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Abstract 
A class of adaptive algorithms employing tap selection for acoustic echo cancellation (AEC) 

is developed and analyzed in this thesis. The starting point of this work is the MMax 

normalized least-mean-square (MMax-NLMS) algorithm where only a subset of taps are 

selected for adaptation. The MMax tap selection is extended to the affine projection (AP) 

and recursive least squares (RLS) algorithms. The performances of these algorithms are 

studied in the context of single channel AEC by developing a generalized analysis frame-

work for a wide range of algorithms including NLMS, AP, RLS and, in particular the 

MMax selective-tap algorithms. This analysis presents new insights into their tracking 

performances under both time-invariant and time-varying system conditions. 

A novel approach to reduce interchannel coherence based on tap selection for stereo-

phonic acoustic echo cancellation (SAEC) is introduced. This tap selection technique op-

timizes jointly the reduction in interchannel coherence and maximizing the "MMax-ness" 

of both channels. The reduction in interchannel coherence is achieved by an exclusive 

tap selection such that the same tap-indices may not be selected in both channels. The 

resultant exclusive-maximum (XM) tap selection is then applied to the NLMS, AP and 

RLS algorithms. 

New insights into the SAEC problem are presented by deriving the relationship be-

tween interchannel coherence and conditioning of the two-channel input autocorrelation 

matrix. Employing this relationship, this work examines how the XM tap selection re-

duces the interchannel coherence and improves the conditioning of the input autocorre-

lation matrix to achieve a fast convergence. The XM tap selection is extended to the 

frequency-domain adaptive algorithms, employing both the 50% and an arbitrary overlap-

ping factor between successive tap-input vectors. Simulation results verifying analysis and 

comparative results of the proposed algorithms will be provided in the context of single 

channel and stereophonic AEC. 
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Number of partitioned blocks for SPU-NLMS 

B Number of blocks in SPU-NLMS selected for adaptation (Chapter 2) 

k(n) 	Kalman gain for RLS 

Forgetting factor for computing Ilx(n)fl using a recursive estimate (Chapter 2) 

K 	Affine projection order 

Periodic and Sequential-LMS control parameter 

S Segmentation control parameter for Short-sort algorithm (Chapter 2) 

sn 	Noise process in modified first order Markov model (Chapter 3) 

kiu 	Square matrix with elements containing cross-spectra 

between input channels j and u 

vr, 	System mismatch vector defined as 11,, — hn 

rn—k 	Adaptation control matrix at sample iteration n — k (Chapter 3) 

0, Oa 	Algorithmic dependent constant (see Table 3.2) 

Or 	Tap-selection dependent variable in steady-state misalignment parameter 

for MMax-RLS (see Table 3.2) 
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(p(n) Scalar constant to illustrate non-unique solutions in SAEC 

c 	Control parameter to vary interchannel coherence between 

two impulse responses in SAEC 



Chapter 1 

General Introduction 

Study the past if you 

would define the future. 

Confucius (551-479 BC) 

1.1 Developments in echo cancellation 

F,  CHO is the repetition of sound caused by a delayed reflection of sound waves. In 

	 telecommunications networks, echoes prevent natural conversation when the speaker 

hears a delayed version of his utterance and since the human ear is sensitive to echo, even 

a round trip delay as short as tens of milliseconds (ms) inhibits natural conversation [1]. 

It should be noted however that not all echoes reduce voice quality. In order for phone 

conversations to sound natural, callers must be able to hear themselves speaking. For 

this reason, a short instantaneous echo known as the "side tone" is deliberately inserted, 

coupling the caller's speech from the telephone mouthpiece to the earpiece so that the 

line sounds connected. However, longer round trip delays (exceeding 30 ms) can become 

annoying. 

The telecommunications industry has sought means to reduce echo since the late 

1950s with the advent of satellite communications where delays are considerably long. A 

telephone call connected via a geostationary satellite orbiting approximately 23,000 miles 

above Earth's surface can experience a delay of approximately 500 to 600 ms [2]. Network 

21 
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echo control in these early systems were first introduced in the form of echo-suppression 

devices for two- to four-wire hybrids [3] where a impedance mismatch causes received 

speech signal to be transmitted back to the source with a delay thus perceiving as echo. 

These echo suppressors were essentially voice-actuated switches which transmit signals 

and were subsequently turned off to suppress any returning echo signal. The main prob-

lem with these systems was that they only allow half-duplex communications. Network 

echo control underwent an evolutionary change in the early 1960s when echo cancellation 

theory was formally developed by AT&T Bell Labs [4] [5]. These systems utilized adap-

tive signal processing and reduced the echo by synthesizing an echo replica. Although a 

blockless echo suppressor [6] was proposed by generating the echo replica using an impulse 

generator, the adaptive echo canceller [1] [5] remains highly effective since the echo path 

is time-varying in practical implementations. Although experimental versions of echo can-

cellers were built and successfully tested, they were unfortunately too large and expensive 

for commercial service. With the advent of very-large-scale-integrated (VLSI) technol-

ogy in the early 1970s, the first twelve-channel digital VLSI network echo canceller was 

implemented in 1978 [7] [8]. 

The challenge of providing hands-free telephone conversations has been recognized 

since the early 1970s [9]. With the development of hands-free tele-conferencing and in-car 

systems, acoustic coupling between the loudspeaker and microphone inhibits natural com-

munication between users. Although many techniques were proposed including the use 

of frequency shifting, comb filters and center clipping to solve the acoustic echo cancella-

tion (AEC) problem, one of the most efficient implementation was the extension of network 

echo cancellation adaptive algorithms [10]. Using the loudspeaker-enclosure-microphone 

(LEM) model [10], the concept of a feasible solution to the AEC problem employing an 

adaptive filtering algorithm is that if it is possible to provide a replica of the receiving 

room's impulse response, then decoupling of the loudspeaker and the microphone can be 

achieved. 

Although direct application of network echo cancellation algorithms can be applied 

to AEC, the differences between the network and acoustic echo paths call for intensive 
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research for the latter application. The difficulties associated with the AEC problem result 

from two major factors: (i) the reverberation time of an office or a living room can be several 

hundred milliseconds long and (ii) the transfer characteristics of LEMs are sensitive to, for 

example, any movements of people or changes in the placement of furniture. The degree of 

acoustic echo cancellation depends on the closeness in approximation of the LEMs by its 

replica implemented using a linear filter whose primary objective is to model an impulse 

response dynamically. In a typical office or living room which exhibits reverberation time 

in the order of 50 to 300 ms [11], this translates to adapting 400 to 2400 filter coefficients at 

8 kHz sampling frequency. In addition, room impulse responses are sensitive to movements 

of people and variations in temperature or pressure. A slight change of furniture setting, 

for example, can cause decoupling performance to degrade by approximately 15 dB for 

example cases shown in [12]. For this reason, adaptive filters are utilized to track and 

compensate any changes in the receiving room impulse responses. 

The computational complexity of adaptive algorithms needs to be considered for ef-

ficient implementation. Assuming a sampling rate of 8 kHz and for a transversal filter 

length of, for example, 1024 coefficients (128 ms), approximately 8.192 million multiplica-

tions and the same number of additions per second are necessary to perform filtering. The 

need to reduce computational complexity is hence an important issue and as a consequence, 

a significant focus in AEC research has been to reduce the computational complexity of 

adaptive algorithms for applications requiring such high density or low cost. A result of 

this work is a class of partial update adaptive filtering algorithms that share the char-

acteristic of executing tap update operations on only a subset of the filter coefficients at 

each iteration. With the reduction in complexity due to partial adaptation, it is normal 

to expect a degradation in performance of such algorithms. Hence, the challenge of re-

searchers in this field is to develop tap selection schemes which reduces this degradation 

in performance. 

More recently, modern applications such as multiparty room-to-room teleconferenc-

ing, multimedia desktop conferencing and interactive video online gaming call for more 

life-like multichannel sound transmission. One of the first two-channel hands-free stereo- 
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phonic conferencing system was implemented and tested in [13] where an echo suppressor, 

comprising of a comparator and logic controller, permits half-duplex stereophonic trans-

mission. It was found that with stereophonic sound, speech intelligibility was enhanced 

and the ability for users to localize multiple far-end speakers was increased significantly 

hence reducing the "cocktail" party problem and enhancing tele-presence to users. With 

the introduction of such stereophonic systems, the need for stereophonic acoustic echo 

cancellation (SAEC) is inevitable. Although SAEC can be seen as a direct extension of 

the single channel AEC case, the SAEC problem is far more challenging as conventional 

single channel adaptive algorithms deployed for such an application suffer from non-unique 

solutions [14]. 

1.2 Research aim and thesis structure 

The design of a hands-free system comprises issues such as adaptive step-size control, 

double talk detection and echo suppression [15] [16] [17]. Integrated systems such as the 

use of echo cancellation and noise reduction algorithms for AEC have also been considered 

in [16] [18]. The aim of this research work, however, is the development and analysis 

of adaptive algorithms employing tap selection for both single channel and stereophonic 

AEC in hands-free systems. As will be presented in this thesis, the concept of selective-tap 

algorithms is derived from that of partial update algorithms such that the former update all 

filter coefficients at each sample iteration although, as will be shown, their computational 

complexities are still lower than that of conventional (fully updating) adaptive algorithms. 

This thesis is organized as follows: In Chapter 2, both the conventional and partial 

updating adaptive algorithms for the single channel AEC application are reviewed. Partial 

update algorithms built on the least-mean-square (LMS) and normalized-LMS (NLMS) 

algorithms such as the Periodic-LMS [19], Sequential-LMS [19], Selective-partial-updating 

NLMS (SPU-NLMS) [20] and MMax-NLMS [21] algorithms are reviewed and their per-

formances are compared through simulation examples. The affine-projection (AP) and 

recursive least squares (RLS) algorithms employing MMax tap selection are developed 

with focus on the derivation of the MMax-RLS algorithm from a least-squares criterion. 
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The performances of the proposed MMax-AP and MMax-RLS are compared through sim-

ulation examples. 

In Chapter 3, the steady-state misalignment of adaptive algorithms under time-

varying unknown system conditions is analyzed. A general framework is developed such 

that the steady-state analysis can be applied to both the conventional (LMS, NLMS, AP 

and RLS) algorithms and their MMax variants. The aim of this analysis is to provide an 

insight of how the performances of such adaptive algorithms, in particular those employ-

ing MMax tap selection, are affected by conditions such as the degree of variation of the 

unknown system and the number of filter coefficients used for adaptation in single channel 

AEC. The proposed framework is presented and extensive formulations and discussions 

will be provided for each adaptive algorithm. Simulation results are provided to compare 

theoretical and experimental performances of each algorithm. 

A novel application of selective-tap algorithms is the stereophonic acoustic echo can-

cellation (SAEC) problem as presented in Chapter 4. The main aim of employing selective-

tap algorithms in SAEC is not to address the complexity reduction issue as for the single 

channel AEC case described in Chapters 2 and 3. Instead selective-tap algorithms are pro-

posed for reducing the interchannel coherence so as to improve convergence performances 

of adaptive algorithms for SAEC. The motivation and aim of Chapter 4 is to develop a 

tap selection scheme for effective reduction in interchannel coherence whilst minimizing 

the degradation in convergence performance due to tap selection. As a proof of concept, 

an exhaustive search technique is presented to provide an insight of how tap selection can 

perform a reduction in interchannel coherence hence improving the rate of convergence 

of conventional adaptive algorithms for SAEC application. For effective implementation, 

an efficient tap selection algorithm known as the exclusive-maximum (XM) tap selection 

is proposed. As will be explained, the XM tap selection optimizes jointly the reduction 

in interchannel coherence and maximizing the "MMax-ness" of the selected taps so as to 

reduce the degradation in convergence performance of the proposed algorithms due to tap 

selection. Simulation results are presented to compare the improvement in convergence of 

the proposed algorithms over conventional algorithms without tap selection. 
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In Chapter 5, frequency-domain adaptive algorithms, in particular the fast-

LMS (FLMS) algorithm [22] and the multi-delay filtering (MDF) structure [23] are re-

viewed. Following the approach as presented in [11], a general derivation of such adaptive 

algorithms in the frequency-domain is reviewed. The use of frequency-domain quantities 

allow the formulation of an explicit link between the interchannel coherence and the con-

ditioning of the input autocorrelation matrix in SAEC. This relationship gives an insight 

of how interchannel coherence affects the conditioning of the input autocorrelation matrix 

which in turn degrades the misalignment performances of adaptive algorithms in SAEC. 

In addition, this relationship explains how interchannel coherence is reduced by the XM 

tap selection which consequently gives good convergence performances of the XM-based 

algorithms. Cases of tap selection, which can be achieved by subselecting tap-input vectors 

in time- or frequency-domain, are analyzed and their implications to the performances of 

frequency-domain algorithms employing tap selection are also discussed. Extensions of the 

XM tap selection to frequency-domain adaptive filtering are presented by considering both 

the 50% and an arbitrary overlapping factor between successive tap-input vectors. Simu-

lation results are presented to verify theoretical analysis and to evaluate the performances 

of algorithms being developed. 

1.3 	Statement of originality, contributions and related pub- 

lications 

As far as the author is aware, the following aspects of this thesis are believed to be original 

and key contributions: 

1. The extension of MMax tap selection [21] to the affine projection (AP) algorithm and 

the development of MMax-RLS from least-squares criterion as depicted in Chapter 2. 

The publication related to this contribution is [24]. 

2. A generalized framework for steady-state misalignment analysis which was proposed 

for a class of adaptive filtering algorithms (NLMS, AP and RLS) and their MMax-

variants under both non-stationary and stationary unknown system conditions in 
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single channel AEC as discussed in Chapter 3. Publications related to this contri-

bution are [24] [25]. 

3. The quantification of the closeness of a MMax subselected tap-input vector to that of 

a fully populated tap-input vector using the M-ratio measure M. This ratio served as 

an optimization parameter for reducing the degradation in convergence performance 

due to tap selection in SAEC as discussed in Chapter 4. Key publications related to 

the M-ratio measure are [26] [27]. 

4. The development of a class of exclusive-maximum (XM) adaptive algorithms for 

SAEC application which, as a proof of concept, is derived from an exhaustive search 

technique, as depicted in Chapter 4. Publications related to this contribution are [28] 

[29] [30] [26] [27]. 

5. An analytical verification of how maximization of the M-ratio M subjected to an 

exclusive tap selection constraint for both channels in SAEC is achieved by the XM 

tap selection is provided in Chapter 4. This verification has also been presented 

in [26]. 

6. Derivation of the link between interchannel coherence and the condition number of 

the two-channel input autocorrelation matrix as described in Chapter 5. This link 

allows one to explain the reduction in interchannel coherence and the improvement in 

conditioning of the input autocorrelation matrix due to XM tap selection in SAEC. 

This contribution has resulted in publications [31] [32]. 

7. Discussions on the subselection of tap-input vectors in time- and frequency-domain 

and their implications on performances of frequency-domain algorithms employing 

tap selection as presented in Chapter 5. 

8. Development of frequency-domain XM algorithms for SAEC employing both the 50% 

and an arbitrary overlapping factor between successive tap-input vectors depicted in 

Chapter 5. The publication related to this contribution includes [32]. 
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As this thesis is regarding the application of selective-tap algorithms for AEC application, 

the author has chosen not to include the following contribution in this thesis: 

1. Development of the improved-proportionate multi-delay block adaptive filtering al-

gorithm for network echo cancellation. This contribution has resulted in publica-

tion [33]. 

2. Development of adaptive algorithms for blind channel acoustic system identification 

based on work presented in [33]. 



Chapter 2 

Algorithms Employing Tap 

Selection in Single Channel 

Acoustic Echo Cancellation 

The beginning of knowledge is the discovery 

of something we do not understand. 

Frank Herbert (1920-1986) 

2.1 Introduction 

HANDS-FREE terminals have become increasingly popular due to the advent of 

video and desktop conferencing. The increase in popularity of in-car hands-free 

telephony due to the rising safety concern further calls for the need of hands-free systems. 

Whilst the introduction of hands-free telephony has brought about convenience and safety, 

the key issue of acoustic echo cancellation (AEC) needs to be addressed. In order for 

effective echo cancellation, a replica of the echo is generated by means of modelling the 

receiving room's impulse response using an adaptive filter. Implementation of an acoustic 

echo canceller poses great challenges due to (i) the long duration of the unknown echo path 

response, which can require several thousands of filter coefficients for accurate modelling, 

(ii) the highly time-varying nature of the echo response, and (iii) the need to train the 

29 
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echo canceller using speech signal, which is coloured and statistically non-stationary. 

As discussed in Section 1.1, a typical room impulse response in the region of 50 

to 300 ms requires an adaptive filter of length 400 to 2400 at 8 kHz sampling frequency. 

The motivation for the introduction of selective-tap adaptive algorithms can be explained 

by considering the high computational load of adaptive algorithms. The normalized least-

mean-square (NLMS) algorithm [34] [35] for an adaptive filter of length L requires approx-

imately 2L multiply-accumulate (MAC) operations per sampling period of the signal. In 

the past, this rate of operation was considered high for typical telecommunications end-user 

equipment and researchers were therefore motivated to seek techniques that could reduce 

the computational complexity of adaptation without significantly degrading effectiveness 

in terms of its convergence rate or final misadjustment. More recently, the computational 

capability of low-cost processing hardware has increased very rapidly so that a typical 

NLMS implementation would not be seen as a heavy computational demand. However, 

new pressures on product design have emerged - the increase of user mobility imposes a re-

quirement of low power consumption for portable battery powered equipment; the growth 

of telecommunications usage imposes a requirement of high density implementation for 

infrastructure equipment so that the number of simultaneous echo cancellers of given tap 

length that can be run within a specified MIP-budget (millions of instructions per sec-

ond) is maximized. Both these requirements renew the motivation for low computational 

complexity, even with today Ss high speed processors. Consequently, significant focus for 

adaptive filter research in recent years has been to reduce the computational complexity 

of tap updates per iteration for applications requiring such high density or low cost. 

Although an exhaustive review of complexity reduction techniques is beyond the scope 

of this chapter, several computational complexity reduction techniques have been identi-

fied. The use of post-filtering techniques is proposed as one of the methods to reduce 

the computational workload of processor chips. These techniques employ a conventional 

acoustic echo canceller of reduced length which models the direct path and the early re-

flections of the room impulse response, while the post-filter attenuates the residual echo 

corresponding to the late reverberation. In [36], the post-filtering is implemented using a 
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second adaptive filter and the combined system achieves a high echo attenuation even in 

the presence of high noise levels. It is found that this combined filtering approach requires 

approximately 1000 filter coefficients less in order to achieve comparable echo attenuation 

as that of a conventional echo canceller. The use of Wiener filtering and noise reduction 

techniques in place of an adaptive post-filter proposed in [37] further improve echo attenu-

ation. It is noted that during double-talk, the attenuation performance increases with the 

post-filter length especially for lower frequencies (<1 kHz) where the echo and near-end in-

put signal spectra are similar in terms of magnitude. The use of post-filtering and step-size 

control jointly has also been considered in [17]. The use of a frequency domain postfilter 

for background noise reduction and residual echo cancellation has been considered in [38]. 

Subband adaptive filtering (SAF) has been introduced in AEC to achieve complexity 

reduction whilst achieving an improved rate of convergence compared to full-band struc-

tures. In SAF, input signals are first partitioned into subbands and down-sampled using an 

analysis filter bank [39]. Consequently, adaptation with the down-sampled signals requires 

a lower complexity proportional to the down-sampling factor. Furthermore, in addition to 

the reduced spectral dynamic range, each subband may be adapted using different step-

sizes matched to the energy of the input signal in that band hence achieving improved 

convergence [40]. The error signal of each subband is synthesized and up-sampled by the 

synthesis filter bank before being transmitted to the far-end. It should be noted that the 

gain in reducing processing power due to down-sampling far outweighs the overhead intro-

duced by the analysis and synthesis filter banks. In [41] the authors formulated a modified 

subband structure where the error signals are computed in subbands while the adaptive 

filter coefficients are being updated in the full-band domain. Furthermore, utilizing the 

principle of minimal disturbance [35], the proposed algorithm achieves improved rate of 

convergence over the NLMS algorithm although a modest increase in computational com-

plexity is required. To address the delay introduced by the analysis filter bank, several 

delayless SAF algorithms such as [42] [43] have been developed. 

In recent years, partial update adaptive algorithms are proposed as an alternative form 

of complexity reduction of, in particular, the NLMS algorithm by updating only a subset of 
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filter coefficients at each sample iteration. These techniques allow implementation of single 

channel AEC with performance close to that of the conventional (fully updated) NLMS 

algorithm. One of the most recent tap selection schemes is the MMax tap selection [211 

which, when applied to NLMS, is denoted as the MMax-NLMS algorithm. The aim of 

this chapter is to develop a class of MMax selective-tap algorithms for single channel 

AEC application. As will be seen in Chapter 4, these algorithms form the basis for the 

development of stereophonic acoustic echo cancellation (SAEC) selective-tap algorithms. 

This chapter is organized as follows: Section 2.2 presents a brief overview of the AEC 

problem which, in addition, introduces notations for use in this thesis. Two well-known 

performance measures for single channel AEC are explained and the explicit link between 

the two is shown in Section 2.3. Partial update adaptive algorithms and in particular 

the MMax-NLMS algorithm are reviewed in Section 2.5. A class of algorithms employing 

MMax tap selection is formulated by extending the MMax to the affine projection (AP) 

and recursive least squares (RLS) algorithms in Sections 2.6.1 and 2.6.2 respectively. The 

computational complexity of the proposed algorithms are discussed in Section 2.7 while 

simulation results comparing their performances are presented in Section 2.8. 

2.2 The single channel acoustic echo cancellation problem 

In hands-free systems, such as in-car telephony or tele-conferencing systems, the source of 

acoustic echo originates mainly from the acoustic coupling as well as possibly mechanical 

coupling between the microphone and loudspeaker. In this section, the single channel AEC 

problem is described and the NLMS algorithm is derived to address this problem. 

2.2.1 Problem definition 

Figure 2.1 shows a schematic diagram describing a typical single channel AEC system. 

A transmission room is depicted on the right where a microphone picks up time-varying 

signal x(n) from a speech source via acoustic path 

g(n) = [go(n) gi(n) 	gL,_1(n)]T 	 (2.1) 
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Figure 2.1: Schematic diagram of single channel acoustic echo cancellation. 

which is the source to microphone impulse response in the transmission room and LT is the 

length of g(n) while the superscript T  is the transposition operator. The input signal x(n) 

is then transmitted to the loudspeaker in the receiving room depicted on the left which in 

turn is acoustically coupled to the receiving room's microphone via impulse response 

h(n) = [ho(n) hi(n) ... hi,,,_1(n)]T  , 	 (2.2) 

where LR is the length of h(n). Defining uncorrelated background noise and near-end 

(receiving room) speech as w(n) and sR(n) respectively, the received microphone signal 

y(n) is then given by 

y(n) = hT(n)x(n) + w(n) + sR(n) , 	 (2.3) 

where 

x(n) = [x(n) x(n — 1) ... x(n — L + 1)]T 	 (2.4) 

is the tap-input vector and L is the length of the adaptive filter. As will be explained in 

Section 2.2.2, the length of the adaptive filter is assumed to be the same as that of the 

unknown impulse response, i.e., L = LR. The background noise w(n) is assumed to be 
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zero mean and uncorrelated with x(n). 

If no echo canceller is present, the received signal y(n), which contains a component 

of x(n) given by (2.3), is transmitted back to the source with a delay and an attenuation, 

therefore impeding effective communication. Thus, an adaptive filter at the receiving end 

functions as an acoustic echo canceller by estimating receiving room's impulse response 

h(n) using filter coefficients h(n) where 

= riio(n) )11(n) 	iiL-1(n)1 
	

(2.5) 

The output of the echo canceller y(n) is subtracted from received signal y(n) obtaining an 

a posteriori error signal ep(n) given by 

ep(n) = y(n) — y(n) 

y(n) — 17(n)x(n) 

{hT  (n) — hT (n)] x(n) + w(n) + sR  (n) . 	 (2.6) 

Thus for effective echo cancellation, the adaptive filter aims to model the receiving room's 

impulse response such that when h(n) h(n), the component x(n) in ep(n) is significantly 

small. Note that the a posteriori error ep(n) as defined in (2.6) is computed after the 

adaptive filter coefficients have been updated. In contrast, the a priori error 

e(n) = y(n) — fiT(n — 1)x(n) 	 (2.7) 

is computed using the previous impulse response estimate h(n — 1). 

2.2.2 Assumptions 

For simplicity and mathematical tractability, unless otherwise stated, the following are 

assumed in this thesis: 

1. The length of the adaptive filter h(n) is the same as that of the receiving room's 

impulse response h(n), i.e., L = LR; 
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2. Receiving room source signal sR(n) = 0 when input x(n) 0, Vn, i.e., no double-talk 

is present; 

3. A finite impulse response (FIR) filter configuration is used. 

Assumption (1) allows one to simplify mathematical derivations. In the realistic 

under-modelling case, where the length of the adaptive filter L is less than that of the 

receiving room's impulse response LR , the adaptive filter must be of considerable length 

in order to achieve a good misalignment performance. As will be discussed in Section 2.7, 

the computational complexity of an adaptive algorithm increases monotonically with the 

length of the adaptive filter L. Consequently, current implementation considerations re-

quire a balance between the need for good misalignment performance and low computa-

tional complexity. In such practical implementations where L < LR , the best achievable 

steady-state normalized misalignment in the absence of noise, is limited by the energies of 

the impulse response tail not modelled by the adaptive filter. This normalized misalign-

ment can be expressed as [39] [44] 

10 logio 	
— h(n)I12] 

= 10 logio  L114(n)/11h(n)lid  dB 
iih(n)H 

(2.8) 

where II • HZ is defined as the squared /2-norm operator and the estimated impulse re-

sponse h(n) is appended with LR  — L zeros. Consequently, the performance in terms of 

normalized misalignment for an under-modelling case with L < LR will be lower than that 

of a perfect modelling case with L = LR. 

In most conversations, double-talk situations may arise when near-end speech signal 

sR(n) 0 0 at the receiving room while x(n) 0 0. Under such situations, sR(n) may be 

perceived as a high level noise source which causes the adaptive filter to diverge and, as 

a result, annoying audible echo will be transmitted to the far-end source. This problem 

can be alleviated by employing a double-talk detector (DTD) such that once double-talk 

is detected, the adaptive filter coefficients are "frozen" and prohibited from adapting [45]. 

One of the earliest form of DTD algorithm for network echo cancellation is the Geigel 

algorithm where the adaptive filters are prohibited from adapting [7] if received signal 
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y(n) is greater than half of the maximum element in lx(n)i where 

Ix(n)I 	[1x(n)1 Ix(n — 1)1 . . lx(n — L 	1)I]r 
	

(2.9) 

For AEC application however, a variable threshold has to be implemented due to the dy-

namic nature of the acoustic echo path [46]. Other DTD algorithms have been proposed 

for AEC including the cross-correlation [47] and the normalized cross-correlation meth-

ods [48]. Using an objective measure, it has been noted in [46] that for AEC application, 

the normalized cross-correlation method achieves the best performance compared to the 

Geigel algorithm and the cross-correlation technique. The performance recommendation 

of hands-free terminals in the presence of double talk is described in [49]. In this thesis, As-

sumption (2) is assumed and as such, the algorithm in study converges to its steady-state 

in the absence of double-talk. 

Many physical systems can be well described by difference equations involving both 

the input and output. Hence linear time-invariant (LTI) infinite impulse response (IIR) 

models are commonly expected to possess better modelling capabilities than their finite 

impulse response (FIR) counterpart. However, it has been found that an IIR filter config-

uration does not show an advantage over an FIR configuration for AEC [44]. Due to the 

inherent stability of an FIR filter, the use of an FIR filter in Assumption (3) is assumed 

throughout this thesis. 

2.3 Performance measure 

2.3.1 Echo return loss enhancement 

The echo return loss enhancement (ERLE) specified by the International Telecommuni-

cations Union (ITU) [50] measures the attenuation of the echo signals in an AEC system 

and is defined as 

	

y
2 	(n)  
2 

ERLE (n) = 10 log10 	' dB . e 

(7.0 
(2.10) 
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It is usually applied to short frames of the signals and is often known as the segmented-

ERLE. It can be seen that a higher ERLE corresponds to higher reduction in echo. The 

ITU-T G.167 recommendation for single channel acoustic echo controllers recommends an 

initial convergence rate of 20 dB per second [51], 

2.3.2 Normalized misalignment 

One of the most common performance measure is the mean-square deviation (MSD) [35] 

defined as .E{ II h(n) — 171(7)1131 where E{.} is the mathematical expectation operator. The 

instantaneous measure II h(n) — ii(n)fl is commonly known as the misalignment such that 

when normalized with the energy of the unknown impulse response h(n), it is known as 

the normalized misalignment given by 

ll h(n) — fl(n)112  n(n) = 10 logm 	 2  dB . 
iih(n)fl 

(2.11) 

Hence the normalized misalignment measures the closeness of the estimated impulse re-

sponse to that of the unknown impulse response and is particulary useful to study the 

tracking capability of adaptive algorithms. It should be noted that since the impulse re-

sponse h(n) is unknown for practical systems, this measure is applicable only for synthetic 

simulations in which h(n) is known. 

2.3.3 Relationship between normalized misalignment and error in single 

channel AEC 

Assuming a time-invariant unknown impulse response h, the normalized misalignment n(n) 

can be expressed in terms of the a priori error e(n) for a zero mean white Gaussian 

noise (WGN) input sequence by first defining the system mismatch vector 

v(n) = h(n) — h 	 (2.12) 
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from which the squared a priori error, defined in (2.7) can be expressed as 

e2(n) = [w(n) — xT  (n)v(n — 1)] [w(n) — vT  (n 1)x(n)] , 	(2.13) 

where w(n) is the uncorrelated noise as shown in Fig. 2.1. Defining EH as the mathemat-

ical expectation operator, it is noted that for large n, the system mismatch autocorrelation 

matrix 

Rv 	= E{v(n)vT  (n)} 

E {v(n — 1)vT  (n — 1)} , 	 (2.14) 

since after convergence, v(n) v(n — 1). Letting the input autocorrelation matrix be 

RXX = E{x(n)xT(n)} 

0I = 	IL x  L (2.15) 

where c4 and ILx L are the variance of x(n) and the L x L identity matrix respec-

tively, E{e2(n)} can then be expressed using (2.13) as 

E{e2(n)} = E{tr{vT(n — 1)x(n)xT  (n)v(n — 1)}} + E{w2(n)} 

E{ (n) — E{w2(n)} = E{tr{vT(n — 1)Rxxv(n, — 1)}} 

E{tr{vT(n — 1)R„„v(n 1)}} 

E{tr{v(n — 1)vT(n — 1)11.0} 

tr{RvRx.} 

aitr{R,} , 	 (2.16) 

where tr{•} is defined as the trace operator and the fourth equality follows from the trace 

identity tr{AB} = tr{BA}. Using (2.12) and (2.16), the normalized misalignment 77(n) 
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can be expressed as 

n(n) = 1010g10 [tr{Rv}illhA 

= 10logio E{e2(n)}- E{w2(n)}1  • 
411h112 

(2.17) 

It should be noted, from (2.3) and (2.7), that the a priori error e(n) is lower bounded 

by the uncorrelated measurement noise w(n). From (2.12) and (2.13), it can be seen that 

for small e2 (n), h(n) —+ h hence giving a low normalized misalignment TIN in (2.17) and 

a high ERLE in (2.10). It is important to note that for the stereophonic case, as will 

be discussed in Chapter 4, the condition e2(n) ---> 0 for a noiseless case w(n) = 0 does 

not necessarily imply 13(n) 	h. On the contrary, solutions for the estimated impulse 

response h(n) under the condition e2 (n) 	0 are non-unique [52] and depend on both the 

transmission and receiving rooms' impulse responses. Since the objective of the adaptive 

filter is to model the receiving room's impulse response h, the normalized misalignment 

q(n) is more applicable for single channel and stereophonic AEC and as a consequence, 

in a similar manner to published works, the normalized misalignment ri(n) is employed as 

the performance measure in this thesis. 

2.4 The LMS and NLMS algorithms 

The normalized least-mean-square (NLMS) algorithm [34] [35] [53] is an iterative formu-

lation which solves the Wiener-Hopf equations recursively by employing the method of 

steepest descent. Exploiting the mean ergodic property [54] [55], filter coefficients are 

driven recursively such that as time progresses, they approach the optimal Wiener so-

lution. In this section, the Wiener-Hopf equations are derived and how the method of 

steepest descent can be applied to form the NLMS algorithm for AEC application is dis-

cussed. As will be seen in Sections 2.5 and 5.3.3, this derivation will form the basis of 

selective-tap and frequency-domain adaptive filtering algorithms. Without the loss of gen-

erality, a noiseless case w(n) = 0 is assumed in this section. The case where w(n) 0 will 

be considered in Chapter 3 for the purpose of algorithmic analysis under noisy conditions. 
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In addition, for mathematical tractability, input signal x(n) is assumed to be zero mean 

white Gaussian noise (WGN) with variance o-x2 . 

The a posteriori cost function Jp is defined as the mean square error given by 

E{Iep(n)12 } 

= E{4(n)} , 	 (2.18) 

where the a posteriori error e p(n), as defined in (2.6), is a real quantity for AEC applica-

tion. For the cost function to attain its minimum value, all elements of the gradient vector 

Vjp  must be simultaneously equal to zero, 

V it7p 	0 , i = 0,1, . , L — 1 , 	 (2.19) 

where ViJp  = E{aep2(n)/ahi(n)}. Defining ePt(n) as the error operating under the 

optimal condition ViJp  =b, it can be shown using (2.6) that 

.E{ OPt (n)x(n — i)} = 0 , 	 (2.20) 

for i = 0,1, 	, L — 1. Equation (2.20) is known as the principle of orthogonality which 

states that at each sample iteration, the minimum error ePt (n) is orthogonal to each 

input sample [35]. To obtain the optimal solution flopt such that the cost function is 

minimized, (2.6) is substituted into (2.20) and using a temporary variable k, it can be 

shown that 

L-1 
E 	— E 	x(ri — k)] x(n — i)} = 0 

k=0 
L-i 
ET4),PtE{x(n- k)x(n — i)} = E{x(n — i)y(n)} , 	(2.21) 
k=0 

for i = 0, 1, . , L — 1. Having assumed x(n) and y(n) to be statistically invariant, the 

input autocorrelation matrix can be expressed as 

11,„„ = E{x(n)xT(n)} , 	 (2.22) 
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while the cross-correlation between the tap-inputs of the filter and the desired response is 

expressed as 

(13  xy = E{x(n)y(n)} . 	 (2.23) 

Using (2.21), the Wiener-Hopf equations [35] may be obtained as 

= R;x1 	. 	 (2.24) 

The method of steepest descent [35] is a well-known optimization technique such that 

when applied to the Wiener filter, it allows tracking of time variations without having to 

invert Rxx  in (2.24). The basic concept of the method of steepest descent is that from 

an arbitrary starting point on the error performance surface, a small step is taken in the 

direction where the cost function decreases fastest. The filter coefficients thus progress 

towards the minimum point on the error performance surface as the number of iterations 

increases. For a simple illustrative case of L = 2, the error performance surface forms a 

paraboloid with a curvature determined by the eigenvalues of input autocorrelation matrix 

Rxx . Letting ,a be adaptation step-size, the recursive tap update equation is described 

by [34] [35], 

h(n) = 1:1(n — 1) — itV,.7(n) , 	 (2.25) 

where 

	

J(n) = E{e2(n)} 	 (2.26) 

is the a priori error cost function and e(n) is the a priori error defined in (2.7). The 

gradient '7,7(n) can be simplified using (2.7) for i = 0, 1, . . . , L — 1, giving 

ahi(n) 
= —243xy  2Rxxii(n — 1) . 	 (2.27) 

Substituting (2.27) into (2.25) and using (2.7), the recursive tap updating equation is given 
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by 

11(n) -, 

p. 

= 

1-: -(n - 1) + 2p, 

CI _(n - 1) + 2// 

ii(n - 1) + 2µx(n) 

iri(n - 1) + 2µx(n)e(n) 

[15cy 

[E { x(n)y(n) 

— R„„fi.(n - 1)] 

1 - E{x(n)xT  

[y(n) - xT(n)ii(n - 1)] 

. 

(n) 111(n - 1)] 

(2.28) 

Note that, following the approach in [35], E{x(n)xT(n)} and .E{ x(n)y(n)} are approxi-

mated by an instantaneous estimate. Defining Ximax  as the maximum eigenvalue of Rxx, 

the adaptive step-size 0 < p, < 1/Amax serves as a control for adaptation speed [35]. It is 

further shown [56] [57] that under the condition 0 < p < 1/tr{Rxx}, the filter coefficients 

hover randomly about the Wiener solution. As will be shown through mathematical analy-

sis in Chapter 3, a high value of p, will increase the rate of convergence but at the expense 

of steady-state misalignment. Equation (2.28) is also known as the least-mean-square 

(LMS) update equation' [59]. 

The normalized LMS (NLMS) algorithm is derived based on the principle of minimal 

disturbance [35] which minimizes the squared 12-norm of the change in filter coefficients 

from one iteration to the next given by 

111;(n) - fi(n - 1)112 
	 (2.29) 

subject to the constraint of 

11-7(n)x(n) = y(n) . 	 (2.30) 

Applying the Lagrange multipliers and following similar approach to [35], the NLMS up-

date equation is given by 

h(n) = 1-1(n - 1) + 2µ 	
x(n)e(n)  

Ilx(n) H + 6NLMS 
(2.31) 

where SNLms is the regularization parameter which ensures stability during initialization 

1For readers' interests, Dr. B. Widrow's personal view on the discovery of the LMS algorithm can be 
found in [58]. 
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when x(0) = 0Lx i is a null vector of dimension L x 1. 

2.5 Partial update adaptive algorithms 

Adaptive filters with finite impulse response (FIR) are now widely used in many appli-

cations of signal processing in general and telecommunications in particular. The least-

mean-square (LMS) algorithm and its normalized version (NLMS) [35] as described in 

Section 2.4 are the most common in practice because of their straightforward implemen-

tation and relatively low complexity compared to the better performing but substantially 

more complex least squares algorithms. The NLMS algorithm [35] requires approximately 

2L multiply-accumulate (MAC) operations per sampling period of the signal and as dis-

cussed in Section 2.1, a significant focus in recent years has been to reduce the computa-

tional complexity of tap updates per iteration for applications requiring high density or 

low cost. A result of this work is a class of partial update adaptive filtering algorithms 

that share the characteristic of executing tap update operations on only a subset of the 

filter coefficients at each iteration. It is normal to expect that as the number of coef-

ficients updated per iteration is reduced, the computational complexity is also reduced 

but at the expense of some loss in performance. Hence the goal of the designers of such 

partial update algorithms is to find ways to reduce the number of coefficients updated per 

iteration in a manner which degrades algorithm performance as little as possible. In this 

section, an overview of existing partial update algorithms is presented. As will be seen, 

these partial update algorithms can be broadly classified into (input) data-independent or 

data-dependent algorithms. 

2.5.1 The Periodic-LMS and Sequential-LMS algorithms 

The Periodic-LMS and Sequential-LMS algorithms [19] perform tap selection in a data-

independent manner. In the Periodic-LMS algorithm, reduction in computation is achieved 

at each sample iteration n by updating filter coefficients periodically using the N 	fit 

instantaneous gradient estimate where H is defined as the truncation operator and N E 

{1,2, 	, L}. In addition, only taps satisfying the condition (n + i) mod N = 0 for tap 
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indices i = 0, 1, 	, L — 1 are updated at sample index n. Combining these two features 

and defining a L x L diagonal tap selection control matrix 

Q(n) 	= 	diag{q(n)}  

q0(n) 	0 	• • 	0 

0 	(n) 
(2.32) 

0 

0 0 	(n) 
LxL 

the Periodic-LMS update can be expressed as 

I1(n) = 	— 1) 	2pQ(n)x(/)e(/) , (2.33) 

for l = N Ln/N] . The tap selection elements for i = 0, 1, . . . , L — 1 are given as 

qi(n) = 

1 

 1, 	if (n + i) mod Ar = 0 , 
(2.34) 

0, 	otherwise , 

while the a priori error e(l) is expressed as 

e(l) = y(/) — xT(/)13(/ — 1) . (2.35) 

It can be seen that at each sample iteration, L/J1/ filter coefficients are updated such 

that after N iterations all the filter coefficients have been updated once. For ./V = 1, 

Periodic-LMS is equivalent to the LMS algorithm. 

In contrast to Periodic-LMS, the Sequential-LMS algorithm [19] employs an instanta-

neous gradient estimate at each sample iteration for adaptation while only filter coefficients 

satisfying the condition (n — i + 1) mod Af = 0 are updated. The Sequential-LMS update 

is expressed as 

h(n) = ii(n — 1) + 2/Q(n)x(n)e(n) , 	 (2.36) 

where the diagonal tap selection control elements in Q(n) are now given, for i 
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0,1, ... , L — 1, as 

1, if (n — i + 1) mod Al = 0 , 
4i(n) = 

	

	 (2.37) 
0, otherwise . 

Similar to Periodic-LMS, for N = 1, the Sequential-LMS algorithm reduces to the LMS al-

gorithm. The computational complexity in terms of the number of multiplications required 

per sample iteration for the Periodic-LMS and Sequential-LMS algorithms are (2L +2)1.1V 

and L(1 + 1/N-) + 1 respectively compared to 2L for the LMS algorithm. 

Applying the principle of minimal disturbance [35] as described in Section 2.4, the 

Periodic-LMS and Sequential-LMS algorithms can be normalized following the same ap-

proach used in NLMS. Performance comparison for the resulting Periodic-NLMS and 

Sequential-NLMS algorithms will be described in Section 2.8. The Periodic-NLMS and 

Sequential-NLMS algorithms are summarized in Table 2.2 and Table 2.3 of Section 2.10.1 

respectively. 

2.5.2 The Selective-partial-update NLMS algorithm 

As with the Periodic-LMS and Sequential-LMS algorithms discussed, the objective of 

Selective-partial-update NLMS (SPU-NLMS) [20] is to reduce computational complexity 

of the adaptive filter by updating only a subset of filter coefficients at each iteration. A 

key feature of SPU-NLMS is the partitioning of tap-input vector x(n) = [x(n) x(n —

1) ... x(n — L + 1)F and the adaptive filter Ii(n) into B blocks of equal lengths hence 

giving 

x(n) = [xs7:1(n) xs7:2 (n) xs7:6(n)] , 	 (2.38) 

fl(71) = [FtTi (n) iiT2(n) fq:.13 (n)]T  , 	 (2.39) 

where the subscript s denotes for the SPU-NLMS algorithm. Defining 8spu as the regu-

larization parameter, the block update 

xs,i(n)e(n) 
= 	— 1) + 2/2 

iixs,i(n)fi + OsPu 
(2.40) 
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for i = 0,1, ... , B — 1, is derived as the solution to the constrained minimization prob-

lem [60] 

min 	min Mils  i(n) — 	— 1) 

subject to the constraint 

fiT(n)x(n) = y(n) . 	 (2.42) 

A decision can then be made at each iteration n on which B out of t3 blocks to update. 

For B = 1, it is shown that the block, i, with the highest squared 12-norm of xs,j(n) should 

be updated and this is found from the minimization 

arg min
'
i(n) — 	1422 1<j<8  

 

xs,j(n)e(n) 2  
Ilxs,j(n)ll2 2 

= arg min 
1<j<B 

 

--1 
= arg min [xs,i(n)(xs ,i(n)x,,i(n)) 	[xs,i(n)(x3,i(n)xs,i(n)) 

1<j<8 
1 

arg min (xT., • (n)x,,i (n)) 
—1xs, 

 (n)x,,j (n) (xs,i  (n)x,,,3  (n)) — 
1<j<B 

1 
arg min 	 

15i5.B 11Xs,j(n)113 

arg max Ilx,,i(n)II22  , 
1<j<13 

where the second step arises from the constraint (2.42). As can be seen, the SPU-NLMS 

algorithm is a data-dependent partial update adaptive algorithm. 

To update more than one block, 1 < B < 13, the set 2-B = 	• • • , iB} is defined 

to contain the indices of the blocks to be updated such that 

T 
xs,2-B (n) = [xs7:ii (n) xsT,i2 (n) 	xsT,in (n)] . (2.44) 

The SPU-NLMS update equation is then given as 

2 

2 ' 
	 (2.41) 

(2.43) 

(n) = — 1) l 2µ 	Xs,/, (n)e(n) (2.45) 
11xs,z-B(n)11Z + fiSPU 

i for which lixo(n)fl is one of the 

B greatest of lixs,i(n)11• • • lixs,B(n)113} 



2.5 Partial update adaptive algorithms 	 47 

The SPU-NLMS algorithm is summarized in Table 2.4 of Section 2.10.1. 

Extension of the selective-partial-update approach to include the affine projection 

adaptive algorithm is presented in [20]. Further discussion and analysis of the algorithm 

is also presented in [61]. It is noted that for large values of B and small values of B, the 

SPU-NLMS algorithm may become unstable due to the high adaptive noise amplification 

brought about by the small value of II xs,/, (n)H. Consequently, bounds on the step-size i 

are derived [61] for convergence in the mean squared sense and it is shown that an instanta-

neous estimate for p giving the fastest convergence rate is p = lixs,i(n)iiMix(n)H. This 

implies normalization by the 12-norm of the complete tap-input vector as in the MMax-

NLMS algorithm. Such normalization has been employed for comparative simulations in 

Section 2.8. In addition, [61] employs the concept of set-membership adaptive filters [62] 

jointly with the partial updating scheme to obtain a set-membership partial update NLMS 

algorithm. 

2.5.3 The Max-NLMS and MMax-NLMS algorithms 

Based on [63], one of the earliest partial update algorithms is introduced in [64] where a 

family of NLMS algorithms is derived by minimizing the change in filter coefficients from 

one iteration to the next given by (2.29) using different 1 norms. By minimizing the ll-

norm of filter coefficient change from sample iteration n — 1 to n, subject to the same 

constraint of (2.30), the adaptive algorithm degenerates to Max-NLMS [64] [65] where, 

being a data-dependent partial update algorithm, only one filter coefficient corresponding 

to the largest magnitude tap-input sample in x(n) is updated. For a specific set of input 

data given in [64], Max-NLMS outperforms the fully updated NLMS algorithm in terms 

of convergence rate. It can be seen that SPU-NLMS is equivalent to Max-NLMS when 

B L and B 

The single channel MMax-NLMS algorithm [66] is a direct extension of the Max-

NLMS algorithm. The fundamental basis of MMax tap selection is that the sensitivity of 

the performance error to individual coefficient at each iteration depends on two factors 

namely (i) the shape of the mean-square error (MSE) surface and (ii) the location of 
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that coefficient at each time instance relative to the minimum of the MSE surface. This 

sensitivity is reflected in the steepness of the gradient vector components as described 

by (2.27). Using (2.28), the instantaneous gradient estimate in the direction of the ith  

coefficient is 2x(n — i)e(n) where i = 0,1, ... , L — 1 are the tap-indices of x(n) as shown 

in (2.4). Since all gradient components involve the quantity 2e(n), the MMax tap selection 

selects coefficients associated with the M largest values of Ix(n — i)1 for updating. This 

can be interpreted as updating those coefficients contributing most to the trajectory of 

the adaptive algorithm towards the minimum point of the error performance surface. The 

MMax-NLMS algorithm can be expressed by first defining the L x L diagonal tap selection 

control matrix 

Q(n) = diag{ q(n)} 

= diag{q0(n) q1(n) 	u_i(n)} , 	 (2.46) 

where for tap-indices i = 0, 1, 	, L — 1, 

qi(n) = 
{

1, 	lx(n - i)1 E {M maxima of lx(n)l} , 

0, otherwise , 
(2.47) 

while 

Ix(n)I= [Ix(n)1 lx(n — 1)1 ... lx(n - L + 1 )1] T  • 

Consequently, the MMax-NLMS update equation is then given by 

h(n) = 11(n — 1) + 2/2 Q(n)x(n)e(n)  
Ilx(n)fl 	L MS 

where as before, 6NLms and p, are the regularization parameter and step-size respectively. 

For M = 1 and M = L, MMax-NLMS is equivalent to Max-NLMS [64] and NLMS 

respectively. The MMax-NLMS algorithm is summarized in Table 2.5 of Section 2.10.1. 

(2.48) 

(2.49) 
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2.6 Adaptive algorithms employing partial updates 

Having reviewed partial update adaptive algorithms, the main contribution of this chapter 

is the extension of MMax tap selection to the affine projection (AP) and recursive least 

squares (RLS) algorithms. As will be seen through simulation examples in Section 2.8, the 

performance of MMax-NLMS, in terms of rate of convergence and steady-state normalized 

misalignment, is comparable to that of the NLMS algorithm for the case of M = 0.5L. 

Being a data-dependent algorithm, the MMax-NLMS outperforms the Periodic-NLMS, 

Sequential-NLMS and SPU-NLMS algorithms. As such, the MMax tap selection will be 

extended to the affine projection (AP) and recursive least squares (RLS) algorithms which 

will be denoted respectively as MMax-AP and MMax-RLS. The main benefit reported to 

motivate the introduction of AP and RLS selective-tap schemes is that they form the basis 

of selective-tap algorithms which are able to improve the conditioning of a two-channel 

autocorrelation matrix formed from correlated inputs such as occur in stereophonic acous-

tic echo cancellation (SAEC) [27], which will be presented in Chapter 4. In addition, as 

will be seen in this section, although the proposed MMax-AP and MMax-RLS algorithms 

employ MMax tap selection, they cannot be classified as partial update algorithms since, 

by virtue of their formulation, all coefficients are updated at each iteration. Consequently, 

the MMax-AP and MMax-RLS algorithms are classified as selective-tap algorithms. Nev-

ertheless, as will be discussed in Section 2.7, the MMax-AP and MMax-RLS algorithms 

require less computation compared to the AP and RLS algorithms respectively. 

2.6.1 The MMax affine projection algorithm 

The affine projection (AP) algorithm [67] [68] incorporates multiple projections by con-

catenating past tap-input vectors from sample iteration n to n — K + 1 where K is defined 

as the projection order. In a similar manner, the approach for formulating the MMax-AP 

algorithm will be to concatenate the subselected tap-input vectors such that they prop-

agate consistently from each sample iteration to the next. To formulate the MMax-AP 

algorithm [24], let 

5E(n) = Q(n)x(n) 	 (2.50) 
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be the subselected tap-input vector where elements of the diagonal MMax tap selection ma-

trix Q(n) are defined by (2.47). The concatenated subselected and full tap-input matrices 

of dimensions K x L are then defined as 

Xa(n) = [5i(n) x(n — 1) ... x(n — K + 1.)] T  , 	 (2.51) 

Xa(n) = [x(n) x(n — 1) ... x(n — K + l.)J T 	 (2.52) 

where the subscript a in Xa(n) and Xa(n) denotes for the AP algorithm. The tap update 

for the MMax-AP algorithm is then given by 

h(n) = h(n — 1) +247;(n)PCa(n)K(n) JApIR- x id —le(n) , 	(2.53) 

where IK x i( is the K x K identity matrix and 

e(n) = [e(n) e(n — 1) ... e(n — K + 1.)] 2"' 	 (2.54) 

is the concatenated a priori error vector with each element computed using (2.7). Note 

that the update for MMax-AP in (2.53) normalizes with the full tap-input vector Xa(n) as 

oppose to Xa(n) since for small M, normalization with the latter can cause MMax-AP to 

become unstable. For projection order K = 1, MMax-AP is equivalent to MMax-NLMS. In 

addition, MMax-AP in general cannot be classified as a partial update algorithm since the 

tap update vector RT,,, (n) [Xa(n)XaT(n)+8APIKx1C] —1e(n) is fully populated and therefore 

every coefficient in h(n) will be updated at each iteration. Consequently, MMax-AP is 

classified as a selective-tap algorithm. The MMax-AP algorithm is summarized in Table 2.6 

of Section 2.10.1. 

2.6.2 The MMax recursive least squares algorithm 

One of the main disadvantages of the NLMS algorithm is the dependence of convergence 

rate on the eigenvalue spread of the input autocorrelation matrix Rxx  defined in (2.22). 

Specifically, input signals having a small eigenvalue spread exhibit higher rates of conver-

gence compared to those having larger eigenvalue spread [35]. This affects the convergence 
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performance of NLMS for speech applications where the eigenvalue spread can be very sig-

nificant (in order of several hundreds higher than for a WGN input). In contrast to the 

statistical approach discussed in Section 2.4, the method of least squares is a determin-

istic approach which involves the use of time-averages of x(n) and y(n). In this section, 

the derivation of recursive least squares (RLS) algorithm employing MMax tap selection 

(MMax-RLS) will be presented. 

The update equation of the RLS algorithm [35] is given by 

h(n) = 	— 1) + k(n)e(n) , 	 (2.55) 

where the L x 1 vector k(n) = AP-1(n)x(n) is defined as the Kalman gain and 

xi/ (n) = 	n—ix(i)xT(i) 
	

(2.56) 
i=1 

is the L x L time-averaged autocorrelation matrix with forgetting factor 0 << A < 1. Direct 

extension of the MMax tap selection approach achieved by sorting the magnitude of k(n) 

in (2.55) will not give the desired convergence behavior especially for statistically non-

stationary signals such as speech. This is because the Kalman gain depends on previous 

values of the time-averaged input autocorrelation matrix T(n) [27] given by 

k(n) = W-1(n)x(n) , 	 (2.57) 

where 
A-1T-1(n  1) 

l"/ 	1 4.  A—ixT(n)45-1(n  — 1)x(n) • 
(2.58) 

To address this, the tap-input vector x(n) is subsampled at each sample iteration based 

on the MMax tap selection criterion and 41(n) is computed from the subselected tap-input 

vector x(n) giving if (n) where 5i(n) is defined in (2.50). This ensures that the subselected 

tap-input vectors propagate consistently through the memory of the RLS algorithm. 

Similar to the normal equations in (2.24), the MMax-RLS algorithm [24] solves the 
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least-squares normal equations formed from x(n) given as 

h(n) = ii-1(n)o(n) 	 (2.59) 

where 

	

= 	An—isc-(05zT(i) 	 (2.60) 
i=1 

	

O(n) = 	n—jR(i)Vi) 
	

(2.61) 
i=1 

and y(i) is the receiving room's microphone signal at the ith  iteration as depicted in 

Fig. 2.1. The subselected time-averaged autocorrelation matrix W(n) can be expressed 

recursively as 

'Y(n) = 5Cr(n)A(n))1,T(n) 

= 	(n — 1) + 5-c(n)XT(n) , 	 (2.62) 

where the subscript r in Rr(n) denotes for the MMax-RLS algorithm and Xr(n) = 

[Si(1) 542) ... X(n)] with A(n) = diag{[An An-1 	A]}. As before, the sub-selected 

tap-input vector is given as R(n) = Q(n)x(n) where elements of the MMax tap selection 

diagonal matrix Q(n) is defined in (2.47). In a similar manner, the time-averaged L x 1 

cross-correlation vector in (2.61) may be expressed recursively as 

	

O(n) = 	(n)A(n)y(n) 

	

= 	Ab(n — 1) + x(n)y(n) 	 (2.63) 

where y(n) = [y(1) y(2) ... y(n)] T. 

Similar to the RLS algorithm, the MMax-RLS utilizes the matrix inversion lemma to 

compute 4;(n) efficiently. The matrix inversion lemma [35] [69] states that the inverse of 

B + bbT  is given by 

(B + bbT)-1  = B-1 B-lbbTB-1  

	

1+ bTB-lb 
	 (2.64) 
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where B and b are of dimensions L x L and L x 1 respectively. Letting B = Axii(n — 1) 

and b = R(n), the inverse time-averaged input autocorrelation matrix if -1(n) is expressed 

recursively as 

if -1(n) = [ii-1(n — 1) — ii(n)RT(n)iii-1(n — 1)] , 	(2.65) 

and the modified Kalman gain is then given by 

A-1  if -1(n — 1)5E(n) 
1 + A-15ET(n)ii-1(n — 1)5Z(n) 

= A-1[41-1(n — 1) — K(n)5ET(n)ii-1(n — 1)]R(n) 

= ii-1(n)R(n) . 	 (2.66) 

The recursive solution to the normal equation given in (2.59), can be obtained by substi-

tuting the recursive form of e(n) and 4:r -1(n) in (2.63) and (2.65) into (2.59). Using (2.66), 

the MMax-RLS update equation is then expressed by 

Ii(n) = fi(n — 1) + k(n)e(n), 	 (2.67) 

where e(n) is the a priori `error as defined by (2.7). 

Similar to the MMax-AP algorithm as described in Section 2.6.1, the MMax-RLS 

algorithm updates all the taps at each iteration since the modified Kalman gain vector 

K(n) is a fully populated column vector. Consequently, MMax-RLS is also considered as a 

selective-tap algorithm rather than a partial update algorithm. The MMax-RLS algorithm 

is depicted in Table 2.7 of Section 2.10.1. 

2.7 Computational complexity 

In this section, the computational complexity of algorithms employing MMax tap selection 

is examined. Although many factors contribute to the complexity of an algorithm, the 

relative complexity of the algorithms in terms of the total number of multiplications and 

comparisons per sample period is assessed here. 

It should be noted that the computation of I1x(n)113 = xT(n)x(n) requires one multi- 

k(n) = 
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plication using the recursive formulation [66] 

11x(n)112 = Ilx(n — 1 )112 + x2  (n) — x2  (n — L) 
	

(2.68) 

or two multiplications using the recursive estimate 

Ilx(n)fl = 	Ilx(n — 1) 11 + (1 — Ac)2(n) , 	 (2.69) 

where 0 << 	< 1 is the forgetting factor. The MMax tap selection requires a sorting 

operation to select the M largest tap-inputs at each iteration and can be achieved efficiently 

using for example the SORTLINE [70] or the Short-sort [71] routines. The Short-sort 

selects the largest A out of S elements from [x(n) x(n — 1) ... x(n — S 1)]T  and then 

tracks them as they propagate through the memory of the filter with S << L typically. The 

worst-case comparison load using Short-sort is (1 +S — A)A/S comparisons per iteration 

compared to 2+2 log2  L used in the SORTLINE procedure [71]. Excluding the overhead of 

IIx(n)II2 computation as described by either (2.68) or (2.69), the MMax-NLMS algorithm 

employing the SORTLINE procedure requires at most L + M + 3 + 2 log2  L operations 

whereas L + S + (1 + S — A)A/S operations are required for MMax-NLMS employing the 

Short-sort procedure (SM-NLMS). 

The complexity of AP using the generalized Levinson algorithm is 2LK + 7K2  

multiplies per sample period [45]. The MMax-AP algorithm employing the SORT-

LINE procedure requires an additional 2 + 2 log2  L sorting operations for the subse-

lected tap-input vector x(n). However, due to a reduction in multiplications required 

when computing 5a (n) [Xa(n)XI(n) + SAPIK x K] —1, the complexity for MMax-AP is 

(M + L)K + 7K2  + 2 + 2 log2  L operations per sample period [26]. 

The number of multiplications required for the RLS algorithm is 4L2  + 3L + 2 where 

an additional L multiplications are required for the tap updates. Due to the subselec-

tion of input vector x(n), the number of multiplications required for computing 4'(n) in 

MMax-RLS is (M + L)L + 1 while L2  + M multiplications are required for computing the 

Kalman gain. Hence the number of operations required for the MMax-RLS employing the 
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Table 2.1: Examples of computational complexity for MMax algorithms [L = 1024, M= 
512,A = 64, S = 128,K = 2]. 

Algorithm Sort Procedure Multiplications and Comparisons Examples 

SM-NLMS Short-sort L + S + (1 + S — A)A/S 1.18 x 103  

MMax-NLMS SORTLINE L + M +3+21og2  L 1.56 x 103  

NLMS 2L 2.05 x 103  

MMax-AP SORTLINE (M + L)K + 7K2  + 2 + 2log2 L 3.12 x 103  

AP - 2LK + 7K2  4.12 x 103  

MMax-RLS SORTLINE L(L + 3M + 2) + M+ 3 + 2 log2  L 2.62 x 106  

RLS 4L2  + 3L + 2 4.20 x 106  

SORTLINE procedure is at most L(L+3M+ 2)+ M+ 3 + 2 loge  L per sample period [26]. 

As an illustrative example, an acoustic impulse response of 128 milliseconds (ms) 

at 8 kHz sampling frequency corresponds to L = 1024 and for an arbitrarily chosen 

M = 512, the number of operations required by MMax-NLMS, MMax-AP and MMax-

RLS employing the SORTLINE algorithm is approximately 76.0%, 75.7% and 62.5% of 

the number for NLMS, AP and RLS respectively. Hence, although the MMax-AP and 

MMax-RLS algorithms update all coefficients at each sample iteration, their computation 

is nevertheless less than AP and RLS respectively. The computational complexity for the 

algorithms described are summarized in Table 2.1 with the number of multiplications and 

sorting operations computed for an example case of L = 1024, M = 512, K = 2, A = 64 

and S = 128. 

2.8 Simulation results 

2.8.1 Experimental setup 

Comparative results for the partial update and selective-tap algorithms as described in 

Sections 2.5 and 2.6 are presented in this section. For all simulations, impulse responses 
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Figure 2.2: Receiving room impulse response h(n) generated using the method of images at 
fs = 8 kHz and LR = 1024. 

of the transmission and receiving rooms are given respectively as 

g(n) = [go(n) gi(n) 	gr,,_1 (n)]T 	 (2.70) 

h(n) = [ho(n) h1(n) • • • hLR—i(n)]T 
	

(2.71) 

and are generated using the method of images [72] with LT and LR being the lengths of 

the transmission and receiving rooms' impulse responses respectively. One microphone is 

placed in the centre of each room of dimension 3 x 4 x 5 m. The source is then placed 

1 m in-front-of the microphone in the transmission room. In a similar manner, impulse 

response h(n) is generated with the receiving room microphone positioned 1.1 m in-front-

of the loudspeaker. Figure 2.2 shows an example of the acoustic impulse response h(n) 

generated at fs  = 8 kHz sampling frequency using the method of images with LR = 1024. 

With reference to Fig. 2.1, tap-input vector 

x(n) =- [x(n) x(n — 1) ... x(n — L 1)]T 	 (2.72) 

is generated by convolving a source (WGN or speech) with g(n). In order to reflect realistic 

application, the undermodelling case of L < LR  is used for all experiments. Defining ® 

as the convolution operator, the received signal y(n) as defined in (2.3), is generated by 

h(n) 0 x(n) and an uncorrelated WGN w(n) with zero mean is added such that an SNR 

as depicted in each experiment is achieved. 
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Figure 2.3: Normalized misalignment comparison for single channel partial update algo-
rithms using WGN input [LT  = Ln = 1024, L = 512, jes  = 8 kHz, A = 2, B = 16, 13 = 16, 
tiNLMS = 0.71 ilPeriodic = 0.7, /2MMax = 0.7, pspu = 0.6, rtSequential = 0.5, SNR = 30 dB]. 

2.8.2 NLMS-based simulations 

The convergence performance of the fully updated NLMS algorithm is compared to the 

Periodic-NLMS, Sequential-NLMS, SPU-NLMS and MMax-NLMS algorithms in Fig. 2.3. 

The impulse responses g(n) and h(n) are each of length LT  = 1024 and LR  = 1024 

respectively. A sampling frequency of f, = 8 kHz is used in this simulation while an 

adaptive filter of length L = 512 is chosen such that the adaptive filter undermodels the 

unknown system. The normalized misalignment is defined in (2.11) and is reproduced here 

for convenience 

II 	
— h(n )11 2  2  

ri(n) = 10 logio 	
Ilh(n)fl 	

dB . 	 (2.73) 

Figure 2.3 shows the averaged normalized misalignment plot of 5 independent trials for 

each of the above mentioned algorithms using a WGN source sequence with zero mean and 

unit variance. The MMax-NLMS algorithm is tested with M = L/2 and M = L/4. For 

both Periodic-NLMS and Sequential-NLMS, N = 2 is used, while for SPU-NLMS, B = 16 

out of 13 = 32 blocks are updated so that L/2 coefficients are updated at each iteration. The 

step-size of each algorithm is chosen experimentally so that all algorithms achieve the same 

asymptotic performance in terms of steady-state normalized misalignment which then 

allows one to compare their relative rate of convergence. This corresponds to ANLms = 0.7 

for NLMS, APeriodic = 0.7 for Periodic-NLMS, limmax = 0.7 for MMax-NLMS, itSPU = 0.6 
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Figure 2.4: Normalized misalignment for single channel NLMS and MMax-NLMS using 
WGN input [LT  = LR = 1024, L= 512, fs= 8 kHz, FINLms = 0.7, Ammo. = 0.7, SNR = 30 dB]. 

for SPU-NLMS and /.sequential = 0.5 for Sequential-NLMS. An uncorrelated zero mean 

WGN sequence w(n) is added to achieve an SNR of 30 dB in this simulation example. 

Note that for full adaptation M = L, MMax-NLMS is equivalent to NLMS. It can be 

seen that NLMS achieves the highest rate of convergence since all taps are adapted at each 

sample iteration. Being data-dependent, the MMax-NLMS and SPU-NLMS algorithms 

outperform the data-independent Periodic-NLMS and Sequential-NLMS algorithms. For 

the case of MMax-NLMS with M = 0.5L, the convergence is close to that of NLMS 

suffering less than 1 dB degradation in normalized misalignment during convergence. For 

this experimental setup, it has been found that the NLMS algorithm achieves an ERLE, 

defined by (2.10), of 20 dB in approximately 0.25 s. Figure 2.4 shows additional results 

for MMax-NLMS using the same experimental setup as before. It can be seen that the 

rate of convergence reduces gracefully with M while approximately the same steady-state 

normalized misalignment is reached for each case of M. 

The variation of misalignment with tap selection size M for MMax-NLMS using speech 

signal from a male talker is shown in Fig. 2.5 with M = L/2 and M = L/4. The 

step-sizes for MMax-NLMS and NLMS are ttmmax  = 0.7 and ANLmS = 0.7 respectively 

while f, = 8 kHz, LT = LR = 1024, L = 512 are used. As before, an uncorrelated 

zero mean WGN w(n) is added to achieve an SNR of 30 dB in this simulation example 

where the SNR is computed using the whole utterance of the speech sequence. A graceful 
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Figure 2.5: Normalized misalignment for single channel NLMS and MMax-NLMS using 
speech input [LT = LR = 1024, L = 512, I's = 8 kHz, isNLms = 0.7, 	= 0.7, SNR = 30 dB]. 

degradation in convergence performance for reducing M can be observed in this speech 

signal example. In addition, the performance of MMax-NLMS for M = L/2 is close to 

that of NLMS, suffering approximately 1 to 2 dB degradation in normalized misalignment 

for this simulation example. 

2.8.3 AP-based simulations 

The effect of MMax tap selection on the affine projection algorithm is studied for the case 

of M = L/2, L/4 and L/8 with L = 512 using a WGN input sequence with zero mean and 

unit variance. As before, the sampling frequency for this simulation is fs  = 8 kHz while 

impulse responses g(n) and h(n) are each of length LT = 1024 and LR = 1024 respectively. 

An SNR of 30 dB is achieved using an additive WGN with zero mean while the affine 

projection order of K = 2 is used. For each case of M, the normalized misalignment is 

averaged over 5 independent trials and plotted as shown in Fig. 2.6. Similar to MMax-

NLMS, the rate of convergence reduces gracefully with the number of taps being updated 

M for each iteration while the performance of MMax-AP (in terms of both the rate of 

convergence and steady-state misalignment) is close to that of AP for M = L/2. 

The variation of misalignment with tap selection for MMax-AP using speech signal 

from a male talker is shown in Fig. 2.7 with M = L/2 and M = L/4. The step-sizes 

for MMax-AP and AP are ommax  = 0.7 and ptAp = 0.7 respectively while f, = 8 kHz, 
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Figure 2.6: Normalized misalignment for single channel AP and MMax-AP using WGN 
input [LT = LR = 1024, L = 512, h = 8 kHz, is = 0.7, K = 2, SNR = 30 dB]. 

Figure 2.7: Normalized misalignment for single channel AP and MMax-AP using speech 
input [LT  = Liz= 1024, L = 512, f s  = 8 kHz, pia,  = 0.7, 	= 0.7, SNR = 30 dB]. 

LT = LR = 1024, L = 512 and SNR= 30 dB are used. As before, the SNR is computed 

using the whole utterance of the speech sequence. A graceful degradation in convergence 

performance can be seen when M is reduced for this speech signal example. In addition, the 

performance of MMax-AP for M = L/2 is close to that of AP such that approximately 2 dB 

degradation in normalized misalignment is observed during convergence in this simulation 

example. 

2.8.4 RLS-based simulations 

The effect of MMax tap selection on the RLS algorithm is shown in Fig. 2.8 using a WGN 

source sequence with zero mean and unit variance. In this simulation example, LT = LR = 
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Figure 2.8: Normalized misalignment for single channel RLS and MMax-RLS [LT = LR  = 
1024, L = 512, h= 8 kHz, A = 0.9993, SNR = 30 dB]. 

Figure 2.9: Normalized misalignment for single channel RLS and MMax-RLS using speech 
input [LT = LR = 1024, L = 512, h = 8 kHz, A = 0.9998, SNR = 30 dB]. 

1024, L = 512, fa  = 8 kHz and SNR= 30 dB. A forgetting factor of A = 1-1/(3L) = 0.9993 

is used [39]. The normalized misalignment is averaged over 5 independent trials for each 

case of M = L/2, L/4, L/8 and L/16. As before, the rate of convergence can be seen to 

reduce gracefully with M. In addition, the performance of MMax-RLS in terms of steady-

state normalized misalignment degrades with reducing M such that compared to the fully 

updated RLS algorithm, an approximate degradation of 5 dB in normalized misalignment 

is observed for M = L/16 = 32. 

The effect of MMax tap selection on the RLS algorithm for a speech input sequence 

is shown in Fig. 2.9. A forgetting factor of A = 1 — 1/(10L) = 0.9998 is used [39] with 

LT = LR = 1024, L = 512, f3  = 8 kHz and SNR= 30 dB where the SNR is computed using 
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the whole utterance of the speech sequence. Similar to the MMax-NLMS and MMax-AP 

algorithms, the rate of convergence of the RLS algorithm degrades with reducing M. More 

importantly, the performance of MMax-RLS in terms of convergence rate and steady-state 

normalized misalignment for the case of M = L/2 is close to that of the RLS algorithm 

compared to M = L/4. 

2.9 Conclusions 

In this chapter, a brief overview of the single channel AEC problem has been presented 

and several partial update adaptive algorithms including the Periodic-LMS, Sequential-

LMS, SPU-NLMS and MMax-NLMS algorithms have been reviewed. It has been shown 

through simulation examples that, among the partial update algorithms considered, the 

MMax-NLMS algorithm achieves the fastest rate of convergence and hence, the main 

contribution of this chapter is the formulation of AP and the derivation of the RLS al-

gorithm employing MMax tap selection giving MMax-AP and MMax-RLS respectively. 

Comparative simulation results showed that convergence rates of the MMax-based algo-

rithms are comparable to that of their corresponding fully updated algorithms for the case 

of M = 0.5L. The variation of convergence rate with M has also been presented for the 

case of MMax-AP and MMax-RLS showing the graceful degradation in performance for 

reducing M. The degradation in steady-state normalized misalignment performance for 

the MMax-based algorithms are insignificant for the cases studied here when M = 0.5L. 

This modest degradation in steady-state misalignment will be analyzed mathematically in 

the context of time-varying unknown system identification in Chapter 3. In addition, the 

robustness of NLMS, AP and RLS to MMax tap selection for M = 0.5L will be exploited 

for stereophonic acoustic echo cancellation (SAEC) in Chapters 4 and 5. 
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2.10 Appendix 

2.10.1 Partial updating and selective-tap algorithms 

Table 2.2: The Periodic-NLMS algorithm [19] 

/ 	= ArLn/Arj 

"Y.-(n) 	= fiT(n — 1)x(n) 
e(1) 	= y(1) — -g(1) 
Q(n) = diag{qo(n) qi(n) 	qi.,_1(n)} 

Q(n)x(1)e(1)  
(n) 	= (n — 1) + 211 

MA( 71 )115 + °Periodic 

1, 	if (n + i) mod A/ = 0 
q2(n) 

 0, otherwise 

Table 2.3: The Sequential-NLMS algorithm [19] 
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Table 2.4: The SPU-NLMS algorithm [20] 

En) 	= liT(n - 1)x(n) 
e(n) 	= y(n) /- -En) 

h/(n) 	= [h51(n) fil:2(n) 

x(n) 	= [xTo.(n) xT,2(n) • • • xT43(n)] T  

(n) 	= 	(n  _ 1)  + 2tt  xs,2-, (n)e(n)  
Ilx(n)fl 6sPu 

/i3 	= 	i, 	if Ilx,,i(n)fl E B greatest of 	 Ilxs,t3(n)112 

Table 2.5: The MMax-NLMS algorithm [21] 

Table 2.6: The MMax-AP algorithm 

Xa(n) = [x(n) x(n - 1) 	x(n - K +1)F 

Q(n) 	= diag{qo(n) q1(n) • • • qL-1(n)} 
R(n) 	= Q(n)x(n) 

5ca(n) = [5i(n) 	- 1) ... x(n - K +1)F 
y(n) 	= [y(n) y(n - 1) ... y(n - K +1)1T  

9(n) 	= Xa(n)fi(n - 1) 
e(n) 	= y(n) - 9(n) 

h(n) 	= h(n - 1) + 2I-Sq(n)[Xa(n)XT(n) + 8ApIxx id -1e(n) 

(n) 	= f 1, if I x(n — I E {M maxima oflx(n)I} 
0, otherwise 
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Table 2.7: The MMax-RLS algorithm 

Q(n) 	= diag{qo(n) ql(n) • • • qL-1(n)} 
R(n) 	= Q(n)x(n) 

fc(n) . 	4,-1(n - 1)54n) 
\ + RT  (n) if -1(n - 1)R(n) 

g(n) 	= fiT(n - 1)x(n) 
e(n) 	= y(n) - y(n) 

h(n) 	= ii(n - 1) + K(n)e(n) 

if -1(n) = --.[iii-1(n - 1) -1c(n)RT(n)11/-1(n - 1)] 

r 1, if jx(n — 01 e {M maxima ofix(n)1} qi(n) 	-  t 0, otherwise 



Chapter 3 

Tracking Performance of MMax 

Algorithms Under Time-varying 

Unknown System Conditions 

Arithmetic is where the answer is right and everything 

is nice and you can look out of the window and see 

the blue sky, or the answer is wrong and you have to start 

over and try again and see how it comes out this time. 

Carl Sandburg (1878-1967) 

3.1 Introduction 

IN SYSTEM IDENTIFICATION applications such as acoustic echo cancellation (AEC) 

shown in Fig. 2.1, an FIR adaptive filter is used to identify an unknown time-varying 

system that is assumed to be linear. Important performance measures for adaptive filters 

characterize the initial convergence rate, the residual error after convergence, the ability 

to track time-varying systems and the computational complexity. This chapter focuses on 

analyzing the steady-state misalignment performances of a class of MMax-based algorithms 

including MMax-NLMS, MMax-AP and MMax-RLS as discussed in Chapter 2, when 

tracking time-varying systems. Consideration of an algorithm performance under such 

66 
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dynamic conditions is important since, in the applications of interest, the unknown system 

is often continuously time-varying. It is therefore necessary to include a time-varying 

system model in the analysis of such adaptive algorithms as indicated in several significant 

studies including [73] [74] [75] [76]. 

The time-varying channel model in [77] which uses a modified first-order Markov 

model of the unknown system is adopted for analysis. Whereas the work in [77] specifically 

addresses LMS and RLS, analysis framework presented in this chapter extends that work to 

a more general form that can be applied to a wider range of adaptive algorithms including 

NLMS, AP, RLS and, in particular, the MMax selective-tap algorithms that is the main 

focus. Through this analysis, this chapter presents new insights into the tracking capability 

of selective-tap algorithms by highlighting and comparing the performances for a class of 

fully updating algorithms and their MMax variants under both time-invariant and time-

varying unknown system conditions. It is shown, for each algorithm, how the tracking 

performance is degraded by the MMax tap selection and the degradation in steady-state 

misalignment performance is quantified analytically under common assumptions. 

This chapter is organized as follows: The modified first-order Markov model [77] used 

for the time-varying unknown system is reviewed in Section 3.2 while Section 3.3 develops 

a general analysis framework for steady-state misalignment in a time-varying unknown 

system condition case. Having established the new analysis framework and applied it 

to standard adaptive filtering examples, the principal contribution of Section 3.4 is the 

steady-state misalignment analysis of selective-tap MMax algorithms. The analysis of 

MMax-NLMS includes Max-NLMS [65] as a special case. Comparative results are shown in 

Section 3.5 to verify the analytically derived misalignment performance against simulation 

learning curves for single channel AEC. In this chapter, for reason of compactness, the 

dependency of a variable on sample iteration n is denoted as a subscript giving lin  for 

the unknown impulse response, such that at each sample iteration, the / th  element of this 

vector is now denoted as hn(1), i.e., 

hn  = [hn,(0) hn,(1) . . . h„(I, — 1)]T  . 	 (3.1) 
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3.2 Non-stationary system model 

The modified first-order Markov model [77] is employed to represent a time-varying un-

known system 

hn  = 'hn _1  + V1 - esn , 	 (3.2) 

where 

hn  = [hn  (0) hn  (1) . . . hn (LR - 1)] T 	 (3.3) 

is the impulse response of the unknown system with length LR and 

sn = [sn(0 ) sn(1) ... sn (LR - 1)] T 	 (3.4) 

is an uncorrelated noise process with elements drawn from a normal (Gaussian) distri-

bution with zero mean and variance o-82 . This model has the key features that (i) the 

single parameter 0 << < 1 controls the relative contributions to the instantaneous val-

ues of the coefficients of "system memory" (the term 1-1,i_1 ) and "innovations" (the term 

V1 - 2s„), (ii) the average power of the norm of the coefficients is independent of . 

Defining system change as 

Ahn 	= hn - hn -1 

= -(1  - e)hn-i + \/1  - Vsn , 	 (3.5) 

and assuming [77] [78] 

E{Iihn-ilIZ} = Lc r , 	 (3.6) 

where 11 . 113 and E{•} are defined as the /2-norm and mathematical expectation operator 
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respectively, it follows that 

= 	2E{IIhn-110 + (1 - e).ric4 
+ (1  e2)Lcrs2 

= Lus2  . 	 (3.7) 

In the limit n Do, the mean square change of the unknown system is then given by 

prcix, E{11Ahri ll3} = (1  — )2E{ 	+ (1  — e)La.! 

	

= 2Lo-1(1 — 	, 	 (3.8) 

which is a monotonically decreasing function of and is proportional to L and variance of 

sn. As will be shown through an experimental illustration in Section 3.5, for = 0.9999 and 

Qs = 1 given in (3.2), the tracking performance of the NLMS algorithm is comparatively 

equivalent to the algorithm tracking a source moving at 0.2 ms-1  for acoustic impulse 

responses hn  generated using the method of images [72] with an adaptive filter length of 

L = LR= 64. 

3.3 	General misalignment analysis for time-varying systems 

Adaptive algorithms of the form 

K-1 
Fin = 	+ 	rn—kXn—ken—k 

k=0 

are considered, where K is defined as the projection order, 

	

[xn_k(o)xn_k(1) 	xn_k(L— 1)]' 

is the tap-input vector at iteration n — k. In this chapter, for mathematical tractability, el-

ements in xn_k  are drawn from a zero mean white noise process with Gaussian distribution 

(3.9) 

(3.10) 
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Table 3.1: Projection order and rn_k  for various algorithms 

Algorithm Projection order rn—k c 

LMS 

NLMS 

AP 

RLS 

K = 1 

K = 1 

K 

K = 1 

clLxL, 

chxL 

cILxL 

c 

2p 

2p 
T x X n n 
2p 

T 
xn--4rk 77,  7 in—k 

and variance cr2 . The estimated impulse response Fin  is given by 

hn = pin(0) 	 — 	T 
	

(3.11) 

while en_ k  is the a priori error given by 

en -k = Yfl-k 	-k-iXn-k 	 (3.12) 

with yn_k being the received microphone signal as depicted in Fig. 2.1. Using the gener-

alized update form given in (3.9) and defining ILxL  as a L x L identity matrix, the L x L 

adaptation control matrix Fn,_k is defined in Table 3.1 for the respective algorithms. Note 

that for the AP algorithm with 

Xa,n  = [Xn Xn-1 • • • Xn-K+1 ]T 
	

(3.13) 

as defined in (2.52) and in a similar approach to [79] [80], for 1 < K << L, it is assumed 

= diag{IIxnfi iixn—ifl • • • lixn—K-F1112} 
	

(3.14) 
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hence giving 

[XamXTa,ni -1  =  

1 
11 3-77

0  

0 ------7 1 	• 
Ilxn-1112 

0 

0 
(3.15) 

0 

0 	0 	0 i  
11xn-K+1 q - 

For the purpose of this analysis, it is assumed that E{lin} = 0Lx 1  where 0Lx1  is a 

L x 1 null vector. In addition, as explained in Section 2.2.2, to neglect any additional 

misalignment effects due to undermodelling, the dimension of the estimated impulse re-

sponse fin  has been chosen to match the dimension of the unknown impulse response lin , 

i.e., L = L R . Defining the system mismatch vector 

vn  = fin  — hn , 

the a priori error is then given by 

T en = Wn — XnVn-1 , 

where measurement noise wn  is an uncorrelated white noise sequence with Gaussian dis-

tribution (WGN) as depicted in Fig. 2.1 with E{ wn} = 0. Using (3.2), (3.9) and (3.17), 

(3.16) 

(3.17) 
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the system mismatch vector vn  can be expressed as 

vn  = fin - hn 
K-1 

= fin-1 + E rn-kxn-ken-k - hn 
k--=0 

K-1 	 K-1 
= fin-1 - hn + 	rn-kX -kWn-k - E rn-kXn-kXnT-kVn-k-1 

k=0 	 k=0 
K-1 

= 1172_1 - hrt_1 + hn-i - hn-1 + E rn-kXn-kWn-k 
k=0 

K -1 

E rn_kxn_kxTri,_kvn_k_i — Vi — eSn 
k=0 

K-1 
= vn-1 + (1  - )hn-1 + En- r kXn-kWn-k 

k=0 
K -1 

rn-kxn_k kvn_k_i — V1 — esn  . XTn_ 	 (3.18) 
k=0 

Using the independence theoryl  [35] [81], the system mismatch autocorrelation matrix 

Rv,n, can be expressed as 

Rv,n = E{vnvnT} 

= R,,n-1 + 2(1 - )0',2i + Kai E E{rn_ kx,i_kxTn_krnT_k} 
K-1 

k=0 
K-1 	 K-1 

-Rv,n-i E EIrn_kx„_kxnT_k} — Rv,n-1 E E{Xn-kXnT-krnT-k} 
k=0 	 k=0 

K-1 

k=. 	
KE-1E  { +E E rn_kxn_kxnT,Th_k_, 	 (3.19) 
r=0 

'The independence theory imposes certain conditions on the data for mathematical tractability. It is 
assumed that (i) the input sequence xn. is drawn from an independent and identically distributed (i.i.d.) 
process, (ii) yn  is independent on x,, for n > m and (iii) noise sequence wn  is also i.i.d. and statistically 
independent of x,. 
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where 

E{vn_iv„711} 

E{Wn-kWn-r} 

E{ wn_ kvn711 } 

E{wn_khr,711 } 

ElsnynT_i l 

E{wn—OnT } 

E{s,,hn711 } 

Efh,_ivnT_i l 

= 

.  

= 

= 

= 

= 

= 

= 

n 

,,ixOL, 

01xL 

0-LxL 

OixL 

13 LxL 

0LxL 

Rv,71-1 , 
{ 0.2 w, 

, 

) 

7 

k = r , 
otherwise , 

E { vn_i k=0 
K-1 	

k=0 
E  vnTi_k_ixn_kxn1,,,n1, 	P = ---v,n-1 KE-1  E{x,,,--kxn—krn—k} , 

and from (3.7), 

E{hnhiD = E{snsD 

as -= 2iLxL (3.20) 

have been employed. Following the approach adopted in [351, it has also been assumed 

that for large n, the time variations of the system mismatch vector vn, are sufficiently 

slow compared to those of the input vector xn  since the adaptive filter is able to track the 

unknown system to within a time lag and as a consequence, vn  is independent to xr, and 

after convergence, vn  ti vn_k while 

E{Vn—OrnT....k } r'-",1  E{VrIVrt9 = RV,71 • 
	 (3.21) 

Under these assumptions, the autocorrelation matrix of the system mismatch vector which 

is approximately time-invariant is then denoted as Rv. Employing the normalized mis- 
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alignment as defined in (2.11) and reproduced here for convenience 

iihn - hnll2  
iihnii2  

Ti,  
iihnll 	' 

(3.22) 

the steady-state misalignment can be expressed, for large n, as n' = tr{Rv} where tr{.} 

is the trace operator. 

3.3.1 Mean square misalignment with K = 1 and M = L for NLMS and 

RLS 

A fully updated algorithm is initially considered in this section where Fri  = F, Vn, is time-

invariant, and tap-input vector xi, is drawn from a zero mean white noise process with 

Gaussian distribution with variance max. Using the factorization property of independent 

Gaussian variables [82] as shown in Section 3.7.1 and denoting 

R„„ = E {xnxTn } 	 (3.23) 

as the autocorrelation matrix of the input signal, the expectations in (3.19) can be evalu-

ated for projection order K = 1 using 

Ell' ri xTh x„T PT,2 1 

E {rrocnx,T} 

E fxnxT,' rTn  1 

E {r rixnx,,T iv7,71,xnx„TrnT  ) vn- 

= 

= 

= 

. r 

l'Rxxr 

rRxx  

Rxxr 

, 

, 

, 

[2RxxRv_iRxx + Rxxtr{RxxRv,n-i }] ,,, 

(3.24a) 

(3.24b) 

(3.24c) 

r • 

(3.24d) 

77 = 

= 
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Substituting (3.20) and (3.24a)-(3.24d) into (3.19) gives 

Rv,n = Rv,n-1 Rv,n— 1 rRxx Rv,n— 1 Rxx r 
+r [2RxxRv,n-1Rxx Rxxtr{RxxRv,n--1}] r 

	

+rit.ra o  + 2(1 — ocT s2 IL.L, • 
	 (3.25) 

The steady-state misalignment 77' can be found by first considering F = cILx  L and 

white Gaussian noise (WGN) input with variance ax giving Rxx = o-x2 I L,L. The variable 

c in F is a scalar quantity specific for each algorithm which will be described in the 

sequel. Assuming the system mismatch error Art, is fluctuating around its mean, the system 

mismatch autocorrelation matrix Rv n  in (3.25) can be simplified and the steady-state 

misalignment 77' = tr{Rv  } is given by 

= 	— 2co-x2n1+25x4c2711+0.1c2L,or 

+c20.x20.w2 + 2 (1 	)cr52.L 

from which can then be expressed as 

co-IL (1 — 
rl = 	 + 	 20 	co- 0 

where 

= 1 — co- x2  (1 	 (3.27) 

and c is an algorithm dependent term. Adopting the terminology of [76], the first term 

in (3.26) corresponds to the estimation variance and is dependent on measurement noise 

wr, and the second term in (3.26) corresponds to the lag variance and is due to system 

time variation It can also be seen from (3.26) that the estimation and lag variances are 

uncoupled. 

For the LMS case, c = 2p giving 

17LMS
jw 
	+ (1  — e)L0-

5
2  

2pay  • 
(3.28) 

(3.26) 



3.3 General misalignment analysis for time-varying systems 	 76 

The estimation variance term of this result is, as expected, proportional to au and consistent 

with that presented in [35] for which it is assumed cb Pe.. 1 for small it. However, the analysis 

presented here needs no such assumption. The lag variance term is inversely proportional 

to it and linearly dependent on the system variation parameter 

For NLMS, c = t I (La) giving 

ito.2 	(1 	L2 0. 82 

crx 
71NLMS = 20 + (3.29) 

It is interesting, from a step-size control point of view, to evaluate the step-size which 

achieves the lowest misalignment ,umis  by differentiating Tif\TLms  in (3.29) with respect to 

step-size au to obtain 

d 71NLMS 

= 0, a 

50-f 

1  + (1 + — 2cp — 1 [ 
it 2 (1 , 	(3.30) 

(3.31) 

(3.32) 

d 

where 

Setting d 77 „,.,„s/d a 

[(1 - cp,)2 	1 — 

= 2(1 +1,12)1L 

quadratic equation in 

+ 	— 	)//2cdctimis 

2 

. 

terms of itmis  

(1  — 	(72  
s  2

)L2  

given by 

= 0 

ctt)2 

is obtained. Under the condition that 0 < Arras  < 1, the step-size giving the lowest 

misalignment under non-stationary unknown system condition for NLMS is given by 

0.2 
itmis = 0.54 [ - (1 - 	+ o-z 

2 
[ (1 — e)L2Old 

2 
 + 2 ( 

0-
1)(1 — e)L2c 5 . (3.33) 
crx 

FigureFigure 3.1 illustrates the variation of itmis  with under various signal-to-noise ratio 

(SNR) conditions. The SNR is computed using /DT, and y„ where the latter is obtained 

by linTx,, as shown in Fig. 2.1. The parameters for this illustrative example are L = 

128, o = 1 and o = 0.962. For each case of SNR, the well-known result that for 

reducing system variation —> 1, itmis  —* 0 can be observed and hence a smaller step-size 

achieves a lower steady-state misalignment, though at the expense of reduced convergence 
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Figure 3.1: Variation of 	with under various SNR conditions. 

rate. Under time-varying unknown system conditions < 1, it can be seen as expected 

that ilmis  increases smoothly as reduces, since for higher time-varying unknown system 

condition, step-size II must be sufficiently high for tracking. In addition, for any given 

/1mis increases with SNR. As will be seen through simulation examples in Section 3.5.5, 

under the condition < 1, performance of NLMS in terms of convergence rate and steady-

state misalignment increases withµ within the region 0 < µ < 

For RLS, c in 

r = ciLxL = 	1 
	

(3.34) 

can be determined by considering the time-averaged autocorrelation matrix Ts  defined 

in (2.56) and is reproduced here for convenience 

n 

= E An-ixixT . 
i=1 

In the limit n 	oo 

E{ lim 
fin}= 

 E liM __T 
I- \ X1X1 	A 	 + • • • 	'"114'71, ) n—<x) 

= 	bin  (An-1 + An-2 + 	1)Rxx  
n-400 

1 — 
	Rxx 

1 

(3.35) 

(3.36) 
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where Rxx  is the true input signal autocorrelation matrix defined in (3.23). Using a 

quasi-deterministic approximation for large n [35], 4,7, 	— A) and hence 

F= 	(1 — A)R,T,1, . 	 (3.37) 

For the case when the input signal, xn , is drawn from a white noise process with Gaussian 

distribution, then from (3.34), the scalar constant c = (1 — A)/a . Using (3.26), the 

steady-state misalignment is given as 

, 	(1 —  A)Lo-2 	(1 — )Lai 
ThiLS 	2a 	u)  + (1 — A)0 

where the term is defined in (3.27). By taking the derivative of steady-state misalignment 

?Ails  with respect to the forgetting factor A, the well-known result for a time-invariant 

unknown system condition = 1, 

d ORES 	Lcf?,  < 0  
d A 	2c q02  

can be seen. Hence, the steady-state misalignment is a decreasing function of the forgetting 

factor A, although for a smaller A the rate of convergence is increased. 

Furthermore, the effect of on steady-state misalignment 7/6 can be analyzed by first 

differentiating rilus  with respect to and finding the boundary condition for A. Assuming 

d OBEs =  LQs  
d 	(1 — A)cb 

< 0 , 
 

(3.40) 

and noting that Lo-2  > 0 and 1 — A > 0, the condition 

A 	> 	1 — [1/(1 + L/2)] 	 (3.41) 

can be obtained. For a typical range [15], 1 — 1/(3L) < A < 1 — 1/(10/) and since 

L > 1, it can be seen that the conditions (3.41) and consequently (3.40) are satisfied. 

Hence as will be shown through simulation examples in Section 3.5.4, the steady-state 

misalignment ORES  reduces for a lower system variation as -8 1. 

(3.38) 

(3.39) 
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3.3.2 Mean square misalignment with K 1 and M = L for AP 

This analysis can be applied to the AP algorithm for the condition 1 < K << L. With 

reference to Table 3.1 and for a WGN input sequence xn  with variance cd, xnT_kxn-k = 

Lai, V n, k, hence giving r - n-k = F. Exploiting the linear property of the expectation 

operator, the terms in (3.19) can be evaluated using the following relations 

K -1 
Etr T TIT 1 

n-kXn-kXre-k' n-k 
k=0 

K -1 
E EIrn_kx,i_kxTn_k} 
k=0 
K-1 

_kxnT_krnT_k } E E fx, 
k=0 

= KrRxxr , 

= laRxx , 

= KR„„r . 

(3.42a) 

(3.42b) 

(3.42c) 

Following a similar approach to (3.24d) where the factorization property of indepen-

dent Gaussian variables [82] as shown in Section 3.7.1 is employed, the last term of (3.19) 

can be simplified as follows 

K-1 	 K-1 
E{ E rn-kxn-kxnT-kVn-k-1 

k=0 	
E vnT 	ri 7, _r _ ixn_rX_rr1, 
r=0 

{K -1 K-1 
= 	E 	E E rn_ kX71_ kX„T_ kvn-k-lvnT-r-lxn-rXnT_rFri_T 

k=--0 r=0 

 

= 	K2F [2RxxRv,n-1Rxx + Rxxtr{RxxRv,n-1}] F • (3.43) 

Substituting (3.42a)-(3.42c) and (3.43) into (3.19), the system mismatch autocorrelation 

matrix Rvoi  can be expressed as 

Rv,n = Rv,n-I, + 2(1 - 0 0 -2 ILxL + K 2C12  rRxxrT  

-KRv,n-irR.. — KRv,n_iRxxr 

-1-K2T [2RxxRv,n-1Rxx + Rxxtr(RxxRv,n_i }] F . 	(3.44) 

Similar to (3.25), it is assumed that R,,,-, is fluctuating around its mean, F = cii,..L and 

Rxx = cdI L ,,L . The steady-state misalignment 7/AP  for the AP algorithm can be obtained 
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by simplifying (3.44) and using c = 2111(Loi) from which 

, 	 If per„2  + (1  — )6,91'2  = rIAP 	0.2 Oa 	2ii,K0a 	' 

where 

(3.45) 

Oa = 1 — Kcoi (1 + 
L

) . 	 (3.46) 

Note that (3.46) is similar to (3.27) except for a projection order term K. Furthermore, 

when K = 1, 0 reduces to Oa  and hence the steady-state misalignment of AP is equivalent 

to that of the NLMS algorithm as expected. 

3.4 Misalignment analysis of algorithms employing MMax 

tap selection 

3.4.1 Misalignment analysis of MMax-NLMS 

Partial update NLMS algorithms have been analyzed in, for example [19] [21] [65] [83] [84]. 

In [21] [83], it has been shown that for M = 1 tap being selected for adaptation at each 

sample iteration, MMax-NLMS converges for a zero mean WGN input sequence under the 

condition 0 < it < L/ (L + 2). In addition, the excess mean square error of MMax-NLMS 

is derived for the case of M = 1. In the following, the steady-state misalignment is derived 

for an arbitrary case of M < L. 

The MMax-NLMS [66] algorithm is characterized by (3.9) for projection order K = 1 

with the L x L adaptation control matrix given by 

rn, = ittnQn 
	 (3.47) 

in which the elements of the MMax diagonal matrix Ch, = diag{gn} are determined 

from (2.47) and RT, = Qnxii  is the subselected tap-input vector. The variable tt„ is a 

scalar constant specific to each algorithm as will be discussed in the sequel. 

For convergence in the mean square, consider (3.19) and the evaluation of Efroc,x7,9 
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and that tap selection elements qn (i), for i = 0, 1, 	, L — 1, are not independent of xn(i) 

as they ensure that only the M largest lx,i (i)1 are selected. The M selected samples are 

assumed to have zero mean and exploiting the mean ergodic theorem2  [35], the variance 

of Sin  is 
L-1 

Cr--x2  = E=o  x-2(n i) 
	

(3.48) 

where 

Xn  = QnXn  

= 	rd(n) 	— 1) ... 	— L + 1)] T 	 (3.49) 

is the subselected tap-input vector and that for i = 0, 1, . . . , L —1, some elements (n — i) = 

0 due to tap selection. Assuming that xnx.riT  is diagonal and using E {p,,} = c, a scalar 

constant such that 

E 	n } = E {PTi} E {Qn} 

cE {Qn } , 	 (3.50) 

the terms E{Fnxnxn9 and E{xnxnTrT} can be simplified as 

E {r n x,x7;,} = E {xn x,7;17; 

= E{Pn}E{QnxnxnT } 

—M  collLxL • 	 (3.51) 

The condition WO = P implicit in (3.24d) is not valid in this case. However, the 

2The mean ergodic theorem states that if elements in xr, is drawn from a stationary process which is 
valid for WGN inputs, then its time averages tends to E{x,.„} as the length of the available sample n tends 
to oo. This theory can be extended to higher moments such as variance estimation as shown in [35] [85] [86]. 
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evaluation of tr{Ftwi} in (3.19) can be achieved by using 

tr{ E frr pcn x„T vn _ivnT  _i xri xnT11}} 

tr{E{rnxnxnTrnT} }  

tr{ c2E { Qrixnxr,Tv7,_ivizT_ ixnx,,T} 
M 

C2 tr{ Rv,n-i(L + 2) .Taiux 2ILxi,} 

c2 tr{Rv ,n-1}(L + 2)— 
M 

Fqa-2  , 
L  

M 2-2-r  trf —L c a'J-LxL} 

M - T 
" ' ' - - - C

2 
 Cr

2 
 I-I 

L 

(3.52) 

(3.53) 

Substituting (3.51)-(3.53) and (3.20) into (3.19) and letting K = 1, the expression 

tr{Rv,n} = trfEtv,n-11 - 

+ .___M 
L  c

2a.-2,72
' L 

 

tr{Rv,n-1} [1  = 
+ mc2Frx2crw2 + 

M - 2tr{Rv,n-1}—L co-x2 c2 tr{Rv  ,n _i} (L 

+ 2(1 - 0o- /, 

-2  —
m

ca-2  + (L + 2)— M c2 crx2  ax2] L x 	L 
2(1 - )Lo-82  

+ 2)  _____M7r2,2 
I  L'-' x's  

(3.54) 

is obtained. 

Contraction mapping concept has been introduced in [87] [88] [89] for adaptive algo-

rithms. A contraction mapping is produced when the norm of the difference of the mapped 

vectors is less than the norm of the difference of the original vectors, i.e., 

lirgi - Te2112  5- Cllgi - 02112 
	 (3.55) 

where II • 112 is defined as the 12-norm, C < 1 is a scalar, T is a mapping operator and 

01 and e2 are vector or scalar quantities. Applying the contraction mapping concept and 

following the same approach as [89], convergence for MMax-NLMS can be shown [71] 
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using (3.54) by letting 

	

M —2 	 2-2 — 2—
L

co-
' 

 (L + 2)—
L

c (7
'

g
'
2  , 

01 = tr{Rv,n} 

02 	tr{Rv,n— } 

from which substituting into (3.55) with the condition that C < 1 gives 

T= 1 — 2—M 	 L + (L + 2)—M c23:2 0.2 
L   

< 1 	 (3.56) 

   

and the convergence speed is faster for smaller values of T. It can therefore be seen 

from (3.56) that, for typical values of c << 1, maximum convergence speed will be when 

all filter coefficients are updated at each sample iteration, i.e., M = L. Therefore MMax-

NLMS suffers a decrease in convergence speed proportionate to M / L as compared to 

NLMS. As shown in Section 3.7.2, for the case of MMax-NLMS, c = 2 pl (Loi) giving 

  

Ala.-2 	2  (L 2)mal  
1 	4p 	 x2 + 4P 	L34 Leo x  

 

 

T= < 1 	 (3.57) 

so that 

   

	

0 < < 	 

	

L + 2 
	 (3.58) 

The misalignment for MMax-NLMS can be found [78] from (3.54) and using the 

approach of (3.26) as 

M —2 	2 M  _2=202] = mc2aicrw2 + 2(1 - )LAS tr{Rv} [2 Ti ccrx  — (L + 	C  U X X 

resulting in 

	

tr{Rv
} = 2 — (L + 2)c4 	— (L + 2)c2c7- o- 

caLL 	2(1 —  e)L2cr/M 	 (3.59) 

For MMax-NLMS where c = 21.21(Lux2 ), the steady-state misalignment is then 

7A4Max—NLMS = 
pQw 	Lcr2  (1  — e)L2o 4_ xi 

ci-P1 2,0 
(3.60) 
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Figure 3.2: Variation of lk with M selected coefficients per iteration for e < 1 showing a 
modest increment in IP when 0.5L < M < L. 

where the term q  is defined in (3.27). 

As can be seen, the estimation variance term is independent of M and is identical to 

that of NLMS. Thus for a time-invariant unknown system with = 1, the steady-state 

normalized misalignment of the MMax-NLMS algorithm is the same as that of NLMS, i.e., 

7/MMax—NLMS = 7Ifnms. Comparing (3.60) with (3.29), an additional factor arises in the lag 

variance of Lax/(QOM) for MMax-NLMS compared to NLMS. To quantify the closeness 

of tap selection to that of a full tap-input vector in an MMax sense, the M-ratio [27] 

	

M  = 11Q.x.fl  
= 
	 (3.61) 

is defined. As shown in [27], M exhibits only a modest reduction for 0.5L < M < L 

and hence a graceful reduction in convergence rate is expected over this range of M as 

compared to the fully updated NLMS algorithm. The variation of steady-state misalign-

ment due to the M number of taps selected for updating can be analyzed by first noting 

from (3.60) that, under a time-varying unknown system condition < 1, the lag variance 

is proportional to the term 

= Lo-Maim) -= L/(MM) 	 (3.62) 

Figure 3.2 shows the variation of V) with the number of selected taps M for L = 128 
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using a zero mean, unit variance white Gaussian noise (WGN) input sequence. It can 

be observed that for full adaptation M = L = 128, = 1 since 	= ox and M = 1. 

More importantly, although z/) exhibits a factor of 2 increase when M is reduced from L to 

0.5L, this factor is insignificant compared to the case when M is reduced from 0.5L to 1. 

Hence for the range of 0.5L < M < L, with reduced computational complexity, only an 

insignificant degradation in steady-state misalignment performance for time-varying case 

< 1 is expected. 

Similar to the NLMS algorithm discussed in Section 3.3.1, it is of interest to evaluate 

the step-size Aims  which achieves the lowest misalignment by differentiating the steady-

state misalignmentrim  ',— Max—NLMS in (3.60) with respect to step-size it. Setting this differ-

ential equation to zero, the quadratic expression 

52 2  
P-ti7nis + 0(1 — 77)L20 

cbtims 0(1  — 77)L201 
2 	= 0 (3.63) 

is obtained where 

c = 2(1 + L/2)/L . 	 (3.64) 

The step-size itmis  for MMax-NLMS giving the lowest steady-state misalignment under 

non-stationary unknown system condition can then be obtained by noting 0 < itmis  < 1 

hence giving 

umis 

[0(1— )i/247-.N 2  + 20 (4) (1 — 	. 	(3.65) 

As will be seen from simulations in Section 3.5.5, if Arms  < µ < 1 under the non-

stationary unknown system condition 4' < 1, convergence rate increases with step-size tt 

but at the expense of poorer steady-state misalignment. Consequently, for MMax-NLMS, 

the optimal step-size giving the highest rate of convergence while satisfying the minimum 

misalignment under non-stationary environment is itmis  given in (3.65). 
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3.4.2 Misalignment analysis of MMax-RLS 

Using (2.66) and (2.67), the update equation for the MMax-RLS algorithm may be ex- 

pressed as 

fin = fin-1 + 4-7, 1 1Qnxnen • 
	 (3.66) 

where the time-averaged subselected input autocorrelation matrix lin  is defined in (2.60) 

and Q, is the diagonal L x L MMax tap selection control matrix with elements defined 

in (2.47). In this case, projection order K = 1 in the general formulation of (3.9) and the 

tap selection control matrix 1-'7, in (3.9) for MMax-RLS is given by 

(3.67) 

where 	can be expressed alternatively as 

= E An-ic/ixixTce 
	

(3.68) 
i=1 

with 0 << A < 1 being the forgetting factor. Following the same approach as for RLS 

in (3.36), with n ---> oo, 

E{ lim lin  1 = E{ lim i  . n-1  0 	Q1X1XTQT + • • • + QnXnXTAnT) } noo 	n-000 
M-0-.2 

n-oco L = 	lim 	x  [An-14 x/, + An-24x/, + . • . + 4 xL] 

= 	1 Ma.x24 x L 7 1 - A L 

and hence it follows from (3.67), 

Fn = 	Qn • 

(3.69) 

(3.70) 
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Employing (3.70), the following terms in (3.19) can be simplified as 

E 

E 

E fr ocrixnT1 

xnxnrn}  

ocnxnTr nT 

= 

= 	(1
/
— 

={(1 

E{XnXTFT} 

QnXnXTn} 

(3.71a) 

(3.71b) 

(3.71c) 

A) 	E Mae 
A)ILxL 

A)L12 r 
E iQ 	T 	T nxnx,, xnxri Qn }Rv,n 

+ 2)c4 

ll 	
M 

(1 — A)2 L(L 

[(1m-aA2gi 2 	r 

1. nXnXnTQn x7 
 

IL (1 — )1/4)2L 
114--4 

Following the same approach as (3.54), by substituting the set of equations (3.71a)-(3.71c) 

into (3.19) for projection order K = 1, the system mismatch autocorrelation matrix RV,71, 

can be expressed as 

(1 — A)2L(L 2)a 
= 	— 2(1 — A)Rv,n— 1 + 	MQZ 

	Rv,n 

A)2L 2 
	aMv~ wIL xL + 2(1 — Oas2ILxL • 

As before, it is assumed that for large n, 	11,, is the approximately time-invariant au- 

tocorrelation matrix of the mean weight error vector. Defining steady-state misalignment 

vector 7/ = tr{Rv} and using (3.72), the steady-state misalignment for the MMax-RLS 

algorithm can then be expressed as 

(1 — A)2L(L + 2)u  , (1 — A)2L20.
w 
2 

77MMax—RLS = 	— 2(1 — A)77' + 	 + 	 + 2L(1 — 

A)L2cr2w 2L(1 — )o Maw

Or 	(1— AA 	' 
(3.73) 

where 

Or 	= 2Ma x2 — (1 — A)L(L + 2)o- x2 

= 	Lox [20-1 — (1 — A)(L 2)] 	 (3.74) 

Rv,n 

(3.72) 
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and 	is defined in (3.62). 

Comparing (3.73) and (3.38), for full adaptation M = L, 	= of and hence the 

steady-state misalignment for MMax-RLS is equivalent to that of RLS, i.e.,  nwiMax—RLS 

71:11,s as expected. More importantly, the estimation variance for MMax-RLS is dependent 

on the number of taps selected for adaptation M. As can be seen from (3.73) and (3.74), 

Or is a decreasing function of and hence for a time-invariant system with = 1, the 

steady-state misalignment ,MMax—RLS is a decreasing function of M. This is contrary 

to 77V1Max—NLMS  in (3.60) where the steady-state misalignment is independent of M for 

time-invariant systems. Simulation results illustrating the dependency of the steady-state 

misalignment on M for MMax-RLS under the time-invariant unknown system condition 

= 1 can be found in [24] and Section 3.5.4. 

3.4.3 Misalignment analysis for MMax-AP 

The update equation for the MMax-AP algorithm can be written in a similar form as (3.9) 

where for k = 0, 1,...,K — 1, the tap selection control matrix l'n_ k  can be expressed as 

rn—k 
	 (3.75) 

where /..tr,_k = 2,1-1/(xnT_ kxn—k) is the step-size while elements of the MMax tap selection 

control matrix Q, are defined in (2.47). Assuming that the input signal is WGN, E{pn_ k} 

can be evaluated, giving 

E { ttn-k} = C = L 
2/2 (3.76) 
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As before, the condition EfFn l = F is not valid here since elements in Qr, is dependent 

on M and so tr{R.,,„} is evaluated using the same approach as (3.53) giving 

K-1 
tr{Ko-w2  E EIrri_kxn_kxni,rn_k} 	Ko-2 tr{E{/./2,_k} 

k=0 
K-1 Il EE{ Qn-kXn-kXnT-kQn-k 
k=0 

K20.w2 c2m-c-rx2 , (3.77a) 

K-1 	 K-1 

E E { xn _kx„_krn_k  } 	tr{Rv,n  E E{rnT_kxn_kx„_k} 
k=0 	 k=0 

-2 trIltv,n1KeT Crx (3.77b) 

K- 
tr E E

1 
rn_kxn_kx„T_kvn_k 

{ 
{ 

k=0 
K-1 EvnT_r xn_r xn7177 rTn_r  
r=0 

= trlitv,n1C2(L+2)-TiMaiaiK2 . (3.77c) 

Substituting (3.77a)-(3.77c) into (3.19), the trace of the system mismatch autocorrelation 

matrix is then given by 

tr{Rv,n} = tr{Rv,n—i} 4- 2(1 — 0o-s2L 

±K2crw2 c2m-x2 	 M 2 2tr 'n_ilc—Fix K 
L 

5.-x20x2 K-2 -Ftr{Rv,n}K2c2(L 2)—AIL  (3.78) 

As before, assuming that Rv,, is fluctuating around its mean when n oo and substitut-

ing c=2121(Lax2 ), tr{Rv,n} in (3.78) can be simplified giving the misalignment 

r/IMMax-AP = 	 K p o-  al + Lai  (1—  OL 2 .  
cq0, MO-  2p,K0a 
K  poi

+ 
 (1—  L 2oi = 	2 „c 

O 
Cr x w a 	2/./K0a 

(3.79) 

where Oa  and 1,b are given in (3.46) and (3.62) respectively. 

For projection order K = 1, the steady-state misalignment performance of MMax- 
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Table 3.2: Steady-state misalignment for WGN input 

Algorithm n' cb, 0. and /3r  

LMS 
poi,L 	( 1  — 	)La., q5 = 1 — 2µo- (1 + L/2) -I- 

0 	2pcy- cb 

NLMS 
po- 	(1— OL2oi w + 0 = 1 — (2p/L)(1 +L/2) 
c40 	2/10 

AP 
Kiw 2 	(1 — 	 )cilL 2  w 4_ O. = 1  —K(2µ/L}(1 + L/2) 
03i0a 	2.Kpcb. 

RLS 
(1 — Ago-2w 	(1 — 	 )Lcr.  + 0 = 1— (1— A)(1 + L/2) 

240 	(1 — A)0,  

MMax-NLMS 
pa2 	Loi (1 — )L2oi 

w + 0,  = 1— (2pIL)(1+ L/2) 
cr!O 	Mme! 	2;0 

MMax-AP 
K pa2w 	Lai (1 — )L2o1 + Oa -= 1 — K(2pIL)(1+ L/2) 
(4 Oa 	M -4 	2pROa  

MMax-RLS 
(1 — Ag2u2 	(1 — 02L01.11/F4 

w Or = 2Moi — (1 — A)L(L +2)oi 
Or 	(1 — AA 

AP is the same as MMax-NLMS as expected. For full adaptation M = L, a x2 = x2 is  

satisfied and hence MMax-AP is equivalent to AP. In addition, the estimation variance 

of MMax-AP is independent of the number of taps selected for adaptation M and so, 

as shown in [24], for stationary unknown system condition = 1, the same steady-state 

misalignment can be achieved with various M. It can be seen that the lag variance is 

proportional to zfi as defined in (3.62) and hence degradation in steady-state misalignment 

is expected for reducing M under non-stationary unknown system condition < 1. 

The steady-state misalignment of various algorithms for non-stationary unknown sys-

tem conditions are summarized in Table 3.2. 
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Figure 3.3: NLMS normalized misalignment for various source velocity with impulse re-
sponse 1-4, generated using the method of images [LR = L = 64, p = 0,1, SNR = 40 dB]. 

3.5 Simulations and results 

3.5.1 Comparison between tracking a modified Markov model and the 

image model 

To provide a sense of realistic values for in the modified Markov model given by (3.2) 

under non-stationary system conditions, a set of impulse responses lin  is first generated 

using the method of images [72]. In this experimental setup, a microphone is positioned 

in the centre of a 2.5 x 3.5 x 3 m room. In order to introduce a time-varying lin  of 

length LR = 64, a zero mean unit variance white Gaussian noise (WGN) source is moved 

across the receiving room at a velocity of (i) 0.2 ms-1, (ii) 0.1 ms-1  and (iii) 0.05 ms-1. 

An adaptive filter of length L = 64, employing the NLMS algorithm with u = 0.1, is 

used to track the time-varying impulse response lin  . 	With reference to Fig. 2.1, an 

uncorrelated WGN wn, with zero mean is added to the received signal as measurement noise 

to achieve a signal-to-noise ratio (SNR) of 40 dB. The normalized misalignment 77 defined 

in (3.22) is employed to analyze the tracking behaviour of each algorithm. Figure 3.3 

shows the normalized misalignment plots corresponding to each moving source's velocity. 

It can be observed that the steady-state misalignment performance of NLMS increases 

with reducing source velocity as expected. Figure 3.4 shows the tracking performance of 

NLMS with impulse response lin  generated using the modified Markov model given by (3.2) 
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Figure 3.4: NLMS normalized misalignment for various with impulse response 	gener- 
ated using modified Markov model [LR  = L = 64, /..t = 0.1, o = 1, SNR = 40 dB]. 

for time-varying unknown system conditions e = 0.9999 and e = 0.99999 with oi = 1. 

For comparison purposes, the parameters for this modified Markov model experiment are 

LR = L = 64, it = 0.1 and SNR= 40 dB as before. Comparing Figs. 3.3 and 3.4, it can be 

seen that with o = 1, the tracking performance of NLMS for e = 0.9999 and e = 0.99999 

defined by (3.2) is comparable to tracking the change in hr, generated using the method 

of images with a source moving at a velocity of 0.2 ms-1  and 0.05 ms-1  respectively. As 

a consequence, in the following experiments, o-s2  = 1 and values fore close to 1 are used 

to evaluate the tracking performances of algorithms under time-varying unknown system 

conditions controlled using the modified Markov model. 

3.5.2 Effect of non-stationarity on misalignment for NLMS and MMax-

NLMS 

Simulations to support the analysis of steady-state normalized misalignment for time-

varying system identification such as shown in Fig. 2.1 using the modified Markov model 

is presented in this section. The normalized misalignment iJ  defined in (3.22) is employed. 

Figure 3.5 shows NLMS results with crs2  = 1 for a time-invariant system (e = 1) and 

three time-varying systems (e = {0.999999, 0.99999, 0.9999}) where smaller values of e 

indicate higher degrees of time-variation as explained in Section 3.2. The input signal is 

zero mean WGN with 	= 1 and the adaptive filter is of length L = 64 while the step-size 
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Figure 3.5: NLMS normalized misalignment for various e [L = 64, µ = 0.1, vi = as = 1, SNR = 
40 dB]. 

Figure 3.6: MMax-NLMS normalized misalignment for various e [L = 64, M = 8, it = 
0.1, o-2 = a9 = 1, SNR = 40 dB]. Dashed lines indicate corresponding performance for NLMS. 

= 0.1 in these examples. The learning curves are averaged over 5 independent trials 

and theoretical values of 71,11,ms  given by (3.29) are first normalized with the unknown 

system II hn  fl before being plotted as superimposed straight horizontal lines. Figure 3.6 

shows the results of an equivalent experiment for MMax-NLMS with L = 64 and M = 8 

taps are selected for adaptation at each sample iteration. For comparison purposes, the 

corresponding theoretical values of 7/NLms from the previous experiment are also included 

in Fig. 3.6 as dashed lines. For both experiments, uncorrelated zero mean WGN sequence 

wn is added to achieve a signal-to-noise ratio (SNR) of 40 dB. 

The results show that both NLMS and MMax-NLMS are sensitive to time-variation of 

the unknown system in that the misalignment performance degrades with increasing devi- 
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— Theoretical 

Figure 3.7: AP normalized misalignment for various [L = 64,K = 	= 0.1,4 = 4 = 
1, SNR = 40 dB]. 

Figure 3.8: MMax-AP normalized misalignment for various [L = 64,M = 8,K = 	= 
0.1, c7.2 = 0..29 = 1, SNR = 40 dB]. Dashed lines indicate corresponding performance for AP. 

ation of e from unity. The MMax-NLMS algorithm can be seen to perform approximately 

3 to 4 dB worse, in terms of steady-state normalized misalignment, than NLMS under 

these time-varying conditions. For a time-invariant system e = 1, both MMax-NLMS 

and NLMS achieve the same steady-state misalignment since the estimation variance is 

independent of M as can be seen from (3.29) and (3.60). The MMax-NLMS algorithm, 

however, has a slower rate of convergence compared to that of NLMS for all cases of e < 1 

as expected. 
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— Theoretical 

E -10 

Figure 3.9: RLS normalized misalignment for various e [L = 64, = 0.9948, = as = 1, SNR = 
40 dB]. 

3.5.3 Effect of non-stationarity on misalignment for AP and MMax-AP 

Figures 3.7 and 3.8 show the normalized misalignment for the AP and MMax-AP respec-

tively where the straight lines indicate theoretical steady-state normalized misalignments 

for various non-stationary conditions The dashed lines in Fig. 3.8 represent the theoreti-

cal steady-state normalized misalignments for the AP algorithm. In these simulations, the 

input signal is zero mean WGN with 	= 1 while the adaptive filter is of length L = 64 

with II = 0.1. A projection order of K = 3 and for MMax-AP, M = 8 while uncorrelated 

zero mean WGN wn, is added to achieve an SNR of 40 dB. In both simulations, the learning 

curves are averaged over 5 independent trials. 

The results indicate that the steady-state normalized misalignment performance de-

grades for MMax-AP by approximately 2 to 3 dB compared to AP with increasing de-

viation of from unity. For a time-invariant system, = 1, the steady-state normalized 

misalignment of the MMax-AP algorithm is insensitive to the tap selection since its esti-

mation variance is independent of M as can be seen from (3.79). 

3.5.4 Effect of non-stationarity on misalignment for RLS and MMax-

RLS 

Figures 3.9 and 3.10 show RLS and MMax-RLS normalized misalignment results for vari- 

ous 	as before. In these simulations, the adaptive filter is of length L = 64 and a forgetting 
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Figure 3.10: MMax-RLS normalized misalignment for various e [L = 64, M = 4, A = 
0.9948, 	= cr! = 1, SNR = 40 dB]. Dashed lines indicate corresponding performance for 
RLS. 

factor of A = 1 — 1/(3L) = 0.9948 is used [39]. As before, the input is a zero mean WGN 

sequence. With reference to Fig. 2.1 and (3.2), a-2  = 	= 1 while an uncorrelated zero 

mean WGN wi, is added to achieve an SNR of 40 dB for each of the 5 independent trials. 

For the MMax-RLS algorithm, M = 4 taps are selected for adaptation at each iteration. 

The results show that both RLS and MMax-RLS are sensitive to time-variation of 

the unknown system with misalignment performance of MMax-RLS degraded by approx-

imately 7 and 3 dB compared to RLS for = 1 and = 0.9999 respectively. In contrast 

to the MMax-NLMS and MMax-AP algorithms, MMax-RLS is sensitive to tap selection 

even for a non-stationary unknown system = 1 since Or  in the estimation variance is 

dependent on M as shown in (3.73). 

3.5.5 Effect of step-size on misalignment for NLMS and MMax-NLMS 

Figure 3.11 shows the effect of varying the step-size ji  on the steady-state misalignment 

for NLMS under stationary 	= 1) and time-varying 	= 0.99999) unknown system 

conditions using a zero mean unit variance WGN input sequence. In this experiment, the 

adaptive filter length is L = 128 and an uncorrelated zero mean WGN sequence w,„ is 

added to achieve an SNR of 30 dB. The average steady-state normalized misalignment is 

obtained from 5 independent trials. 
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For the stationary case = 1, it can be observed that the steady-state normalized 

misalignment increases with step-size pc as expected. In this simulation example, the mean 

difference between the experimental and theoretical steady-state normalized misalignment 

is 0.03 dB. For the case of non-stationary unknown system condition = 0.99999, there ex-

ists a /Lim, giving the lowest misalignment. The theoretical value of pcmis  = 0.378, computed 

using (3.33), is shown by the vertical dotted line and hence it can be observed that within 

the region 0 < µ < firms, the steady-state misalignment reduces with increasing pt. The 

mean difference between the experimental and the theoretical normalized misalignment 

is 0.22 dB. 

Figure 3.12 shows the effect of step-size on steady-state misalignment for the MMax-

NLMS algorithm under the conditions = 1 and = 0.99999 with L = 128 and M = 64. 

As before, this experiment is simulated using a 30 dB SNR. Similar to the case of NLMS, it 

can be seen that for = 1, the steady-state normalized misalignment increases with step-

size pc,. For the case of = 0.99999, there exists a pcmis  = 0.384 governed by (3.65) which 

is plotted as a vertical line. The mean differences between experimental and theoretical 

steady-state normalized misalignment for the cases of = 1 and = 0.99999 are 0.13 and 

0.03 dB respectively. Comparing Figs. 3.11 and 3.12, the normalized misalignment for 

MMax-NLMS is comparable to that of the NLMS algorithm with this case of M = 0.5L 

and 	= 0.99999, since as discussed in Section 3.4.1, increases insignificantly within the 

range 0.5L < M < L. 

3.5.6 Effect of tap selection M on normalized misalignment 

The effect of tap selection on normalized misalignment with a time-varying unknown 

system is compared for the MMax-based algorithms using a WGN input sequence with 

zero mean and unit variance. Figure 3.13 shows the variation of average normalized 

misalignment with M for MMax-NLMS, MMax-AP and MMax-RLS. The length of the 

adaptive filter is L = 128 while 16 < M < 128 and = 0.9999. For the MMax-NLMS 

and MMax-AP algorithms, pc = 0.1 is used while for MMax-RLS a forgetting factor of 

A = 1 — 1/(3L) = 0.9896 is used. The steady-state normalized misalignment for each 
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Figure 3.11: NLMS: Variation of average normalized misalignment with [L = 128, o 
as = 1, SNR = 30 dB]. 
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Figure 3.12: MMax-NLMS: Variation of average normalized misalignment with it [(7! = 
1, L = 128, M = 64, SNR = 30 dB]. 

algorithm is averaged over 5 independent trials and for each trial, an SNR = 40 dB is 

achieved by adding an uncorrelated WGN sequence tun  with zero mean to the received 

microphone signal. 

Although the performance of each algorithm is plotted on the same axis, the inten-

tion here is not to compare each algorithm's relative normalized misalignment in this 

simulation example. Instead, it can be seen that for each algorithm, the normalized mis-

alignment reduces with increasing M under the same non-stationary unknown system 

condition of = 0.9999. More importantly, for each algorithm, only a modest degradation 

in steady-state misalignment performance is observed with reducing M within the range of 

0.5L < M < L. When M is reduced further, the degradation in steady-state misalignment 
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Figure 3.13: Variation of average normalized misalignment with the number of taps selected 
for adaptation M [L = 32, it = 0.1, K = 3, A = 0.9896 = 0.9999, a! = Cr! = 1, SNR = 40 dB]. 

performance is more pronounced for MMax-NLMS and MMax-AP since, as analyzed and 

discussed in Fig. 3.2, z,b increases significantly. The degradation in steady-state normal-

ized misalignment performance for MMax-RLS is less pronounced, suffering approximately 

1 dB degradation when M is reduced from 128 to 16. The mean errors between theoretical 

and experimental results in this simulation for MMax-NLMS, MMax-AP and MMax-RLS 

are 0.20, 0.10 and 0.12 dB respectively. As before, the validity of the analysis presented 

in this chapter is shown to be valid to within tolerable errors. 

3.5.7 Effect of SNR on normalized misalignment 

The effect of SNR on steady-state normalized misalignment is investigated for the various 

MMax selective-tap algorithms under non-stationary unknown system conditions. The 

experimental parameters for this simulation setup are L = 128, M = 64, = 0.99999, 

= 0.1, projection order K = 3 and forgetting factor A = 1 — 1/(3L) = 0.9974. The 

normalized misalignments for each algorithm are averaged over 5 independent trials. 

Figure 3.14 shows the variation of MMax-NLMS and MMax-AP normalized misalign-

ments with SNR. For each of the algorithms, the steady-state normalized misalignment 

improves with increasing SNR as expected. The MMax-AP algorithm is more sensitive to 

SNR variation achieving an improvement of approximately 9 dB normalized misalignment 

when SNR is increased from 10 to 40 dB compared to approximately 4 dB for MMax- 
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Figure 3.15: MMax-RLS: Variation of average normalized misalignment with SNR [L = 128, 
M = 64, A = 0.9974, = 0.99999, a = as = 1]. 

NLMS. 

Figure 3.15 shows the corresponding normalized misalignment for MMax-RLS under 

various SNR conditions. As the SNR is increased from 10 to 40 dB, an improvement, 

though not linearly, of approximately 7.5 dB in steady-state normalized misalignment is 

observed. The mean error between the theoretical and experimental results are 0.06, 0.09 

and 0.15 dB for MMax-NLMS, MMax-AP and MMax-RLS respectively hence verifying 

the analysis presented in this chapter. 

O 	Experimental 
Theoretical 

mean error between 
theoretical and 
experlemental: 0.06 dB 

MMax-NLMS 
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3.6 Discussion and conclusions 

Misalignment analysis for a class of MMax-based and fully updated algorithms have been 

presented which describe their performances when tracking a time-varying unknown sys-

tem that varies according to a modified first-order Markov model [77]. This analysis can 

be applied to all algorithms that can be written using the update equation given in (3.9). 

When the time-variation is removed by setting = 1, the analysis yields known results [35] 

for the various fully updated algorithms. The results for the standard algorithms are con-

sistent with previous work [35] [76] in terms of estimation variance but present new results 

for the lag variance. Under time-invariant unknown system conditions, the steady-state 

normalized misalignment for MMax-NLMS and MMax-AP is independent of M while the 

same is not true for MMax-RLS. For time-varying unknown system conditions, the per-

formance of MMax-based algorithms in terms of steady-state misalignment degrades with 

increasing time-variation. This degradation is proportional to 0 and as can be seen from 

Fig. 3.2, the increase in 0 is insignificant with reducing M for 0.5L < M < L and as 

a consequence, the degradation in steady-state normalized misalignment performance is 

negligible. As will be shown in Chapter 4, this property will be exploited for stereophonic 

AEC algorithms such as presented in [26] [30]. In addition, it has been shown that under 

time-varying unknown system conditions, there exists for each NLMS and MMax-NLMS, 

an optimal step-size given by (3.33) and (3.65) respectively, which jointly maximizes the 

performances in terms of low misalignment and high convergence rate. Due to the nature 

of stochastic processes and coefficient noise, the theoretical and experimental results are 

very close but not exactly the same. Nevertheless, simulations presented have been shown 

to verify the theoretical analysis to within tolerable errors which accurately describes the 

performances of the algorithms. This analysis enables a judicious trade-off between the 

computational savings of partial update schemes and their tracking performance. 
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3.7 Appendix 

3.7.1 Fourth-order factorization for zero mean gaussian variables 

For an i.i.d. Gaussian distributed signal x(n), the matrix 4,  = .E{xnxTn xnx,,T} has elements 

= E {x (n — k) 	x2(n — i)x(n — l)) , 

where xr, = [x(n) x (n — 1) . x(n — L +1)1T  . The factorization property of real zero-mean 

Gaussian variables [82] is that 

E{x(i)x(j)x(k)x(1)} = E{x(i)x(j)}E{x(k)x(l)} 

+E{x(i)x(k)}E{x(j)x(1)} 

+E{x(i)x(1)}E{x(j)x(k)} , 

from which 

E {xn )g' Xn X7n' kl  = 2 z_s  E lx(n — k)x(n — E {x (n — 1)x (n — i)} 

L 

+E {x (n — k)x(n — 1)} 	E{x2(n — i)} . 

From the above, it can be seen that, for the complete matrix, .1,  = 2R2  + Rtr{R}. 

Now for x(n) i.i.d Gaussian variables 

{ {x (n — i)x(n — j)} = 	°' E' 	2  
ux, i = 

so that 43 = (L 2)o-14xL• 

i 
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3.7.2 Verification of step-size boundary condition for MMax-NLMS us-

ing contraction mapping 

To simplify (3.57), two conditions (i) T > —1 and (ii) T < 1 must be satisfied where 

M&2 	2  (L + 
1 	40 7.2 2  + 4/t 	30.2  

1-/  x  

For case (i), 

1 -2 Mi x  
4,a 

2  (L + > 4,a 7.
-1-1

2 
 4°- 
_2  

X 

+ 1,30.  

2(L + 2)/14-6--  2  2MQ2  

	

L3  o-2 	IL 	L2o-2  + 
2(L 	2)M-4  2 	L 	L3  Gi 	1 

L3 	[ IL L + 21i  2(L + 2)/trq 

2 
Introducing the term (L/ [2(L + 2)]) into the quadratic expression and using the com- 

pleting the squares approach, (3.81) can be simplified as 

2(L + 2)ME4 [ ( 	L  ) + 2 	L34 	L2  
L3cq 	2(L + 2) 	2(L + 2)M 	4(L + 2)2 	> 0 	(3.82) 

Let 

= LGq/(a-DM) , 	 (3.83) 

T= 

—1 

> 0 

> 0. 

(3.80) 

(3.81) 

from which (3.82) can be simplified as 

2(L + 2) L )2 LO L2  
4(L + 2)2 1 LO [( It 	2(L + 2) + 2(L + 2) > 	 (3.84) 

It is shown (c.f. Fig. 3.2) that the term > 1 when 0 < M < L taps are selected for 

adaptation. Consequently, 2(L + 2)/(L'5) > 0 and hence (3.84) can be simplified giving 

2 
L2  

2(L + 	2)] 	2(L 	+ 2) 4(L + 2)2 
> o 

 

L 	
2

L2 (20 — 1) + 4LiP > 0 
2(L + 2) 	4(L + 2)2 
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which is valid Vp since 1P > 1 and hence case (i) gives trivial solutions for step-size p. 

For case (ii), 

Mai 	2  (L + 2)MFq 

(3.85) 

1 	zliz 	zlia 	 1 L30.2 	< L20.2  + 
x 

(L + 2)1Uai 2 	M'ar 
0 

L3a2 	
p, 	

L2  u2 '
12 	< 	. 

Substituting the definition of 0 from (3.83) into (3.85), the condition 

p 
11, 

[p(L + 2) 	1 < 0  (3.86) L 

is obtained. Under the condition p > 0 and since IP > 1, therefore 

1,c(L + 2) 
1 < 0 L 

L 
la 	< L + 2 ' 

giving 0 < p, < L I (L + 2) . 0 



Chapter 4 

Stereophonic Acoustic Echo 

Cancellation Employing Tap 

Selection 

Many things difficult to design 

prove easy to perform. 

Samuel Johnson (17094784) 

4.1 Introduction 

S TEREOPHONIC tele- and video-conferencing systems have gained much popular-

ity [90] [91 [92] in recent years. In applications such as desktop conferencing and ]  

hands-free telephony, stereophonic systems provide telepresence to users by enabling listen-

ers to localize speakers in conference meetings where multiple parties might be conversing 

at the same time. Similar to single channel acoustic echo cancellation (AEC) as discussed 

in Chapter 2, the stereophonic acoustic echo canceller (SAEC) such as shown in Fig. 4.1 

suppresses the echo returned to the transmission room so as to enable undisturbed com-

munication between the rooms. The disturbance due to echo increases in severity with the 

propagation delay of the channel. 

Unlike the single channel case, a serious problem encountered in SAEC is that the 
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Figure 4.1: Schematic diagram of stereophonic acoustic echo cancellation. Only one channel 
of the return path is shown for simplicity. 

echo canceller coefficients do not in general converge to the true impulse responses of the 

echo path when the adaptive filters of length L, are greater than or equal in length to 

those of the transmission room's impulse responses, LT. In such a situation, solutions for 

the adaptive filters are non-unique and depend both on the transmission and receiving 

rooms' impulse responses [52]. 

In the practical case where L < LT, the problem of non-uniqueness is ameliorated 

to some degree by the "tail" effect [52]. However, even in such cases, direct application 

of standard adaptive filtering is not normally successful because the system identifica-

tion problem is ill-conditioned due to the high interchannel coherence between the two 

channels' tap-input vectors [52] [90]. This is known as the misalignment problem. As 

explained in Section 2.2.2, significant undermodelling of the unknown system can also 

degrade cancellation of echo. To overcome the misalignment problem in this practical 

case, several approaches have been employed to decorrelate the two input signals using, 

for example, non-linear processing [11] [52] [93], spectrally shaped random noise [94] [95], 

comb-filtering [96], leaky extended LMS [97] and alternating fixed-point [98] algorithms. 

The use of filter updates that are orthogonal to the tap-input vectors has also been con-

sidered in [99] [100]. With reference to Fig. 4.1, the common aim of these algorithms is to 
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achieve decorrelation between input signals x1(n) and x2(n) without affecting the quality 

or stereophonic image of the signals. A survey of existing techniques for SAEC can be 

found in [101]. In this chapter, in a similar manner to Chapter 2, the dependency of a 

variable on sample iteration n is shown in brackets while the subscript of a vector quantity 

is denoted as its channel number. Unless otherwise stated, the first and second subscripts 

of a scalar quantity are denoted as the channel number and its elemental index of a vector 

respectively. If only one subscript is shown for the scalar quantity, its elemental index will 

then be reflected in parenthesis. 

In recent years, as discussed in Chapter 2, selective-tap schemes are introduced to 

reduce computational complexity of, in particular, the NLMS algorithm by updating only 

a subset of taps at each iteration. The MMax-NLMS algorithm, as discussed in Chapter 2, 

allows implementation in single channel AEC with performance close to that of the NLMS 

algorithm. The reduction in computational complexity due to the partial updating is offset 

to some degree by the computational cost of tap selection which normally requires a sort 

operation to be performed. However, efficient approximate schemes such as the Short-sort 

algorithm [71] as discussed in Section 2.7 have been proposed to address this issue. The 

main motivation of this chapter is not the reduction of complexity of SAEC. Instead, tap 

selection is proposed as a means to reduce interchannel coherence. Drawing on knowledge 

obtained from developing selective-tap algorithms for single channel AEC as described in 

Chapter 2, the proposed tap selection algorithm will be applied to normalized least-mean-

square (NLMS), affine projection (AP) and recursive least squares (RLS) algorithms for 

the SAEC application. 

This chapter is organized as follows: Problems associated with SAEC are reviewed 

in Section 4.2. In Section 4.3, it will be shown why direct application of the single chan-

nel MMax-NLMS selective-tap algorithm will not achieve sufficient convergence perfor-

mance for SAEC application. The effect of exclusive tap selection on interchannel coher-

ence and the conditioning of input signal autocorrelation matrix will also be presented. As 

a proof of concept, an exhaustive tap selection search technique is initially considered in 

Section 4.4 to demonstrate the selective-tap approach in SAEC. Noting that the exhaus- 
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tive search technique is not computationally efficient, an efficient exclusive-maximum (XM) 

tap selection technique involving adaptive filters of realistic order will be presented. This 

methodology is then applied in combination with a non-linear (NL) processor [52] to form 

XMNL-based versions of NLMS, AP and RLS in Section 4.5. Computational complexity 

of the proposed algorithms will also be considered in Section 4.5. Simulation results will 

be presented in Section 4.6 while Section 4.7 draws conclusions from the work. 

4.2 Problems associated with stereophonic acoustic echo 

cancellation 

Stereophonic acoustic echo cancellation (SAEC), as shown in Fig. 4.1, can be viewed as 

a multichannel extension of the single channel AEC concept. Two microphones are lo-

cated in the transmission room depicted on the right. The source signal is convolved 

with the transmission room impulse responses gi  (n) and g2 (n) to give input signals xi (n) 

and x2(n) respectively. These stereophonic signals are then transmitted to loudspeakers 

in the receiving room which in turn are acoustically coupled to the receiving room mi-

crophones. An uncorrelated noise w(n) = 0 is initially considered in the development of 

SAEC algorithms. In addition, only one microphone is considered at the receiving room 

here for simplicity since similar analysis can be applied to the other channel. Receiving 

room impulse responses hi (n) and h2(n) produce received signal y(n) given by 

2 
y(n) = > hT(n)xj(n) , 3 

j=1 

where 

(n) = [hi3O (n) 	(n) 	hi,LR -1 (n)] T 	= 1,2 

and 

xj(n) = [xj(n) xj(n — 1) ... xj(n — L 1)]T 	j = 1,2 	 (4.3) 

are the jth channel receiving room impulse response of length LR and tap-input vector of 

length L respectively while the superscript T  denotes transposition operator. Similar to 

(4.1) 

(4.2) 
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the single channel case, it is initially assumed that the length of the adaptive filter is the 

same as that of the unknown impulse response, i.e., L = LR. A pair of adaptive filters 

each of length L function as a SAEC by estimating the unknown impulse responses hl  (n) 

and h2  (n) using filter coefficients hl  (n) and h2 (n) where 

hi(n) = 	(n) . . . 	(n)] T  , j = 1, 2 . 	 (4.4) 

The a posteriori error signal between the desired signal and its estimate for this two-

channel case is thus given by 

2 
ep (n) = y(n) — E hr(n)xj(n) , 

j=1  

while in a similar manner to the single channel case, the a priori error for this stereo case 

is given by 
2 

e(n) = y(n) — E iiT (n — 1)xi (n) . 
j=i 

Considering the use of the method of least squares following the approach of [52], the 

time-averaged a posteriori cost function can be defined as 

n 
.7p(n) = E  (4.7) 

i=1 

where 0 << A < 1 is the forgetting factor. Minimizing the least squares criterion (4.7) and 

using (4.5), the set of normal equations' 

h(n) = 41-1(n)0(n) 	 (4.8) 

is obtained, where the two-channel 2L x 2L time-averaged autocorrelation matrix and 

'The rigorous proof of using the a posteriori cost function to obtain the normal equations will be shown 
in Section 5.3.3 in the context of frequency-domain adaptive filtering. 

(4.5) 

(4.6) 



4.2 Problems associated with stereophonic acoustic echo cancellation 110 

2L x 1 cross-correlation vector are defined [52] respectively as 

`If(n) 	= 	EAn-ix(i)xT(i) 
i=1 

ipn.(n) 	4/12(n) 
(4.9) 

4121(n) 	Alf 22(n) 

and 

2Lx2L 

n 

e(n) = E An—i y(i)x(i) , (4.10) 
j=1 

given that for this two-channel case, 

x(n) [xi (n) xl(n)] , (4.11) 

R(n) [hi (n) fipn)]T (4.12) 

are the 2L x 1 concatenated tap-input vectors and filter coefficients respectively. 

Defining 

gi(n) = [gj,o(n) 	.. • gi,LT -1(n)1T  (4.13) 

as the jth  channel transmission room impulse response of length LT , it is shown in [52] 

and proven in Section 4.8.1, that when L > LT , the solution of (4.8) giving a posteriori 

error ep(n) = 0 is in the form 

(n) 

h2(n) 
2Lx1 

(n) 

h2(n) 2Lx1 

g2(n) 

--gi(n) 
2Lx1 

(4.14) 

    

where gi(n), for j = 1,2, are appended with L — LT zeros and yo(n) is any scalar quan-

tity. Equation (4.14) indicates that there are non-unique solutions for the adaptive filter 

coefficients fi(n). More importantly, although there is a mismatch between the estimated 

and true impulse responses in (4.14), these solutions depend on both the transmission and 

receiving rooms' impulse responses which is undesirable. This is because any changes in 

the impulse responses of the transmission room, due to for example a change in talker, 

will require the adaptive filters to reconverge to another solution which again depends 
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on gi (n) and g2(n). 

In practical cases where L < LT , the time-averaged autocorrelation matrix T(n) is 

ill-conditioned because the tap-input vectors xi (n) and x2  (n) are highly correlated2. In 

the case where the adaptive filters are shorter than the lengths of the receiving room 

impulse responses, LR, a system mismatch error is introduced in the filter coefficients due 

to undermodelling. Defining hi (n), of dimension (LR  — L) x 1, as that part of the jth  

channel in the receiving room impulse response which is not modelled by the respective 

adaptive filter and h(n) = [h1 (n) g(n)]T, the system mismatch can be quantified [52] 

by the normalized misalignment 77(n), 

ri(n) 

where II'112 is defined as the 

tir(n) 	= 

I-1(n)112 = 

(n) 	(n)ii(n) (4.15) 

1 x2(L R- L) 

(4.16) 

Ilh(n)112  
iiT(n)4fT (n)W 

i=1 

squared 

En  An-i 

'1'21 (n) 

/2-norm 

x1(i) 

X2 (i) 

W12(n) 

4122(n) 

hT(n)h(n) 

2Lxi 

operator 

2Lx2(LR-L) 

and 

(i) 	X7  2 (id 

is the time-averaged autocorrelation matrix formed from the "tails" of the input signal 

xj(i) such that, at each sample iteration i, the (LR  — L) x 1 vector xj(i) is defined as 

x3  ( ) = [x3  ( - L) X 3(i — L —1) ... X 3 (i — LR +1)]T 	(4.17) 

for channels j = 1, 2. 

The fundamental difference between single channel and stereophonic AEC can be seen 

from (4.15) and (4.16). In the single channel case, 4'(n) in (4.16) reduces to only CA  (n) 

which consequently reduces the normalized misalignment n(n) in (4.15). In addition to 

2The relationship between the ill-conditioning of input autocorrelation matrix and interchannel coher-
ence will be derived in the context of frequency-domain variables in Section 5.4. 
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the error caused by under-modelling of the unknown system, matrices 4112 ( n ) and 4f 21(n) 

in (4.16), for the stereo case, are significant because of the high cross-correlation between 

the two tap-input vectors xi (n) and x2 (n). As a result, the misalignment for SAEC is 

significantly higher than for the single channel AEC unless specific processing, such as 

described in this chapter, is employed. 

4.3 Tap selection for SAEC 

Partial update schemes achieve complexity reduction by updating only a subset of taps 

at each iteration. As discussed in Chapter 3, the MMax-NLMS algorithm [21] has been 

shown to suffer only a modest degradation in convergence rate by updating taps corre-

sponding to the M = 0.5L largest magnitude tap-inputs. It has been shown how 1p , as 

defined in (3.62) and being inversely proportional to the M-ratio measure M, affects the 

steady-state normalized misalignment for the single channel AEC case. In this section, the 

dependence of convergence rate of MMax-NLMS on M will be examined and the effect of 

tap selection on the interchannel coherence for the stereophonic case will be investigated. 

The measure M will then be used for the stereo case as an optimization parameter in the 

subsequent development of the proposed selective-tap SAEC algorithms. For brevity, the 

discussion in this section will temporarily be limited to MMax-NLMS, although discussions 

presented here can be generalized to the MMax-AP and MMax-RLS algorithms. 

4.3.1 Dependency of convergence rate on M 

In the single channel MMax-NLMS algorithm [21] for an adaptive filter of length L, only 

those taps corresponding to the M largest magnitude tap-inputs are selected for updating 

at each iteration. The MMax-NLMS algorithm has been summarized in Table 2.5 of 

Section 2.10.1. 

As can be seen from experimental results presented in Section 2.8, the penalty in-

curred due to tap selection for the single channel MMax-NLMS algorithm is a decrease 

in convergence rate for a given step-size 	The dependency of convergence rate on tap 
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selection can be examined using the measure M defined in (3.61) and is reproduced here 

for convenience, 

where elements of the diagonal 

M 	IIQ(n)x(n)fi (4.18) 
Ilx(n)113 

MMax tap selection control matrix 

Q(n) = diag{[go(n) qi(n) • • • 41-1(n)1} 

are defined by (2.47) given as 

(4.19) 

(n) = 
1, 	Ix(n — i)I E {M maxima of lx(n)1} , 

(4.20) 

for i = 0,1, ... ,L — 1 in this 

0, 	otherwise , 

single channel case with 

Ix(n)I = [Ix(n)1 I x(n — 1)1 	• • . 	Ix(n — L 	1 )1]T  • (4.21) 

Whereas the fundamental concept of MMax tap selection was presented in [21], the pro-

posed measure M provides an explicit quantification of the deviation of the selective-tap 

case from the full update case such that M = 1 corresponds to full adaptation, i.e., with 

M = L. Furthermore, M allows direct extension to the stereophonic case as will be shown 

in Section 4.4.2. 

Figure 4.2 shows how M varies with the size of tap selection M in a single channel 

case for zero mean, unit variance white Gaussian noise (WGN) tap-input sequence x(n) 

at a particular sample iteration n for L = 256. It can be seen that M exhibits only a 

modest reduction for 0.5L < M < L. Figure 4.3 shows the number of iterations for MMax-

NLMS to achieve —20 dB normalized misalignment for various M and hence verifies the 

expectation that, over the range 0.5L < M < L, a graceful reduction in convergence rate 

is obtained as compared to full adaptation [28] [29]. Since convergence rate can be seen 

to increase monotonically with M, it is proposed that any degradation in convergence 

performance due to the subselection of taps can be minimized by selecting taps so as to 
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Figure 4.2: Variation of M with subselection parameter M showing modest reduction of M 
within the region 0.5L < M < L for zero mean unit variance WGN sequence with L = 256. 
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Figure 4.3: Number of iterations for MMax-NLMS to converge to -20 dB normalized mis-
alignment, as a function of M for L = 256. 

maximize M. 

4.3.2 Interchannel decorrelation using tap selection 

In order to examine the effect of tap selection on interchannel coherence in SAEC, the 

squared coherence function 

17(f)12  = 	
1812(f)12  

S11(1)S22(1) 
(4.22) 

is employed, where S12 (f) is the cross power spectrum between the two channels and f is 

the normalized frequency. 
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Figure 4.4: Squared interchannel coherence for (a) M = L = 512, (b) M = 0.5L with MMax 
tap selection and (c) M = 0.5L with exclusive tap selection. 

As an illustrative example, consider the system of Fig. 4.1 for the case when the 

source signal is a zero mean unit variance WGN sequence and transmission room impulse 

responses gi (n) and g2(n) are highly correlated each of length 1024. This results in highly 

correlated tap-input vectors xi (n) and x2(n) with xj(n) = [x j(n) xi  (n - 1) ... x3(n -

L + 1)F and for this illustration L = 512 is chosen. In this example, transmission room 

impulse response gi (n) is generated using the method of images [72] while g2(n) is formed 

using the following relation 

g2(n) = egi (n) + (1 - €)b(n) , 	 (4.23) 

where b(n) is an uncorrelated zero mean unit variance WGN sequence and 0 < e < 1 

controls the amount of independent WGN added to gi (n) . To reflect the high interchannel 

correlation found in practice, E = 0.9 is used, giving a correlation coefficient of 0.904. 

The highly correlated tap-input vectors give rise to a squared coherence close to 

0.8 

8 0.4 

0.2 
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one across most of the frequency bands as shown in Fig. 4.4 (a). In the case shown in 

Fig. 4.4 (b), taps are selected according to the MMax selection criterion with M = 0.5L 

in both channels. It can be seen clearly that the MMax tap selection does not provide 

any significant decorrelation. This is because the MMax criterion selects nearly identical 

tap-indices in both filters, due to the high coherence between the two-channel tap-input 

vectors. This does not achieve the desired effect of decorrelating the signals. 

An exclusive tap selection criterion is considered where selection of the same tap-

index in both channels is not permitted. A simple example of such an exclusive case 

with M = 0.5L (but not the technique used in the proposed algorithm) is to select the 

taps corresponding to the M largest magnitude tap-inputs in the first channel and the 

exclusive set of taps in the second channel. Figure 4.4 (c) shows the squared coherence 

plot of such a case. As can be seen, the interchannel coherence is significantly reduced 

from a mean of 0.88 to a mean of 0.52 across normalized frequency 0 < f < 1, and this is 

used to illustrate and develop further study of tap selection in Section 4.4. 

The exclusive tap selection can be seen as a method for improving the conditioning 

of the input autocorrelation matrix by considering the case where xl  (n) and x2  (n) are 

highly correlated white Gaussian tap-input vectors. Defining x(n) = [xi (n) xI(n)]T  and 

E{•} as the mathematical expectation operator, the two-channel 2L x 2L autocorrelation 

matrix can be expressed as 

• 

RXX 	= E fx(n)xT (n)} 

R11 R12 	 (4.24) 
R21 R22 

2Lx2L 

Defining Qi (n) and Q2 (n) as diagonal exclusive tap selection matrices for channels 1 and 

2 respectively, the resulting sparse vectors are given by 

Xi (n) = Qi(n)xi(n) 
	

(4.25a) 

x2(n) = Q2 (n)x2 (n) 	 (4.25b) 
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Figure 4.5: Effect of exclusive tap selection for various mean value of 17( f)I 2  across frequency 
on mean condition number for zero mean unit variance WGN sequence (a) without tap 
selection, (b) with MMax tap selection and (c) with exclusive tap selection. 

which in turn give rise to R5-oz where the diagonals and some off-diagonal elements of R12 

and R21 are now zero since based on the definition of exclusive tap selection, 

Qi(n)Q2(n) = 0L.L , 	 (4.26) 

where 13L x L is defined as a L x L null matrix. This improves on the conditioning of R.x  and 

in the limit where the subselected tap-input vectors xl  and 5i2 are perfectly uncorrelated, 

the autocorrelation matrix is a diagonal matrix given by 

R3c-5-c  = diag { [51.  . . . 	. . . 	} 	 (4.27) 

with an /2  condition number of 

II RT6:11211Rall 2 	max (ETI 3=3 ) 
na ha(a2  1,  2) 

(4.28) 

where -6-2 is the jth  channel subselected tap-input variance given by (3.48). 
3 

Figure 4.5 shows the variation of mean condition number of time-averaged autocor-

relation matrices Rxx  and RXX  as a function of the mean of 17(f)12  across 0 < f < 1 

where 1-y(f)12  is defined in (4.22). The autocorrelation matrices are formed from tap-input 
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vectors xi (n) and x2(n) generated by the convolution of a zero mean unit variance WGN 

source sequence with transmission room impulse responses gi (n) and g2 (n) generated us-

ing the method of images [72], such that 1-y(f)12  is controlled by c as described in (4.23) 

while the additional MMax or exclusive tap selection criterion has been imposed when 

generating R. For each case of mean coherence, the average condition number for 30 

trials is computed and plotted as shown in Fig. 4.5 (a), (b) and (c) for Rxx, MMax RXX 

and exclusive R5-5, respectively. It can be observed that as the mean interchannel coher-

ence reduces, xl  (n) and x2  (n) become less correlated and hence a reduction of the mean 

condition numbers for the autocorrelation matrices are exhibited. The explicit link be-

tween interchannel coherence and condition number of Rxx  will be presented in Chapter 5 

in the context of frequency-domain quantities. With reference to Fig. 4.5, for each case of 

mean interchannel coherence, R51-5-, formed from exclusive tap selection has the lowest mean 

condition number compared to Rxx  and RR-i-c- formed from MMax tap selection. Hence the 

exclusive tap selection gives rise to a better conditioned autocorrelation matrix which in 

turn allows one to address the misalignment problem caused by the ill-conditioned input 

autocorrelation matrix as discussed in Section 4.2. 

4.4 Exclusive-maximum tap selection 

4.4.1 Formulation 

It has been shown through a simulation example in Section 4.3.2 that exclusive tap 

selection can improve the conditioning of the two-channel input autocorrelation matrix 

in SAEC. An adaptive filtering scheme which makes use of this concept without degrading 

convergence due to partial adaptation is developed in this section. The problem can be 

formulated as a joint optimization of maximizing the MMax criterion, determined by the 

M-ratio .M, and minimizing the interchannel coherence under the control of tap selec- 

tion. This is done using two variables: magnitude weighting, 0 < 	< 1, to describe 

the "closeness" of the tap selection to that of the MMax scheme, and coherence weight-

ing, 19, = 1 — Dm, to describe interchannel coherence between the subsampled tap-input 
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Figure 4.6: Possible combinations of tap selection for L = 4 and M = 2 in channels 1 and 2. 

vectors. A magnitude weighting of 19,, = 1 corresponds to selecting coefficients based on 

the MMax tap selection criterion only. In the following, the dependence of variables on 

sample iteration n is temporarily omitted for clarity of notation. 

Consider firstly the LCM  possible combinations of selecting M = 0.5L taps from each 

channel's adaptive filter of length L. Let the combinations be indexed k, r = 1, 2, ... ,L  CM 

giving tap selection sets {(k} and {(7.1 for channels 1 and 2 respectively and define {OA 

as the combined two-channel tap selection set for each sample iteration while X1,k  and 

iC-2,r are the subselected input vectors using tap selection sets {(k} and {(r} respectively. 

Figure 4.6 shows the different possible combinations of selecting the filter coefficients in 

each channel for an example case of L = 4 and M = 2. Clearly, there are LCM  = 6 

possible combinations of tap selection for each of the two channels. 

For the structure shown in Fig. 4.1, A and C are defined, for each sample iteration, 

as square matrices each with dimension LCM  x LCM  such that the {kth, rth}  element of 

each matrix contains 

akr = 1 5c1>k + 15c2,r 1 ' 
(4.29) 

   

Ckr = 
/ 	ISR,R,(f)12    
\ 85-,,R,(f)S5zriEr (f)/ 

(4.30) 

respectively where akr  denotes the absolute sum of the selected tap-inputs in a particular 

tap selection set (kr  and Ckr  is the squared coherence, with < • > indicating averaging over 

frequency, of the two tap-input vectors with L — M unselected inputs in each channel set 

to zero. 
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A Cr 
1 2 3 4 5 6 

Ck 

1 12 34 35 5 22 32 
2 10 4 11 14 19 21 
3 9 33 27 31 3 6 
4 30 17 20 29 18 15 
5 . 	1 16 28 2 7 24 
6 25 26 13 36 23 8 

C cr 

1 2 3 4 5 6 
1 22 24 25 19 10 1 
2 7 4 21 6 1 9 

ck 3 3 12 23 1 2 8 
4 13 14 1 27 30 31 
5 5 1 15 26 28 29 
6 1 11 20 16 18 17 

Figure 4.7: Cost matrices for A and C. 

Since elements in matrix A contain the sums of magnitudes which are required to 

be maximized, an integer cost is first associated with each of the elements akr  such that 

the least cost is allocated to the element having the largest magnitude in A. This new 

magnitude cost matrix is now defined as A. In a similar manner, each element in C will 

be allocated an integer cost such that element corresponding to the minimum squared 

coherence is allocated the least cost. This new coherence cost matrix is then defined as C. 

Hence matrices A and C contain integer cost values, at each sample iteration, depending 

on the magnitude sum and interchannel coherence. 

To illustrate the above description, Fig. 4.7 shows an example of matrices .4 and C at 

one particular sample iteration for the case of L = 4 and M = 2 as before. It can be seen 

that (51  gives the lowest cost in .A and consequently, from Fig. 4.6, lxi,o(n)1+ lxi,2(n)I + 

Ix2,2(n)I + 1x2,3(n)I achieves the highest magnitude amongst all the possible combination 

sets k, r = 1, 2, . . . ,L  CM where x j,i(n) is defined as the ith  tap-index corresponding to 

the jth  channel. It is interesting to note that elements in the skew (top-right-to-lower-

left) diagonal of C, as shown in Fig. 4.7, have the lowest cost. This is because these 

combinations •I'(- L-361, (52, (43, (34, (as, (16} correspond to the exclusive tap selection of the 

two-channels as can be seen from Fig. 4.6. 

A total cost matrix V is then given, at each sample iteration, by 

V = 	+19,C . 	 (4.31) 

Defining {(m  = Tr' 	as the tap selection set having minimum cost in matrix V, 
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50
0 	1 	2 	3 	4 	5 	6 

samples 	 x 104  

Figure 4.8: Misalignment for (a) 'Om  = 1, (b) NLMS, (c) Vrn  = 0.9, (d) 	= 0.7, (e) 
0.1 [L = 6, M = 3, µ = 0.6, c=0.9, SNR =40 dB]. 

{Gin} can obtained using 

	

kmin, rmin = argmin(V) , k,r = 1, 2, . , LCM  
k,r 
	 (4.32) 

For small L and letting h(n) = [hi (n) iiI(n)]T  and x(n) = [4:(n) xl(n)]T, V can be 

searched exhaustively, for each iteration n, so that the tap selection set (min  can then be 

incorporated into NLMS adaptation [26] as 

11(n) = 1;(71, _ 1) Q(n) /2µx(n)e(n)  

Ilx(n)fl + (5NLms 
	 (4.33) 

with 

Q(n) = diag{ [qT(n) 4(n)] 	 (4.34) 

being the two-channel tap selection control matrix where, at each sample iteration n, 

element u of qi(n) and element v of q2(n) are defined for u,v = 0,1, ... ,L — 1 as 

1, if u,v E {Gin} , 
{qi,u(n), q2,v(n)} = 

0, otherwise . 

Figure 4.8 shows simulation results for the normalized misalignment with different 
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Figure 4.9: Number of samples that a particular integer cost in matrices (a) A and (b) C 
associated with (min  is selected for adaptation [L = 6, M = 3, )9m  = 0.1, /./. = 0.6, c = 0.9, 
SNR = 40 dB]. 

values of magnitude weighting Pm  = 0.1, 0.7, 0.9, 1.0). In this example the source is a 

zero mean unit variance WON sequence with adaptive filters having 6 taps per channel 

and for every iteration, 3 taps are updated (L = 6, M = 3) using an arbitrarily chosen 

step-size of t = 0.6. The relationship between transmission room impulse responses gi(n) 

and g2(n) with lengths LT  = 12 is again determined by (4.23) with c = 0.9. The receiving 

room impulse responses hi (n) and h2(n) are taken from a zero mean unit variance WGN 

sequence and are of lengths LR = 6. This choice of LT and LR  allows one to study 

the adaptive filters which uniquely determine the unknown system whilst minimizing the 

normalized misalignment caused by undermodelling. The normalized misalignment for 

only one of the two channels is plotted for each case of V, for reasons of clarity. With 

reference to Fig. 4.1, an uncorrelated zero mean WGN sequence w(n) is added to achieve 

a signal-to-noise ratio (SNR) of 40 dB. The simulation result shows that Om  = 1 coincides 

with MMax-NLMS where performance is close to that of the fully updated NLMS as 

expected. The highest convergence rate can be seen when 19m  = 0.1 (i.e., 	= 0.9) where 

a high weighting is given to minimization of the interchannel coherence. 

Figure 4.9 shows, for the same experimental setup with Om  = 0.1, the number of 

iterations that a particular integer cost in matrices (a) A and (b) C associated with 
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(min  is selected for adaptation. The highest integer cost for A. and C in this example is 

2 (6C3\)= 400 and (6C3)2 — (6C3 — 1) = 381 respectively3. The first 100 integer costs in C 

are shown here as there are no tap selection set corresponding to other costs for any of the 

iterations. It can be seen from Fig. 4.9 (b), that tap combinations corresponding to the 

lowest cost in C are being selected for updating throughout the adaptation process from 

n = 1 to n = 6.5 x 104  since, for 19m  = 0.1, a high weighting is given to the minimization 

of C. Upon further investigation, it was found that for V, = 0.1, all the tap selection 

sets used for adaptation maximizes akr , with k, r = 1, 2, . ,L  CM, subject to the exclusive 

criterion such that combinations k and r contain no tap-indices in common, i.e., 

vn, 	 (4.35) 

where { } is defined as a null set. Therefore the optimization problem can now be redefined 

in a simpler form of a search where M is maximized at each sample iteration subject to 

the constraint given by (4.35). 

4.4.2 Efficient realization: the exclusive-maximum tap selection 

Since the total cost matrix V is of dimension LCm x LCM, an exhaustive search of V for the 

optimum tap selection is computationally expensive for adaptive filters of higher orders and 

as a consequence, an efficient tap selection scheme is proposed. As mentioned, the objective 

is to develop a tap selection algorithm which maximizes M jointly for both channels 

subject to an exclusivity constraint. In this subsection, the dependence of variables on 

sample iteration n is temporarily omitted for brevity. 

Let 

P =1)(11 —  lx21 

be the interchannel tap-input magnitude difference vector and 

=[150 251... 15L-1]T ii 	 , 

3The highest integer cost in C is always less than that of A since, as can be seen from Fig. 4.7, elements 
in the skew diagonal of C have the same cost integer of 1. 

(4.36) 

(4.37) 
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where 

TA) > h > • • • > 	 ( 4.38) 

are defined as p sorted in descending order. Let x1,i  and `&2,i denote the ith  tap-input 

samples of channel 1 and 2, ordered according to the sorting of p such that 

pi = 1x1,11 - 1x2,11 , 	 (4.39) 

for i = 0, 1, 	, L — 1. In this two-channel case, the M-ratio M is defined as 

11Qx112  
11x112  (4.40) 

with Q = diag{ [qT 	being the two-channel concatenated tap selection matrix and x = 

[xi x2 ]T. It has been analyzed in Sections 3.4.1 and 4.3.1 that the NLMS algorithm suffers 

from insignificant degradation in terms of steady-state misalignment and convergence rate 

for 0.5L < M < L. As a consequence, M = 0.5L is considered which, in addition, allows 

the proposed tap selection to satisfy the exclusivity criterion. 

As verified in Section 4.8.2, the exclusive tap selection set that maximizes M jointly 

for both channels contains the M largest elements of p from channel 1 and the M smallest 

elements of p from channel 2, i.e., 

{&10:1 	±1,M -1 2,/1// 	2,L -1} • 	 (4.41) 

Hence at each iteration, assuming no channel gain mismatch between the two channels, 

the exclusive-maximum (XM) tap selection is defined by element u of q1  and element v 

of q2  such that for u, v = 0, 1 , . 

q2,v 

, L — 1 and M = 0.5L, 

	

1, 	Pu E {M maxima of p} 

	

0, 	otherwise , 

	

1, 	pu  E {M minima of p} 

	

0, 	otherwise . 

(4.42a) 

(4.42b) 
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As an illustration, consider an SAEC system with channels j = 1,2, adaptive filters each 

of length L = 4 with tap-input vector 

xj(n) = [xi,o(n) xj,i(n) xj,2 (n) xj,3(n)]T 
. 	 (4.43) 

The tap-input magnitude difference vector p may then be expressed as 

PO 

P1 

P2 

P3 

ix2,o(n)I 

lx2,1  (n) I 

x2,2 (n)I 

lx2,3(n)I 

(4.44) 

   

Consider the example case 232  > p1  > po  > p3, for a particular sample iteration. Since 732  + 

P1 > • • • > Po + P3, it can be shown that 

jx1,2 (n) — ix2,2  (n) + 	(n)I — lx2,1(n) 	> . . . > I 	(n) — lx2,0(n)1 

-1-1x1,3(n)l — lx2,3(n)i 

lx1,2(n)I + 	+ lx2,e(n)1+ 1x2,3(n)I > • • • > 	+ lx1,3(n)1 

+1x2,1(n)1+ lx2,2(n)I , (4.45)  

where ... refers to all other pair-wise combinations of po, p1, 232  and p3. Thus taps cor-

responding to inputs x1,2  (n) , xi,i (n), x2,0(n) and x2,3(n) maximize M with the minimum 

coherence constraint satisfied by the exclusivity of the tap selection at each sample itera-

tion. 

In this way, the XM tap selection criterion efficiently selects the best exclusive sets 

of taps where best here is defined as nearest to MMax jointly for both channels in order 

to minimize the degradation in convergence performance due to tap selection. This is 

achieved by maximizing the M measure computed using the taps from both channels. 

Because of the exclusivity constraint, neither channel in general attains a tap selection 

as good as MMax and some degradation in convergence performance is therefore to be 

expected. Nevertheless, results presented in Section 4.6 indicate that such degradation is 
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small compared to the improvement in convergence due to the decorrelating property of 

XM tap selection. 

Note that the XM tap selection criterion as described above will result in a selected 

tap-input vector with lower power than for the MMax criterion for each channel due to 

the exclusivity constraint. It is to be expected therefore that the effect of noise may 

be relatively more significant in the proposed scheme compared to the MMax scheme. 

However simulation results indicate that any such effects are insignificant compared to the 

improvements obtained due to the decorrelating properties of the proposed tap selection. 

As a final comment, it is irrelevant to consider other exclusive tap selection sets given 

in the skew diagonal of C since they have smaller magnitude sum. This approach allows the 

XM algorithm to eliminate LCM x L  CM — 1 possible combinations thus allowing efficient 

implementation of the XM tap selection. Such efficient practical schemes will be developed 

in Section 4.5 for use with NLMS, AP and RLS adaptation. 

4.5 Exclusive-maximum adaptive filtering 

As has been shown in Section 4.3.2, the XM tap selection can improve conditioning of 

the input autocorrelation matrix R„„ and hence improved convergence is expected. The 

effect of tap selection for the AP and RLS cases on the autocorrelation matrix will be seen 

to be similar to that which occurs in the NLMS case shown in Section 4.3.2. The XM 

approach relies on the existence of a unique solution for the adaptive filter coefficients. As 

will be shown through simulations in Section 4.6, XM tap selection in combination with 

a non-linear (NL) preprocessor 1521 leads to better performance than the use of the NL-

preprocessor alone. This combination of XM and NL approach, which will be referred to 

as XMNL, is highly effective for the cases considered and therefore this combined structure 

will be proposed for the later experiments. Figure 4.10 shows the schematic diagram of 

the proposed XMNL-based SAEC structure. 
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Figure 4.10: Schematic diagram of the XMNL preprocessor in stereophonic acoustic echo 
canceller. Bold arrows indicate tap selection control. 

4.5.1 The XM-NLMS algorithm 

The XM tap selection technique can be incorporated into NLMS by selecting taps cor-

responding to M = 0.5L largest elements of the input magnitude difference vector p(n) 

in the first channel and the M smallest elements of p(n) in the second channel as shown 

in (4.42a) and (4.42b). Taps are then updated using (4.33), (4.42a) and (4.42b). Simula-

tion result for the XM-NLMS algorithm is shown in Fig. 4.13. 

4.5.2 The XMNL-NLMS algorithm 

The non-linear (NL) preprocessor [52] implemented using the half-wave rectifier is one of 

the most effective methods of achieving signal decorrelation without significantly affecting 

stereo perception. Using 0 < Q < 0.5 as the non-linearity constant, the input signals 

xi(n) = xi(n)+0.5/[xi(n) + lx1(n)l] 

x2(n) = x2(n) 0.50[x2(n) — lx2(n)l] 

(4.46a) 

(4.46b) 

are obtained. Several alternative types of non-linearity techniques such as those re-

ported in [102] can be employed in SAEC for reducing the interchannel coherence. It 
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has been found however that the non-linearity achieved using the half-wave rectifier, de-

fined by (4.46a) and (4.46b), is the simplest to implement and only minimally affects the 

speech quality [103] though for music signals, relatively low values of 0 must be maintained 

to achieve good perceptual quality. It has also been reported in [11] that the level of dis-

tortion measured using the Itakura-Saito measure [104] is small with 0 = 0.5. The use of 

the NL preprocessor (using the half-wave rectifier) with NLMS adaptation will be referred 

to as NL-NLMS. Several workers [45] [92] [96] have proposed algorithms in combination 

with the NL processor so as to achieve good convergence performance. In the same man-

ner, a combined algorithm will be proposed employing XM tap selection in addition to the 

NL preprocessor so as to improve the convergence rate obtained from the use of the NL 

preprocessor alone. It has been shown [27] that the resulting XMNL-NLMS algorithm can 

give useful levels of convergence with performance close to that of an existing RLS-based 

approach [52]. The XMNL-NLMS algorithm is summarized in Table 4.2 of Section 4.8.3. 

4.5.3 The XMNL-AP algorithm 

The affine projection (AP) algorithm [35] incorporates multiple projections by concate-

nating past input vectors from sample iteration n to n — K + 1 where K is defined as 

the projection order. Similar to the single channel MMax-AP algorithm discussed in 

Section 2.6.1, the concatenated subselected tap-input vector and the concatenated full 

tap-input vector can be distinguished by first letting 

5V(n) = Q(n)x'(n) 	 (4.47) 

be the two-channel subselected tap-input vector where xi(n) = [x/iT(n) x'2(n)]T is the  

concatenated NL-processed 2L x 1 tap-input vector and Q(n) = diag{ [qT(n) q2 (n)]} is 

the 2L x 2L diagonal XM tap selection matrix with elements defined by (4.42a) and (4.42b). 

The subselected and full tap-input matrices each of dimension K x 2L are then denoted 
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respectively as 

X'(n) = [x'(n) 5e(n — 1) ... 'x'(n — K 1)1T  , 	 (4.48) 

X'a(n) = [x'(n) x'(n — 1) ... x'(n — K 1)]T  , 	 (4.49) 

where the subscript a denotes concatenated input vectors for the AP algorithm. Defining 

h(n) = [hi (n) fiI(n)] 7'  as the 2L x 1 two-channel concatenated filter coefficients, the tap 

update equation for the XMNL-AP algorithm is given as 

11(n) = 	— 1) + 247(n) [Va(n)X-7(n) (5ApIA-xx] —1e(n) , 	(4.50) 

where e(n) = [e(n) e(n — 1) 	e(n — K 1)]T  is the K x 1 concatenated a priori error 

with elements computed using (4.6), SAp is the regularization parameter, p, is the adaptive 

step-size while iirxic is the K x K identity matrix. It can be seen from (4.50) that for 

projection order K = 1, XlVINL- AP is equivalent to XMNL-NLMS. 

Note that similar to the single channel MMax-AP algorithm as discussed in Sec-

tion 2.6.1, XMNL-AP in general cannot be classified as a partial update algorithm since 

the 2L x 1 column vector 5C.7 (n) [ra(n)VaT(n)-AP-T Kx1d -le(n) is a full vector and 

therefore every element of the adaptive filter 11(n) will be updated at each iteration. Spe-

cial cases may occur if there exist any null rows in the matrix kaT(n) resulting in a partial 

adaptation. Such a situation may arise if there are several consecutive small values of 

p(n) such that the "inactive" tap-indices in each channel propagate consistently through 

5Ca(n) from iteration n to n — K 1. The XMNL-AP algorithm is given in Table 4.3 of 

Section 4.8.3. 

4.5.4 The XMNL-RLS algorithm 

Similar to the single channel case, as discussed in Section 2.6.2, direct extension of 

the XM tap selection approach achieved by sorting the magnitude difference of the Kalman 

gain k(n) in the RLS update given by (2.55), will not achieve the desired convergence since 

the Kalman gain depends on previous values of the time-averaged inverse correlation ma- 
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trix. The derivation of the XMNL-RLS algorithm is very similar to that of the single 

channel MMax-RLS algorithm as shown in Section 2.6.2. The two-channel 2L x 2L time-

averaged autocorrelation matrix lii(n) defined in (4.9) can be expressed in terms of the 
1 subselected two-channel tap-input vector Fe(n) = [54T (n) 	(n)jT  recursively as 

i(n) = 5(1,.(n)A(n)it',.T(n) 

= 	- 1) + icl(n)5eT(n) , 	 (4.51) 

where 0 << A < 1 is the forgetting factor and the subscript r in Rc(n) denotes concate-

nated tap-input vectors for the RLS algorithm with 

= 	[x (1) R'(2) 	ie(n)] , 

A(n) = diag Ap An-1 	Aj} 

Similarly, the 2L x 1 cross-correlation vector in (4.10) may be expressed recursively as 

e'(n) = kr(n)A(n)y(n) 

	

= AbAn - 1) + SE'(n)y(n) , 	 (4.52) 

where the concatenated received microphone signal in the receiving room y(n) is given by 

y(n) = [y(1) y(2) ... y(n)]T  

with elements computed using (4.1). Using the matrix inversion lemma and following the 

approach of [35], the time-averaged input autocorrelation matrix W'-1(n) can be computed 

using 

= 	[11?-1(n - 1) - k(n)RIT(n)xii1-1(n - 1)] , 	(4.53) 

where the 2L x 1 modified Kalman gain k(n) = [KT (n) i4(n)] 7'  is given by 

A-14-1(n - 1)sc/(n) 
= 

	

	  
1 + A-15eT(n)ifit-1(n - 1)X7(n) 

(4.54) 
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Defining e(n) as the a priori error computed using (4.6), the XMNL-RLS tap update 

equation is then given by 

h(n) = li(n — 1) + k(n)e(n) 	 (4.55) 

with -1i(n) = [hi (n) ci.I(n)]T  being the two-channel filter coefficients. Similar to XMNL-

AP, the XMNL-RLS algorithm updates all filter coefficients at each sample iteration since 

the 2L x 1 modified Kalman gain vector K(n) is a full column vector except in cases 

where there exist any null rows in W'-1(n). The XMNL-RLS algorithm is summarized in 

Table 4.4 of Section 4.8.3. 

4.5.5 Computational complexity 

For comparison purpose, the relative complexity of the algorithms is assessed in terms of 

the total number of multiplications and comparisons per sample period for each channel. 

Similar to the MMax-NLMS algorithm, the XMNL-based algorithms employ the SORT-

LINE procedure [70] which require at most 2 + 2 log2  L comparisons. The XMNL-NLMS 

algorithm requires the same complexity per channel as MMax-NLMS with M = 0.5L and 

hence, at most 1.5L + 3 + 2 log2  L operations per sample period per channel is required. 

The complexity of AP using the generalized Levinson algorithm is 2LK + 7K 2  multi-

plies per sample period [45]. The XMNL-AP algorithm requires an additional 2 + 2 log2  L 

sorting operations in each channel for X'(n). However, due to a reduction in multipli-

cations required when computing RiaT(n)[X'a(n)Xfai(n) + 5Apixxx1-1, the complexity 

for XMNL-AP is 1.5LK + 7K2  + 2 + 2 log2  L operations per sample period per channel. 

The number of multiplications required for the RLS algorithm is 4L2  + 3L + 2 per 

adaptive filter where an additional L multiplications are required for the tap updates. 

Due to the subselection of input vector iii(n), the number of multiplications required for 

computing 'P'(n) for the XMNL-RLS is 1.5L2  + 1 while L(L + 0.5) multiplications are 

required for computing the Kalman gain. Hence the number of operations required for 

the XMNL-RLS algorithm is at most 2.5L(L + 1) + 3 + 2 log2  L per sample period per 

channel. 
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Figure 4.11: Computational complexity of NLMS and AP-based algorithms. 

Figure 4.12: Computational complexity of RLS-based algorithms. 

Figures 4.11 and 4.12 show the variation of complexity with L for XMNL-

NLMS, XMNL-AP and XMNL-RLS algorithms. The projection order for AP-based algo-

rithms is K = 2. Although complexity reduction is not the main aim of this work, it can 

be seen that the XM selective-tap techniques nevertheless bring significant computational 

savings. 
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Figure 4.13: Normalized Misalignment for WGN sequence (a) NLMS, (b) NL-NLMS 
(c) XM-NLMS and (d) XMNL-NLMS [LT = 1200, LR  = 256, L = 256, p = 0.1, /3 = 0.5, 
SNR = 25 dB]. 

4.6 Simulation results 

4.6.1 Experimental setup 

For all simulations in this section, transmission room impulse responses gi(n), g2(n) and 

receiving room impulse responses hi (n), h2(n) are generated using the method of im-

ages [72]. Two microphones are placed 1 m apart in the centre of both the transmission 

and receiving rooms each of dimension 3 x 4 x 5 m. The source is then positioned 1 m 

away from each microphone in the transmission room. With reference to Fig. 4.10, tap-

input vectors x'i (n) and x2(n) are obtained by convolving the source with two impulse 

responses gi (n) and g2(n) and then applying the non-linear (NL) preprocessor defined 

in (4.46a) and (4.46b). The receiving microphone signal y(n) is obtained using (4.1) and a 

zero mean WGN sequence w(n) is added such that an arbitrarily chosen SNR of 25 dB is 

obtained. For clarity, the normalized misalignment of only one channel is plotted in each 

experiment. 

4.6.2 NLMS-based simulations 

The performance of XM tap selection and the NL preprocessor in combination with NLMS 

adaptation is examined. In this experiment, the lengths of the adaptive filters are L = 256 
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Figure 4.14: Normalized misalignment using WGN input sequence for (a) NL-AP and 
(b) XMNL-AP [LT = LR = 800, L = 256, ANL-AP = 0.15, /1XMNL-AP = 0.1, = 0.5, K = 2, 
fs = 8 kHz, T60 = 100 ms, SNR = 25 dB]. 

while the lengths of the transmission and receiving rooms are LT = 1600 and LR = 256 

respectively. Figure 4.13 shows the normalized misalignment plot for (a) NLMS, (b) NL-

NLMS, (c) XM-NLMS and (d) XMNL-NLMS using a zero mean unit variance WGN source 

with an arbitrarily chosen step-size ofµ = 0.1 for each algorithm. A non-linear distortion 

factor of /3 = 0.5 is used. It can be seen that NLMS has the slowest convergence. The con-

vergence rate of XM-NLMS and NL-NLMS increases significantly due to the XM and NL 

preprocessors respectively. The XMNL-NLMS algorithm shows even further improvement 

of approximately 2.5 dB improvement compared to NL-NLMS due to the additional im-

provement in conditioning caused by XM tap selection. Alternatively, XMNL-NLMS can 

achieve the same rate of convergence as NL-NLMS but with a lower value of 0, hence 

reducing non-linear distortion [29]. Additional simulation results for XMNL-NLMS can 

be found in [27]. 

4.6.3 AP-based simulations 

The performance of XMNL-AP is compared with that of the AP algorithm in combination 

with NL preprocessor (NL-AP) using a zero mean unit variance WGN source sequence. 

Figure 4.14 shows the normalized misalignment plot for (a) NL-AP and (b) XMNL-AP 

where a non-linearity factor of 13 = 0.5 and a projection order of K = 2 are used for both 
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Figure 4.15: Normalized misalignment using (a) speech input sequence for (b) NL-AP and 
(c) XMNL-AP [LT = LR  = 800, L = 256, M = 128, JUNL-AP = 0.15, ItXMNL-AP = 0.1, = 0.5, 
K = 2, 18 = 8 kHz, To = 100 ms, SNR = 25 dB]. 

algorithms. The sampling frequency is f, = 8 kHz and the impulse responses used in this 

experiment are of lengths LT  = LR  = 800 with a reverberation time of T60 = 100 ms. The 

adaptive filters are each of length L = 256 and an uncorrelated zero mean WGN w(n) is 

added to achieve an SNR of 25 dB. The adaptive step-sizes of the algorithms are chosen 

to achieve the same steady-state normalized misalignment. For an arbitrary choice of 

iaXMNL—AP = 0.1, it is found that for NL-AP, /LNL—AP = 0.15 gives the same steady-state 

normalized misalignment as for XMNL-AP. It can be seen from Fig. 4.14 that the XMNL-

AP algorithm achieves approximately 5 to 7 dB improvement in normalized misalignment 

compared to NL-AP during convergence. Alternatively, the NL-AP algorithm requires 

approximately an additional 10 s before reaching approximately the same steady-state 

normalized misalignment as XMNL-AP. 

The normalized misalignment performance of XMNL-AP is now compared with that 

of NL-AP using speech signals from a male talker with a sampling frequency of h = 8 kHz. 

As before, impulse responses of the transmission and receiving rooms are each of length 

LT  = 800 and LR  = 800 respectively with a reverberation time of T60 = 100 ms and the 

filters are of length L = 256. A projection order of K = 2 and a non-linearity constant of 

)3' = 0.5 are used for both NL-AP and XMNL-AP. The step-sizes of NL-AP and XMNL-AP 

are chosen so that they achieve the same steady-state normalized misalignment. These 
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Figure 4.16: Normalized Misalignment with unit variance WGN source for (a) NL-RLS 
and (b) XMNL-RLS [LT = LR = 800, L = 256, M = 128, AxmNL-RLS = 0.9987, ANL-RLS = 0.9975, 
/3 = 0.5, f, = 8 kHz, T60 = 100 ms, SNR = 25 dB]. 

step-sizes correspond to ANL_Ap = 0.15, toarNL-AP = 0.1 for NL-AP and XMNL-AP 

respectively. An SNR of 25 dB is achieved by adding an uncorrelated zero mean WGN 

sequence w(n) to the received signal where the SNR is computed using the whole utter-

ance of the speech sequence. Figure 4.15 shows the normalized misalignment for (b) NL-

AP and (c) XMNL-AP respectively. As can be seen with this speech input experiment, 

the XMNL-AP algorithm achieves approximately 2 to 3 dB improvement in normalized 

misalignment performance compared to NL-AP during convergence. Alternatively, the 

NL-AP algorithm requires close to an additional 20 s before reaching approximately the 

same steady-state normalized misalignment as the XMNL-AP algorithm. 

4.6.4 RLS-based simulations 

The performance of XMNL-RLS is compared with that of the RLS algorithm incorporating 

the NL preprocessor (NL-RLS) [52] using a zero mean unit variance WGN source sequence. 

The parameters used in this experiment are LT = LR = 800, f g  = 8 kHz, T60 = 100 ms, 

L = 256, M = 128 and a non-linearity constant of 13 = 0.5. As before, an uncorrelated 

zero mean WGN sequence w(n) is added to the received signal such that an SNR of 25 dB 

is achieved. A forgetting factor of AXMNL_RLS = 1 — [1/(3L)] = 0.9987 is used [39] 

for XMNL-RLS while for NL-RLS, ANL-RLS = 0.9975 is used in order for both algorithms 
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Figure 4.17: (a) Speech signal and normalized misalignment with unit variance WGN 
source for (b) NL-RLS and (b) XMNL-RLS [LT = LR = 800, L = 256, M = 128, AXMNL-RLS = 
0.99961, ANL-RLS = 0.99957, f3 = 0.5, fs = 8 kHz, T60  = 100 ms, SNR = 25 dB]. 

to achieve approximately the same steady-state normalized misalignment. As shown in 

Fig. 4.16, there is a significant improvement in convergence rate of approximately 4 dB 

normalized misalignment for the XMNL-RLS algorithm compared to that of NL-RLS 

during convergence. The NL-RLS algorithm requires close to an additional 2.5 s before 

reaching approximately the same steady-state normalized misalignment as XMNL-RLS. 

Figure 4.17 compares the performances of XMNL-RLS and NL-RLS using a speech 

source. In this speech experiment, LT = LR = 800, T60 = 100 ms, L = 256, M = 

128 and Q = 0.5. The sampling frequency is f, = 8 kHz while the SNR is arbitrarily 

chosen to be 25 dB with the SNR computed using the whole utterance of the speech 

sequence. The forgetting factors are AxMNL-RLS = 1.—[1/0.04 = 0.99961 and )NL-RLS = 

0.99957 adjusted experimentally in order for both algorithms to achieve approximately 

the same steady-state normalized misalignment. It can be seen that due to the additional 

decorrelating property of XM tap selection, the XMNL-RLS algorithm outperforms NL-

RLS by approximately 2 to 4 dB normalized misalignment during convergence. 

4.7 Conclusions 

In this chapter, a novel tap selection approach has been introduced to improve the con-

ditioning of the input autocorrelation matrix for SAEC application. The "closeness" of 
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MMax tap selection to the full tap-input vector has been quantified by the M-ratio M 

which is then used as an optimization parameter in the development of the proposed XM 

tap selection technique. It has been shown that the exclusive tap selection criterion re-

duces the interchannel coherence of the tap-input vectors and improves the conditioning 

of the input autocorrelation matrix which consequently reduces the misalignment prob-

lem. An efficient XM tap selection technique has been developed as an optimization of 

the MMax criterion (to reduce the degradation in convergence performance due to tap 

selection) subject to an exclusivity constraint (for reducing interchannel coherence) be-

tween the tap selection sets of the two channels. A class of XM-based algorithms have 

been formulated by applying XM tap selection the NLMS, AP and RLS algorithms for 

use in combination with the non-linear pre-processing. Simulation results have shown a 

significant improvement in the range of 2 to 7 dB in convergence compared with algorithms 

that use the NL-preprocessor alone. Alternatively, the XMNL-based algorithms can be 

seen to achieve the same convergence performance as NL-based algorithms using a lower 

non-linear distortion factor 3. Although complexity reduction is not the main aim of this 

work, it has been shown that XM selective-tap updating nevertheless brings significant 

computational savings. 

4.8 Appendix 

4.8.1 Proof of non-unique solutions in SAEC 

To verify that (4.14) is a valid solution of SAEC which satisfies the relationship y(n) = 

y(n), the z-transformed signals of gi(n), g2 (n) and sT(n) are defined as G1(z), G2 (Z) and 

ST (z) respectively where sT (n) is the source signal. The z-transform of xi (n) and x2 (n) 

can then be expressed as 

Xi(z) = Gi(z)ST(z) , 	 (4.56) 

X2(z) = G2  (z)ST  (z) . 	 (4.57) 
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Thus it can be seen that Xi(z)G2(z) = X2(z)Gi(z) hence giving 

xi(n)g2(n) = x2 (n)gi(n) • 
	 (4.58) 

The output of the adaptive filters -Y(n) may be then be expressed, using (4.14) and (4.58), 

as 

g(n) = hi(n)xi(n) q(n)x2(n) 

= 	[111(n) + co(n)g2(n)] Txi (n) 	[h2(n) — (P(n)gi (n)] x2(n) 

= y(n) 
	

(4.59) 

hence giving the a posteriori error ep(n) = 0 for any scalar co(n). 

4.8.2 Verification of exclusive tap selection set which maximizes M 

In the following, the dependency of sample iteration n has been removed for clarity in 

notation. For illustration purpose, it is also assumed that L mod 2 = 0 where mod is the 

modulo operator. To verify that the exclusive tap selection set given by (4.41) maximizes 

.M jointly for both channels at each sample iteration, it is necessary to consider whether 

the absolute sum of the XM tap selection given by Er=0 1  P1,21 E
+ 

12,i I is greater than 

the absolute sum obtained from all LCM — 1 other exclusive combinations of tap-inputs 

where M = 0.5L. This can be achieved by first testing whether the condition 

M -1 	L-1 	L-1 	M-1 
1'1,11 
	

2,i I > 
	

i I 
	

(4.60) 
i=0 	i=M 	i=M 

	i=0 

holds, where the left-hand-side terms corresponds to the XM tap selection. Using the 

definition of 25i, given in (4.39), (4.60) can be simplified, giving 

M-1[ 	 L-1 [ 
1,i1  

i=0 

M-1 	L-1 

E Pi > 
i=o 	i=M 

(4.61) 



i=0 

M-1 

L-1 

M/2-1 

E .02ti+1 
i=0 

M/2-1 

E o2J+1 
J=0 

M-1 

E P2i 
i=M/2 
M/2-1 

> 	E hi—FM • 
i=0 

(4.65) 
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which is valid from the definition of p. The LC M  —2 other possible cases can be considered 

using the above approach. Suppose for example, tap-indices in the set {42i} and { '&2,2741} 

are now selected, where i = 0, 1, . , M — 1 for which the condition 

M-1 	L-1 	M-1 	M-1 

E 	E rth2,J1 > E rt'1,2J1+ E 1 sth2,2i+11 	 (4.62) 
i=0 	i=M 	i=0 	i=0 

must now be verified. Rewriting (4.62), 

M-1 	M-1 	M-1 

E —  E P2,2J+ii > E 1x1,211 — 
J=o 	J=0 	 J=0 

L-1 

i=M 
iI 	 (4.63) 

is obtained, from which each term can be decomposed as 

M/2-1 	M/2-1 

	

= 	E pi,2Ji + E 1 t1,21+11 
J=0 	i=0 

M/2-1 	M-1 

	

x2,21+11 = 	E p2,2J+11+ 	1 't'  2,27:+1 I ) 
i=0 	 i=M/2 

1,211 = M/2-1 
	M-1 

E 	1&i,211 + E 1x1,2i I 1 

i=0 	 j=k112 

M-1 	 M-1 

	

t2,i1 = 	E 42,2J1+ E 1±2,2J+ii • 
i=M/2 	i=M/2 

M-1 

E 41,J1 
J=0 

M-1 

i=M 

(4.64a) 

(4.64b) 

(4.64c) 

(4.64d) 

be simplified as Using (4.64a)-(4.64d), (4.63) can 

M/2-1 

E [41,21+11 
J=0 

— 1x2,21+1 I]  > E 	—it2,2J1] 
i=M /2 

With M > 1 and from the definition of 0, (4.65) and consequently (4.62) is valid. Similar 

analysis can then be used to verify the remaining cases. 
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4.8.3 XMNL-based algorithms for SAEC 

Table 4.1: The XMNL tap selection 

M 	= 0.5L 
xi (n) 	= xl  (n) 0.5,3 [xi (n) + 	(n) I] 
x2(n) 	= x2(n) 0.5P [x2(n) — I x2(n) I] 
xi(n) 	= [xT(n) 4(n)] T  

h(n) 	= [hi (n)III(n)jT 

p(n) 	= I xi (n) I 	lx12(n) I 
Q(n) 	= diag{[qT(n) q2 (n)11 

qi,u(n) 
	{M maxima of p(n)} 

1 	0, other
) 
 wise 

q2,v(n) 
	{M minima of p(n)} 

1 0, otherwise 

Table 4.2: The XMNL-NLMS algorithm 

y(n) = fiT(n — 1)x'(n) 

e(n) = y(n) — y(n) 

h(n) = Cl(n — 1) 
 + Q(n) 2ine(n)e(n)  

Ixqn) I .._ 6NLMS 
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Table 4.3: The XMNL-AP algorithm 

X'a(n) = [x'(n) x'(n - 1) 	x'(n - K + 1)] T  

Se(n) 	= Q(n)x'(n) 

ka(n) = [-X-i(n) x'(n - 1) ... x'(n - K + 1)] T  

y(n) 	= [y(n) y(n - 1) 	y(n — K + 1)] T  

Sr-(n) 	= X'a(n)ii(n - 1) 
e(n) 	= y(n) - Si(n) 

h(n) 	= h(n - 1) + 247(n) jra(n)VaT(n) + 8Apixxid -1e(n) 

Table 4.4: The XMNL-RLS algorithm 

if 1-1  (0) = 6a,s1Lx L 

k(n) 	= [fir (n) 14(n)] T  
Se(n) 	= Q(n)x'(n) 

K(n) 	- 1)R1(n) 
A + 5E'T(n)if'-1(n - 1)5e(n) 

En) 	= fiT(n - 1)x'(n) 
e(n) 	= y(n) — y(n) 

h(n) 	= h(n - 1) + k(n)e(n) 

Cii"'-1(n) = 	(n - 1) - 	 (n - 1)] 



Chapter 5 

Frequency-Domain Algorithms 

with Applications to Stereophonic 

Acoustic Echo Cancellation 

For the things we have to learn before we 

can do them, we learn by doing them. 

Aristotle (384-322 BC) 

5.1 Introduction 

FREQUENCY-DOMAIN adaptive filtering has been increasingly popular in recent 

years and was introduced as a form of improving the efficiency of time-domain al-

gorithms. As opposed to time-domain algorithms, such as LMS, NLMS, AP and RLS 

as discussed in previous chapters, where computation is performed sample-by-sample, 

frequency-domain algorithms generally inherit two properties (i) incorporating block up-

dating strategies and (ii) employing the fast Fourier transform (FFT). A direct consequence 

of block processing is the reduction in computational complexity since the filter output 

and tap updates are computed only after a block of data has been accumulated. In ad-

dition, the use of the FFT for computing the discrete Fourier transform (DFT) so as to 

perform linear convolution and gradient estimation further increases the efficiency of such 

143 
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algorithms. 

The concept of frequency-domain adaptive filtering was first introduced in [105] where 

signals x (n) and y(n), as depicted in Fig. 2.1, are accumulated in buffer memories to form 

data blocks which in turn are transformed to the frequency-domain using FFTs. Defining 

L as the length of the adaptive filter, it has been found that the resultant frequency-domain 

LMS algorithm achieves a reduction in computation such that the ratio between complex 

multiplies in frequency-domain LMS to real multiplies in conventional LMS reduces sig-

nificantly for large L. For L = 16, it has been shown [105] that this ratio is approximately 

0.25. It has been noted however that the frequency-domain LMS algorithm converges to 

a sub-optimal Wiener solution due to the effects of circular convolution [106] [107]. To 

address this, the fast-LMS (FLMS) algorithm was proposed [22] where the overlap-save 

method of implementing linear convolution using FFT blocks is employed. Although five 

2L-point FFT blocks are required, the FLMS algorithm achieves reduction in compu-

tation by approximately a factor of 4 in terms of complex multiplies compared to real 

multiplies for LMS when L = 256. The block-LMS (BLMS) algorithm [108] was derived 

independently using the block mean-square error (BMSE) and as before, implemented 

using FFTs. The unconstrained-FLMS (UFLMS) algorithm was proposed in [109] using 

only three FFT blocks and converges to the Wiener solution under the condition that the 

length of unknown system is less than or equal to L. 

Although substantial computational savings can be achieved, one of the main draw-

backs of frequency-domain approaches is the inherent delay introduced between the input 

and output. This delay corresponds to the length of the adaptive filter L since filter 

outputs are computed frame-by-frame after every L samples. On the other hand, as ex-

plained in Section 2.2.2, in order to achieve sufficient misalignment performance, L must 

be large enough and consequently research in recent years have been focusing on reducing 

the delay of such frequency-domain algorithms. To mitigate the problem of delay, the 

multi-delay filter (MDF) structure was proposed [23] which partitions the adaptive filter 

into IC blocks each of length N such that L = )CN. A general approach based on the 

weighted-overlap-and-add (WOLA) method was proposed in [110]. The resulting general- 
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ized multi-delay filter (GMDFa) introduce an additional degree of freedom by employing 

an arbitrary overlapping factor between successive input frames controlled by a > 1 such 

that for a = 1, a 50% input overlapping factor is achieved. It has been noted that even 

though, from complexity point of view, the optimal choice is L = N, using N < L is still 

more efficient than time-domain algorithms [11]. 

It is well-known that for a single channel system identification case, the performance 

of an adaptive algorithm is affected by the conditioning of the input autocorrelation matrix 

R.. Specifically, as the condition number increases, the rate of convergence is reduced 

and poor misalignment is exhibited. A recursive estimation of the condition number in 

the single channel RLS algorithm has been proposed in [111] [112] where it has been 

shown how misalignment of the RLS algorithm is degraded by the increase in condition 

number. For the stereo case, as discussed in Section 4.3.2 and reported in [11] [90] [91] [92] 

[113] [114], although it has been noted that the conditioning of R. is degraded by the 

high interchannel coherence between the two input signals xl  (n) and x2  (n) as depicted in 

Fig. 4.1, no explicit relationship between the two has yet been established. 

The main contribution of this chapter is two-fold: (i) to establish the relationship 

between interchannel coherence and condition number of R„„ for stereophonic acoustic 

echo cancellation (SAEC) and (ii) to extend the exclusive-maximum (XM) tap selection, 

as developed in Chapter 4, to the frequency-domain adaptive filtering for efficient imple-

mentation. The relationship between interchannel coherence and conditioning of the input 

autocorrelation matrix allows one to gain further insight into how interchannel coherence 

degrades the misalignment performance of SAEC algorithms through the ill-conditioning 

of the input autocorrelation matrix. Using this relationship, one can determine the level of 

ill-conditioning and design parameters so as to improve the conditioning of the autocorre-

lation matrix hence giving good misalignment performance such as shown in [113]. As has 

been shown in Chapter 4, the XM selective-tap algorithms can achieve good convergence 

performance. Tap selection for frequency-domain adaptive algorithms can be achieved 

by first considering subselection either in the time-domain or frequency-domain. In this 

chapter, these cases will be considered and their effect on the convergence rate will be 
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examined in the context of the M-ratio measure M. 

This chapter is organized as follows: In Section 5.2, data sectioning matrices that 

are commonly used in this chapter are defined. The single channel FLMS and MDF 

algorithms are reviewed in Section 5.3 which, in addition, allow frequency-domain variables 

associated with this chapter to be defined. Following closely the approach presented in [11], 

a generalized derivation of these algorithms using a frequency-domain cost function is 

reviewed. In Section 5.4, the link between interchannel coherence and the conditioning of 

Rxx  is established for the stereophonic case. The XM tap selection is then extended, in 

Section 5.5, to the FLMS algorithm employing both the 50% and an arbitrary overlapping 

factor between successive tap-input vectors for efficient implementation. Simulation results 

are provided in Section 5.6 to verify theoretical analysis and to compare the performances 

of the proposed algorithms. 

5.2 	Definition of data-sectioning and commonly used matri- 

ces 

For reasons of clarity, commonly used matrices in this chapter are defined in this section. 

For consistency, notations found in [11] are adopted for these matrices. The N x N identity 

matrix is denoted as INx  N while ON x N is a null matrix of the same dimension. The 2L x 2L 

Fourier matrix [106] is defined as 

F2Lx2L = 

1 

1 

1 

1 

e—i2 q2L 

e—i4712L 

—i27r(2L-1)/2L 

1 

e—i47/2L 

e—i87/2L 

e—i47(2L-1)/2L 

1 

e—i27r(2L-1)/2L 

e—i4v(2L-1)/2L 

e—i27r(2L--1)2/2L 

(5.1) 

2Lx2L 

where i = AF-1 in this chapter and for practical implementation, F2Lx2L = 

[1/(24 	x 2L  where * denotes complex conjugation [106]. The following matrices are 
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now defined 

viT01 
" 2NxN 

14701 
Nx2N 

w10 
2NxN 

W ILCIx2L 	= 

10 
2L x2L 

NV1x2L 

G 
`-'2Lx2L 

= GrLx 2L 

GO1 
Nx2N 

G10 	= 2NxN 

G10 
2N x2N 	= 	-F2Nx2N 

Got r 

[ON xN 

IN xN 
- 

[ONxN INxN] 

[INxN 

ONxN 

TkxL 0LxL] 

ILxL 

0LxL 

[OLxL 

0LxL 

xx7-01 
F2Lx2L vy 

FNxNWVx2NF2Nx 

F2Nx2NW2NxN' 

"
xx7 

2Nx 2NWSliNx 

F2Lx2LW2Lx2LF22x2L 

0LxL 

0LxL 

0LxL 

ILx 

10 

2NxN 

2NxN 

2Lx2L-'-  

Lx2L 

L 

2Nx2NF2Nx2N 

Nx2N 

-K1-1 

2NF2lx 

2Lx2L 

2Lx2L 

2Lx2L 

2N 

NxN 

-1 
7  

2N 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.2e) 

(5.2f) 

(5.2g) 

(5.2h) 

(5.2i) 

(5.2j) 

(5.2k) 

(5.21) 

It should be noted that the variables L and N denote the size of each matrix and may be 

substituted interchangeably. 

5.3 Single channel frequency-domain adaptive algorithms: 

A review 

This section provides a review of existing techniques for single channel frequency-domain 

adaptive filters. Whilst this section contain no new material, it is introduced here to estab-

lish the analytical framework that will be used in later sections and to define the notation 
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Figure 5.1: Schematic of the FLMS algorithm (after [115]). 

employed. Readers already familiar with this topic can move safely on to Section 5.4 using 

Section 5.3 purely as a reference for notational purposes. 

5.3.1 The fast-LMS adaptive algorithm 

The fast-LMS (FLMS) algorithm, as depicted in Fig. 5.1, was proposed in [22] employing 

a block-based updating strategy. The main difference between FLMS and frequency-

domain LMS [105] is that the former introduces two additional FFT blocks for gradient 

computation and employs the overlap-save method [107] for linear convolution. In con-

trast to the sample-by-sample algorithms such as LMS, the FLMS algorithm adapts its 

filter coefficients by first concatenating input signal x(n) into frames and employ a 50% 

overlapping factor between successive frames as shown in Fig. 5.2. These frames are trans-

formed into their discrete Fourier transformed (DFT) sequences using the fast Fourier 

transform (FFT) algorithm for efficient implementation [116] [117]. Defining m as the 

frame-index for m = 0, 1, ..., the mth  input frame, of dimension 2L x 1, is given by 

X(m) = [x(mL— L) x(mL— L +1) ... x(mL —1) x(mL) x(mL +1) . . x(m1+ L-1)]T  

(5.3) 
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Figure 5.2: Input sequence partitioning for the FLMS algorithm with 50% overlap between 
successive frames. 

while the L x 1 estimated impulse response is given by 

h(m) = [Ito (m) 111(m) 	TiL-1(771)1T 
	

(5.4) 

The frequency-domain input sequence can be expressed as 

X(m) = F2L x 2LX(m) 

[-x-o(m) 1-1(m) • • • .2L-1 (m)] 
T 

7 
	 (5.5) 

where 14(m) is the /th frequency-bin of the input signal for 1 = 0, 1, . , 2L — 1. In this 

chapter, for reasons of clarity and unless explicitly stated, all frequency-domain variables 

are denoted with an underscore. The L x 1 received microphone signal is given by 

Y(m) 	[y(mL) y(mL + 1) ... y(mL L — 1)] . 	 (5.6) 

Since time-domain convolution can be expressed using multiplication in the frequency-

domain, a 2L x 2L diagonal matrix 

p(m) 	= 	diag{X(m)} 

o(771) 	0 

0 	x1(m) 

0 

• • 

• • 

0 

• 

• 

0 

0 

2,r,-1(m) 2Lx2L 

(5.7) 
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can be defined containing the frequency content of the input sequence and 

h(m) = F2Lx2L 
h(m) 

0Lx1 
2Lx1 

(5.8) 

  

is the frequency-domain estimated response where 0Lx1  is the L x 1 null vector. The 

element-by-element multiplication between X(m) and h(m) can then be expressed as 

R(m)h(m). Noting that only the last L terms of D(m)h(m) correspond to linear convolu-

tion and using Gnx2L  as defined by (5.2h), the frequency-domain output of the adaptive 

filter can be expressed as 

i_1((m) 	= 	F2Lx2L 

= 	G(21x2LID(rn)fi(m 

where 

0Lx1 

f7 (171,) 
2Lx1 

1) (5.9) 

ir(m) = [(mL) g(rnL +1) . . . Y'(mL + L — 1)]T  . (5.10) 

Consequently, defining the time-domain a priori block error as 

E(m) 	= 	[e(mL) e(mL +1) ... e(mL + L — 1)]T  

= Y(m) — Y(m) , 

the 2L x 1 frequency-domain a priori error is then 

(5.11) 

0Lx1 
E(m) 	= 	F2Lx2L 

E(m) 
2Lx1 

= Y(m) 

= Y(m) 	Gnx2L2(m)h(m - 1) 5 (5.12) 
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where, using (5.6), 

Y(m) F2Lx2L 0Lx1 
Y(m) 

It has been known that the convergence rate of gradient descent algorithms is a 

reducing function of the eigenvalue spread of the input autocorrelation matrix [35]. For 

a white Gaussian noise (WGN) sequence, these eigenvalues correspond approximately to 

the energy of the signal spectrum at equally spaced frequency points around the unit-

circle [118] [119]. To compensate for this energy variation, the FLMS algorithm weighs 

each frequency-bin such that the effective step-size for each element in the gradient vector 

is inversely proportional to the energy of the input signal at that frequency-bin. As 

a result, a more uniform convergence can be achieved across different frequency-bins. 

Defining * as the conjugate operator, this energy can be estimated recursively using a 

2L x 2L matrix [120] [121] 

PFLms(m) 	AEFLms(711—  1) + (1 — A)D*(m)m)(m) 

diag{.Eo(m) 21(m) • • • 2.21,_1(m)} 
	

(5.14) 

where Pi  (m) is the /th frequency-bin energy content of the input signal and 0 << A < 1 

is the forgetting factor while the diagonal matrix 1D(m) is defined in (5.7). The frequency-

dependent step-size is then given by 

µ(n) = 212(1— A)[EFLms(m)-1-  OFLms12Lx21] -1 
	

(5.15) 

where I2Lx2L  is the 2L x 2L identity matrix, 0 < µ < 1 is the step-size and OFLIvis  is the 

regularization parameter [11]. 

Similar to time-domain adaptive filtering as discussed in Section 2.4, the FLMS, 

being a stochastic gradient descent algorithm, employs a gradient estimate given by the 

correlation between the a priori error and the input sequence. As opposed to the output of 

the adaptive filter where the last L terms of D(m)ii(m) corresponds to linear convolution, 

(5.13) 

2Lx1 
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Figure 5.3: Schematic of the MDF structure (after [23]). 

only the first L terms in F2L1 x2L11)* (m)E(m) correspond to the gradient estimate given by 

r(m) = wix2LF21„x2LD*(m)E(rn) 
	

(5.16) 

where the windowing matrix 2x2L 7 
defined in (5.2d), selects the first L elements of 

F2L x2L 11)*(m)E(m). The frequency-domain update equation of the FLMS algorithm can 

then be expressed by 

h(m) = h(m — + G2ix2LP(m)11*(m)igut) 

= 	— 1) + 2/2(1 A)Gri,x2L11)* (m--)[PFLms(m) 5F'LmsI2Lx2LhE(m) , (5.17) 

where GAx2L and the frequency-domain a priori error E(m) are defined in (5.2g) 

and (5.12) respectively. The FLMS algorithm is summarized in Table 5.2 of Section 5.8.7. 

5.3.2 The multi-delay filtering (MDF) structure 

The multi-delay filtering (MDF) structure [23], as shown in Fig. 5.3, was proposed to 

mitigate the problem of delay inherent in FLMS since, as can be seen from Section 5.3.1, 

the FLMS algorithm computes the output CT(m) for every L input samples. The MDF 
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structure addresses the problem of delay by partitioning the adaptive filter of length L 

into 1C blocks each having length N such that L = KN. Consequently, the delay of the 

MDF structure is reduced by a factor of L/N compared to the FLMS algorithm. As a con-

sequence of a smaller block size for N < L, filter coefficients are updated more frequently 

(once every N samples compared to L for FLMS) hence achieving faster convergence. For 

each block, the filter coefficients are then updated similarly to the FLMS algorithm em-

ploying the FFT algorithm for linear convolution and gradient estimation as discussed in 

Section 5.3.1. The MDF structure has also been proposed for sparse system identification 

as shown in [33]. 

The single channel MDF structure can be described by first defining, for the 77/ th  

frame, m = 0, 1, ..., the input block sequence 

x(mN) = [x(mN) x(mN — 1) ... x(mN — L +1)]T  . 	 (5.18) 

Concatenating offset versions of this input sequence N times, the matrix 

X(m) = [x(mN) x(mN + 1) 	x(mN N —1 )]LxN 
x(mN) 	x(mN +1) 	• • • x(mN + N — 1) 

x(mN —1) 	x(mN) 	• • • x(mN + N — 2) 

x(mN L +1) x(mN L + 2) • • • x(mN + N L) 

is obtained, from which using the definition of the estimated impulse response h(m) defined 

by (5.4), the filter output can then be expressed as convolution between the input sequence 

and the filter coefficients given by the N x 1 vector 

-3 (M) = XT(M)f1(77/ — 1) 

(5.19) 

LxN 

x(mN) 
x(mN +1)  

x(mN —1) 	• 

x(mN) 	- 

x(mN — L +1) 
x(mN — L + 2)  

71:o(rn — 1) - 

h.  i(m — 1) 

_ x(mN + N 1) x(mN + N — 2) • • • 

= rg(rnN) -g(mN +1) ... y(mN + N — 

x(mN + N — L) _ 

1)F . 
I'L-1(m 1)  - Lxl 

(5.20) 
N x L 
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Defining 

y(m) = [y(mN) y(mN + 1) ... y(mN + N -1)] T 	(5.21) 

as the N x 1 received microphone signal, the a priori block error can be expressed as 

e(m) = Y(m) 5-r(m) 

= 	[e(mN) e(mN + 1) . . . e(mN + N - 1)] T  . 	 (5.22) 

Note that for a single block 1C = 1, the block size is equivalent to the length of the adaptive 

filter, i.e., N = L and consequently, (5.22) is equivalent to (5.11). The rectangular matrix 

XT(m) can be decomposed [122] into sub-matrices each of size N x N while the adaptive 

filter h(m) of length L can be partitioned into K sub-filters each of length N. 

In this chapter, the variable k is denoted as the block-index for k = 0, 1, . , K - 1, 

where the N x 1 vector 

hk(m) = LlikN(rn)T1kN-Fi(m) • • • ilkN+N-1(m)] T 

	
(5.23) 

is the kth  sub-filter of h(m) such that the relationship between the estimated impulse 

response h(m) and each sub-filter hk (m) can be explicitly expressed by 

h(m) = Pio(rn)  • • • iiN-1 (m)/  • • • • • 	• • • • T1L-N(m) • • • -fiL-1(m) 
iT

• 	(5.24) 

fio(m) 

Defining a N x N Toeplitz matrix T(m - k) obtained from XT(m) given by [11] 

T(m - k) = 

x(mN — kN) 

x(mN — kN + 1) 

_ x(mN — kN + N — 1) 

x(mN — kN — 1) 

x(mN — kN) 

x(mN — kN + N — 2) 	• • • 

x(mN — kN — N + 1) 

x(mN — kN — N + 2) 

x(mN — kN) 	- NxN 
(5.25) 

the time-domain filter output, obtained using convolution operation, can then be expressed 

in terms of the output of each sub-filter, using (5.20) and (5.25), as 

9(m) r---* 	T(m - k)hk(m - 1) . 	 (5.26) 
k=0 
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To express the output in the frequency-domain, the Toeplitz matrix T(m — k) can be 

transformed to a circulant matrix [11] by first defining 

x(mN - kN + N) x(mN - kN + N -1) 	• • • x(mN - kN +1) 

x(mN — kN 	N +1) x(mN - kN + N) 	• • • x(mN - kN +2) 
T'(m — k) = 

x(mN - kN -1) x(mN - kN -2) 	• • x(mN - kN + N) _ NxN 

Using (5.25) and (5.27), the circulant 

C(m — k) = 

which can then be decomposed as 

C(m 	 k) 

matrix is then given as 

T'(m— k) 	T(m — k) 

T(m — k) 	T'(m — k) 
2Nx2N 

Fr,
Z
-J,/V X 2N11).( rn   - k)F2N x 2N 

(5.27) 

(5.28) 

(5.29) 

where D(m — k) is a 2N x 2N diagonal matrix whose elements are the discrete Fourier 

transform of the first column of C(m — k) [118], i.e., 

D(m—k) = diag{ FFT{s(mN—kN+N)x(mN —kN —N +1) ... x(mN—kN+N-1)}} . 

(5.30) 

It should be noted that the diagonal of C(m — k) is arbitrary, but it is customary to set it 

equal to the first sample of the previous block [11]. This ensures the circulatory structure 

of C(m — k) which can be observed if C(m — k) is expanded explicitly (c.f. (5.36)). 

It can be seen that for a single filter block IC = 1, block size N = L and hence D(m) is 

equivalent to 19)(m) as defined in (5.7). To express the MDF update equation, the following 

quantities are first defined: 

Y(m) = F2Nx2NW211NxNY(M) (5.31) 

hk(m) = F2Nx2NW2NxNfik(771) (5.32) 

e(m) = F2Nx2NW3JvxNe(rn) (5.33) 
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where WI), N  and WrNxN  are given by (5.2a) and (5.2c) respectively. The kth  sub-filter 

of the MDF structure [23] is then updated by 

hk(m) = hk(m — 1) + /1(1  — A)GYIN x2NP2 (m k)[12 	( ) mDF .771  + 6mDFI2N x2N] 1  g(m) 5 

(5.34) 

for sub-filter block indices k = 0 ,1 , . . . , 1C — 1, where 0 << A < 1 is the forgetting factor, 

0 < u 5 1 is the adaptive step-size, (5mDF is the regularization parameter, GI9- x2N is 

defined in (5.2k) and I2Nx2N  is the 2N x 2N identity matrix. The spectra estimation can 

be obtained recursively using the transformed input signal of the first sub-filter 

P—mDF(m) = AEmDF(rn — 1) + (1 — A)P*(m)P(m) , 	(5.35) 

where the diagonal matrix PmDF(m) is of dimension 2N x 2N. The MDF algorithm is 

summarized in Table 5.3 of Section 5.8.7. 

5.3.3 General derivation of frequency-domain algorithms 

One of the most recent developments of frequency-domain adaptive algorithms for AEC 

application is the derivation of the FLMS and MDF algorithms using a frequency-domain 

cost function as presented in [11]. In this section, this derivation is reviewed where a block 

recursive least-squares criterion using block size N independent of the adaptive filter length 

L is employed. As before, a noiseless case is considered without the loss of generality, for 

this frequency-domain derivation. Using (5.28), the circulant matrix C(m — k) defined 

in (5.28) can be expressed explicitly as 

C(m — k) = 

	

x(mN - kN + N) 	. 

	

(mN - kN - 1) 	. 

. , 	x(mN 	kN +1) 

. . 	x(mN - kN + N) 

x(mN - kN) 

x(mN - kN + N - 1) 	. 

x(rrIN - kN 	N +1) 

. . 	x(mN - kN) (5.36) 

2Nx2N 

x(mN - kN) 	. 

x(mN 	kN + N - 1) 	. 

, . 	x(mN-kN-N+ 1) 

. . 	x(mN - kN) 

x(mN - kN + N) 	. 

x(mN - kN - 1) 	. 

. 	x(mN - kN + 1) 

. . 	x(mN - kN + N) 
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Defining the 2N x 1 filter output as 

9i(m) = [y(mN + N) . . . y(mN — 1) y(mN) . . . y(mN + N — 1)] T  , 	(5.37) 

it can be shown, using (5.36), that 

K-1 
-371  (M) = E C(m - oPN w.Nfigni, - 1) , 	 (5.38) 

k=0 

where the windowing matrix WrNxN  and the kth  sub-filter rik (m — 1) are defined in (5.2c) 

and (5.23) respectively. Using (5.38), the N x 1 a priori block-error vector defined in (5.22) 

can be expressed as 

e(m) = Y(m) — W?‘ix2Ni/(m) , 
	 (5.39) 

where y(m) is defined in (5.21) and the windowing matrix WVx2N, defined in (5.2b), 

selects the last N elements of 9'(m). To express the a priori error in the frequency-

domain, the following quantities are first defined, 

-37/  (m) 

y(m) 

E(m) 

iiik(m) 

= 

= 

= 

= 

I F2Nx2NY(M) 1  

FNxNY(m) , 

-  NxNe F 	(m) , 

FNxNfik(m) . 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

Employing (5.38), (5.29) and multiplying FNxN to (5.39), the frequency-domain a 
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priori error [11] can be expressed as 

FNxNe(m) 

E(m) 

FNx NY(M) FNxNWI2N9/(M) 

Y(m) - 0.2N-9'(m) 

y(n-t) - 	E F2Nx2Nc(rn - owYkxNFNx,viik(rn - 1) 
k=0 
/C-1 

3)(77/) GVx2N E D(m k)GPv xNillic (in — 1) , 	(5.44) 
k=0 

where GV,2N  and GrNxN  are defined by (5.2i) and (5.2j) respectively. For compactness, 

the summation sign in (5.44) can be removed by first defining the 2N x N matrix 

14(m — k) = D(m — k)GrNxN 	 (5.45) 

such that when its offset versions are concatenated, a 2N x L matrix 111(m) given by 

U(m) = [1.4(m) 11(m — 1) ... bi(m —1C +1)] 
2NxL 
	(5.46) 

is obtained. 	In a similar 

0,1, ... ,1C — 1, can be concatenated, 

T 
11  ( n) = 

The N x 1 a posteriori error 

6  (m) = Y(m) -P 

from which, substituting (5.46) 

f(m) 

manner, sub-filters 'H k(m), as defined 

giving 

T 	-T 	T 
[ Lto(m) 	(m) 	• • • 	Ltic_i(m) 

can be expressed, similar to (5.44), 

	

ox2N E D(m 	k)GrNxNftk(m) .  
k=0 

and (5.47) into (5.48) gives 

= 	(m) 	G°A rx2NE(rn)I1(m) • 

by (5.43) for k = 

• (5.47) 
1xL 

by 

(5.48) 

(5.49) 

Defining the superscript H  as the Hermitian operator, the time-averaged frequency- 
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domain cost function [11] [53] [123] can be defined as 

m 
p(m) = ( 1  - 
	rn-repH(r)ep(r ) 

r=0 

(1 — A) E 	[yll (r)y_fr) - 	(r)GV x2NErAll(r) 
r=0 

- Ell II  (r)le (r)(GV Ix2N)1  32(r) 

4-lill[11 	(r)(GV x2N) II 	x2NU(r)u(r)] . (5.50) 

where 0 « A < 1 is the forgetting factor. As shown in Section 5.8.1, the last term 

(GVx2N)HGVx2N in (5.50) can be expressed as 

	

(00A1rx2N)HG12N = 0.5 X Grivx2N 	 (5.51) 

Similar to the time-domain stochastic gradient approach as discussed in Section 2.4, the 

gradient operator can be applied to the cost function Jp(m) giving 

77.7p  (m) 

m 

—(1 — A) E Am-9illi(r)(GVx2N)HY(T) 
r=0 

rn 
+0.5(1 — A) [E Am—rie(r)GSimvx2NLI(r)]  fif(m) . 

r=0 

As shown in Section 5.8.2, the first term can be simplified using 

(GM.,21011Y(r) = 0.5 x y(r) 

where the 2N x 1 vector y(r) is defined in (5.31). Equating (5.52) to zero and defining 

m 

S(m) = (1 — A) E Am-ruH(r)Glx2Nu(r) 
	

(5.54) 
r=0 
m 

s(m) = (1 — A) 	—rEH(r)y(r) , 	 (5.55) 
r=0 

(5.52) 

(5.53) 
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the expression 

a(m)fil(m) = s(m) 	 (5.56) 

is obtained. 

The significance of (5.56) can now be seen, which depicts a set of normal equations 

in the frequency-domain [11] where S(m), of dimension L x L, is the frequency-domain 

counterpart of the time-averaged autocorrelation matrix 11(n) defined in (4.9). Similarly, 

the L x 1 vector s(m) is the frequency-domain counterpart of the time-averaged cross-

correlation vector e(n) defined in (4.10). Similar to (2.62) and (2.63), the frequency-

domain adaptive algorithm solves these normal equations by expressing S(m) and s(m) 

recursively. The term S(m) can be expressed recursively [11] by first noting that 

rn-1 
S(m — 1) = (1 — A) 

	
Am-1—rUH(r)G2Nx2NU(r) 

r=0 
rn-1 

AS(m — 1) = (1 — A) E Am—rUll(r)G1x2N111(r) 
	

(5.57) 
r=0 

hence giving 

S(m) 
	

(1 — A) E Am-rUff (r)G231Nx2NU(r) 
r=0 

= (1 — A) [ E Am-rp_H(r)G1x2NE(r)] + (1- A)UH(m)G2Nx2NE(m) 
m-1 

r=0 
Aa(rn, — 1) + (1 — A).1111  " (M)G21V x2N.11--(771) 	 (5.58) 

where (5.57) is employed in the last step. In a similar manner, using the expressions 

m-1 
s(m — 1) = (1 — A) E Am-i-ritp(r)y(r) 

r=0 
m-1 

As(m - 1) = (1_ A) E Am-ruH(r)y(r) , 	 (5.59) 
r=0 
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the recursive formulation of the L x 1 vector s(m) can be achieved [111 giving 

s(m) = 

= 

(1- 

(1 - 

) 

A) 

711 

r=0 
m-1 

A 
[ 

(r)y(r) 

-rElf (r)y(r)] + (1 - A)UH(m)y(m) 

= Ag(m - 1) + (1 - A)UH(m)y(m) . (5.60) 

Employing (5.58) and (5.60), the frequency-domain normal equations in (5.56) can 

be simplified as 

it(m) =a-i( m)§(m)  

= 5-1(m) [AE(m - 1) + (1 - A)UH(m)y(m)] 

=A5--i (m)5(m- 	- 1)  + (1 - )05-1(mALTH(m)y(m)  

= 571(m) [a(m) - (1 - A)Ell  (In) G21N x2NLI(m)] 	- 1) 

+(1 - A)5:1(m)L.111  (m)y(m) 

=1111(m - 1) - (1 - A)5-1(m)Ulf  (m) [G(2Nx2NLJ(mal(rn - 1) - Y(m)] ,(5.61) 

which describes a frequency-domain recursive filter update. Similar to (5.49), the N x 1 a 

priori error can be expressed as 

E(m) = Y(m) - GI2Niu(m)1HI(n -1) , 	 (5.62) 

such that when pre-multiplied by (G?‘ix2N)11  and using the relation 

(Gx2N)1  e(m) = 0.5 x e(m) , 	 (5.63) 

the 2N x 1 vector 

0.5e(m) = (Gisx2N)HY(rn) (GTrx2N)HGVN2NDm)11-Igrn - 1) 

= 0.5y(m) - 0.5G-131-N,2NE(m)il(m - 1) 	 (5.64) 
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is obtained. The frequency-domain update equation for IfiE( ) given in (5.61) can now be 

expressed as 

ilil(772) = &ern - 1) + (1 — A)5-1(m)l211(m)p(rn) . 	 (5.65) 

This update equation can be further simplified by defining [11] the concatenated 

matrices 

GaxL = diagt GrvxN  GrvxN  .. • G2NxN  , 10 	 (5.66) 

IC sub-matrices 
D(m) = [D(m) D(m — 1) 	D(m — IC -I-)1 1,J2Nx2L 	(5.67) 

where D(m — k), for k = 0, 1, 	, IC —1, are the diagonal matrices each having dimension 

2N x 2N as defined in (5.30). Similar to (5.45), the 2N x L matrix I[J(m) defined in (5.46) 

can be expressed in terms of D(m) given as 

N(m) = p(rn)G27,xL 
	 (5.68) 

from which the L x L matrix S(m) in (5.58) and the frequency-domain block error e(m) 

in (5.64) can now be expressed respectively as 

S(m) = )S(m — 1) + (1 — A)(G2ixL)HDH(171)G2iNx2ND(m)G27,xL 	(5.69 ) 

e(m) = y(m) — G(2)1Nx2ND(m)G27,xLft(rri — 1) • 
	 (5.70) 

Noting that  

G10 
2NxN 

0 	G10 
2NxN 

0 0 

0 

0 

= 	[ Gry xNio(m)  

0 Gl°  
2LxL ili/C-1(74) 2NxN 	 - Lxl 

GrNxNit'1(771) • • • GrNxNit 	T  -K-1(M) 1 	(5.71) 
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such that for each sub-filter, GrNxN7--1k(m) can be expressed for k = 0,1, 	,1( — 1 as 

GrNxN'iik (Tri) = F2Nx2NWENNF NxN14(M) 

= F2Nx2NW2NxNflk(m) 

= 	ilk (m) 
	

(5.72) 

where the definitions of (5.32) and (5.43) have been employed. Employing (5.72), the 

relationship between the 2L x 1 estimated impulse response I3(m) given by (5.8) and 

12(m) defined by (5.47) is established: 

G2Lx (M) = 1L10 (M) hl (M) • • • 11
T

-1(m)] 

= 	. 	 (5.73) 

The frequency-domain a priori error e(m) in (5.70) can then be expressed as 

g(m) = y(m) GZ1Nx2NP(m)1;(rn — 1) • 	 (5.74) 

Premultiplying (5.65) by GaxL  and using (5.68) and (5.73), the update equation can be 

expressed by 

Li(m) = 	— 1) + (1 — A)G2ixL5-1(m)(G2ixL)1173111(m)P(m ) • 
	(5.75) 

To simplify this update equation further, the L x L matrix S(m) defined by (5.58), 

can be expressed in terms of the 2N x 2L matrix D(m) given in (5.67), by first defining 

a 2L x 2L matrix [11] 

m 
Itt 

(5.76) 

) = (1 — A) E Li 	(r)G131Nx 2ND (r) 
r=0 

= A_( 	1) + (1  A)2H(m)GrNx2N12(m) I, 

where, as shown in Section 5.8.3, the relationship between S(m) and 

 

(m) is given by It 

 

S(m) = (GPL.L ) ( )GYi x L • 	 (5.77) 
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As shown further in Section 5.8.4, the term G2thxL 2L  S-1(m)(Gi° xL  )H in (5.75) can be L  

simplified giving 

GPLx LS -1  (M)(G1CLI  x L)H  = G2Lx2L I:;  ( 7n) 
	

(5.78) 

and hence the frequency-domain update equation in (5.75) can now be expressed as 

h(m) = h(m — 1) + (1 — A)Gri,x2L, 	( )211(m)g(m) 
	

(5.79) 

while GI°2Lx2L  is defined by (5.2g). 

Thus far, the frequency-domain algorithm has been defined by (5.74), (5.76) 

(m) and (5.79). It should be noted that since  (m) is not diagonal, the computation of 

in (5.79) is not computationally feasible. It has been shown and discussed in detail [111 

that one can approximate G-21-Nx2N  with an identity matrix scaled by a factor of 0.5, i.e., 

G2Nx2N I2Nx2N/2  • 
	 (5.80) 

Using this approximation, the recursive computation of (m) and update of h(m) is 

respectively given by 

) = A 
	— 1) + (1 - ))DH (m)D(m) 	 (5.81) 

h(m) = h(m — 1) + 24(1 — A)GP.Lx2L [It'( ) bin x2L] 121-)-11(m)g(m) , (5.82) 

where the a priori error e(m) is defined by (5.74). Note that the factor of 0.5 has been 

absorbed into the adaptive step-size 0 < a < 1 while S is the regularization parameter [11] 

and I2Lx2L  is the 2L x 2L identity matrix. 

It is now apparent that the minimization of the time-averaged cost function Jp(m) 

in (5.50) arrives at a generalized frequency-domain adaptive algorithm with an update 

equation given by (5.82). More importantly, the link between the generalized frequency-

domain equations governed by (5.81) and (5.82) and the FLMS algorithm as described in 

Section 5.3.1 can be seen. For a single block, k = 1 giving block size N = L, the 2N x 2L 

matrix V(m) defined by (5.67) is equivalent to the 2L x 2L diagonal matrix D(m) defined 
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by (5.7). Consequently, the 2L x 2L matrix ir 	) given in (5.81) is equivalent to the 

2L x 2L matrix 'PFLms(m) defined by (5.14). As a result, (5.81) and (5.82) are equivalent 

to (5.14) and (5.17) respectively giving the FLMS algorithm for block size N = L (i.e., 

= 1). 

Following the approach presented in [11], the link between (5.81), (5.82) and the MDF 

algorithm can be established using the following approximation 

It 	diag{ S(m) 	S(m) 
	

(5.83) 

K sub—matrices 

where, using (5.67), each sub-matrix 

S(m) = AS(m — 1) + (1 	— .X)D*(m)D(m) 	 (5.84) 

is diagonal, while D(m) is a 2N x 2N diagonal matrix defined by (5.30) for k = 0. With 

this approximation, the 2N x 2N diagonal matrix S(m) defined by (5.84) is equivalent 

to the 2N x 2N matrix PMDF(m)  defined by (5.35). In addition, the 2L x 1 frequency-

domain estimated impulse response h(m) defined in (5.82) comprises of IC sub-filters each 

having dimension 2N x 1 as can be seen from (5.73). These sub-filters are each updated 

using (5.34) hence obtaining the MDF algorithm. 

As a final comment, matrices Gax 2L  and GrAr 2N  in (5.17), (5.34) and (5.82) form 

a constrain to the adaptive algorithm such that with the overlap-save FFT computation, 

linear convolution can be achieved. By approximating these matrices with I2Lx2L/2  and 

I2N x 2N /2 respectively, unconstrained algorithms can be obtained. Although these un-

constrained algorithms, such as the UFLMS algorithm [109], require three FFT blocks 

compared to five for the constrained algorithms, their performances in terms of conver-

gence rate and misalignment are generally degraded due to the effects of circular convolu-

tion [124] [125]. 
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5.3.4 Steady-state misalignment 

Following the approach in [11], the steady-state misalignment for the single channel 

frequency-domain algorithm presented in Section 5.3.3 is reviewed. The frequency-domain 

system mismatch vector, of dimension L x 1, is defined as 

Y(m) = IHI - 	, 	 (5.85) 

where H is the frequency-domain impulse response of the unknown system for which has 

been assumed to be time-invariant. The frequency-domain noise sequence 

W kM) = J.' 2N x 2NW
/ ( 772

) \ 	 (5.86) 

is further defined, where the 2N x 1 vector w'(m) is given, similar to Sr''(m) in (5.37), as 

	

w'(m) = [w(mN + N) . . . w(mN - 1) w(mN) . . . w(mN + N - 1)]T  . 	(5.87) 

The system mismatch vector V(m) can be expressed recursively by employ-

ing (5.85), (5.53), (5.55) and (5.56) and first expressing 

V(m) 
	5-1(m)2(m) 

- 25 -1(m)(1 - A) E 	(r)(G12N)HY(r) 
r=0 
m 

= 	H - 2s-' (m) (1 - A) E Am-9[P (r)(012N)H(GVix2NU(r)11-11  + GI2NN.1(r)) 
r=0 

= IEII - S-1(m)a(m)Ei-5-1(m)(1- A) E 	(r)G3Nx 2NYiri(r) 
m 

(5.88) 
r=0 

where the relationship 	 9,3 (GIY X2N)IIGVX 2N = 0.5 x GPArx2N  as shown in Section 5.8.1 is 

used. Employing the mean ergodic theorem [85] where statistical mean can be approxi-

mated by time averaging for large m, it can be assumed that [11] 

	

S(m) S = E{1111  (m)G21Nx2N11(m)} 
	

(5.89) 
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where E{.} is defined as the mathematical expectation. Following the recursive approach 

as shown in (5.60), the recursive form of the system mismatch vector V(m) is then given 

by 

ir(m) = -(1 - A) E Arn-rS-1'41  u (r)GZ1Nx2Nw(r) 
r=0 

= AY(77/ - 1) - (1 - A)5-1'"11  (m)G21Nx2N17-v(m) • (5.90) 

Employing the independence assumption [35] and assuming that for large m, similar to as 

discussed in Section 3.3, the adaptive algorithm is able to track the unknown system such 

that 

Ry = E{V(m)Y H(m)} E{V(m - 1)1711(m - 1)1 , 	(5.91) 

the relationship 

Elli(m)VH(m)} 	A2trE{V(m - 1)VH(m - 1)1 

+(1 - A)2E15-11111(m)G2iNx2NLJem)(5-1)11}  x 

E{w(m)w"(m)} 

(1 - A2 )Rv = (1 - A)2S-1RL, 	 (5.92) 

is obtained, where Rw  = E{w(m)wH(m)} is the noise autocorrelation matrix while 

Go = Goi GZIsix2N( 2Nx2N)H2Nx2N and noting that S is a Hermitian matrix, the relationship 
s-is(s-1)H = 	 = is employed. With the assumption that (1 - A2 ) 

2(1 - A) for A ^s 1, the steady-state misalignment 77' = tr{Rv} is given by [11] 

2(1 - A)tr{Rv} ti (1 - A)2tr{S-1}o-w2  

rj 	= 
1  2 

A 
 tr{a-l}au,2 
	

(5.93) 

It can be seen that the steady-state misalignment is a reducing function of the forgetting 

factor A and is proportional to the noise variance. 
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5.4 Effect of interchannel coherence on the conditioning of 

R„„ for SAEC 

Having reviewed frequency-domain adaptive algorithms for single channel AEC, the re-

lationship between interchannel coherence and the conditioning of the two-channel input 

autocorrelation matrix R. as defined in (4.24) is established for stereophonic acoustic 

echo cancellation (SAEC). 

As discussed in Chapter 4, a serious problem encountered in SAEC is the existence of 

non-unique solutions [52]. It has been shown [90] [52] that for a practical stereophonic sys-

tem, R„„ is highly ill-conditioned. This is due to the high coherence between the two input 

signals xi (n) and x2(n), as depicted in Fig. 4.1, which in turn degrades the misalignment 

performance of adaptive algorithms. For a single channel case, performance of adaptive 

algorithms in terms of their final misalignment is affected by the conditioning of the input 

autocorrelation matrix [111]. In a stereophonic case however, although it has generally 

been noted that the conditioning of R. is degraded by the high interchannel coherence 

between xi (n) and x2(n), no explicit relationship between the two has been established. 

The aim of this section is to establish this relationship which then allows one to gain an 

insight of how interchannel coherence degrades the steady-state misalignment performance 

of SAEC algorithms through the ill-conditioning of R.. As will be discussed, this rela-

tionship can be achieved by first decomposing R. using frequency-domain quantities and 

exploiting the E-norm condition number [111]. Using this relationship, one can determine 

the level of ill-conditioning of R. through the interchannel coherence estimate and design 

regularization parameters so as to improve the conditioning of R. hence giving good mis-

alignment performance such as shown in [113]. The validity of the established relationship 

will be verified for both white Gaussian noise (WGN) and speech input signals, showing 

how the condition number is affected by the interchannel coherence which in turn affects 

the performance of a two-channel frequency-domain adaptive algorithm [11] in terms of 

its steady-state misalignment. 
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5.4.1 Two-channel autocorrelation matrix and the normal equations 

With reference to Fig. 4.1, the jth  channel tap-input vector xi  (n) (assumed to be zero 

mean) is defined in (4.3) and is reproduced here for convenience 

xj(n) =- {x j (n) x j (n — 1) ... x j (n — L + 1)] T 	 (5.94) 

for j = 1, 2, where L and the superscript T  are the length of the adaptive filter and vector 

transposition respectively. Let 

x(n) = [xf(n) $(n)]T 	 (5.95) 

be the two-channel concatenated tap-input vector which then gives the two-channel cor-

relation matrix as defined by (4.24) and is reproduced here for convenience 

RXX 
	Efx(n)xT(n)} 

R11 R12 	
(5.96) 

R21 R22 2Lx2L 

It had been noted and discussed in Chapter 2 that adaptive algorithms aim to solve the 

normal equations [351 given by 

= R;,lp , 	 (5.97) 

where p = E{x(n)y(n)} is defined as the cross-correlation vector and h = [FIT 1111T  is 

the concatenated filter coefficients of channels 1 and 2. It is evident from (5.97) that 

an ill-conditioned Rxx  will yield a bad estimate of 1i if determined by typical adaptive 

algorithms. The performance of adaptive algorithms in SAEC is further degraded by the 

interchannel coherence between xi (n) and x2(n) as will be shown below. 

5.4.2 Autocorrelation matrix and spectral content 

To establish the link between interchannel coherence and condition number of Rxx, the 

autocorrelation matrix can first be expressed in terms of its auto- and cross-spectral content 
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and then exploiting the E-norm condition number [111]. Noting that for L 	co, a Toeplitz 

matrix is asymptotically equivalent to a circulant matrix if its elements are absolutely 

summable [118], the L x L Toeplitz correlation matrix between the jth and uth  channel 

Riu, given in (5.96) can be expressed as [11] 

Rju = FZxl  LSiuFLxL 	 (5.98) 

for j, u = 1, 2, where FL x L is the L x L Fourier matrix. The L x L diagonal matrix 

Si 	= diag { Sj. (0) Sxu  (1) . . . Sju  (L — 1)1 	 (5.99) 

contains elements corresponding to the L frequency bins which are formed from the discrete 

Fourier transform (DFT) of the first column of Riu. Letting riu (t) be the auto- and cross-

correlation coefficients for j = u and j u respectively, the spectral content between two 

signals is related to the correlation function [106] by 

00 

siu(f) = 	riz,(1)e-227̀ f l , 	 f = 0, 1, 	, L —1 . (5.100) 
=-00 

Using (5.98), R.)°, can be expressed in terms of its spectra as 

FL-x1 L5-11FLxL 	F 1  S LxL-12F LxL 
RXX 

FL-x1 L5-21FLxL 	FLXL-S 22FLxL 

F Lxl  L 	0LxL Sll 	S12 FLxL 	0LxL 
(5.101) 

0LxL 	Fix1 L, S21 	5-22 0LxL 	FLxL 

where OL,a, is a null matrix of dimension L x L. 
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5.4.3 The E-norm condition number of autocorrelation matrix 

The condition number x[A] of a 2L x 2L matrix A is commonly computed using the 

12-norm [126] and is denoted by 

X2[-A-] = IIAII2IIA 1112 

	

= X2L-1/X0 
	 (5.102) 

where II 112  is the 12-norm operator and ))l is the /th  eigenvalue of the positive definite 

matrix A where 0 < 	< Xi < 	< \2L-1. However, it has been shown that the E- 

norm [111] is suitable for this current SAEC application as will be explained briefly in this 

section. The symmetric and positive definite correlation matrix can be diagonalized as 

	

QTR.. = X , 	 (5.103) 

where Q is a unitary matrix such that QT Q = I and 

X = diagIAo A1 • • • X2L-11 	 (5.104) 

contains the eigenvalues of R„„ with 0 < Xo  < 	< 	< \2L — i . By definition, the 

square-root of Rxx  is given by [127] 

rt„x2  = 	QT. 
	 (5.105) 

Defining tr{•} as the trace operator, the E-norm of the 2L x 2L matrix Rxx  is then defined 

as [111] 
1 	 1/2 

11 RxxlIE = [-gtr{PC,Rxx}] 	. 

Noting that the squared Frobenius-norm [126] of Rxx  is defined as 

(5.106) 

11RxxlIF2 = tr {R,TxRxx } 
	

(5.107) 
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the E-norm is then equivalent 

follows that 

which results in the E-norm 

R;;1/2  

to 

RY,c2  

condition 

the 

E 

E 

F-norm 

number 

Ai4Ill!F]=11R1/111EIIR;x1/211E• 

scaled by a 

[R-1-  tr{Rxx}i 

[;-Ltr{R;1,}] 

factor 1/ 	2L. Using (5.105), it 

1/2 
(5.108a) 

1/2 
, 	 (5.108b) 

(5.109) 

Hence the E-norm of an identity matrix is one and if XE [Rx1/x2] is large, the correlation 

matrix R. is said to be ill-conditioned. In addition, in order to study only the effect of 

interchannel coherence on the condition number, the factor 1/(2L) removes the dependency 

of the E-norm condition number on L hence making XE  [Rx1/x2] a more suitable measurer  
1 than xF [Rxii,c2] where the latter is computed using 11Rxx/2 	[tr {Rxx 11 IIF = 	1/2. It is further 

shown in [111] that XE [Rx1/x2] is a good measure of the conditioning of Rxx. 

5.4.4 Relationship between interchannel coherence and the conditioning 

of Rxx 

To compute XE [R.1/2], a matrix S containing the auto- and cross-energy density spectra 

is first defined as 

S = 	L1 512 	 (5.110) 
521 522 2Lx2L 

such that tr{Rxx} from (5.101) can be computed using the following 

tr{Rxx} = tr{P21x2L5P2Lx2L} 
L-1 

= E [slim + 822(l)] , 
t=o 

'The dependency of XF [Rx1/2] on L and its explicit relationship with XE  [111/2] for WGN uncorrelated 
sequences xi (n) and x2(n) is further shown in Section 5.8.5. 
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where the 2L x 2L matrices P2Lx2L  and Palx 2L  are defined respectively as 

P2Lx2L 

t;1 
2Lx2L  

FLxL °LxL 

OLxL FLxL 

FLxL OLxL 

0LxL F LxL 

I 2Lx2L 

I 2Lx2L 

(5.113) 

and the relation tr{AB} = tr{BA} is employed. 

Using (5.112a) and (5.112b), tr{R;,1,} can be first simplified by 

tr{R-1} = tr{P-1  s-q; 4., f q-11 
2Lx2L- 	2Lx2L} = 	' 

Note that for the trivial case of x1(n) = x2(n), Rx-xl  does not exist. Using a similar 

approach to [11} [114 provided that the coherence is not equal to unity for any frequency, 

the 2L x 2L inverse matrix S-1  can be expressed as 

S-1  = 
S1 FLxL ILxL -5125221  

°LxL S2 1  -5215311 ILxL 

where iLx i, is an L x L identity matrix and the sub-matrices 

S1= [IL.L — 512(511 s2-21)] sii 

= 	[4 . — 512(51-lis2-21)] 522 • 

(5.114) 

(5.115a) 

(5.115b) 

From (5.100), the squared interchannel coherence function of the f th  frequency bin 

may be expressed in terms of the spectra of input signals as 

1 ,912(f )12  
S11

17(f )12  -= 
(f )S22(f ) 

for f = 0, 1, . . . , L - 1 hence giving the L x L diagonal squared coherence matrix 

1112  = diag{17(0)12  17(1)12 	17(L - 1)12} 

(5.116) 

(5.117) 

The diagonal matrices ST1  and S2' of (5.114) can now be expressed in terms of (5.117) 
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as 

sT1  = 
S2 1 = 

from which (5.113) can now be simplified as 

trIS-11 = tr{R,T,1,} 
L-1 

= E [1 - I-y(1)11-1  [S111(1 ) + S221 (1)] • 
1=0 

(5.118a) 

(5.118b) 

(5.119) 

Substituting (5.111) and (5.119) into (5.109), the relationship between interchannel coher-

ence and E-norm condition number of R. can finally be expressed [31] as 

xi [Rx1/x1=  1 
4L2  

	

[L-1 	 L-1 

	

+ 822(01 E 	- i-y(/)12] -1[Si-11(l)+ ,5 1(/)]] . (5.120) 

	

/=0 	 /=. 

Note that the computation of xi [Rxi/x2] is tractable since Su , S22, and F are diag-

onal matrices. More importantly, it is now evident from (5.120) that XE [R.1/),2] increases 

with the squared interchannel coherence function hence degrading the condition of Rxx• 

Figure 5.4 shows how xi [R,V2] varies with the mean of 17(f)12  across frequency bins 

0 <.f < L — 1 for an example case of L = 1024 with stereophonic inputs generated using 

a zero mean WGN source. Using 

— fi(n)112  
r7(n) = 10 log/0 	2  dB 

Ilh(n)fl 
(5.121) 

as the normalized misalignment, Fig. 5.5 shows how the steady-state normalized misalign-

ment of the two-channel frequency-domain adaptive algorithm [11], shown in Table 5.4 of 

Section 5.8.7, degrades with increasing xi [R.11,1 using an SNR of 40 dB. Hence, it can be 

observed that as the mean ofly(f)12 -4 0, the E-norm condition number xi [R,(1/2] --> 1 and 

a good misalignment performance is expected. In addition, as the mean of l-y(f)12  —4 1, 

xi [Rx1/2] —> co such that steady-state normalized misalignment performance degrades 

significantly. Consequently, for realistic SAEC applications with squared interchannel co-

herence in the range of approximately 0.95 to 0.97, poor misalignment performance is 
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expected unless the interchannel coherence is reduced. 

5.4.5 Application to two-channel frequency-domain adaptive algorithm 

This section examines how the formulation above can be applied to a two-channel 

frequency-domain adaptive algorithm to estimate its misalignment, hence verifying the 

relationship given in (5.120). It has been shown [11] in Section 5.3.4 that the steady-state 

normalized misalignment after convergence can be approximated by 

n(n) 	10logio  F (1  -  A)  a-w  tr{S-1}] dB , 
[ 2 

(5.122) 
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from which using (5.113) and (5.120) for this two-channel case, can be further expressed 

as 

77(n) 	10 log10  1(1- A) (7,2,
[ 2 	

IlhH tr{R;n] 

(1 - A)4L  oi 	21R1/21] 

[ 2 Ilhgcr xE xx  
10 logio  

(5.123a) 

(5.123b) 

where o and ai = a + o-2  are the noise and input signal variances respectively. Hence, xi 	 2 

the misalignment is a function of the forgetting factor 0 << A < 1, signal-to-noise ra-

tio (SNR) and the condition number xi {Rx1/„2] . 

The two-channel frequency-domain adaptive algorithm [11], as shown in Table 5.4 

of Section 5.8.7, has been shown to achieve good convergence performance for SAEC. It 

should be noted that for practicality, n(n) can be computed using (5.123a). However, in 

order to verify the validity of (5.120), xi [R;12] is first computed using (5.120) such that 

elements l-y(/)12  are estimated using the interchannel coherence estimate If(m)I2  given in 

Table 5.4. The theoretical steady-state normalized misalignment is then computed by 

employing (5.123b). The validity of the established link is verified through simulations in 

Section 5.6. It is also evident from (5.120) and (5.123b) that high interchannel coherence 

will degrade the conditioning of R.. hence reducing the performance of the adaptive 

algorithm in terms of its steady-state misalignment as shown in Fig. 5.4 and 5.5. In 

addition, the formulation presented in this section is more general than [114] since Sii  

has not been assumed to be constant across frequency. This is feasible especially for 

speech signals where the spectra is not constant across frequency as will be shown through 

simulation examples presented in Section 5.6. 

5.5 	Frequency-domain adaptive filtering employing XM tap 

selection 

In this section, frequency-domain algorithms employing exclusive-maximum (XM) tap 

selection will be developed. Drawing upon the link between interchannel coherence and 

condition number of R.„ as described in Section 5.4, this section examines how the XM tap 

selection can reduce the interchannel coherence which in turn improves the conditioning 
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of R. giving good convergence performance. Two cases of tap selection, which can be 

achieved either by subselecting the time-domain or the frequency-domain tap-input vector, 

will be considered. Their impact to the convergence performance of frequency-domain 

algorithms will also be examined in the context of the M-ratio measure M. The XM tap 

selection is then extended to the frequency-domain FLMS algorithm by first considering 

a 50% overlapping factor between successive input blocks and an arbitrary overlapping 

factor controlled by the variable a > 1. 

5.5.1 Effect of XM tap selection on interchannel coherence and condition 

number of Rxx  

As noted from Fig. 4.5, exclusive tap selection can improve the conditioning of R... In this 

section, the effect of exclusive tap selection2  on the interchannel coherence and conditioning 

of R. is analyzed mathematically by exploiting frequency-domain quantities and the E-

norm condition number as depicted in Section 5.4. By virtue of the exclusivity constraint 

imposed on the two-channel tap-input vectors, it can be shown for tap selection control 

matrices Q1(n) and Q2(n) that 

Ch(n) 0 Q2(n) = Q1(n)Q2(n) 

= °LxL 
	 (5.124) 

where O is defined as the element-by-element (Schur) product and OL,L, is the L x L null 

matrix. The cross-correlation function r12 (1) between xi  (n) and x2 (n) is defined as 

r12(/) = E{xi(n)x2(n — l)} . 	 (5.125) 

2The exclusive tap selection discussed in this subsection is not limited to XM tap selection. Since the 
aim is to analyze only the decorrelation effects brought about by exclusive tap selection, an arbitrary 
exclusive selection such as selecting odd coefficient indices in channel 1 and even coefficient indices in 
channel 2 is considered. 
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With the jth channel subselected tap-input vector given as Rj(n) = Qi(n)xj(n), the effect 

of the exclusivity constraint on the cross-correlation function (at zero-lag) is given by 

r12(0) = r21(0) 

= E{Qi(n)xi(n)Q2(n)x2(n)} 

E{xi(n)x2(n)}  
= 0 . 	 (5.126) 

In addition, the cross-correlations r12(1) and r21(1) are "sparsified" by Q1(n) and Q2(n) 

and as a consequence, with reference to (5.100), 1S12(f)12  and hence the squared-coherence 

17(f )12  defined in (5.116) are reduced accordingly. This reduction in interchannel coherence 

due to the exclusive tap selection can be observed from experimental results as presented 

in Fig. 4.4 (c). Additionally, from (5.120), a reduction in interchannel coherence reduces 

the E-norm condition number xE [R -1,?] and with the maximization of M as described in 

Section 4.3.1, improved convergence performance of XM-based algorithms [30] is expected. 

5.5.2 Selection in frequency-domain vs selection in time-domain 

One of the main concerns in developing frequency-domain adaptive algorithms employing 

tap selection is to consider whether subselection should be performed in the frequency-

or time-domain. These two options are analyzed and considered. For simplicity, a single 

channel case is initially considered where the MMax tap selection criterion [21] is imposed 

on the tap-input vector3. With reference to the FLMS algorithm as discussed in Sec-

tion 5.3.1 and tap-input vector X(m) as defined in (5.3), tap selection can be achieved by 

first considering the case of subselecting a frequency transformed tap-input vector, i.e., 

Xf(m) = Q(m) [F2Lx2LX(m)] 

= Q(m)X(m) 	 (5.127) 

where the subscript fin if  (m) denotes subselection in the frequency-domain and tap-input 

vector X(m) is defined in (5.5). The elements of the diagonal MMax tap selection matrix 

3Using the MMax tap selection for the single channel case here allows one to simplify this discussion 
and employ the measure M to quantify the effect of subselection. The impact of using the single channel 
MMax tap selection on the XM tap selection for stereo case will be discussed at the end of this subsection. 
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Q(m) in this case is given by 

1, 	III  (m)I e {M maxima of IX(m)r , 
4t(n) 

	

	 (5.128) 
0, otherwise , 

for 1 = 0, 1, 	, 2L — 1 where lxi (m)I is the 1th  element of IX(m)I given that 

	

PS(m)I = [110(m)1 11_1(m)I • • • 112L-1(m)11T  • 
	 (5.129) 

Consider an alternative case where tap selection is achieved instead by subselecting 

the time-domain tap-input vector X(m) before being transformed to the frequency-domain. 

In this case the subselected tap-input vector can be expressed as 

51(M) = F2Lx2L [Q(70X(m)] 

F2Lx2LR(M) 
	

(5.130) 

where the subscript t in Xt (m) denotes subselection in the time-domain. Elements of the 

diagonal tap selection matrix Q(m) are now given, for 1 = 0,1, ... , 2L — 1, by 

(n) 
{

1, 	1x(mL — L + 1)1 E {M maxima of IX(m)I 1 , 

0, otherwise , 
(5.131) 

where the time-domain tap-input vector X(m) is defined by (5.3) and lx(mL — L + 1)1 is 

the /th  element in IX(m)I given that 

IX(m)I = [Ix(rnL — L)1 Ix(mL — + 1)1 	IX(TnL 	1)1] T  • 
	(5.132) 

As discussed in Section 4.3.1, the use of M defined in (4.18) allows one to analyze the 

effect of tap selection on the rate of convergence. With the subselected tap-input vectors 

expressed in (5.127) and (5.130), the effect of tap selection for {f (m) and 5{,(m) on their 
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Figure 5.6: Effect of tap selection on (a) Mt  and (b) Mf for an adaptive filter length of 
L = 256. 

respective M can be compared by computing .Mf(m) and Mt(m) 

Mf (m) =x2L—kf(m)II2  
IIX(m)112 

2L2-1t (m)  
.Mt,(m) 	x 11X(m)112 

respectively as 

(5.133a) 

(5.133b) 

Figure 5.6 shows the effect of tap selection on M-ratios (a) Mt  and (b) Mf . In this 

illustrative example, an adaptive filter of length L = 256 is used with a zero mean unit 

variance WGN input sequence. It can be observed that for all cases of tap selection size 

M, .M f  < Mt. More importantly, for M = 0.5L = 128, there is a significant reduction 

in Mf compared to Mt. Since, as explained in Section 4.3.1, the rate of convergence is a 

monotonic increasing function of M, it is proposed that 

• the degradation in convergence performance due to tap selection for a frequency-

domain algorithm employing MMax tap selection can be reduced by subselecting the 

tap-input vector in the time-domain before taking its Fourier transform for adapta-

tion. 

Although the analysis described here concerns single channel MMax tap selection, exten-

sion to the two-channel XM tap selection is direct and straightforward since the XM tap 

selection jointly maximizes M in both channels. Consequently, for the jth  channel, sub-

selection of the time-domain tap-input vector Xi  (m) will be employed instead of Xj(m) 

for the development of XM-based frequency-domain algorithms for SAEC such as shown 
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below. 

5.5.3 Tap selection with 50% overlapping factor 

With reference to Fig. 5.2 the jth  channel tap-input vector for FLMS is described by (5.3) 

for j = 1, 2 and is reproduced here for convenience 

Xi (m) = [xj(mL—L) x3 (mL—L+1) . . . xj(mL-1)xj(mL)xj(mL+1) . . . xj(mL+L-1)]T . 

(5.134) 

This 2L x 1 vector can be decomposed into two sub-vectors giving 

Xi  (m) = [Xj(ML — L) . . . x (77-IL — 1) x (mL) . . . xj(rnL + L — 1) 1T  
xiL (m-1) 	 xL(m) 

= 	[4, j (m— 1) 4i (m)1T  , 	 (5.135) 

where the L x 1 sub-vector Xbo(rn) is defined by 

Xbd(m) = [x (mL) xj(mL + 1) . . . x (mL + L — 1)] T  , 	(5.136) 

such that the first subscript b denotes a sub-vector of Xi (m). Defining the L x 1 magnitude 

difference vector computed for each frame 

p(m) = Ixb,i(m)1 — Ixb,2(77- )1 
	

(5.137) 

the subselected tap-input vector is then given by 

54,i(M ) = Qi(n1)Xb,j(m) 	 (5.138) 

where the jth channel diagonal L x L diagonal XM tap selection matrix is defined as 

Qi(m) = diag{q3(m)} . 	 (5.139) 
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Figure 5.7: Schematic of subselected tap-input vector and its frequency-domain quantity 
using 50% overlapping factor. 

As shown in (4.42a) and (4.42b), element u of qi and element v of q2  are defined for u, v = 

0, 1 , , L — 1 and M = 0.5L where 

ql,u 

q2,v 

{ 
1, pu  E {M maxima of  p(m)} 

0, otherwise , 

1, pv  E {M minima of p(m)} 

0, otherwise . 

(5.140a) 

(5.140b) 

For practical implementation, the jth  channel sub-vector Xb,i(m — 1) is a delayed 

version of Xbo (m) and in a similar manner, RI, 	— 1) is obtained from RI, j(m) using a 

delay. The 2L x 1 subselected tap-input vector for the mth  frame can then be expressed 

as 
T 

X 3 (m) = [RE,3 (m — 1) 5k3 (m)i , (5.141) 

from which the corresponding jth  channel frequency-domain subselected tap-input vector 

is obtained using 

X • ( M) F 2Lx2LX j(M) . 3 (5.142) 

Similar to the FLMS algorithm, Ri(m) can then be employed for gradient computa-

tion. To illustrate above, Fig. 5.7 shows a schematic of how tap selection can be achieved 

using a 50% overlapping factor. The proposed FLMS algorithm incorporating XM tap se- 
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Figure 5.8: Input sequence partitioning for the jth  channel FLMS algorithm with arbitrary 
overlapping factor controlled by a. 

lection (XM-FLMS) [32] is depicted in Table 5.5 of Section 5.8.7. Similar to time-domain 

implementations as shown in Chapter 4, the use of XM tap selection is proposed in com-

bination with the non-linear (NL) preprocessor to improve the convergence rate of FLMS 

in combination with NL-preprocessor (NL-FLMS) and as such, this proposed algorithm is 

denoted as XMNL-FLMS. Performance comparison between XMNL-FLMS and NL-FLMS 

will be presented through simulations in Section 5.6. 

5.5.4 Tap selection with arbitrary overlapping factor 

Instead of a 50% overlap between successive tap-input vectors as shown in Fig. 5.2, the 

XM tap selection can be extended to the FLMS algorithm using an arbitrary overlapping 

factor similar to the GMDFa algorithm [110]. The single channel GMDFa algorithm 

incorporates the MDF [23] structure as described in Section 5.3.2 to reduce the delay 

inherent in frequency-domain approaches by partitioning the adaptive filter into 1C blocks. 

In addition, GMDFa achieves fast convergence by employing an arbitrary overlapping 

factor between successive tap-input frames controlled by an overlapping factor a > 1. 

With a > 1, the filter coefficients are updated more frequently and for a large step-size, 

the GMDFa algorithm has been shown to achieve a faster rate of convergence compared 

to the MDF algorithm [110]. Figure 5.8 shows how the input sequence is partitioned using 

an arbitrary overlapping factor a. For a = 1, a 50% overlap between successive input 

blocks is achieved as shown in Fig. 5.2. Since the aim of this work is to introduce tap 

selection for any arbitrary a > 1, the case of a single adaptive filter block 1C = 1 for each 

channel will be considered in this section and as a result the proposed algorithm is denoted 
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as XM-FLMSa [32]. 

To incorporate the XM tap selection to a tap-input vector obtained from an arbitrary 

overlapping factor, the jth channel input signal x j (n), j = 1, 2, is partitioned into over-

lapping sections each having size 2L. Direct deployment of the Qi(m) diagonal matrix, 

such as expressed by (5.138) is now inappropriate since qi(m) is of dimension L x L. 

However, subselection at each block iteration can be incorporated by first denoting the 

2L x 1 tap-input sequence for the jth channel as 

X,,i(m) [xj(mLla — L) xj(mLla— L + 1) ... xj(mLla + L — 1)]T  , (5.143) 

where a > 1 controls the overlapping between successive input frames and the subscript a 

in X„,,j shows the dependency of input frames on a. With this notation and for a = 1, it 

can be observed that X„,j(m) = Xi (m) where X3  (m) has been defined in (5.134). Similar 

to (5.137), the 2L x 1 magnitude difference vector can then be defined as 

P(m) = 	 IX«,2(m)1 	 (5.144) 

from which the XM tap selection criterion for this arbitrary overlapping case is defined for 

element u of qi and element v of q2  for u, v = 0, 1 , 	, 2L — 1 where 

ql,u 

q2,v = 

{ 

1, pu  E {M maxima of P(70} 

0, otherwise , 

1, pi, E {M minima of p(m)} , 

0, otherwise . 

(5.145a) 

(5.145b) 

Note that the vector p(m) is now of length L' = 2L. Since half the number of taps 

corresponding to the maximum values of p(m) in the first channel have to be selected, 

for this XM-FLMSa case, M = 0.5L' = L will be selected in (5.145a) and (5.145b). 

Consequently, the jth  channel diagonal tap selection matrix Qi (m) is of dimension 2L x 2L 

which results in a subselected tap-input vector 

= Qi(m)x.,;(m) • 	 (5.146) 
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In a similar manner to the XM-FLMS algorithm, the frequency-domain tap-input vector 

for XM-FLMSa is then computed using 

_ct,j = F2Lx2LXa,j 
	 (5.147) 

which is then used for gradient computation, similar to that shown in (5.16). 

Comparing (5.146) and (5.138), the XM-FLMSa requires an additional L addi-

tion/subtraction operations since the 50% block delay cannot be applied here. The pro-

posed XM-FLMSa is depicted in Table 5.6 of Section 5.8.7. Similar to the FLMS algo-

rithm, the use of XM tap selection is proposed in combination with the non-linear (NL) 

preprocessor [52] and hence will be denoted as XMNL-FLMSa. 

5.6 Simulation results 

5.6.1 Verification of (5.120) 

The link between interchannel coherence and the E-norm condition number XE  [Rxi/x2] 

given by (5.120) is verified using the two-channel frequency-domain adaptive filtering al-

gorithm [11] given in Table 5.4 of Section 5.8.7. In these simulations, the lengths of both 

the adaptive filters are L = 1024 with A = [1 — 1/(3L)]L and p, = 2. The stereophonic 

impulse responses of both the transmission and receiving rooms are recorded at 16 kHz 

sampling rate and are of length 4096. To neglect any misalignment effects due to under-

modelling, the impulse responses of the receiving room are truncated to 1024. Figure 5.9 

shows the normalized misalignment plots for a zero mean unit variance WGN source se-

quence where input vectors Xi(m) and X2(m) are generated by convolving this source 

with the impulse responses of the transmission room. With reference to Fig. 4.1, an un-

correlated zero mean WGN sequence w(n) is added to the received signal to achieve SNRs 

of 25 and 35 dB. 

The interchannel coherence is varied using a non-linearity control factor /3 [52] given 

by (4.46a) and (4.46b). Theoretical steady-state normalized misalignments, shown as 

straight horizontal lines, are computed and are averaged across block iterations using in-

put signals Xi(m) and X2(m). Although the non-linearity control is used to vary the 
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Figure 5.9: Normalized misalignment for WGN input with mean interchannel coherences 
of (a) 0.85, (b) 0.60 and (c) 0.53. 
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Figure 5.10: Normalized misalignment for speech input with mean interchannel coherences 
of (a) 0.85, (b) 0.60 and (c) 0.53. 

interchannel coherence, the analysis presented does not make any assumptions about the 

methods of achieving this variation4. In order to verify (5.120), the normalized misalign-

ment is computed using (5.120) and (5.123b). Due to the variation of 13, the measured 

mean interchannel coherences across frequency between ri (m) and V2(m) are (a) 0.85, 

(b) 0.60 and (c) 0.53. It can be observed that as X'1(m) and X/2(m) become more un-

correlated, the steady-state normalized misalignment reduces gracefully as expected. The 

theoretical normalized steady-state misalignments computed using (5.120) are also consis-

tent with the experimental results hence verifying the relationship between interchannel 
1 coherence and condition number xE [Rxx1/2 j • 

4Additional results for various interchannel coherences achieved by adding WGN to x2(m) is shown in 
Section 5.8.6 
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Figure 5.10 shows normalized misalignment plots using the same experimental setup 

as above but with speech input sequence from a male speaker. As before, the variation 

of interchannel coherence is controlled using the non-linearity constant Q  such that the 

measured mean interchannel coherences across frequency are the same as before. The 

mean theoretical normalized steady-state misalignments across time iterations are plotted 

as straight horizontal lines. It can be seen that the normalized misalignment performance 

degrades with increasing interchannel coherence as expected and the theoretical normalized 

steady-state misalignment computed using )& [Rxii,1 is consistent with the experimental 

results hence verifying (5.120). 

5.6.2 Experimental setup for FLMS and FLMSa based simulations 

Simulation results are presented to illustrate the convergence performances of XM-based 

frequency-domain adaptive algorithms. For all simulations shown below, impulse re-

sponses gi(n), g2(n), hi(n) and h2(n) are generated using the method of images [72]. 

Two microphones are placed 1 m apart in the centre of both the transmission and receiv-

ing rooms each of dimension 3 x 4 x 5 m. The source is then positioned 1 m away from each 

microphone in the transmission room. Tap-input vectors X (m) and 1V2 (m) are obtained 

by convolving the source with two impulse responses gi (n) and g2 (n) and then applying 

the non-linear (NL) preprocessor defined in (4.46a) and (4.46b) with a non-linear control 

factor of /3 = 0.5. An uncorrelated zero mean WGN sequence w(n) is added to achieve an 

SNR of 25 dB. For clarity, the normalized misalignment of only one channel is plotted in 

each experiment. 

5.6.3 FLMS with 50% overlapping-factor simulations 

The performance of NL-FLMS is compared with that of the XMNL-FLMS algorithm as 

shown in Fig. 5.11 (a) and (b) respectively using a zero mean unit variance WGN source 

sequence. In this simulation, the lengths of the adaptive filters are L = 256 while the 

lengths of the transmission and receiving rooms are LT = 800 and LR  = 800 respectively 

with a reverberation time of T60 = 100 ms. A sampling frequency of f s  = 8 kHz is 

used while a non-linearity control factor [52] of Q = 0.5 is used. The step-size of the 

NL-FLMS algorithm is PNL-FLMS = 1 while for the XMNL-FLMS, itxmm.,—FLMS = 0.4 is 
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Figure 5.11: Normalized misalignment using WGN input sequence for (a) NL-FLMS and (b) 
XMNL-FLMS [LT = LR = 800, L = 256, tiNL-FLMS = 1, PXMNL-FLMS = 0.4, = 0.5, f., = 8 kHz, 
Tso = 100 ms, SNR = 25 dB]. 

Figure 5.12: Normalized misalignment using speech input sequence for (a) NL-FLMS 
and (b) XMNL-FLMS [LT = LR = 800, L = 256, /INL-FLMS = 1, PXMNL-FLMS = 0.43, [3 = 0.5, 
f„ = 8 kHz, T60 = 100 ms, SNR = 25 dB]. 

used to achieve the same steady-state normalized misalignment. From Fig. 5.11, it can 

be seen that due to the XM tap selection, XMNL-FLMS outperforms the NL-FLMS by 

approximately 7 to 8 dB normalized misalignment during convergence. Alternatively, the 

NL-FLMS algorithm requires an additional 12 s before achieving the same steady-state 

misalignment as the XMNL-FLMS algorithm. 

Figure 5.12 shows simulation results for (a) NL-FLMS and (b) XMNL-FLMS using 

the same experimental setup as above but with speech input sequence from a male talker. 

The SNR was computed using the whole utterance of the speech sequence. The step-size of 

the XMNL-FLMS algorithm is PXMNL-FLMS = 0.43 in order to achieve the same steady- 
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Figure 5.13: Normalized misalignment using WGN input sequence for (a) NL-FLMSa 
and (b) XMNL-FLMSa [LT = LR = 800, L = 256, a = 4, sttNL-FLMS,a = 1, MCMNL-FLMSa = 0.65, 

= 0.5, f9  = 8 kHz, T60  = 100 ms, SNR = 25 dB]. 
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Figure 5.14: Normalized misalignment using speech input sequence for (a) NL-FLMSa 
and (b) XMNL-FLMSa [LT = LR = 800, L = 256, a = 4, itINIL-FLMSa = 1, AXMNL-FLMSa = 0.65, 

= 0.5, fs  = 8 kHz, T60 = 100 ms, SNR = 25 dBJ. 

state misalignment as the NL-FLMS algorithm where PNL-FLMS = 1 as before. For this 

speech input example, it can be observed that the XMNL-FLMS algorithm outperforms 

NL-FLMS by approximately 3 to 4 dB of normalized misalignment during convergence. 

The NL-FLMS algorithm requires an additional 6 s before reaching the same steady-state 

misalignment as the XMNL-FLMS algorithm. 

5.6.4 FLMS with arbitrary overlapping-factor simulations 

The performance of XMNL-FLMSa is illustrated by comparing its convergence to that of 

NL-FLMSa as shown in Fig. 5.13 using a zero mean unit variance WGN source sequence. 
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As before, the parameters for this experiment are L = 256, LT  = 800 = LR  = 800, 

= 0.5, f, = 8 kHz, T60 = 100 ms and SNR = 25 dB. Step-sizes ANL-FLMSa = 1 and 

itms.INL—FLms« = 0.65 are used for NL-FLMSa and XMNL-FLMSa respectively such that 

they achieve the same steady-state normalized misalignment. In this simulation, an arbi-

trarily chosen overlapping control factor of a = 4 is used. It can be seen from Fig. 5.13 that 

the XMNL-FLMSa algorithm outperforms NL-FLMSa by approximately 8 dB in normal-

ized misalignment during convergence. Alternatively, the NL-FLMS algorithm requires an 

additional 15 s before reaching the same steady-state normalized misalignment. 

Figure 5.14 compares the misalignment performances of (a) NL-FLMSa 

and (b) XMNL-FLMSa using the same experimental setup as above but with a speech 

input sequence from a male talker. The SNR was computed using the whole utterance of 

the speech sequence. As before, due to the reduction in interchannel coherence brought 

about by XM tap selection, the XMNL-FLMSa algorithm outperforms NL-FLMSa by 

approximately 3 dB. The NL-FLMSa algorithm requires an additional 6 s before reaching 

the same steady-state misalignment as XMNL-FLMSa. Comparing Figs. 5.12 and 5.14, 

the rate of convergence for the FLMSa-based algorithms is higher than for FLMS-based 

algorithms since, similar to the GMDFa algorithm [110], the adaptive filters are being 

updated more frequently for an overlapping control factor of a = 4. 

5.7 Conclusions 

In this chapter, the fast-LMS (FLMS) [22] and MDF [23] algorithms have been reviewed. 

The derivation of these algorithms using a frequency-domain cost function [11] has also 

been reviewed. The link between interchannel coherence and conditioning of the two-

channel input correlation matrix is established [31] by exploiting frequency-domain quan-

tities and the E-norm condition number [111]. It has been shown how the high interchannel 

coherence degrades the conditioning of Rxx  and using this relationship, it has been ex-

plained how the XM tap selection reduces the interchannel coherence hence improving the 

conditioning of Rxx. In order to reduce the degradation of M, tap selection is employed 

on the time-domain tap-input vector before taking its Fourier transform. Using this tap 

selection approach, the XM tap selection is then extended to frequency-domain adaptive 

algorithms employing both the 50% and an arbitrary overlapping factor controlled by a. 
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Simulation results have been presented to verify the validity of the established relationship 
1/ between interchannel coherence and XE [11„„2]. The convergence performances of the pro- 

posed XMNL-FLMS and XMNL-FLMSa algorithms showed improvement over NL-FLMS 

and NL-FLMSa for both WGN and speech input signals. 

5.8 Appendix 

5.8.1 Proof of matrix multiplication (G12 ) N 11G12N 

orn The matrix k tr̀"'Nx2N)H can be simplified as 

(G12N)
H 	(FNxNWVx2NF21\11  x2N ) H  

=F 

= 

= 

where WPNxN  is defined in (5.2a). 

\Hr_101 
(GPx2N) 	s'Nx2N 

= 

where the windowing matrix Wlx2N  

(-- 

F2Nx2N] 

G21Nx2N 

[ ONxN 

ONxN 

gx2N)11(WV><2N)HFc1VxN 

[ (k ---F  21Vx2N)1TW2NxN[ F NxNJ
T 

 

F2Nx2NWS)1NxN 

F2Nx2NW2Nx2NF21x2N 

T 
WYNxN 

ONxN 

INxN 

1 

0.5 x F2Nx2NW131NxNFN—lxN 

i 

]T 
[ NF N— xN 

(5.148) 

ol. vi 
" Nx2NF

-1  
2Nx2N 

(5.149) 

0 
2Nx2N 

Hence, 

0.5 x 

0.5 X 

0.5 x  

= 
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5.8.2 Proof of equation (5.53) 

= 0.5 x F2Nx2NW2NxNFNxNY(r) 

0.5 x F2Nx2NW(2)NxNFArxNFNxNY(r) 

ONx1 

y(r) 
2Nx1 

Using (5.148), 

(012N)HY(T) 

= 0.5 x F2Nx2N 

= 0.5 x y(r) 

where (5.41) has been employed in the second step. 	 0 

5.8.3 Proof of equation (5.77) 

The relationship between S(m) and (m) can be shown by postmultiplying GPL,,,L , defined 

in (5.66), and premultiplying (G2LxL)11  to (5.76) giving 

m 

(G2LL) (m)Gri,xL = (1  — A) EAm-r(GAxL)HDR(r)GsaNx2ND(r)Ga.L 
r=0 
m 

(1 - A) E Am rocoGslvx2„,E(r) 
r=0 

= S(m) 	 (5.150) 

where (5.68) has been employed in the last step. 	 U 

5.8.4 Proof of equation (5.78) 

It can be shown that 

G io G10 
2Lx2L 2LxL = F2Lx2LW2C1LxL-' LxL 

GaxL, (5.151) 

where matrices G2Lx2L  and W2Lx2L  are defined in (5.2g) and (5.2e) respectively. Em-

ploying the property [A13]-1  = 13-1A-1  [126] for arbitrary matrices A and B, the inverse 
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of S-1(m) in (5.77) can be expressed as 

	

S-1(m) = (GaxL) 
	

(m)[(G2L  x L)11] -
1 

• 
	(5.152) 

Pre-multiplying and post-multiplying by Gax2LG2C11,xL  and (G2Lx2L)11  respectively, 

GrLx LS -1  (M)(G213Lx H = 	(M) • 

5.8.5 Explicit link between xE[Rx1/21 and XF {Rx1/2] for uncorrelated xi (n) 

and x2  (n) 

The independence of the E-norm condition number xE[R,(11,(2] on adaptive filter length L 
r 1/ and its relationship with XF LRxx2 can be shown for a simple case example by first assum-

ing for zero mean WGN inputs x1(n) and x2 (n) where .E{4.(n)} = o-x21  and E{4(n)} = 
0.2 	0.2 	 52 	o' } 

	

X22 giving L x L matrices R11  = diag{ 	and R22 = diag{ For x2 	 xi • • • 	 1 	 2 	X2 

the case where xi(n) and x2 (n) are perfectly uncorrelated, tr{Rxx} and tr{R,T,11,} can be 

expressed respectively as 

L(0.2i 0. 2)  tr {R„„} 

	

tr{R.;,1,} = 	1  +1/42 ] . 

The F-norm condition number of R,142  is thus given as 

xF [11.1,12]  
IIRlix211FIIR);1/2 11F 

= 	[tr{Rxx  }] 1/2  [tr{R;)1,}] 1/2  

= L (6q1  aL)  
04142 ) 

(5.153) 
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while the E-norm condition number of R.,(1/2 can be written explicitly as 

XE [Rlix2] = liRlix211E1IR;1121 E 

= [y-L1  tr{R„„}]1/2[±-
2L 	xx tr{11-1}11/2  

1 	+ aL)  
2 \/(0-10-L (5.154) 

Hence the relationship between xE  [Rxiix2] and XF  [Rx1/2] for uncorrelated xi (n) and x2(n) 

is given by 

xE[R.1 /x2] = 1 
2L XF 1.11, 

rn, 
 xx 
1/21 —. (5.155) 

Comparing (5.153) and (5.154), it can be seen that XE  [Rx1Q] is independent of L. For 

the case of o 	7  52  2  = 1, XE  [R.. /52] = 1 while the measure xF [RY52] = 2L is dependent 

on the length of the filter. Hence XF [RT] increases with L, while xE [11.;/52] = 1, for 

WGN with uncorrelated x1(n) and x2(n) regardless of L. 

5.8.6 Additional results with interchannel coherence controlled by 

adding WGN to channel 2 

The use of the non-linear processing [52] defined by (4.46a) and (4.46b) for varying the 

interchannel coherence was chosen in Section 5.6.1 since this is a well-established method 

of reducing interchannel coherence without degrading the stereo image and signal quality 

significantly as can be found in existing literature. In this section, an additional simulation 

result is presented to verify that the analysis as presented in Section 5.4 is also valid for 

various interchannel coherences controlled by adding a zero mean uncorrelated WGN to 

one of the two channels as shown in Fig. 5.15. 

In this simulation, the impulse responses of both the transmission and receiving rooms 

are recorded at 16 kHz sampling rate. Signals xi (n) and x2 (n) are generated by con-

volving a zero mean unit variance WGN source with gi (n) and 92(n). A zero mean 

uncorrelated WGN sequence is added with various SNRs to x2(n) giving 2 (n) which 

serves to vary the interchannel coherence. The level of decorrelating noise added to 

x2(n) is denoted by SNRd . The received signals are obtained by convolving x1 (n) and 

2(n) with receiving room impulse responses. With reference to Fig. 4.1, and defining 
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Figure 5.15: Effect of interchannel coherence on misalignment where interchannel coherence 
is controlled by addition of WGN to x2(n) giving interchannel coherences of (a) 0.90, (b) 0.67 
and (c) 0.35 [LT = LR = 1024, L = 1024, fs = 16 kHz, A = [1 — 1/(341', SNR = 30 dB]. 

® as convolution operator, an uncorrelated zero mean WGN sequence w(n) is added to 

xi(n) OO hi(n) 	2(n) OO h2  (n) to obtain an SNR of 30 dB. In this simulation, filter in- 

put sequences xi(n) and 2 (n) are used to verify the analysis presented in Section 5.4. 

Figure 5.15 (a), (b) and (c) show normalized misalignments with SNRd of (a) 10, (b) 0 

and (c) -20 dB giving interchannel coherences of (a) 0.90, (b) 0.67 and (c) 0.35 respectively. 

It can be seen that as the SNRd  reduces, more uncorrelated noise is added to x2 (n) hence 

reducing the interchannel coherences giving a good misalignment performance. Theoret-

ical normalized misalignments are computed using (5.120) and (5.123b) and are plotted 

as horizontal lines for various interchannel coherences. Note that the analysis presented 

in Section 5.4 is also valid using this method of decorrelation. In fact, although the non-

linearity control factor (3 is used to vary the interchannel coherences in Section 5.6.1, the 

analysis presented does not make any assumptions about the methods of achieving this 

interchannel coherence variation. 



If total blocks K = 1, then N = L 

w10 
Nx2N 

w01 
2NxN 

w10 
2NxN 

w01 
2Nx2N 

w10 
2Nx2N 

= 

= 

= 

= 

[ INxN 

ON x N 

 N  xx NN ] 

[[ IN x N 

ONxN ] 

ONxN 
ONxN 

INxN 

[ ONxN 

ONxN ]Nx2N 

2 N x N 

2NxN 

ONxN 
INxN I 

ONxN 
ONxN 1 

2Nx2N 	 N 

2Nx2N 
G01 

2Nx2N 
G10 

2Nx2N 

= F2/Vx 2NW2Nx2NF21x2N 

= F2Nx2NW2Nx2NF211\rx2N 

5.8 Appendix 	 196 

5.8.7 Frequency-domain algorithms 

Table 5.1: Data sectioning matrices 
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Table 5.2: The FLMS algorithm [22] [11] 

0 < p < 1 
A 	= [1 — 1/(3L)]L  
X(m) 	= [x(mL — L) x(mL — L +1) ... x(mL + L — 1)F 
X(m) 	= F2Lx2LX(m) 
2(m) 	= diag{X(m)} 

i(m) 	= G2L2LP(m)11(rn — 1) 
E(m) 	= 1Y(m) — i(m) 
P—FLms(m) = APFLms(rn — 1) + (1  A)D*(m)P(m) 

= 11(7n — 1) + 4(1  A)G29,x2L11)* (m) x  
rEFLms(m) 5FLMSI2Lx2L1 1E(M) 

Table 5.3: The MDF algorithm [23] [11] 

0 < < 1 
A 	= [1 — 1/(3L)]N  

= 0,1,...,1C —1 
D(m — k) = diag{FFT{x(mN — kN — N) . x(mN — kN + N — 1)}} 

S'(7n) 	= G21Nx2Ar E D(m  - k)hk(m  - 1) 
k=0 

e(m) 	= y(m) y(m) 

12_'mDF(m) = Ali'mDF(rn — 1) + (1  — A)12*(m)P(m) 
hk(m) 	= hk(m — 1) + 2 /2 ( 1  — A)Grvx2ND*(m k) x  

rEmDF(m) + 8MDFI2Lx2L1-1P_(M) 



for the jth channel 

0«a<1 
0<pt<2 

= rt(1  - A) 

	

(M) 	= [x (m L - L) x (m L - L + 1) . . . x 3  (m L + L - 1)F 

	

Xj (M) 	= F2L x 2LXj (771) 

	

Ri(m) 	= diag{X(m)} 

	

§j, (m) 	 (m - 1) + (1 - A)1113! (m)LDr  (m), j, r = 1, 2 

(m)12  = [§11(m)§22(771)] -1§21 (m)§12(m) 

(n) = §ii (m)[I2Lx2L - 	(m)I2 ] , j = 1, 2 

(m) = §11  (m) RDA (n) - §12(771)§2.21  (77 )E22 (rn)] 

K2 ("2 ) 	= §2 1(m)[E2(m) §21(m)§11i  (m)Di(m)1 
E(m) 	= y (m) - G2ix2L [ni(m):111(rn - 1) ± 19_2(m)f12  (m, - 1)] 

(m) 	= h j(m - 1) + p'K j(m)(m), j = 1, 2 
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Table 5.4: The two-channel frequency-domain adaptive algorithm [11] 



for the jth  channel, 
0<p<1 
M = 0.5L 
A 	 [1 — 1/(3L)]L  
Xj(m) 	[xj(mL — xj(mL — L +1) ... xj(mL + L — 1)1T  
Xb,i(m) 	[xi(mL) xj(mL + 1) 	xi (mL + L — 1 )F 
P(m) 	IXb,l(m)I — IXb,2(m)i 
qi(rn) 	= [q.i,o(m) qi,i(m) 	qi,L_1(m)F 

(m) 	= diag{qj(m)} 

Rb,i(m) 	= Qi(m)xb,,i(m) 

Xi(m) 	= [kb,i(rn — 1) 13,j(rn)]T  
Xj(m) 	= F2Lx2LXi (m) 
X j(m) 	= F2L x 2LRi(m) 
Dj(m) 	= diag{Ki(m)} 

diag{ij(m)} 

i(m) 	= G°L2L Ej=12i(m)iii(m — 1) 
F(m) 	X(m) — i(m) 

-1.FusAs(rn) = APFLms(m — 1) + (1 — A) E=1 (m)12j(m) 
(m)h j  	= fij(m — 1) +2p(1 A)G27,x2L5;(7n)x 

LEFLms(m) + gFLMSI2L x2L1 111(M) 

{

1, pi,(m) E {M maxima of p(m)} 
0, otherwise 

— 
f 

1, pv (n) E {M minima of p(m)} 
0, otherwise q2,v(M) 
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Table 5.5: The XM-FLMS algorithm 
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Table 5.6: The XM-FLMSa algorithm 

for the jth  channel, 
0<,u<1 
M = 0.5L 
A 	 [1 — 1/(34]" 
X a j(m) 	[xj(mLla — L) xj(mLla — L + 1) ... xj(mLla+ L —1)F 

P(m) 	= 1X0,,l(m)i 	iXa,2(711 )1 
qi(m) 	[qj,o(m) 	... qi,2L_1(m)1T  
Q3(m) 	= diag{qj(m)} 

ka,i (n) 	= Qi(m)X«,./(m) 
X,,,j(m) 	= F2Lx2LXa,j (m) 
R« Jon) 	= F2Lx2010,,i(m) 
Ree j (m) 	= diag{X«i (m)} 
iDa  ,i (m) 	= diag{L i (m)} 

c,(7n) 	= Gnx2L Ej=i1Da,i(m)lii(m — 1) 

E«(m) 	= la(m) — ia(in) 
F_FLms(m) 	FLms(m — 1) + (1 — A) E =1 1:).:,,i  (m)D,,,i  (To 
h j( m) 	= (in — 1) + 21(1 — A)Gax2L1-151:,i(m)x 

[-EFLms(m) + O'FLMSI2Lx2L} 1E«  (m) 
1, pu(m) E {M maxima of p(m)} 

— 1 0, otherwise 

qzv v(m) 	
f 1, pi,(n) E {M minima of p(m)} 
1 0, otherwise 

qi,u(Tn) 



Chapter 6 

Discussion and Conclusions 

Problems cannot be solved at the same 

level of awareness that created them. 

Albert Einstein (1879-1955) 

6.1 Summary 

In this thesis, a class of time- and frequency-domain selective-tap algorithms were devel-

oped and analyzed for single channel and stereophonic AEC applications. In Chapter 2, 

having reviewed partial update algorithms, the MMax tap selection [21] was extended to 

the affine projection algorithm (MMax-AP). Using normal equations, the MMax recur-

sive least squares algorithm (MMax-RLS) for single channel AEC was developed. It was 

noted that MMax-NLMS, being a data-dependent partial update algorithm, outperforms 

the SPU-NLMS [20], Periodic-NLMS and Sequential-NLMS algorithms [19]. It was also 

noted that the rate of convergence of adaptive algorithms employing MMax tap selection 

degrades gracefully with reducing size of tap selection M. Convergence for both WGN 

and speech input sequences were shown for MMax-AP and MMax-RLS through simula-

tions. Although all filter coefficients were selected for adaptation, for an example case of 

L = 1024 and M = 512, it has been shown that the number of operations required by 

MMax-AP and MMax-RLS employing the SORTLINE algorithm is approximately 75.7% 

and 62.5% that of the number for AP and RLS respectively. 

The steady-state misalignment analysis for a class of fully updated and their cor- 

201 
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responding MMax selective-tap algorithms were presented, in Chapter 3, under both 

time-varying and time-invariant unknown system conditions modelled using the modi-

fied Markov model [77]. Under time-invariant system conditions, the steady-state nor-

malized misalignment for MMax-NLMS and MMax-AP were found to be independent of 

M while the same is not true for MMax-RLS. For a time-varying system, the perfor-

mance of MMax-based algorithms in terms of steady-state misalignment degrades with 

increasing time-variation. This degradation is proportional to for both MMax-NLMS 

and MMax-RLS algorithms. For 0.5L < M < L, the increase in is insignificant and 

as a consequence, the degradation in steady-state misalignment performance is negligible 

with reducing M. This property was exploited for the XM tap selection, which was then 

deployed in SAEC algorithms such as presented in [30] [26]. It was additionally shown 

for NLMS and MMax-NLMS that, under time-varying unknown system conditions, there 

exist an optimal step-size given by (3.33) and (3.65) respectively. This optimal step-size 

jointly maximizes the performances of the algorithms in terms of low misalignment and 

high convergence rate. Simulation results were presented and have shown to verify that the 

analysis accurately describes the performances of the algorithms. This analysis enables a 

judicious trade-off between the computational savings of partial update schemes and their 

tracking performance. 

In Chapter 4, a novel tap selection approach to reduce the interchannel coherence 

for stereophonic acoustic echo cancellation (SAEC) was proposed. It was shown that to 

reduce the degradation in convergence rate due to tap selection, the proposed M-ratio 

M has to be maximized. It was noted that the MMax tap selection imposed on SAEC 

adaptive algorithms will not achieve sufficient convergence performance since, due to the 

high interchannel coherence, same tap-indices will be selected for both channels. As a 

proof of concept, a joint optimization problem was formulated by maximizing the MMax-

criterion and minimizing the interchannel coherence under the control of tap selection. 

The resultant exhaustive search technique has shown to achieve good convergence per-

formance over the fully-update NLMS algorithm when taps corresponding to tap-input 

combinations having the highest M subjected to exclusivity are selected for adaptation. 

The exclusive-maximum (XM) tap selection algorithm was proposed which efficiently se-

lects taps corresponding to tap-inputs maximizing M subjected to exclusivity. This XM 

tap selection was extended to the NLMS, AP and RLS algorithms and when employed 
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with the non-linear (NL) preprocessor, higher rates of convergence in the range of ap-

proximately 3 to 7 dB are exhibited compared to their respective algorithms employing 

NL preprocessor alone. Alternatively, the distortion factor /3 for the XMNL-based algo-

rithms can be reduced to achieve the same convergence rates as algorithms that employ 

the NL-preprocessor alone. 

In Chapter 5, frequency-domain analysis was presented and frequency-domain al-

gorithms employing tap selection were developed. Utilizing the E-norm condition num-

ber [1111, the link between interchannel coherence and the conditioning of the two-channel 

correlation matrix R.„„ was established. Employing this relationship, an insight of how 

the XM tap selection reduces the interchannel coherence was presented. It was further 

shown how the misalignment performances of SAEC algorithms were improved through 

the better conditioning of R.,,,,. The measure .M has been shown to reduce significantly 

if subselection is employed on the frequency-domain tap-input vector hence the rate of 

convergence of frequency-domain SAEC algorithms is reduced significantly. Consequently, 

for the proposed frequency-domain algorithms, decisions on tap selection were based on 

time-domain tap-input vectors. Two frequency-domain selective-tap algorithms were pro-

posed; one employing the 50% overlapping factor (XMNL-FLMS) and the other employing 

an arbitrary overlapping factor (XMNL-FLMSa) controlled by a > 1 . Simulation results 

were presented and the proposed XMNL-based algorithms were shown to achieve improved 

convergence over algorithms that employ the NL preprocessor alone. 

6.2 Conclusions 

In this work selective-tap algorithms employing the MMax tap selection for acoustic echo 

cancellation (AEC) were developed and analyzed. It has been shown, for single chan-

nel AEC, that although all taps are updated, reduced computational complexity can be 

achieved in selective-tap algorithms compared to their corresponding fully updated algo-

rithms. Analysis and simulations presented have shown that selective-tap algorithms suffer 

from degradation in terms of both convergence rate and steady-state misalignment under 

time-varying unknown system conditions. Analytical results have shown to be accurate 

to within an estimation error of approximately 0.1 to 0.2 dB compared with simulated 

results hence validating the analysis presented. More importantly, it has been found that 
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for the case of M = 0.5L, the degradation in performance of selective-tap algorithms is 

insignificant. Specifically, this degradation is in the range of approximately 0.5 to 1 dB in 

terms of steady-state misalignment for the single channel MMax-based algorithms under 

time-varying unknown system conditions. This motivates the novel application of such 

selective-tap algorithms using the exclusive-maximum (XM) tap selection for reducing 

interchannel coherence so as to achieve good convergence performance in stereophonic 

acoustic echo cancellation (SAEC). Although the main aim of such a deployment for 

selective-tap algorithms was not the reduction in computational complexity as in the sin-

gle channel AEC case, reduced complexity compared to the fully updated algorithms can 

nevertheless be seen. It has been shown that the overall performance increase for SAEC 

in the region of 3 to 7 dB can be obtained with a computational load of 76% that of 

NL-NLMS using the selective-tap XMNL-NLMS algorithm. This is due to the additional 

decorrelating effect brought about by the exclusive tap selection. For the XMNL-AP and 

XMNL-RLS algorithms, with approximately the same improvement in convergence rate 

compared to NL-AP and NL-RLS, the reduction in computational load is approximately 

75.7% and 62.5% that of the fully updated NL-AP and NL-RLS algorithms respectively. 

As a consequence, such selective-tap algorithms can be applied to both single and two-

channel system identification applications such as AEC considered in this thesis. 

6.3 Future work 

The convergence properties of tap selection adaptive algorithms were shown in this the-

sis. These algorithms can be applied to reduce interchannel coherence so as to achieve 

good misalignment performance for adaptive algorithms. The proposed XM selective-tap 

algorithms can be employed as a platform for other SAEC algorithms (time- or frequency-

domain) to enhance their convergence performances. Subband approaches employing XM 

tap selection for SAEC can also be explored. 

Typically, adaptive algorithms for AEC perform the role of system identification which 

aim to model the receiving room's impulse response. The use of XM tap selection algo-

rithms can also be considered for use in acoustic feedback cancellation (AFC) applications 

in multi-channel closed-loop systems. Such systems have been deployed in, for example, 

commercial and military applications such as medical hearing-aids and automotive cabin 
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Figure 6.1: Schematic of an in-car communication system. 

communications systems such as depicted in Fig. 6.1. It has been shown [16] that one of 

the main problems in such closed-looped system, similar to the SAEC case, is the high 

interchannel coherence between xi (n) and x2(n). It has been proposed in [16] that the 

non-linear preprocessor can be employed in such applications, similar to the SAEC case. 

A possible extension of this work is thus to employ the XM tap selection to further reduce 

the interchannel coherence in applications where highly correlated interferers exist such as 

described above. 

6.4 	List of publications arising directly from this thesis 

• Book Chapter 

1. P. A. Naylor and A. W. H. Khong, "Selective-tap adaptive algorithms for echo 

cancellation," in Selected Methods for Acoustic Echo and Noise Control, E. 

Hansler and G. Schmidt, ed.. Springer, to appear 2006. 

• Journals 

1. A. W. H. Khong and P. A. Naylor, "Selective-tap adaptive filtering with perfor-

mance analysis for non-stationary system identification," IEEE Trans. Speech 

Audio Processing, submitted Nov. 2005. 
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Signal Processing Lett., to appear Jan. 2006. 

3. A. W. H. Khong and P. A. Naylor, "Stereophonic acoustic echo cancellation 

employing selective-tap adaptive algorithms," IEEE Trans. Speech Audio Pro-

cessing, to appear Jul. 2006. 

4. A. W. H. Khong and P. A. Naylor, "Selective-tap adaptive algorithms in the 

solution of the nonuniqueness problem for stereophonic acoustic echo cancella-

tion," IEEE Signal Processing Lett., vol. 12, no. 4, pp. 269-272, Apr. 2005. 

• Conference proceedings 

1. A. W. H. Khong, J. Benesty and P. A. Naylor, "Effect of interchannel coherence 

on conditioning and misalignment performance for stereo acoustic echo cancel-

lation," Proc. IEEE Int. Conf. Acoustics Speech Signal Processing (ICASSP), 

submitted Oct. 2005. 

2. A. W. H. Khong and P. A. Naylor, "Frequency domain adaptive algorithms for 

stereophonic acoustic echo cancellation employing tap selection," in Proc. Int. 

Workshop on Acoustic Echo and Noise Control (IWAENC), Sep. 2005, pp. 

141-144. 

3. A. W. H. Khong and P. A. Naylor, "A family of selective-tap algorithms for 

stereo acoustic echo cancellation," in Proc. IEEE Int. Conf. Acoustics Speech 

Signal Processing (ICASSP), vol. 3, Mar. 2005, pp. 133-136. 
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adaptive filters employing partial updates," in Proc. Thirty-Eighth Asilomar 
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954. 
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