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Abstract

A class of adaptive algorithms employing tap selection for acoustic echo cancellation (AEC)
is developed and analyzed in this thesis. The starting point of this work is the MMax
normalized least-mean-square (MMax-NLMS) algorithm where only a subset of taps are
selected for adaptation. The MMax tap selection is extended to the affine projection (AP)
and recursive least squares (RLS) algorithms. The performances of these algorithms are
studied in the context of single channel AEC by developing a generalized analysis frame-
work for a wide range of algorithms including NLMS, AP, RLS and, in particular the
MMax selective-tap algorithms. This analysis presents new insights into their tracking
performances under both time-invariant and time-varying system conditions.

A novel approach to reduce interchannel coherence based on tap selection for stereo-
phonic acoustic echo cancellation (SAEC) is introduced. This tap selection technique op-
timizes jointly the reduction in interchannel coherence and maximizing the “MMax-ness”
of both channels. The reduction in interchannel coherence is achieved by an exclusive
tap selection such that the same tap-indices may not be selected in both channels. The
resultant exclusive-maximum (XM) tap selection is then applied to the NLMS, AP and
RLS algorithms.

New insights into the SAEC problem are presented by deriving the relationship be-
tween interchannel coherence and conditioning of the two-channel input autocorrelation
matrix. Employing this relationship, this work examines how the XM tap selection re-
duces the interchannel coherence and improves the conditioning of the input autocorre-
lation matrix to achieve a fast convergence. The XM tap selection is extended to the
frequency-domain adaptive algorithms, employing both the 50% and an arbitrary overlap-
ping factor between successive tap-input vectors. Simulation results verifying analysis and
comparative results of the proposed algorithms will be provided in the context of single

channel and stereophonic AEC.
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Element-by-element product (Schiir product)
Null matrix of dimension m rows X n columns
Identity matrix of dimension m rows x m columns
Expectation operator

Trace operator

Squared l2-norm

Sample iteration

Length of adaptive filter

Length of transmission room impulse responses
Length of receiving room impulse responses
Transmission room source

Receiving room source

Receiving room microphone signal

Filter output

a priori error

a posteriori error

Uncorrelated measurement noise



0. Notation 18

e g a > =z 3

Q X 9

Diagonal tap selection control matrix

Number of taps selected for adaptation based on MMax tap selection criterion
Cost function

4t channel far-end (transmission room) impulse response

#* channel near-end (receiving room) impulse response

4t channel estimated response

7% channel tap-input vector

#* channel subselected tap-input vector given by Q;(n)x;(n)

7 channel non-linear processed input signal

Forgetting factor with 0 << A <1

Ith eigenvalue

Input autocorrelation matrix given by E{x(n)x? (n)}

Time-averaged input autocorrelation matrix given by Y& ; A" ~*x(i)x” (¢)
Cross-correlation vector between x(n) and y(n) given by E{x(n)y(n)}
Time-averaged cross-correlation between x(n) and y(n)

given by 357 1 A" iy(i)x(i)

Magnitude difference vector given by |x1(n)] — |x2(n)|

M-ratio defined as ||Q,x(n)||%/|x(n)||3

Misalignment defined as ||h — E(n)“%

Normalized misalignment defined as ||h — h(n)|2/|/h||2

Variance of zero mean input signal defined as E{z(n)z(n)}
Frequency-domain frame index

Block length of multi-delay filtering (MDF) structure

Block index for the MDF structure (Chapter 5)

Total number of blocks for the MDF structure

Magnitude weighting for exhaustive search technique in SAEC
Coherence weighting for exhaustive search technique in SAEC defined as 1 — ¥,
Tap selection set for exhaustive search technique in SAEC

Magnitude cost matrix

Coherence cost matrix
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xe[A]
ForxoL
£
(HIE
Y
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Hmis

Sn

ju

Vn
Pnk
¢, ¢a
B

Total cost matrix for exhaustive search technique in SAEC

Non-linearity constant implemented using the half-wave rectifier for SAEC
Regularization parameter

Sampling frequency

E-norm condition number of matrix A

Fourier matrix of dimension 2L x 2L

Control parameter for non-stationary unknown impulse response (Chapter 3)
Squared interchannel coherence

Tap-selection dependent variable defined as L/(M M) (Chapter 3)
Step-size parameter for NLMS, AP, FLMS based algorithms

Step-size with the lowest steady-state misalignment under non-stationary
unknown system condition (Chapter 3)

Number of partitioned blocks for SPU-NLMS

Number of blocks in SPU-NLMS selected for adaptation (Chapter 2)
Kalman gain for RLS

Forgetting factor for computing ||x(n)||2 using a recursive estimate (Chapter 2)
Affine projection order

Periodic and Sequential-LMS control parameter

Segmentation control parameter for Short-sort algorithm (Chapter 2)
Noise process in modified first order Markov model (Chapter 3)

Square matrix with elements containing cross-spectra

between input channels j and u

System mismatch vector defined as ﬁn — h,

Adaptation control matrix at sample iteration n — k (Chapter 3)
Algorithmic dependent constant (see Table 3.2)

Tap-selection dependent variable in steady-state misalignment parameter

for MMax-RLS (see Table 3.2)
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¢(n) Scalar constant to illustrate non-unique solutions in SAEC
€ Control parameter to vary interchannel coherence between

two impulse responses in SAEC
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Chapter 1

General Introduction

Study the past if you
would define the future.

Confucius (551-479 BC)

1.1 Developments in echo cancellation

CHO is the repetition of sound caused by a delayed reflection of sound waves. In
E telecommunications networks, echoes prevent natural conversation when the speaker
hears a delayed version of his utterance and since the human ear is sensitive to echo, even
a round trip delay as short as tens of milliseconds (ms) inhibits natural conversation [1].
It should be noted however that not all echoes reduce voice quality. In order for phone
conversations to sound .natural, callers must be able to hear themselves speaking. TFor
this reason, a short instantaneous echo known as the “side tone” is deliberately inserted,
coupling the caller’s speech from the telephone mouthpiece to the earpiece so that the
line sounds connected. However, longer round trip delays (exceeding 30 ms) can become

annoying.

The telecommunications industry has sought means to reduce echo since the late
1950s with the advent of satellite communications where delays are considerably long. A
telephone call connected via a geostationary satellite orbiting approximately 23,000 miles

above Earth’s surface can experience a delay of approximately 500 to 600 ms [2]. Network
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echo control in these early systems were first introduced in the form of echo-suppression
devices for two- to four-wire hybrids [3] where a impedance mismatch causes received
speech signal to be transmitted back to the source with a delay thus perceiving as echo.
These echo suppressors were essentially voice-actuated switches which transmit signals
and were subsequently turned off to suppress any returning echo signal. The main prob-
lem with these systems was that they only allow half-duplex communications. Network
echo control underwent an evolutionary change in the early 1960s when echo cancellation
theory was formally developed by AT&T Bell Labs [4] [5]. These systems utilized adap-
tive signal processing and reduced the echo by synthesizing an echo replica. Although a
blockless echo suppressor [6] was proposed by generating the echo replica using an impulse
generator, the adaptive echo canceller [1] [5] remains highly effective since the echo path
is time-varying in practical implementations. Although experimental versions of echo can-
cellers were built and successfully tested, they were unfortunately too large and expensive
for commercial service. With the advent of very-large-scale-integrated (VLSI) technol-
ogy in the early 1970s, the first twelve-channel digital VLSI network echo canceller was
implemented in 1978 [7] [8].

The challenge of providing hands-free telephone conversations has been recognized
since the early 1970s [9]. With the development of hands-free tele-conferencing and in-car
systems, acoustic coupling between the loudspeaker and microphone inhibits natural com-
munication between users. Although many techniques were proposed including the use
of frequency shifting, comb filters and center clipping to solve the acoustic echo cancella-
tion (AEC) problem, one of the most efficient implementation was the extension of network
echo cancellation adaptive algorithms [10]. Using the 10udspeaker-enclosure-micropbhone
(LEM) model [10], the concept of a feasible solution to the AEC problem employing an
adaptive filtering algorithm is that if it is possible to provide a replica of the receiving
room’s impulse response, then decoupling of the loudspeaker and the microphone can be

achieved.

Although direct application of network echo cancellation algorithms can be applied

to AEC, the differences between the network and acoustic echo paths call for intensive
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research for the latter application. The difficulties associated with the AEC problem result
from two major factors: (i} the reverberation time of an office or a living room can be several
hundred milliseconds long and (ii) the transfer characteristics of LEMs are sensitive to, for
example, any movements of people or changes in the placement of furniture. The degree of
acoustic echo cancellation depends on the closeness in approximation of the LEMs by its
replica implemented using a linear filter whose primary objective 1s to model an impulse
response dynamically. In a typical office or living room which exhibits reverberation time
in the order of 50 to 300 ms [11], this translates to adapting 400 to 2400 filter coefficients at
8 kHz sampling frequency. In addition, room impulse responses are sensitive to movements
of people and variations in temperature or pressure. A slight change of furniture setting,
for example, can cause decoupling performance to degrade by approximately 15 dB for
example cases shown in [12]. For this reason, adaptive filters are utilized to track and

compensate any changes in the receiving room impulse responses.

The computational complexity of adaptive algorithms needs to be considered for ef-
ficient implementation. Assuming a sampling rate of 8 kHz and for a transversal filter
length of, for example, 1024 coefficients (128 ms), approximately 8.192 million multiplica-
tions and the same number of additions per second are necessary to perform filtering. The
need to reduce computational complexity is hence an important issue and as a consequence,
a significant focus in AEC research has been to reduce the computational complexity of
adaptive algorithms for applications requiring such high density or low cost. A result of
this work is a class of partial update adaptive filtering algorithms that share the char-
acteristic of executing tap update operations on only a subset of the filter coefficients at
each iteration. With the reduction in complexity due to partial adaptation, it is normal
to expect a degradation in performance of such algorithms. Hence, the challenge of re-
searchers in this field is to develop tap selection schemes which reduces this degradation

in performance.

More recently, modern applications such as multiparty room-to-room teleconferenc-
ing, multimedia desktop conferencing and interactive video online gaming call for more

life-like multichannel sound transmission. One of the first two-channel hands-free stereo-
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phonic conferencing system was implemented and tested in [13] where an echo suppressor,
comprising of a comparator and logic controller, permits half-duplex stereophonic trans-
mission. It was found that with stereophonic sound, speech intelligibility was enhanced
and the ability for users to localize multiple far-end speakers was increased significantly
hence reducing the “cocktail” party problem and enhancing tele-presence to users. With
the introduction of such stereophonic systems, the need for stereophonic acoustic echo
cancellation (SAEC) is inevitable. Although SAEC can be seen as a direct extension of
the single channel AEC case, the SAEC problem is far more challenging as conventional
single channel adaptive algorithms deployed for such an application suffer from non-unique

solutions [14].

1.2 Research aim and thesis structure

The design of a hands-free system comprises issues such as adaptive step-size control,
double talk detection and echo suppression [15] [16] [17]. Integrated systems such as the
use of echo cancellation and noise reduction algorithms for AEC have also been considered
in [16] [18]. The aim of this research work, however, is the development and analysis
of adaptive algorithms employing tap selection for both single channel and stereophonic
AEC in hands-free systems. As will be presented in this thesis, the concept of selective-tap
algorithms is derived from that of partial update algorithms such that the former update all
filter coefficients at each sample iteration although, as will be shown, their computational

complexities are still lower than that of conventional (fully updating) adaptive algorithms.

This thesis is organized as follows: In Chapter 2, both the conventional and partial
updating adaptive algorithms for the single channel AEC application are reviewed. Partial
update algorithms built on the least-mean-square (LMS) and normalized-LMS (NLMS)
algorithms such as the Periodic-LMS [19], Sequential-LMS [19], Selective-partial-updating
NLMS (SPU-NLMS) [20] and MMax-NLMS [21] algorithms are reviewed and their per-
formances are compared through simulation examples. The affine-projection (AP) and
recursive least squares (RLS) algorithms employing MMax tap selection are developed

with focus on the derivation of the MMax-RLS algorithm from a least-squares criterion.
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The performances of the proposed MMax-AP and MMax-RLS are compared through sim-

ulation examples.

In Chapter 3, the steady-state misalignment of adaptive algorithms under time-
varying unknown system conditions is analyzed. A general framework is developed such
that the steady-state analysis can be applied to both the conventional (LMS, NLMS, AP
and RLS) algorithms end their MMax variants. The aim of this analysis is to provide an
insight of how the performances of such adaptive algorithms, in particular those employ-
ing MMax tap selection, are affected by conditions such as the degree of variation of the
unknown system and the number of filter coefficients used for adaptation in single channel
AEC. The proposed framework is presented and extensive formulations and discussions
will be provided for each adaptive algorithm. Simulation results are provided to compare

theoretical and experimental performances of each algorithm.

A novel application of selective-tap algorithms is the stereophonic acoustic echo can-
cellation (SAEC) problem as presented in Chapter 4. The main aim of employing selective-
tap algorithms in SAEC is not to address the complexity reduction issue as for the single
channel AEC case described in Chapters 2 and 3. Instead selective-tap algorithms are pro-
posed for reducing the interchannel coherence so as to improve convergence performances
of adaptive algorithms for SAEC. The motivation and aim of Chapter 4 is to develop a
tap selection scheme for effective reduction in interchannel coherence whilst minimizing
the degradation in convergence performance due to tap selection. As a proof of concept,
an exhaustive search technique is presented to provide an insight of how tap selection can
perform a reduction in interchannel coherence hence improving the rate of convergence
of conventional adaptive algorithms for SAEC application. For effective implementation,
an efﬁcignt tap selection algorithm known as the exclusive-maximum (XM) tap selection
is proposed. As will be explained, the XM tap selection optimizes jointly the reduction
in interchannel coherence and maximizing the “MMax-ness” of the selected taps so as to
reduce the degradation in convergence performance of the proposed algorithms due to tap
selection. Simulation results are presented to compare the improvement in convergence of

the proposed algorithms over conventional algorithms without tap selection.
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In Chapter 5, frequency-domain adaptive algorithms, in particular the fast-
LMS (FLMS) algorithm [22] and the multi-delay filtering (MDF) structure [23] are re-
viewed. Following the approach as presented in [11], a general derivation of such adaptive
algorithms in the frequency-domain is reviewed. The use of frequency-domain quantities
allow the formulation of an explicit link between the interchannel coherence and the con-
ditioning of the input autocorrelation matrix in SAEC. This relationship gives an insight
of how interchannel coherence affects the conditioning of the input autocorrelation matrix
which in turn degrades the misalignment performances of adaptive algorithms in SAEC.
In addition, this relationship explains how interchannel coherence is reduced by the XM
tap selection which consequently gives good convergence performances of the XM-based
algorithms. Cases of tap selection, which can be achieved by subselecting tap-input vectors
in time- or frequency-domain, are analyzed and their implications to the performances of
frequency-domain algorithms employing tap selection are also discussed. Extensions of the
XM tap selection to frequency-domain adaptive filtering are presented by considering both
the 50% and an arbitrary overlapping factor between successive tap-input vectors. Simu-
lation results are presented to verify theoretical analysis and to evaluate the performances

of algorithms being developed.

1.3 Statement of originality, contributions and related pub-

lications

As far as the author is aware, the following aspects of this thesis are believed to be original

and key contributions:

1. The extension of MMax tap selection [21] to the affine projection (AP) algorithm and
the development of MMax-RLS from least-squares criterion as depicted in Chapter 2.

The publication related to this contribution is [24].

2. A generalized framework for steady-state misalignment analysis which was proposed
for a class of adaptive filtering algorithms (NLMS, AP and RLS) and their MMax-

variants under both non-stationary and stationary unknown system conditions in
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single channel AEC as discussed in Chapter 3. Publications related to this contri-

bution are [24] [25].

3. The quantification of the closeness of a MMax subselected tap-input vector to that of
a fully populated tap-input vector using the M-ratio measure M. This ratio served as
an optimization parameter for reducing the degradation in convergence performance
due to tap selection in SAEC as discussed in Chapter 4. Key publications related to

the M-ratio measure are [26] [27].

4. The development of a class of exclusive-maximum (XM) adaptive algorithms for
SAEC application which, as a proof of concept, is derived from an exhaustive search
technique, as depicted in Chapter 4. Publications related to this contribution are [28]

29] [30] [26] [27).

5. An analytical verification of how maximization of the M-ratio M subjected to an
exclusive tap selection constraint for both channels in SAEC is achieved by the XM
tap selection is provided in Chapter 4. This verification has also been presented

in [26].

6. Derivation of the link between interchannel coherence and the condition number of
the two-channel input autocorrelation matrix as described in Chapter 5. This link
allows one to explain the reduction in interchannel coherence and the improvement in
conditioning of the inp‘ut autocorrelation matrix due to XM tap selection in SAEC.

This contribution has resulted in publications [31] [32].

7. Discussions on the subselection of tap-input vectors in time- and freqhency—domain
and their implications on performances of frequency-domain algorithms employing

tap selection as presented in Chapter 5.

8. Development of frequency-domain XM algorithms for SAEC employing both the 50%
and an arbitrary overlapping factor between successive tap-input vectors depicted in

Chapter 5. The publication related to this contribution includes [32].
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As this thesis is regarding the application of selective-tap algorithms for AEC application,

the author has chosen not to include the following contribution in this thesis:

1. Development of the improved-proportionate multi-delay block adaptive filtering al-
gorithm for network echo cancellation. This contribution has resulted in publica-

tion [33].

2. Development of adaptive algorithms for blind channel acoustic system identification

based on work presented in [33].
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Chapter 2

Algorithms Employing Tap
Selection in Single Channel

Acoustic Echo Cancellation

The beginning of knowledge is the discovery

of something we do not understand.

Frank Herbert (1920-1986)

2.1 Introduction

ANDS-FREE terminals have become increasingly popular due to the advent of
H video and desktop conferencing. The increase in popularity of in-car hands-free
telephony due to the rising safety concern further calls for the need of hands-free systems.
Whilst the introduction of hands-free telephony has brought about convenience and safety,
the key issue of acoustic echo cancellation (AEC) needs to be addressed. In order for
effective echo cancellation, a replica of the echo is generated by means of modelling the
receiving room’s impulse response using an adaptive filter. Implementation of an acoustic
echo canceller poses great challenges due to (i) the long duration of the unknown echo path
response, which can require several thousands of filter coefficients for accurate modelling,

(ii) the highly time-varying nature of the echo response, and (iii) the need to train the
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echo canceller using speech signal, which is coloured and statistically non-stationary.

As discussed in Section 1.1, a typical room impulse response in the region of 50
to 300 ms requires an adaptive filter of length 400 to 2400 at 8 kHz sampling frequency.
The motivation for the introduction of selective-tap adaptive algorithms can be explained
by considering the high computational load of adaptive algorithms. The normalized least-
mean-square (NLMS) algorithm [34] [35] for an adaptive filter of length L requires approx-
imately 2L multiply-accumulate (MAC) operations per sampling period of the signal. In
the past, this rate of operation was considered high for typical telecommmunications end-user
equipment and researchers were therefore motivated to seek techniques that could reduce
the computational complexity of adaptation without significantly degrading effectiveness
in terms of its convergence rate or final misadjustment. More recently, the computation;xl
capability of low-cost processing hardware has increased very rapidly so that a typical
NLMS implementation would not be seen as a heavy computational demand. However,
new pressures on product design have emerged - the increase of user mobility imposes a re-
quirement of low power consumption for portable battery powered equipment; the growth
of telecommunications usage imposes a requirement of high density implementation for
infrastructure equipment so that the number of simultaneous echo cancellers of given tap
length that can be run within a specified MIP-budget (millions of instructions per sec-
ond) is maximized. Both these requirements renew the motivation for low computational
complexity, even with todaySs high speed processors. Consequently, significant focus for
adaptive filter research in recent years has been to reduce the computational complexity

of tap updates per iteration for applications requiring such high density or low cost.

Although an exhaustive review of complexity reduction techniques is beyond the scope
of this chapter, several computational complexity reduction techniques have been identi-
fied. The use of post-filtering techniques is proposed as one of the methods to reduce
the computational workload of processor chips. These techniques employ a conventional
acoustic echo canceller of reduced length which models the direct path and the early re-
flections of the room impulse response, while the post-filter attenuates the residual echo

corresponding to the late reverberation. In [36], the post-filtering is implemented using a
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second adaptive filter and the combined system achieves a high echo attenuation even in
the presence of high noise levels. It is found that this combined filtering approach requires
approximately 1000 filter coefficients less in order to achieve comparable echo attenuation
as that of a conventional echo canceller. The use of Wiener filtering and noise reduction
techniques in place of an adaptive post-filter proposed in [37] further improve echo attenu-
ation. It is noted that during double-talk, the attenuation performance increases with the
post-filter length especially for lower frequencies (<1 kHz) where the echo and near-end in-
put signal spectra are similar in terms of magnitude. The use of post-filtering and step-size
control jointly has also been considered in [17]. The use of a frequency domain postfilter

for background noise reduction and residual echo cancellation has been considered in [38].

Subband adaptive filtering (SAF) has been introduced in AEC to achieve complexity
reduction whilst achieving an improved rate of convergence compared to full-band struc-
tures. In SAF, input signals are first partitioned into subbands and down-sampled using an
analysis filter bank [39]. Consequently, adaptation with the down-sampled signals requires
a lower complexity proportional to the down-sampling factor. Furthermore, in addition to
the reduced spectral dynamic range, each subband may be adapted using different step-
sizes matched to the energy of the input signal in that band hence achieving improved
convergence [40]. The error signal of each subband is synthesized and up-sampled by the
synthesis filter bank before being transmitted to the far-end. It should be noted that the
gain in reducing processing power due to down-sampling far outweighs the overhead intro-
duced by the analysis and synthesis filter banks. In [41] the authors formulated a modified
subband structure where the error signals are computed in subbands while the adaptive
filter coefficients are being updated in the full-band domain. Furthermore, utilizing the
principle of minimal disturbance [35], the proposed algorithm achieves improved rate of
convergence over the NLMS algorithm although a modest increase in computational com-
plexity is required. To address the delay introduced by the analysis filter bank, several
delayless SAF algorithms such as [42] [43] have been developed.

In recent years, partial update adaptive algorithms are proposed as an alternative form

of complexity reduction of, in particular, the NLMS algorithm by updating only a subset of



2.2 The single channel acoustic echo cancellation problem 32

filter coefficients at each sample iteration. These techniques allow implementation of single
channel AEC with performance close to that of the conventional (fully updated) NLMS
algorithm. One of the most recent tap selection schemes is the MMax tap selection [21]
which, when applied to NLMS, is denoted as the MMax-NLMS algorithm. The aim of
this chapter is to develop a class of MMax selective-tap algorithms for single channel
AEC application. As will be seen in Chapter 4, these algorithms form the basis for the
development of stereophonic acoustic echo cancellation (SAEC) selective-tap algorithms.
This chapter is organized as follows: Section 2.2 presents a brief overview of the AEC
problem which, in addition, introduces notations for use in this thesis. Two well-known
performance measures for single channel AEC are explained and the explicit link between
the two is shown in Section 2.3. Partial update adaptive algorithms and in particular
the MMax-NLMS algorithm are reviewed in Section 2.5. A class of algorithms employing
MMax tap selection is formulated by extending the MMax to the affine projection (AP)
and recursive least squares (RLS) algorifhms in Sections 2.6.1 and 2.6.2 respectively. The
computational complexity of the proposed algorithms are discussed in Section 2.7 while

simulation results comparing their performances are presented in Section 2.8.

2.2 The single channel acoustic echo cancellation problem

In hands-free systems, such as in-car telephony or tele-conferencing systems, the source of
acoustic echo originates mainly from the acoustic coupling as well as possibly mechanical
coupling between the microphone and loudspeaker. In this section, the single channel AEC

problem is described and the NLMS algorithm is derived to address this problem.

2.2.1 Problem definition

Figure 2.1 shows a schematic diagram describing a typical single channel AEC system.
A transmission room is depicted on the right where a microphone picks up time-varying

signal 2(n) from a speech source via acoustic path

g(n) = [90(n) g1 (n) ... grp-1(n)]”, (2.1)
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Figure 2.1: Schematic diagram of single channel acoustic echo cancellation.

which is the source to microphone impulse response in the transmission room and Lt is the
length of g(n) while the superscript T is the transposition operator. The input signal z(n)
is then transmitted to the loudspeaker in the receiving room depicted on the left which in

turn is acoustically coupled to the receiving room’s microphone via impulse response
T
h(n) = [ho(n) ha(n) ... hrg_1(n)]" (2.2)

where Lp is the length of h(n). Defining uncorrelated background noise and near-end
(receiving room) speech as w(n) and sg(n) respectively, the received microphone signal
y(n) is then given by

y(n) = b7 (n)x(n) + w(n) + sr(n) , (2.3)

where

x(n) = [z(n) z(n—-1) ... z(n—L+1)]" (2.4)

is the tap-input vector and L is the length of the adaptive filter. As will be explained in
Section 2.2.2, the length of the adaptive filter is assumed to be the same as that of the

unknown impulse response, i.e., L = Lg. The background noise w(n) is assumed to be
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zero mean and uncorrelated with z(n).

If no echo canceller is present, the received signal y(n), which contains a component
of z(n) given by (2.3), is transmitted back to the source with a delay and an attenuation,
therefore impeding effective communication. Thus, an adaptive filter at the receiving end
functions as an acoustic echo canceller by estimating receiving room’s impulse response

h(n) using filter coefficients h(n) where
fx(n) = [ﬁo(n) lh\1('n) e EL_l('n)]T . (2.5)

The output of the echo canceller 7(n) is subtracted from received signal y(n) obtaining an

a posteriori error signal ep(n) given by

ep(n) = y(n) - 7(n)
= y(n)— b7 (n)x(n)

[7 (n) — BT (n)]x(n) + w(n) + sg(n) . (2.6)

Thus for effective echo cancellation, the adaptive filter aims to model the receiving room’s
impulse response such that when fx(n) ~ h(n), the component x(n) in ey(n) is significantly
small. Note that the a posteriori error ey(n) as defined in (2.6) is computed after the

adaptive filter coefficients have been updated. In contrast, the a priori error
e(n) = y(n) — b”(n - 1)x(n) (2.7)
is computed using the previous impulse response estimate ﬁ(n -1).

2.2.2 Assumptions

For simplicity and mathematical tractability, unless otherwise stated, the following are

assumed in this thesis:

1. The length of the adaptive filter ﬁ(n) is the same as that of the receiving room’s

impulse response h(n), i.e., L = Lg;
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2. Receiving room source signal sg(n) = 0 when input z(n) # 0, Vn, i.e., no double-talk

is present;

3. A finite impulse response (FIR) filter configuration is used.

Assumption (1) allows one to simplify mathematical derivations. In the realistic
under-modelling case, where the length of the adaptive filter L is less than that of the
receiving room’s impulse response Lg, the adaptive filter must be of considerable length
in order to achieve a good misalignment performance. As will be discussed in Section 2.7,
the computational complexity of an adaptive algorithm increases monotonically with the
length of the adaptive filter L. Consequently, current implementation considerations re-
quire a balance between the need for good misalignment performance and low computa-
tional complexity. In such practical implementations where L < Lpg, the best achievable
steady-state normalized misalignment in the absence of noise, is limited by the energies of
the impulse response tail not modelled by the adaptive filter. This normalized misalign-

ment can be expressed as [39] [44]

h(n) — h(n)|? Lr1
10log;q [%‘l‘b} 1010glol: > hi(n) / h(n ||2} dB , (2.8)

where || - ||2 is defined as the squared l;-norm operator and the estimated impulse re-
sponse ﬁ(n) is appended with L — L zeros. Consequently, the performance in terms of
normalized misalignment for an under-modelling case with L < Lg will be lower than that

of a perfect modelling case with L = Lpg.

In most conversations, double-talk situations may arise when near-end speech signal
sr(n) # 0 at the receiving room while z(n) # 0. Under such situations, sg(n) may be
perceived as a high level noise source which causes the adaptive filter to diverge and, as
a result, annoying audible echo will be transmitted to the far-end source. This problem
can be alleviated by employing a double-talk detector (DTD) such that once double-talk
is detected, the adaptive filter coefficients are “frozen” and prohibited from adapting [45].
One of the earliest form of DTD algorithm for network echo cancellation is the Geigel

algorithm where the adaptive filters are prohibited from adapting [7] if received signal
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y(n) is greater than half of the maximum element in |x(n)| where
T
Ix(n)| = [|Jz(n)] Jz(n—1)| ... Jz(n—L+1)|]]" . (2.9)

For AEC application however, a variable threshold has to be implemented due to the dy-
namic nature of the acoustic echo path [46]. Other DTD algorithms have been proposed
for AEC including the cross-correlation [47] and the normalized cross-correlation meth-
ods [48]. Using an objective measure, it has been noted in [46] that for AEC application,
the normalized cross-correlation method achieves the best performance compared to the
Geigel algorithm and the cross-correlation technique. The performance recommendation
of hands-free terminals in the presence of double talk is described in [49]. In this thesis, As-
sumption (2) is assumed and as such, the algorithm in study converges to its steady-state

in the absence of double-talk.

Many physical systems can be well described by difference equations involving both
the input and output. Hence linear time-invariant (LTI) infinite impulse response (IIR)
models are commonly expected to possess better modelling capabilities than their finite
impulse response (FIR) counterpart. However, it has been found that an IIR filter config-
uration does not show an advantage over an FIR configuration for AEC [44]. Due to the
inherent stability of an FIR filter, the use of an FIR filter in Assumption (3) is assumed

throughout this thesis.

2.3 Performance measure

2.3.1 Echo return loss enhancement

The echo return loss enhancement (ERLE) specified by the International Telecommuni-
cations Union (ITU) [50] measures the attenuation of the echo signals in an AEC system

and is defined as

ERLE (n) = 10log;, Zj%;— dB . (2.10)
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It is usually applied to short frames of the signals and is often known as the segmented-
ERLE. It can be seen that a higher ERLE corresponds to higher reduction in echo. The
ITU-T G.167 recommendation for single channel acoustic echo controllers recommends an

initial convergence rate of 20 dB per second [51].

2.3.2 Normalized misalignment

One of the most common performance measure is the mean-square deviation (MSD) [35]
defined as E{||h(n) — fl(n)”%} where E{-} is the mathematical expectation operator. The
instantaneous measure ||h(n) — h(n)||2 is commonly known as the misalignment such that
when normalized with the energy of the unknown impulse response h(n), it is known as

the normalized misalignment given by

ll( — b

n(n) = 10log;, ”2 dB . (2.11)

Hence the normalized misalignment measures the closeness of the estimated impulse re-
sponse to that of the unknown impulse response and is particulary useful to study the
tracking capability of adaptive algorithms. It should be noted that since the impulse re-
sponse h(n) is unknown for practical systems, this measure is applicable only for synthetic

simulations in which h(n) is known.

2.3.3 Relationship between normalized misalignment and error in single

channel AEC

Assuming a time-invariant unknown impulse response h, the normalized misalignment 7(n)
can be expressed in terms of the a priori error e(n) for a zero mean white Gaussian

noise (WGN) input sequence by first defining the system mismatch vector

v(n) =h(n) —h (2.12)
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from which the squared a priori error, defined in (2.7) can be expressed as
e?(n) = [w(n) — xT(n)v(n — 1)] [w(n) — vi(n - x(n)] , (2.13)

where w(n) is the uncorrelated noise as shown in Fig. 2.1. Defining F{-} as the mathemat-
ical expectation operator, it is noted that for large n, the system mismatch autocorrelation

matrix

R,y = E{v(n)vT(n)}

~ E{vi(n-1)vi(n-1)}, (2.14)
since after convergence, v(n) = v(n — 1). Letting the input autocorrelation matrix be

RXX

i

E{x(n)xT(n)}

= UgILxL (2-15)

where 02 and Ip«p are the variance of z(n) and the L x L identity matrix respec-

tively, Fi{e?(n)} can then be expressed using (2.13) as

E{e?(n)} = E{t{vT(n— Dx(n)xT(n)v(n - 1)}} + E{w?(n)}
E{é*(n)} - B{w?(n)} = E{tr{v"(n— 1)Ruxv(n—1)}}
- E{tr{vT(n — 1)Ruxv(n — 1)}}
= EB{u{v(n - )v7(n - DRxx}}
= tr{RvRxx}

= o2tr{Rv} , (2.16)

where tr{-} is defined as the trace operator and the fourth equality follows from the trace

identity tr{AB} = tr{BA}. Using (2.12) and (2.16), the normalized misalignment 7(n)
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can be expressed as

101ogyo [tr{Rw }/|Ih/3]

62 _ 2
= 1010g10[E{ (”)a}§||hﬁ%{w (”)}]. (2.17)

=
<
I

It should be noted, from (2.3) and (2.7), that the a priori error e(n) is lower bounded
by the uncorrelated measurement noise w(n). From (2.12) and (2.13), it can be seen that
for small €2(n), h(n) — h hence giving a low normalized misalignment 7(n) in (2.17) and
a high ERLE in (2.10). It is important to note that for the stereophonic case, as will
be discussed in Chapter 4, the condition e?(n) — 0 for a noiseless case w(n) = 0 does
not necessarily imply ﬂ(n) — h. On the contrary, solutions for the estimated impulse
response E(n) under the condition e?(n) — 0 are non-unique [52] and depend on both the
transmission and receiving rooms’ impulse responses. Since the objective of the adaptive
filter is to model the receiving room’s impulse response h, the normalized misalignment
n(n) is more applicable for single channel and stereophonic AEC and as a consequence,

in a similar manner to published works, the normalized misalignment 7(n) is employed as

the performance measure in this thesis.

2.4 The LMS and NLMS algorithms

The normalized least-mean-square (NLMS) algorithm [34] [35] [53] is an iterative formu-
lation wh.ich solves the Wiener-Hopf equations recursively by employing the method of
steepest descent. Exploiting the mean ergodic property [54] [55], filter coefficients are
driven recursively such that as time progresses, they approach the optimal Wiener so-
lution. In this section, the Wiener-Hopf equations are derived and how the method of
steepest descent can be applied to form the NLMS algorithm for AEC application is dis-
cussed. As will be seen in Sections 2.5 and 5.3.3, this derivation will form the basis of
selective-tap and frequency-domain adaptive filtering algorithms. Without the loss of gen-
erality, a noiseless case w(n) = 0 is assumed in this section. The case where w(n) # 0 will

be considered in Chapter 3 for the purpose of algorithmic analysis under noisy conditions. '
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In addition, for mathematical tractability, input signal z(n) is assumed to be zero mean

white Gaussian noise (WGN) with variance o2.

The a posteriori cost function (7, is defined as the mean square error given by

Jo = E{lep(n)|}
= E{(n)}, (2.18)

where the a posteriori error ep(n), as defined in (2.6), is a real quantity for AEC applica-
tion. For the cost function to attain its minimum value, all elements of the gradient vector

VJ, must be simultaneously equal to zero,
ViJlp=0, i=0,1,...,L—-1, (2.19)

where V;J, = E{8¢k(n)/0hi(n)}. Defining e°®*(n) as the error operating under the

optimal condition V;7, = 0, it can be shown using (2.6) that
E{e®(n)z(n-1i)} =0, (2.20)

for i = 0,1,..., L —1. Equation (2.20) is known as the principle of orthogonality which
states that at each sample iteration, the minimum error e°?*(n) is orthogonal to each
input sample {35]. To obtain the optimal solution h°Pt such that the cost function is

minimized, (2.6) is substituted into (2.20) and using a temporary variable k, it can be

shown that
L-1
E{ [y(n) - Z heP z(n — k)} z(n — z)} = 0
k=0
L-1
P E{z(n—k)z(n—i)} = E{z(n-iyn)}, (2.21)
k=0
for i = 0,1,...,L — 1. Having assumed z(n) and y(n) to be statistically invariant, the

input autocorrelation matrix can be expressed as

Rux = E{x(n)x"(n)} , (2.22)
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while the cross-correlation between the tap-inputs of the filter and the desired response is

expressed as

By, = E{x(n)y(n)} . (2.23)

Using (2.21)}, the Wiener-Hopf equations [35] may be obtained as

hot = R1®,, . (2.24)

The method of steepest descent [35] is a well-known optimization technique such that
when applied to the Wiener filter, it allows tracking of time variations without having to
invert Rxx in (2.24). The basic concept of the method of steepest descent is that from
an arbitrary starting point on the error performance surface, a small step is taken in the
direction where the cost function decreases fastest. The filter coefficients thus progress
towards the minimum j;)oint on the error performance surface as the number of iterations
increases. For a simple illustrative case qf L = 2, the error performance surface forms a
paraboloid with a curvature determined by the eigenvalues of input autocorrelation matrix
R,x. Letting u be adaptation step-size, the recursi\‘re tap update equation is described
by [34] [35],

h(n) = h(n —1) — uVJ(n) , (2.25)

where

J(n) = E{e*(n)} (2.26)

is the a priori error cost function and e(n) is the a priori error defined in (2.7). The

gradient V.7 (n) can be simplified using (2.7) for 1 =0,1,...,L — 1, giving

- 3

= —2®,, +2Rxxh(n — 1) . (2.27)

Substituting (2.27) into (2.25) and using (2.7), the recursive tap updating equation is given
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by

=
G
It

h(n — 1)+ 2u[®xy — Ruxh(n — 1)]
= Aln-1+2 [E{x(n)y(n)} — B{x(n)xT(n) }h(n - 1)]

B(n — 1) + 20x(n) [y(n) — xT()a(n - 1)

2

= h(n—1)+2ux(n)e(n) . (2.28)
Note that, following the approach in [35], E{x(n)xT(n)} and E{x(n)y(n)} are approxi-
mated by an instantaneous estimate. Defining Amax s the maximum eigenvalue of Ryxx,
the adaptive step-size 0 < p < 1 /Xmax serves as a control for adaptation speed [35]. It is
further shown [56] [57] that under the condition 0 < g < 1/tr{Rxx}, the filter coefficients
hover randomly about the Wiener solution. As will be shown through mathematical analy-
sis in Chapter 3, a high value of p will increase the rate of convergence but at the expense
of steady-state misalignment. Equation (2.28) is also known as the least-mean-square

(LMS) update equation® [59)].

The normalized LMS (NLMS) algorithm is derived based on the principle of minimal
disturbance [35] which minimizes the squared lo-norm of the change in filter coefficients

from one iteration to the next given by
=~ =~ 2
||lh(n) —h(n - 1)||; , (2.29)
subject to the constraint of
hT(n)x(n) = y(n) . (2.30)

Applying the Lagrange multipliers and following similar approach to [35], the NLMS up-

date equation is given by

x(n)e(n)
llx(n)lI3 + dnems

h(n)=h(n-1)+2u (2.31)

where dnpms is the regularization parameter which ensures stability during initialization

!For readers’ interests, Dr. B. Widrow's personal view on the discovery of the LMS algorithm can be
found in [58).
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when x(0) = 0Opx; is a null vector of dimension L x 1.

2.5 Partial update adaptive algorithms

Adaptive filters with finite impulse response (FIR) are now widely used in many appli-
cations of signal processing in general and telecommunications in particular. The least-
mean-square (LMS) algorithm and its normalized version (NLMS) [35] as described in
Section 2.4 are the most common in practice because of their straightforward implemen-
tation and relatively low complexity compared to the better performing but substantially
more complex least squares algorithms. The NLMS algorithm [35] requires approximately
2L multiply-accumulate (MAC) operations per sampling period of the signal and as dis-
cussed in Section 2.1, a significant focus in recent years has been to reduce the computa-
tional complexity of tap updates per iteration for applications requiring high density or
low cost. A result of this work is a class of partial update adaptive filtering algorithms
that share the characteristic of executing tap update operations on only a subset of the
filter coefficients at each iteration. It is normal to expect that as the number of coef-
ficients updated per iteration is reduced, the computational complexity is also reduced
but at the expense of some loss in performance. Hence the goal of the designers of such
partial update algorithms is to find ways to reduce the number of coefficients updated per
iteration in a manner which degrades algorithm performance as little as possible. In this
section, an overview of existing partial update algorithms is presented. As will be seen,
these partial update algorithms can be broadly classified into (input) data-independent or

data-dependent algorithms.

2.5.1 The Periodic-LMS and Sequential-LMS algorithms

The Periodic-LMS and Sequential-LMS algorithms [19] perform tap selection in a data-
independent manner. In the Periodic-LMS algorithm, reduction in computation is achieved
at each sample iteration n by updating filter coefficients periodically using the A'[n/A/ [t
instantaneous gradient estimate where |-} is defined as the truncation operator and N €

{1,2,...,L}. In addition, only taps satisfying the condition (n + ¢) mod N = 0 for tap
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indices i = 0,1,...,L — 1 are updated at sample index n. Combining these two features

and defining a L x L diagonal tap selection control matrix

Q(n) = diag{q(n)}

(@) 0 0]
_ 0 ql.(n) h E , (2.32)
: . . 0
0 0 qr-1(n) | el
the Periodic-LMS update can be expressed as
h(n) = h(n - 1) + 2uQn)x(D)e(l) , (2.33)

for | = NM|n/N]. The tap selection elements for i =0,1,...,L — 1 are given as

1, if (n+%) mod N=0,
gi(n) = (2.34)

0, otherwise ,

while the a priori error e(l) is expressed as
e(l) = y(1) = xT(Oh(l — 1) . (2.35)

It can be seen that at each sample iteration, L/N filter coefficients are updated such
that after NV iterations all the filter coefficients have been updated once. For N = 1,

Periodic-LMS is equivalent to the LMS algorithm.

In contrast to Periodic-LMS, the Sequential-LMS algorithm [19] employs an instanta-
neous gradient estimate at each sample iteration for adaptation while only filter coefficients
satisfying the condition (n — i + 1) mod N = 0 are updated. The Sequential-LMS update
is expressed as

ﬂ(n) =h(n - 1) + 2uQ(n)x(n)e(n) , (2.36)

where the diagonal tap selection control elements in Q(n) are now given, for ¢ =
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0,1,...,L—1, as
1, f(n—i+1)mod N =0,
gi(n) = (2.37)
0, otherwise.

Similar to Periodic-LMS, for N = 1, the Sequential-LMS algorithm reduces to the LMS al-
gorithm. The computational complexity in terms of the number of multiplications required
per sample iteration for the Periodic-LMS and Sequential-LMS algorithms are (2L +2) /A

and L(1+ 1/N) + 1 respectively compared to 2L for the LMS algorithm.

Applying the principle of minimal disturbance [35] as described in Section 2.4, the
Periodic-LMS and Sequential-LMS algorithms can be normalized following the same ap-
proach used in NLMS. Performance comparison for the resulting Periodic-NLMS and
Sequential-NLMS algorithms will be deséribed in Section 2.8. The Periodic-NLMS and
Sequential-NLMS algorithms are summarized in Table 2.2 and Table 2.3 of Section 2.10.1

respectively.

2.5.2 The Selective-partial-update NLMS algorithm

As with the Periodic-LMS and Sequential-LMS algorithms discussed, the objective of
Selective-partial-update NLMS (SPU-NLMS) [20] is to reduce computational complexity
of the adaptive filter by updating only a subset of filter coefficients at each iteration. A
key feature of SPU-NLMS is the partitioning of tap-input vector x(n) = [z(n) z(n —

1) ... z(n — L + 1)) and the adaptive filter ﬁ(n) into B blocks of equal lengths hence

giving
x(n) = [xg’l(n) xgz(n) xgg(n)]T, (2.38)
B = [RL) Bym) ... Blgt)] | (2.39)

where the subscript s denotes for the SPU-NLMS algorithm. Defining dspy as the regu-

larization parameter, the block update

o e xs,i(n)e(n)
hs,l(n) - hS,’L('n’ 1) + 2” ”Xs,z(n)“% + 5SPU

(2.40)
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for i = 0,1,...,B — 1, is derived as the solution to the constrained minimization prob-
lem [60]
~ ~ 2
i, oin [Bei(n) — Bostn - D, (2.41)
subject to the constraint
hT(n)x(n) = y(n) . (2.42)

A decision can then be made at each iteration n on which B out of B blocks to update.
For B = 1, it is shown that the block, 4, with the highest squared lp-norm of X, ;j(n) should

be updated and this is found from the minimization

i = arglré}lgBHfls,j(n) - lAls,j(” - 1)“;
_ si(n)e(n) |
a aglg}]g[" “XS,J(n)”% 2
= arg min, [ros () (<8 (%) ] [as (o) (< g )

-1 -1
. T T
_ arglggB(XS,j(n)xs,j<n)) XL (1) (m) (3T (m)3a ()
, 1
= arg min ————»
1528 1%, (n)|I3

= . 2
= arg1r<_n?5x8 ||?Cs,3(ﬂ)||2, (2.43)

where the second step arises from the constraint (2.42). As can be seen, the SPU-NLMS

algorithm is a data-dependent partial update adaptive algorithm.

To update more than one block, 1 < B < B, the set Zp = {i1,12,...,ip} is defined

to contain the indices of the blocks to be updated such that

xo25() = [T, (0) 3Ty () .. XDy ()] (2.44)

The SPU-NLMS update equation is then given as

~ ~ Xs 75 (N)e(n)
= — 2.45
ez () Bz (7= 1) + 2 l1%s,z5 (M) |13 + dspu (2:45)
Ig = {z for which [|xs4(n)|% is one of the

vy

greatest of [[xs,1(n)[3, ., x5 (M3} -
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The SPU-NLMS algorithm is summarized in Table 2.4 of Section 2.10.1.

Extension of the selective-partial-update approach to include the affine projection
adaptive algorithm is presented in [20]. Further discussion and analysis of the algorithm
is also presented in [61]. It is noted that for large values of B and small values of B, the
SPU-NLMS algorithm may become unstable due to the high adaptive noise amplification
brought about by the small value of ||xs 7, (n)||3. Consequently, bounds on the step-size p
are derived [61] for convergence in the mean squared sense and it is shown that an instanta-
neous estimate for u giving the fastest convergence rate is pu = ||xsz,, (n)||2/II%(n)|3. This
implies normalization by the ly-norm of the complete tap-input vector as in the MMax-
NLMS algorithm. Such normalization has been employed for comparative simulations in
Section 2.8. In addition, [61] employs the concept of set-membership adaptive filters [62]
jointly with the partial updating scheme to obtain a set-membership partial update NLMS

algorithm.

2.5.3 The Max-NLMS and MMax-NLMS algorithms

Based on [63], one of the earliest partial update algorithms is introduced in [64] where a
family of NLMS algorithms is derived by minimizing the change in filter coefficients from
one iteration to the next given by (2.29) using different / norms. By minimizing the I;-
norm of filter coefficient change from sample iteration n — 1 to n, subject to the same
constraint of (2.30), the adaptive algorithm degenerates to Max-NLMS [64] [65] where,
being a data-dependent partial update algorithm, only one filter coeflicient corresponding
to the largest magnitude tap-input sample in x(n) is updated. For a specific set of input
data given in [64], Max-NLMS outperforms the fully updated NLMS algorithm in terms
of convergence rate. It can be seen that SPU-NLMS is equivalent to Max-NLMS when
B=Land B=1.

The single channel MMax-NLMS algorithm [66] is a direct extension of the Max-
NLMS algorithm. The fundamental basis of MMax tap selection is that the sensitivity of
the performance error to individual coefficient at each iteration depends on two factors

namely (i) the shape of the mean-square error (MSE) surface and (ii) the location of
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that coefficient at each time instance relative to the minimum of the MSE surface. This
sensitivity is reflected in the steepness of the gradient vector components as described
by (2.27). Using (2.28), the instantaneous gradient estimate in the direction of the 7'
coefficient is 2z(n — i)e(n) where i = 0,1,...,L — 1 are the tap-indices of x(n) as shown
n (2.4). Since all gradient components involve the quantity 2e(n), the MMax tap selection
selects coefficients associated with the M largest values of |z(n — ¢)| for updating. This
can be interpreted as updating those coefficients contributing most to the trajectory of
the adaptive algorithm towards the minimum point of the error performance surface. The
MMax-NLMS algorithm can be expressed by first defining the L x L diagonal tap selection

control matrix

Q(n) = diag{aq(n)}

diag{qo(n) 1(n) ... qr_1(n)}, (2.46)

where for tap-indices ¢ =0,1,...,L — 1,

1, Jz(n—1i)| € {M maxima of |x(n)|} ,
qi(n) = (2.47)
0, otherwise ,

while

%) = [le(m)] Izt~ 1) ... fo(n— L+ 1)) - (2.48)

Consequently, the MMax-NLMS update equation is then given by

h(n)=h(n-1)+2u llﬁgl)l’%‘(:)g:zds , (2.49)

where as before, dypms and g are the regularization parameter and step-size respectively.

For M =1 and M = L, MMax-NLMS is equivalent to Max-NLMS [64] and NLMS
respectively. The MMax-NLMS algorithm is summarized in Table 2.5 of Section 2.10.1.
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2.6 Adaptive algorithms employing partial updates

Having reviewed partial update adaptive algorithms, the main contribution of this chapter
is the extension of MMax tap selection to the affine projection (AP) and recursive least
squares (RLS) algorithms. As will be seen through simulation examples in Section 2.8, the
performance of MMax-NLMS, in terms of rate of convergence and steady-state normalized
misalignment, is comparable to that of the NLMS algorithm for the case of M = 0.5L.
Being a data-dependent algorithm, the MMax-NLMS outperforms the Periodic-NLMS,
Sequential-NLMS and SPU-NLMS algorithms. Asg such, the MMax tap selection will be
extended to the affine projection (AP) and recursive least squares (RLS) algorithms which
will be denoted respectively as MMax-AP and MMax-RLS. The maiﬂ benefit reported to
motivate the introduction of AP and RLS selective-tap schemes is that they form the basis
of selective-tap algorithms which are able to improve the conditioning of a two-channel
autocorrelation matrix formed from correlated inputs such as occur in stereophonic acous-
tic echo cancellation (SAEC) [27], which will be presented in Chapter 4. In addition, as
will be seen in this section, although the proposed MMax-AP and MMax-RLS algorithms
employ MMax tap selection, they cannot be classified as partial update algorithms since,
by virtue of their formulation, all coefficients are updated at each iteration. Consequently,
the MMax-AP and MMax-RLS algorithms are classified as selective-tap algorithms. Nev-
ertheless, as will be discussed in Section 2.7, the MMax-AP and MMax-RLS algorithms

require less computation compared to the AP and RLS algorithms respectively.

2.6.1 The MMax affine projection algorithm

The affine projection (AP) algorithm [67] [68] incorporates multiple projections by con-
catenating past tap-input vectors from sample iteration n to n — K +1 where K is defined
as the projection order. In a similar manner, the approach for formulating the MMax-AP
algorithm will be to concatenate the subselected tap-input vectors such that they prop-
agate consistently from each sample iteration to the next. To formulate the MMax-AP
algorithm {24], let

X(n) = Q(n)x(n) (2.50)
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be the subselected tap-input vector where elements of the diagonal MMax tap selection ma-
trix Q(n) are defined by (2.47). The concatenated subselected and full tap-input matrices

of dimensions K x L are then defined as

Xan) = [R)X(n-1) ... Xn-K+1)", (2.51)

Xa(n) = [x(n) x(n-1) ... x(n— K + 1)]T (2.52)

where the subscript a in ia(n) and X,(n) denotes for the AP algorithm. The tap update

for the MMax-AP algorithm is then given by
h(n) = h(n - 1) + 2uXT () [Xa(n)XT(n) + darlixx] e(n) , (2.53)
where Ixx 5 is the K x K identity matrix and
e(n)=[e(n) e(n—1) ... e(n— K+ 1)]T (2.54)

is the concatenated a priori error vector with each element computed using (2.7). Note
that the update for MMax-AP in (2.53) normalizes with the full tap-input vector X,(n) as
oppose to )~(a(n) since for small M, normalization with the latter can cause MMax-AP to
become unstable. For projection order K = 1, MMax-AP is equivalent to MMax-NLMS. In
addition, MMax-AP in general cannot be classified as a partial update algorithm since the
tap update vector X7 (n) [Xa(n)XT(n)+6apTxxk] ~e(n) is fully populated and therefore
every coefficient in ﬁ(n) will be updated at each iteration. Consequently, MMax-AP is
classified as a selective-tap algorithm. The MMax-AP algorithm is summarized in Table 2.6

of Section 2.10.1.

2.6.2 The MMax recursive least squares algorithm

One of the main disadvantages of the NLMS algorithm is the dependence of convergence
rate on the eigenvalue spread of the input autocorrelation matrix Rxx defined in (2.22).
Specifically, input signals having a small eigenvalue spread exhibit higher rates of conver-

gence compared to those having larger eigenvalue spread [35]. This affects the convergence
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performance of NLMS for speech applications where the eigenvalue spread can be very sig-
nificant (in order of several hundreds higher than for a WGN input). In contrast to the
statistical approach discussed in Section 2.4, the method of least squares is a determin-
istic approach which involves the use of time-averages of x(n) and y(n). In this section,
the derivation of recursive least squares (RLS) algorithm employing MMax tap selection

(MMax-RLS) will be presented.

The update equation of the RLS algorithm [35] is given by
h(n) = h(n — 1) + k(n)e(n) , (2.55)

where the L x 1 vector k(n) = ¥~1(n)x(n) is defined as the Kalman gain and

n

T(n) =Y A x(i)x" () (2.56)

i=1
is the L x L time-averaged autocorrelation matrix with forgetting factor 0 < A < 1. Direct
extension of the MMax tap selection approach achieved by sorting the magnitude of k(n)
in (2.55) will not give the desired convergence behavior especially for statistically non-
stationary signals such as speech. This is because the Kalman gain depends on previous

values of the time-averaged input autocorrelation matrix ¥(n) [27] given by
k(n) = T 1(n)x(n) , (2.57)

where
Al l(n - 1)
1+ AT (n)¥-1(n - )x(n)

T l(n) = (2.58)

To address this, the tap-input vector x(n) is subsampled at each sample iteration based
on the MMax tap selection criterion and ¥ (n) is computed from the subselected tap-input
vector X(n) giving ¥ (n) where X(n) is defined in (2.50). This ensures that the subselected

tap-input vectors propagate consistently through the memory of the RLS algorithm.

Similar to the normal equations in (2.24), the MMax-RLS algorithm {24] solves the
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least-squares normal equations formed from X(n) given as

h(n) = \AI'l-l(n)é(n) (2.59)
where
T(n) = Xn:,\“-ise(i)seT(i), (2.60)
=1
O(n) = anA”“iSE(i)y(i), (2.61)

and (i) is the receiving room’s microphone signal at the i*f iteration as depicted in
Fig. 2.1. The subselected time-averaged autocorrelation matrix ¥ (n) can be expressed

recursively as

X (n)A(n)XT (n)

K
2
I

= A¥(n—1)+%(n)x(n), (2.62)

where the subscript r in X;(n) denotes for the MMax-RLS algorithm and ir(n) =
[X(1) X(2) ... X(n)] with A(n) = diag{{A\™ A™™! ... A]}. As before, the sub-selected
tap-input vector is given as X(n) = Q(n)x(n) where elements of the MMax tap selection
diagonal matrix Q(n) is defined in (2.47). In a similar manner, the time-averaged L x 1

cross-correlation vector in (2.61) may be expressed recursively as

6(n) = Xi(n)A(n)y(n)

AO(n — 1) + X(n)y(n) (2.63)

where y(n) = [y(l) y(2) ... y(n)]T.

Similar to the RLS algorithm, the MMax-RLS utilizes the matrix inversion lemma to
compute ¥ (n) efficiently. The matrix inversion lemma [35] [69] states that the inverse of
B + bb? is given by

B-lbbiB-!

" TTTB T (2.64)

(B +bb?) ' =B"!
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where B and b are of dimensions L x L and L x 1 respectively. Letting B = A¥(n — 1)
and b = X(n), the inverse time-averaged input autocorrelation matrix T~1(n) is expressed
recursively as

T 1(n) = [\'ir—l(n —1) — k()& ()T (n - 1)] , (2.65)

1
A
and the modified Kalman gain is then given by

A1 (n — 1)%(n)

1+ A1 ()T (n — 1)X(n)
= A [F = 1) - KR () F o - 1)]5{'(77,)

ﬂ(n) =

= T (n)X(n). (2.66)

The recursive solution to the normal equation given in (2.59), can be obtained by substi-
tuting the recursive form of ©(n) and ¥ ~1(n) in (2.63) and (2.65) into (2.59). Using (2.66),

the MMax-RLS update equation is then expressed by
h(n) =h(n—1) +k(n)e(n) , O (267)

where e(n) is the a priorierror as defined by (2.7).

Similar to the MMax-AP algorithm as described in Section 2.6.1, the MMax-RLS
algorithm updates all the taps at each iteration since the modified Kalman gain vector
E(n) is a fully populated column vector. Consequently, MMax-RLS is also considered as a
selective-tap algorithm rather than a partial update algorithm. The MMax-RLS algorithm

is depicted in Table 2.7 of Section 2.10.1.

2.7 Computational complexity

In this section, the computational complexity of algorithms employing MMax tap selection
is examined. Although many factors contribute to the complexity of an algorithm, the
relative complexity of the algorithms in terms of the total number of multiplications and

comparisons per sample period is assessed here.

It should be noted that the computation of ||x(n)||3 = x7 (n)x(n) requires one multi-
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plication using the recursive formulation {66]

le(m)lI3 = llx(n = DIf + 2*(n) — 2*(n— L) (2.68)
or two multiplications using the recursive estimate

Ix ()13 = Aellx(n = 1)II3 + (1 = Aoz’ (n) , (2.69)

where 0 << Ac < 1 is the forgetting factor. The MMax tap selection requires a.sorting
operation to select the M largest tap-inputs at each iteration and can be achieved efficiently
using for example the SORTLINE [70] or the Short-sort [71] routines. The Short-sort
selects the largest A out of S elements from [z(n) z(n—1) ... z(n -8+ 1)]T and then
tracks them as they propagate through the memory of the filter with S << L typically. The
worst-case comparison load using Short-sort is (1 +S — A)A/S comparisons per iteration
compared to 24+2logy L used in the SORTLINE procedure [71]. Excluding the overhead of
||lx(n)||3 computation as described by either (2.68) or (2.69), the MMax-NLMS algorithm
employing the SORTLINE procedure requires at most L + M + 3 + 2log, L operations
whereas L + S+ (1+ 8 — A)A/S operations are required for MMax—NLMS employing the
Short-sort procedure (SM-NLMS).

The complexity of AP using the generalized Levinson algorithm is 2LK + 7K 2
multiplies per sample period [45]. The MMax-AP algorithm employing the SORT-
LINE procedure requires an additional 2 + 2logy, L sorting operationé for the subse-
lected tap-input vector X(n). However, due to a reduction in multiplications required
when computing ig(n)[Xa(n)XZ(n) + JAPIKXK]—I, the complexity for MMax-AP is

(M 4+ LYK + 7TK? + 2 + 2log, L operations per sample period [26].

The number of multiplications required for the RLS algorithm is 4L2 + 3L + 2 where
an additional L multiplications are required for the tap updates. Due to the subselec-
tion of input vector X(n), the number of multiplications required for computing ¥ (n) in
MMax-RLS is (M + L)L +1 while L2 + M multiplications are required for computing the

Kalman gain. Hence the number of operations required for the MMax-RLS employing the
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Table 2.1: Examples of computational complexity for MMax algorithms [L = 1024, M =
512, A =164,5 =128, K = 2].

Algorithm Sort Procedure | Multiplications and Comparisons | Examples
SM-NLMS Short-sort L+S+(1+8~-A)A/S 1.18 x 103
MMax-NLMS | SORTLINE L+M+3+2logy L 1.56 x 10°
NLMS - 2L 2.05 x 10°
MMax-AP SORTLINE (M+L)K+7K?+2+2log, L | 3.12 x 103
AP - 2LK + 7K? 412 x 103
MMax-RLS SORTLINE | L(L +3M +2)+ M +3+2log, L | 2.62 x 106
RLS - 4I2 + 3L +2 4.20 x 10‘:

SORTLINE procedure is at most L(L +3M +2)+ M +3+2logy L per sample period [26].

As an illustrative example, an acoustic impulse response of 128 milliseconds (ms)
at 8 kHz sampling frequency corresponds to L = 1024 and for an arbitrarily chosen
M = 512, the number of operations required by MMax-NLMS, MMax-AP and MMax-
RLS employing the SORTLINE algorithm is approximately 76.0%, 75.7% and 62.5% of
the number for NLMS, AP and RLS respectively. Hence, although the MMax-AP and
MMax-RLS algorithms update all coefficients at each sample iteration, their computation
is nevertheless less than AP and RLS respectively. The computational complexity for the
algorithms described are summarized in Table 2.1 with the number of multiplications and
sorting operations computed for an example case of L = 1024, M = 512, K = 2, A=064
and & = 128,

2.8 Simulation results

2.8.1 Experimental setup

Comparative results for the partial update and selective-tap algorithms as described in

Sections 2.5 and 2.6 are presented in this section. For all simulations, impulse responses
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Figure 2.2: Receiving room impulse response h(n) generated using the method of images at
fs = 8 kHz and Lg = 1024.

of the transmission and receiving rooms are given respectively as

gn) = [go(n) gi(n) ... gr—1(mM)]", (2.70)

h(n) = [ho(n) ha(n) ... hpor(m)]T, (2.71)

and are generated using the method of images [72] with Ly and Ly being the lengths of
the transmission and receiving rooms’ impulse responses respectively. One microphone is
placed in the centre of each room of dimension 3 X 4 x 5 m. The source is then placed
1 m in-front-of the microphone in the transmission room. In a similar manner, impulse
response h(n) is generated with the receiving room microphone positioned 1.1 m in-front-
of the loudspeaker. Figure 2.2 shows an example of the acoustic impulse response h(n)
generated at f; = 8 kHz sampling frequency using the method of images with Lg = 1024

‘With reference to Fig. 2.1, tap-input vector
x(n) = [z(n) z(n—1) ... z(n— L+ 1)]T (2.72)

is generated by convolving a source (WGN or speech) with g(n). In order to reflect realistic
application, the undermodelling case of L < Lg is used for all experiments. Defining &
as the convolution operator, the received signal y(n) as defined in (2.3), is generated by
h(n) ® z(n) and an uncorrelated WGN w(n) with zero mean is added such that an SNR

as depicted in each experiment is achieved.
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Figure 2.3: Normalized misalignment comparison for single channel partial update algo-

rithms using WGN input [Lr = Lg = 1024, L = 512, f, = 8 kHz, N =2, B = 16, B = 16,
UNLMS = 0-7, HPeriodic = 07, UMMax = 07, MSPU = 06, HSequential = 0.5, SNR = 30 dB]-

2.8.2 NLMS-based simulations

The convergence performance of the fully updated NLMS algorithm is compar'ed to the
Periodic-NLMS, Sequential-NLMS, SPU-NLMS and MMax-NLMS algorithms in Fig. 2.3.
The impulse responses g(n) and h(n) are each of length Ly = 1024 and Lr = 1024
respectively. A sampling frequency of f; = 8 kHz is used in this simulation while an
adaptive filter of length L = 512 is chosen such that the adaptive filter undermodels the
unknown system. The normalized misalignment is defined in (2.11) and is reproduced here

for convenience

|a(r) — B(n)|2
EOIE

Figure 2.3 shows the averaged normalized misalignment plot of 5 independent trials for

n(n) = 10logyg dB . (2.73)

each of the above mentioned algorithms using a WGN source sequence with zero mean and
unit variance. The MMax-NLMS algorithm is tested with M = L/2 and M = L/4. For
both Periodic-NLMS and Sequential-NLMS, A" = 2 is used, while for SPU-NLMS, B = 16
out of B = 32 blocks are updated so that L/2 coefficients are updated at each iteration. The
step-size of each algorithm is chosen experimentally so that all algorithms achieve the same
asymptotic performance in terms of steady-state normalized misalignment which then
allows one to compare their relative rate of convergence. This corresponds to unpms = 0.7

for NLMS, tperiodic = 0.7 for Periodic-NLMS, punmmax = 0.7 for MMax-NLMS, pgpy = 0.6
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Figure 2.4: Normalized misalignment for single channel NLMS and MMax-NLMS using
WGN input [Ly = Lr = 1024, L = 512, f, = 8 kHz, unms = 0.7, pymax = 0.7, SNR =30 dB].

for SPU-NLMS and pgequential = 0.5 for Sequential-NLMS. An uncorrelated zero mean

WGN sequence w(n) is added to achieve an SNR of 30 dB in this simulation example.

Note that for full adaptation M = L, MMax-NLMS is equivalent to NLMS. It can be
seen that NLMS achieves the highest rate of convergence since all taps are adapted at each
sample iteration. Being data-dependent, the MMax-NLMS and SPU-NLMS algorithms
outperform the data-independent Periodic-NLMS and Sequential-NLMS algorithms. For
the case of MMax-NLMS with M = 0.5L, the convergence is close to that of NLMS
suffering less than 1 dB degradation in normalized misalignment during convergence. For
this experimental setup, it has been found that the NLMS algorithm achieves an ERLE,
defined by (2.10), of 20 dB in approximately 0.25 s. Figure 2.4 shows additional results
for MMax-NLMS using the same experimental setup as before. It can be seen that the
rate of convergence reduces gracefully with M while approximately the same steady-state

normalized misalignment is reached for each case of M.

The variation of misalignment with tap selection size M for MMax-NLMS using speech
signal from a male talker is shown in Fig. 2.5 with M = L/2 and M = L/4. The
step-sizes for MMax-NLMS and NLMS are pummax = 0.7 and pnims = 0.7 respectively
while f; = 8 kHz, Lt = Ly = 1024, L = 512 are used. As before, an uncorrelafed
zero mean WGN w(n) is added to achieve an SNR of 30 dB in this simulation example

where the SNR is computed using the whole utterance of the speech sequence. A graceful
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Figure 2.5: Normalized misalignment for single channel NLMS and MMax-NLMS using
speech input [Ly = Lg = 1024, L = 512, f; = 8 kHz, unLms = 0.7, pmmax = 0.7, SNR = 30 dBJ.

degradation in convergence performance for reducing M can be observed in this speech
signal example. In addition, the performance of MMax-NLMS for M = L/2 is close to
that of NLMS, suffering approximately 1 to 2 dB degradation in normalized misalignment

for this simulation example.

2.8.3 AP-based simulations

The effect of MMax tap selection on the affine projection algorithm is studied for the case
of M = L/2, L/4 and L/8 with L = 512 using a WGN input sequence with zero mean and
unit variance. As before, the sampling frequency for this simulation is f; = 8 kHz while
impulse responses g(n) and h(n) are each of length Ly = 1024 and L = 1024 respectively.
An SNR of 30 dB is achieved using an additive WGN with zero mean while the affine
projection order of K = 2 is used. For each case of M, the normalized misalignment is
averaged over 5 independent trials and plotted as shown in Fig. 2.6. Similar to MMax-
NLMS, the rate of convergence reduces gracefully with the number of taps being updated
M for each iteration while the performance of MMax-AP (in terms of both the rate of

convergence and steady-state misalignment) is close to that of AP for M = L/2.

The variation of misalignment with tap selection for MMax-AP using speech signal
from a male talker is shown in Fig. 2.7 with M = L/2 and M = L/4. The step-sizes

for MMax-AP and AP are ummax = 0.7 and pap = 0.7 respectively while f; = 8 kHzg,
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Figure 2.6: Normalized misalignment for single channel AP and MMax-AP using WGN
input [Lt = Lg = 1024, L =512, f, = 8 kHz, p = 0.7, K = 2, SNR = 30 dB].

speech

Nomalized Misalignment (dB)

AP

0 1 2 3 4 5 6
Time (seconds)

Figure 2.7: Normalized misalignment for single channel AP and MMax-AP using speech
input [Ly = Lr = 1024, L = 512, f, = 8 kHz, pap = 0.7, ftsmax = 0.7, SNR = 30 dB].

Lt = Lp = 1024, L = 512 and SNR= 30 dB are used. As before, the SNR is computed
using the whole utterance of the speech sequence. A graceful degradation in convergence
performance can be seen when M is reduced for this speech signal example. In addition, the
performance of MMax-AP for M = L/2 is close to that of AP such that approximately 2 dB
degradation in normalized misalignment is observed during convergence in this simulation

example.

2.8.4 RLS-based simulations

The effect of MMax tap selection on the RLS algorithm is shown in Fig. 2.8 using a WGN

source sequence with zero mean and unit variance. In this simulation example, L+ = Lg =
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Figure 2.8: Normalized misalignment for single channel RLS and MMax-RLS [Lr = L =
1024, L = 512, f, = 8 kHz, A = 0.9993, SNR = 30 dB].
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Figure 2.9: Normalized misalignment for single channel RLS and MMax-RLS using speech
input [Ly = Ly = 1024, L = 512, f, = 8 kHz, A = 0.9998, SNR = 30 dB].

1024, L = 512, f; = 8 kHz and SNR= 30 dB. A forgetting factor of A\ = 1-1/(3L) = 0.9993
is used [39]. The normalized misalignment is averaged over 5 independent trials for each
case of M = L/2,L/4,L/8 and L/16. As before, the rate of convergence can be seen to
reduce gracefully with M. In addition, the performance of MMax-RLS in terms of steady-
state normalized misalignment degrades with reducing M such that compared to the fully
updated RLS algorithm, an approximate degradation of 5 dB in normalized misalignment

is observed for M = L/16 = 32.

The effect of MMax tap selection on the RLS algorithm for a speech input sequence
is shown in Fig. 2.9. A forgetting factor of A = 1 — 1/(10L) = 0.9998 is used [39] with
Ly = Lp = 1024, L = 512, f; = 8 kHz and SNR= 30 dB where the SNR is computed using
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the whole utterance of the speech sequence. Similar to the MMax-NLMS and MMax-AP
algorithms, the rate of convergence of the RLS algorithm degrades with reducing M. More
importantly, the performance of MMax-RLS in terms of convergence rate and steady-state
normalized misalignment for the case of M = L/2 is close to that of the RLS algorithm
compared to M = L/4.

2.9 Conclusions

In this chapter, a brief overview of the single channel AEC problem has been presented
and several partial update adaptive algorithms including the Periodic-LMS, Sequential-
LMS, SPU-NLMS and MMax-NLMS algorithms have been reviewed. It has been shown
through simulation examples that, among the partial update algorithms considered, the
MMax-NLMS algorithm achieves the fastest rate of convergence and hence, the main
contribution of this chapter is the formulation of AP and the derivation of the RLS al-
gorithm employing MMax tap selection’ giving MMax-AP and MMax-RLS respectively.
Comparative simulation results showed that convergence rates of the MMax-based algo-
rithms are comparable to that of their corresponding fully updated algorithms for the case
of M = 0.5L. The variation of convergence rate with M has also been presented for the
case of MMax-AP and MMax-RLS showing the graceful degradation in performance for
reducing M. The degradation in steady-state normalized misalignment performance for
the MMax-based algorithms are insignificant for the cases studied here when M = 0.5L.
This modest degradation in steady-state misalignment will be analyzed mathematically in
the context of time-varying unknown system identification in Chapter 3. In addition, the
robustness of NLMS, AP and RLS to MMax tap selection for M = 0.5L will be exploited

for stereophonic acoustic echo cancellation (SAEC) in Chapters 4 and 5.
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2.10 Appendix

2.10.1 Partial updating and selective-tap algorithms

Table 2.2: The Periodic-NLMS algorithm [19]

! = N|n/N]
g(n) =hT(n—1)x(n)

0 =y -0

(n) = diag{go(n) q1(n) ... qr_1(n)}

_ Q(n)x(Ne(l)
(n) (n 1) * 2 ” ( )”% + 5Perlodic

h
1, if(n-+i)mod N =0
0, otherwise

o

5O

Table 2.3: The Sequential-NLMS algorithm [19]

§(n) = hT(n-1)x(n)
e(n) = yln) - F(n)
Q(n) = diag{go(n) g1(n) ... gr-1(n)}

co e Q(n)x(n)e(n)
h(n) =h{n-1)+2u Ix(n)]13 + Ssequential
) _{ L =it med A =0
gin) = 0, otherwise
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Table 2.4: The SPU-NLMS algorithm [20]

gn) = hT(n—1)x(n)
en)  =y(n)—7n)
B(n) = [B5(n) BTy(n) ... B0g(m))"
x(m) = [xTyn) xTy(n) ... xTg(m)]”
5,25 (M)e(n)
|| ()13 + dspu

hezs(n) =hez,(n—1)+2u

i, if ||xs:(n)|3 € B greatest of ||xs1(n)||3,. ..,

”XS,B("?)”

Table 2.5: The MMax-NLMS algorithm [21]

) =hT(n-1)x(n)
) =yln)—¥(n)

(n) = diag{q(n) a1(n
h(r) =h(n—1)+2u

n

(
(

® @)

n

.. qr1(n)}
)x(n)e(n)

(
x(n)||3 + dnums
|

o

) -
Q

Hlix(
1, if|lz(n—1)
a(n) :{ 0,. otherwise

€ {M maxima of|x(n)|}

Table 2.6: The MMax-AP algorithm

() =[x(n)x(n—-1) ... x(n- K+ 1T
= diag{q(n) q1(n ) o qr-1(n)}
(n) = Q(n)x(n)

MO
2

1, if |z(n—i)| € {M maxima of|x(n)|}
0, otherwise

2
z
Ii
~— 5 <

Xa(n) =[®n)X(n—1) ... Xn—-K+1)|T

yn) =kmyrn-1) ... yn-K+1)T

F(n) =Xamh(n-1)

e(n) =y(n)-¥n)

h(n) =h(n—1)+2uXT(0)[Xa()XT(n) + darlxk]”

1e(n)
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Table 2.7: The MMax-RLS algorithm

Q(n) = diag{ao(n) a1(n) ... qu-1(n)}
X(n) = Q(n)x(n)
~ U—1(n — 1)X(n
K - P LR
’)\\ + X7 (n)¥~1(n - 1)X(n)
Yy(n) =h"(n - 1)x(n)
e(n) = y(n) — ¥(n)
h(n) =h(n —1)+k(n)e(n)
F-1n) = %[iir—l(n — 1)~ KT ()& 1(n - 1)]
1, if |z(n — )| € {M maxima of|x(n)|}
a(n) - { 0, otherwise
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Chapter 3

Tracking Performance of MMax
Algorithms Under Time-varying

Unknown System Conditions

Arithmetic is where the answer is right and everything
is nice and you can look out of the window and see
the blue sky, or the answer is wrong and you have to start

over and try again and see how it comes out this time.

Carl Sandburg (1878-1967)

3.1 Introduction

N SYSTEM IDENTIFICATION applications such as acoustic echo cancellation (AEC)
Ishown in Fig. 2.1, an FIR adaptive filter is used to identify an unknown time-varying
system that is assumed to be linear. Important performance measures for adaptive filters
characterize the initial convergence rate, the residual error after convergence, the ability
to track time-varying systems and the computational complexity. This chapter focuses on
analyzing the steady-state misalignment performances of a class of MMax-based algorithms
including MMax-NLMS, MMax-AP and MMax-RLS as discussed in Chapter 2, when

tracking time-varying systems. Consideration of an algorithm performance under such
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dynamic conditions is important since, in the applications of interest, the unknown system
is often continuously time-varying. It is therefore necessary to include a time-varying
system model in the analysis of such adaptive algorithms as indicated in several significant

studies including [73] [74] [75] [76].

The time-varying channel model in [77] which uses a modified first-order Markov
model of the unknown system is adopted for analysis. Whereas the work in [77] specifically
addresses LMS and RLS, analysis framework presented in this chapter extends that work to
a more general form that can be applied to a wider range of adaptive algorithms including
NLMS, AP, RLS and, in particular, the MMax selective-tap algorithms that is the main
focus. Through this analysis, this chapter presents new insights into the tracking capability
of selective-tap algorithms by highlighting and comparing the performances for a class of
fully updating algorithms and their MMax variants under both time-invariant and time-
varying unknown system conditions. It is shown, for each algorithm, how the tracking
performance is degraded by the MMax tap selection and the degradation in steady-state

misalignment performance is quantified analytically under common assumptions.

This chapter is organized as follows: The modified first-order Markov model [77] used
for the time-varying unknown system is reviewed in Section 3.2 while Section 3.3 develops
a general analysis framework for steady-state misalignment in a time-varying unknown
system condition case. Having established the new analysis framework and applied it
to standard adaptive filtering examples, the principal contribution of Section 3.4 is the
steady-state misalignment analysis of selective-tap MMax algorithms. The analysis of
MMax-NLMS includes Max-NLMS [65] as a special case. Comparative results are shown in
Section 3.5 to verify the analytically derived misalignment performance against simulation
learning curves for single channel AEC. In this chapter, for reason of compactness, the
dependency of a variable on sample iteration n is denoted as a subscript giving h, for
Jth

the unknown impulse response, such that at each sample iteration, the I*" element of this

vector is now denoted as hy(l), i.e.,

T

hy = [An(0) An(1) ... hn(L —1)] (3.1)
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3.2 Non-stationary system model

The modified first-order Markov model [77] is employed to represent a time-varying un-

known system

h, = ghn—-l + 41— gzsn . (32)

where
by = [n(0) An(1) ... Bo(Lr —1)]7 (3.3)

is the impulse response of the unknown system with length Ly and

S = [3n(0) sn(1) ... sn(Lr—1)]7 (3.4)

is an uncorrelated noise process with elements drawn from a normal (Gaussian) distri-
bution with zero mean and variance 2. This model has the key features that (i) the
single parameter 0 <« £ < 1 controls the relative contributions to the instantaneous val-
ues of the coefficients of “system memory” (the term £h,—1) and “innovations” (the term

V1 —€28,), (ii) the average power of the norm of the coefficients is independent of &.

Defining system change as

OHhp = hp—hyg
—(1 = Oy + VI Esp (3.5)

and assuming [77] [78]
E{|lhn1l3} = Lo? , (3.6)

where || - |3 and E{-} are defined as the lp-norm and mathematical expectation operator



3.3 General misalignment analysis for time-varying systems 69

respectively, it follows that

E{lbal3} = €2B{Iha-1l3} + (1 - €3)Lo2
= &’Lo; + (1-¢")La;

= Lo?

5

(3.7)

In the limit n — oo, the mean square change of the unknown system is then given by

(1 - &)2E{||lha-1|3} + (1 — &) Lo?

2Lo¥(1-€) (3.8)

Jim B{||aba 3]

which is a monotonically decreasing function of £ and is proportional to L and variance of
Sp. As will be shown through an experimental illustration in Section 3.5, for £ = 0.9999 and
o2 =1 given in (3.2), the tracking performance of the NLMS algorithm is comparatively
equivalent to the algorithm tracking a source moving at 0.2 ms™! for acoustic impulse
responses h, generated using the method of images [72] with an adaptive filter length of

L =Lg =64

3.3 General misalignment analysis for time-varying systems

Adaptive algorithms of the form
R R K-1
hp, =h,; + Z Iy kXn—ken—k (3.9)

k=0

are considered, where K is defined as the projection order,
T
Xn—k = [zn—k(o) Tn-k(1) ... Tp—k(Ll — 1)] (3.10)

is the tap-input vector at iteration n— k. In this chapter, for mathematical tractability, el

ements in x,,_j, are drawn from a zero mean white noise process with Gaussian distribution
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Table 3.1: Projection order and I',,_ for various algorithms

Algorithm | Projection order | Ty c
LMS K=1 clrr, 2u
NLMS K=1 || -2
xLxp,
2u
AP K x| =7
Xn~kXn—k
RLS K=1 c vt

and variance ¢2. The estimated impulse response hy, is given by

"~

h, = [hn(o) (1) ... Bn(L - 1)]T (3.11)

while e,k is the a priori error given by

~

en—k = Yn—k — hg—k—lxn—k (3.12)

with yn_x being the received microphone signal as depicted in Fig. 2.1. Using the gener-
alized update form given in (3.9) and defining I s, as a L x L identity matrix, the L x L
adaptation control matrix I',_j, is defined in Table 3.1 for the respective algorithms. Note

that for the AP algorithm with
T
Xan = [xn Xp-1 --- xn—K-}—l] (3.13)
as defined in (2.52) and in a similar approach to [79] [80], for 1 < K << L, it is assumed

Xan XDy = ding{I%nl3 lxn-1l3 - - Ixn-rc1l3} (3.14)



3.3 General misalignment analysis for time-varying systems 71

hence giving

1 LY
e 0
_ 0 1 . 0
[XanX3n] ' = a1z . (3.15)
1
| 0 0 0 moam .

For the purpose of this analysis, it is assumed that E{h,} = Orx1 where Orx; is a
L % 1 null vector. In addition, as explained in Section 2.2.2, to neglect any additional
misalignment effects due to undermodelling, the dimension of the estimated impulse re-
sponse fln has been chosen to match the dimension of the unknown impulse response hy,

i.e., L = Lp. Defining the system mismatch vector
Vp = I\ln —h,, (3'16)
the a priori error is then given by

€n = Wp — XL Vn_1 , (3.17)

where measurement noise wy, is an uncorrelated white noise sequence with Gaussian dis-

tribution (WGN) as depicted in Fig. 2.1 with E{w,} = 0. Using (3.2), (3.9) and (3.17),
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the system mismatch vector v, can be expressed as

Vp = fln —h,
" K-1
= hp + Z LhkXn—k€n—k — hn
k=0
N K-1 K-1
= b1 —hnt+ D TpokXn_kWn_g — > TnekXn—kXn_gVn—k-1
k=0 k=0
N K-1
= hp1 - ‘fhn—l + hn—l —hp_1+ Z Fn—kxn—kwn—k
k=0
K-1
- Z Fn-kxn-—kxg“-kvn—k-—l A ‘52571
k=0
K-1
= Vnot+ (1= &hno1+ Y CnogXn_kWn_k
k=0
K-1
= TnekXn kXh_gVn—k-1— V1— &%, . (3.18)
k=0

Using the independence theory® [35] [81], the system mismatch autocorrelation matrix

R, can be expressed as

Rvn = E{vnvg}
K~1
= Ryn-1+2(1-€)02 1+ K02 > E{Tn_iXn_iXp_In-i}
k=0
K-1 K-1
_Rv,n—l Z E{I‘n_kxn_kxf_k} - Rv,n—l Z E{xn—kxg—krg—k}
k=0 k=0
K-1 K-1
+E Z Fﬂ—kxn—kxg—kvn—k-l Z vg—r—lxﬂ—'f‘xg—rrg—r ’ (319)
k=0 r=0

1The independence theory imposes certain conditions on the data for mathematical tractability, It is
assumed that (i) the input sequence x, is drawn from an independent and identically distributed (i.i.d.)
process, (ii) y» is independent on x,, for n > m and (iii) noise sequence wy, is also i.i.d. and statistically
independent of x,.
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where
E{Vn—1V£_1} = Rv,n—l ’
o2, k=7,
E{wn—kwn—r} = ¢
0, otherwise,
E{wpxvi_;} = 01xp,
E{w,—xhl_;} = 01xz,
E{Snvg_l} = Orxr,
B{w,xsT} = 01xr,
E{thz;_l} = OLxL )
E{h,vi ,} = Oz,
K-1 K-1
E{Vn—-l Z Vg_k-lxn—kxg_krg_k} = Rv,n—-l Z E{xn—-kxn—-krg—k} )
k=0 k=0
and from (3.7),
E{hyhT} = E{spsl}
= oiyp (3.20)

have been employed. Following the approach adopted in [35], it has also been assumed
that for large n, the time variations of the system mismatch vector v,, are sufficiently
slow compared to those of the input vector x,, since the adaptive filter is able to track the
unknown system to within a time lag and as a consequence, v, is independent to x, and

after convergence, v, = v,_; while
E{vn_kvg*k} ~ E{vnv,Tl} =Ry - ‘ (3.21)

Under these assumptions, the autocorrelation matrix of the system mismatch vector which

is approximately time-invariant is then denoted as R,. Employing the normalized mis-
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alignment as defined in (2.11) and reproduced here for convenience

“hn B fln“%
[

Bl
Ui

= 1t 3.22

TR (3.22)

the steady-state misalignment can be expressed, for large n, as ' = tr{R+} where tr{-}

is the trace operator.

3.3.1 Mean square misalignment with K =1 and M = L for NLMS and
RLS

A fully updated algorithm is initially considered in this section where I', = T, Vn, is time-
invariant, and tap-input vector x, is drawn from a zero mean white noise process with
Gaussian distribution with variance o2. Using the factorization property of independent

Gaussian variables [82] as shown in Section 3.7.1 and denoting
Rux = E{xnx2} (3.23)

as the autocorrelation matrix of the input signal, the expectations in (3.19) can be evalu-

ated for projection order K =1 using

{ nXnXp, FT = TRy, (3.24a)

}
{annx } = T'Ruxx, (3.24b)
{xnx } — Ryl (3.24c)
E{Tnxnxivn1vi_xnxiTL} = r[szva,n_lex+Rxxtr{Rxva,n_1}]r

(3.24d)
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Substituting (3.20) and (3.24a)-(3.24d) into (3.19) gives

1{v,n = 1{v,n—l - Rv,n—-erxx - Rv,n—lexF
+I [2Rxva,n-—1Rxx + Rxxtr{Rxva,n—-l }] r

+TRxx[02 +2(1 — £)o2I 1 . (3.25)

The steady-state misalignment 1’ can be found by first considering I' = ¢I.x and
white Gaussian noise (WGN) input with variance o2 giving Rxx = 0211« r. The variable
¢ in T is a scalar quantity specific for each algorithm which will be described in the
sequel. Assuming the system mismatch error v,, is fluctuating around its mean, the system
mismatch autocorrelation matrix Ry, in (3.25) can be simplified and the steady-state

misalignment 7/ = tr{R} is given by
n g

n = 0 —2coln + 2050 +oil Ly

+c?ol0l L +2(1 - £)olL
from which can then be expressed as

. co2L  (1-¢)Lo?
T= 2 cold

(3.26)

where

¢=1-—co? (1 + %) (3.27)

and c is an algorithm dependent term. Adopting the terminology of [76], the first term
in (3.26) corresponds to the estimation variance and is dependent on measurement noise
wy, and the second term in (3.26) corresponds to the lag variance and is due to system
time variation £. It can also be seen from (3.26) that the estimation and lag variances are

uncoupled.

For the LMS case, ¢ = 2 giving

o = bowl | (1= 8Loy
MM T 2u02¢

(3.28)
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The estimation variance term of this result is, as expected, proportional to 4 and consistent
with that presented in [35] for which it is assumed ¢ ~ 1 for small . However, the analysis
presented here needs no such assumption. The lag variance term is inversely proportional

to p and linearly dependent on the system variation parameter .

For NLMS, ¢ = 2u/(Lo?2) giving

o _wd (Q-0r
M5 02 2

(3.29)

It is interesting, from a step-size control point of view, to evaluate the step-size which
achieves the lowest misalignment ymis by differentiating nyp g in (3.29) with respect to

step-size p to obtain

d 7ypMs _ o2 S 1 ] (1—£)L2Cf§[ %p—1

2 p?(1 - w)z]  (830)

where
¢=2(1+L/2)/L. (3.31)
Setting d 7yLms/d # = 0, a quadratic equation in terms of wm;s given by‘

02 1— L202
~ttnis + (1 — &) L0 S ttis — a8 52) $ =0 (3.32)
x

is obtained. Under the condition that 0 < g < 1, the step-size giving the lowest

misalignment under non-stationary unknown system condition for NLMS is given by

Jenie = 0.5;’—;% [ — (1—€)L%2% + ﬁl - f)L%'?c]z + 2(3—%) (1— €)L202 J . (3.33)

Figure 3.1 illustrates the variation of gmis with £ under various signal-to-noise ratio
(SNR) conditions. The SNR is computed using wy, and y, where the latter is obtained
by hTx, as shown in Fig. 2.1. The parameters for this illustrative example are L =
128, 02 = 1 and o2 = 0.962. For each case of SNR, the well-known result that for
reducing system variation £ — 1, gmis — 0 can be observed and hence a smaller step-size

achieves a lower steady-state misalignment, though at the expense of reduced convergence
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0.5 SNR=30dB

SNR=20dB
0.45F

SNR= 10 dB
@
:g_E 04}
0.35¢
reducing system variation for higher £
0.3 " . . : "
0.99 0.992 0.994 0.996 0.998 1
3

Figure 3.1: Variation of pmis with £ under various SNR conditions.

rate. Under time-varying unknown system conditions £ < 1, it can be seen as expected
that pmis increases smoothly as € reduces, since for higher time-varying unknown system
condition, step-size p must be sufficiently high for tracking. In addition, for any given &,
Umis increases with SNR. As will be seen through simulation examples in Section 3.5.5,
under the condition € < 1, performance of NLMS in terms of convergence rate and steady- .

state misalignment increases with g within the region 0 < p < pmis.

For RLS, ¢ in
F=clpxy =¥} (3.34)

can be determined by considering the time-averaged autocorrelation matrix ¥, defined

in (2.56) and is reproduced here for convenience
n »
Tn= > Ahx] (3.35)
i=1
In the limit n — oo

E{ nli_’l’l;.lo \I’n} = E{ Jim (A" xd + }\"'Zxng +...+ xnxg)}

= lim A"+ A2 4 4 1)Rxx
n—00
1

= 1 )\Rxx ) (336)
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where Rxx is the true input signal autocorrelation matrix defined in (3.23). Using a

quasi-deterministic approximation for large n [35], ¥, ~ Rxx/(1 — A) and hence
=¥ '~ (1-MNR. . (3.37)

For the case when the input signal, z,, is drawn from a white noise process with Gaussian

distribution, then from (3.34), the scalar constant ¢ = (1 — X)/o2. Using (3.26), the

T

steady-state misalignment is given as

(1- /\)Log (1— ¢)Lo?

TRLS ¥ "5 25 TS (3.38)

where the term ¢ is defined in (3.27). By taking the derivative of steady-state misalignment
Mg With respect to the forgetting factor A, the well-known result for a time-invariant
unknown system condition £ = 1,

dogrs Lo,

ST <0 (3.39)

can be seen. Hence, the steady-state misalignment is a decreasing function of the forgetting

factor A, although for a smaller A the rate of convergence is increased.

Furthermore, the effect of £ on steady-state misalignment 7p; o can be analyzed by first

differentiating np; ¢ with respect to £ and finding the boundary condition for A. Assuming

d ngrg Lo?
= 3 <0, 3.40
dé¢ (1-XN)¢ (8.40)

and noting that Lo? > 0 and 1 — A > 0, the condition
A > 1-[1/(1+L/2)] (3.41)

can be obtained. For a typical range [15], 1 — 1/(3L) < A < 1 — 1/(10L) and since
L > 1, it can be seen that the conditions (3.41) and consequently (3.40) are satisfied.
Hence as will be shown through simulation examples in Section 3.5.4, the steady-state

misalignment 7y, ¢ reduces for a lower system variation as § — 1.
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3.3.2 Mean square misalignment with K %1 and M = L for AP

This analysis can be applied to the AP algorithm for the condition 1 < K << L. With
reference to Table 3.1 and for a WGN input sequence x, with variance ag, xg_kxn_k =
Lo?, V¥ n,k, hence giving T,,_, = I'. Exploiting the linear property of the expectation

operator, the terms in (3.19) can be evaluated using the following relations

K-1
ZE{I‘n_kxn_ka_kI‘Z_k} = KTRyD, (3.42a)
k=0
K-1
B{Cpixnixl_;} = KTRer, (3.42b)
k=0
K-1
E{xn,kx;f_kfz_k} = KRuxl. (3.42¢)
k=0

Following a similar approach to (3.24d) where the factorization property of indepen-
dent Gaussian variables [82] as shown in Section 3.7.1 is employed, the last term of (3.19)

can be simplified as follows

K-1 K-1
T T T T
E{ Z Fn—kxn—kxn—kvn—k—l Z vn—r—lxn—Txn——an—~r}
k=0 r=0

K-1K-1

— T T T T

- E{ Z Z Fn*’an—kxn—kvn—k—lvn—r—lxn—rxn—rrn——r}
k:O 1":0

KT [QRxva,n—lex + Rxxtr{Rxva,n—l }] r. (3-43)

Substituting (3.42a)-(3.42¢) and (3.43) into (3.19), the system mismatch autocorrelation

matrix Ry, can be expressed as

Rv,n = Rv,n—l + 2(1 - g)UEILxL + K20'3UFRXXFT

_KRv,n—lFRxx - KRv,n—lexF

+ KT [2RooRou,n- 1R + Rocxtr {RocxRun1}] T (3.44)

Similar to (3.25), it is assumed that Ry, is fluctuating around its mean, I' = cIpx and

Rxx = 02I1xr. The steady-state misalignment 7', for the AP algorithm can be obtained
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by simplifying (3.44) and using ¢ = 2u1/(Lo?2) from which

_ Kpoi  (1-¢€)diL”

o= , 3.45
T,AP U%¢a 2,U‘K¢a ( )
where
2 L
a=1—KCU$(1+§) . (346)

Note that (3.46) is similar to (3.27) except for a projection order term K. Furthermore,
when K = 1, ¢ reduces to ¢, and hence the steady-state misalignment of AP is equivalent

to that of the NLMS algorithm as expected.

3.4 Misalignment analysis of algorithms employing MMax

tap selection

3.4.1 Misalignment analysis of MMax-NLMS

Partial update NLMS algorithms have been analyzed in, for example [19] [21] [65] [83] [84].
In [21] [83], it has been shown that for M = 1 tap being selected for adaptation at each
sample iteration, MMax-NLMS converges for a zero mean WGN input sequence under the
condition 0 < p < L/(L + 2). In addition, the excess mean square error of MMax-NLMS
is derived for the case of M = 1. In the following, the steady-state misalignment is derived

for an arbitrary case of M < L.

The MMax-NLMS [66] algorithm is characterized by (3.9) for projection order K =1

with the L x L adaptation control matrix given by

Fn = pnQn (3.47)

in which the elements of the MMax diagonal matrix Q, = diag{q,} are determined
from (2.47) and X, = Qnx, is the subselected tap-input vector. The variable u, is a

scalar constant specific to each algorithm as will be discussed in the sequel.

For convergence in the mean square, consider (3.19) and the evaluation of E{T»x,x2 }
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and that tap selection elements g, (%), for i = 0,1,..., L — 1, are not independent of z,(%)
as they ensure that only the M largest |z, (¢)| are selected. The M selected samples are

assumed to have zero mean and exploiting the mean ergodic theorem? [35], the variance

of X, is
=
~2 ~2 .
oy = EZ:E (n—1) (3.48)
i=0
where
Xn = Quxn
= [E(n)&n—-1) ... Fn-L+1)]" (3.49)
is the subselected tap-input vector and that for i = 0,1, ..., L—1, some elements Z(n—1) =

0 due to tap selection. Assuming that x,x. is diagonal and using E{un} = ¢, a scalar

constant such that

E{l»}

cE{Qn}, (3.50)

I

the terms E{[,x,x%} and E{x,xITZ} can be simplified as

E{Tyx,xl} = E{x,x.T7
= E{/-‘n}E{annxg}

_ %cagILxL . (3.51)

The condition E{l’,} = T implicit in (3.24d) is not valid in this case. However, the

2The mean ergodic theorem states that if elements in x, is drawn from a stationary process which is
valid for WGN inputs, then its time averages tends to E{xn} as the length of the available sample n tends
to 00. This theory can be extended to higher moments such as variance estimation as shown in [35] [85] [86).



3.4 Misalignment analysis of algorithms employing MMax tap selection 82

evaluation of tr{Rv n} in (3.19) can be achieved by using

tr{E{ananvn_lvz_lxanFg} } = tr{czE'{ annvan_lv,{_l xan} }

M _
= cztr{Rv,n_l(L + Q)TUfcagILxL}

M.
= ARy 1ML +2)F 500z,  (352)
M 4.
tr{E{ananFZ}} = tr{fczaiILxL}
M 5.
= —L"CZU':%L. (353)

Substituting (3.51)-(3.53) and (3.20) into (3.19) and letting K = 1, the expression

M M.
tr{Ryn} = tr{Ryn-1}— 2tr{van_1}fcai + tr{Ry -1 }(L + Q)T(‘J'io'i

M,
+—EC2U§(J’12UL +2(1 - &)oL
M _ -
= {Ropa} |1 27+ (L +2) 5 520
+Mc*5202 + 2(1 — €)Lo? (3.54)

is obtained.

Contraction mapping concept has been introduced in [87] [88] [89] for adaptive algo-
rithms. A contraction mapping is produced when the norm of the difference of the mapped

vectors is less than the norm of the difference of the original vectors, i.e.,

|Ter — Tezl|, < Cller — ezl (3.55)

where || - ||z is defined as the lp-norm, C' < 1 is a scalar, 7 is a mapping operator and
o1 and g3 are vector or scalar quantities. Applying the contraction mapping concept and

following the same approach as [89], convergence for MMax-NLMS can be shown [71]
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using (3.54) by letting

T 1—2%/:[—0~2 (L—f—2)—c2 5202
o1 = t‘Jr{}-:t'v,'n}a

02 = tr{R'v,'n—l} ,
from which substituting into (3.55) with the condition that C < 1 gives

T=1—2%c (L+2)-—c2 5202 <1 (3.56)

and the convergence speed is faster for smaller values of 7. It can therefore be seen
from (3.56) that, for typical values of ¢ < 1, maximum convergence speed will be when
all filter coefficients are updated at each sample iteration, i.e., M = L. Therefore MMax-
NLMS suffers a decrease in convergence speed proportionate to M/L as compared to

NLMS. As shown in Section 3.7.2, for the case of MMax-NLMS, ¢ = 2u/(Lo2) giving

M2 2(L-f—2)M&'2
T =1- 4uL22+4 ——-ﬁ?—ﬁ<1 (3.57)
so that
L
E—— 3.58
0<u<L+2 ( )

The misalignment for MMax-NLMS can be found [78] from (3.54) and using the

approach of (3.26) as
M _, 25242 2
tr{Rv}|2 7 “z — (L + 2)—c = M52 +2(1 - ¢)La?

resulting in

2 2 2
cog L 20— &) Lo /M
tr{Ry} = w — 2 . 3.59
r{Rv} 2— (L +2)ca2  2c0% — (L +2)c?5202 (3.59)
For MMax-NLMS where ¢ = 2u/(Lo2), the steady-state misalignment is then
o2 Lol (1-¢)L?%c2
MMax—NLMS = Ew ( )L o, (3.60)

o2 5%M 2ud ’
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ir '

1 20 40 64 80 100 115 128
Number M of selected taps

Figure 3.2: Variation of ¢ with M selected coefficients per iteration for £ < 1 showing a
modest increment in ¢ when 0.5 <M < L.

where the term ¢ is defined in (3.27).

As can be seen, the estimation variance term is independent of M and is identical to
that of NLMS, Thus for a time-invariant unknown system with £ = 1, the steady-state
normalized misalignment of the MMax-NLMS algorithm is the same as that of NLMS, i.e.,
MMMax—NLMS = npms: Comparing (3.60) with (3.29), an additional factor arises in the lag
variance of Lo2/(G2M) for MMax-NLMS compared to NLMS. To quantify the closeness

of tap selection to that of a full tap-input vector in an MMax sense, the M-ratio [27]
2 =2
lIxxl13 Oz
is defined. As shown in [27], M exhibits only a modest reduction for 0.5L < M < L
and hence a graceful reduction in convergence rate is expected over this range of M as
compared to the fully updated NLMS algorithm. The variation of steady-state misalign-
ment due to the M number of taps selected for updating can be analyzed by first noting

from (3.60) that, under a time-varying unknown system condition £ < 1, the lag variance

is proportional to the term

¥ = Lo2/(G2M) = L/(MM) . (3.62)

Figure 3.2 shows the variation of ¥ with the number of selected taps M for L = 128
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using a zero mean, unit variance white Gaussian noise (WGN) input sequence. It can
be observed that for full adaptation M = L = 128, ¢ = 1 since 52 = o2 and M = 1.
More importantly, although 1/ exhibits a factor of 2 increase when M is reduced from L to
0.5L, this factor is insignificant compared to the case when M is reduced from 0.5L to 1.
Hence for the range of 0.5L < M < L, with reduced computational complexity, only an

insignificant degradation in steady-state misalignment performance for time-varying case

¢ < 1 is expected.

Similar to the NLMS algorithm discussed in Section 3.3.1, it is of interest to evaluate
the step-size pmis which achieves the lowest misalignment by differentiating the steady-
state misalignment N yac—nivs i (3.60) with respect to step-size u. Setting this differ-

ential equation to zero, the quadratic expression

a2 (1l —n)L%c?

=2 imis + P(1 — ) L2026 pomis — 0 (3.63)
o5 2

is obtained where

¢=2(1+L/2)/L . (3.64)

The step-size pmis for MMax-NLMS giving the lowest steady-state misalignment under
non-stationary unknown system condition can then be obtained by noting 0 < pimis < 1

hence giving

Hmis = 0.5ﬁ[—w(1—§)L2a3g

&%

ag

+\/[¢(1 - €)L203<]2 + 2¢(U )(1 — £)L%? } , (3.65)

ane

As will be seen from simulations in Section 3.5.5, if pmis < g < 1 under the non-
stationary unknown system condition £ < 1, convergence rate increases with step-size p
but at the expense of poorer steady-state misalignment. Consequently, for MMax-NLMS,
the optimal step-size giving the highest rate of convergence while satisfying the minimum

misalignment under non-stationary environment is pmis given in (3.65).
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3.4.2 Misalignment analysis of MMax-RLS

Using (2.66) and (2.67), the update equation for the MMax-RLS algorithm may be ex-
pressed as

~ ~ ~—1 .
h, =h, 1 + ¥, Qnxsen . (3.66)

where the time-averaged subselected input autocorrelation matrix U, is defined in (2.60)
and Q is the diagonal L x L. MMax tap selection control matrix with elements defined
in (2.47). In this case, projection order K = 1 in the general formulation of (3.9) and the

tap selection control matrix I'y, in (3.9) for MMax-RLS is given by
I,=9'Qn (3.67)
where \in can be expressed alternatively as
~ n ,
Tp= > A Quxix{ Qf (3.68)
i=1

with 0 << XA < 1 being the forgetting factor. Following the same approach as for RLS

in (3.36), with n — oo,

B{ lm ¥} = B{ Im (7QuaxfQf + ...+ Quenxi Q) }

n—oo
~2
M52

= lim
n—oo
1 Mg?

_ T
= 1—X L ILXL 3 (369)

[/\n_IILxL + /\n_2IL><L +...+ ILxL]

and hence it follows from (3.67),

T, =(1— /\)%—2% . (3.70)
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Employing (3.70), the following terms in (3.19) can be simplified as

E{I‘nanZ} = E{xnxTI‘T}
= (1-X) ~2}«J{(:,znx,,xn}

(1= MIrxL » (3.71a)

1-\L]?
E{annxTVnVTxnxTFT = [(—‘M.—:)——] E{annxzxanQH}an

(1 - \)2L(L + 2)0?
M02

Ry » (3.71b)

] E{annxry{Qn}

E{Thpx,xTT} = [ M
(

ILxL (3.71c)

Following the same approach as (3.54), by substituting the set of equations (3.71a)-(3.71c)
into (3.19) for projection order K = 1, the system mismatch autocorrelation matrix Ry n
can be expressed as

(1 = \)2L(L + 2)02

Rv,n = Rv,n—l - 2(1 - A)Rv,n—l M2
Oz

1-\2L |
+£_m%—aiILxL+2(l—f)o'§ILxL . (3.72)

T

1:
Rvn

As before, it is assumed that for large n, Ry, = Ry is the approximately time-invariant au-
tocorrelation matrix of the mean weight error vector. Defining steady-state misalignment
vector ' = tr{R} and using (3.72), the steady-state misalignment for the MMax-RLS

algorithm can then be expressed as

(1= NPL(L + )02 , (1= N2LPd)

Mimax—ris = 7 —2(1=Xn' + R U T I 2L(1 - €)o?
_ (=ML N 2L(1 — £)o? M52 (3.73)
ﬁr (1 - A)ﬁr ' .
where

B = 2M32— (1= \NL(L+2)o2

= LoZ[2y — (1 - A\)(L +2)] (3.74)
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and v is defined in (3.62).

Comparing (3.73) and (3.38), for full adaptation M = L, G2 = o2 and hence the
steady-state misalignment for MMax-RLS is equivalent to that of RLS, i.e., M ax—RLS =
NrLs 88 expected. More importantly, the estimation variance for MMax-RLS is dependent
on the number of taps selected for adaptation M. As can be seen from (3.73) and (3.74),
B is a decreasing function of 1) and hence for a time-invariant system with & = 1, the
steady-state misalignment 7). rrg 1S @ decreasing function of M. This is contrary
0 Miumax—NLMms 10 (3.60) where the steady-state misalignment is independent of M for
time-invariant systems. Simulation results illustrating the dependency of the steady-state
misalignment on M for MMax-RLS under the time-invariant unknown system condition

& = 1 can be found in [24] and Section 3.5.4.

3.4.3 Misalignment analysis for MMax-AP

The update equation for the MMax-AP algorithm can be written in a similar form as (3.9)

where for kK = 0,1,..., K — 1, the tap selection control matrix I',,_ can be expressed as

Crek = pn—ikQn-t , (3.75)

where pn—r = 21/ (XZ_ wXn—k) is the step-size while elements of the MMax tap selection
control matrix Q,, are defined in (2.47). Assuming that the input signal is WGN, E{u,_1}

can be evaluated, giving

2u

x
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As before, the condition E{[',} =T is not valid here since elements in Q, is dependent

on M and so tr{Ry } is evaluated using the same approach as (3.53) giving

K-1

tr{Kaﬁ, > E{rn_kxn_kxz_krg_k}} = Kaﬁ,tr{E{ui_k}
k=0
K-1
Z E{Qn—kxn—kxz_an-k}}
k=0
= K202c*MG2, (3.77a)
. K-1 K-1
tr{Rv,n > E{xn_kxg_kl‘z_k}} = tr{Rv,n > E{I‘z_kxn_kxz_k}}
k=0 k=0
M.
= tr{R,,,n}chag , (3.77h)

1

K-
tr { E{ Z I‘n_kxn_kxg_kvn_k

k=0

K-1

T T T
Z Vn—rxn~7‘xn—rrn—r}
=0

tr{Rypn (L + 2)%53&}(2 . (8.77¢)

Substituting (3.77a)-(3.77¢) into (3.19), the trace of the system mismatch autocorrelation

matrix is then given by
tr{Ryn} = tr{Ryn-1}+2(1-£&)02L
~ M_
+K?02,* M52 — 2tr{ Ry n-1 }cfaiK
M_

+tr{Ry , }K2(L + 2)fa§a§Kz : (3.78)
As before, assuming that Ry , is fluctuating around its mean when n — oo and substitut-
ing ¢ = 2u/(Lo2), tr{Ry ,} in (3.78) can be simplified giving the misalignment

Kupo? Lo (1 - ¢)L%0?

n/ — w T
MMax—AP o2¢s = Mo2 2uK¢s
Kuog | (1-§L%3
- + , 3.79
03% 4 2uK s ( )

where ¢, and 1 are given in (3.46) and (3.62) respectively.

For projection order K = 1, the steady-state misalignment performance of MMax-
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Table 3.2: Steady-state misalignment for WGN input

Algorithm n ¢, ¢a and By
LMS W(S”L + (12;%;03 ¢=1-2u02(1+ L/2)
NLMS ’;gi + 4 _225203 é=1-(2u/L)1+L/2)
AP : 2‘;5 - ;L;ZL? =1 = K/ 1)1+ 1/
RLS u _20’\323;'0?” (tl__&z\l)'f ¢=1-(1-A)(1+L/2)
MMax-NLMS ’; ggz + ]@% u _2%’2”3 ¢ =1— (2u/L)(1+L/2)
MMax-AP I;g;f” AI/’I?% a 2_”2;:03 ¢a =1 — K(2u/L)(1+ L/2)
MMax-RLS | 3= Aﬂ)f’zgi L _(f)fiﬁyag Be = 2Mo? — (1 - NL(L + 2)o?

AP is the same as MMax-NLMS as expected. For full adaptation M = L, Efc = 02 is
satisfied and hence MMax-AP is equivalent to AP. In addition, the estimation variance
of MMax-AP is independent of the number of taps selected for adaptation M and so,
as shown in [24], for stationary unknown system condition £ = 1, the same steady-state
misalignment can be achieved with various M. It can be seen that the lag variance is
proportional to ¥ as defined in (3.62) and hence degradation in steady-state misalignment

is expected for reducing M under non-stationary unknown system condition £ < 1.

The steady-state misalignment of various algorithms for non-stationary unknown sys-

tem conditions are summarized in Table 3.2.
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Figure 3.3: NLMS normalized misalignment for various source velocity with impulse re-
sponse h, generated using the method of images [Lg = L = 64, = 0.1, SNR = 40 dB].

3.5 Simulations and results

3.5.1 Comparison between tracking a modified Markov model and the

image model

To provide a sense of realistic values for £ in the modified Markov model given by (3.2)
under non-stationary system conditions, a set of impulse responses h, is first generated
using the method of images [72]. In this experimental setup, a microphone is positioned
in the centre of a 2.5 x 3.5 x 3 m room. In order to introduce a time-varying h, of
length Ly = 64, a zero mean unit variance white Gaussian noise (WGN) source is moved
across the receiving room at a velocity of (i) 0.2 ms™1, (ii) 0.1 ms™! and (iii) 0.05 ms™!.
An adaptive filter of length L = 64, employing the NLMS algorithm with g = 0.1, is
used to track the time-varying impulse response h,.  With reference to Fig. 2.1, an
uncorrelated WGN w,, with zero mean is added to the received signal as measurement noise
to achieve a signal-to-noise ratio (SNR) of 40 dB. The normalized misalignment 7 defined
in (3.22) is employed to analyze the tracking behaviour of each algorithm. Figure 3.3
shows the normalized misalignment plots corresponding to each moving source’s velocity.
It can be observed that the steady-state misalignment performance of NLMS’ increases
with reducing source velocity as expected. Figure 3.4 shows the tracking performance of

NLMS with impulse response h, generated using the modified Markov model given by (3.2)
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Figure 3.4: NLMS normalized misalignment for various { with impulse response h, gener-
ated using modified Markov model [Lg = L = 64, u = 0.1, o2 = 1, SNR = 40 dB].

for time-varying unknown system conditions £ = 0.9999 and ¢ = 0.99999 with o2 = 1.
For comparison purposes, the parameters for this modified Markov model experiment are
Lr=L =64, 4 = 0.1 and SNR= 40 dB as before. Comparing Figs. 3.3 and 3.4, it can be
seen that with o2 = 1, the tracking performance of NLMS for £ = 0.9999 and ¢ = 0.99999
defined by (3.2) is comparable to tracking the change in h, generated using the method
of images with a source moving at a velocity of 0.2 ms™! and 0.05 ms™! respectively. As
a consequence, in the following experiments, 02 = 1 and values for £ close to 1 are used

to evaluate the tracking performances of algorithms under time-varying unknown system

conditions controlled using the modified Markov model.

3.5.2 Effect of non-stationarity on misalignment for NLMS and MMax-
NLMS

Simulations to support the analysis of steady-state normalized misalignment for time-
varying system identification such as shown in Fig. 2.1 using the modified Markov model
is presented in this section. The normalized misalignment 7 defined in (3.22) is employed.
Figure 3.5 shows NLMS results with 02 = 1 for a time-invariant system (¢ = 1) and
three time-varying systems (£ = {0.999999,0.99999,0.9999}) where smaller values of &
indicate higher degrees of time-variation as explained in Section 3.2. The input signal is

zero mean WGN with 02 = 1 and the adaptive filter is of length L = 64 while the step-size
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Figure 3.5: NLMS normalized misalignment for various ¢ [L =64, p = 0.1, 02 =02 =1,SNR =
40 dB].
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Figure 3.6: MMax-NLMS normalized misalignment for various § [L = 64, M = 8, u =
0.1, o2 =0¢2=1, SNR = 40 dB]. Dashed lines indicate corresponding performance for NLMS.

= 0.1 in these examples. The learning curves are averaged over 5 independent trials
and theoretical values of g given by (3.29) are first normalized with the unknown
system |y |3 before being plotted as superimposed straight horizontal lines. Figure 3.6
shows the results of an equivalent experiment for MMax-NLMS with L = 64 and M = 8
taps are selected for adaptation at each sample iteration. For comparison purposes, the
corresponding theoretical values of Mg from the previous experiment are also included
in Fig. 3.6 as dashed lines. For both experiments, uncorrelated zero mean WGN sequence

wy, is added to achieve a signal-to-noise ratio (SNR) of 40 dB.

The results show that both NLMS and MMax-NLMS are sensitive to time-variation of

the unknown system in that the misalignment performance degrades with increasing devi-
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Figure 3.7: AP normalized misalignment for various ¢ [L = 64, K = 3,u = 01,02 = ¢2 =
1, SNR = 40 dB].
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Figure 3.8: MMax-AP normalized misalignment for various ¢ [L = 64,M = 8, K = 3,u =
0.1,02 = o2 =1, SNR = 40 dB]. Dashed lines indicate corresponding performance for AP.

ation of £ from unity. The MMax-NLMS algorithm can be seen to perform approximately
3 to 4 dB worse, in terms of steady-state normalized misalignment, than NLMS under
these time-varying conditions. For a time-invariant system £ = 1, both MMax-NLMS
and NLMS achieve the same steady-state misalignment since the estimation variance is
independent of M as can be seen from (3.29) and (3.60). The MMax-NLMS algorithm,
however, has a slower rate of convergence compared to that of NLMS for all cases of £ < 1

as expected.
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Figure 3.9: RLS normalized misalignment for various £ [L = 64,\ = 0.9948,¢2 =02 =1, SNR =
40 dB].

3.5.3 Effect of non-stationarity on misalignment for AP and MMax-AP

Figures 3.7 and 3.8 show the normalized misalignment for the AP and MMax-AP respec-
tively where the straight lines indicate theoretical steady-state normalized misalignments
for various non-stationary conditions £. The dashed lines in Fig. 3.8 represent the theoreti-
cal steady-state normalized misalignments for the AP algorithm. In these simulations, the
input signal is zero mean WGN with o2 = 1 while the adaptive filter is of length L = 64
with ¢ = 0.1. A projection order of K = 3 and for MMax-AP, M = 8 while uncorrelated
zero mean WGN w,, is added to achieve an SNR of 40 dB. In both simulations, the learning

curves are averaged over 5 independent trials.

The results indicate that the steady-state normalized misalignment performance de-
grades for MMax-AP by approximately 2 to 3 dB compared to AP with increasing de-
viation of £ from unity. For a time-invariant system, £ = 1, the steady-state normalized
misalignment of the MMax-AP algorithm is insensitive to the tap selection since its esti-

mation variance is independent of M as can be seen from (3.79).

3.5.4 Effect of non-stationarity on misalignment for RLS and MMax-
RLS

Figures 3.9 and 3.10 show RLS and MMax-RLS normalized misalignment results for vari-

ous ¢ as before. In these simulations, the adaptive filter is of length L = 64 and a forgetting
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Figure 3.10: MMax-RLS normalized misalignment for various ¢ [L = 64, M = 4, \ =

0.9948,02 = 02 = 1, SNR = 40 dB]. Dashed lines indicate corresponding performance for
RLS.

factor of A =1—1/(3L) = 0.9948 is used [39]. As before, the input is a zero mean WGN
sequence. With reference to Fig. 2.1 and (3.2), 02 = ¢2 = 1 while an uncorrelated zero
mean WGN w, is added to achieve an SNR of 40 dB for each of the 5 independent trials.

For the MMax-RLS algorithm, M = 4 taps are selected for adaptation at each iteration.

The results show that both RLS and MMax-RLS are sensitive to time-variation of
the unknown system with misalignment performance of MMax-RLS degraded by approx-
imately 7 and 3 dB compared to RLS for £ = 1 and £ = 0.9999 respectively. In contrast
to the MMax-NLMS and MMax-AP algorithms, MMax-RLS is sensitive to tap selection
even for a non-stationary unknown system £ = 1 since f; in the estimation variance is

dependent on M as shown in (3.73).

3.5.5 Effect of step-size on misalignment for NLMS and MMax-NLMS

Figure 3.11 shows the effect of varying the step-size p on the steady-state misalignment
for NLMS under stationary (¢ = 1) and time-varying (¢ = 0.99999) unknown system
conditions using a zero mean unit variance WGN input sequence. In this experiment, the
adaptive filter length is L = 128 and an uncorrelated zero mean WGN sequence w, is
added to achieve an SNR of 30 dB. The average steady-state normalized misaligmﬁent is

obtained from 5 independent trials.
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For the stationary case £ = 1, it can be ébserved that the steady-state normalized
misalignment increases with step-size u as expected. In this simulation example, the mean
difference between the experimental and theoretical steady-state normalized misalignment
is 0.03 dB. For the case of non-stationary unknown system condition £ = 0.99999, there ex-
ists a pmis giving the lowest misalignment. The theoretical value of pmis = 0.378, computed
using (3.33), is shown by the vertical dotted line and hence it can be observed that within
the region 0 < g < pmis, the steady-state misalignment reduces with increasing p. The
mean difference between the experimental and the theoretical normalized misalignment

is 0.22 dB.

Figure 3.12 shows the effect of step-size on steady-state misalignment for the MMax-
NLMS algorithm under the conditions ¢ = 1 and ¢ = 0.99999 with L = 128 and M = 64.
As before, this experiment is simulated using a 30 dB SNR.. Similar to the case of NLMS, it
can be seen that for £ = 1, the steady-state normalized misalignment increases with step-
size . For the case of £ = 0.99999, there exists a upys = 0.384 governed by (3.65) which
is plotted as a vertical line. The mean differences between experimental and theoretical
steady-state normalized misalignment for the cases of £ = 1 and £ = 0.99999 are 0.13 and
0.03 dB respectively. Comparing Figs. 3.11 and 3.12, the normalized misalignment for
MMax-NLMS is comparable to that of the NLMS algorithm with this case of M = 0.5L
and £ = 0.99999, since as discussed in Section 3.4.1, ¢ increases insignificantly within the

range 0.5L < M < L.

3.5.6 Effect of tap selection M on normalized misalignment

The effect of tap selection on normalized misalignment with a time-varying unknown
system is compared for the MMax-based algorithms using a WGN input sequence with
zero mean and unit variance. Figure 3.13 shows the variation of average normalized
misalignment with M for MMax-NLMS, MMax-AP and MMax-RLS. The length of the
adaptive filter is L = 128 while 16 < M < 128 and £ = 0.9999. For the MMax-NLMS
and MMax-AP algorithms, ¢ = 0.1 is used while for MMax-RLS a forgetting factor of

A=1-1/(3L) = 0.9896 is used. The steady-state normalized misalignment for each
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Figure 3.12: MMax-NLMS: Variation of average normalized misalignment with u [02 = ¢? =
1, L =128, M = 64, SNR = 30 dB].

algorithm is averaged over 5 independent trials and for each trial, an SNR = 40 dB is
achieved by adding an uncorrelated WGN sequence w, with zero mean to the received

microphone signal.

Although the performance of each algorithm is plotted on the same axis, the inten-
tion here is not to compare each algorithm’s relative normalized misalignment in this
simulation example. Instead, it can be seen that for each algorithm, the normalized mis-
alignment reduces with increasing M under the same non-stationary unknown system
condition of £ = 0.9999. More importantly, for each algorithm, only a modest degradation
in steady-state misalignment performance is observed with reducing M within the range of

0.5L < M < L. When M is reduced further, the degradation in steady-state misalignment
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Figure 3.13: Variation of average normalized misalignment with the number of taps selected
for adaptation M [L =32, p=0.1, K =3, A = 0.9896 ¢ = 0.9999, 02 = o2 =1, SNR = 40 dB].

performance is more pronounced for MMax-NLMS and MMax-AP since, as analyzed and
discussed in Fig. 3.2, 9 increases significantly. The degradation in steady-state normal-
ized misalignment performance for MMax-RLS is less pronounced, suffering approximately
1 dB degradation when M is reduced from 128 to 16. The mean errors between theoretical
and experimental results in this simulation for MMax-NLMS, MMax-AP and MMax-RLS
are 0.20, 0.10 and 0.12 dB respectively. As before, the validity of the analysis presented

in this chapter is shown to be valid to within tolerable errors.

3.5.7 Effect of SNR on normalized misalignment

The effect of SNR on steady-state normalized misalignment is investigated for the various
MMax selective-tap algorithms under non-stationary unknown system conditions. The
experimental parameters for this simulation setup are L = 128, M = 64, £ = 0.99999,
it = 0.1, projection order K = 3 and forgetting factor A = 1— 1/(3L) = 0.9974. The

normalized misalignments for each algorithm are averaged over 5 independent trials.

Figure 3.14 shows the variation of MMax-NLMS and MMax-AP normalized misalign-
ments with SNR. For each of the algorithms, the steady-state normalized misalignment
improves with increasing SNR as expected. The MMax-AP algorithm is more sensitive to
SNR variation achieving an improvement of approximately 9 dB normalized misalignment

when SNR is increased from 10 to 40 dB compared to approximately 4 dB for MMax-
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Figure 3.14: MMax-NLMS and MMax-AP: Variation of average normalized misalignment
with SNR. [L =128, M =64, 4= 0.1, K = 3, £ = 0.99999, o2 =2 = 1].
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Figure 3.15: MMax-RLS: Variation of average normalized misalignment with SNR [L = 128,
M =64, A = 0.9974, £ = 0.99999, 02 = o = 1].

NLMS.

Figure 3.15 shows the corresponding normalized misalignment for MMax-RLS under
various SNR conditions. As the SNR is increased from 10 to 40 dB, an improvement,
though not linearly, of approximately 7.5 dB in steady-state normalized misalignment is
observed. The mean error between the theoretical and experimental results are 0.06, 0.09
and 0.15 dB for MMax-NLMS, MMax-AP and MMax-RLS respectively hence verifying

the analysis presented in this chapter.
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3.6 Discussion and conclusions

Misalignment analysis for a class of MMax-based and fully updated algorithms have been
presented which describe their performances when tracking a time-varying unknown sys-
tem that varies according to a modified first-order Markov model [77]. This analysis can
be applied to all algorithms that can be written using the update equation given in (3.9).
When the time-variation is removed by setting £ = 1, the analysis yields known results [35]
for the various fully updated algorithms. The results for the standard algorithms are con-
sistent with previous work [35] [76] in terms of estimation variance but present new results
for the lag variance. Under time-invariant unknown system conditions, the steady-state
normalized misalignment for MMax-NLMS and MMax-AP is independent of M while the
same is not true for MMax-RLS. For time-varying unknown system conditions, the per-
formance of MMax-based algorithms in terms of steady-state misalignment degrades with
increasing time-variation. This degradation is proportional to ¢ and as can be seen from
Fig. 3.2, the increase in ¢ is insignificant with reducing M for 0.5L < M < L and as
a consequence, the degradation in steady-state normalized misalignment performance is
negligible. As will be shown in Chapter 4, this property will be exploited for stereophonic
AEC algorithms such as presented in [26] [30]. In addition, it has been shown that under
time-varying unknown system conditions, there exists for each NLMS and MMax-NLMS,
an optimal step-size given by (3.33) and (3.65) respectively, which jointly maximizes the
performances in terms of low misalignment and high convergence rate. Due to the nature
of stochastic processes and coefficient noise, the theoretical and experimental results are
very close but not exactly the same. Nevertheless, simulations presented have been shown
to verify the theoretical analysis to within tolerable errors which accurately describes the
performances of the algorithms. This analysis enables a judicious trade-off between the

computational savings of partial update schemes and their tracking performance.
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3.7 Appendix

3.7.1 Fourth-order factorization for zero mean gaussian variables

For an ii.d. Gaussian distributed signal 2(n), the matrix & = E{x,X2x,xZ } has elements

L
&y = E{m(n — k) Z z2(n —i)z(n — l)} )
i=1

where x,, = [z(n) z(n—1) ... z(n—L+1)]7. The factorization property of real zero-mean

Gaussian variables {82] is that
()a(k) } E{2(i)e (1)}
2(i)z(l) } E{z()=(k) } ,
from which
L
E{xnxgxnxg;}kl = 2 Z E{z(n—k)z(n— i)} E{z(n — )z(n— i)}
i=1

L
+E{z(n - k)z(n—1)} Z E{z%(n—1d)} .
i=1

From the above, it can be seen that, for the complete matrix, ® = 2R? + Rtr{R}.

Now for z(n) i.i.d Gaussian variables
E{z(n—i)z(n-j)} =

so that ® = (L + 2)o2I;«p.
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3.7.2 Verification of step-size boundary condition for MMax-NLMS us-

ing contraction mapping

To simplify (3.57), two conditions (i) 7 > —1 and (ii) 7 < 1 must be satisfied where

M32 (L +2) M52
T =i1 - x 2 T 3.
1 4uL20% +4p g2 (3.80)
For case (i),
M&2 (L +2)MG2
1—dp—l8 4 g2 2000
L2g2 L3g2
oL +2)M52 , 2M3?
52 * ottt 70
2(L +2)Mc? [ 9 L L3o2 ]
- > 0. 3.81
392 I+2" T 3Ty 2)Mae (381)

2
Introducing the term (L/ [2(L + 2)]) into the quadratic expression and using the com-

pleting the squares approach, (3.81) can be simplified as

2L + 2) M7 L )2 L3062 L2
( — o 2(

- 3.82
352 L+2) L+ 2)Mo2 4(L+2)2] > 0 (382

Let
Y= Lol/(GZM), (3.83)

from which (3.82) can be simplified as

> 0. (3.84)

o(L +2) L )2 Ly L
v (_2(L+2) T R T§ )

It is shown (c.f. Fig. 3.2) that the term ¢ > 1 when 0 < M < L taps are selected for
adaptation. Consequently, 2(L + 2)/(Lv) > 0 and hence (3.84) can be simplified giving
2

Ly L?

- 0
T  HLt2F

L
ATy AN
[ L r+L2(2¢—1)+4L¢

P +2) 4L + 2)2
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which is valid Y since 4 > 1 and hence case (i) gives trivial solutions for step-size p.

For case (ii),

M52 (L +2)Mc2
1—4p——=2 +4y° L o<1
L2052 L3o2
2 ~2 ~2
(L+2Me; » Moy (3.85)

L3o2 # L2052

Substituting the definition of ¢ from (3.83) into (3.85), the condition

-g {———-——“(LL—i_ 2) _ 1] <0 (3.86)

is obtained. Under the condition g > 0 and since ¢y > 1, therefore

p(L+2)

-1 < 0
L

< L
H L+2°

giving 0 < g < L/(L +2) . O
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Chapter 4

Stereophonic Acoustic Echo
Cancellation Employing Tap

Selection

Many things difficult to design

prove easy to perform.

Samuel Johnson (1709-1784)

4.1 Introduction

TEREOPHONIC tele- and video-conferencing systems have gained much popular-
S ity [90] [91] [92] in recent years. In applications such as desktop conferencing and
hands-free telephony, stereophonic systems provide telepresence to users by enabling listen-
ers to localize speakers in conference meetings where multiple parties might be conversing
at the same time. Similar to single channel acoustic echo cancellation (AEC) as discussed
in Chapter 2, the stereophonic acoustic echo canceller (SAEC) such as shown in Fig. 4.1
suppresses the echo returned to the transmission room so as to enable undisturbed com-
munication between the rooms. The disturbance due to echo increases in severity with the

propagation delay of the channel.

Unlike the single channel case, a serious problem encountered in SAEC is that the
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Figure 4.1: Schematic diagram of stereophonic acoustic echo cancellation, Only one channel
of the return path is shown for simplicity.

echo canceller coefficients do not in general converge to the true impulse responses of the
echo path when the adaptive filters of length L, are greater than or equal in length to
those of the transmission room’s impulse responses, Lp. In such a situation, solutions for
the adaptive filters are non-unique and depend both on the transmission and receiving

rooms’ impulse responses [52].

In the practical case where L < L7, the problem of non-uniqueness is ameliorated
to some degree by the “tail” effect [52]. However, even in such cases, direct application
of standard adaptive filtering is not normally successful because the system identifica-
tion problem is ill-conditioned due to the high interchannel coherence between the two
channels’ tap-input vectors [52] [90]. This is known as the misalignment problem. As
explained in Section 2.2.2, significant undermodelling of the unknown system can also
degrade cancellation of echo. To overcome the misalignment problem in this practical
case, several approaches have been employed to decorrelate the two input signals using,
for example, non-linear processing [11] [52] [93], spectrally shaped random noise [94] [95],
comb-filtering [96], leaky extended LMS [97] and alternating fixed-point [98] algorithms.
The use of filter updates that are orthogonal to the tap-input vectors has also been con-

sidered in [99] [100]. With reference to Fig. 4.1, the common aim of these algorithms is to
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achieve decorrelation between input signals z1(n) and 22(n) without affecting the quality
or stereophonic image of the signals. A survey of existing techniques for SAEC can be
found in [101]. In this chapter, in a similar manner to Chapter 2, the dependency of a
variable on sample iteration n is shown in brackets while the subscript of a vector quantity
is denoted as its channel number. Unless otherwise stated, the first and second subscripts
of a scalar quantity are denoted as the channel number and its elemental index of a vector
respectively. If only one subscript is shown for the scalar quantity, its elemental index will

then be reflected in parenthesis.

In recent years, as discussed in Chapter 2, selective-tap schemes are introduced to
reduce computational complexity of, in particular, the NLMS algorithm by updating only
a subset of taps at each iteration. The MMax-NLMS algorithm, as discussed in Chapter 2,
allows implementation in single channel AEC with performance close to that of the NLMS
algorithm. The reduction in computational complexity due to the partial updating is offset
to some degree by the computational cost of tap selection which normally requires a sort
operation to be performed. However, efficient approximate schemes such as the Short-sort
algorithm [71] as discussed in Section 2.7 have been proposed to address this issue. The
main motivation of this chapter is not the reduction of complexity of SAEC. Instead, tap
selection is proposed as a means to reduce interchannel coherence. Drawing on knowledge
obtained from developing selective-tap algorithms for single channel AEC as described in
Chapter 2, the proposed tap seiection algorithm will be applied to normalized least-mean-
square (NLMS), affine projection (AP) and recursive least squares (RLS) algorithms for
the SAEC application.

This chapter is organized as follows: Problems associated with SAEC are reviewed
in Section 4.2. In Section 4.3, it will be shown why direct application of the single chan-
nel MMax-NLMS selective-tap algorithm will not achieve sufficient convergence perfor-
mance for SAEC application. The effect of exclusive tap selection on interchannel coher-
ence and the conditioning of input signal autocorrelation matrix will also be presented. As
a proof of concept, an exhaustive tap selection search technique is initially considered in

Section 4.4 to demonstrate the selective-tap approach in SAEC. Noting that the exhaus-
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tive search technique is not computationally efficient, an efficient exclusive-maximum (XM)
tap selection technique involving adaptive filters of realistic order will be presented. This
methodology is then applied in combination with a non-linear (NL) processor [52] to form
XMNL-based versions of NLMS, AP and RLS in Section 4.5. Computational complexity
of the proposed algorithms will also be considered in Section 4.5. Simulation results will

be presented in Section 4.6 while Section 4.7 draws conclusions from the work.

4.2 Problems associated with stereophonic acoustic echo

cancellation

Stereophonic acoustic echo cancellation (SAEC), as shown in Fig. 4.1, can be viewed as
a multichannel extension of the single channel AEC concept. Two microphones are lo-
cated in the transmission room depicted on the right. The source signal is convolved
with the transmission room impulse responses g1 (n) and gz2(n) to give input signals z1(n)
and z2(n) respectively. These stereophonic signals are then transmitted to loudspeakers
in the receiving room which in turn are acoustically coupled to the receiving room mi-
crophones. An uncorrelated noise w(n) = 0 is initially considered in the development of
SAEC algorithms. In addition, only one microphone is considered at the receiving room
here for simplicity since similar analysis can be applied to the other channel. Receiving

room impulse responses hj(n) and ha(n) produce received signal y(n) given by

2
y(n) =Y hT(n)x;(n), (4.1)
7=1
where
hj(n) = [hjo(n) kja(n) .. hjrp—a(m)]T, j=1,2 (4.2)
and
x;j(n) = [z;(n) gj(n—1) ... 2;(n-L+1)]7, j=1,2 (4.3)

are the j*! channel receiving room impulse response of length Ly and tap-input vector of

length L respectively while the superscript 7 denotes transposition operator. Similar to
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the single channel case, it is initially assumed that the length of the adaptive filter is the
same as that of the unknown impulse response, i.e., L = Lg. A pair of adaptive filters
each of length L function as a SAEC by estimating the unknown impulse responses h;(n)

and hy(n) using filter coefficients h;(n) and hy(n) where

"~

~ ~ ~ T
Bi(n) = [Rjo(n) hia(n) .. Byia(m)] . j=1,2. (4.4)

The a posteriori error signal between the desired signal and its estimate for this two-

channel case is thus given by
2 -~
ep(n) = y(n) — Y_ h] (n)x;(n) , (4.5)

while in a similar manner to the single channel case, the a priori error for this stereo case
is given by

2
e(n) =y(n) — Z A;F(n — 1)x;(n) . (4.6)

Considering the use of the method of least squares following the approach of [52], the

time-averaged a posteriori cost function can be defined as
n .
Tpln) =D _ A" eg(d) (4.7)
=1

where 0 <« ) < 1 is the forgetting factor. Minimizing the least squares criterion (4.7) and

using (4.5), the set of normal equations!
h(n) = ¥~1(n)O(n) (4.8)

is obtained, where the two-channel 2L x 2L time-averaged autocorrelation matrix and

YThe rigorous proof of using the a posteriori cost function to obtain the normal equations will be shown
in Section 5.3.3 in the context of frequency-domain adaptive filtering.
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2L x 1 cross-correlation vector are defined [52] respectively as

n

T(n) = > Aix(i)xT (i)
i=1
_ Ti1(n) ¥iz(n) (4.9)
v v
a(n) ¥um) |
and
n . .
O(n) = > A" y(i)x(5) , (4.10)
i=1
given that for this two-channel case,
T
x(n) = [ xFm)] (4.11)
~ ~. ~ T
B(n) = [BT(n) BT(n)] (4.12)
are the 2L x 1 concatenated tap-input vectors and filter coefficients respectively.
Defining
T
gi(n) = [gj0(n) gj1(n) ... gjLr-1(n)] (4.13)

as the j*! channel transmission room impulse response of length Ly, it is shown in [52]
and proven in Section 4.8.1, that when L > L7, the solution of (4.8) giving a posteriori

error ep(n) = 0 is in the form

hi(n) _ | m + o) g2(n) (114)

h2(n) 2L x1 hz(n) 2L x1 _gl(n) 2Lx1

where g;(n), for j = 1,2, are appended with L — L7 zeros and ¢(n) is any scalar quan-
tity. Equation (4.14) indicates that there are non-unique solutions for the adaptive filter
coefficients h(n). More importantly, although there is a mismatch between the estimated
and true impulse responses in (4.14), these solutions depend on both the transmission and
receiving rooms’ impulse responses which is undesirable. This is because any changes in
the impulse responses of the transmission room, due to for example a change in talker,

will require the adaptive filters to reconverge to another solution which again depends
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on g1(n) and ga(n).

In practical cases where L < L7, the time-averaged autocorrelation matrix ¥(n) is
ill-conditioned because the tap-input vectors x;(n) and xz(n) are highly correlated?. In
the case where the adaptive filters are shorter than the lengths of the receiving room
impulse responses, Lg, a system mismatch error is introduced in the filter coefficients due
to undermodelling. Defining ﬁj(n), of dimension (Lg — L) x 1, as that part of the 5!
channel in the receiving room impulse response which is not modelled by the respective
]T

adaptive filter and h(n) = [hf(n) hf(n)]", the system mismatch can be quantified [52]

by the normalized misalignment n(n),

n(r) — ()|
()3
b7 (n) 97 ()@ —2(n) ¥ (n)h(n)
T (n)h(n) ’

n(n)

(4.15)

where || - |3 is defined as the squared l3-norm operator and

¥(n) = Y A xal) [x? () xé”(i)]

i=1 x2(%) 1x2(Lp—L)

2Lx1
‘i’u(n) ‘i’12(”)
\i’gl(’n) \i’zg(n)

(4.16)

2Lx2(Lr~L)

is the time-averaged autocorrelation matrix formed from the “tails” of the input signal

X;(%) such that, at each sample iteration i, the (Lg — L) x 1 vector x;(¢) is defined as
. . . . T
x; (i) = [zj(i — L) zj(i—L—1) ... z;(i— Lp + 1)] (4.17)

for channels j = 1,2.

The fundamental difference between single channel and stereophonic AEC can be seen
from (4.15) and (4.16). In the single channel case, ¥(n) in (4.16) reduces to only ¥i(n)

which consequently reduces the normalized misalignment 7(n) in (4.15). In addition to

2The relationship between the ill-conditioning of input autocorrelation matrix and interchannel coher-
ence will be derived in the context of frequency-domain variables in Section 5.4,
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the error caused by under-modelling of the unknown system, matrices ¥12(n) and Wy, (n)
in (4.16), for the stereo case, are significant because of the high cross-correlation between
the two tap-input vectors x;(n) and xa(n). As a result, the misalignment for SAEC is
significantly higher than for the single channel AEC unless specific processing, such as

described in this chapter, is employed.

4.3 Tap selection for SAEC

Partial update schemes achieve complexity reduction by updating only a subset of taps
at each iteration. As discussed in Chapter 3, the MMax-NLMS algorithm [21] has been
shown to suffer only a modest degradation in convergence rate by updating taps corre-
sponding to the M = 0.5L largest magnitude tap-inputs. It has been shown how 1, as
defined in (3.62) and being inversely proportional to the M-ratio measure M, affects the
steady-state normalized misalignment for the single channel AEC case. In this section, the
dependence of convergence rate of MMax-NLMS on M will be examined and the effect of
tap selection on the interchannel coherence for the stereophonic case will be investigated.
The measure M will then be used for the stereo case as an optimization parameter in the
subsequent development of the proposed selective-tap SAEC algorithms. For brevity, the
discussion in this section will temporarily be limited to MMax-NLMS, although discussions

presented here can be generalized to the MMax-AP and MMax-RLS algorithms.

4.3.1 Dependency of convergence rate on M

In the single channel MMax-NLMS algorithm [21] for an adaptive filter of length L, only
those taps corresponding to the M largest magnitude tap-inputs are selected for updating
at each iteration. The MMax-NLMS algorithm has been summarized in Table 2.5 of
Section 2.10.1.

As can be seen from experimental results presented in Section 2.8, the penalty in-
curred due to tap selection for the single channel MMax-NLMS algorithm is a decrease

in convergence rate for a given step-size p. The dependency of convergence rate on tap
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selection can be examined using the measure M defined in (3.61) and is reproduced here

for convenience,

lQmxm)
M = TeE (4.18)

where elements of the diagonal MMax tap selection control matrix

Q(n) = diag{lgo(n) q1(n) ... q-1(n)]}, (4.19)
are defined by (2.47) given as

1, |z(n—1i)| € {M maxima of |x(n)|} ,
gi(n) = (4.20)
0, otherwise ,

for i=0,1,...,L — 1 in this single channel case with
T
Ix(n)| = [le(n)| lz(n - 1)| ... |lz(n— L+ 151 (4.21)

Whereas the fundamental concept of MMax tap selection was presented in [21], the pro-
posed measure M provides an explicit quantification of the deviation of the selective-tap
case from the full update case such that M = 1 corresponds to full adaptation, i.e., with
M = L. Furthermore, M allows direct extension to the stereophonic case as will be shown

in Section 4.4.2.

Figure 4.2 shows how M varies with the size of tap selection M in a single channel
case for zero mean, unit variance white Gaussian noise (WGN) tap-input sequence x(n)
at a particular sample iteration n for L = 256. It can be seen that M exhibits only a
modest reduction for 0.5L < M < L. Figure 4.3 shows the number of iterations for MMax-
NLMS to achieve —20 dB normalized misalignment for various M and hence verifies the
expectation that, over the range 0.5L < M < L, a graceful reduction in convergence rate
is obtained as compared to full adaptation [28] [29]. Since convergence rate can be seen
to increase monotonically with M, it is proposed that any degradation in convergence

performance due to the subselection of taps can be minimized by selecting taps so as to
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Figure 4.2: Variation of M with subselection parameter M showing modest reduction of M
within the region 0.5L < M < L for zero mean unit variance WGN sequence with L = 256.
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alignment, as a function of M for L = 256.

maximize M.

4.3.2 Interchannel decorrelation using tap selection

In order to examine the effect of tap selection on interchannel coherence in SAEC, the

squared coherence function

2 S1(NP
= S11(f)S22(f) (4.22)

is employed, where Sya(f) is the cross power spectrum between the two channels and f is

the normalized frequency.
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Figure 4.4: Squared interchannel coherence for (a) M = L = 512, (b) M = 0.5L with MMax
tap selection and (¢) M = 0.5L with exclusive tap selection,

As an illustrative example, consider the system of Fig. 4.1 for the case when the
source signal is a zero mean unit variance WGN sequence and transmission room impulse
responses g1(n) and gz(n) are highly correlated each of length 1024. This results in highly
correlated tap-input vectors x;(n) and xa(n) with x;(n) = [z;(n) z;(n — 1) ... z;(n -
L+ 1)]T and for this illustration L = 512 is chosen. In this example, transmission room

impulse response g;(n) is generated using the method of images [72] while ga(n) is formed

using the following relation

ga(n) = egi1(n) + (1 — e)b(n) , (4.23)

where b(n) is an uncorrelated zero mean unit variance WGN sequence and 0 < € <1
controls the amount of independent WGN added to g1(n). To reflect the high interchannel

correlation found in practice, e = 0.9 is used, giving a correlation coeflicient of 0.904.

The highly correlated tap-input vectors give rise to a squared coherence close to
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one across most of the frequency bands as shown in Fig. 4.4 (a). In the case shown in
Fig. 4.4 (b), taps are selected according to the MMax selection criterion with M = 0.5L
in both channels. It can be seen clearly that the MMax tap selection does not provide
any significant decorrelation. This is because the MMax criterion selects nearly identical
tap-indices in both filters, due to the high coherence between the two-channel tap-input

vectors. This does not achieve the desired effect of decorrelating the signals.

An exclusive tap selection criterion is considered where selection of the same tap-
index in both channels is not permitted. A simple example of such an exclusive case
with M = 0.5L (but not the technique used in the proposed algorithm) is to select the
taps corresponding to the M largest magnitude tap-inputs in the first channel and the
exclusive set of taps in the second channel. Figure 4.4 (¢) shows the squared coherence
plot of such a case. As can be seen, the interchannel coherence is significantly reduced
from a mean of 0.88 to a mean of 0.52 across normalized frequency 0 < f < 1, and this is

used to illustrate and develop further study of tap selection in Section 4.4.

The exclusive tap selection can be seen as a method for improving the conditioning
of the input autocorrelation matrix by considering the case where x;(n) and x(n) are
highly correlated white Gaussian tap-input vectors. Defining x(n) = [x’{(n) xg(n)]T and
E{-} as the mathematical expectation operator, the two-channel 2L x 2L autocorrelation

matrix can be expressed as

Rxx = E{x(n)xT(n)}

Ri1 Riz

(4.24)

R2: Rag
2Lx2L

Defining Q;(n) and Q2(n) as diagonal exclusive tap selection matrices for channels 1 and

2 respectively, the resulting sparse vectors are given by

xi1(n) = Qi(n)xi(n), (4.25a)

X2(n) = Qa(n)xa(n) (4.25b)
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Figure 4.5: Effect of exclusive tap selection for various mean value of [y(f)|* across frequency
on mean condition number for zero mean unit variance WGN sequence (a) without tap
selection, (b) with MMax tap selection and (c¢) with exclusive tap selection.

which in turn give rise to Rgx where the diagonals and some off-diagonal elements of R

and R are now zero since based on the definition of exclusive tap selection,

Q:(n)Qz(n) =0rxz , (4.26)

where 0y, 1, is defined as a L x L null matrix. This improves on the conditioning of Ry and
in the limit where the subselected tap-input vectors X; and X9 are perfectly uncorrelated,

the autocorrelation matrix is a diagonal matrix given by
Rz = diag{[57 ... 57 52 ... 53]} (4.27)

with an I3 condition number of

[ Ras, | RE2 ], = RO 2) (4.38)

min(a%,52) ’

where EJZ- is the j*P channel subselected tap-input variance given by (3.48).

Figure 4.5 shows the variation of mean condition number of time-averaged autocor-
relation matrices Ry, and Rgz as a function of the mean of |y(f)|*> across 0 < f <1

where |y(f)|? is defined in (4.22). The autocorrelation matrices are formed from tap-input
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vectors x3(n) and xg(n) generated by the convolution of a zero mean unit variance WGN
source sequence with transmission room impulse responses g1(n) and ga(n) generated us-
ing the method of images [72], such that |y(f)|? is controlled by € as described in (4.23)
while the additional MMax or exclusive tap selection criterion has been imposed when
generating Rgx. For each case of mean coherence, the average condition number for 30
trials is computed and plotted as shown in Fig. 4.5 (a), (b) and (c) for Rxx, MMax Rz
and exclusive Rgz respectively. It can be observed that as the mean interchannel coher-
ence reduces, x1(n) and x2(n) become less correlated and hence a reduction of the mean
condition numbers for the autocorrelation matrices are exhibited. The explicit link be-
tween interchannel coherence and condition number of Ryx will be presented in Chapter 5
in the context of frequency-domain quantities. With reference to Fig. 4.5, for each case of
mean interchannel coherence, Rzx formed from exclusive tap selection has the lowest mean
condition number compared t0 Ry and Rgz formed from MMax tap selection. Hence the
exclusive tap selection gives rise to a better conditioned autocorrelation matrix which in
turn allows one to address the misalignment problem caused by the ill-conditioned input

autocorrelation matrix as discussed in Section 4.2.

4.4 Exclusive-maximum tap selection

4.4,1 Formulation

It has been shown through a simulation example in Section 4.3.2 that exclusive tap
selection can improve the conditioning of the two-channel input autocorrelation matrix
in SAEC. An adaptive filtering scheme which makes use of this concept without degrading
convergence due to partial adaptation is developed in this section. The problem can be
formulated as a joint optimization of maximizing the MMax criterion, determined by the
M-ratio M, and minimizing the interchannel coherence under the control of tap selec-
tion. This is done using two variables: magnitude weighting, 0 < 9., < 1, to describe
the “closeness” of the tap selection to that of the MMax scheme, and coherence weight-

ing, ¥, = 1 — ¥, to describe interchannel coherence between the subsampled tap-input
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Figure 4.6: Possible combinations of tap selection for L =4 and M = 2 in channels 1 and 2.

vectors. A magnitude weighting of ¥,, = 1 corresponds to selecting coefficients based on
the MMax tap selection criterion only. In the following, the dependence of variables on

sample iteration n is temporarily omitted for clarity of notation.

Consider firstly the “Cjs possible combinations of selecting M = 0.5L taps from each
channel’s adaptive filter of length L. Let the combinations be indexed k,7 = 1, 2,... LCu
giving tap selection sets {¢x} and {¢-} for channels 1 and 2 respectively and define {(xr}
as the combined two-channel tap selection set for each sample iteration while X; ; and
Xg,r are the subselected input vectors using tap selection sets {¢x} and {¢-} respectively.
Figure 4.6 shows the different possible combinations of selecting the filter coefficients in
each channel for an example case of L = 4 and M = 2. Clearly, there are “Cps = 6

possible combinations of tap selection for each of the two channels.

For the structure shown in Fig. 4.1, A and C are defined, for each sample iteration,
as square matrices each with dimension £Cy; x L£Cj; such that the {kth, rth} element of

each matrix contains

Ay = H|§1,k| + |Xa,| E (4.29)
= |Sx.x. ()|
w7 < Sz, () S%.5,. (f) > (4.30)

respectively where a, denotes the absolute sum of the selected tap-inputs in a particular
tap selection set (x, and ek, is the squared coherence, with < - > indicating averaging over
frequency, of the two tap-input vectors with L — M unselected inputs in each channel set

to zero.
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A ¢ C ¢,

1 2 3 4 5 6 1 2 3 4 5 6

1 12 34 35 5 22 32 1 22 24 25 19 10 1

2 10 4 11 14 19 21 2 7 4 21 6 1 9
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Figure 4.7: Cost matrices for A and C.

Since elements in matrix A contain the sums of magnitudes which are required to
be maximized, an integer cost is first associated with each of the elements aj, such that
the least cost is allocated to the element having the largest magnitude in A. This new
magnitude cost matrix is now defined as A. In a similar manner, each element in C will
be allocated an integer cost such that element corresponding to the minimum squared
coherence is allocated the least cost. This new coherence cost matrix is then defined as C.
Hence matrices A ana C contain integer cost values, at each sample iteration, depending

on the magnitude sum and interchannel coherence.

To illustrate the above description, Fig. 4.7 shows an example of matrices .A and C at
one particular sample iteration for the case of L = 4 and M = 2 as before. It can be seen
that Cs1 gives the lowest cost in A and consequently, from Fig. 4.6, |z1,0(n)| + |z12(n)| +
|z2,2(n)| + |z2,3(n)| achieves the highest magnitude amongst all the possible combination
sets k,r = 1,2,...,L Cp where z;;(n) is defined as the i*h tap-index corresponding to
the 7*h channel. It is interesting to note that elements in the skew (top-right-to-lower-
left) diagonal of C, as shown in Fig. 4.7, have the lowest cost. This is because these
combinations {Cs1, (z2, (43, (34, (25, C16} correspond to the exclusive tap selection of the

two-channels as can be seen from Fig. 4.6.

A total cost matrix V is then given, at each sample iteration, by
V=9,A+739,LC. (4.31)

Defining {¢min} = {Ckmin,rmin } 25 the tap selection set having minimum cost in matrix V,
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Normalized Misalignment (dB)

samples

Figure 4.8: Misalignment for (a) ¥,, = 1, (b) NLMS, (¢} ¥m = 0.9, (d)} 9m = 0.7, (e) Um =
01[L=6, M =3, p=0.6, ¢e=0.9, SNR =40 dB].

{¢min} can obtained using

Emin, Tmin = argmin(V) , k,r=1, 2,..., Low . (4.32)

k,r

For small L and letting H(n) = [ﬂ{(n) ﬂg(n)]T and x(n) = [x](n) xg(n)]T, VY can be
searched exhaustively, for each iteration n, so that the tap selection set {min can then be

incorporated into NLMS adaptation [26] as

R 2ux(n)e(n)
h(n) =h(n - 1)+ Q(n) X + onis (4.33)

with

Q(n) = diag{ [a] (n) o ()] } (434)

being the two-channel tap selection control matrix where, at each sample iteration 7,

element u of q;(n) and element v of ga(n) are defined for u,v =0,1,...,L —1 as

1 if U,V € {Cmin} )

0, otherwise .

{01,u(n), 20(n)} =

Figure 4.8 shows simulation results for the normalized misalignment with different
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Figure 4.9: Number of samples that a particular integer cost in matrices (a) A and (b) C
associated with (min is selected for adaptation [L = 6, M = 3, Um = 0.1, p = 0.6, ¢ = 0.9,
SNR = 40 dB].

values of magnitude weighting (¢,, = 0.1, 0.7, 0.9, 1.0). In this example the source is a
zero mean unit variance WGN sequence with adaptive filters having 6 taps per channel
and for every iteration, 3 taps are updated (L = 6, M = 3) using an arbitrarily chosen
step-size of 4 = 0.6. The relationship between transmission room impulse responses g;(n)
and ga(n) with lengths Ly = 12 is again determined by (4.23) with € = 0.9. The receiving
room impulse responses hj(n) and hs(n) are taken from a zero mean unit variance WGN
sequence and are of lengths Lg = 6. This choice of Lt and Lp allows one to study
the adaptive filters which uniquely determine the unknown system whilst minimizing the
normalized misalignment caused by undermodelling. The normalized misalighment for
only one of the two channels is plotted for each case of ¥, for reasons of clarity. With
reference to Fig. 4.1, an uncorrelated zero mean WGN sequence w(n) is added to achieve
a signal-to-noise ratio (SNR) of 40 dB. The simulation result shows that 9, = 1 coincides
with MMax-NLMS where performance is close to that of the fully updated NLMS as
expected. The highest convergence rate can be seen when 9, = 0.1 (i.e., ¥, = 0.9) where

a high weighting is given to minimization of the interchannel coherence.

Figure 4.9 shows, for the same experimental setup with ¥, = 0.1, the number of

iterations that a particular integer cost in matrices (a) A and (b) C associated with
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Cmia is selected for adaptation. The highest integer cost for \A and C in this example is
(6C3)? = 400 and (6C3)% — (6C3 — 1) = 381 respectively®. The first 100 integer costs in C
are shown here as there are no tap selection set corresponding to other costs for any of the
iterations. It can be seen from Fig. 4.9 (b), that tap combinations corresponding to the
lowest cost in C are being selected for updating throughout the adaptation process from
n=1ton=6.5x 10* since, for J,, = 0.1, a high weighting is given to the minimization
of C. Upon further investigation, it was found that for J,, = 0.1, all the tap selection
sets used for adaptation maximizes ag,, with k,r =1,2,... L Cp1, subject to the exclusive

criterion such that combinations k and r contain no tap-indices in common, i.e.,

NG ={} VYn, (4.35)

where { } is defined as a null set. Therefore the optimization problem can now be redefined
in a simpler form of a search where M is maximized at each sample iteration subject to

the constraint given by (4.35).

4.4.2 Efficient realization: the exclusive-maximum tap selection

Since the total cost matrix V is of dimension £ Cps x£ Chs, an exhaustive search of V for the
optimum tap selection is computationally expensive for adaptive filters of higher orders and
as a consequence, an efficient tap selection scheme is proposed. As mentioned, the objective
is to develop a tap selection algorithm which maximizes M jointly for both channels
subject to an exclusivity constraint. In this subsection, the dependence of variables on

sample iteration n is temporarily omitted for brevity.
Let
P = |x1] — |x2f (4.36)

be the interchannel tap-input magnitude difference vector and

B=[fop1 ... ﬁL—l]T , (4.37)

5The highest integer cost in C is always less than that of \A since, as can be seen from Fig. 4.7, elements
in the skew diagonal of C have the same cost integer of 1.
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where

Po>p1>...> P (4.38)

are defined as p sorted in descending order. Let &;; and &2; denote the ith tap-input

samples of channel 1 and 2, ordered according to the sorting of P such that
Bi = |Z14] = %24l (4:39)
for i =0,1,...,L— 1. In this two-channel case, the M-ratio M is defined as

|Qx]|?
M =
%12

(4.40)

with Q = diag{ [af qg]} being the two-channel concatenated tap selection matrix and x =
[xF xT]7. It has been analyzed in Sections 3.4.1 and 4.3.1 that the NLMS algorithm suffers
from insignificant degradation in terms of steady-state misalignment and convergence rate
for 0.6L < M < L. As a consequence, M = 0.5L is considered which, in addition, allows

the proposed tap selection to satisfy the exclusivity criterion.

As verified in Section 4.8.2, the exclusive tap selection set that mazimizes M jointly
for both channels contains the M largest elements of p from channel 1 and the M smallest

elements of p from channel 2, i.e.,
{5)1,0 con Bimo1 Tom - 5152,1,_1} . (4.41)

Hence at each iteration, assuming no channel gain mismatch between the two channels,
the erclusive-mazimum (XM) tap selection is defined by element v of q; and element v

of g2 such that for v,v =0, 1,...,L —1 and M = 0.5L,

1, pu € {M maxima of p} ,
Qu = ’ { ; (4.42a)

0, otherwise,

1, p, € {M minima of p} ,
Gy = (4.420)

0, otherwise .
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As an illustration, consider an SAEC system with channels j = 1,2, adaptive filters each

of length L = 4 with tap-input vector
T
x;(n) = [z0(n) zj1(n) zj2(n) zj3(n)]" (4.43)

The tap-input magnitude difference vector p may then be expressed as

- Po 1 |lz1,0(n)] 11 lz2,0(n)] ]
P _ el | | lz21(n)l (4.40)
P2 |z1,2(n)] |lz2,2(n)]

| p3 | [ les(r) | | lw23(n)]

Consider the example case ps > p1 > pg > p3, for a particular sample iteration. Since pa +

p1 > ... > po + p3, it can be shown that

fz12(n)] = |zaa(n)| + |z1,1 ()| — 21 (n)| > ... > |z1,0(n)] = lz20(n)]
+lz13(n)| — |w2,3(n)]
lz1,2(n)| + |21 ()] + [22,0(R)] + |22,3(n)] > ... > |z10(n)] + |z1,3(n)

+eai(n)| +lz22(n)l, (4.45)

where ... refers to all other pair-wise combinations of pg, p1, p2 and p3. Thus taps cor-
responding to inputs z1.2(n),z1,1(n), z2,0(n) and xzo3(n) maximize M with the minimum
coherence constraint satisfied by the exclusivity of the tap selection at each sample itera-

tion.

In this way, the XM tap selection criterion efficiently selects the best exclusive sets
of taps where best here is defined as nearest to MMax jointly for both channels in order
to minimize the degradation in convergence performance due to tap selection. This is
achieved by maximizing the M measure computed using the taps from both channels.
Because of the exclusivity constraint, neither channel in general attains a tap selection
as good as MMax and some degradation in convergence performance is therefore to be

expected. Nevertheless, results presented in Section 4.6 indicate that such degradation is
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small compared to the improvement in convergence due to the decorrelating property of

XM tap selection.

Note that the XM tap selection criterion as described above will result in a selected
tap-input vector with lower power than for the MMax criterion for each channel due to
the exclusivity constraint. It is to be expected therefore that the effect of noise may
be relatively more significant in the proposed scheme compared to the MMax scheme.
However simulation results indicate that any such effects are insignificant compared to the

improvements obtained due to the decorrelating properties of the proposed tap selection.

As a final comment, it is irrelevant to consider other exclusive tap selection sets given
in the skew diagonal of C since they have smaller magnitude sum. This approach allows the
XM algorithm to eliminate Cps x* Cps — 1 possible combinations thus allowing efficient
implementation of the XM tap selection. Such efficient practical schemes will be developed

in Section 4.5 for use with NLMS, AP and RLS adaptation.

4.5 Exclusive-maximum adaptive filtering

As has been shown in Section 4.3.2, the XM tap selection can improve conditioning of
the input autocorrelation matrix Rxx and hence improved convergence is expected. The
effect of tap selection for the AP and RLS cases on the autocorrelation matrix will be seen
to be similar to that which occurs in the NLMS case shown in Section 4.3.2. The XM
approach relies on the existence of a unique solution for the adaptive filter coefficients. As
will be shown through simulations in Section 4.6, XM tap selection in combination with
a non-linear (NL) preprocessor [52] leads to better performance than the use of the NL-
preprocessor alone. This combination of XM and NI approach, which will be referred to
as XMNTL, is highly effective for the cases considered and therefore this combined structure
will be proposed for the later experiments. Figure 4.10 shows the schematic diagram of

the proposed XMNL-based SAEC structure.
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Figure 4.10: Schematic diagram of the XMNL preprocessor in stereophonic acoustic echo
canceller. Bold arrows indicate tap selection control.

4.5.1 The XM-NLMS algorithm

The XM tap selection technique can be incorporated into NLMS by selecting taps cor-
responding to M = 0.5L largest elements of the input magnitude difference vector p(n)
in the first channel and the M smallest elements of p(n) in the second channel as shown
in (4.42a) and (4.42b). Taps are then updated using (4.33), (4.42a) and (4.42b). Simula-

tion result for the XM-NLMS algorithm is shown in Fig. 4.13.

4.5.2 The XMNL-NLMS algorithm

The non-linear (NL) preprocessor [52] implemented using the half-wave rectifier is one of
the most effective methods of achieving signal decorrelation without significantly affecting

stereo perception. Using 0 < 8 < 0.5 as the non-linearity constant, the input signals

xi(n) = x(n)+0.58[x1(n) + |x1(n)]] , (4.46a)

xh(n) = xg(n) +0.56[x2(n) — |x2(n)]] , (4.46b)

are obtained. Several alternative types of non-linearity techniques such as those re-

ported in [102] can be employed in SAEC for reducing the interchannel coherence. It
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has been found however that the non-linearity achieved using the half-wave rectifier, de-
fined by (4.46a) and (4.46b), is the simplest to implement and only minimally affects the
speech quality [103] though for music signals, relatively low values of # must be maintained
to achieve good perceptual quality. It has also been reported in [11] that the level of dis-
tortion measured using the Itakura-Saito measure [104] is small with 8 = 0.5. The use of
the NL preprocessor (using the half-wave rectifier) with NLMS adaptation will be referred
to as NL-NLMS. Several workers [45] [92] [96] have proposed algorithms in combination
with the NL processor so as to achieve good convergence performance. In the same man-
ner, a combined algorithm will be proposed employing XM tap selection in addition to the
NL preprocessor so as to improve the convergence rate obtained from ﬁhe use of the NL
preprocessor alone. It has been shown [27] that the resulting XMNL-NLMS algorithm can
give useful levels of convergence with performance close to that of an existing RLS-based

approach [52]. The XMNL-NLMS algorithm is summarized in Table 4.2 of Section 4.8.3.

4.5.3 The XMNL-AP algorithm

The affine projection (AP) algorithm [35] incorporates multiple projections by concate-
nating past input vectors from sample iteration n to n — K + 1 where K is defined as
the projection order. Similar to the single channel MMax-AP algorithm discussed in
Scction 2.6.1, the concatcenated subselected tap-input vector and the concatenated full

tap-input vector can be distinguished by first letting
X' (n) = Q(n)¥'(n) (4.47)

be the two-channel subselected tap-input vector where x'(n) = [x{ (n) x¥ (n)]T is the
concatenated NL-processed 2L x 1 tap-input vector and Q(n) = diag{[q? (n) af (n)]} is
the 2L x 2L diagonal XM tap selection matrix with elements defined by (4.42a) and (4.42b).

The subselected and full tap-input matrices each of dimension K x 2L are then denoted
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respectively as

X'(n) = RM)¥m-1) ... ¥w-K+1)T, (4.48)

X'(n) = Kn)¥n-1) ... xm-K+1)7T, (4.49)

where the subscript a denotes concatenated input vectors for the AP algorithm. Defining
H(n) = [ﬁf(n) ﬂg(n)]T as the 2L x 1 two-channel concatenated filter coefficients, the tap

update equation for the XMNL-AP algorithm is given as
R(n) = Bin — 1) + 26X7 () [Xo(m)XT (n) + baplicre] e(m) , (450)

where e(n) = [e(n) e(n—1) ... e(n— K + 1)]T is the K x 1 concatenated a priori error
with elements computed using (4.6), dap is the regularization parameter, i is the adaptive
step-size while Ixxx is the K x K identity matrix. It can be seen from (4.50) that for
projection order K = 1, XMNL-AP is equivalent to XMNL-NLMS.

Note that similar to the single channel MMax-AP algorithm as discussed in Sec-
tion 2.6.1, XMNL-AP in general cannot be classified as a partial update algorithm since
the 2L x 1 column vector i;T(n)[X;(n)X;T(n) + 6ApIKxK]—le(n) is a full vector and
therefore every element of the adaptive filter ﬁ(n) will be updated at each iteration. Spe-
cial cases may occur if there exist any null rows in the matrix X'T(n) resulting in a partial
adaptation. Such a situation may arise if there are several consecutive small values of
p(n) such that the “inactive” tap-indices in each channel propagate consistently through
X! (n) from iteration n to n — K + 1. The XMNL-AP algorithm is given in Table 4.3 of
Section 4.8.3.

4.5.4 The XMNL-RLS algorithm

Similar to the single channel case, as discussed in Section 2.6.2, direct extension of
the XM tap selection approach achieved by sorting the magnitude difference of the Kalman
gain k(n) in the RLS update given by (2.55), will not achieve the desired convergence since

the Kalman gain depends on previous values of the time-averaged inverse correlation ma-
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trix. The derivation of the XMNL-RLS algorithm is very similar to that of the single
channel MMax-RLS algorithm as shown in Section 2.6.2. The two-channel 2L x 2L time-

averaged autocorrelation matrix ¥(n) defined in (4.9) can be expressed in terms of the

subselected two-channel tap-input vector X'(n) = [x{ (n) SE'QT(n)}T recursively as

T'(n) = Xi(n)AmXT(n)

= A(n—1)+% @)% (n), (4.51)

where 0 << A < 1 is the forgetting factor and the subscript r in i;(n) denotes concate-

nated tap-input vectors for the RLS algorithm with

Xi(n) = [ROTE) ... %),

Aln) = diag{[A™ A" ... A}
Similarly, the 2L x 1 cross-correlation vector in (4.10) may be expressed recursively as

O'(n) = Xl(n)A(n)y(n)

= A'(n—-1)+X(n)y(n), | (4.52)

where the concatenated received microphone signal in the receiving room y(n) is given by

with elements computed using (4.1). Using the matrix inversion lemma and following the
approach of [35], the time-averaged input autocorrelation matrix o1 (n) can be computed
using

&1 (n) = ;[@'_1@ - 1)~ k@FT () (n - 1)] (4.53)
where the 2L x 1 modified Kalman gain k(n) = [kf (n) Eg(n)]T is given by

R(n) = A1~ (n — )X (n)
T 14+ AIRT ()T (n — 1)F(n)

(4.54)
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Defining e(n) as the a priori error computed using (4.6), the XMNL-RLS tap update
equation is then given by

~ ~

h(n) = h(n — 1) + k(n)e(n) (4.55)

with h(n) = [ﬁf(n) ﬁg(n)]T being the two-channel filter coefficients. Similar to XMNL-
AP, the XMNL-RLS algorithm updates all filter coefficients at each sample iteration since
the 2L x 1 modified Kalman gain vector k(n) is a full column vector except in cases
where there exist any null rows in ®/~!(n). The XMNL-RLS algorithm is summarized in

Table 4.4 of Section 4.8.3.

4.5.5 Computational complexity

For comparison purpose, the relative complexity of the algorithms is assessed in terms of
the total number of multiplications and comparisons per sample period for each channel.
Similar to the MMax-NLMS algorithm, the XMNL-based algorithms employ the SORT-
LINE procedure [70] which require at most 2 + 2log, L comparisons. The XMNL-NLMS
algorithm requires the same complexity per channel as MMax-NLMS with M = 0.5L and

hence, at most 1.5L + 3 + 2log, L operations per sample period per channel is required.

The complexity of AP using the generalized Levinson algorithm is 2LK + 7K 2 multi-
plies per sample period [45]. The XMNL-AP algorithm requires an additional 2+ 2log, L
sorting operations in each channel for X’(n). However, due to a reduction in multipli-
cations required when computing 5{5 (n) [X;(n)XQF (n) + darIkx K]-l, the complexity

for XMNL-AP is 1.5LK + 7K? + 2 4 2log, L operations per sample period per channel.

The number of multiplications required for the RLS algorithm is 4L2 + 3L + 2 per
adaptive filter where an additional L multiplications are required for the tap updates.
Due to the subselection of input vector X'(n), the number of multiplications required for
computing ¥ (n) for the XMNL-RLS is 1.5L2 + 1 while L(L + 0.5) multiplications are
required for computing the Kalman gain. Hence the number of operations required for‘
the XMNL-RLS algorithm is at most 2.5L(L + 1) + 3 + 2log, L per sample period per

channel.
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Figure 4.11: Computational complexity of NLMS and AP-based algorithms.
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Figure 4.12: Computational complexity of RLS-based algorithms.

Figures 4.11 and 4.12 show the variation of complexity with L for XMNL-
NLMS, XMNL-AP and XMNL-RLS algorithms. The projection order for AP-based algo-
rithms is K = 2. Although complexity reduction is not the main aim of this work, it can
be seen that the XM selective-tap techniques nevertheless bring significant computational

savings.
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Figure 4.13: Normalized Misalignment for WGN sequence (a) NLMS, (b) NL-NLMS

(¢) XM-NLMS and (d) XMNL-NLMS [Lr = 1200, Lg = 256, L = 256, 4 = 0.1, 8 = 0.5,
SNR = 25 dB].

4.6 Simulation results

4.6.1 Experimental setup

For all simulations in this section, transmission room impulse responses g1(n), gz(n) and
receiving room impulse responses hi(n), ha(n) are generated using the method of im-
ages [72]. Two microphones are placed 1 m apart in the centre of both the transmission
and receiving rooms each of dimension 3 X 4 x 5 m. The source is then positioned 1 m
away from each microphone in the transmission room. With reference to Fig. 4.10, tap-
input vectors x(n) and x)(n) are obtained by convolving the source with two impulse
responses g1(n) and ga(n) and then applying the non-linear (NL) pfeprocessor defined
in (4.46a) and (4.46b). The receiving microphone signal y(n) is obtained using (4.1) and a
zero mean WGN sequence w(n) is added such that an arbitrarily chosen SNR of 25 dB is
obtained. For clarity, the normalized misalignment of only one channel is plotted in each

experiment.

4.6.2 NLMS-bas_ed simulations

The performance of XM tap selection and the NL preprocessor in combination with NLMS

adaptation is examined. In this experiment, the lengths of the adaptive filters are L = 256
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Figure 4.14: Normalized misalignment using WGN input sequence for (a) NL-AP and
(b) XMNL-AP [LT = LR = 800, L = 256, HNL—-AP = 0.15, UXMNL—AP = 0.1, ﬁ = 0.5, K = 2,
fs = 8 kHz, To = 100 ms, SNR = 25 dB].

while the lengths of the transmission and receiving rooms are Ly = 1600 and Ly = 256
respectively. Figure 4.13 shows the normalized misalignment plot for (a) NLMS, (b) NL-
NLMS, (¢) XM-NLMS and (d) XMNL-NLMS using a zero mean unit variance WGN source
with an arbitrarily chosen step-size of u = 0.1 for each algorithm. A non-linear distortion
factor of @ = 0.5 is used. It can be seen that NLMS has the slowest convergence. The con-
vergence rate of XM-NLMS and NL-NLMS increases significantly due to the XM and NL
preprocessors respectively. The XMNL-NLMS algorithm shows even further improvement
of approximately 2.5 dB improvement compared to NL-NLMS due to the additional im-
provement in conditioning caused by XM tap selection. Alternatively, XMNL-NLMS can
achieve the same rate of convergence as NL-NLMS but with a lower value of 3, hence
reducing non-linear distortion [29]. Additional simulation results for XMNL-NLMS can
be found in [27].

4.6.3 AP-based simulations

The performance of XMNL-AP is compared with that of the AP algorithm in combination
with NL preprocessor (NL-AP) using a zero mean unit variance WGN source sequence.
Figure 4.14 shows the normalized misalignment plot for (a) NL-AP and (b) XMNL-AP

where a non-linearity factor of 3 = 0.5 and a projection order of K = 2 are used for both
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Figure 4.15: Normalized misalignment using (a) speech input sequence for (b) NL-AP and

(c) XMNL-AP [Lt = Lr = 800, L = 2566, M = 128, punp_ap = 0.15, pxmnr-ap = 0.1, § = 0.5,
K =2, f; = 8 kHz, Teo = 100 ms, SNR = 25 dB].

algorithms. The sampling frequency is fs = 8 kHz and the impulse responses used in this
experiment are of lengths Lt = Lr = 800 with a reverberation time of Tgg = 100 ms. The
adaptive filters are each of length L = 256 and an uncorrelated zero mean WGN w(n) is
added to achieve an SNR of 25 dB. The adaptive step-sizes of the algorithms are chosen
to achieve the same steady-state normalized misalignment. For an arbitrary choice of
uxMNL-ap = 0.1, it is found that for NL-AP, un,—ap = 0.15 gives the same steady-state
normalized misalignment as for XMNL-AP, It can be seen from Fig. 4.14 that the XMNL-
AP algorithm achieves approximately 5 to 7 dB improvement in normalized misalignment
compared to NL-AP during convergence. Alternatively, the NL-AP algorithm requires
approximately an additional 10 s before reaching approximately the same steady-state

normalized misalignment as XMNL-AP.

The normalized misalignment performance of XMNL-AP is now compared with that
of NL-AP using speech signals from a male talker with a sampling frequency of f; = 8 kHaz.
As before, impulse responses of the transmission and receiving rooms are each of length
Lt = 800 and L = 800 respectively with a reverberation time of Tgg = 100 ms and the
filters are of length L = 256. A projection order of K = 2 and a non-linearity constant of
A = 0.5 are used for both NL-AP and XMNL-AP. The step-sizes of NL-AP and XMNL-AP

are chosen so that they achieve the same steady-state normalized misalignment. These
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Figure 4.16: Normalized Misalignment with unit variance WGN source for (a) NL-RLS

and (b) XMNL-RLS [Lr = Lg = 800, L = 256, M = 128, AxmnL—-RLs = 0.9987, AnL-rLs = 0.9975,
8 =0.5, fs = 8 kHz, Tgp = 100 ms, SNR = 25 dB].

step-sizes correspond to pnp_ap = 0.15, pxmnL-ap = 0.1 for NL-AP and XMNL-AP
respectively. An SNR of 25 dB is achieved by addring an uncorrelated zero mean WGN
sequence w(n) to the received signal where the SNR is computed using the whole utter-
ance of the speech sequence. Figure 4.15 shows the normalized misalignment for (b) NL-
AP and (c) XMNL-AP respectively. As can be seen with this speech input experiment,
the XMNL-AP algorithm achieves approximately 2 to 3 dB improvement in normalized
misalignment performance compared to NL-AP during convergence. Alternatively, the
NL-AP algorithm requires close to an additional 20 s before reaching approximately the

same steady-state normalized misalignment as the XMNL-AP algorithm.

4.6.4 RLS-based simulations

The performance of XMNL-RLS is compared with that of the RLS algorithm incorporating
the NL preprocessor (NL-RLS) [52] using a zero mean unit variance WGN source sequence.
The parameters used in this experiment are Ly = Lg = 800, fs = 8 kHz, Tgo = 100 ms,
L = 256, M = 128 and a non-linearity constant of # = 0.5. As before, an uncorrelated
zero mean WGN sequence w(n) is added to the received signal such that an SNR of 25 dB
is achieved. A forgetting factor of Axmnr_riLs = 1 — [1/(3L)] = 0.9987 is used [39]
for XMNL-RLS while for NL-RLS, Anr.—rLs = 0.9975 is used in order for both algorithms
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Figure 4.17: (a) Speech signal and normalized misalignment with unit variance WGN

source for (b) NL-RLS and (b) XMNL-RLS [Lr = Lg = 800, L = 256, M = 128, AxMNL-RLS =
0.99961, AnL-rLs = 0.99957, 8 = 0.5, fs = 8 kHz, Tsp = 100 ms, SNR = 25 dB].

to achieve approximately the same steady-state normalized misalignment. As shown in
Fig. 4.16, there is a significant improvement in convergence rate of approximately 4 dB
normalized misalignment for the XMNL-RLS algorithm compared to that of NL-RLS
during convergence. The NL-RLS algorithm requires close to an additional 2.5 s before

reaching approximately the same steady-state normalized misalignment as XMNL-RLS.

Figure 4.17 compares the performances of XMNL-RLS and NL-RLS using a speech
source. In this speech experiment, Ly = Lr = 800, Tg0 = 100 ms, L = 256, M =
128 and A8 = 0.5. The sampling frequency is f; = 8 kHz while the SNR is arbitrarily
chosen to be 25 dB with the SNR computed using the whole utterance of the speech
sequence. The forgetting factors are AxmnL-rLs = 1—[1/(10L)] = 0.99961 and ANL—RLS =
0.99957 adjusted experimentally in order for both algorithms to achieve approximately
the same steady-state normalized misalignment. It can be seen that due to the additional
decorrelating property of XM tap selection, the XMNL-RLS algorithm outperforms NL-

RLS by approximately 2 to 4 dB normalized misalignment during convergence.

4.7 Conclusions

In this chapter, a novel tap selection approach has been introduced to improve the con-

ditioning of the input autocorrelation matrix for SAEC application. The “closeness” of
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MMax tap selection to the full tap-input vector has been quantified by the M-ratio M
which is then used as an optimization parameter in the development of the proposed XM
tap selection technique. It has been shown that the exclusive tap selection criterion re-
duces the interchannel coherence of the tap-input vectors and improves the conditioning
of the input autocorrelation matrix which consequently reduces the misalignment prob-
lem. An efficient XM tap selection technique has been developed as an optimization of
the MMax criterion (to reduce the degradation in convergence performance due to tap
selection) subject to an exclusivity constraint (for reducing interchannel coherence) be-
tween the tap selection sets of the two channels. A class of XM-based algorithms have
been formulated by applying XM tap selection the NLMS, AP and RLS algorithms for
use in combination with the non-linear pre-processing. Simulation results have shown a
significant improvement in the range of 2 to 7 dB in convergence compared with algorithms
that use the NL-preprocessor alone. Alternatively, the XMNL-based algorithms can be
seen to achieve the same convergence performance as NL-based algorithms using a lower
non-linear distortion factor 3. Although complexity reduction is not the main aim of this
work, it has been shown that XM selective-tap updating nevertheless brings significant

computational savings.

4.8 Appendix

4.8.1 Proof of non—unique solutions in SAEC

To verify that (4.14) is a valid solution of SAEC which satisfies the relationship 7(n) =
y(n), the z-transformed signals of g; (n), g2(n) and st (n) are defined as G1(z), G2(z) and
St(z) respectively where sp(n) is the source signal. The z-transform of x;(n) and x3(n)

can then be expressed as

Xi(2) =G1(2)Sr(z), (4.56)

Xo(z) = Ga(2)Sr(2) . (4.57)
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Thus it can be seen that X(2)Ga(z) = X2(2)G1(z) hence giving

x] (n)ga(n) = x3 (n)g1(n) . (4.58)

The output of the adaptive filters 7(n) may be then be expressed, using (4.14) and (4.58),

as

7(n) = hT(n)xi(n)+hi(n)xa(n)

= [hi(n) + p(n)ga(n)] " x1(n) + [ha(n) — p(n)g1 ()] x2(n)

= y(n) (4.59)
hence giving the a posteriori error ep(n) = 0 for any scalar o(n).

4.8.2 Verification of exclusive tap selection set which maximizes M

In the following, the dependency of sample iteration n has been removed for clarity in
notation. For illustration purpose, it is also assumed that L mod 2 = 0 where mod is the
modulo operator. To verify that the exclusive tap selection set given by (4.41) maximizes
M jointly for both channels at each sample iteration, it is necessary to consider whether
the absolute sum of the XM tap selection given by SM o1 [#1 4|+ 513k |#2,4] is greater than
the absolute sum obtained from all “Cps — 1 other exclusive combinations of tap-inputs

where M = 0.5L. This can be achieved by first testing whether the condition

M—1 -1 -1 M—1
ST IEvl+ D Bl > > Bl + Y [E2l (4.60)
i=0 =M ; =0

i=M

holds, where the left-hand-side terms corresponds to the XM tap selection. Using the

definition of p; given in (4.39), (4.60) can be simplified, giving

1
[w - lfz,il]

Bi (4.61)

M-

> [Ifl,il - Ifz,il] >

- M-1
SoBio>
i=0

—
£~
|

i
N

£~
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g
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which is valid from the definition of p. The £Cps — 2 other possible cases can be considered

using the above approach. Suppose for example, tap-indices in the set {1 2;} and {Z22:41}

are now selected, where 7 = 0,1,...,M — 1 for which the condition
M-1 L-1 M-1 M-1
B4l + D B2l > Y 1l + Y 12 2em1] (4.62)
i=0 =M =0 i=0

must now be verified. Rewriting (4.62),

M-1
> |l - Z |Z2,2i41] > Z |%1,2i] — Z |Z2,il (4.63)
1=0 1=

is obtained, from which each term can be decomposed as

M-1 Mj2-1 M/2-1
gl = Y Il + Y el (4.64a)
i=0 i=0 i=0
M-1 M/2-1 M-1
Eo2ir] = D |Fomrl+ Y |22l (4.64b)
i=0 i=0 i=M/2
M-1 Mj2-1 M-1
Skl = > il > gl (4.64c)
i=0 i=0 i=M/2
L-1 M-1 M-1
|Zoil = Z |Z2,24] + Z |£2,2i41] - (4.64d)
=M i=M/2 i=M)/2

Using (4.64a)-(4.64d), (4.63) can be simplified as

M/2-1 M=1
> [|35“1,2i+1| - |~’52,2i+1l] > Y [lfﬁl,%l - |ff2,2i|]
i=0 i=M/2
M/2-1 M-1
o e > Y Pu
i=0 i=M/2
M/2-1 M/2-1
N7 Burr > Y Prgn (4.65)
i=0 i=0

With M > 1 and from the definition of P, (4.65) and consequently (4.62) is valid. Similar

analysis can then be used to verify the remaining cases.
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4.8.3 XMNL-based algorithms for SAEC

Table 4.1: The XMNL tap selection

M = 0.5L
xp(n) = x1(n)+0.508 [Xl(n) + |x1(n)]]
x5(n) = xa(n)+0. 5ﬂ[X2 n) — |xa(n)|]

x'(n) =[ T(n)]”

h(n) = [bT hT(n)]

p(n) = le( )| = |x5(n)]|

Q(n) = diag{[af (n) af(n)]}

ot =} L et

_ | 1, pu(n) € {M minima of p(n)}
a20(n) _{ 0, otherwise

Table 4.2: The XMNL-NLMS algorithm

g(n) = hT(n—1)x'(n)
e(n) =y(n)—-7yn

Rtn) = Bl - 1)+ Qn) 22X (e

|lx(n)]|5 + onLMs
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Table 4.3: The XMNL-AP algorithm

X!(n) =[x(n)¥(n—1) ... X'(n-K+1)]"
X(n) =Q(n)x'(n)
[

Xi(n) =[®m)¥n-1) ... ¥n-K+1)]"

yr)  =[yn) yn—-1) ... y(n— K +1)]7

F(n) =Ximh(n-1)

e(n) =y(n)-F(n)

h(n)  =h(n—1)+2uXT (n) [X4(n)XT (n) + SarTicxi] "e(n)

Table 4.4;: The XMNL-RLS algorithm

TH0) = dpiglixe

kn) = [&(n) K@m)"

%(n) = Q(n)x(n)

- -1 n— DF(n
) &'-1(n - 1)%(n)

A+ R T (n - 1)%(n)

g(n)  =hT(n~-1)x(n)
e(n) = y(n) — ¥(n)
h(n) = h(n—1) +k(n)e(n)

F1(n) = %[\Tﬂ-l(n — 1) - KT () (n — 1)]
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Chapter 5

Frequency-Domain Algorithms
with Applications to Stereophonic

Acoustic Echo Cancellation

For the things we have to learn before we

can do them, we learn by doing them.

Aristotle (384-322 BC)

5.1 Introduction

REQUENCY-DOMAIN adaptive filtering has been increasingly popular in recent
F years and was introduced as a form of improving the efficiency of time-domain al-
gorithms. As opposed to time-domain algorithms, such as LMS, NLMS, AP and RLS
as discussed in previous chapters, where computation is performed sample-by-sample,
frequency-domain algorithms generally inherit two properties (i) incorporating block up-
dating strategies and (ii) employing the fast Fourier transform (FFT). A direct consequence
of block processing is the reduction in computational complexity since the filter output
and tap updates are computed only after a block of data has been accumulated. In ad-
dition, the use of the FFT for computing the discrete Fourier transform (DFT) so as to

perform linear convolution and gradient estimation further increases the efficiency of such
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algorithms.

The concept of frequency-domain adaptive filtering was first introduced in [105] where
signals z(n) and y(n), as depicted in Fig. 2.1, are accumulated in buffer memories to form
data blocks which in turn are transformed to the frequency-domain using FFTs. Defining
L as the length of the adaptive filter, it has been found that the resultant frequency-domain
LMS algorithm achieves a reduction in computation such that the ratio between complex
multiplies in frequency-domain LMS to real multiplies in conventional LMS reduces sig-
nificantly for large L. For L = 16, it has been shown [105] that this ratio is approximately
0.25. It has been noted however that the frequency-domain LMS algorithm converges to
a sub-optimal Wiener solution due to the effects of circular convolution [106] [107]. To
address this, the fast-LMS (FLMS) algorithm was proposed [22] where the overlap-save
method of implementing linear convolution using FFT blocks is employed. Although five
2L-point FFT blocks are required, the FLMS algorithm achieves reduction in compu-
tation by approximately a factor of 4 in terms of complex multiplies compared to real
multiplies for LMS when L = 256. The block-LMS (BLMS) algorithm [108] was derived
independently using the block mean-square error (BMSE) and as before, implemented
using FFTs. The unconstrained-FLMS (UFLMS) algorithm was proposed in [109] using
only three FFT blocks and converges to the Wiener solution under the condition that the

length of unknown system is less than or equal to L.

Although substantial computational savings can be achieved, one of the main draw-
backs of frequency-domain approaches is the inherent delay introduced between the input
and output. This delay corresponds to the length of the adaptive filter L since filter
outputs are computed frame-by-frame after every L samples. On the other hand, as ex-
plained in Section 2.2.2, in order to achieve sufficient misalignment performance, L must
be large enough and consequently research in recent years have been focusing on reducing
the delay of such frequency-domain algorithms. To mitigate the problem of delay, the
multi-delay filter (MDF) structure was proposed [23] which partitions the adaptive filter
into K blocks each of length N such that L = KN. A general approach based on the

weighted-overlap-and-add (WOLA) method was proposed in [110]. The resulting general-
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ized multi-delay filter (GMDF«) introduce an additional degree of freedom by employing
an arbitrary overlapping factor between successive input frames controlled by o > 1 such
that for @ = 1, a 50% input overlapping factor is achieved. It has been noted that even
though, from complexity point of view, the optimal choice is L = N, using N < L is still

more efficient than time-domain algorithms [11].

It i1s well-known that for a single channel system identification case, the performance
of an adaptive algorithm is affected by the conditioning of the input autocorrelation matrix
Ry« Specifically, as the condition number increases, the rate of convergence is reduced
and poor misalignment is exhibited. A recursive estimation of the condition number in
the single channel RLS algorithm has been proposed in [111] [112] where it has been
shown how misalignment of the RLS algorithm is degraded by the increase in condition
number. For the stereo case, as discussed in Section 4.3.2 and reported in [11] [90] [91] [92]
[113] [114], although it has been noted that the conditioning of Rxx is degraded by the
high interchannel coherence between the two input signals z)(n) and z2(n) as depicted in

Fig. 4.1, no explicit relationship between the two has yet been established.

The main contribution of this chapter is two-fold: (1) to establish the relationship
between interchannel coherence and condition number of Rxx for stereophonic acoustic
echo cancellation (SAEC) and (ii) to extend the exclusive-maximum (XM) tap selection,
as developed in Chapter 4, to the frequency-domain adaptive filtering for efficient imple-
mentation. The relationship between interchannel coherence and conditioning of the input
autocorrelation matrix allows one to gain further insight into how interchannel coherence
degrades the misalignment performance of SAEC algorithms through the ill-conditioning
of the input autocorrelation matrix. Using this relationship, one can determine the level of
ill-conditioning and design parameters so as to improve the conditioning of the autocorre-
lation matrix hence giving good misalignment performance such as shown in [113]. As has
been shown in Chapter 4, the XM selective-tap algorithms can achieve good convergence
performance. Tap selection for frequency-domain adaptive algorithms can be achieved
by first considering subselection either in the time-domain or frequency-domain. In this

chapter, these cases will be considered and their effect on the convergence rate will be
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examined in the context of the M-ratio measure M.

This chapter is organized as follows: In Section 5.2, data sectioning matrices that
are commonly used in this chapter are defined. The single channel FLMS and MDF
algorithms are reviewed in Section 5.3 which, in addition, allow frequency-domain variables
associated with this chapter to be defined. Following closely the approach présented in [11],
a generalized derivation of these algorithms using a frequency-domain cost function is
reviewed. In Section 5.4, the link between interchannel coherence and the conditioning of
Rxx is established for the stereophonic case. The XM tap selection is then extended, in
Section 5.5, to the FLMS algorithm employing both the 50% and an arbitrary overlapping
factor between successive tap-input vectors for efficient implementation. Simulation results
are provided in Section 5.6 to verify theoretical analysis and to compare the performances

of the proposed algorithms.

5.2 Definition of data-sectioning and commonly used matri-

ces

For reasons of clarity, commonly used matrices in this chapter are defined in this section.
For consistency, notations found in [11] are adopted for these matrices. The N x N identity
matrix is denoted as Iyyn while Oy v is a null matrix of the same dimension. The 2L x 2L

Fourier matrix [106] is defined as

1 1 1 1
1 e—i2m/2L e—i4m/2L .. e—i2m(2L-1)/2L
Forvor = | 1 e—i4m/2L e—i87/2L c. e—idm(2L-1)/2L . (5.1)
1 e—i2m(2L-1)/2L  —idn(2L-1)/2L ,,, c—i2n(2L-1)?/2L
- - 2Lx2L
where ¢ = +/—1 in this chapter and for practical implementation, Fz_gsz

[1/ (2L)]F}.or where * denotes complex conjugation [106]. The following matrices are
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now defined
OnxN
Wiksn , (5.2a)
Inxn
L J2ANXN
wy O Inscn] , 5.2b
Nx2N Onxn Ivxn| ooy (5.2b)
10 INXN
WaNxn ; (5.2¢)
ONxN
L Janxn
Wi [Tz O] 5.2
Lx2L Lxr Ouxr|, . (5.2d)
Irxr Orxp
_W%%XQL ) (5.2@)
OLxr Orxr
L Jaorxar
Orxr OrLxr
Wilxar ) (5.2f)
Orxr Ioxe
L J2Lx2L
Gl xar Forx2t Wil xorFatwar » (5.2g)
GLxor Forx2t WotyorForvor » (5.2h)
G?\Il'x2N FNXNW?\}XQNFQ_Al,ng ) (5.2i)
Ginxn FaonxaN Wik vE Ry (5.2))
GaNxan FonxoN Wik xonFopywan » (5.2k)
Gl xan FanxaNWaNxanFanxan - (5.21)

It should be noted that the variables L and N denote the size of each matrix and may be

substituted interchangeably.

5.3 Single channel frequency-domain adaptive algorithms:

A review

This section provides a review of existing techniques for single channel frequency-domain

adaptive filters. Whilst this section contain no new material, it is introduced here to estab-

lish the analytical framework that will be used in later sections and to define the notation
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Figure 5.1: Schematic of the FLMS algorithm (after [115]).

employed. Readers already familiar with this topic can move safely on to Section 5.4 using

Section 5.3 purely as a reference for notational purposes.

- 5.3.1 The fast-LMS adaptive algorithm

The fast-LMS (FLMS) algorithm, as depicted in Fig. 5.1, was proposed in [22] employing
a block-based updating strategy. The main difference between FLMS and frequency-
domain LMS [105] is that the former introduces two additional FFT blocks for gradient
computation and employs the overlap-save method [107] for linear convolution. In con-
trast to the sample-by-sample algorithms such as LMS, the FLMS algorithm adapts its
filter coefficients by first concatenating input signal z(n) into frames and employ a 50%
overlapping factor between successive frames as shown in Fig. 5.2. These frames are trans-
formed into their discrete Fourier transformed (DFT) sequences using the fast Fourier
transform (FFT) algorithm for efficient implementation [116] [117]. Defining m as the

frame-index for m = 0,1,..., the m input frame, of dimension 2L x 1, is given by

X(m) = [g(mL—L) e(mL—L+1) ... x(mL—1) a(mL) e(mL+1) ... a(mL+L-1)]"
(5.3)
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Figure 5.2: Input sequence partitioning for the FLMS algorithm with 50% overlap between
successive frames.

while the L x 1 estimated impulse response is given by

=~ ~ ~ T

h(m) = [ho(m) ha(m) ... hr_1(m)]" . (5.4)
The frequency-domain input sequence can be expressed as

X(m) = ForxarX(m)

= [zo(m) ;a(m) ... 2o (m)]", (5.5)

where z;(m) is the I frequency-bin of the input signal for [ = 0,1,...,2L — 1. In this
chapter, for reasons of clarity and unless explicitly stated, all frequency-domain variables

are denoted with an underscore. The L x 1 received microphone signal is given by

Y(m) = [y(mL) ymL+1) ... ymL+L-1)]". (5.6)

Since time-domain convolution can be expressed using multiplication in the frequency-

domain, a 2L x 2L diagonal matrix

D(m) = d_iag{X(m)} -
zo(m) 0 N 0
_ 0 z(m) (5.7)
0
0 0 zop1(m) ] 2Lx2L
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can be defined containing the frequency content of the input sequence and

h(m) = Farxar (5.8)

is the frequency-domain estimated response where Opx; is the L x 1 null vector. The
element-by-element multiplication between X(m) and ii_(m) can then be expressed as
D(m)h(m). Noting that only the last L terms of D(m)h(m) correspond to linear convolu-
tion and using G} .., as defined by (5.2h), the frequency-domain output of the adaptive

filter can be expressed as

¥Y(m) = Farxar 0L
Y(m)
2Lx1
= Gl.oD(mh(m—1), (5.9)
where
¥(m) = [f(mL) §(mL+1) ... FmL+L-1)]" . (5.10)

Consequently, defining the time-domain a priori block error as

E(m) = [e(mL)e(mL+1) ... e(mL-{-L—l)]T

= Y(m)-Y(m), (5.11)

the 2L x 1 frequency-domain a priori error is then

E(m) = Farxar O
E(m) 2Lx1
= ¥(m)-¥(m)

= Y(m)- Gg};xm;@(m)ﬁ(m -1), (5.12)
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where, using (5.6),
Orx1
Y(m) = Farxar ) . (5.13)

Y(m) 2Lx1

It has been known that the convergence rate of gradient descent algorithms is a
reducing function of the eigenvalue spread of the input autocorrelation matrix [35]. For
a white Gaussian noise (WGN) sequence, these eigenvalues correspond approximately to
the energy of the signal spectrum at equally spaced frequency points around the unit-
circle [118] [119]. To compensate for this energy variation, the FLMS algorithm weighs
each frequency-bin such that the effective step-size for each element in the gradient vector
is inversely proportional to the energy of the input signal at that frequency-bin. As
a result, a more uniform convergence can be achieved across different frequency-bins.
Defining * as the conjugate operator, this energy can be estimated recursively using a

2L x 2L matrix [120] [121]

Prims(m) = APprms(m—1) + (1 =AD" (m)R(m)

= diag{Py(m) Py(m) ... Pyry(m)} (5.14)

where P;(m) is the I*® frequency-bin energy content of the input signal and 0 << A < 1
is the forgetting factor while the diagonal matrix D(m) is defined in (5.7). The frequency-

dependent step-size is then given by
p(m) = 2u(1 — A) [Prps (m) + dpimsTarxar] (5.15)

where Inpxar is the 2L x 2L identity matrix, 0 < p < 1 is the step-size and drpLMs is the

regularization parameter [11].

Similar to time-domain adaptive filtering as discussed in Section 2.4, the FLMS,
being a stochastic gradient descent algorithm, employs a gradient estimate given by the
correlation between the a priori error and the input sequence. As opposed to the output of

the adaptive filter where the last L terms of D(m)ﬁ(m) corresponds to linear convolution,
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Figure 5.3: Schematic of the MDF structure (after [23]).

only the first L terms in F, gxz D (m)E(m) correspond to the gradient estimate given by
V(m) = WikorFap D (m)E(m) , (5.16)

where the windowing matrix W19, defined in (5.2d), selects the first L elements of
F3} o D*(m)E(m). The frequency-domain update equation of the FLMS algorithm can

then be expressed by

=

(m) = h(m—1)+ G ,opu(m)D* (m)E(m)

= h(m —1)+2u(1 - N)G3 0, D" (m)[Prrys(m) + Srumslarxec] 'E(m) , (5.17)

where G19 ., and the frequency-domain a priori error E(m) are defined in (5.2g)

and (5.12) respectively. The FLMS algorithm is summarized in Table 5.2 of Section 5.8.7.

5.3.2 The multi-delay filtering (MDF) structure

The multi-delay filtering (MDF) structure [23], as shown in Fig. 5.3, was proposed to
mitigate the problem of delay inherent in FLMS since, as can be seen from Section 5.3.1,

the FLMS algorithm computes the output ?(m) for every L input samples. The MDF
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structure addresses the problem of delay by partitioning the adaptive filter of length L
into K blocks each having length N such that L = KN. Consequently, the delay of the
MDF structure is reduced by a factor of L/N compared to the FLMS algorithm. As a con-
sequence of a smaller block size for N < L, filter coefficients are updated more frequently
(once every N samples compared to L for FLMS) hence achieving faster convergence. For
each block, the filter coeflicients are then updated similarly to the FLMS algorithm em-
ploying the FFT algorithm for linear convolution and gradient estimation as discussed in
Section 5.3.1. The MDF structure has also been proposed for sparse system identification

as shown in [33].

The single channel MDF structure can be described by first defining, for the m'

frame, m = 0,1, ..., the input block sequence
x(mN) = [z(mN) z(mN - 1) ... a(mN - L+ 1)]". (5.18)

Concatenating offset versions of this input sequence N times, the matrix

X(m) = [x(mN)x(mN+1)...x(mN+N-1)], .
z(mN) zmN+1) -+ z(mN4+N-1)
_ a:(mN -1) m(mN) ‘ z(mN + N -2) (5.19)
z(mN - L+4+1) z(mN-L+2) -+ z(mN+N-1L)

LxN

is obtained, from which using the definition of the estimated impulse response ﬁ(m) defined
by (5.4), the filter output can then be expressed as convolution between the input sequence

and the filter coeflicients given by the N x 1 vector

§(m) = XT(m)h(m-1)

z(mN) z(mN — ‘1) oo z(mN-L+1) ho(m — 1)
xz(mN +1) x(mN) co (MmN -L+2) hi(m —1)
z(mMN+N~-1) z(mN+N-2) .- z(mN+N-L) NxL ho-1(m —1) L1

= [§(mN)G(mN +1) ... GmN + N -1)]7 . (5.20)
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Defining
y(m) = [y(mN) y(mN +1) ... ymN + N -1)]7 (5.21)

as the IV x 1 received microphone signal, the a priori block error can be expressed as

y(m) —§(m)
[e(mN) e(mN +1) ... e(mN + N — 1)]T . (5.22)

e(m)

Note that for a single block K = 1, the block size is equivalent to the length of the adaptive
filter, i.e., N = L and consequently, (5.22) is equivalent to (5.11). The rectangular matrix
X7T(m) can be decomposed [122] into sub-matrices each of size N x N while the adaptive

filter ﬂ(m) of length L can be partitioned into K sub-filters each of length N.

In this chapter, the variable k is denoted as the block-index for k = 0,1,..., K = 1,

where the N x 1 vector

hi(m) = [ﬁkN(m) Renti(m) ... ﬁkN—l—N——l(m)]T ; (5.23)

is the k" sub-filter of h(m) such that the relationship between the estimated impulse

response fl(m) and each sub-filter flk(m) can be explicitly expressed by

~ —~ —~ —~ —~ T
fi(m) = [!Lo(m) Lhyoa(m) o hoon(m) hL_l(mZ] L (5.24)
ho(m) hic-1(m)

Defining a N x N Toeplitz matrix T(m — k) obtained from X7 (m) given by [11]

z(mN — kN) z(mN — kN ~ 1) o z(mN—kN-N+1)
z(mN — kN + 1) z(mN — kN) -+ z(mN—kN—-N+2)
T(m - k) = . . . . ’
z(mN —kN+N-1) z(mN—-kN+N-2) ... z(mN — kN) NxN
- (5.25)

the time-domain filter output, obtained using convolution operation, can then be expressed

in terms of the output of each sub-filter, using (5.20) and (5.25), as

K-

._.

T(m — k)hg(m — 1) . (5.26)
k=0
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To express the output in the frequency-domain, the Toeplitz matrix T(m — k) can be

transformed to a circulant matrix [11] by first defining

o(mN -kN+N) z(mN-kN+N-1) ... z(mN-EN+1)
P k) = e(mN ~kN-N+1) z(mN-EN+N) - z(mN—kN+2)
z(mN — kN — 1) z(mN — kN - 2) <+« z(mN — kN + N} NxN
(5.27)

Using (5.25) and (5.27), the circulant matrix is then given as

Cim—gy= | TR Tm=F) (5.28)

T(m—-k) T'(m-k) N O

which can then be decomposed as
C(m — k) = FyponD(m — k)Fanxan (5.29)

where D(m — k) is a 2N x 2N diagonal matrix whose elements are the discrete Fourier

transform of the first column of C(m — k) [118], i.e.,

D(m—k) = diag{FFT{m(mN—kN+N) o(mN—kN—-N+1) ... :c(mN——kN+N—l)}} .

(5.30)
It should be noted that the diagonal of C(m — k) is arbitrary, but it is customary to set it
equal to the first sample of the previous block [11]. This ensures the circulatory structure

of C(m — k) which can be observed if C(m — k) is expanded explicitly (c.f. (5.36)).

It can be seen that for a single filter block K = 1, block size N = L and hence D(m) is
equivalent to D(m) as defined in (5.7). To express the MDF update equation, the following

quantities are first defined:

y(m) = FanxanWiyny(m), (5.31)
ﬁk(m) = FszzNwé?VxNﬁk(m), (5.32)

g(m) = FszznglleNe(m), (5.33)
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where W3k, and W1, . are given by (5.2a) and (5.2¢) respectively. The k™ sub-filter
of the MDF structure [23] is then updated by

~

hy(m) = hy(m - 1) +2p(1 -~ X)GiyxonD* (m — B)[Pypr(m) + dwprlanxan]'e(m)
(5.34)
for sub-filter block indices £ = 0,1,...,K — 1, where 0 << X < 1 is the forgetting factor,
0 < ¢ £ 1 is the adaptive step-size, dyvipr is the regularization parameter, Gé?\,xg N I8
defined in (5.2k) and Ipnxon is the 2N x 2N identity matrix. The spectra estimation can

be obtained recursively using the transformed input signal of the first sub-filter
Pupr(m) = APypr(m — 1) + (1 — )D*(m)D(m) , (5.35)

where the diagonal matrix Pypp(m) is of dimension 2N x 2N. The MDF algorithm is

summarized in Table 5.3 of Section 5.8.7.

5.3.3 General derivation of frequency-domain algorithms

Omne of the most recent developments of frequency-domain adaptive algorithms for AEC
application is the derivation of the FLMS and MDF algorithms using a frequency-domain
cost function as presented in [11]. In this section, this derivation is reviewed where a block
recursive least-squares criterion using block size N independent of the adaptive filter length
L is employed. As before, a noiseless case is considered without the loss of generality, for
this frequency-domain derivation. Using (5.28), the circulant matrix C(m — k) defined

in (5.28) can be expressed explicitly as

Cim—k) =
«(mN—kN+N) ... z(mN-—kN+1) «(mN - kN) ... #(mN-kN-N+1) |
z(mN —kN-1) ... x(mN—kN+N) z(mN-kN+N-1) ... z(mN - kN) (5.36)
2OnN — kM) . amN-EN-N+1) o(mN ~kN+N) ... a(mN-kN+1) '
L e(mN —kN+N-1) ... #(mN — kN) @(mN—kN-1) ... z(mN-kN+N) J2Nx2N
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Defining the 2N x 1 filter output as
¥/ (m) = [f(mN + N) ... §(mN = 1) §(mN) ... gmN+ N -1)]", (5.37)

it can be shown, using (5.36), that

,C_
§'(m) = C(m — k)W%?VxNhk(m -1), (5.38)
k=0

[y

where the windowing matrix W19, \ and the k™ sub-filter hy(m—1) are defined in (5.2¢)
and (5.23) respectively. Using (5.38), the N x 1 a priori block-error vector defined in (5.22)

can be expressed as
e(m) = y(m)—Wany'(m), (5.39)

where y(m) is defined in (5.21) and the windowing matrix W%}, ,,, defined in (5.2b),
selects the last N elements of ¥'(m). To express the a priori error in the frequency-

domain, the following quantities are first defined,

F'(m) = Fanxon¥(m), (5.40)
Y(m) = Fyxny(m), (5.41)
E(m) = Fnxne(m), (5.42)
Hi(m) = Fuxnhip(m). (5.43)

Employing (5.38), (5.29) and multiplying Fyxn to (5.39), the frequency-domain a
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priori error [11] can be expressed as

Fyxve(m) = Fuyny(m) — FyxyWhiond (m)
E(m) = Y(m)— G, on¥ (m)

K-1

= Y(m)— G¥yan ¥ FanxanC(m — k)W nFRL v Hi(m — 1)
k=0
K-1 N

= Y(m) - G¥yan Y D(m — k)G yHi(m - 1), (5.44)
k=0

where G%sz and G113,  are defined by (5.2i) and (5.2j) respectively. For compactness,

the summation sign in (5.44) can be removed by first defining the 2NV x N matrix
U(m — k) = D(m — k)Gi%xn | (5.45)
such that when its offset versions are concatenated, a 2N x L matrix U(m) given by

M(m)=[t_¢(m) Um—-1) ... Um-K+1) LN . (5.46) |

is obtained. In a similar manner, sub-filters _’Ek(m), as defined by (5.43) for k£ =

0,1,...,K — 1, can be concatenated, giving
=T ~T ~T ~T
H (m) = [ Ho(m) Hi(m) ... Hi_1(m) ]1 L (5.47)
X

The N x 1 a posteriori error can be expressed, similar to (5.44), by
K-1 "
E,(m) = Y(m) — GRlan D D(m— k)GRRxnHe(m) | (5.48)
k=0

from which, substituting (5.46) and (5.47) into (5.48) gives

£,(m) = Y(m) — GonU(m)H(m) . (5.49)

Defining the superscript ¥ as the Hermitian operator, the time-averaged frequency-
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domain cost function [11] [53] [123] can be defined as

m

T m) = (1=2)> A" TENrE,(r)

r=0

(1= 2 DA™ [P OP(r) - PH (1) CRanLOE()
r=0

—H" (U7 (1) (GFyean) T ()

+B" ()07 (1) (GHheon) " GRanUMEM)] . (5.50)

where 0 << A < 1 is the forgetting factor. As shown in Section 5.8.1, the last term

(G an )G, on in (5.50) can be expressed as
(G%XZN)HG(J]\}XZN =0.5x Gg}Vx2N : ) (5-51)

Similar to the time-domain stochastic gradient approach as discussed in Section 2.4, the

gradient operator can be applied to the cost function J p(m) giving

07 ,(m)

0" (m)

= —(1= 033U () (GFeon) TV )
r=0

+0.5(1— A) | SO AU (1) Gy wonU(r) [ H(m) . (5.52)

r=0

VT ,(m)

As shown in Section 5.8.2, the first term can be simplified using

(Gean) T Y(r) = 05 x y(r) (5.53)

where the 2N x 1 vector y(r) is defined in (5.31). Equating (5.52) to zero and defining

S(m) = (1= 2" "U(r)Glenl(r), (5.54)
r=0
s(m) = (1-0)D_ AU )y(r), (5.55)

r={
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the expression

S(m)H(m) = s(m) (5.56)

is obtained.

The significance of (5.56) can now be seen, which depicts a set of normal equations
in the frequency-domain [11] where S(m), of dimension L x L, is the frequency-domain
counterpart of the time-averaged autocorrelation matrix ¥(n) defined in (4.9). Similarly,
the L x 1 vector s(m) is the frequency-domain counterpart of the time-averaged cross-
correlation vector ©(n) defined in (4.10). Similar to (2.62) and (2.63), the frequency-
domain adaptive algorithm solves these normal equations by expressing S(m) and s(m)

recursively. The term S(m) can be expressed recursively [11} by first noting that

m—1

S(m-1) = (1=3) 3 A0 (1) Gy U(r) |
r=0
m—1

AS(m—1) = (1=2) > AU ()G xonU(r) , (5.57)
r=0

hence giving

S(m) = (1= 3> A" "TH ()G conl(r)

A )
r=0
m-—1
- (- A)[ S /\m-ry’*(r)eg}wwwm] (1= MU (m) G onU(m)
r=0
= AS(m— 1) + (1 — AU (m) Gy uanl(m) (5.58)

where (5.57) is employed in the last step. In a similar manner, using the expressions

m—1
s(m—1) = (1-1) Y AU (r)y(r),
=0
m—1
As(m—1) = (1-X) D A"TU(r)y(r), (5.59)

r=0
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the recursive formulation of the L x 1 vector s(m) can be achieved [11] giving

i

s(m)

=N YA (r)y(r)
r=0

m—1
%) [ S A0 )y ()| + (1= WU (m)y (m)
r=0

= ds(m—1)+ (1 - NUF (m)y(m) . (5.60)

Employing (5.58) and (5.60), the frequency-domain normal equations in (5.56) can

be simplified as

=87 (m) As(m — 1) + (1 = NLF (m)y(m)]
=287} (m)S(m ~ DH(m — 1) + (1 - 287 (m)L" (m)y (m)
=87 (m) [§(m) - (1- A)ﬂu”(m)Gg}szNu(m>]ﬂ(m -1)

=Hi(m - 1) - (1 - N8~ ()L (m) [GFsonU(m)H(m — 1) - y(m)] ,(5.61)

which describes a frequency-domain recursive filter update. Similar to (5.49), the N x 1 a

priori error can be expressed as
E(m) = Y(m) = GRyonU(m)H(m - 1), (5.62)
such that when pre-multiplied by (G?\}Xz N)H and using the relation

(GNxzn)E(m) = 0.5 x e(m) , (5.63)

the 2N x 1 vector

0.5e(m) = (GRyon)TY(m) — (GR o) Gy oy U(m)H(m — 1)

= 0.5y(m) — 0.5G}yonU(m)H(m — 1) (5.64)
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is obtained. The frequency-domain update equation for H(m) given in (5.61) can now be
expressed as

H(m) = H(m —1) + (1 — )8~ (m)U" (m)e(m) . (5.65)

This update equation can be further simplified by defining [11] the concatenated

matrices
Giixr = diag{Gi¥xy Gaun - Ginxn } (5.66)
K sub:trrlatrices
D(m) = [D_(m) Dim-1) ... Dim—K+ 1)]2NX2L , (5.67)
where D(m — k), for k =0,1,...,K — 1, are the diagonal matrices each having dimension

2N x 2N as defined in (5.30). Similar to (5.45), the 2N x L matrix U(m) defined in (5.46)

can be expressed in terms of D(m) given as
U(m) = D(m)Galyy » (5.68)

from which the L x L matrix S(m) in (5.58) and the frequency-domain block error e(m)

in (5.64) can now be expressed respectively as

S(m) = AS(m-1)+(1- ’\)(G%DLXL)HDH(m)Gg}VmNP-(m)G%%xL ,  (5.69)

e(m) = y(m)— GNP (m)Gil, LH(m—1) . (3.70)

Noting that

G%.~ O ... 0 Ho(m)
. 0 GR.yv : Hi(m)
Gix H(m) = g
0
[ 0 0 Gal | apr b B (m)

= = T
= [Gé?\lxNﬂO(m) G%(J)VxNﬂl(m) G%?VXN-’}—-L)C—I(m)] ’(571)
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such that for each sub-filter, Gg}v)(Nﬁ_k(m) can be expressed for k=10,1,...,KX -1 as
GilxnHi(m) = Fanxan Wik nF ey (m)
= Fonran Wik hi(m)

where the definitions of (5.32) and (5.43) have been employed. Employing (5.72), the
relationship between the 2L x 1 estimated impulse response E(m) given by (5.8) and
@( ) defined by (5.47) is established:

G%%xLﬂ(m) = [E

= h(m). (5.73)
The frequency-domain a priori error e(m) in (5.70) can then be expressed as
e(m) = y(m) ~ GRhxanR(m)h(m — 1) . (5.74)

Premultiplying (5.65) by G319, ; and using (5.68) and (5.73), the update equation can be

expressed by

[=)

(m) = h(m — 1) + (1 = NG, 187} (m)(G3L ) "D (m)e(m) . (5.75)

To simplify this update equation further, the L x L matrix S(m) defined by (5.58),
can be expressed in terms of the 2N x 2L matrix D(m) given in (5.67), by first defining

a 2L x 2L matrix [11]

m
= X)) APTTDH (1) Gy anD(r)
r=0

= AB(m — 1) + (1 = )2 (m)GiyonD(m) (5.76)

B(m)

fl

where, as shown in Section 5.8.3, the relationship between S(m) and B(m) is given by

S8(m) = (G« ) B(m)G32 .1 - (6.77)
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As shown further in Section 5.8.4, the term G0, ,S71(m)(Gid,;)# in (5.75) can be
simplified giving
G x187 (M) (Glxr) = GilxarB™ (M) (5.78)

and hence the frequency-domain update equation in (5.75) can now be expressed as
h(m) = h(m— 1) + (1 - NG} B~ (m)D¥ (m)e(m) , (5.79)

while G0 ,; is defined by (5.2¢).

Thus far, the frequency-domain algorithm has been defined by (5.74), (5.76)
and (5.79). It should be noted that since B(m) is not diagonal, the computation of B~} (m)
in (5.79) is not computationally feasible. It has been shown and discussed in detail {11]

that one can approximate Gngsz N With an identity matrix scaled by a factor of 0.5, ie.,

Gyxan ~ Ianxan/2 . (5.80)

Using this approximation, the recursive computation of B(m) and update of E(m) is

respectively given by

B'(m) = AB'(m—1)+ (1- D7 (m)D(m) | (5.81)

B(m) = h(m—1)+20(1 - \)G3xar [B'(m) + Slarxar] " D (m)e(m) , (5.82)

where the a priori error e(m) is defined by (5.74). Note that the factor of 0.5 has been
absorbed into the adaptive step-size 0 < p < 1 while § is the regularization parameter [11]

and Iopxor is the 2L x 2L identity matrix.

It is now apparent that the minimization of the time-averaged cost function J p(m)
in (5.50) arrives at a generalized frequency-domain adaptive algorithm with an update
equation given by (5.82). More importantly, the link between the generalized frequency-
domain equations governed by (5.81) and (5.82) and the FLMS algorithm as described in
Section 5.3.1 can be seen. For a single block, K = 1 giving block size N = L, the 2N x 2L
matrix D(m) defined by (5.67) is equivalent to the 2L x 2L diagonal matrix D(m) defined
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by (5.7). Consequently, the 2L x 2L matrix B’(m) given in (5.81) is equivalent to the
2L x 2L matrix Pprys(m) defined by (5.14). As a result, (5.81) and (5.82) are equivalent
to (5.14) and (5.17) respectively giving the FLMS algorithm for block size N = L (i.e,
K=1).

Following the approach presented in [11], the link between (5.81), (5.82) and the MDF

algorithm can be established using the following approximation

B (m) ~ diag{ S(m) ... &(m)} (5.83)

K sub—matrices

where, using (5.67), each sub-matrix
S(m) = A8(m — 1) + (1 - A)D"(m)D(m) (5.84)

is diagonal, while D(m) is a 2N x 2N diagonal matrix defined by (5.30) for £ = 0. With
this approximation, the 2N x 2NN diagonal matrix S(m) defined by (5.84) is equivalent
to the 2N x 2N matrix Pypp(m) defined by (5.35). In addition, the 2L x 1 frequency-
domain estimated impulse response E(m) defined in (5.82) comprises of K sub-filters each
having dimension 2N x 1 as can be seen from (5.73). These sub-filters are each updated

using (5.34) hence obtaining the MDF algorithm.

As a final comment, matrices G3%,,, and Gi%,, oy in (5.17), (5.34) and (5.82) form
a constrain to the adaptive algorithm such that with the overlap-save FF'T computation,
linear convolution can be achieved. By approximating these matrices with Isfx2r/2 and
Ionxan/2 respectively, unconstrained algorithms can be obtained. Although these un-
constrained algorithms, such as the UFLMS algorithm [109], require three FFT blocks
compared to five for the constrained algorithms, their performances in terms of conver-
gence rate and misalignment are generally degraded due to the effects of circular convolu-

tion {124] [125].
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5.3.4 Steady-state misalignment

Following the approach in [11], the steady-state misalignment for the single channel
frequency-domain algorithm presented in Section 5.3.3 is reviewed. The frequency-domain

system mismatch vector, of dimension I x 1, is defined as
Y(m) = H - f(m), (5.85)

where H is the frequency-domain impulse response of the unknown system for which has

been assumed to be time-invariant. The frequency-domain noise sequence
w'(m) = Fonxonw' (m) (5.86)
is further defined, where the 2N x 1 vector w'(m) is given, similar to ¥'(m) in (5.37); as
w'(m) = [w(mN + N) ... w(mN —1) w(mN) ... wmN+N-1)]".  (5.87)

The system mismatch vector V(m) can be expressed recursively by employ-

ing (5.85), (5.53), (5.55) and (5.56) and first expressing

Y(m) = H-87(m)s(m)

= H-287'(m)(1 = 3) D X" U (r)(GHan) " X(r)
r=0
= H-28"1(m)(1-X) D AU (r)(GRyon)” (G(J)\}szQ(T)E + G(J)\}szlV_'(T))
r=0
H - 87'(m)S(m)H — 87 (m)(1 - X) fﬁ NTUT (r) Ganw/(r) ,  (5.88)

r=0

il

where the relationship (G%xZN)HGS)VIXZN = 0.5 x GJ}yon as shown in Section 5.8.1 is
used. Employing the mean ergodic theorem [85] where statistical mean can be approxi-

mated by time averaging for large m, it can be assumed that [11]

S(m) = 8 = B{U" (m)G3onl(m) } , (5.89)
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where E{.} is defined as the mathematical expectation. Following the recursive approach

as shown in (5.60), the recursive form of the system mismatch vector ¥(m) is then given

by
V(m) = —(1-A)) A8 U (r) Gy onw(r)
r=0
= A¥(m—1) - (1 - 87U (m)GYyyayw(m) . (5.90)

Employing the independence assumption [35] and assuming that for large m, similar to as

discussed in Section 3.3, the adaptive algorithm is able to track the unknown system such

that
Ry = E{V(m)V#(m)} ~ E{¥(m - 1)V (m - 1)}, (5.91)
the relationship
E{¥m)vi(m)} ~ NuB{V(m-1)¥"(m-1)}
+(1 = N2E{87UH () GluanUlm) (871} x
B{w(m)w(m) }
1-XM)Ry = (1-XN2S"'Rw (5.92)

H (m)} is the noise autocorrelation matrix while

is obtained, where Rw = E{w(m)w
Gg}\,x2 N(Gg}\/x2 N)H = Gg}vm y and noting that S is a Hermitian matrix, the relationship
S718(8 ™ = 871(S7!87)H = 8! is employed. With the assumption that (1 — A?) =

2(1 — \) for A = 1, the steady-state misalignment 7' = tr{Ry} is given by [11]

201 - Mtr{Ry} ~ (1-22r{87'}o2

o= 2 l(s el (5.9

It can be seen that the steady-state misalignment is a reducing function of the forgetting

factor A and is proportional to the noise variance.
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5.4 Effect of interchannel coherence on the conditioning of

Rxx for SAEC

Having reviewed frequency-domain adaptive algorithms for single channel AEC, the re-
lationship between interchannel coherence and the conditioning of the two-channel input
autocorrelation matrix Rxx as defined in (4.24) is established for stereophonic acoustic

echo cancellation (SAEC).

As discussed in Chapter 4, a serious problem encountered in SAEC is the existence of
non-unique solutions [52]. It has been shown [90] [52] that for a practical stereophonic sys-
tem, Rxx is highly ill-conditioned. This is due to the high coherence between the two input
signals z1(n) and z2(n), as depicted in Fig. 4.1, which in turn degrades the misalignment
performance of adaptive algorithms. For a single channel case, performance of adaptive
algorithms in terms of their final misalignment is affected by the conditioning of the input
autocorrelation matrix [111]. In a stereophonic case however, although it has generally
been noted that the conditioning of Rxx is degraded by the high interchannel coherence
between 21(n) and z2(n), no explicit relationship between the two has been established.
The aim of this section is to establish this relationship which then allows one to gain an
insight of how interchannel coherence degrades the steady-state misalignment performance
of SAEC algorithms through the ill-conditioning of Rxx. As will be discussed, this rela-
tionship can be achieved by first decomposing Ry using frequency-domain quantities and
exploiting the E-norm condition number [111]. Using this relationship, one can determine
the level of ill-conditioning of Rxx through the interchannel coherence estimate and design
regularization parameters so as to improve the conditioning of Rxy hence giving good mis-
alighment performance such as shown in [113]. The validity of the established relationship
will be verified for both white Gaussian noise (WGN) and speech input signals, showing
how the condition number is affected by the interchannel coherence which in turn affects
the performance of a two-channel frequency-domain adaptive algorithm [11] in terms of

its steady-state misalignment.
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5.4.1 Two-channel autocorrelation matrix and the normal equations

With reference to Fig. 4.1, the j*® channel tap-input vector x;(n) (assumed to be zero

~mean) is defined in (4.3) and is reproduced here for convenience
T
xj(n) = [zj(n) zj(n—1) ... zj(n— L +1)] (5.94)

for j = 1,2, where L and the superscript 7 are the length of the adaptive filter and vector

transposition respectively. Let
T
x(n) = [x] (n) x§ (n)] (5.95)

be the two-channel concatenated tap-input vector which then gives the two-channel cor-

relation matrix as defined by (4.24) and is reproduced here for convenience

Rux = E{x(n)xT(n)}
_ Ri1 Ry (5.96)
Ro1 Rae
2Lx2L

It had been noted and discussed in Chapter 2 that adaptive algorithms aim to solve the
normal equations [35] given by

h=RZlp, (5.97)
where p = E{x(n)y(n)} is defined as the cross-correlation vector and h = [IT{ n? ]T is
the concatenated filter coefficients of channels 1 and 2. It is evident from (5.97) that
an ill-conditioned Ryx will yield a bad estimate of h if determined by typical adaptive
algorithms. The performance of adaptive algorithms in SAEC is further degraded by the

interchannel coherence between z1(n) and z2(n) as will be shown below.

5.4.2 Autocorrelation matrix and spectral content

To establish the link between interchannel coherence and condition number of Ryx, the

autocorrelation matrix can first be expressed in terms of its auto- and cross-spectral content
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and then exploiting the E-norm condition number {111]. Noting that for L — oo, a Toeplitz
matrix is asymptotically equivalent to a circulant matrix if its elements are absolutely
summable [118], the L x L Toeplitz correlation matrix between the j*" and u't channel

Ry, given in (5.96) can be expressed as [11]
Rju = Fry SpuFrxr , (5.98)
for j,u = 1,2, where Fp«y, is the L x L Fourier matrix. The L x L diagonal matrix
8,, = diag{Sju(0) Sju(1) ... Sju(L-1)} (5.99)

contains elements corresponding to the L frequency bins which are formed from the discrete
Fourier transform (DFT) of the first column of Rj,. Letting r;,(l) be the auto- and cross-
correlation coefficients for j = u and j # u respectively, the spectral content between two

signals is related to the correlation function [106] by

[>e]
Si(f) = D rue™® 7, f=0,1,...,L—1. (5.100)

I=—00

Using (5.98), Rxx can be expressed in terms of its spectra as

-1 -1
FLxL§11FLxL FLxL§12FL><L

Rxx = 1 .
Fri18a1Fxt FrypSaoFrxr
-1
_ Frxr Omxe 8 8y Frxr Orxr | (5.101)
Orxr Fryy Sy Sy O0rxr, Frxr

where Or« 1 is a null matrix of dimension L x L.
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5.4.3 The E-norm condition number of autocorrelation matrix

The condition number x[A] of a 2L x 2L matrix A is commonly computed using the

lo-norm [126] and is denoted by

x2[A] = [Af2lA7H2
= Jor1/Mo, (5.102)
where || - ||2 is the I;-norm operator and }; is the I*" eigenvalue of the positive definite

matrix A where 0 < Ag < A1 < ... < Agz_1. However, it has been shown that the E-
norm [111] is suitable for this current SAEC application as will be explained briefly in this .

section. The symmetric and positive definite correlation matrix can be diagonalized as
QTR Q =14, (5.103)
where @ is a unitary matrix such that QTQ =TI and
.K = diag{ho A1 -+ Aer—1} (5.104)

contains the eigenvalues of Ryx with 0 < Xg < A; < ... € Aar—;. By definition, the

square-root of Rxx is given by [127]
RY2 = gh'?QT. (5.105)

Defining tr{-} as the trace operator, the E-norm of the 2L x 2L matrix Rxx is then defined
as [111]

|| Roxx |l =[§Ztr{R§foxx}] . (5.106)

Noting that the squared Frobenius-norm [126] of Rxy is defined as

| Rux |2 = tr{RE,Rux} (5.107)
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the E-norm is then equivalent to the F-norm scaled by a factor 1/v/2L. Using (5.105), it
follows that

s ) 1/2

HRXX = [itr{Rxx}] y (5108&)
i ! L1

HRxx }E = [é—itr{Rxx] , (5.108b)

which results in the E-norm condition number
xe[RIE] = | Rl R’ - (5.100)

Hence the E-norm of an identity matrix is one and if xg [R,lcécz] is large, the correlation
matrix Ry is said to be ill-conditioned. In addition, in order to study only the effect of

interchannel coherence on the condition number, the factor 1/(2L) removes the dependency

of the E-norm condition number on L hence making yg [R,lcéf} a more suitable measure!

than xr [R,lcéf] where the latter is computed using ||R}c42||p = [tr{Rxx}] 2 1t is further

shown in [111] that X%[ ’142} is a good measure of the conditioning of Ryx.

5.4.4 Relationship between interchannel coherence and the conditioning

of R«

To compute g [R,lécz] , a matrix S containing the auto- and cross-energy density spectra

is first defined as

s,, S
s=| 1 7 (5.110)

S S
=21 =22 Jopxar

such that tr{Rxx} from (5.101) can be comnputed using the following

tr{Rxx} = tr{f‘_gngﬁf‘zszL}
1

= [S11(1) + Sa2(1)] , (5.111)
l

t~
|

I
o

!The dependency of xr [R,l(ff] on L and its explicit relationship with XE[ i{f] for WGN uncorrelated

sequences z1(n) and z2(n) is further shown in Section 5.8.5.
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where the 2L x 2L matrices Far oz and f‘; L1x2 1, are defined respectively as

- ]
y F 0
Forxor = Exb et , (5.1122)
| Oxr Frxr | D Lx2L
- ;

-1 FE>I<L Orxr

Forxor = (5.112b)

-1
B OrxrL FL><L

4 2Lx2L

and the relation tr{AB} = tr{BA} is employed.

Using (5.112a) and (5.112b), tr{Ry}} can be first simplified by
tr{Riy } = tr{F;}, 5 S Forwor} = tr{87'} . (5.113)

Note that for the trivial case of z1(n) = z2(n), Ry does not exist. Using a similar
approach to [11] [114], provided that the coherence is not equal to unity for any frequency,

the 2L x 2L inverse matrix S~ can be expressed as

1 871 Ok Irxr  —S1585) (5.114)
B Orxr S5t -8, 8 Irxr
where Ip«r is an L x L identity matrix and the sub-matrices
8 = [Ina-shsHss)|sn, (5.1152)
S, = [Loxz—S%(ST/S5)| Sz (5.115b)

From (5.100), the squared interchannel coherence function of the f* frequency bin

may be expressed in terms of the spectra of input signals as

2 1S12(f)I?
= 5.116
(Pl S11(f)S2(f) ( )
for f=0,1,...,L — 1 hence giving the L x L diagonal squared coherence matrix
IT? = diag{|7(0)* Iy(V* ... W(Z-1)P} . (5.117)

The diagonal matrices §1_1 and §2_1 of (5.114) can now be expressed in terms of (5.117)
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as

e [Toxz — T2 7'STE (5.118a)

S2_1 [IL><L - |P|2]_1§2_21 ) (5.118Db)

from which (5.113) can now be simplified as

{87} = u{Ry
L-1

ST -hWP TSRO + S5 ()] - (5.119)

=0

| Substituting (5.111) and (5.119) into (5.109), the relationship between interchannel coher-

ence and E-norm condition number of Rxx can finally be expressed [31] as

- L-1
x%[ iﬁ?] 4L2[§ S11(1) + Saa(l Hg [1- v [s;ll(z)+s;21(z)]}.(5.120)

Note that the computation of x& [R,l(éf] is tractable since S;;, 8,5y, and I' are diag-

onal matrices. More importantly, it is now evident from (5.120) that x% [R,Iéf] increases

with the squared interchannel coherence function hence degrading the condition of Ryx.

1/2

Figure 5.4 shows how X}23[ xx] varies with the mean of |v(f)|?

across frequency bins
0 <. f <L —1 for an example case of L = 1024 with stereophonic inputs generated using

a zero mean WGN source. Using

_ ||h(n) ||

as the normalized misalignment, Fig. 5.5 shows how the steady-state normalized misalign-
ment of the two-channel frequency-domain adaptive algorithm [11], shown in Table 5.4 of

Section 5.8.7, degrades with increasing x3 [R,l({?] using an SNR of 40 dB. Hence, it can be

|2 1/2] — 1and

observed that as the mean of |y(f)|> — 0, the E-norm condition number x& [

a good misalignment performance is expected. In addition, as the mean of |y(f)[*> — 1,

X2E[ ,1({(2] — 00 such that steady-state normalized misalignment performance degrades
significantly. Consequently, for realistic SAEC applications with squared interchannel co-

herence in the range of approximately 0.95 to 0.97, poor misalignment performance is
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0.2 0:4 0.6 0.8 1

Mean value of [y()|?
Figure 5.4: Variation of E-norm condition number x%[Ri{f] with the mean of |v(f)|* across
frequency bins 0 € f < L — 1.

-15

Final Normalized Misalignment (dB)
o
ot
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2R

Figure 5.5: Variation of steady-state normalized misalignment with E-norm condition num-
ber X%[R;ﬁf .

expected unless the interchannel coherence is reduced.

5.4.5 Application to two-channel frequency-domain adaptive algorith‘m

This section examines how the formulation above can be applied to a two-channel
frequency-domain adaptive algorithm to estimate its misalignment, hence verifying the
relationship given in (5.120). It has been shown [11] in Section 5.3.4 that the steady-state

normalized misalignment after convergence can be approximated by

(1-%) oy

n(n) =~ 1Olog10[ 2 Th|2
2

tr{_s_‘l}} dB, (5.122)
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from which using (5.113) and (5.120) for this two-channel case, can be further expressed

as
(1 - A) 012;; -1
n(n) = 10logy|—F— 77 tr{Rxx (5.123a)
2 |hj3
(L—=M4L 0% 5[,1/2
~ 1 1 X 3 .

where 02 and o2 = agl + 032 are the noise and input signal variances respectively. Hence,
the misalignment is a function of the forgetting factor 0 < A < 1, signal-to-noise ra-

tio (SNR) and the condition number x2 [R%g]

The two-channel frequency-domain adaptive algorithm [11], as shown in Table 5.4
of Section 5.8.7, has been shown to achieve good convergence performance for SAEC, It
should be noted that for practicality, n{n) can be computed using (5.123a). However, in

order to verify the validity of (5.120), X%;[ ;{3] is first computed using (5.120) such that

elements |y(1)|* are estimated using the interchannel coherence estimate IT'(m)|? given in
Table 5.4. The theoretical steady-state normalized misalignment is then computed by
employing (5.123b). The validity of the established link is verified through simulations in
Section 5.6. It is also evident from (5.120) and (5.123b) that high interchannel coherence
will degrade the conditioning of Rxx hence reducing the performance of the adaptive
algorithm in terms of its steady-state misalignment as shown in Fig. 5.4 and 5.5. In
addition, the formulation presented in this section is more general than [114] since S;;
has not been assumed to be constant across frequency. This is feasible especially for
speech signals where the spectra is not constant across frequency as will be shown through

simulation examples presented in Section 5.6.

5.5 Frequency-domain adaptive filtering employing XM tap

selection

In this section, frequency-domain algorithms employing exclusive-maximum (XM) tap
selection will be developed. Drawing upon the link between interchannel coherence and
condition number of Ry as described in Section 5.4, this section examines how the XM tap

selection can reduce the interchannel coherence which in turn improves the conditioning
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of Rxx giving good convergence performance. Two cases of tap selection, which can be
achieved either by subselecting the time-domain or the frequency-domain tap-input vector,
will be considered. Their impact to the convergence performance of frequency-domain
algorithms will also be examined in the context of the M-ratio measure M. The XM tap
selection is then extended to the frequency-domain FLMS algorithm by first considering
a 50% overlapping factor between successive input blocks and an arbitrary overlapping

factor controlled by the variable o > 1.

5.5.1 Effect of XM tap selection on interchannel coherence and condition

number of Ry

As noted from Fig. 4.5, exclusive tap selection can improve the conditioning of Rxx. In this
section, the effect of exclusive tap selection? on the interchannel coherence and conditioning
of Rxx is analyzed mathematically by exploiting frequency-domain quantities and the E-
norm condition number as depicted in Section 5.4. By virtue of the exclusivity constraint
imposed on the two-channel tap-input vectors, it can be shown for tap selection control

matrices Q1(n) and Qz(n) that

Qi(n) © Qa2(n) = Qi1(n)Qz(n)
= Opxr , (5.124)

where © is defined as the element-by-element (Schiir) product and 0y is the L x L null

matrix. The cross-correlation function r12(l) between z1(n) and x2(n) is defined as

r2(l) = B{z1(n)z2(n =1} . (5.125)

“The exclusive tap selection discussed in this subsection is not limited to XM tap selection. Since the
aim is to analyze only the decorrelation effects brought about by exclusive tap selection, an arbitrary
exclusive selection such as selecting odd coefficient indices in channel 1 and even coefficient indices in
channel 2 is considered.
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With the j** channel subselected tap-input vector given as %;(n) = Q;(n)x;(n), the effect

of the exclusivity constraint on the cross-correlation function (at zero-lag) is given by

r12(0) = ra(0)
= B{Qim)x(m)Qa(n)xa(n)}
= E{F:(n)F2(n)}
= 0. (5.126)

In addition, the cross-correlations r12(l) and 791(l) are “sparsified” by Q;(n) and Qa(n)
and as a consequence, with reference to (5.100), |S12(f)|? and hence the squared-coherence
|7(f)|? defined in (5.116) are reduced accordingly. This reduction in interchannel coherence
due to the exclusive tap selection can be observed from experimental results as presented
in Fig. 4.4 (c). Additionally, from (5.120), a reduction in interchannel coherence reduces
the E-norm condition number xg [R,lciz] and with the maximization of M as described in

Section 4.3.1, improved convergence performance of XM-based algorithms [30] is expected.

5.5.2 Selection in frequency-domain vs selection in time-domain

One of the main concerns in developing frequency-domain adaptive algorithms employing
tap selection is to consider whether subselection should be performed in the frequency-
or time-domain. These two options are analyzed and considered. For simplicity, a single
channel case is initially considered where the MMax tap selection criterion [21] is imposed
on the tap-input vector®. With reference to the FLMS‘algorithm as discussed in Sec-
tion 5.3.1 and tap-input vector X(m) as defined in (5.3), tap selection can be achieved by

first considering the case of subselecting a frequency transformed tap-input vector, i.e.,

Xi(m) = Q(m)[FarxarX(m))]
= Q(m)X(m), (5.127)

where the subscript f in Xf(m) denotes subselection in the frequency-domain and tap-input

.vector X(m) is defined in (5.5). The elements of the diagonal MMax tap selection matrix

3Using the MMax tap selection for the single channel case here allows one to simplify this discussion
and employ the measure M to quantify the effect of subselection. The impact of using the single channel
MMax tap selection on the XM tap selection for stereo case will be discussed at the end of this subsection.
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Q(m) in this case is given by

1; l&l(m)l € {M maxima of }X-(m)l} ’

a(n) = (5.128)
0, otherwise ,
for 1 =0,1,...,2L — 1 where |z;(m)] is the I*! element of |X(m)| given that
T
1X(m)| = [lzo(m)] lzi(m)] ... lzap_s(m)l]” - (5.129)

Consider an alternative case where tap selection is achieved instead by subselecting
the time-domain tap-input vector X(m) before being transformed to the frequency-domain.

In this case the subselected tap-input vector can be expressed as

X, (m) = Fopxar[Q(m)X(m)]

= ForxorX(m), (5.130)

where the subscript t in X,(m) denotes subselection in the time-domain. Elements of the
diagonal tap selection matrix Q(m) are now given, for l = 0,1,...,2L — 1, by

1, |z(mL—L+1)| e {M maxima of |X(m)|} ,

q(n) = (5.131)

0, otherwise ,

where the time-domain tap-input vector X(m) is defined by (5.3) and |z(mL — L +1)| is

the I*h element in |X(m)| given that

X(m)| = [|le(mL - L)| ls(mL— L+1)| ... |s(mL+L-1)[]". (5.132)

As discussed in Section 4.3.1, the use of M defined in (4.18) allows one to analyze the
effect of tap selection on the rate of convergence. With the subselected tap-input vectors

expressed in (5.127) and (5.130), the effect of tap selection for X¢(m) and Xt (m) on their
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1 50 128 200 256
Number M of selected taps per iteration

Figure 5.6: Effect of tap selection on (a) M; and (b) M; for an adaptive filter length of
L = 256.

respective M can be compared by computing Mg(m) and My (m) respectively as

1P ar Xe(m)]I3

Mi(m) Koo (5.133a)
P X m)lE
Mi(m) = BRI . (5.133D)

Figure 5.6 shows the effect of tap selection on M-ratios (a) My and (b) M;. In this
illustrative example, an adaptive filter of length L = 256 is used with a zero mean unit
variance WGN input sequence. It can be observed that for all cases of tap selection size
M, M < M. More importantly, for M = 0.5L = 128, there is a significant reduction
in M compared to M. Since, as explained in Section 4.3.1, the rate of convergence is a

monotonic increasing function of M, it is proposed that

e the degradation in convergence performance due to tap selection for a frequency-
domain algorithm employing MMaz tap selection can be reduced by subselecting the
tap-input vector in the time-domain before taking its Fourier transform for adapta-

tion.

Although the analysis described here concerns single channel MMax tap selection, exten-
sion to the two-channel XM tap selection is direct and straightforward since the XM tap
selection jointly maximizes M in both channels. Consequently, for the j** channel, sub-
selection of the time-domain tap-input vector X;(m) will be employed instead of X;(mn)

for the development of XM-based frequency-domain algorithms for SAEC such as shown
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below.

5.5.3 Tap selection with 50% overlapping factor

With reference to Fig. 5.2 the j*® channel tap-input vector for FLMS is described by (5.3)

for 7 = 1,2 and is reproduced here for convenience

T

X;(m) = [zj(mL—L)zj(mL—L+1) ... z;(mL—1) zj(mL) zj(mL+1) ... zj(mL+L-1)]
(5.134)
This 2L x 1 vector can be decomposed into two sub-vectors giving
T
X;(m) = [mj(mL— L) ... zj(mL—1) z;(mL) ... zj(mL+L— 1)]
X[ jm-1) K 5(m)
T

= [Xp;m-1)X{;(m)] , (5.135)
where the L x 1 sub-vector X j(m) is defined by

Xp,;(m) = [zj(mL) 2;(mL+1) ... gj(mL+L-1)]", (5.136)

such that the first subscript b denotes a sub-vector of X;(m). Defining the L x 1 magnitude

difference vector computed for each frame
p(m) = [Xp,1(m)| — [Xp2(m)| , (5.137)
the subselected tap-input vector is then given by
Xp,j(m) = Q;(m)Xp;(m) , (5.138)
where the j*® channel diagonal L x L diagonal XM tap selection matrix is defined as

Q;(m) = diag{q;(m)} . (5.139)
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Figure 5.7: Schematic of subselected tap-input vector and its frequency-domain quantity
using 50% overlapping factor.

As shown in (4.42a) and (4.42b), element u of q; and element v of qy are defined for u,v =

0,1,...,L—1and M = 0.5L where

1, py € {M maxima of p(m)}} ,
qiu = ¢ p(m)} (5.140a)

0, otherwise ,

1, py € {M minima of p(m)} ,
Qo = { p(m)) (5.140b)

0, otherwise .

For practical implementation, the j*® channel sub-vector Xp,j(m — 1) is a delayed
version of Xy, ;(m) and in a similar manner, 3~§b,j(m — 1) is obtained from sz,j(m) using a
delay. The 2L x 1 subselected tap-input vector for the m*™ frame can then be expressed
as

%y(m) = [KL;m — 1) RL,0m)] (5.141)

from which the corresponding j*® channel frequency-domain subselected tap-input vector
is obtained using

X;(m) = FapxarX;(m) . (5.142)

Similar to the FLMS algorithm, §_§j (m) can then be employed for gradient computa-
tion. To illustrate above, Fig. 5.7 shows a schematic of how tap selection can be achieved

using a 50% overlapping factor. The proposed FLMS algorithm incorporating XM tap se-



5.5 Frequency-domain adaptive filtering employing XM tap selection 183

lnpm L 2 1 0 1 L-1)

sequence 'x!( Y v 2D 2D 2O (D e KL=l e e

frame m=0 |x(nlia-L} E rmlia+L=1)

frame m=1 x(mLlia~1) i x(mLla+L~1)

[ ———
' Lia T
frame m=2 . Ix,(mL/a-L) ! smlia+L=-1)
[ ———

Lia

Figure 5.8: Input sequence partitioning for the j** channel FLMS algorithm with arbitrary
overlapping factor controlled by a.

lection (XM-FLMS) [32] is depicted in Table 5.5 of Section 5.8.7. Similar to time-domain
implementations as shown in Chapter 4, the use of XM tap selection is proposed in com-
bination with the non-linear (NL) preprocessor to improve the convergence rate of FLMS
in combination with NL-preprocessor (NL-FLMS) and as such, this proposed algorithm is
denoted as XMNL-FLMS. Performance comparison between XMNL-FLMS and NL-FLMS

will be presented through simulations in Section 5.6.

5.5.4 Tap selection with arbitrary overlapping factor

Instead of a 50% overlap between successive tap-input vectors as shown in Fig. 5.2, the
XM tap selection can be extended to the FLMS algorithm using an arbitrary overlapping
factor similar to the GMDFa algorithm [110]. The single channel GMDF« algorithm
incorporates the MDF [23] structure as described in Section 5.3.2 to reduce the delay
inherent in frequency-domain approaches by partitioning the adaptive filter into IC blocks.
In addition, GMDFa achieves fast convergence by employing an arbitrary overlapping
factor between successive tap-input frames controlled by an overlapping factor o > 1.
With a > 1, the filter coefficients are updated more frequently and for a large step-size,
the GMDF« algorithm has been shown to achieve a faster rate of convergence compared
to fhe MDF algorithm [110]. Figure 5.8 shows how the input sequence is partitioned using
an arbitrary overlapping factor ov. For @ = 1, a 50% overlap between successive input
blocks is achieved as shown in Fig. 5.2. Since the aim of this work is to introduce tap
selection for any arbitrary o > 1, the case of a single adaptive filter block X = 1 for each

channel will be considered in this section and as a result the proposed algorithm is denoted
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as XM-FLMSa {32].

To incorporate the XM tap selection to a tap-input vector obtained from an arbitrary
overlapping factor, the j** channel input signal z;(n), 7 = 1,2, is partitioned into over-
lapping sections each having size 2L. Direct deployment of the Q;(m) diagonal matrix,
such as expressed by (5.138) is now inappropriate since Q;(m) is of dimension L x L.
However, subselection at each block iteration can be incorporated by first denoting the

2L x 1 tap-input sequence for the jth channel as
Xa,j(m) = [:cj(mL/a — L) zj(mL/a—-L+1) ... z;(mL/a+ L - 1)]T , (5.143)

where « > 1 controls the overlapping between successive input frames and the subscript a
in Xq,; shows the dependency of input frames on a. With this notation and for & = 1, it
can be observed that Xq ;(m) = X;(m) where X;(m) has been defined in (5.134). Similar
to (5.137), the 2L x 1 magnitude difference vector can then be defined as

p(m) = [Xq,1(m)| — [Xa,2(m)| , (5.144)

from which the XM tap selection criterion for this arbitrary overlapping case is defined for

element u of q; and element v of qo forw,v =0, 1,...,2L — 1 where
1, py € {M maxima of p(m)},
Ny = Pu €4 p(m)} (5.145a)
0, otherwise ,
1, p, € {M minima of p(m)} ,
- Py € { p(m)} (5.145b)
0, otherwise .

Note that the vector p(m) is now of length L’ = 2L. Since half the number of taps
corresponding to the maximum values of p(m) in the first channel have to be selected,
for this XM-FLMSa case, M = 0.5L' = L will be selected in (5.145a) and (5.145b).
Consequently, the j*P channel diagonal tap selection matrix Q;(m) is of dimension 2L x 2L

which results in a subselected tap-input vector

Xaj = Q;(m)Xa(m) . (5.146)
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In a similar manner to the XM-FLMS algorithm, the frequency-domain tap-input vector

for XM-FLMSq is then computed using
X, =FarxarXay (5.147)

which is then used for gradient computation, similar to that shown in (5.16).

Comparing (5.146) and (5.138), the XM-FLMSa requires an additional L addi-
tion/subtraction operations since the 50% block delay cannot be applied here. The pro-
posed XM-FLMSq is depicted in Table 5.6 of Section 5.8.7. Similar to the FLMS algo-
rithm, the use of XM tap selection is proposed in combination with the non-linear (NL)

preprocessor [52] and hence will be denoted as XMNL-FLMSa.

5.6 Simulation results

5.6.1 Verification of (5.120)

1/2]

The link between interchannel coherence and the E-norm condition number XE[ X5
given by (5.120) is verified using the two-channel frequency-domain adaptive filtering al-
gorithm [11] given in Table 5.4 of Section 5.8.7. In these simulations, the lengths of both
the adaptive filters are L = 1024 with A = [1 — 1/(3L)]* and g = 2. The stereophonic
impulse responses of both the transmission and receiving rooms are recorded at 16 kHz
sampling rate and are of length 4096. To neglect any misalignment effects due to under-
modelling, the impulse responses of the receiving room are truncated to 1024. Figure 5.9
shows the normalized misalignment plots for a zero mean unit variance WGN source se-
quence where input vectors X;(m) and Xg(m) are generated by convolving this source
with the impulse responses of the transmission room. With reference to Fig. 4.1, an un-
correlated zero mean WGN sequence w(n) is added to the received signal to achieve SNRs

of 25 and 35 dB.

The interchannel coherence is varied using a non-linearity control factor 4 [52] given
by (4.46a) and (4.46b). Theoretical steady-state normalized misalignments, shown as
straight horizontal lines, are computed and are averaged across block iterations using in-

put signals Xj(m) and X4(m). Although the non-linearity control is used to vary the
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Figure 5.9: Normalized misalignment for WGN input with mean interchannel coherences
of (a) 0.85, (b) 0.60 and (c) 0.53.
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Figure 5.10: Normalized misalignment for speech input with mean interchannel coherences
of (a) 0.85, (b) 0.60 and (c) 0.53.

interchannel coherence, the analysis presented does not make any assumptions about the
methods of achieving this variation®. In order to verify (5.120), the normalize‘d misalign-
ment is computed using (5.120) and (5.123b). Due to the variation of #, the measured
mean interchannel coherences across frequency between X|(m) and X5(m) are (a) 0.85,
(b) 0.60 and (c) 0.53. It can be observed that as X{(m) and X,(m) become more un-
correlated, the steady-state normalized misalignment reduces gracefully as expected. The
theoretical normalized steady-state misalignments computed using (5.120) are also consis-
tent with the experimental results hence verifying the relationship between interchannel

1/2}

coherence and condition number XE[ Xx |-

* Additional results for various interchannel coherences achieved by adding WGN to z2(m) is shown in
Section 5.8.6
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Figure 5.10 shows normalized misalignment plots using the same experimental setup
as above but with speech input sequence from a male speaker. As before, the variation
of interchannel coherence is controlled using the non-linearity constant 8 such that the
measured mean interchannel coherences across frequency are the same as before. The
mean theoretical normalized steady-state misalignments across time iterations are plotted
as straight horizontal lines. It can be seen that the normalized misalignment performance
degrades with increasing interchannel coherence as expected and the theoretical normalized
steady-state misalignment computed using x% [R,léf] is consistent with the experimental

results hence verifying (5.120).

5.6.2 Experimental setup for FLMS and FLMSa based simulations

Simulation results are presented to illustrate the convergence performances of XM-based
frequency-domain adaptive algorithms. For all simulations shown below, impulse re-
sponses g1(n), ga(n), hi(n) and hy(n) are generated using the method of images [72].
Two microphones are placed 1 m apart in the centre of both the transmission and receiv-
ing rooms each of dimension 3 x4 x5 m. The source is then positioned 1 m away from each
microphone in the transmission room. Tap-input vectors X (m) and X%(m) are obtained
by convolving the source with two impulse responses g;(n) and ga(n) and then applying
the non-linear (NL) preprocessor defined in (4.46a) and (4.46b) with a non-linear control
factor of 8 = 0.5. An uncorrelated zero mean WGN sequence w(n) is added to achieve an
SNR of 25 dB. For clarity, the normalized misalignment of only one channel is plotted in

each experiment.

5.6.3 FLMS with 50% overlapping-factor simulations

The performance of NL-FLMS is compared with that of the XMNL-FLMS algorithm as
shown in Fig. 5.11 (a) and (b) respectively using a zero mean unit variance WGN source
sequence. In this simulation, the lengths of the adaptive filters are L = 256 while the
lengths of the transmission and receiving rooms are L7 = 800 and Lg = 800 respectively
with a reverberation time of Tgo = 100 ms. A sampling frequency of f; = 8 kHz is
used while a non-linearity control factor [52] of 8 = 0.5 is used. The step-size of the

NL-FLMS algorithm is pnp—Fims = 1 while for the XMNL-FLMS, pxmnL-rFLms = 0.4 is
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Figure 5.11: Normalized misalignment using WGN input sequence for (a) NL-FLMS and (b)

XMNL-FLMS [LT = Lg = 800, L = 256, pnL-rFLMms = 1, pxmnL-rLums = 0.4, 8 = 0.5, f; = 8 kHz,
Teéo = 100 ms, SNR = 25 dB].
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Figure 5.12: Normalized misalignment using speech input sequence for (a) NL-FLMS
and (b) XMNL-FLMS [Lr = Lr = 800, L = 256, gnL-FLMs = 1, gxmNL-FLMs = 0.43, 8 = 0.5,
fs = 8 kHz, Tso = 100 ms, SNR = 25 dB].

used to achieve the same steady-state normalized misalignment. From Fig. 5.11, it can
be seen that due to the XM tap selection, XMNL-FLMS outperforms the NL-FLMS by
approximately 7 to 8 dB normalized misalignment during convergence. Alternatively, the
NL-FLMS algorithm requires an additional 12 s before achieving the same steady-state
misalignment as the XMNL-FLMS algorithm.

Figure 5.12 shows simulation results for (a) NL-FLMS and (b) XMNL-FLMS using
the same experimental setup as above but with speech input sequence from a male talker.
The SNR was computed using the whole utterance of the speech sequence. The step-size of

the XMNL-FLMS algorithm is pxmMNL-rLMms = 0.43 in order to achieve the same steady-
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Figure 5.13: Normalized misalignment using WGN input sequence for (a) NL-FLMSa

and (b) XMNL-FLMSa [Lr = Lz = 800, L = 256, o = 4, UNL-FLMSa = 1; 4XMNL—FLMSa = 0.65,
8 =0.5, fs =8 kHz, Tgo = 100 ms, SNR = 25 dB].
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Figure 5.14: Normalized misalignment using speech input sequence for (a) NL-FLMSa
and (b) XMNL-FLMS« [LT = Lr = 800, L = 256, a = 4, yNL-FLMSa = 1, UXMNL-FLMSa = 0.65,
B =05, fa =8 kHz, Tep = 100 ms, SNR = 25 dB).

state misalignment as the NL-FLMS algorithm where pni,—FLMs = 1 as before. For this
speech input example, it can be observed that the XMNL-FLMS algorithm outperforms
NL-FLMS by approximately 3 to 4 dB of normalized misalignment during convergence.
The NL-FLMS algorithm requires an additional 6 s before reaching the same steady-state
misalignment as the XMNL-FLMS algorithm.

5.6.4 FLMS with arbitrary overlapping-factor simulations

The performance of XMNL-FLMSe is illustrated by comparing its convergence to that of

NL-FLMSa as shown in Fig. 5.13 using a zero mean unit variance WGN source sequence.
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As before, the parameters for this experiment are L = 256, Lr = 800 = Lr = 800,
g = 0.5, fs = 8 kHz, Tgg = 100 ms and SNR = 25 dB. Step-sizes unp—rLMSa = 1 and
UXMNL—FLMSa = 0.65 are used for NL-FLMSa and XMNL-FLMSa respectively such that
they achieve the same steady-state normalized misalignment. In this simulation, an arbi-
trarily chosen overlapping control factor of & = 4 is used. It can be seen from Fig. 5.13 that
the XMNL-FLMS« algorithm outperforms NL-FLMSa« by approximately 8 dB in normal-
ized misalignment during convergence. Alternatibvely, the NL-FLMS algorithm requires an

additional 15 s before reaching the same steady-state normalized misalignment.

Figure 5.14 compares the misalignment performances of (a) NL-FLMSa
and (b) XMNL-FLMS« using the same experimental setup as above but with a speech
input sequence from a male talker. The SNR was computed using the whole utterance of
the speech sequence. As before, due to the reduction in interchannel coherence brought
about by XM tap selection, the XMNL-FLMS« algorithm outperforms NL-FLMSa by
approximately 3 dB. The NL-FLMS« algorithm requires an additioﬁal 6 s before reaching
the same steady-state misalignment as XMNL-FLMSqa. Comparing Figs. 5.12 and 5.14,
the rate of convergence for the FLMSa-based algorithms is higher than for FLMS-based
algorithms since, similar to the GMDFa« algorithm [110], the adaptive filters are being

updated more frequently for an overlapping control factor of o = 4.

5.7 Conclusions

In this chapter, the fast-LMS (FLMS) [22] and MDF [23] algorithms have been reviewed.
The derivation of these algorithms using a frequency-domain cost function [11] has also
been reviewed. The link between interchannel coherence and conditioning of the two-
channel input correlation matrix is established [31] by exploiting frequency-domain quan-
tities and the E-norm condition number [111]. It has been shown how the high interchannel
coherence degrades the conditioning of Rxx and using this relationship, it has been ex-
plained how the XM tap selection reduces the interchannel coherence hence ifnproving the
conditioning of Ryx. In order to reduce the degradation of M, tap selection is employed
on the time-domain tap-input vector before taking its Fourler transform. Using this tap
selection approach, the XM tap selection is then extended to frequency-domain adaptive

algorithms employing both the 50% and an arbitrary overlapping factor controlled by o.
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Simulation results have been presented to verify the validity of the established relationship
between interchannel coherence and xg [R,léf] The convergence performances of the pro-
posed XMNL-FLMS and XMNL-FLMSe algorithms showed improvement over NL-FLMS
and NL-FLMSea for both WGN and speech input signals.

5.8 Appendix

5.8.1 Proof of matrix multiplication (G%,,x)? G% on
The matrix (G, o) can be simplified as
- H
(GXx2m)™ = (FuxnWianFapxon)
(Fonson) T (Wan) T Fiixn

(F2_N><2N ] g}VxN[F*NxN

[
= [-—1-F2N><2N} Wikxn [NF#XN]T
0

5 % Fanxoan Wik xn Frsn (5.148)

]T

where W%, v is defined in (5.2a). Hence,

(GNXQN) GNXQN = 05><F2Nx2NW2NxNWNx2NF2Nx2N
— 05xF Wik xon Faor
= 0.5 x FonxavnWansxonFon«an

0.5 X GIyson (5.149)

Onxn OnxN
where the windowing matrix W3k, .,y = _ . 0

0 I
NxN INXN |,u on
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5.8.2 Proof of equation (5.53)

Using (5.148),

(Gan)TX(r) = 0.5 x Fonxan Wiy nFRLnY(r)

= 0.5 x FszzNW(z)}wNFExNFNxNY(T)

ON
0.5 x Fanxon X1
y(r) 2Nx1

0.5 x y(r)
where (5.41) has been employed in the second step. O

5.8.3 Proof of equation (5.77)

The relationship between S(m) and B(m) can be shown by postmultiplying G39, 1» defined
in (5.66), and premultiplying (G2, )¥ to (5.76) giving

(Galxn)B(m)Gilxy, = Z/\’"—T GY )R (1) Gl an D (1) G x 1
m
= Z G2Nx2NU( )
r=0
= S(m) (5.150)
where (5.68) has been employed in the last step. O

5.8.4 Proof of equation (5.78)

It can be shown that

10 10 _
G ,21GYr = ForxaWil (FIs,

= Gilxr (5.151)

where matrices G325, and W% .. are defined in (5.2g) and (5.2e) respectively. Em-

ploying the property [AB]~! = B~1A~! [126] for arbitrary matrices A and B, the inverse
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of $71(m) in (5.77) can be expressed as

-1

871 (m) = (G32x ) "B (m)[(Garxr)”] (5.152)

Pre-multiplying and post-multiplying by G%%xz LG%%X 1, and (G%%x.z L)H respectively,

G0 xS MG« )T = Gl o B (m) .

5.8.5 Explicit link between yg [R,lf] and yp [R,léf] for uncorrelated z;(n)

and z,(n)

The independence of the E-norm condition number yg [R}({?] on adaptive filter length L

and its relationship with XF[ }(4(2] can be shown for a simple case example by first assum-
ing for zero mean WGN inputs z1(n) and mg(n)‘where E{2}(n)} = o and E{zi(n)} =
agz giving L x L matrices R1; = diag{ag1 ...031} and Rgp = diag{agz...agz}. For
the case where z1(n) and zo(n) are perfectly uncorrelated, tr{ Rxx } and tr{Ry.} can be

expressed respectively as

tr{Rux} = L(Ufi1 +032) ,

tr{R;,%} = L[l/aﬁ1 + 1/032 .
The F-norm condition number of R,l(f is thus given as

R R

[tr{Rxx}] & [tr{R;,i ] 2
(03, +02,)

V(2 oZ,) '

XF [Ri{?]

(5.153)
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while the E-norm condition number of R,lcf(z can be written explicitly as

xe[R] = Rl Re’ ]

1 1/2r 1 _
[ﬁtr{Rxx}] [Q_Etr{Rx’: }
1(03, +02,)

1% 2

1/2

Hence the relationship between xE[R,lé(z] and xr [R}A‘Z] for uncorrelated z1(n) and z2(n)

is given by
1

SEXE R . (5.155)

XE [Ralc{cz] =

Comparing (5.153) and (5.154), it can be seen that XE[R,ICQ] is independent of L. For

the case of 02, = 0% =1, xg [R}(Q] = 1 while the measure yp [R,l({(z] = 2L is dependent
on the length of the filter. Hence xp [R,léf] increases with L, while xg [R,lécz] =1, for

WGN with uncorrelated x1(n) and x2(n) regardless of L.

5.8.6 Additional results with interchannel coherence controlled by

adding WGN to channel 2

The use of the non-linear processing [52] defined by (4.46a) and (4.46b) for varying the
interchannel coherence was chosen in Section 5.6.1 since this is a well-established method
of reducing interchannel coherence without degrading the stereo image and signal quality
significantly as can be found in existing literature. In this section, an additional simulation
result is presented to verify that the analysis as presented in Section 5.4 is also valid for
various interchannel coherences controlled by adding a zero mean uncorrelated WGN to

one of the two channels as shown in Fig. 5.15.

In this simulation, the impulse responses of both the transmission and receiving rooms
are recorded at 16 kHz sampling rate. Signals x1(n) and zp(n) are generated by con-
volving a zero mean unit variance WGN source with g;(n) and ga(n). A zero mean
uncorrelated WGN sequence is added with various SNRs to zg(n) giving #3(n) which
serves to vary the interchannel coherence. The level of decorrelating noise added to
zz(n) is denoted by SNRy. The received signals are obtained by convolving z;(n) and

&o(n) with receiving room impulse responses. With reference to Fig. 4.1, and defining
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Figure 5.15: Effect of interchannel coherence on misalignment where interchannel coherence
is controlled by addition of WGN to z2(n) giving interchannel coherences of (a) 0.90, (b) 0.67
and (c) 0.35 [Ly = Ly = 1024, L = 1024, f, = 16 kHz, A = [1 — 1/(3L)]%, SNR = 30 dB].

@ as convolution operator, an uncorrelated zero mean WGN sequence w(n) is added to
z1(n) ® h1(n) + Z2(n) ® ha(n) to obtain an SNR of 30 dB. In this simulation, filter in-
put sequences z1(n) and Zz(n) are used to verify the analysis presented in Section 5.4.
Figure 5.15 (a), (b) and (c) show normalized misalignments with SNRq of (a) 10, (b) 0
and (c) -20 dB giving interchannel coherences of (a) 0.90, (b) 0.67 and (c) 0.35 respectively.
It can be seen that as the SNRy4 reduces, more uncorrelated noise is added to 23(n) hence
reducing the interchannel coherences giving a good misalignment performance. Theoret-
ical normalized misalignments are computed using (5.120) and (5.123b) and are plotted
as horizontal lines for various interchannel coherences. Note that the analysis presented
in Section 5.4 is also valid using this method of decorrelation. In fact, although the non-
linearity control factor 8 is used to vary the interchannel coherences in Section 5.6.1, the
analysis presented does not make any assumptions about the methods of achieving this

interchannel coherence variation.
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5.8.7 Frequency-domain algorithms

Table 5.1: Data sectioning matrices

If total blocks £ =1, then N = L
Wfl\(r)xzzv = | Inxn Onxn ]NXZN
W(Z)JIVXN =

10 —
W2N><N -

ONXN INXN ]2NX2N

W%?v 2N = ]
bed

ONxN ONxN [onxan
-1

0 0
1 NXN NxXN
W(z)Nsz =[
_ 1
Glon = Fonan W onFan san
F

10 _ 10 -1
G2Nx2N = 2N><2NW2N><2NF2N><2N
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Table 5.2: The FLMS algorithm [22] [11]

O<pu<l
A = [1-1/(3L))*
X(m) = [e(mL - L) e(mL—L+1) ... e(mL+L—1)|T
X(m) = Forx2rX(m)
D(m) = diag{X(m)}
¥(m) = G} x2rD(m)h(m — 1)
E(m) = Y(m) - ¥(m)
Privs(m) = APppms(m — 1) + (1 — AR*(m)D(m)
h(m) h(m — 1) +2p(1 - N)G§,p D" (m)
['PFLMs(m) + drmslorxar] T E(m)
Table 5.3: The MDF algorithm [23] [11]
O<p<l
A =[1-1/6L)N
k =0,1,....,K—-1
D(m-k) = diag{FFT{z(mN —kN ~N) ... z(mN —kN+ N —-1)}}
K-1
¥(m) = Gflyxow )_D(m - k)hy (m - 1)
k=0
e(m) = y(m) —¥(m)
Puypr(m) = APypr(m ~ 1) + (1 = A)D*(m)D(m)
he(m) = he(m - 1) +20(1 - \)GyonD" (m = k)x
[Pumpr(m) + dmprlezxer] ~te(m)
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Table 5.4: The two-channel frequency-domain adaptive algorithm [11]

for the j* channel
Ogi<l
O<pu<?
p = u(l—A)
X;(m) = [zj(mL—L)zj;(mL—L+1) ... zj(mL+L-1)]"
X;(m) = FarxorX;(m)
.@j(m) = diag{Xj(m)}
Sir(m) = 28(m—1)+ (1 - AR5 (m)D,(m), j,r=1,2
Tm)? = [S1(m)Sa(m)]” 521( )S12(m)
S;(m) = Sj;(m)[Tanxer — [T(m)[?], §=1,2
K, (m) = ST} (m)[D}(m) — 812(m)83; (m)D5(m)]
Ky (m) = 551 (m)[D3(m) — So1(m)ST (m)R§(m))]
e(m) = y(m) — G} o [B1 (m)hy (m — 1) + Dy(m)hy (m — 1)]
h;(m) = h;(m - 1) + w'K;(m)e(m), j = 1,2
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Table 5.5: The XM-FLMS algorithm

for the j*® channel,

0<pu<l

M =0.5L

A = [1-1/(3L))*

X;(m) = [g;(mL - L) zj(mL—-L+1) ... z;(mL+ L-1)]T

Xy ;(m) = [zj(mL) z;(mL+1) ... z;(mL + L~ 1)]T

p(m) = [Xp,1(m)| = [Xp,2(m)] '

q;j(m) = [g50(m) gji(m) ... gj—1(m)]"

Qj(m) = diag{q;(m)}

Kpg(m) = Qj(m)Xe,;(m)

Zjm) = [Kuglm—1) Zy(m))”

X;(m) = Farx2rX;(m)

X;(m) = Fory21X;(m)

D;(m) = diag{X;(m)}

D;(m) = diag{X;(m)}

g(m) = Ggisz Z] 1—J( )BJ( - 1)

E(m) = Y(m) - ¥(m).

Prrms(m) = APppus(m —1) + (1 - A) J -1 D5 (m)D;(m)

h;(m) = h;(m — 1) + 2u(1 - NG 5, D; (m)x
[Prims(m) + drimsIzrxar] 'E(m)

g1.u(m) _ { (1): gzﬁzlvie{M maxima of p(m)}

L
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Table 5.6: The XM-FLMSqa algorithm

for the j*® channel,

O<pu<l

M =0.5L

A = [1-1/(3L)F ,

Xa,j(m) = [zj(mL/a— L) zj(mL/a—L+1) ... zj(mL/a+ L-1)|T

p(m) = |Xa,1(m)| = [Xa,2(m)|

q;(m) = lgjo(m) gj1(m) ... gjar-1(m)]”

Q;(m) = diag{q;(m)}

Raj(m) = Q;(m)Xa,j(m)

Xy ;(m) = FarxarXa,;(m)

:a,j(m) = FarxorXa,;(m)

Da,j(m) = diag{Xa,j(m)}

Doj(m) = diag{Z,,;(m)}

¥, (m) = Gl xar, 2?:1 D, ; (m)ﬁj(m —1)

Eo(m) = Yo(m)—¥o(m)

Proms(m) = APprus(m — 1) + (1= A) Z§=1 Dy, ;(m)Dy, ;(m)

b, (m) = hy(m — 1) + 2u(1 — NG3) o B, ;(m)x
[Prras (m) + drLmslarxor] ' Eq(m)

dra(m) _ { (1): g:}(lzzviese{M maxima of p(m)}

fay

aotm)  ={ g

pv(n) € {M minima of p(m)}
otherwise
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Chapter 6

Discussion and Conclusions

Problems cannot be solved at the same

level of awareness that created them.

Albert Einstein (1879-1955)

6.1 Summary

In this thesis, a class of time- and frequency-domain selective-tap algorithms were devel-
oped and analyzed for single channel énd stereophonic AEC applications. In Chapter 2,
having reviewed partial update algorithms, the MMax tap selection [21] was extended to
the affine projection algorithm (MMax-AP). Using normal equations, the MMax recur-
sive least squares algorithm (MMax-RLS) for single channel AEC was developed. It was
noted that MMax-NLMS, being a data-dependent partial update algorithm, outperforms
the SPU-NLMS [20], Periodic-NLMS and Sequential-NLMS algorithms [19]. It was also
noted that the rate of convergence of adaptive algorithms employing MMax tap selection
degrades gracefully with reducing size of tap selection M. Convergence for both WGN
and speech input sequences were shown for MMax-AP and MMax-RLS through simula-
tions. Although all filter coefficients were selected for adaptation, for an example case of
L = 1024 and M = 512, it has been shown that the number of operations required by
MMax-AP and MMax-RLS employing the SORTLINE algorithm is approximately 75.7%
and 62.5% that of the number for AP and RLS respectively.

The steady-state misalighment analysis for a class of fully updated and their cor-
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responding MMax selective-tap algorithms were presented, in Chapter 3, under both
time-varying and time-invariant unknown system conditions modelled using the modi-
fied Markov model [77]. Under time-invariant system conditions, the steady-state nor-
malized misalignment for MMax-NLMS and MMax-AP were found to be independent of
M while the same is not true for MMax-RLS. For a time-varying system, the perfor-
mance of MMax-based algorithms in terms of steady-state misalignment degrades with
increasing time-variation. This degradatioﬁ is proportional to ¥ for both MMax-NLMS
and MMax-RLS algorithms. For 0.5L < M < L, the increase in 9 is insignificant and
as a consequence, the degradation in steady-state misalignment performance is negligible
with reducing M. This property was exploited for the XM tap selection, which was then
deployed in SAEC algorithms such as presented in [30] {26]. It was additionally shown
for NLMS and MMax-NLMS that, under time-varying unknown system conditions, there
exist an optimal step-size given by (3.33) and (3.65) respectively. This optimal step-size
jointly maximizes the performances of the algorithms in terms of low misalignment and
high convergence rate. Simulation results were presented and have shown to verify that the
analysis accurately describes the performances of the algorithms. This analysis enables a
judicious trade-off between the computational savings of partial update schemes and their

tracking performance.

In Chapter 4, a novel tap selection approach to reduce the interchannel coherence
for stereophonic acoustic echo cancellation (SAEC) was proposed. It was shown that to
reduce the degradation in convergence rate due to tap selection, the proposed M-ratio
M has to be maximized. It was noted that the MMax tap selection imposed on SAEC
adaptive algorithms will not achieve sufficient convergence performance since, due to the
high interchannel coherence, same tap-indices will be selected for both channels. As a
proof of concept, a joint optimization problem was formulated by maximizing the MMax-
criterion and minimizing the interchannel coherence under the control of tap selection.
The resultant exhaustive search technique has shown to achieve good convergence per-
formance over the fully-update NLMS algorithm when taps corresponding to tap-input
combinations having the highest M subjected to exclusivity are selected for adaptation.
The exclusive-maximum (XM) tap selection algorithm was proposed which efliciently se-
lects taps corresponding to tap-inputs maximizing M subjected to exclusivity. This XM

tap selection was extended to the NLMS, AP and RLS algorithms and when employed
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with the non-linear (NL) preprocessor, higher rates of convergence in the range of ap-
proximately 3 to 7 dB are exhibited compared to their respective algorithms employing
NL preprocessor alone. Alternatively, the distortion factor 8 for the XMNL-based algo-
rithms can be reduced to achieve the same convergence rates as algorithms that employ

the NL-preprocessor alone.

In Chapter 5, frequency-domain analysis was presented and frequency-domain al-
gorithms employing tap selection were developed. Utilizing the E-norm condition num-
ber [111}, the link between interchannel coherence and the conditioning of the two-channel
correlation matrix Ryxx was established. Employing this relationship, an insight of how
the XM tap selection reduces the interchannel coherence was presented. It was further
shown how the misalignment performances of SAEC algorithms were improved through
the better conditioning of Ryx. The measure M has been shown to reduce significantly
if subselection is employed on the frequency-domain tap-input vector hence the rate of
convergence of frequency-domain SAEC algorithms is reduced significantly. Consequently,
for the proposed frequency-domain algorithms, decisions on tap selection were based on
time-domain tap-input vectors. Two frequency-domain selective-tap algorithms were pro-
posed; one employing the 50% overlapping factor (XMNL-FLMS) and the other employing
an arbitrary overlapping factor (XMNL-FLMSa) controlled by o > 1 . Simulation results
were presented and the proposed XMNL-based algorithms were shown to achieve improved

convergence over algorithms that employ the NL preprocessor alone.

6.2 Conclusions

In this work selective-tap algorithms employing the MMax tap selection for acoustic echo
cancellation (AEC) were developed and analyzed. It has been shown, for single chan-
nel AEC, that although all taps are updated, reduced computational complexity can be
achieved in selective-tap algorithms compared to their corresponding fully updated algo-
rithms. Analysis and simulations presented have shown that selective-tap algorithms suffer
from degradation in terms of both convergence rate and steady-state misalignment under
time-varying unknown system conditions. Analytical results have shown to be accurate
to within an estimation error of approximately 0.1 to 0.2 dB compared with simulated

results hence validating the analysis presented. More importantly, it has been found that
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for the case of M = 0.5L, the degradation in performance of selective-tap algorithms is
insignificant. Specifically, this degradation is in the range of approximately 0.5 to 1 dB in
terms of steady-state misalignment for the single channel MMax-based algorithms under
time-varying unknown system conditions. This motivates the novel application of such
selective-tap algorithms using the exclusive-maximum (XM) tap selection for reducing
interchannel coherence so as to achieve good convergence performance in stereophonic
acoustic echo cancellation (SAEC). Although the main aim of such a deployment for
selective-tap algorithms was not the reduction in computational complexity as in the sin-
gle channel AEC case, reduced complexity compared to the fully updated algorithms can
nevertheless be seen. It has been shown that the overall performance increase for SAEC
in the region of 3 to 7 dB can be obtained with a computational load of 76% that of
NL-NLMS using the selective-tap XMNL-NLMS algorithm. This is due to the additional
decorrelating effect brought about by the exclusive tap selection. For the XMNL-AP and
XMNL-RLS algorithms, with approximately the same improvement in convergence rate
compared to NL-AP and NL-RLS, the reduction in computational load is approximately
75.7% and 62.5% that of the fully updated NL-AP and NL-RLS algorithms respectively.
As a consequence, such selective-tap algorithms can be applied to both single and two-

channe] system identification applications such as AEC considered in this thesis.

6.3 Future work

The convergence properties of tap selection adaptive algorithms were shown in this the-
sis. These algorithms can be applied to reduce interchannel coherence so as to achieve
good misalignment performance for adaptive algorithms. The proposed XM selective-tap
algorithms can be employed as a platform for other SAEC algorithms (time- or frequency-
domain) to enhance their convergence performances. Subband approaches employing XM

tap selection for SAEC can also be explored.

Typically, adaptive algorithms for AEC perform the role of system identification which
aim to model the receiving room’s impulse response. The use of XM tap selection algo-
rithms can also be considered for use in acoustic feedback cancellation (AFC) applications
in multi-channel closed-loop systems. Such systems have been deployed in, for example,

commercial and military applications such as medical hearing-aids and automotive cabin
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Figure 6.1: Schematic of an in-car communication system.

communications systems such as depicted in Fig. 6.1. It has been shown [16] that one of
the main problems in such closed-looped system, similar to the SAEC case, is the high
interchannel coherence between z;(n) and z2(n). It has been proposed in [16] that the
non-linear preprocessor can be employed in such applications, similar to the SAEC case.
A possible extension of this work is thus to employ the XM tap selection to further reduce
the interchannel coherence in applications where highly correlated interferers exist such as

described above.

6.4 List of publications arising directly from this thesis

¢ Book Chapter

1. P. A. Naylor and A. W. H. Khong, “Selective-tap adaptive algorithms for echo
cancellation,” in Selected Methods for Acoustic Echo and Noise Control, E.

Hinsler and G. Schmidt, ed.. Springer, to appear 2006.
¢ Journals

1. A. W. H. Khong and P. A. Naylor, “Selective-tap adaptive filtering with perfor-
mance analysis for non-stationary system identification,” IEEE Trans. Speech

Audio Processing, submitted Nov. 2005.
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3. A. W. H. Khong and P. A. Naylor, “Stereophonic acoustic echo cancellation
employing selective-tap adaptive algorithms,” IEEE Trans. Speech Audio Pro-
cessing, to appear Jul. 2006.

4. A. W. H. Khong and P. A. Naylor, “Selective-tap adaptive algorithms in the
solution of the nonuniqueness problem for stereophonic acoustic echo cancella-

tion,” IEEE Signal Processing Lett., vol. 12, no. 4, pp. 269-272, Apr. 2005.
» Conference proceedings

1. A.W.H. Khong, J. Benesty and P. A. Naylor, “Effect of interchannel coherence
on conditioning and misalignment performance for stereo acoustic echo cancel-
lation,” Proc. IEEE Int. Conf. Acoustics Speech Signal Processing (ICASSP),
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2. A. W. H. Khong and P. A. Naylor, “Frequency domain adaptive algorithms for
stereophonic acoustic echo cancellation employing tap selection,” in Proc. Int.
Workshop on Acoustic Echo and Noise Control (IWAENC), Sep. 2005, pp.
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