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ABSTRACT 

This thesis is concerned with the development of algorithms for the exact solution to 

the travelling salesman (TSP) and vehicle routing (VRP) problems. We consider : 

(a) The pure TSP, where a salesman based at a given location has to visit a given set of 

customers and finally return to his base. 

(b) The VRP, where a set of vehicles of known capacity based at a depot, have to be 

routed in order to supply customers with known requirements. 

In all cases what is required is to design routes, so that the total 'cost' (i.e. total route 

length, or time duration, etc.) is minimized. 

For each of the above problems we provide : 

(1) A formulation based on dynamic programming (DP). 

(ii) The relaxation of the DP formulation so that the dimensionality of the state-space is 

reduced thus making the recursions solvable. The relaxation is based on mapping 

functions which guarantee that the value of the solution of the relaxed recursion is a 

lower-bound to the value of the solution of the original recursion. 

(iii) A derivation of bounds based on (ii) above with bound ascent procedures from 

subgradient and state-space ascents. 

(iv) The incorporation of the above bounds into tree search algorithms to solve the 

problems. 

It is shown, that although for the TSP the resulting algorithm (although novel) is totally 

uncompetitive with other existing TSP algorithms ; for the VRP the corresponding algorithm 

is the best exact solution procedure currently known. Computational results show that VRPs 

with up to 40 customers can be solved optimally with this method. 
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CHAPTER 1 

INTRODUCTION 

1.1 	An overview of the Travelling Salesman (TSP) and the Vehicle Routing 

Problems (VRP) 

We consider a problem in which a set of geographically dispersed 'customers' 

with known requirements must be served on routes operated by a fleet of 'vehicles' 

stationed at a central facility (depot) in such a way as to minimize some distribution 

objective. It is assumed that all vehicle routes must start and finish at the depot. 

The vehicle routing problem (VRP) is a generic name given to a whole class of problems 

involving the visiting of 'customers' by 'vehicles'. The VRP (also known in the literature 

as the 'vehicle scheduling', Clarke & Wright [1964], Eilon, Watson-Gandy & Christofides 

[1971] and Gaskel [1967], 'vehicle dispatching' Christofides & Eilon [1969], Dantzig 

Ramser [1959], Gillet & Miller [1974] and Pierce [1970], or simply as the 'delivery' problem 

Balinski & Quandt [1964], Hays [1967] and Tillman & Cochran [1969]) appears very 

frequently in practical situations not directly related to the physical delivery of 

commodities. For example, the collection of mail from mail boxes or coins from telephone 

boxes, the pickup of children by school buses, house-call tour by a doctor, preventive 
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maintenance inspection tours and the delivery of laundry, etc. are all VRP's in which the 

`delivery' operation may be a collection, collection and/or delivery, or neither ; and in 

which the 'commodities' and 'vehicles' can take a variety of forms, some of which may not 

even be of a physical nature. In view of the enormous number of practical situations which 

give rise to VRP's, it is not surprising to find that an equally large number of constraints 

and/or objectives appear in such problems. Also, because it is very hard to formulate and 

solve such problems, one can only hope to study the basic problem which is at the core of 

all vehicle routing problems. We will call this core problem the basic VRP. 

The vehicle routing problem defined above is a generalization of the travelling salesman 

problem (TSP). In the TSP just one vehicle is required to visit all the customers and 

return to the depot. Although for this latter problem exact methods of solution have been 

developed which can solve problems of a few hundred customers (Christofides [1979] and 

Waters & Brodie [1987]), for the VRP no such algorithms exist. In fact, the largest size 

general VRP's reported solved optimally in the literature involve problems with 10 or 12 

customers, Gillet & Miller [1974], 25 customers, Christofides ci al. [1981 a] or 40 customers 

(with special conditions), Christofides & Lucena [1986]. VRPs with several hundred 

customers have been solved by approximate heuristic methods. 

Nevertheless vehicle routing problems have received a considerable amount of attention 

in both theory and practice with many approaches, both exact and heuristic, being put 

forward for their solution. In the last decade, enormous advances have been made in the 

field of vehicle routing, especially in the heuristic solution of practical problems due to 

advances in both algorithm development and computer capability. In fact, the vehicle 

routing problem, an area of both research and practice, stands out as one of the great 

success stories of operational research. Innovative algorithmic research has played a major 

role in aiding the cost-effective movement of goods and delivery of products within a wide 

variety of firms and organizations. 

If vehicle routing does constitute a major success story, a share in this success must be 
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contributed to effective modeling and implementation. 

From the standpoint of the underlying methodologies of mathematical programming 

and combinatorial optimization, one could argue that existing algorithms for the vehicle 

routing problem are no more technically involved or sophisticated than, say, solution 

techniques for the classical travelling salesman problem. However, the major advance in 

the vehicle routing problem has been to capture enough characteristics of the real-world 

distribution environment to enable the solution procedures to obtain a useful answer, 

without thereby precluding their computational tractability. In most successful applica-

tions, this desirable state of affairs has resulted from a combination of careful modeling, 

the design of clever heuristics, and an appropriate interactive user interface. 

A number of useful surveys in this field include Golden Si Assad [1986 a], Bodin et al. 

[1983], Bott Si Ballow [1986], and Christofides [1985 a Si 1985 b]. A full survey of 

modeling and implementaion in routing problems would take us beyond the contents and 

scope of this thesis where we discuss only the vehicle routing problem, and do not enter 

into a discussion of other problems of transportation such as crew scheduling, ship 

scheduling, or rail transport where routing plays an important part. 

Ultimately, the focus of our discussion and research is based on the objective of 

developing algorithms to minimize vehicle routing-related costs (travel time or distances 

etc.) and to solve problems closer in size to real-world problems than is possible at present 

(within a reasonable computational time). 

1.2 	Outline of the thesis 

This thesis is mainly concerned with the TSP and VRP using vehicles of uniform 

capacity. Emphasis is given on procedures that guarantee optimal solutions for these 

problems by using dynamic programming, state space relaxation and tree search methods. 

In Chapter 2 a survey of the VRP is described and the various approaches from the 
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literature, both exact and heuristic, to solve the VRP are introduced. A survey of the TSP 

is not given since many such surveys can be found in the literature (Laver et al. [1985]) 

and the problem is well known. 

In Chapter 3 the basic concept of the dynamic programming formulation and state 

space relaxation for the TSP are introduced. Three lower bounds are derived, one (B1) 

directly from the relaxed DP recursions, one (B2) from "through-circuits" and one (B3) 

from "2-paths". Lagrangean relaxation techniques are subsequently used for improving 

the bounds and for reducing problem size. A subgradient optimization procedure is applied 

to update the Lagrangean multipliers. The computational results of the two kinds of 

bounds are presented and compared on a number of randomly generated test problems for 

the TSP. A tree search algorithm is then developed into which the bounds are imbedded 

in order to provide an exact algorithm for solving TSP's. Computa-tional results are given 

for this tree search algorithm. 

Chapter 4 introduces an integer programming formulation and a dynamic programming 

formulation for the vehicle routing problem (VRP) with vehicle capacity constraints only. 

Then, two kinds of bounds (a direct and an indirect bound) are derived from the state 

space relaxation of the dynamic programming formulation. Lagrangean relaxation techni-

ques and subgradient procedures are used in order to improve the bounds. The bounds are 

compared on a number of randomly generated VRP test problems. 

In Chapter 5 tree search algorithms for solving the VRP are described. The final VRP 

algorithm incorporates into the tree search the best lower bound for the VRP from Chapter 

4. The branching strategy is based on the building up a partially completed route with an 

arc one at a time and the reduction of problem size by various considerations. Computa-

tional results for problems of up to 40 customers are given. Many of these problems are 

from the literature but newly generated test problems are also considered. 

Finally, Chapter 6 presents conclusions and considers some problems suitable for further 

research. 



CHAPTER 2 

A SURVEY OF THE VEHICLE ROUTING PROBLEM 

In this chapter we present a classification of the VRP, the definition of the basic 

VRP, some published exact and approximate algorithms for the VRP, and the features and 

structure of the more realistic routing models. 

2.1 	Classification of vehicle routing problems 

Recent research in the field of routing problems includes significant advances in 

problem formulations and in the construction, analysis and implementation of solution 

procedures. These advances have important implications for future research in routing 

problems. From a practical standpoint, the effective routing of vehicles can increase 

productivity in lots of fields of governmental and industrial sectors. 

We outline general characteristics that describe any vehicle routing problem. A specific 

vehicle routing problem can be classified on the basis of these characteristics in rather 

obvious ways. The utility of this taxonomy is that it can help the analyst to identify the 

type of problem that he is confronting. If the characteristics define a well-known problem, 

then existing algorithms can be applied to solve the problem. A more important benefit is 
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to specify the constraints that govern the route configurations. The summary of the 

classification for the vehicle routing problems is shown in Table 2.1 below, which is an 

offshoot of earlier efforts by Bodin [1975], Golden [1978], Golden et al. [1977], Bodin & 

Golden [1981], and Assad [1988]. 

Table 2.1 General Characteristics of the Vehicle Routing Problem. 

1. 	Objective A. Minimize routing costs (distances or times) incurred. 

B. Minimize sum of fixed and variable costs. 

C. Minimize number of vehicles required. 

2. Depot A. Single depot. 

B. Multiple depot. 

3. 	Vehicle A. 	Size of fleet a. Single vehicle. 

b. Multiple vehicles (more than one vehicle) 

B. Type of fleet 

(Capacity) 

a. Homogeneous case (all vehicles the same) 

b. Heterogeneous case (not all vehicles the 

same). 

c. Compartments or not. 

4. Customer (demand) A. Number of 

commodities 

a. Single commodity. 

b. Multiple commodities. 

c. Mixed or not (in compartments). 

B. Operations a. Pure pickups or pure deliveries. 

b. Mixed pickups and deliveries. 

c. Pickups (deliveries) with backhaul option 

C. Nature of 

demand 

a. Deterministic or stochastic. 

b. Must deliver all demands or not. 

D. 	Priority a. Priority for customer or not. 

5. Time constraints A. Call time specified in advance. 

B. Time windows on customers or not. 

C. Time windows on drivers or not. 
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2.2 	A classification of solution strategies 

Most solution strategies for the vehicle routing problem can be classified as one of 

the following approaches (refer to Bodin & Golden [1981] and Christofides [1985 b]) : (i) 

savings and insertion, (ii) cluster first - route second, (iii) route first - cluster second, (iv) 

improvement and exchange, (v) mathematical programming-based, (vi) interactive optimi-

zation, or (vii) exact procedures. The first four (1) - (iv) approaches have been used 

extensively in the past. The other three (v) - (vii) approaches represent relatively recently 

developed ideas. 

(A) Savings and insertion procedures. 

Build a solution in such a way that at each step of the procedure (up to and 

including the penultimate step) a current configuration that is possibly infeasible is 

compared with an alternative configuration that may also be infeasible. The alternative 

configuration is one that yields the largest savings in terms of some criterion function, such 

as, total cost (distances or times) or that inserts least expensively a customer not in the 

current configuration into the existing route or routes. The procedure eventually concludes 

with a feasible configuration. Examples of savings and insertion procedures are described 

in Clarke & Wright [1964], Gaskel [1967], Yellow [1970], Hinson & Mulherkar [1975], Mole 

& Jameson [1976], Golden [1977], Golden et al. [1980], Williams [1982] and Bodin [1983]. 

(B) Cluster first - route second procedures. 

Group or cluster customers' nodes first and then design economical routes over each 

cluster as a second step. Examples of this idea are given by Gillet & Miller [1974], Russell 

[1974], Gillet & Johnson [1976], Karp [1977] and Krolak & Nelson [1978]. 

(C) Route first - cluster second procedures. 

Work in the reverse sequence to the one above. First, a large (usually infeasible) 

route or cycle is constructed which includes all of the customers. Next, the large route is 

partitioned into a number of smaller, but feasible, routes. Golden et al. [1982] provided an 

algorithm that typified this approach for a heterogeneous fleet size vehicle routing problem. 
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Newton & Thomas [1974] and Bodin & Berman [1979] used this approach for routing 

school buses to and from a single school, and Bodin & Kursh [1978 & 1979] utilized this 

approach for routing street sweepers. See also the works of Stern & Dorr [1979], Beasley 

[1983], Mole et al. [1983] and Haimovich & Rinnooy Kan [1985]. 

(D) Improvement and exchange procedures. 

The procedures (such as the well-known branch exchange heuristic of Lin [1965] and 

Lin & Kernighan [1973] for the TSP, and extended by Christofides & EiIon [1969] and 

Russell [1977] for the VRP) always maintain feasibility and strive towards optimality. At 

each step, one feasible solution is altered to yield another feasible solution with a reduced 

overall cost. This procedure continues until no additional cost reductions are possible. 

Bodin & Sexton [1979] modified this approach in order to schedule minibuses for the 

subscriber dial-a-ride problem. The well-known procedures using this concept are the 2-opt 

and 3-opt algorithms. Baker and Schaffer [1986] have conducted a computational study of 

the 2-opt and 3-opt algorithms applied to heuristically generated initial solutions. 

(E) Mathematical programming based heuristics. 

These procedures include algorithms that are directly based on a mathematical 

programming formulation of the underlying routing problem, and can be partitioned into 

two categories, i.e. (i) generalized assignment and (ii) set partitioning and covering. 

(i) An excellent example of generalized assignment-based procedures is given in Fisher & 

Jaikumar [1978] in which two interrelated components are identified. One component is a 

TSP and the other is a generalized assignment problem. Their heuristic attempts to take 

advantage of the fact that these two problems have been studied extensively and powerful 

mathematical programming approches for their solution have already been devised. Other 

examples are described in Fisher & Jaikumar [1981], Gavish & Shlifer [1979] and Van 

Leeuwen & Volganant [1983]. 

(ii) Balinski & Quandt [1964] give a set covering formulation of the VRP, where 

variables correspond to the (enumerated) routes. In Cullen et al. [1981], a man-machine 
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interactive approach is used for solving a class of routing problems including the vehicle 

routing problem and the dial-a-ride problem. A set partitioning model forms the basis of 

the approach, together with a pricing mechanism for generating new routes. The 

implementation on a colour graphics terminal has produced good results on standard test 

problems. Forster & Ryan [1976] formulate the vehicle routing problem as a set covering 

problem and a column generation procedure is suggested, together with heuristic variations 

to enable reasonable-size problems to be solved. 

(F) Interactive optimization. 

This is a general-purpose approach in which a high degree of human interaction is 

incorporated into the problem-solving process. The idea is that the experienced decision-

maker should have the capability of setting and revising parameters and injecting 

subjective assessments based on knowledge and intuition into the optimization model. 

This almost always increases the likelihood that the model will eventually be implemented 

and used. Some early adaptations of this approach to the vehicle routing problem are 

presented by Krolak et al. [1971 & 1972]. The paper by Cullen et al. [1981] introduces 

several rather novel interactive optimization heuristics. 

(G) Exact procedures. 

These procedures for solving the vehicle routing problem include specialized branch 

and bound and cutting plane algorithms. Some of the more effective exact approaches are 

described by Held & Karp [1970 & 1971], Crowder & Padaberg [1980], Christofides et al. 

[1981 a], and in the PhD thesis of Lucena [1986]. These procedures are discussed in greater 

detail in the following sections. 

2.3 	The basic vehicle routing problem 

In view of the enormous number of practical situations which give rise to vehicle 

routing problems, it is worthwhile to extract a basic VRP which forms the core to these 
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problems, and to study this basic VRP. 

2.3.1 	Definition 

The basic VRP is defined as follows. We consider the VRP for a given graph 

G = (X, A) which is defined by the set X of its vertices and the set A of its arcs. Let X = 

{ix. 	= 1, 	, n } be a set of n vertices (depot and customers), i.e. customers are indexed 

i = 2, ... , n and i = 1 refers to the depot. A set V = { vk  I k = 1, 	, m } vehicles 

available at the depot is given, i.e. the vehicles are indexed k = 1, 	, m. 

A customer i has a demand (requirements of commodity) of qi. The travel cost between 

customers i and j is cii, which can be taken to be either travel distances or travel times 

between customers. The capacity of vehicle k is Qk. We will assume that all customers 

and vehicles are ordered in descending order of qi  and Qk  respectively. 

The basic VRP is to route the vehicles (one route per vehicle, starting and finishing at 

the depot), so that all customers are supplied with their requirements and the total travel 

cost is minimized. Fig. 2.1 shows the shape of the solution to a VRP. 

The basic VRP ignores a large number and variety of additional constraints and 

extensions that are often found in real-world problems. Some of these constraints and 

extensions are described in IBM [1970] and Christofides et al. [1982] as : 

(i) Each vehicle can operate more than one route, provided the total time spent on these 

routes is less than a given time T (which is related to the operating time period). Note 

that such a constraint - in common with many of the ones listed below - requires the 

knowledge of travel times (tip between every pair of customers. 

(ii) Each customer must be visited only at a time that lies in one of a given number of 

working time windows during the period. 

(iii) The problem may involve both deliveries to and collections from customers. In 

addition, it may be possible to mix deliveries and collections on a single route, or 

alternatively, it may be required for a vehicle to first perform all the deliveries in the route 
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Figure 2.1 Shape of solution to the basic VRP 

before performing the collections. This latter case is often referred to as backhauling. 

(iv) Just as in (ii) above (every customer has working time windows), vehicles (in fact 

their drivers) may also have working time windows during the period. The vehicle can 

then only operate during the specified time windows. 

(v) Time-consuming activities other than the travel times (tip) mentioned above must be 

also considered. These include : unloading times (or loading times for the case of collec-

tions) at the customer premises ; loading times of the vehicles at the depot - both for the 

first and for any subsequent routes (see (i)) ; queueing times of vehicles for loading at the 

depot if the number of available loading bays is limited ; etc. 

Although the constraints and extensions listed above are only a small fraction of those 

found in practice (see the classification of the VRP in the previous section), they do not 

change the essential nature of the basic VRP and can be incorporated in a number of 

heuristic methods for solving the problem. On the other hand, there are some other practi-

cal considerations that also arise frequently, and which do not fit neatly in to the basic 
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VRP framework, Christofides [1985 b]. 

2.3.2 	Formulation of the basic VRP 

Here we introduce some formulations for the basic VRP. However, the purpose 

of this section not simply to give a comprehensive review of VRP formulations, which are 

many and varied ; Golden [1976] and Gavish & Srikanth [1979], but to present some 

formulations which have been used as a basis for solution methods. The formulations of 

this section include integer programming, set partitioning and dynamic programming. A 

formulation for the basic VRP with more general objective is described in Christofides et 

al. [1979 c]. 

(A) Formulation 1 (related to the TSP) 

A formulation of the VRP was first given by Golden [1975] as an integer program 

which is closely related to the TSP. 	A slightly different formulation is given in 

Christofides et al. [1979 c]. A simplified formulation of the VRP is given below as an 

integer program. 

Let 

1, 	if vehicle k visits customer x• immediately 

= 1 	after visiting customer xi, 

0, otherwise. 

The basic VRP is then : 

n n 
Min z = E > E 

i=1j=1 k=1 
(1) 

subject to 

= 1, 	j 	1, 	, n 	 (2) 
i=1 k=1 
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n 	n 
E e. ,. — E e •,_ 	0, 	k = 1, ... , m, p = 1, ... , n 	 (3) 
i=1 11)1̀  	j=1 RIK 

(qi 	elk) < Q, 	k = 1, ... , m 	 (4) 
i =1 j=1 

n 

jE2 eijk = 1, 	 k = 1, ... , m 	 (5) 
= 

Yi  — Yi + nkt!ijk 	
n — 1, 	i 0 j = 1, ... , n 	 (6) 

i.ii, E { 0, 1) 	for all i, j, k 	 (7) 

yi  ; arbitrary 

where Q is the capacity (constant) of a vehicle. 

Expression (2) states that a customer must be visited exactly once. Expression (3) 

means that if a vehicle visits a customer, it must also depart from it. Expression (4) is the 

capacity limitation on each route. Expression (5) states that a vehicle must be used 

exactly once. Expression (6) is the subtour-elimination condition derived for the travelling 

salesman problem by Miller et al. [1960], and which also forces each route to pass through 

the depot. Expression (7) are the integrality conditions. 

(B) Formulation 2 (Fisher & Jaikumar [1978 & 1981]) 

This formulation is similar to that of formulation 1 and is also based on integer 

program. 

Let 

	

1, 	if vehicle k visits customer x. immediately 
J 

ijk = { 	after customer xi, 

	

0, 	otherwise, 



Yik = 

The basic VRP is then to minimize 

z 	Ci; 
k 

	

0, 	oterwise. 

	

{ 1, 	if customer 	is visited by vehicle k, 

h  

(8) 
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subject to 

i = 2, ... , n 

(9)  

(10)  

, n, k = 1, , m (11)  

, n }, 	k = 1, , m (12)  

, n, k = 1, , m (13a)  

, n, k = 1, ,m (13b)  

Constraints (9) ensure that every customer is allocated to some vehicle (except for the 

depot which is visited by all vehicles), constraints (10) are the vehicle capacity constraints, 

constraints (11) ensure that a vehicle which visits a customer also leaves that customer, 

and constraints (12) are the usual subtour elimination constraints for the TSP. 

(C) Formulation 3 (Christofides el al. [1981 a]) 

Let all optimal feasible single routes for vehicle 1 in the VRP be indexed r = 1, 	, 

Let the index set of customers in route r be Mr  and the cost of the route (i.e. the cost of 

1, 
E Yik = 

m, 

cl.Ilj Y. < Q, - 

Ei 	= E 	= Yik' 

i = 1 

i =- 1, 

E eiik < ISI — 1, for all S C { 2, ... 
i,jES 

Yik E { 0, 1  }, 	 i = 1, 

{ijk E { 0, 1  }, 	 i = 1, 



(14) 
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the optimal TSP solution through the customers of the route) be dr. Ni  = { r J i E Mr  } 

will be used. 

Let 

Yr = { 1, 	if route r is in the optimal VRP solution, 

0, otherwise. 

The VRP is then to minimize 

I- 
z = E drYr 

r=i 

subject to 

E Yr = 1, 	 i = 2, ... , n 
rEN i  

i 
E Yr = m r=1 

Yr E { 0, 1  }, 	 r = 1, ... , i 

Constraints (15) ensure that every customer is visited, and constraints (16) ensure that 

m routes are chosen for the solution. This problem defined by (15) to (17) is a set 
1,34, an- etclet;lisernae cams- Pre/14 

partitioning problemi The problem, defined in Christofides el al. [1981 a] is more general 

since it also deals with non-uniform vehicle capacities. 

(D) Formulation 4 (Christofides et al. [1981 b]) 

We will now give a dynamic programming formulation of the basic VRP. 

Let X/  = {2, ... , n} be the set of customers. For any T C X/, let f(k, T) be the 

minimum cost of supplying the customers in T using only vehicles 1, ... , k, let v(T) be the 

minimum cost of a solution to the TSP defined by the depot and the customers in T, and 
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let q(T) = EiET  qi. The dynamic programming recursion is initialized for k = 1 by f(1,T) 

= v(T) and defined for k> 2 by 

f(k, T) = A-1-814_ [ f(k-1, T-S) 	v(S) 	 (18) 

subject to 

q(T) — (k-1)•Q < q(S) < Q 	 (19) 

m—k 
1  q(Xi —T) < q(S) < —1  q(T) 

	
(20) 

Here, k = 2, ... , m, except for the left-hand side of (20) for which k 	m. The set T C X 

to be considered must satisfy 

q(X1) — (m-k)•Q < q(T) < k•Q 	 (21) 

The restrictions on S and T are so as to avoid computing f(.) and v(.) for sets that can 

only lead to load-infeasible completions. The right-hand side of (19) is the capacity 

restriction on vehicle k, whereas the left-hand side of (19) is a capacity restriction on the 

first k-1 vehicles. We have imposed an (arbitrary) order on the routes so that a route with 

greater load is operated by a vehicle of smaller index than another route with smaller load, 

i.e. routes are generated in decreasing order of load. Constraints (20) partly imposes this 

ordering by insisting that the load on route k is greater than the average load on the 

remaining m-k routes, and less than the average load on the first k-1 routes. 

2.4 	Exact algorithms for the basic VRP 

The exact algorithms for solving the vehicle routing problem are based on the 
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formulations described in the previous section. As with any combinatorial optimization 

problem, their success or failure is entirely dependent on the degree to which they exploit 

problem structure. We present here an approach based on Benders decomposition using 

formulation 2, a branch and bound algorithm using bounds obtained from relaxations of 

formulation 3 and from state-space relaxation of the recursion of formulation 4. Many 

exact algoritms are described in Laporte & Nobert [1987], and more details about the 

solution procedures of these algorithms are described in Christofides et al. [1981 a, 1981 b 

& 1985 a]. In the following chapters we will show the detailed procedures for obtaining 

bounds for the TSP and the VRP. Before describing these algorithms we will first 

introduce a well-solved case of the VRP. 

2.4.1 	A well-solved case of the VRP 

Consider a VRP for which Qi= Q2= ... Qm= Q and with qn+ qn-1+ qn-2 > Q,  

where qi  is the demand of customer xi  and the qi  are assumed ordered in ascending order. 

For such a problem, all routes contain one or at most two customers only. Form a graph 

G= (X i , E) with a set of vertices Xi  = {x2, 	, xn} and a set of arcs E 	{{xi, xpi xi, xj  

E XI, qi+ 	Q}. Set the cost of arc {xi, xi} equal to cli 	cii 	
J1 

 and set a penalty 

pi  of vertex xi  to 2c11. The solution of the generalized matching problem on a graph is to 

find a matching such that the sum of the costs of the arcs in the matching plus the sum of 

penalties of the vertices that are unmatched is minimum (see Christofides & Thornton 

[1982]). In the graph G, a vertex xi  left unmatched is interpreted as a route (x1, xi, x1). 

Note that if s arcs are in the matching then there are n-s routes in the VRP. Thus, if it is 

required to have exactly m routes, s must be set to be (n-m). Setting the cardinality of a 

matching does not lead to any additional computational problems. 

It has been assumed here that the travel cost matrix is symmetric. Generalization to 

the asymmetric case is straightforward (Thornton-PhD thesis [1989]). 
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2.4.2 	An algorithm based on Benders decomposition 

In formulation 2, a generalized assignment problem is defined by constraints (9), 

(10) and (13a), and a TSP (in fact, m independent TSPs) is defined by constraints (11), 

(12) and (13b). Formulation 2 can then be rewritten to bring out this structure, as the 

nonlinear generalized assignment problem of minimizing 

E fk(Yk) 
	

(22) 

subject to 

constraints (9), (10) and (13a), 

where yk  is written for the vector ( v lk' Y2k' 	Ynk) and fk (yk) is the cost of an 

optimal solution to the TSP defined by the customer set { i I yik  = 1 } and the depot, for 

a given value of k. This function is given by 

f (yM V' k k, = min 	Yijk 

subject to 

constraints (11), (12) and (13b). 

Obviously, fk(yk) is a very complicated function which cannot be written down explicit-

ly. One possible approach is to construct (iteratively) a piece-wise linear approximation of 

fk(yk) by applying Benders decomposition. Each time the generalized assignment problem 

- defined by (22), (9), (10) and (13a) with some approximation for fk(yk) - is solved to 

obtain yk, a lower linear support of fk(yk) is constructed. This support is derived by 

solving the m independent TSPs implied by (23), (11), (12) and (13b) for the given yk  and 

using the dual variables thus obtained. The Benders inequalities describing this lower 

support are then added to constraints (9), (10) and (13a) to form an extended generalized 

assignment problem. This problem is now resolved to obtain a new improved yk, which in 

(23) 
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turn leads to new TSPs, whose solution provides further Benders inequalities, and so on. 

The procedure terminates when the value of the solution to the extended generalized 

assignment problem (which provides a lower bound to the value of the VRP) coinsides 

with the sum of the values of the solutions to the TSPs (which provides an upper bound). 

Although the overall picture painted above is very much that of a general Benders 

decomposition, a number of points have to be made. 

(A) The TSP subproblems 

Since the TSP subproblems defined by (23), (11), (12) and (13b) are integer 

programs, dual variables cannot be obtained directly. This complication can be removed 

by replacing constraints (13b) with their linear counterpart 

0 < eijk  < 1, 	for all i, .1, k 

together with as many linear inequalities of the form 

c'kx 	fikYk 	7k 
	 (24) 

as necessary to ensure that x is naturally integer for any integer y. 

Clearly, both the constraint sets (12) and (24) are very large and are best generated as 

and when required. Fisher & Jaikumar [1978] used Gomory cutting planes to impose 

integrality on the x, taking care that the constraints of type (24) produced by these cutting 

planes are valid for all yk. Constraints (12) are generated as required in the standard way 

as for any TSP. 

(B) The generalized assignment master problem 

The generalized assignment problem defined by (22), (9), (10) and (13a) is extended - 

at some arbitrary iteration - by the addition of the Benders constraints. This problem can 

be solved to optimality (although this is clearly not necessary at every iteration) by using a 

branch and bound algorithm using bounds obtained from the Lagrangean relaxation of 

constraints (2) and the Benders constraints. 
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2.4.3 	An algorithm based on set partitioning 

The problem defined by (14) to (17) in formulation 3 is a set partitioning 

problem with simple additional constraints. Any of the algorithms developed for solving 

set covering or set partitioning problem (Marston [1974], Balas & Padaberg [1976] and 

Christofides & Paixao [1982]) could be adapted to deal with the above problem. 

The method starts by assuming that the totality of routes which a single vehicle can 

operate feasibly can be generated. Thus, if T C XI  is a subset of the customers which can 

be supplied feasibly on a single route by a vehicle, then it is assumed that the total 

variable cost associated with the optimal way of routing the customers in T can be calcula-

ted. Since the problem of routing optimally the customers in T is a TSP, this is not a 

trivial task if ITS happens to be large. 

For a vehicle a family T of all feasible single routes for this vehicle is generated. A 

matrix G = [4] is then produced with row i corresponding to customer xi  and with m 

blocks of columns. A block of columns corresponds to a vehicle and the column j of this 

block corresponds to a feasible single route T. of this vehicle. Let g..= 1 or 0 depending on 

whether customer xi  is an element of T. or not respectively, and let c(T. 
J)  be the cost 

associated with the operation of this route by a vehicle. 

The VRP then becomes the problem of choosing at most one column from each block of 

G so that every row of G has an entry of 1 under exactly one of the chosen columns, and 

the total cost of columns chosen is minimized. The problem can be easily modified to 

become a set partitioning problem and the set of columns in the solution contains the 

optimal routes in the VRP. 

However, a basic weakness with the approach is the need to enumerate all routes Tm. 

Even for very moderate size problems - other than for cases where there are only one or 

two customers per route - this route generation step is a formidable task. An advantage of 

this approach is that as the VRP becomes more and more constrained, the number of 

routes that must be considered becomes smaller and smaller. 
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2.4.4 	A branch and bound algorithm based on state-space relaxation 

This algorithm is described in Christofides [1981 a & 1981 b]. Since we will use 

and extend this algorithm for the rest of this thesis we will give only a very brief 

description here and examine it in greater detail in the next chapter. 

(A) Minimum q-routes 

Let W be the set of all possible load (quantities) that could exist on a route opera- 

ted by a vehicle, i.e. 

W={qIEq;S: =q<Q, Si E{ 0,1 }}. 
i 

Let the elements of W be ordered in ascending order. We will denote by q(/) the value of 

the lth element of W and by )(q) that 1 for which q(1) = q. If (xi 1, xi2, 	, xik ) is a path 

(not necessarily simple), we will call E/t;,_i  qihthe total load on that path. Let cb(xi) be 

the cost of the least cost path from the depot (vertex x1) to customer xi  with total load 

q(1). Such a path is called a q-path. It is not easy to impose the condition that no vertex 

on such a path is visited more than once, but it is simple to impose the less stringent 

restriction that the path should not contain "loops" formed by three consecutive vertices 

such as xi  , xi  , xis. Henceforth when we refer to "loops" we will mean loops of 3 
P 

consecutive vertices. Fig. 2.2 shows a path with loops and without. Thus, we will 

henceforth refer to q-paths and 0(xi), implying that these paths are loopless. 

Let 0/(xi) be the cost of the least cost route without loops, starting from the depot, 

passing through customer i and finishing back at the depot with a total load q(/). Such a 

route will be referred to as a through q-route. 

with loops with no loops 

Figure 2.2 A path with loops and without loops. 
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(B) Direct bound from state-space relaxation 

Using the dynamic programming formulation of the basic VRP given by expression 

(18) to (21), we will use a state-space relaxation to compute lower bounds that will 

subsequently be used in a branch and bound algorithm for solving the VRP. The lower 

bounds derived in this way are, in general, of excellent quality. 

The original state (k, T) appearing in recursion (18) will be relaxed to (k, g(T)) where g 

is a mapping function from the space of all subsets T to a lower-dimensional space. If we 

take g(T) 	q. 	
l q  

	

t for all TC X/  and similarly g(S) .E • 	s, then the relaxed 

	

i ET 1 	 i E S 
problem becomes 

f(k, t) = smnt  [ f(k-1, t-s) V(s) 	 (18') 

subject to 

t — (k-1)•Q < s < Q 	 (19') 

m  1_ k (q(Xl) __ t) < s <

k 
1 f 

-- o 	 (20') 

q(X') — (m-k)•Q < t < k•Q 	 (21') 

where V(s) is the minimum cost of a circuit, starting and finishing at depot, with total 

load s. 

A lower bound on V(s) is clearly irtin [OA) + ca], where 1= A(s). 

After one of the above substitutions is made for V(s) in (18'), the final value of the 

recursion, i.e. f(m, q(X1)) obtained from (18') to (21'), is a lower bound to the VRP. 

(C) Indirect bound from state-space relaxation 

Another bound that can be obtained directly from (18) (and the one recomended by 

Christofides [1981 a]), is as follows. Recursion (18) implies that the final solution to the 
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VRP is given by 

f(m, XI) = v(S1) + v(S2) + +v(Sm) 	 (25) 

for some subsets S1, 	, Sm. Consider a subset S and let I = gq(S)). Then 01(xi) < 

v(S) for any xi  E S and, in general, 

iesah/ (x.) 5_ v(S) 

for any ai  > 0 subject to Ei E sai  = 1. A choice of ai  which always guarantees the last 

equality is ai  = qi/q(/). Thus, an easy lower bound is obtained from (25) as 

min 
iEX1  A(cid< 1< A(q) 	1(xi )/ cl( 1) b (26) 

where q is the largest element of W. 

The bounds derived above from the state-space relaxation can be improved by penalty 

methods (using subgradient optimization) in much the same way as bounds derived from 

Lagrangean relaxation. 

(D) Tree - search 

There are many branching rules (Garfinkel & Nemhauser [1970] and Balas & Toth 

[1985], etc.) that can be used in a tree-search scheme using the bounds derived earlier. 

Possibly the simplest of these involves choosing one as yet unrouted customer to include in 

or exclude from the currently emerging route. The bound (e.q., that given by expression 

(26)) can be computed at every node of the branch and bound tree. When a route is 

completed, the customers in the route are sequenced optimally by solving the 

corresponding TSP. Note that additional constraints (e.q., delivery time windows) may 

require the use of a specialized TSP code (Christofides ei al. [1981 c]). 
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2.5 	Approximate algorithms for the VRP 

A great deal of work has been done devising heuristics for the VRP, although 

much less effort has been spent comparing and drawing conclusions. The possibilities for 

heuristics are virtually limitless. In this section we will present an outline of some of the 

best known algorithms and comments on the computational effort. 

2.5.1 	Criteria for the effectiveness of heuristic algorithms 

(i) Quality of solution : in this case, quality is measured in two ways, i.e. the proximity 

of the objective function value to the optimal value and the ability of the algorithm to 

generate a feasible solution whenever one exists. A variety of techniques exist for 

measuring how close is the solution to the optimal value. These include worst case analysis, 

probabilistic analysis, statistical analysis, characterization of good and bad problems, and a 

variety of emperical analyses. Many researchers and experts (practitioners) believe that 

the emperical analysis is the most trusted form of analysis. However, we need to note that 

there is still a lack of uniformity and no widely accepted guidelines for emperical studies. 

In particular, there is a definite need for a standard set of easily obtainable test problems. 

(ii) Running time : this category applies to all algorithms, not just heuristics. A 

reasonable running time is a very important element to evaluate algorithms, since 

implementation of an algorithm is critically dependent on the computing time to solve the 

vehicle routing problem. 

(iii) Difficulty of implementation : two principal difficulties are considered, one is the 

intricacy of coding, and another is the extent of the data requirement. However, it is 

difficult to measure these characteristics. 

(iv) Flexibility : since heuristics are typically involved in the solution of real world 

problems it is important that they should be flexible. In particular, they should easily 

handle changes in the model, constraints and objective function. 
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(v) Robustness : this includes the ability to perform sensitivity analysis and the ability 

to generate bounds on the solution obtained. 

(vi) Simplicity and analyzability : there is significant appeal to algorithms that can be 

simply stated and that more readily lend themselves to analysis. Extremely complex 

algorithms are much less likely to be analyzed in terms of flexibility, quality of solution, 

etc., than a simple algorithm. 

(vii) Interactive computing : the idea of using man-machine interaction within an 

algorithm comes up on numerous occasions. It is general opinion that little has been 

known about this class of algorithms and that other criteria should be developed to 

evaluate interactive algorithms. 

2.5.2 	Criteria for route expansion in constructive methods 

In the criteria for route expansion, a criterion is considered as a function defined over 

the customers and which is used to determine which customer should enter the route(s) 

being constructed and in which position. That customer is chosen (for expanding the 

route) which optimizes the criterion function. Some of the more often used criteria are as 

follows : 

(i) Savings : the 'saving' of a customer x1  with respect to x1  (depot) and another 

customer x. is given by : 

s(1, j) = c11—  c6 + c1 

s1(1, j) is the saving in mileage of supplying x1  and xi  together on one route as opposed to 

supplying them individually directly from the depot, i.e. operating route (x1, xl , xj, x1) 

instead of routes (x1, xl, x1) and (x1, xi, x1). 

(ii) Extra-mileage : the 'extra-mileage' of an as yet unrouted customer x1  with respect 

to two consecutive customers x.1  and x. already in an emerging route is given by 

m(i, 1, j) = Cil + c — cij 
(iii) Radial position : the angle 01(1, j) that the ray (x1, x1) forms with the ray (x1, xj) 
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for a given routed customer x. can be used as a criterion function defined over the as yet 

unrouted customers xI' Note that this criterion requires customer coordinates to be 

specified. 

(iv) Composite criteria : these are composite functions of savings, extra-mileage and 

radial criteria, and in addition functions of : the quantity q/  to be delivered to an as yet 

unrouted customer x1  ; the number of other as yet unrouted customers (n1  say) remaining 

in the 'neighbourhood' of x1  etc. The functions are such that the larger the values of S, 

1/m, q, 1/n, etc. are, the larger the criterion value of the customer. The above measures 

are in most cases specialized to ease computations. 

2.5.3 	Sequential, parallel and coalescing procedures 

In a sequential procedure one route is constructed at a time until all the 

customers are routed. At no time is the question raised whether a customer x/  should be 

placed on route R or route S. This consideration is made implicitely by deciding whether 

to include x/ on route R or not. Such procedures, typically, start a route with a given 

customer and then expand the route by computing which customer to insert in it next 

using one of the above evaluation functions. 

In a parallel procedure a number of routes is being formed in parallel (fixed a priori to 

some number, say K). K routes are initiated by choosing K "seed" points to start the 

routes and expansion of these is then based on the above evaluation functions. At the end 

of the procedure K routes exist. 

In a coalescing procedure a large number of smaller routes (initially routes consisting of 

one customer only) are coalesced into a smaller number of larger ones until the routes can 

not be coalesced any more. The number of routes remaining at the end of such an 

algorithm is not predictable. 

2.5.4 	The effectiveness of simple criteria 
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It is quite easy to show that even for the basic VRP none of the criteria listed above 

is uniformly better than the others. Consider, for example, a parallel algorithm initialized 

10 

10 	 10 

Figure 2.3(a) Savings Total : 42 
	

Figure 2.3(b) E. M. Total : 40 

Figure 2.4(a) E. M. Total : 40 
	

Figure 2.4(b) Savings Total : 35 

Figure 2.5(a) 
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Figure 2.5(b) 

with four routes each starting from the depot to a customer and back (it is assumed that a 

vehicle can take at most 2 customers). In the example in Fig. 2.3, we see the results of the 

savings and extra-mileage, indicating that the extra-mileage measure is better for this 

example. For the example in Fig. 2.4 however the comparison is in favour of the savings. 

Moreover, even for the same example all of the above (Sction 2.5.2) criteria may produce 

bad solutions. Consider, for example, the problem in Fig. 2.5 where i is the depot (x1) 

and customer c is on the line (a, 1). We will use a sequential procedure, and assume that 

a vehicle can take at most 5 customers. If the procedure is initialized with route (x1, b, 

x1) and a savings criterion is used, the solution in Fig. 2.5(b) is obtained. If the procedure 

is initialized with route (x1, a, x1) and the extra-mileage criterion is used, the same 

solution is obtained. However, a better solution is shown in Fig. 2.5(a) which can be 

obtained if the procedure is initialized with (x1, b, x1) and an extra-mileage criterion is 

used, or if it is initialized with (x1, a, x1) and a savings criterion is employed. This 

example illustrates the importance of initializing the routes. 

2.5.5 	Algorithms by constructive methods 

(A) The savings algorithm of Clarke & Wright [19641 
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This algorithm is one of the earliest ones and is without doubt the most widely 

known heuristic for the VRP. The algorithm proceeds as follows : 

Step 1 : Calculate the saving sij  = c1i  — cij 	c.o.  for all pairs of customers i and j. 

Note that sij  is the saving in cost that would result if the link (i, j) is made to 

produce route (x1, xi, xj, x1) instead of supplying xi  and xj  on two routes (x1, xi, 

x1) and (x1, xj, x1). 

Step 2 : Order the savings in descending order. 

Step 3 : Starting at the top of the list, do the following. 

(Coalescing version) 

Step 4 : If making a given link results in a feasible route according to the constraints of 

the VRP, then append this link to the solution; if not, reject the link. 

Step 5 : Try the next link in the list and repeat step 4 until no more links can be chosen. 

(Sequential version) 

Step 4 : Find the first feasible link in the list which can be used to extended one of the 

two ends of the currently constructed route. 

Step 5 : If the route can be expanded and remain feasible, make this link, if it cannot be 

expanded further, terminate the route. Choose the first feasible link in the list to 

start a new route. 

Step 6 : Repeat steps 4 and 5 until no more links can be chosen. 

In both the coalescing and sequential versions of this procedure, it is advisable to check 

the feasibility of the partial solution at every stage, to ensure that the available vehicles 

can operate the routes being formed. Otherwise, it is quite likely that at the end no 

feasible solution is found. Also note that the initial starting solution when every customer 

is on a separate route is infeasible. However, the possibility always exists at the end to 

leave unrouted some customers on single-customer routes. 

Many modified definitions of savings have been proposed to achieve different results 

(e.q., Gaskell [1967] and Yellow [1970]). In particular, the original Clarke & Wright 
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algorithm produces circumferential routes that were often objected to by schedulers. 

Golden, Magnanti & Nguyen [1977] substentially reduced the running time of the Clarke & 

Wright algorithm by sophisticated computer science methods. 

(B) The algorithm of Mole & Jameson  

Many other consecutive methods exist which use criteria different from savings. We 

mention in particular the sequential tour building procedure of Mole & Jameson [1976], in 

which a criterion is used that can change the emphasis from giving preference to circum-

ferential routes, to giving emphasis to radial shaped routes. This criterion contains 

parameters A and p that are user-controlled. For the given value of A and p, the following 

two criteria are used to expand a route under construction. 

e(i, 1, j) = ci1  + c6  — pcii  

o(i, 1, j) = Ac11  — e(i, 1, j) 

The algorithm then proceeds as follows : 

Step 1 : For each unrouted customer x1 compute the feasible insertion in the emerging 

route R as : 

e(i1,1,j ) = 1 	 min 
for all adjacent customers 
xr, xs  E R 

[ e(r, 1, s) ], 

where x. and x. are customers between which x has the best insertion. 11 	J1 	 1  

Step 2 : The best customer xi, to be inserted in the route is computed as the one for 

which the following expression is maximized. 

i ro = 	max 	[ u(ii, 1,.i1) ] 
for xi  unrouted 
and feasible 

Step 3 : Insert xi, in route R between x.*  and x.*. 

	

i 	J 

Step 4 : Optimize route R using r-optimal (Lin & Kernighan [1973]). 

Step 5 : Return to step 1 to start a new route R (see note (a)), either until all customers 
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are routed or no more customers can be routed. 

It is easy to see in the above definition of cr(i, 1, j) and e(i, 1, j) that by changing the 

values of A and it it is possible to obtain different criteria to choose the best customer for 

insertion. Generally, as A grows the shape of the emerging route tends to be circumferen-

tial and as it grows the presence of long links is discouraged. 

Note that the above description explains how a route R is expanded by the addition of 

customers. Initially, (and each time a new route is to be started), some customer xs  must 

be chosen to initialize the route R as (x1, xs, x1). Customer xs  may be chosen in a variety 

of ways, e.q., the furthest unrouted customer, the customer with the largest demand cTs, 

the customer with the most stringent delivery time restrictions, etc. Also note that Mole 

& Jameson describe the procedure for a fleet of identical vehicles. In this case the 

assignment of a vehicle to an emerging route is trivial except if vehicles are used for 

second, third etc., trips - in which case the departure times of vehicles from the depot ( for 

this additional trips) will be different for each vehicle and a choice exists as to what vehicle 

to assign to the current route. More generally, at some stage when a route R is being 

constructed, different size vehicles with different starting and ending times and different 

allowable working periods will be available and an assignment of vehicles to routes must be 

made. 

2.5.6 	Algorithms by two phase methods 

(A) The sweep algorithm of Gillet & Miller £1974  & 19761 

Both the first and second phases of this procedure are of a sequential nature. Assume 

that the vehicle routing problem is Euclidean and that customers are located by their polar 

=coordinates (ri, 0i) with the depot at r1  = 0 and an arbitrary customer i*  at 0.* 0. 

(Other can also be accommodated.) Reorder the customers such that 02  < 	< On. 

Phase I 

Step 1 : Choose an unused vehicle k. 
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Step 2 : Starting from the unrouted customer i with smallest angle Oi, include consecutive 

customers i-I-1, 	... in the route until the capacity constraint of the vehicle k 

is reached. 

Step 3 : If all customers are 'swept' or if all vehicles have been used, go to Phase II, else 

return to step 1. 

Phase II 

Step 4 : Solve the travelling salesman problem for every set of customers assigned to a 

vehicle to form the final routes. 

Note that there are a number of possible variations of the sweep algorithm above. 

Different choices of the 'reference' customer i*  from which to measure the polar coordinate 

angles, lead to different final routes. The same is true with different rules used to choose 

the vehicle to consider next. 

(B) The algorithm of Christofides Mingozzi  & Toth (1979  

The first phase of this heuristic consists of performing a number of clustering trials 

using a least cost insertion criterion with a user-controlled extra parameter that could 

produce different solutions in different trials. 

Phase I 

Step 1 : (Sequential trial). Choose an unrouted customer to be a seed. Choose a vehicle 

k to allocate to the emerging route. 

Step 2 : Enter unrouted customers into the emerging cluster, in increasing order of some 

insertion cost relative to the seed of the cluster, until the capacity limit of vehicle 

k is reached. If all customers are clustered, or all vehicles used, go to step 3, else 

repeat from step 1. 

Step 3 : (parallel trial). Using the seeds chosen in the sequential trial, free all customers 

from their clusters. 

Step 4 : For every free customer, compute its insertion cost into a feasible cluster relative 

to the seed of the cluster. Consider all clusters and keep the best insertion for the 
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customer. 

Step 5 : Of the free customers, allocate the one with minimum insertion cost to its 

corresponding cluster. 

Step 6 : Repeat step 4 for any free customer whose previously best insertion is no longer 

feasible, and continue with step 5 until no further feasible insertions are possible. 

Phase II 

Step 7 : For both the above two clusterings formed sequentially and in parallel, solve the 

TSP for each cluster. Keep the best of the two as the VRP solution. 

Once again, note that by making use of a user-controlled parameter in the measure of 

insertion cost, more than two trial clusterings can be produced. 

(C) The algorithm of Fisher & Jaikumar 119811  

The first phase of this heuristic performs a parallel clustering by solving optimally a 

generalized assignment problem. 

Phase I 

Step 1 : Choose m customers to be seeds of clusters and allocate a vehicle to each. 

Step 2 : For each customer i and for each cluster k, compute an insertion cost dik  relative 

to the seed of the cluster. 

Step 3 : Solve the generalized assignment problem min { Edikyik  I expressions (9), (10) 
i,k 

and (13a) in the previous section }. 

Phase II 

Step 4 : Solve the TSP for every set of customers in the clusters implied by the yik. 

2.5.7 Comments 

Note that although the last two methods are similar, the latter heuristic solves 

the clustering phase optimally by using a fast algorithm for the generalized assignment 

problem (Fisher et al. [1979]). Thus, the objective Ei,kdikyik  can be considered as an 

easy-to-compute approximation to the objective in expression (22), and the whole method 
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as a first iteration of the exact method described earlier. It has been noted by several 

researchers, that none of the above-mentioned heuristics are uniform in their behaviour. In 

particular, they perform reasonably well when the VRPs are mostly unconstrained, but 

become progressively worse as more constraints are added. 

2.6 	The structure of practical vehicle routing problems 

We discuss the features that seem to be encountered in real vehicle routing 

problems referring to Schrage [1981], Christofides [1985 a & 1985 b] and Assad [1988]. We 

will present these features in six categories referring to the classification of the vehicle 

routing problems as mentioned in Section 2.1. 

2.6.1 	Various objectives 

The standard objective is to minimize the total distance (or time, etc.) travelled 

over all routes selected. Actually, there may be some noticeable deviations from this 

objective. The actual cost/mile may differ on different arcs because of different road 

conditions or simply because of different rates charged by carriers. Ocasionally, carriers 

will specify a minimum trip charge and/or a drop charge for each stop. The latter 

discourages split deliveries. The capability of handling a time-dependent drop charge is 

useful in time-dependent delivery problems. On the other hand, sometimes, various 

situations may arise when it is simply infeasible to solve the VRP as given. In practice, 

this infeasibility is resolved by either (i) hiring more vehicles, and/or (ii) postponing 

service to some customers beyond the established service level or into the next period. In 

these cases, the objective may be to minimize (i) the number of extra vehicles hired, 

and/or (ii) the number of customers not served in the present period, and/or the total 

distance (or time) travelled. More complex objectives have been utilized in various 

problem settings in order to capture the flavour of constraints which are difficult to 
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quantify. Genarally, the objective in a vehicle routing problem may be a linear combina-

tion of various simpler objectives. 

2.6.2 	Multiple depots 

In companies with more than one depot, it is often the case that each depot is 

autonomous, with its own fleet of vehicles and its own geographical customer area to serve. 

In such cases, the company would simply face a number of similar single-depot vehicle 

routing problems. In other cases, however, depot operations are interdependent and 

vehicles leaving one depot may, after delivering to customers, end up at another depot, 

perhaps to load again and continue on a subsequent trip. In these cases each depot cannot 

be considered in isolation. Bettrami el al. [1971] extends the savings algorithm to a 

routing problem with multiple depots ; Gillet & Johnson [1976] extends the sweep 

algorithm for the vehicle routing problem to this case of more than one depot ; and 

Laporte el al. [1988] descibes the solving a family of multi-depot vehicle routing problem. 

2.6.3 	Multiple vehicles and vehicle types 

We can consider a fleet consisting of one or more vehicles, and in case of more 

than one vehicle various vehicle types. It is frequently useful to think of the commodities 

being transported as having several dimensions, such as weight and volume. For example, 

in air Height both weight and volume may play an important role in determining what 

gets loaded on a given trip. Also multidimensional capacity may mean multicompartment 

vehicles, such as fuel trucks, which may deliver regular, premium, unleaded etc., fuel, all in 

one trip. 

If an algorithm allows multiple-vehicle types, then one of the vehicle types can corres-

pond to a dummy vehicle and one can thus represent options not to service a particular 

node or arc based on profitability. The option not to visit an arc or node (in a given 

period) is especially important in time-dependent routing problems. 
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2.6.4 	Multiple time constraints 

The time constraints are classified in two categories, i.e. time windows and the 

time period. We can find a lot of literature about these fields such as Beltrami & Bodin 

[1974], Russell & Igo [1979], Raft [1982], Christofides & Beasley [1984], Savelsberg [1985], 

Golden & Assad [1986 b], Kolen et al. [1987], Solomon [1987], Desrochers et al. [1988] and 

Solomon et al. [1988], etc. 

(A) Time windows  

In the routing problem with time windows, the customers requiring service have to be 

served between certain times. Problems with time windows include snow removal, postal 

deliveries and bank deliveries. Routes and schedules have to be devised such that the 

required service is performed during these time windows. 

(B) The VRP within a time period  

The time period during which the customer requirements must be fulfilled is one of 

the most important parameters in a vehicle routing problem, and is a measure of the 

service level. Since customer ordering is a dynamic, non-periodic process, any attempt to 

define a vehicle routing problem for a given period must, by definition, be an 

approximation or an arbitrarily imposed order. Some of these approximations are as 

follows. 

(i) Typical period : This is the case when the customers are fixed and their demands are 

assumed to be typical in a given period. A customer that is expected to order once every t 

days is required to be visited T/t times during the period of T days, and these visits must 

be t f e days apart, for some small given value of e. The fixed routes that are produced 

by solving the vehicle routing problem for the period are often made public so that each 

customer knows when to expect his deliveries. Clearly, problems of feasibility can arise in 

a real period that is not typical. 

(ii) Cut-off time : A frequently used modus operandi is to set a cut-off date for orders. 

Orders received in the previous T days are delivered in the following T days. The vehicle 
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routing problem for T-day period is then completely specified. However, with such a 

system, orders received during the current T-day period and which could (or perhaps 

should) have been delivered in the current period, are ignored until the next T-day period. 

The result is that infeasibility problems (usually resolved by hiring extra vehicles) may 

arise in some period. 

(iii) Creeping customer priorities : An often used alternative to defining a period, as in 

(i) or (ii) above, is to allocate a priority to each customer according to the time interval 

remaining up to the date when the customer must be visited (say T days after receipt of 

the order). The smaller the time remaining, the higher the customer priority. At any one 

time the vehicle routing problem would then involve a complex objective of both routing 

costs and the priorities of the customers that are routed, in an attempt to maintain the 

customer service within a T-day maximum delay. 

(iv) Frequency requirements : In these problems, certain customers have to be covered a 

specific number of times within a certain time period such as a week. Typical problems of 

this type are coin collection from parking meters, garbage collection, fuel delivery and sales 

plan calling. For example, in case of coin collection from parking meters, when a particu-

lar heavily used parking meter is emptied is not important, as long as it is emptied every 

other day say. This is a variation of case (i) above. 

(C) Time-dependent travel time 

In urban routing problems, travel time may increase dramatically during rush hours, 

over some bottlenecks, such as bridges and tunnels, implying that the travel time over a 

route (arc) may depend upon the period in which it occurs. 

(D) Design of fixed routes  

Fixed routes can be operated unchanged over a given period even though the demand 

is changing. Christofides [1971] describes this problem, i.e. a set of customer areas and the 

demand within each area are given for each day of a given period. These routes are 

required to be feasible for each of the days in the period. Once in an area, a vehicle is 
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assumed to visit all the customers (and supply all the demand) within the area. This 

problem is similar to the VRP with stochastic demand. 

2.6.5 	Various demands 

(A) Multiple commodities  

In some vehicle routing problems, the vehicles are compartmented so that different 

commodities are stored in segregated compartments. Each customer may require specified 

quantities of different types of commodity. Such problems appears in the distribution of 

gasoline fuel, refrigerated (or not) foods, etc. (refer to multiple vehicles in the previous 

section), and involve - in addition to the routing aspect of the vehicle routing problems - a 

knapsack or bin-packing problem. 

(13) Split deliveries and lumpy cargo  

When the requirement of a single customer is large relative to the vehicle capacity, it 

may be economical to split a customer among several vehicles. For example, suppose 

vehicle capacity is 8 units, that there is a customer close to the depot with requirements 8 

and that there are two distant (from the depot and each other) customers with require-

ments 4 each. It may be optimal to split the big close customer among the two vehicles 

making the trips to the distant customers so that each vehicle delivers 4 units to the close 

customer and 4 units to a distant customer. Without splitting the load, it may be 

impossible to service the two distant customers with one vehicle because of the travel-time 

restrictions. Hence, without splitting the load, this problem might require three vehicles 

rather than two. This problem has been addressed in specific instances by heuristic 

procedures or by a set covering approach. 

When splitting a load is possible, it may be important to take into account the lumpi-

ness or integrality of the cargo. That is, only integral amounts of cargo may be assigned 

to the vehicles involved in the split. 



CHAPTER 3 

THE TSP AND STATE-SPACE RELAXATION 

3.1 	Introduction 

We consider a graph G=(X, A) defined by the set X of its vertices, the set A of 

its arcs and [c..] the cost matrix for the cost of these arcs. We use c(x., x.j) and c.. 

interchangeably. A typical routing problem on G is the travelling salesman problem (TSP) 

in which the least cost route passing through every vertex of G is required. 

One of the most successful methods of solving routing problems is by use of branch and 

bound algorithms which are based on bounds, where the effectiveness of the bounds is the 

most important parameter that determines the efficiency of the complete algorithm. A 

general methodology for computing bounds is Lagrangean relaxation; see Geofferion [1974] 

and Fisher [1978], and although it is only one of the several bounding schemes that are 

possible, it has performed well on many different types of combinatorial problems. 

However, when we want to add some additional constraints like time-constraints in the 

TSP or vehicle capacities and customer's requirement constraints as in the VRP, these 

constraints tend to destroy whatever structure the original unconstrained problem had. 

Because of these difficulties, an alternative methodology has been developed in Christofides 
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et al. [1979 b] to deal with routing problems. This methodology is based on the two 

observations that 

(i) every routing problem is essentially a shortest path problem on some underlying 

state graph with additional constraints, and 

(ii) dynamic programming is a general procedure for solving shortest path problems 

subject to constraints, by introducing the constraints into additional state variables in the 

state vector, and solving an essentially unconstrained shortest path problem on an 

expanded state-space graph. 

Thus, it is quite natural to consider dynamic programming. Consider, for example, the 

TSP where a shortest route is required passing through every vertex of G once and only 

once. Let S be a subset of vertices and f(S, xi) be the least cost of a path starting at 

vertex xl, passing through every vertex of S and finishing at vertex xi  E S. A dynamic 

programming recursion for f(S, xi) is as follows : 

f(S, xi) = 	
x. 

min 
 S-x. [f(S 	j - x. x. 	(x. x.)]) + c  ' 

1 

where S C X1  E X - {x1}, tlxi  E S and the initialization is f({xi}, xi) = c(x1, xi),  

The optimum solution to the problem is then given by the expression : 

xiE X
I m in 	[f(X/'  x.) + c(xi, x1)] 

Recursion (1) gives a shortest path procedure on the state-space graph whose vertices 

correspond to the states (S, xi) and whose arcs represent transitions from one state to 

another. 

It is well-known, see Bellman [1958], that few combinatorial optimization problems can 

be solved effectively by dynamic programming alone, since the number of vertices of the 

state-space graph is enormous. Therefore, a general relaxation procedure has been 

(1)  

(2)  
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proposed, whereby the state-space associated with a given dynamic programming recursion 

is relaxed (i.e., the number of states reduced) in such a way that the solution to the 

relaxed recursion provides a bound (lower bound in the case of minimization , upper bound 

in the case of maximization) to the value of the true optimum. Such a relaxation could 

then provide bounds for embedding in general branch and bound algorithms for the 

solution of the routing problems. 

This state-space relaxation is analogous to Lagrangean relaxation in integer 

programming. Constraints in integer programming formulation appear as state variables 

in dynamic programming recursions and hence constraint relaxation corresponds to state-

space relaxation. 

In this chapter, we will not discuss the general principles of state-space relaxation which 

the reader can find in Christofides et al. [1981 b], but will instead concentrate on the 

application of this procedure to the derivation of bounds for the TSP, and the embedding 

of these bounds into a tree search algorithm for the solution of TSPs. 

3.2 	State - space relaxation for the TSP 

Consider the dynamic programming formulation of the TSP given by recursion 

(1) in the previous section. The state variable s in that formulation is (S, x). Let g(.) be a 

mapping function from the domain of (S, x) to some other smaller vector space (g(S), x). 

Recursion (1) for the TSP can now be relaxed to the amaller space (g(S), x) and become : 

f(g(S), x) = mY [ f(g(S - x), y) 	c(y, x) ] 
	

(3) 

We wish to choose g(.) is chosen to be a separable function, so that given g(S) and 

x, g(S-x) can be computed. Also we wish to restrict the minimization to be only over 

these values of y so that given g(S) and x, we can obtain state (g(S), x) from the state 
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(g(S-x), y). 

The initialization is : 

f(w, y) = c(x1, y) , 	if w = g({y}) 

= oo , 	otherwise. 

By using the transpose of the cost matrix [c..] we can define a second 'reverse' function 

f'(g(S), x) by a recursion exactly analogous to (3). f'(g(S), x) corresponds to a path 

starting from state (g(X), x1). For symmetric TSP's, the reverse function f'(.) = 

Note that backtracking can produce the solutions corresponding to A. , .) and f'(. , .). 

3.2.1 	Forms of the mapping function g(.) for the TSP 

We have mentioned in the previous section that we wish g(.) to be any separable 

function. In this section we will introduce two functions, which we use in this thesis, from 

a variety of such functions : 

(A) g(S) = ISI. (Cardinality relaxation : n-path). 

Let k = ISI. We then have g(S - xi) = g(S) - 1. Recursion (11) becomes : 

f(k, xi) = mm 	f(k - 1, xj) 	c(xj, xi) 1. 	 (4) 

and is initialized by f(1, x.) = c(x1, xi). This recursion is the shortest n-path relaxation of 

the TSP. 

(B) g(S) = > q.
1
. (q-path relaxation). 

xi E S 
Let us associate an integer number qi  > 1 with every vertex xi  E X, (q1= 0, for the 

depot). Define g(S) = q = E q.. We then have : 
E S 1 
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g(S - xi) = g(S) - 

Recursion (3) now becomes : 

f(q, xi) = min [ f(q - qi, xi) 	c(xj, xi) 1• 	 (5) 

and initialized by : 

f(q, xi) = c(x1, xi), 	if q = qi  

= co, 	if q 	qi. 

In (5) the minimization must be over those values of x. for which q. < q - q.. This 

recursion (5) is the shortest q-path relaxation. 

3.2.2 	Imposing loopless constraints 

From the previous section we can see how a mapping function g(.) can be used to 

reduce the dimensionality of the state space. The introduction of g(.) does not, in general, 

allow any detailed knowledge of the state and hence one cannot impose additional 

conditions to ensure that a feasible solution to the original problem is obtained. However, 

certain specific restrictions can be imposed without increasing the dimensionality of state 

space and these restrictions improve the quality of the solution generated by solving the 

relaxed problem. In the case of the TSP relaxation defined by recursion (3), for example, 

it is possible to impose the condition that the path should not contain loops formed by 

three consecutive vertices, i.e., to avoid paths of the form like ... x., x.j, x. 	. This can 

be done in the following way. 

Let p(g(S), x) be the vertex just prior to x on the path corresponding to f(g(S), x). 

Let (k(g(S), x) be the least cost path from the initial state (g({x1}), x1) to state 

(g(S), x) and with ir(g(S), 	p(g(S), x), where ir(g(S), x) is the vertex just prior to 



Chapter 3 	 51 

vertex x on the path corresponding to q(g(S), x). 

Recursion (3) now becomes as : 

f(g(S-x), y) + c(y, x), 	if p(g(S-x), y) 0 x - 

f(g(S), x) = nin 

0(g(S-x), y) + c(y, x), otherwise. 

The value of y producing the above minimum is p(g(S), x). 

f(g(S-x), y) + c(y, x), if p(g(S-x), y) 0 x - [ 

The value of y producing the minimum of the above (6b) is r(g(S), x). 

The initialization is now 

f(w, y) = c(xi, y) and p(w, y) = xl, 	if w = g({y}) 

= CO, 	 otherwise 

and 

0(w, y) = 00. 

The relaxed Q-path recursion 

Let us define g(S) = q 

as follows : 

f(q, xi) 	= 	min xj, 

0(q, xi) 	= 	min 
x •J' 	J x.0p(q, 

Eqi. 

.) 

f(q-qi, 

¢)(q-qi, 

Relaxed recursions (6a) and (6b) can now 

	

xi) + c(xj, xi), 	if p(q-qi, xi) 0 xi  

xi) 	c(xj, xi), 	otherwise. 

f(q-qi, 	+ c(xj, xi), 	if p(q-qi, xj) 0 

cd(q-q., x.) 	c(x- 	x.) 	otherwise. 

xi  

be rewritten 

(7a)  

(7b)  

qS(g(S), x) = 	min 
YO(9(S),x) 

0(g(S-x), y) 	c(y, x), otherwise. 

(6a)  

(6b)  
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The initialization is given below : 

f(q, xi) = c(xi, xi) and p(q, xi) = xl, 

0(q, xi) = oo and 7r(q, xi) = undefined, 

f(q, xi) = co and p(q, xi) = undefined, 

q(q, xi) = co and 7r(q, xi) = undefined. 

if 

if 

q = qi  

q qi 

} (7c) 

The value of j (vertex x. producing the minimum of recursion (7a) is p(q, xi), and the J)  

value of j producing the minimum of recursion (7b) is 7r(q, xi). Note that f(q, xi) and 0(q, 

x.) will remain unchanged for q < qi as is apparent from recursions (7a) and (7b). 

3.3 	Bounds for the TSP from state-space relaxation (with loops) 

It is clear from Christofides el al. [1981 b] that the state-space relaxations of the 

dynamic programming recursions of combinatorial optimization problems can be used to 

obtain lower bounds on the value of the solution to these problems. For the case of the 

TSP we will describe how some of these bounds can be obtained. We should note, however, 

that this is by no means an exhaustive list of bounds that can be derived from the state-

space relaxation of the travelling salesman problem. 

3.3.1 	Direct bound for the TSP from q-path relaxation 

A simple bound can be obtained from recursion (5) by noting that f(q, xi) is the 

least cost path (q-path) starting from vertex xl, finishing at vertex xi  and having a weight 

q (=Eqi). The bound is as follows : 

B1 = min [ f(Q, x.) 	i' c(x xl)   ]' where 	Eq:. . 	 xi (8) 
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3.3.2 	Indirect bound for the TSP from 'through - circuits' 

Let's now define a function 0(q, xi) as the least cost of a circuit with total load 

Q starting and finishing at vertex x1  and passing through vertex xi, when the sum of the 

q. of all vertices x. preceding xi  along the circuit (and including xi  itself) adds up to q. 

We will call q the 'load position' of xi. The function, 0(q, xi) can be computed as follows : 

0(q, xi) = f(q, xi) + P(Q-q-Fqi, xi). 	 (9) 

We now define biq  to be a lower bound on the cost of the least cost tour starting and 

finishing at vertex x1  and passing through vertex xi, when the load position of xi  is q. 

The biq  can be computed as : 

013.q  = (q, xi) 
	

(10) 

Let us now construct an (n - 1)xQ matrix [biq], where each row corresponds to a vertex 

x. (x.# x1) and each column corresponds to an integer q = 1, 	, Q. 

Every vertex must be in some load position of a feasible tour and there can only be one 

vertex in any load position. Thus, a whole family of bounds for the TSP can be derived by 

the use of the matrix [biq] as follows : 

(i) The value of the solution of the bottleneck assignment problem (Garfinkel & 

Nemhauser [1970]) defined by [big] is a lower bound. 

(ii) Any lower bound to the above bottleneck assignment problem is obviously also a 

bound to the TSP. One such bound is : 

B2 = max [ min 	b. ] xi q=1, 
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3.3.3 	A bound for the TSP based on 2 q-paths 

Let us consider two vertices s and t E X which are maximally distant each other, 

i.e. for which 

max [ c.. ] cst = li 1, j  

If the TSP is a euclidean problem, then s and t are two vertices on the convex hull of 

vertices. For a symmetric TSP, a tour is composed of two paths (vertex disjoint) from s to 

t so that every other vertex (# s, t) is on exactly one of these paths. 

Fig. 3.1 shows two q-paths from s to t and t to s. Path P1  has total "load" q and cost 

fs(q, t) and P2  has total "load" q*= q_ q + cis  + qt  and cost ft(q*, s). 

Figure 3.1. Two q-paths 

Note that the total load on P1  and P2  is 1:7-F qs  + qt, ( i.e. the loads of vertices s and t 

are counted twice once on path P1  and once on path P2  ), and this is also the total 

required load of two paths forming a TSP tour. Thus, a lower bound B3 on the cost of a 

TSP tour can be derived from P1  and P2  as : 

B3 = 	min 	_ [ fs(q, t) + ft(q*, s) ]. 	 (12) 
qs+qt <cl<  Q 



A.. = g 	min 	 min 	[ fs(q', x)i  + cij  + 
qs+cli+qj+cit5q <  Q qs+cii5qici-cii-qt 

f (q-qt x.) + f (q*,$) 1. t 	' 	t 
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(A) Use of the o-paths for problem reduction 

The computation of the q-paths based on vertices s and t enable the elimination 

of certain arcs from further consideration without affecting the optimality of any TSP 

solution. Consider any arc (xi, x.i) and let us say that the arc is in the TSP solution. The 

arc must, therefore, lie on either a path from s to t, or on a path from t to s. For a 

symmetric TSP the two cases are indistinguishable, so we will assume arc (xi, xj) to lie on 

the s to t path with some load, say, q. 

Fig. 3.2 shows the situation. 

x. 	 path 1 

path 2 

Figure 3.2. Two q-paths with an arc (xi, xj) 

A lower bound Aid  on any TSP solution containing arc (xi, i  x.) is given by : 

Thus, if ZU is the current upper bound on the value of the optimal TSP solution 

(obtained, for example, by using a heuristic), then : 

If 

A-u  > ZU, 	 (14) 
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then arc (xi, x.j) cannot be in any optimal solution, and can be removed from the set A of 

arcs of the graph on which the TSP is defined. 

Thus, test 14 can be used to reduce the size of the TSP by deleting unnecessary arcs. 

3.4 	Bounds for the TSP from state-space relaxation (with loopless constraints) 

In the case of the direct bound (B1), the bound is the same expression as in (8) 

simply by using the loopless values for f(. , .). However, in order to calculate the indirect 

bound (B2), expression (9) should be slightly changed. Let 0(q, xi) be the least cost 

circuit without loops, starting from the depot, passing through xi  and finishing back at the 

depot with a total load 0 when the load position of xi  is q. &(q, xi) must be composed of 

either two best q-paths to xi  whose total loads add up to (Q-I-qi) or a best path and a 

second best path to xi  whose total loads add up to (Q-Fqi). 0(q, xi) can then be computed 

as follows : 

f(q, xi) + f(Q-q-Fqi, xi), if p(q, xi) 0 p(0-q+qi, xi), 

min [f(q,  xi) + (15(C2-q-1-qi, xi), c6(q, xi) + 	xi)], 

if p(q, xi) = p((7-q+qi, xi). 

(15) ( q , xi) = min 

We note here that the computational effort involved in computing the q-paths is 

linearly related to Q. Thus, we can reduce the computational effort to almost a half by 

imposing a constraint, qi  < q < 1/2(Q-1-q1). 

Indirect bound (B2) is then obtained from expression (11) in the same way, by using the 

loopless values of 0(q, x.) and hence b. icf 

For bound 133 expression (12) should also be slightly changed if the TSP is symmetric. 

In that case, the tour can be considered either as two paths from s to t or as two paths 

from t to s. Therefore, B3 can be restated in slightly stronger terms as follows : 
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(i) Consider two paths from s to t 

Let 

fs(q, t) + fs(q*, t), 	if ps(q, t) 	ps(q*, t), 

Ds(q, t) = min  min [ fs(q, t)+Cbs(ci*, t), cs(q, t)+fs(q*, 01, 

otherwise 

(ii) Consider two oaths from t to s 

Let 

ft(q, 	+ ft(q*, s), 	if Pt(q,  s) 	Pt(q*,  t),  

Dt(q, s) = min  min [ ft(q, s)±0t(q*, s),  OM,  04-ft(cl*, s) 

otherwise • 

Then, 

B3 = 	min 	_ [ max { Ds(q, t), Dt(q, s) } ]. 	 (17) 
qs+qt <cl<  Q 

3.5 	Lagrangean penalty methods and subgradients to improve the bounds 

In the previous section we have seen the simple bounds for the TSP. In this 

section we describe how a procedure can be used to improve the resulting bound further by 

using penalties in a Lagrangean fashion. The general objective is to force the solution 

corresponding to the relaxed problem 'closer' to feasibility. 

The lower bound B(0) from the state-space relaxation of the TSP is computed as B1 

(equation 8) or B2 (equation 11) or B3 (equation 12). In all cases, the bound corresponds 

(16a)  

(16b)  
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to a circuit starting and finishing at vertex xl. This circuit 11(0), say, is normally 

infeasible, that is, some vertices (x.) are not visited, whereas some other vertices (xi) are 

visited twice. Fig. 3.3 may, for example, represent 11(0) where vertices x2  and x5  are not 

visited, whereas vertices x3  and x8  are visited twice. Therefore, by penalizing vertices x. 

(by a penalty A. in normal Lagrangean fashion, a new bound B(A) can be obtained by 
J)  

resolving the recursions (for f(. , .) in the case of B1 ; and for A. , .), (X. , .) and '(. , .) in 

the case of B2 ; and for f(. , .), 	, .), Ds(. , .) and Dt(. , .) in the case of B3) with the 

updated cost matrix [c' ii], where c'ij  = cij  + Ai  + A.. A new circuit 11(A) and new bound 

B(A) are then obtained. We wish to choose A* for which : 

B(A*) = m,\.x [ B(A) ] 	 (18) 

Here we can use the normal subgradient optimization methods to compute A*, and more 

details are described below. 

0 X2 

0 

x5 

x4 

Figure 3.3 Circuit II(o) corresponding to bound B(o). 
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3.5.1 	The subgradient method 

Consider maximizing the bound in a Lagrangean fashion as a function of the 

multipliers. The strongest Lagrangean relaxation is obviously given by A = A*. The 

subgradient optimization method for solving (18) Held et al. [1974], Sandi [1979] starts 

with some arbitray A = A°  (say the zero vector) and at the kth iteration updates Ak. Let 

H(A k) be the optimal solution and let UB be the upper bound (the best solution value so 

far) for the problem. If H(Ak) is a tour, or if Z(H(Ak)) > UB, stop. Otherwise, for xi  E 

X t , let di  be the degree of vertex x. in H(Ak ). Then the n-vector with components d i  k  - 2 

is a subgradient of B(A) at Ak. Set 

k+1 = 	k 	tk(di k 2), 	x• E Xi, 	 (19) 

where tk  is the 'step length' defined by : 

t k  = a (UB  — B( Ak))  
E (di k - 2)2  

iExi 

(20) 

with 0 < a < 2. Then set k = k 1 and repeat the procedure. 
oo 

It can be shown that the method converges if E tk = oo and 	lim tk  = 0. These 
k=1 	 k--*oo 

conditions are satisfied if one starts with a = 2 and periodically reduces a by some factor. 

3.5.2 	An algorithm for the lower bound 

We will describe an algorithm to improve the lower bounds for the TSP with 

penalty procedures. This algorithm can be used for the direct bound, the indirect bound 

and the bound based on two-paths for the TSP in the same way. 

Step 0 : (Initialization). Set the best lower bound ZL*= 0. Let ZU*  be the value of 
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the best solution so far. Set a = 2.0 and KOUNT = 0. 

Step 1 : (Initialization). Set Ai  = 0, i = 1, 	, n and di  = 0, i = 1, 	, n. 

Step 2 : (Calculation of lower bound). Compute the lower bound B(A) using the 

state-space relaxation as mentioned in the previous section. Let ZL be a updated lower 

bound on the value of the solution to the TSP, ZL = B(A) - 2E)ti. If ZL*< ZL, set ZL*= 

ZL. If ZL*> ZU*  or KOUNT = maximum number of iterations allowed, stop. Else if 

ZL*< ZU*  and KOUNT 0 maximum number of iterations allowed, KOUNT = KOUNT 

+ 1, and go to step 3. 

Step 3 : (Backtracking). Backtrack in order to find the circuit H(A) corresponding to 

the above lower bound using f(q, xi), p(q, xi), 0(q, xi) and ir(q, xi). Check the degree di  

of vertex xi  with respect to graph produced by H(A). If the degree di  is 2, for all i (i = 1, 

, n), stop. (In this case ZL*  is the best lower bound that can be obtained by this 

procedure and is the optimal solution value for the TSP. Otherwise, go to step 4. 

Step 4 : (Penalties). Compute penalties as given below : 

+ a 	ZnU* — ZL  (d. 
E 	- 2)2 	1  
j=1 

- 2) • [ qi /max [qi] ], i = 2, ... , n 

where a is a constant (0 < a < 2) and can be periodically reduced by some factor. For 

example, after every 5 iterations a is reduced by a half, i.e. a = 2.0 for KOUNT < 5, a = 

1.0 for 6 < KOUNT < 10, and so on, and where the expression [ climax [q.] ] gives 

greater "weight" to those vertices with high demand. 

Step 5 : (Udating the cost matrix). Modify and update the cost matrix [cif ] as : 

c'•• = c•• 	-I- A.. 

Step 6 : (Computation of f, p, cb and 7r from the relaxed recursion). Compute f(q, x), 
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p(q, x), 0(q, x) and r(q, x) from the state-space relaxation recursions for the updated cost 

matrix [ciii]. Go to step 1. 

At the end of the kth iteration, ZL*  is the best lower bound found so far. 

3.6 	Computation of bounds with an example 

We consider the 9-customer symmetric TSP whose cost matrix and graph for this 

example are given in Table 3.1 and Fig. 3.4. We will use state-space relaxation to 

compute lower bounds to the value of the optimal solution to this TSP. 

First, we will compute the direct lower bound B1 and the lower bound from through q-

paths B2 allowing for loops. An example for bound B3 can be computed in a similar 

fashion and is not given here. Then better bounds of the above two kinds will be 

computed after imposing the loopless conditions. Finally we will improve the above 

bounds by using the penalty procedures. 

Table 3.1 Cost(distance) matrix [cif] 

xi  \xi  1 2 3 4 5 6 7 8 9 

1 - 28 21 14 17 18 22 15 30 

2 28 - 47 36 25 20 35 38 50 

3 21 47 - 26 37 30 20 13 18 

4 14 36 26 - 15 31 34 25 17 

5 17 25 37 15 - 29 39 22 35 

6 18 20 30 31 29 - 16 19 45 

7 22 35 20 34 39 16 - 12 32 

8 15 38 13 25 22 19 12 - 28 

9 30 50 18 17 35 45 32 28 - 
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o x2  

x6  0 
 

x5  
0 

x7  , 

x8  o 

0 xl  0 X4  

x3  0 	
0 X9 

Figure 3.4 Graph of vertices(customers). 

3.6.1 	Bound B1 (with loops) 

In this example, the underlying graph represented by the cost(distance) matrix 

(Table 3.1) is complete. Recursion (5) can be rewritten as : 

f(q, xi) =min 	[ 	 Xi) - qi, x.) + c(x. x ) 1. 
x• q-q• >q• 	j 	J' I —  J 

(5') 

Note that f(q, xi) will remain unchanged for q < qi  as is apparent from recursion (51). 

Let us choose (arbitrarily) a set of weights qi  to the vertices 1, ... , 9. Let these weights 

be given by : 

xi  = 1 2 3 4 5 6 7 8 9 

qi = 0 2 3 1 1 2 1 3 2 

and hence Q = E qi  = 15. 
i 
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We will use the recursion (51) to compute f(Q, xi ) for 0 = 15 and xi  = {x1, ... , x9}. 

From expression (5) the initialization is : 

	

for x2  : f(2, x2) = 28, 	p(2, x2) = x1  ; 

	

f(q, x2 ) = oo, 	p(q, x2) : unspecified for q 0 2. 

	

for x3 : f(3, x3 ) = 21, 	p(3, x3) = x1  ; 

	

f(q, x3) = oo, 	p(q, x3) : unspecified for q 0 3. 

	

for x4  : f(1, x4 ) = 14, 	p(1, x4 ) = x1  ; 

	

f(q, x4 ) = co, 	p(q, x4 ) : unspecified for q 0 1. 

	

for x5  : f(1, x5 ) = 17, 	p(1, x5) = x1  ; 

	

f(q, x5 ) = oo, 	p(q, x5 ) : unspecified for q 0 1. 

	

for x6  : f(2, x6 ) = 18, 	p(2, x6 ) = x1  ; 

	

f(q, x6) = oo, 	p(q, x6 ) : unspecified for q 0 2. 

	

for x7  : f(1, x7 ) = 22, 	p(1, x7 ) = x1  ; 

	

f(q, x7) = oo, 	p(q, x7 ) : unspecified for q 0 1. 

	

for x8  : f(3, x8) = 15, 	p(3, x8 ) = xi  ; 

	

f(q, x8 ) = oo, 	p(q, x8) : unspecified for q 0 3. 

	

for x9  : f(2, x9) = 30, 	p(2, x9 ) = x1  ; 

	

f(q, x9 ) = oo, 	p(q, x9) : unspecified for q 0 2. 

We will use the value of q to index the iterations of recursion (5/), i.e. we will call 

iteration 2 the iteration which computes all of f(2, xi ), iteration 3 the iteration which 

computes of all of f(3, xi ), etc. 

Iteration 2 (q = 2). 

The values of 1(2, x2), f(2, x3), f(2, x6 ), f(2, x8 ) and f(2, x9 ) remain unchanged (as 

noted earlier). 
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f(2, x4) = min [ 41, x5) + c(x5, x4), f(1, x7) + c(x7, x4) ] 

=min [ (17 + 15), (22 + 34) ] = 32 

The vertex which produced the minimum of f(2, x4) is : 

P(2, x4) = x5. 

f(2, x5) = min [ f(1, x4) + c(x4, x5), f(1, x7) + c(x7, x5) ] 

= min [ (14 + 15), (22 + 39) ] = 29 

p(2, x5) = x4. 

f(2, x7) = min [ f(1, x4) + c(x4, x7), f(1, x5) + c(x5, x7) ] 

= min [ (14 ± 34), (17 + 39) ] = 48 

p(2, x7) = x4. 

This is the end of iteration 2. 

Iteration 3 (q = 3). 

The values of f(3, x3), and 43, x8) remain unchanged (as noted earlier). 

f(3, x2) = min [ 1(1, x4) + c(x4, x2), f(1, x5) + c(x5, x2), f(1, x7) -4- c(x7, x2) ] 

= min [ (14 + 36), (17 + 25), (22 + 35) 1 = 42 

p(3, x2) = x5. 

f(3, x4) = min [f(2, x2) + c(x2, x4), f(2, x5) + c(x5, x4), f(2, x6) + c(x6, x4), 

f(2, x7) + (x7, x4), f(2, x9) + (x9, x4) ] 

= min [ (28 + 36), (29 + 15), (18 + 31), (48 + 34), (30 + 17) 1 = 44 

P(3, x4) = X5• 

43, x5) = min [42, x2) + c(x2, x5),  42,  x4) + c(x4, x5), 42, x6) + c(x6, x5), 

f(2, x7) + (x7, x5), f(2,  x9)  + (x9, x5) 1 

= min [ (28 + 25), (32 + 15), (18 + 29), (48 + 39), (30 + 35) ] = 47 

p(3, x5) = x5  (or x6). 

f(3, x6) = min [1(1, x4) + c(x4, x6), 41, x5) + c(x5, x6), f(1, x7) + c(x7, x5) i 
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= min [ (14 + 31), (17 + 29), (22 + 16) ] = 38 

p(3, x6) = x7. 

f(3, x7) = min [f(2, x2) + c(x2, x7), f(2, x4) + c(x4, x7), f(2,  x5) + c(x5, x7), 

f(2, x6) + (x6, x7), f(2, x9) + (x9, x7) ] 

= min [ (28 + 35), (32 -I- 34), (29 + 39), (18 + 16), (30 + 32) 1 = 34 

p(3, x7) = x6. 

f(3, xg) = min [ f(1, x4) + c(x4, xg),  f(1, x5) + c(x5, x9), f(1, x7) + c(x7, x9) ] 

= min [ (14 + 17), (17 + 35), (22 + 32) 1 = 31 

p(3, x9) = x4. 

This is the end of iteration 3. The values of functions f(. , .) and p(. , .) at this point are 

as follows : 

f(q, x)  

xi\ q 1 2 3 > 4 

2 oo 28 42 oo 

3 co co 21 oo 

4 14 32 44 oo 

5 17 29 47 co 

6 oo 18 38 cc 

7 22 48 34 co 

8 oo oo 15 oo 

9 co 30 31 oo 

p(q, x) 

xi \ q 1 2 3 > 3 

2 - x1 x5 - 

3 - - xl  - 

4 X1  x5  x5  

5 X1 X4  x4,x6 - 

6 - x1  x7  - 

7 x1  X4  X6  - 

8 - - xi  - 

9 - xi  x4  - 

Iteration 4 (q = 4). 

f(4, x2) = min [42, x4) + c(x4, x2), f(2, x5) + c(x5, x2), f(2, x6) + c(x6, x2), 
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1(2, x7) + c(x7 , x2), f(2, x9) + c(xg,  x2) ] 

= min [ (32 + 36), (29 + 25), (18 + 20), (48 + 35), (30 + 50) ] = 38 

p(4, x2) = x6. 

1(4, x3 ) = min [ (14 
x4  
+ 	

x7 26), (17 + 37), (22 + 30) ] = 40 x5   
p(4, x3) = x4. 

f(4, x4 ) = min[(42+ 36), 
x2 

p(4, x4 ) = x8. 

f(4, x5 ) = min[(42;cF225), 

p(4, x5 ) = x8. 

f(4, x6) = min[(28;c1-20), 

p(4, x6 ) = x2. 

f(4, x7 ) = min[(42+ 35), 
x2 

p(4, x7 ) = x8.  

(21+ 26), (47+ 15), x3 	x5  

(21X
3 
 37), (44,-(1-415), 

(32+ x3  31), (29+ 29), x5  

(21+ 20), (44+ 34), x3 	x4  

(38+ 31), (34+ 34), (15+ 26), (31+ 17)]= 40 
x6 	x7 	xs 	x9  

	

(38429), (34;:F739), (15)-(1-8 	J- 22), (31 935)] = 37 

(48+ 16), (30+ 45)]= 48 x7 	x9  

(47+ 39), (38+ 16), (15+ 12), (31+ 32)]= 27 
x5 	x6 	x8 	x9  

f(4, x8 ) = min[(14+ 25), (17+ 22), (22+ 12)] = 34 
x4 	x5 	x7  

p(4, x8 ) = x7. 

f(4, x9 ) = min[(28+ 50), (32+ 17), (29+ 35), (18+ 45), (48+ 32), (30+ 28)]= 49 
x2 	x4 	x5 	x6 	x7 	x8  

p(4, x9 ) = x4. 

This is the end of iteration 4. 

Iteration 5 (q = 5). 

f(5, x2) = min[(21+ 47), (44+ 36), (47+ 25), (38+ 20), (34+ 35), (15+ 38), (31+ 50)]= 53 x3 	x4 	x5 	x6 	x7 	x8 	x9  
p(5, x2) = x8. 

f(5, x3 ) = min[(28+ 42), (32+ 26), (29+ 37), (18+ 30), (48+ 20), (30+ 
x2 	x4 x5 x6 x7  x9  18)]= 48 

P(5, x3) = x6  (or x9). 

f(5, x4 ) = min[(38+ 36), (40+ 26), (37+ 15), (48+ 31), (27+ 34), (34+ 25), (49+ 17)]= 52 
x2 	x3 	x5 	X6 	x7 	x8 	x9  

P(5, x4) = x5. 
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f(5, x5 ) = min[(38+ 25), 
x2 

p(5, x5 ) = x4. 

f(5, x6 ) = min[(42+ 20), 

(40+ 37), 
X3 

(21+ 30), 

(40+ 15), 
X4 

(44+ 31), 

(48+ 29), 
X6  

(47+ 29), 

(27+ 39), 
X7  

(34+ 16), 

(34+ 22), 
X8  

(15+ 19), 

(49+ 35)]= 
X9  

(31+ 45)]= 

55 

34 
X2 

p(5, x6 ) = x8. 

f(5, x7 ) = min[(38+ 35), 
x2  

X3  

(40+ 20), 
x3 

X4  

(40+ 34), 
x4 

X5  

(37+ 39), 
x5 

X7 

(48+ 16), 
x6 

X8 

(34+ 12), 
x8  

X9 

(49+ 32)]= 
x9  

46 

p(5, x7 ) = x8. 

f(5, x8 ) = min[(28+ 38), (32+ 25), (29+ 22), (18+ 19), (48+ 12), (30+ 28)1= 37 
x2 	x4 	X5 	X6 	X7 	X9  

p(5, x8) = x6. 

f(5, x9 ) = min[(42+ 50), (21+ 18), (44+ 17), (47+ 35), (38+ 45), (34+ 32), (15+ 28)1= 39 
X2 	X3 	X4 	X5 	X6 	X7 	X8  

p(5, x9) = x3. 

This is the end of iteration 5. 

Similarly for iterations q= 6 to q= 15. The final results are shown in Table 3.2a and 

3.2b below. 

Table 3.2a f(q, x) 

Aq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  00 28 42 38 53 62 54 63 '76 73 78 87 80 89 102 

x3 , oo oo 21 40 48 28 47 50 47 52 64 54 71 76 73 

x4  14 32 44 40 52 56 54 64 63 66 78 82 80 90 89 

x5  17 29 47 37 55 59 56 61 75 63 80 85 82 87 99 

x6  co 18 38 48 34 43 56 53 58 67 60 69 82 79 84 

x7  22 48 34 27 46 49 46 51 65 53 70 75 72 77 89 

x8  00 00 15 34 37 34 39 53 41 58 63 60 65 77 67 

x9  00 30 31 49 39 57 65 46 65 68 65 70 82 72 89 
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Table 3.2b p(q, x) 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

X2 - X1  x5  x6  x8  x57  X6  X6  X6  X6  x6  x6  x6  x6  X6  

x3  - - x1  x4  x6,9  x8  x7,8  x8  x8  x8  x9  x8  x8  x8  x8  

x4  x1  x5  x5  x8  x5  x9  X3  x8  X9  x8  X35  x9  x3  x8  x9  

x5  xl  x4  x46  xs x4  x8  x8  x8  x8  xs  xs  x8  X8  x8  x8  

x6  - x1  x7  x2  x8  x7  x8  x8  x8  x8  x8  x8  x8  x8  x8  

X7  X1  X4  X6  X8  X8  x8  x8  x8  x8  x8  x8  x8  X8  X8  xs 

X8 - - x1  x7  x6  X3  x7  x6  x3  x7  x37  x3  x37  x3  x3  

X9  - X1  X4  x4  x3  x4  x8  x3  x3  x3  x3  x3  x3  x3  x3  

The above tableau for f(q, x) gives the values of f(Q, xi), (i.e. f(15, xi)), for all xi  and 

can be used in the expression (8) to obtain bound B1 as : 

B1 = m2ip [ f(0, xi) + c(xi, x1) 1 
1 

= min [ (102 + 28), (72 	21), + (89 + 14), + (99 	17), 
X2 x3 X4 x5 

( 	84 + 18), (89 +22), + (67 	15), (88 +30) 1 
X6 x 7  x8  x9  

= 82, with the minimum obtained for x8. 

By backtracking through tableau f(q, x) and p(q, x), we obtain the q-path corresponding 

to the above value of 82 as follows : 

Vertex 	Predecessor on path 	 Comment 

acl 	 x8 	 from the computation of Bl. 

x8 	 x3 	 p(15, x8) 

x3 	 x8 	 13(12, x3) 

x3 	 p( 9, x8) 

x8 	 p( 6, x3) 

x1 	 p( 3, x8) 
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The q-path is shown diagrammatically Fig. 3.5. 

0 X2  

 

x6  
0 

 

 

X5  
0 

x7 0 

 

X 0 

0 X9 

Figure 3.5 q-path corresponding to direct bound, B1 = 82. 

3.6.2 	Bound B2 (with loops) 

Let us compute 0(q, xi ) from equation (9), i.e. ; 

0(q, xi ) = f(q, xi ) + f(0-q+qi, xi ). 

Thus : 	0(2, x2) = 

= 

f(2, x2) + f(15 - 2 + 2, x2) 

f(2, x2) + f(15, x2) 

= 28 + 93 = 121. 

0(3, x2) = f(3, x2) + f(15 - 3 + 2, x2 ) 

= f(3, x2) + f(14, x2) 

= 42 + 89 	131. 

0(4, x2) = f(4, x2) + f(15 - 4 + 2, x2) 

= x2) + f(13, x2 ) 

= 38 + 80 = 118. 
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etc. The computed tableau of 1'(q, xi ) is as shown below : 

Table 3.3 7'(q, x) 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  co 130 131 118 140 140 127 139 139 127 140 140 118 131 130 

x3  00 00 94 116 119 82 111 102 94 102 111 82 119 116 94 

x4  103 122 124 122 130 122 117 128 117 122 130 122 124 122 103 

x5  116 116 129 122 135 122 131 122 131 122 135 122 129 116 116 

x6  00 102 117 130 103 103 123 111 111 123 103 103 130 117 102 

x7  111 125 106 102 116 102 111 102 111 102 116 102 106 125 111 

x8  co co 82 111 102 94 102 111 82 111 102 94 102 111 82 

x9  co 119 103 131 109 122 133 111 111 133 122 109 131 103 119 

If big  is computed from the equation (big  = tp( q , xi )), then the above matrix is also the 

matrix [big ], and the value the solution of the bottleneck assignment problem for this 

matrix is a bound. 

A lower bound to this solution value (and hence to the TSP) is given by equation (11) 

as : 

B2 = max [ min b. ] xi  q iq 

= max [ 118, 82, 103, 116, 102, 102, 82, 103 ] xi  

= 118, as indicated in Table 3.3. 

In this example B2 = 118, the minimum shown underlined in the above matrix for xi  = 

x2  and q = 13. 

The value of 118 is obtained from : 

f(13, x2) + f(4, x2). 
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The paths corresponding to each one of these two terms can be obtained by backtracking 

through tableau p(q, x), and the corresponding through-circuit (composed of those two 

paths) is shown below in Fig. 3.6. 

  

0 
X5  

X7 0  

0 

0 X9 

 

x4  

Figure 3.6 Through-circuit corresponding to indirect bound B2 = 118. 

3.6.3 	Bound B1 (with no loops) 

We will use recursions (7a) - (7c) to compute f(. , .), 0(. , .), p(. , .) and 7r(. , .), 

and then use the value of f(Q, xi) for i:i = 15 to obtain Bl. 

for x2  : f(2, x2) = 28 and p(2, x2) = xl, 

0(2, x2) = oo and 7r(2, x2) = undefined ; 

f(q, x2) = oo and p(q, x2) = undefined, 

0(q, x2) = oo and 7r(q, x2) = undefined. 1 
if q 0 2 

for x3  : f(3, x3) = 21 and p(3, x3) = xl, 

q(3, x3) = oo and 7r(3, x3) = undefined ; 

f(q, x3) = oo and p(q, x3) = undefined, 

0(q, x3) = co and ir(q, x3) = undefined. 
if q 0 3 
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for x4  : 	x4) = 14 and p(1, x4) = xi, 

0(1, x4) = oo and 7(1, x4 ) = undefined ; 

f(q, x4) = oo and p(q, x4 ) = undefined, 

0(cl, x4) = oo and 7r(q, x4 ) = undefined. 

for x5  : f(1, x5) = 17 and p(1, x5) = x1, 

0(1, x5 ) = oo and 7(1, x5 ) = undefined ; 

f(q, x5) = oo and p(q, x5) = undefined, 

0(q, x5) = co and 7r(q, x5) = undefined. 

for x6  : f(2, x6 ) = 18 and p(2, x6) = x1, 

0(2, x6 ) = oo and 7(2, x6 ) = undefined ; 

f(q, x6 ) = oo and p(q, x6 ) = undefined, 

0(q, x6) = oo and 7(q, x6 ) = undefined. 

for x7  : f(1, x7) = 22 and p(1, x7) = xi, 

0(1, x7) = oo and 7(1, x7 ) = undefined ; 

f(q, x7) = oo and p(q, x7) = undefined, 

0(q, x7) = oo and 7r(q, x7) = undefined. 

for x8  : f(3, x8) = 15 and p(3, x8) = x1, 

0(3, x8) = co and 7(3, x8 ) = undefined ; 

f(q, x8) = oo and p(q, x8 ) = undefined, 

0(q, x8) = oo and 7r(q, x8 ) = undefined. 

if q 0 1 

if q 0 1 

if q 0 2 

if q 0 1 

if q 0 3 

for x9  : f(2, x9) = 30 and p(2, xg ) = xi, 

0(2, x9) = oo and 7(2, xg ) = undefined ; 

f(q, xg ) = oo and p(q, xg ) = undefined, 
if q 0 2 

0(q, xg ) = oo and 7r(q, x9) = undefined. 
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Iteration 2 (q = 2) 

The values of f(2, x2), 1(2, x3), f(2, x6 ), f(2, x8 ), f(2, x9 ), 0(2, x2), 0(2, x3), 0(2, x6 ), 

0(2, x8 ) and 0(2, x9 ) remain unchanged (as noted earlier). 

In the case of f(2, x4 ), p(q-qi , xi) 0 xi , for j, i.e. p(1, x5) = xl, p(1, x5 ) = xl, p(1, x5 ) 

= p(1, x7) 0 x4 ), therefore we use the first term of the recursion (7a). 

42, x4) = min [ 	x5 ) + c(x5, x4 ), f(1, x7) + c(x7, x4 ) ] 

= min [ (17 + 15), (22 + 34) = 32. 

The vertex which produced the minimum of f(2, x4 ) is : 

p(2, x4) = x5. 

In 0(2, x4 ), the condition, xi  0 p(q, xi ), should be satisfied, therefore we do not have 

to use the term for the vertex which produced p(2, x4 ). Hence, 0(2, x4 ) can be computed 

as follows : 

0(2, x4) = min [ f(1, x7 ) + c(x7 , x4 ) ] 

= min [ (22 + 34) ] = 56. 

The vertex which produced the minimum of 0(2, x4 ) is : 

7r(2, x4) = x7. 

f(2, x5 ) = min [ f(1, x4 ) + c(x4, x5 ), f(1, x7 ) + c(x7 , x5) ] 

= min [ (14 + 15), (22 + 39) = 29. 

p(2, x5) = x4. 

0(2, x5 ) = min [ f(1, x7 ) -I- c(x7, x5 ) ] 

= min [ (22 ± 39) ] = 61. 

ir(2, x5 ) = 

f(2, x7) = min [ 	x4 ) + c(x4, x7 ), f(1, x5 ) + c(x5, x7 ) ] 

= min [ (14 -I- 34), (17 -I- 39) 1 = 48. 

p(2, x7) = x4. 
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0(2, x7 ) = min [ f(1, x5 ) + c(x5, x7 ) ] 

= min [ (17 + 39)] = 56. 

71-(2, x7) = x5. 

This is the end of iteration 2. 

Iteration 3 (q = 3) 

f(3, x2) = min [ f(1, x4 ) + c(x4, x2), f(1, x5 ) + c(x5, x2), f(1, x7 ) + c(x7 , x2) ] 

= min [ (14 + 36), (17 + 25), (22 + 35) = 42. 

p(3, x2) = x5. 

03, x2) = min [ f(1, x4 ) + c(x4, x2), f(1, x7) + c(x7, x2) ] 

= min [ (14 + 36), (22 + 35) ] = 50. 

71'(3, x2) = x4. 

In case of f(3, x4), some of p(q-qi , xi ) are the same as xi , some of them are not the 

same, i.e. p(2, x5 ) = x4  and p(2, x2) = p(2, x6) = p(2, x9) 0 x4. In order to satisfy the 

conditions of (51a), we should use the first recursion of (51a) for the terms f(2, x2) + c(x2, 

x4 ), f(2, x5) + c(x6, x2) and f(2, x9 ), and should use the second recursion for vertices x5  

and x7  like 0(2, x5) + c(x5, x2) and 0(2, x7 ) + c(x7 , x2). Then we can compute f(3, x4 ) 

and 0(3, x4 ) as follows : 

1(3, x4) = min [42, x2) + c(x2, x4), 0(2, x5) + c(x5, x4), f(2, x6) + c(x6 , x2), 

0(2, x7) + c(x7, x4 ), f(2, x9) + c(xg,  x4 ) ] 

= min [ (28 + 36), (61 + 15), (18 + 31), (56 + 35), (30 + 17) 1 = 47. 

p(3, x4) = X9• 

0(3, x4 ) = min [1(2, x2) + c(x2, x4 ), 0(2, x5 ) + c(x5, x4 ), f(2, x6 ) + c(x6 , x2 ), 

0(2, x7 ) + c(x7, x4 ) ] 

= min [ (28 + 36), (61 + 15), (18 + 31), (56 + 35) ] = 49. 

7(3, x4) = x6. 
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1(3, x5) = Mill [ 42, x2) + c(x2, x5), 0(2, x4) + c(x4, x5), f(2,  x6) + c(x6, x5), 

f(2, x7) + c(x7, x5), f(2, x9) + c(xg , x5) 1 

= min [ (28 + 25), (56 + 15), (18 + 29), (48 + 39), (30 + 35) J = 47. 

p(3, x5) = x6. 

0(3, x5) = min [42, x2) + c(x2, x5), 0(2, x4) + c(x4, x5), 1(2, x7) + c(x7, x5), 

f(2, x9) + c(x9, x5) ] 

= min [ (28 + 25), (56 + 15), (48 + 39), (30 + 35) 1 = 53. 

7r(3, x5) = 

f(3, x6) = min [ 41, x4) + c(x4, x6), f(1, x5) + c(x5, x6), 1(1, x7) + c(x7 , x6) ] 

= min [ (14 + 31), (17 + 29), (22 + 16) 1 = 38. 

p(3, x6 ) 

95(3, x6) 	min [41, x4) + c(x4, x6), f(1, x5) + c(x5, x6) ] 

= min [ (14 + 31), (17 + 29) 1 = 45. 

7(3, x6) 

1(3, x7) = min [42, x2) + c(x2, x7), f(2,  x4) + c(x4,  x7),  42, x5) + c(x5, x7), 

f(2, x6) + c(x6, x7), f(2, x9) + c(x9, x7) ] 

= min [ (28 + 35), (32 + 34), (29 + 39), (18 + 16), (30 + 32) 1 = 34. 

p(3, x7) = 

0(3, x7) - min [42, x2) + c(x2, x7), f(2, x4) + c(x4, x7), f(2, x5) + c(x5, x7), 

f(2, x9) + c(xg , x7) ] 

= min [ (28 + 35), (32 + 34), (29 + 39), (30 + 32) ] = 62. 

ir(3, x7) = 

f(3, x9) = min [41, x4) + c(x4, x9),  f(1, x5) + c(x5, x9), f(1, x7) + c(x7, x9) i 

= min [ (14 + 17), (17 + 35), (22 + 32) 1 = 31. 

p(3, x9) = x4. 

O(3, x9) = min [41, x5) + c(x5, x9), f(1, x7) + c(x7, x9)1 

= min [ (17 + 35), (22 + 32) ] = 52. 
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7r(3, x9) = x5. 

This is the end of iteration 3. 

We can compute the rest (from iteration 4 to 15) as the same way. We then have 

tables of the results of the full computation for f(q, x), p(q, x), qf(q, x) and 7r(q, x) as 

shown below : 

Table 3.4a f(q, x) 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  co 28 42 38 53 62 54 63 81 73 82 98 106 99 113 

x3  co 00 21 40 48 28 47 50 59 66 80 89 73 90 94 

x4  14 32 47 40 52 56 54 71 63 82 85 94 101 99 116 

x5  17 29 47 37 55 59 56 69 81 78 82 96 103 101 114 

x6  oo 18 38 48 34 43 67 53 62 80 86 79 93 101 98 

x7  22 48 34 27 51 49 46 79 69 79 91 86 94 91 108 

x8  00 00 15 34 37 34 53 61 62 60 74 81 79 96 102 

x9  00 30 31 49 39 57 65 46 65 68 77 84 101 109 91 

Table 3.4b p(q, x) 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

X2  - X1  X5  x6  X8  X5,7  x6  X6  X5,7  X6  X6  X8  X6  X6  X6  

x3  - - x1  x4  x6,9  x8  X7,8  X8  X8  X7  X8,9  X479  X8 x8  x8 

x4  x1  X5  X9  X8  X5  x9  x3  x5  x9  x9  x89  x9  X9  X3  X3  

x5  x1  x4  x6  x8  x4  x8  x8  x4  x9  x4  x8  x8  x8  x8  x4  

X6  - x1  x7  x2  x8  x7  x7  x8  x7  x3,8  x7  x8  xs  x8  x8  

x7  x1  x4  X6  x8  x8  x8  x8  x8  x6  x3  x8  x8  x8  x8  x8  

x8  - - X1  x7  x6  X3  x3,7  x3  x367  x7  x3,9  x6,7  x3  X3  X3  

x9  - x1  X4  x4  X3  x4  x8  x3  X3  X3  X3  X3  X3  X8  x3 
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The above tableau for f(q, x) gives the values of f(Q, xi ), i.e. f(15, xi ), for all xi  and can be 

used in the expression (8) to obtain the lower bounds. 

Table 3.4c qS(q, x) 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  oo co 50 54 58 72 75 72 87 94 99 100 107 119 117 

x3  co oo oo 42 58 49 66 61 69 80 83 92 106 108 106 

x4  00 56 49 47 59 62 59 73 76 85 92 97 106 104 121 

x5  00 61 53 58 56 63 65 75 82 84 97 100 108 110 118 

x6  oo 00 45 58 51 53 70 58 72 91 89 95 107 102 103 

x7  co 56 62 41 60 50 48 86 70 88 96 100 95 93 110 

x8  co co oo 39 51 46 67 67 81 79 77 82 91 105 112 

x9  00 oo 52 63 43 58 69 62 71 88 90 88 105 110 107 

Table 3.4d ir(q, x) 

x\ ci 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  - - X4  x5  x6  x8  x8  x8  x6  x5  x4  x6  x5  x8  x8  

X3  - - - x7 x4  x9  x4  x9  x7  x8  x6  x6  x9  x9  x7,9  

x4  - x7  x6  x3  x8  x8  x8  x3  x3  x3  x3  x5  x8  x8  x8  

x5  - X7  x2  x3  x8  x6  x3  x8  x6  x8  x4  x4  x6  x3  x8  

x6  - - x4  x5  x3  x8  x8  X3  x8  x9  X3  X7  x7  x7  x3  

x7  - X5  X9  x3  x3  x6  x3  x3,6  x3  x6  x6  x3  x6  x3  x3  

x8  - - - X45 x5  X7  x6  x9  x4  x3,4  x6  X3  x7  X6,9  X7,9  

x9  - - X5 	1  x6 x8  x3  x4  x8  x4  x4  x8  x8  x8 x3 x8 
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Using expression (8), we can now compute the direct lower bound B1 as follows : 

B1 = min [ 	xi) + c(xi,xi) 
i 

min [ (113 + 28), (94 + 21), (116 + 14), (114 + 17), 
X2  X3  X4  X5  

(103 + 18), (98 + 22), (102 + 15), ( 91 + 30) 
X6  X7  X8  X9  

= 115, with the minimum obtained for x3. 

This bound is improved compared with the bound of B1= 82 obtained from the pre-

vious section (direct bound with loops). By backtracking through tableau f(q, x), p(q, x), 

0(q, x) and 7r(q, x), we can obtain the q-path corresponding to the above value of 115. 

Two alternative paths are obtained from the results of the backtracking as follows : 

Alternative path 1 : x1  — x3  — x8  — x7  — x6  — x8  — x3  — x1  

Alternative path 2 : x1  — x3  — x8  — x6  — x7  — x8  — x3  — x1  

The above two alternatives for the present example are almost identical and the q-paths 

corresponding to the above value of 115 are as shown in Fig 3.7a and Fig 3.7b. 

o x2 

x5  
0 

X• 0 

0 X9 

Figure 3.7a Alternative 1 q-path corresponding to B1 = 115. 
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0 X2  

X5  
0 

4 0 

0 X9 

Figure 3.7b Alternative 2 q-path corresponding to B1 = 115. 

3.6.4 	Bound B2 (with no loops) 

Let us compute '(q, xi ) from expression (15). 

Thus : 	0(2, x2) = min [ f(2, x2) + f(15 - 2 + 2, x2) ], since p(2, x2) 0 p(15, x2) 

= min [ f(2, x2) + f(15, x2) ] 

= 28 + 113 = 141. 

0)(4, x2) = min [ f(4, x2) + 0(13, x2 ), cb ( 4 , x2 ) + f(13, x2) 1, 

since p(4, x2 ) = p(13, x2) 

= min [ (38 + 107), (54 + 106) ] 

= 145. 

0(5, x2) = min [ f(5, x2) + 0(12, x2), 0(5, x2) + f(12, x2) ] 

= min [ (53 + 100), (58 + 98) ] 

= 153. 

0(6, x2) = min [ f(6, x2) + f(11, x2) ] 

= 62 + 82 

= 144. 

x 
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etc. The tableau of 0(q, xi ) is computed as shown below : 

Table 3.5 b(q, x) 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  co 141 141 145 153 144 148 144 144 148 144 153 145 141 141 

x3  co co 115 130 121 117 130 116 128 116 130 117 121 130 115,, 

x4  130 131 150 134 137 141 117 144 117 141 137 134 150 131 130 

x5  131 130 150 137 137 137 137 144 137 137 137 137 150 130 131 

x6  co 116 139 141 129 132 147 115 115 147 132 129 141 139 116 

x7  130 139 128 127 147 128 115 165 115 128 147 127 128 139 130 

x8  co co 117 130 116 115 130 121 143 121 130 115 116 130 117 

x9  00 121 140 150 127 134 133 117 117 133 134 127 150 140 121 

As shown in the previous example, we can compute big  (= t,b(q, xi )), and then obtain 

an indirect lower bound (B2) for the TSP as follows : 

B2 = max [ min blq  . ] . 	q  

= max [ 141, 115, 117, 130, 115, 115, 115, 117 ] 

= 141, as indicated in Table 3.5. 

In this example B2 = 141, which is better than the value of 118 obtained for B2 when 

loops where allowed. The minimum is shown underlined in the above matrix for xi  = x2  

and q = 14 or 15. The value of 141 is obtained from : 

f(15, x2 ) -I- f(2, x2 ) or f(14, x2 ) + f(3, x2) . 

The two alternative paths corresponding to each one of these above two expressions can 

be obtained by backtracking through tableau p(q, x) and ir(q, x), and are given as below : 
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Alternative path 1 : x1  — x8  — x3  — x9  — x8  — x6  — x2  — x1  

Alternative path 2 : x1  — x8  — x3  — x7  — x8  — x6  — x2  — xs  — x1  

The through-circuits are shown below in Fig. 3.8a and Fig. 3.8b. 

X7 0  

X5  
0 

X
-1-  . 0 

Figure 3.8a Alternative 1 q-path corresponding to B2 = 141. 

x4  

Figure 3.8b Alternative 2 q-path corresponding to B2 = 141. 
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3.6.5 	Bounds B1 and B2 with no loops and applying the penalty procedure 

Since the penalty procedure for the indirect bound B2 is the same with that for 

the direct bound B1, we will illustrate the procedures just for B1 with no loops. 

Step 0 : (Initialization). 

ZL*= 0. ZU*  = 194 (the best solution - obtained by a heuristic - to this 

example so far). 

a = 2.0 and KOUNT = 0. 

Step 1 : (Initialization). 

Ai  = 0, i = 1, 	, 9 and di  = 0, i = 1, 	, 9. 

Step 2 : (Calculation of lower bound). 

LB = 115.0 (the bound B1 with no loops derived in Section 3.6.3). 

ZL = Bl(A°) - 2EAi  = 115.0 - 0 = 115.0 

Since ZL*< ZL, ZL*= ZL = 115.0, 

KOUNT = 1, and go to step 3. 

Step 3 : (Backtracking). 

The q-path corresponding to the value of lower bound, 115.0 is as : 

H(o) : x1  - x3  - x8  - x6  -- x7  - x8  - x3  - x1  (refer to Fig. 3.7b). 

di  = ( 2, 0, 4, 0, 0, 2, 2, 4, 0 ) for i = 1, 	, 9. 

Since d. 	2 for all i, go to step 4. 

Step 4 : (Penalties). 

Compute Ai  as follows : 

ZU*  — ZL = 194.0 - 115.0 = 79.0 

(d.  _ 2)2 = 	n\ 2 	, 	2 	2 - z) 	- 2) ± (0 - 2) + (0 - 2)2  -I- (2 - 2)2  ± (2 - 2)2  

± (0 - 2)2  -I- (0 - 2)2  = 24 

A2  = 0 + 2.0 	7294 	(0 - 2) • 	= 	799  

A3 = 0 + 2.0 	24 	(4 2) 	3 = 	 9  
6 

j=2 
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A4  = 0 + 2.0 

a5= 0 + 2.0 

As= 0 ± 2.0 

a7 = 0 ± 2.0 

as = 0 ± 2.0 

a9 = 0 ± 2.0  

(0-2) 

(0-2) 

(2 - 2) 

(2 - 2) 

(4 2) 

(0-2)  

1 	79 
3 =  18 
1 =  79 
3 	18 

2 = 0 3 
1 
3 
3 =  79 
3 	6 
2 	79 
3 =  9 

79 
24 
79 
24 
79 
24 
79 
24 
79 
24 
79 
24 

= 0 

(Note that E qi  = > q.). 
iEH(0) 	JOH(0) i  

Step 5 : (Udating the cost matrix). 

Since csij  = cij  + Ai  -I- A j, the results of modifying are as follows : 

eii = cu. ± Ai  + Ai = ell + 0 -I- 0 = cll. 

c'12 - ci2 + Ai + A2 = 28.0 + 0 	799 	 -2= 19.22 

c'13  = ci3  + Ai  + As  = 21.0 + 0 + 71 =34.17 

ess = ess  + As  + A8 = 28.0 	799 	 + 769  =-1-- 32.39 

Table 3.6 New cost matrix [c'ij] 

xj\xi  1 2 3 4 5 6 7 8 9 

1 - 19.22 34.17 9.61 12.61 12.61 22.00 28.17 21.22 

2 19.22 - 51.39 22.83 11.83 11.22 26.22 42.39 32.44 

3 34.17 51.39 - 34.78 45.78 43.17 33.17 39.33 22.39 

4 9.61 22.83 34.78 - 6.22 26.61 29.61 33.78 3.83 

5 12.61 11.83 45.78 6.22 - 24.61 34.61 30.78 21.83 

6 18.00 11.22 43.17 26.61 24.61 - 16.00 32.17 36.22 

7 22.00 26.22 33.17 29.61 34.61 16.00 - 25.17 23.22 

8 28.17 42.39 39.33 33.78 30.78 32.17 25.17 - 32.39 

9 21.22 32.44 22.39 3.83 21.83 36.22 23.22 32.39 - 
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Step 6 : (Computation of f, p, 0 and ir from the relaxed recursion). 

The results of computation for f(q, x), p(q, x), 0(q, x) and ir(q, x) with the 

new cost matrix above are as follows : 

Table 3.7a f(q, x) 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  cc 19.2 24.4 27.7 27.7 45.9 43.1 56.3 63.9 73.1 75.0 84.8 98.6 100. 106.9 

x3  oo oo 34.2 44.4 43.6 35.8 45.1 68.3 63.5 76.7 73.5 90.2 95.9 105. 105.4 

x4  9.6 18.8 25.1 37.3 41.5 47.3 56.9 66.7 78.7 79.2 88.8 97.4 109.6 111. 119.6 

x5  12.6 15.8 31.1 31.3 41.1 56.7 62.9 63.2 72.9 84.9 88.2 95.1 103.6 113. 120.1 

x6  co 18.0 36.2 30.4 35.7 38.9 57.1 54.3 67.6 79.8 86.0 86.2 96.0 112. 111.2 

x7  22.0 39.2 34.0 36.7 45.9 51.7 54.9 73.1 70.3 83.6 95.8 102.0102.2 112. 128.7 

x8  co oo 28.2 43.4 46.6 45.8 55.1 67.8 71.7 80.1 83.5 95.5 105.9 112. 115.4 

x9  oo 21.2 13.4 22.7 45.9 41.1 53.3 51.1 67.8 73.6 82.8 83.0 99.7 105. 113.4 

Table 3.7b p(q, 

x\q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  - x1  X5  x5  X9  x5  x5  X6  X6  x5  x5  x6  X5  x5  x5  

X3  - - x1  x4  x9  x9  x9  x9  x9  x9  x9  x9  x9  x9  X9  

x4 x1 x5 x9  x5  x5,9  X5  x9  x9  x9  x5  x9  x9  x5  x5 x5 

x5 x1 x4 x2  x4  x2  x4  x49  x4  x9  x2,4  x4  x4  x4  x2  x4  

X6  - x1 x4 x2  x2  x2  x2  x2  x2  x2  x2  x2  X2  x2  x2  

x7  x1  x4  x6  x9  x9  X6  X6  x6  X6  x6  x6  X6  x6  x6  x6  

x8  - - X1  X45 x5  X9  x9  X6  x6 x7 X9  x7 x9 X3  x9 

X9  - x1 X4  x4  x4  x4  x4  x4  x4  x4  x4  X4  x4  x4  X4 
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Table 3.7c 0(q, x) 

x\o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  co co 32.4 29.2 47.4 51.7 60.9 68.6 74.8 83.6 91.6 101.4 101.6 115. 124.0 

xs  co co co 55.2 53.6 59.8 69.8 76.3 82.1 88.1 97.5 103.5 113.9 122. 129.4 

x4  co 51.6 42.1 38.3 50.5 56.7 63.9 69.7 78.9 81.9 95.8 101.6 110.6 113. 120.7 

x5  co 56.6 42.6 35.3 44.5 57.7 63.5 72.7 72.9 89.6 95.4 103.4 104.8 116. 127.3 

x6  co oo 37.2 40.4 49.7 52.7 61.9 93.9 80.3 87.3 90.3 105.8 112.8 119. 122.2 

x7  co 47.2 44.4 50.7 46.4 69.1 64.3 77.6 74.3 91.0 96.8 106.0 106.2 123. 133.1 

x8  oo oo co 47.2 50.2 58.8 61.8 71.1 73.5 84.4 86.5 99.7 108.7 115. 118.4 

x9  oo co 34.4 37.7 52.9 53.1 62.9 74.9 78.1 85.0 93.6 106.8 110.0 117. 125.4 

Table 3.7d r(q, 

x\o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x2  - - x4  x6  x4  x6  x6  x5  x5  x9  x6  X5  x6  x9  X6  

x3  - - - X7 x4 X4 x7  x4  x4 x7 x6  X7 X4 X8  X6 

x4  - x7  x2  x9  x2  x9  x5  x5 x5 x9  x5 x5 x9 x9  x9 

x5  - x7  x6  x9  x4  x2  x2  x2  x4  x9  x2  x2  x9  x4  x2  

x6  - - x5  x5  x9  x7  x7  x4  x7  x5  x7  x4  x5  x5  X7 

x7  - x5  x9  x2  x6 X9  x9  x9  x9  x7  x9  x3  X9  X9  X2 

x8  - - - x7  x6 x4  x7  x5  x9  x3  x6  x6 x7 x7  x6  

x9  - - X5  X5  X5  X5  X5  X7  X7  X5  X7  X5  X5  X5  X5  

Go to step 1. 

At this stage (KOUNT = 1), we obtain a updated lower bound B1(A1) from expression 

(8) and Table 3.7a as follows : 

B1(A1) = mXn [ 	xi) + c(xi, x1) 
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= min [(106.9 + 19.22), (105.4 + 34.17), (119.6 + 9.64 
X2 	 X3 	 x4 

(111.2 +12.61), (128.7 + 22.0), (115.4 + 28.17), 
X6 	 X7 	X8  

= 129.21, with the minimum obtained for x4. 

(120.1 + 12.61), x5  
(113.4 + 21.22) 1 

x9  

In step 2, since ZL*= 115.0 < ZL = B1(A1) - 2Dii= 129.21, ZL*=129.21 

After 6 iterations of the same procedures, we obtain di= 2 (for all i), and ZL*=152.0 

Because this is a feasible solution to the TSP, this value is an optimal solution value. So, 

from backtracking, the optimal q-path corresponding to this value is as follows : 

H(A*) : x1  — X5  — X2  — X6  — X7  — X8  — X3  — X9  — X4  — Xl• 

3.7 	Computational results for bound calculations 

This section deals with the computational performance of algorithms to obtain 

Table 3.8 Problem description 

Problem 
Number of 
vertices 

Total 
requirement*  Source 

1 9 15 Given as an example 

2 10 28 Test problem 1 in Appendix A 

3 11 93 Christofides et. al. [1981 a] 

4 15 56 Test problem 2 in Appendix A 

5 20 80 Test problem 3 in Appendix A 

6 30 105 Test problem 5 in Appendix A 

7 40 140 Test problem 7 in Appendix A 

8 50 147 Test problem 9 in Appendix A 

* This is the sum of the values of qi. These values are generated randomly except 
for problem 3 where the values of customer demand in the VRP origins of that 
problem are used as the qi  for the TSP. 
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bounds for the TSP. Eight test problems (see Table 3.8 and Appendix A) are used for 

tests ranging from 9 to 50 vertices. All of these problems are randomly generated, and 

they are symmetric and uniformly distributed. 

Fig. 3.9 shows the bound ascents of the direct lower bound (B1), the indirect lower 

bound (B2) and the 2-paths bound (B3) for the 50 vertex TSP. Table 3.9 shows a 

comparison (values and time) of the three bounds after the ascent (at 10, 20 and 3D 

iterations) for eight test problems. 

bound 
700 

680 

660 

640 

620 

600 .••••• 
..... ••••••• 

B3 : 694.59 

.B2 : 669.50 

B1 : 640.34 

550 

500 

450 

400 

350 

300 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

Figure 3.9 The bound ascents for a 50 vertex TSP. 



Table 3.9 A comparison of the three bounds : values & times at 10, 20 & 30 iterations 

Prob. 
B1 B2 133 

Number of iterations Number of iterations Number of iterations 
10 20 30 10 20 30 10 20 30 

values time values time values time values time values time values time values time values time values time 

1a  152.0*  0:01 - - - - 152.0*  0:02 - - - - 152.0*  0:04 - - - - 

2b  219.0*  0:01 - - - - 219.0*  0:01 - - - - 219.0*  0:04 - - - - 

3c  155.2*  0:18 - - - - 155.2*  0:16 - - - - 155.2*  0:30 - - - - 

4d  278.3 0:24 288.7 0:48 291.0*  0:57 283.3 0:27 291.0*  0:53 - - 276.2 0:48 289.0 1:37 291.0*  2:05 

5 320.2 1:09 332.6 2:17 336.2 3:26 324.8 1:13 339.2 2:25 341.8 3:38 322.4 2:12 334.9 4:24 337.4 6:35 

6 491.1 3:37 506.8 7:14 509.4 10:51 501.2 3:45 509.8 7:31 511.6 11:16 496.7 7:21 507.8 14:42 511.8 22:02 

7 505.2 8:54 536.7 17:44 542.9 26:42 546.0 9:08 569.9 18:16 575.1 27:25 584.8 12:01 601.9 24:02 606.3 52:04 

8 607.2 14:53 634.8 29:45 640.3 44:38 632.1 15:10 662.3 30:19 669.5 45:29 656.7 00:10 688.6 00:19 694.6 00:29 

* : The optimal solution value obtained without embedding into tree search algorithm. 
a : Problem 1 has the optimal solution value at 7th iteration for Bl, at 9th for B2 and at 9th for B3. 
b : Problem 2 has the optimal solution value at 3rd iteration for Bl, at 1st for B2 and at 4th for B3. 
c : Problem 3 has the optimal solution value at 10th iteration for Bl, at 7th for B2 and at 7th for B3. 
d : Problem 4 has the optimal solution value at 24th iteration for Bl, at 20th for B2 and at 25th for B3. 

crs 

C_) 

CO 
00 



Chapter 3 	 89 

3.8 	The tree search algorithm for the TSP 

We present two tree search algorithms and the computational performance of 

those algorithms to obtain optimal solution values for the TSP. 

The basis of a tree search algorithm is to divide the set of all possible tours into smaller 

and smaller subsets and to calculate for each subset a lower bound on the cost of the best 

tour therein. The object of calculating lower bounds is that firstly to be used as guidance 

for the partitioning of the subsets and secondly to limit the search and also to identify the 

optimal tour. In constructing such search trees it is necessary to consider a branching 

strategy. Fig. 3.10 shows a diagram of the basic tree search for the TSP using some 

branching strategy. We assume the vertices are (x1, x2, x3, ...). 

In Fig. 3.10 LB0  is the initial lower bound, ZU is the upper bound at the root node and 

we assume that the lower bounds LB°, LB1, LB2, LB5  and LB6  on nodes 0, 1, 2, 5 and 6 

LB 
ZU 

x•'3. IN 
	x. OUT i l  

LB 	 LB 

eliminated 
x., IN 	 • OUT 	by node 5 (ZU(new)) 

'2 	 12 

LB 	 LB 

solution found 
x13 IN 	•, .3 OUT 	ZU(new) = LB5  •  

LB3 	 LB4  

elimina ed 	elimina ed 
by condition 	by condition 
LB3  > ZU 	LB4  > ZU 

Figure 3.10 Tree of the tree search method for the TSP. 
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respectively are less than ZU. We also assume that LB3  and LB4  are greater than ZU (i.e. 

nodes 3 Si 4 are eliminated by the bounds). If the solution corresponding to LB5  is found 

to be feasible, a new solution is obtained and ZU can then be updated when this node is 

reached. If we now assume that LB6  although previously less than the initial value of ZU 

(as stated earlier), is now greater than the updated value of ZU, then node 6 is now 

eliminated. The tree search proceeds as follows : 

Customer x.11  is chosen as the first one for forward branching producing nodes 1 (x. IN) 

and 6 (x. OUT). Since LB1  is less than ZU and not feasible at node 1, x; 2  is chosen for 
' 

the next branching producing nodes 2 (x12  IN) and 5 (xi2  OUT). The partially completed 

path is now (x1, xii, xi2) so far. Similarly nodes 3 and 4 are produced by branching on 

x13. Since LB3  is greater than ZU, the forward branching is stopped at node 3. Then, 

backtracking occurs by rejecting the customer xi3 and examining node 4. Since LB4  is 

greater than ZU, backtracking continues to node 5. Since LB5  is less than ZU and the 

bound corresponds to a feasible solution, this value becomes a new upper bound ZU(new). 

Backtracking now continues to node 6. Since LB6  is greater than ZU(new) and there are 

no more tree nodes for branching, the search tree is terminated at node 6. Thus, the 

optimal solution value is ZU(new) and the optimal solution was found at node 5. (Note 

that this optimal solution starts as x1, x11, xa, ... , where xa  # x12 .) 

3.8.1 	The branching strategy for the TSP 

The branching strategy (i.e. deciding which vertex to examine next) is based on 

arcs, i.e. an arc (xi, x.j) is chosen for branching at a node of the search tree in order to 

extend a partially completed path (x1, xk , 	, xi), and the alternative branching is to 

reject arc (xi, xj) as a possible extension of the path. In choosing the arc (xi, xj) for 

branching, (which means that vertex x. is used to extend the route just after xi), the 

following simple branching rule was applied. 
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Branching rule : 

If a partially completed path must be extended, the vertex to be chosen for branching 

is the vertex nearest to the path end. 

By choosing this vertex for the branching, we expect that the alternative branching (i.e. 

the rejection of the extension of the partially completed path with that vertex) will result 

in a higher lower bound, and may result in backtracking from the corresponding node. 

If an arc (xi, x.j) is chosen for branching at a node of the tree search in order to extend a 

partially completed path (x1, xk , 	, xi), the costs are changed as follows : 

c• = c = oo for / = 2, ... , n and / 	j. 

For the alternative branching (which is to reject arc (xi , x.j) as a possible extension of 

the partially completed path) the cost is changed as follows : 

If c.• = c.• = oo. 
1J 	J1  

3.8.2 Fathoming 

A partially completed path is "fathomed" (i.e. one can backtrack from it) when 

one of the following situations has arisen ; 

(i) if a lower bound at a certain stage is greater than or equal to the current upper 

bound (the best solution so far), 

or (ii) if the solution corresponding to the lower bound at a subproblem, is a feasible 

solution, 

or (iii) if the bottom of the tree is reached and no unvisited vertices remain. 
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3.8.3 	A Tree search algorithm for the TSP 

We will show a tree search algorithm for the TSP using the lower bound B2 and 

the branching strategy in Section 3.8.1. 

Description of the algorithm 

Step 0 : (Initialization). Initialize level (LEVEL ; depth of tree) and total number of 

tree nodes (NTNODES) ; LEVEL = 0, NTNODES = 0. Let ZU (upper bound) be the 

value of the best solution so far, and set Zopt = ZU. 

Step 1 : (Choose a vertex). Choose a vertex according to the branching strategy and 

call it IPICK (chosen vertex). If IPICK does not exist, then go to backtrack (step 4). 

Else, set NTNODES = NTNODES + 1, LEVEL = LEVEL + 1. 

Step 2 : (Update the cost matrix). With the fixed customer (IPICK = xi) as an 

element of a partially completed path, change the cost matrix as : 

c.11 = c/i  = oo for 1= 2, ... , n and 1 	i,j. 

Step 3 : (Calculate the lower bound and check feasibility). Compute the updated 

lower bound with the updated cost matrix in step 2, and then check if the solution 

corresponding to the bound for this subproblem is feasible or not. Also check the lower 

bound (ZL) against the best upper bound (Zopt) so far. If a feasible solution is obtained 

and ZL<Zopt, then record the optimal solution value and the path corresponding to this 

value and set Zopt = ZL, and then go to step 4 to backtrack. If ZL<Zopt and the solution 

to this subproblem is not feasible, then go to step 1 to continue the branching. If 

ZL>Zopt, then go to step 4 to backtrack. 

Step 4 : (Backtrack). If the alternative to the current node at this LEVEL has not 

been examined, then go to examine that node : Set NTNODES= NTNODES+1, update cii  

=ooc
1
= , and go to step 3. If the alternative to the current node has been examined, 

J 
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then set LEVEL= LEVEL-1. If LEVEL= 0, stop. Else, reset the costs cii  and ji  to their 

original values and repeat step 4. 

In order to increase the efficiency of the tree search algorithm above, we can consider 

the following : 

(i) since the initial lower bound ZL is close to the optimal solution (normally within 

6%), the value k•ZL (where k= 1.3, for example) can be used as the initial upper bound 

with same confidence. In this case, because the quality of the initial upper bound is closer 

to the optimal solution value, the number of nodes in the tree search is reduced greatly. 

(Note that if the initial upper bound estimate is below the optimal solution value, no 

feasible solution will be obtained by the tree search.) 

(ii) we can consider the gap between the lower bound and the upper bound at a certain 

node. For example, if we assume that the initial costs are integers, the feasible solution 

value should be integer. Therefore, if the value of a lower bound at a certain node is 

between the upper bound and the upper bound - 1 (i.e. 0 < Zopt-LB < 1), we can 

backtrack from this node. 

3.9 	Computational results 

In Table 3.10 we show the size of test problems and the computational results 

(values and time) for the three bounds (B1, B2 and B3) using an IBM PS/2-70 386. All 

values for the bounds are obtained at the 30th iteration. From Table 3.10 we can see that 

bounds B2 and B3 are better than the direct bound Bl. B3 is better than B2 but requires 

considerably longer time to compute (see Table 3.9). 

Table 3.11 gives the computational performance (computing times and total number of 

nodes) of the algorithm using bound B2 for the first 6 test problems. 

All computing times shown in Table 3.11 are times on the IBM PS/2-70 386 using the 
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Microsoft fortran 4.0 compiler, and all codes are in FORTRAN 77. In case of small size 

problems, i.e. problems 1 to 4, the optimal solution value was obtained without using a 

tree search algorithm, during the subgradient ascent procedure. 

Table 3.10 Computational results : values Si times (on IBM PS/2-70 386) 

Problem Number of 
vertices 

Optimal 
solution 
value 

Initial lower bound 
B1 B2 B3 

value value value %a  

1 9 152.0 152.0*  152.0*  152.0*  

2 10 219.0 219.0*  219.0*  219.0*  - 

3 11 155.2 155.2*  155.2*  155.2*  - 

4 15 291.0 291.0*  291.0*  291.0*  - 

5 20 343.0 336.2 341.8 337.4 12.6 

6 30 537.0 509.4 511.6 511.8 47.8 

7 40 - 542.9 575.1 606.3 44.1 

8 50 - 640.3 669.5 694.6 16.0 

* : The optimal solution value obtained without embedding into tree search algorithm. 

a : % means the reduction percentage of the original problem and the two opt. TSP 
is used as the heuristic solution value. 

From Fig. 3.11 it can be seen that the algorithm is not competitive with other existing 

algorithms that can be found in the literature. In view of the above results it was not 

considered useful to investigate better branching schemes, or to try to improve the 

algorithm in any way. Indeed, the bounding procedures are reported for the TSP only as 

an easy introduction to the use of state-space relaxation for the VRP where the power of 

this bounding procedure (in more complex problems) becomes apparent. However, it is 

worthwhile to note here, that we believe that the TSP with constraints (e.g. visit time 

windows, precedences, etc.) may also provide useful applications for state-space relaxation. 
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Table 3.11 Computational results : 
total number of nodes & times (on IBM PS/2-70 386) 

Problem 
Number of 
vertices 

Total 
requirement*  

Algorithm 
time" nodes 

1 9 15 0: 2 0(9) 

2 10 28 0:16 0(7) 

3 11 93 0: 1 0(1) 

4 15 56 0:53 0(20) 

5 20 80 22:23 6 

6 30 105 62:20:51 634 

( ) : The number of subgradient iterations before the optimal solution was 
obtained at the root node. 

: This is the value of Q= Eqi. The values of qi  were distributed amongst 
the cities arbitrarily. 	i 

** 	hours : minutes : seconds 



CHAPTER 4 

BOUNDS FOR THE VRP FROM STATE-SPACE RELAXATION 

4.1 	Introduction 

Consider a graph G = (X, A) defined by the set X of its vertices and the set A of 

its arcs. Let Xi  = {x• I i = 2, ... , n} be used for the set of n customers and let x1  be the 

depot. X = Xi  U {x1}. A customer xi  has an associated quantity qi  of some product to 

be delivered by a vehicle. We assume that M identical vehicles each of capacity Q are 

stationed at the depot. 

The number of vehicles is assumed to be large enough for a feasible solution to exist. 

We further assume that the cost of the least cost path from every vertex xi  to every vertex 

x. is given as c“. It is required that the total quantity on each vehicle route is less than 

or equal to Q. The objective in the VRP that is considered here, is to design feasible routes 

- one for each vehicle - in order to supply all of the customers and minimize the total cost 

of all the routes. For the purpose of this section the 'cost' c.• mentioned above can be 

taken to be either travel distances or travel times between the customers. The VRP 

defined above is a generalization of the travelling salesman problem discussed earlier. 

In this chapter, we will introduce a dynamic programming formulation and the 
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corresponding relaxed recursion for the VRP. This relaxed recursion is then used to derive 

various lower bounds for the VRP. The bounds are improved by a procedure similar to 

subgradient optimization and the bound performance and quality is compared. The 'best' 

lower bound is used in the tree-search of the next chapter to produce a complete solution 

algorithm for the VRP. 

4.2 	A dynamic programming formulation for the VRP 

Let f(m, S) be the least cost of supplying a set S of customers using only m 

vehicles and let v(S) be the solution to the TSP defined by the set S of customers and the 

depot xi. 

With the above definition, the dynamic programming recursion becomes : 

f(m, S) = Lm?s  [ f(m - 1, S - L) 	v(L) 	 (1) 

subject to E
1 
 - (m - 1) Q < > . < Q 

xi ES 	 x1EL 

for m = 2, ... , M, and where S C X/  must satisfy 

where 

Q -(M- rn) Q 5 >qi  5_ m • Q xi Es 

= E q.1. x•EX I 
 

The restrictions on sets L and S are so as to avoid the computation of f(.) and v(.) for sets 

that can only lead to load - infeasible completions. For m = M only S = X' need be 

considered, and the recursion is initialized by f(1, S) = v(S). 
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4.3 	The relaxed recursion and the direct bound for the VRP 

Let us consider the mapping function, g(S) E. a  = E a., where ai  are any 
xi  ES 

`weights' associated with the customers, and which can be chosen in any arbitrary fashion. 

We will choose a.= qi  and denote a by q. The relaxed recursion (1) then becomes : 

f(m, 	 min 	 [ f(m-1, q-q') 	7(q') ], 	(2) 
q-(m-1)Q < q' < min [q, Q] 

where 77(q9 is given by an expression similar to (6) in Chapter 3, and for this case becomes 

the least cost of a circuit C for which E qi  = q'. Since this is itself a hard problem, we 
xi EC 

will redefine V(q0 to be, instead, a lower bound on the cost of such a circuit. Such a 

bound is derived as follows. 

V(q') = 	min 	[ f(q', x.) 	c(x., x1) ], 
xi 0 xi  

where f(q', xi) is given by expression (13) in Chapter 3. 

The above equation for V(q1) can be rewritten as : 

17(q0 = min [ 0(q1, xi) + c(xi, x1)  ], x• 

where O(. , .) is the function f(. , .) for the TSP in the previous chapter, and which has 

been renamed in order to avoid confusion with the function f(m, q) of recursion (2). We 

will also use 7(q', x) which is the vertex just prior to x on the path corresponding to 0(qt, 

x) instead of p(q', x). 

From expressions (2) and (3'), the 'direct' lower bound (LB1) for the VRP is then 

given by 

LB1 = f(M, -0) 	 (4) 

(3) 

(3') 
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4.4 	The indirect bound for the VRP from 'through q - routes' 

4.4.1 	The through q - routes 

Let W be the set of all possible loads (quantities) that could exist on any vehicle 

route, i.e. 

W = { q I 	qiei  = q < Q, for some e, ei  E {0, 1} }. 
i=2 

Let the elements of W be ordered in ascending order and let w = 'WI. We will denote 

by q(() the value of the lth element of W and by r(q) that t so that q(f) = q. The total 

load on a path 	= (x1, 
x.111  

, xi z , xi 

	

, 	, x: 
k 

 is defined as E
Xi c 	

- {x1}(Note that .P 

is not necessarily a simple path.) 

Let f i(xi) be the cost of the least cost path called a q-path with load q((). A q-path 

with the additional arc (xi, x1) is called a q-route and has cost f'1(xi) = f i(xi) + c(xi, x1). 

The path corresponding to fi(xi) is not necessarily simple but it is not easy to impose 

the condition that no vertex is visited by the path more than once. On the other hand it is 

quite easy to impose the restriction that the path should not contain loops formed by three 

consecutive vertices. With this restriction imposed, a better bound can be calculated in 

much the same way as for the TSP in Chapter 3. 

Let pi(xi) be the vertex just prior to xi  on the path corresponding to f i(xi), and let 

O1(xi) be the least cost path from the depot to xi  with load q(1) and with ir i(xi) # pi(xi), 

where r i(xi) is the vertex just prior to xi  on the path corresponding to ck i(xi). 

Fig. 4.1 shows two possible paths corresponding to fi(xi) and Oi(xi). 

For a given value of 1, let g(xi, xi) be the cost of the least cost path from xo  to xi  with 

xi  just prior to xi  and without loops. Then, g(xi, xi) is : 

g(x., x.) = 	+ c(xi, xi), if pi,(xi) 0 xi 	
(5) 

= 	1,(9 + COT xi), otherwise 
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where is such that q(P) = q(/) + qi. 

Figure. 4.1 A q-route with no loops. 

Given the function g computed from (5), function f and cb can be computed for the 

given / as follows : 

f1(xi) = mm [ g(x. x.) ' 
1 

pi(xi) = xl` 

where xl` is the value of x. corresponding to the above minimum. 

0/(xi) = x min 
 (x) 

 [ g( x., x.) ], P i   

a1(xi) -- xi* 

where 	is the value of x. corresponding to the above minimum. 

} (6a) 

(6b) 

From the above expression it is clear that the path corresponding to f1(xi) has no end 

loops. 
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The initialization of the functions f, 0, p and it is as follows : 

f i(xi) = 01(xi) = co for lsuch that q(1) 	qi  

f l(xi) = c(xi, xi) ; pi(xi) = x1  for I such that q(1) = 

0/(xi) = oo 

Using the above expressions we can now obtain an indirect bound from the through q-

routes. Let /  (x.) be the value of the least cost route, without loops, starting from the 

depot, passing through xi  and finishing back at the depot with a total load q(/). Such a 

route will be called a through q-route. 7/1:  (X. ) must be composed of either the two best q-

paths to xi  whose total loads add up to q(/), or a best path and a second-best path to xi  

whose total loads add up to q1(/). 

1(xi) can then be computed as follows : 

ogx.) = min 1 	[ fro,oi) + fr(q(p) q,)(xi) b 
cii<qt<ci(11) 

if pi.(0(xi) 	Proim_qpi), 

Or 

1,b / (xi ) = 	min 	[[ min [ fT0,)(xi) 	0r(ci(o_cv)(xi), 
cli <q i<c1(10 

07-(q1)(xi) fr(q(/')-cr)(x01  

if pr(o(xi) = Pr(q (p)_q t)(xj)• 

We note that the computational effort involved in computing the q-path is linearly related 

to w. Thus, if w is large this operation can be quite time consuming. 

Now we consider the calculation of the indirect bound from the computed values of 

/ (xi). 

(7a)  

(7b)  



(12)  

(13)  

Chapter 4 	 102 

4.4.2 	The indirect bound (LB2) for the VRP 

Let the total number of feasible single routes possible in the VRP be indexed by r 

= 1, ... , i. Let the index set of customers in route r be Mr, the cost of the route be dr  

and total load of the route be Kr  = E  q.
1
. Let Ni  be the index set of routes visiting 

i Emr 
customer x.. 1 

Let yr  = 1, if route r is in the optimal VRP solution, 

= 0, otherwise. 

The integer programming formulation of the VRP is as follows : 

i 
Min E dry, 

r=1 

s.t. E yr  = 1, i = 2, ... , n 
rENi  

i 
E Yr = M 

r=1 

Yr E { 0, 1 }. 

Let us substitute yr  by the following expression in terms of new variables . ir 

, 
lr1 Yr = rc 2-, 	q' r jEmr   

The formulation of the VRP given by equations (8) - (11) now becomes : 

r a 
i Min E ---L E e q. 

r=1 Kr  iEMr  r 1 
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s.t. 	E f ir  = 1, 	i = 2, ... , n 
rEN i  

ir 	Kr je m  E r jrj  q , i E Mr  , r = 1, 	, 

ch• 
E 2' IT eir = M  r=1 iEMr 	r 

fir E { 0, 1 } 

Constraints (15) ensure that 4'ir  = 1 if and only if Ejr = 1, Vj E Mr  and hence yr  = 1. 

Thus, constraints (14) correspond to constraints (9). 

Let the above problem be relaxed by (i) removing constraints (15) and (ii) by replacing 

set Mr  for route r by the complete set I = {2, 	, n}. The resulting relaxed problem can 

be somewhat strengthened by adding the constraints as : 

n 
E E r=1 i=2 

(18)  

which was redundant for the formulation given by equations (13) - (17) but which is no 

longer redundant for the new relaxed problem. 

In the relaxed problem defined by equations (13), (14), (16), (17) and (18) (with Mr  

replaced by I), only one route need by considered for each customer xi  and for which 

possible value of load q on the route (q E W). This is clear from the fact that if two 

routes r1  and r2  both contain customer xi  and have loads Kri  = Kr2  = q, then if dri  < 

dr2, route r1  dominates route r2  in the relaxed problem. Let us call the undominated 

route (i, 1) with / = r(q). We will denote the cost of this route by di/. There are now w 

routes to consider for each i. The relaxed problem now becomes : 

Min LI 	-d-ii  ail i=2 1=1 
(19)  
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= 2, ... 	, n (20)  

1 = M (21)  

= Q (22)  

} (23)  

Chapter 4 

s.t. E
1l 
 
 

= 1, 
/=1 

11 	c#11 i=21=1 

i=2 1=1 

ail E  { 0, 1  

where Cii/ =dil  qi/q(/). 

Note that if no route passing through i with load q(/) exists, then di/  = oo. di/ /q(1) 

represents the marginal cost of supplying customer i, on a route with load q(/), with a unit 

quantity and hence ail  is the cost contribution of customer i. 

It is quite apparent that the cost 0(xi) of the minimum cost through q-route passing 

through customer xi  and having load q(l) is a lower bound on di/. Thus, the solution of 

the problem defined by the objective function 

Min 	bil 
ail i=2 1=1 

(24)  

and constraints (20) - (23), where bil  = 0/(xi)•qi /q(/), is a lower bound to the VRP. bil 

is a lower bound on TIil   and is obtained by relaxing the restrictions that in a feasible 

solution the degree of every vertex is 2. 

Therefore, a simple bound can be computed by ignoring constraints (21) and (22), and 

minimizing (24) subject to only (20) and (23). The resulting bound is as follows : 

LB2 = 	min [ bu] 1=2 /=1,...,w 
(25)  
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We will show a detailed example of how to compute this indirect lower bound for the VRP 

with loops and without loops in Section 4.6. 

4.5 	Penalty procedures for improving the bounds 

For the VRP, we can use the penalty procedures and the subgradient method (see 

Chapter 3). As we have seen in the previous section, the lower bounds for the VRP from 

state-space relaxation are computed by the expressions : 

LB1(o) = f(M, 	; for the direct bound of the VRP, 

LB2(o) = E 	min 	[ b.11  ] ; for the indirect bound of the VRP. i=2  1=1,  ,w   

Let R(o) be the routes producing the above minima, R1(o) and R2(o) corresponding to 

LB1(o) and LB2(o) can be obtained from f(q, xi), p(q, xi), 4(q, xi) and ir(q, xi) by 

backtracking respectively. For example, Fig. 4.2 and Fig. 4.3 show the routes R1(o) and 

R2(o) respectively. Such routes can clearly be infeasible. As we can see in Fig. 4.2, vertices 

0 X2  

X= IN. 	 R1(o) 

  

O 

x5  

X7  0  

O 

X9  

 

x4  

Figure 4.2 Routes R1(o) corresponding to bound LB1(o). 



Chapter 4 	 106 

x2  

	

1 	...- 
• .. ,7 	

2 2• ...-• ''  
2. .„  2'  2 

K x6 	.. , 	6A  6 64, 

1  
. 	

N 	•• .--.. 	• 	 3 • 
I 	' 	

6 3\ 	. 
-• ... 	..  

1 	11 	
2

-, § 	6 , 	<- - - 
k 	t 1, 	

2 • 
I 6 14" . 	41 	IP 

	

\ I ,• 31 . i ...., 	 1\ 3 
6, 6 6t   6 

X5 	_ _ k 	/ 

	

_ 	j_
s 	

, 	i 	..../ .....E. —6 	\ s ...... 	 .." 
x3  

R2(o) 

Figure 4.3 Routes R2(o) corresponding to bound LB2(o). 

x2, x4, x5  and x7  are not visited, whereas vertices x3  and x5  are visited twice. Similarly 

in Fig. 4.3 dk= E 6kqi/q(/j) 0 2, for some k. Here, values on arcs mean weights 

(qi /q(1)) on arcs ; for example, suppose that 06(x2) for the vertex x2  is composed of f(5, 

x2) and f(2, x2), and its through q-path is x1-x3-x4-x2-x1. Hence, value ÷ on arcs (line 

in Fig. 4.2) is derived from q2=2/q(()=6. In Fig. 4.2 we can penalize vertices x2, x3, x4, 

x5, x7  and x8  (by penalties A2, A4, A5  and A7  < 0, and ) 3  and A5  > 0) in the normal 

L 	 Aagrangean fashion, and we can then modify cif as : ct1 = 	-I- A. + . And a new lower 

bound LB1(A) can then be obtained by resolving the recursions (in the same way as in the 

previous section) with an updated cost matrixij] New routes R(A) are then obtained 

with respect to the new LB1(A). We wish to choose A* for which : 

LB1(A*) = max [ LB1(A) ]. 

In this penalty procedure, we can use the subgradient optimization method to compute 

A* (see Held, Wolfe & Crowder [1974] or Sandi [1979]). 

A similar procedure can be used to obtain the best bound LB2(A*). 



Chapter 4 	 107 

4.5.1 	An algorithm for improving the bounds for the VRP 

We will describe an algorithm to improve the lower bounds for the VRP using 

penalty procedures. This algorithm can be used for the direct bound (LB1) and the indirect 

bound (LB2) for the VRP in the same way except for the step of backtracking. 

Step 0 : (Initialization). Set the best lower bound ZL*= 0. Let ZU*  be the value of 

the best solution so far. Set a = 2.0 and KOUNT = 0. 

	

Step 1 : (Initialization). Set 	= 0, i = 1, 	, n and di  = 0, i = 1, 	, n. 

Step 2 : (Calculation of lower bound). Compute the lower bound (LB1 or LB2) using 

state-space relaxation as mentioned in the previous section. Let ZL be the updated lower 

bound on the value of the solution to the VRP, ZL = LB - 	If ZL*< ZL, set ZL*= 

ZL. If ZL*> ZU*  or KOUNT = maximum number of iterations allowed, stop. Else if 

ZL*< ZU*  and KOUNT 0 maximum number of iterations allowed, KOUNT = KOUNT 

+ 1, and go to step 3a (for the direct bound), or step 3b (for the indirect bound). 

Step 3a: (Backtracking for the direct bound). Backtrack in order to find the q-routes, 

which are not necessarily pairwise vertex disjoint, corresponding to the above direct lower 

bound using f(q, xi), p(q, xi), 4(q, xi) and 7r(q, xi), where q = Q. Check the degree di  of 

vertex xi  with respect to graph G corresponding to the updated lower bound. If the degree 

di  is 2, for all i (i = 2, ... , n), stop. (In this case ZL*  is the best lower bound that can be 

obtained by this procedure and is the optimal solution value for the VRP). Otherwise, go 

to step 4. 

Step 3b: (Backtracking for the indirect bound). Backtrack in order to find the q-

routes, which are not necessarily pairwise vertex disjoint, from 6.(x.) corresponding to the 

above indirect lower bound using f(q, xi), p(q, xi), q5(q, xi) and 7r(q, xi) for q = Q, where 

I is the value of I producing the minimum in the expression below : 

. 
MM 	[  

1(x1)]. 
1=1, 	,w 	cf(1) 
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Let bi  be the degree of xk  with respect to graph Gi  (refer to Fig. 4.3). Then, compute 

dk =
i=2 

 6L• qi /q(0. 	 (26) 

The degree dk  should be equal to 2 in any feasible solution to the VRP. Check the 

degree dk  of vertex xi  with respect to graph G corresponding to the updated lower bound. 

If the degree dk  is 2, for all i (i = 2, ... , n), stop. (In this case ZL*  is the best lower 

bound that can be obtained by this procedure and is the optimal solution value for the 

VRP). Otherwise, go to step 4. 

Step 4 : (Penalties). Compute penalties as below : 

A.  = ai + a  • 	ZnU* — ZL 	(d. - 2) • qi/max[qi], i = 2, ... , n 
E (di  - 2)2 	1  
j=2 

where a is a constant (0 < a < 2) and can be periodically reduced by some factor. For 

example, after every 5 iterations a is reduced to a half, i.e. a = 2.0 for KOUNT < 5, and 

a = 1.0 for 6 < KOUNT < 10, and so on. 

Step 5 : (Udating the cost matrix). Modify and update the cost matrix[cif ] .. as : 

c'ii  = cii 	+ 

Step 6 : (Computation of f, p, 0 and 7r from the relaxed recursion). Compute f(q, x), 

p(q, x), 0(q, x) and 7r(q, x) for q = Q, from the Dynamic Programming recursions using 

the state-space relaxation for the updated cost matrix [c'.•]. 

Go to step 1 (for the direct bound). Go to step 7 (for the indirect bound). 

Step 7 : (Computation of t,b(xi) and matrix [bii]). With the updated value of f, p, 

and 7r, and using the expression (7), compute 14)0. And then, compute bit  as : 

bil = 0/(xi)•qi/q(/), 	for i = 2, ... , n, / = 1, 	, Q 	 (27) 
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Go to step 1. 

At the end we can obtain an updated lower bound which is close to the best lower 

bounds obtainable from these procedures as : 

LB1(A*) = max [ LB1(A) ] = f(M, 0) - 2EA j, 
A 

LB2(A*) = max [ LB2(A) ] = 	Min 	[ 1(x1) qi] — 2EA j. 
A 	 (10 

4.6 	An example 

Consider a 1-depot, 8-customers, 3-vehicles VRP, where x1  refers to the depot, 

and x2, ..., x9  refer to the customers. We will use the same example as in Chapter 3, 

Refer to Table 3.1 and Fig. 3.2 in Chapter 3 for the intercustomer (and depot) distances. 

The vehicles are of capacity Q = 6 units and the customer demands are as shown below : 

xi = 1 2 3 4 5 6 7 8 9 

qi  = 0. 2 3 1 1 2 1 3 2 

The total demand is Q = 15. 

We will use state-space relaxation to compute lower bounds on the value of the VRP 

solution. 

4.6.1 	The simple bounds from state-space relaxation 

(A) Direct bound 1 (LB1) 

From expressions (2), (3) and (31), and the mapping function g(S) = E qi  (where we 
iES 

will choose qi, i = 2, ... , 9, so that g(S) = E q•
1 	

q), the relaxed recursion for this 
x ES 



Chapter 4 	 110 

example can be rewritten as : 

f(m, q) = 	min 	[ f(m-1, q-q') + V(ce) ], 
q-6(m-1) <qi< min [q,6] 

with 6m-3 < q < min [15, 6m], and 

17(q1 ) = mill [ 0(q1, xi ) + c(xi, x1) ]• 

From Tables 3.2a and 3.2b of Chapter 3, Tables 4.1a and 4.1b are obtained as : 

(26a)  

(26b)  

Table 4.1a 0(qt, x)  

x\q 1 2 3 4 5 6 

x2  oo 28 42 38 53 62 

x3  oo oo 21 40 48 28 

x4  14 32 44 40 52 56 

x5  17 29 47 37 55 59 

x6  00 18 38 48 34 43 

x7  22 48 34 27 46 49 

x8  oo oo 15 34 37 34 

x9  co 30 31 49 39 57 

Table 4.1b 7(q', 

x\q 1 2 3 4 5 6 

x2  - x1 x5  x6  x8  x5,7  

X3  - - X1  x4  x6,9  xs  

x4  x1  x5  x5  xs  X5  X9  

x5  x1  x4  x4,6  x8  x4  x8  

x6  - x1 x7  x2  xs  x7  

X7  x1  x4  x6  xs  x8  x$  

x8  - - X1  x7  x6  x3  

x9  - X1  x4  x4  x3  x4  

From the above expressions, the direct bound 1 to this VRP is then given by f(M, 	= 

f(3, 15). The computation steps to compute f(3, 15) are : 

The initialization is given by 1(1, 	= V(q), and hence we will start by first computing 

V(.) from equation (26b) using Tables 4.1a and 3.1 of Chapter 3. Here, 7r(q) is the vertex 

just prior to deopt (x1) on the route corresponding to V(q) with load position q. 
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V(1) = min [0(1,x4)+c(x4,x1), 0(1,x6)+c(x6,x1), 0(1,x7)+c(x7,x1)] 

= min [(14+14), (17+17), (22+22)] 

= 28, with the minimum obtained for 7r(1) = x4. 

V(2) = min [0(2,x2)+c(x2,x1), 0(2,x4)+c(x4,x1), 0(2,x5)+c(x6,x1), 0(2,x6)+c(x6,x1), 

0(2,x7)+c(x7,x1), 0(2,x9)+c(x9,x1)] 

= min [(28+28), (32+14), (29+17), (18+18), (48+22), (30+30)] 

= 36, for 7r(2) = x6. 

V(3) = min [0(3,x2)+c(x2,x1), 0(3,x3)+c(x3,x1), 0(3,x4)+c(x4,x1), 0(3,x5)+c(x6,x1), 

0(3,x6)+c(x6,x1), 0(3,x7)+c(x7,x1), 0(3,x8)+c(xs,x1), 0(3,x9)+c(x9, x1)] 

= min [(42+28), (21+21), (44+14), (47+17), (38+18), (34+22), (15+15), (31+30)] 

= 30, for r(3) = xs. 

V(4) = min [0(4,x2)+c(x2,x1), 0(4,x3)+c(x3,x1), 0(4,x4)+c(x4,x1), 0(4,x6)+c(x6,x1), 

0(4,x6)+c(x6,x1), 0(4,x7)+c(x7,x1), 0(4,x8)+c(x8,x1), 0(4,x9)+c(x9, x1)] 

= min [(38+28), (40+21), (40+14), (37+17), (48+18), (27+22), (34+15), (49+30)] 

= 49, for 7r(4) = x7  or x8. 

v(5) = min [0(5,x2)+c(x2,xi), 0(5,x3)+c(x3,x1), 8(5,x4)+c(x4,x1), 0(5,x5)+c(x5,x1), 

0(5,x6)+c(x6,x1), 0(5,x7)+c(x7,x1), 0(5,x8)+c(x8,x1), 0(5,x9)+c(x9, x1)] 

= min [(53+28), (48+21), (52+14), (55+17), (34+18), (46+22), (37+15), (39+30)] 

= 52, for 7r(5) = x6  or xs. 

V(6) = min [0(6,x2)+c(x2,x1), (46,x3)+c(x3,x1), 0(6,x4)±c(x4,x1), 0(6,x6)+c(x6,x1), 

0(6,x6)+c(x6,x1), 0(6,x7)+c(x7,x1), 0(6,x8)+e(xs,x1), 0(6,x9)+c(x9, x1)] 

= min [(62+28), (28+21), (56+14), (59+17), (43+18), (49+22), (34+15), (57+30)] 

= 49, for 7r(6) = xs  or x8. 

The functions V(.) and 74.) are summarized in Table 4.2. 
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Table 4.2 V(q) and r(q) 

q 1 2 3 4 5 6 

V(q) 28 36 30 49 52 49 

7r(q) x4  x6  x8  x7,8  X6,8  x3,8  

We will now use the recursion (26a) to compute f(2, q). In case of computing f(2, q), 

we need to compute only for 9 < q < 12. Thus, 

f(2, 9) 	= min [ f(1, 6) + V(3), f(1, 5) + V(4), f(1, 4) + V(5), f(1, 3) + V(6)1 

q'= 
3 	q'= 4 	q'= 5 	q'= 6 

= min [ (49+30), (52+49), (49+52), (30+49) 1 

• 79, with the minimum obtained for 7(9) composed of 7(3) and 7(6). 

f(2, 10) = min [ f(1, 6) + V(4), f(1, 5) + V(5), f(1, 4) + V(6)1 

q'=4 	cif = 5 	q'= 6 

min [ (49+49), (52+52), (49+49) 

= 98, for 7(10) composed of 7(4) and 7(6). 

f(2, 11) = min [ f(1, 6) + V(5), f(1, 5) +V(6) ] 

qt=  5 	ire= 6 

• min [ (52+49), (49+52)1 

= 	101, for 7(11) composed of 7(5) and 7(6). 

f(2, 12) = min [ f(1, 6) + V(6)1 

q'= 6 

• min [ (49+49) 1 

• 98, for 7(12) composed of 7(6) and 7(6). 
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Since iteration 3 to compute f(3, q) is the last iteration for the present example (since M 

= 3 and 0 = 15), we do not need to compute f(3, q) for all q, but need only compute f(3, 

15) since this is the only value required. Therefore, 

f(3, 15) = 3 	< 6  [ 42, 15 - 	+ V(qi) ] 

min [ f(2, 12)4-V(3), f(2, 11)+V(4), f(2, 10)+17(5), f(2, 9)+17(6) ] 

	

(it=  3 	ce= 4 	ce=  5 
	q'= 6 

min [ (98+30), (101+49), (98+52), (79+49) ] 

= 128, with the minimum obtained for 7415) composed of 746), 746) and 7r(3). 

Note that, in general, since V(q) represents the value of a route (not necessarily simple) 

with load q on it, the function f(M, Q), in general, represents a combination of M such 

routes (with total load 0, as required). 

In the present example, the lower bound (LBO of 128 is produced by two terms in 

square brackets above, indicating there are two alternative combinations of pairs of routes 

whose total values are 128. 

The routes corresponding to f(3, 15) can be derived by backtracking (see below) through 

7r(q) of Table 4.2 and 4.1b giving the values of the predecessor indices 7(q', x). 

Route 1:x1 -x8 -x3 - x1  

„. X3  

X3 	x8 	7(6, x3) 

x8 	17(3, x8) 

Route 2 : This is the same as route 1. 

Route 3 : x1  - x8  - x1  

z  X8  

x8 	 7(3, x8) 



0 X2  

x6  
0 

 
X5  

0  

X7  0  
load 3 

X8  

route with load 6 (repeated twice) 

0 X9 

X4 0 

Chapter 4 	 114 

For the present example, the corresponding triple of routes are as shown in Fig. 4.4. 

The route with load 6 is repeated twice 6. 

Figure 4.4 Three routes of value LB1=128 (= 49+49+30). 

(B) Indirect bound (LB2) 

In the former section we computed a direct lower bound (LB1) for the VRP solution 

value. In this example we compute the indirect bound (LB2) as given by expression (25). 

In Section 4.4, a procedure is given for computing the cost(distance) f l(xi) of the q-path 

starting at x1, finishing at xi  with total load q(I) and with no loops. 

These q-paths are then used to compute through q-routes of value 1,b/(xi). Clearly, 

imposing the restriction that the q-paths contain no loops improves the quality of the 

bound finally obtained, but at some additional computational cost. 

In the example of the TSP, for the same data (but with the aim of computing a TSP 

bound on that occasion) we have already computed the cost of all q-paths starting from 

vertex x1  (see Table 3.2a of Chapter 3), without the 'no-loops' restriction. Howerever, we 

need the values only for q = 6, since the capacity of vehicle, Q = 6 in this example (see 

Table 4.1a). Thus, we can compute the indirect bound LB2 for the VRP as given by the 

expression (25), by again ignoring the 'no-loops' improvement and making use of the table 
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for f(q, x) already computed. Clearly, we will obtain a bound worse than what we could 

have obtained had we recomputed f(q, xi) with the 'no-loops' restriction, but in this way 

we will also be able to compare this indirect bound with the direct bound obtained for the 

same VRP in the previous part. 

For the VRP in this example we have : 

W ={1, 2, 3, 4, 5, 6 }, w = 6. 

(i.e. every load value from 1 unit to 6 units can be achieved as the load on a route). 

q(/) = [ 1, 2, 3, 4, 5, 6 ]. 

(i.e. load level 3 implies a load of 3 units). 

7(q) = [ 1, 2, 3, 4, 5, 6 ]. 

(i.e. a load of 3 units on the route corresponds to load level 3, etc.) 

Thus, the load level and the actual load (in units) correspond to the same number for 

this example. i.e. 1 = r(q) = q(I). 

In order to compute the matrix [bil] with iiii(xi).qi/q(/), we must first compute 0/(xi) ; 

the minimum cost of a through-route passing through xi  and with total load level 1. The 

expression for 01(xi) is given in Section 4.4 for the general case (no-loops). When the 'no-

loops' restriction is ignored, only the first expression (7a) applies, and hence, for the 

present example, (where 1= r(q) = q), this term can be rewritten as : 

ikg(xi) = 	min 	[ f(q', xi) + f(q+qi-q', xi) ]. 
cii<ci'<l(q+qi) 

(71a) 

Thus, from Table 4.1a and the expression (7'a), we compute Oci(xi) as : 

For x2 	: 52(x2) = min [ f(2, x2) + f(2, x2) ] 

q'= 2 

= 28+28 = 56 

03(x2) = min [ f(2, x2) + f(3, x2) ] = 28+42 = 70 

q'= 2 
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04(x2) = min [ f(2, x2) + f(4, x2), f(3, x2) + f(3, x2) ] 

q'= 2 	 q t.= 3  

• min [(28+38), (42+42)] = 66 

05(x2) = min [ f(2, x2) + f(5, x2), f(3, x2) + f(4, x2 ) ] 

q`= 2 	 q l= 3  

• min [(28+53), (42+38)] = 80 

1'6(x2) = min [f(2,x2)+f(6,x2), 43,x2 )+45,x2), f(4,x2)+f(4,x2)] 

q'= 2 	q t.=  3 	q'= 4 

• min [(28+62), (42+53), (38+38)] = 76 

For x 3  

 

06(3(3) 

For x4 	01(x4) 

02(x4) 

03 (X4) 

TP4(x4)  

• min [ f(3, x3) + f(3, x3) ] = 21+21 = 42 

• min [ f(3, x3) + f(4, x3 ) ] = 21+40 = 61 

• min [ f(3, x3) + f(5, x3), f(4, x3 ) + f(4, x3 ) ] 

• min [ (21+48), (40+40) ] = 69 

• min [ f(3, x3) + f(6, x3), f(4, x3 ) + f(5, x3) ] 

• min [ (21+28), (40+48) ] = 49 

• min [ f(1, x4 ) + f(1, x4 ) ] = 14+14 = 28 

= min [ f(1, x4) + f(2, x4) ] = 14+32 = 46 

• min [ f(1, x4 ) + f(3, x4 ), f(2, x4 ) + f(2, x4 ) ] 

• min [ (14+44), (32+32) ] = 58 

• min [ f(1, x4) + f(4, x4 ), f(2, x4 ) + f(3, x4 ) ] 

min [ (14+40), (32+44) ] = 54 

b5(x4) min [ f(1, x4)+45, x4), f(2, x4 )+44, x4 ), f(3, x4 )-Ff(3, x4 ) ] 

min [ (14+52), (32+40), (44+44) ] = 66 

06(x4) min [ f(1, x4 )+46, x4 ), f(2, x4 )+f(5, x4 ), f(3, x4 )+f(4, x4 ) ] 
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= min [ (14+56), (32+52), (44+40) ] = 70, 

etc. for x5, ... , x9. 

The whole table is shown in Table 4.3a below. 

Table 4.3a Oci(xi ) 

i= q= 1 2 3 4 5 6 

x2 - 56 70 66 80 76 

x3 - - 42 61 69 49 

x4 28 46 58 54 66 70 

x5  34 46 58 54 66 76 

x6 - 36 56 66 52 61 

x7  44 70 56 49 68 61 

x8  - 30 49 52 49 

x9  60 61 62 69 70 

The matrix [big] is then computed as shown in Table 4.3b. 

Table 4.3b [ big] 

1= q= 1 2 3 4 5 6 

x2 - 56.00 46.67 33.00 32.00 25.33 

x3  - 42.00 45.75 41.40 24.50 

x4  28.00 23.00 19.33 13.50 13.20 11.67 

x5  34.00 23.00 19.33 13.50 13.20 12.67 

x6 - 36.00 37.33 33.00 20.80 20.33 

x7  44.00 35.00 18.67 12.25 13.60 10.17 

x8  - - 30.00 36.75 31.20 24.50 

x9  - 60.00 40.67 31.00 27.60 23.33 
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The minimum value of biq for each row x• is shown underlined, and hence the indirect 

bound LB2 is computed from equation (25) to be : 

9 
LB2 = 	min 	[ b. 

i =1  q= 1, ,6 

= 25.33 + 24.5 + 11.67 + 12.67 + 20.33 + 10.17 + 24.5 + 23.33 

= 152.5 

(Note) In this example, the indirect bound LB2 is better than the direct bound derived 

in the previous section. 

The graph of this solution from backtracking is as shown in Fig. 4.5, and the routes 

picked for each customer are as follows : 

Route for 06(x2) : x1- x6- x2- x6- xl. 	Route for 06(x3) : x1- x3- x7- x6- xl. 

Route for 06(x4) : x1- x4- x3- x6- xl. 	Route for '6(x5) : x1- x4- x5- x4- x3- xl. 

Route for 06(x6) : x1- x6- x7- x3- xl. 	Route for '6(x7) : x1- x6- x7- x3- 

Route for 1,b6(x8) : x1- x8- x3- xl. 	Route for 06(x9) : x1- x4- x9- x3- xl. 

a  

Figure 4.5 The graph of solution value LB2=152.5 
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4.6.2 	The bounds with the " no - loops " restrictions 

We will refer to the previous example. Since we are here considering the case with 

no loops, we need 0(W, x), 7(q', x), cgqi, x) and ir(q', x) just for q = 6 from Tables 3.4a, 

b, c, d in Chapter 3 which has been already computed, and hence we will consider those as 

Tables 4.4a, b, c, d as follows : 

Table 4.4a 0(cf, x)  

x\q 1 2 3 4 5 6 

x2 00 28 42 38 53 62 

x3  co Co 21 40 48 28 

x4  14 32 47 40 52 56 

x5  17 29 47 37 55 59 

x6  oo 18 38 48 34 43 

x7  22 48 34 27 51 49 

x8  co oo 15 34 37 34 

x9  oo 30 31 49 39 57 

Table 4.4b 7(c', x) 

x\q 1 2 3 4 5 6 

x2 - x1 x5 x6 X8  X5,7  

X3  - - X1  X4  X6,9  X8  

x4  Xi x5  x9  x8  x5  x9  

X5  Xi  X4  X6  x8  x4  x8  

X6  - X1  x7 x2 X8  X7  

X7 X1  X4  X6  X8  X8  X8  

X8  - - X1  X7 X6  X3  

X9  - X1  X4  X4  X3  X3  

Table 4.4c qS(q1 , x)  

x\q 1 2 3 4 5 6 

x2  oo 28 50 54 58 72 

x3  00 co 21 42 58 49 

x4  14 56 49 47 59 62 

x5  17 61 53 58 56 63 

x6  oo 18 45 58 51 53 

x7  22 56 62 41 60 50 

x8  00 00 15 39 51 46 

x9  co 30 52 63 43 58 

Table 4.4d ir(q', x) 

x\q 1 2 3 4 5 6 

X2 - X1  X4 X5 X6 X8  

X3  - - X1  X7  X4  X9  

x4  X1  x7  x6  X3  x8  x8  

X5  X1  X7  X2  X3  X8  X6  

X6  - X1  X4  X5  X3  x8  

X7  X1  X5  X9  X3  x3  x6  

x8  - - X1  X4,5  X5  X7  

X9  - X1  X5  X6  X8  X3 
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(A) Direct bound 1 (LB1) 

The initialization is given by f(1, q) = V(q), and hence we will start by first 

computing V(.) from the expression (26b) using Table 4.5a. 

v(1) = min [0(1,x4 )+c(x4 ,x1), 0(1,x6 )+c(x5,x1), 

= min [(14+14), (17+17), (22+22)] 

= 28, with the minimum obtained for 7(1) 

V(2) = min [0(2,x2)+c(x2,x1), 0(2,x4 )+c(x4 ,x1), 

0(2,x7)+c(x7,x1), 0(2,x9 )+c(x9,x1)] 

= min [(28+28), (32+14), (29+17), (18+18) 

= 36, for 7(2) = x6. 

V(3) = min [0(3,x2)+c(x2,x1), 9(3,x3 )+c(x3,x1), 

0(3,x6 )+c(x6,x1), 0(3,x7 )+c(x7 ,x1), 

= min [(42+28), (21+21), (44+14), (47+17) 

= 30, for 7(3) = x8. 

V(4) = min [0(4,x2)+c(x2,x1), 0(4,x3 )+c(x3,x1), 

0(4,x6 )+c(x6 ,x1), 0(4,x7 )+c(x7,x1), 

= min [(38+28), (40+21), (40+14), (37+17) 

= 49, for 7(4) = x7  or x8. 

V(5) = min [8(5,x2)+c(x2,x1), 0(5,x3 )+c(x3,x1), 

0(5,x6 )+c(x6 ,x1), 0(5,x7 )+c(x7,x1), 

= min [(53+28), (48+21), (52+14), (55+17) 

= 52, for 7(5) = x6  or x8. 

V(6) = min [0(6,x2)+c(x2,x1), 19(6,x3)+c(x3,x1), 

0(6,x6 )+c(x6 ,x1), 0(6,x7)+c(x7,x1), 

= min [(62+28), (28+21), (56+14), (59+17) 

= 49, for 7(6) = x3  or x8. 

0(1,x7 )+c(x7 ,x1)] 

= x4. 

0(2,x5)+c(x5,x1), 0(2,x6 )+c(x6 ,x1), 

, (48+22), (30+30)] 

0(3,x4)+c(x4,x1), 0(3,x5)+c(x5,x1), 

0(3,x8 )+c(x8,x1), 0(3,x9 )+c(x9, x1)] 

, (38+18), (34+22), (15+15), (31+30)] 

0(4,x4)+c(x4 ,x1), 0(4,x6 )+c(x5,x1), 

0(4,x8 )+c(x8,x1), 0(4,x9 )+c(x9, x1)] 

, (48+18), (27+22), (34+15), (49+30)] 

0(5,x4)+c(x4 ,x1), 0(5,x5 )±c(x5,x1), 

0(5,x8)+c(x8,x1), 0(5,x9 )+c(x9, x1)] 

, (34+18), (46+22), (37+15), (39+30)] 

0(6,x4 )+c(x4 ,x1), 0(6,x6 )+c(x6 ,x1), 

0(6,x8 )+c(x8,x1), 0(6,x9 )+c(x9, x1)] 

, (43+18), (49+22), (34+15), (57+30)] 
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The functions V(.) and 7r(.) are summarized in Table 4.5. 

Table 4.5 V(q) and r(q) 

q 1 2 3 4 5 6 

V(q) 28 36 30 49 52 49 

ir(q) X4  X6  X8  X7,8  X6,8  X3,8  

We will now use the recursion (26a) to compute f(2, q). In case of computing 1(2, q), 

we need to compute only for 9 < q < 12. Thus, 

f(2, 9) = 	min [ 1(1, 6) + V(3), f(1, 5) + V(4), f(1, 4) + V(5), f(1, 3) + V(6) ] 
,̀...••,...r, 	 Se .......0 	 '...mm..,..m.0 	 ,......" 
q f = 3  

	

q'= 4 	q'=5 	q'=6 

= min [ (49+30), (52+49), (49+52), (30+49) ] 

= 79, with the minimum obtained for 7r(9) composed of 7r(3) and r(6). 

1(2, 10) = min [ f(1, 6) + V(4), f(1, 5) + V(5), 1(1, 4) + V(6) ] 

	

%-...-' 	.....,-.• 	•-.....„--• 

	

q'= 4 	q'=5 	q'=6 

= min [ (49+49), (52+52), (49+49) 1 

= 98, for 7r(10) composed of 7r(4) and 7(6). 

f(2, 11) = min [ f(1, 6) + V(5), f(1, 5) + V(6) ] 

	

%,.., 	•••.,.,.,,J 

	

ql = 5 	q'=6 

= min [ (52+49), (49+52) 1 

= 	101, for r(11) composed of ir(5) and ir(6). 

f(2, 12) = min [ f(1, 6) + V(6) ] 
%.,.,...• 

q'= 6 

= min [ (49+49)] 

= 	98, for 11(12) composed of 7r(6) and ir(6). 
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Since iteration 3 to compute f(3, q) is the last iteration for the present example (since M 

= 3 and Q = 15), we do not need to compute f(3, q) for all q, but need only compute f(3, 

15) since this is the only value required. Therefore, 

f(3, 15) = 3 min < 6 [ f(2, 15 - q') + V(q1) ] 
< ci`  

min [ 	12)+V(3), f(2, 11)+V(4), f(2, 10)+V(5), f(2, 9)+V(6) 

qr. 3  q'= 4 	q'= 5 	cif=  6  

= min [ (98+30), (101+49), (98+52), (79+49) ] 

= 128, with the minimum obtained for 7(15) composed of 7(3), 7(6) and 7(6). 

As we can see the results of computation of f(m, q) above, if the initial values have not 

changed, the direct bound is not changed. Therefore, we do not need to proceed further, 

and the direct lower bound (LB1) for this example is 128 which is the same as the previous 

one with loops. (Note that even without loops being explicitely excluded, no loops were 

formed in this particular numerical example.) 

(B) Indirect bound (LB2) 

The procedures of computation for this case are almost the same to the previous one 

ignoring the condition with no loops. Now we will compute the indirect bound (LB2) 

considering the 'no-loops' restriction. Then, we can compare this bound with the former 

one with loops. 

First, we will compute Oq(xi) from the Tables 4.4a and 4.4c using expressions (71a) and 

(7'b) which are rewritten expressions (7a) and (7b), where 1= r(q)= q. 

7/)q(xi) = min 	[ f(q', xi) + f(q+qi-q', xi) ], 
qi<cii<(q+cli)  

if p(q', xi) 0 p(q+qi-q', xi), 

Or 

(7'a) 
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ikci(xi) = 	min 	fl min [f(q', 	xi), 
q.<ce<(q-i-nr) -  2 

if p(q',  xi) = f(q±qi-q', xi). 

For x : 02(x2) = min [ min [42, x2) + 0(24 x2)4 0(24 x2) + f(2, x2)] 

q'=2 	ice= 2 

min [ (28+co), (oo+28) 	= oo 

03(x2) = min [ f(2, x2) 	f(3, x2) ] = 28+42 = 70 

q'= 2 

04(x2) = min [ 42,x2)+44,x2), min [f(3,x2)+0(3,x2), 0(37x2)+43,x2)] 

q'=2 	q'= 3 	qf = 3  

• min [(28+38), min[(42+50), (50+42)]] = 66 

'5(x2) = min [ f(2, x2) 	f(5, x2), f(3, x2) + f(4, x2) ] 

q'= 2 	qf=  3  

• min [(28+53), (42+38)] = 80 

06(x2) = min [ f(2,x2) + 46,x2), f(3,x2) + f(5,x2), 

q'=2 	q'=3 

min [44,x2) + ck(4,x2), 0(4,x2) + f(4,x2)] 

ce= 4 	4:e= 4 

• min [(28+62), (42+53), (38+54)] = 90 

For x3  :x 3( 3) = min [ f(3, x3) + 0(3, x3), 0(3, x3) + f(3, x3).] = oo 

04(x3) = min [ f(3, x3) + f(4, x3) = 21+40 = 61 

05(x3) = min [ f(3, x3) + f(5, x3), 

min [ f(4, x3) + 0(4, x3), 1(4, x3) + f(4, x3)1] 

• min [ (21+48), min[ (40+42), (42+40)11 = 69 

b6(x3) = min [ f(3, x3) + f(6, x3), f(4, x3) + 1(5, x3) ] 

0(ce, xi)-1-1(q+qi-ce, xi)] 3, } 
	

(7'b) 
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= min [ (21+28), (40+48) ] = 49 

For x4  : 01(x4) = min [ min[f(1, x4) + 0(1, x4), 	0(1, x4) + 41, x4)] = co 

02(x4) = min [ f(1, x4) + f(2, x4)] = 14+32 = 46 

03(x4) = min [ 1(1, x4) + f(3, x4), 

min [ f(2, x4) + 0(2, x4), 0(2, x4) + f(2, x4) 1] 

min [ (14+47), (32+56) ] = 61 

04(x4) = min [ f(1, x4) + f(4, x4), f(2, x4) + f(3, x4) ] 

min [ (14+40), (32+44) ] = 54 

05(x4) = min [ 1(1, x4) + 45, x4), f(2,  x4) + f(4, x4), 

min [ f(3, x4) + 0(3, x4), 0(3, x4) + f(3, x4) 

min [ (14+52), (32+40), (47+49) ] = 66 

li)6(x4) = min [ f(1, x4) + f(6, x4), min [1(2, x4) + 0(5, x4), 0(2, x4) 

+ f(5, x4) ], f(3, x4) 	44, x4) 

min [ (14+56), min[(32+59), (56+52)1, (47+40) ] = 70, 

etc. for x5,  

The whole table is shown in Table 4.6a below. 

Table 4.6a Oci(Xi) 

/= q= 1 2 3 4 5 6 

x2 - - 70 66 80 90 

x3  - - - 61 69 49 

x4 - 46 61 54 66 70 

x5  - 46 64 54 66 76 

x6 - - 56 66 52 61 

x7 - 70 56 49 73 61 

x8  - - - 49 52 49 

x9  - - 61 79 69 70 
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The table for the matrix [big] is then computed as shown in Table 4.6b. 

Table 4.6b [ big] 

/. q= 1 2 3 4 5 6 

x2- - 46.67 33.00 32.00 30.00 

x3 -- - 45.75 41.40 24.50 

x4 - 23.00 20.33 13.50 13.20 11.67 

x5  - 23.00 21.33 13.50 13.20 12.67 

x6 -- 37.33 33.00 20.80 20.33 

x7 - 35.00 18.67 12.25 14.60 10.17 

x8  -- - 36.75 31.20 24.50 

x9  - - 40.67 39.50 27.60 23.33 

The minimum value ofbi  .q 	 i for each row x is shown underlined, and hence the indirect 

lower bound LB2 is computed from equation (25) to be : 

9 
LB2 = E 	min 	[ 13. ] 

i=1 c1=1,-,6 	lq 

= 30.0 + 24.5 + 11.67 + 12.67 + 20.33 + 10.17 + 24.5 + 23.33 

= 157.17 

(Note) In this example, the indirect bound LB2 is improved compared with the former 

one obtained in the previous section. 

The graph of this solution from backtracking is as shown in Fig. 4.6, and the routes 

picked for each customer are as follows : 
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Route for 1,b6(x2) : x1- x2- x7- x8- xl. 

Route for 06(x4) : x1- x4- x9- x3- xl. 

Route for 06(x6) : x1- x6- x7- x8- xl. 

Route for 06(x8) : x1- x8- x3- xl. 

Route for 06(x3) : x1- x3- x8- xl. 

Route for t16(x5) : x1- x5- x8-

Route for ?/)6(x7) : x1- x6- x7- x8- xl. 

Route for 06(x9) : x1- x4- x9- 

'rxxse xxxxxxxxxxxx 

Figure 4.6 The graph of solution value LB2=157.2 

4.6.3 	The bounds from the algorithm with penalty procedures 

(A) Direct bound (LB1) with no loops 

The solution corresponding to the value of the direct bound (LB1) can be obtained by 

backtracking using the results of recursions in the previous sections as mentioned. This 

solution represents a graph such as the one in Fig. 4.2, which shows three q-routes. 

Therefore, placing penalties Ai  (i = 2, ... , n) on the vertices xi  (for di  0 2) for the 

solution of the direct bound, we can obtain the new cost matrix [c'ij], and then obtain a 

updated lower bound by a allowed number of iterations repeatedly. The computational 

steps are as follows : 

Step 0 : (Initialization). ZL*= 0. 
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ZU*  = 210 (the best solution for the VRP to this example so far). 

a= 2.0 and KOUNT = 0. 

Step 1 : (Initialization). 

Ai  = 0 and di  = 0, i = 1, 	, 9. 

Step 2 : (Calculation of lower bound). 

LB1= 128.0 (the direct lower bound derived from state-space relaxation). 

ZL = LB1 - 2EAi  = 128.0 - 0 = 128.0 

Since ZL*< ZL, ZL*= ZL = 128.0, 

KOUNT = 1, and go to step 3a. 

Step 3a: (Backtracking). 

The q-routes for the value corresponding to the lower bound, 128.0 are as : 

Route 1:x 	x3  x 	x1  

Route 	

- 	- 8 - 1 

Route 2 :x 	x3  x8  x1  

Route 	

- - - 1 

Route 3 : x1  - x8  - x1  (refer to Fig. 4.4 for this graph). 

di  = ( 6, 0, 4, 0, 0, 0, 0, 6, 0 ) for i = 1, 	, 9. 

Since d. 	2, go to step 4. 

Step 4 : (Penalties). Let's compute Ai  as follows : 

ZU*  — ZL = 210.0 - 128.0 = 82.0 

(di  - 2)2  = (0 - 2)2  + (4 - 2)2  + (0 - 2)2  + (0 - 2)2  -I- (0 - 2)2  + (0 - 2)2  
j=2 

+ (6 - 2)2  + (0 - 2)2  

= 44 

a2 = 0 + 2.0 

a3= 0 + 2.0 

a4 = 0 + 2.0 

As = 0 + 2.0 

a6 = 0 + 2.0 

A7= 0 + 2.0  

(0-2) 

(4-2) 

(0 2) 

(0 2) 

(0 2) 

(0 2)  

2 
	

164 
3 
	

33 
3 
	

82 
3 
	

11 
1 	82 
3 • 33 
1 	82 
3 	33 
2 • 164 
3 	33 
1 	82  
3 • 33 

82 
44 
82 
44 
82 
44 
82 
44 
82 
44 
82 
44 
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82  Ag  = 0 + 2.0 • 	 (6-2) 44 	 1
164

1 

A9  = 0 + 2.0 •  VI 	(0 2) 	2 	164 
33 

(Note that E q.
1 
 = E q. and E 	= E A.). 

icR(o) jOR(o) iER(o) jOR(o) 

Step 5 : (Updating the cost matrix). Calculate a updated cost matrix [c'u]. 

Since c'u  = cu  + ai  + Ai, the results of modifying are as follows : 

C`12 = ci2 + Ai + A2  = 28.0 + 0 	13634 	 = 23.03 

c'13  = ci3  + 	+ A3  = 21.0 + 0 + 81   =28.45 

c'98  = c98  + A9  + As  = 28.0 	13634  + 	11 	37.94  

The updated cost matrix [c'ii] is then as follows : 

Table 4.7 New cost(distance) matrix [c'..] 

xi  \xi  1 2 3 4 5 6 7 8 9 

1 - 23.03 28.45 11.52 14.52 13.03 19.52 29.91 25.03 

2 23.03 - 49.48 28.55 17.55 10.06 27.55 47.94 40.06 

3 28.45 49.48 - 30.97 41.97 32.48 24.97 35.36 20.48 

4 11.52 28.55 30.97 - 10.03 23.55 29.03 37.42 9.55 

5 14.52 17.55 41.97 10.03 - 21.55 34.03 34.42 27.55 

6 13.03 10.06 32.48 23.55 21.55 - 8.55 28.94 35.06 

7 19.52 27.55 24.97 29.03 34.03 8.55 - 24.42 24.55 

8 29.91 47.94 35.36 37.42 34.42 28.94 24.42 - 37.94 

9 25.03 40.06 20.48 9.55 27.55 35.06 24.55 37.94 - 
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Step 6 : (Computation of 0, y, 0 and ar from the relaxed recursion). 

The results of computation for 0(qt, x), 7(q', x), 0(q', x) and 7r(q', x) with 

the new cost matrix are shown in Tables 4.8a,b,c and d. Then, goto step 1. 

Table 4.8a 0(cf, x) 

x\q 1 2 3 4 5 6 

x2  00 23.0 32.1 23.1 38.1 53.2 

x3  oo 00 28.5 42.5 45.5 41.6 

x4  11.5 24.6 34.6 44.6 51.6 50.7 

x5  14.5 21.6 34.6 44.6 40.6 55.7 

x6  oo 13.0 28.1 33.1 42.1 49.2 

x7  19.5 40.6 21.6 43.6 41.6 50.7 

x8  00 co 29.9 43.9 42.0 46.0 

x9  co 25.0 21.1 34.1 46.1 54.2 

Table 4.8c 0(q', x)  

x\q 1 2 3 4 5 6 

x2  co 00 40.1 39.1 49.1 62.2 

x3  oo oo 00 44.5 55.5 46.6 

x4  co 48.6 36.6 50.6 56.6 58.5 

x5  oo 53.6 40.6 48.6 54.6 61.7 

x6  oo 00 35.1 43.1 56.1 54.2 

x7  00 48.6 49.6 45.6 50.6 65.7 

x8  00 00 00 48.9 56.0 57.0 

x9  co co 42.1 48.1 48.9 63.2 

Table 4.8b 7(q', x) 

x\q 1 2 3 4 5 6 

x2 - x1 x5 x6  x6  x6  

x3  - - x1  x4  x6,9  x9  

x4  x1  x5  x9  x5  x2  x5  

x5  xi x4  x6  x4  x2  x2  

x6  - x1 x7 x2  x2  x2  

x7  X1  x4  x6  x6  x6  x6  

x8  - - x1  x7  x6  x7  

x9 - xl x4 x4 x4,7 x4 

Table 4.8d 7r(ce, x) 

x\q 1 2 3 4 5 6 

x2  - x1  x4  x5  x7  x5  

x3  - - X1  X7  x4  x7  

x4  x1  x7  x6  x7  x6  x9  

X5  X1  x7  x2  x9  x6  x4  

x6  - xi  x4  x5  x9  x7  

x7  x1  x5  x9  x9  x2  x2  

x8  - - x1 x4 x5  x6 

x9 - x1  x5 x6 x3 x3 

In this stage (KOUNT= 1), we obtain the updated lower bound, i.e. LB1 = 163.45 
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Therefore, 

ZL = LB1 - 2EAi  

= 163.45 

In step 2, since ZL*  < ZL, ZL*= 163.45 

At the end of the 30th iteration we obtain ZL*= 198.73 Because di  for this value are 

not 2, the solution to this example corresponding to this lower bound is infeasible. 

Therefore, we can consider this lower bound as the best lower bound so far. We show the 

graph of the bound ascent for this example in Fig. 4.7. 
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Figure 4.7 The direct bound ascents for the example (9 customers Si 3 vehicles VRP). 

(B) Indirect bound (LB2) with no loops 

The solution corresponding to the value of the indirect bound (LB2) can be obtained 

by backtracking using the results of recursions in the previous sections as mentioned. This 
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solution represents a graph such as the one in Fig. 4.3, which shows eight q-routes (one per 

customer). Therefore, placing penalties Ai  (i = 2, ... , n) on the vertices xk  (for dk  0 2) 

for the solution of the indirect bound, we can obtain the new cost matrix [c'..], and then 

obtain a updated lower bound by a allowed number of iterations repeatedly. The 

computational steps are as follows : 

Step 0 : (Initialization). 

ZL*= 0. 

ZU*  = 210.0 (the best solution for the VRP to this example so far). 

a= 2.0 and KOUNT = 0. 

Step 1 : (Initialization). 

O• = and di  = 0, i = 1, 	, 9. 

Step 2 : (Calculation of lower bound). 

LB3 = 157.17 (the indirect lower bound derived from state-space relaxation). 

ZL = LB3 - 2EAi  = 157.17 - 0 = 157.17 

Since ZL*< ZL, ZL*= ZL = 157.17, 

KOUNT = 1, and go to step 3b. 

Step 3a : (Backtracking). 

The q-routes Gi  corresponding to tpqi(xi) is obtained by backtracking b6(x2), 

6(x3), ?P6(x4), 06(x5), 06(x6), 06(x7), &6(x8)  and 1b6(x9) respectively, 

and the results as follows : 

Route for TP6(x2) : x1  - x2  - x5  - x8  - x1  

Route for 06(x3) : x1  - x3  - x8  - x1 
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Route for 

Route for 

Route for 

Route for 

Route for 

Route for 

06(x4) 

06(x5) 

06( (6) : 

06()(7) 

06(3(8) 

06( (9) 

Compute dk  for each vertex as follows : 

= 2, E6j3  = 8, E6i4  = 4, ESL = 4, Ebi6 = 6, E4 = 4, Ebie = 12, 

and Et5l4 = 4. Then we can compute dk  from the expression (26). 

d2  
9 

= i =2 
512• qi/q(/i ) E  

= 	63 	(12/c1(12) 
3 	 9 + 62' (13/c1(13) 	+ 62' (10(19) 

= 2 * 2/6 -F 0 * 3/6 + + 0 * 2/6  

= 4/6 = 0.67 

d3 = 61' clilq(;) 
i=2 

= 2 * 3/6 + 2 * 1/6 + 2 * 3/6 + 2 * 2/6 

= 18/6 = 3. 

d4  = 2 * 1/6 + 2 * 2/6 = 6/6 	= 	1. 

d5  = 2 * 2/6 + 2 * 1/6 = 6/6 	= 	1. 

d6  = 2 * 1/6 + 2 * 2/6 + 2 * 1/6 = 8/6 = 	1.33 

d7  = 2 * 2/6 + 2 * 1/6 = 6/6 = 	1. 

d8  = 2 * 2/6 + 2 * 3/6 + 2 * 1/6 + 2 * 2/6 + 2 * 1/6 + 2 * 3/6 

= 24/6 = 4. 

d9  = 2 * 1/6 + 2 * 2/6 = 6/6 = 	1. 

And hence ; 

[di ] = ( 0, 0.67, 3, 1, 1, 1.33, 1, 4, 1 ). 

Since di  # 2 for several i, go to step 4. 
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Step 4 : (Penalties). 

Let's compute Ai  as follows : 

ZU*  - ZL = 210.0 

E  (cij  - 2)2 = 
j=2 

A2  = 0 + 2.0 

A3  = 0 + 2.0 

A4= 0 + 2.0 • 

A5= 0 + 2.0 

A6  = 0 + 2.0 

A7  = 0 + 2.0 

A8  = 0 + 2.0 

A9  = 0 + 2.0 • 

- 157.17 

(0.67 _ 2)2 

_i_ (1  _ 2)2 

52.83 

= 52.83 

+ (3 _ 2)2 

_E  (4  _ 2)2 

(0.67 - 2) 

+ (1  

_F (1  

2 • 

_ 

_ 

2)2 _F (1  _ 2)2 + (1.33  _ 2)2 

2)2 	±. 	11.22 

= - 8.37 

9.42 

-3.14 

- 3.14 

= - 4.18 

- 3.14 

18. 

- 6.28 

11.22 
52.83 

3 

= 

= 

= 

11.22 
52.83 

2) (3. - 

11.22 
52.83 

2) (1. - 	• 13-  

11.22  
52.83 

(1.-2) 

(1.33 - 2) 

13  

• 2 
11.22  
52.83 

3 

= 

= 

= 

11.22  
52.83 

2) (1. - 

11.22 
52.83 

2) (4. - 

11.22 2) (1. - 

Step 5 : (Udating the cost matrix). Calculate a updated cost matrix [clii ]. 

Since c'ij 	ij = c +1 	j  A• + A•'  the results of modifying are as follows : 

Cr12 = C12 + A i  + A2  = 28.0 + 0 - 8.37 ±- 19.63 

c'13  = ci3  + Al  + A3  = 21.0 -F 0 +9.42 ± 30.42 

c'98  = C98  + A9  + A8  = 28.0 - 6.28 + 18. =40.55 

We can obtain the new cost matrix as following the above ways. 

Step 6 : (Computation of f, p, 0 and 7r from the relaxed recursion). 

The results of computation for f(q', x), p(q', x), 0(q', x) and 7r(cf, x) with 

the new cost matrix above are shown in below Tables. Then, go to step 7. 
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Table 4.9a f(q1 , x) 

x \ q 1 2 3 4 5 6 

x2  00 19.6 27.4 21.3 35.0 48.7 

x3  00 00 30.4 43.1 44.9 39.6 

x4  10.9 22.6 31.3 41.8 45.8 43.5 

x5  13.9 19.6 33.1 40.0 34.8 48.5 

x6  00 13.8 27.5 27.1 34.8 40.5 

x7  18.9 38.6 22.5 41.0 35.8 43.5 

x8  oo 00 33.8 46.6 47.5 50.2 

x9  oo 23.7 18.5 30.2 45.1 49.4 

Table 4.9c 0(W, x)  

x\q 1 2 3 4 5 6 

x2  00 00 35.4 33.1 46.0 53.5 

x3  co 00 00 45.1 49.1 48.8 

x4  00 46.6 37.5 47.0 50.8 58.5 

x5  00 51.6 35.5 44.0 48.8 54.5 

x6  00 00 34.5 41.3 51.8 49.7 

x7  00 46.6 43.1 43.2 44.8 58.5 

x8  co 00 00 51.6 57.3 59.0 

x9  00 co 39.5 45.2 51.6 56.6 

Table 4.9b p(q', 

x\q 1 2 3 4 5 6 

x2  - xi  x5  x6  x6  x6  

x3  - - xi  x4  x9  x9  

x4  x1  x5  x9  x5  x2  X5  

x5  xi x4  x2  x4 x2  X2  

x6  - xi x7  x2  x2  x2  

X7  X1  X4  x6  X9 X6  X6  

x8  - - xi  x7  x6  x7  

x9  - x1  x4  x4  x4,7  x4  

Table 4.9d 7r(ql, 

x \ q 1 2 3 4 5 6 

x2  - x1 x4  X5  x7  x5  

x3  - - xi  x7  x6  x7 

x4  xi x7  x6  x9  x6  x6  

x5  xi x7  x6  x9  x6  X4 

x6  - x1 x4  x5  x7  x7  

x7  xi  x5  x2  X6  x2  x2  

x8  - - xi  x4  X5  X9 

x9  - X1  x5  X5  X3  X2  

Step 7 : (Computation of oq(xi ) and matrix [big)). With the updated values of f, p, 

0 and 7, and using expressions (7a) and (7b), compute Oci(xi ), the results are 

as in Table 4.10a. 
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Table 4.10a thi(xi ) 

1= q= 1 2 3 4 5 6 

x2 - - 46.98 40.89 48.61 54.00 

x3 - - - 73.55 75.28 70.00 

x4  - 33.45 42.17 52.71 56.61 54.34 

X5  - 33.45 46.98 52.71 48.61 54.34 

x6  - - 41.35 40.89 48.61 54.34 

x7  - 57.45 41.35 58.89 54.61 62.34 

X9  - - - 80.39 81.29 84.02 

x9  - - 42.17 53.89 63.00 70.00 

And then, using expression (27), compute big  as : 

b23 = 03(X2).(12/(1(3) 

= 46.98 * 2/3  = 31.32, and so on. 

The results for the matrix [big ] is then as shown in Table 4.10b. 

Then, go to step 1. 

Table 4.10b [ big] 

1= q= 1 2 3 4 5 6 

x2 - 31.32 20.45 19.45 18.00 

x3  -- - 55.17 45.17 35.00 

x4 - 16.72 14.06 13.18 11.32 9.06 

x5  - 16.72 15.66 13.18 9.72 9.06 

x6  - - 27.57 20.45 19.45 18.11 

x7  - 28.72 13.78 14.97 10.92 10.39 

x$  - - - 60.29 48.78 42.01 

x9  - - 28.11 26.95 25.20 23.33 
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At the first iteration (KOUNT= 1), we obtain a updated lower bound with the tables 

above as follows : 

LB2 = E min [ big  ] - 2 E Ai, for i=2, ... ,9 and q=1, ... ,6. 

= 164.96 

Therefore, ZL = 164.96 Since ZL*  < ZL, ZL*= 164.96 

At the end of 30 iterations we obtain ZL*= 195.3 Because d.1  for this bound are not 2, the 

solution to this example corresponding to this lower bound is infeasible. Therefore, ZL* is 

the best lower bound. We show the graph of the bound ascent for this example in Fig. 4.8. 

bound 	 199.0 
200 	  

190 	 LB2 : 195.34 

180 

170 

160 

150 

140 

130 

120 

110 

100 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

Figure 4.8 The indirect bound ascents for the example (9 customers & 3 vehicles VRP). 
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4.7 	Computational Results 

In this section, we will present the computational performance of the algorithm 

illustrated by the previous example. Ten test problems are used for the tests ranging from 

n = 9 to n = 50 customers (see Table 4.11 and Appendix A). All of these problems are 

randomly generated. 

The values of the lower bound LB1 and LB2 as a function of the number of penalty 

iterations in the bound ascent procedure are given in Fig. 4.9 and Fig. 4.10 for the 25 and 

50 customer problems respectively. From the figures and Table 4.11, we can easily see 

that the indirect lower bounds are better than the direct lower bounds, and that the lower 

bounds are much improved from the initial lower bounds during the ascent iterations. 
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Figure 4.9 The bound ascents for 25 customers & 4 vehicles VRP. 
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LB2 : 913.91 

LB1 : 847.54 
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Figure 4.10 The bound ascents for 50 customers & 5 vehicles VRP. 

In Table 4.11, we show the size of the test problems and the computational results for 

two kinds of bounds (LB1 and LB2). All values for the bounds are obtained at the 30th 

iteration. In case of small size problems, sometimes, the optimal solution value can be 

obtained without using the tree search to get the optimal solution. In this chapter, we 

only show the derivation of the lower bounds to embed into a tree search procedure to get 

the optimal solution for the VRP. In order to obtain the optimal solutions of these test 

problems, we will describe the tree search algorithm for solving the VRP in next chapter. 
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Table 4.11 Test problems & computational results for bounds : 
values & times (on IBM PS/2-70 386) 

Problem 
Number 
of 
vertices 

Total 
demand 

Number 
of 
vehicles 

Vehicle 
capacity 

Initial lower bounds 
LB1 LB2 

values time values time 

1 9 15 3 6 198.7 0 : 2 195.3 0 : 3 

2 10 28 3 10 294.6 0 : 4 295.0*  0 : 3 

3 15 56 3 20 350.4 0 : 22 357.4 0 : 28 

4 20 80 3 30 387.2 1 : 08 393.3 1 : 28 

5 25 97 4 30 462.2 1 : 50 470.7 2 : 13 

6 30 105 4 30 610.8 2 : 42 617.4 3 : 14 

7 35 108 4 30 637.2 3 : 50 651.5 4 : 28 

8 40 140 5 30 713.1 5 : 02 767.9 5 : 43 

9 45 141 5 30 782.8 6 : 23 849.2 7 : 13 

10 50 147 5 30 847.5 8 : 00 913.9 8 : 58 

* : The optimal solution value was obtained without embedding into the tree search algorithm. 
Time (00:00) means (minutes : seconds). 



CHAPTER 5 

A TREE SEARCH ALGORITHM FOR THE VRP 

	

5.1 	Introduction 

The tree search method or branch and bound method (Balas & Toth [19851) is 

based on the idea of intelligently enumerating all the feasible solutions of a combina-torial 

optimization problem. The qualification "intelligently" is important here because, while 

solving combinatorial problems, it is a hopeless task to look at all feasible solutions. 

The efficiency of all the tree search algorithms depends on two factors which are the 

quality of bounds and the branching strategies. In any tree search algorithm, the 

calculation of a bound on the value of the optimal solution to a subproblem corresponding 

to some nodes of the search tree is the most important factor affecting the efficiency of the 

algorithm. 

In this chapter, we will describe a basic branching strategy and tree search algorithms 

for the VRP using the lower bounds derived from Chapter 4, and give some computational 

results for VRP's of small to medium size. 

	

5.2 	A basic tree search algorithm and branching strategy for the VRP 
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5.2.1 	A basic depth-first tree search agorithm for the VRP 

The basis of any tree search algorithm is to divide the set of all possible tours 

into smaller and smaller subsets and to calculate for each subset a lower bound on the cost 

of the best tour therein. The object of calculating lower bounds is that firstly to be used as 

guidance for the partitioning of the subsets and secondly to limit the search and also to 

identify the optimal tour. In constructing such search trees it is necessary to consider a 

branching strategy. Fig. 5.1 shows a flow diagram of the basic depth-first tree search for 

the VRP using some branching strategy (see Section 5.2.2). 

The functions of the various boxes in Fig. 5.1 are explained further below. 

(1) Initialization : Read in the cost matrix C, number the node N from which 

branching will continue, number the level of tree L, set Zopt (the cost of the best route so 

far) = ZUB (a heuristic upper bound), and set Z(N) = LBN which is the lower bound at 

root node N (= 0). 

(2) Branching test : Check whether the set of customers x. (i=2, 	n) to choose for 

branching to next, is empty or not. If the unrouted customer set is empty, go to step 10 ; 

otherwise continue. 

(3) Branching : Choose a customer (x.) for branching to next according to the 

branching rule, and number the node N and the tree-depth level L. 

(4) Branch forward to node N and modify the cost matrix C accordingly. 

(5) Bound : Compute the lower bound of the node Z(N)= LBN. 

(6), (7), (8) and (9) If this solution corresponding to the bound is feasible and the cost 

is less than Zopt, record it and go to step 10 to backtrack. If the cost is greater than or 

equal to Zopt, go to step 10 to backtrack. If the cost is less than Zopt, go to step 2 in 

order to branch forward. 

(10) Backtrack (10a, 10b and 10c) : If the alternative to the current node N has not 

been examined, then go to examine that node. Set N= N+1, update the cost matrix 

accordingly and go to step 5. If the alternative to the current node has been examined, 



Zopt Z(N) 
record routes 

1. Initialization 
C 4-  original cost matrix 
N 	; L 	0 
Zopt 4— ZUB ; Z(N) 4— LBN 

2. Branching test 

YES 

3. Branching NO 

Choose x. to branch to. 
Number the new node N= N-F1 
and the new level L= L+1. 

Branch to node N 
Update C for xi  chosen in node N 

5. Bound 
Calculate new bound 
Z(N) LBN 

Is Z(N) 
feasible ? 

Z(N)<Zopt YES YES 

NO 
Z(N)>Zopt 

10. Backtrack 

Has the alternative 
node been examined 

YES 

L= L-1. Reset costs 

NO 

YES 

loa 
Number the alterna-
tive node N= N+1 
Backtrack to node N 
Update C 

NO 
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START 

Figure 5.1 Flow diagram of the basic 
tree search for the VRP. 	)END 



Chapter 5 	 143 

then set L= L-1. If L= 0, stop ; Else reset the costs accordingly (to their original values) 

and repeat step 10. 

5.2.2 	The branching strategy 

The branching strategy (i.e. deciding which customer to examine next) is based 

on arcs, i.e. an arc (x., x.j) is chosen for branching at a node of the search tree in order to 

extend a partially completed route (x1, xk , 	, xi), and the alternative branching is to 

reject arc (xi, x.j) as a possible extension of the partially completed route. 

In choosing the arc (xi, x.j) for branching, (which means that customer x. is used to 

extend the route just after xi ), the following simple branching rules were applied. 

(A) The starting of the first route 

In this case, the arc (x1j  , x.) chosen for branching may be the arc from the depot 

to the unrouted customer x. nearest the depot so far. (If there are more than one customer, 

choose the one with the biggest demand.) Such a customer has a good chance to be the 

first customer in this route. 

(B) The extension of a partially completed route 

If a partially completed route must be extended, the customer to be chosen for 

branching is the nearest customer to the route end, without violation of the vehicle 

capacity. By choosing this type of customer as the branching customer, we expect that the 

alternative branching (the rejection of the extension of the partially completed route with 

that customer) will result in a higher lower bound, and result in an early backtracking 

from the corresponding node. 

(C) The finishing of a partially completed route 

A partially completed route is "finished" when one branches on the arc (xi, x1). 

(D) The starting of a new route 

If the branchings so far have produced a set of completed routes, a new route 

must be started again. In this case, the customer chosen for branching is again the 
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customer not yet routed, and nearest from the depot without violating the vehicle capacity. 

If an arc (xi, xi) is chosen for branching at a node of the tree search in order to extend a 

partially completed route (x1, xk, 	, xi), the cost is changed as follows : 

cii  = ch= co for / = 2, ... , n and / 	i,j. 

For the alternative branching which is to reject arc (x., x.J) as a possible extension of the 

partially completed route, the cost is changed as follows : 

C.• = C.• = CO. 13 	J1 

5.2.3 	Fathoming 

A node of the search tree is "fathomed" when the following situation has arisen : 

(i) if a lower bound at a certain stage is greater than or equal to the current upper 

bound (the best solution so far), and backtracking can then occur, 

or (ii) if the solution corresponding to the lower bound at a subproblem, is a feasible 

solution, 

or (iii) if the bottom of the tree is reached and no unvisited customers remain. 

5.3 	Comments on the algorithm 

In order to increase the efficiency of the tree search algorithm above, we can 

consider the following : 

(i) Whenever a route is completed, we can reduce the problem size by removing all 

customers of the completed route from the original problem. Any subsequent computation 
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of the lower bound is then based on the reduced problem. 

(ii) Since the initial lower bounds derived from the algorithm in Chapter 4 are close to 

the optimal solution (normally within 4%), the quantity k*ZL (for k= 1.3 say) can be used 

as the initial upper bound. In this case, because the quality of the initial upper bound is 

closer to the optimal solution value than any heuristic upper bound, the number of node is 

reduced greatly. 

(iii) We can use the TSP algorithm for the last route in order to avoid to build the last 

partially completed route. We can also apply a TSP algorithm whenever a route is 

completed to determine whether the partial solution constructed so far is optimal or not. 

(iv) We can consider the gap between the lower bound and the upper bound at a certain 

node. For example, if we assume that the initial costs are integers, the feasible solution 

value should be integer. Therefore, if the value of a lower bound at a certain node is 

between the upper bound and the upper bound - 1 (i.e. 0 < Zopt-LB < 1), we can 

backtrack from this node. 

5.4 An example 

We will use the same example as in Section 4.6 of the previous chapter. We will 

show the computational procedures only for algorithm 2 and the resulting tree of the tree 

search algorithm for two versions. 

(A) Algorithm 1 (with bound LB1) 

Fig. 5.2 shows the resulting tree search of algorithm 1 without any details. The 

number inside a tree node indicates the customer picked for branching on that node. A 

number Tc indicates that customer k is rejected as a candidate customer to extend the route 

at the stage corresponding to that node. The number on the top of the left to a node is 

the computed bound LB1. 
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Figure 5.2 B & B tree for the example using the algorithm with bound LB1. 

(B) Algorithm 2 (with bound LB2) 

Step 1 : (Initialization). 

Set L= 0, N = 0, 

Zopt= 204.0 by using consideration (ii) in Sec. 5.3, i.e. ZL*1.04= 203.1—>204 

Z(0) = LB0= 195.34 (the best lower bound at the root node). 

Step 2 : (Check whether the set of possible customers to branch on is empty or not). 

Since the set of possible customers to branch on is not empty, go to step 3. 
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Step 3 : (Branching). 

Customer x4  is chosen to branch to node 1. 

Number N= N-1-1 = 0+1= 1 and L= L+1 = 0+1= 1. 

Then, go to step 4. 

Step 4 : (Branch to node N and update the cost matrix). 

Branch to node 1 and update the cost matrix for the partially completed 

route (x1- x4) so far. Then, go to step 5. 

Step 5 : (Calculate the lower bound). 

Z(1) = LB1= 195.34, then go to step 6 to 9. 

Step 6 to 9 : (Decide branching forward or backtracking). 

Since Z(1) does not correspond to a feasible solution and Z(1)<Zopt, go to 

step 2. 

Step 2 : Since the set of possible customers to branch on is not empty, go to step 3. 

Step 3 : Choose another customer to extend this partially completed route (x1, x4) so 

far. Customer x5  is chosen to branch to node 2. 

Number N= N+1 = 1+1= 2 and L= L+1 = 1+1= 2. 

Then, go to step 4. 

Step 4 : Branch to node 2 and update the cost matrix for the partially completed 

route (x1- x4- x5) so far as follows : 

ci4  = c4i  = co, i = 2, ... , 9 and c45  = c54  = 15. Then, go to step 5. 

Step 5 : Z(2) = LB2= 205.9, then go to step 6 to 9. 

Step 6 to 9 : Since Z(2) does not correspond to a feasible solution and Z(2)>Zopt, go to 

step 10 to backtrack. 

Step 10 : (Backtracking). 

Since the alternative node has not been examined, go to step 10a. 

Step 10a : Number N= N+1= 2+1 = 3 and backtrack to node 3. Update cost matrix 

for the partially completed route (x1- x4) and rejection customer x5  so far as 
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follows : 

ci4  = c4i  = oo, i = 2, ... , 9 and c45  = c54  = co. Then, go to step 5. 

Step 5 : Z(3) = LB3= 195.3, then go to step 6 to 9. 

Step 6 to 9 : Since Z(3) does not correspond to a feasible solution and Z(1)<Zopt, go to 

step 2. 

Step 2 : Since the set of possible customers to branch on is not empty, go to step 3. 

Step 3 : Customer x9  is chosen to branch to node 4. 

Number N= N+1 = 3+1= 4 and L= L+1 = 2+1= 3. 

Then, go to step 4. 

Step 4 : Branch to node 4 and update the cost matrix. Then, go to step 5. 

Step 5 : Z(4) = LB4= 195.3, then go to step 6 to 9. 

Step 6 to 9 : Since Z(4) does not correspond to a feasible solution and Z(4)<Zopt, go to 

step 2. 

Step 2 : Since the set of possible customers to branch on is not empty, go to step 3. 

Step 3 : Customer x3  is chosen to branch to node 5. 

Number N= N+1 = 4+1= 5 and L= L+1 = 3+1= 4. 

Then, go to step 4. 

Step 4 : Branch to node 5 and update the cost matrix. Then, go to step 5. 

Step 5 : Z(5) = LB5= 195.4, then go to step 6 to 9. 

Step 6 to 9 : Since Z(5) does not correspond to a feasible solution and Z(5)<Zopt, go to 

step 2. 

Step 2 : Since the set of possible customers to branch on is not empty, go to step 3. 

Step 3 : Customer x, is chosen to branch to node 7. 

Number N= N+1 = 6+1= 7 and L= L+1 = 5+1= 6. 
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Then, go to step 4. 

Step 4 : Branch to node 7 and update the cost matrix after removing the elements of 

the completed route (x1- x4- x9- x3- x1) from the original problem by using 

consideration (i) in Section 5.3. Then, go to step 5. 

Step 5 : Z(7) = LB7= 195.4, then go to step 6 to 9. 

Step 6 to 9 : Since Z(7) does not correspond to a feasible solution and Z(7)<Zopt, go to 

step 2. 

Step 2 : Since the set of possible customers to branch on is not empty, go to step 3. 

Step 3 : Customer x7  is chosen to branch to node 8. 

Number N= N+1 = 7+1= 8 and L= L+1 = 6+1= 7. 

Then, go to step 4. 

Step 4 : Branch to node 8 and update the cost matrix after removing the elements of 

the completed route (x1- x4- x9- x3- x1) from the original problem by using 

consideration (i) in Section 5.3. Then, go to step 5. 

Step 5 : Z(8) = LB7= 199.0, then go to step 6 to 9. 

Step 6 to 9 : Since Z(8) corresponds to a feasible solution and Z(8)<Zopt, set Zopt= 

Z(8)= 199.0 and record the routes corresponding to this solution value. 

Then, go to step 10 to backtrack. 

The q-routes corresponding to the current feasible solution value (199.0) to 

this subproblem are as : 

Route 1 : x1  - x6  - x2  - x5  - x1  

Route 2 : x1  - x8  - x7  - x1  

Route 3: x1  - x4  - x9  - x3  - x1  

Step 10 : Since the alternative node has not been examined, go to step 10a. 

Step 10a : Number N= N+1= 8+1 = 9, backtrack to node 9 and update cost matrix. 

Then, go to step 5. 
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Step 5 : Z(9) = LB9= 200.8, then go to step 6 to 9. 

Step 6 to 9 : Since Z(9) does not correspond to a feasible solution and Z(9)>Zopt, go to 

step 10 to backtrack. 

Step 10 : Since the alternative node has not been examined, go to step 10a. 

Step 10a : Number N= N+1= 12+1 = 13, backtrack to node 13 and update costs. 

Then, go to step 5. 

Step 5 : Z(13) = LB13= 199.7, then go to step 6 to 9. 

Step 6 to 9 : Since Z(13) does not correspond to a feasible solution and Z(13)>Zopt, go 

to step 10 to backtrack. 

Step 10 : Since the alternative node has been examined, go to step 10b. 

Step 10b : Set L= L-1= 3-1 = 2 and reset the costs accordingly. Then, go to step 10c. 

Step 10c : Since L# 0, go to step 10. 

Step 10 : Since the alternative node has been examined, go to step 10b. 

Step 10b : Set L= L-1= 2-1 = 1 and reset the costs accordingly. Then, go to step 10c. 

Step 10c : Since L0 0, go to step 10. 

Step 10 : Since the alternative node has not been examined, go to step 10a. 

Step 10a : Number N= N+1= 13+1 = 14, backtrack to node 14 and update costs. 

Then, go to step 5. 

Step 5 : Z(14) = L1314= 202.0, then go to step 6 to 9. 

Step 6 to 9 : Since Z(14) does not correspond to a feasible solution and Z(14)>Zopt, go 

to step 10 to backtrack. 

Step 10 : Since the alternative node has been examined, go to step 10b. 

Step 10b : Set L= L-1= 1-1 = 1 and reset the costs accordingly. Then, go to step 10c. 

Step 10c : Since L= 0, stop. 
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Thus, this algorithm 2 is terminated at the 14th node with the optimal solution value 

199.0 The complete tree search for this example VRP is shown in Fig. 5.3. 

195.4 

0 
infesible 

195.4 

199.0 0  200.8 

feasible 

1 {
1 

1 

- 6 
- 8 
- 4 

- 2 
- 7 
- 9 

- 5 
- 1 
- 3 

- 1 

- 1 

Figure 5.3 B & B tree for the example using the algorithm with bound LB2. 
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5.5 	Computational results 

In this section we show the computational performance of the algorithm using 

bounds LB1 and LB2. Sixteen problems are used for the tests ranging from N= 9 to N= 

100 vertices (1 depot + customers). One of these problems (problem 2) is from the 

literature (see Christofides et. al. [1981 a]), problems 12 to 16 are from the 100 - vertex 

problem (except for the changed quantity of demand) in Eilon et. al. [1971] and others are 

randomly generated. 

In Table 5.1, we show the size of the test problems, and Table 5.2 shows the values of 

the optimal solution to the test problems, together with the values of the initial lower 

bounds (LB1 and LB2) and the computing times of a initial lower bound (using an IBM 

PS/2 70-386) for the root node. 

Table 5.3 gives the computational performance of the two algorithms (algorithm 1 and 

2) for nine test problems (problem 1 to 9). 

In Table 5.4a (problem description) and Table 5.4b, we compare the results of the 

initial lower bounds and number of nodes in the branch and bound tree for algorithm 1 
& 

and 2 with those of the literature (Christofides et. al. [1981.]) for five test problems. 

Table 5.3 shows the computing times and total number of nodes in the branch and 

bound tree for each algorithm. All computing times shown in Table 5.2 and 5.3 are times 

on the IBM PS/2 - 70 386 using the Microsoft fortran 4.0 compiler. 

It should be noted from Table 5.2 that bound LB2 is on average within 1.10% of the 

optimum solution value and on no occasion is the bound worse than 3.12%. This would 

suggest that on many practical occasions, a currently available solution to the VRP may 

be guaranteed (by using the bound) to be close enough to the optimal not to warrant the 

continuation of the search for an improved solution. It should also be noted that all the 

values of the initial lower bounds for the direct bound (LB1) and the indirect bound (LB2) 

and the number of tree nodes required to obtain the optimal solution value are better than 
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those found in the literature. Also we note that general 40-customer VRPs can be solved 

with algorithm 2 developed here, and this is larger than what is in the literature. 

Table 5.1 Test problems. 

Problem 
Number of 
vertices 

Total 
demand 

Number of 
vehicles 

Vehicle 
capacity Source 

1 9 15 3 6 Given as an example 

2 10 28 3 10 Test problem 1 in Appendix A 

3 11 93 4 24 Christofides et. al. [1981 a] 

4 15 56 3 20 Test problem 2 in Appendix A 

5 20 80 3 30 Test problem 3 in Appendix A 

6 25 97 4 30 Test problem 4 in Appendix A 

7 30 105 4 30 Test problem 5 in Appendix A 

8 35 108 4 30 Test problem 6 in Appendix A 

9 40 140 5 30 Test problem 7 in Appendix A 

10 45 141 5 30 Test problem 8 in Appendix A 

11 50 147 5 30 Test problem 9 in Appendix A 

12 60 192 5 40 No. 1 to 59 

in the 100 cus-
tomer problem 
in Eilon et. al. 
[1971]*. 

13 70 220 6 40 No. 1 to 69 

14 80 275 6 50 No. 1 to 79 

15 90 316 7 50 No. 1 to 89 

16 100 339 7 50 No. 1 to 99 

* For the problem 12 to 16, demand of each customer is shown in Appendix A. 
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Table 5.2 Computational results : values and times. 

Problem 
Optimal 
solution 
value 

Initial lower bounds 
LB1 LB2 

bound time**  bound time** 

1 199.0 198.73 0: 2 195.34 0: 3 

2 295.0 294.57 0 : 4 295.0*  0 : 3 

3 222.7 222.68 0 : 8 222.7*  0 : 8 

4 361.0 350.41 0 : 22 357.36 0 : 28 

5 406.0 387.22 1 : 08 393.32 1 : 28 

6 476.0 462.20 1 : 50 470.73 2: 13 

7 623.0 610.79 2 : 42 617.36 3 : 14 

8 659.0 637.18 3 : 50 651.53 4 : 28 

9 783.0 713.44 5 : 02 767.85 5 : 43 

10 - 782.85 6 : 23 849.23 7 : 13 

11 - 847.54 8 : 00 913.91 8 : 58 

12 - 463.50 15 : 50 561.81 17 : 54 

13 - 497.81 21 : 47 655.34 24 : 04 

14 - 442.26 36 : 12 665.24 40 : 19 

15 - 466.49 45 : 52 705.11 50 : 20 

16 - 488.61 56 : 45 726.93 61 : 12 

* 	Optimal solution value was obtained during the computation of the initial 
lower bound without embedding into the tree search. 

** : minutes : seconds on IBM PS/2 70-386. 
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Table 5.3 Computational results of algorithms 1 and 2 : 
values & times 

Problem 
Algorithm 1 

(LB1) 
Algorithm 2 

(LB2) 
nodes time nodes time 

1 14 0:26 14 0:17 

2 8 0:22 0 0:03 

3 6 0:34 0 0:08 

4 84 23:26 24 7:06 

5 1112 15:56:55 264 3:46:06 

6 - - 352 5:46:18 

7 - - 620 14:43:41 

8 - - 890 19:33:51 

9 - - 550 22:46:19 

Time : hours:nimutes:seconds on IBM PS/2 70-386 (using the 
Microsoft Fortran 4.0 compiler). 

: Time limit 24 hrs. 
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Table 5.4a Test problems for results of Table 5.4b. 

Problem 
Number of 
vertices 

Total 
demand 

Number of 
vehicles 

Vehicle 
capacity 

1 11 93 4 24 

2 16 258 5 55 

3 16 258 3 90 

4 21 329 6 58 

5 21 329 4 85 

• Problem 1 is from Christofides et. al. [1981a]. 
• Other problems (2 to 5) are from 50-customer problem in Eilon et. al. [1971]. 
• Problem 2 & 3 : customers are the first 15 of the 50-customer problem. 
• Problem 4 & 5 : customers are those numbered 11 to 30 in the 50-customer problem. 

Table 5.4b Comparison of the results of algorithm 1 & 2 with those of literature : 
values (bounds and total number of nodes). 

Prob. Optimal 
solution 

Initial lower bounds Nodes 
Algo. 1 a Algo. 2 b 1 a 2 b 

1 222.7 222.6 211.0 222.7*  222.7*  8 49 0 0 

2 334.1 323.9 298.1 325.5 321.4 536 3336 86 194 

3 277.9 266.9 252.1 267.8 265.5 252 2148 188 498 

4 429.9 413.6 381.2 429.9*  429.7 1382 - 0 6 

5 357.6 341.5 260.0 346.8 346.4 - - 208 886 

• a and b are algorithms from Christofides et. al. [1981a]. 
* : optimal solution obtained during computation of the initial bound. 
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CONCLUSIONS 

The travelling salesman problem (TSP) and vehicle routing problem (VRP) are 

two, both theoretically and practically important, problems in the class of combinatorial 

optimization problems. Both problems have been studied extensively over the last 25 years 

and there is a voluminous literature on the subject. For the TSP exact algorithms have 

continuously improved over this period, and problem sizes that can be solved optimally 

have increased from 50 or so vertices in the early 1970's to several hundred vertices now. 

For the VRP (which is the more practically useful of the two problems), the situation has 

been very different. 25-customer VRP's could be solved optimally 10 years ago and the 

problem size that can now be solved optimally involves no more than 30 or so customers ; 

although occasionally very particular VRP's (which are in one way or other "easy") have 

been solved for sizes up to 100 customers. Thus, although virtually identical algorithmic 

principles are used for the VRP as for the TSP the results obtained are very different. 

This situation arises from the fact that many algorithmic developments (e.g. Lagrangean 

Relaxation) are developed and refined on the TSP and - based on the premise that the 

TSP and VRP are closely related - are then applied to the VRP. This process guarantees 

that only procedures that have worked well for the TSP are ever tried on the VRP. The 
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process has failed to produce major advances to the solution of VRP's because of the 

dramatic degradation of algorithm performance resulting when the structure and 

constraints imposed by the VRP are encountered. 

This thesis develops algorithms for the TSP and VRP based on tree-searches 

incorporating bounds computed from state-space relaxation. State-space relaxation (which 

is to Dynamic Programming what Lagrangean relaxation is to Integer programming) is 

used to develop bounds for the TSP and VRP which for the case of the VRP is superior to 

the bounds that can be found in the literature. In particular the VRP bound derived in 

the thesis is superior to bounds that are obtained from lagrangean relaxation for this 

problem. The TSP bound derived in the thesis is, on the other hand, far inferior both in 

terms of quality and in computational effort than bounds for the TSP that can be found in 

the literature and which are based on lagrangean relaxation. 

As a result of the above comments, the computational results obtained in the thesis are 

as one would expect. The performances of the TSP and VRP algorithms derived from 

state-space relaxation are not too different from one another, and in fact larger VRP's (40 

customers) than TSP's (30 vertices) can be solved. This performance is very poor for the 

TSP (when compared to other methods in the literature) but is much better for general 

VRP's than what can be found in the literature for that problem. Indeed, the TSP is 

discussed in the thesis only because it provides an easy introduction to the state-space 

relaxation methodology. 

The major contribution of this thesis, is to derive better bounds for the VRP and 

incorporate these into an algorithm that enables the solution of VRP's of medium (40 

customers) size. No attempt has been made to improve the complete algorithm (by 

investigating various ways of branching, for example) and this is suggested as a useful 

avenue for future research. It is expected that VRP's with more than 50 customers could 

be solved optimally using the bounds derived in this thesis, and incorporating an improved 

branching scheme. 



APPENDIX A : Details of test problems 

Test problem 1 : 10 vertices 

No. 1 2 3 4 5 6 7 8 9 q 
1 - 
2 22 2 
3 32 23 3 
4 22 31 22 5 
5 31 50 45 23 2 
6 35 58 60 40 21 4 
7 20 41 51 36 31 22 6 
8 27 41 58 49 51 41 20 1 
9 30 28 50 50 61 57 37 21 3 

10 36 20 41 50 67 70 50 42 20 2 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 10 units. q means demand in units. 

Test problem 2 : 15 vertices 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 q 
1 - 
2 20 3 
3 40 20 7 
4 33 18 17 2 
5 22 22 36 20 6 
6 16 29 46 35 16 1 
7 40 45 56 38 21 25 2 
8 35 49 67 52 32 21 23 8 
9 30 50 70 61 44 29 48 31 3 

10 14 31 51 47 35 24 52 41 22 3 
11 36 51 66 67 58 47 73 60 32 21 5 
12 21 28 44 45 41 35 60 54 36 13 21 4 
13 34 38 49 55 55 51 75 69 49 28 25 15 1 
14 41 35 39 51 56 55 77 76 62 37 41 25 14 6 
15 28 15 21 30 37 43 61 64 57 34 47 26 27 20 5 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 20 units. q means demand in units. 
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Test problem 3 : 20 vertices 

x• 
J 

dist. No. x. 
J 

iNo. dist. No. x•
J  

d st. No. x. dist. No. x• 
J 

dist. 

1 2 20 3 6 44 5 14 56 8 14 45 12 15 17 
3 35 7 47 15 26 15 55 16 22 
4 14 8 73 16 45 16 67 17 32 
5 35 9 65 17 39 17 60 18 35 
6 34 10 49 18 49 18 68 19 41 
7 22 11 68 19 60 19 77 20 53 
8 43 12 56 20 46 20 85 13 14 23 
9 31 13 76 6 7 19 9 10 16 (2) 15 21 

10 15 14 53 (5) 8 38 (1) 11 14 16 35 
11 33 15 57 9 40 12 22 17 49 
12 23 16 43 10 34 13 35 18 48 
13 42 17 28 11 53 14 28 19 50 
14 21 18 35 12 50 15 39 20 74 
15 28 19 44 13 71 16 42 14 15 10 
16 20 20 24 14 53 17 48 (1) 16 15 
17 17 4 5 21 15 62 18 54 17 26 
18 26 (7) 6 26 16 54 19 63 18 28 
19 37 7 22 17 48 20 74 19 35 
20 42 8 43 18 59 10 11 20 20 54 

2 3 16 9 40 19 70 (5) 12 15 15 16 14 
(4) 4 14 10 25 20 65 13 36 (2) 17 30 

5 26 11 45 7 8 25 14 20 18 27 
6 38 12 35 (12) 9 22 15 30 19 29 
7 36 13 57 10 16 16 29 20 53 
8 61 14 35 11 33 17 31 16 17 14 
9 51 15 42 12 31 18 39 (15) 18 13 

10 36 16 31 13 51 19 48 19 19 
11 52 17 22 14 35 20 58 20 38 
12 41 18 34 15 46 11 12 13 17 18 11 
13 60 19 45 16 41 (3) 13 21 (3) 19 22 
14 37 20 41 17 39 14 20 20 27 
15 42 5 6 24 18 48 15 27 18 19 12 
16 28 (1) 7 35 19 59 16 35 (1) 20 26 
17 14 8 60 20 63 17 45 19 20 29 
18 23 9 57 8 9 16 18 48 (2) 
19 35 10 44 (8) 10 28 19 55 20 - - 
20 26 11 65 11 29 20 73 (5) 

3 4 25 12 57 12 37 12 13 21 
(2) 5 22 13 78 13 50 (1) 14 7 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 30 units. (q) means demand in units. 
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Test problem 4 : 25 vertices 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 q 
1 - 
2 12 3 
3 17 12 6 
4 38 26 27 1 
5 41 39 26 19 2 
6 31 27 13 26 14 2 
7 47 43 34 53 37 27 10 
8 22 27 15 41 34 20 24 1 
9 44 51 40 65 54 40 21 25 3 

10 17 28 23 49 47 32 36 14 28 4 
11 31 41 34 61 56 41 35 22 17 12 4 
12 23 37 36 61 62 48 50 30 37 17 19 3 
13 37 50 47 74 71 57 54 38 35 25 13 13 2 
14 48 56 58 82 83 70 70 51 52 38 36 22 16 10 
15 31 42 47 68 73 61 68 45 55 32 36 16 25 16 3 
16 10 22 27 48 52 41 52 28 45 18 29 17 30 35 3 
17 20 32 38 58 63 51 61 37 50 25 33 16 27 26 5 
18 22 30 39 54 63 54 68 44 61 35 45 29 41 37 1 
19 54 62 72 84 95 86 98 75 87 62 69 50 57 44 2 
20 43 45 58 62 77 71 90 66 86 59 70 54 65 58 4 
21 45 42 56 53 70 67 89 67 89 62 75 61 74 70 3 
22 19 18 31 38 50 44 64 41 64 37 50 39 52 53 11 
23 32 26 40 37 54 51 74 52 76 50 63 53 66 66 2 
24 42 34 47 35 55 56 80 61 85 60 79 64 78 78 5 
25 24 12 24 18 33 32 56 37 62 40 54 49 62 67 7 

No. 15 16 17 18 19 20 21 22 23 24 
16 21 
17 12 10 
18 21 17 11 
19 33 46 38 31 
20 42 41 39 26 28 
21 53 46 47 34 46 15 
22 37 22 28 19 47 28 27 
23 50 36 41 29 53 27 18 13 
24 61 48 53 42 63 35 19 27 11 
25 52 33 43 37 67 45 38 20 22 25 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 30 units. q means demand in units. 
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Test problem 5 : 30 vertices 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 q 
1 - 
2 45 4 
3 23 22 1 
4 57 32 37 2 
5 55 50 43 24 15 
6 31 34 20 29 25 2 
7 17 36 14 41 38 14 3 
8 25 48 26 45 34 17 13 2 
9 45 64 30 49 28 29 34 21 4 

10 22 64 41 69 59 41 30 21 39 3 
11 27 59 28 56 42 28 23 11 21 18 7 
12 51 81 47 70 49 47 46 32 21 35 24 4 
13 63 101 70 95 75 69 65 53 46 42 43 25 1 
14 53 95 66 94 76 66 58 50 50 31 38 33 18 3 
15 34 78 54 83 71 54 43 49 48 13 30 39 37 21 12 
16 50 92 80 108 101 80 66 68 83 44 60 73 68 50 2 
17 45 81 76 102 99 76 62 67 85 47 64 81 80 63 3 
18 27 71 56 85 78 77 44 45 61 23 40 56 58 41 4 
19 12 56 43 70 66 43 30 34 53 20 33 54 62 48 7 
20 45 68 57 94 98 73 61 70 91 58 71 93 98 82 2 
21 19 50 35 72 73 48 35 44 66 36 46 69 78 64 5 
22 42 59 51 87 93 68 57 68 89 59 70 93 101 86 1 
23 30 50 40 77 82 57 45 66 77 49 59 82 91 77 2 
24 13 34 16 53 56 31 20 32 53 35 37 62 77 66 5 
25 38 38 35 68 78 55 46 59 80 60 65 89 102 90 1 
26 27 32 23 59 67 42 39 47 67 49 53 77 91 80 2 
27 30 16 11 41 51 29 21 39 58 51 48 72 90 82 1 
28 61 56 58 88 100 78 70 83 103 81 88 112 124 110 3 
29 64 47 54 80 95 74 69 82 102 86 90 114 128 116 2 
30 53 20 35 52 71 53 51 65 83 76 74 97 116 107 2 

No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
16 35 
17 45 16 
18 20 20 25 
19 28 35 34 15 
20 61 42 25 41 40 
21 43 41 32 27 14 27 
22 65 50 35 45 40 10 25 
23 56 48 34 38 30 18 13 12 
24 47 56 49 37 22 42 19 38 26 
25 69 66 53 54 42 33 27 23 19 28 
26 60 62 52 47 33 37 21 30 20 14 11 
27 64 75 66 56 41 54 35 47 37 19 28 19 
28 88 78 62 71 62 37 47 28 33 51 23 36 49 
29 95 89 75 80 68 50 53 40 43 53 26 37 45 16 
30 87 91 80 76 62 60 51 50 46 41 29 30 26 38 26 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 30 units. q means demand in units. 
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Test problem 6 : 35 vertices 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 q 
1 - 
2 50 2 
3 30 24 4 
4 49 21 35 7 
5 32 35 25 17 3 
6 47 26 42 16 17 1 
7 14 37 20 35 19 35 5 
8 34 45 41 39 19 18 26 4 
9 9 52 34 48 30 43 15 27 2 

10 21 48 36 39 22 31 17 15 13 2 
11 21 60 45 50 34 42 25 14 12 13 5 
12 45 66 61 50 39 45 42 21 36 26 25 1 
13 36 74 61 63 47 51 41 32 28 26 12 22 3 
14 56 85 78 70 58 55 58 40 48 41 35 20 22 1 
15 34 82 65 75 58 66 45 47 30 36 24 41 20 38 1 
16 53 94 81 82 67 71 60 52 47 46 35 39 19 22 10 
17 45 95 75 88 71 80 57 62 43 50 38 75 33 49 7 
18 64 114 91 112 95 106 77 89 65 75 65 85 63 80 4 
19 50 110 78 98 81 93 63 75 50 60 50 72 50 70 3 
20 44 95 72 94 61 90 59 73 47 59 50 73 53 73 8 
21 28 78 56 78 61 74 41 57 31 43 35 60 41 63 1 
22 20 69 51 63 46 55 32 38 17 25 14 38 20 43 2 
23 10 61 39 60 43 56 25 41 14 27 23 49 35 56 1 
24 41 85 60 89 73 89 54 75 47 60 56 82 64 86 2 
25 26 71 46 74 58 73 38 60 32 45 41 67 51 74 2 
26 13 55 32 58 42 58 23 46 21 33 32 57 45 66 4 
27 40 76 51 83 68 85 49 74 48 60 58 83 69 91 2 
28 21 49 25 56 42 59 24 51 29 39 42 65 56 77 1 
29 13 42 19 45 30 47 12 38 19 27 32 53 47 67 1 
30 42 56 35 70 59 76 44 70 50 60 63 85 78 98 3 
31 57 71 49 85 74 92 60 86 65 75 78 101 92 113 1 
32 44 44 26 60 52 69 42 66 52 58 64 84 80 99 4 
33 62 63 46 80 73 89 61 87 70 78 82 104 97 117 2 
34 58 42 32 60 57 73 51 74 63 68 76 93 92 109 6 
35 50 25 20 44 42 56 40 60 55 57 67 81 82 98 2 
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test problem 6 (cont.) 
No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
16 24 
17 15 31 
18 44 60 31 
19 32 51 20 14 
20 34 56 27 22 10 
21 26 49 26 35 22 16 
22 15 34 27 52 38 37 23 
23 28 50 36 53 39 33 14 15 
24 49 73 46 41 32 23 23 45 33 
25 40 63 41 46 34 26 15 32 18 16 
26 40 61 46 58 45 39 24 28 14 31 16 
27 57 81 57 55 45 36 31 49 35 14 18 28 
28 52 74 59 79 57 49 35 40 24 35 23 15 27 
29 47 66 57 73 59 53 37 33 21 44 29 14 38 12 
30 72 93 77 81 70 60 51 60 44 41 36 33 27 21 32 
31 84 107 86 85 76 67 60 73 57 44 45 46 30 36 48 
32 78 98 84 92 81 72 60 65 48 53 45 37 40 25 32 
33 92 114 96 98 88 79 71 80 64 58 55 53 43 41 50 
34 92 110 99 107 96 87 75 78 63 69 61 52 55 39 45 
35 85 102 94 107 94 87 72 71 58 72 61 49 60 37 37 

No. 30 31 32 33 34 
31 16 
32 14 25 
33 20 15 20 
34 29 35 16 23 
35 35 47 32 38 27 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 30 units. q means demand in units. 
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Test problem 7 : 40 vertices 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 q 
1 - 
2 40 3 
3 51 25 • 10 
4 64 41 16 8 
5 28 22 21 36 2 
6 42 37 22 25 22 2 
7 65 54 31 21 43 22 1 
8 13 29 36 49 13 29 51 3 
9 45 53 38 39 35 17 25 36 1 

10 34 47 41 45 29 20 36 27 12 1 
11 20 44 45 53 26 28 49 17 26 15 2 
12 44 59 47 49 40 25 35 38 9 11 24 4 
13 45 70 62 65 50 40 51 45 26 21 27 16 5 
14 13 50 60 72 36 49 70 23 49 37 22 45 43 20 
15 20 55 59 68 38 43 63 27 39 28 15 32 27 16 2 
16 30 69 75 85 54 60 78 41 53 42 31 46 36 21 1 
17 17 57 62 72 41 48 69 27 45 33 19 39 34 9 2 
18 42 75 74 79 57 53 67 47 41 34 31 32 18 36 1 
19 27 55 53 60 36 35 53 26 28 17 10 21 17 26 3 
20 57 92 82 85 69 60 70 60 47 41 42 36 20 51 4 
21 46 83 83 90 65 65 79 54 48 45 39 44 30 38 2 
22 64 98 96 100 80 75 86 69 61 55 53 51 35 56 3 
23 69 101 96 99 82 75 85 73 60 55 57 50 34 63 1 
24 49 90 96 105 74 80 97 60 72 61 51 64 51 39 2 
25 36 75 85 96 62 72 91 49 67 56 43 61 52 25 3 
26 51 98 102 115 79 92 112 65 88 77 63 83 74 42 3 
27 66 100 117 130 94 110 130 81 107 96 83 104 95 60 1 
28 52 83 102 116 79 95 117 67 96 84 70 92 86 47 6 
29 42 75 93 106 69 84 105 55 84 73 58 81 74 35 7 
30 28 63 79 92 55 70 92 42 71 60 45 68 63 22 1 
31 51 76 96 111 74 93 115 64 97 85 71 95 90 49 1 
32 42 60 83 98 61 81 103 53 87 76 61 86 85 42 4 
33 12 48 64 78 41 58 80 29 61 50 35 59 58 20 3 
34 30 49 70 85 49 69 91 39 75 65 50 75 74 31 2 
35 21 33 54 70 33 54 76 26 62 53 40 64 66 27 10 
36 47 50 76 92 58 80 101 53 90 80 67 91 93 51 3 
37 28 21 44 61 27 50 70 25 60 53 43 64 70 38 1 
38 56 40 66 82 53 74 95 51 86 78 67 89 94 56 5 
39 69 44 70 84 60 83 99 62 94 88 78 99 105 70 1 
40 46 15 40 55 33 53 70 40 67 63 56 74 82 56 6 
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test problem 7 (cont.) 
No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
16 17 
17 7 14 
18 21 22 26 
19 11 28 18 20 
20 36 36 41 15 32 
21 27 18 28 12 30 20 
22 44 37 46 23 43 15 18 
23 48 45 51 26 46 14 26 10 
24 36 20 34 33 45 42 22 34 44 
25 30 16 24 37 40 50 30 48 56 17 
26 51 37 45 59 62 70 50 65 74 30 23 
27 70 59 63 81 81 93 72 87 96 52 44 22 
28 61 51 54 73 73 87 66 83 92 49 36 22 16 
29 48 39 41 61 59 75 55 72 81 39 25 13 25 14 
30 36 30 29 52 47 67 48 67 74 37 20 25 38 25 14 
31 62 58 55 80 74 94 76 93 102 61 45 34 29 16 23 
32 58 56 51 77 68 92 75 93 100 64 48 43 43 28 26 
33 30 34 25 52 39 67 52 71 77 50 33 43 57 42 29 
34 48 48 42 68 56 83 67 85 93 60 42 45 50 35 30 
35 42 48 38 64 47 78 66 84 90 65 47 56 65 50 43 
36 67 70 62 88 75 103 88 106 114 81 63 63 63 48 46 
37 50 59 47 71 53 85 75 93 98 76 60 70 79 63 56 
38 71 77 66 92 76 107 95 113 118 91 73 76 78 63 61 
39 85 90 81 105 90 119 109 126 131 106 88 91 92 77 76 
40 65 76 64 86 66 100 93 108 112 95 80 89 97 81 76 

No. 30 31 32 33 34 35 36 37 38 39 
31 28 
32 26 15 
33 17 40 31 
34 22 25 13 25 
35 31 42 28 19 16 
36 43 33 19 39 21 27 
37 45 54 39 31 39 13 32 
38 54 49 34 46 32 28 16 28 
39 69 63 49 60 47 42 30 35 15 
40 64 70 55 50 46 32 41 19 30 29 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 30 units. q means demand in units. 
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Test problem 8 : 45 vertices 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 q 
1 - 
2 35 5 
3 56 22 2 
4 58 29 18 8 
5 66 44 35 17 11 
6 44 25 29 18 22 1 
7 50 35 36 22 18 9 3 
8 54 42 43 28 19 17 7 2 
9 28 17 33 30 38 16 24 30 2 

10 35 25 36 27 30 9 14 20 11 5 
11 42 34 41 29 28 12 9 12 19 8 1 
12 48 42 46 33 29 7 10 7 27 16 8 1 
13 36 30 40 31 32 13 14 18 14 5 5 14 4 
14 20 38 55 50 53 33 36 38 22 23 26 32 21 4 
15 41 57 71 61 57 42 40 38 39 35 31 31 30 22 3 
16 16 50 71 70 75 54 57 60 40 44 48 53 42 21 1 
17 32 60 79 74 74 56 56 56 46 46 46 48 42 23 2 
18 35 65 84 80 80 61 63 63 51 52 52 55 48 29 1 
19 41 70 89 83 83 64 64 64 56 55 55 56 51 33 2 
20 39 73 92 88 89 70 71 72 59 60 61 64 57 37 2 
21 45 76 94 88 88 70 70 69 61 61 60 61 57 38 1 
22 49 77 94 87 85 68 67 66 61 59 58 58 55 38 2 
23 57 80 96 86 82 68 65 63 64 60 57 55 55 43 7 
24 49 80 99 95 95 77 77 77 66 67 68 70 64 44 1 
25 52 83 100 94 93 76 76 75 68 67 66 67 63 45 15 
26 48 83 104 102 105 85 87 88 72 75 77 81 73 51 3 
27 70 98 113 105 101 87 84 82 81 78 76 75 74 60 2 
28 70 100 122 127 137 115 120 124 98 106 112 118 106 86 3 
29 62 94 116 120 128 106 111 115 90 98 102 108 97 76 3 
30 44 79 101 103 109 88 92 95 72 79 86 88 78 56 1 
31 42 74 95 99 108 86 91 96 70 77 84 89 78 57 2 
32 54 77 97 105 117 95 102 108 79 88 95 102 89 72 4 
33 25 58 80 84 92 70 76 80 54 62 67 73 61 42 2 
34 15 41 63 68 78 56 63 68 40 49 56 63 50 35 5 
35 5 36 58 61 70 48 54 59 36 40 46 54 40 25 3 
36 24 43 64 71 83 62 69 75 45 55 63 70 57 43 1 
37 56 68 85 97 111 91 99 106 75 86 94 102 88 76 1 
38 13 34 56 61 72 49 57 62 33 42 50 58 44 31 3 
39 11 27 49 54 64 42 49 55 25 36 43 50 37 27 2 
40 37 46 66 76 89 69 77 83 53 64 72 80 67 56 6 
41 19 31 53 60 72 50 58 64 34 44 53 60 47 36 2 
42 28 23 42 52 66 47 55 62 32 42 51 59 46 42 3 
43 49 40 52 67 83 66 75 82 54 64 73 80 68 65 4 
44 78 63 68 85 103 90 99 106 80 90 98 106 94 93 2 
45 51 21 24 40 57 45 53 61 39 46 54 62 51 58 3 
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test problem 8 (cont.) 
No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
16 
17 
18 
19 
20 
21 
22 
23 
24 

36 
22 
28 
27 
36 
32 
28 
25 
40 

20 
19 
26 
24 
31 
34 
44 
32 

7 
9 

16 
15 
16 
24 
21 

6 
8 

11 
15 
26 
15 

9 
5 
8 

20 
13 

10 
16 
18 
8 

6 
19 
8 

13 
14 27 

25 36 37 22 18 12 14 7 8 19 9 
26 54 33 33 25 27 18 25 31 44 17 26 
27 44 55 37 35 29 33 25 21 19 27 19 43 
28 99 65 79 73 78 68 77 84 96 70 80 53 96 
29 88 54 67 60 66 56 65 71 84 58 67 40 83 13 
30 67 34 46 40 45 36 45 51 64 39 48 23 66 32 21 
31 72 37 53 49 54 46 56 61 74 51 59 36 78 28 21 
32 90 54 73 69 75 68 77 83 95 73 82 59 100 29 31 
33 59 23 41 38 44 38 47 53 64 45 53 35 72 45 36 
34 56 24 44 44 50 47 55 59 69 55 61 50 80 60 53 
35 46 19 36 37 45 42 49 52 61 50 55 49 73 67 59 
36 65 34 54 53 60 56 64 68 78 64 70 56 89 58 53 
37 98 64 85 83 89 83 92 97 109 90 98 79 117 54 57 
38 53 25 44 45 51 49 56 60 69 58 63 54 80 67 60 
39 49 27 43 45 51 51 57 59 67 59 63 58 81 74 67 
40 78 48 68 68 74 70 78 72 93 78 85 70 103 62 60 
41 59 33 51 53 59 57 64 67 76 65 71 61 88 70 64 
42 64 44 60 63 69 68 73 76 84 76 81 74 98 81 76 
43 88 64 82 84 90 88 95 98 106 96 102 91 120 85 84 
44 116 93 112 113 120 117 124 127 135 125 131 119 149 105 106 
45 78 67 80 84 89 90 95 96 100 99 102 98 117 107 103 

No. 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 
31 14 
32 36 22 
33 22 16 32 
34 39 32 39 18 
35 42 38 48 22 10 
36 42 33 34 22 9 19 
37 58 44 26 45 41 51 32 
38 45 39 45 24 7 7 13 44 
39 51 46 53 31 15 10 20 51 8 
40 53 41 34 34 23 31 14 22 25 30 
41 51 43 46 30 12 14 12 41 7 11 20 
42 64 55 56 42 24 25 23 45 19 17 24 13 
43 76 65 57 56 41 45 34 36 38 39 24 31 23 
44 102 90 76 83 70 75 62 50 67 69 49 60 51 29 
45 90 82 80 69 51 49 49 64 45 40 46 39 27 29 46 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 30 units. q means demand in units. 
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Test problem 9 : 50 vertices 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 q 
1 - 
2 40 3 
3 51 12 1 
4 52 25 20 1 
5 68 46 40 22 2 
6 62 45 41 21 8 5 
7 42 31 33 17 26 20 1 
8 21 19 30 31 50 46 26 3 
9 28 25 32 24 40 34 14 13 2 

10 42 39 40 24 28 22 8 30 17 1 
11 56 55 55 37 31 23 23 47 33 17 1 
12 27 39 46 36 46 39 21 23 14 17 28 2 
13 10 41 51 47 62 55 36 21 23 34 47 18 2 
14 42 57 62 48 50 42 30 42 31 23 23 19 32 18 
15 55 69 73 57 54 47 40 55 44 33 24 32 45 13 3 
16 15 49 59 55 69 62 43 30 31 40 50 23 9 31 5 
17 33 58 66 54 61 53 38 40 34 33 36 19 24 14 2 
18 36 67 75 66 73 65 50 48 43 44 46 30 28 24 4 
19 53 79 86 73 74 66 56 61 54 48 44 40 44 25 1 
20 50 80 88 78 81 74 61 62 56 54 53 42 42 31 2 
21 64 94 102 90 92 84 73 76 70 66 62 56 57 42 1 
22 43 80 89 82 90 82 66 60 58 61 63 45 39 41 1 
23 58 95 104 96 103 95 80 75 73 74 74 60 54 53 10 
24 70 106 115 105 109 101 88 87 83 82 80 69 66 59 9 
25 20 60 71 70 85 78 59 41 46 56 67 39 22 48 5 
26 44 84 95 92 103 96 78 65 68 75 81 57 45 58 2 
27 41 81 93 93 107 100 81 63 69 79 88 61 45 66 2 
28 57 95 108 109 123 116 98 78 85 95 104 78 62 82 3 
29 44 82 95 97 112 106 86 61 73 85 94 67 50 74 2 
30 64 98 110 115 132 126 106 83 92 105 116 88 71 97 4 
31 78 110 122 128 146 140 120 96 106 120 131 103 85 112 2 
32 64 94 106 114 132 126 106 82 92 106 118 89 72 100 1 
33 57 82 93 103 122 118 98 72 83 99 113 84 66 98 1 
34 43 74 86 92 111 106 85 60 71 86 99 70 52 82 3 
35 28 63 75 79 96 91 71 48 56 70 83 54 36 66 3 
36 17 56 68 69 85 79 60 39 45 58 70 41 24 51 1 
37 41 64 75 85 104 100 81 54 66 82 96 68 51 82 2 
38 45 64 76 86 106 102 83 57 68 85 100 72 55 87 4 
39 30 50 62 71 91 87 67 40 53 70 85 56 40 71 5 
40 15 43 55 60 79 74 54 29 39 55 70 41 25 56 4 
41 41 50 60 74 95 91 73 46 59 76 92 65 51 82 1 
42 14 32 43 49 69 64 45 19 30 47 63 35 22 52 2 
43 45 41 50 66 87 85 68 43 56 73 90 65 53 83 2 
44 35 29 39 53 74 72 55 29 43 60 76 52 42 70 4 
45 58 48 56 74 95 93 78 54 67 84 100 76 65 95 1 
46 31 14 26 37 59 56 40 17 29 45 62 40 35 59 1 
47 45 18 25 43 64 64 49 30 41 56 73 53 49 72 1 
48 60 36 41 60 81 81 68 48 60 75 92 72 65 90 8 
49 73 52 56 76 96 96 84 63 75 90 107 87 80 106 2 
50 56 21 20 40 60 61 51 38 46 58 74 59 59 77 1 



Appendix 	 170 

test problem 9 (cont.) 
No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

43 
23 
31 
22 
32 
38 
45 
54 
57 
58 

20 
21 
38 
35 
49 
30 
45 
58 
17 

12 
21 
23 
36 
28 
41 
50 
35 

18 
14 
28 
17 
30 
39 
30 

11 
17 
26 
32 
35 
48 

14 
16 
22 
27 
41 

25 
22 
19 
54 

15 
27 
29 

14 
42 56 

26 65 36 45 35 48 37 45 22 26 39 24 
27 75 38 53 45 60 51 60 35 41 54 22 15 
28 91 55 69 60 75 65 71 48 50 62 39 26 16 
29 84 45 61 53 70 61 70 45 50 64 28 25 10 13 
30 107 67 84 77 93 84 91 67 72 84 50 46 32 22 23 
31 122 81 99 92 108 98 106 82 85 96 65 60 47 34 38 
32 111 69 88 82 99 90 100 74 80 93 53 54 40 32 30 
33 110 66 86 83 101 94 105 80 88 102 53 62 47 46 38 
34 93 50 70 66 84 76 87 62 70 84 36 45 30 33 22 
35 77 33 53 50 68 61 73 47 58 72 20 34 22 33 20 
36 64 21 41 38 56 50 62 38 50 64 8 30 24 39 27 
37 95 51 72 70 88 82 95 70 80 94 40 56 42 47 36 
38 100 56 77 76 93 88 100 75 86 100 46 62 48 53 42 
39 85 43 62 63 81 76 89 66 78 92 36 56 45 54 41 
40 70 28 47 49 66 62 76 53 67 80 24 48 40 53 40 
41 95 55 74 76 93 89 103 79 92 105 49 70 58 66 53 
42 66 28 45 50 66 64 78 57 72 85 31 55 50 64 51 
43 97 59 77 82 98 95 109 87 100 114 58 81 70 80 67 
44 84 49 66 71 87 85 99 78 92 106 51 74 67 78 65 
45 108 73 90 93 110 107 122 100 113 126 71 92 82 90 77 
46 72 44 57 63 78 78 92 74 89 101 51 75 70 83 71 
47 85 58 71 78 92 92 106 88 103 115 64 88 82 94 81 
48 103 73 88 94 109 108 122 103 117 131 76 100 91 102 88 
49 119 86 102 108 123 122 136 166 130 143 88 110 100 109 97 
50 90 68 78 86 99 100 114 98 113 125 76 100 94 108 94 
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test problem 9 (cont.) 
No. 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 
31 15 
32 12 16 
33 30 34 20 
34 25 36 21 17 
35 35 49 36 33 16 
36 46 61 48 46 29 13 
37 38 48 31 18 15 22 32 
38 42 50 34 17 20 28 38 6 
39 50 61 44 31 25 22 27 14 16 
40 55 68 53 43 32 20 17 27 30 15 
41 58 66 51 34 34 36 41 20 17 14 27 
42 66 79 64 53 43 31 26 36 38 22 11 30 
43 73 81 65 48 48 48 50 34 31 25 34 15 31 
44 75 85 69 54 50 45 44 37 37 25 27 21 21 13 
45 80 87 72 53 57 59 63 42 38 36 46 24 44 12 24 
46 84 96 80 67 60 50 46 49 50 36 30 37 20 28 15 
47 92 103 87 71 67 61 58 55 54 42 41 38 32 25 17 
48 95 104 88 70 71 69 69 57 54 47 52 37 45 23 25 
49 100 107 91 72 77 78 80 62 58 55 63 43 58 29 37 
50 106 117 100 84 81 74 70 68 67 56 54 51 44 38 30 

No. 45 46 47 48 49 
46 38 
47 30 14 
48 19 31 18 
49 19 46 34 15 
50 40 25 13 23 36 

The distance matrix is symmetrical. The depot is denoted by 1. 
Vehicle capacity : 30 units. q means demand in units. 

Demand of each customer of problem 12 to 16 in Chapter 5. 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
q 0 3 1 1 2 5 1 3 2 1 1 2 2 18 3 

No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
q 5 2 4 1 2 1 1 10 9 5 2 2 3 2 4 

No. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
q 2 1 1 3 3 1 2 4 5 4 1 2 2 4 1 

No. 46 47 48 49 40 51 52 53 54 55 56 57 58 59 60 
q 1 1 8 2 1 5 3 2 11 3 3 8 6 2 2 

No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
q 2 6 1 3 2 4 2 1 2 5 6 3 6 14 1 

No. 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 
q 7 4 2 2 10 5 3 2 4 6 1 9 3 3 5 

No. 91 92 93 94 95 96 97 98 99 100 
q 1 2 3 2 2 3 1 5 2 2 
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