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Abstract 

There is currently a timely opportunity to create dramatically improved structural materials. 
By combining conventional reinforcing fibres and carbon nanotubes (CNT) within thermo-
plastic matrices, a new class of materials with both superior mechanical, environmental, and 
chemical performance, as well as significantly reduced through-life costs should be possible. 
CNTs have generated huge interest in the composites community due to their remarkable 
physical and mechanical properties. Numerous studies have reported the production and 
characterisation of CNT reinforced polymers. Although promising results have been 
obtained, progress has been limited by several factors; CNT synthesis (quality), dispersion, 
alignment and interfacial adhesion. On the other hand, traditional carbon fibre reinforced 
polymers have found a wide range of applications. Although traditional composites have 
excellent in-plane properties, the relatively weak compression, transverse and interlaminar 
properties remain a major challenge. 
The main aim of the research reported here was to develop CNT polyetheretherketone 
(PEEK) nanocomposites and fibre reinforced PEEK nanocomposites, which have been called 
"hierarchical composites". The combination of CNTs and conventional fibres as 
reinforcements to produce unidirectional fibre reinforced nanocomposites is extremely 
challenging. The focus is on PEEK as matrix because it is a high performance polymer with 
excellent mechanical and friction properties and a superb chemical resistance. PEEK is 
certified for aerospace use, and is covered by a wealth of background data. Since it is a high 
value polymer, any improvements will be welcomed, particularly because PEEK is more 
expensive than some commercial CNTs. 
This research summarises the development and characterisation of a PEEK CNT 
nanocomposite, which was turned into a micrometre sized powder. This powder than was 
used for the production of hierarchical composites. In order to produce these hierarchical 
composites a laboratory scale continuous composite tape production line had to be designed 
and built. Prior to the fabrication of real hierarchical composite the interfacial characteristics 
of model, single fibre nanocomposites were characterised using single fibre pull out tests. 
The specific achievements of the work are: 
• Thirteen different CNT materials have been thoroughly characterised and based on these 

results and the commercial larger volume availability Nanocyl CNTs were chosen. 
• Laboratory-scale production of CNT/PEEK nanocomposites with various loading 

fractions of up to 15 wt% and with a high degree of CNT dispersion. These 
nanocomposites have been characterised with respect to their crystallisation behaviour 
and mechanical properties. Unfortunately, only minor improvements in mechanical 
properties have been achieved, which were reduced when the materials were annealed. 

• Single fibre hierarchical PEEK composites were characterised using single fibre pull-out 
tests. The apparent interfacial shear strength increased significantly with increasing CNT 
loading fraction, while the frictional stress was independent of the CNT loading fraction. 

• Successful development of a method to produce CNT/PEEK nanocomposite powders 
with a d50 of 50 um using a temperature induced solution precipitation method. 

• Design, construction and validation of a modular laboratory-scale powder impregnation 
line for the production of continuous fibre reinforced thermoplastic composite tapes. CF/ 
PEEK composites produced had a slightly better mechanical performance than APC-2. 

• Manufacturing of unidirectional carbon fibre reinforced CNT reinforced polymer 
composites using the home-built laboratory scale composite production line. 
Conventional mechanical testing was used to determine critical engineering properties. 
Unfortunately, the flexural and short beam shear properties decrease slightly with 
increasing loading fraction of CNTs. 

As a result, a generic method to produce continuous unidirectional carbon fibre reinforced 
CNT reinforced thermoplastics (PEEK) was developed using a powder impregnation route. 
A patent protecting hierarchical thermoplastic composites and the method to produce such 
material has been filed and is currently in the Patent Cooperation Treaty (PCT) stage. 
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G1c 	mode I interlaminar fracture toughness 

Giic 	mode II interlaminar fracture toughness 

1 
	

length 
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1 	 length of failed area 

L Avogadro constant 

L support span 

Le 	embedded fibre length 

Lo 	 original length 

in 	 mass 

in 	 slope of force-displacement curve 

na 	specific amount adsorbed 

nn, 	specific monolayer capacity of adsorbate 

N 	 rotating speed 

11 	viscosity 

11r 	relative viscosity 

p 	density 

P pressure 

Pmax 	maximum force at failure 

Po 	initial pressure 

P0.2 	maximum shear load at offset 0.2 % 

P/Po 	relative pressure 

r 	radius of fibre 

R 	radius of polymer particle 

a 	strength 

af 	 flexural strength 

crs 	in-plane shear strength 

at 	tensile strength 

t 	thickness 

23 



T 	torque 

Tc 	composite torque 

Tg 	glass transition temperature 

Tm 	matrix torque 

Tm 	melting temperature 

TIFSS 	 apparent interfacial shear strength 

Vc 	volume of unit cell 

Vf 	volume fraction 

Vfe 	 fibre volume per unit cell 

Vp 	volume of polymer particle 

Vs 	volume of space occupied by water 

wt% 	weight percent 

z 	depth 

List of Abbreviations 

APC 	Aromatic polymer composites 

ASTM 	American Society for Testing and Materials 

BET 	Brunauer-Emmett-Teller 

CF(s) 	Carbon fibre(s) 

CNF 	Carbon nanofibre 

CNT(s) 	Carbon nanotube(s) 

CO2 	Carbon dioxide 

CS2 	Carbon disulphide 

CVD 	Chemical vapour deposition 

D band 	Defect band 

24 



DPS 	Diphenylsulfone 

DSC 	Differential scanning calorimetry 

DWCNT 	Double wall carbon nanotube 

EPD 	Electrophoretic deposition 

EU 	European Union 

FEG 	Field emission gun 

FS S 	Frictional shear stress 

G band 	Graphitic band 

G/D 	Graphitic over defective band ratio 

HRTEM 	High-resolution transmission electron microscopy 

ICVD 	Injection chemical vapour deposition 

IFS S 	Interfacial shear strength 

ILSS 	Interlaminar shear strength 

IR 	Infrared radiation 

Inc 	Incorporated (business) 

ISO 	International Standards Organisation 

LRS 	Laser Raman Spectroscopy 

L/D 	Length / diameter aspect ratio 

MWCNT 	Multi wall carbon nanotube 

n/a 	Not applicable 

n/d 	Not determined 

nanoHAC 	Nanostructured Hierarchical Assemblies and Composites Group 

NaOH 	Sodium hydroxide 

NH2 	Amino functional group 

PaCE 	Polymer and Composites Engineering Group 
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PAN 	Polyacrylonitrile 

PC 	Polycarbonate 

PCT 	Patent Cooperation Treaty 

PE 	Plasma enhanced 

PE 	Polyethylene 

PEEK 	Polyetheretherketone 

PEI 	Polyetherimide 

PES 	Polyethersulfone 

PI 	Polyimide 

PID 	Proportional integral differential 

PLLA 	Poly(L-lactic acid) 

PP 	Polypropylene 

PSD 	Particle size distribution 

PSU 	Polysulfone 

RTM 	Resin transfer moulding 

R&D 	Research and Development 

SBS 	Short beam shear 

SEM 	Scanning electron microscope 

SWCNT 	Single wall carbon nanotube 

TCE 	1,1,2,2-tetrachloro ethane 

TGA 	Thermogravimetric Analysis 

VARTM 	Vacuum assisted resin transfer moulding 

WAXS 	Wide Angle X-ray Scattering 

2-D 	Two-Dimensional 

3-D 	Three-Dimensional 
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Chapter 1 - Introduction 

Carbon nanotubes (CNTs) were first observed by Oberlin, Endo and Koyama in 

1976 l  . They possess a nano-metre scale graphitic structure (Figure 1). Three 

varieties of CNTs are known, namely single wall (SWCNT), double wall (DWCNT) 

or multi wall (MWCNT) CNTs. Theoretical simulations highlighted that single wall 

CNTs possess an axial elastic modulus of approximately 1 TPa 2. In addition to this, 

CNTs were also found to be able to withstand a maximum tensile strain in the order 

of 40 % without any brittle behaviour, bond rupture or plastic deformation 2. Single 

wall CNTs only bend or buckle when a compressive load is applied. CNTs kink 

under compressive stress and relax during unloading. They will not break or rupture. 

Due to their impressive properties, incorporation of CNTs into various matrices 

aiming to produce nanocomposites has attracted various research interest 2 -4. Some 

promising improvements in the tensile properties of 20 % to 40 % of CNT based 

polymer nanocomposites with CNT loading fractions of 15 wt% as compared to the 

pure polymers have been reported 5  ' 6. Unfortunately, further improvements of the 

tensile properties of CNT polymer nanocomposites are difficult to be achieved 

mainly because of processing issues, limiting the dispersion and alignment of CNTs 

but also because sufficient interfacial adhesion between CNTs and polymer matrices 

remains a challenge. 
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100nm 

Figure 1: High-Resolution Transmission Electron Microscopy (HRTEM) micrograph showing 

a MWCNT (upper region) together with a SWCNT indicated by an arrow I I 

Most research focuses on the use of CNT solely as the reinforcement of polymer 

matrices to produce nanocomposites. However, because of the nanoscale dimensions 

of the CNTs, they could potentially be well suited to reinforce fine structures such as 

thin polymer fibres 7 ' 8, the walls in polymer foams 9-12  but also polymer matrices in 

advanced composites 13 14  Conventional continuous (glass and carbon) fibre 

reinforced polymer composites have come a long way over the past few years. 

Advanced fibre reinforced polymer composites can now be considered a well-

accepted material; they have found many applications in the aerospace and defence, 

oil and gas but also sports industry mainly because of their excellent mechanical 

properties combined with their light weight and decent chemical resistance. 

However, the interlaminar shear, off-axis and compression properties of continuous 

fibre reinforced composites depend upon the interfacial fibre/matrix adhesion and 

matrix properties. By incorporating both CNTs and carbon fibres into the same 

matrix, a hierarchical reinforcing structure consisting of nano- and micrometre sized 

reinforcements within a composite can be created. Within Polymer and Composites 

Engineering (PaCE), nanostructured Hierarchical Assemblies and Composites 
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(nanoHAC) and the Composites Centre at Imperial College London, these 

composites are called "hierarchical composites". It is expected that the incorporation 

of CNTs into the matrix of conventional composites would lead to an improvement 

of interlaminar and compression properties as compared to the "unreinforced" 

polymer composites. The carbon fibres used to reinforce the (nanomaterial 

reinforced) matrix mainly determine the tensile and flexure properties of the 

(hierarchical) composites. By combining conventional fibres and CNTs within 

thermoplastic matrices, a new class of materials with superior mechanical, 

environmental, and chemical performance, as well as significantly reduced through-

life costs should be possible. To date not much research has been dedicated towards 

the continuous production of CNT-reinforced thermoplastic-matrix fibre composites. 

The primary aim of this research project is to develop a new high performance 

thermoplastic composite material in which the matrix is additionally reinforced with 

CNTs and to study their interactions with a high performance thermoplastic polymer 

to gain a better understanding of their behaviour. Firstly, the interaction and effect of 

CNT diameters on the mechanical properties of produced nanocomposite will be 

investigated. Secondly, the developed optimised nanocomposite will be used as a 

matrix for carbon fibre reinforced composites to create a hierarchical structure with 

nanophase and mesophase reinforcements combined within the polymer (Figure 2). 

This could improve the overall properties of the new composite materials in 

compression and shear, which have shown to be the two critical areas in a wide range 

of applications. The specific objectives of the research project are to: 

29 



1. produce novel nanomaterial reinforced micrometre sized polymer powders 

which could be used in a conventional powder impregnation process used for 

manufacturing of thermoplastic composites, 

2. manufacture unidirectional nanomaterial-reinforced fibre-reinforced polymer 

composites on a laboratory scale and hence demonstrate hierarchical fibre-

reinforced thermoplastic nanocomposites and 

3. quantify the degree of improvement of the critical engineering composite 

properties as well as investigating secondary benefits such as improved 

thermal stability. 

Carbon Fibres 

• • • • • • • • • • • • • • • • • 
la 	• lb 

Matrix 	 CNTs Reinforced Matrix 

Figure 2: Standard composite material and hierarchically-reinforced composite material 
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Chapter 2 - Literature Review 

Numerous composite materials exist in terms of reinforcements or matrices used. A 

review focusing on thermoplastic composites is described in this chapter. An 

overview on the advantages of using thermoplastic composites is presented, followed 

by their developments and the various manufacturing processes available to create 

continuous unidirectional carbon fibre-reinforced thermoplastic composites. A focus 

on PEEK as a matrix and the challenges associated with the processing and 

manufacture at high temperatures using a semi-crystalline polymer are examined. An 

overview on the work already published regarding CNT-reinforced PEEK is 

presented. PEEK being a semi-crystalline polymer, crystallinity is of importance and 

can affect mechanical properties, its control is necessary through monitored cooling 

or annealing. Finally an overview on hierarchical composites is examined with the 

various types of hierarchical composites, their manufacture and their mechanical 

properties. 

2.1 Thermoplastic polymers as matrix for composite materials 

Although thermoset systems such as epoxy resins have been at the forefront of 

composite development due to their exceptional specific strengths and stiffness, there 

are significant limitations to their performance 15. For instance, thermosets exhibit 

undesired characteristics such as brittle failure, significant weakening on the 

exposure to polar solvents like water, and the loss of strength from barely visible 

impact damage 16
. Apart from thermosets, thermoplastics are also another type of 

polymers widely utilised in composite materials. Thermoplastics/thermosets typically 

consist of long-chain molecules that are entwined with each other. Below their glass 

transition temperature (T5), they exist as a hard, glass-like materials and upon heating 
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above their Tg, the molecular chains start to move. Upon further heating, all the 

molecules lose their short-range order and the semi-crystalline thermoplastics are 

considered to be melted 17. 

One of the major issues confronting the use of polymers and composites in the 

automotive industry is the European Union (EU) End of Life Vehicles legislation. 

This EU legalisation limits the incineration quota to just 5 % and this has forced car 

manufacturers to recycle their products 18. Although cured thermosets can be re-used 

through pyrolysis, recycling thermoplastics is simpler and less energy is required in 

the process (melting and remoulding of the thermoplastics) 19. In terms of composite 

materials such as continuous fibre composites, they can be recycled easily by 

grinding the composites into pellets. These pellets can then be used to make short 

fibre composite materials 20. 

2.2 Development of thermoplastic composites 

In recent years, the evolution of composite materials has had a major impact on a 

range of industries, especially those requiring high-performance for structural 

applications. By using composites, improved performance can be specified by the 

designer and can come in a variety of forms, whether it is an increase in strength, a 

decrease in weight or cost, or ease of manufacture 21. Composites can offer many 

advantages over conventional materials. 

The most extensively used composite materials are fibre-reinforced polymers. 

Currently, the market is dominated by composites based on thermosetting resins, 

with developments in the field of thermoplastic composite materials having distinctly 
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lagged behind. When viewing the entire market for plastic and composite materials, 

that is all products employing polymers, thermoplastic represents 80 % of the total. 

However, the market for reinforced materials, that is composite materials, 

thermoplastics represent 20 % of the entire plastic and composite market. Within this 

narrow composite market, thermosets represent 80 % of the total material used, just 

the reverse of the entire market 22 . The increasing demands of high performance 

applications in terms of toughness and chemical resistance are motivating the 

developments in the field of thermoplastic composites 23 
' 

24
. Due to the inherent 

processing problems posed by thermoplastics, such as the high processing 

temperatures, melt-viscosities, consolidation temperatures and cost for high 

performance thermoplastics, thermosetting composites became established as 

excellent prototyping materials and were gradually translated into full scale 

production. Although a typical carbon-fibre epoxy composite will have excellent 

mechanical properties in terms of strength and stiffness, the implementation of this 

material in some fields of engineering is restricted as the ability of this material to 

cope with harsh environment is poor. For this reason, the development of high 

performance thermoplastic composites has taken place particularly for applications in 

the aerospace industry 25 27, where exposure to aviation fuels and hydraulic fluids as 

well as extreme temperature ranges is frequent. In addition to this, thermoplastic 

composites have the possibility of healing (by melting and re-moulding). Thermoset 

composites, on the other hand, do not have this ability. Thermoset components have 

to be removed and the whole structure has to be replaced by new thermosetting 

composites. All these features have resulted in the development of thermoplastics 

composites for a number of commercially available products. 
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From a manufacturing point of view, the development of thermoplastic composite 

processing has mirrored thermosets. However, the former can offer distinct 

advantages over the latter such as unlimited shelf life and the recyclability. A 2-D 

thermoplastic composite can be re-moulded into a 3-D component. Two different 

thermoplastic composite components can also be joined using welding to form a 

composite assembly. In addition to this, no chemical reaction takes place during 

these processes, as only heat and pressure are required for composite 

consolidations 28. Therefore, thermoplastic composites are particularly attractive for 

automated high volume production. 

2.3 An overview of thermoplastic composite manufacturing 

The manufacturing of continuous fibre reinforced thermoplastic materials requires 

the production of a prepreg by impregnating the fibres with the thermoplastic resins. 

The prepreg consists of either unidirectional or woven fibres. In order to fabricate the 

actual structural components, the prepreg is then laid in a mould and subsequently 

consolidated under a specific temperature and pressure 29. The two main difficulties 

in manufacturing encountered in the production of continuous fibre reinforced 

thermoplastic composites are 30: 

(a) Achieving full impregnation of the fibres (this problem arises from the 

inherent melt viscosity of the polymer). 

(b) The lack of formability of thermoplastic prepreg (difficulty in laying up in the 

mould). 
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Unidirectional, continuous fibre reinforced thermoplastic composites can be 

manufactured mainly by pultrusion 31 , the commingled yarn approach 32  , film 

stacking 33  or powder impregnation 32. The next section aims to give a brief outline 

on the manufacturing of continuous fibre thermoplastic composite. 

2.3.1 Film stacking 

The process of film stacking involves the impregnation of a woven fibre base with a 

reduced amount of resin, producing prepreg with a relatively high fibre volume 

fraction, V133. Due to the low resin content, the resulting prepreg is easily formable. 

To produce a part, the prepreg is stacked alternately in a mould with films of pure 

resin. The layers are then consolidated under a specific temperature and pressure, 

resulting in the desired thermoplastic composite structure. The disadvantage of this 

method lies in uneconomically high consolidation pressures (-10 MPa), which 

reduce the permeability of the fibre bed, and the long consolidation times (up to 

2 h) 30. Therefore, the film stacking method is not easily transferable to large-scale 

production and is best suited for small, lab-scale operations. 

2.3.2 Commingling of hybrid yarns 

The process of commingling hybrid yarns involves weaving the yarns of 

reinforcement and matrix polymer into a hybrid tow 34. A model cross section is 

shown below (Figure 3) 35. 
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Figure 3: Commingling impregnation model 135j 

The yarn can be braided to produce a two-dimensional textile or 3-D structure before 

consolidation 36 39. The setup (Figure 4) shows an example of how this form of 

composite can be processed and formed before consolidation 40. It has been showed 

that after consolidation, the homogeneity of the resulting composite is strongly 

dependent on diameters of the commingled fibres 41. A commingled weave of matrix 

and reinforcement with diameters that are approximately equal produces a more 

uniform composite. 

Braiding track " 	 Carrier 
Braider head 

Figure 4: Weaving of commingled yarns 1401 

Recent developments in processing have led to the production of three-dimensional 

woven parts from commingled yarns, these near net-shape parts exhibit good 

performance in terms of impact tolerance and interlaminar properties 42. 
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2.3.3 Solvent impregnated fabrics 

Thermoplastic resins such as polyethersulfone (PES) and polyetherimide (PEI) can 

be dissolved in a suitable organic solvent and the resulting solution used to produce 

prepregs in a similar way to thermosets 43  . A commercial example of this is 

TenCate's Cetex®, which is currently finding application in interior and exterior 

structural elements in new Boeing aircraft, such as the latest 737-800, 777-300ER, 

and 787 Dreamliner models, as well as in Airbus's A380-800 44 . One of the 

downfalls of this method lies in the manufacturing advantages: it has inherent 

difficulty in removing residual solvent creating plasticised regions within the 

polymer; these are weaker than crystalline regions in terms of mechanical properties 

and chemical resistance. 

2.3.4 Tape production by aqueous polymer slurries 

Vodermayer et al. 15 46  described a powder impregnation method using an aqueous 

polymer suspension, which is versatile enough to produce a variety of carbon fibre-

reinforced unidirectional thermoplastic prepreg tapes. Tang et al. 47  presented a 

model to correlate particle size, fibre diameter and fibre volume fraction with 

aqueous slurry concentration. 

In this study, a powder impregnation method based on the process developed by 

Vodermayer et al. 48  was used. The powder suspension thermoplastic composite tape 

manufacturing process was based on a polymer suspension-based fibre impregnation 

step that was followed by a drying, melting and consolidation. The process allowed 

direct control over the fibre volume content of the composites and reproducible and 

continuous composite manufacturing. However, more generally a powder 
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impregnation system consists of an impregnation chamber containing a slurry or 

fluidized powder through which the fibres are pulled. In a polymer suspension based 

process the continuous phase is usually water. In order to produce a consolidated 

thermoplastic composite tape from a powder impregnated preform (which are either 

unidirectional fibres or a woven mat), the powder impregnated fibres exiting the 

impregnation chamber has to pass through a set of ovens which dry off the water and 

melt the powder. To impregnate the fibres, it is followed by either cooled dies, nip 

rolls or a belt press to squeeze the molten polymer into the fibres and to remove all 

voids, producing a fully consolidated continuous thin thermoplastic composite tape. 

The main advantage of such thin thermoplastic composite prepregs is that they are 

very flexible and much cheaper and more environmentally friendly than prepregs 

produced by solvent or melt impregnation. Moreover, the short distance that the 

polymer has to spread to wet out the fibres is beneficial if high viscosity polymer 

melts, including potentially nanocomposites melts, are to be used. However, the main 

drawback of this method is that the composites properties may be affected by the 

presence of residual surfactants used to suspend the polymer powder in the 

impregnation bath. 

The consolidated thin thermoplastic composite tapes obtained from the powder 

impregnation process can be further processed into composite structures using a 

number of processes, such as compression moulding, filament winding or tape 

laying. 
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2.3.5 Full consolidation of unidirectional thermoplastic prepregs 

A fully impregnated composite tape can be produced via a modified pultrusion 

process, whereby the presence of a suitable reagent on the fibre surfaces causes an 

increase in molecular weight of the polymer during processing 42. The resulting 

composite comes in the form of tape of variable width. The fully impregnated 

prepreg is stiff and does not exhibit the drape properties commonly seen in its 

thermosetting cousins. This problem has been somewhat overcome by weaving 

narrow tapes into fabric form. 

2.4 Carbon fibre reinforced PEEK composites 

PEEK is a semi-crystalline thermoplastic. It is slowly replacing metals and other 

materials in high performance application such as in the aerospace industry such as 

leading edges of A350 Airbus wings. This is due to the fact that PEEK is a high 

strength thermoplastic with high thermal properties and good chemical 

resistivity 49  ' 59. This polymer is ideal for highly aggressive environments. PEEK can 

withstand a continuous temperature of up to 260 °C and even higher temperatures for 

short duration. It also has outstanding wear resistance over wide ranges of pressure, 

velocity and temperature 51  ' 52. More importantly, it has excellent chemical resistivity 

to jet fuels, salt spray and chemical/biological agents at elevated temperatures. As far 

as the mechanical properties of PEEK are concerned, it possesses tensile modulus 

and tensile strength of 3.6 GPa and 100 MPa 53  , respectively. It also possesses 

flexural modulus and flexural strength of 4.1 GPa and 170 MPa 53, respectively. 

When PEEK is reinforced with carbon fibres, its properties can be improved 54 -58. 

This is highly favourable as a combination of high stiffness and low density of the 
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carbon fibre reinforced PEEK composites makes the material ideal for innovative 

designs that require the combination of non-metallic and metallic materials. The 

resulting composites will also have high toughness (approximately 10 times higher 

than traditional carbon fibre reinforced thermosets composites). High performance 

PEEK composites can be produced. Table 1 shows the mechanical properties of 

carbon fibre reinforced PEEK composites. 

Table 1: Mechanical properties of carbon fibre reinforced PEEK composites [54] 

Fibre direction 0° 90° 

Modulus / GPa Strength / MPa Modulus / GPa Strength / MPa 

Tensile 138 2070 10.5 99 

Compression 124 1360 n/d n/d 

Flexural 124 2000 n/d n/d 

2.4.1 Processing and manufacturing of carbon fibre reinforced PEEK 

composites 

When pressing laminates, it is crucial that the fibres in all plies are aligned accurately 

and that the surfaces are free of contaminants, such as oil, as this could potentially 

lead to poor adhesion in the polymer. Associated problems with pressing tend to be 

dry fibre regions, excess polymer regions, specimens that are not flat, fibre waviness 

in the sample and poor consolidation resulting in delamination. Different curing 

cycles have been examined and it was found that differences on specimen 

dimensions and consolidation pressures strongly affect the mechanical performance. 

Cogswell 59  suggests three clear stages of hot pressing laminates: 
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1. Heating with a 0.1 MPa surface pressure up to between 370 °C — 390 °C for 

5 min + 1 min / ply up to 30 min 

2. Consolidation at 6 MPa for 5 min 

3. Cooling with consolidation pressure maintained for about 5 min at 40 °C/ min 

When carbon fibres are added into PEEK, the crystallinity of the polymer matrix can 

be affected 57 60 . Kim et al. 61 62  also studied the optimisation of processing carbon 

fibre/PEEK composites for maximum mechanical properties. Figure 5 summarises 

the effect of cooling rates on crystallinity in PEEK composites. The authors also 

examined the effects of cooling rate on crystallinity on the interlaminar shear 

strength (ILSS) as measured by short beam shear tests and the results are shown in 

Figure 6. 
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Figure 5: Effect of cooling rate on the crystallinity in CF/PEEK composites [62] 
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Figure 6: Interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of 

CF/PEEK with varying cooling rate [62] 

In addition to various cooling rates, the crystallinity of PEEK can also be altered 

through the use of solvents. PEEK composites are resistant to solvents, but they can 

swell in dichloromethane (degreasing agent) and paint stripper (methyl ether ketone). 

Stober et al. 63  explored the effect of dichloromethane on PEEK films of varying 

crystallinity. This work aims at studying the thermo-mechanical properties for 

processing applications (possible applications include the use of methylene chloride 

for the reduction of annealing times to induce crystallinity). It was found that 

amorphous PEEK swells in 1,1,2,2-tetrachloroethane (TCE) 64  with up to 240 % 

mass uptake within 2 to 3 min upon immersion in solvent. This is a direct result of 

acid-base interaction with the C=0 and 0-0 bonds in the PEEK, which acts as a 

weak base. TCE exhibits such good interaction with PEEK in comparison with other 

organic solvents such as chloroform because it has more acidic sites per molecule 64. 

Wolf et al. 65  investigated the adsorption - desorption and resorption of toluene and 

carbon disulphide (CS2) on amorphous and semi-crystalline PEEK. The authors 

reported that absorption in amorphous PEEK is much more apparent than in 

crystalline PEEK, where toluene is not absorbed and no swelling occurs. This could 
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be due to the reduction in the number of free basic sites since they are involved in the 

formation of lamella in a crystalline phase. The authors also found a higher rate of 

swelling with CS2  when compared to toluene. In addition to this, the extent of 

swelling by CS2  is uniform. Solvent induced crystallisation occurred when the PEEK 

is amorphous because swelling is predominantly through the thickness of the PEEK 

whilst in semi-crystalline PEEK it is near isotropic. 

Dillon 66  reported problems with pressing flat laminates uniformly due to uneven 

pressure from the machine. This had led to PEEK melt flowing out from the edges of 

the mould. Patel 67  reported that the hot plates vibrated at higher consolidation 

pressures which results in reduced crystallisation rates. The authors also found 

delaminations around the sides of the samples that were subjected to re-pressing. 

Nevertheless, it was found that carbon fibre/PEEK can be re-pressed up to five times 

without any detrimental effects on the mechanical properties of the composites. 

2.5 Carbon nanotubes reinforced PEEK nanocomposites 

Individual CNTs have been predicted and observed to have remarkable properties. 

Axial stiffness and strength are of the order of 1 TPa and 50 GPa 2 ' 68, respectively, 

and densities of less than 2 g/cm3. A high degree of flexibility is retained, with 

recorded reversible deflections of over 120°. On the other hand, multi-walled CNTs 

are generally electrical conductive and if sufficiently crystalline may be ballistic 

conductors 69. 

Over recent years a number of attempts have been made to produce CNT-based 

70 nanocomposites stimulated by these constituent properties . There has been 
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considerable success in generating useful levels of electrical conductivity in 

otherwise insulating thermoplastic matrices 71  , and at remarkably low loading 

fractions (less than 0.01 wt%) in epoxies 72 73. Regarding mechanical properties, 

nanocomposites with improved properties have been made, but progress has so far 

been hindered by a number of issues, not least the difficulty of growing perfectly 

crystalline CNTs in large quantities. Nevertheless, useful composite properties may 

be obtained with existing bulk materials and given the enormous research efforts on 

CNT synthesis, further improvements may be anticipated as new materials become 

available. 

Table 2: Mechanical properties of CNT reinforced PEEK nanocomposites containing various 

CNT loading fractions 1791 

Tensile Modulus (GPa) Tensile Strength (MPa) 

0 wt% 4.0 95 

5 wt% 4.6 105 

10 wt% 5.2 110 

15 wt% 5.5 120 

High performance PEEK nanocomposites can also be produced by the incorporation 

of carbon nanotubes into the matrix. This will create so-called nanocomposites 74 78. 

Due to the high specific area and high strength of CNTs, the mechanical properties of 

CNTs reinforced PEEK nanocomposites can be improved 79  ' 80. Sandler et al. 79  

showed that the tensile strength and modulus of the nanocomposites improved by as 

much as 38 % and 26 %, respectively, at a loading fraction of 15 wt%. Table 2 shows 

the mechanical properties of PEEK nanocomposites at various CNT loading 

fractions. 
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2.6 Crystallinity of semi-crystalline polymers as a matrix for composite 

materials 

An important factor that influences the mechanical properties of composite materials 

is the crystallinity of the polymer. As aforementioned, the crystallinity of a polymer 

is strongly governed by the cooling rates employed during manufacturing or post 

manufacturing annealing of the specimens 81  ' 82. During these processes, the fracture 

toughness of the composite can be altered 83. Furthermore, the addition of the CNT 

into polymer matrix is known to affect the degree of crystallinity of the composite. 

The trends observed are due to the acceleration of crystallisation, enhanced 

nucleation, reduced growth rate, changes in spherulitic morphology and formation of 

imperfect crystallites. 
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Figure 7: Variation of composite mode I interlaminar fracture toughness, matrix ductility, 

interfacial shear strength (IFSS) as a function of cooling rate [82] 
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However, experimental evidence for the crystalline coating around the CNT has not 

been conclusively demonstrated due to the lack of quantitative correlations 84. Studies 

by Gao et al. 81 ' 82  have explored into Mode I and Mode II fracture toughness and 

found that the G1c increased as cooling rates increase, starting from 1 °C/min to 

180 °C/min (Figure 7). As expected, a low cooling rate resulted in an increase in the 

degree of crystallinity of the polymer matrix. It should be noted that the fracture 

toughness is strongly correlated with the interaction between two important 

properties: the matrix ductility and the interface interaction at the fibre-matrix 

interface. The ductility is proportional to the cooling rate while it is non-proportional 

for the fibre interface bond strength. 

Extensive studies comparing the crystallinity and the crystal morphology of carbon 

fibre reinforced PEEK (such as the commercially available APC-2 composites) and 

neat PEEK have been done 85-93. Jar et al. 94  investigated the effects of different 

thermal treatments on the crystal morphology and growth. The authors found that 

specimens which were subjected to heat treatment at 350 °C allowed more crystallite 

formation as compared to those treated at 370 °C and 390 °C. In addition to this, the 

crystallinity increases with slower cooling rate (Figure 5). These findings were also 

confirmed by Cebe 95 , where the author carried out extensive research on the 

annealing of PEEK. It was showed that increased annealing time resulted in 

increased density and greater crystal perfection of PEEK. Furthermore, when carbon 

fibres were incorporated into the matrix, the fibres acted as nucleating sites, which 

allow the spherulites to grow 96. However, this effect is highly dependent upon the 

diameter, the quality and the distance between the carbon fibres 97. 
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2.7 Hierarchical fibre-reinforced polymer nanocomposites 

Over the past four decades, fibre-reinforced polymer composites have been 

intensively studied and have found wide ranging practical applications, from sporting 

equipment to aerospace and even in the oil and gas industry. Despite these 

developments, there is still a need to improve certain fundamental properties, 

particularly transverse, interlaminar and off-axis performance, as well as the 

resistance to environmental, chemical, and thermal damage. In addition, the through-

life costs associated with composites are a significant factor during material 

selection. 

On the basis of the remarkable properties predicted for and measured on individual, 

high-quality CNTs, a wide range of applications have been suggested, ranging from 

nanoelectronics to catalyst support materials. However, one of the most promising 

areas is the use of CNTs in polymer composite materials. Research efforts were 

mainly focussed on exploiting the remarkable mechanical properties of individual 

CNTs, particularly their uniquely high strength, for the development of polymer 

nanocomposites. However, there is an immediate opportunity of utilising the 

existing, less crystalline CNTs produced in large quantities by a variety of 

manufacturers (such as Nanocyl, Bayer Materials Science and Arkema) in 

applications where conventional reinforcements cannot be physically accommodated. 

One particularly exciting prospect, and one which has not yet been fully explored 

although the numbers of publication are now rapidly increasing, is the possibility of 

producing CNT reinforced matrices for conventional advanced fibre reinforced 

polymers. 
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As mentioned above, conventional composite laminated have very good in-plane 

mechanical properties but are relatively weak in the through thickness direction, 

because the polymer matrix holds the micrometre sized reinforcing fibres in place. 

High mechanical loads cannot be sustained by polymers alone which have low 

mechanical properties. It was, therefore, anticipated that the incorporation of 

nanofillers, such as CNTs or carbon nanofibres (CNFs), into the matrix of 

conventional composites to create a hierarchical structure would result in significant 

improvements of the through thickness matrix dominated properties. 

Two entirely different concepts to create hierarchical composites were envisioned: 

namely to disperse the nanoreinforcement entirely throughout the composite matrix 

or to attach the nanoreinforcement directly onto the mircometre-sized reinforcing 

fibres (Figure 8). A real example of a hierarchical carbon fibre reinforced CNF 

reinforced polymer is shown in Figure 9. The literature contains quite a number of 

reports of CNT modification of thermosetting matrices 98  - 104; however there is only 

very few reports on hierarchical thermoplastic composites which have yet to be 

published. The second approach has mainly focused on direct "grafting" CNTs or 

CNFs directly onto the reinforcing fibres and thereby creating "hairy fibres" (for a 

real example see Figure 10. The literature contains reports on CNT grafted inorganic 

105 - 108 and 	 109 , 110 , 	 111 - 116 (ceramic) glass fibres 	carbon fibres 	and even Kevlar 

fibres 117. In addition to the direct growth of CNTs on fibres, with electrophoretic 

deposition (EPD) of CNTs on fibre surfaces 118  and the use of CNT containing epoxy 

119 sizings 	have been explored to improve mainly interface dominated composite 

properties. 
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Figure 8: Schematic diagrams of conventional fibre-reinforced polymer composites and CNT-based 

hierarchical polymer composites 11201 

Figure 9: SEM micrograph of 5 wt% CNFs reinforced CF epoxy composites 11211 

Because of the challenges associated with dispersing CNTs within a liquid matrix 

and the impregnation of a micrometre sized reinforcing fibres with such a CNT 
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modified resin, self-filtration effects occur. For example using resin transfer 

processes, self-filtration prevents resin-suspended CNTs from penetrating between 

the conventional fibres 122. More research focused on directly "grafting" CNTs or 

CNFs onto the fibre surface using different catalyst systems and synthesis methods. 

A variety of morphologies and distributions of CNTs or CNFs grafted fibres has been 

reported (see Figure 10). Based on the early studies, the chemical vapour deposition 

(CVD) route is an effective and practical method for CNT grafting. However, plasma 

enhanced (PE) CVD is another effective way to graft CNTs or CNFs to fibres. This 

process 111  works at much lower temperature and allows for better control. 

Figure 10: SEM micrographs of silica fibres before (a) and after CNT growth reaction (b), (c) using the 

ICVD method with increasing growth times and after the deliberate removal of the grafted CNTs (d) 11101 

A green (biodegradable and renewable) analogue to the CNT grafted fibre system 

was produced by coating natural fibres with bacterial cellulose nanofibrils 123 - 125 
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The mechanical properties of the primary sisal fibres were maintained. The IFSS 

between the bacterial cellulose coated sisal fibres and the bio-derived polymer 

poly(L-lactic acid) (PLLA), as determined using the single fibre pull out test, 

increased significantly. The modified sisal fibres were incorporated into PLLA, to 

obtain a new class of truly green hierarchical composites. The tensile strength and 

stiffness of unidirectional compression-moulded composites improved in both 

parallel and perpendicular loading direction to the primary fibres. The rate of water 

uptake, a critical problem for natural fibre composites, was also reduced. These 

results are both promising in their own right and encourage further development of 

the analogous CNT reinforced composite systems. 

2.7.1 Fabrication of hierarchical composites 

Three main processes for manufacturing hierarchical thermoset polymer composites 

are predominantly studied: resin transfer moulding (RTM), vacuum assisted resin 

transfer moulding (VARTM) and a manual resin impregnation-hot pressing 

technique 126 . In order to manufacture hierarchical composites with the desired 

properties, the CNTs or CNFs must be dispersed uniformly in the polymer matrix 

and self-filtration of the CNTs on micrometre sized fibre bed must be prevented. 

Furthermore, care must be taken to minimise the void content introduced during resin 

impregnation. It was shown that the agglomeration of CNFs or CNTs can reduce the 

effective bonding between the polymer and the reinforcement 127. Moreover, large 

CNTs or CNFs agglomerates will be filtered more effectively by the reinforcing 

fibres bed during resin impregnation, especially if the agglomerate size is close to the 

pore dimensions (i.e. the spacing in between the reinforcing fibres) of the fibre 

assembly. Furthermore, with increasing the CNT (or CNF) concentration, the resin 
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viscosity increases massively, which will affect manufacturing processes, such as 

RTM and VARTM, which require the resin to flow easily. The high resin viscosity, 

local CNT filtration, air entrapment among CNTs can all result in voids, which 

significantly affect the mechanical properties of hierarchical composites. Hence, 

there are still many manufacturing issues that need to be addressed to achieve 

uniform CNT dispersion and better CNT alignment, higher loading fraction of CNTs 

and low void content. To circumvent these problems we proposed the use of 

thermoplastic matrices which will enable the successful manufacturing of 

unidirectional fibre reinforced nanocomposites. The use of thermoplastic systems 

may offer significant advantages in enabling suitable processing strategies. The 

difficulty in producing thermoplastic composites is the impregnation of the 

reinforcing fibres by very viscous polymer melts; however, new powder 

impregnation processes (described above) have proved to be very effective and 

versatile for the manufacture of unidirectional thermoplastic composites 46. However, 

this process requires fine nanocomposite powders for fibre impregnation that can 

either be created by solution precipitation 128, spray-drying from solutions or micro-

extrusion and cryogenic grinding. Such a process is expected to yield an 

approximately random arrangement of CNTs around the primary carbon fibre 

reinforcement, since the flow paths during composite consolidation are short in this 

technique. 

2.7.2 Mechanical and physical properties of hierarchical composites 

Nanocomposites with improved mechanical properties have been produced and given 

the enormous research efforts on CNT synthesis further improvements may be 

anticipated as new materials become available. 
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Iwahori et al. 129  measured the in-plane tensile properties of carbon fibre CNF 

reinforced epoxy composites. They found that the tensile strength of the CNF 

modified epoxy composites improved up to CNF loadings of 5 wt%. Moreover, 

longer CNFs at the same loading fractions resulted in larger property improvements. 

The authors reasoned that this improvement was because longer well dispersed CNF 

resulted in better interfacial adhesion between the CNFs and matrix. However, for 

increased CNF loadings (10 wt%) the longer CNFs resulted in a weakening of the 

composites as it became more difficult to disperse the longer CNFs in the matrix of 

the composites uniformly without creating voids and agglomerates. However, they 

also reported that the addition of CNFs resulted in a significant reduction of the 

tensile modulus, which may be due to the presence of defects such as voids and 

agglomerates. On the contrary, Yokozeki et al. 121  reported that the tensile stiffness of 

carbon fibre reinforced CNTs reinforced epoxy composites increase slightly with 

increasing CNTs content while the tensile strength was independent of CNT loading 

fraction. Based on these experimental results, it can be concluded that the in-plane 

tensile properties of fibre reinforced CNT (or CNF) reinforced thermoset polymer 

composites are not significantly improved in comparison to conventional fibre 

reinforced thermoset composites, which is not unexpected since tensile properties of 

composites are fibre dominated. Moreover, the introduction of defects during 

manufacturing of hierarchical composites, such as nanomaterial agglomerates and 

voids, can reduce the tensile strength of hierarchical composites. 

Iwahori et al. 129  measured the compressive properties of carbon fibre reinforced 

CNF reinforced epoxy composites. They found that the incorporation of CNFs into 

the matrix resulted in 15% higher compressive strength as compared to the neat 
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carbon fibre epoxy resin composites. However, longer CNFs at higher loading 

caused a dramatic decrease of the compressive modulus of the hierarchical 

composites, which they attribute to the presence of defects, such as voids and CNFs 

agglomerates, induced during manufacturing. Based on these experimental results, it 

can be concluded that CNF reinforcement of carbon fibre epoxy composites can 

yield a considerable improvement in the compressive properties over conventional 

carbon fibre epoxy composites. The main reason for the improvement of the 

compressive properties is the increased modulus of resin matrix which restricts fibre 

buckling under compression load. 

Since interlaminar properties are matrix dominated it is reasonable to expect a 

significant improvement of the interlaminar properties by modifying the matrix of 

conventional composites by incorporation of CNTs or CNFs. Gojny et al. 130 

conducted short beam tests to determine the interlaminar shear strength (ILSS) of 

glass fibre reinforced carbon black and DWCNT-NH2  reinforced epoxy composites. 

A significant improvement of the ILSS by 20 % with the addition of 0.3 wt% 

DWCNT-NH2  into the composite was found. The increased epoxy matrix strength 

caused by the incorporation of the nanoreinforcements is the most important reason 

for the increased ILSS. Moreover, the increased interfacial bonding between the 

glass fibres and the nanoreinforcement could be another possible mechanism which 

enhances the ILSS. 

As discussed above, the incorporation of carbon nanomaterials does not affect the 

tensile properties of thermoset composites but leads to, if processed into defect free 

composites, significant improvements of matrix dominated interlaminar and 
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compression properties of these composites. However, the presence of CNTs in 

fibre-reinforced composites can be beneficial for other physical properties, such as 

132 electrical 13° ' 131  and thermal conductivity, thermal stability 	and flame 

retardancy 133. 

2.8 Summary 

Published results indicate the importance of thermoplastic composites but also the 

difficulty associated to their manufacturing and processing, particularly in the case of 

PEEK which has a high processing temperature and hence demands specific 

equipments. Annealing seems to be of importance and carbon fibre can sometimes 

act as a nucleating agent promoting spherulite growth. CNTs have excellent 

theoretical mechanical properties. Reinforcing a matrix with CNTs could lead to 

improved mechanical properties but these improvements have so far not been seen, 

specifically in thermoplastic matrices. CNTs could also act as nucleating agents, 

hence care must be taken to differentiate the reinforcing effect of CNTs from that of 

CNTs being a nucleating agent. Hierarchical composites show promising results to 

enhance matrix dominated properties, such as mechanical but also, electrical, thermal 

and chemical properties. 
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Chapter 3 - Experimental 

This chapter describes the experimental work on carbon nanomaterial 

characterisation, composite manufacturing and composite mechanical testing 

performed during the course of this research using various materials, characterisation 

techniques and testing methods. Materials used are described and their properties as 

published by suppliers provided. Characterisation techniques used, such as scanning 

electron microscopy (SEM), surface area measurement (BET), thermal gravimetric 

analysis (TGA), laser raman spectroscopy (LRS), differential scanning calorimetry 

(DSC), laser diffraction particle sizing and single fibre pull-out test, are explained 

including the parameters used. Furthermore, the manufacturing of PEEK composites 

using various equipments including a micro-extruder, twin-screw laboratory 

extruder, injection moulder are described. This chapter also describes the production 

of CNT-reinforced PEEK powder as well as the thermoplastic continuous composite 

line process and the compression moulding of laminates. Finally mechanical testing 

is explained including tensile testing of extruded monofilament and injection 

moulded specimens, compression, in-plane shear and flexural testing of injection 

moulded materials and lastly flexural and short beam shear testing of thermoplastic 

and hierarchical composites." 

3.1 Materials 

Carbon nanotubes (CNTs) were chosen for their (theoretical) high strength and 

modulus compared to any other available reinforcements (such as carbon fibres). The 

main advantage of using CNTs is their small diameter, which results in high specific 

surface area 134  Since their discovery, much work has been done to synthesise CNTs 

on an industrial scale at lower cost. Several companies now produce CNTs with 
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different qualities and diameters mainly by using the Chemical Vapour Deposition 

(CVD) technique. The choice of CNTs for this specific project was chosen based on 

past experience, as is detailed below. The CNTs used were from NanoAmor 135 , 

Nanocyl 136, Heji Inc 137, Baytubes 138  and Toray R&D 139  (Table 3). 

Table 3: The different types of CNTs used in this study [135] - [139] 

Supplier Type of carbon nanotube Diameter (nm) 

Heji Inc 

Multi wall CNT <8 

Multi wall CNT 8 —15 

Multi wall CNT 10 — 20 

Multi wall CNT 20 — 30 

Multi wall CNT 30 — 50 

Multi wall CNT 20 — 40 

Single wall CNT 1 — 2 

Toray R&D Double wall CNT —3 

NanoAmor 
Multi wall CNT 10 — 30 

Multi wall CNT 60 — 100 

Carbon Nanofibres 100 — 200 

Nanocyl Multi wall CNT —10 

Baytubes Multi wall CNT 5 — 20 

The first supplier was NanoAmor (Los Alamos, USA) and the second was Heji Inc 

(Beijing, P.R. China). These two suppliers offered a range of different diameters of 

CNTs, which had been produced in a similar manner. Heji Inc was chosen because of 

the lower cost of their materials. This was necessary within this investigation for 

making hierarchical nanocomposites where an increase in the quantity of the 

materials is required. Nanocyl (Sambreville, Belgium) has been improving its 
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processes and now produces different grades of CNTs, as well as different surface 

modified CNTs. They also have an industrial grade of CNTs (NC7000), which was 

selected for the current project, as it was available in large quantities at a relatively 

low cost (€ 500 for 2 kg). In addition to this, double wall CNTs from Toray Research 

& Development (Nagoya, Japan) was used to further complete the type of materials 

reviewed, as these CNTs have a very narrow diameter range. These are not 

commercially available yet but their quality could be of interest. The length of CNTs 

is not known as it is technically difficult to measure their length due to their small 

diameters and relatively high aspect ratio, it is assumed that in most cases, their 

length is around 1 rim. 

Two different types of commercially available continuous, high strength and high 

strain, industrially oxidised, polyacrylonitrile (PAN) based carbon fibres were used 

for this research namely AS4 140  and T700 141.  The properties of these fibres, as well 

as epoxy matrix composites are summarised in Table 4. 

The T700 carbon fibres were kindly supplied by Torayca® (Toray Industries, Tokyo, 

Japan) and the AS4 fibres by Hexcel Corporation (Duxford, Cambridge, UK). 

Although both carbon fibres were industrially oxidised, the Hexcel AS4 fibres were 

available in an unsized form whereas the Torayca T700 fibres were only available 

with an applied sizing. 
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Table 4: Properties of CF used in this study [140] , [141] 

Fibre type Torayca® T700SC HexTowTm AS4 

Typical fibre properties 

Tow count 12000 12000 

Tensile strength / MPa 4900 4480 

Tensile modulus / GPa 230 231 

Elongation / % 2.1 1.8 

Density / g/cm3  1.8 1.79 

Typical epoxy composite properties (matrix details unknown) 

Volume Fraction / % 60 62 

Tensile strength / MPa 2550 2211 

Tensile modulus / GPa 135 141 

Short Beam Shear 

Strength / MPa 
90 124 

The thermoplastic used in this research is polyetheretherketone (PEEK). PEEK is 

widely regarded as the highest performance thermoplastic material available in the 

market 54. It is a semi-crystalline thermoplastic with the chemical structure shown in 

Figure 11. 

9 
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Figure 11: Molecular structure of PEEK (drawn using ChemDraw) 

PEEK exhibits excellent thermal characteristics; a glass transition temperature of 

143 °C, melting temperature of 343 °C, a process temperature of 360 °C 54  and a 

density of 1.30 g/cm3. This polymer has found uses in sectors, which in the past 

would have been limited to thermoset polymers. The other benefits of PEEK are its 
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excellent resistance to chemical environments and superior toughness properties. In 

addition to this, it has also been shown that the toughness of this polymer is not 

compromised by the addition of reinforcement 142
. Unfortunately, this polymer is 

relatively expensive and therefore, limited to the defence and aerospace industry. In 

terms of the mechanical properties of PEEK, there are strongly dependent on the 

degree of crystallinity of the polymer. Regular sequencing of the repeat units allows 

elements of the neighbouring polymer chains to pack together in a preferred, lower 

energy, spherulitic crystalline configuration 59. The degree of crystallisation and the 

distribution of spherulitic regions are governed by the thermal history of the polymer, 

also a suitable degree of crystallinity can be obtained by annealing of PEEK and 

subjecting it to regulated cooling conditions. The benefits of crystallinity can be 

found in the high temperature performance of the polymer and its resistance to creep 

phenomena. The increasing use of PEEK in the industries such as aerospace, 

offshore oil and gas industry stands as evidence to this. The grades of PEEK used in 

this study were 150, which is a low melt viscosity grade and available as a powder, 

and Vicote 804 dispersion (Victrex, Lancashire, UK). 

The surfactant used in this study was Aerosol OT-75% E (Cytec, Wrexham, UK). 

Laminate consolidation was achieved using Upilex polyimide film and adhesive tape 

(UBE Europe GmbH, Dusseldorf, Germany) in combination with McLube 1862 

mould release (McLube, Aston, PA, USA). Other chemicals used in this study were 

diphenylsulfone (DPS), acetone and ethanol (VWR, UK), tetrachloroethane (TCE) 

(Sigma Aldrich, UK), dry ice (BOC, UK) and polypropylene membrane support 

(Novaltex 3471, UK). 
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3.2 Characterisation techniques 

3.2.1 Scanning electron microscopy (SEM) 

SEM was performed using a LEO Gemini field emission gun electron microscope 

(Oberkochen, Germany) with an accelerating voltage of 5-10 kV. Carbon 

nanomaterials were placed on a stub using a carbon adhesive tab, no coating was 

applied prior to the SEM characterisation. It was used to measure the diameter of 

individual CNTs. A high number of CNTs were counted and measured to generate a 

statistically significant and hence an accurate image of their diameters (see Appendix 

for details of the procedure). All composites were coated using chromium with the 

following parameters, the coating current and coating time used were 50 mA and 

30 s, respectively. 

3.2.2 Surface area measurement (BET) 

Brunauer-Emmett-Teller (BET) surface area measurement was performed on 

Micromeritics ASAP 2010 equipment. It uses the adsorption isotherm of nitrogen at 

77 K under vacuum and calculates the volume of nitrogen adsorbed on the material 

surface for different relative pressures. Two types of surface area measurement can 

be calculated; a multipoint or a single-point determination, both are described in the 

International Standard 9277 143  The first one takes into account the portion of 

relative pressure from 0.05 to 0.3 and the second takes only one point at a relative 

pressure of 0.3. The BET equation is as follows: 

P 

P= 	+ 	X 
1 C —1 P 

na r iZP \I 7/m c ll ni c Po  

L \ Po (1) 
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where 	na  = specific amount adsorbed 

P/Po = relative pressure 

= specific monolayer capacity of adsorbate 

C = BET parameter 

P  

By plotting 
P 
— as the x-axis and 	Po 	as the y-axis, a straight line 

n,[1—W1 

y = a + bx is obtained from relative pressure values of 0.05 to 0.3. Its slope b and 

	

1 	
n 

intercept a correspond to C- - and 	, respectively and hence, it is possible to 

	

,, C 	,,
1
C 

derived the monolayer capacity nin  = 	1 and BET parameter C = —b +1 . The 

	

a+b 	 a 

specific surface area A, is calculated by assessing the average area occupied by each 

molecule in the whole monolayer A, = n,n  • a,,, • L where am  is the molecular cross- 

sectional area (for nitrogen at 77 K, its value is 0.162 nm2) and L is the Avogadro 

constant (6.022 x 1023  mo1-1). Finally, the specific surface area expressed in m2/g is 

A,= 9.76 x 104 nn, 

Approximately 100 mg of dried CNT powder was added to a glass tube, sealed and 

weighed to the 4th  decimal place (the scale was in mg). The tube was then subjected 

to a degassing step within the equipment to dry and condition the sample further 

under vacuum at a temperature of 120 °C for approximately 6 h. After the 

conditioning procedure, the sample was weighed again and positioned onto the 

adsorption part of the equipment, firmly sealed above a liquid nitrogen tank. 
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3.2.3 Thermal gravimetric analysis (TGA) 

TGA measures the weight loss during an increase in temperature with variables that 

are both controlled and monitored. It provides information as to the purity of the 

sample by determining the amount of residue left at the end of the experiment. The 

level of graphitic structure of the sample is evaluated by measuring the onset 

decomposition temperature. The higher the latter is, the more graphitic the material 

should be and the lesser amorphous carbon is present. TGA data were recorded on a 

PerkinElmer Pyris 1 in a compressed air atmosphere. In all of the experiments, the 

ramp rates were 10 °C/min and air flow rates were 20 mL/min, using around 10 mg 

of material each time. 

3.2.4 Laser Raman Spectroscopy (LRS) 

Laser Raman spectroscopy is a vibrational spectroscopic technique 144,  which is based 

on the non-zero change in polarisation during vibration. When an incident beam is 

shone on a molecule, the energy associated with the incident beam can be absorbed or 

scattered. The process of absorption requires that the energy of the incident beam is 

equal to the energy difference between the two states of the molecule. The two states 

are accompanied by a change in the dipole moment of the molecule. This virtual state 

system is very short lived and it relaxes by the emission of photons. This is the basic 

principle behind infrared spectroscopy. In addition to absorption, the incident beam 

can also be scattered. This scattering effect (Raman effect) is the exchange in energy 

between the incident and emitted radiation caused by the inelastic scattering of 

photons. 
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The two Raman active modes of carbon fibres can be observed at the Raman bands of 

1580 cm-1  and 1355 cm-1. The 1580 cm-1  Raman band corresponds to the deformation 

mode of the hexagonal carbon ring structure, which is usually associated with the 

graphite crystal layers. The 1355 cm -1  Raman band, on the other hand, corresponds to 

the polycrystalline graphitic mode 145  Another important parameter is the ratio 

between the 1580 cm -1  and 1355 cm -1  Raman band. This parameter is directly related 

to the amount of defective and crystalline modes in carbon fibre samples. This 

parameter measures the edge dislocations, vacancies and crystal edges. 

LRS was performed using a LabRam Infinity Analytical Raman Spectrometer (Jobin 

Yvon Horiba, Middlesex, UK) in order to examine the bulk properties of the carbon 

fibres. A red laser operating at a wavelength of 633 iun was used. The laser was 

focused on the sample using a 100x objective at a power of 100 % through a 200 iim 

aperture. A grating of 600 mm -1  with an acquisition time of 20 s was applied while 

the measurements were carried out in the wavenumber range from 100 to 3000 cm-1. 

The room was temperature controlled (20 °C). Six individual spectra were taken at 

various locations along the sample. The spectra were analysed with a mixed 

Gaussian-Lorentzian curve fit with a linear baseline to determine the peak areas and 

shifts. 

3.2.5 Differential scanning calorimetry (DSC) 

DSC (Q2000, TA Instruments, UK) was used to evaluate the crystallinity of PEEK in 

a nitrogen environment. Two types of specimens were examined; PEEK and 

PEEK/CNT, both of which underwent the same thermal treatment prior to and during 

DSC characterisation. The weight of each specimen was approximately 10 mg, 
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which were cut from injection moulded specimens. A single heating at 10 °C/min 

was used for all specimens to evaluate crystallinity. 

3.2.6 Laser diffraction particle sizing 

Laser diffraction particle sizing was used to determine the powders particle size 

distribution (PSD) using a Mastersizer 2000 (Malvern, Malvern, UK). The principle 

of this technique is based on the scattering of a laser beam when particles passes 

through, the angle the light is scattered is directly related to the particle. The 

diffraction angle increases logarithmically with decreasing particle size. The average 

particle size (d50) defines the diameter where 50 mass % of the particles will be 

larger and smaller than this average equivalent diameter. Solutions (5 ml) were 

prepared using a concentration of 60 mg/ml with 2 wt% of surfactant. 

3.2.7 Single fibre pull-out test 

Single fibre pull-out tests were performed to determine the apparent interfacial shear 

strength (TIFss) between carbon fibres and the matrix. This is used as a measure of the 

practical adhesion at the fibre/matrix interface. A single fibre was partially embedded 

into the polymer melt at a pre-determined length of between 50-150 pm using a 

homemade apparatus 146 . The solid polymer pellets were placed on an aluminium 

sample carrier, heated and held at a temperature above Tm  of the polymer while the 

fibre was penetrated into the melt. Once the embedding of the fibre has been 

performed the sample was cooled to room temperature using an air stream. A laser 

diffraction method 147  was used to determine the fibre diameter. The fibre pull-out 

test was performed using a piezo-motor fixed on a high stiff frame to avoid energy 

storage in the free fibre length between the matrix surface and the clamping device. 
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The fibre was drawn at a speed of 0.2 gm from the matrix while the force was 

recorded throughout the experiment by the load cell and logged using a computer. 

The maximum load is correlated to the full debonding of the fibre-matrix interface 

along the embedded length from the matrix. The shape of the curve itself reflects on 

the failure event at the interface 148. The apparent shear strength TiFss  was calculated 

from the maximum pull-out force Fmax  required to trigger the debonding of the 

embedded carbon fibre from the matrix using the following equation: 

Finax  7-IFS'S  
71" d f Le (2) 

where clf  is the diameter of the fibre and Le  is the embedded fibre length. The 

embedded fibre length is measured by the intersection of the friction slope after 

debonding occurred and the displacement axis when the force is 0 N (Figure 59). 

3.3 Manufacturing of PEEK composites 

3.3.1 Micro-Extruder 

Melt blending of PEEK/CNT was used to create nanocomposite blends using a 

micro-compounder (DSM Research 5 cm3  micro-compounder, Geleen, The 

Netherlands). This is a counter-rotating twin-screw extruder (Figure 12) with a 

maximum capacity of 5 cm3. A recirculation channel could be used to adjust the 

residence time. Prior to processing, materials were dried in an air circulating oven 

overnight at a temperature of 50 °C. Nitrogen purge gas was used during the whole 

processing through an inlet at the top of the micro-extruder to create an inert 

atmosphere during processing, to reduce the polymer degradation and remove any 

trapped air from within the melt. 
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Figure 12: Cross-sectional view of the micro-extruder 

5.5 g of nanocomposites were prepared in a two stage process, the parameters for 

which were optimised through parametric preliminary trials. The first step was to 

feed materials at a temperature of 400 °C and a speed of 20 rpm, these parameters 

were selected to ensure a low viscosity of the polymer upon melting (400 °C is the 

maximum processing temperature recommended before excessive degradation and 

oxidation of the polymer occur over time) and a low rotational speed to facilitate the 

feeding of the granules within the micro-compounder throat and feeding section. The 

speed was then increased to 80 rpm and the temperature was decreased to 360 °C and 

mixed for 5 min to increase the amount of shear mixing and therefore improve the 

level of CNT dispersion. The blends were extruded through a 1 mm diameter circular 

shape die as monofilaments. 

Films were also manufactured from the micro-compounder by compression 

moulding 2 g of material was placed under a 2 MPa pressure at 390 °C. The 

produced films have a typical thickness of 100 i.tm. Dog-bone shaped specimens 
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were cut out using a die cutter (Zwick GmbH, Ulm, Germany) in accordance with 

ISO 527-2 (Specimen type 5B) 149, with an overall length of 35 mm, a gauge length 

of 10 mm and a width within the gauge length of 2 mm. 

3.3.2 Twin-Screw laboratory extruder 

Scale-up of nanocomposites were performed using a continuous twin-screw co-

rotating extruder (PRISM TSE-16 TC laboratory extruder, Thermo Scientific Haake, 

UK) (Figure 14) equipped with a length to diameter ratio of 15 and a screw diameter 

of 16 mm. Force feeding was employed to ensure a constant supply of polymer 

powder/pellet to the screws. A custom screw design (Figure 13) was used to increase 

shear mixing of CNT and PEEK within the twin-screw extruder and to maximise the 

dispersion of carbon nanotubes within the polymer. 
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Figure 13: The screw design of the twin-screw extruder 

Figure 14: PRISM laboratory twin-screw co-rotating extruder. The screw length is 240 mm 
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Dispersion of CNTs in PEEK melt was achieved using a batch size of 500 g. All 

materials were dried overnight in an air circulated oven at 50 °C. As received CNTs 

were blended for 1 min using a 1 1 stainless steel laboratory blender (Waring 

laboratory blender, UK), which allowed any large agglomerates of CNTs to be 

broken up. 50 g of PEEK powder were added at 30 s intervals in order to obtain a 

pre-mix CNT/PEEK, The blended CNT/PEEK pre-mix was then transferred to a dry 

powder-rotating mixer (tumble blender) and mixed at 50 rpm for 1 h to ensure a 

homogeneous blend. The CNT/PEEK mixed blend was force fed into the twin-screw 

extruder (80 rpm) at a rate of 1 kg/h. Both the feeding and the mixing zones 

temperatures were set at 360 °C while the die zone temperature was set at 370 °C. 

The corresponding residence time within the extruder was approximately 40 s. 

Continuous strands of extruded CNT/PEEK nanocomposites were pelletised using a 

PRISM pelletiser unit. The pelletised nanocomposites were re-extruded twice under 

the same conditions as described above to ensure consistency of CNTs dispersion 

within CNT/PEEK nanocomposites. 

3.3.3 Preparation of nanocomposite specimens using injection moulding 

Specimens for the mechanical testing of nanocomposites were prepared using a 

laboratory injection moulder (Thermo Scientific Haake MiniJet, UK). Figure 15 

shows a picture of the equipment. Two different moulds were used in this study. The 

first mould was a dog-bone shape with dimensions in accordance of ASTM standard 

D638-type-V 150  and the second mould was a rectangular bar with dimensions 

80 x 12.7 x 3.2 mm. 
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Figure 15: Haake miniJet injection moulder 

In order to perform the injection moulding of nanocomposites, the same parameters 

were used throughout this study, hence ensuring the same thermal history is seen by 

all specimens. All materials were dried in an air circulated oven overnight at a 

temperature of 50 °C. Pellets were fed into the heated barrel at a temperature of 

400 °C and were allowed to melt for 10 min before injection took place. The 

injection was conducted with a mould temperature of 250 °C and an injection 

pressure of 800 bar held for 10 s before being reduced to 400 bar and held for 30 s. 

This is to ensure a rapid filling of the mould cavity in the first step and the 

solidification of the melted polymer into the mould shape in the second step. The 

injection moulded nanocomposite specimens were removed immediately from the 

mould after. 

3.3.4 Carbon nanotubes reinforced PEEK powder 

To manufacture hierarchical composites on the in-house built thermoplastic prepreg 

composite line developed as part of this project, previously compounded CNT/PEEK 

nanocomposites that were extruded and pelletised must be turned into powders so 
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that the material could be utilised in the powder impregnation process. The limitation 

for such process is that for the CNT/PEEK nanocomposite powder to be picked up 

by the carbon fibres (see later discussion), typical powder particle sizes must be 

between 10-20 [un. Experimental trials were conducted using laboratory scale 

cryogenic grinder mills to achieve the required particle sizes. However, due to the 

inherent properties of PEEK, i.e. its excellent toughness property, it was not possible 

to achieve particle size that is below 200 ilm. Other techniques that can be used to 

produce powders involve solution precipitation through the dissolution of PEEK 

using a non-solvent. The choice of suitable solvents is, nevertheless, highly restricted 

because PEEK is chemically resistant to most solvents. The use of hazardous 

chemicals such as strong and highly concentrated acid was not deemed appropriate 

for a large scale process in a laboratory environment due to health and safety issues. 

Another possible technique is temperature induced precipitation using 

diphenylsulfone (DPS) as a solvent, this is already widely used in industries, such as 

Cytec Engineered Materials. Dissolution of PEEK in DPS is complete at 300 °C. 

DPS itself is a solid at room temperature and has a melting temperature of 140 °C. 

In order to make nanocomposite powders, 100 g of the nanocomposite blends of 

extruded CNT/PEEK pellets were dissolved in 900 g of DPS inside a 1 1 cylindrical 

glass reaction vessel. The temperature was held at 300 °C using a heated mantle 

(Glas-Col 100B TM573, Wilmad Lab Glass, USA) equipped with a digital 

temperature controller. This procedure was repeated twice to give a total of 2 kg of 

dissolved nanocomposite/DPS batch. The reaction chamber was covered with a 

stainless steel lid while low shear stirring (200 rpm) was applied using a homemade 

stainless steel double anchor stirrer to ensure even mixing of the dissolved PEEK in 
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DPS as well as an even heat distribution. High shear/vigorous agitation of the 

PEEK/DPS solution would create a temperature gradient inside the reactor. A lower 

temperature at the upper portion of the reactor would result in the formation of a 

resin surface layer and hence inhibit the homogeneous precipitation of PEEKJCNTs 

powder. The crystallization of PEEK in DPS takes place at 265 °C, which was 

observed visually during initial trials. Once all the CNT/PEEK pellets had dissolved 

completely, the temperature was reduced to 240 °C at a rate of 10 °C/h. This ensures 

that PEEK would re-crystallise as particles while DPS remains in a liquid form. The 

precipitated nanocomposites in DPS were further cooled to 200 °C before the highly 

viscous solution was poured into a wide ceramic dish. The contents were then hand 

mixed (for approximately 5 min) using a standard laboratory spatula in order to 

prevent any agglomeration of DPS during crystallization, As a result a 'toffee' like 

solid was formed. 

The 'toffee' was allowed to cool to room temperature before a hammer was used to 

fracture the toffee into smaller sizes. Granules of the 'toffee' were then passed 

through a 2 mm sieve to narrow down the particle size distribution. This 'toffee' 

powder was then ground down to a finer powder form which included several steps. 

200 g of the 'toffee' powder was weighed out and added to a blender (1 1 stainless 

steel laboratory blender, Waring Laboratory Science, UK) with 0.5 1 of cooled 

ethanol solution and blended for 5 min. The ethanol was kept cool at -70 °C 

throughout using dry ice and the temperature was monitored using a digital 

thermometer (RS Components, UK). Additional dry ice was added at intervals 

directly to the toffee powder/ethanol mixture to ensure the temperature was kept low. 

This would ensure that the property of the 'toffee' is as brittle as possible while 
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blending took place. Afterwards the 'toffee' powder/ethanol mixture was poured into 

a 51 beaker, kept at -70 °C using dry ice, and further ground down using a high 

speed homogenizer (SL2T, Silverson, Chesham, Bucks, UK) at a speed of 7000 rpm 

for 1 h. 

Large quantities of DPS remaining within the precipitated nanocomposite powder 

would degrade the mechanical properties of the composite by acting as a plasticizer, 

defect sites or voids, hence lowering the strength of the material. Therefore, best 

attempts on removing DPS from the nanocomposite powders were done so by 

filtering the ethanol/powder solution using a polypropylene (PP) membrane support. 

The latter was chosen as compared to a standard filter paper, because it has an open 

mesh structure which promotes the passing of DPS. This is because clogging of the 

filter can occur easily when the DPS crystallize. The resulting filtered powder was 

re-dispersed in 5 1 of acetone at 80 °C. Constant stirring together with the applied 

heat allowed DPS to be dissolved in acetone quickly before the purified CNT/PEEK 

nanopowder was filtered off using once again the PP membrane support. The whole 

acetone purification step was performed three times to ensure maximum removal of 

DPS from the nanocomposite powder. 

3.3.5 Manufacturing of unidirectional carbon fibre reinforced PEEK composite 

tapes 

Unidirectional carbon fibre reinforced PEEK tape (12.5 mm wide and 0.1 mm thick) 

was manufactured using a home-built modular laboratory scale composite production 

line (Figure 16). This production line is based on the powder impregnation technique 

used for thermoplastic composite manufacturing 151 ' 152 The author was the main 
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person for the design of this production line. The author identified the main 

components and drew up the blueprints of this design. The author was also in charge 

of the negotiation for the construction of this production line with the workshop. Dr 

Kingsley Ho and Dr Michael Tran provided invaluable assistance to the construction 

of this production line as well. 

Figure 16: Schematic of the laboratory scale line for the production of unidirectional fibre 

reinforced thermoplastic polymers 

3.3.5.1 Unwind station and tension control 

A pair of creels was mounted on braked spindles. The 12k carbon fibre roving was 

subjected to 500 g of tension from a tension controlled let-off unit (Izumi 

International, USA) and passed through guiding rollers and over a roller mounted on 

a load cell that measures the tension, as can be seen in Figure 17. 

Figure 17: Overview of the home-build modular laboratory scale composites production line 

(left) and the fibre pre-tension unit (right) 
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There are several controllable variables that are associated with this production line. 

They are the processing speed, fibre-tow tension, spreading pin angles, bath 

concentration, drying-oven temperature, consolidation-oven temperature and the 

final spreading pin temperature. 

3.3.5.2 Impregnation stage 

The fibre tows were guided into the impregnation bath, which consists of a series of 

fixed pins that spread the fibres mounted in a frame that drops into a metal bath 

containing the slurry (Figure 18). A schematic diagram of the cross-section of the 

impregnation bath is shown in Figure 19. The impregnation bath contained x wt% 

amount of PEEK depending on processing conditions and particle size, and 1 wt% 

surfactant with respect to the polymer in 21 of deionised water. This tank was 

agitated with two 60 mm magnetic stirring bars. The final pin is above the level of 

the dispersion, and as the tow passes over it, the excess liquid is squeezed out. 

Figure 18: Images showing a tow of CFs in the impregnation setup (left) and infra-red ovens 

(right) 
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Figure 19: Schematic diagram showing the cross-section of the impregnation bath with pins 

placed either at the bottom (B), middle (M) or top (T) position within each slot of the frame 

(pins were removed to improve the clarity of the diagram) 

3.3.5.3 Drying stage 

The wet polymer impregnated fibre tow was then passed into a heating tunnel, and 

dried under infra-red heaters controlled by a thermocouple kept at 180 °C. The fibres 

were dried completely before melting to ensure no water is entrapped within the 

composite, which could cause blisters on the tape when it is consolidated at later 

stages. 

3.3.5.4 Melting stage 

Once the water has been evaporated, the tow entered an infra-red heated melting 

oven. This oven is identical to the infra-red heating oven in the drying stage but it is 

operated at 390 °C in order to melt the polymer. When 2 tows were used, as the 

polymer melts, surface tension pulls the fibres together. The edges of the tape melted 

first, causing the tow to separate or split into two or more parts. This causes a 

weakness down the centre of the tape, which was still apparent even after 

consolidation. 
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3.3.5.5 Control of IR heaters 

The heaters in the drying and melt oven as well as in the consolidation unit were 

controlled by Eurotherm 3500 series PID controllers. These are very sophisticated 

units that are commonly used in a wide range of laboratory equipments such as 

ovens, tube furnaces, pumps etc. because of their extensive programmable functions. 

When deployed to controlling the heaters on the composite production line, it was 

found that the system heats up too quickly. After extensive rewiring and 

reprogramming, the units eventually responded and the temperature within the 

heating ovens could be controlled to within 0.5 °C. 

3.3.5.6 Consolidation stage 

The impregnated tape melts coming out from the melting infra-red ovens were 

passed over and under a series of three heated pins operated at 390 °C (Figure 20 and 

Figure 21). This smoothed the surfaces of the tape and spread the fibres further, 

driving the polymer into the tow. Loose fibres could accumulate here, requiring the 

build-up to be removed periodically. The hot, smooth tow was then pressed through a 

water-cooled rolling die to consolidate the tape and eliminate voids in the tape. The 

pressure exerted onto the tapes in this consolidation step can be varied by adding 

additional weights onto the upper roller. 
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Figure 20: Schematic diagram showing the cross-sectional area of the shear pins in the 

composites production line. The dimensions are given in mm 

Figure 21: Image showing the heated consolidating shear pins and rolling die 

3.3.5.7 Haul-off and winding station. 

The tow was pulled through the line by the haul-off. This consists of a pair of drive 

belts that are pressed together to grip the tape. The speed of the line was controlled 

by adjusting the speed of the belt drive motor (Model 110-3, RDN manufacturing 

Co., USA), which was fixed to 1.0 m min-1  throughout this study. The tape was 

wound up onto a spool. 
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3.3.6 Determination of fibre volume fraction 

The ratio of fibre to matrix in any composite is a major factor in determining its 

mechanical performance. Each method of impregnating the fibres has its strength and 

weaknesses, and one of the significant challenges of using an aqueous slurry is to 

control the amount of polymer picked up from the impregnation tank. 

3.3.6.1 Control Factor Analysis 

An attempt was made to identify and rank the key factors involved in the control of 

fibre volume fraction. The analysis is presented in a control factor tree diagram 

(Figure 22). The primary intent of this approach was twofold; to identify the 

optimum levers for controlling the volume fraction, and to find any manipulated 

variables that may have been overlooked. 

Figure 22: Control factor chart 
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3.3.6.2 Tank depletion 

A mass balance was carried out on the slurry (polymer dispersion), and on 

subsequent runs such that an attempt was made to maintain the volume and 

concentration by topping up the tank with a make-up dispersion of a higher 

concentration. 

3.3.6.3 Particle size distribution 

During the operation of the line, samples were taken from the impregnation tank at 

regular intervals. An analysis of the particle size in the slurry was performed and the 

importance of particle size to the final product has been mentioned previously in 

section 3.3.4. 

3.3.6.4 Polymer loading models 

Tang et al. 47  developed a geometric model relating particle size, fibre diameter, fibre 

volume fraction with the ideal slurry concentration as described below: 

gp(1—V f ) 
C = 	  

2[Vf (-1 )+112  + TC 

(3) 

where C is the optimum wet slurry concentration, Vf is the fibre volume fraction, r is 

the radius of fibre and R is the radius of polymer particle. 

The model assumes homogeneous distribution of polymer powders throughout the 

system (in the spaces between the fibres and in the bulk). However, the rates of water 

and polymer removal are not the same. This may suggest that the geometry of the 
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model holds true while the fibres are immersed in the tank, but adopt a tighter packed 

structure, expelling the excess water when the tow is drawn from the tank under 

tension. A more compact packing arrangement would be hexagonal (Figure 23 to 

Figure 25), where each polymer particle touches six fibres. This could be modelled 

as series of hexagonal cells, of depth z. 

Figure 23: Hexagonal packing of fibres and polymer particles in water, with outline of unit cell 
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Figure 24: Side view of unit cell before consolidation 
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Figure 25: Unit cell after consolidation 

Once the composite has been consolidated, the voids (where the water used to be) arc 

removed, and the fibre volume fraction is a function of the fibre size, particle size 

and distance between particles. For each unit cell, the fibre volume, Vfe is given by: 

V1  =2;H-2  z 

The volume of the unit cell, Vc  is: 

113-  V = 	 z V , 
2 

And the volume of the polymer particle, Vp  is 

4 V P = 	R' 
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From this it can be deduced that the volume of space, V„ occupied by water is 

Vs  =Vc — Vfc —Vp  

Therefore, 

4 V = —345(R+02  z —27c r 2  z--
3

rcR3  
2 

The consolidated fibre volume fraction is: 

V 

	

c.V 	 

	

f 	V + V fc 	P 

Vf  = 
27'r2 z+-47c R3 

3 

Rearranging the equation, 

4V R3  
Z = 	 

6 r2 (1—Vf ) 

It can be noted that z < 2R for the model to be valid. Substituting equation (11) to 

(8), 

4V R3  V s  = (R +02 	f 	27rr2 
 41/./. R3 	4 n-R3 

2 	6r2 (1—Vf ) 	6r2 (1—Vf ) 3 (12) 

2re r2  z 

(7)  

(8)  

(9)  

(10)  
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The desired concentration of dispersion, C is 

V p 
C = 

From equation (12), 

C 	, 
4 V R3 	4 V R3 	4 3.0  (R + 02 	 27C1.2 	 TC R3  

2 	6r2 (1—Vf ) 	6r2 (1—Vf ) 3 

Rearranging, 

p(1—V f ) 
C= 	  

3317 + 0 2  

4 	r2  

3.3.7 Carbon fibre handling during the manufacturing processes 

3.3.7.1 Tension 

The fibre tows were under considerable tension at the haul-off stage. The haul-off 

belts had to be periodically cleaned to maintain grip. Alternative belt materials were 

investigated to maximise the available pull, and new belts ordered with a covering of 

NR50 natural rubber. The initial tow tension is set by the Izumi unwind station, using 

a load cell and braked spindle, however most of the line tension is generated 

overcoming the friction in the impregnation tank. Here the tows pass over and under 

15 non-turning pins. The angle of wrap around each pin can be adjusted by sliding 

the pins up and down in their mounting slots. The degree of wrap angle is a key 

factor in controlling the degree of spread of the fibres, which in turn is a parameter of 

4 R3 p 
3 

(13)  

(14)  

(15)  
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the quality of the impregnation. Friction is often encountered in the consolidation 

stage where the tape passes over the heated pins and through the roll die. However, 

the polymer used in this study (PEEK) has a very high melt viscosity and the 

frictional effect was kept to a minimum. 

3.3.7.2 Fuzzing of carbon fibre tows 

When handling fibre tows, broken fibres can accumulate and disrupt the process. The 

primary reason why sizing was applied onto carbon fibres was to minimise this 

effect. The heated pins had to be cleaned regularly with a pair of tweezers to prevent 

the debris becoming incorporated with the tape. 

3.3.7.3 Splitting of tape 

One of the issues encountered was the existence of a line of weakness, which runs 

down the middle of the tape and sometimes manifested itself as a complete 

separation of the tapes into two pieces. After careful inspection, this effect was found 

to occur when the tape passes through the melting stage. 

Figure 26: Profile of the polymer melt during tape production 

The outer edges of the tape heat up faster than the centre, resulting in a visible line 

between the dry polymer particles and the melted polymer (Figure 26 and Figure 27). 
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Figure 27: Action of surface tension on partially melted polymer 

The surface tension of the freshly melted polymer tends to pull the fibre tow together 

cohesively. When this starts to occur in the edge band, the matrix will start to pull 

into two tows, separating due to surface tension effect (Figure 28). 

Figure 28: Completely divided tape 

Once the polymer has completely melted, the two halves typically stay separated 

until the tape passes through the consolidating pins, where the two halves are brought 

into contact and fused together under the rolling die. 

3.3.8 Compression moulding of test specimen 

Unidirectional carbon fibre reinforced PEEK composite laminates test specimens 

were consolidated in a stainless steel frame mould, coated with release agent 

(McLube 1862, Aston, PA, USA). Composite tapes that measure 200 mm long were 

cut using a paper guillotine, their width was 12 mm. A total of 34 layers of cut 

composite tapes were stacked and tightly wrapped using Upilex polyimide film 

(UBE Europe GmbH, Diisseldorf, Germany) before placing them into the steel 

mould (cavity dimensions: 200 mm x 12 mm x 5 mm) (Figure 30). 
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Figure 29: Images of the hot presses used for compression moulding 
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Figure 30: Image of the steel mould used for compression moulding (top) and the applied 

temperature and pressure profile during the compression moulding cycle (bottom) 
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In order to reduce the consolidation time, two hot presses (EDBRO, Bolton, UK and 

George E. Moore & Son, Birmingham, UK) were used (Figure 29). The mould 

containing the stacked carbon fibre tapes was placed into the first hot press at 390 °C 

and pre-heated for 5 min. After which the pressure was increased to 2 MPa and held 

for 5 min before transferring the mould to another hot press operated at 120 °C and 

where it was held for 5 min at a pressure of 2 MPa. The mould was then allowed to 

cool to ambient temperature before the specimen was removed from the mould. 

3.3.9 Preparation of the samples for mechanical testing 

Moulded test specimens were cut into the required dimensions for mechanical testing 

using a diamond blade cutter (Diadisc 4200, Mutronic GmbH & Co, Rieden am 

Forggensee, Germany). The quality of the edges of both compression and injection 

moulded specimens was improved by grinding using P320 grit silicon carbide paper. 

After all test specimens were trimmed and polished, the composite specimens were 

annealed at 240°C for 4 h and cooled to 140°C at a rate of 10°C 11-1  prior to 

mechanical testing. 

Optical microscopy specimens were prepared to evaluate the resin rich area and 

morphology of moulded plies. Specimens were embedded into an epoxy resin 

(Epoxicure, Buehler, UK) and cured at room temperature for 8 h. Embedded 

specimens were then grinded using a 7 stage process on a grinder/polisher (MetaSery 

/ MetaPol, Buehler, UK) using silicon carbide papers with increasing grit designation 

(P120, P320, P800 and P2500) and final polishing using diamond based dispersions 

(6 iim, 3 lam and 1 tim) for 5 min at each stage under an individual specimen 

88 



25mm MIL MO - _ 

pressure of 5 lb. Polished specimens were examined using optical microscopy 

(Olympus BX51M/DP70) investigation. 

3.4 Mechanical testing 

3.4.1 Tensile testing of extruded nanocomposites 

The effect of CNT loading on the tensile strength and the Young's modulus of CNT 

reinforced nanocomposites was determined using a screw-driven test frame equipped 

with a 1 1(1\I load cell (Model 4466, Instron, High Wycombe, UK) in accordance with 

ASTM D3822-01 standard 153. CNT reinforced nanocomposites with a gauge length 

of 25 mm were glued onto a cardboard paper frame (Figure 31) using a 

cyanoacrylate adhesive and cured for 24 h. 

Adhesive 

Extruded 
Nanocomposite 

Figure 31: Schematic illustration of tensile test specimen of CNT reinforced PEEK 

Each extruded strand was loaded at a rate of 2.5 mm mini  until the nanocomposite 

failed whilst the loading force versus cross-head displacement was logged using a 

computer. For each fibre tested the tensile strength and Young's modulus were 

calculated using equations (16) and (17), respectively: 

0- = Fmax  
A f 

(16) 
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F I A, 
E= 	 

ALI Lo  
(17) 

where (Ye  is the tensile strength (MPa), F. is the tensile force (N) at break and Af  is 

the fibre cross-sectional area (mm2) determined using a digital vernier (Mitutuyo, 

Tokyo, Japan); E is the Young's modulus (MPa), Lo is the original length of the fibre 

and AL is the change in length of the fibre when subjected to an applied stress. 

Young's modulus was calculated in the interval 0.05-0.25 % strain. All 

measurements were repeated on 6 different samples of the extruded fibres to obtain a 

statistical mean. The effective specimen length was determined according to ASTM 

D3822-07 Annex 2 153. The errors are presented as standard errors. 

3.4.2 Tensile testing of injection moulded nanocomposites 

The tensile properties of CNT reinforced PEEK were determined using a screw-

driven test frame equipped with a 10 kN load cell (model 4466, Instron, High 

Wycombe, UK) in accordance to ASTM D638-V 150. Nanocomposites (dog-bone 

specimens, Figure 32) were loaded at a rate of 1 mm min-1  until failure whilst the 

loading force versus deformation was recorded. An instron extensometer with a 

gauge length of 12.5 mm was used to measure the strain. All measurements were 

repeated on six nominally identical samples to obtain a statistical mean. The values 

presented were averaged and errors are presented as standard errors. 
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ASTMD 638 V 

Figure 32: Schematic illustration of the ASTM D638-V clog bone tensile test specimen of CNT 

reinforced PEEK. The dimensions are given in mm 11501. 

3.4.3 Compression Testing 

The compressive properties of injection moulded composites were determined using 

a screw-driven test frame equipped with a 10 kN load cell (model 4466, Instron, 

High Wycombe, UK) in accordance to ASTM D695-02a 154 . Specimens were loaded 

at a rate of 1 mm midi  in an anti-buckling jig (Figure 33). All measurements were 

repeated on six nominally identical samples to obtain a statistical average and the 

compliance of the machine was subtracted from the data. The values presented were 

averaged and errors are presented as standard errors. 

Figure 33: Support jig for thin compression test specimen 11551 
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Yield stress (offset strain of 0.2 %) was used to evaluate the compressive strength of 

the nanocomposites. Young's modulus was calculated using equation (17). 

3.4.4 In-Plane shear testing 

The shear properties of injection moulded composite were determined using a tensile 

screw-driven test frame equipped with a 10 kN load cell (model 4466, Instron, High 

Wycombe, UK) in accordance to ASTM D3846-02 156  Double-notched 

nanocomposites (Figure 34) were loaded at a rate of 1 mm 	All measurements 

were repeated on six nominally identical samples to obtain a statistical average and 

the compliance of the machine was subtracted from the data. The values presented 

were averaged and errors are presented as standard errors. Nominal specimen size 

was 80 x 12.7 x 3.2 mm. 

Figure 34: Specimen and loading jig for in-plane shear test 11561 
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The loading force versus displacement was logged throughout the experiment using a 

computer and the in-plane shear strength (offset strain of 0.2 %) us  was then 

calculated using: 

0- = 
PO 2 

bl 
(18) 

where P02 is the maximum shear load at offset 0.2 %, b is the specimen width and 1 

is the length of the failed area. 

3.4.5 Flexural testing 

Flexural properties are important in engineering practice to determine the flexural 

modulus and flexural strength. Injection moulded / laminated composite bars with 

dimensions of 95 mm x 10 mm x 2 mm were prepared for the three-point bending 

test. Each composite specimen was loaded into a three-point bending rig at 16:1 

(injection moulded nanocomposites) and 32:1 (laminated composite bars) span-to-

thickness ratio, equipped with a 10 kN load cell (Model 4466, Instron, High 

Wycombe, UK) and secured with the support span set to 50 (injection moulded 

nanocomposites) and 64 mm (laminated composite bars). The crosshead speed was 

set to 1.34 mm mind  (nanocomposites) and 1 mm mind  (composites) and each 

specimen was tested until failure in accordance to ASTM D790-03 157  

(nanocomposites) and D7264-07 (composite) 158. 

The loading force versus displacement was logged throughout the experiment using a 

computer and the specimen flexural strength of  and flexural strain of  were calculated 

using equations (19) and (20), respectively: 
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o-, = 3P L 
' 	2bt2  

6Dt 
6—  E 

where max  is P 	 the force at composite failure load, L is the support span, b is the -  

specimen width and t is the specimen thickness; D is the maximum deflection at the 

centre of the beam. 

The flexural modulus Ef  was then calculated using: 

E = L3  m 
f  4bt3  

(21) 

where m is the gradient of the initial part (0.05-0.25 % strain) of the force-

displacement curve. The flexural strength and modulus of the CNT reinforced PEEK 

and unidirectional carbon fibre reinforced PEEK composites were each determined 

from six measurements in order to obtain a statistically significant average and the 

compliance of the machine was subtracted from the data. The values presented are 

mean values and errors are standard errors. 

3.4.6 Short beam shear test 

The ASTM Standard D2344 159  states that during conventional short beam shear 

(SBS) testing of unidirectional fibre reinforced thermoplastics, the stress that is 

induced in the specimen is neither a pure shear stress nor a pure flexural stress but is 

a mixture of both stresses. Therefore, the test is called apparent short beam shear test. 

(19)  

(20)  
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The short beam shear strength method, which is based on classical beam theory is the 

simplest and the most commonly used test. It was used to characterise the 

interlaminar shear behaviour of carbon fibre reinforced PEEK. Short beam shear 

testing is very similar to flexural testing. This test allows maximum shear stresses to 

be introduced throughout the thickness of the test specimen whilst reducing the 

tensile and compressive flexural stresses to a minimum by reducing the length of the 

test specimens, i.e. lowering the span-to-thickness ratio. 

Unidirectional carbon fibre reinforced PEEK laminates of 20 mm x 10 mm x 2.2 mm 

were prepared and secured again into the same test rig used for flexural test with a 

span-to-thickness ratio of 4:1, equipped with a 10 kN load cell (Model 4466, Instron, 

High Wycombe, UK). Specimens were then loaded at a rate of 1 mm mind  until 

failure following the ASTM standard D2344 159. The short beam strength F5Bs  was 

calculated using equation: 

F sBs . 0.75  P max 

bt (22) 

where P„,,„, is the force at composite failure load, b is the specimen width and t is the 

specimen thickness. All measurements were repeated on 6 different samples to 

obtain a mean and the compliance of the machine was subtracted from the data. The 

errors presented are standard errors. 

3.5 Summary 

Materials used throughout the research have been described. Characterisation 

techniques have been examined in details with the parameters used described. 

Manufacturing of PEEK composites has been reviewed using two types of extrusion, 
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a batch micro scale extrusion and a continuous type extrusion for scale-up purposes. 

Specimens were made using a monofilament die or by injection moulding. A 

continuous thermoplastic composite line was thoroughly discussed. Composite 

materials made using this line were compression moulded into laminates. Finally 

mechanical testing was performed on all specimens created using various methods 

such as tension, compression, in-plane shear, flexure and short beam shear tests. 
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Chapter 4 — Results and Discussion 

In this section, the results obtained will be presented and discussed. Carbon 

nanomaterials were characterised using various techniques to examine their quality 

and potential as reinforcement for high performance composite materials combined 

with PEEK. Their dispersability in water was investigated, followed by the 

measurements of their diameters using SEM micrographs. Their bulk and surface 

properties were analysed using BET, TGA, LRS and XPS. A single carbon 

nanomaterial was selected for use in composite processing and characterisation. 

Single fibre model composites were tested using single fibre pull-out with different 

carbon fibres and CNT-reinforced matrices with varying loading content. 

Nanocomposites were analysed using tensile testing on monofilaments and films as a 

small scale study. Crystallisation is of importance when working with semi-

crystalline polymers and a study on the crystallisation behaviour of CNT containing 

PEEK was conducted by annealing the specimens. Bulk properties and scale-up 

permitted the use of mechanical testing using tensile, compressive, flexural and in-

plane shear tests. The design, commissioning and validation of the continuous 

thermoplastic composite production line was necessary through the assessment of 

PEEK/CF composite that were compared to a commercially available material. 

Finally hierarchical thermoplastic composites mechanical properties were also 

measured using flexural and short beam shear tests. 

4.1 Carbon nanomaterials 

Carbon nanotubes are supplied commercially from a wide variety of sources; most of 

the materials, certainly those available in bulk quantities, are produced by the CVD 

processes. Most manufacturers provide only very limited information about their 
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products; in addition, batch to batch variation is still very significant. It was, 

therefore, necessary to characterise the as-received carbon nanomaterials, in detail, 

before using them for further experiments. As well as providing valuable information 

about specific samples, a wider survey of materials provides insight into the 

suitability of various means of characterisation and the current status of world 

nanotube production. In this study, different techniques were applied, each giving 

specific information. Scanning electron microscopy was used to validate the diameter 

ranges stated by the various suppliers and to assess the overall character of the 

samples, providing a qualitative assessment of important factors such as 

entanglement, waviness and purity. BET adsorption measurements were used to 

quantify the surface area of the CNTs which should, in principle, relate directly to 

their diameters, although surface roughness may have an effect. Thermogravimetric 

analysis (TGA) was used to establish the presence of residues/contaminants 

associated with the growth catalyst; the degradation temperature under air (i.e. 

combustion) is often claimed to indicate, qualitatively, the degree of crystallinity. 

This hypothesis was explored by comparing the degradation data to another common 

indicator of graphitic quality, the G/D ratio, observed using laser Raman 

spectroscopy. 

4.1.1 Carbon Nanotube / Carbon Nanofibre 

A range of commercial CVD-grown multi-walled CNTs were sourced from 

commercial suppliers, as summarised in Table 5, below. In particular, two ranges of 

samples were obtained from NanoAmor (Los Alamos, USA) and Heji (Beijing, P.R. 

China) respectively, as they claimed to cover a series of diameters systematically 

using similar production conditions (note that there was one SWCNT sample within 
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the Heji set, presumably synthesised under different conditions). If confirmed, such 

samples would provide an excellent opportunity to study scaling issues 

systematically. Heji Inc was also selected for the low cost of their materials which 

makes them especially relevant for large volume applications, such as composites. 

Additional samples were obtained from well-known, large scale suppliers of 

MWCNTs, including Nanocyl, and Bayer. Finally, some double wall CNTs from 

Toray Research & Development (Nagoya, Japan) were added to complete the range 

of materials reviewed; note that some commentators have suggested that DWCNTs 

may be the ideal structure for composite applications 160 

Table 5: Diameters of CNT supplied by different manufacturers 

Supplier Nanomaterial type Diameter 

Heji Inc Multi Wall CNT <8 nm 

Multi Wall CNT 8-15 nm 

Multi Wall CNT 10-20 nm 

Multi Wall CNT 20-30 nm 

Multi Wall CNT 30-50 nm 

Multi Wall CNT 20-40 nm 

Single Wall CNT 1-2 nm 

Toray R&D Double Wall CNT —3 nm 

NanoAmor Multi Wall CNT 10-30 nm 

Multi Wall CNT 60-100 nm 

Carbon Nanofibres 100-200 nm 

Nanocyl Multi Wall CNT —10 nm 

Baytubes Multi Wall CNT 5-20 nm 
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4.1.2 Macroscopic observations 

As a preliminary indication of processibility, in particular the compatibility with 

polar solvents or matrices, an attempt was made to disperse the as-received materials 

in water. 25 mg of CNT were added to 2.5 ml of distilled water in a vial that was 

shaken vigorously by hand for a few minutes and allowed to settle for 2 min. By 

visual observation (photographs shown in Figure 35), it can be seen that many of the 

CNT samples were hydrophobic in nature, as expected, floating above the water. 

Neji Inc Toray R&D 
MWCNT MWCNT MWCNT MWCNT MWCNT MWCNT SWCNT DWCNT 
<8 nm 8-15 nm 10-20 nm 20-30 nm 30-50 nm 20-40 nm 1-2 nm 3 nm 

NanoAmor Nanocyl Baytubes 
MWCNT 	MWCNT 	CNF MWCNT MWCNT 
10-30 nm 60-100 nm 100-200 nm 10 nm 5-20 nm 

Figure 35: 25 mg CNT samples shaken in 2.5 ml of distilled water 

However, the MWCNT 10-20 nm, 60-100 nm, SWCNT 1-2 nm, DWCNT 3 nm and 

MWCNT <8 nm were entirely immersed in water, suggesting a more hydrophilic 
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character; although the graphitic surface of ideal nanotubes should be hydrophobic, 

the presence of oxygen at some stage during the synthesis can, and frequently does, 

introduce polar, oxygen-containing surface groups 161  The dispersibility test 

correlates with the concentration of oxygen observed in the Heji samples, as 

measured by XPS and discussed later. 

The volume occupied by a known mass of a material relates directly to the bulk 

density. Comparing the height of MWCNT <8 nm with MWCNT 10-20 nm within 

the vial, it is clear that the apparent density varies enormously, by up to a factor of 

five. In general, the bulk density of raw CVD MWCNTs can be very low  162, down to 

as little as 0.1 g cm 3. This low density can affect the processing of polymer CNT 

composites; in melt processed systems particularly, it can be difficult to wet out a 

large volume of dry powder with matrix which is the first step to successful blending. 

4.1.3 SEM microscopy 

The SEM micrographs were analysed digitally, in order to verify that the diameter 

stated by the supplier was correct (see Appendix for details). A large number of 

CNTs were measured to ensure statistical significance. It was not possible to 

establish the diameters of the SWCNT 1-2 nm, DWCNT —3 nm and MWCNT <8 nm 

samples, as they fall below the maximum resolution of the FEG SEM used. 

Qualitative comments about the character of each sample, along with diameter 

distributions, and an overall summary table are included on the following pages. 
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Figure 36: SWCNT 1-2 nm Figure 37: MWCNT < 8 nm 
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Figure 38: MWCNT 8-15 nm, mean diameter 17.40 ± 4.0 nm 
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SWCNTs 1-2 nm are straight and MWCNTs <8 nm are wavy and entangled; 

although the structures appear bigger than stated, the effect may be due to bundle 

formation, or the resolution limit of the SEM probe. 

MWCNTs 8-15 nm are wavy, entangled and form bundles; they have a larger 

diameter than stated. 
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Figure 40: MWCNT 20-30 nm, mean diameter 21.80 ± 7.4 nm 
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Figure 39: MWCNT 10-20 nm, mean diameter 19.15 ± 7.3 nm 

MWCNTs 10-20 nm are entangled and form bundles; their diameters are within the 

range stated. 

MWCNTs 20-30 nm are straight and form bundles; their diameters are within the 

range stated. 
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Figure 41: MWCNT 30-50 nm, mean diameter 27.80 ± 12.6 nut 
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MWCNTs 30-50 nm are wavy and entangled; they have a smaller diameter than 

stated. 

Figure 42: MWCNT 20-40 nm, mean diameter 32.20 + 15.5 nm 

MWCNTs 20-40 nm are wavy, entangled and form bundles, some impurities can be 

seen and their diameters are within the range stated. 
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Figure 43: DWCNT —3 mu 

DWCNTs —3 nm are wavy, entangled and form bundles; although the structures 

appear bigger than stated, the effect may be due to bundle formation, or the 

resolution limit of the SEM probe. 
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Figure 44: MWCNT 10-30 nm, mean diameter 28.15 ± 10.5 nm 

MWCNTs 10-30 nm are wavy and entangled, they have a larger diameter than stated. 
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Figure 46: CNF 100-200 nm, mean diameter 123.90 ± 55.0 nm 
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Figure 45: MWCNT 60-100 nm, mean diameter 47.80 ± 21.0 nm 

MWCNTs 60-100 nm are wavy and entangled; they have a smaller diameter than 

stated. 

CNFs 100-200 nm are straight but they show a large amount of impurities, their 

diameters are within the range stated. 
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Figure 47: MWCNT —10 nm, mean diameter 22.50 ± 7.6 nm 

Nanocyl MWCNTs are wavy, entangled and form bundles; two diameter 

distributions can be seen, one being around 10 nm and the other one around 25 nm. 

Baytubes 

Figure 48: MWCNT 5-20 nm, mean diameter 13.90 ± 4.2 nm 

Baytubes MWCNTs 5-20 nm are wavy, entangled and form bundles; their diameters 

are within the range stated. 
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Table 6: Summary of carbon nanomaterial diameters 

Supplier 
Supplier's Diameter / 

nm 

Mean Measured 

Diameter / nm 

Mean ± 1 Standard 

Deviation / nm 

Heji Inc. < 8 n/a n/a 

8-15 17.40 ± 4.0 13.4 - 21.4 

10-20 19.15 ± 7.3 11.85 - 26.4 

20-30 21.80 ± 7.4 14.4 - 29.2 

30-50 27.80 ± 12.6 15.2 - 40.4 

20-40 32.20 ± 15.5 16.7 - 47.7 

1-2 (SWCNT) n/a n/a 

Toray R&D -3 (DWCNT) n/a n/a 

NanoAmor 10-30 28.15 ± 10.5 17.65 - 38.6 

60-100 47.80 ± 21.0 26.8 - 68.8 

100-200 (CNF) 123.90 ± 55.0 68.9 - 178.9 

Nanocyl -10 22.50 ± 7.6 14.9 - 30.1 

Baytubes 5-20 13.90 ± 4.2 9.7 - 18.1 

There are significant inconsistencies in the values (Table 6) given by the supplier and 

the actual measured diameters. Disappointingly, many of the samples are not as 

different as claimed, limiting the potential for systematic scaling studies. Note also, 

that in the further characterisation and discussion of these nanomaterials, the mean 

measured diameter ± 1 standard deviation will be used along with the range provided 

by the manufacturers. 
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4.1.4 BET surface area 

The theoretical surface area with respect to the carbon nanomaterials diameter has 

been calculated assuming that the CNTs are closed, and hence that only the external 

surface can absorb N2 and has a contribution to the surface area. 

BET Surface Area: As  = 
7cd/ 	 (23) 

m  

Density: m _ 
P= V 	d 2  7—1 

4 (24) 

where d is the diameter, m is the mass, 1 is the length and V is the volume. By re-

arranging both equations, we obtain: 

2 BET Surface Area (—m) = —4 1000 
g dp (25) 

where d is the diameter in nanometre and p is the estimated density of CNT 

1.8 g/cm3). 

Figure 49 and Figure 50 show the BET surface area of carbon nanomaterials as a 

function of their diameter. Single point and multipoint calculation methods 143  are 

presented and compared, however the difference is insignificant. Both data sets fit 

the theoretical values ranging from 20 up to 620 m2/g, showing that the simple 

geometric model can be reasonably applied. 
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Figure 49: Single Point BET Surface Area calculation methods 
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Figure 50: Multipoint BET Surface Area calculation methods 
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The two materials that differ most from the theoretical value are the SWCNTs which 

have a lower surface area than expected geometrically, as expected, due to bundling, 

and the Nanocyl MWCNTs. The reason for the higher surface area of the Nanocyl 

material is unclear, but may relate either to the distribution in diameters seen or its 

high surface roughness, or to the presence of opened nanotubes. The multipoint 

method will be used for the further comparisons in this study. A summary of the 

carbon nanomaterials surface area results is presented in Table 7. 

Table 7: Summary of the multipoint measured surface area 

Supplier Given Diameter / 

nm 

Mean Measured 

Diameter / nm 

Surface Area 

I m2/g 

Heji Inc. < 8 n/a 393 

8 - 15 13.4 - 21.4 127 

10 - 20 11.85 - 26.4 143 

20 - 30 14.4 - 29.2 110 

30 - 50 15.2 - 40.4 106 

20 - 40 16.7 - 47.7 85 

1 - 2 (SWCNT) n/a 543 

Toray R&D — 3 (DWCNT) n/a 619 

NanoAmor 10 — 30 17.65 - 39.6 79 

60 — 100 26.8 - 68.8 59 

100 - 200 (CNF) 68.9 - 178.9 19 

Nanocyl — 10 14.9 - 30.1 308 

Baytubes 5 - 20 9.7 - 18.1 239 
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4.1.5 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) gives several indications of the bulk carbon 

nanomaterial properties. The non-combustible residue content after the complete 

oxidation of carbon can be measured, as exemplified in Figure 51. Results for all the 

samples are summarised in Table 8, Figure 52 and Figure 53. 
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Figure 51: An example of TGA analysis of CNT 

These residues relate to the metal catalysts (and supports where relevant) used during 

the Catalytic Vapour Deposition process used to produce the CNTs. Note that, in 

principle, the catalyst residue oxidises during the TGA experiment, giving a 

somewhat larger residue value than the original metal content. 
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Table 8: The residue content of CNT/CNF from TGA analysis 

Supplier 
Given Diameter / 

nm 

Mean Measured 

Diameter / nm 

Residue 

Content/ wt% 

Heji Inc. < 8 n/a 1.92 

8-15 13.4 - 21.4 1.59 

10 - 20 11.85 - 26.4 0.99 

20 - 30 14.4 - 29.2 1.24 

30 - 50 15.2 - 40.4 2.77 

20 - 40 16.7 - 47.7 4.05 

1 - 2 (SWCNT) n/a 3.44 

Toray R&D - 3 (DWCNT) n/a 5.48 

NanoAmor 10 - 30 17.65 - 39.6 0.67 

60 - 100 26.8 - 68.8 0.46 

100 - 200 (CNF) 68.9 - 178.9 10.45 

Nanocyl - 10 14.9 - 30.1 8.68 

Baytubes 5 - 20 9.7 - 18.1 2.38 

Both MWCNTs from NanoAmor have a very small residue content compared to the 

CNF which has as much as 10.5 wt%. CNFs are produced under different conditions 

to CNTs; fundamentally, they are a kinetically favoured, rather than 

thermodynamically favoured product, due to the less ideal arrangement of the 

graphene layers. Possibly, this fact may be reflected in lower catalyst efficiency. The 

majority of CNTs from Heji Inc do not show any specific trend as the diameter or 

surface area do not seem to have an effect on the residue content; the result is not 

surprisingly given the similarities of the materials. For the smallest and largest 

diameters of Heji Inc CNTs, the metal content does increase up to 4 wt%. In the case 

of the Toray DWCNTs, a value of 5.5 wt% was found, and the residue was white in 
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colour, almost certainly reflecting the zeolite catalyst technology employed. Nanocyl 

MWCNTs also contain a relatively high residue content of 8.7 wt% that was grey in 

colour; again it is thought that a zeolite catalyst support is present. Finally, Baytubes 

MWCNT have a rather typical residue content of 2.8 wt%, grey in colour, reflecting 

the metal catalyst oxide alone, since the material is thought to be formed via a 

floating catalyst process, without the use of a support. Overall, there is no 

unambiguous trend, when comparing the residue content against either surface area 

or diameter. 
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Figure 53: Relationship between residue content and the surface area of CNT 

The TGA onset temperature, which corresponds to the intersection of two tangents 

on the curve as stated in the international standard ISO 11358 163, is reported in 

Figure 54. The onset temperature is often taken as an indication of the concentration 

of defects within the structure, since more graphitic structures combust at higher 

temperatures than amorphous carbons. The mid-point temperature is the peak in the 

derivative of the curve (Figure 51), and is an average combustion temperature for the 

material. Both onset and peak temperatures are functions of TGA heating rate and 

oxygen partial pressure / flow rate; however, by holding these variables constant, 

reproducible, sample-dependent data can be obtained. 
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Figure 55: Relationship between the mid-point temperature and the diameter of CNT 
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Figure 54 and Figure 55 show the onset and mid-point decomposition temperature as 

a function of diameter; both variables show similar trends. Other than the large, 

NanoAmor CNFs which are known to have a poor crystallinity, the combustion 

temperatures increase reasonably consistently with diameter. One explanation might 

be that graphitic quality increases with diameter. However, the Raman data discussed 

in the next section suggests no such effect. More likely, the larger diameter structures 

burn more slowly due to their smaller surface area; note that the outer surface of 

CVD tubes often already includes oxygen-containing groups that decompose more 

readily. 

4.1.6 Laser Raman spectroscopy 

Raman spectroscopy was used as a complementary technique to study the graphitic 

structure of the CNTs. The ratio of the graphitic G-band (around 1580 cm') to the 

defect-related D-band (around 1320 cm-1) (Figure 56) is often used as an indication 

of sample crystallinity. It is worth noting that this relationship only works for 

graphitic structures with an in-plane correlation length of greater than around 2 nm; 

however, this condition applies to the materials in the current study. More detailed 

analysis can consider the ratio of the G' band (at around 2600 cm-1  to the D-band, or 

the use of integrated areas rather than peak intensities, but qualitatively the effects 

are similar. A typical Raman spectrum is shown in Figure 56 below, with a summary 

of the G/D intensity ratio for all samples included in Figure 57. The data show a 

weak trend towards greater G/D (i.e. crystallinity) for decreasing diameters, with a 

strong increase only for S'WNTs and a strong decrease for the defective CNFs. The 

greater apparent crystallinity of the SWNT samples may be related to an actual 

increase, due for example to greater selectivity for perfection during growth of these 
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Figure 58: Relationship between the G/D ratio and the onset temperature 

In Figure 58, the G/D ratio is compared to the onset temperature for combustion as 

determined by TGA. However, for the carbon nanomaterials investigated in this 

study, there is no direct correlation evident; in fact, the G/D ratio appears to be 

independent of onset temperature. The only outlier is the SWNT sample which 

behaves quite differently, probably due to the resonance effects already mentioned. 

The result is interesting, as the current view is that both quantities should be directly 

related. It seems that diameter or surface area may be the dominant factor controlling 

combustion. However, it may be that TGA data does provide a useful comparison of 

crystallinity for samples with similar dimensions, or if G/D ratios vary more 

dramatically; other than the SWNT sample, the G/D ratios of these as-produced CVD 

nanotubes samples are rather similar. 
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4.1.7 X-ray photoelectron spectroscopy and Boehm's titrations 

The chemical composition of the CNTs was analysed at the University of York. 

Table 9 shows the oxygen content of the materials, as well as an estimate of the 

content of C-OH and C=0 bonds. This analysis was performed assuming that the 

samples contained only carbon and oxygen, with negligible water; the residues 

observed in the TGA analysis have not been taken into account. However, they are 

relatively small, as a mass fraction, and as long as they are pure metals (or carbides) 

will not influence the result significantly. Of the samples studied by XPS, only the 

DWCNTs contain an oxide catalyst support which is likely to skew the result, since 

around 1 % silica is present. Nevertheless, there is a clear trend that the larger 

(> 8 nm) MWCNTs have similar, low oxygen contents, less than 1 at%. Whilst the 

smaller diameter structures, MWCNT < 8 nm and SWCNTs have significantly 

greater oxygen content (> 3 at%) in line with their greater surface area and more 

polar surface character in the wettability studies discussed above. 

Table 9: XPS surface analysis of CNT 

Nanomaterials Diameter Range 0 is atomic % % C=0 % C-OH 

Heji Inc SWCNT 1-2 nm 3.43 1.55 1.88 

MWCNT <8 nm 3.10 1.34 1.56 

MWCNT 8-15 nm 0.49 0.07 0.42 

MWCNT 10-20 nm 0.59 0.25 0.35 

MWCNT 20-30 nm 0.93 0.19 0.75 

MWCNT 30-50 nm 0.83 0.30 0.53 

MWCNT 20-40 nm 0.42 0.20 0.23 

Toray R&D DWCNT —3 nm 4.06 1.757 2.31 
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These XPS results were calibrated by Boehm's titrations on selected samples. For the 

larger MWCNTs which were hydrophobic in nature, reliable results were hard to 

obtain as the amount of material wetted by the base solution fluctuated. For most 

CNTs studied the amount of oxygen content which corresponds to the amount of the 

surface functional groups as shown with XPS analysis is very low (under 1 %) 

(Table 10). Considerable care was required to minimise absorption of CO2  and to 

consistently use inert containers. Due to the low concentrations involved, pH 

equilibrium when back-titrating the solution was not always easy to observe, 

necessitating consideration of the full pH titration curve. Nevertheless, the overall 

concentration of acid surface groups was obtained reproducibly (± 5 %) for several 

samples. The results show a relatively high and similar oxygen-group content for the 

SWCNTs and MWCNTs < 8 nm, in line with the XPS data. The DWCNTs have an 

intermediate degree of functionality, consistent with a high surface area but a strong 

contribution to the XPS data from the zeolite content, as suggested above. The larger 

MWCNTs have a very low surface oxygen-concentration consistent with the XPS 

data and poor wettability in water. Note that the titration data was checked using an 

acid oxidised MWCNT sample, approximately 30 nm in diameter 164  This treatment 

is known to give a high concentration of surface groups; the result is consistent with 

data in the literature. 
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Table 10: Boehm's titration results, in milli-equivalents of functional groups per gram of 

carbon 

Material Groups neutralised by NaOH / meq/g 

SWCNT 1-2 nm 1.14 

DWCNT —3 nm 0.14 

MWCNT <8 nm 1.07 

MWCNT 20-40 nm 0.03 

MWCNT 30nm 

Acid Treated 
2.19 

4.1.8 Summary 

In summary, this section provides fundamental characterisation of the materials used 

in the remainder of this thesis. Both surface and bulk properties of various 

commercial CNTs were investigated as a function of their diameters. Detailed 

comparative studies of CNTs from different suppliers are relatively rare, although 

some examples have appeared recently 165  The results show clearly that the purity 

and dimensions of the nanomaterials differ from the information provided by the 

original commercial supplier. As such, it is critical to carry out a detailed 

characterisation of any materials used, if meaningful conclusions are to be deduced 

later. In the current context, the similarity of the 'different' diameter Heji materials is 

disappointing as it limits the scope for scaling studies. It seems that many CVD 

MWCNTs, from different suppliers, have similar characteristics, particularly in terms 

of combustion behaviour and G/D ratio, despite the variations in growth processes. 

However, surface chemistry and surface area can vary, emphasising the importance 

of detailed characterisation, since these surface properties will strongly influence 

interactions in solution or in a polymer matrix. 
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4.2 Interfacial characterisation of single fibre hierarchical composites using 

single fibre pull-out tests: Apparent interfacial shear strength as a measure of 

practical adhesion 

(The work presented in the following section was performed by me under the 

supervision of Dr. Gerhard Kalinka at the Federal Institute for Materials Research 

and Testing (BAM), Division V.6., in Berlin, Germany. The SEM images were 

captured using a SEM515, Philips, Eindhoven, The Netherlands) 

The feasibility of hierarchical PEEK composites was investigated on the single fibre 

composite scale. The interfacial properties of these composites were studied using 

single fibre pull-out tests. The apparent interfacial shear strength (IFSS) between 

commercially available industrially oxidised sized and desized T700 (by soxhlet 

extraction with acetone) and unsized AS4 carbon fibres and unmodified PEEK-150 

as well as CNT/PEEK-150 nanocomposites containing various loading fraction of 

CNTs were examined using the single fibre pull-out test. The force required to 

debond the interface of the single fibre model composite was determined from force-

displacement curves. 

A typical example of a real measured force-displacement curve is shown in Figure 

59. The apparent interfacial shear strength (IFSS), as measure for the practical 

adhesion, of the fibre/matrix interface as well as the frictional strength after 

debonding of this interface of a model single fibre composite were investigated. 
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Figure 59: A typical measured pull-out force displacement curve obtained while pulling out a 

single desized T700 carbon fibre from PEEK, with annotations 

The measured apparent interfacial shear strength as function of the embedded fibre 

length provides information about the fracture behaviour of the fibre/matrix interface 

of model single fibre composites 166  (Figure 60). 
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Figure 60: Apparent interfacial shear strength and frictional shear strength as function of the 

embedded fibre length for unsized AS4, epoxy sized T700 and desized T700 carbon fibres and 

PEEK-150. 

The IFSS between all investigated carbon fibres and PEEK-150 decreases 

exponentially with increasing embedded fibre length. For example in case of the 

desized T700, the measured IFSS was between 80-85 MPa for an embedded fibre 

length of 50 gm. When the embedded fibre length was increased to 160 gm, the 

measured IFSS dropped to about 40 MPa. Such behaviour indicates a brittle fracture 

behaviour at the fibre/matrix interface of the model composites and that the interface 

failed at once 166. 

On the other hand, the frictional shear strength of all investigated carbon fibres and 

PEEK-150 is virtually independent of the embedded fibre length with the exception 

of the unsized AS4 fibres at a very low embedded fibre length (20 gm). This is 
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because for such a low embedded fibre length, the weight of the single fibre filament 

is not properly supported by the matrix, which affects the measured data. A high 

frictional shear stress is recommended to counteract fibre pull-out during failure of a 

composite. For unsized AS4 and T700 fibres (either sized or desized), there is no 

difference in the mean F SS value, therefore all fibres will behave in the same manner 

during failure after debonding occurred. 

SEM micrographs of carbon fibres after being pulled out, as well as the 

corresponding PEEK droplets, were taken (Figure 61) to investigate the fracture 

behaviour. The formation of a wetting cone, due to the partial wetting of the carbon 

fibres by the PEEK melt, can clearly be seen in Figure 61. This meniscus is formed 

when the PEEK polymer melt made contact with the fibre. Three factors determine 

the size and shape of the meniscus (wetting cone): 1) the contact angle between fibre 

and matrix which is determined by the surface tension of the PEEK melt, the 

fibre/PEEK melt interfacial tension and the surface (tension or) energy of the carbon 

fibre, 2) the droplet is flowing under the influence of gravity and thus is moving 

relative to the fibre and 3) the PEEK melt droplet shrinks onto the fibres during the 

cooling process. The top micrographs in Figure 61, show an AS4 carbon fibre, which 

fractured during the pull-out test as a result of a very high embedded fibre length. If 

the embedded fibre length is too large, the force to debond the fibre from the matrix 

would be larger than the tensile strength of the single fibre, so the fibre fails. 
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Figure 61: Representative SEM images of AS4/PEEK showing fibre breakage (top) and 

successful fibre pull-out (bottom) from PEEK 150 droplet 

However, when the embedded fibre length was reduced the fibre could be pulled-out 

from the matrix (Figure 61, bottom). When pulling at the end of the embedded fibre, 

the weakest part of the single fibre composite failed first. Usually, the highest 

stresses arise in the region where the fibre was in contact with the matrix droplet. 

The failure of the model composite seems to have started with the fracture of the 

wetting cone or at the fibre/matrix interface failure inside the droplet within the 

wetting cone. As can be seen from the SEM micrograph (Figure 61, bottom), the 

energy required to fracture the matrix, separating the wetting cone from the droplet, 

was lower than the energy required to completely debond the fibre/matrix interface. 

This causes the shift of the maximum pull-out force as function of embedded fibre 

area away from the zero origin (see for example Figure 62). Therefore, after the 

single fibre was completely pulled out from the matrix droplet, a part of the meniscus 

remained attached to the surface of the pulled-out fibre (Figure 61, bottom). The 
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formation of PEEK microfibrils caused by the plastic deformation and drawing of the 

matrix can be seen on the fracture surfaces of the wetting cone. Moreover, parts of 

the PEEK matrix still stuck to the pulled out fibre indicating a strong fibre/matrix 

adhesion. 

In order to be able to determine the average IFSS between PEEK-150 and the 

unsized AS4 as well as epoxy sized T700 and desized T700 carbon fibres (the same 

methodology was used for all other model composites), the maximum pull-out force 

was plotted as function of the embedded fibre area (Figure 62), which follows a 

linear dependency. The slope of the maximum pull-out force as function of 

embedded fibre area (Fmax  = f(Ae)) corresponds to the apparent interfacial shear 

strength. The steeper slope for the unsized AS4 fibres shows clearly that the AS4 

adheres much better to PEEK-150 than the sized T700 fibres and even desized T700. 

These once more highlights that epoxy sizings are detrimental to establish a strong 

fibre/thermoplastic interface 167-169. The epoxy sizing does not mix or dissolve into 

the PEEK melt, which leads to the formation of a weak boundary layer 17°  between 

the sizing and solidified matrix. Removing the sizing, by acetone extraction, results 

in a significant increase of the IFSS. Figure 63 compares the IFSS between the 

carbon fibres used and PEEK-150. Further discussion of the impact of the epoxy 

sizing on fibre/matrix adhesion dominated composite properties, namely the short 

beam shear strength, can be found in Section 4.4. 
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Figure 63: Comparison of the apparent interfacial shear strength between the investigated CFs 

and PEEK-150 
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Nanocyl CNTs are used throughout the rest of this study. The effect of a CNT 

modification of PEEK with CNT loading fractions up to 5 wt% on the apparent 

interfacial shear strength to desized T700 was also examined using the single fibre 

pull-out test. (Figure 64) Also in this case the IFSS between desized T700 and 

PEEK-150 containing a CNTs loading from 0 to 5 wt% is dependent on the 

embedded carbon fibre length. This once again indicates brittle fracture behaviour of 

the model composite and that the boundary layer is predominantly semi- 

▪ 171 crystalline . The frictional shear strength between the debonded desized T700 

carbon fibres and PEEK-150 CNT nanocomposites is again virtually independent of 

the embedded fibre length. 
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Figure 64: Apparent interfacial shear strength and frictional shear strength as function of the 

embedded length of investigated CFs and Nanocyl CNT-reinforced PEEK 
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Figure 65: Apparent interfacial shear strength as a function of Nanocyl CNT loading in PEEK 

to desized T700 fibres 

The average IFSS between desized T700 carbon fibres and PEEK-150 CNT 

nanocomposites was again determined by plotting the maximum pull-out force as 

function of embedded fibre area. The average IFSS between the desized T700 and 

CNT modified PEEK-150 increased steadily with increasing the CNT loading 

fraction to 5 wt% (Figure 65). Adding 5 wt% CNTs into the PEEK matrix increases 

the interfacial adhesion by 50 %. The increase in the IFSS is surprising considering 

that the PEEK matrix was not otherwise modified and can only be explained by the 

mechanical modification of the PEEK which improves stress transfer from the fibre 

into the matrix during the pull out test. However, one should note that the CNT 

reinforced PEEK matrix used for the preparation of the single fibre hierarchical 

composites was produced by micro-extrusion (see experimental section 3.3.2 for 

details) and was therefore (almost) free of DPS, in contrast to the unidirectional 
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continuous carbon fibre reinforced CNT/PEEK nanocomposites. Therefore, the 

higher measured IFSS between the desized T700 fibre and the PEEK 

nanocomposites is purely the result of the incorporation of CNTs into PEEK-150. 

However, the literature contains a number of papers reporting significant increases 

by as much as 32 % of the IFSS of single glass fibre/CNT modified epoxy 

composites when compared to the pure epoxy matrix 172 . The authors claim the 

increase in IFSS is due to the increased surface tension of the CNT modified epoxy 

matrix 172. Vlasveld et al. 173  characterised E-glass fibre/nano-sized exfoliated 

synthetic layered silicate reinforced polyamide-6. They report a significant reduction 

in the interfacial adhesion (i.e. an increase of the aspect ratio L/D as determined 

using the single fibre fragmentation test) for the nano-reinforced matrices. On the 

other hand, Lew et al. 174  report rather small improvements of the IFSS in carbon 

fibre/silica nanoparticle reinforced epoxy single fibre composites measured using the 

single fibre fragmentation test. 

SEM micrographs of the pulled out carbon fibres and the corresponding 2.5 wt% of 

CNT containing PEEK nanocomposite droplets (Figure 66) were taken to illustrate 

the fracture behaviour of the model single fibre hierarchical composites. 

Figure 66: Representative SEM micrographs of 2.5 wt% CNT in PEEK matrix after fibre pull- 

out 
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For the CNT/PEEK nanocomposites rather than the formation of a wetting cone as 

seen for the pure PEEK-150 matrix (Figure 61), a concave impression formed during 

the embedding of the fibre into the nanocomposite melt (Figure 66). This is largely 

due to the massive increase of the melt viscosity of the PEEK matrix caused by the 

incorporation of CNTs. The melt viscosity increases from 246 Pa.s to 542 Pa.s 

(please see section 4.3.3.1 nanocomposites rheology). During the preparation of the 

single fibre hierarchical composites it was noted that with increasing CNT loading it 

became more and more difficult to embed the carbon fibres into the matrix, which 

correlates with the increased melt viscosity of the CNT nanocomposites with 

increasing CNT loading fraction. Nevertheless, it is interesting to note that after pull-

out the fibres are still coated with the nanocomposite matrix (Figure 67a and Figure 

67c), which again is an indication of the rather good adhesion between the fibres and 

the nanocomposite matrix. 

Figure 67: Representative SEM images of desized T700 carbon fibres pull-out from 5 wt% a), 

b) and 10 wt% c) and d) of CNT in PEEK-ISO nanocomposite droplets 
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4.3 Production and characterisation of PEEK reinforced carbon nanotubes 

composites 

4.3.1 Tensile testing of CNT/PEEK nanocomposite monofilaments 

Nanocomposite monofilaments were produced using a twin screw micro-extruder, to 

provide an initial assessment on the effect of CNT diameter on the composite tensile 

strength and Young's modulus. All specimens were annealed prior to testing to 

ensure a consistent degree of crystallinity. 

A basic rheological study was conducted using the twin screw micro-extruder, 

modelling it as a viscometer in which the viscosity (1) is given by the relationship: 

C11  
(26)  

where C is the coefficient related to the extruder, T is the torque and N is the rotating 

speed. 

The relative viscosity (TO is calculated as being a ratio between the composite torque 

(TO and the matrix torque (Tm) taken during the last 10 s of mixing, thus: 

T 
r = 

(27)  

As the shear rate of the micro-extruder is unknown for the parameters used, it is only 

possible to present relative viscosity values. As guidance for the reader, PEEK 

viscosity has a value of 150 Pa.s for a shear rate of 1000 s-1. 
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Figure 68: Relative viscosity of the polymer melt in the micro-extruder as a function of CNT 

loading fraction 

Figure 68 shows the relative viscosity of the blended materials as a function of CNT 

weight fraction. As expected, the relative viscosity increases with increasing CNT 

weight fraction, as has been shown in more detailed, recent studies of PEEK melt 

rheology175
. However, there is no clear trend relating to diameter. This conclusion is 

consistent with an understanding that the degree of dispersion of the CNTs and their 

absolute length are the main factors controlling viscosity. If well-dispersed, the 

length of the nanotubes controls network formation; long nanotubes occupy a large 

hydrodynamic volume and increase viscosity particularly at modest shear rates 

(before significant shear thinning). It is assumed that the length of the nanotubes in 

the melt depends on their original length and their tendency to break under shear, 

which may have a diameter dependence, though it is not immediately obvious in 

which direction. For a given loading fraction, smaller diameter tubes will have a 

135 



gym` EHT = 10.00 kV 
WD= 10 mm Meg = 2746 K X 

Signal A = InLens Date :10 Apr 2006 
Photo No. = 2228 Time :10:47:07 

fr  PEEK/ MWCNT 30-50nm 5wt% 
Axial cross section 

'11 r 

I O 

e 
❑  

. 	",s7 	 •••• 

greater number of interacting structures, and hence should give a high viscosity. 

However, entangled or bundled nanotubes (SWCNTs) that do not disperse 

individually will display the opposite trend. 

Figure 69: SEM micrograph showing the tensile fracture surface of PEEK/MWCNT (30 — 

50 nm) at 5 wt% loading fraction 

The SEM micrograph of the tensile fracture surface above (Figure 69) shows a 

region of well-dispersed MWCNTs (30-50 nm) within the matrix, and hints at a 

preferential alignment along the extrusion direction. In addition, PEEK nanofibrils 

drawn from the tensile fracture of the specimen are also visible; interestingly these 

fibrils do not form in the immediate vicinity of the CNTs, suggesting that the load 

carried by the nanotubes locally interrupt fibril formation. On the other hand, lower 

magnification SEM images of fracture surface indicate a tendency for local 

agglomeration (Figure 70 and Figure 71); most likely, these small structures are 

never disentangled from their as-produced state, although shear-induced 

agglomeration processes are also known 176. 

136 



Agglomeration 

Mag. 212% 
2001Am* EHT 	10.00 kV 

WD= 10 mm 
Signal A InLens Date :10 Apr 2008 
Photo No. = MOO Time :12:43A1 

 

CNT Agglomerated 

2pm 	 EHT . 10.00 kV 
Map= 23.95 K X 	  = 9 mm 

Signal A = InLens Date :10 Apr 2008 
Photo No. = 2220 Time:10.32:51 

401116,711161E.A3MX,Iffs",.X.7r.., 	775161/1111M....„ 

Figure 70: SEM micrograph showing the tensile fracture surface of PEEK/DWCNT (-3 nm) 

composites at 5 wt% loading fraction 

Figure 71: SEM micrograph showing the tensile fracture surface of PEEK/MWCNT (30 — 

50 nm) composites at 5 wt% loading fraction 
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Figure 72: SEM micrograph showing the tensile fracture surface of PEEK/MWCNT (< 8 nm) 

at 2.5 wt% loading fraction 

Voids are also present within some of the extruded monofilaments due to trapped gas 

(Figure 72). These features, observed in the micrographs, such as agglomerates and 

voids within the extruded monofilaments are expected to degrade the measured 

tensile properties. 

Figure 73 shows the yield stress of the extruded monofilaments as a function of the 

CNT weight fraction. An increase in yield stress can be seen for all nanocomposites 

with a loading fraction of 2.5 wt% from 80 MPa for pure PEEK up to 90 MPa with 

no particular improvement related to the varying CNTs diameter. With a higher CNT 

loading within the matrix, the tensile strength decreased to around 82 MPa for most 

nanocomposites except for the large MWCNT 30-50 nm which had a yield stress of 

94 MPa. The performance reduction is likely due to the presence of agglomerations 

and voids as discussed previously. Similar trends were observed for the tensile 

strength at break (Figure 74). 
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Figure 73: PEEK monofilament yield stress as a function of CNT loading fraction 
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Figure 74: PEEK monofilament tensile strength at break as a function of CNT loading fraction 
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Figure 75: Monofilament elongation at break as a function of CNT loading fraction 

Figure 75 shows the monofilament tensile elongation at break for the 

nanocomposites mixed with the micro-extruder. The elongation at break of pure 

PEEK monofilaments is ductile with a value of around 100 %. For all 

nanocomposites, the elongation at break decreased substantially down to about 5 %, 

as observed in other studies. Monofilament elongation at break does seem to 

decrease more quickly for smaller diameter fillers. The presence of CNTs 

presumably constrains the pure PEEK locally, which is itself very much more 

ductile. Smaller diameter structures may interact more effectively with the PEEK due 

to their higher surface area, constraining more PEEK molecules, and reducing 

ductility more strongly. 
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Figure 76: PEEK monofilament Young's modulus as a function of CNT loading fraction 

The Young's modulus for all nanocomposites is shown on Figure 76. An increase in 

the Young's modulus from 3.05 GPa for PEEK up to 3.6 GPa for the SWCNT 1 - 

2 nm can be seen with a loading fraction of 2.5 %. However, with higher loading 

fraction of CNTs, no particular trend can be seen for the Young's modulus. It can be 

seen that some nanocomposites showed an increase in the Young's modulus, such as 

for DWCNT —3 nm, whilst other specimens exhibited a decrease in the Young's 

modulus, such as for MWCNT 8-15 nm. Furthermore the effect of carbon 

nanomaterials diameter on the Young's modulus is randomly scattered for each 

loading fraction used in this study. This outcome could be due to the presence of 

agglomerations and voids within the extruded monofilaments as discussed 

previously. 
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It was generally observed from micrographs that better dispersion can be obtained 

with larger diameter CNTs; smaller diameter CNTs generated large agglomerates 

after compounding. Tensile strength at yield and Young's modulus increased by 

17 % and 18 %, respectively, as well as the tensile strength at break by 42 %, in the 

best case. However, a loss in matrix ductility was observed in all cases. 

4.3.2 Tensile testing of CNT/PEEK nanocomposite films 

Another short study was performed to examine the effect of CNT weight fraction on 

the mechanical properties of nanocomposites with high loading fractions. Nanocyl 

MWCNTs were chosen for this study, they are commercially available in industrial 

quantities. Blends were compounded using the twin screw micro-extruder using the 

parameters (see 3.3.1) but with a longer mixing time of 15 min to increase the 

amount of shear mixing within the melt and hence improve the breakup of 

agglomerates and increase the dispersion of the CNTs. Nitrogen gas was not used 

during mixing to avoid any trapped gas from within the extruded compounds, 

therefore creating voids. Loading fractions of up to 15 % by weight were achieved, 

and all specimens were annealed prior to testing to ensure a high degree of 

crystallinity. 

The Young's modulus of the films was not calculated as the compliance of the 

equipment could not be determined in tension and individual specimens were too 

thin and narrow in size therefore no extensometer or strain gauges were used. The 

yield stress is reported below (Figure 77), this was chosen for comparison purposes 

as above a CNT weight fraction of 2.5 %, the specimens strength at both yield and 

break were equal due to the brittleness of the nanocomposites. The yield stress was 
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higher for both the pure PEEK and 1 % CNT weight fraction specimens than the 

tensile strength at break and it was of higher significance for mechanical design. 

CNT Weight Fraction / % 

Figure 77: Yield stress of the nanocomposite films as a function of CNT loading fraction 

Yield stress of the nanocomposites film showed (Figure 77) a linear increase from 

103 MPa for PEEK up to 117 MPa for a CNT weight fraction of 15 %. Tensile strain 

decreased when the CNT weight fraction went above 2.5 %. This is because data 

points at yield strain were used in calculating the tensile strain rather than strain at 

failure for the nanocomposites with CNT weight fraction loading below 2.5 %. No 

further decrease in matrix ductility was observed for 2.5 % CNT weight fraction 

nanocomposite films onwards. 

It should be noted that the increase in mixing time from 5 to 15 min within the 

micro-extruder was beneficial. This is because the tensile strength increased by 15 % 
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linearly as the CNT weight fraction increased up to 15 %, suggesting that 

improvements in CNT dispersion had been achieved. 

4.3.3 Characterisation of CNT/PEEK nanocomposites 

Initial trials were conducted as described previously with the varying diameters of 

CNTs study (see 4.3.1) and also the increasing CNT weight loading study (see 4.3.2). 

Bulk mechanical properties of nanocomposites were required in order to understand 

the behaviour of such composites in real world applications. To do so, large batches 

of nanocomposites were produced by compounding 500 g batches at a time using a 

continuous twin screw co-rotating extruder. Nanocyl CNTs were once again used as 

they are commercially available in large quantities. All specimens were annealed 

prior to testing to ensure a high degree of crystallinity. 

4.3.3.1 Rheology of CNT/PEEK nanocomposites melt 

The rheology work presented in the following section was performed by Dr Chris 

Crawley (Victrex Technology Centre, Thornton Cleveleys, Lancashire, UK) using a 

capillary rheometer with a simple shear rate sweep from 100 — 10000 	at a 

temperature of 380 °C using 25 g of material. 

It can be seen from Figure 78 that the shear viscosity increased with increasing CNT 

weight fraction at all shear rates. Shear viscosity decreases with increasing shear rate 

due to shear thinning. A constant increase in shear stress with increasing shear rate is 

observed for all materials can also be seen from Figure 79. The melt strength was 

enhanced upon increase of shear rate with higher loadings of CNT weight fraction. 
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Figure 78: Shear viscosity vs shear rate at different CNT loading fractions 

Figure 79: Shear stress vs shear rate at different CNT loading fractions 
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4.3.3.2 Crystallinity of CNT/PEEK nanocomposites 

All specimens were annealed prior to mechanical testing to ensure a high degree of 

crystallinity and the formation of small crystallites. This also ensured that the 

mechanical properties measured was due to the reinforcement of CNTs (if any) and 

not to a higher degree of crystallinity in the matrix caused by the nucleating effect of 

CNTs. 

Typical DSC curves for nanocomposites are shown below for both non-annealed and 

annealed materials. PEEK and 15 % CNTs were plotted to clearly see any change in 

thermal behaviour as they are the extremes of this study. 

The DSC curve for non-annealed nanocomposite is shown below (Figure 80) for 

PEEK and 15 % CNT weight fraction. It can be seen that PEEK had a high but 

narrow melting peak at a temperature of 344 °C. For 15 wt% CNT, the melting peak 

had a slightly lower melting temperature at 342 °C but was broader with a shoulder 

starting from 310 °C. Furthermore a shallow peak can be seen for 15 % CNTs at a 

temperature of 252 °C which could not be seen for PEEK. The high and narrow 

melting peak for PEEK indicates the presence of crystallised material with a narrow 

spherulite size distribution. The broadness of the melting peak for 15 % CNTs relates 

to the presence of different spherulite sizes which have a lower melting temperature. 

The shallow peak at 252 °C indicated that some interaction at the molecular level 

took place, 250 °C being the mould temperature within the injection moulding 

process. It can be assumed that some crystallisation occurred during that process to a 

small extent due to the nucleating effect of CNT on the polymer matrix. 
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Figure 80: DSC curves of non-annealed neat and 15 wt% CNT loaded PEEK 

Annealed nanocomposites are shown below (Figure 81) with PEEK and 15 CNT 

weight fraction. As previously described, PEEK showed a high and narrow melting 

peak with a maximum at a temperature of 343 °C and 15 CNTs has a slightly 

broader melting peak with a maximum at 343 °C. A more pronounced peak could be 

seen for both materials at a temperature of 256 °C. Compared to non-annealed 

nanocomposites, the main distinction that was seen was the peak present at 256 °C, 

this certainly was due to the annealing process through spherulitc growth for all 

nanocomposites and will be called the annealing peak from now on. 
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Figure 81: DSC curves of annealed neat and 15 wt% CNT loaded PEEK 
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Figure 82: DSC curves of annealed and non-annealed PEEK 
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Figure 82 shows the DSC curves of PEEK for both non-annealed and annealed 

materials. It can be seen that the high and narrow shape of the melting peaks was not 

modified throughout the annealing process and only the presence of an additional 

annealing peak at a temperature of 256 °C was seen. This further supports the 

suggestion that the annealing of all nanocomposites enhances spherulite growth 

independently of the presence of CNTs within the matrix. 
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Figure 53: DSC curves of annealed and non-annealed PEEK nanocomposites with 15 wt% CNT 

loading fraction 

DSC curves of non-annealed and annealed 15 % CNT weight fraction are shown in 

Figure 83. As with the PEEK DSC curves above, the shape of the melting peak for 

both materials was not modified upon annealing with a broad shape starting from 

310 °C. Even though the annealing peak was present for both materials, it was much 

more pronounced for the annealed sample. This shows that the spherulite growth was 

not obstructed by the presence of CNTs. 
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The annealing process used throughout this study promoted spherulite growth within 

nanocomposites compared to as-produced materials made from the injection 

moulding process. The overall degree of crystallinity was measured by fitting each 

DSC curve with a baseline using the analytical software from the DSC machine and 

fitting all peaks including the annealing peak (Figure 84). 

No evidence is shown of spherulite growth or sizes, trials were performed to do 

chemical etching of the nanocomposites to characterise the spherulites using 

microscopy but it was not possible to successfully etch the specimens. 
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Figure 84: Degree of crystallinity of the nanocomposites as a function of CNT loading fraction 

The degree of crystallinity decreased slightly with increasing CNT weight fraction 

for both non-annealed and annealed materials from 35 % for PEEK down to 32 % for 

15 wt% CNTs. Given that the degree of crystallinity variation was minimal, 
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therefore, no conclusions should be drawn based on the weight fraction loading of 

CNTs and the crystallinity of PEEK. 

The annealing process should promote mechanical properties for all nanocomposites 

including PEEK. Furthermore the separation of the nucleation effect of CNT on 

PEEK from the reinforcement effect of CNT on PEEK can be investigated further in 

the following sections with the evaluation of bulk mechanical properties of these 

nanocomposites. 

4.3.3.3 Tensile properties of CNT/PEEK nanocomposites 

Tensile is one of the main mechanical property investigated by the research 

community studying nanocomposites as it is a well established testing method. Bulk 

tensile properties were investigated using the ASTM D638 standard, a dog bone 

shape specimen for which a valid failure should occur within the specified specimen 

gauge length. An extensometer was also used for accurate measurements of the 

Young's modulus without having to take into account the machine compliance. The 

yield stress was determined along with the tensile strain and the Young's modulus. 

Values presented throughout this section for pure PEEK (annealed and non-

annealed) are for yield strain, for all other materials strain at failure is shown due to 

the loss of matrix ductility with the addition of CNTs. 
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Figure 85: Yield stress and strain at failure of the nanocomposites as a function of CNT 

loading fraction 

Nanocomposite yield stress and tensile strain are shown on Figure 85 for both 

annealed and non-annealed materials. Non-annealed nanocomposites 0, 5 and 15 % 

CNT weight fractions show an increase in yield stress with values of 103, 110 and 

122 MPa respectively. This corresponded to a linear improvement in yield stress. 

Tensile strain at failure showed a constant value of around 6-7 % whilst higher 

scatter in the data was seen with increasing CNT weight fraction. The increased in 

scatter could indicate regions of varying crystallinity at the fracture plane as it tends 

to be located at the weakest site in the material and could indicate differences in the 

ductility of the matrix. This argument is credible because the specimens were non-

annealed and variations produced from their manufacturing processes such as during 

extrusion or injection moulding could cause such discrepancies. 
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Annealed nanocomposites did not exhibit any improvement in yield stress with 

increasing CNT weight fraction. Yield stress for nanocomposites from 0 up to 10 % 

loading fraction are in the region of 113 to 115 MPa, with the exception of 15 wt% 

CNT having a value of 119 MPa but its scatter increased accordingly. Such small 

improvement should be considered as non-significant as no trend could be observed. 

The tensile strain of annealed specimens decreased with increasing CNT weight 

fraction, a sharp decrease is seen from 0 to 1% with a loss of matrix ductility. All 

CNTs specimens underwent a brittle fracture compared to the PEEK specimens 

which showed plastic deformation with necking and drawing of the polymer prior to 

failure. 

In conclusion, the increase in tensile strength of nanocomposites based on CNTs and 

PEEK is due to an increase in crystallinity from the annealing process and not from 

any reinforcing effect of the CNTs. In this case the CNTs acted as a nucleating agent. 
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Figure 86: Young's modulus of the nanocomposites as a function of CNT loading fraction 
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The Young's modulus measured during tensile testing is shown above (Figure 86) 

for both non-annealed and annealed nanocomposites. No differences can be seen 

from the annealing process on the Young's modulus for all CNT weight fractions. A 

linear increase is shown from 4.2 GPa to 6.2 GPa, giving an improvement in 

Young's modulus by 48 %. This follows a rule of mixtures since it is stated when a 

matrix and a reinforcement are blended together to obtain a composite, then the 

modulus of individual components are combined together based on the loading 

fraction. Given the superior Young's modulus of CNTs, even a low loading fraction 

would compensate for the decrease in volume fraction of the PEEK matrix and hence 

an overall increase in the Young's modulus. 

4.3.3.4 Compressive properties of CNT/PEEK nanocomposites 

Compressive mechanical properties are important for the matrix of any composite 

materials, indeed for composite materials the matrix governs the compression and 

shear properties. Little information can be found on compression properties of 

nanocomposites as the research community has mainly focused on tensile testing. 

Compression testing was performed following ASTM D695 154, an anti-buckling 

device was used to prevent buckling and provide support to the specimen. It is worth 

noting that the specimen was only supported across its thickness and not its width. 

Compressive strength at break could not be determined as all the specimens did not 

fracture but buckled across the width of individual specimen as it was not supported 

in this direction within the jig. Instead the compressive offset yield stress at 0.2 % 

was used for evaluation purposes of the compressive properties of the nanocomposite 

materials. The Young's modulus was determined taking into account the compliance 

of the machine. 
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Nanocomposite compressive offset yield stress at 0.2 % is shown in Figure 87 for 

non-annealed and annealed specimens. It can be seen that the compressive strength 

for non-annealed materials exhibited a decrease from 90 MPa to 83 MPa for PEEK 

and 15 wt% CNT respectively. For annealed nanocomposite materials, the 

compressive strength linearly decreased with increasing CNT weight fraction from 

108 MPa down to 93 MPa for PEEK and 15 wt% respectively. Although the 

crystallinity of the matrix was enhanced by annealing the samples, the compressive 

yield properties were not governed by the matrix brittleness as seen in tensile 

properties. This is because compressive yield is not comparable to compression 

strength as compressive yield also takes into account ongoing plastic deformation. 

Therefore one could assume that the results shown reflect on a decrease in plastic 

deformation of the nanocomposites. 

0 
	

5 	 10 
	

15 
CNT Weight Fraction I % 

Figure 87: Compressive offset yield stress at 0.2 % of the nanocomposites as a function of CNT 

loading fraction 
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Nanocomposites Young's modulus as determined by compressive testing is shown 

on Figure 88 for both non-annealed and annealed materials. The Young's modulus 

for non-annealed nanocomposites increased with increasing CNT weight fraction 

with values of 2.85 GPa and 4.07 GPa for PEEK and 15 wt% CNT respectively. The 

large scatter represented possible variation in the crystalline regions within the 

specimens. Nanocomposite Young's modulii for annealed CNT weight fraction 

showed an increase with increasing CNT weight fraction with values of 3.06 GPa to 

4.82 GPa, giving an improvement in Young's modulus by 58 %. These results 

indicate that the increase in compression modulus is highly governed by the degree 

of crystallinity within the composite, as highlighted in this annealing study. The 

enhancement in compressive modulus by the incorporation of CNTs (at 15 wt% 

loading) into the matrix is only secondary. 

Figure 88: Compression modulus of the nanocomposites as a function of CNT loading fraction 
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4.3.3.5 Flexural properties of CNT/PEEK nanocomposites 

Flexural testing is of importance for mechanical design purposes in industry as it 

shows the bending characteristics of materials, which is a common loading condition 

associated with components and structures. As mentioned for compressive testing, 

flexural properties of nanocomposites are not commonly measured within the 

research community. Flexural properties were determined according to ASTM D790 

in 3 point bending with a span to thickness ratio of 16. Flexural strength was 

measured, it is stated in the standard that it is only valid for strains up to 5 %, all 

CNTs containing materials showed a brittle failure before 5 % strain was obtained, 

PEEK showed plastic deformation during testing, hence the strength value measured 

at 5 % strain was used. The flexural modulus was also determined for the interval 

0.05-0.25 % flexural strain. 

CNT Weight Fraction / % 

Figure 89: Flexural strength and strain at failure of the nanocomposites as a function of CNT 

loading fraction 
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Failure within 5 % strain was not observed for non-annealed materials and annealed 

PEEK, as stated in the standard, therefore the test was stopped when 5 % strain was 

reached for these materials. Flexural strength at 5 % strain and flexural elongation 

are shown in Figure 89 for both non-annealed and annealed nanocomposites. Non-

annealed nanocomposites show an increase in flexural strength from PEEK to 

15 wt% CNT with values of 172 MPa and 187 MPa respectively. Annealed 

nanocomposites show a very slight increase in flexural strength with increasing CNT 

weight fraction from 185 MPa up to 193 MPa for PEEK and 15 wt% CNT 

respectively, with the exception of 5 wt% CNT. The flexural strain for 

nanocomposites failing before 5 % strain was reached, shows a decrease in strain to 

failure with increasing CNT weight fraction from 4.96 % down to 4.45 % exhibiting 

a loss in matrix ductility. The findings from the flexural testing show that the 

increase in flexural strength is governed by the annealing process and most probably 

by the spherulite sizes. The enhancement in flexural strength by the incorporation of 

CNTs (at 15 % weight fraction loading) into the matrix is once again only secondary. 

The nanocomposite flexural modulus results are shown on Figure 90 for both non-

annealed and annealed materials. No differences can be seen among non-annealed 

and annealed nanocomposites with increasing CNT weight fraction. The flexural 

modulus shows an increase by 38% with the addition of 15wt% CNT compared to 

PEEK with an increase from 3.95 GPa up to 5.45 GPa. Therefore in this case the 

increase in flexural modulus is only governed by the incorporation of CNTs and not 

the degree of crystallinity within the specimens. 
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Figure 90: Flexural modulus of the nanocomposites as a function of CNT loading fraction 

4.3.3.6 In-Plane shear properties of CNT/PEEK nanocomposites 

In-plane shear mechanical testing of plastics is used in this work to evaluate the 

adhesion between the reinforcement and the matrix of the composite as well as for 

example new sizing technology for the composite industry. In-plane shear testing 

was determined following the ASTM D3846 156  standard for reinforced plastic 

materials which uses a double-notch rectangular bar that generates shear within the 

plane of the two notches located halfway through the specimen thickness on opposite 

sides (Figure 34). The specimens were loaded in compression within the same anti-

buckling device used for compression testing. 

Nanocomposites exhibited plastic deformation and no failure occurred in shear 

during the testing, therefore the shear strength (offset yield 0.2 %) was used to 

evaluate the in-plane shear strength for all materials. In-plane shear testing was not 
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performed on non-annealed materials as the amount of available compounded 

materials was limited, therefore only annealed materials were examined. 

The shear strength data (Figure 91) shows an initial value of 44 MPa for PEEK. The 

in-plane shear strength increases to 48 MPa with 1 wt% CNT and subsequently 

decreases with increasing CNT weight fraction up to 15 wt%, where the value has 

dropped to 45 MPa. A minor improvement by 9 % of the in-plane shear strength was 

observed with the addition of 1 wt% CNT but this receded with increasing CNT 

weight fraction down to 2 %. 
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Figure 91: In-plane shear strength of the nanocomposites as a function of CNT loading 

fraction 

Even though the ASTM standard is specified for reinforced plastics, the specimens 

did not undergo any fracture in shear along the opposite notches but instead only 

excessive plastic deformation was observed. It is believed that the standard refers to 
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reinforced thermoset composites and not thermoplastic reinforced composites. 

Therefore it is challenging to measure the in-plane shear properties for 

thermoplastics as plastic deformation will almost certainly be the major failure 

mechanism and, therefore, puts the validation of this test into doubt. Nevertheless, 

the influence of low % of CNTs loading into PEEK led to enhanced in-plane shear 

strength (offset 0.2 %) and may well be beneficial for design consideration purposes. 

4.4 Validation of the continuous aqueous powder slurry based thermoplastic 

composite production line 

4.4.1 Influence of powder impregnation bath concentration on composite tape 

quality 

The polymer powder (as received PEEK) concentration in the impregnation bath 

needed to be optimised to manufacture unidirectional carbon fibre reinforced PEEK 

composite tapes with consistent fibre volume content of 60 %. Figure 92 shows the 

fibre volume content of as produced carbon fibre reinforced PEEK composite tapes, 

using the commercial Vicote 804 PEEK suspension, as a function of bath 

concentration. The required bath concentration to produce a consistent CF/PEEK 

tape with a Vf  of 60 % over 2 h of manufacturing time was identified to be 8 wt%. 

However, it is worth noting that this bath concentration was determined using the as 

received commercially available grade PEEK suspension whose particle size d50 

was 10 um, whereas the CNT/PEEK nanocomposite powder had a particle size d50 

of —50 um. 
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Figure 92: Fibre volume content of the produced CF/PEEK tape as a function of PEEK Vicote 

804 concentration in the impregnation bath 

The particle size distributions of the PEEK powder are shown in Figure 93. The 

average particle size of the PEEK-150 was slightly larger than that of the Vicote 804 

and the average particle size of the CNT/PEEK nanocomposite powder can be found 

in Section 4.5. The mass balance calculation (see Experimental Section) showed that 

the required PEEK powder concentration in the impregnation bath should be 

maintained at 8 wt% for a PEEK powder with a d50  of 10 um. However, the bath 

concentration for the larger PEEK powders should be much lower. 
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Figure 93: Particle size distribution of as-received PEEK 150 powder and PEEK powder 

suspended in Vicote 804 

4.4.2 Mechanical properties of carbon fibre/PEEK composites 

The bond strength between reinforcing fibres and the surrounding PEEK matrix was 

inferred from macromechanical tests 177 . The aim of this particular study was to 

compare the quality of the in-house manufactured CF/PEEK composites made from 

two different forms of PEEK with commercially available CF/PEEK APC-2 tapes. 

The following PEEK grades and CF/PEEK composites were studied: 

a) PEEK in powder form (PEEK-150) 

b) PEEK in a pre-dispersed solution already containing surfactant 

and defoamer (Vicote 804) 

c) Commercially available APC-2 
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4.4.3 Influence of the fibres/matrix type on flexural properties of carbon fibre 

reinforced PEEK 

Flexural testing is one of the simplest tests to perform, to determine the flexural 

modulus and flexural strength and is mainly governed by the fibre/matrix properties. 

Generally, these tests are used for qualitative assessment during the material 

selection process rather than for determination of absolute engineering values. This is 

mainly because of the simplicity of this test, which means that there is a wide range 

of standard methods in use throughout the industry. Most test methods available 

apply to homogenous solids but a few tests have been developed to test high 

performance fibre reinforced composites. Of the methods that fall into the latter 

category, the ASTM standard D7264-07 158  for flexural properties of polymer matrix 

composite materials was strictly followed during this study using a span to thickness 

ratio of 32. 
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Figure 94: Flexural strength of the laminated CF/PEEK composites manufactured using 

various PEEK grades and carbon fibres 
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The flexural strength of the commercially available APC-2 PEEK composites which 

contain AS4 carbon fibres was 1780 MPa (Figure 94). The flexural strength of the in-

house manufactured CF/PEEK composites also containing AS4 carbon fibres was 

about 10 % higher. The reason for the higher flexural strength of the in-house 

CF/PEEK is probably the fact that APC-2 still contains appreciable amounts of 

DPS 59  (which have been quantified by Bismarck et al. 178). The Cytec process is a 

melt impregnation process; PEEK is melted in DPS, which is a good solvent for 

PEEK but also acts as plasticizer for PEEK. One can therefore expect that the 

presence of DPS impacts upon the mechanical properties of CF/PEEK. Moreover, 

the PEEK grade used to manufacture APC-2 is a well-guarded secret of the 

manufacturer Cytec, but it can be assumed that it is a low melt viscosity grade. The 

fibre (mis)alignment of the laminated CF/PEEK tapes, caused by the different melt 

viscosity of the matrix during compression moulding at conditions optimised for the 

in-house CF/PEEK tape, is also a factor influencing the mechanical properties of the 

final composites. 

The in-house manufactured CF/PEEK-150 composites containing T700 carbon fibres 

have a flexural strength of 1800 MPa, which is lower than that of the PEEK-150/AS4 

composites (Figure 94). The lower flexural strength could be caused by a lower bond 

strength between the T700 fibres and the matrix. These results suggested that the 

bond strength between AS4 fibres and PEEK-150 is higher than that of T700 fibres 

and PEEK-150. The surface chemistry of the two carbon fibres is very different; AS4 

carbon fibres have a surface oxygen content, as determined by XPS, of 7 at.% 179  

whereas T700 carbon fibres contain 18 at.% surface oxygen 180. Also, please note that 

T700 is commercially only available with an epoxy sizing. This however, could be 
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partially degraded during the production of composite tape as PEEK is processed at 

390 °C. The (partially) degraded epoxy sizing on the carbon fibres could possibly act 

as weak boundary layer 181  at the fibre/matrix interface. Moreover, the different 

interaction between the different carbon fibres and the PEEK-150 matrix cannot be 

explained by mechanical interlocking as both fibres have relatively similar BET 

surface areas of around 0.35 m2/g 180, 182. 

The flexural strength of AS4/Vicote 804 and T700/Vicote 804 composites remained 

constant at around 1770 MPa (Figure 94). The reason for this is that the Vicote 804 

PEEK suspension already contained the defoamer, which is ethanol, and a surfactant. 

Ethanol is not only a very efficient defoamer but at the same time it also helps to, at 

least, partially desize the fibres 183.  Therefore the amount of sizing of the T700 

carbon fibres impregnated with PEEK from Vicote 804 is expected to be lower than 

that of the T700 carbon fibres impregnated directly with a PEEK-150 suspension. 

Therefore, using Vicote 804 PEEK suspension for the impregnation of carbon fibres 

reduces the impact of the epoxy sizing on the fibre matrix interface. In general the 

composite manufactured using the Vicote 804 PEEK matrix has a lower flexural 

strength, but the differences are marginal. 

A representative SEM micrograph of a Vicote 804 PEEK/T700 composite (Figure 

95) demonstrated that the CF/PEEK composites generally failed in compression on 

the upper surface of the test specimen. 
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Figure 95: Fractured upper surface (below loading pin) of Vicote 804/T700 flexural test 

specimen 

The flexural modulus of all investigated CF/PEEK composite tape laminates was the 

same (Figure 96). Flexural modulus is not dominated by the interface properties. 

Given that the matrices of the CF/PEEK composites were not modified (except for 

maybe the higher amount of DPS in APC-2), i.e. reinforced by CNTs which will be 

discussed later on in the thesis, the results obtained are those one would expect. 
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Figure 96: Flexural modulus of the laminated CF/PEEK composite tapes manufactured using 

various PEEK grades and carbon fibres 
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4.4.4 Influence of PEEK grade on the short beam shear properties of carbon 

fibre reinforced PEEK 

The short beam shear test is a 3-point bending test with a small span-to-thickness 

ratio to induce shear. The specimen geometry is designed to reduce tensile and 

compression flexural stresses and to maximise and induce through-thickness shear 

stresses in the test specimen. The short beam test is not an ideal shear strength test; 

the stresses induced are not pure shear because it is not possible to eliminate flexural 

stresses completely. This has been reflected in the most recent edition for the ASTM 

testing standard D2344159, in which the test method was renamed the 'Short Beam 

Strength test' replacing the previous title 'Short Beam Shear test'. In regions away 

from the loading and support points, the shear stress induced in the specimen 

theoretically varies parabolically from zero on the specimen top and bottom surfaces, 

to a maximum value in the specimen mid-plane. Correspondingly, the flexural tensile 

and compressive stresses are at a maximum on the specimen top and bottom surface, 

varying linearly to zero at the mid-plane. Therefore, the undesired stress fields 

reduce to zero where the desired shear stress field is a maximum. However, this is an 

ideal picture and because the test specimen is so short, the entire stress field 

throughout the test piece is significantly affected by the local forces acting at the 

loading and support points. With these aforementioned points in mind, it is still true 

that a region of high shear stress exists along the mid-plane of the test piece and it is 

this stress which results in the failure of the tested specimens. 

A typical force-displacement curve obtained during short beam shear testing of a 

unidirectional carbon fibre reinforced PEEK composite is shown below (Figure 97). 
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Figure 97: Typical load-displacement curve obtained from a short beam shear of a CF/PEEK 

composite 

In Region 1 of the force-displacement curve the three point bending load increases as 

a function of displacement until compressive failure of the upper surface occurs 

under the loading pin (as shown in Figure 97). In accordance with the standard, the 

load before failure was used for the calculations of the short beam shear strength. 

When the specimen was subjected to a steady state load, the load is transferred from 

the matrix to the fibres via the interface and is in this case directly related to the shear 

stress causing interfacial failure. The force as function of displacement further 

increases in Region 2. In this region the composite undergoes plastic deformation 

while the crosshead is crushing the test piece inside the test jig. 
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Figure 98: Apparent short beam shear strength of the laminated CF/PEEK tape composites 

manufactured from various PEEK grades and CFs 

The T700/PEEK composites (independent of the PEEK grade used) have about the 

same SBS strength than the commercially available APC-2 composites but both have 

a significantly lower SBS strength than the AS4/PEEK composites (Figure 98). The 

interface dominated short beam shear strength, measured by the SBS test, showed 

once more (Section 4.2) that the AS4/PEEK composites (irrespectively of the PEEK 

grade used) have a slightly enhanced fibre/matrix interface as compared to the 

T700/PEEK and APC-2 composite laminates. Again this should be largely due to the 

fact that the T700 fibres were industrially epoxy sized and APC-2 still contains some 

DPS plasticiser. In conclusion it can be said that the quality of the composites 

produced using out home-build modular laboratory scale composite production line 

is comparable if not superior to commercial grade (APC-2) composites. 
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Comparing micromechanical properties (single fibre pull-out test results) from 

Section 4.2 to macromechanical properties obtained from flexural and SBS test, the 

results complement well with each other (Figure 99). The T700 CF/ PEEK-150 

model composites exhibited a low IFSS (25 MPa), the measured flexural and SBS 

strengths are also much lower than of the AS4 CF/ PEEK-150 composites. The AS4 

CF/ PEEK-150 model composites with a corresponding IFSS of 70 MPa had a 

flexural and SBS strength of 1940 MPa and 104 MPa, respectively. It can be seen 

that the orders of magnitude differences in IFSS between the unsized AS4 and the 

sized T700 fibres are much higher in a single fibre composite model compared to the 

macroscale composites. The explanation for this is once again due to the sizing 

surface finish by the manufacturer on the parent fibres. Flexural and SBS test 

specimens that were continuously processed and compression moulded (see sections 

3.3.5 and 3.3.8), the time at which the fibres were subjected to a temperature 

environment during processing is much longer than preparation of single fibre pull-

out test specimens (see section 3.2.7). Given that both processing temperatures were 

390 °C, above the degradation temperature of the epoxy sizing, the sizing burn off 

rate would be much higher in the macro-composites and resulted in more defective 

sites at the fibre/ matrix interface. It can be concluded that sizing on fibres influences 

interfacial adhesion between CFs and PEEK-150. In fact T700 carbon fibres have 

higher mechanical properties than AS4 carbon fibres (see Section 3.1), therefore, one 

would expect the mechanical properties of composites consisting of T700 fibres to be 

higher than that of AS4 fibres. Since the Hexcel AS4 fibres were available in unsized 

form whereas the Torayca T700 fibres were only available with an applied sizing, it 

is difficult to further consolidate such statement by studying fibres from the same 

manufacturer. Given that sizing is commonly designed to give better compatibility to 
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epoxy matrices, it is not surprising that sizing inhibits the interaction with PEEK-150 

because the processing temperature of PEEK-150 is above most epoxy resins. 
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Figure 99: Short beam and flexural strength as a function of apparent interfacial shear 

strength 

4.5 Characterisation of hierarchical fibre reinforced PEEK nanocomposites 

An important feature of the powder material in the aqueous powder impregnation 

process during production of unidirectional carbon fibre, hierarchically-reinforced 

PEEK is the average and homogeneity of the particle sizes. If the particles are too 

small, they would drop out of the spread carbon fibre tow after exiting the 

impregnation bath. On the other hand if the powder is too large, it is difficult for the 

powder to be impregnated into the carbon fibre tow uniformly. This would then lead 

to powders being filtered out of the carbon fibre tow and result in some resin/ fibre 

rich regions. 
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Figure 100: Particle size distribution of pure PEEK powder and CNT-reinforced PEEK 

powder processed using the "powder" route 

The influence of different CNT loadings on the particle size distribution (PSD) of 

CNT reinforced PEEK powder produced using the 'powder' route (see Section 3.3.4) 

is presented in Figure 100: at 1 CNT loading, the CNT reinforced PEEK powder 

has a d50  of 74.5 µm. As the CNT loading increased to 2.5%, the d50  decreased to 

40.6 pm. The d50  decreased further to 38.2 p.m when the CNT loading increased to 

5 %. Comparing to the baseline of which the pure PEEK powder processing using 

the same 'powder' route, the d50  was 55.5 p.m. What can be seen is that the PSD of 

the processed PEEK powder and the processed CNT reinforced PEEK powder has 

larger particle sizes than commercially available PEEK powder (see Section 4.4.1) 

where the average d50  is 10 	It is critical that if the experimental parameters as 

well as the results of the composites manufactured using PEEK-150 (Section 4.5) are 

to be compared, then the d50  between these starting materials should be as close as 
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possible. As cryogenic grinding of extruded CNT/PEEK nanocomposites to 10 pm is 

not possible at a laboratory scale (see Section 3.3.4), the 'powder' route would 

therefore be the most applicable approach at a research scale. 

A series of SEM micrographs were taken to examine the morphology of the PEEK 

powder processed using the 'powder' route (example shown in Figure 101). No 

agglomeration could be observed from the images which is encouraging. The same 

powder morphology can be observed in Figure 102 (left) with 5 % CNTs loading in 

PEEK powder. Furthermore, at high magnification (Figure 102, right) it can be seen 

that the CNTs are not condensed on the surface of the matrix but evenly distributed 

into the bulk of the matrix. 

Figure 101: Representative SEM micrograph of pure PEEK powder processed via the 

"powder" route 
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Figure 102: Representative SEM micrograph 5 % CNT loading in PEEK powder at low (left) 

and high magnification (right). CNTs can be seen on the right image (small white dots) 

4.5.1 Influence of CNT loading on the flexural properties of the unidirectional 

carbon fibre, hierarchically-reinforced PEEK 

As shown in Figure 103, an eight percent lower flexural strength was recorded for 

the in-house manufactured T700 carbon fibre reinforced PEEK as compared to 

commercially available APC-2. 
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Figure 103: Flexural strength and strain at failure of APC-2 and in-house composites as a 

function of CNT loading fraction 
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Despite the consistency in sample preparation via compression moulding; the 

thickness of APC-2 (0.2 mm) was in fact double the thickness of the composite tape 

manufactured. This would mean that in order to achieve the same specimen thickness 

(span to thickness ratio: 32:1), as specified in the standard, the amount of 

manufactured composite tapes required is twice the amount of the hand cut APC-2 

strips, i.e. the experimental error was higher. Certainly the grade of PEEK variations 

in the two samples remained. When the CNT loading in the unidirectional carbon 

fibre hierarchically-reinforced PEEK increased, no improvements in the interface 

dominated property, flexural strength, were observed. The flexural strain at failure of 

the set of data also exhibits the same trend, which implied that the brittleness of the 

tested specimens increases due to the presence of CNTs. This is a common 

observation and is consistent with the rheology data in section 4.3.3.1. 
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Figure 104: Flexural modulus as a function of CNT loading fraction 
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The measured flexural modulus of the in-house T700 carbon fibre reinforced PEEK 

composite tape manufactured revealed an 8 % drop as compared to the APC-2 

specimens (Figure 104). The factors previously discussed regarding the amount of 

material required as well as the grade of PEEK polymer employed are still valid. 

Furthermore, the fibre volume fraction was different between the two samples. A 

fibre volume fraction of 60 % is present in APC-2, however the in-house 

manufactured T700/PEEK composite only has a fibre volume fraction of 55 %. This 

was targeted for a particular reason. One should not forget the aim of this research 

work is to modify the matrix within a fibre reinforced composite system by the 

incorporation of CNTs. If the matrix content in such system increases, then the 

effectiveness of matrix modification on the overall mechanical properties of the 

composite should be enlarged accordingly. Nevertheless a probable explanation for 

the decrease in flexural properties of the hierarchical composites is due to higher 

matrix viscosity as well as the wide powder size distribution which could create 

voids. 

4.5.2 Influence of CNTs loading on the Short Beam Shear properties of the 

unidirectional carbon fibre, hierarchically-reinforced PEEK 

The apparent short beam shear (SBS) strength test is a common analytical technique 

used for quality control, for example it is used in epoxy systems to examine the 

degree of curing. 
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Figure 105: Short beam shear strength as a function of CNT loading fraction 

It can be seen that (Figure 105) the in-house manufactured T700/PEEK composite 

specimens had a higher SBS strength compared to APC-2. This is because of the 

higher resin content in the in-house manufactured specimens. Therefore, the mid 

shear plane region of which the composite is subjected under load is larger and can 

carry more load as compared to the APC-2 specimens which have a lower resin 

content. 

Interestingly as the CNTs loading increased, the SBS strength remained stable up to 

1.25 % of CNTs loading, after which a 20 % drop in the SBS strength was observed 

when the CNTs loading increased to 2.5 % and 5 %. This finding would suggest that 

perhaps at very low CNTs loading, interface dominated properties of a hierarchical 

composite could be improved, but as the CNTs loading increased further then the 

enhancement would diminish. This should be due to a few traditional issues involved 
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when processing CNTs, i.e. alignment of the CNTs, arrangement of the CNTs and 

voids due to the higher matrix viscosity to name a few. 

4.6 Summary 

Characterisation results of carbon nanomaterials and mechanical properties of 

composite materials were analysed and discussed. Carbon nanomaterials were 

characterised for both their bulk and surface properties to assess their quality and 

potential as reinforcement for composite materials. Single fibre pull-out tests were 

conducted on model single carbon fibre pure PEEK matrix as well as CNT-

reinforced matrices. Nanocomposites were mechanically tested for both micro- and 

macro-scale using conventional testing methods such as tensile, compressive, flexure 

and in-plane shear tests. The continuous thermoplastic composite production line was 

validated by comparing in-house made carbon fibre reinforced PEEK with 

commercially available APC-2 PEEK composites using flexural and short beam 

shear tests. Finally, mechanical properties of hierarchical thermoplastic composites 

were conducted and discussed. 
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Chapter 5 - Conclusions 

New advanced high performance composite materials with enhanced mechanical 

properties have been developed during the course of this research. This was achieved 

by first using CNTs to reinforce a PEEK matrix, then using conventional carbon 

fibres to further reinforce the nano-reinforced matrix to form what we call 

hierarchical composites. Challenges such as selecting a suitable CNT reinforcement, 

achieving a good dispersion of these CNTs within the matrix, producing micrometre 

scale nanocomposite powders and impregnating 12k carbon fibre rovings with an 

extremely high viscosity nanocomposite melt were overcome. 

The first step was to analyse the surface and bulk properties of 13 different carbon 

nanomaterials, ranging from SWCNT to CNF. Based on the results obtained, three 

different studies on the mechanical properties of nanocomposites were conducted. 

Monofilaments of CNT (with varying diameters) reinforced PEEK nanocomposites 

were produced using a small-scale batch process micro-extruder. The tensile strength 

and the Young's modulus of the monofilament CNT/PEEK nanocomposites 

increased by 42 % and 18 %, respectively, with 5 wt% CNTs loading. However, the 

elongation at break reduced by 95 %. Based on the CNT and nanocomposite 

characterisation, Nanocyl MWCNTs were selected as the CNT material to be used 

for the rest of the study as they are one of the few industrially available and 

affordable materials. At high loading fractions, Nanocyl MWCNTs were 

compounded for an extended period of time, extruded, pelletised and compression 

moulded into nanocomposite films. Tensile properties showed a linear increase of up 

to 15 % in strength with a CNT loading fraction of 15 wt%. Afterwards, it was 

decided to produce larger batches of nanocomposites in order to fully characterise 
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the bulk mechanical properties of these CNT/PEEK nanocomposites. It was found 

that, as expected, the melt viscosity of the PEEK increased with increasing CNT 

loading fraction. 

The influence of annealing of nanocomposites on the mechanical properties of PEEK 

nanocomposites was studied. In case of the non-annealed PEEK nanocomposites the 

tensile strength increased by 20 % with CNT loading fraction of 15 wt%, whilst for 

annealed samples the CNT incorporation resulted on in an improvement of 8 %. 

Furthermore, flexural tests were performed and the flexural strength increased by 

9 % and 4 % for non-annealed and annealed nanocomposites with 15 wt% CNT 

loading, respectively. However, the flexural modulus improved independently of the 

annealing process by 38 % upon CNT incorporation. Hence the incorporation of 

CNT into PEEK allows for a modest improvement of the mechanical properties of 

PEEK. It should also be noted that not only are the diameter, quality, loading and 

dispersion of the CNTs important but also the control of the PEEK matrix 

crystallinity. 

Secondly, a modular lab-scale aqueous powder slurry impregnation line for the 

production of thin, flexible continuous unidirectional fibre reinforced thermoplastic 

polymer tapes was successfully designed, constructed (in cooperation with Dr 

K.K.C. Ho and Dr M.Q.B. Tran) and validated. In order to validate this piece of 

home-built apparatus, unsized AS4 and sized T700 carbon fibre reinforced PEEK-

150 tapes with a fibre volume fraction of Vf  = 60 % were manufactured and were 

compared against a commercially available CF/PEEK composite prepreg (APC-2). 

This was done by preparing macromechanical test specimens using compression 
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moulding. Results from flexural and short beam shear tests showed that the 

CF/PEEK composite laminates produced had slightly better properties than APC-2, 

both composites contained AS4 carbon fibres. It was also found that the AS4/PEEK-

150 composite exhibited higher flexural strength than the sized T700/PEEK-150 

composite despite the higher mechanical properties of the T700 fibres, which was 

due to the fact that the T700 fibres were epoxy sized, which most probably led to the 

formation of a weak boundary layer. These findings agree with measured apparent 

interfacial shear strength of single AS4 and T700 fibre/PEEK-150 composites. 

The next step was to assess the feasibility of hierarchical PEEK composites on the 

single fibre composite scale. The interfacial properties of these composites were 

studied (at the BAM Berlin) using the single fibre pull-out tests. The force required 

to debond a fibre from a solidified droplet of annealed nano-reinforced PEEK matrix 

was measured and the apparent interfacial shear strength, as measure of the practical 

adhesion, was determined. As much as 50 % improvement in the apparent interfacial 

shear strength was recorded as a result of the incorporation of 5 wt% CNTs into 

PEEK, showing that the incorporation of CNTs into the PEEK matrix enhanced the 

interfacial properties. Potentially high performance hierarchical composite materials 

with good mechanical properties could thus be developed. To achieve this aim, a 

CNT reinforced PEEK powder with a particle size preferably smaller than 100 pm 

had to be made in order to manufacture carbon fibre reinforced CNT reinforced 

PEEK nanocomposites using the powder impregnation route. A temperature induced 

solution precipitation method was developed to produce a nanocomposite powder 

with a d50  of around 50 Jim. SEM micrographs showed that CNTs were well 

dispersed throughout and uniformly embedded within the nanocomposite powder. 

182 



Finally, the CNT/PEEK nanocomposite powder was used to manufacture 

unidirectional, continuous carbon fibre hierarchical PEEK composites. Various 

CNTs loading were investigated and flexural and short beam shear (SBS) properties 

were measured. Preliminary findings showed a decrease of 4% in flexural strength 

with no difference in flexural modulus and 15 % decrease in the SBS strength. This 

is probably due to the inclusion of voids caused by the high viscosity of the 

nanocomposite matrix and the wide powder size distribution. However, the results 

show that potentially high quality hierarchical carbon fibre reinforced thermoplastic 

composites with high CNT loading fractions could be manufactured even at an 

industrial scale and, therefore, the full benefit of CNTs incorporation in to fibre 

reinforced composites could become reality provided that high quality CNTs with 

suitable surface properties for the desired matrix become available at an industrial 

scale. 
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Chapter 6 — Suggestions for future work 

The concept of fibre reinforced carbon nanotube composites, we call them 

hierarchical composites and the Composite Materials Group (around Prof I. 

Verpoest) in Leuven call them nano-engineered fibre reinforced polymer composites, 

was when I started my PhD still an entirely new approach to composite engineering. 

However, in recent years many more papers dealing with this subject matter 

reporting in a few cases extraordinary improvements of composite properties or 

focus on multifunctional (mainly sensing aspects) properties that can be added to 

composites by adding low loading fractions of CNTs to conventional composite 

matrices. Nevertheless, from my work I identified a few areas of research and 

engineering that seem worth pursuing in the future not only on hierarchical 

composites themselves: 

Anticipated Future Improvement in Thermoplastic Hierarchical Composites 

This study highlighted the potential of additional nanoscale reinforcements in 

composite matrices but showed also that a simple annealing of a semi-crystalline 

thermoplastic matrix, such as PEEK, negates all anticipated matrix dominated 

property improvements, simply because the crystalline regions of the polymer act as 

self-reinforcing phase. The potential of an additional CNT reinforcement might 

actually be realised only in amorphous matrices, such as polyethersulfone (PES), 

polysulfone (PSU), polycarbonate (PC) or polyimide (PI). The production of such 

composites presents its own challenges, such as the intrinsically higher melt viscosity 

of amorphous polymers. However, using such matrices might offer huge potential for 

the production of composites with high impact resistance and toughness. 
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Optimisation of the home-built modular laboratory scale composite production 

line 

During the course of my PhD research, I identified aspects of our composite tape 

production line which could or need to be improved: 

Infrared radiation (IR) sensors 

The heaters have the capability to be controlled by various different input 

parameters. The initial mode of operation relied on a feedback control system using 

thermocouples located inside the ovens as sensors, but it would be desirable for the 

control strategy to account for factors that affect the amount of heat required to dry 

the tape or melt the polymer powder on the tape. If this would be possible the heating 

could be set to power rather than to set fixed temperatures. This not only will allow 

better control of tape drying and polymer melting but also in the long term, this will 

help conserve energy. The composite line was fitted with infra-red sensors to 

measure the temperature of the tape when exiting the drying and the melting ovens. It 

was attempted to provide information on when the temperature of ovens was needed 

to be increased or/and lowered. However this proved to be unreliable when a single 

carbon fibre roving was used to produce a composite tape because of the slight 

misalignment of the tow whenever a twist on the fibres passed below the IR sensor. 

Perhaps, such infra-red sensors are more suitable for industrial scale manufacturing 

where up to 60 carbon fibres rovings are processed at the same time and therefore the 

fibre misalignment caused by twists is minimised. As a result, an upgraded controller 

unit had been installed after my experimental research period finished; this unit 

allows the heating rate to be controlled in a more precise manner because the heating 
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rate is lower. This should be beneficial for future researchers using the composite 

production line. 

Consolidation 

The temperature of the heated pins was controlled by a thermocouple positioned 

inside the cartridge heater, however very large temperature gradients arose due to the 

open air design and a temperature difference of up to 50 °C was observed between 

the surface of the heated pins and the temperature sensor. Additional thermocouples 

should be attached to the heated pins which should allow for accurate control of the 

temperature of the tape surface. Furthermore, top and bottom cover brackets should 

be fitted to reduce heat lost from the consolidation area. 

Automatisation of the composite line: control of the polymer suspension 

concentration in powder impregnation to control the fibre volume content of the 

produced composite tape 

The fibre volume content of the produced thermoplastic composites is controlled by 

two factors: mainly the powder concentration of the polymer suspension in the 

impregnation bath and the line speed. When manufacturing of (hierarchical) 

thermoplastic composite tapes, I (and so do my colleagues) needed to increase the 

powder concentration of the impregnation bath in order to maintain the fibre volume 

fraction of the composite tape, which was done by frequently adding concentrated 

suspension and/or removing dilute suspension from the bath. Hence the running of 

the composite line alone is difficult and could be avoided only if an automatic dosing 

system could be incorporated into the existing composite manufacturing line. This 

requires a measuring system that could determine the powder concentration in the 
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suspension which should be however insensitive to the many broken carbon fibres 

that end up in the bath. The measured output would then be used as input to control 

the feed of the concentrated suspension to the impregnation bath. The suspension 

could be added to the bath by opening/closing a valve of a container containing the 

concentrated suspension or by using a peristaltic pump. The diameter of tubing, 

length of tubing, pump rate would need to be balanced to ensure no sedimentation of 

powder during delivery to void blocking the system as well as a constant stirring of 

the concentrate is required. The potential advantage of such a system is a better 

quality and more constant quality of the produced composites. 

Different approaches to manufacturing unidirectional carbon fibre reinforced 

PEEK composites 

Integrated spreading pins located within the infra-red melting oven would preserve 

the power required to heat up the triple heating cartridges. In addition the heat lost 

from the open oven set up that was previously discussed could also be overcome. A 

better tape quality would occur because the heat provided for spreading the polymer 

melt into the fibre tow would come from all around the impregnated rovings rather 

than only the contact points between the fibre tow and the cartridge heaters. 

Twist control or removal to enable proper spreading of the fibre rovings would allow 

the production of very thin composite tapes, which are more flexible and could 

therefore be easier processed, for instance by weaving. This would allow new 

designs for thermoplastic composites to be explored and might open up new 

application areas. 
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I showed that standard epoxy sizings negatively affect the carbon fibre/PEEK (and 

more generally thermoplastic polymer) adhesion, which will directly impact on the 

composite properties. Unfortunately, only Hexcel AS4 and IM7 fibres are 

commercially available in an unsized form. It would therefore be desirable to 

develop a continuous desizing procedure for sized carbon fibres to utilise other 

carbon fibres as reinforcement. This might in fact be possible using our in-line 

atmospheric plasma unit by simply sputtering or oxidising the sizing away in an inert 

(such as nitrogen) or air or oxygen plasma. In a preliminary study on the impact of an 

atmospheric air plasma treatment on the carbon fibre/PEEK adhesion it will be 

possible to show that such a treatment does allow to increase the fibre/matrix 

adhesion considerably, which should prove beneficial for the overall composite 

performance, especially on interface dominated properties, such as interlaminar and 

off-axis properties and fracture toughness. In a separate study we 184  showed that an 

atmospheric oxygen plasma treatment increases the carbon fibre/polyamide 12 

adhesion by 100 % without negatively affecting the fibre bulk (including 

mechanical) properties. 
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Appendix 

Determination of the diameters of carbon nanomaterials 

SEM micrographs of carbon nanomaterials have been investigated and taken at set 

magnification (i.e. 30, 100, 150 or 200 kx) depending on the diameter of the material 

looked at. Random images were taken (at least 6 per sample) and saved in a TIFF 

format. 

ImageJ 185  software was used to extract the diameters from individual SEM 

micrographs. The `measure_andiabel' plugin is necessary and can be found in the 

plugin section on ImageJ website 185. Install the plugin within ImageJ using a known 

shortcut to automate the process, go in `Plugins/Shortcuts/Install Plugin...', select 

the 'Measure_ and_ Label' plugin, type in a command (i.e. Meas-Label) and L as 

shortcut (in capital letter). 

Open a SEM micrograph, magnify the image to 200 %, it is necessary to adjust the 

scale of the micrograph first. For this, draw a straight line across the SEM scale bar, 

go in 'Analyse/Set Scale...', input in 'known distance' the value on the micrograph 

scale bar and input in 'unit of length' as nm or gm depending on the scale, press Ok. 

Keeping a magnification of 200%, using the straight line drawing tool, draw a line 

across each individual CNT/CNF normal to their length (i.e. 90° angle) and activate 

the shortcut created (i.e. here L by pressing Shift+1). Select another CNT/CNF and 

continue the process around the whole micrograph. Do not measure the diameter of 
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the same CNT/CNF twice. A list will be created with the length measured (i.e. the 

diameter in our case). The error in measurement is expected to ± 0.5 nm. 

Apply the same procedure on other SEM micrographs from the same sample. 

OriginPro 8 software was used for the analysis of the diameters. Extract the list 

within Origin and create a frequency count of the diameters. Create a histogram from 

that frequency count showing counts vs diameters. Fit the histogram with a Gaussian 

curve. It will list the mean diameter, standard deviation value is determined as half 

the width of the Gaussian curve. 

Apply the same procedure for the rest of the materials. 
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