration in a unified model of all the decision problems mentioned above because, we 

believe, that efficient solutions to tactical and operational problems such as scheduling 

and route planning may be successfully incorporated in satisfactory solutions to strategic 

problems. If service and maintenance operations are improperly planned, this may result 

in poor customer service, waste and inefficiency. 

The problem studied in this chapter includes many quantitative restrictions on the 

gangs as well as those defined by the customers. The complexity of such planning 

problems affects the algorithms that can be employed in practical situations to generate 

and evaluate feasible solutions. In this chapter, we address this problem as a MDPVRP 

and we solve it using the heuristic method presented in the next section. The solution 

methodology will enable the users to generate the best proposals for the mobile resource 

planning system and/or evaluate proposed scenarios with respect to certain practical 

aspects or constraints of the system. In our approach, particular attention is paid to 

obtaining a well-balanced use of the resources (minimum number of mobile gangs) on 

different days of the planning period. The proposed methodology is applicable in a 

broader context to many real distribution problems that exhibit a similar underlying 

network structure. 

6.3 A HEURISTIC ALGORITHM FOR THE MDPVRP 

In this section we present a heuristic algorithm for the MDPVRP. 

Within the context of the mobile resource planning problem described in the previous 

section, the classical (single-day) VRP involves a given set of customers that must be 

visited by mobile gangs operating from a single depot (terminal). Each customer has a 

known service requirement that must be satisfied by one visit of a gang. Each gang route 
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starts and finishes at the depot. The objective is to sequence the visits of each gang so 

that customer requirements are satisfied and travel costs are minimized. 

The MDPVRP generalises the classical VRP by allowing the gangs to operate from 

one of several depots instead of only one and by extending the planning horizon from a 

single day to several days. It is important to note that the MDPVRP is a multilevel 

combinatorial optimisation problem. At the first level we need to define boundaries for 

each depot service area. At the second level, we need to solve a PVRP for each depot 

which involves determining a set of customers to be visited on each day of a planning 

horizon. At the third level, we need to solve a classical VRP for each depot and for each 

day of the given period. At the fourth level, we need to solve a classical TSP for each 

route. The classical TSP has been shown to be NP-hard, so the MDPVRP is at least as 

difficult. A number of exact and heuristic methods have been developed to solve large-

scale TSP's. For a large-scale MDPVRP, solving this nearly intractable problem using 

an exact method would be very difficult and time-consuming, not least because for a 

given depot and a given choice of customer visit-day combinations there is a large 

number of resulting VRP's which are difficult to solve. Consequently, in this section we 

present a new heuristic procedure for the MDPVRP in which a PVRP is solved for each 

depot. 

Basic notation 

The PVRP for a single depot is defined as follows. 

Given the service requirement of each customer and a set of allowable visit 

combinations, we need to simultaneously select a visit combination for each customer 

and establish feasible gang routes for each day of a planning horizon, according to the 

VRP rules. The objective in the PVRP is to service all customers the required number of 

times over the planning horizon so that the travel costs are minimised. The following 

notation is used: 

n 	the number of customers served from a specific depot 

p 	the number of days in the planning horizon 

H 	the length of a working day (hours) 
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f 	frequency of service required by customer i , i.e. the number of times customer 

i is visited over the planning horizon (i = 1,...,n) 

qi 	the mean service time requirement of customer i , (i = 1,...,n), 0 q, H 

S, 	the set of allowable combinations of days for visiting customer i , (i = 1,...,n) 

R, 	the set of customers scheduled to be visited on day t (t =1,...,p) 

If a customer i requires f visits during a. planning period of p days, then these visits 

may only occur in one of a given number of allowable fi  -day combinations. For 

example, if f, = 2 , p = 5 (i.e. a planning period of one week) and 

St 	{ (1,3),(1,5),(2,4),(3,5)} , then customer i must be visited twice a week and these 

visits could take place either on Mondays and Wednesdays (i.e. days 1 and 3 of the 

week) or on Mondays and Fridays or on Tuesdays and Thursdays or on Wednesdays and 

Fridays, with no other day combinations being acceptable. 

Below we present a new heuristic for the PVRP, which includes the following 

specific constraints: 

i) Only one allowable service combination is chosen for each customer. 

ii) Each customer must be visited by only one gang on a given day but may be visited by 

different gangs during the given p-day period. 

iii)The number of gangs available daily at a given depot has an upper bound. The total 

number of gangs available for all depots has to be less than or equal to 17. 

iv)The travel times associated with a route plus the service times required by the 

customers visited on the route must not exceed the maximum length of a working 

day. 

Algorithm 6.1: PVRP 

Step 0. Initialization Step 

Since there is no easy method of clustering customers based on the frequency of 

visits, an initial depot-customer allocation is obtained by assigning each 

customer to its closest depot. 
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Step 1. Form an ordering of the customers 

Order the customers already assigned to each depot, according to some heuristic 

ordering rule. Let U denote the resulting list of customers for a specific depot. 

For example, arrange the customers in decreasing order of "importance" 

expressed both in terms of visiting frequencies and mean service times. First sort 

the customers in non-increasing order with respect to the A's and order the 

customers that are characterised by the same value of , in non-increasing order 

with respect to the service times qi  . All customers with a fixed visit combination 

are placed at the top of this list. 

Step 2. Assign and evaluate visit combinations 

Define R, to be the set of customers to be visited from a specific depot on day 

t of the given planning period. A set ft, is obtained using a least-cost insertion 

heuristic in which all the customers in U are considered, one at a time, in the 

order listed. The heuristic involves inserting a specific customer i E U into the 

emerging cluster R, of day t only if an allowable combination r E Si  includes a 

visit to customer i on day t . Customer visit combinations are assigned in this 

way provided all days remain feasible, that is, the total number of gangs required 

by the emerging customer cluster on each day of the planning period does not 

exceed the number of depot-based gangs available. 

Each time an additional customer is inserted into the emerging cluster R, of day 

t, a VRP needs to be solved in order to find the associated least travel cost for 

day t. This is computationally very difficult to do even for a small number of 

customers per day. Therefore, we use a heuristic algorithm to solve a single day's 

problem and choose the combination set that gives the lowest overall travel cost 

(all days feasible). In particular, a 2-opt and a 3-opt interchange procedures (see 

Lin and Kernighan (1973)) are applied to evaluate the increase in cost incurred 

when a customer i is added to the emerging cluster R1  of day t . A local 

optimisation procedure is then performed to improve each day's solution. This 

procedure is based on interchanges involving customers that are near to each 

other, but which are served on different routes operating during the same day. 
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Step 3. Solve daily VRP's 

Once the final sets /2, of customers scheduled to be visited on each day t of the 

planning period have been determined, we apply a tabu search algorithm to solve 

the resulting VRP for each day. tabu search is a local search metaheuristic 

proposed independently by Glover (1986) and Hansen (1986). For recent surveys 

of this method, see Glover and Laguna (1993a) and Glover et al. (1993b). In this 

step, the tabu search algorithm constructs least-cost gang routes that satisfy the 

constraints placed on the time duration of a daily route. When the number of 

gangs allocated to each depot is a decision variable, the tabu solution may show 

variations in the number of gangs required by a given depot during the planning 

period. In this case, the maximum number obtained over this period will 

determine the final number of gangs assigned to that specific depot. 

Step 4. Perform customer interchanges 

We attempt to improve the solution by evaluating interchanges of customer 

combinations and performing those that reduce the total cost. We select (i) a 

subset of customers that are served by different routes from the same depot on 

different days of the planning period and (ii) a subset of customers that are 

assigned to different depots and may be served on the same or different days of 

the planning period. Customer interchanges of type (ii) can improve the initial 

depot-customer allocation obtained at the initialization step taking into account 

local knowledge already available from PVRP solutions of existing depots. 

Repeated applications of this step allow an evolutionary depot-customer 

reallocation to be achieved by the algorithm. 

The visit combination possibilities are subsequently enumerated for subsets of 

type (i) and (ii), seeking an improved overall solution. We use a 3-opt procedure 

to evaluate the cost of interchanges. Clearly, for such a procedure to be 

computationally practical only a restricted number of customer subsets can be 

considered (for example, customers who are visited once or twice a week). 
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Step 5. Seek improved customer-visit combinations 

A different ordered list U of customers is obtained at Step 1 and a new iteration 

of Steps 2 to 4 is performed. The criterion for ordering is based on an alternative 

function of customer visiting frequencies and mean service times. 

The heuristic algorithm is terminated after a fixed number of iterations specified 

by the operator. 

6.4 MAJOR ELEMENTS OF THE COMPUTER SYSTEM 

In this section we describe the computational implementation of the complete 

planning model which permits the identification and evaluation of: 

a) the efficient scheduling of customers and routing of mobile gangs within existing 

depot territories; 

b) new boundaries on each depot service area in view of improving the performance of 

the existing depot configuration; 

c) the effect of closing down some existing depots or opening new depots in desired 

locations proposed by the user. 

The computer system uses the following input data files: a customer file, a resource 

file and a time/distance file. 

The customer file 

The data supplied by the company is stored in the following files. 

The customer file contains details of the 162 customers served by the company in the 

pilot study area including information on customer name, location, the frequency of 

visits and the mean service time required for each customer. The mean service time 

recorded for each customer is the actual average working time of a mobile gang during a 

customer visit. This includes the time required to drive in and out of the customer's site 

and perform all the necessary routine maintenance operations. Table 6.1 summarises the 

data on the frequency of customer service currently provided by the company. The first 

two columns give the number of customers currently being served from each depot and 

the number of mobile gangs based at each depot. Columns (3)-(8) show the number of 
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customers within each depot service area visited with varying frequency. The last three 

columns show the average frequency of customer visits per week, the average service 

time per customer visit and the average number of customers in a gang route within each 

depot territory. 

The location of each customer or depot is defined by (x, y) geographic co-ordinates 

recorded using an 8-figure grid reference system. The graphical layout of the customer 

and depot locations (depots D1-D9) and the service area for each depot (i.e. the set of 

customers currently being served from each depot) are shown in Figure 6.1. 

The resource file 

The resource file contains a description of each mobile gang in the system, including 

its capacity, its base depot (this is the present origin/ destination point for the gang) and 

the list of customers currently assigned to the gang. The capacity of a mobile gang is 

defined by the maximum length of a working day which, including travel times, is taken 

to be 8 hours. 

The time/distance file 

The travel time and distance between pairs of customer and depot locations is an 

important input to the route planning model. The theoretical travel times are mainly 

used in strategic planning to show how routes vary with different circumstances. For 

day-to-day planning a computerised vehicle scheduling system is intended to help 

schedulers in their effort to produce manual schedules, rather than replace them; they 

will have to cope with difficulties and real traffic and travel times manually. 

The common approach of computing straight line distances from grid reference co-

ordinates and then adjusting them by some factor to approximate road miles (or 

kilometres) was judged to be inaccurate for our application and it provides no 

information about travel times. In the pilot study area there are about 14500 customer-

to-customer and depot-to-customer travel times or distances. To achieve the necessary 

level of accuracy for distances and travel times in a practical manner, a vendor was 

contracted to develop to our specifications a comprehensive computerised network 

representation of the road map in the region concerned. This road network contains 
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about 2700 road segments (links) and about 2000 intersections of road segments (nodes 

identified by grid references). Figure 6.2 shows a graphical representation of the road 

network; the intersections of the road segments are identified by small dark dots, the 

depots by large rectangles and the customers by grey circles. Each road segment has a 

length and a classification (or category) such as motorway, dual carriageway, rural road 

or urban road, so that different average travel speeds of the van used by a mobile gang 

can be established. 

Each possible intercustomer distance and travel time is determined by finding the 

shortest path between pairs of customers through the road network. The criterion used to 

determine the shortest path is not solely distance but is a travel-cost function expressed 

as a linear combination of travel time and distance. The time-related component of 

travel cost reflects an hourly labour cost (drivers' hourly rate) while the distance 

component (expressed as cost per km) primarily reflects vehicle operating costs such as 

fuel, tyres, and maintenance. The travel-cost function represents an equally cost 

weighted combination of both factors. 

The shortest route algorithm itself is an efficient dynamic programming algorithm 

developed by Dijkstra (1959). 

6.5 RESULTS 

In this section we explore the performance of the MDPVRP algorithm and evaluate 

the results of various runs of the model. The development and experimentation was 

undertaken on an IBM 486 machine. The source code is written in FORTRAN. 

The model can be used both as a tool for evaluating management strategies and also 

as part of a computerised vehicle scheduling system at each depot. The output from 

model runs include: 

a) Boundaries of the geographic region served by each depot. This output includes the 

customer list assigned to each depot and the associated lowest cost of service. 

b) Detailed work schedules over a given planning horizon showing the list of 

customers visited daily by each mobile gang based at each depot. 

c) Least-cost routes (order of work) for each mobile gang based at each depot. 
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d) Evaluation of alternative depot configurations. 

Results are reported for the scenarios described in Table 6.2 and are based on a two- 

week (or ten-day) planning horizon. 

Base run: Depot D9 

Depot D9, with one mobile gang serving an area of 18 customers, was selected as the 

base run to evaluate the route planning module of the model. The model computed 

minimum cost routes for the mobile gang indicating customer visiting sequences, 

together with the expected route distances and time durations. Table 6.3 compares the 

model's schedule with the manual schedule (see Figure 6.3). All computations are based 

on the use of the road network. From these results, it is noted that, should the computed 

routes be made operational, a 14% reduction in the travel cost for this depot service area 

would be achieved (the weekly distance being reduced by 21% and the associated 

travelling time by 9%) through a reorganisation of the gang's current weekly schedule. 

Scenario 1: Efficient route planning within existing depot service areas 

Based on the current boundaries of the geographic areas served by each depot, the 

model efficiently allocates customers to the mobile gangs based at each depot and 

designs least-cost routes for each gang. 

Two versions of this scenario were examined: scenario la allows a given customer to 

be visited by different mobile gangs on different days of the planning period; scenario 

lb evaluates the effect of imposing the constraint that each customer must be visited by 

the same gang throughout the period. Table 6.4 shows the results of these two scenarios 

for all depots. The main conclusion emanating from this comparison is that the 

additional constraint results in an 11% increase in the travel cost incurred. 

Scenario 2: New depot service areas 

One of the most notable results of the model is the impact of the overall 

reorganisation of current depot service areas on the performance of the current system. 

The model finds the most effective layout of depot territories, which satisfies a specified 

level of customer service and service requirements. Tables 6.5 and 6.6 summarise the 
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results of this run and Figure 6.3 shows the graphical layout of the new depot service 

areas. The new depot territories have considerable operational implications for the local 

management of the depots. The most significant changes occurred for depots D5, D8 

and D9. The acceptance of the new and the ceding of the old customers by depots will 

result in very different patterns of visits if the existing levels of service to customers are 

to be maintained. Thus, it is quite evident that substantial changes in the traditional 

routes operated by the depots will be necessary. 

Two versions of this scenario were examined; scenario 2b evaluates the same 

constraint imposed on scenario lb. It can be seen from Table 6.6 that, for the new depot 

service areas, scenario 2b incurs a 16.8% increase in the travel cost compared to that for 

scenario 2a. Comparing the results of scenarios la and 2a (see tables 6.4 and 6.6, 

respectively), the model indicates that effective reorganisation of current depot service 

areas saves the company at least 12.5% in travel cost. This is an additional saving to that 

achieved in scenario la through improvement of current weekly schedules. 

Scenario 3: An alternative depot configuration 

An important feature of the model is its ability to evaluate the benefits or otherwise 

of closing down one or more of the existing depots or establishing a new depot at any 

desired location in the region. An example of a scenario proposed by management and 

evaluated by the model was the closure of depot Dl. This run resulted in a minor 

reduction in the total distance and time obtained for scenario 2a, as the customers 

originally assigned to depot D1 are now served from depot D5 on shorter routes which 

have been appropriately modified to serve the additional set of customers. 

6.6 SUMMARY 

The results of this study illustrate the significant reductions in travel cost that can be 

achieved by finding new boundaries for the depot service areas and making more 

effective decisions in daily mobile resource planning. It also shows how the 

mathematical model can be used as a planning tool to evaluate a number of "what-if' 

scenarios and the resulting benefits. 
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The main findings are summarised as follows: 

1. Given the current boundaries of the region served by each depot, effective 

reorganisation in scheduling visits and routing of gangs can lead to substantial 

savings in travel cost (e.g. a 14% reduction can be achieved in the case of one depot, 

namely depot D9 - base run). 

2. Further reductions of at least 12.5% in the travel cost can be achieved for all depots 

by dividing the whole territory under study into new depot service areas (as shown 

by the results of scenario 2a). 

Future work may involve the development and implementation of a computerised 

vehicle scheduling system in order to complement, rather than replace, the efforts of the 

existing schedulers. This is possible mostly by recent advances in computer 

technologies, graphic interfaces and geographic information systems. The system can be 

used at each depot to produce a detailed schedule for a given planning horizon. Visiting 

frequencies and customer requirements should be updated interactively as they are 

received. Such an on-line system requires a user-friendly interface that allows the 

scheduler to query and update data, execute the scheduling module and change the 

schedule as desired. 
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Table 6.1. Problem Data: Frequency of Customer Service 

Depot 

service 

area 

(1) 
# 

customers 

assigned 

(2) 

# 

mobile 

gangs 

# customers visited: (9) 
Average 

# weekly 

visits per 

customer 

(10) 

Average 

service 

time per 

customer 

visit 

(hrs) 

(11) 

Average 

# customers 

per 

gang 

route 

(3) 

daily 

(4) 

three 

times/ 

week 

(5) 

twice/ 

week 

(6) 

once/ 

week 

(7) 

once/ 

two 

weeks 

(8) 

once/ 

four 

weeks 

Dl 3 1 - 3 - - - - 3.0 1.50 1.80 

D2 30 2 3 1 17 9 - - 2.03 1.08 6.10 

D3 12 1 1 1 6 4 - - 2.0 1.29 4.80 

D4 21 2 - 3 12 6 - - 1.86 1.52 3.90 

D5 20 3 9 - 1 10 - - 2.85 1.50 3.80 

D6 19 2 4 6 - 9 - - 2.47 1.26 4.70 

D7 9 2 3 3 1 - - 2 2.94 2.16 2.65 

D8 30 3 6 4 - 20 - 1.73 1.46 3.46 

D9 18 1 1 6 - 11 - - 1.89 0.78 6.80 

All 

Depots 162 17 27 27 37 49 20 2 2.15 1.36 4.22 
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Table 6.2. List of Scenarios evaluated by the Model 

BASE CASE: Depot D9 

Comparison between the model's routes and actual routes performed in practice 

SCENARIO I*: Existing depot service areas 

Nine depots 

Given allocation of customers to depots 

Given number of mobile gangs per depot 

Improved allocation of customers to mobile gangs 

Improved route planning within existing depot service areas 

SCENARIO 2*: New depot service areas 

Nine depots 

Improved allocation of customers to depots 

Minimum number of mobile gangs per depot 

Improved allocation of customers to mobile gangs 

Improved route planning within new depot service areas 

SCENARIO 3: An alternative depot configuration 

Closure of depot D1, Eight depots 

New depot service areas 

* Two versions of these scenarios, (a) and (b), are considered. 

Scenarios 1(b) and 2(b) include the additional constraint that: 

Each customer must be served by the SAME mobile gang throughout the planning 

period. 
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Table 6.3. Results of the Base Run for Depot D9 

Total # of customers assigned 	= 18 

# of mobile gangs 	 = 	1, 	Planning horizon (weeks) = 1 

MANUAL WORK SCHEDULE 

l_hy Order of Work 

Monday 01-02-03-16-04-05-06-07-01 

Tuesday 01-11-09-10-15-01 

Wednesday/ Friday 01-02-03-04-05-06-07-01 

Thursday 01-08-12-14-18-13-17-01 

Total Travel Distance = 292.8 km , Total Travel Time = 5.5 hours 

MODEL'S WORK SCHEDULE 

Pm Order of Work 
Monday 01-02-03-04-05-17-06-07-01 

Tuesday 01-15-10-16-11-13-18-14-08-12-09-01 

Wednesday/ Friday 01-02-03-04-05-06-07-01 

Thursday NO ROUTE 

Total Travel Distance 7= 231.5 km , Total Travel Time = 5.0 hours 
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Table 6.4. Scenario 1: Efficient Route Planning within Existing Depot Areas 

Planning horizon: two weeks 

Depot Scenario la Scenario lb 

Distance (km) Time (hrs) Distance (km) Time (hrs) 

DI 154.2 3.42 154.2 3.42 

D2 685.0 14.98 838.2 18.12 

D3 655.6 13.10 655.6 13.10 

D4 606.2 13.04 731.2 15.72 

D5 1085.6 22.96 1091.2 23.40 

D6 545.0 10.80 579.8 11.36 

D7 558.0 11.14 561.9 11.62 

D8 1357.3 28.40 1695.7 35.57 

D9 463.0 10.00 463.0 10.00 

All Depots 6109.9 127.84 6770.8 142.31 

Table 6.5. Existing and New Depot Service Areas 

Depot Existing depot areas New depot areas 

# customers 

assigned 

# mobile 

gangs 

# customers 

assigned 

# mobile 

gangs 

D1 3 1 5 1 

D2 30 2 29 2 

D3 12 1 10 1 

D4 21 2 18 2 

D5 20 3 15 2 

D6 19 2 20 2 

D7 9 2 9 2 

D8 30 3 22 2 

D9 18 1 34 3 

All Depots 162 17 162 17 
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Table 6.6. Scenario 2: Efficient Route Planning within New Depot Areas 

Planning horizon: two weeks 

Depot Scenario 2a Scenario 2b 

Distance (km) Time (hrs) Distance (km) Time (hrs) 

D1 334.0 7.36 334.0 7.36 

D2 708.0 15.10 789.4 16.88 

D3 261.6 5.92 261.6 5.92 

D4 498.2 10.64 507.4 10.64 

D5 641.6 13.62 704.6 14.96 

D6 626.2 12.52 728.8 14.54 

D7 586.4 11.92 591.2 12.22 

D8 680.5 14.56 773.4 16.51 

D9 972.9 20.43 1517.4 31.83 

All Depots 5309.4 112.07 6207.8 130.86 
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CHAPTER 7 

CONCLUSIONS 

In this chapter we provide a summary of the entire thesis highlighting the main 

contributions of the completed work and some suggestions for further research. 

This thesis is concerned with the study of location and routing problems in 

distribution systems. The research objective was to develop both exact and heuristic 

solution algorithms for a class of different location and routing problems. 

The thesis began by describing a new metaheuristic technique, called the Bionomic 

Algorithm, to solve the Capacitated p-Median Problem (CPMP). Bionomic Algorithms 

are evolutionary metaheuristic algorithms that update a whole set of solutions (a 

population of solutions) at each main cycle. They differ from similar previously 

presented algorithms, namely Genetic Algorithms and Evolution Strategies, because 

they explicitly direct the choice of solutions to combine in order to define an offspring, 

that is, a solution in the population of the next iteration. This feature introduces a 

diversification mechanism for clustering by reference to maximal independent sets, 

carried out over progressively smaller domains, to provide a specific refinement of the 

scatter search proposal for generating parents from clustering strategies. The parent 

selection process, together with the use of problem-specific ways to produce an 

offspring from the parents, makes Bionomic Algorithms well-suited to combinatorial 

optimization applications. In the Bionomic Algorithm developed for the CPMP, the 

problem-specific steps, maturation and propagation, were implemented as follows. 

Maturation is based on a state-of-the-art heuristic for the Generalized Assignment 

Problem, a problem to which CPMP reduces once the p medians are chosen. 

Propagation, specifically the definition of a child solution once a parent set is 
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assembled, is based on the computation of a Lagrangean lower bound for the CPMP. 

The computational results, presented both on standard data sets from the literature and 

on more difficult symmetric and asymmetric cost instances, attest the effectiveness of 

the approach. Our findings can motivate future research that could examine additional 

types of clustering strategies such as :incorporating intensification criteria and 

diversification criteria for choosing and combining multiple parents. Furthermore, since 

the results have shown that the Bionomic Algorithm is computationally competitive 

with other sophisticated heuristic methods, its application to other combinatorial 

optimization problems, such as Vehicle Routing Problems (VRPs), can be investigated. 

A significant contribution to the CPMP literature has also been made by the new 

exact method we developed based on a Set Partitioning formulation of the problem. A 

valid lower bound to the optimal solution cost has been obtained by combining two 

different heuristic methods for solving the dual of the LP-relaxation of the exact 

formulation. The dual solution obtained has been used for generating a reduced set 

partitioning problem that can be solved by an integer programming solver. The solution 

achieved might not be an optimal CPMP solution, however the new method allows to 

estimate its maximum distance from optimality. The computational performance of the 

new exact algorithm has been evaluated on two classes of test problems proposed in the 

literature and on two new classes of difficult CPMP instances with additional 

constraints. The results show that the exact algorithm has been able to solve exactly 

CPMP' s including up to 100 customers. 

One of the main objectives of the research was to develop new efficient solution 

algorithms for routing problems. For this purpose, we have investigated new integer 

programming formulations for such problems which are based on the two-commodity 

network flow formulation of the Traveling S alesman Problem (TSP) described by Finke 

et al. (1984). This formulation is interesting in many different ways. It can be shown 

that its LP-relaxation satisfies a weak form of the subtour elimination constraints. The 

formulation can also be modified to accommodate different constraints and, therefore, is 

capable of being extended to different routing problems. A new two-commodity 

network flow formulation for the symmetric 'TSP (STSP) has been derived and extended 

to derive new integer programming formulations for a class of different routing 

problems. The VRP has been examined in which a fleet of M vehicles stationed at a 
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central depot is to be optimally routed to supply customers with known demands subject 

to vehicle capacity constraints. We investigated a new integer programming formulation 

for the VRP and a new lower bound based on the linear relaxation of the two-

commodity formulation. The lower bound, strengthened by a set of valid inequalities, 

has been embedded in a branch and cut procedure to solve the problem optimally. The 

computational results on a set of problem instances derived from the literature have 

shown that the lower bound obtained is tight and that the branch and cut algorithm has 

been able to solve to optimality problems up to 100 customers. The STSP formulation 

has also been extended to deal with other routing constraints such as delivery and 

collection constraints. We considered the TSP with mixed deliveries and collections 

(TSPDC) in which a vehicle located at a central depot must be optimally used to serve a 

set of customers partitioned in two subsets of delivery and collection customers. The 

vehicle capacity must not be exceeded along the tour and the total length of the tour 

must be minimized. A new mathematical formulation has been derived for the TSPDC 

and another one for the special case, known as TSP with Backhauls, where in any 

feasible solution all delivery customers must precede the collection customers. New 

lower bounds have been obtained from the linear relaxation of these formulations which 

have been further strengthened by valid inequalities and embedded in a branch and cut 

procedure to solve the problems optimally. The resulting branch and cut procedure has 

been applied to a set of instances taken from the literature and involving problems up to 

150 customers. The results have shown that the branch and cut algorithm has been able 

to solve to optimality problems involving up to 150 customers. 

The computational results of the new two-commodity formulation presented in this 

thesis have shown the effectiveness of the exact methods derived from this formulation. 

Future research can focus on the investigation of other valid inequalities for 

strengthening the lower bound and on the extension of the two-commodity network 

flow model to other routing problems such as the VRP with Backhauls (VRPB) and the 

Multi-Depot Vehicle Routing Problem. 

Following the success of the exact algorithm developed for the CPMP in providing a 

sound and efficient solution structure, we have constructed an exact algorithm for the 

basic VRPB based on a new (0-1) integer programming formulation of the problem. We 

have presented a method for computing the lower bound by finding a feasible solution 
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of the dual of the LP-relaxation of its integer program. Such a dual solution has been 

obtained by combining two different bounding procedures where the structure of the 

one of these bounds is such that additional constraints found in real-world VRPB's can 

be considered. The exact method uses the dual solution and a method for limiting the 

variables of the integer program so that the resulting problem can be solved by an 

integer programming solver. The overall bounding procedure proved to be effective, 

being able to produce a lower bound whose value on average was at least 98.2% of the 

optimum. The computational results have shown that the proposed method is able to 

solve exactly VRPB's of size up to 100 customers within the imposed time limit of 

25000 seconds. 

The computational results of the new exact methods for the CPMP and the VRPB 

presented in this thesis have shown the effectiveness of a general technique for solving 

to optimality complex locations and routing problems. Future work can focus on the 

development of new exact methods for other complex routing problems, such as the 

VRP with time windows. 

Finally, an application of a mathematical model developed for a real-life routing 

problem has been presented in the thesis. We considered the resource planning problem 

of a utility company, which provides preventive maintenance services to a set of 

customers using a fleet of mobile gangs based at some depots. The results of this study 

illustrate the significant reductions in travel cost that can be achieved by finding new 

boundaries for the depot service areas and making more effective decisions in daily 

mobile resource planning. It also shows how the mathematical model can be used as a 

planning tool to evaluate a number of "what-if' scenarios and the resulting benefits. The 

main findings of the case-study are summarised as follows: 

1. Given the current boundaries of the region served by each depot, effective 

reorganisation in scheduling visits and routing of gangs can lead to savings in travel 

cost of the order of 14%. 

2. Further reductions of at least 12.5% in the travel cost have been achieved for all 

depots by dividing the whole territory under study into new depot service areas. 
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APPENDIX A 

THE CPMP AND VRPB TEST 

PROBLEMS 

In this appendix we report the details of the test problems used in the numerical 

examples of Section 3.5.3 for the CPMP and of Section 5.5.1 for the VRPB. 

A.1 CPMP test problem 

The test problem CCPX16 is composed of n=100 customers, among which p=10 

must be chosen as medians. The capacity Q of each median is equal to 120 and the total 

demand of customers (i.e. Eqi  ) is equal to 1060. Table A.1 displays the (x,y) 
iE N 

coordinates and the demand for each vertex. 

A.2 VRPB test problem 

The test problem eilA10166 is composed of n=67 Linehaul customers i.e. (I L p 33) 

and m=33 Backhaul customers (i.e. I B I= 33). The number M of vehicles is 6, each one 

with a capacity Q=200. The total demand of the Linehaul and Backhaul customers is 

1003 and 455, respectively. Therefore, the minimum number of vehicles needed to visit 

the Linehaul customers and the Backhaul customers is 6 and 3, respectively (i.e. 

M L  = 6 and M B  = 3). Table A.2 displays the (x,y) coordinates and the demand for 

each vertex. 
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Table A.1. CPMP test problem 

x y demand x y demand 
1 6 29 4 51 55 56 9 
2 84 85 11 52 38 59 5 
3 44 25 7 53 10 58 10 
4 27 68 4 54 99 25 18 
5 45 43 19 55 68 54 8 
6 55 89 16 56 31 11 4 
7 64 73 1 57 52 53 12 
8 80 85 1 58 58 87 8 
9 53 52 10 59 6 98 19 
10 29 46 17 60 44 74 14 
11 22 22 13 61 97 68 19 
12 99 87 16 62 15 20 6 
13 51 22 19 63 86 37 20 
14 17 49 19 64 84 69 2 
15 76 63 3 65 56 6 9 
16 94 38 9 66 50 7 13 
17 5 23 7 67 51 52 10 
18 29 70 12 68 14 20 12 
19 38 84 19 69 49 34 6 
20 30 69 3 70 21 97 7 
21 7 87 6 71 83 69 3 
22 37 45 19 72 31 66 9 
23 55 60 3 73 81 67 16 
24 73 53 7 74 77 55 11 
25 16 75 6 75 85 68 20 
26 57 96 7 76 57 3 4 
27 69 28 8 77 79 49 17 
28 53 33 2 78 78 61 4 
29 79 29 7 79 27 75 16 
30 46 6 4 80 44 78 8 
31 41 71 20 81 2 19 10 
32 54 87 8 82 44 42 16 
33 7 13 19 83 65 65 2 
34 30 28 6 84 9 27 13 
35 41 76 8 85 17 83 18 
36 15 39 6 86 17 65 1 
37 36 59 18 87 29 41 10 
38 33 47 5 88 78 52 15 
39 10 6 7 89 44 69 12 
40 51 11 3 90 39 51 20 
41 38 99 19 91 76 21 11 
42 38 78 8 92 55 44 6 
43 94 48 12 93 74 81 19 
44 98 25 15 94 58 56 20 
45 19 94 3 95 16 10 8 
46 64 13 20 96 1 52 8 
47 37 69 12 97 49 45 18 
48 70 45 11 98 45 77 9 
49 73 56 9 99 2 70 19 
50 55 10 6 100 44 92 12 
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Table A.2. VRPB test problem 

x y demand x y demand 
1 35 35 0 52 49 42 13 
2 41 49 10 53 53 43 14 
3 35 17 7 54 57 48 23 
4 55 20 19 55 56 37 6 
5 15 30 26 56 15 47 16 
6 20 50 5 57 14 37 11 
7 10 43 9 58 16 22 41 
8 30 60 16 59 4 18 35 
9 20 65 12 60 26 52 9 
10 30 25 23 61 26 35 15 
11 15 10 20 62 15 19 1 
12 10 20 19 63 22 22 2 
13 5 30 2 64 26 27 27 
14 15 60 17 65 25 24 20 
15 45 65 9 66 25 21 12 
16 45 10 18 67 19 21 10 
17 55 5 29 68 18 18 17 
18 65 20 6 69 55 45 13 
19 45 30 17 70 25 30 3 
20 41 37 16 71 55 60 16 
21 64 42 9 72 50 35 19 
22 31 52 27 73 30 5 8 
23 35 69 23 74 20 40 12 
24 65 55 14 75 45 20 11 
25 63 65 8 76 65 35 3 
26 20 20 8 77 35 40 16 
27 5 5 16 78 40 60 21 
28 40 25 9 79 53 52 11 
29 42 7 5 80 2 60 5 
30 23 3 7 81 60 12 31 
31 11 14 18 82 24 12 5 
32 2 48 1 83 6 38 16 
33 8 56 27 84 13 52 36 
34 6 68 30 85 49 58 10 
35 47 47 13 86 57 29 18 
36 27 43 9 87 32 12 7 
37 37 31 14 88 17 34 3 
38 63 23 2 89 27 69 10 
39 53 12 6 90 49 73 25 
40 36 26 18 91 37 47 6 
41 21 24 28 92 47 16 25 
42 12 24 13 93 49 11 18 
43 24 58 19 94 61 52 3 
44 15 77 9 95 55 54 26 
45 62 77 20 96 11 31 7 
46 67 5 25 97 28 18 26 
47 56 39 36 98 31 67 3 
48 37 56 5 99 18 24 22 
49 57 68 15 100 22 27 11 
50 44 17 9 101 20 26 9 
51 46 13 8 
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