
ALGORITHMS FOR LOCATION AND

ROUTING PROBLEMS IN

DISTRIBUTION SYSTEMS

Roberto Baldacci

The Management School
Imperial College of Science, Technology and Medicine
University of London

ALGORITHMS FOR LOCATION AND

ROUTING PROBLEMS IN

DISTRIBUTION SYSTEMS

Roberto B aldacci

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON

and the

DIPLOMA OF IMPERIAL COLLEGE

January 1999

The Management School
Imperial College of Science, Technology and Medicine
University of London

Copyright © 1999 by Roberto Baldacci.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any forms or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author, Roberto Baldacci, 53 Prince's Gate, Exhibition Road, London SW7 2PG, UK.

Printed in the United Kingdom.

To my Family

ABSTRACT

This thesis is concerned with the study of location and routing problems in

distribution systems.

In the first part of the thesis we consider the Capacitated p-median Problem (CPMP)

in which a set of n customers must be partitioned into p disjoint clusters so that the total

dissimilarity within each cluster is minimized and constraints on maximum cluster

capacities are met. The total dissimilarity of a cluster is computed as the sum of the

dissimilarities existing between each customer of the cluster and the median associated

with the cluster.

We develop both an exact and a heuristic algorithm for solving the CPMP. The exact

method is based on a set partitioning formulation of the problem and the heuristic

method on a recently proposed metaheuristic, namely, the Bionomic algorithm. The

computational results for test problems obtained from the literature show the

effectiveness of both algorithms.

In the second part of the thesis we consider a class of routing problems.

We describe a two-commodity network flow approach to derive new integer

programming formulations for the Vehicle Routing Problem (VRP), the Traveling

Salesman Problem (TSP) with mixed deliveries and collections and the TSP with

Backhauls. These formulations are used to derive new lower bounds based on linear

relaxation strengthened by new valid inequalities.

An exact algorithm is developed for the VRP with Backhauls based on a set

partitioning formulation. Problems of large size can be solved to optimality.

Finally, a real-life application of the Multi-Depot Period VRP to resource planning in

the utilities sector is presented. The computational implementation of the planning

model is described and results are obtained with reference to a specific case-study.

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Dr. Eleni Hadjiconstantinou, for her

guidance, support and for providing me with many ideas and suggestions which have

led to new results presented in this thesis.

I would like also to express my thanks to Professor Nicos Christofides and Professor

Aristide Mingozzi for their suggestions and useful discussions.

I am very grateful to the Fondazione Cassa di Risparmio di Cesena and to the

Consiglio Nazionale delle Ricerche for giving me the opportunity to carry out this work.

Their financial support is gratefully acknowledged.

I also thank my other colleagues, Mr. Marco Boschetti and Dr. Vittorio Maniezzo for

sharing with me their research experience and friendship.

Last, but not least, I am very much indebted to my parents and my sisters for their

support and encouragement throughout my studies.

TABLE OF CONTENTS

1 Introduction 1

1.1 Distribution systems 	 1

1.1.1 	Location problems 	 2

1.1.2 	Routing problems 	 3

1.2 Combinatorial optimization 	 5

1.2.1 	Integer linear programming problems 	 8

1.2.2 	Computational complexity of CO problems 	 11

1.3 Methodological preliminaries 	 13

1.3.1 	Lagrangean relaxation and subgradient optimization 	 14

1.3.2 	Branch and bound methods 	 16

1.3.3 	Branch and cut methods 	 19

1.4 Research motives and goals 	 21

1.5 Thesis overview 	 22

2 A Bionomic Approach to the Capacitated p-median Problem 25

2.1 Introduction 	 25

2.2 A mathematical formulation of the CPMP 	 26

2.3 A literature review for the CPMP 	 29

2.3.1 	Heuristic algorithms for the CPMP 	 29

2.3.1.1 	Mulvey and Beck's heuristics 	 29

2.3.1.2 	Osman and Christofides' heuristic 	 30

2.3.2 	Exact algorithms for the CPMP 	 30

2.4 The heuristic procedure IIEUMED 	 31

2.5 Outline of Bionomic algorithms 	 33

2.6 A Bionomic algorithm for the CPMP 	 36

2.7 Computational results 	 39

2.8 Summary 	 48

vii

3 An Exact Algorithm for Solving the Capacitated p-median Problem

Based on a Set Partitioning Approach 49

3.1 Introduction 	 49

3.2 A set partitioning formulation of the CPMP 	 50

3.2.1 	Variable reduction of problem SP 	 51

3.3 A heuristic procedure for solving problem DSP 	 53

3.3.1 	Procedure H1 55

3.3.2 	Procedure H2 	 58

3.3.2.1 	The computation of Ui , i E N 	 61

3.4 Generation of set .F 	 62

3.5 Methods for solving the CPMP 	 65

3.5.1 	The EHP procedure 	 65

3.5.2 	The branch and bound method BB 	 67

3.5.3 	A numerical example 	 67

3.6 Computational results 	 72

3.7 Summary 	 75

4 New Exact Algorithms for Routing Problems Based

on a Two-Commodity Network Flow Formulation 81

4.1 Introduction 	 81

4.2 A two-commodity formulation of the TSP 	 82

4.2.1 	A new formulation for the symmetric TSP 	 87

4.2.2 	Valid inequalities 	 90

4.3 The Vehicle Routing Problem 	 92

4.3.1 	A two-commodity formulation of the VRP 	 94

4.3.2 	A lower bound from the LP-relaxation 	 97

4.3.3 	A branch and cut method for the VRP 	 98

4.3.4 	Computational results 	 99

4.4 The TSP with delivery and collection constraints 	 105

4.4.1 	A two-commodity formulation of the TSPDC 	 106

4.4.2 	A two-commodity formulation of the TSPB 	 108

viii

4.4.3 	Lower bounds from the LP-relaxation 	 111

4.4.4 	A branch and cut method for the TSPDC and the TSPB 	 112

4.4.5 	A numerical example 	 112

4.4.6 	Computational results 	 116

4.5 Summary 	 123

5 An Exact Method for the Vehicle Routing Problem with Backhauls 125

5.1 Introduction 	 125

5.2 The basic VRPB 	 127

5.3 A mathematical formulation of the VRPB 	 130

5.3.1 	Variable reduction of problem 113 	 132

5.3.2 	Further variable reduction 	 134

5.4 A heuristic procedure for solving problem D 	 136

5.4.1 	Procedure H1 	 137

5.4.1.1 	Improving value z(PR(X, la)) 	 140

5.4.1.2 	The computation of cpf' , i E L and (p i" , j e B 	 141

5.4.1.3 	Solving problems PR(X,µ) and DPR(X,µ) 	 142

5.4.2 	Procedure H2 147

5.4.2.1 	The computation of Ui , ieL and Vi ,jeB 	 149

5.4.2.2 	Generating sets 2- and B 	 152

5.5 An exact method for solving the VRPB 	 156

5.5.1 	A numerical example 	 157

5.6 Computational results 	 162

5.7 Summary 	 164

6 An Application of Multi-Depot Period Vehicle Routing

to Efficient Resource Planning 169

6.1 Introduction 	 169

6.2 Problem overview 	 171

6.3 A heuristic algorithm for the MDPVRP 	 172

6.4 Major elements of the computer system 	 177

ix

6.5 Results 	 179

6.6 Summary 	 181

7 Conclusions 	 193

A The CPMP and VRPB Test Problems 	 197

A.1 CPMP test problem 	 197

A.2 VRPB test problem 	 197

References 	 201

LIST OF FIGURES

1.1 	Relationship among P, NP, NP-complete and NP-hard 	 13

1.2 	A branch and bound tree 	 17

2.1 	Example of a CPMP solution 	 27

3.1 	Example: solution to procedure Hl of cost 950.2 	 68

3.2 	Example: solution to procedure H2 of cost 1.1 	 69

3.3 	Example: optimal solution found by procedure EHP 	 71

3.4 	Example of CPMP solutions with additional constraints 	 76

4.1 	Flows in the Hamiltonian circuit 	 83

4.2 	The symmetric TSP 	 88

4.3 	Flow circuits for a three customers route 	 95

4.4 	Flows in the TSPDC 	 107

4.5 	Subtours in the TSPDC 	 109

4.6 	Flows in the TSPB 	 109

4.7 	Example: customer locations 	 113

4.8 	Example: optimal TSP solution of cost 4430 	 114

4.9 	Example: heuristic solution of cost 4631 found by Mosheiov (1994) 	115

4.10 Example: optimal TSPDC solution of cost 4464 	 115

5.1 	Example of a VRPB solution 	 128

5.2 	The arc set of graph G 	 129

5.3 	Structure of a feasible VRPB solution 	 137

5.4 	Transportation problem TP(X,µ) 	 142

5.5 	Example: lower bound solution to procedure HI of cost 841.2 	 158

5.6 	Example: lower bound solution to procedure H2 of cost 2.1 	 159

xi

5.7 Example: optimal solution of cost 846 	 161

6.1 Scenario 1: existing depot service areas 	 188

6.2 The road network 	 189

6.3 Scenario 2: new depot service areas 	 190

6.4 Routes of the base run for depot D9 	 191

xii

LIST OF TABLES

2.1 	Computational results of problem class A 	 43

2.2 	Computational results of problem class B 	 44

2.3 	Computational results of problem class C 	 45

2.4 	Computational results of problem class D 	 46

2.5 	Computational results of problem class E 	 47

3.1 	Example: details of the lower bound obtained by procedure H1 	 68

3.2 	Example: details of the lower bound obtained by procedure H2 	 70

3.3 	Example: details of the optimal solution of cost 954 	 71

3.4 	Problem classes C and D: incompatibilities between customers 	 73

3.5 	Computational results of problem class A 	 77

3.6 	Computational results of problem class B 	 78

3.7 	Computational results of problem class C 	 79

3.8 	Computational results of problem class D 	 80

4.1 	Test problems 	 102

4.2 	Comparison of lower bounds 	 103

4.3 	Details of the number of cuts of lower bound LB1 	 104

4.4 	Problems solved to optimality 	 104

4.5 	Example: problem data 	 114

4.6 	Example: flows of the optimal TSPDC solution 	 116

4.7 	TSPDC: computational results of problem class A 	 120

4.8 	TSPDC: computational results of problem class B 	 121

4.9 	TSPB: computational results of problem class A 	 122

4.10 TSPB: computational results of problem class B 	 123

5.1 	Example: details of the lower bound solution obtained by procedure H1 	158

5.2 Example: details of the lower bound solution obtained by procedure H2 	 160

5.3 Problem class A : lower bounds 	 165

5.4 Problem class A : exact method EHP 	 166

5.5 Problem class B : lower bounds 	 167

5.6 Problem class B : exact method EHP 	 168

6.1 Problem Data: frequency of customer service 	 183

6.2 List of scenarios evaluated by the model 	 184

6.3 Results of the base run for depot D9 	 185

6.4 Scenario 1: efficient route planning within existing depot areas 	 186

6.5 Existing and new depot service areas 	 186

6.6 Scenario 2: efficient route planning within new depot areas 	 187

A.1 CPMP test problem 	 198

A.2 VRPB test problem 	 199

xiv

LIST OF ALGORITHMS

1.1 Subgradient optimization 	 15

1.2 Branch and bound 	 18

1.3 Cutting planes 	 20

2.1 HEUMED 	 32

2.2 Bionomic Algorithm 	 34

2.3 Bionomic Algorithm for the CPMP 	 36

3.1 Algorithm HDSP for finding a feasible solution of D 	 54

3.2 GEN(Fi) 	 63

5.3 GENP 	 153

6.1 PVRP 	 174

xv

CHAPTER 1

INTRODUCTION

1.1 DISTRIBUTION SYSTEMS

Logistics is described by Eilon et al. (1971) as "the provision of goods and services

from a supply point to a demand point". A complete logistics system covers the entire

process of moving raw materials and input requirements from suppliers to plants, the

conversion of the inputs into products (or outputs) by a manufacturing process, and the

delivery of these products to the final customers through intermediate stores or depots.

The Distribution System covers the supply of goods from the plants to the customers. It

is concerned with the movement and storage of goods via various distribution channels

to the supply chain endpoint. The distribution process represents the most costly part of

this chain (see Christofides (1981)).

The management of a distribution system involves a variety of decision-making

problems at both the strategic and tactical operational levels. Decisions relating to the

number and location of facilities (plants, warehouses or depots) may be viewed as

strategic, while the problem of routing the vehicles to deliver goods from depots to

customers could be classified as tactical. The distinction between strategic/operational

Location Problems and Routing Problems does not only depend on the nature of the

decisions involved but is also associated with the time-span and frequency of the

decisions. The problem of depot location is considered by management once every few

years and once such a decision is taken and implemented it cannot be easily changed

without incurring major capital investment. The vehicle routing problem, on the other

1

hand, arises on a regular basis (e.g. daily), needs to be resolved repeatedly and routes

may have to be altered from one-time period to another.

Location and Routing Problems cannot always be treated in isolation; they are

interlinked and a solution to the one may affect the other. Efficient solutions to tactical

and operational problems such as route planning can be successfully incorporated in

providing satisfactory solutions to strategic problems.

This chapter provides general concepts relevant to Combinatorial Optimization

Problems and briefly surveys some known methodologies used by the algorithms

developed in the thesis. The motives and goals for the research in location and routing

problems are clearly stated. An overview of the thesis is presented at the end of this

chapter.

1.1.1 LOCATION PROBLEMS

The depot location problem is not a single problem, but a combination of inter-

related sub-problems. The number of depots in the system, their respective sizes, their

locations, the allocation of customers to depots - all these are inter-related problems

which need to be closely examined. Furthermore, in determining the location of depots

it may be necessary to take account of the availability of suitable sites, the proximity of

trunk roads (or access to other means of transport) and the availability of labour, as well

as numerous other factors. Consequently, the general approach has been to treat the

problem as a multi-stage decision process in which the parameters are optimized in

sequence, each time assuming the other parameters to remain constant.

A basic location decision problem with many practical applications involves

determining the location of facilities, such as industrial plants or depots, to minimize the

cost (or maximize the profit) of satisfying the demand for some commodity. In general

there are fixed costs for locating the facilities and transportation costs for distributing

the commodities between the facilities and the customers. This problem has been

extensively studied in the literature and is commonly referred to as the plant location

problem, or facility location problem. Variations of this problem have been considered

in the literature. When each potential facility has a constraint on the maximum demand

that it can supply (known as capacity), the problem becomes the capacitated facility

2

location problem. When capacity constraints are not considered, the problem is referred

to the simple or uncapacitated facility location problem, or, for short, the UFL problem.

If the number of facilities to locate in the UFL problem is specified the problem is

known as the p-facility location problem. When there are no fixed costs associated with

the facilities the problem is known as the p-median problem.

There is a vast literature on the UFL problem (see Krarup and Pruzan (1983)). An

interesting review of key aspects of Location Theory and its applications in real-world

discrete location problems is given in the book edited by Mirchandani and Fransis

(1990).

The UFL problem has several applications: locating a bank account (see Cornuejols

et al. (1977)), clustering analysis (see Mulvey and Crowder (1979)), lock-box location

(see Kraus et al. (1970)) and portfolio management (Beck and Mulvey (1982)). This

problem also arises as a subproblem in several contexts, such as in network design,

vehicle routing and, of course, location theory when additional constraints, such as

capacity constraints, are present. This latter problem is known as the Capacitated p-

median problem (CPMP). The CPMP is the subject of chapters 2 and 3 of this thesis,

where both heuristic and exact methods are presented.

1.1.2 ROUTING PROBLEMS

The Vehicle Routing Problem (VRP) was originally posed by Dantzig and Ramser

(1959) as the Truck Dispatching Problem and has grown to be an important area of

Operations Research. It has been estimated that transportation costs account for nearly

half, 47.5%, of the total logistics cost (Institute of Logistics and Distribution

Management (1985)), and approximately 70% of the value-added costs in the soft drink

industry (see Golden and Wasil (1987)). This percentage is on average 20% of any

product value, but it varies widely with the type of product. There is, therefore, a clear

incentive for organizations to use transport as efficiently as possible and a variety of

computerized routing software has been implemented for this purpose.

In its basic version the VRP can be stated as follows. A set of customers, each with a

known location and a known requirement for some commodity, is to be supplied from a

3

single depot by delivery vehicles of known capacity. The problem is to design routes for

the vehicles, subject to the following constraints:

(a) the requirements of all customers must be met;

(b) vehicle capacity must not be violated, i.e. the total load allocated to each vehicle

must not exceed its capacity.

The objective of this problem may be stated as that of minimizing the cost of

completing the delivery routes.

There is a vast literature on the VRP. For recent surveys of VRP solution methods

and their applications see Magnanti (1981), Bodin et al. (1983), Christofides (1985),

Golden and Assad (1986,1988), Bodin (1990), Laporte (1992b) and Fisher (1995). See

also the recent bibliographies by Laporte and Osman (1995) and by Laporte (1997).

If the fleet consists of a single vehicle having a sufficiently large capacity, so that

constraint (b) can be ignored, the problem consists of finding the shortest tour to visit all

customers and this is the same as the classical Traveling Salesman Problem (TSP). The

first major algorithmic study of the TSP is that of Dantzig et al. (1954). The TSP is NP-

hard (see Garey and Johnson (1979)) and its study has given rise to several theoretical

and algorithmic results, some having far reaching effects in other areas of combinatorial

optimization. Polyhedral theory (see GrOtschel and Padberg (1985)) is probably the

most significant of these and has led to the development of powerful exact algorithms.

The book by Lawler et al. (1985) contains an account of the main results on the TSP

until 1985. For a more recent survey, see Laporte (1992a).

Real VRPs usually include complications beyond the basic model. Typical

complications include the following.

(a) The objective function in real problems can be quite complex, including terms

dependent on the distance travelled, the number of vehicles used, the time duration

of routes (as with overtime pay for drivers) and penalties for not delivering to all

customers.

(b) The time of delivery to a customer may be constrained to fall within defined time

windows.

(c) In many situations the same vehicles used for goods delivery are also used to collect

pallets, empty bottles, etc. for return to the depot. When these activities are

particularly significant they are often referred to as backhauls.

4

(d) The characteristics of the vehicles can introduce a variety of constraints beyond the

simple vehicle capacity constraints. The vehicle fleet can be heterogeneous, with

each vehicle having a distinct capacity. There can be multiple capacity constraints

because of both weight and volume restrictions. Sometimes vehicles are divided into

compartments for storage of different products (such examples include the delivery

of petrol to gas-stations, delivery of refrigerated and non-refrigerated items to

supermarkets, etc.). Customer/vehicle compatibility constraints may restrict the set

of customers that a vehicle can feasibly service.

(e) Routes may extend over more than one day and/or a vehicle may perform more than

one trip in a day returning to the depot several times for reloading.

(f) There may be more than one distribution depot and these depots may be interacting

in a way that makes it impossible to consider any one in isolation. For example,

vehicles may leave from one depot, supply some customers, return to a second depot

to reload (perhaps with a product not available at the first depot), visit another set of

customers and finally arrive back at the first depot (or at a third depot).

(g) Periodic routing problems arise in the distribution of products such as soft drinks,

snacks foods, beer and bread. In these applications the distributing firm is interested

in developing a set of daily routes for some T day period so that each customer

receives delivery at a designed frequency.

(h) Inventory routing problem arise in the distribution of liquid products such as

industrial gases or gasoline. In these problems, each customer has an inventory of

the product, and the distributor must determine the timing and amount of deliveries

so that the customer does not run out of product.

1.2 COMBINATORIAL OPTIMIZATION

This section provides general concepts relevant to Combinatorial Optimization (CO)

Problems.

CO is a term that describes those areas of mathematical programming that are

concerned with discrete structure. A large number of practical problems can be

formulated and solved as CO problems.

5

Very generally, a mathematical programme is an optimization problem subject to

constraints in Rn of the form:

MM f (x) ,

subject to xe S clr ,

where R n is the set of all n-dimensional vectors of real numbers and f is a real-valued

function defined on S. The set S is called the constraint set and f is called the objective

function. The vector x E lf8 n has components 	x2 ,..., xn which are the variables of

the problem. Every x E S is called a feasible solution to (1.1). If there is an x° E S

satisfying:

— 	< f (x°) f (x) , for all x G S ,

then x° is called an optimal solution (or also a global optimal solution to (1.1)). Notice

that considering only the case of minimization of (1.1) is not restrictive, since the search

for a maximum of function f reduces immediately to the problem of minimization of

g = - f .
The objective in a mathematical programming problem is to establish whether an

optimal solution exists and then to find one, or perhaps all, optimal solutions. In an

applied context, it is convenient to think of (1.1) as a model of decision making in

which S represents the set of all permissible decisions and f assigns a utility or profit to

each x E S . Applications of this model abound in the real world and are relevant to

various branches of engineering, business, and the physical and social sciences.

Different classes of problems can be obtained by placing restrictions on the type of

function under consideration and on the values that the variables can take. Problems in

which the decision variables are discrete, i.e. where the solution is a set, or a sequence,

of integers or other discrete objects, are called combinatorial problems. The problem of

finding optimal solution to such problems is therefore known as Combinatorial

Optimization.

Some examples of this kind of problems are as follows.

Example 1.2.1 The 0-1 Knapsack Problem.

Given a set of n items and a knapsack, with:

6

p j = profit of item j,

wj = weight of item j,

c = capacity of the knapsack,

determine the subset J of items which should be packed in order to maximize

jEJ

such that

yw J • <c .
jEJ

Here the solution is represented by the subset J c{1,2,...,n} .

Example 1.2.2 The Vehicle Routing Problem.

A set of M identical vehicles of capacity Q is located at a central depot and must be

used to supply a set of n customers. Each customer i requires a supply of qi units from

the depot. Every route performed by a vehicle which starts and ends at the depot and the

load carried must be smaller or equal than Q. Each customer must be visited exactly

once by a vehicle route. The distance between customer i and j is du .

The problem is to assign customers to vehicles and find the order in which each

vehicle visits its customers so as to minimize
M nk

yydni k k
k=1 i=0

such that
nk
E qnik 	k =1,2,...,M
i=1

and Ink = n .
k=1

Here, vehicle k visits nk customers and T i k is the i-th customer visited along the k-th

	

route. The solution is represented by the permutation 	 im ,...,nnmm 1.

Notice that the depot is represented by the customer nok and by the customer 7I nk+1 k ,

for each k.

7

1.2.1 INTEGER LINEAR PROGRAMMING PROBLEMS

Combinatorial problems, such as those described above, can be solved by (i)

formulating the problem as an integer linear programming problem (e.g., by introducing

integer variables) and (ii) by using the solution techniques developed for solving integer

linear programming problems.

An integer linear programming problem (ILP) is a mathematical programming

problem in which:

f (x) = cx 	 (1.2)

and

S = {x I Ax = b,x 0 and integer} , 	 (1.3)

where A is an mx n matrix, b is an m-vector, c is an n-vector and 0 is an n-vector of

zeros. In more standard form the ILP is written as

Min cx

subject to Ax = b

x 0 integer

In summation notation (1.4) is

Mill I c J •
j=1

subject to Eaux, = bi , i =1,...,m
j=i

xi 	0 integer, j =1,...,n

A linear programming problem (LP) is a mathematical programming problem in

which f (x) is given by (1.2) and

S = {x Ax = b,x 0}

The LP obtained by dropping the integrality constraints from the ILP (1.3) is referred

to as the corresponding LP, or the linear relaxation of the ILP.

In general, the problem

P1: Min f (X) , xE S1

8

}

	

(1.4)

(1.5)

is said to be a relaxation of the problem

P2: Min f (x), XE S2

if S1 D S2 . Similarly, P2 is said to be a restriction of P1.

Notice that if x° is an optimal solution to P1 and x* is an optimal solution to P2,

then f 	5_ f (x* . Furthermore, if x° E S2 , then x° is an optimal solution to P2.

An important special case of the ILP (1.5) is the binary ILP, where x 0 and

integer is replaced by x j = 0 or 1. A generalization of the ILP is the mixed integer

linear program (MILP), where only some of the variables are constrained to be integer.

The following terms are used in the description of the solution space of a discrete

optimization problem.

The set of all possible solutions of a MILP or ILP may be described by a set of linear

constraints. Finding these constraints and their properties is the subject of polyhedral

theory. For a detailed treatment of this subject see Rockafellar (1970), Padberg and

Grotschel (1985) and Nemhauser and Wolsey (1988).

Given a set S cRn , a point x e DV is a convex combination of points of S if there

exists a finite set of points {xi , x2 ,..., xt} in S and a vector XE ll of non-negative

values with Eh; =1 and x = yxix, . The convex hull of S, denoted by conv(S), is the
i=i

set of all points that are convex combinations of S. An important result is that conv(S)

can be described by a finite set of linear inequalities. Further

min{cx : XE S} = minicx : x E conv(S)} . Thus any MILP or ILP can be represented as a

LP, provided we know a set of linear inequalities that represent the solution space.

A polyhedron P can be represented in the form P = {XE R : Ax S b}. A polyhedron

of the form P = {XE n : IIXII b} for some b > 0 , where 114 is a norm (e.g. euclidean) of

x, is bounded. A bounded polyhedron is a polytope.

A nonempty set S c [Rn is called affinely independent, if for every finite set

k 	 k
S , the equations 	aixi =0 and 	at =0 imply at = 0 , i =1 k ;

i =1

otherwise S is called affinely dependent.

9

A polyhedron P is of dimension k, denoted by dim(P)=k, if the maximum number of

affinely independent points of P is k+1. P c [18 n is full-dimensional if the dimension of

P is n.

The inequality irx no is called a valid inequality for P if it is satisfied for all points

in P. Given an ILP, a linear inequality that cut out part of the feasible region of the

corresponding LP while leaving the feasible region of the ILP intact is called a cutting

plane. If itx 'o is a valid inequality for P, and F = {x E P : 7EX = /Co , then F is called

a face of P. A face of P is a facet of P if dim(F) = dim(P)— 1. This leads to the results

that for each facet F of P, one of the inequalities representing F is necessary in the

description of P. Thus the use of facets in the description of the solution space yields a

system of inequalities of smallest number. Also, if P defines the convex hull of integer

solutions of a discrete optimization problem, then the use of facet defining inequalities

is most likely to give the tightest lower bound in a branch and cut scheme.

In the case of the 0-1 Knapsack Problem, we can formulate the problem as a binary

ILP by defining:

{1 if item j is packed
xi = 0 otherwise

The problem then reduces to the following integer program:

Max IP ixj
j=1

subject to Y IN .1 •X • <C
j=1

x • = 0 or 1, j E {1,2,...,17}

There is an important class of binary ILP's in which ay = 0 or 1 for all i and j, and

bi =1 for all i. Special methods have been developed for these so-called covering and

partitioning problems.

The set covering problem is the zero-one integer program

Min cx

subject to Ex e

10

xi = 0 or 1, j E {1,2, .. . , n}

where E = [eu] is an m x n matrix whose entries eii are 0 or 1, c = [c j], j = 1,...,n , is

a cost row with positive components, x = [xi] , j = 1, . . . , n , is a vector of zero-one

variables and e is an m vector of 1 ' s. If the Ex e constraints are replaced by the

equalities

Ex = e ,

the integer program is referred to as a set partitioning problem. If we think of the

columns of E and e as sets, the set covering problem is equivalent to finding a cheapest

union of sets from E that covers every component of e, where component i of e is

covered if at least one of the selected sets (columns) from E has a 1 in row i. In the set

partitioning, we seek a cheapest union of disjoint sets from E which covers e. The set

covering and the set partitioning problem are representative of numerous real world

situations. These include applications in the areas of airline crew scheduling, vehicle

routing, stock cutting, map coloring, and other instances.

Detailed formulation and analysis of various other CO problems can be found in

Garfinkel and Nemhauser (1972) and Christofides at al. (1979a).

1.2.2 COMPUTATIONAL COMPLEXITY OF CO PROBLEMS

The theory of Computational Complexity has been developed for evaluating and for

classifying problems as "hard" or "easy".

Generally, a problem can be solved by a step by step procedure, called algorithm. In

order to evaluate the running time of an algorithm we count "steps" instead of

"machines cycles", and we use an 0-notation to express the running time function.

The size of an instance of a problem is measured by the length of the shortest coding

necessary to specify the data completely. Given an instance of size n and a real function

g(n) of n, we say that the complexity of an algorithm is 0(g(n)), if fin), the maximum

time required to execute the algorithm is such that:

I f (n)I < clg(n)l

where c is a constant. The precise value of c depends on the computer used. Algorithms

with complexity 0(n) are called linear; those with complexity 0(nk) are called

11

polynomial (e.g. algorithms of complexity 422), 0(nlog(n)), etc). On the other hand,

an algorithm is called exponential if its complexity is not of polynomial order (e.g.

algorithms of complexity 0(2n), 0(n!), etc).

Problems are classified into four classes based on their computationally complexity:

P, NP (Non-deterministic Polynomial), NP-complete and NP-hard.

Problems for which polynomial time algorithms are known belong to the class P. By

this definition and intuitively, we can think of P as a class of "easy" problems since

efficient (polynomial time) algorithms exist for solving this class of problems. The class

NP encompass all problems in P as well as other problems which can be solved by a

non-deterministic algorithm in polynomial time.

The concept on a non-deterministic polynomial algorithm can be viewed intuitively

as follows. First observe that problems in NP are decision or recognition problems: that

is, for example, rather than ask for the optimal length of the TSP tour, one may ask "is

there a tour of length less than L?". The recognition and the optimization version of a

problem are closely related since if we can solve the recognition version of a problem,

we can also solve its related optimization version. Now imagine a computer which has

the property that each time it faces a choice it divides into several copies of itself, with

each copy being explored in parallel. The recognition problem is solved if and only if

one of the copies answers the recognition problem in the affirmative. If the maximum

time taken by a copy is polynomially bounded, then the problem is in NP. Another way

of looking at this intuitively is to suppose that we could "guess" a solution to the

problem, and require that checking the answer could be carried out in polynomial time.

The class NP-complete is a subset of NP having the property that all problems in NP

can be reduced in polynomial time to one of them. A problem P1 can be reduced to

problem P2 in polynomial time if any instance of P1 can be transformed in polynomial

time into an instance of P2, such that the solution of P1 can be obtained in polynomial

time from the solution of the instance of P2. A problem is NP-hard if every problem in

NP is polynomially reduceable to it. Whether polynomial time algorithms exist for all

problems in NP is currently an open question. Figure 1.1 shows the commonly believed

relationship among P, NP, NP-complete, and NP-hard problems.

12

NP-complete

P

NP

NP-hard

Figure 1.1. Relationship among P, NP, NP-complete and NP-hard

For a more complete discussion on computational complexity, the interested reader is

referred to Garey and Johnson (1979), Lewis and Papadimitriou (1981) and

Papadimitriou and Steiglitz (1982).

The fact that many CO problems are NP-hard, suggests that there is no guarantee

that an optimal solution will be found in a reasonable amount of computing time. Thus,

algorithms can be classified into two broad categories:

(i) exact solution algorithms that guarantee an optimal solution at the possible

expense of high computational time and memory requirements, thus possibly

allowing only small-size instances to be solved;

(ii) heuristic algorithms that produce a feasible solution in a reasonable amount of

computing time with the risk that it may be sub-optimal.

For the detailed discussion about heuristic techniques for CO problems one can refer

to Reeves (1993).

1.3 METHODOLOGICAL PRELIMINARIES

In this section we provide a brief description of some known methodologies used in

the development of the algorithms presented in the thesis.

13

1.3.1 LAGRANGEAN RELAXATION AND SUBGRADIENT OPTIMIZATION

Finding good solutions to hard problems in CO by using an enumerative procedure

such as branch and bound method, involves the calculation of upper bounds and lower

bounds on the objective function, in order to accelerate the fathoming process and

thereby curtail the enumeration. General techniques for generating good upper bounds,

in the case of minimization problems, are essentially based on heuristic methods. One of

the most efficient techniques for obtaining good lower bounding functions consists of

solving the problem obtained by relaxing some of the constraints of the initial problem

in the Lagrangean fashion. The use of Lagrangean relaxation in CO originates in the

work of Held and Karp (1970, 1971) concerning the TSP.

Consider the following general zero-one problem which we shall refer to as problem

P:

(P) 	 Min cx

subject to Ax > b

Bx >_d

xi e {0,1}, j =1,...,n

The Lagrangean relaxation of problem P with respect to the constraint set Ax b is

defined by introducing a Lagrangean multiplier vector X 0 which is attached to this

constraint set and brought into the objective function to give the following problem

called Lagrangean lower bound program (LLBP):

(LLBP) 	 Min cx + A(b — Ax)

subject to Bx d

xi E {OM, j =1 n

It can be easily shown that problem LLBP provides a lower bound on the optimal

solution to the original problem P for any X 0 . Notice that we are interested in finding

the value for the multipliers that give the maximum lower bound, i.e. the lower bound

that is as close as possible to the value of the optimal integer solution. This involves

finding multipliers which correspond to the following maximization problem called the

Lagrangean dual program:

14

Min

subject to Max Bx > d Ain
X?.0

x e {0,1}, j =1,...,n

Applications of Lagrangean relaxation to CO problems can be found in Geoffrion

(1974), Fisher (1981) and Beasley (1993).

One approach to deciding values for the Lagrangean multipliers {Xi} is to use

subgradient optimization. Subgradient optimization is an iterative procedure which,

starting from an initial set of Lagrangean multipliers, modifies them in a systematic

fashion. It can be viewed as a procedure which attempts to maximize the lower bound

value derived from LLBP (i.e. to solve the Lagrangean dual program) by a suitable

choice of multipliers.

Consider the relaxed constraints in summation notation, that is:

I CluX 	=1,...,m

The basic subgradient optimization procedure is as follows.

Algorithm 1.1: Subgradient optimization

Step 1. Let it be a user-defined parameter satisfying 0 < It 5_ 2 .

Let ZUB be an upper bound to the optimal solution cost of problem P.

Decide upon an initial set {X1 } of multipliers.

Let zmax (= —00) be the maximum lower bound found.

Step 2. Solve LLBP with the current set of multipliers {Xi } to get a solution {xi of

value z.LB . Set zniax =max(zniax ,z z,B).

Step 3. Define subgradients Gi for the relaxed constraints, evaluated at the current

solution, by:

Gi =bi -E x =1,...,m

Step 4. Define a (scalar) step size T by

15

T = t(ZUB Z LB)
m
i=1

Step 5. Update Xi using

= max(0,X i +TGi), i =1,...,m

and go to Step 2 to resolve LLBP with this new set of multipliers.

Generally, the termination rule is based either upon limiting the number of iterations

that can be done, or upon the value of TC where rc is reduced during the course of the

procedure. At the end of the procedure, z,nax represents the best lower bound found.

For more information on this subject, the interested reader is referred to Held et al.

(1974), Sandi (1979) and Beasley (1993).

1.3.2 BRANCH AND BOUND METHODS

Enumerative (branch and bound, implicit enumeration) methods solve a CO problem

by breaking up its feasible set into successively smaller subsets. The origins of the

branch and bound idea go back to the work of Land and Doig (1960).

The basic principle of a branch and bound method is the partition of an initial

problem P0 into a number of subproblems P1, P2 , . , Pk , whose totality represent

problem 130 . Each one of these subproblems is resolved separately by:

either (i) 	finding its optimal solution,

or 	(ii) showing that the value of the optimal solution to the subproblem is worse

than the best solution for the original problem Po obtained so far,

or 	(iii) showing that the subproblem is infeasible.

Partitioning a problem P0 into a number of subproblems allows easier problems to

be resolved, either because of their smaller size, or because of their structure which may

not be shared by the initial problem P0. However, in general, a subproblem which is

difficult to resolve, can be further partitioned into yet smaller subproblems

P11 ,P12 ,...,P1 . This partitioning, (also called branching), can be repeated for

subproblems at different levels. An example is shown in Figure 1.2.

16

Figure 1.2. A branch and bound tree

Branch and bound methods make use of bounds on the objective function in order to

discard certain subproblems from further consideration and thereby curtail the

enumeration. The bounds are obtained by replacing the problem over a given subset

with an easier (relaxed) problem. The branch and bound procedure ends when each

subproblem has been resolved. The best solution found during the procedure is a global

optimum.

For any problem P, let v(P) be the value of an optimal solution to P. The essential

ingredients of any branch and bound procedure applied to a CO problem P of the form

Min{ f (x) I X E S} are:

(i) a relaxation of P, i.e. a problem R of the form Min{g(x)IxE T} , such that S c T

and for every x, yE S, f (x) < f (y) implies g(x) < g(y) ;

(ii) a branching or separation rule, i.e. a rule for breaking up the feasible set {Pi } of the

current subproblem Pi into subsets {Ph },{13i2 	{Pi, such that Uri=1{Pii }= {Pi ,

where {P} is used to represent the set of all feasible solutions to problem P;

(iii) a lower bounding procedure, i.e. a procedure for finding (or approximating from

below) v(R i) for the relaxation R i of each subproblem Pi ; and

(iv) a subproblem selection rule, i.e. for choosing the next subproblem to be processed.

Additional ingredients, not always present but always useful when present, are:

(v) an upper bounding procedure, i.e. a heuristic for finding feasible solution to P; and

17

(vi) a testing procedure, whereby it is possible to fix the values of some variables

(reduction, variable fixing) or to discard an entire subproblem (dominance tests)

using the logical implications of the constraints and bounds.

The general branch and bound procedure for solving a given problem P, can be

described as follows:

Algorithm 1.2: Branch and bound

Step I. (Initialization) Put P on the list of active subproblems. Initialize the upper

bound at zuB

Step 2. (Subproblem selection) If the list is empty, stop: the solution associated with

ZUB is optimal (or, if ZUB "5 P has no solution). Otherwise choose a

subproblem Pi according to the subproblem selection rule and remove Pi from

the list.

Step 3. (Lower bounding) Solve the relaxation R i of Pi or bound v(R) from below,

and let zisi be the value obtained.

ZUB go to Step 2.

If zui < zuB and the solution is a feasible a solution for P, store it in place of

the previous best solution, set ZuB = ZIA and go to Step 5.

Step 4. (Upper bounding: optional) Use a heuristic to find a solution for P. If a better

solution is found than the current best, store it in place of the latter and update

ZUB •

Step 5. (Reduction: optional) Apply variable fixing and dominance tests.

Step 6. (Branching) Apply the branching rule to Pi , i.e. generate new subproblems

P11 , P12 	, Pig , place them on the list, and go to Step 2.

For general surveys on branch and bound methods see Garfinkel and Nemhauser

(1972, Ch. 4), Balas (1975), Garfinkel (1979), Spielberg (1979) and Balas and Toth

(1985).

18

1.3.3 BRANCH AND CUT METHODS

Branch and cut methods combine cutting-planes and search-tree methods to solve

integer programs to optimality. The problem to be solved is first formulated as an

integer program on a subset of some linear space DV . Then this problem may be solved

using a linear programming relaxation embedded in a branch and bound technique to

get integer solutions. The cutting-plane phase and the enumeration phase are integrated

in a branch and cut algorithm and new information about the known partial linear

description of the polytope associated to the problem can be exploited during the

enumeration phase. This approach gives dramatic savings, both in terms of time and

memory allocation, compared to a standard branch and bound incorporating linear

programming relaxation procedures.

The branch and cut method was introduced by Padberg and Rinaldi (1991) to solve

large instances of the TSP. In the procedure of Padberg and Rinaldi the only cutting

planes that are used correspond to inequalities that are valid for the polytope associated

to the problem, preferably facets. In contrast with many previous algorithms which

solve the identification problem only when the solution of the current relaxation is

integral, they use identification procedures even if the current solution is fractional and

the identification of the cutting planes is tried at all the nodes of the search tree.

The first phase of a branch and cut algorithm is simply a cutting plane approach. If

one reaches the point when the optimal solution for the current linear programming

relaxation is not feasible for the integer program and no more cutting planes can be

identified, then one must start branching and creating a search-tree. A branching

procedure is executed, but at each node of the search-tree one must keep trying to

identify more cutting planes before trying to branch again. If the cutting planes that are

used correspond to valid inequalities for the polytope associated with the problem, they

are globally valid, i.e. across the entire search-tree, and can be kept in the linear

programming relaxation of the problem.

The core of each branch and cut method is the cutting planes procedure used for

generating lower bounds. Consider the general ILP formulation as being of the

following form:

19

(P) 	 Min cx

subject to Ax ..?. b

Bx > d

x ?.. 0 integer

A possible relaxation of this problem is given by:

(LP) 	 MM cx

subject to Ax __ b

x>_ 0

A valid lower bound to P can be generated using the following procedure.

Algorithm 1.3: Cutting planes

Step 1. Initialize the LP-relaxation constraint set with Ax ..>. b .

Step 2. Solve problem LP and let ik be its solution.

Step 3. If ik satisfies constraints Bx d of problem P and is integral, then solution is

also an optimal solution of P, Stop. Otherwise proceed to Step 4.

Step 4. Find one or more valid inequalities that are violated by Ti .

Step 5. If none is found, Stop. Otherwise add the violated inequalities to problem LP

and go to Step 2.

The above procedure terminates when no further valid inequalities can be found or

an optimal solution has been found. The problem solved in Step 4 is called the

separation problem. The separation problem can be solved by an exact procedure or a

heuristic procedure that may find violated inequalities, but that in case it cannot find

any, is unable to guarantee that no violated inequalities exist.

When embedded in a branch and bound procedure, a check that the lower bound

generated at Step 2 is less then the best upper bound must be included. If the lower

bound is at least equal to the best known upper bound then the subproblem is fathomed.

Step 3 is modified so that the integral solution becomes the best known solution and the

upper bound is set accordingly.

20

1.4 RESEARCH MOTIVES AND GOALS

This thesis is based on the development of new exact methods for the CPMP and the

VRP. To this end, we wish to focus our attention on mathematical models which can be

easily extended to deal with a wide range of constraints without changing the original

nature of the model. We have chosen the Set Partitioning (SP) approach to model these

problems since adding a few additional constraint to the original SP formulation does

not change the original structure. In the CPMP each column of SP represents a feasible

cluster for a given median and the additional constraint limits the number of clusters in

any feasible solution. In the VRP, each column is a feasible route and it is sufficient to

add an extra constraint to limit the number of routes of the solution. In both cases,

practical cluster constraints in the CPMP (route constraints in the VRP) can be easily

incorporated by removing from the SP model the infeasible clusters (routes). The

resulting SP problem cannot be solved directly since the number of variables can be too

large but it can be used to compute a lower bound without generating the entire SR

matrix as it has been proposed by Mingozzi et al. (1994) for the basic VRP. This

method combines in an additive manner dual ascent procedures that explore different

relaxations of the problem in order to compute a dual solution of the LP-relaxation of

the SP model. One of the procedures proposed allows to deal with any practical route

constraint. Our goal is then to extend this technique for solving to optimality complex

location and routing problems and to derive new exact methods for the CPMP and the

VRP with Backhauls that are competitive with the exact methods already proposed in

the literature.

The detailed study of the VRP literature inspired us to further investigate the two

commodity network flow formulation of the TSP proposed by Finke et al. (1984). This

formulation is interesting in different ways. It can be shown that its LP-relaxation

satisfies a weak form of the subtour elimination constraints. As part of this research, we

will examine several ideas to modify the original TSP formulation of Finke et al. in

order to incorporate additional constraints for the TSP. This will lead to the design of

new exact methods for TSP and VRP with additional constraints. We hope to

demonstrate that the new exact methods are competitive with, if not better than, other

exact methods proposed in the literature for the same problems.

21

As far as new heuristic methods is concerned, we will concentrate our attention on

techniques which can be applied to a wide range of problems. The Bionomic algorithm

proposed by Christofides (1994) is a new entry to operations research and, in our

opinion, provides an important generalisation and improvement of genetic based

techniques. It allows a better exploration and exploitation of the search space to be

performed, is robust and less problem specific and it is capable of generating good

solutions within reasonable computational times. Our main goal in this research is to

design a Bionomic algorithm for the CPMP that can be used also for solving problems

with additional constraints. We aim to demonstrate that the new heuristic technique is

computationally competitive with other sophisticated heuristic methods.

Finally, a case-study will examine the use of heuristic methods, specifically designed

for routing/location problems, in providing high quality solutions to real-life problems.

For this purpose, we will consider the resource planning problem of an utility company

which provides preventive maintenance services to a set of customers using a fleet of

mobile gangs based at some depots. Our goal is to design a heuristic algorithm for this

problem and to test the usefulness of the method by applying it to a real case.

1.5 THESIS OVERVIEW

This section provides a detailed overview of the thesis.

In Chapter 2, a revised version of Maniezzo et al. (1998), we consider the

Capacitated p-Median Problem (CPMP) in which a set of n customers must be

partitioned into p disjoint clusters so that the total dissimilarity within each cluster is

minimized and constraints on maximum cluster capacities are met. The total

dissimilarity of a cluster is computed as the sum of the dissimilarities existing between

each entity of the cluster and the median associated to the cluster. We describe a

heuristic algorithm based on the Bionomic Algorithm as an effective method to solve

the CPMP. The chapter also presents an effective local search technique for the CPMP.

Computational results show the effectiveness of the proposed approach, when compared

to the best performing heuristics so far presented in the literature.

In Chapter 3 we present an exact algorithm for solving the CPMP based on a Set

Partitioning formulation of the problem. A valid lower bound to the optimal solution

22

cost is obtained by combining two different heuristic methods for solving the dual of the

LP-relaxation of the exact formulation. The computational performance of the new

exact algorithm has been evaluated on two classes of test problems proposed in the

literature and on two new classes of difficult CPMP instances with additional

constraints. The results show that the exact algorithm is able to solve exactly CPMP's of

size up to 100 customers.

In Chapter 4 we describe a two-commodity network flow approach to derive new

integer programming formulations for different routing problems. The basic Vehicle

Routing Problem (VRP) is examined in which a fleet of M vehicles stationed at a central

depot is to be optimally routed to supply customers with known demands subject to

vehicle capacity constraints. We present a new integer programming formulation for the

VRP based on a two-commodity network flow approach. A lower bound based on a

linear relaxation of the new formulation strengthened by a set of valid inequalities is

derived. The bound is embedded in a branch and cut procedure to solve the problem

optimally. The computational results on a set of problem instances derived from the

literature show that the lower bound obtained is tight and that the branch and cut

algorithm has been able to solve to optimality problems up to 100 customers. We extend

the two-commodity network flow approach to derive new integer programming

formulations for other routing problem like the TSP with mixed deliveries and

collections and the TSP with Backhauls. These formulations are used to derive new

lower bounds based on linear relaxation strengthened by new valid inequalities. The

resulting cutting plane procedure has been applied to a set of instances taken from the

literature and involving problems up to 150 customers. The results show that the branch

and cut algorithm has been able to solve to optimality problems up to 150 customers.

In Chapter 5, a revised version of Mingozzi et al. (1999), we consider the Vehicle

Routing Problem with Backhauls (VRPB) in which a fleet of vehicles located at a

central depot is to be optimally used to serve a set of customers (called Linehaul

customers) requiring deliveries from the depot and to collect products from a set of

customers (called Backhaul customers) to be unloaded at the depot. Each route starts

and ends at the depot and the Backhaul customers must be visited after the Linehaul

customers. A new (0-1) integer programming formulation of this problem is presented.

We describe a procedure that computes a valid lower bound to the optimal solution cost

23

by combining different heuristic methods for solving the dual of the LP-relaxation of

the exact formulation. An algorithm for the exact solution of the problem is presented.

Computational tests on problems proposed in the literature show the effectiveness of the

proposed algorithms in solving problems up to 100 customers.

In Chapter 6, a revised version of Hadjiconstantinou and Baldacci (1998), we

consider the resource planning problem of a utility company, which provides preventive

maintenance services to a set of customers using a fleet of mobile gangs based at some

depots. The problem is to determine the boundaries of the geographic areas served by

each depot, the list of customers visited each day and the routes followed by the gangs.

The objective is to provide improved customer service at minimum operating cost

subject to constraints on frequency of visits, service time requirements, customer

preferences for visiting on particular days and other routing constraints. The problem

has been approached as a Multi-Depot Period Vehicle Routing Problem (MDPVRP) and

a heuristic algorithm has been developed to solve it. The computational implementation

of the complete planning model is described with reference to a pilot study and results

are presented.
Finally, in Chapter 7, we provide a summary of the entire thesis highlighting the

main contributions of the completed work. Current limitations and suggestions for

further research are also discussed.

24

CHAPTER 2

A BIONOMIC APPROACH TO THE

CAPACITATED P-MEDIAN PROBLEM

2.1 INTRODUCTION

The Capacitated p-Median Problem (CPMP) is a particular location problem in

which a set of n customers must be partitioned into p disjoint clusters so that the total

dissimilarity within each cluster is minimized and constraints on maximum cluster

capacities are met. The total dissimilarity of a cluster is computed as the sum of the

dissimilarities existing between each customer of the cluster and the median associated

to the cluster. This problem, which appears also under the names of the Capacitated

Warehouse Location Problem, Sum-of-Stars Clustering Problem and others, is NP-hard

(Garey and Johnson (1979)) and has already been extensively studied in clustering and

location theory. A number of exact algorithms have been proposed in the literature for

the CPMP. Pirkul (1987) describes a branch and bound method which uses the

Lagrangean relaxation of the partitioning constraints. An exact technique based on a set

partitioning formulation of the CPMP with side constraints has been investigated by

Hansen et al. (1994). In Chapter 3 we present a new exact method for solving the CPMP

based on the set partitioning approach and we compare its computationally performance

with Pirkul's algorithm (which we implemented).

Heuristic algorithms have been proposed by Mulvey and Beck (1984) and Pirkul

(1987). Metaheuristic approaches are described in Golden and Skiscim (1986) and in

Osman and Christofides (1994).

25

A problem closely related to the CPMP accepts multiple partial assignments of

customers to clusters and give rise to a mixed integer formulation of the problem. For

this latter problem, exact algorithms have been proposed by Christofides and Beasley

(1983), Leung and Magnanti (1989) and Aardal (1994), while heuristic methods have

been investigated by Van Roy (1986) and Beasley (1988).

In this chapter we propose the use of a metaheuristic technique recently presented by

Christofides (1994), called Bionomic Algorithm, as a viable method for solving the

CPMP. The resulting algorithm integrates the main steps of the Bionomic approach with

a Lagrangean-based lower bound to the CPMP.

The chapter is structured as follows. In Section 2.2 we present a classical

mathematical formulation of the CPMP and in Section 2.3 we summarize the heuristic

and exact methods proposed in the literature. In Section 2.4 we describe a new heuristic

algorithm based on the Mulvey and Beck approach. In Section 2.5 we describe the main

steps of the Bionomic algorithm, while in Section 2.6 our new heuristic method for the

CPMP is presented. Computational results are shown in Section 2.7.

2.2 A MATHEMATICAL FORMULATION OF THE CPMP

Let N = {1,...,n} be a set of n customers and [du] be a n x n matrix indicating the

dissimilarities between pairs of customers of set N. We assume that du 0 and dii = 0

for all i, j E N . A positive integer weight qi is associated with each customer i, i E N .

Any subset B c N is called a cluster. Given a cluster B, the customer j* E B such

that

Edu Vie B\{/*}
iE B 	iEB

is called the median of B and will be denoted with Tt(B) .

A positive integer weight Q3 is associated with each customer j, j E N , which

denotes the capacity of j when it is used as the median of a cluster.
A cluster B is feasible if

qi Q*13) ,
iEB

26

°Mediums
• Customers

Figure 2.1. Example of a CPMP solution

where Q,c(B) denotes the capacity of median n(B)

For a given integer p, 2 p.n, a feasible CPMP solution is represented by a

partition S {B1 , B2 , . . , B p } of N into p feasible clusters and its cost is given by the

sum of the cluster dissimilarities, that is :

P
Z(S)= E

iel3i

where n(Bt) denotes the median of cluster Be . An optimal CPMP solution corresponds

to a partitioning of the customer set N into p feasible clusters of minimum cost. Figure

2.1 shows an example of a CPMP solution.

Let 4,i be a (0-1) variable that is one if and only if a customer i is assigned to a

cluster whose median is j. We assume that ji =1 means that customer j is chosen to be

a median of a cluster. A mathematical formulation of the CPMP is as follows.

(F) z(F) = Min E Ei c/Au
iENiEN

(2.1)

27

	

subject to E .1, 	Vie N 	 (2.2)
jEN

EqA.i 5Qj jj ' 	Vje N 	 (2.3)
iEN

	

= P 	 (2.4)
jeN

	

ij E {04 , 	 Vi,jEN 	 (2.5)

Constraints (2.2) force each customer to be assigned to a cluster, constraints (2.3)

impose that the total capacity of a median must not be exceeded, constraint (2.4)

specifies that the total number of clusters must be equal top and constraints (2.5) are the

integrality constraints.

Different relaxations of formulation F have been proposed in the literature to derive

lower bounds to CPMP. Mulvey and Beck (1984) proposed a Lagrangean relaxation of

constraints (2.2), while Beasley (1988) used a Lagrangean relaxation of constraints

(2.2), (2.3) and (2.4).

We briefly describe below the lower bound proposed by Mulvey and Beck (1984)

and used by Pirkul (1987) to obtain an exact branch and bound method. We will use

also this lower bound in the Bionomic heuristic method proposed in Section 2.6.

The Lagrangean relaxation of the assignment constraints (2.2) using multipliers Xi,

iE N, leads to the lower bound LB, which is based on the following formulation LR:

(LR) 	 LB =Min E EP:). iij+ Ea i 	 (2.6)
ieN jeN 	 iE N

subject to (2.3), (2.4) and (2.5).

The value of LB can be computed as follows.

Let 	hi = Min Ep, -xi :s.t. yqi yi 5 and yi E 	i E
N I

and let
:E N 	 iE N

thh ,h12 ,...,hip be the p-least cost values of {h1, 	, then

LB =~h jk + EX i A classical subgradient optimization technique can be used to
k=1 	iE N

28

maximize the value of the lower bound. We use procedure MT2 of Martello and Toth

(1990) for solving n knapsack problems at each subgradient iteration. The order of

complexity, C(LR), of each lower bound iteration is equal to the sum of the complexity

of procedure MT2 plus 0(n log n) which is the time required for ordering the n

knapsack values. Procedure MT2 is a branch and bound method which is very fast,

requiring on average a few hundredth of seconds, to solve any of our knapsack

instances.

2.3 A LITERATURE REVIEW FOR THE CPMP

In this section we briefly describe the heuristic and exact algorithms proposed in the

literature to solve the CPMP.

2.3.1 HEURISTIC ALGORITHMS FOR THE CPMP

In this section we outline the heuristic algorithms for the CPMP proposed by Mulvey

and Beck (1984) and by Osman and Christofides (1994), against which the new

Bionomic approach is compared.

2.3.1.1 MULVEY AND BECK'S HEURISTICS

Mulvey and Beck (1984) proposed two related heuristic algorithms for the CPMP.

The first one (hereafter called MB1) aims at minimizing the total customer assignment

regret, where the regret of the assignment of a customer is defined to be the absolute

value of the difference in dissimilarity between the customer's first and second nearest

medians. MB1 starts by randomly generating p medians and assigning customers to

them in an order specified by decreasing regrets. When (and if) all customers are

assigned, that is, customers are clustered around the respective medians, an infra-cluster

phase re-assigns each cluster to the median that minimizes the sum of dissimilarities

between the specific median and all other cluster members. Possibly, a new set of

medians is identified, in this case the assignment/re-assignment process is repeated.

When the medians remain stable across iterations, pairwise interchanges of customers

29

between clusters are used to optimize the solution locally. MB1 simply repeats the

above process for a predetermined number of iterations.

The second heuristic (hereafter called MB2) is a modification of MB1. It is based on

the subgradient optimization of problem LR described in Section 2.2. The starting set of

medians, randomly selected at each iteration in MB1, is substituted in MB2 by the

median set identified by the corresponding subgradient iteration. The following phase of

assignment of customers to medians is the same as in MB1. MB2 terminates either after

a predefined number of iterations or when the difference between the lower and upper

bound is less than a given threshold.

2.3.1.2 OSMAN AND CHRISTOFIDES' HEURISTIC

Osman and Christofides (1994) presented a heuristic algorithm for the CPMP,

hereafter called OC, which is based on a hybrid Simulated Annealing (SA) / Tabu

Search (TS) metaheuristic technique. The essential features of this technique are drawn

from the probabilistic acceptance of solutions of SA and the neighborhood exploration

of TS. Specifically, the probabilistic SA acceptance is combined with three TS-derived

features. The first is a non monotonic cooling schedule that occasionally increases the

temperature, in order to escape from local optima but without starting the search from

scratch. The second is a systematic neighborhood search, as opposed to the random

exploration that is typical of SA. The third is the terminating condition, which is not

based on the number of iterations, as it is usually the case in TS, but on the number of

temperature resets performed without improving the best solution.

This algorithm has been applied to a variety of combinatorial optimization problems,

consistently yielding improved performance over standard SA (Osman and Laporte

(1996)). In particular, its application to the CPMP, containing a specific local

optimization technique results in a very effective heuristic.

2.3.2 EXACT ALGORITHMS FOR THE CPMP

Exact methods for solving the CPMP have been proposed by Pirkul (1987) and by

Hansen et al. (1994).

30

Pirkul (1987) describes two heuristic methods and an exact branch and bound

method for the Capacitated Concentrator Location Problem. The problem arises in the

topological design of computer communication networks and deals with the design

process of dividing network nodes into groups, and selecting a concentrator location for

each group so that all the nodes in a group can be assigned to the same concentrator

without violating its capacity constraint. Pirkul makes use of the Lagrangian relaxation

approach to develop optimal and heuristic solution procedures for the problem. The

exact method is based on a branch and bound procedure which uses the Lagrangean

relaxation of the partitioning constraints (2.2). In Chapter 3 we computationally

compare Pirkul's algorithm (which we implemented) with our new exact algorithm. A

detailed description of Pirkul's algorithm can be found in Section 3.5.2.

Hansen et al. (1994) proposed an exact technique based on a set partitioning with

side constraints formulation of the CPMP. The algorithm combines the column

generation technique of linear programming with branch and bound. Column generation

was originally proposed by Gilmore and Gomory (1961). This technique extends the

revised simplex algorithm of linear programming and allows the solution of linear

programs with an extremely large number of columns by determining the entering

column using the solution of an auxiliary combinatorial problem. This last problem

depends on the type of problem considered. For the CPMP, the entering column of the

linear program corresponding to each node in the branch and bound tree, is determined

by solving a knapsack problem with incompatibilities for which a specific algorithm is

proposed. Hansen et al. made a theoretical comparison between the lower bounds

obtained by column generation and by Lagrangean relaxation (see Section 3.3.1). The

computational results show that the overall algorithm allows solution of medium-sized

problems (with number of customers n=75 or 81).

2.4 THE HEURISTIC PROCEDURE HEUMED

In this section we describe a new heuristic, called HEUMED, which is based on the

Mulvey and Beck approach. HEUMED is an iterative multistart procedure where, at

each iteration, a new set of p medians is randomly generated. Given this set of medians,

the algorithm loops over two phases.

31

In the first phase the customers are assigned to the medians selected by solving a

Generalized Assignment Problem (GAP). The second phase uses the clustering resulting

from the first phase and tries to find a better median for each cluster, by solving an

assignment problem. If a better solution is found, then both phases are iterated.

A step-by-step description of HEUMED is given below.

Algorithm 2.1: HEUMED

Step O. Initialization

Set -Zia = co and t = 1.

Step 1. Iteration t

Randomly generate an initial set of p medians J' .

Step 2. Phase 1 (GAP)

Assign the n customers N to the medians in J' by solving a GAP that is

obtained from problem F by removing constraint (2.4) and by setting X11 =1 if

j E ,/' , 0 otherwise, Vj E N.

Let 	' be the GAP solution of cost 4.

Update -4, = Min[Zp, 4.] .

Let Ck = {i J i E N and ik =1} be the subset of customers assigned to median

k E J' in the GAP solution.

Step3. Phase 2 (Local improvements)

Let cki = EiEck du be the cost of assigning cluster Ck to median j E N .

Solve the Assignment Problem (AP) on matrix [cki] and let x* be an optimal

AP solution of cost zAp* (we assume xk*f =1 if cluster Ck is assigned to

median j E N and 4 =0 otherwise).

— * Update *4 = Min[Zp Z AO .

{P *
If -z-p < z'fi then set J' = j uE Nand Exk; =1 , return to Step 2.

k =1

Step 4. Termination condition

32

Set t=t+1; if t does not exceed an a-priori fixed number of iterations go to Step

1, otherwise stop.

We use the heuristic algorithm MTHG of Martello and Toth (1990) for solving the

GAP in Step 2. Each HEUMED iteration requires O(np log p + n2) time (Step 2) for

solving the GAP and 0(n2) time (Step 3) for solving the assignment problem. Hence,

the overall time complexity is O(np log p+ n2).

2.5 OUTLINE OF BIONOMIC ALGORITHMS

Bionomic Algorithms (BAs), introduced by Christofides (1994), are a class of

metaheuristic techniques that provide the main steps for a global optimization method,

which must be completed and specified in a way tailored to the particular optimization

problem one has to solve.

Bionomic algorithms are closely related to other optimization techniques already

presented in the literature. In particular, they share the core of their approach with

Genetic Algorithms (GAs) (see Holland (1975) and Goldberg (1989)) and Evolution

Strategies (ES) (see Rechenberg (1973) and Back et al. (1991)). BAs, GAs and ESs are

in fact evolutionary metaheuristic algorithms that update a whole population of

solutions (the solution set) at each iteration. Moreover, the updating process in all of

them consists of defining a child solution from a set of parent solutions of the previous

generation, where the exact definition of the child often goes through some

randomization step. Within this general framework, the BA shares with the evolutionary

scatter search approach of Glover (1977) (see also Glover (1997)), the possibility of

having variable-sized solution sets and the use of multiple parents, whereas GA limit the

number of parents to two (a recent version of ES allows a random sampling of the

population to select more than two parents). On the other side, the BA formally requires

a local optimization of the solutions (called maturation), an activity first introduced in

the scatter search approach that was excluded from GAs until the late-1980s, though it

has now become standard practice in GAs applied to combinatorial optimization

problems. We assume, for convenience, that the local optima produced by the

33

maturation step are all distinct, although it is possible that different source solutions will

be improved to yield the same local optimum.

The steps specific to BAs are those for defining a parent set. Both GAs and ESs in

fact, essentially let the user free to decide how to define the parent sets and the standard

practice is to choose them randomly from the population (certain forms of GAs bias the

randomization to favor higher quality solution in selecting one or both of the parents).

The BA instead, defines a procedure based on the identification of maximal independent

sets of a graph defined on the solution set. Such an approach constitutes a refinement of

the scatter search proposal of generating parents with reference to clustering strategies,

and explicitly introduces a special diversification criterion into the selection of parents.

This aspect, together with the generality of the method used for generating child

solutions, make BAs well-suited to combinatorial optimization. On the other hand, GAs

can hardly exploit the structure and the properties of the solutions and ESs are ill-

adapted since they are directed towards continuous spaces.

The structure of BA is as follows.

Let g =1 g max be the index of generations, s =1,...,sg be the index of solutions in

/ generation g, x gs .(x gs kl h . . . , xg s (n)) be an n-dimensional 0-1 vector representing

solution s of generation g and, finally, let z(xgs) be the evaluation function of a

solution xgs . Given two solutions xgk and Xgh , the Hamming distance between Xgk

n and xgh is defined as the number E I X gk (i)-- X 811 (i)1.
=1

The BA algorithm goes through the following five steps.

Algorithm 2.2: Bionomic Algorithm

Step I. Initialization

1.1 Set g =1.

1.2 	Choose s1 (number of solutions in generation 1).

1.3 Create si distinct initial feasible solutions (randomly or using a

heuristic).

34

	

1.4 	Let 50 = { ,-xAs 1 s = 1, . . . , si } be the solution set.

Step 2. Maturation

	

2.1 	Improve each solution in 5-ig individually by a process based on a local

optimization.

	

2.2 	Let xgs be the local optimum associated to jcgs and let erg be the set of

local optima derived from 4 g .

	

2.3 	Let z(xgs) be the cost of solution xgs E Ng .

Step 3. Propagation, definition of parents sets

	

3.1 	Allocate frequency of inclusion 0 gs to each solution xgs by mapping

z(xgs) onto a suitable positive integer value.

	

3.2 	Choose a positive Hamming distance A . Generate the solution adjacency

graph G(X g) by considering adjacent any two solutions whose Hamming

distance is not greater than A .

	

3.3 	Generate the rth parent set Pg, as a maximal independent set of G(X g)

(there may be many such sets, but we seek only one).

	

3.4 	Update Ogs = O gs —1, Vxgs € Pg, . If O gs = 0 for some xgs , remove

the corresponding vertex from G(Xg) (in general, to assure a vertex will

be removed, 0gs may be reduced by the minimum positive value over the

set rather than by 1).

3.5 Repeat steps 3.3 and 3.4 to generate the next parent set until G(Xg) is

null or is a complete graph (which implies Pg, is null). Let

Pg = {Pgr I r = 1, . . . , rg } be the family of the generated parent sets.

Step 4. Propagation, definition of child solutions

	

4.1 	Let n(S,$) be a many-to one mapping of S c Xg to a solution

x E N''g+1, where E is a random vector that affects the mapping. The

new generation is then 54g +1 = {XI 70gr ,Ei),r =1,...,rg , j =1,...,10,

where ri r is the number of offspring of parent set r.

35

Step 5. Termination

	

5.1 	Repeat steps 2 to 4 until the generation limit is reached.

	

5.2 	Choose the best solution found as the answer.

The parameters of the algorithm are: gmax , the number of generations, s1, the

number of elements of the first population, A, the Hamming distance to be used as a

threshold for the definition of the adjacency graph G used in Step 3, and li r , the number

of offspring of each parent set. Moreover, to complete the algorithm, it is necessary to

specify the frequency of inclusion function, that maps the values z(xgs) onto the

corresponding Ogs , and n(S,E), i.e., how to obtain child solutions from parent sets.

Moreover, the maturation phase includes a local optimization-based procedure, such as

steepest descent, tabu search, simulated annealing or any other method which has to be

detailed for the specific problem.

2.6 A BIONOMIC ALGORITHM FOR THE CPMP

This section describes the BA we developed and implemented for the CPMP. A

CPMP solution s of generation g is denoted by es = (V s), where cgs is an nx n

dimensional (0-1) vector representing a feasible solution of problem F.

The evaluation function z(xgs) is computed as z(xgs) = 	yd,v; .
ie N jEN

Following the description of the BA presented in Section 2.5, we have the following

algorithm.

Algorithm 2.3: Bionomic Algorithm for the CPMP

Step 1. Initialization

Set g =1 and s1 =100 .

Create s1 feasible solutions as follows.

36

i) Randomly select a subset J' of p medians from set N and set liSi =1, j E J'

and 	 11/ = 0, jE N\J' .

ii) Assign the customers N to medians J' by solving the corresponding GAP

and set -C =1, if customer i E N has been assigned to j E J' , J = 0

otherwise.

Let Rg =kgs I s = 1, ... , s g } be the solution set of the first generation.

Step 2. Maturation

Improve each solution in j70 individually by applying steps 2 and 3 of

algorithm HEUMED as described in Section 2.4.

Denote with Xg the set of local optima derived from 4g and by z(xgs) the

cost of solution xgs E erg .

Step 3. Propagation, definition of parents sets

3.1 Define the frequency of inclusion values for each 0 gs for each solution

xgs by ranking the population solutions of set X 8 in decreasing values

1 rank(xgs) of z(xgs) and setting Ogs =
5

Steps 3.2 to 3.5 are the same as in the BA algorithm of Section 2.5,

except that we only consider rg 5_ rmax , Vg , where rmax is a system

parameter.

Step 4. Propagation, definition of child solutions

For each parent set Pgr E Pg , denote by J' the subset of medians used in the

solution belonging to Pgr , that is: J' = {j I u =1, vus E Pv.}.

Compute the lower bound LB by setting E>j = 0 , Vj E N \ J' in problem LR

and select the lir best different solutions produced by the subgradient

optimization method used for computing LB (see equation (2.6)).

Each solution proposed by the lower bound consists of a set J of p medians

and of an assignment of the customers to such medians. The assignment may

37

be infeasible due to the relaxation of constraints (2.2). To construct a feasible

CPMP solution xg +Is we proceed as follows:

• A customer i is assigned to a median j E J if in the bound solution it was

assigned only to j, the median capacity is accordingly decreased. Let

N c N be the subset of customers that in the bound solution were either

not assigned to any median or assigned to more than one median. Assign

N to J by solving the corresponding GAP.

Step 5. Termination

	

5.1 	Repeat steps 2 to 4 until the generation limit is reached.

	

5.2 	Choose the best solution found as the answer.

In the computational results shown in Section 2.7, we used the following setting of

the parameters: s1 =100 , gmax =10 , rmax = 200 , r = 1, ter . To compute 0 we

calculated the average dAVG and the standard deviations dSTD of the Hamming

distances between each pair of solutions in Xg , and we set E = dAVG 0.7dsm • In

Step 4 we performed 20 subgradient iterations to compute bound LB on each parent set

Pgr •

For each generation g of algorithm BA, Step 2 requires OPEs Knp log p + n2)) time,

Step 	3 	requires 	0(rg Rg I log

time and Step 4 requires

0(rg (C(LR) +11r (np log p + n2))) time. Hence the overall time complexity of the BA

for a generic generation g is

°V° AnP log p + n2)+ rg loOgl)d- rg (C(LR)+1r (nplog p + n2))).

Since rg rmax and, 1 j-Eg rmaxri r ,V g, the order of complexity is

0(np log p + n2 + C(LR)). Moreover, since p << n, the overall complexity becomes

O(n2 + C(LR)).

38

2.7 COMPUTATIONAL RESULTS

In order to provide computational results and to validate the algorithm proposed we

used five classes of problems, called class A, B, C, D and E, respectively. The first and

second classes, A and B, consist of the 20 problem instances used by Osman and

Christofides (1994); class A contains 10 problems of size n=50 and p=5 while class B

contains 10 problems of size n=100 and p=10. In these two classes of problems the

dissimilarity matrices correspond to Euclidean distance matrices.

As it is known (Aardal (1994)) that instances with cost randomly generated in the

unit square are in general more difficult than instances with costs representing the

Euclidean distances between points randomly generated in the unit square (the latter is

the case of the Osman and Christofides' problems), we generated three other classes of

problems with random costs.

Problem classes C and D contain 10 symmetric instances each, of size n=50 and p=5

for class C and n=100 and p=10 for class D.

The last class of problems, E, contains 10 asymmetric instances of size n =50 and

p=5.

For problem classes C, D, and E the values of the dissimilarity matrix [du] are

integers randomly generated in the interval [1,200], the customer weights are integers

randomly generated in the interval [1,50] while the median capacities were computed as

follows:

Eqi
Q = iE N 	 j =1,...,n 7 p(0.82 + rand(1)•0.14)'

where rand(1) indicates a random number generated with uniform probability density

on the interval [0,1].

The algorithms were coded in Fortran 77 and run on a IBM PC equipped with a

Pentium 166 MHz CPU. Most instances of the five classes of problems have been

solved to optimality by means of the exact branch and bound procedure described in the

next chapter (see Section 3.5.2).

In tables 2.1 to 2.5, we compare the results obtained by algorithms BA and

HEUMED to the optimal or best known solution cost, to the best solution obtained by

39

the Osman and Christofides' algorithm and to the best solution obtained by our

implementation of the two versions of the Mulvey and Beck heuristics, zmBi and

zmB2 , respectively. Since the Osman and Christofides' algorithm has one of its

essential features in the terminating condition (see Section 2.3.1.2), and since the

parameter setting for this condition allowed the Osman and Christofides' code to take

less CPU time than that used for the other algorithms, we modified the stopping

criterion in order to make a fair comparison. Let zoc denote the results obtained by the

modified Osman and Christofides' algorithm and let zoc2 denote the results obtained

by the original code. Moreover, to provide information on the speed of converge of the

BA, BA2 represents the results obtained by BA after two generations.

We report for BA, BA2, OC,OC2, HEUMED and MB1 the average of the best

solutions obtained over five runs, the average time needed to obtain those best solutions

and, every second line, the best of the five values produced by the corresponding

algorithm for the problem considered. The results of MB2 are obviously relative to a

single run.

All the heuristics, except 0C2, were run for 600 seconds.

Tables 2.1, 2.2, 2.3 and 2.5 show the following columns, where all times are in

seconds:

Probl.: a problem instance identifier;

z* : optimal solution of the corresponding instance obtained by using the exact branch

and bound method described in Section 3.5.2;

zBA : average of the best solutions obtained by the bionomic algorithm;

tBA : average time taken by the bionomic algorithm to get its best solutions;

zBA2: average of the best solutions obtained by the bionomic algorithm after 2

generations;

t BA2 : average time taken by the bionomic algorithm to get its best solutions in the first

2 generations;

zoc : best solution obtained by the modified OC algorithm;

toc : time taken by the modified OC algorithm to get its best solution;

40

zoc2 : best solution obtained by the original OC algorithm;

t oc2: time taken by the original OC algorithm to get its best solution;

tOCtot2 : total time taken by the original OC algorithm;

zHEu : average of the best solutions obtained by the HEUMED algorithm;

t HEu : average time taken by the HEUMED algorithm to get its best solutions;

zmin : average of the best solution obtained by the MB1 heuristic;

tmm : average time taken by the MB1 heuristic to get its best solution;

zmB2: best solution obtained by the MB2 heuristic;

tmB2: time taken by the MB2 heuristic to get its best solution;

LB: value of lower bound LR.

Table 2.4 shows the same columns except that we substituted column z* by column

zBEsT . This is because not all problems of class D could be solved to optimality, in fact

we imposed a limit of 100000 to the number of tree search nodes explored during the

branch and bound. Therefore in the table we report the best known solutions for each

problem and we indicate by an asterisk which solutions are optimal.

In the last four lines of all tables we report:

• the average percentage distance from optimality, computed on the ten problems of

each problem class, of the average of the best solutions obtained over the five runs

(average percentage avg. error);

• the average of the best of the five values produced by the corresponding algorithm

for the problem considered (average percentage min. error);

• the average CPU time, computed on the ten problems, of the average time taken by

each heuristic to solve the corresponding problem (average CPU time);

• the number of problems for which the corresponding heuristic was capable of

finding the optimal solution cost (number of optimal solutions).

Table 2.1 shows that BA, OC, 0C2 and HEUMED are able to find the optimum for

all 10 problems, while both versions of Mulvey and Beck failed to solve to optimality

some problems. The BA was also very efficient on all instances, in fact, it always finds

the optimal solution within its first two iterations, as it is shown in the BA2 columns.

41

Table 2.2 presents the results obtained by the same algorithms on problem class B.

The results obtained by the BA are comparable to those obtained by the OC

algorithm in terms of quality of the solution provided. On this problem class OC was

the better performing code and HEUMED has also been very effective.

Problems reported in tables 2.1 and 2.2 do not really demonstrate the superiority of

BA over OC, 0C2 or HEUMED.

Table 2.3 presents the results obtained by the same algorithms on problem class C.

On this more difficult problem class, BA was the only one capable of finding all the

optimal solutions. The average percentage errors on both the best solutions found and

the average solutions on the five tests are better for BA than for any other heuristic.

The inherent difficulty of these instances is testified by the average distance of bound

LB from optimality. The fact that, despite the degraded quality of the bound indication,

our propagation procedure obtains good results testifies to the robustness of the

approach proposed.

Table 2.4 presents the results obtained by the same algorithms on problem class D.

Also for this problem class, whose complexity is testified by the fact that only three

out of ten problems could be solved to optimality, BA shows a superior performance.

No other heuristic has been able to provide such good solutions. The time bound of 600

seconds proved to be too tight for OC, HEUMED, MB1 and MB2.

Table 2.5 presents the results obtained on problem class E. We could not provide a

comparison with the OC algorithm, since it requires symmetric instances.

On this problem class BA shows a very good performance, considering the best

solutions found, with respect to the other tested heuristics, even though its average

results do not dominate those of MB1.

As a general comment on all five tables, note that MB1 is by far the most stable of all

heuristics: only in one case in fact (see problem CCPX19) the average is different from

the best solution found.

42

Table 2.1. Computational results of problem class A

Probl LB z* ZBA tBA ZBA2 tBA2 ZOC tOC ZOC2 tOC2 tOC2tot ZHEU tHEU ZMB1 tMB 1 ZMB2 tMB2

CCPX1 705 713 713.00 0.14 713.00 0.14 713.00 1.58 713.00 1.58 4.34 713.00 0.06 713.00 0.05 740 0.33
713 713 713 713 713 713

CCPX2 740 740 740.00 0.02 740.00 0.02 740.00 0.58 740.00 0.58 3.94 740.00 0.22 740.00 0.02 740 0.28
740 740 740 740 740 740

CCPX3 749 751 751.00 0.12 751.00 0.12 751.00 1.25 751.00 1.25 4.10 751.00 0.17 751.00 0.02 751 7.09
751 751 751 751 751 751

CCPX4 651 651 651.00 0.05 651.00 0.05 651.00 0.58 651.00 0.58 3.39 651.00 0.05 651.00 0.05 651 0.33
651 651 651 651 651 651

CCPX5 664 664 664.00 0.13 664.00 0.13 664.00 1.70 664.00 1.70 3.77 664.00 24.00 664.00 0.33 666 1.27
664 664 664 664 664 664

CCPX6 778 778 778.00 0.00 778.00 0.00 778.00 1.00 778.00 1.00 5.52 778.00 0.30 778.00 0.02 778 74.34
778 778 778 778 778 778

CCPX7 779 787 787.00 0.10 787.00 0.10 787.00 2.42 787.00 2.42 5.15 787.00 0.26 787.00 0.53 789 40.22
787 787 787 787 787 787

CCPX8 771 820 820.00 0.20 820.00 0.20 820.00 5.80 820.00 5.80 10.18 820.00 0.89 820.00 3.93 820 25.05
820 820 820 820 820 820

CCPX9 713 715 715.00 0.14 715.00 0.14 715.00 3.98 715.00 3.98 11.43 715.00 0.65 715.00 0.05 715 4.18
715 715 715 715 715 715

CCPX10 816 829 829.00 0.01 829.00 0.01 829.00 5.21 833.40 1.56 3.40 829.00 0.38 832.00 87.58 837 33.13
829 829 829 829 829 832

Average percentage avg.error 0.00 0.00 0.00 0.06 0.00 0.04 0.52
Average percentage min.error 0.00 0.00 0.00 0.00 0.00 0.04
Average CPU time 0.09 0.09 2.41 2.05 2.70 9.26 18.62
Number of optimal solutions 10 10 10 10 10 9 6

43

Table 2.2. Computational results of problem class B
Probl LB z ZBA tBA ZBA2 tBA2 ZOC tOC ZOC2 tOC2 tOC2tot ZHEU tHEU ZMB1 tMBI ZMB2 tMB2

CCPX11 1000 1006 1006.00 25.22 1006.00 25.22 1006.00 24.58 1006.00 24.58 100.57 1006.00 7.33 1007.00 222.64 1071 2.09
1006 1006 1006 1006 1006 1007

CCPX12 958 966 966.00 105.18 966.20 41.32 966.00 44.28 966.00 44.28 128.67 966.00 30.42 966.00 6.37 972 1.10
966 966 966 966 966 966

CCPX13 1022 1026 1026.00 167.60 1026.80 94.68 1026.00 23.21 1026.00 23.21 106.13 1026.00 37.68 1026.00 7.03 1105 1.59
1026 1026 1026 1026 1026 1026

CCPX14 972 982 982.00 101.02 982.00 101.02 983.80 43.00 985.60 13.23 74.36 982.00 20.54 985.00 64.73 998 1.26
982 982 982 985 982 985

CCPX15 1079 1091 1091.80 127.42 1092.40 57.30 1092.60 44.81 1092.60 44.81 129.85 1092.00 33.20 1092.00 348.11 1102 1.21
1091 1092 1091 1091 1092 1092

CCPX16 947 954 954.20 219.99 954.80 40.68 954.60 57.65 954.60 57.65 136.88 954.00 49.46 954.00 14.43 1072 2.09
954 954 954 954 954 954

CCPX17 1024 1034 1034.00 256.51 1035.40 137.42 1034.80 186.83 1039.00 60.87 122.47 1034.00 221.02 1034.00 93.37 1122 1.92
1034 1034 1034 1039 1034 1034

CCPX18 1032 1043 1043.00 88.70 1043.00 88.70 1043.80 105.54 1045.20 31.75 94.73 1043.00 72.64 1043.00 38.42 1266 1.76
1043 1043 1043 1045 1043 1043

CCPX19 1024 1031 1031.40 231.25 1032.80 125.24 1032.60 36.40 1032.60 36.40 82.87 1031.20 412.73 1033.40 331.32 1067 1.59
1031 1031 1031 1031 1031 1032

CCPX20 972 1005 1013.00 291.98 1014.60 70.51 1007.60 140.80 1009.00 26.41 70.60 1010.00 159.01 1014.00 65.39 1014 391.43
1013 1013 1005 1005 1008 1014

Avg. percentage avg.error 0.09 0.16 0.10 0.18 0.06 0.16 6.42
Avg. percentage min.error 0.08 0.09 0.00 0.10 0.04 0.15
Average CPU time 161.49 78.21 70.71 36.32 104.40 119.18 40.60
Number of optimal solutions 9 8 10 7 8 5 0

44

Table 2.3. Computational results of problem class C

Probl IJ3 z* ZBA tBA ZBA2 tBA2 ZOC t4DC ZOC2 tOC2 tOC2tot ZHEU tHEU 401 401 402 4/1B2
RSYM1 812 886 886.00 79.07 898.80 19.30 924.60 123.88 925.20 14.79 30.91 904.00 406.37 940.00 48.89 910 147.04

886 886 886 886 886 940
RSYM2 638 770 770.00 103.98 804.40 24.06 806.00 7.2971 820.80 5.33 12.42 786.40 418.86 776.00 43.69 804 28.85

770 778 776 794 770 776
RSYM3 722 844 844.00 54.77 874.40 11.99 874.80 15.57 874.80 15.57 33.34 860.80 316.25 876.00 48.56 844 344.12

844 844 844 844 844 876
RSYM4 686 716 716.00 8.05 716.00 8.05 766.50 51.583 768.40 4.16 10.92 729.60 266.62 726.00 66.24 726 21.43

716 716 716 716 722 726
RSYM5 680 778 781.20 260.81 854.40 22.21 867.20 91.023 897.60 5.34 11.65 828.80 550.55 778.00 74.21 868 56.16

778 814 778 814 794 778
RSYM6 676 784 785.20 108.74 798.00 10.69 807.60 155.18 859.60 5.09 12.48 790.40 470.04 790.00 44.67 796 114.78

784 784 784 802 784 790
RSYM7 754 844 844.00 35.39 860.80 7.76 858.40 9.0874 872.80 7.55 18.27 853.60 369.46 882.00 35.80 886 110.55

844 844 844 844 844 882
RSYM8 632 690 690.00 15.80 696.00 13.26 713.20 26.132 716.00 9.56 22.46 690.00 347.33 704.00 45.88 692 15.88

690 690 690 692 690 704
RSYM9 648 774 774.00 141.29 818.40 11.03 809.60 119.61 812.00 5.41 11.80 804.80 296.34 802.00 34.67 808 24.18

774 802 780 780 782 802
RSYM10 646 742 742.00 48.83 788.00 17.26 762.80 97.813 802.40 7.87 15.14 764.00 276.17 812.00 12.43 760 29.67

742 786 742 742 742 812
Avg. percentage avg error 0.06 3.59 4.63 6.66 2.36 3.30 3.40
Avg. percentage min.error 0.00 1.48 0.15 1.10 0.38 3.30
Average CPU time 85.67 14.56 69.72 8.07 371.80 45.50 89.27
Number of optimal solutions 10 6 8 5 7 1

45

Table 2.4. Computational results of problem class D

Probl LB ZBEST ZBA tBA ZBA2 tBA2 ZOC tOC ZOC2 tOC2 tOC2tot ZHEU tHEU ZMB1 tMB1 ZMB2 tMB2
RSYM11 760 936 959.60 432.73 1063.60 92.32 1069.60 217.96 1098.40 131.25 318.35 1352.00 239.22 1144.00 104.09 1748 1.16

936 998 1010 1074 1302 1144
RSYM12 770 948 975.60 433.35 1099.60 92.95 1042.40 192.60 1043.60 170.30 410.21 1328.80 276.30 1210.00 177.72 1650 3.35

948 1058 1002 1006 1196 1210
RSYM13 754 822 * 832.40 367.75 914.40 92.72 949.20 256.14 949.20 256.14 467.51 1341.60 475.46 1198.00 80.12 1874 1.26

822 874 906 906 1318 1198
RSYM14 778 910 960.40 484.92 1095.60 70.67 1058.80 219.07 1078.40 244.27 517.66 1363.20 333.48 1220.00 73.50 1820 1.10

910 1054 1006 1032 1306 1220
RSYM15 768 870 * 950.40 517.66 1090.40 57.35 1054.80 176.49 1068.40 134.20 379.99 1354.40 476.00 1158.00 28.15 1734 1.93

924 1032 998 998 1296 1158
RSYM16 688 762 * 773.20 487.90 891.60 61.49 923.60 231.93 970.40 194.06 426.21 1230.80 233.27 1068.00 96.72 1476 1.21

764 818 880 888 1152 1068
RSYM17 706 816 834.80 371.39 964.40 97.54 959.20 197.71 970.40 162.07 359.41 1278.40 296.45 1098.00 24.68 1478 1.98

816 928 920 920 1274 1098
RSYM18 676 850 876.80 440.19 1008.00 66.10 953.20 189.83 953.20 189.83 337.49 1210.00 242.42 1078.00 23.49 1724 1.15

850 1000 916 916 1130 1078
RSYM19 736 870 906.40 536.22 1018.80 72.29 1036.00 242.22 1036.00 242.22 404.91 1331.20 189.42 1108.00 148.25 1616 1.21

870 946 992 992 1324 1108
RSYM20 748 888 938.00 444.93 1039.20 72.60 1043.60 266.06 1055.60 217.40 442.25 1303.20 156.92 1222.00 153.83 1542 1.27

888 994 990 1020 1232 1222
Avg. Percentage avg.error 3.87 17.45 16.36 17.89 50.99 32.66 92.14
Avg. Percentage min.error 0.65 11.88 10.93 12.45 44.49 32.66
Average CPU time 451.70 77.60 219.00 194.17 291.89 91.05 1.56
Num. best known solutions 8 0 0 0 0 0 0

46

Table 2.5. Computational results of problem class E

Probl LB z ZBA tBA ZB A2 tBA2 ZHEU tHEU ZMB I tMB 1 ZMB2 tMB2

BMM1 955 1058 1109.20 90.15 1126.60 3.80 1092.40 249.08 1086.00 66.30 1097 433.41
1058 1058 1086 1086

BMM2 862 1025 1065.40 302.44 1109.60 19.31 1064.40 259.90 1036.00 19.93 1125 185.82
1025 1077 1036 1036

BMM3 927 1081 1081.00 158.98 1115.00 28.66 1117.20 287.91 1130.00 60.07 1171 77.86
1081 1110 1111 1130

BMM4 841 933 941.00 41.09 1044.80 4.45 969.00 165.76 933.00 76.56 974 336.37
933 973 933 933

BMM5 878 1045 1045.00 222.41 1124.40 15.05 1110.60 414.30 1060.00 50.84 1094 299.56
1045 1060 1094 1060

BMM6 886 1006 1051.20 355.46 1084.60 11.29 1054.20 260.34 1012.00 61.90 1074 63.90
1008 1025 1009 1012

BMM7 870 983 1054.80 321.43 1085.00 11.56 1030.00 206.10 983.00 47.71 1101 69.06
984 1038 983 983

BMM8 839 939 939.00 18.70 943.80 11.47 984.20 343.19 967.00 52.38 965 370.72
939 939 963 967

BMM9 909 1021 1039.00 289.60 1089.20 13.98 1046.20 292.96 1029.00 26.98 1054 111.10
1021 1021 1031 1029

BM1VI10 838 1014 1017.00 104.95 1102.00 9.86 1031.00 396.36 1055.00 62.50 1043 152.75
1014 1065 1014 1055

Average percentage avg.error 2.35 7.13 3.90 1.84 5.87
Average percentage min.error 0.03 2.58 1.53 1.84
Average CPU time 190.52 12.94 290.59 52.52 210.06
Number of optimal solutions 8 3 3 2 0

47

2.8 SUMMARY

The chapter describes the results obtained by applying a new metaheuristic

technique, called the Bionomic Algorithm, to the capacitated p-median problem

(CPMP). Bionomic Algorithms are evolutionary metaheuristic algorithms that update a

whole set of solutions (a population of solutions) at each main cycle. They differ from

similar previously presented algorithms, namely Genetic Algorithms and Evolution

Strategies, because they explicitly direct the choice of the solutions to combine in order

to define an offspring, that is, a solution in the population of the next iteration. This

feature introduces a diversification mechanism for clustering by reference to maximal

independent sets, carried out over progressively smaller domains, to provide a specific

refinement of the scatter search proposal for generating parents from clustering

strategies. The parent selection process, together with the use of problem-specific ways

to produce an offspring from the parents, makes Bionomic Algorithms well-suited to

combinatorial optimization applications.

The implementation of the Bionomic Algorithm presented for the CPMP in this

chapter has the following characteristics. Maturation is based on a state-of-the-art

heuristic for the Generalized Assignment Problem (GAP), a problem to which CPMP

reduces once the p medians are chosen. Propagation, specifically the definition of a

child solution once a parent set is assembled, is based on the computation of a

Lagrangean lower bound for the CPMP.

The computational results, presented both on standard data sets from the literature

and on more difficult symmetric and asymmetric cost instances, attest the effectiveness

of the approach. Our findings can motivate future research that could examine

additional types of clustering strategies (e.g., incorporating intensification criteria as

well as diversification criteria) for choosing and combining multiple parents.

48

CHAPTER 3

AN EXACT ALGORITHM FOR SOLVING

THE CAPACITATED P-MEDIAN

PROBLEM BASED ON A SET

PARTITIONING APPROACH

3.1 INTRODUCTION

The purpose of this chapter is to present a new exact method for solving the CPMP.

In this chapter the CPMP is formulated as a Set Partitioning Problem with a side

constraint (SP). Each column of the SP corresponds to a feasible cluster and the

additional constraint forces any feasible solution to contain exactly p clusters. Also, in

this chapter, a valid lower bound to the CPMP is developed. This lower bound is

computed as the cost of a feasible solution to the dual of the LP-relaxation of SP (called

DSP). The procedure for computing the lower bound, called HDSP, combines two

different heuristic algorithms. Each of these heuristic procedures finds a feasible

solution to DSP without requiring the entire set of the dual constraints. The dual

solution obtained and a valid upper bound to the CPMP are then used to eliminate a

large number of clusters that cannot belong to any optimal CPMP solution. However,

the size of the reduced SP problem might still be too large for a branch and bound

method. In this case, we develop a procedure, called EHP, for solving problem SP

where the set of clusters is replaced with a subset of limited size. The optimal solution

49

of the resulting problem might not be an optimal CPMP solution, however, the solution

obtained from EHP allows us to estimate how far this solution is from the optimal

solution to the CPMP. Furthermore, the EHP is readily extendible to deal with

additional constraints, such as the maximum cluster cardinality, customer

incompatibility, etc.

The chapter is structured as follows. In Section 3.2 the set partitioning mathematical

formulation of the CPMP is presented. Section 3.3 describes the heuristic procedure

HDSP for solving problem SP. Section 3.4 presents the method used for generating the

clusters, i.e. the columns of the set partitioning formulation of CPMP. The EHP method

for solving the CPMP is described in Section 3.5. In Section 3.6, computational results

are presented for a number of problems drawn from the literature and for a new set of

problems with additional constraints. Finally, conclusions are presented in Section 3.7.

3.2 A SET PARTITIONING FORMULATION OF THE CPMP

The CPMP can be formulated as a set partitioning problem with an additional

constraint as follows.

• Let P- be the index set of all feasible clusters whose median is customer j, j E N ,

and let B = L.) P2 • •UP„ .

• Let B; be the index set of all clusters containing customer i E N .

• Let ct , ge and Itt indicate the cost, the subset of customers and the median of

cluster .e E B, respectively.

• Let xi be a (0-1) variable that is equal to 1 if and only if cluster E B belongs to

the optimal solution.

The resulting mathematical formulation, called SP, of problem CPMP is as follows :

(SP) 	 z(SP) --= Min E Qx,
tEw

(3.1)

subject to Vi E N (3.2)

(3.3)

50

xf E 10,11, 	Vt 	 (3.4)

Equations (3.2) impose the requirement that each customer i E N is assigned to one

cluster. Equation (3.3) forces the solution to contain p clusters and constraints (3.4) are

the integrality constraints. The formulation SP is easily extendible to deal with

additional cluster constraints simply by removing from B any infeasible cluster.

Hansen et. al (1994) have shown that solving the LP-relaxation of formulation F

described in Section 2.2 cannot yield a larger lower bound than the one obtained by

solving the LP-relaxation of formulation SP.

Problem SP cannot be solved directly since the number of columns may be enormous

even for CPMP instances of moderate size. In the following, the dual problem (called

DSP) of the linear relaxation of SP, is used in order to generate a valid lower bound to

the CPMP. The method used to solve DSP is heuristic (which of course does not affect

the optimality of the final CPMP solution) and it does not require the explicit generation

of the cluster-index set B. Moreover, the dual solution obtained is used to reduce the set

B by removing those clusters that cannot belong to any optimal CPMP solution.

Let ui , i E N , be the dual variables associated with constraints (3.2) and w be the

dual variable of constraint (3.3). The dual of the LP-relaxation of SP, called DSP, is as

follows:

(DSP) 	z(DSP) = Max Eui + pw 	 (3.5)
iEN

subject to Eui +w5.C e , 	WEB 	 (3.6)
lE Be

ul unrestricted, i E N
w unrestricted

Like problem SP, problem DSP is impractical to solve, since the number of

constraints is equal to the number of variables in SP.

3.2.1 VARIABLE REDUCTION OF PROBLEM SP

Let (u', w') be a feasible solution of DSP of cost z'(DSP) and let x' be a feasible

solution of SP of cost zi(SP) . It is well known, from linear programming duality theory,

51

}

	

(3.7)

that z'(DSP) z'(SP) and, consequently, any feasible solution of DSP provides a valid

lower bound to SP.

Let c; be the reduced cost of cluster .e E B corresponding to the dual solution

(u', w') , that is:

c, = c,—E,u,— w, 	 (3.8)
iE Bt

This dual solution (u',w') can be used to reduce the number of variables of SP as it

is established by the following theorem.

Theorem 3.1. Let S' = {t: i e B, s. t. 4= 1} . The following relationship holds:

z'(SP) = z'(DSP) + E C'.e
	 (3.9)

teS'

Proof. From equation (3.8), we have:

E cL . E ce — E I ut — E w'
teS' 	teS' 	teS'ieB, 	PeS'

Since x' is a feasible solution of CPMP, we have:

E E 4 + E w' . E tii + p14/
teS'ieB, 	teS' 	iEN

and hence,

E c't . E ct — E u; — pw' 	 (3.10)
iEs• 	IES" 	iEN

Noticing that z'(SP) = E ct and that z'(DSP) = E is! + pw' , from equation (3.10)
tEs' 	 iEN

we obtain equation (3.9).

Corollary 3.1. Let z(UB) be the cost of a feasible CPMP solution and (u', w') be a

feasible solution of DSP of cost z'(DSP) . Any optimal solution of SP of cost less than

z(UB) cannot contain any cluster £ E B whose reduced cost is greater or equal to

z(UB) — z'(DSP) .

Proof. It follows directly from Theorem 3.1•

52

Corollary 3.1 states that an optimal CPMP solution can be obtained by replacing in

problem SP the set B with the subset B' defined as follows:

B' = : t E B, s.t. c't < z(UB)— z'(DSP)} 	 (3.11)

therefore, an optimal solution of problem SP can be obtained by replacing set B with

B' . However, the size of B' might still be too large for solving problem SP, even if the

gap z(UB) — z'(DSP) is small. In this case we propose to solve problem SP by using a

subset 5" cB' containing a limited number of clusters so that the resulting problem is

solvable by an integer programming solver (e.g. CPLEX (1996)).

The optimal solution obtained for the resulting problem SP is not guaranteed to be an

optimal CPMP solution. However, the method used to choose the subset F allows us to

estimate the distance of the solution obtained from optimality.

3.3 A HEURISTIC PROCEDURE FOR SOLVING PROBLEM DSP

In this section we describe a heuristic procedure (called HDSP) for finding a feasible

solution to DSP that is based on the following observation.

Consider the integer program P:

Min z(P) = (P) 	 ex

subject to Ax = b

x 0 integer

The dual D of the LP-relaxation of P is:

(D) 	 Max z(D)= wb

subject to wA c

w unrestricted

A feasible solution Tv of D of cost ."(-i) can be obtained by means of the following

simple observation. Assume that w is a feasible solution of D of cost z(D) and that w'

is a feasible solution of cost z'(D') of the following problem D':

(D')
	

Max z'(D') = w'b

subject to w'A 5_ c — wA

w' unrestricted

53

Since D' imposes that (w + w')A 5 c , it is easy to see that W = w + w' is a feasible

solution of D of cost (D) = z(D)+ z'(D'). This observation justifies the validity of the

following algorithm HDSP for solving problem D.

Algorithm 3.1: Algorithm HDSP for finding a feasible solution of D

Let H1, H2 ,...,Hk be k different heuristic procedures for solving D.

Step 1. Set W = 0 and "f(D) = 0.

Step 2. Repeat Step 3 for r = 1,2,..., k .

Step3. Use the heuristic procedure fi r for finding a solution w' of cost z'(D') to the

following problem D':

(D') 	Max z'(D') = w'b

subject to w'A 5_ c'

w' unrestricted

where c' = c — WA . Update W = W + w' and 7f(D) = '(D)+ z'(D').

The application of procedure HDSP to CPMP involves, at each iteration r , the use of

a heuristic procedure Hr to solve the following problem DSP'.

(DSP') 	z'(DSP') = Max I u; + pw,
ieN

subject to Ii ti1 + III— .e g , 	t E B
ieBe
, ui unrestricted, i E N

w' unrestricted

where ct = ct — I ui — W and (ii, TO is a feasible solution to DSP of cost .f (DSP)
iE Be

provided by the first (r —1) iterations of HDSP.

Notice that DSP' is the dual of the linear relaxation of problem SP' that is obtained

from SP replacing in the objective function (3.1) each cost ci with the reduced cost cif ,

v.e e B.

54

The cost .(D) of the solution W of D obtained by HDSP is limited from above by

the optimal solution cost of the LP-relaxation of SP, hence, the lower bound (DSP) to

the CPMP obtained by HDSP is not better than the optimal cost of the LP-relaxation of

SP. This method has been applied by Mingozzi et al. (1994) for solving the Vehicle

Routing Problem, by Bianco et al. (1994) for the Multiple Depot Vehicle Scheduling,

by Mingozzi et al. (1995) for the Crew Scheduling Problem and is used in Chapter 5 for

solving for the Vehicle Routing Problem with Backhauls.

The procedure HDSP involves two heuristics. The first, called H1, solves problem

DSP1(m DSP) and does not require the generation of set B while the second procedure,

called H2 , solves DSP2 and requires the generation of a limited subset of set B.

3.3.1 PROCEDURE H1

Procedure HI is based on the lower bound obtained from formulation F of Section

2.2 by relaxing the set partitioning constraints (2.2) in a Lagrangean fashion. (Hansen

et. al (1994) have shown that the optimal solution of this relaxation and of the LP-

relaxation of the SP formulation have the same value). Let X = (X1,X2 ,...,X,,) be the

lagrangean multipliers associated to constraints (2.2). The relaxed problem, called

LR(X), is as follows :

(LR(X)) z(LR(X)) = Min I (d,,, 	Exi
ieN jeN 	 ieN

subject to
iEN

P
jeN

ij E 10,11,

Vj E N

V i, j E N

For a given set of multiplier vector X, problem LR(X) can be decomposed into n

independent knapsack problems, called 1CPi (X), j = 1,...,n , of the form :

(KY j (X)) 	z(KP (X)) = Min E(d,
iE N

55

subject to I qi ij 5- Qi
ieN

E {OA, i E N

An 	optimal KP3 (X) solution corresponds to a cluster B 	such that

{ .e; = arg mintEpj ce — Exi . An optimal solution of LR(X) is obtained as follows.
ieBi

Let z(KPii (X)), z(KPi2 	 (x)) be the p-least cost solutions of the n

Knapsack problems KPi(X), j =1,...,n . It is easy to see that the optimal LR(X) solution

is given by:

= 0, k— p+1IkJk

and

4uk =1 if iE B * ,
k
 = 0 otherwise, Vi E N , k =1,..., p

ilc

and

Jk
=0, Vi E N,k=p+1,...,n.

The value of the objective function for this solution is

z(LR(X)) = z(KPik (4+ E xi •
k=1 	ieN

Theorem 3.2 shows that the solution of LR(X), for any vector X, can be transformed

into a feasible DSP solution.

Theorem 3.2. Let V be the optimal solution of LR(X) of cost z(LR(X)) for a given

vector X. A feasible solution (111, w1) of DSP of cost z(DSP1)= z(LR(X)) is obtained

by setting, for every customer i E N :

..1 = {Xi 	 if 	= 0
ui 	 (3.12.a)

X i + z(KPi (X)) - a, if 47 =1

W1 = 6
	 (3.12.b)

56

{1, 	k =1,... , p

where a= maxlz*Pi (X))1 : j E N}.

Proof. It is sufficient to show that, for any j E N :

+w1 _< ct , 	E Pi
iE Bt

We must consider two cases:

(a) = 0 .

Using equations (3.12.a) and (3.12.b), inequalities (3.13) can be written as:

G 	— EX i , Vi E Pj
iE Be

(3.13)

(3.14)

As 	J j = 0 , from the definition of a, we have

z(KP (X)) 6. 	 (3.15)

Moreover, since z(l(Pi (x)) is the optimal solution cost of problem KPi (X) we have

Z(i(Pi (X)) Ct — 	X i , 	E Pi .
iE Bt

Hence, from (3.15) and (3.16) we obtain inequalities (3.14).

(b) Vij = 1 .

Using equations (3.12.a) and (3.12.b), inequalities (3.13) can be written as

X i + z(l(Pi (X))— + 	, 	e Pi
ie Bt

that is equivalent to

z(1(13j (X)) 	— 	X i , Vt E P j

(3.16)

(3.17)
iE Bp

and this latter inequality is verified since z(KPi (X)) is an optimal solution of problem

Algorithm H i for solving DSP1 is an iterative procedure that finds a feasible

solution of the problem Max[z(LR(X))] . An iteration of H1 consists of computing a

new vector X and of finding a new solution of the resulting problem LR(X). The method

used for updating X, at each iteration, is as follows.

57

Let V be the optimal solution of LR(X). Let hi be the number of medians that

customer i E N is assigned to, in the solution V , i.e. hi = 	In any feasible
jEN

CPMP solution we have hi =1, i E N , hence, a subgradient optimization method can be

used to change X as follows:

z(UB)— z(LR(X))/ Xi = Xi e 	 ViEN EN -1)-
kE N

where z(UB) is a valid upper bound to the optimal CPMP solution cost and £ is the step

size (and is a parameter). A feasible DSP1 solution (ul ,w1) of cost z(DSP1) is given

by equations (3.12) using the vector X* that has produced, within a priori fixed number

of iterations, the best approximate solution of the problem Max[z(LR(X))] .

3.3.2 PROCEDURE H2

Procedure H2 is a heuristic procedure based on linear programming that finds a

feasible solution of the following problem :

(DSP 2) 	z(DSP 2)= Max

subject to

E ui + pw
iEN

Eui +14,5.d,
iEB,

vtEB

u • unrestricted, Vi E N

w unrestricted

where ci is the reduced cost of cluster t E B computed according to the dual solution

(u1,w1) produced by procedure H1, that is :

c = _ u 14)1

iEBe

Problem DSP2 could not be solved directly as it might involve a huge number of

constraints. In this section we describe a procedure called H2 , for reducing the number

58

of constraints of DSP2 so that the resulting problem, called RD, can be solved directly

and any solution of RD is a feasible DSP2 solution. Problem RD is obtained from

DSP2 as follows:

(i) The number of constraints (3.6) are reduced by replacing B with a subset F of limited

size;

(ii) Constraints are added to force any RD solution to satisfy constraints (3.6) for any

E B\F.

Reduced problem RD

Let Ff be a subset of Pi ,jeN, that satisfies the following two conditions :

ct2 < z(UB)— z(DSP1) V t e Fi 	 (a)

Max[cg] Min [d] 	 (b)
(EFi 	 fEPV. I J

A procedure for computing the sets Fp j E N , is presented in Section 3.4. The

reduced dual problem RD is obtained from DSP2 by replacing the cluster set B with the

subset F= u F f .
jEN

Problem RD is as follows:

(RD) z(RD) = Max E 	ply 	 (3.19)
ieN

subject to E ui w 	, 	VteF 	 (3.20)
iEBL

Ui , 	 ViE N 	 (3.21)

w 0 	 (3.22)

where the upper bound Ui , iEN, are chosen such that :

EUi 	B\F
iE

(3.23)

Theorem 3.3. Any feasible solution of RD is also a feasible solution of DSP2.

Proof. Constraints (3.21) and (3.23) imply that every feasible solution to RD satisfies

the following inequalities :

59

(3.18)

ui +wS YUi + W C.1 W, Vt E B\
ieB, 	ieB,

From inequalities (3.22) and (3.24), the theorem is proved.

Problem RD can be considered to be the dual of the following problem RP:

(RP) 	 z(RP) = Min I dx, + EU i y i
£e5 	iEN

subject to I xi + yi = 1, 	Vi e N
EE;

Ixt + yo = p
tEg

(3.24)

	

0, 	 VtEF

	

yi > 0, 	 ViE Nu{0}

Procedure H2 finds an optimal solution (x* ,y*) of RP of cost z*(RP) and the

corresponding optimal dual solution (u* , w*) of RD. Hence, we have

z(DSP2)= z* (RP) and u2 = u* , w2 = w* .

An optimal CPMP solution

Procedure HDSP finds a solution 	w') of DSP of cost

z'(DSP) = z(DSP1)+ z(DSP2) by setting u' = u1 + u2 and w' = w1 + w2 .

The cases where the optimal solution (x* , y) of RP corresponds to an optimal

solution of problem SP are as follows:

(a) x* integer, y* = 0.

This solution is also an optimal CPMP solution of cost z* (SP) = z'(DSP) .

(b) x* not integer, U i = 00, Vie N , y* = 0 .

In this case the clusters of any optimal CPMP solution are in set .T, hence, the

solution (u', w') is an optimal solution of problem DSP and an optimal CPMP

solution can be obtained by solving problem SP where set B is replaced with F.

60

(c) y* 0 .

The RP solution achieved is not feasible for CPMP even if variables 4, £ E 7" ,

have integer values. In fact, 	> 0 , for some i E N , implies that vertex i is not

fully covered by the clusters that are in the optimal RP solution, i.e. set .T might not

contain an optimal or even a feasible CPMP solution.

3.3.2.1 THE COMPUTATION OF U,,ieN

A valid method for computing U i , ieN, in order to satisfy constraints (3.23) is as

follows. Let crx = Max{c1}, Vj E N and let j* be such that:
te Fj

= Min[c7 Q j].
jE N

Up, i E N, is assigned the following value:

x 	 ,, lQi

It is easy to show that the values assigned to U i , i E N according to expression

(3.25) satisfy inequalities (3.23). In fact, for any 	B\F,
(3.26) EUi = E qi cn..z*ax/Q .*

iEBe 	iE Be

since

c" / Q 	C max 1Q7ci, 	/IQTct

From (3.26), we obtain:

Eui < Eqi ci/Qice
iE Bt 	iE Be

Moreover, as Eqi/Q„, 5 1, from inequalities (3.27) we have :
ie Be

tEB\FE
ieSt

(3.27)

61

(3.25)

3.4 GENERATION OF SET 5"

In this section, a procedure, called GEN(Fi), that generates, for a given median j, a

cluster set Fj satisfying conditions (3.18a) and (3.18b) is described. GEN(Fi) is

derived from an exact dynamic programming procedure for generating set Pi by

limiting the size of the state space graph in such a way that the states generated at the

last stage of the recursion correspond to a set Fi •

Let c2 (B) = (dir,(,) -)— w1 be the reduced cost of cluster B for median n(B)
iE B

with respect to the dual solution (u1,w1) produced by procedure 111 . Let

N = (i1 ,i2 ,...,in_i) be the ordered set of the (n —1) customers obtained from N by

removing the median customer j. From a computational point of view, the vector N is

ordered so that (dik./ — ulk)15- (dik+if —14k+i)' k =1,...,n — 2.

Consider a feasible cluster B c{j,i1 ,i2 ,...,ik } and let fk (B) be the reduced cost of

the feasible cluster of minimum reduced cost that can be obtained by expanding B with

the customer subset i { k+1, i k+2 , • • • ,in-1} • The value of fk (B) can be computed as

follows:

fk (B)= C2 (B)+ g ki4(13)
	 (3.28)

where,

g k+1(B)=

subject to

n-1
Min E(1 i • —u r r1 	r

r=k+1

n-1 	(

E qir r 	Qi 	qi
r=k+1 	 iEB

yr E 10,11, r=k+1,...,n-1

We assume gn (B) = 0 so that fn_i (B) = c2 (B). It is easy to verify that function

fk (B) has the following properties

(P1)
	

f k (B)_ f k+i (B), k =1,...,n — 2 	 (3.29)

62

(P2)
	

f k (B) < fk+1(B V fik+11), k =1,...,n — 2 	 (3.30)

Let R k be the set of all feasible clusters that can be obtained by using the first k

customers {4 ,i2 ,...,ik } of N and such that:

fk (B) < z(UB) — z(DSP1), dB E Rk

We assume that j e B and Eqi 	VBE R k . Every cluster B such that
ieB

it(B) # j is removed from R n_1 . It is evident that the resulting set R n_i is a subset of

P1, that is: R n_1 = {B E Pi : c2 (B) < z(UB) — z(DSP1)}, and therefore, R n_i can be

used instead of Pi for generating 5 . However, the size of each R k , k =1,...,n —1,

might be too large even if the gap z(UB) — z(DSP1) is small. To overcome this

problem, we propose a procedure called GEN(Fi) that generates, for a given median j,

a sequence of subsets Rk , k =1,...,n —1, satisfying the following two conditions:

'Ric I 5- a
(3.31)

MPLx[fk (B)] < Min [fk(B)]

	

BERk 	BeRk\Rk

The cluster set Fi corresponds to Rn_1 after having removed any cluster B such

that n(B) j .

Procedure GEN(Ff) makes use of a temporary set Tk representing, at each stage k, a

subset of Rk such that Max[f k (B)] 	MM [f k (B)]. The set Rk is then extracted

	

BETk 	 BERk\Tk

from Tk . At each stage k of GEN(Fi), Rk CTk C Rk •

Algorithm 3.2: GEN(Fl)

Step 0. Set To = full and k=0.

Step 1. (Define the subset Rk CTk)

if ITk I A , then set Rk = Tk and define hk = z(UB)— z(DSP1).

63

if ITkl> A , then let Rk be the largest subset

1Rk (<_ A and Max[f k (B)] 	Min [f k (B)] . Set
BERk 	BE Tk \Rk

of Tk such that

hk = Max [fk (B)]
BE 12k

and Tk+1 =

Step 2. (Generate Tk+i)

For any B E Rk , consider the two clusters B and B' = B v {ik+i } as

possible elements of Tk±i.

If fk+i (B) hk , then add B to Tk+i .

If I qi 5_ Qi and fk+i (B') hk then add B' to Tk+1 .
iE B'

Step 3. 	Set k = k +1. If k <n-1, then go to Step 1.

Step 4. (Define F j)

Remove from R„_1 every cluster B such that n(B) # j
Set Fi be the largest subset of qtn_1 such that 	A and

Max[c 2 (B)]5. Min [c2 (M]. Set hn_i = Max[c 2 (4.
BE 5J 	 BEN,n_ff 	 BE 5. •

It is easy to note that h1 h2 	ha_i since fk+1 (B) hk VB E Tk+1 while

Rk+1 C Tk+i. In order to prove that every Rk , k =1,...,n -1, satisfies conditions

(3.31), it is sufficient to show that

f k (B) hk , VB E Rk \Tk 	 (3.32)

In fact, due to Step 1 if condition (3.32) holds, f k (B) hk , VB e Rk \Nk and

fk (B) hk , VB E Tk \R,k

Assume that Rk_i satisfies condition (3.31). This is true for k = 2 if A 2 since

!Rd = 2. By contradiction, assume that there exists a cluster B* E Rk \Tk such that

fk (B*)< hk . There are two cases:

1. 	ik E B* . For property P2, fk-1 (B* k 5- fk (B*) • Since f k (B*)< hk and

hk , 	(B* \ {ik })< hk _1 and (B* \ fik 1)E Rk-1. Consider Step 2 at stage

64

k —1. The expansion of cluster (B* \{ik })0 Rk_i produces B* that is added to

Tk since f k (B*)< hk _i and this show the contradiction.

2. 	ik 0 B* . Due to property P1 and hk-1 ?_ hk , f k _1 (/3*)< hk_1 and, hence,

B* E Rk_i. Therefore, at Step 2, the cluster B* is added to Tk and this shows the

contradiction.

3.5 METHODS FOR SOLVING THE CPMP

In this section, two methods for solving the CPMP are described. The first, called

EHP, consists of reducing the number of variables of the integer program SP so that the

resulting problem can be solved by an integer programming solver (e.g. CPLEX). The

second is the branch and bound method proposed by Pirkul (1987) which has been

implemented in order to compare the computational performance of algorithm EHP.

3.5.1 THE EHP PROCEDURE

Whenever procedure H2 ends without having found the optimal solution, it is

necessary, as described in Section 3.2, to solve the following problem SP' :

(SP') 	 z(SP') = Min Ectx,
tEB,

subject to Ex, .1,
t'EBinB'

EXt = p
GI3'

xt E 10,11 Vt E B'

Vi e N

where set B' is computed according to expression (3.11). However, the size of B' may

be still too large. In this case, set B' is replaced with a subset F c B' in such a way

that the resulting problem becomes solvable by an integer programming code. The

solution achieved might not be an optimal CPMP solution, but it is possible to evaluate

its distance from optimality.

65

Let (u', w') be the heuristic solution of DSP of cost z'(DSP) produced by the

bounding procedure HDSP. Also let Q = cP — yui- w' be the reduced cost of cluster
iEBe

E B with respect to (u', w') . Let Fi be the subset of Pi , jE N , that satisfies

conditions (3.18), where the reduced costs Id I are replaced with lc; and z(DSP1) is

substituted with z'(DSP) . The subsets Fi , jeN, are computed by means of procedure

GEN(Fi) using the dual solution (u', w') instead of (u 1, wl .

Let x* be an optimal integer solution, of cost z*(SP'), of the set partitioning

problem SP' where set B' is replaced by set _7" (we assume z* (SP') = ()a if set F does

not contain any feasible CPMP solution). Notice that, if z* (SP') < 00 , the solution x* is

a feasible CPMP solution. The following recognizes if x* is an optimal CPMP solution.

Let L j be a lower bound to the reduced cost of the least reduced cost cluster in the set

Pi\ Fj, jEN and assume that Li = oo if IFil< A . Let GAPMIN = 	The
jE N

following two cases exist:

(a) z*(SP') z'(DSP)+ GAPMIN : x* is optimal for the CPMP, since any feasible

CPMP solution involving some cluster of set B\F would have a cost greater

or equal than z'(DSP) + GAPMIN

(b) z* (SP') > z'(DSP)+ GAPMIN : x* might not be an optimal CPMP solution, and

z'(DSP) + GAPMIN is a valid lower bound to the optimal CPMP solution cost.

In constrained clustering, as described in Hansen and Jaumard (1997), additional

requirements are imposed on the clusters such as bounds on clusters cardinality,

incompatibility between customers, etc. Additional constraints can be easily

incorporated both in the bounding procedure H2 and in the solution method EHP by

changing Step 2 of algorithm GEN(Fj) to reject any infeasible cluster B.

66

3.5.2 THE BRANCH AND BOUND METHOD BB

In order to evaluate the computational performance of algorithm EHP we

implemented the Branch and Bound procedure (BB) proposed by Pirkul (1987). BB

makes use of the lower bound LR(X) obtained from formulation F (see Section 2.2) by

relaxing the partitioning constraints (2.2) in a Lagrangean fashion (see Section 3.3.1).

The tree-search is a two level binary tree-search in which the first level of the tree is

formed by fixing variables .ij , j =1 	n , which define the medians of the solution.

Whenever a leaf node of this top level tree is reached, it can be treated as the root of a

new sub-tree which is explored by fixing variables 	i, j =1,...,n,i # j , which

correspond to assigning the customers to the medians defined at the top level of the tree.

At each tree node, a lower bound is computed by means of the subgradient procedure

applied to the Lagrangean relaxation LR(X). The values of the multipliers A are

initialized with the penalties associated with the lower bound found at the predecessor

node. 50 subgradient iterations are carried out at each tree node, with the exception of

the root node where 300 subgradient iterations are performed.

3.5.3 A NUMERICAL EXAMPLE

In this section we describe a numerical example to illustrate procedure EHP. The test

problem chosen for the example was CCPX16 (see Section 3.6). The number of

customers is n=100, among which p=10 must be chosen as medians. The capacity Q of

each median is equal to 120 and the total demand of customers (i.e. Eqi) is equal to
iE N

1060. The data corresponding to this problem test can be found in Appendix A.1. The

upper bound z(UB) was set equal to 955, that is, the cost of the heuristic solution found

by the Bionomic algorithm (see Section 2.7), plus 1.

67

.41

•7

83

•103.22 	0 97
O 	•92

• 87

•69•28

()Medians
• Customers

46

.36

Figure 3.1. Example: solution to procedure 111 of cost 950.2

Table 3.1. Example: details of the lower bound obtained by procedure H1

Median Load Cluster

1 68 109 {1,11,17,33,34,39,56,62,68,81,84,95 }
2 49 87 {15,24,48,49,55,74,77,78,83,88}
3 64 107 {2,8,12,61,64,71,73,75,93}
4 63 100 {16,27,29,43,44,54,63,91}
5 20 110 {4,18,20,31,37,47,52,53,72,79,86}
6 50 85 {3,13,30,40,46,50,65,66,76}
7 35 117 {4,19,20,31,35,42,60,80,89,98,100}
8 4 118 { 4,18,20,25,37,47,53,72,79,86,96,99 }
9 80 117 {6,19,26,32,35,42,58,60,80,89,98}
10 85 94 {21,25,45,59,70,79,85,99}

68

Mediems
• Customers

The lower bound z(DSP1) was computed by performing 300 iterations of procedure

H1 using an initial value of the step size E equal to 3.0. A value equal to 950.2 was

obtained within 3.2 seconds on a Silicon Graphics Indy machine (MIPS R4400/200

MHz processor). Table 3.1 reports the details of the lower bound computation and

Figure 3.1 shows the corresponding solution.

The value z(DSP2) of the lower bound obtained by procedure H2 was equal to 1.1,

hence, the value of the final lower bound obtained by procedure HDSP was 951.3. The

number of clusters (i.e. I FI) generated by procedure GEN(F.!) (see Section 3.4) was

2311. The total computing time of procedure HDSP was 4.9 seconds. Table 3.2 reports

the details of the lower bound solution produced by H2 and Figure 3.2 graphically

displays the corresponding solution.

Figure 3.2. Example: solution to procedure H2 of cost 1.1

69

Table 3.2. Example: details of the lower bound obtained by procedure H2

{xt } variables

Median Load Value Coefficient Cluster

4 118 0.33 0.10 {96,25,47,14,53,79,37,86,20,72,18,4}
6 71 0.67 0.00 {7,41,100,32,58,26,6}
9 120 0.33 0.00 {55,69,28,97,82,92,23,94,67,51,57,9}
9 111 0.33 0.10 {83,28,5,97,92,23,94,67,51,57,9}
10 120 0.33 0.00 {82,96,36,90,22,38,14,87,10}
20 110 0.33 0.10 {53,52,31,47,86,79,37,72,4,18,20}
22 117 0.33 0.00 {52,69,5,82,90,38,87,10,22}
25 113 0.33 0.10 {4,18,70,96,53,59,45,21,86,85,99,25 }
35 113 0.33 0.00 {20,47,89,19,42,31,98,80,60,35}
35 119 0.33 0.00 {72,100,89,19,42,31,98,80,60,35}
38 113 0.33 0.00 {52,37,14,90,87,22,10,38}
45 91 0.33 0.80 {99,41,85,21,59,70,45}
49 87 0.67 0.00 {78,15,77,83,48,55,88,74,24,49}
50 85 1.00 0.00 {3,13,46,30,76,66,65,40,50}
63 111 0.33 0.00 { 48,27,91,43,29,16,54,44,63 }
63 115 0.33 0.00 {88,27,91,43,29,16,54,44,63}
63 117 0.33 0.00 { 77,27,91,43,29,16,54,44,63 }
64 118 0.33 0.00 {74,93,8,73,2,61,71,75,12,64}
64 120 0.33 1.10 {49,78,93,8,73,2,61,71,75,12,64}
67 115 0.33 0.00 {69,28,92,97,5,94,23,51,9,57,67}
68 109 0.33 0.00 {34,56,81,1,17,84,33,39,11,95,62,68}
68 115 0.67 0.00 {36,34,56,81,1,17,84,33,39,11,95,62,68}
71 118 0.33 0.80 {7,24,15,93,8,73,61,2,75,12,64,71}
80 117 0.33 0.20 {26,32,58,89,42,6,19,35,60,98,80}
85 94 0.33 0.00 {79,25,99,70,21,59,45,85}

The cost of the integer solution found by CPLEX 4.0 was 954, obtained in 1.44

seconds. The cardinality of the set of clusters generated (i.e. I 51) was 1160. The value of

GAPMIN was equal to 4.8. Therefore, the solution found was also the optimal solution

of the problem since 954 951.3 + 4.8 (=956.1). The total computing time of procedure

EHP was 6.4 seconds. Table 3.3 reports the details of the optimal solution found which

is presented graphically in Figure 3.3.

70

46

0 Medians
• Customers

Figure 3.3. Example: optimal solution found by procedure EHP

Table 3.3. Example: details of the optimal solution of cost 954

Median Load Cluster

1 10 114 {10,14,22,36,38,53,87,90,96}
2 20 118 {4,18,20,25,31,37,47,52,72,79,86,89}
3 49 108 {7,15,24,48,49,55,74,77,78,83,88,94}
4 80 117 {6,19,26,32,35,42,58,60,80,98,100}
5 68 109 {1,11,17,33,34,39,56,62,68,81,84,95 }
6 63 100 {16,27,29,43,44,54,63,91}
7 64 107 {2,8,12,61,64,71,73,75,93 }
8 45 91 {21,41,45,59,70,85,99}
9 50 85 {3,13,30,40,46,50,65,66,76 }
10 97 111 {5,9,23,28,51,57,67,69,82,92,97}

71

This test problem has also been solved to optimality using the branch and bound

method BB described in the previous section. The total computing time of the branch

and bound method BB was 1912 seconds and the total number of nodes in the tree

search was 2690.

3.6 COMPUTATIONAL RESULTS

Algorithms EHP and BB described in Section 3.5 have been coded in Fortran 77 and

run on a Silicon Graphics Indy machine (MIPS R4400/200 MHz processor) on four

classes of test problems, called A, B, C, D, respectively. Classes A and B are drawn

from the literature and classes C and D are two new sets of test problems generated in

order to evaluate the performance of EHP on CPMP instances with additional

constraints. CPLEX 4.0 is used as the LP-solver in procedure H2 and as the integer

programming solver in EHP.

The problems of classes A and B correspond to the CPMP instances used by Osman

and Christofides (1994); set A contains 10 problems of size n=50 and p=5 while set B

contains 10 problems of size n=100 and p=10. In these two sets of problems the

dissimilarity matrices correspond to Euclidean distance matrices. Both test problem

classes A and B were used to evaluate the computational performance of the Bionomic

Algorithm for the CPMP in Chapter 2.

The problems of classes C and D are derived from problems of class A by imposing

additional constraints on the clusters. These constraints are bounds on the cluster

cardinality and incompatibilities between customers. The incompatibilities are defined

by an incompatibility matrix [tki] where tki = 1 if customer k cannot be in the same

cluster of customer j, 0 otherwise. We impose a maximum cluster cardinality of 6 for

problems of class C and 11 for problems of class D. The incompatibility matrices are

generated by randomly defining 5 incompatibilities in such a way that the optimal

CPMP solution of the corresponding class A problem becomes infeasible (see Table

3.4). For solving problems of classes C and D, algorithm BB has been modified by

changing the branching strategy of the second level of the tree so that branches that lead

to infeasible solutions are rejected.

72

Figure 3.4 shows examples of CPMP solutions with additional constraints. Figure

3.4(a) presents the optimal solution of problem CCPX5 of class A. Figures 3.4(b) and

3.4(c) display CPMP solutions obtained by considering 5 incompatibilities between

customers and by imposing a maximum cardinality of 6 and of 11 for problem C5 of

class C (Figure 3.4(b)) and for problem D5 of class D (Figure 3.4(c)), respectively. In

the figures, the customers with the same letter (A, B, C, D or E) are incompatible, i.e.

cannot be in the same cluster.

Table 3.4. Problem classes C and D: incompatibilities between customers

Problems Incompatibilities
C1,D1 {3,7} {8,43} {11,41} {19,47} {33,48}
C2,D2 {1,7} {3,19} 110,371 {11,32} {20,50}
C3,D3 {2,25} {5,49} {8,39} {14,45} {27,50}
C4,D4 {2,42} {9,46} {10,17} {11,16} {24,48}
C5,D5 {3,12} {6,48} {7,9} {18,31} {21,44}
C6,D6 {2,8} {4,14} {10,46} {12,47} {18,45}
C7,D7 {2,6} {4,18} {10,36} {15,49} {27,50}
C8,D8 {3,8} {4,6} {9,49} {22,44} {23,46}
C9,D9 {2,15} {8,42} {9,41} {13,50} {17,40}

ClO,D10 {1,6} {5,41} 00,461 {15,50} {28,45}

The results obtained are presented in tables 3.5 to 3.8. The columns in these tables

are defined as follows:

Probl.: 	a problem instance identifier.

z(UB): 	cost of the best CPMP solution found by the heuristic algorithms of Chapter

3 (see Section 2.7), plus 1. The upper bounds for problems of classes C and

D were computed using the heuristic algorithm MB1 (see Section 2.3.1.1)

which has been modified in order to incorporate the additional constraints.

z* (SP'): cost of the optimal CPMP solution found by algorithm EHP (or cost of the

best solution found).

z(DSP1): lower bound produced by procedure H1 after 300 subgradient iterations.

tH1 	computing time of bounding procedure H1.

%ErisPl: percentage error of the lower bound z(DSP1) (i.e.

%EDsp1=100z(DSP1)/ z* (SP')).

73

z'(DSP): final lower bound produced by procedure HDSP.

tHDSP: 	total computing time of procedure HDSP.

%Eusp: percentage error of the lower bound ADSP) (i.e.

%Elmsp=100ADSP)/ z* (SP')).

LS: 	= z'(DSP) + GAPMIN, where GAPMIN is the value defined in Section 3.5.1.

(The solution of cost z* (SP') produced by EHP is optimal if

z* (SP') 5_ LS).

151
	number of clusters generated in EHP.

tEHp:
	total computing time of procedure EHP including tHDSp.

z* (BB) : cost of the optimal CPMP solution found by algorithm BB (or cost of the

best solution found).

tBB: 	computing time of algorithm BB.

A time limit of 3600 CPU seconds has been imposed in both the EHP and BB

algorithms for all test problems. The parameter 6,, used in GEN(Fi), has been set to

2000 in both procedures H2 and EHP for all test problems.

Table 3.5 shows that most of the problems of class A are relatively easy, with the

only exception of problem CCPX8. In fact, bound z(DSP1) is already close to the

optimum and bound z'(DSP) is capable of finding four optimal solutions. The good

quality of the bound enables both EHP and BB to be very effective on all problems,

except CCPX8. Note that on this set, BB has been able, within the time limit of 3600

sec., to prove the optimality of all instances, while EHP was unable to find an optimal

solution for CCPX8.

Table 3.6 shows the results of problems of class B. For these problems, z'(DSP) does

not improve much over z(DSP1), z(DSP1) being already very close to the optimal

solution cost on all instances. Algorithm EHP proves to be superior to BB in fact it is

able to prove the optimality of eight solutions, while BB is able to solve to optimality

only four problems. Furthermore EHP finds an improved solution of problem CCPX18

without proving its optimality, since its cost is higher than the corresponding LS value.

74

Algorithm BB cannot improve the upper bound of six out of the ten instances.

Moreover, EHP finds the optimal solution in a much smaller computing time.

Table 3.7 presents the results for the instances of class C that include additional

constraints. Algorithm EHP is able to prove the optimality of nine solutions out of ten,

while BB can solve only one problem. Notice that the quality of lower bound z(DSP1) is

much worse than on the class A problems (from which the class C problems are drawn)

and that z'(DSP) makes an important contribution in filling the gap z* (SP')-z/(DSP).

Table 3.8 shows the results for problems of class D. The problems of class D are

harder than the corresponding ones of class C for both algorithms EHP and BB. This

reflects a worse quality of lower bound H1 even though z'(DSP) continues to contribute

significantly over z(DSP1). EHP finds, for all problems, a better solution than the initial

upper bound, but cannot prove the optimality of any of the solutions obtained.

Algorithm BB, on the other hand, is unable to improve over the initial upper bound for

any of the ten instances.

3.7 SUMMARY

In this chapter, a new method for the Capacitated p-Median Problem (CPMP) based

on a Set Partitioning formulation of the problem has been presented. A valid lower

bound to the optimal solution cost is obtained by combining two different heuristic

methods for solving the dual of the LP-relaxation of the exact formulation. The dual

solution obtained is used for generating a reduced set partitioning problem that can be

solved by an integer programming solver. The solution achieved might not be an

optimal CPMP solution, however the new method allows us to estimate its maximum

distance from optimality. The computational performance of the new exact algorithm

has been evaluated on two classes of test problems proposed in the literature and on two

new sets of difficult CPMP instances with additional constraints. The results show that

the exact algorithm is able to solve exactly CPMP's of size up to 100 customers.

75

°Medians 	 °Medians
• Customers 	 • Customers

(b) Solution of Problem C5
	

(c) Solution of Problem D5

°Medians
• Customers

(a) Solution of Problem CCPX5

Figure 3.4: Example of CPMP solutions with additional constraints

76

Table 3.5. Computational results of problem class A

HDSP EHP BB

Probl. z(UB) z(DSP1) till %EDsP1 z'(DSP) tHDSP %EHDSP Z* (SP') LS VI tEHP Z* (BB) tBB

CCPX1 714 704.2 0.9 98.8 705.0 1.4 98.9 713 715 570 . 	1.7 713 5.4
CCPX2 741 739.5 0.3 99.9 740.0 0.4 100.0 740 a 742 10 0.4 740 0.8
CCPX3 752 748.2 0.7 99.6 749.0 0.9 99.7 751 753 64 1.0 751 2.4
CCPX4 652 650.2 0.4 99.9 651.0 0.6 100.0 651 a 653 23 0.6 651 0.7
CCPX5 666 663.1 0.5 99.9 664.0 0.7 100.0 664 a 667 19 0.7 664 4.1
CCPX6 779 777.6 0.4 100.0 778.0 0.5 100.0 778 a 780 41 0.6 778 2.0
CCPX7 788 778.1 1.7 98.9 778.3 2.6 98.9 787 788 1915 4.7 787 29.3
CCPX8 821 770.8 1.9 94.0 772.1 26.7 94.2 821 c 789 30491 3600.0 820 1990.3
CCPX9 716 712.1 1.2 99.6 712.6 1.6 99.7 715 717 355 1.8 715 14.3

CCPX10 830 815.1 2.3 98.3 818.4 4.5 98.7 829 834 2511 12.2 829 288.5
Averages 	 1.0

	
98.9
	

4.0
	

99.0
	

362.4
	 233.8

(a) optimal solution obtained by procedure HDSP.

(c) no solution found of cost smaller than z(UB).

77

Table 3.6. Computational results of problem class B

HDSP EHP BB
Probl. z(UB) z(DSP1) tHi %Epspl z'(DSP) tHDSP %EHDSP Z * (SP') LS 191 tEHP Z* (3B) tBB

CCPX11 1007 1000.1 3.6 99.4 1001.1 6.4 99.5 1006 1008 2551 11.7 1006 1099.3
CCPX12 967 958.2 4.1 99.2 958.5 11.6 99.2 966 968 17458 832.8 967 c 3600.0
CCPX13 1027 1021.1 2.8 99.5 1021.6 3.7 99.6 1026 1028 995 5.1 1026 88.3
CCPX14 983 971.1 4.2 98.9 971.8 12.0 99.0 982 984 17362 304.3 983 c 3600.0
CCPX15 1092 1079.1 4.8 98.9 1079.8 16.6 99.0 1091 1092 19394 558.4 1092 c 3600.0
CCPX16 955 950.2 3.2 99.6 951.3 4.9 99.7 954 956 1160 6.4 954 1911.6
CCPX17 1035 1024.1 4.7 99.0 1025.3 11.8 99.2 1034 1036 10252 280.5 1035 c 3601.0
CCPX18 1044 1031.2 4.3 98.9 1031.7 15.9 98.9 1043 b 1040 23211 1137.8 1044 c 3600.0
CCPX19 1032 1025.1 4.3 99.4 1026.3 7.5 99.5 1031 1033 3105 22.2 1031 3115.8
CCPX20 1006 972.2 6.7 96.6 972.8 77.3 96.7 1006 c 984 62872 3600.0 1013 c 3600.0

Averages 	 4.3
	

99.0
	

16.8
	

99.0
	

675.9
	

2781.8

(b) this solution was not proved to be optimal.

(c) no solution found of cost smaller than z(UB).

78

Table 3.7. Computational results of problem class C

HDSP EHP BB

Probl. z(UB) z(DSP1) tHi %Epspl z'(DSP) tH-Dsp %EHDSP z* (SP') LS ICI tEHP z* (BB) tBB

Cl 477 423.2 1.5 88.9 435.0 72.9 91.4 476 476 46392 2644.6 477 c 3600.0
C2 519 472.2 1.8 97.6 480.3 2.6 99.2 484 486 240 2.7 484 909.0
C3 504 440.1 1.7 87.5 468.6 35.2 93.2 503 b 499 26695 74.8 504 c 3600.0
C4 464 422.1 1.9 94.0 441.8 8.7 98.4 449 468 809 9.9 464 c 3600.0
C5 521 474.1 2.0 96.8 490.0 3.3 100.0 490 492 91 3.3 491 b 3600.0
C6 564 513.2 1.8 92.5 544.9 20.9 98.2 555 572 1312 23.5 564 c 3600.0
C7 536 487.3 2.6 92.1 501.0 26.0 94.7 529 531 16714 369.2 536 c 3600.0
C8 479 436.1 1.9 93.4 461.9 5.6 98.9 467 469 298 5.7 479 c 3600.0
C9 497 452.3 2.8 91.9 489.7 21.1 99.5 492 513 269 21.4 497 c 3600.0

C10 544 495.1 2.5 94.5 512.5 5.2 97.8 524 526 709 5.7 544 c 3600.0
Averages 	 2.0

	
92.9
	

20.1
	97.1
	 316.1

	
3330.9

(b) this solution was not proved to be optimal.

(c) no solution found of cost smaller than z(UB).

79

Table 3.8. Computational results of problem class D

HDSP EHP BB

Probl. z(UB) z(DSP1) tHi %Epspl ADSP) tHDSP %EHDSP z* (SPA) LS VI tEHP z* (BB) tBB

D1 819 704.3 1.5 86.1 738.7 126.1 90.3 818 b 763 39487 478.2 819 c 3600.0
D2 835 739.3 1.6 93.8 758.7 68.4 96.3 788 b 771 39837 85.9 835 c 3600.0
D3 857 747.4 1.7 87.3 768.7 138.6 89.8 856 b 787 46250 249.0 857 c 3600.0
D4 734 650.1 1.6 90.5 682.3 81.5 95.0 718 b 697 37240 94.7 734 c 3600.0
D5 776 663.2 2.2 85.6 723.9 108.3 93.4 775 b 742 39930 126.1 776 c 3600.0
D6 878 777.3 1.6 91.6 810.9 87.2 95.5 849 b 831 41040 172.9 878 c 3600.0
D7 878 777.2 2.2 91.2 818.4 113.6 96.1 852 b 832 46663 131.4 878 c 3600.0
D8 870 770.4 1.9 90.3 801.6 108.0 94.0 853 b 818 44253 224.3 870 c 3600.0
D9 804 712.1 2.0 92.7 736.4 85.1 95.9 768 b 746 40311 170.8 804 c 3600.0

D10 922 816.2 4.2 91.2 845.9 111.1 94.5 895 b 869 46395 568.5 922 c 3600.0
Averages 	 4.2

	
90.0
	

102.8
	

94.1
	 230.2

	
3600.0

(b) this solution was not proved to be optimal.

(c) no solution found of cost smaller than z(U)

80

CHAPTER 4

NEW EXACT ALGORITHMS FOR

ROUTING PROBLEMS BASED ON A

TWO-COMMODITY NETWORK FLOW

FORMULATION

4.1 INTRODUCTION

Routing problems require the determination of optimal sequences subject to a given

set of constraints. The best known problem of this type is the classical Traveling

Salesman Problem (TSP), calling for a minimum cost Hamiltonian cycle on a given

graph. Another well known routing problem is the Vehicle Routing Problem (VRP) that

involves the optimization of the distribution of goods from a single depot to a given set

of customers with known demands using a given number of vehicles of fixed capacity.

Both the TSP and the VRP play a central role in distribution planning and have been

studied extensively over the past four decades. For the TSP, see the book edited by

Lawler et al. (1985), Laporte (1992a) and Ringer et al. (1995). For the VRP, see

Magnanti (1981), Bodin et al. (1983), Christofides (1985), Golden and Assad

(1986,1988), Bodin (1990), Laporte (1992b) and Fisher (1995). See also the recent

bibliographies by Laporte and Osman (1995) and by Laporte (1997).

The TSP has been proven to be NP-hard by Karp (1972). The VRP is a

generalization of the TSP and is also a NP-hard problem.

81

In this chapter we investigate new integer programming formulations for routing

problems which are based on the two-commodity network flow formulation of the TSP

described by Finke et al. (1984). This formulation is interesting in many different ways.

It can be shown that its LP-relaxation satisfies a weak form of the subtour elimination

constraints. The formulation can also be modified to accommodate different constraints

and, therefore, is capable of being extended to different routing problems. The two-

commodity formulation has been used by Lucena (1986) to derive new lower bounds

for the VRP and by Langevin et al. (1993) for solving the TSP and the Makespan

Problem with time windows. In this chapter, we use the two-commodity approach to

derive new integer programming formulations for the VRP, the TSP with mixed

deliveries and collections (TSPDC) and the TSP with Backhauls (TSPB). New lower

bounds are obtained from the linear relaxation of these formulations which are further

strengthened by new valid inequalities.

The chapter is organized as follows. In Section 4.2 the original two-commodity

network flow formulation of Finke et al. (1984) is described and a new formulation for

the symmetric TSP is presented. In Section 4.2, a lower bound for the TSP based on the

LP-relaxation of the new formulation strengthened by valid inequalities is described. In

Sections 4.3 the new TSP formulation is extended to derive a new integer programming

formulation and an exact branch and cut algorithm for the VRP. In Section 4.4 new

formulations and exact branch and cut algorithms for both TSPDC and TSPB are

described. In Sections 4.3 and 4.4, computational results of the new algorithms are also

presented. Finally, conclusions are presented in Section 4.5.

4.2 A TWO-COMMODITY FORMULATION OF THE TSP

Let G = (V, A) be a directed graph where V = 11,2,...,0 denotes the set of vertices

and A the set of arcs. A non-negative cost cal is associated with each arc (i, j) E A . The

TSP is the problem of finding a minimum cost Hamiltonian circuit on graph G.

Finke et al. (1984) introduced the following two-commodity network flow

formulation for the TSP.

82

Pt = —1 	otherwise
{(n — 1) for i = 1

(4.1)

and

qi =
1 	otherwise

{—(n-1) for i = 1
(4.2)

Figure 4.1. Flows in the Hamiltonian circuit

For each i e V , the amount pi of a commodity P and the amount q1 of a commodity

Q are defined as follows:

The idea behind the formulation is that the salesman, when traversing a Hamiltonian

circuit, should always carry with him, through any arc, the same total combined amount,

n —1, of the two-commodities. Let us suppose, for instance, that his tour starts from

vertex 1, with n-1 units of P and 0 units of Q. This makes a total combined amount of

n —1 units of flow. At the following vertex in the tour, the salesman leaves one unit of

P and picks-up one unit of Q, as implied by (4.1) and (4.2). Once again, the total

combined amount of flow he will be carrying will be equal to n —1 units. Proceeding in

this way, the salesman finally arrives back to vertex 1 carrying 0 units of P and n —1

units of Q. One interpretation that could be made is that, at any arc of the Hamiltonian

circuit, the amount of commodity P represents the number of vertices left to be visited

by the salesman. Conversely, the amount of commodity Q represents the number of

vertices that have already been visited. This process is illustrated, for a 5-vertex

Hamiltonian circuit, in Figure 4.1.

83

Let xiP and xiQ be the units of commodity P and commodity Q carried by the

salesman in traversing arc (i, j)E A, respectively. Let 4i; be a binary variable that is

equal to 1 if arc (1, j)E A is in the optimal TSP solution, 0 otherwise.

The formulation of the TSP proposed by Finke et al. (1984) is as follows:

(TSP) 	z(TSP)= Min 	cyij 	 (4.3)
(i,DEA

subject to Exii; — Exci
j€17 	jEV

	

qi , 	 Vi E V 	(4.5)
jEV 	 jeV

1k +.0=n-1, 	 (4.6)
jEV

xiP

xi; +4 = (n 	, 	 (4.7)

> 0 x9 > 0 — 	— 	 V(i, j)E A 	(4.8)

ij E {0,1} , 	 (4.9)

Constraints (4.4), (4.5) and (4.8) define a feasible flow for commodity P and a
feasible flow for commodity Q. Constraints (4.6) and (4.7) ensure that there is exactly

one arc leaving each vertex i E V which carries a combined total flow of n —1 units.

There is also exactly one leaving arc with n —1 units at each vertex since equations

(4.4) and (4.5) add up to 0. In addition, there must be a path from vertex 1 to every other

vertex j and a path from j back to 1 because of the supply-demand pattern. Hence (4.3)-

(4.9) characterize exactly a Hamiltonian circuit of cost z(TSP) .

Using the flow variables {4} and 14 } only and eliminating constraints (4.7), the

above formulation can be rewritten as follows:

(TSP) 	z(TSP) = Min 	1 ,..(
U
 xf -Fx9)

(n —1) (i,j)EA 	1-1

subject to (4.4), (4.5), (4.6), (4.8) and

4 +4 E 10,n —11,

(4.10)

V(i, j)E A 	(4.11)

84

(4.4) = pi ,

Then, a valid lower bound for the TSP can be obtained by replacing the integer

conditions (4.11) with the inequalities xi; +4 (n —1) . However, these constraints

are redundant because of (4.6). Consequently, we have the following LP-relaxation:

(LRTSP) z(LRTSP) . Min 	1
') 	

+ x9)
(n 	AEA

subject to (4.4), (4.5), (4.6) and (4.8)

A comparison of the lower bound derived from the two-commodity formulation

LRTSP and from the Assignment Problem (AP) yields Theorem 4.1.

The AP problem associated with the TSP is defined as follows.

(AP) 	 z(AP) = Min
(i,i)EA

=1,
jeV

E4ii =1,
jeV

subject to

Vi e V

0 , 	 V(i, j)e A

Theorem 4.1 (Finke et al. (1984)). The two lower bounds for the TSP satisfy the

inequality z(LRTSP) z(AP). Both bounds coincide for indistinguishable commodities

P=Q.

Proof. Consider the combined flow ij per unit of flow

ij = (xi; + 	An 	. 	 (4.12)

	

Constraints (4.6) imply that yi 	=1 and (4.4), (4.5) imply E ji =1. Hence

	

jeV 	 jEV

4 = [4u] is a feasible solution of the assignment problem AP. Thus,

z(LRTSP) > z(AP).

Now suppose we have identical commodities P and Q. Let E be an integer valued

assignment solution. The arcs with 4,i =1 form a collection of circuits. Since P and Q

are interchangeable, we have a total requirement of zero units at each vertex. It is

therefore easy to find numbers xi; and x , satisfying xi; + 4 = (n —1) whenever

85

ail = 1 , which satisfy constraints (4.4), (4.5) and (4.8). Hence z(LRTSP) = z(AP) for

identical commodities P and Q.

A circuit of graph G is called prehamiltonian if it passes at least once through all

vertices of G. A prehamiltonian graph is a graph that possesses such a circuit. Consider

a feasible solution xP and xQ of the two-commodity LP-relaxation LRTSP and define

its flow supporting graph G x = (V ,Ax) where Ax = j)E AI xi; + 	> 01.

For simplicity, we will use the following notations. For given subsets of nodes

S, S' c V , the set (S : 5') (cut between S and S') is the set of arcs with one end-node in

S and the other in S' ((S : S')= {(i, j)E A : i E S, j E S'}), y(S) is the set of arcs with

both end-nodes in S (y(S)= {(i, j)E A: i, j E S}). For any subset F of arcs, x(F) denotes

the sum of the 	values over all arcs (i, j)E F .

Theorem 4.2 (Finke et al. (1984)). The graph G x = (V, Ax) is prehamiltonian.

Proof. G x is prehamiltonian if, and only if, G x is strongly connected. Suppose

j E V. A vertex i # 1 has a supply of one unit of Q. Since the vertex 1 is the only sink

for Q, there must be a path in G x from i to 1. Similarly, a vertex j #1 has a

requirement of one unit of P. Vertex 1 is the only source for P, i.e., there is also a path

in G x from 1 to j. Hence one obtains a path from i to j for all pairs of vertices.

Theorem 4.3 (Finke et al. (1984)). Let xP and xQ be a feasible two-commodity flow.

Then the associated assignment solution = (xi) + xQ An —1) satisfies the following

weak version of subtour elimination constraints:

x((W : V — W)). min(IWI,IV — WI)/(n —1) 	 (4.13)

x(Y(W)) < IWI min(IW I, IV — 1471)/(n —1) 	 (4.14)

for all W c V with 2 5_ [WI n— 2.

Proof. Let (W,V —W) be a partitioning. Suppose that vertex le W . The set V — W has

a requirement of IV —WI units of commodity P. Hence at least IV —WI units are sent

86

from W to V —W , i.e., x((W : V —W 	IV — WIAn —1) . Similarly, if lE V -W , at least

the total supply of IWI units of Q has to be sent out of W. Hence

x((W : V —W)) 	—1). Thus (4.13) is valid. Inequality (4.14) is an immediate

consequence of (4.13)m

An optimal integer solution to the assignment problem corresponds to a collection of

circuits or subtours. One characteristic property of this configuration, including the case

of a single (Hamiltonian) circuit is the symmetry

x((W :V —147))= x((V —W :W)) 	 (4.15)

for all subsets W c V .

Theorem 4.4 (Finke et al. (1984)). The associated assignment solution

= (x13 + xQ)/(n —1) possesses the symmetry property.

Proof. The theorem is true for the trivial cases 	1 and IWI n —1. For the

remaining subsets W one may assume that le V —W . Then there are exactly IWI more

units of P entering W than there are units of P leaving W. Similarly, there is exactly an

excess of IWI units of Q leaving W. Hence we have the same total two-commodity flow

in both directionsm

4.2.1 A NEW FORMULATION FOR THE SYMMETRIC TSP

In this section we describe a new integer programming formulation for the

symmetric TSP (STSP) based on the two-commodity flow formulation of Finke et al.

(1984) described in the previous section.

The formulation of Finke et al. for the STSP would require to define a directed graph

containing two arcs ((i,j) and (j,i)) for each edge {i, j} E E . In this case the formulation

of Finke et al. requires 2n(n-1) variables {xI; } and {x? } , and n(n-1) variables 	} .

The new formulation we are going to describe requires half the number of variables

of the Finke et al. formulation.

87

xi)

X J1

Figure 4.2. The symmetric TSP

Consider the STSP on the complete undirected graph G = (V , E) , with vertex set

V = {1,2,...,n} and edge set E = 	j} : i, j E V, i < j} .

Let 	be a 0-1 binary variable equal to 1 if edge 	j}E E is in solution, 0

otherwise. Let xu be the flow value of arc (i, j), i, j E V ,i # j . The new formulation is

obtained from the observation that the flows of both commodities P and Q carried by

the salesman in traversing edge j} E E can be represented by the variables 	and

xii , respectively, as shown in the example of Figure 4.2.

For simplicity, we will use the following notation. For given subset of nodes S c V ,

the set 8(S) (coboundary of S) is the set of edges with one end-node in S and the other

in V \ S (8(S) = {{i, j}E E:iE Sd EV -S}), y(S) is the set of edges with both end-

nodes in S (y(S). j}c E j E Sp. For any subset F of edges, x(F) denotes the

sum of the 	values over all edges {i, j}E F .

The new mathematical formulation for the STSP is as follows:

88

(STSP) z(STSP)= Min Eck& 	 (4.16)
{i,j)EE

subject to y xi., - E x ii = —2 , 	i # 1 	 (4.17)
jEV 	jEV

E 	
}

Vi E V
x j., — E xfi = 2(n —1), i =1 (4.18)

jEV 	jEV

xii + xii = (n — l) i, , 	V{i, j} E E 	 (4.19)

x(8(0)= 2, 	 Vi c V 	 (4.20)

xu 	0, 	 Vi, je V,i # j 	(4.21)

i•i E OA , 	 V{i, j}e E 	 (4.22)

Constraints (4.17), (4.18) and (4.21) define a feasible flow for variables {xu} and the

supply-demand pattern impose that there is a path from vertex 1 to every other vertex j

and a path from j back to 1. Constraints (4.19) and (4.20) force the degree of each vertex

to be 2. Constraints (4.22) are the integrality constraints. Hence (4.16)-(4.22)

characterize exactly a Hamiltonian cycle of cost z(STSP).

Note that formulation STSP can be written in terms of variables {xii } only since each

i.i can be replaced by (xu + x ii)/(n —1). Hence, the number of variables of the STSP

formulation is n(n —1) which is half the number of variables of the original formulation

for the STSP. Similarly, the number of constraints has been reduced from 3n (original

formulation) to 212 (STSP formulation).

A valid lower bound for the TSP can be obtained by replacing the integer conditions

(4.22) with the inequalities xu + xu (n —1). Consequently, we have the following LP-

relax ati on :

(LRSTSP) 	z(LRSTSP) = Min 	1 	I c, (x j., + xii)
(n-1) fi, iieE

subject to (4.17), (4.18), (4.20), (4.21) and

xu + xii (n —1), V{i, j}C E

89

4.2.2 VALID INEQUALITIES

In this section we describe some valid inequalities that are satisfied by any feasible

integer solution of the STSP formulation, but that are not necessarily satisfied by a

feasible LRSTSP solution. Hence, the lower bound derived from the LP-relaxation can

be further improved by introducing such violated inequalities.

Trivial inequalities

The inequalities 0 	5_ 1, for 	E , are referred to as the trivial inequalities.

Flow inequalities

Consider xif + x~i = (n 	, V{i, j} E E, i # 1, j # 1. In any feasible integer

solution, if 	=1, then xu 1 and xii 1, while in a feasible LRSTSP solution, we

might have y > 0 and either x1 = 0 or xii = 0 . Therefore in LRSTSP we can impose

the following constraints.

}
Vli, E E,i 	j 1

or, using equation xq + x ji = (n 	:

xij (n — 2) — xii 0

xfi (n — 2)— xu 0

Vi,jE V,i < j,i 1 	(4.23)

We define inequalities (4.23) to be the flow inequalities.

Subtour elimination inequalities

The classical subtour elimination inequalities for the two-commodity flow

formulation of the TSP can be expressed in terms of the txu variables used in

formulation STSP. The original subtour elimination inequalities introduced by Dantzig

et al. (1954) are given by:

90

x(y(W)) 'WI —1, VW c V, 2 IWI n — 2

or

x(8(W)) 2, VW c V, 2 IWI n— 2.

The variables 	can be expressed as tj = (xij + x ji)1(n —1) in formulation STSP

and, therefore, the subtour elimination constraints become:

E(xii d-x.,i)(1w1-1)(n —1), VW c V, 2 	'WI 	n— 2
i,jew
i<j

(a)

(4.24)
or

E 	E(xt, 1-xii) 	2(n-1), VW c V, 2 	'WI 	n — 2
ieW jeV—W

(b)

The LP-relaxation violates a subtour elimination inequality if and only if the

minimum weight cut in G x has weight less than 2. Since the minimum weight cut in a

graph with nonnegative edge weights can be found in polynomial time with the

algorithm proposed by Gomory and Hu (1961), the separation problem for the subtour

elimination inequalities can be solved in polynomial time. The Gomory-Hu algorithm is

based on the computation of n —1 maximum flow problems on some weighted graphs

derived from G x . The complexity of a maximum flow algorithm is

O~VIIEI Iog 	(see Goldberg and Tarjan (1988)), and so the complexity of the

algorithm is 471 21EI/ogV12 AE1)). For large instances of the TSP such a complexity is

expensive in terms of actual computation time, since the separation problem has to be

solved several times in a branch and cut algorithm. For this reason many heuristic

procedures have been proposed to find violated subtour elimination inequalities within

short time (see, e.g., Crowder and Padberg (1980) and Grotschel and Holland (1991)).

The procedure we implemented for the identification of violated subtour elimination

inequalities is based on the method proposed by Padberg and Rinaldi (1990). Padberg

and Rinaldi describe an exact algorithm that finds the minimum weight cut in a graph

with a drastic reduction in the number of maximum flow computations. Even though the

algorithm has the same worst case time bound as the Gomory-Hu algorithm, it runs

much faster in practice and it allows the execution of an exact separation algorithm at

every iteration of a branch and cut procedure. The idea of this algorithm is to exploit

91

some simple sufficient conditions on Gx that guarantee that two nodes belong to the

same shore of a minimum cut. If two nodes satisfy one of these conditions then they are

contracted. The contraction of two nodes in Gx produces a new weighted graph where

the two nodes are identified into a single node; loops are removed and any two parallel

edges are replaced by a single edge with weight equal to the sum of their weights. The

resulting graph has one node less and the shores of a minimum cut in it can be turned

into the shores of a minimum cut in G x , by replacing the node that results from the

identification with the two original nodes. The contraction of a pair of nodes can be

applied recursively until no more reductions apply. At this point the Gomory-Hu

algorithm can be applied to the resulting reduced graph.

A different algorithm also based on the contraction of pairs of nodes is proposed by

Nagamochi and Ibaraki (1992a, 1992b). The algorithm does not require the computation

of a maximum flow and runs in 4711E1+11712 log(IVI)) time. Another algorithm for the

minimum cut is proposed in Hao and Orlin (1992). This is a modified version of a

maximum flow algorithm and it is able to compute the minimum cut within the same

running time required by the computation of a single maximum flow

(OfrIlEllogV12 AEI))). Karger (1993) proposed a randomized algorithm for computing

a minimum cut with high probability. The algorithm runs in *111712 log 3 (IVI)). An

improved version (06712 log 3 (IVI))) of the same algorithm has been proposed by

Karger and Stein (1993).

4.3 THE VEHICLE ROUTING PROBLEM

In this section the VRP is formulated by using a two-commodity network flow model

and an exact branch and cut method for solving the problem to optimality is described.

The VRP is the problem of designing, for a vehicle fleet located at a central depot, a

number of feasible routes such that each one starts and ends at the depot and vehicle

capacity is not exceeded. The objective is to supply a set of customers requiring

deliveries at minimum total distribution cost. In real-world VRPs the distribution cost

includes many elements, such as the cost of fuel, tyres, maintenance costs, driver wages,

92

the cost of distance travelled and time spent to visit all customers. In addition to vehicle

capacity restrictions, real-world VRP's (see Christofides and Mingozzi (1990)) involve

complicated constraints like time-windows to visit customers, customer-vehicle

incompatibilities, mixed deliveries or collections on the same route, multiple interacting

depots, etc. The practical importance of the problem provides the motivation for the

effort involved in the development of heuristic algorithms (see Bodin et al (1983),

Christofides et al. (1979b) and Fisher and Jaikumar (1981)). The reader can refer to

Christofides (1985), Magnanti (1981) and Osman (1993) for a survey of vehicle routing

applications, model extensions and solution methods.

The VRP has been shown to be NP-hard. The fact that few algorithms have been

produced to date, which can solve the VRP optimally reflects the difficulty of this

problem. During the past fifteen years, exact algorithms have also been developed to

solve capacitated routing problems of reasonable size to optimality. For example,

Agarwal et al. (1989) and Mingozzi et al. (1994) use a set partitioning and column

generation approach and Fisher (1994) uses a lagrangian approach based on the

minimum k-tree relaxation. Hadjiconstantinou et al. (1995) proposed an exact algorithm

that uses lower bounds obtained from a combination of two relaxations of the original

problem which are based on the computation of q-paths and k-shortest paths. Other

exact approaches are presented in the surveys of Christofides (1985) and Laporte

(1992b). Fisher (1994) reports on the solution of some test problems with up to 100

customers to optimality using a lagrangian relaxation approach embedded in branch and

bound. On the other hand, one standard test problem with 76 customers (see

Christofides and Eilon (1969)) have never been solved to optimality.

Another approach to optimally solve VRPs is the polyhedral approach which has

proved to be efficient for large TSP instances (see for example, Padberg and Rinaldi

(1991)). This approach extends to the VRP the successful results of polyhedral

combinatorics developed for the TSP by Chvatal (1973) and by GrOtschel and Padberg

(1979,1985). Initial investigations in the polyhedral aspects of the identical customer

VRP and in the similarities between the TSP and VRP polyhedra were performed by

Laporte and Nobert (1984), Laporte et al. (1985), Araque (1990), Araque et al. (1990)

and by Campos et al. (1991). A more complete description of the VRP polyhedron can

be found in Cornuejols and Harche (1993) and in Augerat and Pochet (1995).

93

Computational results using the polyhedral approach are reported in Araque et al.

(1994) (for the identical customer case), Cornuejols and Harche (1993) and Laporte et

al. (1985). They solved moderate size problems involving up to 60 customers. Augerat

et al. (1995) present a branch and cut algorithm to solve the VRP which is based on the

partial polyhedral description of the corresponding polytope. The valid inequalities used

in their method can be found in Cornuejols and Harche (1993) and in Augerat and

Pochet (1995). Augerat et al. concentrated mainly on the design of separation

procedures for different classes of valid inequalities. Several separation heuristics have

been implemented and compared for the capacity constraints (generalized subtour

elimination inequalities). The computational results show that the capacity constraints

play a crucial role in the development of a cutting plane algorithm for the VRP. Augerat

et al. also implemented heuristic separation algorithms for other classes of valid

inequalities that also led to significant improvements: comb and extended comb

inequalities, generalized capacity inequalities and hypotour inequalities. The resulting

cutting plane algorithm has been applied to a set of instances taken from the literature.

Some branching strategies have been implemented to develop a branch and cut

algorithm that has been able to solve large VRP instances (up to 135 customers).

4.3.1 A TWO-COMMODITY FORMULATION OF THE VRP

The VRP can be formulated as follows. A complete undirected graph G = (V ,E) is

given where V = {0,1,...,n} is the set of vertices and E is the set of edges.

To every edge {i, j} E E is associated a non-negative cost cu . V' = V1{0} is a set of

n vertices, each vertex corresponding to a customer and 0 is the vertex corresponding to

the depot. Henceforth, i E V' will be used interchangeably to refer both to a customer

and its vertex location. Each customer i requires a supply of qi units from depot 0. A

set of M identical vehicles of capacity Q is located at the depot and must be used to

supply the customers. It is required that every route performed by a vehicle starts and

ends at the depot and that the load carried is less than or equal to Q. The cost of a route

corresponds to the distance travelled (computed as the sum of the costs of the arcs

forming the route). The problem we consider is to design M routes, one for each vehicle,

so that all customers are visited and the sum of the route costs is minimized.

94

	 Pa

	P13

Depot
Figure 4.3. Flow circuits for a three customers route

The idea behind this formulation is to use two flow variables, xi, and x ji , to

represent an edge j} of a feasible VRP solution. If a vehicle travels from i to j then

xi./ represents the load of the vehicle and xi, represents the empty space on the vehicle

(i.e., x ji = Q — xii), whereas, if the vehicle travels from j to i then xu and x11 represent

the empty space on the vehicle and the load, respectively.

The flow variables 	define two flow circuits for any route of a feasible solution:

one circuit is defined by the flow variables representing the vehicle load, while the

second one is defined by the flow variables representing the empty space on the vehicle.

In Figure 4.3 is shown a three customer route for a vehicle of capacity Q=15 and the

two circuits Pa and Pa represented by the flow variables xu defining the route.

Circuit Pa is formed by the variables representing the vehicle load: the flow x08 =14

indicates the total demand of the three customers, x82 = 1 1 represents the load of the

vehicle in traveling from 8 to 2 after having unloaded 3 load units at customer 8,

x29 = 4 represents the load of the vehicle in traveling from 2 to 9 after having unloaded

95

7 load units at customer 2, finally x90 = 0 represents the load of the vehicle in returning

to the depot after having unloaded the remaining 4 load units at customer 9. Note that

for every edge {i, j} of the route we have xij + x ji = Q .

Let xij be a 0-1 binary variable equal to 1 if edge fi, jlE E is in solution, 0

otherwise. Let xu be the flow value of arc (i, j), i, j E V. i # j .

The mathematical formulation for the VRP is as follows:

(VRP) z(VRP) = Min EciAu
fi,A€E

subject to Exu —Exii = —2qi , 	i 0
jEV 	Jo,

Exu —Exii = 2 E q.; ,
jEV 	jEV

i = 0

(4.25)

(4.26)

(4.27)
Vi E V

Xii

x(8(i)) = 2 ,

x(6(i)) = 2M ,

xu 	0 ,

E {0,1} ,

Constraints (4.26), (4.27) and (4.31) define

Vli, E E
	 (4.28)

i 0
	 (4.29)

Vie V
i = 0
	 (4.30)

Vi, je V 	 (4.31)

E 	 (4.32)

a feasible flow for variables fxu 1.

Constraints (4.28) together with (4.29) and (4.30) force the degree of each customer to

be 2 and the degree of the depot to be 2M, respectively. Constraints (4.32) are the

integrality constraints. The supply-demand pattern involved ensures that there are paths

from vertex 0 to any vertex in V', and back from these vertices to vertex 0. Since, from

(4.28) and (4.31), xu + x ji = Q ij , V{i, j} E E , the capacity of the vehicle will never be

exceeded in the route allocated to it.

Note that the STSP formulation described in Section 4.2.1 can be derived from the

VRP formulation by setting qi =1, ViEV' , M =1 and Q = n-1.

96

4.3.2 A LOWER BOUND FROM THE LP-RELAXATION

A valid lower bound for the VRP can be obtained by considering the LP-relaxation

of formulation VRP. Using equations (4.28), we can eliminate {4,} variables and the

LP-relaxation can be written as follows:

(LRVRP) z(LRVRP) = Min 1 Ec„.•(x„.-Fx.,.)
	

(4.33)

subject to (4.26), (4.27), (4.29), (4.30), (4.31) and

xu + xfi Q, 	j} E E 	 (4.34)

As described for the TSP case, some valid inequalities can be added to the LP

relaxation of formulation VRP in order to improve the lower bound. These inequalities

are satisfied by any feasible integer solution of the VRP formulation, but they are not

necessarily satisfied by a LRVRP solution. Hence, the lower bound can be strengthened

by identifying violated inequalities and adding them to the LP relaxation. For the

LRVRP formulation we consider the trivial inequalities used for the STSP formulation

and we modify the flow inequalities and the subtour inequalities as described below.

Flow inequalities

Consider xu + xfi = 	V{i, 	E, i # 0, j # 0 . In any feasible integer solution, if

= 1 , then xy q j and x ji > qi . Hence, any feasible LRVRP solution where 4u > 0

and either xu = 0 or xfi = 0, for some edge 	j}E E, cannot be a feasible VRP

solution. Therefore, we can force any LRVRP solution to satisfy the following

constraints.

Vti, E E,i # 0, j # 0

or, using equation xu + x fi = Q Ij :

xu (Q— q j)— q ix ji

x ii (Q— qi)— qi xij

Vi, je V,i < 	0

97

Capacity constraints

Denote by r(S), S c , a lower bound on the minimum number of vehicles needed

to satisfy the customers demand in a set S in any feasible solution, that is:

r(S) = [IE qi VQ1
)

where [xl is the smallest integer greater that or equal to x.

We obtain the following valid inequality:

x(15(S)). 2r(S)

also called generalized subtour elimination constraint.

Harche and Rinaldi (1991) showed that the separation problem for the capacity

constraints is NP-Complete and designed several heuristics. Augerat et al. (1995) used

different heuristics to identify violated capacity constraints. They compare the heuristics

of Harche and Rinaldi (1991) with a greedy shrinking algorithm and a tabu search

based heuristic. The computational results for the lower bounds obtained using the

different identification heuristics on a set of instances taken from the literature show

that the best performance is achieved by combining the greedy shrinking algorithm and

the tabu search algorithm.

We identified violated capacity constraints by means of the greedy shrinking

algorithm proposed by Augerat et al. Given an initial subset of customers S, at each

iteration, a customer k is added to S in such a way that x((S : k)) is maximized.

Customer subsets are randomly generated and the number of initial subsets is fixed to

ten times the number of customers.

4.3.3 A BRANCH AND CUT METHOD FOR THE VRP

We implemented a branch and cut algorithm based on the one proposed by Augerat

et al. (1995). The cutting plane algorithm, for the identification of the valid inequalities

described in the previous section, is applied to every subproblem until no violated

inequality is found or the solution does not increase during an apriori fixed number of

iterations. A subproblem is fathomed if an integer feasible solution is found or the lower

bound obtained is not less than the current upper bound. If a subproblem is not

98

fathomed, it is divided in two subproblems by branching on a given inequality as

explained below. The subproblem to be explored is selected as the one having minimum

lower bound.

The branching strategy used is the following. Let S be a subset of customers for

which x(8(S))— 2r(S) = p(S), 0 < p(S) < 2 , then we can create two subproblems: one

adding constraint x(8(S)) = 2r(S) and the other adding constraint x(8(S)) ?.. 2r(S)+ 2 .

The selection of subset S is carried out in two steps: firstly, a candidate list of subsets is

build heuristically and, secondly, one of them is selected from this list according to

some strategy. The list of candidate subsets is build by the same heuristic algorithm

used for the identification of the capacity constraints. An initial subset of customer

subsets is randomly generated and then the greedy shrinking algorithm is used to

expand this subset in order to generate a new list where each subset S

satisfies 0 < p(S) < 2 . In order to have a balanced tree search, we force each candidate

subset to satisfy 0.75.p(S).1. We select four subsets according to the following criteria

that are exactly the same used by Augerat et al. (1995).

• Select set Si with maximum demand.

• Select set S2 which is farthest from the depot.

• Select set S3 such that x(8(S3)) is as close as possible to 3.

• Select set S4 such that x(8(S4)) is as close as possible to 2.75.

Then, one out of four subsets (Si , S2 , 53, and S4) is chosen for branching using

the method described by Applegate et al. (1994) for the TSP. For each subset

SE {S1,S2, S3, 54 } we solve the two corresponding subproblems and compute the

minimum of the increases in the lower bounds with respect to the lower bound of the

current node. Then, we choose the subset which leads to the maximum of these

minimum increases.

4.3.4 COMPUTATIONAL RESULTS

The branch and cut algorithm described in the previous section has been coded in

Fortran 77 and experimentally evaluated on a set of 16 difficult VRP instances taken

from the literature. All computations were performed on a Silicon Graphics Indy (MIPS

99

R 4400/200 MHz processor), using CPLEX 4.0 (1996) as the LP-solver. For each

problem the vertices of graph G are located in the plane and the cost cif is computed as

integer value equal to [ei. +1 , where eel is the Euclidean distance between points i
i 2

and j. This is the same cost function used by Mingozzi et al. (1994), Augerat et al.

(1995) and it is the one proposed in the TSPLIB (Reinelt (1991)).

The tables show the following columns:

Prob: 	problem name identifier;

n: 	 number of customers;

Q: 	vehicle capacity;

M: 	number of vehicles;

RQ%: 	percentage of tightness of the capacity constraints computed as

100 yqi IMQ .

Reference: 	reference from which each instance has been taken and where the

complete data can be found;

z(UB): 	cost of the best known heuristic VRP solution found in the literature;

LBO: 	lower bound z(LRVRP);

%EL/30: 	percentage error of lower bound LBO;

LB1: 	final lower bound at the root node of the branch and cut algorithm

obtained by the cutting plane algorithm for the identification of the valid

inequalities;

%Eun 	percentage error of lower bound LB1;

t LB1: 	 total computing time of lower bound LB1;

%E5,: 	percentage error of the lower bound produced by Augerat et al. (1995) by

considering only the identification of capacity constraints;

t
EA

: 	total computing time of the lower bound produced by Augerat et al. by

considering only the identification of capacity constraints (seconds of a

Sun Sparc 10 machine);

%EA : 	final lower bound produced by Augerat et al.;

100

ie V

t
EA 	

total computing time of the final lower bound produced by Augerat et al.

(seconds of a Sun Sparc 10 machine);

%Em : 	percentage error of the lower bound produced by Mingozzi et al. (1994);

t Em : 	total computing time of the lower bound produced by Mingozzi et al.

(seconds of a Silicon Graphics Indy, MIPS R4400/200 MHz processor);

%EF : 	percentage error of the lower bound produced by Fisher (1994);

t EF : 	total computing time of the lower bound produced by Fisher (seconds of

an Apollo Domain 3000 machine);

Z : 	 cost of the optimal VRP solution;

nodes: 	number of nodes generated by the branch and cut algorithm;

tBC: 	total computing time of the branch and cut algorithm; we impose a time

limit of 3600 CPU seconds.

The percentage errors are computed as the ratio of the lower bound divided by

z(UB) and multiplied by 100.

Table 4.1 shows the data of the test problems. Table 4.2 shows the comparison of

different lower bounds, while Table 4.3 shows the number of cuts generated for

computing the lower bound LBI. Table 4.4 shows the problems solved to optimality

within the imposed time limit of 3600 CPU seconds and reports the number of nodes of

the branch and cut algorithm and the total computing time required for finding the

optimal solution. In the last 4 lines of Table 4.2 we report the average percentage errors

of lower bounds LBO and LBI on all the problem instances and on the problem instances

solved by Augerat et al. (1995), by Mingozzi et al. (1994) and by Fisher (1994),

respectively. Note that the Apollo Domain 3000 is about 15 times slower than the

Silicon Graphics Indy we used. The costs used by Fisher are real ones and therefore the

lower bounds should not be compared directly because the optimal solution costs may

not be the same; nevertheless, the comparison between the respective percentage errors

may override this difficulty.

The results show that the average percentage error computed on all the problem

instances of lower bound LBI is equal to 98%. By observing Table 4.2 we note that the

101

addition of the valid inequalities substantially improves the value of the lower bound

LBO. A comparison between lower bound LB1 and the one computed by Augerat et al.

shows that the average percentage errors %ELB1 and %Eiq are the same. Moreover, the

results show that the improvements on the quality of the lower bounds obtained by

Augerat et al. after considering other classes of valid inequalities (comb and extended

comb inequalities, generalized capacity inequalities and hypotour inequalities) is on

average equal to 0.3. Three instances were solved using the cutting plane algorithm at

the root node of the branch and cut tree. Table 4.4 shows that the branch and cut

algorithm has been able to solve problems up to 100 customers.

Table 4.1. Test Problems

Prob n Q M RQ% Reference

1 15 55 5 93.8 CMT81
2 15 90 3 95.6 CMT81
3 20 58 6 94.5 CMT81
4 20 85 4 96.7 CMT81
5 21 60 4 93.7 CMT81
6 21 40 6 93.7 CMT81
7 25 48 8 95.6 CMT81
8 50 160 5 97.1 CE69
9 75 140 10 97.4 CE69

10 75 220 7 88.6 CE69
11 75 180 8 94.7 CE69
12 100 200 8 91.1 CE69
13 100 200 10 90.5 CMT79
14 44 2010 4 89.8 FIS94
15 71 30000 4 95.7 F1S94
16 134 2210 7 94.5 FIS94

CMT81: Christofides et al. (1981a).
CE69: 	Christofides and Eilon (1969).
CMT79: Christofides et al. (1979b);
FIS94: 	Fisher (1994).

102

Table 4.2: Comparison of lower bounds

TWO-COMMODITY AUGERAT ET AL. MINGOZZI ET AL. FISHER

Prob z(UB) LBO %LBO LB1 %LB1 tI,B1 %4 tEA , %EA tEA %EM tM %E F tF

1 333 290.5 87.2 321.4 96.5 2 - - - - 97.9 2 - -
2 277 243.3 87.8 265.5 95.8 1 - 97.4 2 - -
3 430 371.8 86.5 426.8 99.2 3 100.0 2 - -
4 358 309.7 86.5 346.1 96.7 2 - - - - 100.0 3 - -
5 375 311.0 82.9 375.0 100.0 2 100.0 1 100.0 5 100.0 2 - -
6 495 395.6 79.9 484.0 97.8 4 - - - - 97.4 3 - -
7 606 511.4 84.4 606.0 100.0 5 100.0 2
8 521 500.6 96.1 514.5 98.8 51 98.8 17 99.3 129 99.3 84 96.7 5745
9 832 773.0 92.9 791.3 95.1 117 94.9 347 95.4 1919 97.8 206 90.5 11038

10 683 650.5 95.2 660.7 96.7 182 96.8 147 97.3 1052 97.4 320
11 735 693.5 94.4 711.6 96.8 109 96.8 258 97.1 1282 97.8 251 - -
12 817 775.6 94.9 795.0 97.3 232 97.5 294 97.9 1708 97.4 404
13 820 770.1 93.9 819.8 100.0 120 99.9 180 100.0 167 99.5 382 99.8 15578
14 724 614.3 84.8 724.0 100.0 20 100.0 8 100.0 12 - 99.6 2984
15 238 205.1 86.2 232.5 97.7 43 97.7 11 98.7 59 - - 98.3 6301
16 1165 1005.1 86.3 1155.8 99.2 2271 99.4 1513 99.5 2024 - - 97.4 15230

Averages:
ALL INSTANCES 88.7 98.0

AUGERAT ET AL. 90.8 98.2 98.2 98.5
MINGOZZI ET AL. 89.4 97.8 98.6

FISHER 90.0 98.5 97.0

103

Table 4.3. Details of the number of cuts of lower bound LB1

Prob Trivial 	Flow 	Capacity
Inequalities Inequalities Constraints

Total

1 17 48 77 142
2 13 19 35 67
3 19 45 151 215
4 17 44 81 142
5 16 33 137 186
6 24 45 258 327
7 24 28 410 462
8 33 100 399 532
9 56 206 710 972

10 47 138 772 957
11 48 165 559 772
12 62 196 774 1032
13 72 256 1061 1389
14 27 103 457 587
15 42 126 440 608
16 53 564 2711 3328

Table 4.4. Problems solved to optimality

Prob z* nodes 	t BC

1 333 14 	10
2 277 58 	26
3 430 4 	7
4 358 68 	67
5 375 0 	2
6 495 90 	144
7 609 0 	5
8 521 66 	660

13 820 4 	149
14 724 0 	20

104

4.4 THE TSP WITH DELIVERY AND COLLECTION CONSTRAINTS

In this section we extend the two-commodity STSP formulation described in Section

4.2.1 to deal with the TSPDC and the TSPB.

The TSPDC is defined as follows. We are given a complete undirected graph

G = (V, E) where V = {0, n +1} u D u C is the set of vertices and E is the set of edges.

Vertices 0 and n+1 represent the depot location, the set D corresponds to the delivery

customers (requiring delivery from depot 0) and the set C corresponds to the collection

customers (sending goods to depot n+1). To every edge {i, j}E E is associated a non-

negative cost cu and a quantity q1 is associated with each customer i E D U C (we

assume that the qi values are non-negative integers and that q0 = qn+i = 0). A vehicle

of capacity Q is located at depot 0 and must be used to supply the delivery customers

and to collect goods from the collection customers. The TSPDC consists of determining

a path starting at depot 0 and ending at depot n+1, serving each customer exactly once,

and having minimum length, defined as the sum of the costs of the arcs forming the

path. The total load of the vehicle along the tour must never exceed the vehicle capacity,

[Q. To ensure the feasibility of the problem we assume that Q Max yqi ,E qi .
iel) 	iE C

The TSPDC is NP-Hard in the strong sense since it generalizes the TSP. The

problem has many practical applications in the design and management of distribution

systems, like the transportation of under-privileged children from home to vacation

locations described in Mosheiov (1994). Mosheiov (1994) proposed a mathematical

model for TSPDC and heuristic algorithms based on the extension of methods for the

standard TSP. For one of the proposed algorithms a worst-case performance ratio equal

to 1+a was also proved, where a is the worst-case performance ratio of the TSP

heuristic used. Anily and Mosheiov (1994) described a new heuristic with worst-case

performance ratio equal to 2 based on the solution of Shortest Spanning Trees.

Gendreau et al. (1997) proposed two heuristic algorithms for the TSPDC. The first is

based on the optimal solution of a special case of TSPDC arising when graph G is a

cycle. In particular, they derive a linear time algorithm for the optimal solution of this

105

special case and use it as a base for developing a heuristic for the general TSPDC. The

worst-case performance of the proposed algorithm is studied, and a tight ratio of 3 is

derived. The computational results show that this heuristic generally produces better

solutions with respect to those previously proposed in the literature. A further

improvement is obtained by means of a second heuristic based on the tabu search

approach (see, Glover (1989,1990) and Glover and Laguna (1997)) that uses a

neighborhood based on exchanges of two arcs. Computational results show that the tabu

search of Gendreau et al. (1997) outperforms the previous heuristics.

The special case of TSPDC, known as TSPB, where in any feasible solution all

delivery customers must precede the collection customers has been studied by Gendreau

at al. (1996) who presented the extension to TSPB of the GENIUS heuristic for the TSP.

The generalization of TSPDC related to the VRP, where several vehicles are available,

has been considered by Halse (1992) who proposed a mathematical formulation and a

heuristic algorithm based on a Lagrangian relaxation of the problem. To our knowledge,

no exact methods have been proposed for the optimal solution of the TSPDC and the

TSPB.

4.4.1 A TWO-COMMODITY FORMULATION OF THE TSPDC

Following the idea used in formulating the VRP as a two-commodity network

flow model, each feasible TSPDC path from depot 0 to depot n+1, can be represented

by two flow circuits: the first one representing the vehicle load and the second one

representing the vehicle empty space. As an example, consider the tour of Figure 4.4.

Let the vehicle capacity Q be equal to 10. The flow xo on arc (i, j) of the flow circuit

(0,1,2,3,4,5) represents the vehicle load, while the flow xii on arc (j,i) of the flow

circuit (5,4,3,2,1,0) represents the vehicle empty space. Note that the flow on arc x01 of

the example is the total demand of the delivery customers, that is, QD =Eqi = 9 ,
ieD

while, the flow on arc x45 is the total demand of the collection customers, that is,

Qc = yqi =10 . Moreover, for each edge {i, j}E {{0,1},{1,2},{2,3},{3,4},{4,5}} we have
iEC

x•--Ex-=Q.

106 106

Delivery

0 Collection

111 Depot

Figure 4.4. Flows in the TSPDC

Let V' .--DuC and let bij be a 0-1 binary variable equal to 1 if edge {i, jleE is in

solution, 0 otherwise. Let xy be the flow value of arc (i, j), i, j E V,i # j .

The mathematical formulation for the TSPDC is as follows:

(TSPDC) z(TSPDC) = Min 	Cijij
	 (4.35)

subject to y xij - Exii = —2q1 , 	Vie D 	(4.36)
jeV 	jeV

E xi, — Exii = 2.71 , 	Vi e C 	(4.37)
jeV 	jeV

Exo; = QD 	 (4.38)
jEV'

I xi° = Q — QD 	 (4.39)
fey'

E Xn+lj = Q — QC 	 (4.40)
jeV'

107

jn+1 = QC
	 (4.41)

jEV'

xij + xii = Q ij , 	 V{i, j} e E 	(4.42)

x(8(i)) = 2 , 	 Vie V' 	(4.43)

x(8(i)) =1 , 	 i = 0, n + 1 	(4.44)

x(8(S)) 2 , 	 VS c V' s.t. 	(4.45)

Eqi = Eqi
ieS nD iESnC

Vi, j e V, i j 	(4.46)

ij E {04 , 	 V{i, j} E E 	(4.47)

Constraints (4.36) to (4.41) and (4.46) define a feasible flow for variables 	}.

Constraints (4.42) together with (4.43) and (4.44) force the degree of each customer to

be 2 and the degree of both depots 0 and n+1 to be 1. Constraints (4.45) are the subtour

elimination constraints. Constraints (4.47) are the integrality constraints.

Note that in the TSPDC formulation, due to the supply-demand patterns of the

delivery and collection customers, it is necessary to introduce the subtour elimination

constraints as shown in the example of Figure 4.5. In fact, the solutions shown in Figure

4.5(a) and 4.5(b) are feasible for the TSPDC formulation without constraints (4.45).

4.4.2 A TWO-COMMODITY FORMULATION OF THE TSPB

The mathematical formulation of the TSPB can be easily derived from the one

described for the TSPDC in the previous section. We can assume, without loss of

generality, that qi =1, Vi E D u C (since all deliveries must be made by the single

vehicle before any collections), Q= Max[01,1C1] and that IDI 	. Figure 4.6 shows an

example of a TSPB feasible tour in terms of the two-commodity flows.

Let V' = D u C and letij be a 0-1 binary variable equal to 1 if edge {i, j} e E is in

solution, 0 otherwise. Let xij be the flow value of arc (i, j), i, j E V. i # j .

108

qi

10

10

10

10

(a)
	

(b)

C I Delivery 	Collection 1. Depot

Figure 4.5: Subtours in the TSPDC

X1J••

Delivery

0 Collection

■ Depot

Figure 4.6: Flows in the TSPB

109

The mathematical formulation for the TSPB is as follows:

(TSPB) 	z(TSPB) = Min E 	 (4.48)
{i, j EE

subject to Exu — Exii = —2, 	Vi E D 	(4.49)
jEV 	jEV

Exu — Exii = 2, 	Vi e C 	(4.50)
jEV 	jEV

Exo; =IDI 	 (4.51)
jEV'

	

xjo =0 	 (4.52)
jeV'

E X n+1 j = I DI -ICI 	 (4.53)
JEW

E X jn+1 = I 	 (4.54)
jEV'

x ji = 11)14ii

x(8(i))= 2 ,

x(8(0)=1,

E Exu = 0
iE DjE C

V{i, j}E E 	(4.55)

ViE V' 	(4.56)

i = 0,n +1 	(4.57)

(4.58)

xu 	0, 	 Vi, je V,i # j 	(4.59)

ij E {04, 	 j} E E 	(4.60)

Constraints (4.49) to (4.54) and (4.59) define a feasible flow for variables txu l.

Constraints (4.55) together with (4.56) and (4.57) force the degree of each customer to

be 2 and the degree of both depots 0 and n+1 to be 1. Constraints (4.58) avoid subtours

and force deliveries to precede collections. Constraints (4.60) are the integrality

constraints.

Note that the TSPB can also be solved as an Asymmetric TSP. This can be done by

setting the asymmetric cost matrix [cu] as follows:

Cij = 00
	ViE C, VjE D

cio = coi = 00 cn+i i =
	Vie C

110

Cin+1 = Cn+1i =0° Ci0 =c3.° ViE D

4.4.3 LOWER BOUNDS FROM THE LP-RELAXATION

Valid lower bounds for the TSPDC and for the TSPB can be obtained by means of

the LP-relaxation of the corresponding formulations. Similarly for the STSP case, the

value of the lower bound can be strengthened by the trivial inequalities, the flow

inequalities and the subtour elimination inequalities. The flow inequalities, described

for the STSP in Section 4.2.2, can be generalized for the TSPDC and for the TSPB as

described below.

Flow inequalities

Consider xy + x fi = Qtij , V{i, j} E E, i 0, j # 0 . In any feasible integer solution, if

xij =1, then we must consider the following three cases:

a) i, je D .

Then xu qAu and x1 	, or, using equation xij + xfi = Q4u ,

Qxii(Q—q1)—qixii:. 	x 0 and ••(— qi)—qi xij• >_0.

b) iE D and jE C

Then x fi >_ q& or, using equation xi• + xJI = 	, J

Q- X J1 (

c) i,jE C .

Then xy 	and xfi q j ij , or, using equation xij + x ji = Q ij ,

xij (Q— qi)— qi x ji 0 and x fi(Q — q j)— q j xij >_0.

(4.61)

(4.62)

(4.63)

Therefore, inequalities (4.61), (4.62) and (4.63) can be added to the LP-relaxation of

formulations TSPDC and TSPB to eliminate infeasible fractional solutions.

111

4.4.4 A BRANCH AND CUT METHOD FOR THE TSPDC AND THE TSPB

The branch and cut method described for the VRP in Section 4.3.3 can be easily

adapted for solving the TSPDC and the TSPB. The tree search is a binary tree search in

which at each node the procedure for the identification of the trivial inequalities, flow

inequalities and subtour elimination inequalities is applied until no violated inequality is

found or the solution does not increase for a certain number of iterations. A forward

branching at a certain node involves the selection of a subset of customers S for which

0 < x(8(S))— 2 < 2 , and the generation of two new subproblems: one of them adding

constraints x(8(S))= 2 and the other adding constraint x(o(S)) 4 . The branching

subset selection is carried out similarly for the VRP as described in Section 4.3.3.

Firstly, a candidate list of subsets is build heuristically and, secondly, one of them is

selected from this list according to some strategy. The list of candidate subsets is build

by the same heuristic algorithm used for the identification of the capacity constraints.

An initial subset of customer subsets is randomly generated and then the greedy

shrinking algorithm is used to expand this subset in order to generate a new list where

each subset S satisfies 0 < p(S) < 2 . In order to have a balanced tree search, we impose

that each candidate subset satisfy 0.755_p(S)5_1. We select four subsets according to the

following criteria.

• Select set S1 with maximum cardinality.

• Select set S2 which is farthest from the depot.

• Select set S3 such that x(8(S3)) is as close as possible to 3.

• Select set S4 such that x(8(S4)) is as close as possible to 2.75.

Then, one out of four subsets (S1 , S2 , S3 , and S4) is chosen for branching using

the method described by Applegate et al. (1994) for the TSP.

4.4.5 A NUMERICAL EXAMPLE

In this section we present a numerical example to illustrate the lower bound

computation for an instance of the TSPDC. We have used one of the 20 test problems

generated by Mosheiov (1994) for simulating the problem arising in the transportation

112

0(3 ,2)

0(13,1)

0(24,7) Customer index
0(4 .4)

0(15,4)

Demand

0(25,1)

0(5 ,7)

	

0(6 ,2)
	

0(9 ,6)

s 	 0(14,4)

	

0(1961A5) 	
0(12,2)

0(2 ,2)

0(17,2)

0(10,6)

	

0(16,6) 	 0(18,6) 	 0(20,4)

	

0(7 ,5) 0(21,4)
	0(8 ,3) 	0(23,2)

	

0 Delivery locations 	0 Pick-up locations 	NI Depot

Figure 4.7. Example: customer locations

of under-privileged children from home to vacation locations. All locations were

randomly generated from a uniform distribution in the square [(-500,500)x(-500,500)]

and the central station was located at the origin. The number of children at pick-up and

delivery locations were generated from a uniform distribution in [1,8] and the bus

capacity was set equal to 45 seats (i.e. Q=45). The example we consider has 24

customer locations, 13 of which are delivery locations (i.e. IDI =13) and 11 are pick-up

locations (i.e. ICI =11). The distances between customer locations were computed using

the Euclidean distance as proposed in the TSPLIB (Reinelt (1991)). The total delivery

demand is equal to 45 and is equal to the total pick-up demand (i.e. QD = Qc = Q = 45).

Table 4.5 presents the data of the problem and Figure 4.7 shows the customer locations.

The cost of the assignment solution is 3873 and the cost of the optimal TSP solution,

that is a valid lower bound on the cost of the optimal solution of the problem, is 4430.

The optimal TSP solution is shown in Figure 4.8.

113

Table 4.5. Example: problem data

Delivery locations Pick-up locations
X-coordinate Y-coordinate demand X-coordinate Y-coordinate demand

1 -211.651 -147.830 2 14 -90.618 299.859 4
2 -265.178 499.830 2 15 -480.287 -366.363 6
3 -126.376 330.654 4 16 -106.647 -202.037 2
4 -267.075 88.573 7 17 -134.373 -364.665 6
5 -486.620 56.890 2 18 -196.116 -43.097 4
6 -368.762 -466.753 5 19 455.724 -383.012 4
7 66.033 -456.440 3 20 -232.731 -467.685 4
8 234.876 57.177 6 21 -138.385 -61.276 5
9 22.466 -263.939 6 22 247.014 -461.857 2

10 349.490 -205.735 1 23 74.257 373.238 7
11 302.043 -70.028 2 24 -95.265 164.968 1
12 23.194 432.094 1
13 384.468 11.208 4

114

20

• Customer locations 	■ Depot

Figure 4.8. Example: optimal TSP solution of cost 4430

0 Delivery locations 	0 Pick-up locations
	■ Depot

Figure 4.9. Example: heuristic solution of cost 4631 found by Mosheiov (1994)

20

0 Delivery locations 	0 Pick-up locations 	■ Depot

Figure 4.10. Example: optimal TSPDC solution of cost 4464

115

Table 4.6. Example: flows of the optimal TSPDC solution

X ji i j xl f Xji

1 10 45 0 8 23 36 9
1 22 0 45 9 14 10 35
2 17 7 38 9 24 29 16
2 19 36 9 11 12 41 4
3 4 33 12 11 20 3 42
3 13 10 35 12 14 39 6
4 15 29 16 13 24 9 36
5 6 27 18 15 25 33 12
5 25 11 34 17 18 9 36
6 16 25 20 18 21 15 30
7 16 14 31 19 22 40 5
7 21 26 19 20 23 7 38
8 10 6 39

The cost of the heuristic solution found by the algorithm proposed by Mosheiov is

4631 (see Figure 4.9).

The value of the LP-relaxation of formulation TSPDC was 3975.6 and the value of

the final lower bound obtained after the application of the separation procedures for the

identification of valid inequalities was 4464.0. The solution found was integer,

therefore, 4464 was also the cost of the optimal solution of the problem. The separation

procedures found 13 trivial inequalities, 10 flow inequalities and 7 subtour elimination

inequalities. The total computing time was 1.46 seconds on a Silicon Graphics Indy

(MIPS R4400/200 MHz processor). We have used CPLEX 4.0 (1996) as the LP-solver.

Figure 4.10 and Table 4.6 show the optimal solution found and the values of the {xii }

variables, respectively.

4.4.6 COMPUTATIONAL RESULTS

In this section we present the results of the branch and cut algorithm described in

Section 4.4.4 on both TSPDC and TSPB instances. The algorithm has been coded in

Fortran 77 and run on a Silicon Graphics Indy (MIPS R4400/200 MHz processor). We

have used CPLEX 4.0 (1996) as the LP-solver.

116

For the TSPDC we consider two classes of test problems, called A, B, respectively.

The classes correspond to a subset of the TSPDC instances proposed by Gendreau et. al

(1997). The problems of class A is made up of instances derived from symmetric VRP

instances from the literature; set A contains 27 instances with n ranging between 16 and

151.

The problems of class B consist of random Euclidean instances. The original sets of

instances of class B generated by Gendreau et al. is composed of 300 problems. We

select a total of 40 instances, with n ranging between 26 and 151. Problem input data of

class A and B have been kindly provided by Gendreau et al.

For the TSPB we consider two classes of test problems, called A and B, respectively.

Both classes of test problems we examine is made up of TSPB instances derived from

VRPB instances from the literature. For each VRPB instance we obtain a TSPB

instance where the customer set is composed of delivery and collection customers, the

depot and the cost matrices are the same as in the VRPB instance. The problem class A

is made up of 21 instances derived from the VRPB instances generated by Toth and

Vigo (1996) from 11 VRP test problems proposed in the literature. The problem of class

B is made up of instances derived from randomly generated Euclidean VRPB instances

proposed by Goetschalckx and Jacobs-Blecha (1989). Set A contains 21 instances with

n between 22 and 100 while set B contains 14 instances with n varying between 26 and

151

Tables 4.7 to 4.10 show the following columns:

Prob: 	problem name identifier;

number of customers;

number of delivery customers;

number of collection customers;

Tables 4.7 and 4.8 show the following columns:

z(UB): 	cost of the TSPDC solution found by the heuristic algorithm of Gendreau

et al. (1997);

z : 	cost of the optimal TSPDC solution (or cost of the best solution found by

the branch and cut algorithm);

LBO: 	lower bound obtained by the LP-relaxation of formulation TSPDC;

n:

I DI

IdI

117

%ELIA): 	percentage error of lower bound LBO;

LB1: 	final lower bound at the root node of the branch and cut algorithm

obtained by the cutting plane algorithm for the identification of the valid

inequalities;

%ELB1 : 	percentage error of lower bound LBI;

tLB1: 	total computing time of lower bound LB1;

t Etc: 	 total computing time of the branch and cut algorithm. We impose a time

limit of 3600 seconds. If the time limit is reached, the instance is marked

with an asterisk;

Tables 4.9 and 4.10 show the following columns:

z : 	cost of the optimal TSPB solution (or cost of the best solution found by

the branch and cut algorithm);

LBO: 	lower bound obtained by the LP-relaxation of formulation TSPB;

%ELBO: 	percentage error of lower bound LBO;

LB1: 	final lower bound at the root node of the branch and cut algorithm

obtained by the cutting plane algorithm for the identification of the valid

inequalities;

%Eun : 	percentage error of lower bound LB1;

t LB1: 	total computing time of lower bound LB1;

t BC: 	 total computing time of the branch and cut algorithm. We impose a time

limit of 3600 seconds. If the time limit is reached, the instance is marked

with an asterisk;

The percentage errors are computed as the ratio of the lower bound divided by z*

and multiplied by 100.

Table 4.7 shows the computational results for the TSPDC on problem instances of

class A. The results show that the lower bound is tight, as shown by the average

percentage error equal to 99.4. By observing Table 4.7 we note that the branch and cut

algorithm has been able to improve significantly on the quality of the heuristic solutions

found by Gendreau et al. In fact, the average over the 27 instances of the percentage

118

ratios of the heuristic solution with respect to the TSPDC solution found by the branch

and cut algorithm is 103.9. Only one instance (e-151-d) has not been solved to

optimality within the imposed time limit, but, the cost of the solution has been reduced

from 801 to 703.

Table 4.8 shows the results obtained on problem instances of class B. On this more

difficult problem set, only 16 instances out of 40 have been solved to optimality. The

inherent difficulty of these instances is testified by the percentage error %ELBi .

Nevertheless, the branch and cut algorithm has been able to substantially improve the

quality of the heuristic solutions as testified by the average, equal to 108.0, of the

percentage ratios of the heuristic solution with respect to the TSPDC solution found by

the branch and cut algorithm.

Tables 4.9 and 4.10 show the computational results for the TSPB on problem

instances of class A and B, respectively. For the computation of the optimal solutions

using the branch and cut algorithm, we have used an upper bound equal to 1.015 the

value of lower bound LB1 obtained at the root node of the branch and cut tree. From the

results we can draw the following conclusions. The lower bounds computed are tight, as

shown by the average percentage errors equal to 99.7 and 99.6 for problems of class A

and B, respectively. The addition of the valid inequalities substantially improves the

value of the lower bound LBO. Because of the good quality of the lower bound LB1, the

branch and cut algorithm has been able to solve to optimality all the 35 instances in

reduced computing time. Problems up to 150 customers have been solved to optimality.

119

Table 4.7. TSPDC: computational results of problem class A

PROBLEM DATA TWO-COMMODITY

Prob n IDI 	ICI z(UB) z* LBO %Eu30 LB1 %E LB1 LB1 t LB1 t BC

e-016-b 16 7 8 221 218 202.3 92.8 218.0 100.0 1 1
e-016-c 16 7 8 223 221 202.3 91.5 218.0 98.6 1 2
e-016-d 16 7 8 228 221 202.4 91.6 218.0 98.7 1 2
e-026-b 26 12 13 320 306 238.5 77.9 305.0 99.7 1 1
e-026-c 26 12 13 320 308 238.5 77.4 305.0 99.0 1 3
e-026-d 26 12 13 340 313 238.7 76.3 305.0 97.4 1 31
e-036-b 36 17 18 364 351 320.2 91.2 349.5 99.6 2 3
e-036-c 36 17 18 364 351 320.3 91.2 349.5 99.6 2 3
e-036-d 36 17 18 369 351 320.3 91.3 349.5 99.6 2 3
e-045-b 45 22 22 619 619 398.7 64.4 619.0 100.0 4 11
e-045-c 45 22 22 620 619 399.3 64.5 619.0 100.0 4 7
e-045-d 45 22 22 620 619 	i 400.6 64.7 619.0 100.0 4 9
e-051-b 51 25 25 442 426 376.4 88.3 422.5 99.2 2 44
e-051-c 51 25 25 439 426 376.4 88.3 422.5 99.2 2 35
e-051-d 51 25 25 445 426 376.5 88.4 422.5 99.2 3 43
e-076-b 76 37 38 565 538 484.2 90.0 538.0 100.0 5 15
e-076-c 76 37 38 554 539 484.3 89.8 538.0 99.8 5 38
e-076-d 76 37 38 580 539 484.4 89.9 538.0 99.8 5 26
e-101-b 101 50 50 505 501 326.6 65.2 496.5 99.1 58 1021
e-101-c 101 50 50 507 501 326.6 65.2 496.5 99.1 43 1830
e-101-d 101 50 50 513 502 326.7 65.1 498.5 99.3 49 1348
e-121-b 121 60 60 554 535 349.3 65.3 532.0 99.4 43 1322
e-121-c 121 60 60 549 535 349.2 65.3 532.0 99.4 44 3540
e-121-d 121 60 60 556 535 348.2 65.1 532.0 99.4 43 2872
e-151-b 151 75 75 748 698 572.3 82.0 696.0 99.7 22 280
e-151-c 151 75 75 763 699 572.4 81.9 696.0 99.6 24 1990
e-151-d 151 75 75 801 703 * 572.4 81.4 696.0 99.0 51 3600

Averages 	 79.5 	99.4

120

Table 4.8. TSPDC: computational results of problem class B

PROBLEM DATA TWO-COMMODITY

Prob n 	IDI 	ICI 	z(UB) z * LBO %.ELB0 LB1 %ELM t LB1 t BC

el_25_b 26 12 13 434 407 309.3 76.0 392.5 96.4 2 540
el_25_c 26 12 13 459 412 * 309.5 75.1 392.6 95.3 3 3600
el_25_d 26 12 13 433 433 * 310.0 71.6 392.8 90.7 4 3600
el_25_e 26 16 9 401 401 311.3 77.6 392.5 97.9 2 4
e2_25_b 26 12 13 477 462 343.3 74.3 457.0 98.9 2 9
e2_25_c 26 12 13 477 462 354.1 76.7 457.0 98.9 2 3
e2_25_d 26 12 13 477 462 354.3 76.7 457.0 98.9 3 4
e2_25_e 26 13 12 462 460 346.5 75.3 457.0 99.3 2 2
el_50_b 51 25 25 646 592 459.3 77.6 587.5 99.2 4 71
el_50_c 51 25 25 710 601 * 454.4 75.6 587.5 97.8 4 3600
e 1_50_d 51 25 25 645 597 * 454.8 76.2 587.5 98.4 4 3600
e 1_50_e 51 25 25 662 634 * 458.9 72.4 587.5 92.7 3 3600
e2_50_b 51 25 25 635 599 490.2 81.8 599.0 100.0 4 5
e2_50_c 51 25 25 635 599 490.2 81.8 599.0 100.0 4 4
e2_50_d 51 25 25 635 599 495.3 82.7 599.0 100.0 3 3
e2_50_e 51 22 28 684 612 498.1 81.4 600.3 98.1 3 1594
el_75_b 76 37 38 807 710 538.3 75.8 705.7 99.4 15 46
el_75_c 76 37 38 806 710 538.4 75.8 705.7 99.4 16 95
el_75_d 76 37 38 807 710 538.8 75.9 705.7 99.4 19 62
el_75_e 76 42 33 769 728 * 550.9 75.7 711.7 97.8 11 3600
e2_75_b 76 37 38 716 658 555.3 84.4 655.0 99.5 8 36
e2_75_c 76 37 38 716 660 555.4 84.2 655.0 99.2 10 73
e2_75_d 76 37 38 721 677 * 555.7 82.1 655.0 96.8 17 3600
e2_75_e 76 36 39 766 706 * 557.9 79.0 661.0 93.6 11 3600

el_100_b 101 50 50 832 797 625.4 78.5 790.0 99.1 28 270
el_100_c 101 50 50 851 805 * 625.6 77.7 790.0 98.1 34 3600
el_100_d 101 50 50 847 805 * 626.0 77.8 790.0 98.1 41 3600
el_100_e 101 52 48 903 812 * 628.0 77.3 790.0 97.3 17 3600
e2_100_b 101 50 50 900 810 * 676.1 83.5 781.5 96.5 23 3600
e2_100_c 101 50 50 941 835 * 676.2 81.0 781.5 93.6 24 3600
e2_100_d 101 50 50 980 856 * 674.3 78.8 781.5 91.3 66 3600
e2_100_e 101 43 57 886 809 * 678.1 83.8 789.5 97.6 23 3600
el_150_b 151 75 75 1059 980 * 768.2 78.4 952.5 97.2 108 3600
e 1_150_c 151 75 75 1147 982 * 768.3 78.2 952.5 97.0 108 3600
el_150_d 151 75 75 1155 1010 * 783.5 77.6 956.5 94.7 127 3600
e 1_150_e 151 61 89 1060 984 * 773.7 78.6 952.5 96.8 58 3600
e2_150_b 151 75 75 974 918 * 687.3 74.9 894.6 97.5 218 3600
e2_150_c 151 75 75 984 938 * 687.4 73.3 894.6 95.4 204 3600
e2_150_d 151 75 75 993 947 * 687.6 72.6 877.7 92.7 182 3600
e2_150_e 151 77 73 986 920 * 697.6 75.8 894.6 97.2 89 3600
Averages 	 77.8

	
97.2

121

Table 4.9. TSPB: computational results of problem class A

PROBLEM DATA TWO-COMMODITY

Prob n 	IDI 	ICI z* LBO %.E LB0 LB1 %E LB' t LB1 t BC

ei12250 22 11 10 360 310.4 86.2 360.0 100.0 1 1
ei12266 22 14 7 350 317.9 90.8 350.0 100.0 1 1
ei12280 22 17 4 350 277.7 79.3 347.5 99.3 1 2
ei12350 23 11 11 647 609.5 94.2 647.0 100.0 1 1
ei12366 23 15 7 626 531.1 84.8 618.0 98.7 1 2
ei12380 23 18 4 639 587.6 91.9 639.0 100.0 1 1
ei13050 30 15 14 529 381.1 72.0 529.0 100.0 2 2
ei13066 30 20 9 504 363.1 72.0 504.0 100.0 2 2
ei13080 30 24 5 510 360.8 70.7 510.0 100.0 2 2
ei13350 33 16 16 575 518.2 90.1 572.3 99.5 2 3
ei13366 33 22 10 579 517.5 89.4 574.0 99.1 2 2
ei13380 33 26 6 543 458.9 84.5 543.0 100.0 2 2
ei15150 51 25 25 561 500.8 89.3 560.0 99.8 3 4
ei15166 51 34 16 522 459.0 87.9 522.0 100.0 2 2
ei15180 51 40 10 537 476.5 88.7 533.5 99.3 3 8

eila7650 76 37 38 683 622.0 91.1 681.0 99.7 6 12
ei1a7666 76 50 25 711 651.0 91.6 709.5 99.8 5 12
ei1a7680 76 60 15 661 595.1 90.0 659.0 99.7 5 48

eila10150 101 50 50 809 685.1 84.7 804.9 99.5 13 227
eila10166 101 67 33 814 715.8 87.9 813.3 99.9 12 14
eila10180 101 80 20 793 690.4 87.1 790.0 99.6 14 71

Averages 	 85.9
	

99.7

122

Table 4.10. TSPB: computational results of problem class B

PROBLEM DATA TWO-COMMODITY

Prob it 	IDI 	ICI z* LBO %ELIA) LB1 %E - - - LB1 t - LB1 t BC

Al 26 20 5 147639 122783.1 83.2 147005.0 99.6 1 2
B1 31 20 10 176414 151422.7 85.8 176414.0 100.0 2 2
Cl 41 20 20 188006 160470.3 85.4 188006.0 100.0 2 2
D1 39 30 8 165101 139427.7 84.4 165101.0 100.0 2 2
El 46 30 15 204970 169430.3 82.7 204198.0 99.6 3 3
Fl 61 30 30 226396 172594.9 76.2 226396.0 100.0 4 5
G1 58 45 12 213732 165548.0 77.5 212251.8 99.3 4 6
H1 69 45 23 248858 200245.3 80.5 247744.5 99.6 5 7
Il 91 45 45 287499 228182.8 79.4 285643.5 99.4 9 31
Jl 95 75 19 266839 211802.4 79.4 264295.0 99.0 11 496

K1 114 75 38 304183 257096.9 84.5 303840.5 99.9 16 18
Ll 151 75 75 366616 296481.0 80.9 364714.5 99.5 75 222

M1 126 100 25 312814 265271.6 84.8 310524.0 99.3 37 795
N1 151 100 50 349013 290647.6 83.3 347695.5 99.6 36 55

Averages 	 82.0
	

99.6

4.5 SUMMARY

We have investigated new integer programming formulations for routing problems

which are based on the two-commodity network flow formulation of the TSP described

by Finke et al. (1984). This formulation is interesting in many different ways. It can be

shown that its LP-relaxation satisfies a weak form of the subtour elimination

constraints. The formulation can also be modified to accommodate different constraints

and, therefore, is capable of being extended to different routing problems. In this

chapter, a new two-commodity network flow formulation for the symmetric TSP

(STSP) has been derived and extended to derive new integer programming formulations

for a class of different routing problems. The VRP has been examined in which a fleet

of M vehicles stationed at a central depot is to be optimally routed to supply customers

with known demands subject to vehicle capacity constraints. We investigated a new

123

integer programming formulation for the VRP and a new lower bound based on the

linear relaxation of the two-commodity formulation. The lower bound, strengthened by

a set of valid inequalities, has been embedded in a branch and cut procedure to solve the

problem optimally. The computational results on a set of problem instances derived

from the literature show that the lower bound obtained is tight and that the branch and

cut algorithm has been able to solve to optimality problems up to 100 customers.

The STSP formulation has also been extended to deal with other routing constraints

such as delivery and collection constraints. We considered the TSP with mixed

deliveries and collections (TSPDC) in which a vehicle located at a central depot must be

optimally used to serve a set of customers partitioned into two subsets of delivery and

collection customers. The vehicle capacity must not be exceeded along the tour and the

total length of the tour must be minimized. A new mathematical formulation has been

derived for the TSPDC and another one for the special case, known as TSP with

Backhauls, where in any feasible solution all delivery customers must precede the

collection customers. New lower bounds have been obtained from the linear relaxation

of these formulations which have been further strengthened by valid inequalities and

embedded in a branch and cut procedure to solve the problems optimally. The resulting

cutting plane procedure has been applied to a set of instances taken from the literature

and involving problems up to 150 customers. The results show that the branch and cut

algorithm has been able to solve to optimality problems up to 150 customers.

Future research can focus on the investigation of other valid inequalities and on the

extension of the two-commodity network flow model to other routing problems such as

the VRP with Backhauls and the Multi-Depot Vehicle Routing Problem.

124

CHAPTER 5

AN EXACT METHOD FOR THE

VEHICLE ROUTING PROBLEM WITH

BACKHAULS

5.1 INTRODUCTION

The Vehicle Routing Problem with Backhauls (VRPB) considered in this chapter is

an extension of the Vehicle Routing Problem (VRP) and is defined as follows. A set of

capacitated vehicles stationed at a central depot are to be used to design a number of

routes, each one starting and ending at the depot, in order to supply a set of customers

(called Linehaul customers) requiring deliveries from the depot and to collect products

from a set of customers (called Backhaul customers) to be unloaded at the depot. Each

customer is visited exactly once and in each feasible route the Backhaul customers are

visited after all Linehaul customers are supplied. The total load supplied to the Linehaul

customers as well as the total load collected from the Backhaul customers must not

exceed, separately, the vehicle capacity. The objective is to minimize the total distance

travelled. The VRPB is known to be NP-hard in the strong sense.

Several heuristic algorithms for the solution of VRPB have been presented in the

literature. Deif and Bodin (1984) proposed an extension of the well-known Clarke-

Wright VRP heuristic, where the saving of the arcs connecting Linehaul to Backhaul

customers are modified so as to delay the formation of mixed routes. Different

125

extensions of the Clarke and Wright algorithm have been presented by Casco et al.

(1988), and Golden et al. (1985) (in this latter paper the precedence constraint between

Linehaul and Backhaul customers is not present). Goetschalckx and Jacobs-Blecha

(1989) proposed an algorithm that builds initial routes with customers of the same type

by using a spacefilling curves heuristic; these routes are then merged to form the final

set of vehicle routes. More recently, Goetschalckx and Jacobs-Blecha (1993) described

an extension to VRPB of the Fisher-Jaikumar VRP heuristic. Toth and Vigo (1996)

proposed a different cluster-first-route-second heuristic based on a Lagrangean

relaxation of a new formulation of the VRP:B, which starts from a (possibly infeasible)

solution, and tries to improve it through a local search procedure based on inter-route

and intra-route arc exchanges. Computational results show that the algorithm of Toth

and Vigo outperforms both the heuristics of Goetschalckx and Jacobs-Blecha (1989)

and (1993). Anily (1996) describes a heuristic method for the VRPB that converges to

the optimal solution, under mild probabilistic conditions and when there are no

restrictions on the order in which the Linehaul and Backhaul customers are visited. A

1.5 approximation algorithm for the single vehicle version of the VRPB is given by

Gendreau et al. (1997).

Yano et al. (1987) proposed an exact, set-covering based, algorithm for the special

case of VRPB in which the number of customers of each type in a circuit is not greater

than four. The variant of VRPB where time window constraints are present has also

been considered in the literature (see, e.g., Kontovradis and Bard (1995), Duhamel et al.

(1994) and Gelinas et al. (1995)). Toth and Vigo (1997) present an exact approach for

the solution of the VRPB with both symmetric and asymmetric cost matrices. They first

give a new integer linear programming model where the VRPB is reformulated as an

asymmetric problem. The model is used to derive a Lagrangian lower bound, based on

projection of the solution space, which requires the determination of the shortest

spanning arborescences with fixed degree al the depot vertex, and the optimal solution

of min-cost flow problems. The Lagrangian lower bound is strengthened in a cutting-

plane fashion, by separating valid inequalities, and is combined, according to the

additive approach proposed by Fischetti and. Toth (1989), with a lower bound obtained

by dropping the capacity constraints. A branch-and-bound algorithm which makes use

126

of reduction procedures, dominance criteria, feasibility checks and a heuristic algorithm

are also presented.

In this chapter we describe a new (0-1) integer programming formulation of the

VRPB based upon a set-partitioning approach.

We use a heuristic procedure to solve the dual problem, called D, of the LP-

relaxation of the formulation in order to obtain a valid lower bound to the VRPB. This

procedure, called TADS, combines two different heuristic algorithms each one finding a

feasible solution to D without requiring the entire set of the dual constraints. The dual

solution thus obtained and a valid upper bound to the VRPB are then used to reduce the

number of routes (e.g., the variables of the integer formulation) which may form an

optimal solution. However, the size of the reduced integer problem might still be too

large for solving it by a branch and bound method. In this case we propose a procedure,

called EHP, that consists of reducing the number of variables of the integer program so

that the resulting problem can be solved by an integer programming solver. This method

may terminate without having found an optimal solution. However, procedure EHP

provides a means to estimate the maximum deviation from optimality of the VRPB

solution obtained.

The chapter is organized as follows. Section 5.2 describes the basic VRPB. Section

5.3 gives the new integer programming model for VRPB and presents different pricing

procedures for reducing the variables of the ILP model. Section 5.4 presents the

bounding procedure HDS, while algorithm EHP is described in Section 5.5.

Computational results are given in Section 5.6, followed by a summary in Section 5.7.

5.2 THE BASIC VRPB

Let G=(V, A) be a directed graph such that V = {0} uLuB, where L={1,..., n}

corresponds to n Linehaul customers, B= +1,...,n + ml corresponds to m Backhaul

customers and the vertex 0 represents the depot. A non-negative cost du is associated

with each arc (i, E A and a non-negative integer quantity qi is associated with each

customer iELuB.A fleet of M identical vehicles of capacity Q is located at the depot

127

and must be used to supply the Linehaul customers and make collections from the

Backhaul customers.

Linehaul customer

A Backhaul customer

Figure 5.1. Example of a VRPB solution

It is required that every route performed by a vehicle starts and ends at the depot and

that the load of all Linehauls and Backhauls does not exceed, separately, the vehicle

capacity. Furthermore, in any feasible route, all Linehaul customers must precede all

Backhaul customers. The cost of a route corresponds to the sum of the cost of the arcs

forming such route. The problem we consider is of designing M routes, one for each

vehicle, so that each customer is visited exactly once and the sum of the route costs is

minimized. Figure 5.1 shows an example of a VRPB solution.

It is easy to see that if L= 0 or B = 0 then the VRPB reduces to the VRP, proving

that the problem is NP-hard (see Garey and Johnson (1979)).

In order to ensure feasibility, we assume that M Max[M L ,M 13], where M L (resp.

M B) is the minimum number of vehicles needed to visit all the Linehaul (resp.

128

GB = (Bo , AB)

.........

....

Linehaul
..... 111 	

GL = (Lo, A)

AO

.... /". 	

Backhaul) customers. The values M L and M B can be computed by solving the Bin

Packing Problem (see Martello and Toth (1990)) associated with the Linehaul and

Backhaul customers. Following Toth and Vigo (1997), we assume that routes containing

only Backhaul customers are not allowed (that is M L ?_ M B). We must point out that

the method we are going to describe for solving the VRPB can be easily extended to

deal with the case where M L <M B .

Depot

Figure 5.2. The arc set of graph G

Let us denote by GL = (1.0 , AL) and GB = (BO , AB) the two subgraphs of G induced

by the Linehaul and Backhaul customers, respectively, where :

Lo = L u{0} and AL = {(i, j) : (i, j) e A s.t. i,j E Lo}
(5.1)

Bo = B u {0} and AB = {(i , j) : , j) E A s.t. j E Bo}

Let us define AO = {(i, j) : (i, j) e A s.t. iEL jeBol. Figure 5.2 shows the arc set

of graph G.

An elementary path P in G L starting at vertex 0 (resp. in GB ending at vertex 0) is

called a feasible path if its load satisfies the following inequalities :

Qtnin Eqi < Q (resp. Qmin < qi < Q) 	 (5.2)
iE P 	 iE P

129

where Q,/,-:,in (resp. Q,11,,) represents the minimum load of Linehaul customers (resp.

Backhaul customers) of any feasible path in GL (resp. GB).

The values Qnijin and QiniB n are computed as follows :

[Q,Lin = Max 0, Eqi -01 —1)Q and Q.Bin = Max 0, Eqi -(f -1)Q
iEL j 	 i€13 i

We will use t(P) to indicate both the terminal vertex of a feasible path P in GL and

the starting vertex of a feasible path P in G B . Note that any pair of feasible paths P in

G L and P' in GB and the arc (t(P),t(P')) E Ao form a feasible route that is obtained

by appending to the end of P the arc (t(P),t(P')) and the path P' . Furthermore, any

feasible path P in GL leads to a feasible route involving Linehaul customers only by

appending to P the arc (t(P),0) E A0 . Since we assume M L . M B , no feasible route

exists involving Backhaul customers only. Finally, we observe that the M routes of any

feasible VRPB solution consist of M feasible paths in GL , at least M B feasible paths in

GB and M arcs of the subset A0 .

5.3 A MATHEMATICAL FORMULATION OF THE VRPB

Let L be the index set of all feasible paths in G L . We denote with Li c L (resp.

LE c L) the index set of all paths passing through (resp. ending at) customer i e L.

Let B be the index set of all feasible paths in GB . We denote by Bi cB (resp.

BSc B) the index set of all paths passing through (resp. starting at) customer i E B .

We indicate with ci the cost of path teLuB. In the following we will use t(Pt)

and/or ti , to denote the terminal vertex of path Pe , if E L , or the starting vertex of

path Pt , if

Let us define the following binary variables : xt ,tEL, ye , f E B and

ij , (i, j) E Ao . We have xt =1, ye = 1 and ij =1 if and only if paths 	L , t' E B

and arc (i, j) E Ao are in the optimal VRPB solution.

130

An integer programming formulation of the VRPB is as follows :

(IP) 	z(IP) = Min co, 	E dijbij
teL 	tEB 	(i,J)EA0

subject to Ixe =1 5
.eet,

lye =1 ,
feB •

- 	.0 ,
jEB0

Eye 	=0,
tEgyl 	IEL

= m
(i,J)EA,

xe E 10,11, 	L , Y e E 10,11, 	E B 	E 104 ,

Equations (5.4) and (5.5) require that each vertex i E L and j E B be visited by one

route. Equation (5.6) forces the solution to contain an arc of Ao starting at vertex i E L

whenever such solution contains a feasible path in GL ending at vertex i E L . Equation

(5.7) requires in the solution an arc (i, j) with i E L if such a solution contains a

feasible path in GB starting at vertex j E B . Equation (5.8) forces the solution to

contain M routes by requiring that M arcs of the set Ao are in solution. Since the set Ao

contains all arcs (i3O), Vi E L , routes containing only Linehaul customers are allowed.

Problem IP cannot be solved directly, even for problems of moderate size as the

number of variables may be too large. In this chapter we describe a heuristic procedure

that finds a feasible solution of the dual problem D of the linear relaxation of IP, thus

providing a valid lower bound to the VRPB. This procedure does not require the explicit

generation of the path set L and B. Moreover, this dual solution is used by the exact

procedure that solves the VRPB to reduce drastically sets L and B removing those paths

that cannot belong to any optimal VRPB solution.

Let ui , i E L and vi , j E B , be the dual variables associated with constraints (5.4)

and (5.5), respectively. Indicate by oci , i E L , and pi , j E B , the dual variables

131

(5.3)

Vi E L (5.4)

Vi E B (5.5)

Vi E L (5.6)

VjE B (5.7)

(5.8)

V(i, j)E Ao (5.9)

associated with constraints (5.6) and (5.7), respectively. Finally, associate with

constraint (5.8) the dual variable w.

The dual of the LP-relaxation of IP is the following :

(D) z(D) = Max ui + Ey, mw
ieL 	JEB

subject to It Uk ai 	,
kEP,

Evk +pi c.e ,
kepi

—a•-13•+w<d•• —

ui , ai unrestricted ,
v • 	13 J unrestricted ,
w 	unrestricted

(5.10)

WE LE ,iE L 	 (5.11)

WEBs , 	EB 	(5.12) j

v(i, i)E A0 	 (5.13)

ViE L

VjE B (5.14)

Note that we assume 130 = 0 in the dual constraints (5.13), V(i3O) E A0 .

5.3.1 VARIABLE REDUCTION OF PROBLEM IP

Let (u', v', a', (3', w') be a feasible solution of D of cost z'(D) and let (X', y', t') be a

feasible solution of IP of cost z'(IP). We denote by c't and dt, the reduced costs

according to (u',‘,/,a',13', w') of each path P E LuB and each arc (i,j)EA0,

respectively, that is :

c't = Q — Eti;,
kEP,
Ev„ _ 13; , 	tEB`j , 	EB

kEP,
di"/ = dy + a; +13'i — w' , (i, j)E Ao

(5.15)

From linear programming duality we have z'(D) 5_ z'(IP). Furthermore, we can use

these two solutions to reduce the variables of IP as is established by the following

theorem.

132

Theorem 5.1. Let X = It : teL , s.t. 	=11, Y = : E B , s.t. 	=11 and

H = {(i, j) : 	j) E Ao , s. t. 	= . The following relationship holds :

ZOO = z'(D)+ E + Ec"e + E d;./ 	 (5.16)
LEX 	LEY 	(i,jW/

Proof. From equations (5.15) we have :

lc; + E c't + Eat;
tEx. 	LEY 	(i,j)EH

= Ice - 	Edk +icd
LEX 	LEX Ice'',

(

+ Ect - E 	+R;,
LEY 	fEY,kEP,

+ E du + I (a; + 13'./ — w')
(i,j)EH 	(i,j)EH

Since (x', y',0 is a feasible solution of IP, we have :

(5.17)

E 	I uk + a;,)
tEx kEP,

=+ Eat,
iE L 	LEX

(5.18)

Evk + Rtr
LEY keP \ 	e

= Ey; + I 0;,
iEB 	LEY

= 	air + RIr -
LEX 	LEY

(5.19)

E (a; + 13; -w)
0,AEH

(5.20)

and, hence, from expression (5.17) we obtain :

+ I + Ed]
LE X 	LEY 	(i,j)EH

= 	+ 	+ 	du
LEX LEY

- 	- 	- M-14/
ieL 	jeB

(5.21)

Note that z/(11)) = ct + I cL + I du and z'(D) = E u; + I + Mw' ,
LEX 	LEY 	(i,jWi 	 iEL 	 jEB

therefore, from equation (5.21) we obtain equation (5.16)m

133

Corollary 5.1. Let z(UB) be the cost of a feasible VRPB solution and (11',v',o:',13',

be a feasible solution of D of cost e(D) . Any optimal solution of IP of cost less than

z(UB) cannot contain any path EELuB or any arc (i, j) E Ao whose reduced cost is

greater or equal to z(UB) — e(D) .

Proof. Follows directly from Theorem 5.1.

Corollary 5.1 states that an optimal VRPB solution can be obtained by replacing in

problem IP sets L, B and Ao with subsets L' g L , B' cB and A6 c Ao defined as

follows.

L'= {2:2E L , s.t. c'e < OW— zi(D)}

B' = te:.eE B 	< z(UB))-- z'(D)}

AP =1(i , j):(i , j)E A0 , S.t. 	< z(UB)— z'(D)}

(5.22)

Note that expressions (5.22) require the computation of the reduced costs of the paths

of L and B and of the arcs of Ao . The effectiveness of expressions (5.22) increases if the

gap between upper bound z(UB) and lower bound z'(D) is small.

5.3.2 FURTHER VARIABLE REDUCTION

A further reduction of sets L' , B' and A6 can be achieved by means of the

following observation.

Reduction of L'

Consider a VRPB solution containing a given path £ E L' . If this solution is feasible,

it must also contain a path from t,e E L to the depot to complete the route emerging from

. We have two cases :

(i) the path completing E consists of arc (tE ,0). In this case, from Theorem 5.1, the

resulting VRPB solution cannot be smaller than

134

e(D)+ 4 + dI 0 ; 	 (5.23)

(ii) the path completing £ starts at ti , goes directly to some Backhaul customer (say j)

and returns to the depot passing through Backhaul customers. This VRPB solution

has a cost not smaller than

[z'(D) + ct, + Min d'ti + Min[cd
fEB 	reg3 s ' I

where BSS J 	J =B •s nB , • E B

(5.24)

Corollary 5.2. An optimal VRPB solution cannot contain any path t E L' such that

[c't, +Min
o
 d;

1 i
	

93
+ Minktr] z(UB)— z'(D),

jE B 	rE's

where we assume rEaMink. = 0.

Reduction of B'

(5.25)

Observations similar to those made to establish Corollary 5.2 lead to the following

corollary.

Corollary 5.3. An optimal VRPB solution cannot contain any path .e E B' such that :

ett +Min[Min[c'r]+dci_ z(UB)— zt(D),
L. JE 	rE L:E

where LIE = n L', i E L.

Reduction of A6

(5.26)

Any VRPB solution containing arc (i, E Atf) must contain either a path of set LIE

and a path of Bt.i s , if j # 0 , or arc (i3O) , if j = 0 . Hence, from Theorem 5.1 we have the

following corollary.

135

Corollary 5.4. An optimal VRPB solution cannot contain arc (i, j) E Ao if

Minkit 1+ cli• + Minsk'r I z(UB)— z'O) .
EE 	J regri (5.27)

Note that the tests described might be insufficient to reduce the size of sets L' and

B' so that problem IP can become solvable. This might happen even if the gap

z(UB) — e(D) is small. In section 5.5 we describe a procedure to reduce L' and B' so

that the resulting problem IP can be solved but without any guarantee that the solution

obtained is an optimal VRPB solution. However, the reduction of sets L' and B' is

such that it is possible to estimate the maximum distance from optimality of the solution

obtained.

5.4 A HEURISTIC PROCEDURE FOR SOLVING PROBLEM D

It is well known, from linear programming duality, that the cost of any feasible

solution to D is a lower bound to the optimal solution cost of IP. In this section we

describe a heuristic procedure (called HDS) for finding a feasible solution to D that is

based on the following general idea. A feasible solution w = wl + w2 +. • •+w k of the

linear program :

(LP) 	 Max wb

subject to wA c

w unrestricted

can be obtained by successively solving a sequence of k linear programs
Lp 1 , Lp 2 , Lp k by means of k different heuristic procedures H1 ,H2 	Hk

Procedure W finds a feasible solution W r of the linear program LPr defined as

follows:

(LP') 	 Max W ril

subject to w r A cr

W r unrestricted

where C r = C — (W o + W 1 -F• • -1-w r-1)A and NO = 0 . Note that linear program LP1

coincides with LP.

136

This general method has been applied by Mingozzi et al. (1994) for solving the

Vehicle Routing Problem, by Bianco et al. (1994) for the Multiple Depot Vehicle

Scheduling, by Mingozzi et al. (1995) for the Crew Scheduling Problem and has been

used in Chapter 3 for the CPMP.

The procedure HDS that we propose for solving problem D involves two heuristic

procedures H1 and H2 used in sequence. Procedure 111 finds a feasible solution
(ui ,vi ,oc t ,01,wil) of problem Di (-=- D) without requiring the generation of sets L and

B. The second procedure, 112 , solves problem D2 that is obtained from D by replacing

the path costs cE ,teLuB and the arc costs du , (i, j)e Ao with the reduced costs cE

and d;i computed according to the solution (u1 , v 1 ,a 1,(31, wl) obtained by procedure

H. Procedure H2 requires the generation of limited subsets of sets L and B.

Linehaul

4_ Backhaul

Depot

Figure 5.3. Structure of a feasible VRPB solution

5.4.1 PROCEDURE Hl

This procedure is based on the observation that any route of a feasible VRPB solution

contains an arc of set Ao (see Figure 5.3). A lower bound to the VRPB can be obtained

as follows. Associate to each arc (i, j) E Ao a cost representing a lower bound to the

cost of the least cost route passing through it. Therefore the sum on the costs of the M
vertex-disjoint arcs of minimum cost of Ao is a valid lower bound to the VRPB.

This problem, called PR (X,µ) , is defined as follows.

137

Let X = 	 and µ =) be two vectors of unrestricted real

numbers associated with the Linehaul and 13ackhaul customers, respectively.

Let us associate with each arc (i, j) E A a cost dij as follows :

d_ 	{ u —Xi if j E L
d- = v 	du —µ j if j e B

(5.28)

Denote by (pi (resp. (pi) a lower bound to the cost of the least cost feasible path

ending at vertex i of GL (resp. starting at vertex j of GB) using arc costs {du} defined

by expressions (5.28). Therefore, the values (pfr , i E L, and (pil , j E B , satisfy the

following inequalities :

(pi 5 — I Xk ,tELEi ,iEL
keP,

S • (p 	 tEBi ,JEB
IcePt

(5.29)

A valid lower bound bu to the cost of the least cost route passing through arc

(i, j) E Ao can be computed as follows.

bij = 	+ dij +(pi; , v(i, j) E Ao 	 (5.30)

where we assume (pg = 0 . In subsection 5.4.1.2 we describe a method for computing

L and 	that does not require the enumeration of path sets L and B.

The mathematical formulation of PR (x, µ) is as follows.

	

PR (X,µ) z(PR(X,A)) = Min E biAu 	+ 	 (5.31)
(i,f)E110 	ieL 	:FEB

subject to 	, 	 Vi e L 	(5.32)
jeBo

E ij < 1 , 	 E B 	(5.33)
iEL

Iij = M 	 (5.34)
(i, j)EA0

138

E 10,11 , 	 V(i,j)E Ao 	(5.35)

Constraints (5.32) and (5.33) force the arcs of a feasible PR(X,µ) solution to be

vertex-disjoint and constraint (5.34) requires that exactly M arcs are in the solution.

Let rl = 	n) and v =) be two vectors of dual variables

associated with constraints (5.32) and (5.33), respectively, and let 8 be the dual variable

associated with constraint (5.34).

The dual of the LP-relaxation of PR(A,14, called DPRPk.,,t,t), is then :

DPR(X,R) OP*, µ)) = Max DI + ED; + M8 +IA1 + [if 	(5.36)
iEL 	jeB 	 iE L 	fEB

subject to rl i + D +8 by , 	V(i, j)E Ao 	(5.37)

rli 	 0 , 	 ViE L

D<_0, 	 Vje B 	(5.38)

8 unrestricted

Note that we assume vo = 0 in the inequality (5.37).

In the following theorem we prove that a feasible solution of D can be obtained from

any feasible solution of DPR(X,µ) and the predetermined vectors A and 1.1, showing

that z(PR(X,µ)), for any A and pi , is a valid lower bound to the VRPB.

Theorem 5.2. Let (ri,D,8) be a feasible solution of DPR(X,R) of cost z(DPR(X,A))

for a given pair of vectors A and pt, . A feasible solution of D of cost

z(D) = zODPR(X,µ)) is given by :

ui = 	,

vi =pi +.0./ ,

ai = (pf•

13 j
, i E

, jEB (5.39)

w= 8
hence, z(DPR(X,µ)) is a valid lower bound for IP for any A and j.t.

Proof. Firstly it is easy to see that the values of the dual variables of D computed

according to equation (5.39) satisfy constraints (5.14).

Consider now a path .eE4. Substituting into the left-hand-side of inequalities

(5.11) the values of u and ai given by equations (5.39) yields :

139

uk 	ai = 	2/ 	+ (Pi 	Tli •
kEP, 	kEP, 	kEP,

(5.40)

Note that I% — rii = 1 rik and, since ilk S 0 , kEL, we have /ilk 5_ 0
kEP, 	kePi \fil 	 kEP,\{i}

Therefore, from equation (5.40), we obtain :

/uk + ai S DI +(p . 	 (5.41)
kEP, 	kEP,

From inequalities (5.29) and (5.41) we have

yuk +a, .5_ yAk +c,- I Xk (-= c). 	 (5.42)
kEP, 	kEP, 	kEP,

Inequality (5.42) shows that the values of u and a given by equation (5.39) satisfy

constraints (5.11). In a similar way it is easy to show that the values of v and 13 given

by equations (5.39) satisfy inequalities (5.12). Finally, let us prove that the values of a ,

and w given by equation (5.39) satisfy inequalities (5.13). In fact, for each arc

(i, j) E Ao we have :

Or

— ai 	+ w = 	+ —(pi + ui +S .

From inequalities (5.37) and the definition of bid we obtain :

11i + 	+ 	(pt' + (pi] + dy

—(pi + — + 'of +85.4

From equations (5.43) and inequalities (5.45) we obtain inequalities (5.13)m

(5.43)

(5.44)

(5.45)

5.4.1.1 IMPROVING VALUE z(PR(X,

Algorithm H1 is an iterative procedure that finds a feasible solution of problem D1

by finding a feasible solution of the following problem:

max[z(pR(x,0)]. 	 (5.46)

140

An iteration of H1 consists of computing new vectors X and µ and of finding a new

solution of the resulting problem PR (X, pt). The method used for changing X and , at

each iteration, is as follows.

Let 	be an optimal PR (X, µ) solution for given X and tt and

H* ={(i,j): (i, j) E Ac , 	=1} . Denote with L* (resp. B*) the set of Linehaul (resp.

Backhaul) terminal vertices of the arcs of H* (i.e. L* = : (i, j) e H* } and

B* =fj:(i,j)EH 1). We indicate with Pi L , i E L , and PiP ,jEB, the paths of cost

(pf and (p i' , respectively. Let h1 be the number of times that vertex i E Lu B appears

in the paths PI' , k E L* and pkB , k E B* . It is obvious that in any feasible VRPB

solution we have hi =1,iELuB, hence, a subgradient optimization method can be

used to change X and 1.1 as follows :

Xi = Xi 6 	
Zi (UB)— Z(PR (X, j.1))

(hi 	1), iE LuB. 	 (5.47) Visi —1)2 + 	(hi — ir
JEL 	JEB

The solution of D1 is given by equation (5.39) using the values of X and µ that

produces the best approximate solution of problem (5.46) and the values of ri , 1.) and 6

of an optimal solution of the corresponding problem DPR(X,[1).

5.4.1.2 THE COMPUTATION OF 	, i E L AND (p lf , j E B

We describe a method for computing q ' , i E L, an equivalent method can be used

for computing (p li ,jeB. A path (not necessarily elementary) 0 = (0,4 , i2 ,...,i,c) in

graph GL and such that Eqi =q is called a q-path (see Christofides et al. (1981a)).
iE

Let fi (q) be the cost of the least cost q-path in GL from depot 0 to vertex i E L, using

arc costs {di; I defined by expression (5.28). Christofides et al. (1981a) describe a

dynamic programming algorithm of complexity O(Qn2) for computing value fi (q) , for

141

1 	2

1

-M BM n +1 	❑

each i E L, and q = q1 , qt +1,...,Q with the restriction that the q-path corresponding to

f l (q) should not contain loops formed by three consecutive vertices. Using function

fi (q), the lower bound (pi' , i E L, can be computed as

= Min [f i (q)]. 	 (5.48)

origins 	 destinations

quantity 	 Linehauls Backhauls 	demand

1 1

2 1

m 1

m+1 	- NIB

m+2 	n—M

0 Dummy vertex

Figure 5.4. Transportation problem TP(X,pt)

5.4.1.3 SOLVING PROBLEMS PR (X.,11) AND DPR(X,R)

Problem PR(., µ) can be transformed into a balanced transportation problem

TP(X,µ) with (n +1) origins and (m+ 2) destinations as follows (see Figure 5.4).

142

Origins {1,...,0 correspond to the Linehaul customer set L while origin n+1 is a

dummy one. Destinations {1,...,m} correspond to the Backhaul customer set B while

destination m+ 1 represent the depot and m+ 2 is a dummy vertex.

A cost matrix y1 , i = 1,...,n +1, j =1,...,m+ 2 is defined as follows :

Yy
Yu
Yij

Yy

Yij

=by 	i=1,...,n, j =1,...,m

=b10 	i=1,...,n, j = m+1

=0 	i=n+1, j=1,...,m+1

=0 	i =1,...,n, j = m+2

i=n+1, j=m+2

(5.49)

Note that the set of arcs {(i, j), i =1,...,n, j =1,...,m+1} corresponds to the arcs set Ao .

We assume that a quantity equal to 1 is available at each origin i, i =1,...,n , while a

quantity equal to m — M B is available at origin 11+1. The demand of each destination j,

j=1,...,m is equal to 1, while the demands of destinations m+1 and m+2 are equal to

M — M B and n — M , respectively.

Let 	denote the quantity transported from origin i to destination j.

Problem TP(X,µ) is as follows.

TP(X,µ) z(TP(X,µ)) =Min

subject to

n+lm+2

i=1 j=1

nt+2

Xij = 1 ,
j=1

m+1

E Xn+lj = m — MB
j=1

n+1

Exu =1,
1=1
n+1

= M - MB
i=1

i=1,...,n

j=1,...,m

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

n

E Xim+2 	M 	 (5.55)
i=1

143

Xij? 0 , 	 i=1,...,n+1,j=1,...,m+2 	(5.56)

Note that constraints (5.51) and (5.53) impose xij S 1, i =1,...,n,j=1,...,m+2 and

i = n +1, j =1,...,m . Constraint (5.55) impose that n — M units are transported

from the origins {1,...,n} to the dummy destination m+2. Due to constraints (5.51) we

have that M units must be transported from the M distinct origins {1,...,n} to the

destinations {1 ni+1} and, due to constraint (5.54), at least MB units are forced to

go from the origins {1 n} to the destinations {1, ...,m}. Hence, any feasible TP(X,µ)

solution contains M arcs of set Ao and at least MB arcs of set

{(i, j):(i, j)E A s.t. ie Ld E Bl.

Theorem 5.3. Problems PROs„µ) and TP(X, pi) are equivalent and

z(PR(A„µ)) = z(TP(X,µ))+ yxi j 	 (5.57)
iEL 	jEB

Proof. We first prove that any solution x of TP(X,µ) can be transformed into a

solution 	of 	PR(X,µ). 	Setij =xi 	 j=1,...,m 	and

io = Xim+i i = 1,...,n . Note that in any optimal solution we have Xn+i m+2 = 0

n+lm+2
From expressions (5.49) we have I biAy = E E7,x, , hence, equation (5.57).

(i,j)€A0 	i=1 j=1

It is easy to see that 	satisfy inequalities (5.32) and (5.33). By adding equations (5.51)

we obtain :
n m+1

E Exu 	= n • 	 (5.58)
1=1 j=1 	i=1

From equations (5.55) and (5.58) we obtain
n m+1
EIxo- n—M =72. 	 (5.59)
i=1 j=1

From equation (5.59) and the definition of we have equation (5.34).

Any solution 	of P0,41) can be transformed into a solution x of problem

TP(A.,µ) by setting :

144

Xij = ij 1

Xim+1 = i0 1
n

Xn+lj =1— Eij 1
i=1

n

Xn+lm+1 = M— MB — E io
i=1

m
Xim+2 =1 j,

J=0

i=1,...,n, j=1,...,m
i=1,...,n

j = 1,..., m

(5.60)

i =1,...,n

It is easy to show that this solution x satisfies all the constraints of problem TP(X,µ).

Problem TP(X,µ) can be solved by the Hungarian method that also provides an

optimal solution of the dual of TP(X,µ). We can show that an optimal dual solution of

TP(X,µ) can be transformed into an optimal solution of DP12(X,µ).

The dual of problem TP(X,µ), called DTP(A,µ), is as follows :

n 	 m
DTP(X,µ) zODTP(X,µ)) = Max EPi +(m — MB)Pn+i + EcT i ±

i=1 	 j=1

(M — M B)(3n2+1 + (n — M)cF m+2

(5.61)

subject to
Pi +aj

i=1,...,n+1
5-lii ' j=1,...,m+2 }

(5.62)

pi 	unrestricted , i =1,...,n +1
a J • unrestricted , 	 j =1, . . . , m+ 2 }

(5.63)

Let (p * , a *) be an optimal DTP(X, p.) solution and let us define :

pm' = Max[pil and amax = Max [01i 	 (5.64)
1.1.i5m 	 1.j5m+1

We denote by imax the index such that pi = pmax .

We assume that amTh = a max (this is possible since the constraints of problem

TP(X,µ) are not independent).

Theorem 5.4. In any optimal DTP(X,µ) solution (p* ,a*) such that am* +1 = a max we

have :

145

r max
Pn+1

max
m+2 - —1)

} (5.65)

Proof. By definition I imax S n (see expressions (5.64)), therefore, from the dual

constraint (5.67) and expression (5.49), we have :
max

Pn-fi + 	0
Amax + am* +2

i=n+1,j=m+1
i=imax , j = m+ 2 } (5.66)

hence, p:÷1 —6max and 6m+2 :5_ —pmax . Since both variables pn.fi and 6m+2 have a

positive coefficient in the objective function (5.61) we have pn*+i = —a max and

„.* 	_ „ max
u m+2 	■

Theorem 5.5. Any optimal DTP(X,µ) solution (p* ,a*) of cost z(13T13(X,14) can be

transformed into an optimal DPR(X,µ) solution (ii* ,•u* ,8*) of cost

z(DP12(X,A))= z(DTP(X,14)+ Ex, +
iE L 	jEB

by setting :
* * max

= — 10 ,
1) •

* 	* 	ax = CY • — CT
m

.1
8* = pmax ulna):

i E L
j E B

}
(5.67)

Proof. By substituting i* , u* and 8* into the dual constraints (5.37) we obtain :

p* — pmax + — amax + p" + a" 5 bu , (i , j) Ao

or p: + 	<— bid , (i, j) E A0. These correspond to the dual constraints of DTP(,,µ)

that, by definition, are satisfied by p* and cr* . It is obvious that the values of 	D
*

and 8* satisfy constraints (5.38).

	

The cost z(DPR(X41,)) of a DPR(X,µ) solution 	*)can be written as

follows:

z(DpR(x,,))=zA +Ex, + I
ie L 	 jEB

146

x---, where zA = 2111 + Lui + M6* . From expression (5.67) we obtain :
iEL 	jEB

ZA = Epi* + Ea*i —(n— M)p" —(m— M)csmax .
tEL 	 jEB

From Theorem 5.4 we have p,:+1 = —a n' , a*m+2 = —rax and, therefore :

ZA = IR* + Ea.; +(n- M)0„,* +2 +(m— M)pn+1 .
JEL 	 jEB

As m — M = (in — M B) - (M - M B), equation (5.69) becomes

zA = ER + E6 , +(n — M)a*,+2 + (m — MB)Pn+i — (M — MB)P:+1 • 	(5.70)
JEL. 	fEB

* 	* From Theorem 5.4, we have 6m 1 = —pn+i , hence from equation (5.70) we deduce

that zA = z(DTP(X,µ)).

5.4.2 PROCEDURE H2

Let (u l , v1 ,a1 431 ,w1) be a feasible solution of DIL of cost z(D1) produced by

procedure H1 . The reduced costs of the variables of problem IP are given by :

ci = c f — Eul -al , t E L
kEPt

d =C,- Evi, -pti, , 	.D E B
keP,

d 	= du + a i i + pl i _ w l , (i, j) e Ao

(5.71)

We denote by D2 the problem obtained from D by replacing {c1 } with {d} and

{du} with {4}.

Problem D2 cannot be solved directly as the number of constraints may be too large.

In this section we describe a heuristic procedure, called H2 , for reducing the number of

constraints of D2 so that the resulting problem, called D2 , can be solved directly and

any solution of D2 is a feasible D2 solution. Problem D2 is obtained from D2 as

follows:

147

(5.68)

(5.69)

(i) reduce the number of constraints (5.11) and (5.12) by replacing L and B with subsets

c L and N c B of limited size;

(ii) add constraints to force any D2 solution to satisfy constraints (5.11) for any

E L\Z and constraints (5.12) for any .e E B\

Reduced problem D2

Let LC L and N c B be the subsets of paths satisfying the following conditions :

Max[4] S Min [4] 	 (a)
teZ 	ieL\L

Max[cl] S Min [d] 	 (b) 	 (5.72)
PEN 	tEB\B

cQ < z(uB)- z(E)1), teZuN 	(c)

We set Er =LnLf ,iEL and B1 = NnIrj , jE B.

For generating the two sets T, and N we used a procedure similar to the one used by

Mingozzi et al. (1995) for the VRP which will be summarised in section 5.4.2.2. Note

that real-world VRPB constraints can, at this stage, be easily considered by removing

from L and N any infeasible path. The reduced problem D2 is as follows:

(D2) z(52)= Max Eui + Ey; + Mw 	 (5.73)
ieL 	jEB

subject to Euk +a, 4 , 	We zr. ,V i E L (5.74)
/cc/3,

Evk + p; 5.c3
kEp,

Vi E BF ' V jE B (5.75)

—13j + w 5.; 	 V(i, j)E A0 	(5.76)

ui +Si 5. Ui , 	 ViE L 	 (5.77)

a i —Si 5_0 , 	 ViE L 	 (5.78)

vi +0 i .17.i , 	 VjE B 	 (5.79)

13j —0 i 5_ 0 , 	 VjE B 	 (5.80)

148

ui , ai unrestricted , Si 0 ViE L
v./ , Pi unrestricted , Of 0 V jc B (5.81)
w 	unrestricted

Constraints (5.77), (5.78), (5.79) and (5.80) ensure that any solution of 52 is a

feasible D2 solution if the upper bounds U i , i E L and Vi , j E B are chosen such

that :

Evi c..2,,tELAr
iEp,
Ey; Scl,,tEB\T3
jEPe

(a)

(b)
(5.82)

Theorem 5.6. Any feasible solution to D2 is also a feasible solution of D2 with the

same objective function value.

Proof. Let us consider the dual constraint (5.11) of path £ E LE \TLF for a given i E L.

From inequalities (5.77) and (5.78) we have :

Euk +ai < EUk — E8k -Foi
kEp, 	kEp„ 	kePt

and from inequalities (5.82.a), since 8i 0 , Vi E L , we have :

EUk 	— ~Sk + Si 	.
kEp, 	 kEp,

— Hence, any solution of D2 satisfies the dual constraint (5.11) for any E 1,11. In a

similar way we can show that a feasible D2 solution satisfies constraints (5.12) for any

tEB\N E

5.4.2.1 THE COMPUTATION OF Ui E L AND Vi E B

In computing Ui , Vi E L, we must consider two cases :

A) ci z(UB) — 01) , Vi E L \ L . From Corollary 5.1 no path t E L\Z can belong

to an optimal VRPB solution, hence, we can set Ui = 00 , Vi E L.

149

B) 4 < z(uB) — z(o) , for some E LAT, . In this case every optimal VRPB solution

might contain some path E L \L . We can set :

	

L/ i = 	IQ, ViEL 	 (5.83)

where

3L = Max[cd . 	 (5.84)
iE27

It is easy to show that the fui } defined according to expression (5.83) and (5.84)

satisfy inequalities (5.82-a). For any E 	we have :

= 	qi I" 1 Q 	 (5.85)

	

iEPe 	iEPt

Since from (5.84) we know that 31 d ,tEL\ --.-6, equation (5.85) then becomes :

EUi c2€ Eqi I Q 2 e
iEP1 	iePt

Also for the computation of Vi , VjE B , we must consider two cases.

C) d z(UB) — z(Di) , Vt E B\N. This case is analogous to case (A) above. We can

set Vi = , Vj E B

D) d < z(uB) — z(D1) , for some t E B1N. 'We can set :

where

v.I =41.J " B IQ,

-B = A maX[Ce2 C
iET3

'VjEB (5.86)

. 	 (5.87)

The proof that the frj } computed according to expressions (5.86) and (5.87) satisfy

inequalities (5.82-b) is similar to the one given in case (B) above. Problem D2 can be

considered to be the dual of the following problem IP
2
 .

(y)2) z(rT32 min 2 z dye + Vi •• ii + y, ux1 E17.37P I
L'EE 	tEN 	j)EA0 	iEL 	feB

(5.88)

150

subject to 	e + .x°` =1 , 	 Vie L 	(5.89)
/El.;

Eye y. =1, 	 VjEB 	(5.90)
tEN
- F
;

yx,- 	-Fv =0 , 	 Vi E L 	(5.91)
teir 	 jEB0

VjE B 	(5.92)

= M 	 (5.93)
(i,j)EA0

.41 — 	> 0 , 	 Vi E L 	(5.94)

y7 — 411 > o , 	 Vj E B 	(5.95)

x, y, xa ,y13 ,4 	0 	 (5.96)

Procedure H2 consists of finding an optimal solution (x* ,y* ,x a* 	e*)

of IP
2

of cost z IP
2
	and the corresponding optimal dual variables

IN 	 *
U* ,17* ,a* ,p* ,w). Hence, we have z(D2)=z(D2) and u2 = u* , v2 = v* , cc2 = cc* ,

p2 p* 2 = 	, w = w

Procedure HDS finds a solution (u', v',oc',13', w') of D of cost e(D) = z(D1) + z(D2)

by setting u'= +112 , 17, = v i + v2 , 	= at +a2 , = 01 + p2 w/ = wl w2

An optimal VPRB solution

We observe that an optimal T.2
solution, under certain conditions, corresponds to an

optimal VRPB solution. In fact the following cases may arise:

(A) x* ,y* , * integer and xa* = 4a* = 0, y(3* = 413* = 0.

This solution is an optimal VRPB solution of cost z(IP) = z'(D).

(B) x* or y* or 4* not integer and Ui = 00 , i E L , and Vi = oo , j E B.

151

In this case all paths of any optimal VRPB solution are contained in the two sets Z

and T3 and an optimal VRPB solution can be obtained by solving problem IP after

having replaced sets L and B with Z and T3 .

(C) xa* # 0 or 343* # 0 .

This f P
2

solution is not feasible for the VRPB. Furthermore, sets :C7 and N might

not contain any feasible and/or optimal VRPB solution.

5.4.2.2 GENERATING SETS L AND B

In this section we describe a method for generating sets I and N satisfying

conditions (5.72) with the additional restrictions that III Maxsize and IB1 Maxsize ,

where Maxsize is a predefined positive integer to ensure that no memory overflow

occurs. In the following we give the description of an algorithm for generating set

being obvious that an equivalent procedure can be used for computing N.

The method for generating set r is based on the following observation.

Let P be a feasible path in GL from vertex 0 to some vertex t(P) . We denote with

LB(P) a lower bound to the reduced cost of any feasible path in GL that can be

obtained by expanding P from t(P) to some other vertex iE Lo

Theorem 5.7. Let P a subset of the path set L such that :

Max[LB(Pe)] Min[LB(pe)].

	

LET 	tEL\P

The subset L of P defined as :

	

Tc,= {.e: 	 Min[LB(PM}
tEL\P

satisfies inequality (5.72-a).

Proof. From the definitions of I and of LB(P) , we have :

Max[ci?] Min[LB(Pjl Min[en .
Eel 	ieL\P 	- LeL\P

Moreover, from the definition of I we have :

(5.97)

(5.98)

(5.99)

152

Max[d] Min[ci] . 	 (5.100)
.eEL. 	.eET\L

Hence, from inequalities (5.99) and (5.100) we obtain :

Max[cli5._ Min [4]. 	 (5.101)
.eer, 	.eE(L\T)u(T\Z)

Inequality (5.101) corresponds to inequality (5.72-a) since (L\P)u(P \Z) = L11 •

In the following we describe an algorithm, called GENT, for generating set P that is

analogous to the Dijkstra's algorithm in an expanded state-space graph. Let S(P) be the

set of vertices visited by path P.

In algorithm GENP we use LB(P) as a label and set T to denote a temporary set of

paths (i.e. it is not known if P E T is a least cost path starting at 0, visiting the subset of

vertices S(P) and ending at t(P)).

Algorithm 5.3: GENP

We use Ti and Pi to denote the subsets of all paths terminating at vertex j of sets T

and P, respectively.

Step O. Set T =1(0)1 , LB((0))= 0 and P = 0 .

Step I. If T = 0, then go to Step 6.

Step 2. Let P* E T be such that LB(P*) = Min
T

 [LB(P)] and denote with i* the
PE

terminal vertex of P* . Update T = T\IP* 1 and P = P u {P } .

If 'PI = Maxsize , then go to Step 6.

{

	

Step 3. For any vertex jE j: jE L\S(P*) s. t. Eqi + q j 	repeat Step 4.
iEP*

Step 4. Let P' be a path obtained by appending vertex j to the end of path P* .

We have two cases :

1. 	LB(P') z(UB) — z(D1) , then P' is rejected.

153

2. 	LB(P') < z(UB) — 01), then we have three subcases :

(i) S(P') # S(P), VP e PJ u , then update T= Tu{P'} .

(ii) S(P') = S(P), for some PEPi, then P' is dominated by P (i.e.

LB(P) S LB(P') , hence, P' is rejected).

(iii) S(P') = S(P), for some P E T./ . If LB(P') LB(P) then P' is

dominated by P and is not stored in T, otherwise update T =T1{P}

and T= Tv{ P'} .

Step 5. Return to Step 1.

Step 6 Let LBMAX = Max[LB(P)] Remove from P any path P such that
PEP

	

qi < an and/or c(P)— E 	alt(p) > LBMAX
iEP 	 iEP

Set L corresponds to the indices of the paths contained in Pat the end of GENT.

Concerning the computation of Ui , i E L , we note that if GENT terminates with

T = 0 , 	then 	c.2, ?. LB(PP) > z(UB) — (Di) , W E L 	, 	hence, 	we 	set

Ui = 00 , Vi E L . If GENT terminates with !PI = Maxsize, then we set

Ui = qi LBMAX/Q.

Reducing sets L and T3

Once the two sets L and T3 have been generated, we can remove from Tt, according
to Corollary 5.2, any path £ such that :

ce2 d 2 j + Mink 2] z(UB)— z(D1)
JEB0 	rE131

and, according to Corollary 5.3, we can remove from T3 any path t such that :

Min[Min[ci]+ dit, + 	z(UB)— z(D1).
ie L rE zr

154

LB(P)=C"(13)+ 	Min
qmin(p)qq„,,,,,(P) gil (q) , if 7111 (0 E P

(q) , if mi (q) e P
(5.102)

Computing lower bound LB(P)

In the following we use Q(P) to denote the load of path P (i.e. Q(P) = > qi).
JET.

Associate with each arc (i, j) of graph G L the following cost du :

- u; , iEL0 ,jeL

-at, iEL,j= 0

Let fi-1(q) be the cost of the least cost q-path from vertex i E L to depot 0 and let

-it 	 -1 / w) be the vertex just prior to i on the path corresponding to fi kg)

Let g; 1(q) be the cost of the least cost q-path from vertex i E L to depot 0 with

pit (q) ,TETti 1 , w) where pl1(q) is the vertex just prior to i on the path corresponding to

git (q)

Functions f11(q) and gil(q) can be computed by means of a dynamic

programming algorithm in a similar way as functions f1 (q) described in section 5.4.1.2.

Let P be a feasible path in G L starting at depot 0 and ending at vertex i = t(P) . We

denote with -6(P) the cost of P using arc costs {Ju} .

A lower bound LB(13) for the reduced cost -e(P') of any feasible path P' in GL

that can be obtained by expanding path P is given by :

d13

where groin (P) = Max 	Eqk,q1 and q.(P). Q— E qk + qi.
L 	kEP 	 keP

A computationally better method for calculating LB(P) , avoiding the minimization

problem required by expression (5.102), involves the definition of the following

functions Fi(q) , i (q) and G1(q) that are computed, for each q (q1 < q .Q), as

follows.

(q) = Min
Max[Qui -q,q;]54-g+qi [ft

-t(gli

155

1 cri (q) = 	(q*) , where q* is such that Fi (q) = f1-1(q*)

, if n-i-i(q)

6111(0 if nil (q) = (q)

The lower bound LB(P) can be computed as :

LB(P) =
r(P)+ Fi(Q(P)) , if c y i (Q(P)) P

a(P)+ Gi(Q(P)) , if a i(Q(P)) E P

Gi(q)= 	Min
Max[Q,nin —q,qi]q'5Q—q+qi

(5.103)

5.5 AN EXACT METHOD FOR SOLVING THE VRPB

In this section we describe an exact method for the VRPB, called EHP, that consists

of reducing the number of variables of the integer program IP so that the resulting

problem can be solved by an integer programming solver (CPLEX (1993)). This method

may terminate, under certain circumstances, without having found an optimal solution.

Let (u', v', a', (3', w') be the solution of D of cost e(D) obtained by procedure BIDS

and let c't , teLuB, and d1 ,(i,j) E Ao be the reduced costs corresponding to this

dual solution. We could attempt to solve IP as indicated by Corollary 5.1, that is, we

might generate L', B' and A6 according to expressions (5.22) and then solve IP using

L', B' and Ai5 instead of L, B and A0 . However, the size of L' and/or B' may be too

large, hence we propose generating L' and B' so that their size is limited and the

resulting problem IP' becomes solvable. By means of the procedure described in

section 5.4.2.2, we generate L', B' satisfying conditions (5.72) where the reduced costs

Id } are replaced with Ic.'e and z(D1) is substituted with z'(D) . Note that the size of

each set L' and B' is limited by the value of Maxsize used in algorithm GENT.

Moreover, the sets L' , B' and AL can be further reduced by applying Corollaries 5.2,

5.3 and 5.4 of section 5.3.1.1.

Let x* , y*,4* be an optimal solution of IP' of cost z(IP') (we assume z(IP') = co if

the sets L' and B' do not contain any optimal VRPB solution).

156

If z(IP') < .0 then solution x* , y* , V is a feasible VRPB solution and it may be also

an optimal one. Let A = Min{Max[cd, Max[c't if .
iEL' 	iEB1

We have the following cases :

1. z(IP/). z'(D)+ A . In this case the optimal solution of IP' is also an optimal

VRPB solution. This derives from Theorem 5.1 as any VRPB solution involving

at least one path of L \ L' or B \ B' has a cost greater or equal to z'(D) + A .

2. z(111 > 413)-F A . The optimal solution of IP' might not be an optimal VRPB

solution. However, it is easy to note that, in this case, z'(D) + A is a valid lower

bound to any optimal VRPB solution.

The optimal solution of IP' is obtained by means of the integer programming code

CPLEX 3.0.

5.5.1 A NUMERICAL EXAMPLE

In this section we show a numerical example to illustrate the new exact procedure

EHP. The test problem used is problem eilA10166 (see section 5.6). The number n of

Linehaul customers is 67 (i.e. I L I= 67), while the number m of Backhaul customers is

33 (i.e. I B I= 33). The number M of vehicles is 6, each one with a capacity Q=200. The

total demand of the Linehaul and Backhaul customers is 1003 and 455, respectively.

Therefore, the minimum number of vehicles needed to visit the Linehaul customers and

the Backhaul customers is 6 and 3, respectively (i.e. M L = 6 and MB = 3). The data

corresponding to this problem test can be found in Appendix A.2. The cost of the

heuristic solution found by the algorithm of Toth and Vigo (1996) is 879.

The value of lower bound z(D1) computed by procedure H1 was equal to 841.2.

The lower bound has been obtained by a total number of 300 iterations of procedure H1

in 201 seconds on a Silicon Graphics Indy (MIPS R4400/200 Mhz processor). The M-

vertex disjoint arcs of Ao in the lower bound solution and the corresponding Linehaul

and Backhaul q-paths are given in Table 5.1. Figure 5.5 shows the lower bound solution,

where the arcs forming the solution are indicated as bold.

157

037 040 03 	 23

06

056 	014 	 X44

61

A74

57
A96

27 13 59

07

A83 34

032

21
45

49

r.

fit:

A93

016esi A7s
92

050

90
A

28 	 178

6 Linehaul customer A Backhaul customer

Figure 5.5. Example: lower bound solution to procedure H1 of cost 841.2

Table 5.1. Example: details of the lower bound solution obtained by procedure H1

046
018

038
A81

017 	 04
039

029
028

Delivery q-path Collection q-path

(1,20,52,35,2,48,22,60,43,8,23,15) (90,71,85,79,95,94,69,79,95,94,69,76,86,72,1)

(1,36,22,48,8,43,60,22,48,2,35,52,53,54,21) (76,86,72,1)

(1,2,35,53,47,55,21,54,24,25,45,49,15,23) (89,98,78,91,77,1)

(1,61,57,5,13,42,12,59,31,27,11,30) (73,87,82,97,1)

(1,19,55,47,53,52,35,2,48,8,43,9,44,34) (80,84,89,98,78,91,77,1)

(1,10,64,65,66,63,41,67,26,68,62,58) (99,101,100,70,1)

Arc

(15,90)

(21,76)

(23,89)

(30,73)

(34,80)

(58,99)

158

The value z(D2) of the lower bound obtained by procedure H2 was 2.1, hence, the

value of the final lower bound obtained by procedure HDS was z'(D) = 843.3. The total

computing time for procedure HDS was 373.0. Table 5.2 reports the details of the lower

bound solution produced by H2 and Figure 5.6 shows the solution, where the bold arcs

represent the gif } variables that have a value greater than 0 in the lower bound

solution.

Linehaul customer A Backhaul customer

Figure 5.6. Example: lower bound solution to procedure H2 of cost 2.1

159

Coefficient
0.01
0.34
0.02
0.00
0.01
0.01
0.00
0.00
0.02
0.08
0.30
0.73
0.40
0.51
0.00

Path
(1,20,52,35,2,48,22,60,43,8,23,15)
(1,36,22,60,6,56,7,32,33,14,9,43,8,23,15)
(1,19,55,47,53,54,24,25,45,49,15,23)
(1,61,57,5,13,42,12,59,31,27,11,30)
(1,61,57,5,42,12,59,27,31,11,30)
(1,36,6,56,57,5,13,42,12,59,31,27,11,30)
(1,19,55,47,53,52,35,2,48,8,43,9,44,34)
(1,20,52,35,2,48,22,8,43,14,9,44,34)
(1,61,36,22,60,6,56,7,32,33,14,9,44,34)
(1,36,22,60,6,56,7,32,33,14,9,44,34)
(1,20,52,35,2,48,8,43,60,6,56,7,32,33,34,44)
(1,20,2,35,52,53,47,55,21,54,24,25,49,45)
(1,20,19,28,40,3,50,51,16,39,17,46)
(1,37,40,28,3,50,51,16,39,17,46)
(1,10,64,65,66,63,41,26,67,68,62,58)

Value
0.20
0.20
0.60
0.60
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.80
1.00

Value
1.00
0.20
0.80
1.00
0.20
0.80
1.00
1.00

Path
(73,87,82,97,1)
(80,84,89,98,78,91,77,1)
(80,84,83,96,88,74,1)
(81,93,92,75,1)
(83,96,88,74,1)
(89,98,78,91,77,1)
(90,71,85,79,95,94,69,76,86,72,1)
(99,101,100,70,1)

Coefficient
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00

Table 5.2. Example: details of the lower bound solution obtained by procedure H2

{xe } variables

{ye } variables

gu l variables
Arc Value Coefficient

(13,83) 0.20 0.04
(15,90) 0.40 0.00
(23,89) 0.60 0.00
(30,73) 1.00 0.00
(33,80) 0.20 0.00
(34,80) 0.80 0.00
(44,89) 0.20 0.07
(45,90) 0.40 0.01
(46,81) 1.00 0.00
(49,90) 0.20 0.01
(58,99) 1,00 0,00

160

Linehaul customer A Backhaul customer

Figure 5.7. Example: optimal solution of cost 846

The cost of the integer solution found by CPLEX was 846, which has been obtained

in 61 seconds. The cardinality of the sets of Linehaul and Backhaul paths generated (i.e.

I L' I and I B' I) were 20187 and 15371, respectively. The cardinality of set I Ao I was

equal 	to 	1076. 	The 	value 	of 	A 	was 	equal 	to

A = Mintillax[c'L],MaxVi i} = Min{3.31,9.66} = 3.31, hence, LS=846.6. Therefore, the
tEB'

solution found is also the optimal solution of the problem since z(IP') LS . Figure 5.7

shows the optimal solution of the problem. The total computing time of procedure EHP

was 434 seconds.

161

5.6 COMPUTATIONAL RESULTS

The algorithm EHP described in Section 5.5 has been coded in Fortran 77 and run on

a Silicon Graphics Indy (MIPS R4400/200 Mhz processor) on two classes of test

problems. We have used CPLEX 3.0 as the LP-solver in procedure H2 and as the

integer programming solver in EHP.

The problems of class A correspond to a subset of the randomly generated Euclidean

VRPB instances proposed by Goetschalckx and Jacobs-Blecha (1989). The problems of

class B have been generated by Toth and Vigo (1996) from VRP problems known in the

literature. For each VRP problem three VRPB instances have been generated, each one

corresponding to a Linehaul customer percentage of 50%, 66% and 80%, respectively.

Problem input data of class B have been kindly provided by Toth and Vigo.

To our knowledge, the only exact method presented in the literature for solving these

problems has been proposed by Toth and Vigo (1997).

The tables show the following columns :

z(IP) : 	cost of the optimal VRPB solution (or cost of the best known solution).

z(UB) : cost of the VRPB solution found by the heuristic algorithm of Toth and

Vigo (1996).

z(D1) : 	lower bound produced by procedure 111 after 200 subgradient iterations.

tHi : 	computing time spent by the bounding procedure H1 .

z'(D) : 	final lower bound produced by procedure HDS.

t HDS 	total computing time of procedure HDS.

%Ems : percentage error of the lower bound z'(D) computed by procedure RM.

number of Linehaul paths generated in EHP.

: 	number of Backhaul paths generated in EHP.

LS 	= z'(D) + A , where A is the value defined in Section 5.5 and it is used by

EHP 	to show the optimality of z(IP) (we set LS = co if

c't > z(uB)—z/(D), vt (L B) \ (L' B')).

162

tEHp 	total computing time of procedure EHP including tims . We impose a time

limit of 25000 CPU seconds. If the time limit is reached, the instance is

marked with an asterisk.

%ETV 	percentage error of the lower bound produced by Toth and Vigo (1997).

tTV 	computing time of the exact method TV proposed by Toth and Vigo

(seconds of a Pentium 60 Mhz personal computer). If an imposed time limit

of 6000 CPU seconds has been reached, the instance is marked with an

asterisk. Instances not attempted by Toth and Vigo are marked with n.a..

The percentage errors %EHDs and %En, are computed as the ratio of the lower

bound divided by z(IP) and multiplied by 100. The parameter Maxsize, used in GENP,

has been set to 70000 in both procedures H2 and EHP.

Tables 5.3 and 5.5 show the quality of the lower bounds produced by procedure HDS

and by Toth and Vigo for the two classes of problems. Columns %EHDs and %ETV of

both tables show that the lower bound obtained by EDS is greater than the lower bound

produced by Toth and Vigo, the average values being %EHDs = 98.2 and

%ETV = 97.4 for problems of class A and %EHDs = 98.3 and %En, = 96.8 for

problems of class B. In fact, out of 64 cases for which comparison is possible, only in

three of these did the procedure of Toth and Vigo gave a superior lower bound. Tables

5.4 and 5.6 report the results obtained by the exact method EHP and the exact algorithm

of Toth and Vigo. Note that it is difficult to compare directly the computing times

required by the two methods since they are relative to different machines. In our

experience the Pentium 60 Mhz used by Toth and Vigo is about four times slower than

the Silicon Graphics Indy we used. Tables 5.4 and 5.6 indicate that EHP is capable of

solving problems up to 90 customers of class A and up to 100 customers of class B. For

some problems EHP cannot prove the optimality of the solution produced (this happens

when LS < z(IP)), however, the distance between z(IP) and LS is small. The computing

time required by CPLEX in procedure EHP to solve problem IP' is given by

tEHp — /Him . We can observe that the CPU time consumed by CPLEX becomes the

main component of the total time required by EHP to solve some problems of both

classes A and B. We note here that for algorithm EHP it is better to have only a few

163

customers per path (say, an average of 15 customers/path) and that the problem should

be "tight" (i.e. the ratios (Eqi / (M LQ) and (E qi / (M BQ) should be greater than,
JEL) 	 ieB

say, 0.9). In this case the sizes of L' and 13' are small and EHP can be a potentially

useful tool for solving practical VRPB problems.

5.7 SUMMARY

In this chapter we have described an exact algorithm for the basic Vehicle Routing

Problem with Backhauls (VRPB) based on a new (0-1) integer programming

formulation. We have presented a method for computing the lower bound by finding a

feasible solution of the dual of the LP-relaxation of its integer program. Such a dual

solution is obtained by combining two different bounding procedures where the

structure of the second bound is such that additional constraints found in real-world

VRPB's can be considered. The exact method uses the dual solution and a method for

limiting the variables of the integer program so that the resulting problem can be solved

by CPLEX. The overall bounding procedure proved to be effective, being able to

produce a lower bound whose value on average was at least 98.2% of the optimum.

Computational results show that the proposed method is able to solve exactly VRPB's

of size up to 100 customers within the imposed time limit of 25000 seconds.

164

Table 5.3. Problem class A : lower bounds
PROBLEM DATA HDS TV

Prob n m M M B z(IP) z(D 1) t H I Z1(D) trips %EHDs %ETV

Al 20 5 8 2 229886 215233 2.1 227079 4.0 98.8 98.3
A2 20 5 5 1 180119 170474 1.2 177869 3.4 98.8 98.1
A3 20 5 4 1 163405 154512 5.8 163405 9.1 100.0 100.0
A4 20 5 3 1 155796 148452 5.2 155796 11.6 100.0 100.0
B1 20 10 7 4 239080 233869 10.6 233869 13.2 97.8 96.0
B2 20 10 5 3 198048 193176 29.9 193880 39.1 97.9 97.4
B3 20 10 3 2 169372 169372 3.9 169372 3.9 100.0 100.0
Cl 20 20 7 6 249448 236825 9.4 244857 13.6 98.2 95.7
C2 20 20 5 4 215020 207305 10.8 208495 13.9 97.0 96.5
C3 20 20 5 3 199346 197522 18.8 199346 24.5 100.0 99.8
C4 20 20 4 3 195366 193542 18.7 195367 24.4 100.0 100.0
D1 30 8 12 3 322530 306565 3.7 318671 6.2 98.8 97.0
D2 30 8 11 3 316709 292534 3.6 310929 8.5 98.2 94.5
D3 30 8 7 2 239479 224657 4.5 231931 17.6 96.8 95.9
D4 30 8 5 2 205832 194225 21.9 198301 49.4 96.3 95.4
E1 30 15 7 3 238880 229614 5.7 238880 11.2 100.0 95.1
E2 30 15 4 2 212263 206362 21.3 212263 40.9 100.0 97.9
E3 30 15 4 2 206659 199031 32.8 204360 62.2 98.9 98.2
Fl 30 30 6 6 263173 248195 6.4 256287 66.4 97.4 96.6
F2 30 30 7 6 265213 254285 6.5 262342 27.6 98.9 98.3
F3 30 30 5 4 241120 229452 9.1 238221 74.8 98.8 98.0
F4 30 30 4 3 233861 221136 11.2 227576 91.3 97.3 97.3
GI 45 12 10 3 306305 292859 14.2 299522 43.3 97.8 91.1
G2 45 12 6 2 245441 237618 24.3 242423 63.6 98.8 93.3
G3 45 12 5 2 229507 221566 30.7 223205 80.7 97.3 96.2
G4 45 12 6 2 232521 223271 30.9 226712 71.6 97.5 96.5
G5 45 12 5 1 221730 213131 38.2 217204 81.7 98.0 97.9
G6 45 12 4 1 213457 204187 49.4 207116 102.8 97.0 96.6
H1 45 23 6 3 268933 262397 98.7 264609 130.5 98.4 96.6
112 45 23 5 3 253365 249237 67.4 251972 143.7 99.5 99.4
H3 45 23 4 2 247449 242391 79.6 245860 171.3 99.4 99.2
H4 45 23 5 2 250221 244114 32.1 249239 176.4 99.6 99.7
H5 45 23 4 2 246121 239537 94.8 244450 263.4 99.3 99.3
H6 45 23 5 2 249135 243664 74.1 247832 169.4 99.5 99.4
Il 45 45 10 9 353021 338580 56.5 342376 193.2 97.0 n.a.
12 45 45 7 7 309943 301904 80.2 305923 198.3 98.7 n.a.
13 45 45 5 5 294833 281061 122.7 285158 274.0 96.7 n.a.
14 45 45 6 5 295988 286849 121.1 289314 299.6 97.7 n.a.
15 45 45 7 5 301226 293773 120.6 295935 304.6 98.2 n.a.
J1 75 19 10 3 335006 323922 94.6 329466 150.5 98.3 n.a.
J2 75 19 8 2 315644 295532 123.4 299069 217.2 94.7 n.a.
J3 75 19 6 2 282447 268495 185.2 271767 362.8 96.2 n.a.
J4 75 19 7 2 300548 281414 147.2 285203 259.8 94.9 n.a.
K1 75 38 10 5 394637 379113 104.9 385215 187.2 97.6 n.a.
K2 75 38 8 4 362360 351581 117.7 357327 223.3 98.6 n.a.
K3 75 38 9 4 365693 354651 115.7 360365 219.4 98.5 n.a.
K4 75 38 7 3 358308 336260 142.3 340958 264.1 95.2 n.a.

	

Average %dev 	98.2 	97.4

	

Minimum %dev 	94.7 	91.1

165

Table 5.4. Problem class A : exact method EHP
PROBLEM DATA EHP TV

Prob n m M M B z(UB) Z(IP) LS I L'I IB1 tEHp try

Al 20 5 8 2 229886 229886 00 125 7 5 902
A2 20 5 5 1 180119 180119 00 242 13 4 209
A3 20 5 4 1 163405 163405 a co - - 10 3
A4 20 5 3 1 155796 155796 a co - - 12 3
B1 20 10 7 4 239080 239080 oo 307 69 14 148
B2 20 10 5 3 198048 198048 00 386 126 40 151
B3 20 10 3 2 169372 169372 a co - - 4 1
Cl 20 20 7 6 253318 249448 00 945 574 17 227
C2 20 20 5 4 215020 215020 00 1144 772 18 322
C3 20 20 5 3 199346 199346 a co - - 25 84
C4 20 20 4 3 195367 195366 a co - - 25 5

D1 30 8 12 3 322705 322530 00 339 32 9 289
D2 30 8 11 3 318476 316709 00 1158 47 13 491
D3 30 8 7 2 239479 239479 00 4132 160 51 *
D4 30 8 5 2 205832 205832 . 14696 191 161 *
El 30 15 7 3 238880 238880 a co - - 12 476
E2 30 15 4 2 212263 212263 a co - - 41 788
E3 30 15 4 2 206659 206659 00 996 288 64 482
Fl 30 30 6 6 263929 263173 268630 7201 12019 2049 756
F2 30 30 7 6 265214 265213 00 805 978 44 891
F3 30 30 5 4 241121 241120 246458 1115 1981 76 468
F4 30 30 4 3 233862 233861 234671 22708 33442 173 3523
G1 45 12 10 3 306959 306305 308396 24678 271 3556 *
G2 45 12 6 2 245441 245441 247176 13705 105 229 *
G3 45 12 5 2 230170 229507 b 227049 38180 351 967 4225
G4 45 12 6 2 232647 232521 b 230648 21336 115 89 *
G5 45 12 5 1 221899 221730 b 220508 17556 434 157 3433
G6 45 12 4 1 213457 213457 c 209922 18946 763 103 840
H1 45 23 6 3 270719 268933 b 265930 2202 374 454 1344
H2 45 23 5 3 253365 253365 256154 6654 534 221 5020
H3 45 23 4 2 247536 247449 249200 5987 1724 177 1465
H4 45 23 5 2 250221 250221 253120 2194 872 179 1287
H5 45 23 4 2 246121 246121 247526 13356 2156 277 406
1-16 45 23 5 2 249135 249135 250351 3462 1086 173 416
Il 45 45 10 9 354410 353021 b 349787 55702 57332 20225 n.a.
12 45 45 7 7 315184 309943 310965 16854 16678 6395 n.a.
13 45 45 5 5 298367 294833 b 285787 37767 19714 18045 n.a.
14 45 45 6 5 295988 295988 b 293375 46873 40119 20055 n.a.
15 45 45 7 5 302709 301226 b 300060 48245 40870 8642 n.a.
J1 75 19 10 3 343476 335006 b 331204 1298 9769 1640 n.a.
J2 75 19 8 2 315644 315644 c 300485 1318 29849 218 n.a.
J3 75 19 6 2 282447 282447 c 272889 827 26266 363 n.a.
J4 75 19 7 2 300548 300548 c 286404 504 25603 260 n.a.
K1 75 38 10 5 408303 394637 b 387804 3713 58698 * n.a.
K2 75 38 8 4 372423 362360 b 359157 2693 54446 2618 n.a.
K3 75 38 9 4 374417 365693 b 362516 4556 52029 3812 n.a.
K4 75 38 7 3 358308 358308 c 342184 1166 47759 265 n.a.

(a) Optimal solution obtained by procedure HDS.
(b) z(IP) is the cost of the best VRPB solution found by procedure EHP.
(c) No solution found by algorithm EHP of cost smaller than z(UB).

166

Table 5.5. Problem class B : lower bounds
PROBLEM DATA HDS TV

Prob n m M M B z(IP) z(D1) t H i z'(D) tHDs %EMS %ETV

ei12250 11 10 3 2 371 369 2.8 371 5.1 100.0 100.0
ei12266 14 7 3 1 366 366 1.0 366 3.0 100.0 100.0
ei12280 17 4 3 1 375 366 3.5 372 5.8 99.2 98.9
ei12350 11 11 2 1 682 682 0.4 682 0.4 100.0 100.0
ei12366 15 7 2 1 649 604 4.5 645 7.6 99.4 98.8
ei12380 18 4 2 2 623 610 5.5 615 8.9 98.7 98.1
ei13050 15 14 2 2 501 473 7.7 501 7.7 100.0 100.0
ei13066 20 9 3 1 537 492 6.4 524 14.1 97.6 98.5
ei13080 24 5 3 1 514 488 7.7 503 24.7 97.9 100.0
ei13350 16 16 3 2 738 737 21.8 738 45.4 100.0 98.4
ei13366 22 10 3 1 750 746 15.3 750 26.6 100.0 94.8
ei13380 26 6 3 1 736 727 18.0 731 42.2 99.3 93.9
ei15150 25 25 3 3 559 550 38.7 557 65.2 99.6 99.3
ei15166 34 16 4 2 548 541 40.2 544 60.6 99.3 97.8
ei15180 40 10 4 1 565 552 47.5 554 104.0 98.1 98.0

ei1A7650 37 38 6 5 739 730 67.0 733 110.0 99.2 98.2
ei1A7666 50 25 7 4 768 756 75.0 760 135.0 99.0 95.4
ei1A7680 60 15 8 2 781 758 89.3 763 195.0 97.7 90.5
ei1B7650 37 38 8 7 801 794 45.0 795 62.5 99.3 97.6
ei1B7666 50 25 10 5 873 860 54.8 864 97.7 99.0 91.2
ei1B7680 60 15 12 3 919 908 65.6 914 115.0 99.5 85.2
ei1C7650 37 38 5 4 713 699 88.5 705 186.0 98.9 98.9
ei1C7666 50 25 6 3 734 725 100.0 728 196.0 99.2 97.6
ei1C7680 60 15 7 2 733 713 62.3 717 131.0 97.8 93.7
ei1D7650 37 38 4 3 690 684 109.3 688 182.0 99.7 99.7
ei1D7666 50 25 5 2 715 704 119.0 705 236.0 98.6 98.5
ei1D7680 60 15 6 2 694 683 140.0 687 310.0 99.0 95.6
eilA10150 50 50 4 4 843 800 167.5 812 363.2 96.3 96.3
ei1A10166 67 33 6 3 846 841 201.0 843 373.0 99.6 99.2
eilA10180 80 20 6 2 908 830 222.9 833 430.9 91.7 89.5
eilB 10150 50 50 7 7 933 888 96.0 892 210.0 95.6 n.a.
eilB10166 67 33 9 5 1056 937 118.8 941 292.6 89.1 n.a.
eilB10180 80 20 11 3 1022 992 132.5 993 306.9 97.2 n.a.

	

Average %dev 	98.3 	96.8

	

Minimum %dev 	89.1 	85.2

167

Table 5.6. Problem class B : exact method EHP

PROBLEM DATA EHP TV

Prob n m M M B z(UB) z(IP) LS IL'I IB1 tEHP tTV

ei12250 11 10 3 2 389 371 a 00 6 3

ei12266 14 7 3 1 366 366 a 00 - 3 6

ei12280 17 4 3 1 375 375 00 196 6 6 55

ei12350 11 11 2 1 682 682 a 00 - 1 2

ei12366 15 7 2 1 649 649 00 157 33 7 65

ei12380 18 4 2 2 625 623 00 657 4 9 36

ei13050 15 14 2 2 501 501 a 00 8 3

ei13066 20 9 3 1 542 537 00 2442 136 17 119

ei13080 24 5 3 1 519 514 00 7948 12 31 13

ei13350 16 16 3 2 764 738 a 763 - 46 292

ei13366 22 10 3 1 763 750 00 - 27 1338

ei13380 26 6 3 1 761 736 748 6745 93 44 1655

ei15150 25 25 3 3 561 559 00 420 925 66 441

ei15166 34 16 4 2 551 548 553 4366 463 68 2754

ei15180 40 10 4 1 584 565 566 32322 236 691 4436

eilA7650 37 38 6 5 756 739 743 5127 14206 884 15931

eilA7666 50 25 7 4 776 768 770 35299 5635 1205 13464

ei1A7680 60 15 8 2 839 781 b 772 44942 718 596 *

ei1B7650 37 38 8 7 836 801 00 2669 9183 124 16345

eilB7666 50 25 10 5 897 873 00 20246 1879 2918 12990

eilB7680 60 15 12 3 951 919 927 28181 349 821 10413

ei1C7650 37 38 5 4 714 713 715 12061 27537 16659 10344

ei1C7666 50 25 6 3 748 734 736 44074 2100 952

ei1C7680 60 15 7 2 757 733 b 724 42230 1314 * *

eilD7650 37 38 4 3 704 690 695 4753 9050 197 401

eilD7666 50 25 5 2 730 715 b 711 37745 16371 5023 *

eilD7680 60 15 6 2 715 694 b 691 41252 827 20148 *

eilA10150 50 50 4 4 849 843 c 816 4402 8835 364 *

eilA10166 67 33 6 3 879 846 847 20587 15371 434 10913

eilA10180 80 20 6 2 908 908 c 835 1159 55640 431 *

eilB10150 50 50 7 7 954 933 b 900 22571 16152 * n.a.

eilB10166 67 33 9 5 1056 1056 c 946 4331 28666 293 n.a.

eilB10180 80 20 11 3 1076 1022 b 996 4939 64198 20199 n.a.
(a) Optimal solution obtained by procedure HDS.
(b) z(IP) is the cost of the best VRPB solution found by procedure EHP.
(c) No solution found by algorithm EHP of cost smaller than z(UB).

168

CHAPTER 6

AN APPLICATION OF MULTI-DEPOT

PERIOD VEHICLE ROUTING TO

EFFICIENT RESOURCE PLANNING

6.1 INTRODUCTION

The Period Vehicle Routing Problem (PVRP) involves the design of effective vehicle

routes that satisfy customer service frequencies over a specified planning horizon. The

PVRP generalizes the classical VRP by extending the planning period from a single day

to p days. Over a p-day period, each customer must be visited at least once with some

customers requiring several visits. For example, a customer might requires two visits

during the period (say a 5-day week) and the allowable combinations for the visits might

be Monday-Friday or Monday-Thursday.

The PVRP has been used to model many practical problems. Beltrani and Bodin

(1974) and Russell and Igo (1979) encountered the PVRP in refuse collection where the

routing is planned weekly and each site requires a different number of collections during

the week. Ball (1988) and Dror and Ball (1987) discussed applications of the PVRP to

fuel oil delivery and industrial gas distribution problems. Golden and Wasil (1987)

discussed an application of the PVRP to the distribution of soft drinks where customer

demands may be stochastic. In addition, the PVRP can be applied to mail collection and

delivery problems, as well as scheduled retail and wholesale delivery problems. In one

variant of the PVRP that is proposed by Raft (1982), customer demand is stochastic.

169

Whether or not a customer will be visited during the p-day period is also stochastic, and

the fleet of vehicles may be stationed at more than one depot. Gaudioso and Paletta

(1992) model a variant of the PVRP that determines the scheduling and routing policies

of vehicles so that the maximum number of vehicles (i.e., the fleet size) simultaneously

deployed over the entire planning period is minimized.

Algorithms for the PVRP have been published by Christofides and Beasley (1984),

Tan and Beasley (1984), Russell and Gribbin (1991), Chao et al. (1995) and Cordeau at

al. (1995). Christofides and Beasley (1984) developed two heuristics that consist of an

inizialization step followed by an improvement procedure. The first heuristic is based

upon the idea that minimizing the sum of the radial distances from the customers to a

center that is specified for each day of the planning period would also tend to minimize

the distance travelled in the underlying PVRP. The second heuristic is based upon the

idea that minimizing the total distance for TSP's on each day of the planning period

would also serve to minimize the total distance for the PVRP. Christofides and Beasly

generated 11 test problems which they solved using both heuristics. Tan and Beasley

(1984) developed a solution procedure for the PVRP that uses the generalized

assignment heuristic of Fisher and Jaikumar (1981b) initially designed to solve the

VRP. Tan and Beasley used their procedure to solve five problems drawn from

Christofides and Beasley (1984). Russell and Gribbin (1991) proposed a four-phase

solution approach for the PVRP that makes use of the interchange heuristic of

Christofides and Beasley (1984) to solve a surrogate TSP. Russell and Gribbin solved

eight problems taken from Christofides and Beasley (1984) and two new problems that

they generated. Chao et al. (1995) presented a new heuristic for the PVRP based on the

notion of record-to-record improvement. These authors use integer linear programming

to assign a visit combination to each customer. They then solve a VRP for each day by

means of a modified version of the Clarke and Wright algorithm (1964). Local

improvements are then obtained by using the record-to-record approach of Dueck

(1990) and 2-opt interchanges. Reinitializations are finally performed to diversify the

search. Chao et al. have applied the heuristic to problems from the literature as well as

to new test problems. Courdeau et al. (1995) describe a tabu search heuristic method for

the PVRP. Computational results show that the algorithm proposed by Courdeau et al.

170

outperform the heuristics of Tan and Beasley (1984), Christofides and Beasley (1987),

Russell and Gribbin (1991) and Chao et al. (1995).

The application described in this chapter is concerned with a utility company, which

is responsible for the preventive maintenance of a geographically dispersed network of

customers. In the specific area examined, a fleet of 17 mobile gangs is dispatched from

9 depots to call on 162 customers with frequency that can vary from once per day to

once every four weeks. Each gang, consisting of two field service workers in a van,

visits on average four customers per day. A depot is assumed, for planning purposes, to

be both the start and finish point for a gang's daily route. The number of mobile gangs

based at each depot varies at present between 1 and 3. The depots operate independently

and serve their own designated set of customers. There are limits on the length of the

working day imposed by working practices. The company's objectives are to examine

its mobile resource planning system in view of making it more cost effective, that is,

provide improved customer service at lower cost.

In this chapter we present an algorithm for solving the above problem, which is

formulated as a Multi-Depot Period Vehicle Routing Problem (MDPVRP). The

computational implementation of the complete planning model is described with

reference to the pilot study and results for selected model runs are presented.

The chapter is organized as follows. In the next section we describe the MDPVRP. In

the third section, we develop a new heuristic for solving the MDPVRP. Section 6.4

describes the computational implementation of the complete planning model. In Section

6.5 we explore the performance of the MDPVRP algorithm and evaluate the results of

various runs of the model. Finally, conclusions and future work are presented in Section

6.6.

6.2 PROBLEM OVERVIEW

There are three major decision problems associated with the maintenance operations

provided by the utility company that involve different levels of planning: strategic and

tactical/operational. The first problem is to find the most efficient boundaries of the

geographical area served by each depot in order to achieve a specified level of service.

171

The second problem is to determine, over a given time period, optimal visiting patterns

for the fleet of gangs, that is, to plan the scheduling of the gang visits to all customers

within each depot service area in the best possible way. The third problem is to perform

efficient route planning for the mobile gangs within the optimal depot territories subject

to a variety of constraints. Some of the goals identified in these problems may conflict

and this must be accounted for in the solution methodology. The underlying theme is the

integration in a unified model of all the decision problems mentioned above because, we

believe, that efficient solutions to tactical and operational problems such as scheduling

and route planning may be successfully incorporated in satisfactory solutions to strategic

problems. If service and maintenance operations are improperly planned, this may result

in poor customer service, waste and inefficiency.

The problem studied in this chapter includes many quantitative restrictions on the

gangs as well as those defined by the customers. The complexity of such planning

problems affects the algorithms that can be employed in practical situations to generate

and evaluate feasible solutions. In this chapter, we address this problem as a MDPVRP

and we solve it using the heuristic method presented in the next section. The solution

methodology will enable the users to generate the best proposals for the mobile resource

planning system and/or evaluate proposed scenarios with respect to certain practical

aspects or constraints of the system. In our approach, particular attention is paid to

obtaining a well-balanced use of the resources (minimum number of mobile gangs) on

different days of the planning period. The proposed methodology is applicable in a

broader context to many real distribution problems that exhibit a similar underlying

network structure.

6.3 A HEURISTIC ALGORITHM FOR THE MDPVRP

In this section we present a heuristic algorithm for the MDPVRP.

Within the context of the mobile resource planning problem described in the previous

section, the classical (single-day) VRP involves a given set of customers that must be

visited by mobile gangs operating from a single depot (terminal). Each customer has a

known service requirement that must be satisfied by one visit of a gang. Each gang route

172

starts and finishes at the depot. The objective is to sequence the visits of each gang so

that customer requirements are satisfied and travel costs are minimized.

The MDPVRP generalises the classical VRP by allowing the gangs to operate from

one of several depots instead of only one and by extending the planning horizon from a

single day to several days. It is important to note that the MDPVRP is a multilevel

combinatorial optimisation problem. At the first level we need to define boundaries for

each depot service area. At the second level, we need to solve a PVRP for each depot

which involves determining a set of customers to be visited on each day of a planning

horizon. At the third level, we need to solve a classical VRP for each depot and for each

day of the given period. At the fourth level, we need to solve a classical TSP for each

route. The classical TSP has been shown to be NP-hard, so the MDPVRP is at least as

difficult. A number of exact and heuristic methods have been developed to solve large-

scale TSP's. For a large-scale MDPVRP, solving this nearly intractable problem using

an exact method would be very difficult and time-consuming, not least because for a

given depot and a given choice of customer visit-day combinations there is a large

number of resulting VRP's which are difficult to solve. Consequently, in this section we

present a new heuristic procedure for the MDPVRP in which a PVRP is solved for each

depot.

Basic notation

The PVRP for a single depot is defined as follows.

Given the service requirement of each customer and a set of allowable visit

combinations, we need to simultaneously select a visit combination for each customer

and establish feasible gang routes for each day of a planning horizon, according to the

VRP rules. The objective in the PVRP is to service all customers the required number of

times over the planning horizon so that the travel costs are minimised. The following

notation is used:

n 	the number of customers served from a specific depot

p 	the number of days in the planning horizon

H 	the length of a working day (hours)

173

f 	frequency of service required by customer i , i.e. the number of times customer

i is visited over the planning horizon (i = 1,...,n)

qi 	the mean service time requirement of customer i , (i = 1,...,n), 0 q, H

S, 	the set of allowable combinations of days for visiting customer i , (i = 1,...,n)

R, 	the set of customers scheduled to be visited on day t (t =1,...,p)

If a customer i requires f visits during a. planning period of p days, then these visits

may only occur in one of a given number of allowable fi -day combinations. For

example, if f, = 2 , p = 5 (i.e. a planning period of one week) and

St 	{ (1,3),(1,5),(2,4),(3,5)} , then customer i must be visited twice a week and these

visits could take place either on Mondays and Wednesdays (i.e. days 1 and 3 of the

week) or on Mondays and Fridays or on Tuesdays and Thursdays or on Wednesdays and

Fridays, with no other day combinations being acceptable.

Below we present a new heuristic for the PVRP, which includes the following

specific constraints:

i) Only one allowable service combination is chosen for each customer.

ii) Each customer must be visited by only one gang on a given day but may be visited by

different gangs during the given p-day period.

iii)The number of gangs available daily at a given depot has an upper bound. The total

number of gangs available for all depots has to be less than or equal to 17.

iv)The travel times associated with a route plus the service times required by the

customers visited on the route must not exceed the maximum length of a working

day.

Algorithm 6.1: PVRP

Step 0. Initialization Step

Since there is no easy method of clustering customers based on the frequency of

visits, an initial depot-customer allocation is obtained by assigning each

customer to its closest depot.

174

Step 1. Form an ordering of the customers

Order the customers already assigned to each depot, according to some heuristic

ordering rule. Let U denote the resulting list of customers for a specific depot.

For example, arrange the customers in decreasing order of "importance"

expressed both in terms of visiting frequencies and mean service times. First sort

the customers in non-increasing order with respect to the A's and order the

customers that are characterised by the same value of , in non-increasing order

with respect to the service times qi . All customers with a fixed visit combination

are placed at the top of this list.

Step 2. Assign and evaluate visit combinations

Define R, to be the set of customers to be visited from a specific depot on day

t of the given planning period. A set ft, is obtained using a least-cost insertion

heuristic in which all the customers in U are considered, one at a time, in the

order listed. The heuristic involves inserting a specific customer i E U into the

emerging cluster R, of day t only if an allowable combination r E Si includes a

visit to customer i on day t . Customer visit combinations are assigned in this

way provided all days remain feasible, that is, the total number of gangs required

by the emerging customer cluster on each day of the planning period does not

exceed the number of depot-based gangs available.

Each time an additional customer is inserted into the emerging cluster R, of day

t, a VRP needs to be solved in order to find the associated least travel cost for

day t. This is computationally very difficult to do even for a small number of

customers per day. Therefore, we use a heuristic algorithm to solve a single day's

problem and choose the combination set that gives the lowest overall travel cost

(all days feasible). In particular, a 2-opt and a 3-opt interchange procedures (see

Lin and Kernighan (1973)) are applied to evaluate the increase in cost incurred

when a customer i is added to the emerging cluster R1 of day t . A local

optimisation procedure is then performed to improve each day's solution. This

procedure is based on interchanges involving customers that are near to each

other, but which are served on different routes operating during the same day.

175

Step 3. Solve daily VRP's

Once the final sets /2, of customers scheduled to be visited on each day t of the

planning period have been determined, we apply a tabu search algorithm to solve

the resulting VRP for each day. tabu search is a local search metaheuristic

proposed independently by Glover (1986) and Hansen (1986). For recent surveys

of this method, see Glover and Laguna (1993a) and Glover et al. (1993b). In this

step, the tabu search algorithm constructs least-cost gang routes that satisfy the

constraints placed on the time duration of a daily route. When the number of

gangs allocated to each depot is a decision variable, the tabu solution may show

variations in the number of gangs required by a given depot during the planning

period. In this case, the maximum number obtained over this period will

determine the final number of gangs assigned to that specific depot.

Step 4. Perform customer interchanges

We attempt to improve the solution by evaluating interchanges of customer

combinations and performing those that reduce the total cost. We select (i) a

subset of customers that are served by different routes from the same depot on

different days of the planning period and (ii) a subset of customers that are

assigned to different depots and may be served on the same or different days of

the planning period. Customer interchanges of type (ii) can improve the initial

depot-customer allocation obtained at the initialization step taking into account

local knowledge already available from PVRP solutions of existing depots.

Repeated applications of this step allow an evolutionary depot-customer

reallocation to be achieved by the algorithm.

The visit combination possibilities are subsequently enumerated for subsets of

type (i) and (ii), seeking an improved overall solution. We use a 3-opt procedure

to evaluate the cost of interchanges. Clearly, for such a procedure to be

computationally practical only a restricted number of customer subsets can be

considered (for example, customers who are visited once or twice a week).

176

Step 5. Seek improved customer-visit combinations

A different ordered list U of customers is obtained at Step 1 and a new iteration

of Steps 2 to 4 is performed. The criterion for ordering is based on an alternative

function of customer visiting frequencies and mean service times.

The heuristic algorithm is terminated after a fixed number of iterations specified

by the operator.

6.4 MAJOR ELEMENTS OF THE COMPUTER SYSTEM

In this section we describe the computational implementation of the complete

planning model which permits the identification and evaluation of:

a) the efficient scheduling of customers and routing of mobile gangs within existing

depot territories;

b) new boundaries on each depot service area in view of improving the performance of

the existing depot configuration;

c) the effect of closing down some existing depots or opening new depots in desired

locations proposed by the user.

The computer system uses the following input data files: a customer file, a resource

file and a time/distance file.

The customer file

The data supplied by the company is stored in the following files.

The customer file contains details of the 162 customers served by the company in the

pilot study area including information on customer name, location, the frequency of

visits and the mean service time required for each customer. The mean service time

recorded for each customer is the actual average working time of a mobile gang during a

customer visit. This includes the time required to drive in and out of the customer's site

and perform all the necessary routine maintenance operations. Table 6.1 summarises the

data on the frequency of customer service currently provided by the company. The first

two columns give the number of customers currently being served from each depot and

the number of mobile gangs based at each depot. Columns (3)-(8) show the number of

177

customers within each depot service area visited with varying frequency. The last three

columns show the average frequency of customer visits per week, the average service

time per customer visit and the average number of customers in a gang route within each

depot territory.

The location of each customer or depot is defined by (x, y) geographic co-ordinates

recorded using an 8-figure grid reference system. The graphical layout of the customer

and depot locations (depots D1-D9) and the service area for each depot (i.e. the set of

customers currently being served from each depot) are shown in Figure 6.1.

The resource file

The resource file contains a description of each mobile gang in the system, including

its capacity, its base depot (this is the present origin/ destination point for the gang) and

the list of customers currently assigned to the gang. The capacity of a mobile gang is

defined by the maximum length of a working day which, including travel times, is taken

to be 8 hours.

The time/distance file

The travel time and distance between pairs of customer and depot locations is an

important input to the route planning model. The theoretical travel times are mainly

used in strategic planning to show how routes vary with different circumstances. For

day-to-day planning a computerised vehicle scheduling system is intended to help

schedulers in their effort to produce manual schedules, rather than replace them; they

will have to cope with difficulties and real traffic and travel times manually.

The common approach of computing straight line distances from grid reference co-

ordinates and then adjusting them by some factor to approximate road miles (or

kilometres) was judged to be inaccurate for our application and it provides no

information about travel times. In the pilot study area there are about 14500 customer-

to-customer and depot-to-customer travel times or distances. To achieve the necessary

level of accuracy for distances and travel times in a practical manner, a vendor was

contracted to develop to our specifications a comprehensive computerised network

representation of the road map in the region concerned. This road network contains

178

about 2700 road segments (links) and about 2000 intersections of road segments (nodes

identified by grid references). Figure 6.2 shows a graphical representation of the road

network; the intersections of the road segments are identified by small dark dots, the

depots by large rectangles and the customers by grey circles. Each road segment has a

length and a classification (or category) such as motorway, dual carriageway, rural road

or urban road, so that different average travel speeds of the van used by a mobile gang

can be established.

Each possible intercustomer distance and travel time is determined by finding the

shortest path between pairs of customers through the road network. The criterion used to

determine the shortest path is not solely distance but is a travel-cost function expressed

as a linear combination of travel time and distance. The time-related component of

travel cost reflects an hourly labour cost (drivers' hourly rate) while the distance

component (expressed as cost per km) primarily reflects vehicle operating costs such as

fuel, tyres, and maintenance. The travel-cost function represents an equally cost

weighted combination of both factors.

The shortest route algorithm itself is an efficient dynamic programming algorithm

developed by Dijkstra (1959).

6.5 RESULTS

In this section we explore the performance of the MDPVRP algorithm and evaluate

the results of various runs of the model. The development and experimentation was

undertaken on an IBM 486 machine. The source code is written in FORTRAN.

The model can be used both as a tool for evaluating management strategies and also

as part of a computerised vehicle scheduling system at each depot. The output from

model runs include:

a) Boundaries of the geographic region served by each depot. This output includes the

customer list assigned to each depot and the associated lowest cost of service.

b) Detailed work schedules over a given planning horizon showing the list of

customers visited daily by each mobile gang based at each depot.

c) Least-cost routes (order of work) for each mobile gang based at each depot.

179

d) Evaluation of alternative depot configurations.

Results are reported for the scenarios described in Table 6.2 and are based on a two-

week (or ten-day) planning horizon.

Base run: Depot D9

Depot D9, with one mobile gang serving an area of 18 customers, was selected as the

base run to evaluate the route planning module of the model. The model computed

minimum cost routes for the mobile gang indicating customer visiting sequences,

together with the expected route distances and time durations. Table 6.3 compares the

model's schedule with the manual schedule (see Figure 6.3). All computations are based

on the use of the road network. From these results, it is noted that, should the computed

routes be made operational, a 14% reduction in the travel cost for this depot service area

would be achieved (the weekly distance being reduced by 21% and the associated

travelling time by 9%) through a reorganisation of the gang's current weekly schedule.

Scenario 1: Efficient route planning within existing depot service areas

Based on the current boundaries of the geographic areas served by each depot, the

model efficiently allocates customers to the mobile gangs based at each depot and

designs least-cost routes for each gang.

Two versions of this scenario were examined: scenario la allows a given customer to

be visited by different mobile gangs on different days of the planning period; scenario

lb evaluates the effect of imposing the constraint that each customer must be visited by

the same gang throughout the period. Table 6.4 shows the results of these two scenarios

for all depots. The main conclusion emanating from this comparison is that the

additional constraint results in an 11% increase in the travel cost incurred.

Scenario 2: New depot service areas

One of the most notable results of the model is the impact of the overall

reorganisation of current depot service areas on the performance of the current system.

The model finds the most effective layout of depot territories, which satisfies a specified

level of customer service and service requirements. Tables 6.5 and 6.6 summarise the

180

results of this run and Figure 6.3 shows the graphical layout of the new depot service

areas. The new depot territories have considerable operational implications for the local

management of the depots. The most significant changes occurred for depots D5, D8

and D9. The acceptance of the new and the ceding of the old customers by depots will

result in very different patterns of visits if the existing levels of service to customers are

to be maintained. Thus, it is quite evident that substantial changes in the traditional

routes operated by the depots will be necessary.

Two versions of this scenario were examined; scenario 2b evaluates the same

constraint imposed on scenario lb. It can be seen from Table 6.6 that, for the new depot

service areas, scenario 2b incurs a 16.8% increase in the travel cost compared to that for

scenario 2a. Comparing the results of scenarios la and 2a (see tables 6.4 and 6.6,

respectively), the model indicates that effective reorganisation of current depot service

areas saves the company at least 12.5% in travel cost. This is an additional saving to that

achieved in scenario la through improvement of current weekly schedules.

Scenario 3: An alternative depot configuration

An important feature of the model is its ability to evaluate the benefits or otherwise

of closing down one or more of the existing depots or establishing a new depot at any

desired location in the region. An example of a scenario proposed by management and

evaluated by the model was the closure of depot Dl. This run resulted in a minor

reduction in the total distance and time obtained for scenario 2a, as the customers

originally assigned to depot D1 are now served from depot D5 on shorter routes which

have been appropriately modified to serve the additional set of customers.

6.6 SUMMARY

The results of this study illustrate the significant reductions in travel cost that can be

achieved by finding new boundaries for the depot service areas and making more

effective decisions in daily mobile resource planning. It also shows how the

mathematical model can be used as a planning tool to evaluate a number of "what-if'

scenarios and the resulting benefits.

181

The main findings are summarised as follows:

1. Given the current boundaries of the region served by each depot, effective

reorganisation in scheduling visits and routing of gangs can lead to substantial

savings in travel cost (e.g. a 14% reduction can be achieved in the case of one depot,

namely depot D9 - base run).

2. Further reductions of at least 12.5% in the travel cost can be achieved for all depots

by dividing the whole territory under study into new depot service areas (as shown

by the results of scenario 2a).

Future work may involve the development and implementation of a computerised

vehicle scheduling system in order to complement, rather than replace, the efforts of the

existing schedulers. This is possible mostly by recent advances in computer

technologies, graphic interfaces and geographic information systems. The system can be

used at each depot to produce a detailed schedule for a given planning horizon. Visiting

frequencies and customer requirements should be updated interactively as they are

received. Such an on-line system requires a user-friendly interface that allows the

scheduler to query and update data, execute the scheduling module and change the

schedule as desired.

182

Table 6.1. Problem Data: Frequency of Customer Service

Depot

service

area

(1)

customers

assigned

(2)

mobile

gangs

customers visited: (9)
Average

weekly

visits per

customer

(10)

Average

service

time per

customer

visit

(hrs)

(11)

Average

customers

per

gang

route

(3)

daily

(4)

three

times/

week

(5)

twice/

week

(6)

once/

week

(7)

once/

two

weeks

(8)

once/

four

weeks

Dl 3 1 - 3 - - - - 3.0 1.50 1.80

D2 30 2 3 1 17 9 - - 2.03 1.08 6.10

D3 12 1 1 1 6 4 - - 2.0 1.29 4.80

D4 21 2 - 3 12 6 - - 1.86 1.52 3.90

D5 20 3 9 - 1 10 - - 2.85 1.50 3.80

D6 19 2 4 6 - 9 - - 2.47 1.26 4.70

D7 9 2 3 3 1 - - 2 2.94 2.16 2.65

D8 30 3 6 4 - 20 - 1.73 1.46 3.46

D9 18 1 1 6 - 11 - - 1.89 0.78 6.80

All

Depots 162 17 27 27 37 49 20 2 2.15 1.36 4.22

183

Table 6.2. List of Scenarios evaluated by the Model

BASE CASE: Depot D9

Comparison between the model's routes and actual routes performed in practice

SCENARIO I*: Existing depot service areas

Nine depots

Given allocation of customers to depots

Given number of mobile gangs per depot

Improved allocation of customers to mobile gangs

Improved route planning within existing depot service areas

SCENARIO 2*: New depot service areas

Nine depots

Improved allocation of customers to depots

Minimum number of mobile gangs per depot

Improved allocation of customers to mobile gangs

Improved route planning within new depot service areas

SCENARIO 3: An alternative depot configuration

Closure of depot D1, Eight depots

New depot service areas

* Two versions of these scenarios, (a) and (b), are considered.

Scenarios 1(b) and 2(b) include the additional constraint that:

Each customer must be served by the SAME mobile gang throughout the planning

period.

184

Table 6.3. Results of the Base Run for Depot D9

Total # of customers assigned 	= 18

# of mobile gangs 	 = 	1, 	Planning horizon (weeks) = 1

MANUAL WORK SCHEDULE

l_hy Order of Work

Monday 01-02-03-16-04-05-06-07-01

Tuesday 01-11-09-10-15-01

Wednesday/ Friday 01-02-03-04-05-06-07-01

Thursday 01-08-12-14-18-13-17-01

Total Travel Distance = 292.8 km , Total Travel Time = 5.5 hours

MODEL'S WORK SCHEDULE

Pm Order of Work
Monday 01-02-03-04-05-17-06-07-01

Tuesday 01-15-10-16-11-13-18-14-08-12-09-01

Wednesday/ Friday 01-02-03-04-05-06-07-01

Thursday NO ROUTE

Total Travel Distance 7= 231.5 km , Total Travel Time = 5.0 hours

185

Table 6.4. Scenario 1: Efficient Route Planning within Existing Depot Areas

Planning horizon: two weeks

Depot Scenario la Scenario lb

Distance (km) Time (hrs) Distance (km) Time (hrs)

DI 154.2 3.42 154.2 3.42

D2 685.0 14.98 838.2 18.12

D3 655.6 13.10 655.6 13.10

D4 606.2 13.04 731.2 15.72

D5 1085.6 22.96 1091.2 23.40

D6 545.0 10.80 579.8 11.36

D7 558.0 11.14 561.9 11.62

D8 1357.3 28.40 1695.7 35.57

D9 463.0 10.00 463.0 10.00

All Depots 6109.9 127.84 6770.8 142.31

Table 6.5. Existing and New Depot Service Areas

Depot Existing depot areas New depot areas

customers

assigned

mobile

gangs

customers

assigned

mobile

gangs

D1 3 1 5 1

D2 30 2 29 2

D3 12 1 10 1

D4 21 2 18 2

D5 20 3 15 2

D6 19 2 20 2

D7 9 2 9 2

D8 30 3 22 2

D9 18 1 34 3

All Depots 162 17 162 17

186

Table 6.6. Scenario 2: Efficient Route Planning within New Depot Areas

Planning horizon: two weeks

Depot Scenario 2a Scenario 2b

Distance (km) Time (hrs) Distance (km) Time (hrs)

D1 334.0 7.36 334.0 7.36

D2 708.0 15.10 789.4 16.88

D3 261.6 5.92 261.6 5.92

D4 498.2 10.64 507.4 10.64

D5 641.6 13.62 704.6 14.96

D6 626.2 12.52 728.8 14.54

D7 586.4 11.92 591.2 12.22

D8 680.5 14.56 773.4 16.51

D9 972.9 20.43 1517.4 31.83

All Depots 5309.4 112.07 6207.8 130.86

187

•

A A 	 •
• A 	 _BM •

nim 	
• A

a 0A 	 n A 	 A L

A
• DA 	 a

O k 	A 	
II • • ■ • .

•
A d

O

A A A A 	 A A 1 	 A A A 	ADEI A 	•

•

A

A A

A

A

A

A
A

A

A

A
A

A

!#
• A

A•

0 Di
D2

0 D3
a D4
A D5
is D6
si D7
A DB
A D9

• * • • 	 •
• • •

• •• • *40% •
•

•• 	• *• •
rn

*P • • ElD 3
• • 	❑

•
•

• a
•

• • •
•

Figure 6.1. Scenario 1: Existing Depot Service Areas

188

A

a
A. D9

0

•
• 	•

4,11

A
	 0 	• •

107

0

• •

■ Depots

• Customers

Figure 6.2. The Road Network

189

A

•

D1
D2

❑ 13.3
D4

A D5
• D6
n D7
A DE
• D9

• • • •
• • • • • • OD; •

•
a

A
A

A A

A
	 I

•
•• AL

A
, D9 	 A 	 • A •
a, A A A 	 A A AA 	 A 	 •

	

A 	 A 	 AD8 hfi. 	0

	

A A 	 •
A 	 A A A 	 AM •

A 	 9i• A AA
A 	 A • AA 	 A n

• zr 	A 	• 	• in •• A

	

A 	 m

	

A A 	 a°
	 •

o AD 	A

	

0 i 	t3
0 D 7

•
•

D3 o 	 •
0 •
	•

•
•

•

•

• •

0

0
121

• 	 • a
•

• •
•

• • •
•

Figure 6.3. Scenario 2: New Depot Service Areas

190

a
a

Monday Tuesday Thursday Wednesday/Friday

am
pa

ga
s V

O
A&

 M
IM

I

Figure 6.4. Routes of the base run for depot D9

ai
l-w

al
la

s
v

on
&

 sa
ap

ow

No route

191

CHAPTER 7

CONCLUSIONS

In this chapter we provide a summary of the entire thesis highlighting the main

contributions of the completed work and some suggestions for further research.

This thesis is concerned with the study of location and routing problems in

distribution systems. The research objective was to develop both exact and heuristic

solution algorithms for a class of different location and routing problems.

The thesis began by describing a new metaheuristic technique, called the Bionomic

Algorithm, to solve the Capacitated p-Median Problem (CPMP). Bionomic Algorithms

are evolutionary metaheuristic algorithms that update a whole set of solutions (a

population of solutions) at each main cycle. They differ from similar previously

presented algorithms, namely Genetic Algorithms and Evolution Strategies, because

they explicitly direct the choice of solutions to combine in order to define an offspring,

that is, a solution in the population of the next iteration. This feature introduces a

diversification mechanism for clustering by reference to maximal independent sets,

carried out over progressively smaller domains, to provide a specific refinement of the

scatter search proposal for generating parents from clustering strategies. The parent

selection process, together with the use of problem-specific ways to produce an

offspring from the parents, makes Bionomic Algorithms well-suited to combinatorial

optimization applications. In the Bionomic Algorithm developed for the CPMP, the

problem-specific steps, maturation and propagation, were implemented as follows.

Maturation is based on a state-of-the-art heuristic for the Generalized Assignment

Problem, a problem to which CPMP reduces once the p medians are chosen.

Propagation, specifically the definition of a child solution once a parent set is

193

assembled, is based on the computation of a Lagrangean lower bound for the CPMP.

The computational results, presented both on standard data sets from the literature and

on more difficult symmetric and asymmetric cost instances, attest the effectiveness of

the approach. Our findings can motivate future research that could examine additional

types of clustering strategies such as :incorporating intensification criteria and

diversification criteria for choosing and combining multiple parents. Furthermore, since

the results have shown that the Bionomic Algorithm is computationally competitive

with other sophisticated heuristic methods, its application to other combinatorial

optimization problems, such as Vehicle Routing Problems (VRPs), can be investigated.

A significant contribution to the CPMP literature has also been made by the new

exact method we developed based on a Set Partitioning formulation of the problem. A

valid lower bound to the optimal solution cost has been obtained by combining two

different heuristic methods for solving the dual of the LP-relaxation of the exact

formulation. The dual solution obtained has been used for generating a reduced set

partitioning problem that can be solved by an integer programming solver. The solution

achieved might not be an optimal CPMP solution, however the new method allows to

estimate its maximum distance from optimality. The computational performance of the

new exact algorithm has been evaluated on two classes of test problems proposed in the

literature and on two new classes of difficult CPMP instances with additional

constraints. The results show that the exact algorithm has been able to solve exactly

CPMP' s including up to 100 customers.

One of the main objectives of the research was to develop new efficient solution

algorithms for routing problems. For this purpose, we have investigated new integer

programming formulations for such problems which are based on the two-commodity

network flow formulation of the Traveling S alesman Problem (TSP) described by Finke

et al. (1984). This formulation is interesting in many different ways. It can be shown

that its LP-relaxation satisfies a weak form of the subtour elimination constraints. The

formulation can also be modified to accommodate different constraints and, therefore, is

capable of being extended to different routing problems. A new two-commodity

network flow formulation for the symmetric 'TSP (STSP) has been derived and extended

to derive new integer programming formulations for a class of different routing

problems. The VRP has been examined in which a fleet of M vehicles stationed at a

194

central depot is to be optimally routed to supply customers with known demands subject

to vehicle capacity constraints. We investigated a new integer programming formulation

for the VRP and a new lower bound based on the linear relaxation of the two-

commodity formulation. The lower bound, strengthened by a set of valid inequalities,

has been embedded in a branch and cut procedure to solve the problem optimally. The

computational results on a set of problem instances derived from the literature have

shown that the lower bound obtained is tight and that the branch and cut algorithm has

been able to solve to optimality problems up to 100 customers. The STSP formulation

has also been extended to deal with other routing constraints such as delivery and

collection constraints. We considered the TSP with mixed deliveries and collections

(TSPDC) in which a vehicle located at a central depot must be optimally used to serve a

set of customers partitioned in two subsets of delivery and collection customers. The

vehicle capacity must not be exceeded along the tour and the total length of the tour

must be minimized. A new mathematical formulation has been derived for the TSPDC

and another one for the special case, known as TSP with Backhauls, where in any

feasible solution all delivery customers must precede the collection customers. New

lower bounds have been obtained from the linear relaxation of these formulations which

have been further strengthened by valid inequalities and embedded in a branch and cut

procedure to solve the problems optimally. The resulting branch and cut procedure has

been applied to a set of instances taken from the literature and involving problems up to

150 customers. The results have shown that the branch and cut algorithm has been able

to solve to optimality problems involving up to 150 customers.

The computational results of the new two-commodity formulation presented in this

thesis have shown the effectiveness of the exact methods derived from this formulation.

Future research can focus on the investigation of other valid inequalities for

strengthening the lower bound and on the extension of the two-commodity network

flow model to other routing problems such as the VRP with Backhauls (VRPB) and the

Multi-Depot Vehicle Routing Problem.

Following the success of the exact algorithm developed for the CPMP in providing a

sound and efficient solution structure, we have constructed an exact algorithm for the

basic VRPB based on a new (0-1) integer programming formulation of the problem. We

have presented a method for computing the lower bound by finding a feasible solution

195

of the dual of the LP-relaxation of its integer program. Such a dual solution has been

obtained by combining two different bounding procedures where the structure of the

one of these bounds is such that additional constraints found in real-world VRPB's can

be considered. The exact method uses the dual solution and a method for limiting the

variables of the integer program so that the resulting problem can be solved by an

integer programming solver. The overall bounding procedure proved to be effective,

being able to produce a lower bound whose value on average was at least 98.2% of the

optimum. The computational results have shown that the proposed method is able to

solve exactly VRPB's of size up to 100 customers within the imposed time limit of

25000 seconds.

The computational results of the new exact methods for the CPMP and the VRPB

presented in this thesis have shown the effectiveness of a general technique for solving

to optimality complex locations and routing problems. Future work can focus on the

development of new exact methods for other complex routing problems, such as the

VRP with time windows.

Finally, an application of a mathematical model developed for a real-life routing

problem has been presented in the thesis. We considered the resource planning problem

of a utility company, which provides preventive maintenance services to a set of

customers using a fleet of mobile gangs based at some depots. The results of this study

illustrate the significant reductions in travel cost that can be achieved by finding new

boundaries for the depot service areas and making more effective decisions in daily

mobile resource planning. It also shows how the mathematical model can be used as a

planning tool to evaluate a number of "what-if' scenarios and the resulting benefits. The

main findings of the case-study are summarised as follows:

1. Given the current boundaries of the region served by each depot, effective

reorganisation in scheduling visits and routing of gangs can lead to savings in travel

cost of the order of 14%.

2. Further reductions of at least 12.5% in the travel cost have been achieved for all

depots by dividing the whole territory under study into new depot service areas.

196

APPENDIX A

THE CPMP AND VRPB TEST

PROBLEMS

In this appendix we report the details of the test problems used in the numerical

examples of Section 3.5.3 for the CPMP and of Section 5.5.1 for the VRPB.

A.1 CPMP test problem

The test problem CCPX16 is composed of n=100 customers, among which p=10

must be chosen as medians. The capacity Q of each median is equal to 120 and the total

demand of customers (i.e. Eqi) is equal to 1060. Table A.1 displays the (x,y)
iE N

coordinates and the demand for each vertex.

A.2 VRPB test problem

The test problem eilA10166 is composed of n=67 Linehaul customers i.e. (I L p 33)

and m=33 Backhaul customers (i.e. I B I= 33). The number M of vehicles is 6, each one

with a capacity Q=200. The total demand of the Linehaul and Backhaul customers is

1003 and 455, respectively. Therefore, the minimum number of vehicles needed to visit

the Linehaul customers and the Backhaul customers is 6 and 3, respectively (i.e.

M L = 6 and M B = 3). Table A.2 displays the (x,y) coordinates and the demand for

each vertex.

197

Table A.1. CPMP test problem

x y demand x y demand
1 6 29 4 51 55 56 9
2 84 85 11 52 38 59 5
3 44 25 7 53 10 58 10
4 27 68 4 54 99 25 18
5 45 43 19 55 68 54 8
6 55 89 16 56 31 11 4
7 64 73 1 57 52 53 12
8 80 85 1 58 58 87 8
9 53 52 10 59 6 98 19
10 29 46 17 60 44 74 14
11 22 22 13 61 97 68 19
12 99 87 16 62 15 20 6
13 51 22 19 63 86 37 20
14 17 49 19 64 84 69 2
15 76 63 3 65 56 6 9
16 94 38 9 66 50 7 13
17 5 23 7 67 51 52 10
18 29 70 12 68 14 20 12
19 38 84 19 69 49 34 6
20 30 69 3 70 21 97 7
21 7 87 6 71 83 69 3
22 37 45 19 72 31 66 9
23 55 60 3 73 81 67 16
24 73 53 7 74 77 55 11
25 16 75 6 75 85 68 20
26 57 96 7 76 57 3 4
27 69 28 8 77 79 49 17
28 53 33 2 78 78 61 4
29 79 29 7 79 27 75 16
30 46 6 4 80 44 78 8
31 41 71 20 81 2 19 10
32 54 87 8 82 44 42 16
33 7 13 19 83 65 65 2
34 30 28 6 84 9 27 13
35 41 76 8 85 17 83 18
36 15 39 6 86 17 65 1
37 36 59 18 87 29 41 10
38 33 47 5 88 78 52 15
39 10 6 7 89 44 69 12
40 51 11 3 90 39 51 20
41 38 99 19 91 76 21 11
42 38 78 8 92 55 44 6
43 94 48 12 93 74 81 19
44 98 25 15 94 58 56 20
45 19 94 3 95 16 10 8
46 64 13 20 96 1 52 8
47 37 69 12 97 49 45 18
48 70 45 11 98 45 77 9
49 73 56 9 99 2 70 19
50 55 10 6 100 44 92 12

198

Table A.2. VRPB test problem

x y demand x y demand
1 35 35 0 52 49 42 13
2 41 49 10 53 53 43 14
3 35 17 7 54 57 48 23
4 55 20 19 55 56 37 6
5 15 30 26 56 15 47 16
6 20 50 5 57 14 37 11
7 10 43 9 58 16 22 41
8 30 60 16 59 4 18 35
9 20 65 12 60 26 52 9
10 30 25 23 61 26 35 15
11 15 10 20 62 15 19 1
12 10 20 19 63 22 22 2
13 5 30 2 64 26 27 27
14 15 60 17 65 25 24 20
15 45 65 9 66 25 21 12
16 45 10 18 67 19 21 10
17 55 5 29 68 18 18 17
18 65 20 6 69 55 45 13
19 45 30 17 70 25 30 3
20 41 37 16 71 55 60 16
21 64 42 9 72 50 35 19
22 31 52 27 73 30 5 8
23 35 69 23 74 20 40 12
24 65 55 14 75 45 20 11
25 63 65 8 76 65 35 3
26 20 20 8 77 35 40 16
27 5 5 16 78 40 60 21
28 40 25 9 79 53 52 11
29 42 7 5 80 2 60 5
30 23 3 7 81 60 12 31
31 11 14 18 82 24 12 5
32 2 48 1 83 6 38 16
33 8 56 27 84 13 52 36
34 6 68 30 85 49 58 10
35 47 47 13 86 57 29 18
36 27 43 9 87 32 12 7
37 37 31 14 88 17 34 3
38 63 23 2 89 27 69 10
39 53 12 6 90 49 73 25
40 36 26 18 91 37 47 6
41 21 24 28 92 47 16 25
42 12 24 13 93 49 11 18
43 24 58 19 94 61 52 3
44 15 77 9 95 55 54 26
45 62 77 20 96 11 31 7
46 67 5 25 97 28 18 26
47 56 39 36 98 31 67 3
48 37 56 5 99 18 24 22
49 57 68 15 100 22 27 11
50 44 17 9 101 20 26 9
51 46 13 8

199

REFERENCES

AARDAL, K. 1994. Capacitated facility location: separation algorithms and

computational experience. Technical Report, Dept. Of Econometrics, No. 9480. Tilburg

University.

AGARWAL, Y., K. MATHUR, AND H. M. SALKIN. 1989. Set partitioning approach to

vehicle routing. Networks, 7, 731-749.

ANILY, S. AND G. MOSHEIOV. 1994. The traveling salesman problem with delivery and

backhauls. Operations Research Letters, 16, 11-18.

ANILY, S. 1996. The vehicle-routing problem with delivery and back-haul options.

Naval Research Logistics, 43, 415-434.

APPLEGATE, D., R. BIXBY, V. CHVATAL, AND W. 1994. Cook. Special session on TSP.

In 15th International Symposium on Mathematical Programming. University of

Michigan, USA.

ARAQUE, J. R. 1990. Solution of a 48-city vehicle routing problem by branch and cut.

Research Memorandum, 90-19, Purdue University.

ARAQUE, J. R., L. HALL, AND T. MAGNANTI. 1990. Capacitated trees, capacitated

routing and associated polyhedra. Discussion paper 9061, CORE, Louvain La Neuve.

ARAQUE, J. R., G. KUDVA, T. L. MORIN, AND J. F. PEKNY. 1994. A branch-and-cut for

vehicle routing problems. Annals of Operations Research, 50,37-59.

AUGERAT, P., J. M. BELENGUER, E. BENAVENT, A. CORBERAN, D. NADDEF, AND G.

RINALDI. 1995. Computational results with a branch and cut code for the capacitated

201

vehicle routing problem. Rapport de recherche 1 RR949-M, ARTEMIS-IMAG,

Grenoble France.

AUGERAT, P. AND Y. POCHET. 1995. New valid inequalities for the vehicle routing

problem. In preparation.

BACK, T., F. HOFFMEISTER, AND H. P. SCHWEFEL. 1991. A survey of evolution

strategies. Fourth International Conference on Genetic Algorithms, Morgan Kauffman.

BALAS, E. 1975. Bivalent programming by implicit enumeration. In Encyclopaedia of

Computer Science and Technology 2, J. Belzer, A.G. Holzman and A. Kent (eds.),

Dekker, New York, 479-494.

BALAS, E. AND P. Tom. 1985. Branch and bound methods. In The Traveling Salesman

Problem, E. L. Lawler , J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys (eds.),

John Wiley and Sons, 361-401.

BALL, M. 1988. Allocation/routing: models and algorithms. In Vehicle Routing:

Methods and Studies, B. L. Golden and A. Assad (eds.), North-Holland, Amsterdam.

BAUSCH, D. 0., G. G. BROWN, AND D. R0NEN.1995. Consolidating and dispatching

truck shipments of Mobil heavy petroleum products. Interfaces, 25, 1-17.

BEASLEY, J. E. 1988. An algorithm for solving large capacitated warehouse location

problems. European Journal of Operational Research, 33, 314-325.

BEASLEY, J. E. 1993. Lagrangean relaxation. In Modern Heuristic Techniques for

Combinatorial Problems, C.R. Reeves (eds.), Blackwell Scientific, 243-303.

BECK, M. P. AND J. M. MULVEY. 1982. Constructing optimal index funds. Rep. EES-82-

1. School of Engineering and Applied Science, Princeton University, Princeton, New

Jersey.

202

BELTRANI, E. AND L. BODIN. 1974. Networks and vehicle routing for municipal waste

collection. Networks, 4, 65-94.

BIANCO, L., A. MINGOZZI, AND S. RICCIARDELLI. 1994. A set partitioning approach to

the multiple depot vehicle scheduling problem. Optimization Methods and Software, 3,

163-194.

BODIN, L.D., B. L. GOLDEN, A. A. AssAD, AND M. 0 BALL. 1983. Routing and

scheduling of vehicles and crews. The State of the Art. Computers & Operations

Research, 10, 69-211.

BODIN, L.D. 1990. Twenty years of routing and scheduling. Operations Research, 38,

571-579.

CAMPOS, V., A. CORBERAN, AND E. MOTA. 1991. Polyhedral results for a vehicle

routing problem. European Journal of Operational Research, 52, 75-85.

CASCO, D. 0., B. L. GOLDEN, AND E. A. WASIL. 1988. Vehicle routing with backhauls:

models, algorithms, and case studies. In Vehicle Routing: Methods and Studies, B. L.

Golden and A. A. Assad (eds.), North-Holland, Amsterdam, 127-147.

CHAO, I-M., B. L. GOLDEN, AND E. A. WASIL. 1995. An improved heuristic for the

period vehicle routing problem. Networks, 26, 24-44.

CHRISTOFIDES, N. AND S. EILON. 1969. An algorithm for the vehicle dispatching

problem. Operations Research Quarterly, 20, 309-318.

CHRISTOFIDES, N. 1975. Graph theory: an algorithmic approach. Academic Press,

London.

203

CHRISTOFIDES, N., A. MINGozzi, P. Tom, AND C. SANDI. 1979a. Combinatorial

optimization. John Wiley & Sons, Chichester.

CHRISTOFIDES, N., A. MINGOZZI, AND P. Tom. 1979b. The vehicle routing problem. In

Combinatorial Optimization, N. Christofides, A. Mingozzi, P. Toth and C. Sandi, (Eds),

J. Wiley, 315-338.

CHRISTOFIDES, N., A. MINGOZZI, AND P. Tom. 1981a. Exact algorithms for the vehicle

routing problem based on spanning tree and shortest path relaxation. Mathematical

Programming, 10, 255-280.

CHRISTOFIDES, N., A. MINGOZZI, AND P. Tom. 198 1 b. State space relaxation

procedures for the computation of bounds to routing problems. Networks , 11, 145-164.

CHRISTOFIDES, N. 1981. Uses of a vehicle routing and scheduling system in strategic

distribution planning. Scand. J. Mat. Admin., 7(2), 39-55.

CHRISTOFIDES, N. AND J. E. BEASLEY. 1983. Extensions to a lagrangean relaxation

approach for the capacitated warehouse location problem. European Journal of

Operational Research, 12, 19-28.

CHRISTOFIDES, N. AND J. E. BEASLEY. 1984.. The period routing problem. Networks, 14,

237-256.

CHRISTOFIDES, N. 1985. Vehicle Routing. In E. L. Lawler, J. K. Lenstra, A. H. G.

Rinnooy Kan, and D. B. Shmoys, editors, The traveling salesman problem: a guided

tour of combinatorial optimization, 431-448. John Wiley & Sons Ltd., Chichester.

CHRISTOFIDES, N. AND A. MINGOZZI. 1990. Vehicle routing: practical and algorithm

aspects. In LOGISTICS: Where Ends Have to Meet, C.F.H. van Rijn, Pergamon Press.

CHRISTOFIDES, N. 1994. The Bionomic algorithm. AIR0'94 Conference, Savona, Italy.

204

CHVATAL, V. 1973. Edmons polytopes and weakly Hamiltonian graphs. Mathematical

Programming, 5, 29-40.

CLARICE, C. AND J. Q. WRIGHT. 1964. Scheduling of vehicle from a central depot to a

number of delivery points. Operations Research, 12, 568-581.

CORDEAU, J-F., M. GENDREAU, AND G. LAPORTE. 1995. A tabu search heuristic for

periodic and multi-depot vehicle routing problems. Report CRT-95-76, Centre de

Recherche sur les Transports, University of Montreal.

CORNUEJOLS, G., M. L. FISHER, AND G. L. NEMHAUSER. 1977. Location of bank

accounts to optimize float: an analytic study of exact and approximate algorithms.

Management Science, 23, 789-810.

CORNUEJOLS, G. AND F. HARCHE. 1993. Polyhedral study of the capacitated vehicle

routing. Mathematical Programming, 60, 21-52.

CPLEX OPTD,TEATION INC. 1993-1996. Using the cplex callable library and cplex

mixed integer library. 930 Tahoe Blvd #802-297, Incline Village, NV 89451, U. S. A.

CROWDER, H. AND M. W. PADBERG. 1980. Solving large-scale symmetric traveling

salesman problems to optimality. Management Science, 26, 495-509.

DANTZIG, G. B., D. R. FULICERSON, AND S. M. JOHNSON. 1954. Solution of a large scale

traveling salesman problem. Operations Research, 2, 393-410.

DANTZIG, G. B. AND J. H. RAMSER. 1959. The truck dispatching problem. Management

Science, 6, 81-91.

205

DANTZIG, G. B., D. R. FULICERSON, AND S. M. JOHSIN. 1959. On a linear-programming,

combinatorial approach to the traveling-salesman problem. Operations Research, 7, 58-

66.

DEIF, I. AND L. BODIN. 1984. Extension of the clarke and wright algorithm for solving

the vehicle routing problem with backhauling. In Proceedings of the Babson

Conference on Software Uses in Transportation and Logistics Management, A. Kidder

(eds), Babson Park (U.S.A), 75-96.

DUKSTRA, E. W. 1959. A note on two problems in connection with graphs. Numer.

Math., 1, 269-271.

DROR, M. AND M. BALL. 1987. Inventory/routing: reduction from an annual to a short-

period problem. Naval Research Logistics Q., 34, 891-905.

DUECK, G. 1990. New optimization heuristics, the great deluge algorithm and the

record-to-record travel. Technical report, IBM Germany, Heidelberg Scientific Center.

DUBAMEL, C., J.Y. POTVIN, AND J.M. ROUSSEAU. 1994. A tabu search algorithm for the

vehicle routing problem with backhauls and time windows. Transportation Science (to

appear).

ElLON, S., C. WATSON-GANDY, AND N. CHRISTOFDES. 1971. Distribution management:

Mathematical Modelling and Practical Analysis. Hafner, New York.

ERLENK011ER, D. 1978. A dual-based procedure for uncapacitated facility location.

Operations Research, 26, 992-1009.

FINICE, G., A. CLAUS, AND E. GUNN. 1984. A two-commodity network flow approach to

the traveling salesman problem. Congress. Numerantium, 41, 167-178.

206

FISCHETTI, M. AND P. Tom. 1989. An additive bounding procedure for combinatorial

optimization problems. Operations Research, 37, 319-328.

FISHER, M. L. 1981. The lagrangean relaxation method for solving integer programming

problems. Management Science, 27, 1-18.

FISHER, M. L. AND R. JAIKUMAR. 1981. A generalized assignment heuristic for vehicle

routing. Networks, 11, 109-124.

FISHER, M. L. 1994. Optimal solution of vehicle routing problems using minimum K-

Trees. Operations Research, 42 , 626-642.

FISHER, M. L. 1995. Vehicle routing. In Network Routing, Handbooks in Operations

Research and Management Science, M. 0. Ball, T. L. Magnanti, C. L. Monma and G.

L. Nemhauser (eds.), North-Holland, Amsterdam, 8, 1-33.

GAREY, M. R. AND D. S. JOHNSON. 1979. Computers and intractability: a guide to the

theory of np completeness. W.H. Freeman and Co, San Francisco.

GARFINKEL, R. AND G. NEMHAUSER. 1972. Integer programming. John Wiley & Sons

Inc., New York.

GARFINICEL, R. S. 1979. Branch and bound methods for integer programming. In

Combinatorial Optimization, N. Christofides, A. Mingozzi, P. Toth, and C. Sandi (eds.),

John Wiley & Sons, Chichester, 1-20.

GAUDIOSO, M. AND G. PALETTA. 1992. A heuristic for the periodic vehicle routing

problem. Transportation Science, 26, 86-92.

GELINAS, S., M. DESROCHERS, J. DESROSIERS, AND M.M. SOLOMON. 1995. A new

branching strategy for the time constrained routing problem with application to

backhauling. Annals of Operations Research, 61, 91-110.

207

GENDREAU, M., A. HERTZ, AND G. LAPORTE. 1996. The travelling salesman problem

with backhauls. Computers & Operations Research, 23, 501-508.

GENDREAU, M., G. LAPORTE, AND D. VIGO. 1997. Heuristics for the traveling salesman

problem with pickup and delivery. Technical Report DEIS-OR-97-5, University of

Bologna, Bologna, Italy.

GENDREAU, M., A. HERTZ, AND G. LAPORTE. 1997. An approximation algorithm for the

traveling salesman problem with backhauls. Operations Research , 45, 639-641.

GEOPPRION, A. M. 1974. Lagrangean relaxation for integer programming. Mathematical

Programming Study, 2, 82-114.

GILMORE, P. C. AND R. E. GOMORY. 1961. A linear programming approach to the

cutting stock problem. Operations Research, 9, 849-859.

GLOVER, F. 1977. Heuristics for integer programming using surrogate constraints.

Decision Sciences, 8, 156-166.

GLOVER, F. 1986. Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13, 533-549.

GLOVER, F. 1989. Tabu search -- Part I. ORSA Journal on Computing, 1, 190-206.

GLOVER, F. 1990. Tabu search -- Part II. ORSA Journal on Computing, 2, 4-32.

GLOVER, F AND M. LAGUNA. 1993. Tabu search. In Modern Heuristic Techniques for

Combinatorial Problems, C. R. Reeves (eds.), Halsted press, New York, 70-150.

GLOVER, F., E. TAILLARD, AND D. DE WERRA. 1993. A user's guide to tabu search.

Annals of Operations Research, 41, 3-28.

208

GLOVER, F. 1997. A template for scatter search and path relinking. To appear in Lecture

Notes in Computer Science, J.K.Hao, E.Lutton, E.Ronald, M.Schoenauer, D.Snjers

(Eds.).

GLOVER F. AND M. LAGUNA. 1997. Tabu search. Kluwer, Norwell, MA.

GOETSCHALCKX, M. AND C. JACOBS-BLECHA. 1989. The vehicle routing problem with

backhauls. European Journal of Operational Research, 42, 39-51.

GOETSCHALCKX, M. AND C. JACOBS-BLECHA. 1993. The vehicle routing problem with

backhauls: properties and solution algorithms. Technical Report MERC-TR-88-13,

Georgia Institute of Technology.

GOLDBERG, A. V. AND R. E. TARJAN. 1988. A new approach to the maximum flow

problem. Journal of the ACM, 35, 921-940.

GOLDBERG, D. E. 1989. Genetic algorithms and Walsh functions: part I, a gentle

introduction. Complex Systems, 3, 129-152.

GOLDBERG, D. E. 1989. Genetic algorithms and Walsh functions: part II, deception and

its analysis. Complex Systems, 3, 153-171.

GOLDEN, B.L., E. BAKER, J. ALFARO, AND J. SCHAFFER. 1985. The vehicle routing

problem with backhauling: two approaches. In Proceedings of the XXI Annual Meeting

of S.E. TIMS (R.D. Hammesfahr editor), Myrtle Beach (SC, U.S.A.), 90-92.

GOLDEN, B. AND C. SKISCIM. 1986. Using simulated annealing to solve routing and

location problems. Naval Research Logistic Quarterly, 33, 261-279.

GOLDEN, B. L. AND A. A. AssAD. 1986. Perspectives on vehicle routing: exciting new

developments. Operations Research, 34, 803-810.

209

GOLDEN, B. L. AND E. WAS1L. 1987. Computerized vehicle routing in the soft drink

industry. Operations Research, 35, 6-17.

GOLDEN, B. L. AND A. A. AsSAD. 1988. Vehicle routing: methods and studies. North-

Holland, Amsterdam.

GOMORY, R. E. AND T. C. Hu. 1961. Multi-terminal network flows. SIAM Journal on

Applied Mathematics, 9, 551-570.

GROTSCHEL, M. AND M. W. PADBERG. 1979. On the symmetric traveling salesman

problem: I and II. Mathematical Programming, 16, 265-280.

GROTSCHEL, M. AND M. W. PADBERG. 1985. Polyhedral theory, in: E. L. Lawler, J. K.

Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, eds., The Traveling Salesman

Problem, John Wiley & Sons, Chichester, 251-305.

GROTSCHEL, M. AND 0. HOLLAND. 1991. Solution of large-scale symmetric traveling

salesman problems. Mathematical Programming, 51, 141-202.

HADJICONSTANTINOU, E., N. CHRISTOFIDES, AND A. MING0771. 1995. A new exact

algorithm for the vehicle routing problem based on q-paths and K-shortest paths

relaxations. Annals of Operations Research, 61, 21-43.

HADJICONSTANTINOU, E. AND R. BALDACCI. 1998. A multi-depot period vehicle routing

problem arising in the utilities sector. Journal of Operations Research Society, 49, N°.

12, 1239-1248.

HALSE, K. 1992. Modelling and solving complex vehicle routing problems. Ph.D.

Thesis n. 60, EVISOR, The Technical University of Denmark.

210

HANSEN, P. 1986. The steepest ascent mildest descent heuristic for combinatorial

programming. Congress on Numerical Methods in Combinatorial Optimization, Capri,

Italy.

HANSEN, P. AND B. JAUMARD. 1990. Algorithms for the maximum satisfiability

problem. Computing, 44, 279-303.

HANSEN, P., B. JAUMARD, AND E. SANLAVILLE. 1994. Weight constrained minimum

sum-of-star clustering, Gerad Technical Report G-93-38.

HANSEN, P. AND B. JAUMARD. 1997. Cluster analysis and mathematical programming.

Mathematical Programming, 79, 191-215.

HAO, J. AND J. B. ORLIN. 1992. A faster algorithm for finding the minimum cut in a

graph. Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms,

Orlando, Florida, 165-174.

HARCHE, F. AND G. RINALDI. 1991. Vehicle routing. private communication.

HELD, M. AND R. M. KARP. 1970. The travelling-salesman problem and minimum

spanning trees. Operations Research, 18, 1138-1162.

HELD, M. AND R. M. KARP. 1971. The travelling-salesman problem and minimum

spanning trees: Part II. Mathematical Programming, 1, 6-25.

HELD, M., P. WOLFE, AND H. P. CROWDER. 1974. Validation of subgradient

optimization. Mathematical Programming, 6, 62-88.

HOLLAND, J. H. 1975. Adaptation in Natural and Artificial Systems. University of

Michigan Press.

211

JUNGER, M., G. REMELT, AND G. RINALDI. 1995. The traveling salesman problem. In:

Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds). Network Models,

Handbooks in Operations Research and Management Science 7. North- Holland,

Amsterdam, 225-330.

KARGER, D. R. 1993. Global min-cuts in RNC, and other ramifications of a simple

min-cut algorithm. Proceedings of the 4th ACM-SIAM Symposium on Discrete

Algorithms, 21-30.

KARGER, D. R. AND C. STEIN. 1993. An o(n2) algorithm for minimum cuts.

Proceedings of the 25th ACM Symposium on the Theory of Computing, San Diego, CA,

757-765.

KARP, R. M. 1972. Reducibility among combinatorial problems. R. E. Miller, J. W.

Thatcher (eds.). Complexity of Computer Computations, Plenum Press, New York, 85-

103.

KONTOVRADIS, G. AND J. BARD. 1995. A GRASP for the vehicle routing problem with

time windows. ORSA Journal on Computing, 7, 10-23.

KRARUP, J. AND P. M. PRUZAN. 1983. The simple plant location problem: survey and

synthesis. European Journal of Operations Research, 12, 36-81.

KRAUS, A., C. JANSSEN, AND A. McADAms. 1970. The lock-box location problem, a

class of fixed charge transportation problems. Journal of Bank Research, 1, 51-58.

LAND, A. H., AND A. G. DOIG. 1960. An automatic method for solving discrete

programming problems. Econometris, 28, 497-520.

LANGEVIN, A., M. DESROCHERS, J. DESROSIERS, S. GELINAS AND F. Soumis. 1993. A

two-commodity flow formulation for the traveling salesman and the makespan

problems with time windows. Networks, 23, 631-640.

212

LAPORTE, G. AND Y. NOBERT. 1984. Comb inequalities for the vehicle routing problem.

Methods of Operations Research, 51, 271-276.

LAPORTE, G., Y. NOBERT, AND M. DESROCHERS. 1985. Optimal routing under capacity

and distance restrictions. Operations Research, 33, 1058-1073.

LAPORTE, G. 1992a. The traveling salesman problem: an overview of exact and

approximate algorithms. European Journal of Operational Research, 59, 231-247.

LAPORTE, G. 1992b. The vehicle routing problem: an overview of exact and

approximate algorithms. European Journal of Operational Research, 59, 345-358.

LAPORTE, G. AND I. H. OSMAN. 1995. Routing problems: a bibliography. Annals of

Operations Research, 61, 227-262.

LAPORTE, G. 1997. Vehicle routing. In: Dell'Amico, M., Maffioli, F., Martello, S. (eds).

Annotated Bibliographies in Combinatorial Optimization. Wiley, Chichester.

Forthcoming.

LAWLER, E. L., J. K. LENSTER, A. H. G. RINNOOY KAN, AND D. B SIB4OYS. 1985. The

traveling salesman problem. A guided tour of combinatorial optimization. Wiley,

Chichester.

LEUNG, J. M. Y. AND T. L. MAGNANTI. 1989. Valid inequalities and facets of the

capacitated plant location problem. Mathematical Programming, 44, 271-291.

LEWIS, H. R. AND C. H. PAPAD1MITRIOU. 1981. Elements of the theory of computation.

Prentice-Hall.

LIN, S. AND B. W. KERNIGHAN. 1973. An effective heuristic algorithm for the travelling

salesman problem. Operations Research, 21, 498-516.

213

LUCENA, A. 1986. Exact solution approaches for the vehicle routing problem. Ph.D.

Thesis, Management Science Dept., Imperial. College, London.

MACQUEEN, J. B. 1967. Some methods for classification and analysis of multivariate

observations. 5th Berkeley Symposium on Mathematics, Statistics and Probability.

MAGNANTI, T. L. 1981. Combinatorial optimization and vehicle fleet planning:

perspectives and prospects. Networks, 11, 179-213.

MANIEZZO, V., A. MINGOZZI, AND R. BALDACCI. 1988. A Bionomic approach to the

capacitated p-median problem. Journal of Heuristics, 4, 263-280.

MARSTEN, R.E. AND F. SHEPARDSON. 1981. Exact solution of crew scheduling problems

using the set partitioning model: recent successful applications. Networks, 11, 165-177.

MARTELLO, S. AND P. TOTH. 1990. Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Chichester.

MINGOZZI, A., N. CHRISTOFIDES, AND E. HADJICONSTANTINOU. 1994. An exact

algorithm for the vehicle routing problem based on the set partitioning formulation.

Internal report, Department of Mathematics, University of Bologna, Bologna, Italy.

MINGOZZI, A., M. BOSCHETTI, S. RICCIARDELLI, AND L. BIANCO. 1995. A set

partitioning approach of the crew scheduling problem. Internal Report Department of

Mathematics, University of Bologna, Italy.

MINGOZZI, A., R. BALDACCI, AND S. GIORGI. 1999. An exact method for the vehicle

routing problem with backhauls. Transportation Science (to appear).

MIRCHANDANI, P.B AND R.L. FRANCIS. 1990. Discrete location theory. John Wiley &

Sons, Chichester.

214

MOSHEIOV, G. 1994. The travelling salesman problem with pick-up and delivery.

European Journal of Operational Research, 79, 299-310.

MULVEY, J. M. AND H. L. CROWDER. 1979. Cluster analysis: an application of

lagrangian relaxation. Management Science, 25, 329-240.

MULVEY, J. M. AND M. P. BECK. 1984. Solving capacitated clustering problems.

European Journal of Operational Research, 18, 339-348.

NAGAMOCHI, H. AND T. IBARAKI. 1992a. A linear time-algorithm for finding a sparse k-

connected spanning subgraph of a k-connected graph. Algorithmica, 7, 583-596.

NAGAMOCHI, H. AND T. IBARAKI. 1992b. Computing edge-connectivity in multigraphs

and capacitated graphs. SIAM Journal on Discrete Mathematics, 5, 54-66.

NEEBE, A. W. AND M. R. RAO. 1983. An algorithm for the fixed charge assigning users

to sources problem. Journal of the Operational Research Society, 34, 11, 1107-1113.

NEMHAUSER, G. L. AND L. A. WOLSEY. 1988. Integer and combinatorial optimization.

John Wiley & Sons, Chichester.

OSMAN, I. H. 1993. Vehicle routing and scheduling: applications, algorithms and

developments. Technical report, Institute of Mathematics and Statistics, University of

Canterbury.

OSMAN, I. H. AND N. CHRISTOFIDES. 1994. Capacitated clustering problems by hybrid

simulated annealing and tabu search. International Transactions in Operational

Research, 1, 3, 317-336.

OSMAN, I. H. AND G. LAPORTE. 1996. Methaheuristics. a bibliography. Annals of

Operational Research, 63, 513-628.

215

PADBERG, M. W. AND M. GROTSCHEL. 1985. Polyhedral computations. In The

Traveling Salesman Problem, E. L. Lawler , J. K. Lenstra, A. H. G. Rinnooy Kan and

D. B. Shmoys (eds.), John Wiley and Sons, 307-360.

PADBERG, M. W. AND G. RINALDI. 1990. An efficient algorithm for the minimum

capacity cut problem. Mathematical Programming, 47, 19-36.

PADBERG, M. W. AND G. RINALDI. 1991. A branch and cut algorithm for the resolution

of large-scale symmetric traveling salesman problems. SIAM Review, 33, 60-100.

PAPADIMITRIOU, C. D. AND K. STEIGurz. 1982. Combinatorial optimizations:

algorithms and complexity. Prentice-Hall, Englewood Cliffs, New York.

P1RKUL, H. 1987. Efficient algorithms for the capacitated concentrator location problem.

Computers and Operations Research, 14, 3, 197-208.

RAFT, 0. M. 1982. A modular algorithm for an extended vehicle scheduling problem.

European Journal of Operational Research, 11, 67-76.

RECHENBERG, I. 1973. Evolutionsstrategie, Fromman-Holzbog.

REEVES, C. R. 1993. Modern heuristic techniques for combinatorial problems.

Blackwell Scientific.

REINELT, G. 1991. TSPLIB — A traveling salesman problem library. ORSA Journal on

Computing, 3, 376-384.

ROCK.AFELLAR, R. T. 1970. Convex analysis. Princeton University Press, Princeton,

New York.

RUSSELL, R. A. AND W. IGo. 1979. An assignment routing problem. Networks, 9, 1-17.

216

RUSSELL, R. A. AND D. GRIBBIN. 1991. A multiphase approach to the period routing

problem. Networks, 21, 747-765.

SANDI, C. 1979. Subgradient optimization. In Combinatorial Optimization, N.

Christofides, A. Mingozzi, P. Toth, and C. Sandi (eds.), John Wiley & Sons, Chichester,

73-91.

SPIELBERG, K. 1979. Enumerative methods in integer programming. Annals of Discrete

Mathematics, 5, 139-183.

TAN, C. C. R. AND J. E. BEASLEY. 1984. A heuristic algorithm for the period vehicle

routing problem. Omega, 12, 497-504.

THANGIAH, S. R., JEAN-YVES POTVIN, AND TONG SUN. 1996. Heuristic approaches to

vehicle routing with backhauls and time windows. Computers & Operations Research,

23, 1043-1057.

TOTH, P. AND D. VIGO. 1996. A heuristic algorithm for the vehicle routing problem with

backhauls. In Advanced Methods in Transportation Analysis: Proc. Of the Second

TRISTAN Conference, L. Bianco and P. Toth (eds), Springer-Verlag, Berlin, 585-608.

Tom, P. AND D. VIGO. 1997. An exact algorithm for the vehicle routing problem with

backhauls. Transportation Science, 31, 372-385.

VAN ROY, T.J. 1986. A cross decomposition algorithm for capacitated facility location.

Operations Research, 34, 145-163.

YANO, C. A., T. J. CHAN, L. K. RICHTER, T. CUTLER, K. G. MURTY, AND D.

MCGETTIGAN. 1987. Vehicle routing at quality stores. Interfaces, 17(2), 52-63.

217

[29] D.J.Bishop and J.D.Reppy. Phys.Rev., B22, 5171, (1980).

[30] G.Agnolet, D.F.McQueeney, and J.D.Reppy. Phys.Rev., B39, 8934,

(1989).

[31] P.W.Adams and V.Pant. Phys. Rev. Lett., 68, 2350, (1992).

[32] P.A.Crowell and J.D.Reppy. Phys. Rev. Lett., 70, 3291, (1993).

[33] P.A.Crowell and J.D.Reppy. Physica B, 197, 269, (1994).

[34] P.A.Crowell and J.D.Reppy. Phys. Rev., B53, 2701, (1996).

[35] B.L.Maschhoff and J.P.Cowin. J. Chem. Phys., 101, 8138, (1994).

[36] Seldon B. Crary. Ph.D. Thesis, University of Washington, (1978).

[37] P.Mohandas, C.Lusher, B.Cowan, and J.Saunders. J.Low Temp.Phys.,

89, 613, (1992).

[38] P.Mohandas, C.P.Lusher, B.Cowan, and J.Saunders. J. Low Temp.

Phys., 101, 481, (1995).

[39] E.Cheng, M.W.Cole, W.F.Saam, and J.Treiner. Phys. Rev. Lett., 67,

1007, (1991).

[40] C.Ebner and W.F.Saam. Phys. Rev. Lett., 38, 1486, (1977).

[41] J.W.Cahn. J. Phys. Chem., 66, 3667, (1977).

[42] J.Finn and P.A.Monson. Phys. Rev., A 39, 6402, (1989).

[43] D.E.Sullivan and M.M.Telo Da Gama. Fluid Interfacial Phenomena,

editor C.A. Croxton, (Wiley, New York), (1986).

132

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231

