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Abstract 

The Asian tiger mosquito Aedes albopictus (Skuse) is a vector of several arboviruses including 

dengue and chikungunya. This highly invasive species originates from Southeast Asia and has 

spread across the world in the last 30 years. It is now established in Europe, North and South 

America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral 

drugs, efficient mosquito control strategies are crucial. Conventional control methods have 

so far failed to adequately control Ae. albopictus. Using germline transformation technology, 

a technique known as Release of Insects carrying a Dominant Lethal (RIDL) proposes to 

enhance the sterile insect technique by replacing irradiation with inherited dominant lethal 

genes. While this technology has recently shown some success in the field against the yellow 

fever mosquito, Aedes aegypti (L.), it remains to be implemented against Ae. albopictus. This 

thesis presents the development and application of gene transfer and site-specific 

integration technologies in Ae. albopictus, as well as the creation of tetracycline-repressible, 

female-specific flightless lines for vector control based on the RIDL method. Germline 

transformation and site-specific integration were performed using the piggyBac transposon 

and the ФC31 system, respectively. Ae. albopictus RIDL strains showing a conditional female-

specific flightless phenotype were created using both the Ae. aegypti and the Ae. albopictus 

Actin-4 regulatory regions. Conditionality was provided by the ‘Tet-Off’ system, which is 

suppressed in the presence of tetracycline (and suitable analogues). One of these strains was 

assessed for attributes relevant to a RIDL control programme. Specific tailoring of the RIDL 

transgene with alternative transactivator elements was investigated using the ФC31 system. 

The work presented in this thesis lays the foundations for the application of the RIDL 

strategy to Ae. albopictus, an innovative vector-control method offering a promising 

alternative for efficient control of this highly invasive insect. 
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1. Mosquito-borne diseases 

Mosquito-borne diseases, such as dengue fever, chikungunya or malaria, are now, more than 

ever, major international public health concerns. According to the World Health Organisation 

(WHO: http://www.who.int/en/) and the Centre for Disease Control and Prevention (CDC: 

http://www.cdc.gov/), 40% of the world's population are at risk from dengue and malaria, with 

an estimated 50 to 100 million dengue cases and 350 to 500 million malaria cases worldwide 

every year.  

 

a/ Dengue 

Dengue fever is the most widespread mosquito-borne viral disease of humans. The two main 

vectors of dengue are Aedes aegypti and Aedes albopictus (Figure 1-1).  Dengue is 

predominantly found in urban and semi-urban areas of tropical and sub-tropical regions (Figure 

1-2). Pandemic infections of dengue started in South-East Asia in the 1950s, and have been 

spreading to the Americas and Africa since the 1970s (Gubler, 1989), encouraged by the 

constant urban growth that favours the development of Aedes mosquitoes.  

The symptoms of dengue fever itself are flu-like and it rarely causes death. However, dengue 

haemorrhagic fever, a complication of dengue, can cause circulatory failure and death of the 

patient in only a few days and there is no specific treatment available. Dengue and Dengue 

haemorrhagic fevers are caused by one of four serotypes of the dengue virus (DEN-1 to -4), of 

the genus Flavivirus and has a single +-strand RNA genome. Infection with one of these 

serotypes provides life-long immunity against that serotype only and people can suffer more 

than one dengue infection in their lifetime. Research is under way to develop a vaccine, but it 

has proved difficult due to the presence of those four closely related but antigenically different 

viruses (Cardosa, 1998): The vaccine would have to offer protection against all four serotypes. 
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Figure 1-1. The two main vectors of dengue fever and chikungunya, Aedes aegypti and Aedes albopictus.  

Note the white pattern on the thorax: two bands on each side for Ae. aegypti, one band in the centre for Ae. albopictus. 

(photogaphs D. Nimmo) 

 

Figure 1-2. Countries / areas at risk of dengue transmission, 2006 (WHO). 

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever 
on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, 
or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which 
there may not yet be full agreement.  

Data Source: WHO  
Map Production: Public Health Mapping and GIS 
Communicable Diseases (CDS) World Health Organization 

©WHO 2006. All rights reserved 
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b/ Chikungunya 

Ae. aegypti and Ae. albopictus are also the main vectors of the chikungunya virus. Like dengue, 

chikungunya is rarely lethal except in old or very young people (Pialoux et al., 2007). It is 

characterised by flu-like symptoms, extreme joint pain and fatigue (Hochedez et al., 2008). The 

complete recovery can take up to several months. Chikungunya was first described in Tanzania 

in the 1950s (Robinson, 1955), and it has since spread through Southeast Asia (Mackenzie et al., 

2001), India (Ravi, 2006) and Africa  (Jupp and Kemp, 1996), and more recently in the Indian 

Ocean islands; the La Reunion outbreak in 2005-2006 affected a third of the island’s population: 

about 260,000 cases (Flahault et al., 2007), and Europe; Italy outbreak in 2007 (Rezza et al., 

2007) (Figure 1-3). The chikungunya virus is an alphavirus from the family Togoviridae and has a 

single +-strand RNA genome.  

 

Figure 1-3. Approximate global distribution of chikungunya virus, by country, 2010 (CDC). 
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c/ Malaria 

Malaria is the most deadly mosquito-borne disease affecting humans, with around one million 

fatalities each year, mainly amongst young children in Africa 

(www.who.int/mediacentre/factsheets/fs094/en/index.html; 

www.cdc.gov/malaria/about/facts.html). Malaria is caused by infection with protozoan 

parasites from the Plasmodium genus, the most deadly being Plasmodium falciparum. 

Resistance to anti-malarial drugs has developed in these parasites, and the complexity of their 

life cycle makes it difficult to develop an efficient vaccine (Rogers and Hoffman, 1999). Unlike 

dengue and chikungunya, malaria is transmitted by Anopheles mosquitoes. More than a third of 

the global world population lives in a malaria-endemic area (Figure 1-4).  

 

d/ Other mosquito-borne diseases 

Yellow fever is caused by another Flavivirus transmitted by Aedes mosquitoes which can, quite 

similarly to dengue, cause haemorrhagic illness. Despite the availability of an efficient vaccine 

Figure 1-4. Malaria, countries or areas at risk of transmission, 2009 (WHO). 

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever 
on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, 
or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which 
there may not yet be full agreement.  

Data Source: World Health Organization  
Map Production: Public Health Information 
and Geographic Informaion Systems (GIS) 
 World Health Organization 
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since the 1937 (Monath, 1988), inadequate coverage means there are currently 200,000 cases 

and 30,000 deaths worldwide each year, 90% of them in Africa. The main vector of yellow fever 

is Ae. aegypti. 

West Nile virus, also a Flavivirus, is mostly transmitted by Culex mosquitoes. It used to be 

considered of relatively low importance as infections into humans were usually asymptomatic 

or mild. Since the 1990s, however, the disease has expanded its geographic range and 

outbreaks seem to have become more frequent, with more cases involving severe, neurologic 

syndromes, apparently linked to a new virus variant (Petersen and Roehrig, 2001).  

The Venezuelan Equine Encephalitis is a re-emerging disease caused by an alphavirus 

transmitted mostly by Ochlerotatus (formerly Aedes) taeniorhynchus mosquitoes (Weaver et 

al., 2004). It is widespread in Central and South America, with mild flu-like to neurological 

symptoms.  

 

Due to the absence of vaccines and effective drugs against dengue, malaria or chikungunya, 

disease prevention and control focuses on the vectors of these diseases. 

 

2. The Asian Tiger mosquito Aedes albopictus 

a/ Biology 

Aedes (Stegomyia) albopictus (Skuse) was first described by Skuse (1894) as “the banded 

mosquito of Bengal” and is now commonly called the Asian Tiger mosquito due to its black and 

white stripy pattern on the abdomen. It originally comes from Southeast Asia and moved to 

Madagascar and other Indian Ocean Islands with humans centuries ago (Smith, 1956). It mostly 

lives at the edge of forests and breeds in tree holes and other natural reservoirs. Adult Ae. 

albopictus are readily distinguished from Ae. aegypti by a median longitudinal line of white 

scales on their thorax (Figure 1-1).  
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Ae. albopictus is the second main vector of dengue in the world after Ae. aegypti. It is also a 

natural vector of chikungunya virus (Schuffenecker et al., 2006) and a laboratory-competent 

vector of several other arboviruses such as the Venezuelan Equine Encephalitis (Fernandez et 

al., 2003), West Nile and La Crosse viruses (Mitchell, 1995). The nematode Dirofilaria immitis, a 

parasite usually found in cats and dogs, can also be transmitted to humans by Ae. albopictus 

(Nayar and Knight, 1999). The lower vectorial capacity of Ae. albopictus compared to Ae. 

aegypti is due to its quite different lifestyle (Lambrechts et al., 2010). While Ae. aegypti lives in 

urban areas, tends to bite indoor and feeds almost exclusively on humans, Ae. albopictus does 

not usually live in such close association with humans. It is generally found in more rural areas 

where the human density and therefore the risk of epidemics are lower, and bites mostly 

outdoors. It is less anthropophagic, feeding also on other mammals, birds and reptiles (Hawley, 

1988). However, the ecology of Ae. albopictus is quite flexible and some strains are well 

adapted to urban conditions where they sometimes even appear to displace Ae. aegypti 

(Lounibos, 2002; Ray and Tandon, 1999; Tandon and Raychoudhury, 1998). In Dakha, 

Bangladesh, where both vectors are present, the dengue fever outbreak of 2000 seems to have 

been mostly caused by Ae. albopictus (Ali et al., 2003). Dengue outbreaks in places where Ae. 

albopictus is the sole vector tend to be mild (Hawaii 2001-2002, (Gubler, 2003)), but Ae. 

albopictus has nevertheless been responsible for important dengue fever epidemics in Japan 

(1942-1944), Hawaii (1943) and Seychelles (1976-1977). Ae. albopictus also supported a big 

chikungunya outbreak in the Indian Ocean between 2005 and 2007, infecting a third of the 

population of La Reunion island (Reiter et al., 2006). 

 

b/ A maintenance and bridge vector 

Dengue and chikungunya viruses are maintained in parts of Southeast Asia and Africa within 

sylvatic cycles involving non-human primates and monkeys (Marchette et al., 1978; McIntosh, 

1970; Rudnick, 1965). The distribution of Ae. albopictus in both rural and peri-urban areas and 

its wide range of hosts make it both a vector in sylvatic cycles (Knudsen, 1977) and a bridge 

vector able to pass viruses on to humans, subsequently starting new urban transmission cycles 
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and epidemics. Ae. albopictus is therefore believed to be a maintenance vector of dengue in 

endemic countries of Southeast Asia and Pacific Islands (Gratz, 2004). 

Vertical transmission of the virus to the vector mosquito offspring is another way by which 

some viruses can persist in the environment during inter-epidemic periods (Gokhale et al., 

2001; Thenmozhi et al., 2007). It has also been reported that Ae. albopictus is able to vertically 

transmit the dengue and chikungunya viruses to their progeny (Angel and Joshi, 2008; Delatte 

et al., 2008; Rosen et al., 1983).  

 

c/ An invasive species 

In the last 30 years, Ae. albopictus has travelled the world via the trade of used tires (Reiter, 

1998) and “lucky bamboo”, a tropical plant (Linthicum et al., 2003), which are common 

breeding places for this species. It went from South-East Asia and Pacific Islands to Europe, 

North and South America, Africa, the Middle East and the Caribbean. Ae. albopictus shows 

strong ecological plasticity and is a highly invasive species. Eggs of most Aedes species tolerate 

several months of desiccation and thus can survive long transports. Moreover, some strains of 

Ae. albopictus have developed a photoperiodic egg diapause and freezing tolerance, allowing 

the establishment of this exotic mosquito in temperate zones, and on every continent except 

Antarctica (Hawley et al., 1987).  

In Europe, it first established in Albania in 1979 (Adhami and Murati, 1987) and has since then 

spread through most of Italy (Sabatini et al., 1990) and along the Mediterranean coast to Spain 

(Aranda et al., 2006) and France (Scholte and Schaffner, 2007). It has recently reached Belgium 

and the Netherlands (Rahamat-Langendoen et al., 2008; Schaffner et al., 2004) although there 

is no evidence of its establishment in the Netherlands at this time (Scholte et al., 2008). In the 

USA, it was first found in 1983 (Reiter and Darsie, 1984) and has now established in 26 states, 

as far north as Illinois (www.cdc.gov/ncidod/dvbid/arbor/albopic_new.htm). In Brazil, it was 

first reported in 1986 and is now present in 20 of the 27 states (La Corte dos Santos, 2003). Ae. 
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albopictus is in fact present in every Central American country (Benedict et al., 2007). In Africa, 

it was first established in Nigeria (CDC, 1991) and has recently been found in Cameroon 

(Fontenille and Toto, 2001), Gabon (Krueger and Hagen, 2007) and Equatorial Guinea (Toto et 

al., 2003). 

 

d/ A public health threat 

The introduction of Ae. albopictus in the USA was once perceived as a benefice for colonising 

the niche occupied by the more competent vector, Ae. aegypti (Gubler, 2003; Hobbs et al., 

1991; O'Meara et al., 1995). However, since the chikungunya epidemic of La Reunion island in 

2006, the public health threat posed by the widespread distribution of Ae. albopictus cannot be 

ignored. The virulence of the chikungunya virus involved in that epidemic was due to a single 

nucleotide mutation of the virus, which enhanced its ability to infect Ae. albopictus (Vazeille et 

al., 2007). A single amino-acid substitution in the Venezuelan Equine Encephalitis virus was also 

responsible for enhanced vector infectivity a few years ago (Brault et al., 2004). Viruses are 

prone to mutations and we cannot rule out that something similar could happen with other 

viruses including dengue.  

The small chikungunya outbreak in Italy in 2007 (Chretien and Linthicum, 2007) showed that Ae. 

albopictus is indeed the key for such viruses to extend their geographic range. Mosquito-borne 

diseases are not only a burden for developing countries. The establishment of Ae. albopictus 

causes public health concerns regarding the possible emergence of dengue and chikungunya in 

temperate countries: if introduced by infected travellers, the viruses can now spread in those 

countries by the incumbent vector, especially during the summer months when the mosquito 

population is highest (Senior, 2008; Vazeille et al., 2008). It also generates fears of re-

emergence and dissemination of other endemic diseases for which Ae. albopictus is a 

competent or bridging vector. This includes West Nile (Farajollahi and Nelder, 2009; Gubler, 

2007; Sardelis et al., 2002), La Crosse (Grimstad et al., 1989; Lambert et al., 2010) and 

Venezuelan Equine Encephalitis (Weaver and Reisen, 2010) viruses in the USA and yellow fever 
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in Brazil, Argentina and Africa (Maciel-de-Freitas et al., 2006; Savage et al., 1992; Vezzani and 

Carbajo, 2008). 

The spread of Ae. albopictus into new territories, its susceptibility to a wide range of 

arboviruses and other parasites and its ability to bridge with sylvatic transmission cycles also 

suggests that it could introduce into humans some arboviruses or other parasites only existing 

in animals so far.  

 

3. Traditional vector control methods 

a/ Bed nets and insecticides 

Mosquitoes transmit viruses and parasites from one human to another through the bite of the 

females, which need blood nutrients to develop their eggs. Preventing mosquito bites protects 

against infection, and insecticide spraying of households and insecticide-impregnated bed nets 

are the most common vector-control methods (Lengeler, 1998). These methods are efficient 

(Lengeler, 2004) but the required high coverage is hard to achieve on a large scale. Moreover, 

the main problem associated with the use of insecticides is the resistance that mosquitoes 

quickly develop (Brogdon and McAllister, 1998; Curtis et al., 2006; Takken, 2002). These 

methods are therefore not sustainable and their efficiency is likely to decrease.  

 

b/ Water management 

Mosquitoes lay their eggs in water, and after fully aquatic development from eggs to pupae, 

flying adults emerge. Therefore, any receptacle containing water, or that may collect rainwater, 

is a potential artificial breeding site for mosquitoes. Close control of these sites helps to reduce 

the numbers of disease-transmitting adults. Water management is used mainly in big cities, 

where most breeding sites are artificial. In Singapore, where dengue is a major public health 

problem, the National Environment Agency (NEA) actively campaigns against dengue 

(http://www.dengue.gov.sg/) and takes enforcement actions against citizens who allow 
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mosquitoes to breed on their property. The “Control of Vectors & Pesticides Act” took effect in 

1998 but did not prevent a resurgence of dengue since 2002. 

 

c/ Biological control 

Biological control agents include predators, parasites and pathogens. The most successful 

predator of mosquitoes for vector control is the mosquito-eating fish Gambusia affinis (Prasad 

et al., 1993). They should, however, be used with care since they quickly colonise new 

ecosystems and could become pests themselves (Rupp, 1996). They may also feed on other 

aquatic insects and zooplankton (Nagdali and Gupta, 2002).  

Copepods of the genus Mesocyclops are also predators of the early instars of Aedes and 

Anopheles mosquitoes. They have recently been used in community programs to control 

populations of Ae. aegypti in Vietnam (Vu et al., 2005). Those results are promising although 

methods for large-scale deployment of the copepods still need to be developed. 

The toxin from the bacterium Bacillus thuringiensis israelensis is used as an environment-

friendly insecticide since it is specific to the larvae of mosquitoes, black flies and midges, with 

few effects on other organisms (Lacey and Undeen, 1986). Despite the benefits of lower impact 

upon the environment, the emergence of resistant mosquitoes occurred in a similar manner to 

that of chemical insecticides (Boyer et al., 2007). 

 

d/ Control of Ae. albopictus 

After the trade of used tyres was identified as a source of Ae. albopictus dissemination, several 

governments regulated the import of used tyres from infested countries, although in most 

cases the economical impact of such decisions was prohibitive (Reiter, 1998). Romi et al. (Romi 

et al., 1999) report that in Italy, local laws were passed since 1992 to contain the spread of Ae. 

albopictus, but no tyre legislation was passed at national level. However, according to Paul 
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Reiter, the US efforts in preventing further importations are vain since the number of 

mosquitoes that could be introduced from overseas is insignificant compared to the vast size 

and distribution of the existing population. The situation in Italy is probably similar. 

Nevertheless, even if it seems impossible to prevent the establishment of Ae. albopictus within 

its suitable geographical range, surveillance and control remain critical in order to quickly treat 

initial invasions and delay its spread, especially its establishment into cities where the risk of 

epidemics is higher. In France, despite a surveillance network set up by the Ministry of Health in 

1999 just after the first infestation (Scholte and Schaffner, 2007), Ae. albopictus continues to 

spread (www.albopictus13.org/cartes_implantation.htm).  

Mosquito control largely involves the use of insecticides. In the past, Ae. aegypti has been 

successfully eradicated in some places by use of DDT, but this chemical was prohibited in the 

1970s due to its adverse ecological impact (WHO, 1979). Currently, more environmentally 

acceptable insecticides are employed (mostly pyrethroids against adults and Bacillus 

thuringiensis against immature stages) but their use has to be limited in order to avoid the 

development of resistance (Curtis et al., 1998). The elimination of artificial breeding sites such 

as flower-pots is an efficient control method but it requires public awareness and participation, 

which is hard to sustain. Besides, Ae. albopictus also breeds in natural sites such as holes in 

trees and rocks, which are hard to find and treat. These considerations explain why the 2007 

ECDC report on risk assessment of chikungunya in EU states that “once Aedes albopictus is 

known to be established in an area, it is difficult (not to say impossible) to eradicate the 

mosquito” (Mission Report, Chikungunya in Italy, Joint ECDC/WHO visit for a European risk 

assessment, 17–21 September 2007).  
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4. SIT as an area-wide vector control method 

a/ Principle of SIT 

The Sterile Insect Technique (SIT) (Knipling, 1959) is a vector control method applied to an 

insect pest population to reduce its numbers (Dyck et al., 2005). It relies on releasing sterile 

insects in the field to compete with the wild insects, consequently reducing the target 

population. Unlike conventional control methods, SIT becomes more efficient with time as the 

density of the target population decreases. It is also area-wide, species-specific and 

environmentally benign. A traditional SIT programme involves rearing large numbers of insects 

of the target species, exposing them to ionising radiation to induce sexual sterility, and 

releasing them into the target population. The released sterile males mate with wild females, 

preventing them from reproducing. Releasing males alone has proven to be more efficient than 

both sex releases as only males transfer sterile sperm to wild females (Rendón et al., 2000). If 

released, sterile females would distract sterile males from inseminating wild females (Rendón 

et al., 2004). Beyond efficiency, it is highly desirable for mosquito SIT programs to release only 

males since females, even sterile, would bite and potentially transmit the disease. Releasing 

large numbers of females would therefore potentially increase the risk of transmission. A 

stringent sex-separation system (“sexing system”) is therefore required for mosquito SIT. 

Inundative releases of sterile males result in the decline of the target species population and, 

potentially, in its eventual elimination (Krafsur, 1998). Since the 1950s, SIT has been used 

successfully to eradicate the New World Screwworm (NWS) fly Cochliomyia hominivorax from 

the USA, Mexico and other parts of Central America (Wyss, 2000). 

Several mosquito releases were performed for purposes related to SIT in the 1960s, 1970s and 

early 1980s. The largest-scale trials were conducted in El Salvador and India. The highly 

successful El Salvador field release resulted in elimination of the target population (Lofgren et 

al., 1974). Unfortunately, political problems in both countries in the mid-1970s interrupted 

further work. One prominent cause contributing to the failure of several mosquito releases was 

insufficient production of sterile males due to absence of sexing strains or delays in production 

(Benedict and Robinson, 2003). The required production was higher than expected due to the 
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negative impact of insect handling during rearing, sexing and distribution. The efficiency was 

also reduced due to greater than expected migration of mated females into the release area. 

Such problems could be overcome in the future by increasing the mass production in order to 

reach higher release ratios or developing a sexing strain. 

Mosquito sexing for those release programs exploited sexual dimorphism based on differential 

pupal size, using a semi-automated device (Breeland et al., 1974; Lofgren et al., 1974). Male 

pupae are generally smaller than female pupae although the extent of the dimorphism is 

species-specific (greater in Aedes than in Anopheles species) and dependent on the rearing 

conditions.  

Recently, the limits of conventional vector control in the fight against Ae. albopictus naturally 

led Italy to evaluate the feasibility of the Sterile Insect Technique. The Centro Agricoltura 

Ambiente is currently improving mass rearing and sterilisation of Ae. albopictus by irradiation, 

and conducting experimental field releases of sterile males (Bellini et al., 2007).  

 

b/ Genetic modifications of insects – the early days 

The advent of genetic tools in the 1960s provided new solutions for insect sexing: genetic 

sexing systems were developed by using translocations of an autosome bearing the dominant 

allele of a selectable marker to the Y chromosome, and crossing male flies carrying the 

translocation to mutant females (Whitten, 1969). Most of the genetic sexing strains based on 

translocations used insecticide resistance genes as selectable markers, leaving male progeny 

resistant and female progeny susceptible at larval and adult stages. Genetic sexing strains of 

this kind have been developed in many different insects (reviewed in (Robinson, 2002)), 

including Anopheles albimanus (Seawright et al., 1978) for which a field trial was performed in 

the late 1970s, also in El Salvador (Bailey et al., 1980). The maintenance of such strains as large 

colonies is not straightforward due to semi-sterility and recombination between the marker 

and the Y chromosome (Robinson et al., 1999). Moreover, such sexing technology cannot be 
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easily applied to a wide range of species due the lack of required knowledge of mutations and 

genetic make-up which would enable to map the chromosomal rearrangements. 

Male sterility associated with male-linked chromosomal translocations has also been exploited 

with the aim of replacing irradiation (Laven and Jost, 1971). However, the development of such 

strains can be very time consuming and each translocation provides only 50% sterility and 

comes with a high fitness cost (Weidhaas and Seawright, 1974). These factors, coupled with 

previously discussed rearing difficulties, mean that irradiation is still a preferred option for 

sterilisation. For the El Salvador release programs, sterility was induced in pupae of An. 

albimanus by treatment with a chemical mutagen (ENT-61585, (Lofgren et al., 1974)). The 

fitness cost was lower with this method but the toxicity of the chemical residues makes it 

unacceptable for current use. 

 

5. Insect transgenesis as a tool for improving SIT 

a/ The gene transfer technology 

In the 1990s, the development of the gene transfer technology and its potential application to 

genetic sexing generated strong hopes for SIT improvement (Robinson and Franz, 2000). 

Indeed, any gene of interest can now be inserted into the genome of many insect species. Such 

an approach does not require much genetic background information about the species, and 

once developed, the technology can usually be easily transferred to different species (Benedict 

and Robinson, 2003; Robinson et al., 2004). 

The first transformation system to be successfully used in insects (Drosophila melanogaster) 

derived from the P element (Rubin and Spradling, 1982). This element is a class II short inverted 

terminal repeats transposon of 2.9 kb. The ability of the transposase to act in trans has allowed 

the development of a binary vector-helper system for transformation (Rubin and Spradling, 

1982): the vector is a P element incorporating a transgene between the inverted terminal 

repeats (ITR) in lieu of the transposase; the helper plasmid is a P element that provides the 
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transposase, but rendered non-autonomous by deletion of the 3’ITR (Karess and Rubin, 1984). 

The co-injection of vector and helper constructs results in the virtually random transposition of 

the transgene into the host genome. The stability of the integrated transgene is ensured by the 

dilution and eventual loss of the helper plasmid after several cell divisions. 

Despite repeated efforts, the P transformation vectors have been unsuccessful for routine 

transformation of non-drosophilid insect species, including mosquitoes, though a small number 

of transgenics were generated as low-frequency events that may or may not have been 

dependent on P element functions (Miller et al., 1987; Morris et al., 1989). P excision assays 

confirmed the lack of mobility of the element outside of the Drosophilidae (Handler et al., 

1993). Several observations later highlighted that vector function can be dependent on the 

cellular and genomic environment of each species (Jasinskiene et al., 2000). These results 

pointed out to the need for new vector systems for gene transfer into insects. 

 

b/ The piggyBac transposable element 

piggyBac is a class II transposable element from the TTAA-specific family. It was discovered in 

Trichoplusia ni cell lines inserted in the genome of a baculovirus (Fraser et al., 1983). The 

original piggyBac element isolated was 2.4kb in length and its extremities are composed of 13-

bp perfect inverted repeats and additional 19-bp inverted repeats located asymmetrically with 

respect to the ends ((Cary et al., 1989) and Figure 1-5). Elements from the TTAA-specific family 

insert with the duplication of the TTAA target site. Autonomous piggyBac elements have an 

ORF encoding a functional transposase (Elick et al., 1996). The piggyBac-mediated 

transformation system is similar to the vector-helper system used with the P element (Figure 

1-6).  

piggyBac has been successfully used to transform in a wide range of insect species from several 

orders, including dipterans, lepidopterans, hymenopterans and coleopterans (reviewed in 
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(Handler, 2002a), see Table 1-1). Both Ae. aegypti and An. gambiae have been transformed 

with piggyBac (Grossman et al., 2001; Kokoza et al., 2001).  
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Figure 1-5. Diagram of the 2.47 kb piggyBac element (not to scale)  

ITR: inverted terminal repeats sequences; IR: sub-terminal inverted repeat sequences; ORF: open reading frame; TTAA:

duplicated TTAA insertion site. (A.M.Handler/Insect Biochemistry and Molecular Biology 32 (2002) 1211-1220). 

Figure 1-6. Binary vector-helper system based on the piggyBac transposable element.  
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Table 1-1. Species transformed with piggyBac, and the markers used for selection (Morrison et al., 2010) 

 Insect Order Host species Marker 

 Diptera Aedes aegypti Dm cinnabar (Grossman et al., 2001; Kokoza et 
al., 2001; Lobo et al., 2002) 

 Aedes fluviatilis 3xP3-EGFP (Rodrigues et al., 2006) 
 Anastrepha ludens Hr5ie1-DsRed2 (Condon et al., 2007) 
 Anastrepha suspensa PUbnlsEGFP (Handler and Harrell, 2001b) 
  PUbnls-DsRed1 (Handler & Harrel, unpub.) 
 Anopheles albimanus PUbnlsEGFP (Perera et al., 2002)  
 Anopheles gambiae hr5-ie1-EGFP (Grossman et al., 2001) 
 Anopheles stephensi actin 5C-DsRed (Nolan et al., 2002)  
  3xP3-EGFP (Ito et al., 2002) 

 Bactrocera dorsalis Cc white (Handler and McCombs, 2000) 
  PUbnlsEGFP 
 Bactrocera tryoni PUb-DsRed1, PUbnlsEGFP (Raphael et al., 2010) 
 Ceratitis capitata Cc white (Handler et al., 1998) 
  PUbnlsEGFP, PUbnls-DsRed1 (Handler et al., 

unpub.) 
 Cochliomyia hominivorax PUbnlsEGFP (Allen et al., 2004) 

 Drosophila melanogaster white;white/PUbnlsEGFP (Handler and Harrell, 
1999) 

  3xP3-EGFP (Berghammer et al., 1999; Horn et al., 
2002) 

  3xP3-ECFP, 3xP3-EYFP (Handler and Harrell, 
2001a) 

  PUb-DsRed1 (Handler and Harrell, 2001a) 
  3xP3-DsRed (Horn et al., 2002) 
 Lucilia cuprina PUbnlsEGFP (Heinrich et al., 2002) 
 Musca domestica 3xP3-EGFP (Hediger et al., 2001) 
 Lepidoptera Bicyclus anynana 3xP3-EGFP (Marcus et al., 2004) 

 Bombyx mori Bm actin A3-EGFP (Tamura et al., 2000) 
  3xP3-EGFP (Thomas et al., 2002) 
 Pectinophora gossypiella Bm actin A3-EGFP (Peloquin et al., 2000) 

 Hymenoptera Athalia rosae hsp70-GFP-S65T, Bm actin A3-EGFP (Sumitani et 
al., 2003) 

 Coleoptera Harmonia axyridis 3xP3-EGFP (Kuwayama et al., 2006) 
  Tribolium castanum 3xP3-EGFP (Berghammer et al., 1999) 
  Tc vermillon (Lorenzen et al., 2003) 
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c/ The essential role of marker systems 

The first successful germline transformations of a non-drosophilid insect utilized transgenes 

carrying the bacterial neomycin phosphotransferase gene, conferring neomycin resistance to 

transgenic insects (McGrane et al., 1988; Miller et al., 1987; Morris et al., 1989). However, such 

selection is not 100% accurate and neomycin is hazardous to researchers.  

More recently, fluorescent protein genes have been used as markers. The first fluorescent 

marker to be developed was the green fluorescent protein (GFP) gene isolated from the jellyfish 

Aequorea victoria (Prasher et al., 1992). GFP has proved functional in an almost universal range 

of tissues and species, and is easily detectable in vivo. However, two properties are not so ideal: 

the protein is relatively insoluble and its excitation wavelength might damage live organisms 

(excitation maximum is in near UV). The GFP has been engineered to solve these two problems: 

the enhanced GFP (EGFP), more soluble and red shifted, can be detected with a longer 

wavelength of blue light and less intensity, which makes it a very suitable marker for the 

screening of transgenic insects (Higgs and Lewis, 2000). The successful transformations of 

Dipterans, Lepidopterans, Hymenopterans and Coleopterans with GFP transgenes testify to the 

wide applicability of this marker system. 

To express fluorescent marker genes in insects several different promoters have been used. The 

artificial 3xP3 promoter has been designed to express in the eyes of insects: three tandem 

repeats of the P3 site have been aligned in front of a TATA-box (Berghammer et al., 1999). P3 is 

the binding site of Pax6, a transcriptional activator that controls the genetic pathway of eye 

development, and is evolutionarily conserved through all metazoan animals. The 3xP3-EGFP 

marker has been successfully used in three insect orders (Table 1-1), and the conserved 

pathway of Pax6 suggests that it should be applicable to all eyed animals. The tissue-specific 

expression helps distinguish between marker expression and background fluorescence. These 

features of 3xP3-EGFP indicate that it might be able to serve as a universal marker for insect 

transgenesis, unless particular eye pigmentation obscures the fluorescence.  
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Several useful transformation markers were derived from 3xP3-EGFP by replacing the coding 

sequence for EGFP with the coding sequence for its yellow (EYFP) and cyan (ECFP) spectral 

variants, and with the red fluorescent protein DsRed (Horn et al., 2002; Horn and Wimmer, 

2000). These different markers would allow insect transformations using multi-component 

genetic systems. 

Markers expressed in other tissues have the advantage of providing a distinguishable pattern of 

expression. Moreover, promoters that express all over the body - such as Hr5IE1 (baculovirus 

IE1 promoter and Hr5 enhancer, (Rodems and Friesen, 1993)) - are more visible and easier to 

screen, especially in insects whose eye pigments mask the expression of 3xP3-based markers. 

 

d/ Fitness and SIT 

Genetically modified insects may potentially carry a fitness cost due to several factors: i) the 

cost for cells of producing the exogenous proteins encoded by the transgene and the nature of 

those proteins; ii) the possible disruption of a gene by integration of the transgene; iii) the 

limited genetic diversity of transgenic lines: they start from a single transgenic individual and 

are maintained homozygous by inbreeding. Irradiated insects have an important fitness loss 

(Helinski et al., 2006) and have nevertheless been successfully used for SIT, but any fitness cost 

is directly translated into a financial cost, as more insects have to be released in order to reach 

the same efficiency. It is therefore important to minimise it as much as possible. With 

transgenic insects, this can be done by creating several lines of the same construct and 

selecting the fittest one, and out-breeding transgenic lines after their creation. The construct 

itself can also sometimes be optimised: expressing the marker only in certain tissues to limit the 

load on the organism; making the RIDL component more adapted to the target species to 

improve repressibility by tetracycline. 

Studies on the fitness of transgenic lines have different conclusions (Catteruccia et al., 2003; 

Irvin et al., 2004; Moreira et al., 2004) but it seems that inbreeding might be the most 

influential factor (Marrelli et al., 2006). 
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For a mosquito SIT (or RIDL) strain, the most relevant fitness parameters are male mating 

competitiveness and longevity in the wild and the mass rearing potential of the strain. 

 

6. Transgene stability 
 

With the potential release of transgenic sexing strains in the field, ensuring transgene stability is 

critical to prevent remobilisation by an unintended source of transposase. This could induce the 

loss of the transgene in mass rearing conditions or, it has been speculated, cause horizontal 

transfer of the transgene to untargeted wild species. The minimal DNA requirements for the 

mobility of the different transposable elements are unclear, but at least the terminal (and 

subterminal) inverted repeat sequences are needed (Li et al., 2005). Consequently, a 

stabilization system would consist in deletion or rearrangements of these sequences. A. 

Handler and colleagues developed a system in Drosophila melanogaster to delete one of the 

terminal sequences after germline transformation (Handler et al., 2004): the transgene was 

formed using three piggyBac terminal ends – forming one transposable pair that spanned the 

entire construct and another pair present at the periphery of the construct. The peripheral 

construct was remobilized, after insertion of the construct, by crossing this transgenic line to a 

piggyBac transposase-expressing ‘jumpstarter’ strain. The resulting construct, with excised 

peripheral pair of piggyBac ends, had only one piggyBac terminal sequence. In isolation, such a 

one-ended piggyBac insertion is stable and cannot be re-mobilised without provision of the 

missing end. An improvement to this approach, in which both ends of an integrated construct 

are rendered piggyBac-free, was developed by Dafa’alla et al. in the Mediterranean fruit fly, 

Ceratitis capitata (Dafa'alla et al., 2006); Figure 1-7).  

This design incorporated two adjacent pairs of piggyBac transposable sequence at each end of 

the construct. After integration of the entire construct into the insect genome, a transposase 

source, driven by the Drosophila hsp70 promoter, in the central domain was used to excise the 

peripheral pairs of piggyBac ends. This rendered it free of piggyBac terminal sequence and 
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therefore incapable of re-mobilisation, even in the presence of transposase. Such a transgene 

insertion is no more likely than any other part of the genome to be mobilised. 

 

 

Figure 1-7. Strategy for post-integration removal of transposon ends from transposon-mediated insertions (taken from 

Dafa’alla et al. 2006).  

The initial transformation uses a plasmid carrying a composite transposon comprising two pairs of opposed transposon ends. 

This has four potential transposons (A-D, A-B, C-D and C-B). Insertion of the desired A-D transposon is identified by selecting for 

marker M2, which marks the central region. The flanking transposons A-B and C-D can then be eliminated by re-exposure to 

transposase; in principle two rounds of post-integration exposure are required to remove both flanking transposons. The final 

insertion no longer has any transposon ends and is therefore inert to transposase and subsequent remobilisation. 
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7. Genetically induced sterility: the RIDL technology 

a/ Bisex RIDL technology 

Genetic sterility has been engineered in insects using tetracycline-dependent repression of a 

dominant lethal gene (Heinrich and Scott, 2000; Thomas et al., 2000). This involved a two-

component system: the first part contains a promoter controlling the tetracycline-repressed 

transactivator tTA (Gossen and Bujard, 1992), the second part is a lethal gene placed under the 

control of the tTA response element. In the absence of tetracycline, the tTA transactivator binds 

the tTA response element (tetO) and enhances the expression of an hsp70 minimal promoter, 

thus activating the expression of the dominant lethal gene. The presence of tetracycline 

represses the system by binding to tTA and preventing it from binding to the tetO sites. This 

allows the insects to develop normally on a diet supplemented with tetracycline. A variant of 

this system is a simplified one-component positive feedback system: tTA is placed under the 

control of a minimal promoter adjacent to the tetO element (Gong et al., 2005). In the absence 

of tetracycline, the basal amount of tTA produced by the minimal promoter is able to bind tetO, 

enhancing its own expression in a positive feedback manner (Figure 1-8). The tTA element 

consists of two parts: the tetR element that binds to tetO, and a VP16 peptide that is a 

transcription activator (Gossen and Bujard, 1992). The accumulation of large amounts of VP16 

in the cell has a toxic effect due to transcriptional squelching (Berger et al., 1990; Gill and 

Ptashne, 1988). In this system, tTA is both the transactivator and the effector (Gong et al., 

2005).  

Any insects carrying this system and reared without a tetracycline supplement should die due 

to the expression of the lethal effector gene (two-component system) or the accumulation of 

VP16 (positive-feedback system) (Heinrich and Scott, 2000; Thomas et al., 2000). In an SIT-like 

program, all the released insects would be homozygous for the construct and transmit one copy 

of the dominant lethal system to their offspring after mating with wild insects. All their 

offspring would then die in the field due to the absence of tetracycline and subsequent 

expression of the lethal gene.  
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Figure 1-8. Tetracycline-repressible systems (from Gong et al. 2005).  

The tTA element consists of the tetR element that binds to the  tetO sequence, and a VP16 peptide that is a transcription 

activator. a, b: Two-component tetracycline repressible lethal system: In the absence of tetracycline, expressed tTA binds to 

tetO, driving expression of the lethal effector molecule, leading to death. In the presence of tetracycline, tTA preferentially 

binds to tetracycline, the effector molecule is not expressed and there is no lethal effect. c, d: One-component positive 

feedback system: Low levels of basally expressed tTA bind to tetO, driving further expression of tTA. When tTA level becomes 

high, it acts as a lethal effector molecule, leading to death. In the presence of tetracycline, tTA preferentially binds to 

tetracycline and the level of tTA stays basal. A low level of tTA is not lethal.  

Transgenic insects of this kind would not require sterilization before release: the multiple 

random mutations induced by irradiation, which are the cause of sterility in traditional SIT, are 

replaced by the lethal transgene. This variant of SIT is therefore called “release of insects 

carrying a dominant lethal” (RIDL) (Thomas et al., 2000). Considering the high fitness cost 

associated with irradiation of insects in general and mosquitoes in particular (Helinski et al., 

2006), a RIDL program should be more efficient and more economic to run than a traditional SIT 

program: the RIDL insects should be fitter than irradiated insects so less would have to be 

released, thus reducing the cost. 

Another advantage of RIDL is that the lethality can be engineered to match specific species 

requirements. The amount of random mutations induced by irradiation causes the embryo to 

die very quickly, which is the ideal scenario for agricultural pests like fruit flies or screwworm in 

which maggots are the life stages doing the most damage. When it comes to mosquito control, 
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however, early elimination is not required since only adult females are transmitting diseases. 

Recent mathematical models show that late-acting lethality (i.e. pupal stage) would be more 

efficient for mosquito control than early acting lethality: The larvae of RIDL insects would 

compete for food against wild larvae, therefore having an extra impact on the wild population 

(Atkinson et al., 2007; Phuc et al., 2007). They would then die due to a late activation of the 

RIDL lethal gene, before reaching adulthood.  

A mosquito transgenic RIDL line with this property has been developed by Phuc et al (Phuc et 

al., 2007) using a positive feedback-type construct. However, the late-acting lethality in this 

case is due to regulatory effects of the genomic DNA surrounding the construct rather than an 

engineered late-acting effect. A late-acting promoter used in a two-construct RIDL system might 

provide a more reliable control over the time of expression of the lethal gene. 

 

b/ Female-specific RIDL technology: genetic sexing 

SIT relies on the release of sterile males and therefore separating males from females is a 

central issue, especially with mosquitoes since any released females would potentially be able 

to transmit pathogens among human hosts. As discussed in 4.b/ , the genetic sexing strains 

developed for SIT purposes in the 1960’s had several problems. The use of large quantities of 

insecticides, the poor rearing efficiency and the low stability of the system are issues that could 

potentially be addressed by transgenesis.  

Catteruccia et al. produced a transgenic line of Anopheles stephensi mosquitoes expressing 

EGFP under the control of a Beta2-tubulin promoter (Catteruccia et al., 2005). This line 

produces males with green fluorescent testes, a feature that allows sexing by using an 

automated device that detects fluorescence. This is an efficient way of sexing insects although 

it requires extra handling. Ideally, a sexing strain would impair the females automatically in the 

last rearing cycle before release, while leaving the males healthy and fit to compete in the field.  
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The two-part tetracycline-dependent RIDL system described earlier has been used in D. 

melanogaster to direct lethality against females: The female specificity was provided by using a 

female-specific promoter (yolk protein 1 (Yp1) or yolk polypeptide 3 (Yp3)) to drive the lethal 

genes hid or RasV12A, or a female-specific lethal gene (msl-2NOPU, a mutant allele of the msl-2 

dosage compensation gene) under the control of tetO (Heinrich and Scott, 2000; Thomas et al., 

2000). More recently, in the Mediterranean fruit fly C. capitata, the sex-specific splicing 

properties of the sex-determination gene transformer have been exploited to disrupt the 

expression of tTA in males but not in females, inducing the same female-specific lethal 

phenotype (Fu et al., 2007).  

Recently, a genetic sexing strain of Ae. aegypti has been produced, based on the RIDL 

technology (Fu et al., 2010). The female specificity in this case is provided by the female-specific 

properties of the Ae. aegypti Actin-4 gene (Muñoz et al., 2004). This system is described further 

in the 3rd chapter of this thesis.  

 

8. Other innovative vector control strategies 

a/ Wolbachia-mediated population suppression 

Wolbachia is a genus of maternally inherited endosymbiotic bacteria found in arthropods and 

nematodes. It was first discovered in the mosquito species Culex pipiens in 1924 by Hertig and 

Wolbach (Hertig and Wolbach, 1924) but has recently been estimated to be infecting 66% of all 

insect species (Hilgenboecker et al., 2008). This high range of hosts is partly explained by an 

aptitude to interspecific horizontal transfer (Vavre et al., 1999). Wolbachia bacteria have the 

property to manipulate the host reproduction machinery by inducing feminization (Bandi et al., 

2001; Fujii et al., 2001), parthenogenesis (Huigens et al., 2000), male killing (Fialho and Stevens, 

2000; Hurst and Jiggins, 2000) or cytoplasmic incompatibility (Laven, 1967b; Yen and Barr, 

1971, 1973). All of these mechanisms lead to an increased proportion of infected female 

progeny, which may be viewed as an opportunistic way of multiplying and dispersing. 
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Cytoplasmic incompatibility (CI) occurs when a male carrying Wolbachia inseminates an 

uninfected female (unidirectional CI) or a female infected with a different Wolbachia strain (bi-

directional CI). Such crosses are sterile, whereas uninfected males crossed with Wolbachia-

carrying females result in a fully fertile cross (“rescue” cross) and infected progeny. The 

molecular mechanisms of CI are not fully understood but many laboratories are focusing on this 

complex phenomenon.  

The CI property of Wolbachia was used to develop the Incompatible Insect Technique, which 

relies on releasing males bidirectionally incompatible with the target population to induce 

female sterility. A successful trial was performed in Burma in the 1960s against the filarial 

vector Culex quinquefasciatus (Laven, 1967a). The method was deemed unsustainable due to 

the lack of efficient sexing methods, as for the Sterile Insect Technique previously described. 

Ae. albopictus is naturally super-infected with two strains of Wolbachia, wAlbA and wAlbB 

(Werren et al., 1995; Zhou et al., 1998).  

 

b/ Homing endonuclease-mediated population suppression 

Homing endonuclease genes (HEGs) encode an enzyme which recognizes a specific 20-30 bp 

sequence and creates a double-stranded break. The cell’s repair machinery then uses the HEG-

bearing chromosome as a template, creating a second copy of the HEG inside of its own 

recognition site. Chromosomes carrying a copy of the HEG are therefore protected from further 

cuts. HEGs are active during meiosis, thereby being inherited by more than half of the gametes 

(Chevalier and Stoddard, 2001; Goddard et al., 2001).  

Austin Burt has proposed to use the super-Mendelian inheritance properties of the HEGs to 

drive pest populations to extinction. The idea is to engineer HEGs to recognize and cleave 

sequences from essential genes, which would create recessive lethal mutations rapidly 

inherited by a pest population. The population would eventually crash as crosses between 
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heterozygous individuals will induce a large proportion of offspring homozygous for the 

recessive lethal mutation (Burt, 2003). 

 

c/ Population replacement 

Other vector control strategies aim at replacing a disease susceptible mosquito population with 

a refractory one, unable to transmit diseases. Several approaches are being investigated, which 

would ideally be used synergistically in order to prevent any resistance build-up against one of 

the strategies. 

Reduction of the vector’s lifetime: 

Most pathogens require a period of development in the mosquito host for it to become 

infectious. Age is therefore a critical factor in the ability of a mosquito to transmit human 

pathogens, and only the insects of sufficient age take part in disease transmission. A significant 

reduction of the mosquitoes’ lifetime should therefore prevent some important mosquito-

borne diseases (Cook et al., 2008). The life-shortening Wolbachia strain wMelPop from 

Drosophila was recently introduced into Ae. aegypti with the result of halving the host’s lifetime 

(McMeniman et al., 2009) and reducing dengue, chikungunya and Plasmodium infection 

(Moreira et al., 2009) as well as filarial competence (Kambris et al., 2009).  

Resistance to parasites: 

Olson et al. proposed to develop “transgenic Ae. aegypti containing heritable, virus-derived, 

anti-DEN genes or sequences that profoundly alter the  mosquitoes’ vector competence and 

prevent virus transmission to new human hosts” (Olson et al., 2002). In this case, transgenic 

mosquitoes express double-stranded RNAs specific to the dengue virus, which disrupt its 

replication by RNA interference (Franz et al., 2006). 

Several approaches are also investigated in order to engineer Plasmodium-resistant mosquitoes 

for malaria control (reviewed in Nirmala and James, 2003). Those include single-chain antibody 

fragments directed against parasite ligands (de Lara Capurro et al., 2000); the blocking of 
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parasite’s receptors on the surface of mosquito tissues (Ito et al., 2002); the expression of 

specific immune response effectors inhibiting the parasite’s development in the mosquito 

(Moreira et al., 2007); and the expression of parasite-killing toxins in the mosquito (Maciel et 

al., 2008; Moreira et al., 2002). The use of transgenic symbionts of mosquitos to express 

molecules to reduce vector competence is also investigated (Ren et al., 2008; Riehle et al., 

2007), a method known as paratransgenesis (reviewed in Coutinho-Abreu et al., 2010). 

As it is unlikely that the engineered population will have a significant fitness advantage, it will 

not be able to take over the wild population unless the desirable trait follows a “super-

Mendelian” rate of inheritance. This problem may be tackled by tightly linking the anti-

pathogen gene to a “gene drive” mechanism strong enough to spread it to fixation. Proposed 

gene drive mechanisms include Wolbachia and homing endonuclease genes mentioned earlier 

(Deredec et al., 2008; Sinkins and Gould, 2006), as well as engineered killer/rescue systems 

such as under-dominance or Medea elements whereby only the offspring carrying the suitable 

antidotes – linked to the refractory gene - will be able to survive (Davis et al., 2001; Hay et al., 

2010; Magori and Gould, 2006).  

 

 

9. Conclusion 

This thesis presents the development of the gene-transfer technology for Ae. albopictus 

(Chapter 2). Transgenic strains were then generated with a view to exploiting sex-alternate 

splicing to provide female-specific repressible flightless phenotypes (Chapter 3). A particular 

candidate strain was further evaluated for its suitability in a RIDL control programme (Chapter 

4). Alternative molecular approaches were also developed to produce bi-sex lethal phenotypes, 

and to widen the possible applications of the on-off tetracycline system (Chapter 5). 
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Chapter 2  

piggybac- and ФC31-mediated genetic 

transformation of Aedes albopictus 

  



50 
 

1. Introduction 

Aedes mosquitoes are responsible for an estimated 50 to 100 million dengue cases worldwide 

every year, with nearly half the world’s population at risk of being infected (ECDC, 2007; 

WHO/TDR, 2006). The two main vector species, Aedes aegypti (L.) and Aedes albopictus (Skuse) 

are also the main vectors of the chikungunya virus, which can cause severely debilitating 

syndromes lasting up to several months.  

In the absence of vaccine or antiviral drugs for either chikungunya or dengue, efficient 

mosquito control strategies are crucial. Conventional control methods (insecticide spraying and 

management of breeding sites) have so far failed adequately to control Ae. albopictus.  

Transgenesis is an essential tool required to develop novel genetics-based control methods. It is 

therefore highly desirable to establish germline transformation of Ae. albopictus. Germline 

transformation of a number of insect species, including Ae. aegypti mosquitoes, is now routine 

through the use of transposable elements. The most commonly used is piggyBac, a class II 

transposable element that inserts into TTAA sequences (Fraser et al., 1983). piggyBac has been 

used successfully to transform a wide range of insect species from several orders, including 

Diptera, Lepidoptera, Hymenoptera and Coleoptera (reviewed in (Handler, 2002b)). Among 

insects, transformation efficiency using piggyBac is typically 3-13%, and 4-11% in Ae. aegypti in 

particular (Handler, 2002a; Kokoza et al., 2001; Lobo et al., 2006; Lobo et al., 2002; Nimmo et 

al., 2006). The short recognition sequence of transposable elements leads to effectively random 

integrations into the host genome (Thibault et al., 1999).  

Positional effects and possible gene disruptions affect both transgene expression and fitness of 

the transgenic lines, so that a single transgene may lead to a range of phenotypes depending on 

its insertion site. In some cases it may be useful to have several lines with slightly different 

phenotypes to choose from; however this random integration pattern makes it difficult to 

compare two different transgenes as their different phenotypes are an unknown combination 

of the inherent properties of the transgene and the effects of the insertion sites.  
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Site-specific transgene integration systems have been developed using recombination systems 

which target a specific nucleotide sequence that is long enough that it is unlikely to occur 

naturally in an insect genome. Examples include Cre-loxP from bacteriophage P1 (Sauer and 

Henderson, 1988), Flp-FRT from the 2 micron plasmid of Saccharomyces cerevisiae (O'Gorman 

et al., 1991) and phiC31-att from a Streptomyces bacteriophage (Thorpe and Smith, 1998). In 

each case one of the target sequences for the recombinase is introduced as a “docking site” 

into the genome of interest using a transposable element-based “first phase” transgene. 

Second-phase transgenes can then be inserted repeatedly into the preferred docking site using 

the appropriate recombination enzyme (Nimmo et al., 2006). Although those integration 

systems have all been demonstrated in Drosophila (Gong and Golic, 2003; Groth et al., 2004), 

only the ФC31-att system is unidirectional and has been used successfully to integrate a 

transgene in Ae. aegypti (Nimmo et al., 2006). The ФC31 integrase catalyses a unidirectional 

recombination between so-called attB and attP sites, creating attL and attR junctions (Belteki et 

al., 2003). Typically, attP is used as the docking site for attB-carrying transgenes. In Ae. aegypti, 

the transformation efficiency using the ФC31-att system was reported to be 17-32% (Nimmo et 

al., 2006).  

This chapter reports the use of a piggyBac-based system to achieve the first successful germline 

transformation of Ae. albopictus. Further, successful site-specific integration into the Ae. 

albopictus genome is described, using the ФC31-att system. 

 

2. Materials and Methods 

a/ Plasmid constructs 

The OX3860 construct is the pBac[3xP3-ECFPaf]-attP plasmid described by Nimmo et al. 

(Nimmo et al., 2006). The construct OX4105 carries an attB site and a 3xP3-DsRed2 marker, and 

was designed to integrate into the OX3860 construct such that, after integration, the two 

markers would be in the same orientation (Figure 2-1). This allows the comparison of the 

expression of the two markers in an equivalent genomic context. 
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The OX4105 construct was made by modifying pBattB[3xP3-DsRed2nls-SV40]lox66 (Nimmo et 

al., 2006) to remove the nuclear localisation signal of the DsRed2 protein and change the 

orientation of the attB sequence. The DsRed2-nls-SV40-lox66 cassette was removed using 

AgeI/NotI and replaced with an AgeI-EagI DsRed2-SV40 cassette to create pBattB[3xP3-DsRed2-

SV40]. The original attB cassette was removed from pBattB[3xP3-DsRed2-SV40] using XhoI, 

creating pB[3xP3-DsRed2-SV40]. The KpnI/SacII attB fragment from pBattB[3xP3-DsRed2-SV40] 

was subcloned from pBattB[3xP3-DsRed2-SV40] into pSLfa1180fa and the SacII/EcoRV fragment 

from this plasmid was then cloned into the SacII/SwaI sites of pB[3xP3-DsRed2-SV40] creating 

OX4105. 

 

b/ Insect strains and rearing 

The Ae. albopictus wild-type strain was colonised in 2006 from Malaysia (Institute of Medical 

Research, Kuala Lumpur). The strain was reared at 27°C (± 1°C) and 80% (± 10%) relative 

humidity. Larvae were fed on crushed dry fish food (TetraMin® flake food from Tetra GmbH, 

Germany) and adults on 10% glucose with 14U / ml penicillin and 14 µg / ml streptomycin. 

Females were fed on horse blood using a Hemotek Insect Feeding System (Discovery 

Workshops, Accrington, UK) set at 37°C.  

 

c/ Microinjection of Ae. albopictus 

Pre-blastoderm embryos were injected as described by Morris et al. (Morris et al., 1989) except 

that cover slips of injected embryos were placed vertically into water in order to drain the oil 

for at least an hour, and then immediately placed vertically in a sealed humid box for 4 days. To 

produce docking attP strains, wild-type embryos were injected with a mixture of the OX3860 

construct (300 ng/µl), phsp-Bac plasmid helper (200 ng/µl) (Handler and Harrell, 1999) and 

piggyBac mRNA (300 ng/µl) in injection buffer (5mM KCl and 0.1 mM NaH2PO4, pH 6.8). 

Though, in principle, either mRNA helper or helper plasmid should be capable of mediating 
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transformation, both were co-injected together to provide a degree of redundancy and in order 

to increase chances of successful transformation. The piggyBac mRNA was transcribed from 

OX3081 construct (piggyBac transposase coding sequence under the control of the T7 

promoter (Chamberlin et al., 1970) and the 3’UTR from the DmVasa gene (Hay et al., 1988)) 

using the mMESSAGE mMACHINE® T7 kit (Ambion, Austin, TX). The mRNA was purified using 

the MEGAclearTM kit (Ambion), precipitated with ammonium acetate and resuspended in 10 µl 

nuclease-free water. For site-specific integration, embryos from the docking strains were 

injected with OX4105 (350 ng/µl) and ФC31 mRNA (600 ng/µl) (Nimmo et al., 2006) in injection 

buffer. The ФC31 mRNA was transcribed and purified using the mMESSAGE mMACHINE® T7 

and MEGAclearTM kit (Ambion). Construct and helper plasmids were purified using the 

EndoFree Plasmid Maxi kit (Qiagen, Hilden, Germany). Larvae were screened for fluorescence 

using a Leica MZ95 microscope with the appropriate filter sets from Chroma Technology 

(Rockingham, VT) (filters: ECFP: exciter D436/20x; emitter D480/40m; DsRed2: exciter 

HQ545/30x; emitter HQ620/60m). Pictures of fluorescent larvae were taken with Canon 

PowerShot S5IS with an MM99 adaptor (Martin microscopes) to fit into the eyepiece. 

 

d/ Inverse PCR 

Inverse PCR was performed essentially as described by Handler et al. (Handler et al., 1998). 

Genomic DNA from each line was extracted using the NucleoSpin Tissue kit (Macherey-Nagel). 

2.5 µg of gDNA was cut with the restriction enzymes HaeIII, MspI, TaqI and DpnII. PCR was 

performed using 2 µl of digested genomic DNA, Taq DNA polymerase with Thermopol buffer 

(New England BioLabs, Ipswich, MA) and either the piggyBac 5´ or 3´ primer pair (5´ forward: 

tcttgaccttgccacagagg; 5´ reverse: tgacacttaccgcattgaca; 3´ forward: gtcagtccagaaacaactttggc; 3´ 

reverse: cctcgatatacagaccgataaaaacacatg). The thermal cycling parameters were 95°C for 5min, 

followed by 35 cycles of (95°C for 30sec, 55˚C for 1min, and 68°C for 2 min), and a final 

extension step of 72°C for 10 min. 
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PCR fragments were extracted using the Minelute Gel Extraction kit (Qiagen), cloned into pJet 

vectors (GeneJET PCR cloning kit from Fermentas, Vilnius, Lithuania) and transformed into XL-

10 cells (Stratagene, La Jolla, CA). Positive clones were purified (GeneJET Plasmid Miniprep Kit, 

Fermentas) and sent for sequencing (GATC Biotech, Germany). 

 

e/ PCR analysis of site-specific integration 

Integration of OX4105 into docking strains was investigated using primers in the 5’ flanking 

genomic sequence (3860C-5’flank1: cacaatggaaccatgaaaacttaaaccag; 3860B-5’flank1: 

tgagaacaagatggcgattctaggagt) with a primer in the attR sequence (Diag-

attBD: tgatggaccagatgggtgagg) or in the 5’ piggyBac end (PB2: cagtgacacttaccgcattgacaag). 

The attR junctions were amplified and sequenced using primers in DsRed2 (Diag-DsRed2: 

ctgggaggcctccaccgagc or Diag3-Dsred: cacctcccacaacgaggactac) and ECFP (Diag2-ECFP: 

acagctcctcgcccttgctca). The attL junctions were amplified and sequenced using primers in the 3’ 

piggyBac fragment (pBac3’R: tggaccttttctcccttgctactgac; Diag-pb3: ttccgtacaataatgccataggccac) 

and in the OX4105 backbone (M13-28-R: tgtgagcggataacaatttcacacagga; M13-RP (GATC 

Biotech): caggaaacagctatgacc). PCR fragments were purified using the Minelute Gel Extraction 

kit (Qiagen) and sent for sequencing to GATC Biotech. 

 

3. Results 

a/ Germline transformation of Ae. albopictus with the piggyBac transposable 
element 

Five independent transgenic lines were established using the attP-containing piggyBac 

construct OX3860 (transgenic lines OX3860A, B, C, D and F). Approximately 6000 eggs were 

injected and approximately 1500 larvae hatched. This corresponds to 25% survival post-

injection, which is comparable to the 20.5% and 23.3% survival obtained in Ae. aegypti by 
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Kokoza et al. (Kokoza et al., 2001) and Nimmo et al. (Nimmo et al., 2006), respectively. In total, 

approximately 250 males survived to be crossed with wild-type females in pools of four males 

for 24 hours before being merged into seven pools, and 300 females were crossed with wild-

type males in three pools. In preliminary experiments this seemed to give more reliable 

production of G1, though there was also a risk that the G1 embryos from such pools may not 

represent all fertile G0 parents. The five transgenic lines originated from two G0 male pools and 

two G0 female pools. The B and C lines originated from the same male G0 pool but were easily 

distinguished by fluorescence phenotype. Mendelian inheritance data are provided in Table 

2-1.  

Inverse PCR analysis based on their different fluorescent phenotypes of insertions showed that 

all the lines were independent insertions and showed the typical targeting and duplication of a 

TTAA sequence by the piggyBac element (Table 2-2). These sequences could not be used to 

directly locate the insertions, as the genome of Ae. albopictus has not been sequenced. Inverse 

PCR results failed to identify a second insertion in the OX3860C line, which was discovered after 

second-phase insertion (see ФC31 intergration results below).  

 

Line OX3860A OX3860B OX3860C OX3860D OX3860F 

WT 264 664 976 7 297 

Transgenic 288 583 943 10 327 

P value (Χ2) 0.307 0.0218 0.4513 0.4669 0.2298 

Table 2-1. Mendelian inheritance of the transgene in OX3860 lines. 

For each insertion line except OX36860B, the progeny of hemizygotes crossed to wild-type showed Mendelian inheritance of 

the transgene (not significantly different from 50:50 transgenic versus wild-type ratio). This is consistent with each line carrying 

a single insertion. For line B, the lower proportion of transgenic progeny may indicate a fitness cost associated with the 

transgene. Those observations were made on G2 (line D, hence the small numbers), G3 (lines A, B, C) or G6 (line F) generations.  

Note that other data subsequently showed that OX3860C in fact carries two closely linked transgene insertions. 
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Strain 5´ Flanking sequence  3´ Flanking sequence 

OX3860A n.d. TTAA TCAACTCAACGTACATATGTA 

OX3860B GCGCACAAGCTTAGAGGTACT TTAA TCCAAGCAGACAACCGAAATG 

OX3860C CCTGACGTGACTAGATAACCC TTAA GGAATGAGTAACTCTTGGTAG 

OX3860D TTTACTAACACAAAATTAGTA TTAA CGTCATTCGTTTTGCAGAAGA 

OX3860F CTTCCATGTAGATTGTTTCGT TTAA ACGTCCGTGAAATAGTATCGC 

Table 2-2. Flanking sequences of integration sites of OX3860 into Ae. albopictus.  

Genomic sequences immediately flanking the piggyBac insertions of OX3860 lines were obtained by inverse PCR. All the 

insertion sites were unique and occurred at a TTAA site, the canonical recognition sequence for the piggyBac transposable 

element. n.d.: not determined. The 5’ inverse PCR for the OX3860A line was not successful but the 3’ flanking sequence is 

sufficient to prove the independence of the A insertion. Full flanking sequences are provided in Appendix 1. 

 

The 3xP3-ECFP marker (Horn and Wimmer, 2000) showed the expected fluorescence in the 

larval eyes in lines OX3860B, C, D and F. Line OX3860B also showed strong expression in the 

anal papillae of larvae, which has been previously observed in Ae. aegypti (Nimmo et al., 2006). 

Line OX3860A exhibited an unusual expression pattern, with variable fluorescence intensity 

between individuals, and between the two eyes of an individual, but PCR analysis confirmed 

that they all carried the same integration event (data not shown). In addition, progeny from 

larvae showing weak fluorescence in one eye included individuals with intense fluorescence in 

both eyes. The variation in fluorescence observed in individuals from the OX3860A line is likely 

due to unusually strong position effects of adjacent genomic elements, or position effect 

variegation (Wilson et al., 1990).  

 

The OX3860F insertion was linked to the male-determining locus, the two loci being 

approximately 8.5 centiMorgans (cM) apart (Table 2-3).  
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Males 322 (52%) 
Fluorescent 298 (93%) 

Wild Type 24 (7%) 

Females 302 (48%) 
Fluorescent 29 (10%) 

Wild Type 273 (90%) 

Table 2-3. The OX3860F insertion is linked to the male-determining locus.  

The progeny from a cross between hemizygous OX3860F males (G6) and wild-type females shows that transgene transmission is 

highly skewed towards male progeny (93% of male progeny expressed the marker, versus only 10% of the female progeny, 

n=624). The sex-ratio, however, is normal, indicating a male-linked insertion rather than female lethality. Non-parental 

phenotype was observed in 8.5% of the progeny, indicating a distance of 8.5 centiMorgans (cM) between the insertion and the 

male-determining locus. 

 

 

Transformation efficiency is usually defined as the proportion of fertile (G0) injection survivors 

giving at least one transformed (G1) progeny. In preliminary studies, difficulties had been 

encountered in getting females to feed and lay when kept individually, so G0 females were 

pooled; it is therefore not possible to determine the fertility rate post-injection or to calculate 

precisely the transformation efficiency. The transformation efficiency was at least 1% in these 

experiments (six independent insertions from 550 G0 adults). If we assume that the fertility rate 

of G0 adults is similar to Ae. aegypti then we can estimate that the transformation efficiency 

was 2-3%. For comparison, the range of efficiency of Ae. aegypti transformation is between 4-

11% (Kokoza et al., 2001; Lobo et al., 2002; Nimmo et al., 2006). 

 

b/ ФC31-mediated site-specific integration 

The OX3860 lines carry a ФC31 attP site and therefore allowed us to test the ФC31 integration 

system. The OX4105 construct carries a 3xP3-DsRed2 marker and an attB site to integrate into 

attP (Figure 2-1). Embryos from the OX3860A, B and C lines were injected with OX4105 and 

ФC31 integrase mRNA. Survivors were mated to wild-type and their progeny was screened for 

fluorescence. Successful integration was identified as insects expressing DsRed2 in the eyes in 

addition to the ECFP (cyan) fluorescence. For lines OX3860B and OX3860C, the injected eggs 
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were derived from a backcross of OX3860[B or C] with wild type and therefore comprised a 

mixture of hemizygotes (with one copy of the transgene and therefore one attP site) and wild-

type. For line OX3860A, the injected eggs were derived from a more inbred line and therefore 

also contained homozygotes. Wild type injection survivors (G0) – lacking the 3xP3-ECFP marker 

from the OX3860 construct - were discarded as they lacked an attP docking site. 

 

Figure 2-1. ФC31-mediated site-specific integration of the OX4105 into OX3860 lines of Ae. albopictus. 

A: The attP docking site was inserted into the Ae. albopictus genome using the piggyBac-based vector OX3860. The OX4105 

construct containing an attB site was then injected together with mRNA encoding ФC31 integrase. The expected structure 

following site-specific integration is represented. The structure of actual insertions was analysed by PCR amplification using 

primer pairs ‘a’ (3860B-5’flank1 or 3860C-5’flank1 with PB2; 426bp or 363bp, respectively), ‘b’ (3860B-5’flank1 or 3860C-

5’flank1 with Diag-attBD, approx. 3kb), ‘c’ (Diag2-ECFP with Diag-DsRed2, 1208bp) and ‘d’ (pBac-3’R with M13-28-R, 372bp).  

B, C: PCR amplifications using primer pairs ‘a’, ‘b’, ‘c’ and ‘d’ on gDNA from lines OX3860B and OX3860C, respectively. For each 

primer pair, the left and right lanes correspond, respectively, to gDNA before and after the insertion of the OX4105 construct. 

In each case the band sizes after insertion correspond to those expected from canonical insertion events as illustrated in panel 

A. Representative bands were sequenced; these data confirmed that the insertions had the expected structure (data not 

shown). Equivalent results were obtained for insertion of the OX4105 construct into line OX3860A. The size marker is 

Smartladder (Eurogentech, Southampton, UK). 
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For the OX3860A line, 604 eggs were injected, out of which 36 survived to pupae (6%), all of 

which expressed the cyan fluorescence in the eyes and therefore carried at least one copy of 

OX3860A. Twelve G0 males were crossed in one cage with wild-type females and 20 G0 females 

in a cage with wild-type males. The male cage produced 72 transgenic larvae out of 

approximately 1100 larvae screened. The G0 females gave no transgenic progeny. This 

corresponds to a minimum transformation efficiency of 3.125% if all of the G0 were fertile, 

6.25% if half were sterile. This assumes that the 72 transgenic larvae are all derived from a 

single transformation event and G0
 parent. This may well be an underestimate, however, since 

all the integration events occur into the same docking site, independent events within one pool 

cannot be distinguished. 

For the OX3860B line, 2052 eggs were injected, of which 303 survived to pupa (15%). Of these, 

154 were wild-type and discarded, since they did not carry an attP site. Thirty-six G0 males were 

allowed to mate with wild-type females in three pools of 12 males each, and 50 G0 females 

were crossed together with wild-type males in a single pool. One male cross produced one male 

and three female transgenic offspring which were reared separately. Only one of the transgenic 

females gave progeny, starting the line OX4105[3860B]. The minimum calculated integration 

efficiency is 1.16%, although assuming 50% sterility the estimated efficiency is 2.32%. 

For OX3860C, 2165 eggs were injected, out of which 477 survived to pupa (22.0%). Of these, 

244 were wild-type and discarded. G0 adults were crossed in pools: 71 G0 males were crossed in 

cages of 23, 36 and 12 males with wild-type females, and 90 G0 females were crossed in cages 

of 50 and 40 females with wild-type males. High numbers (>20) of second-phase transgenic G1 

individuals were found from the first two male G0 cages. Within the fluorescent G1 individuals, 

two second-phase fluorescence patterns were observed: individuals with bright red eyes and 

bright blue eyes (found in the progeny of one G0 pool only, named line 1), and individuals with 

bright red eyes and weakly fluorescent blue eyes (found in the progeny from both positive male 

G0 cages, named lines 2 and 3). Analysis of line 1’s progeny (G2) showed 198 larvae with bright 

blue and bright red eyes, 220 wild-type larvae, eight with blue eyes only (named line 

OX3860C1) and 11 with bright red and weakly blue eyes (named line 4). PCR analysis of 
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genomic DNA from line 1 showed positive amplification of both an empty attP site from the 

OX3860 construct and the attL and attR junctions characteristic of a site-specific integration 

into attP. Those results led to the conclusion that the OX3860C parent from line 1 had two 

linked attP sites: one that integrated the OX4105 construct and one that stayed free. The linked 

sites separated in some of the G2 individuals, giving OX3860C1 (with blue eyes only, attP site 

without integration) and line 4 (red eyes due to the insertion of the OX4105 construct, and 

weaker blue eyes due to the loss of the C1 insertion). Nineteen progeny with a non-parental 

phenotype out of 437 indicates a distance of 4.35cM between the two attP sites. Further PCR 

analysis showed that lines 1, 2, and 3 inserted the OX4105 construct into the same one attP site 

for which the flanking sequence was originally found, and are therefore equivalent insertions 

(data not shown). Lines 1 and 3 come from the same G0 pool and have the same site-specific 

integration event: they may come from the same parent. We therefore have evidence of only 

two independent events, giving a minimum estimated transformation efficiency of 1.24% if all 

the G0 were fertile. 

In all OX3860 lines, the site-specific integration of 3xP3-DsRed2 showed the same expression 

pattern as the 3xP3-ECFP of the parental line: variable intensities in OX4105[3860A] individuals, 

strong anal papillae expression in OX4105[3860B] larvae, eye-only expression in 

OX4105[3860C] individuals. This is consistent with the two markers being exposed to the same 

positional effects and was also observed in site-specific integration in Ae. aegypti (Nimmo et al., 

2006). However the integration of the OX4105 construct appears to have weakened the 

expression of the 3xP3-ECFP marker in all the lines (Figure 2-2). This may perhaps be due to a 

titration of the transcription factors by the addition of a second 3xP3 promoter nearby, or to 

mechanical interference such as promoter occlusion (Adhya and Gottesman, 1982) or 

dislodgement of a translation-initiation complex by a RNA polymerase transcribing from an 

upstream promoter (Callen et al., 2004). Mechanical interference would imply imperfect 

function of the SV40 terminator, which has previously been observed in insect cells (Van Oers 

et al., 1999). 
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Figure 2-2. Phenotype of transgenic Ae. albopictus OX3860B larvae, with and without ФC31-mediated site-specific 

integration of the OX4105 construct. 

Fluorescence micrographs of two transgenic larvae are shown illustrating the cyan (A) and red (B) fluorescence profiles of each 

genotype. Larva 1 is OX4105[3860B]; larva 2 is OX3860B. OX3860B larvae carry only the 3xP3-ECFP marker. OX4105[3860B] 

individuals have both 3xP3-ECFP and 3xP3-DsRed2, giving cyan and red fluorescent eyes. The integration of the OX4105 

construct into OX3860 lines appears to reduce the expression of the OX3860 marker (panel A, compare cyan expression of 

these larvae, each carrying the same 3xP3-ECFP marker). This effect was seen with OX4105 integrations into each of the 

OX3680 docking sites (data not shown).  

 

PCR characterisation of all three OX4105[3860] lines (Figure 2-1) confirmed the insertion of the 

OX4105 construct into the attP sites from the OX3860 construct, with a canonical attP-attB 

recombination verified by sequencing of the attR and attL PCR fragments. 

 

4. Discussion 

This chapter presents the first germline transformation of Ae. albopictus. This used a piggyBac 

transposable element, with an estimated transformation efficiency of 2-3%, assuming a post-

injection fertility rate similar to Ae. aegypti (Nimmo et al., 2006).  

Ae. albopictus has proved particularly difficult to suppress using conventional control methods 

and hopes reside in new technologies. The development of genetically modified strains has the 

potential to improve the efficiency of the Sterile Insect Technique (Chapter 1/ 4.) by the 

engineering of transgenic strains carrying a genetic marker that would help monitoring the 
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program in the field (Chapter 1/ 5.c.), a genetic-sexing system to allow automatic elimination of 

females before releasing the males (Papathanos et al., 2009), or a RIDL construct inducing 

conditional lethality without the need for irradiation (Chapter 1/ 7.). Population replacement is 

another proposed control strategy that could be envisaged (Chapter 1/ 8.c.); population 

suppression would however have the advantage of controlling both dengue and chikungunya, 

while reducing the biting nuisance at the same time. 

Site-specific integration is an interesting tool allowing direct comparison of two or more 

transgenes in a particular genomic environment. Out of the five lines produced using the 

OX3860 construct, three different fluorescence patterns were observed, highlighting the 

importance of position effects in transgene regulation. Three different lines were successfully 

transformed by site-specific integration using the ФC31 integrase and a donor plasmid carrying 

an attB site. The expression profile of the “phase 2” (site-specifically inserted) marker is similar 

to that of the corresponding “phase 1” marker, indicating that those two elements, separated 

by 1922 bp, are subjected to similar influence from the surrounding genomic elements. Site-

specific integration occurred successfully in only one of the two available attP sites from the 

OX3860C line, albeit with only a small number of independent events detected. This may 

indicate that the genomic position of the docking site affects the efficiency of ФC31-mediated 

integration, as previously observed in Drosophila (Bischof et al., 2007). The estimated 

transformation efficiency with ФC31 was between 2.3 and 6.3%, depending on the lines. The 

higher transformation efficiency observed in the OX3860A background is possibly due to the 

presence of homozygous OX3860A individuals among the population of injected eggs; these 

have two copies of the attP site which may lead to a higher integration frequency for the 

OX4105 transgene. 

Ae. albopictus is quickly growing into a major public health threat throughout the world and 

consequently the subject of numerous research programs. Genetic transformation and 

engineering is a key step towards studying and controlling this species using novel molecular 

techniques and genetic control strategies. The next chapter of this thesis presents the 

application of the RIDL technology to Ae. albopictus.  



63 
 

 

 

 

 

Chapter 3  

Engineering female-specific RIDL strains 

of Aedes albopictus 
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1. Introduction 

After proving that germline transformation could be achieved in Aedes albopictus (Chapter 2), 

the next step was to use this tool towards developing a RIDL strain for genetic control of the 

species.  

Recently, a genetic sexing strain of Ae. aegypti has been produced, based on the RIDL 

technology (Fu et al., 2010). The sex specificity was provided by the female-specific properties 

of the Ae. aegypti Actin-4 (AeAct-4) gene (Muñoz et al., 2004). AeAct-4 is expressed in the 

indirect flight muscles of females, which start developing in late L4 larval stage. The promoter 

and sex-specific alternative splicing of this gene have been exploited to drive the expression of 

the tetracycline-repressible transactivator tTA protein, which comprises the tetO-binding 

tetracycline repressor (tetR) fused to the VP16 transcription activator. The construct also 

carried a separate VP16 peptide under the control of tetO and the hsp70 minimal promoter. In 

order to ensure female-specific expression of the tTA, extra stop codons and a frame-shift have 

been engineered in the male transcripts. In the females’ indirect flight muscles, the AeAct-4 

promoter was expected to induce the expression of tTA, which would bind the tetO sequence 

and enhance the expression of the VP16 peptide. Excessive levels of transcription activator 

accumulating in cells have a toxic effect, possibly due to transcriptional squelching (Berger et 

al., 1990; Gill and Ptashne, 1988). In Ae. aegypti, this construct was not lethal but rather 

induced a female flightless phenotype, indicating that the indirect flight muscles are a non-

essential and isolated tissue, as previously observed in Drosophila (Fernandes et al., 1991; 

Raghavan et al., 2000). Tetracycline, by preventing tTA from binding the tetO sequence, 

prevents further production of VP16 and is therefore an antidote to the system: transgenic 

females reared in tetracycline-supplemented water as larvae were able to fly as adults, allowing 

the maintenance of the RIDL strain. Males carrying this construct were able to fly as adults even 

in the absence of tetracycline, confirming that the AeAct-4 minigene is indeed female-specific 

(Fu et al., 2010).  

This phenotype allows separation of males from females and could be useful in a mass-rearing 

situation aimed at releasing males only; as mentioned in Chapter 1-4a for the Sterile Insect 
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Technique, releasing males alone has proven more efficient than both sex releases, and manual 

sex separation is both time-consuming and damaging. After mating with wild females, all the 

progeny of the RIDL males released in a control program would carry the RIDL construct and 

therefore all their female progeny would be flightless. However, both the male and female 

progeny of transgenic-to-wild matings would survive to adulthood and would therefore provide 

the extra benefit of larval competition discussed in Chapter 1-7a. Moreover, hemizygous RIDL 

males would be able to inseminate wild-type females and transmit the RIDL construct to half of 

their progeny, making half of their female progeny flightless. In the field, flightless females 

would find great difficulty finding a feeding source or a host, and would be easily predated 

upon. Considering these factors, the possibility of flightless females transmitting diseases from 

one human host to another can be considered highly unlikely.  

In fact, the properties of such a strain would allow the release of pupae or adults without the 

need for prior sex-separation, as long as the released generation was reared without 

tetracycline. One could even envisage the release of eggs, although laboratory rearing offers 

better control upon the larval density and food regime, both critical factors in the production of 

large competitive males.  

This chapter presents the creation of female-specific RIDL strains of Ae. albopictus based on the 

construct used in Ae. aegypti (Fu et al., 2010). The Ae. albopictus Actin-4 gene was also 

characterised and used in place of the Ae. aegypti Actin-4 in a new construct, for which 

transgenic lines were obtained in both Ae. aegypti and Ae. albopictus embryos. 

 

2. Materials and Methods  

a/ Isolation of the Ae. albopictus Actin-4 gene* 

Ae. aegypti Actin-4 (AeAct-4, AY531222), Ae. aegypti Actin-3 (AeAct-3, AY289765) and 

Anopheles gambiae Actin-1 (AnAct-1, XM315270; Actin-4 equivalent) sequences were aligned 

                                                   
* This work was done by Sarah Scaife, PhD (Oxitec Ltd) 
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using ClustalW (EBI). Primers AeA4F and AeA4R were designed in regions that were conserved 

between Actin-4 and AnAct-1 but different from AeAct-3. The resulting PCR product was cloned 

and sequenced. BLAST alignment confirmed homology to Ae. aegypti Actin-4. This sequence 

was extended by a combination of 5’RACE and PCR techniques. 5’RACE was carried out using 

the Ambion FirstChoice RLM-RACE kit according to the manufacturer’s instructions, using 

primers AlbA4Race and AlbA4RaceN. Vectorette PCR was carried out to extend the sequence 

from the beginning of the 5’UTR back into the promoter region and from the exon 1 and 2 

sequences to fill in the intron sequence. Comparison of cDNA and genomic DNA sequences 

revealed a large intron in the 5’UTR. 745 bp upstream from the start of the 5’UTR, a coding 

sequence with BLAST homology to Ae. aegypti sensory neuron membrane protein 2 was found, 

indicating that the maximum promoter fragment had been determined. 

 

b/ Plasmid construction 

The OX3688 construct is identical to the OX3604 plasmid (Fu et al., 2010), apart from one of the 

end markers which was changed from 3xP3-AmCyan into 3xP3-DsRed2 by exchanging a PacI-

SpeI cassette (OX3604 carried 3xP3-AmCyan at both ends, by mistake). The markers are 3xP3-

DsRed2 and 3xP3-AmCyan for the piggyBac ends, and hr5IE1-DsRed2 for the central section.  

OX4358 construct*: a start codon and Kozak sequence CCACCATG were engineered in the 

AealbAct-4 gene’s 5’ UTR 43 bp before the 5’ donor site of the intron by PCR. Two PCR 

products, promoter-intron and intron-truncated exon 2, were amplified from wild-type Ae. 

albopictus genomic DNA using primer pairs AlbA4proAscF-AlbA4intSpeR and AlbA4intSpeF-

AlbA4ex2BglR. The two PCR products were ligated at the Spel site; the ligated product was 

cloned in front of the fusion gene ubiquitin–tTAV2–K10 3’UTR which was previously 

constructed (Fu et al., 2010). The engineered start codon was in frame with the fusion tTAV2 

gene. This gene cassette was inserted into a piggyBac vector containing Hr5IE1 promoter 

(Rodems and Friesen, 1993) driving AmCyan (Clontech) expression. tTAV2 is a variant of tTA, 

                                                   
* This construct was created by Sarah Scaife, PhD (Oxitec Ltd) 
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optimised for expression in Drosophila by eliminating potential cryptic splice sites and rare 

codons in the tetR region (Fu et al., 2010).  

Table 3-1. Primer sequences and expected product sizes. 

F primer name F primer sequence R primer name R primer sequence Product 
size 

AeA4F GTGTGACGATGATGCTGGAGCACTAG AeA4R CTGGGTACATGGTGGTACCACCAGAC 928 bp 

AlbA4Race GGGATTCAGTGGAGCTTCGGTCAGCA
GG 

   

AlbA4RaceN TGGATTGGGCTTCGTCACCAACGTAG    

AlbA4proAscF GGTGTGGGCGCGCCTGATCGGTAAG
GTAAGTAAGCATCCGAG 

AlbA4intSpeR GGTGTGACTAGTGTTGACAACTCTTCTAGT
TTCTCGGCC 

1581 bp 

AlbA4intSpeF GGTGTGACTAGTCCAAAATGAACGTG
GACCAGCC 

AlbA4ex2BglR GGTGTGAGATCTGCATGTCGTCACACATTT
TGGCGCCGCTTCCAGGTCCGTTGGGTCC 

578 bp 

AlbA4UTRF GATTAGTCAAGGACCCAACGGCTC AlbA4FlR CACACCCTGGTGACGTGGGC 290, 209, 
1749 bp 

AlbA4BsmF GGTGTGCGTCTCACCACCATGTTAGT
CAAGGACCCAACGGCTCAAG 

UbiR2 CATACCACCGCGCAGGCG 584, 352, 
1541 bp 

Diag2-ubi GGATGCCCTCCTTGTCCTGG Aeact4-ex1 CAATCGGATTTTGACGCTCGCT 495, 252, 
2051 bp 

Diag2-ubi GGATGCCCTCCTTGTCCTGG Aeact4-ex1’ CATGGAAACCGAGGATAACGACGA 446, 203, 
2002 bp 

 

c/ Strain background, rearing and transformation 

The Ae. albopictus and  Ae. aegypti wild-type strains originate from Malaysia and were 

colonised by the Institute of Medical Research (Kuala Lumpur) in 2006 and 1977, respectively. 

The insectary was kept at 27°C (± 1°C) and 70% (± 10%) relative humidity. Larvae were fed on 

crushed dry fish food (TetraMin® flake food from Tetra GmbH, Germany) and adults on 10% 

glucose with 14 U/ml penicillin and 14 µg/ml streptomycin. Females were fed on horse blood 

using a Hemotek Insect Feeding System (Discovery Workshops, Accrington, UK) set at 37°C.  

Wild-type embryos were injected with a mixture of the OX3688 or OX4358 construct DNA (300 

ng/µl), phsp-Bac plasmid helper (200 ng/µl) (Handler and Harrell, 1999) and piggyBac mRNA 

(300 ng/µl) in injection buffer (5mM KCl and 0.1 mM NaH2PO4, pH 6.8), as described in Chapter 
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2-2c. Tetracycline (30µg/ml) was added to the injection mix in order to repress the activation of 

VP16 expression in injected embryos. Injected G0 adults were crossed in pools (males in pools 

of two for 24 hours then merged into pools of 24; females in pools of 100) to wild-type 

counterparts. G1 larvae were screened for fluorescence using a Leica (Wetzlar, Germany) MZ95 

microscope with the appropriate filter sets from Chroma Technology (Rockingham, VT, USA) 

(filters: AmCyan: exciter D436/20x; emitter D480/40m; DsRed2: exciter HQ545/30x; emitter 

HQ620/60m). Transgenic lines were established from single G1 positive adults and reared on 

water supplemented with 30 µg/ml chlortetracycline hydrochloride (Sigma-Aldrich, Gillingham, 

UK). Lines named with different letters have founders from different G0 pools and are therefore 

independent genomic integrations.  

Pictures of fluorescent larvae were taken with Canon PowerShot S5IS with a MM99 adaptor 

(Martin microscopes, Easley, SC, USA) to fit into the eyepiece. 

 

d/ Characterisation of transformation events 

PCR was performed on G1 individuals expressing both peripheral markers but not the central 

one, in order to determine whether the two peripheral elements had inserted as one fragment 

linked by the plasmid backbone or independently as two separate elements. Presence of the 

plasmid backbone was investigated with primers Amp-r (CAGTGGAACGAAAACTCACG) and Amp-

f (ACGTCAGGTGGCACTTTTCG), and primers M13-28-R (TGTGAGCGGATAACAATTTCACACAGGA) 

and Diag-transp (CTACCGCTTGACGTTGGCTGCAC). Amplification of sequence from both 

peripheral markers was performed as positive controls: the 3xP3-AmCyan marker was amplified 

with primers Su-amcyan-f (CCAGACCTCCACCTTCAAGGTGACC) and Diag-cyan 

(CGCCGTGGAAGGTGGACT TGTGC), and the 3xP3-DsRed2 marker was amplified with primers 

Diag2-3xP3 (AGCTGAACAAGCTAAACAATCGG) and Diag7-DsRed (CCATGGTCTTCTTCTGCATCAC). 

PCR was also performed using primers specific to the central part of the construct, 

tTAV+365seq- (CGTAGAGAGCATTTTCCAGGCTGAAG) and Diag-ubiq 

(CGAGCGATACCATCGAGAAC), in case this fragment was present but not expressing the hr5IE1-

DsRed2 marker. 
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e/ Reverse Transcription-PCR 

In order to study the endogenous Actin-4 gene from Ae. albopictus, RNA was extracted from 

pooled samples of 3 wild-type male pupae and 2 wild-type female pupae, using Tri Reagent 

(Ambion, Austin, TX, USA), according to the manufacturer’s instructions. RNA samples were 

treated with DNase I (Roche, Burgess Hill, UK) and quantified on a Pharmacia Biotech (Little 

Chalfont, UK) GeneQuant II RNA/DNA calculator. One-step RT-PCR was carried out on 200 ng 

RNA using SuperScript® III One-step RT-PCR System with Platinum® Taq DNA Polymerase 

(Invitrogen, Paisley, UK) and primers in the 5’UTR (AlbA4UTRF) and in exon 2 (AlbA4FlR) (Table 

3-1).  

Reverse Transcription-PCR was carried out on male and female pupae of OX3688 and OX4358 

individuals as above, using primers Aeact4-ex1, Aeact4-ex1’ and Diag2-ubi for OX3688, and 

AlbA4BsmF and UbiR2 for OX4358 (Table 3-1), to confirm that sex-specific splicing was 

occurring as predicted in this context. 

Amplified fragments were loaded on a 1% agarose gel and extracted using the MinElute PCR 

Purification Kit from Qiagen (Hilden, Germany). Purified products were then cloned into pJet 

vectors (GeneJET™ PCR Cloning Kit from Fermentas, Vilnius, Lithuania) and transformed into XL-

10 cells (Stratagene, La Jolla, CA, USA). DNA from positive clones was purified by miniprep 

(GeneJET Plasmid Miniprep Kit from Fermentas) and sent for sequencing (GATC Biotech, 

Konstanz, Germany). 

 

f/ Phenotype analysis 

For phenotypic analysis of the transgenic lines, eggs were hatched on day 1. On day 2, “on tet” 

and “off tet” trays (11 x 19 cm bottom surface) were set up with 300 hemizygous larvae in 300 

ml of pure water (1 larva/ml), respectively with or without a supplement of 30 µg/ml 

chlortetracycline hydrochloride (Sigma-Aldrich, Gillingham, UK). Water on trays was changed on 

days 6 and 11. Larvae were fed crushed dry fish food (TetraMin® flake food from Tetra GmbH, 
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Melle, Germany): 12 mg/tray on days 2, 3 and 17; 24 mg/tray on days 4, 9, 11 and 12; 48 

mg/tray on day 5; 96 mg/tray on days 6, 7 and 8. 

Sexes were separated as pupae, and the number of flying males and females was recorded 24 h 

after emergence. 

 

3. Results 

a/ The OX3688[albopictus] strains 

Ae. albopictus embryos were injected with the OX3688 construct (Figure 3-1), similar to the 

OX3604 construct used by Fu, Lees et al. to induce a conditional female-flightless phenotype in 

Ae. aegypti (Fu et al., 2010). Out of the 9468 embryos injected, 1483 survived to pupa stage 

(15.7%). A total of 1130 adults were crossed (11.9% of injected embryos, 530 males and 600 

females).  

 

 
Figure 3-1. Map of the OX3688 transgene.  

This is a four-ended piggyBac transgene including three different markers: 3xP3-DsRed2 and 3xP3-AmCyan in the piggyBac 

ends, hr5IE1-DsRed2 in the middle part of the transgene. The tTAV2 transactivator is placed under the control of the Ae. 

aegypti Actin-4 promoter and is therefore expected to be expressed specifically in females’ flight muscles. In the absence of 

tetracycline, tTAV2 is able to bind tetO, thus activating further expression of the VP16 peptide which is a cell toxin. Females 

carrying this transgene are expected to be flightless in the absence of tetracycline. 

 

As OX3688 is a four-ended piggyBac construct (Dafa'alla et al., 2006), four different piggyBac 

elements could be integrated: the 5’-end short element, carrying only the 3xP3-AmCyan 

marker; the 3’-end short element, carrying only the 3xP3-DsRed2 marker; the two end 
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elements linked together by the plasmid backbone, characterised by the presence of both the 

3xP3-AmCyan and 3xP3-DsRed2 markers; and the intended OX3688 transgene carrying all three 

markers (Figure 3-1). Transgenic G1 progeny were found from 5 out of 12 male G0 crosses, with 

all the possible integrations listed above being observed and identified by fluorescence 

phenotype, except for the individuals expressing both side markers. For these, PCR analysis 

helped to determine whether the two side elements had inserted as one fragment linked by the 

plasmid backbone or independently as two separate elements (see Materials and Methods):  

Larvae with blue eyes only (3xP3-AmCyan marker) were observed in progeny from G0 male 

crosses number 6 and 9; larvae with red eyes only (3xP3-DsRed2 marker) were observed in 

progeny from G0 male crosses number 5 and 9.  

Larvae with both blue and red eyes were observed in the progeny from G0 male crosses 

number 1, 5, 9 and 10, and PCR analysis on those larvae showed that larvae from G0 male cross 

5 had integrated the two piggyBac side elements independently in two separate integration 

events, whereas larvae from G0 male crosses 1, 9 and 10 had integrated the two side elements 

as one fragment linked by the plasmid backbone. PCR on G1 individuals also confirmed that 

none of the larvae negative for the hr5IE1-DsRed2 marker was carrying the middle part of the 

transgene (results not shown). 

The central marker (hr5IE1-DsRed2) was never observed on its own but always with the two 

peripheral markers (3xP3-AmCyan and 3xP3-DsRed2), indicating that none of the peripheral 

piggyBac elements had been remobilised after integration. This phenotype was observed in 

progeny from G0 male crosses number 5, 6 and 10.  

All the individuals expressing only the peripheral markers were discarded because they did not 

contain the RIDL component.  

G1 adults expressing all three markers (Figure 3-2) were crossed individually to wild-type 

insects. Only two males from the G0 male cage number 5 and two males from the G0 male cage 

number 6 gave progeny, respectively starting lines OX3688A, E, C and D. Line C was 
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Figure 3-2. OX3688A and WT larvae (top) and pupae (bottom) expressing all three markers: 3xP3-AmCyan (blue eyes and 

anal papillae), 3xP3-DsRed2 (red eyes and anal papillae) and hr5IE1-DsRed2 (red body).   

A:  normal light; B: cyan filter; C:  red filter. 

discontinued as none of the G2 survived to adulthood. Line E had flightless females on 

tetracycline and also did not survive to adulthood in subsequent generations. Line OX3688A 

carried multiple insertions, indicated by a higher number of fluorescent than wild-type 

individuals (25 fluorescent and 15 wild-type) in the G2 generation, as well as several different 

fluorescent phenotypes (different intensities of red body, with or without red or blue 

fluorescent anal papillae). Line OX3688D had two insertions recognised by two different 

intensities of eye fluorescence in G2 individuals. Insertions were split by separating the different 

phenotypes and crossing single individuals to wild-type. Line OX3688A was separated into four 

different lines, out of which only one had healthy females and survived. Out of the D lines, only 

one made it to the next generation. For simplicity, further mentions of lines OX3688A and D 

refer to those two surviving lines rather than their multi-insertion parents. 
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These results indicate that at least 12 independent integration events (ignoring the multiple 

integrations) occurred amongst the 530 males crossed. If we assume 30-50% fertility, this 

corresponds to a transformation efficiency of 4.5-8.6%, which is in the same range as Ae. 

aegypti (Kokoza et al., 2001; Lobo et al., 2002; Nimmo et al., 2006).  

 

b/ Conditional female flightless phenotype in Ae. albopictus using the Ae. 

aegypti Actin-4 gene 

Reverse Transcription-PCR was performed on transgenic OX3688A male and female pupae, 

showing the expected sex-specific splicing (Figure 3-3). Sequencing of the RT-PCR fragments 

indicated that the splicing occurred precisely as in Ae. aegypti (results not shown).  

 

 

 

Lines OX3688A and D were reared on and off tetracycline and their flying phenotype assessed:  

Line OX3688A showed a repressible female-specific flightless phenotype, with 0% females flying 

off tetracycline and 61.5% flying on tetracycline, and males flying fine both on and off 

tetracycline. Line D showed no flightlessness off tetracycline, with 70.2% females flying versus 

78.1% on tetracycline (Figure 3-4). The OX3688D line was later discarded, as it did not have the 

desired phenotype.  

Figure 3-3. RT-PCR on male (M) and female (F) 

Ae. albopictus OX3688A pupae. 

Differential sex-specific splicing of the construct 

is observed. RT-PCR was performed using primer 

pairs Diag2-ubi  and Aeact4-ex1 (M1 and F1) and 

Diag2-ubi  and Aeact4-ex1’ (M1’ and F1’) in 

ubiquitin and AeAct-4 exon 1. Ladder (L): 

Eurogentec’s Smartladder. The bands are all of 

the expected sizes (Table 3-1). 
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Figure 3-4. Flying ability of transgenic hemizygous OX3688A and D lines of Ae. albopictus after being reared with (ON) or 

without (OFF) a supplement of the tetracycline antidote.  

The percentage of flying adults was calculated as a proportion of the number of pupae (n) placed in each cage. OX3688A and D 

phenotypes were compared to that of same sex wild-type using chi-square tests; significance is indicated above the chart bars: 

groups with the same letter (Greek letters for the males, Latin letters for the females) are not significantly different from each 

other at the 5% level. 

 

Fluorescence screening of hemizygous OX3688A in the absence of tetracycline revealed that 

female pupae OX3688A showed expression of the AmCyan fluorescent protein in the flight 

muscles, which was not expected as AmCyan is under the control of the eye-specific 3xP3 

promoter (Figure 3-5). This observation suggests that in the absence of tetracycline, the binding 

of tTAV2 on tetO and resulting transcription enhancement may overrule the regulation of 

nearby elements and induce ectopic expression of the 3xP3-AmCyan cassette.  
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Figure 3-5. OX3688A fluorescent phenotype on and off tetracycline.  

A: normal light; B: red filter; C: cyan filter. OX3688A larvae, male and female pupae show brighter expression of the 

fluorescence markers when reared off tetracycline (L-OFF, M-OFF and F-OFF, respectively) than on tetracycline (L-ON, M-ON 

and F-ON, respectively). The 3xP3-AmCyan marker is expressed ectopically in the whole body when the strain is reared off 

tetracycline. Wild-type male and female pupae reared off tetracycline (M-WT-OFF and F-WT-OFF, respectively) are shown for 

comparison.  

 

c/ Isolation and characterisation of the Ae. albopictus Actin-4 gene 

The Ae. albopictus Actin-4 gene (AealbAct-4) was isolated as described in Materials and 

Methods. The sequence showed high conservation with AeAct-4 (and also to AgAct-1, results 

not shown), particularly in the coding sequence (Appendix 2). The positions of the introns are 

conserved, as is the gene structure with respect to site-specific splicing (Figure 3-6/A). The sex-

specific splicing was confirmed by RT-PCR (Figure 3-6/B).  
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Figure 3-6. Characterisation of the Ae. albopictus Actin-4 gene. 

A: Gene structure of Ae. albopictus and Ae. aegypti Actin-4. Promoters are indicated by arrows, exons are shown as boxes, 

introns as lines. Non-coding 5’ and 3’UTR are shaded pale grey; the male-specific exons are shaded dark grey. B: RT-PCR 

confirming differential splicing in male (M) and female (F) Ae. albopictus pupae; genomic (g) and no template control (c) are 

also shown. L: Smartladder (Eurogentec). The bands are all of the expected sizes (Table 3-1). 

 

d/ Conditional female flightlessness in Ae. aegypti and Ae. albopictus using Ae. 
albopictus Actin-4 

The AealbAct-4 promoter and sex-specific splicing were used to make construct OX4358 (Figure 

3-7/A). The OX4358 construct carries a Hr5IE1-AmCyan-SV40 marker cassette leading to 

expression of the AmCyan fluorescent protein all over the body and allowing easy screening of 

the transgenics. The Ae. albopictus Actin-4 (AealbAct-4) promoter is placed in front of the 

AealbAct-4 exon 1 in which a start codon has been engineered. The AealbAct-4 sex-specific 
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intron has been truncated but the male-specific transcript was kept and holds a series of stop 

codons (Figure 3-7/A, bars below the intron line). The AealbAct-4 exon 2 was cloned in frame 

with an ubiquitin-tTAV2-K10 fusion gene. The tetO-Hsp70-VP16-SV40 cassette is activated by 

the binding of tTAV2 produced in the females’ indirect flights muscles (under the control of the 

AealbAct-4 promoter) in the absence of tetracycline. Transgenic OX4358 lines were obtained 

for both Ae. albopictus and Ae. aegypti. 

 

 
Figure 3-7. The OX4358 construct was inserted into Ae. albopictus and Ae. aegypti.  

A: Map of the OX4358 construct. Promoters are indicated by arrows, exons are shown as boxes, introns as horizontal lines. The 

engineered start codon is indicated by a bar in Ex1, whilst stop codons in the male exon are shown by bars below the line. B: Ae. 

albopictus OX4358 RT-PCR on two male and two female pupae (M1, M2, F1 and F2, respectively), gDNA amplification and no-

template control are shown in lanes “g” and “c” respectively. L: Smartladder (Eurogentech). C: Ae. aegypti OX4358 RT-PCR, on 

three male and three female pupae (M1, M2, M3, F1, F2, and F3 respectively) and no template control (c).  

 

RT-PCR analysis of OX4358 transgenic individuals confirmed sex-specific splicing in both Ae. 

albopictus and Ae. aegypti (Figure 3-7/B and /C, respectively). Sequencing of the PCR products 

revealed that splicing occurs as in the native gene, except for a second male-specific transcript 
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in which exon 1 has an extra 75 bp. This extra transcript could be a result of truncation of the 

intron and/or exon 2, disrupting splicing, but as it is still out of frame with the ubi-tTAV2, it does 

not interfere with the function of the construct. The sequences also confirmed that the ubi-

tTAV2 cassette is in frame with the engineered ATG in the female splice but not in the male 

splice variants, as intended; we therefore expected impairment of the flight muscles of females 

only.  

 

The flying phenotype of Ae. aegypti and Ae. albopictus transgenic lines carrying the OX4358 

construct was assessed after being reared on and off tetracycline. The piggyBac–based OX4358 

transgene was inserted randomly and therefore subjected to different positional effects in each 

transgenic line, leading to a range of phenotypes. Out of the 20 independent lines obtained in 

Ae. albopictus, four exhibited a non-repressible flightless females phenotype - giving flightless 

females when reared on tetracycline - and five lines were male-linked. Out of the eleven Ae. 

albopictus lines tested on and off tetracycline (Figure 3-8), eight had a repressible female 

flightless phenotype, with no females flying off tetracycline and between 21.65 and 54.55%  of 

females flying on tetracycline. Three lines showed no specific phenotype, with females able to 

fly off tetracycline. Ten independent lines were obtained in Ae. aegypti, including two male-

linked insertion. Out of the eight lines tested on and off tetracycline (Figure 3-8), three had a 

repressible female flightless phenotype, with no flying females off tetracycline and 57.0 to 

94.4% females flying on tetracycline. Four lines did not show a fully penetrant phenotype, with 

1.4 to 42.9% females able to fly off tetracycline. The last line showed no specific phenotype, 

with 92.9% females flying off tetracycline while 83.9% females flying on tetracycline. Males 

showed  no observable detectable impairment of their flying ability when reared off 

tetracycline, with generally a slightly higher percentage of flying males when reared off 

tetracycline compared to rearing on tetracycline (Figure 3-8), emphasising the strong female-

specificity of the RIDL mechanism. 
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Figure 3-8. Flying phenotype of Ae. aegypti and Ae. albopictus OX4358 lines after being reared with (ON) or without (OFF) a 

supplement of the tetracycline antidote.  

The percentage of flying adults was calculated as a proportion of the number of pupae placed in each cage. Phenotype of wild-

type individuals (WT) is indicated as a control. The phenotypes from the different transgenic lines were assessed as an initial 

scan and at different times. They are therefore not directly comparable to each other or to the wild-type controls. 

 

4. Discussion 

Fu, Lees et al. recently reported the engineering of a conditional female flightless phenotype in 

Ae. aegypti using the Ae. aegypti Actin-4 gene (AeAct-4) (Fu et al., 2010). The results presented 

in this chapter show that AeAct-4 retains its properties in Ae. albopictus and leads to a similar 

phenotype. Moreover, replacing AeAct-4 with its Ae. albopictus homologue also induced a 

conditional female flightless phenotype in both Ae. albopictus and Ae. aegypti species. Despite 
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some molecular variations between the two homologous genes, the two promoters and the 

sex-specific splicing appear interchangeable between species. 

Noticeably low percentages of flying females on tetracycline were observed in several lines. 

Moreover, unlike the injections of the OX3860 construct reported in Chapter 2, where 

transgenic lines were derived equally from male and female G0 crosses, all the positive G1’s 

found after injections of the OX3688 construct came from male G0 crosses; the female G0 

crosses gave extremely few eggs and no transgenic individuals. Those observations may be 

explained by an excessive production of tTAV2 by the Actin-4 promoter, or a sub-optimal 

tetracycline repression of the tetO-VP16 enhancement. This, however, seems to only affect Ae. 

albopictus. This difference between Ae. albopictus and Ae. aegypti can have several 

explanations: the Ae. albopictus Actin-4 promoter may be stronger in an Ae. albopictus 

background; Ae. albopictus indirect flight muscles may be more sensitive to over-expression of 

VP16; Ae. albopictus may not accumulate tetracycline as effectively as Ae. aegypti; the tTAV2 

transactivator may be more efficient in Ae. albopictus. Wide phenotypical variations were also 

noted among the OX4358[albopictus] lines, while the Ae. aegypti lines all had good percentages 

of flying females on tetracycline (except line A3) and healthy males both on and off tetracycline. 

One would have expected the OX4358 construct to be more tightly controlled in Ae. albopictus, 

as it is based on the Ae. albopictus Actin-4 gene. On the other hand, the Ae. aegypti wild-type 

strain also performed better than the Ae. albopictus wild-type strain, and these differences 

could be due to the significantly much longer colonisation time of the Ae. aegypti strain, which 

would have tended to homogenise the genetic background of the population over time.  

The OX3688A strain was created earlier than the OX4358 strains, as the OX3688 construct had 

been made earlier. Although the percentage of flying females on tetracycline was sub-optimal 

(61.5%), suggesting an incomplete repression of the RIDL system, the OX3688A strain showed 

the expected phenotype off tetracycline, with healthy males and 100% flightless females. This 

strain was therefore made homozygous and further assessed for its suitability in a control 

programme. That work is presented in the next chapter.  
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Chapter 4  

Assessing the suitability of a female-

specific RIDL strain of Aedes albopictus 

for a control programme 
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1. Introduction 

Chapter 3 reported the development of female-specific RIDL strains. In order for a RIDL strain to 

be considered suitable as part of a vector control programme, it needs to comply with several 

key requirements: it should be safe to release; the males should be efficient at finding and 

mating wild females; the fecundity of females should be suitable for mass production; and 

ideally the lethality would be late-acting (Phuc et al., 2007; Thomas et al., 2000).  

a) The strain must be safe to release: to ensure the safety of the RIDL programme, the 

transgenic phenotype should be highly penetrant (i.e. virtually all the specimens carrying the 

transgene should show the corresponding phenotype). For a female-flightless strain, this means 

that females reared in the absence of tetracycline should not be able to fly (flying females are 

considered unsafe because they could potentially become disease vectors).  A fully penetrant 

strain would, in addition, remove the need for time-consuming and pupae-damaging manual 

sex-sorting by rearing the released generation off tetracycline. The likelihood of flightless 

females transmitting diseases from one human host to another can be considered negligible, 

and therefore flightless females could be co-released with males without compromising the 

safety of the programme. The release of RIDL individuals as eggs could even be envisaged.  

Even though mathematical modelling for a bisex-lethal control programme suggests that 

imperfect penetrance would have little adverse effect on the efficiency of a RIDL-based 

program (Phuc et al., 2007), full penetrance is highly desirable  for public approval.  

b) The males should not be adversely affected: expression of lethal genes should ideally be 

restricted to females in order to optimise the competitiveness of homozygous RIDL males, 

which are already likely to suffer a certain reduction in fitness due to their long history of 

laboratory colonisation (Benedict et al., 2009; Bush et al., 1976). Released males, reared 

without tetracycline, must be as competitive as possible. Leaky expression of the toxic gene in 

those males may impair their ability to fly vigorously and to successfully find and mate wild 

females.  

c) The system should be repressed by tetracycline: incomplete repression of the toxic 

components of the RIDL system is likely to negatively affect key parameters of female mosquito 
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biology, such as fecundity and longevity. Failures in previous SIT trials have been largely 

attributed to insufficient production levels (Benedict and Robinson, 2003); females reared in 

the presence of tetracycline should have appropriate fecundity in order to allow efficient mass-

rearing of the strain.  

d) Death should occur after the density-dependent phase: mosquitoes often breed in small 

containers where the larvae have a limited amount of resources to feed from, resulting in 

intense competition during the immature stages. Although this larval competition phenomenon 

may have been over-estimated in previous reports due to the lack of field data (Legros et al., 

2009), mathematical models for Ae. aegypti suggest that late larval death of RIDL offspring 

would enhance the efficiency of a control programme as “doomed” transgenic larvae would use 

some resources before dying (Phuc et al., 2007; Yakob et al., 2008). A late-acting bisex RIDL 

strain of Ae. aegypti was recently developed to meet this requirement (Phuc et al., 2007).   

 

In the work described in this chapter, I attempted to measure the quality of the RIDL OX3688A 

female-specific flightless strain with regards to those critical parameters. All experiments were 

performed in a confined laboratory, comparing the transgenic strain to its wild-type 

background. Clearly, such experiments cannot provide some key information such as males’ 

field performance against wild counterparts or larval competition in the wild. The persistence of 

the phenotype in different wild-type backgrounds is also a vital parameter that cannot be 

tested until the release area is determined. The experiments presented here do, however, 

provide data to assess whether this candidate strain merits further study. 

 
 

2. Material and Methods 

a/ Flanking sequences 

Flanking sequences were found using an adaptor-based method. All adaptor sequences are 

shown in Table 4-1. MspI and DpnII adaptors were made by mixing equal volumes of 100 µM 

MspI(TaqI)-short or DpnII-short oligonucleotides, respectively, with 100 µM Adaptor-long 

oligonucleotide and one tenth volume of 10x T4 DNA ligase buffer (New England BioLabs, 
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Ipswich, MA), heating to 50°C for annealing and cooling down immediately back to room 

temperature. The MspI and DpnII adaptors should then have a CG or GATC overhang able to 

ligate to genomic DNA digested with NarI, BstBI, ClaI and MspI, or BclI, BglII and DpnII, 

respectively.  

Genomic DNA was extracted from a pool of OX3688A pupae using the NucleoSpin Tissue kit 

(Macherey-Nagel, Düren, Germany). 500-1000 ng were digested with either NarI, BstBI, MspI 

and ClaI for ligation to the MspI adaptor, or BclI, DpnII and BglII for ligation to the DpnII adaptor 

(Table 4-1; all enzymes produced by New England BioLabs). Ligations to the adaptors (0.5 µg/µl) 

were performed overnight at room temperature using T4 ligase (New England BioLabs) and 

then used as templates for PCR amplification.  

5’ and 3’ flanking sequences were amplified by PCR using primer sets PRIMER/PB2 nested with 

PRIMER/PB1 or PRIMER/PB4 nested with PRIMER/PB3, respectively (Table 4-1). For the primary 

PCR reaction, 5 mM primers were mixed at a 1:10 ratio of PRIMER:PB2 or PRIMER:PB4, in order 

to favour the piggyBac-specific amplification. PCR reactions were performed in a 25 µl final 

volume, using Taq polymerase from New England BioLabs and the following thermal profile: an 

initial denaturation step of 1 min at 94°C, 35 cycles of 10 sec at 94°C, 45 sec at 55°C and 1 min 

30 sec at 68°C, and a final elongation step of 9 min at 68°C. 

Amplified fragments were then extracted and purified from an agarose gel and sent for 

sequencing to GATC Biotech (Konstanz, Germany) using primers MID and PB6 or MID and PB5 

for the 5’ and 3’ flanking amplifications, respectively. Primers 3688-5-2A, 3688-gtyp-R1 and 

3688-gtyp-R2 were designed in the 5’ and 3’ flanking sequences to be used for genotyping 

(Table 4-1). 
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Table 4-1. Primers and probes sequences, and expected product sizes. 

Name Direction Sequence 5’-3’ Specificity Amplicon size 

Adaptor-long Adaptor GTGTAGCGTGAAGACGACAGAAAGGGC
GTGGTGCGGAGGGCGGTG 

  

MspI(TaqI)-
short 

Adaptor CGCACCGCCCTCCG   

DpnII-short Adaptor GATCCACCGCCCTCCG   

PRIMER  GTGTAGCGTGAAGACGACAGAA Adaptor  

PB1 Reverse GGCGACTGAGATGTCCTAAATGCAC piggyBac 5’ end  

PB2 Reverse CAGTGACACTTACCGCATTGACAAG piggyBac 5’ end  

PB3 Forward CAGACCGATAAAACACATGCGTCA piggyBac 3’ end  

PB4 Forward GTGCCAAAGTTGTTTCTGACTGACTA piggyBac 3’ end  

PB5 Forward CACATGCGTCAATTTTACGCATGATTATC piggyBac 3’ end  

PB6 Reverse CAGCGACGGATTCGCGCTATTTAG piggyBac 5’ end  

MID  GACGACAGAAAGGGCGTGGTG Adaptor  

3688-5-2A Forward GCTTTGCAAGCCATGTGGGAAATCA 5’ flanking sequence 260 bp with PB2 if transgene 
present 

3688-gtyp-R1 Reverse CGATTACGAGTCGAGTGACTCC  3’ flanking sequence 
207 bp with 3688-5-2A if no 
transgene; 485 bp with PB4 if 
transgene present 

3688-gtyp-R2 Reverse CACTGTACACTGTTGTGCAC 3’ flanking sequence 
354 bp with 3688-5-2A, if no 
transgene; 632 bp with PB4 if 
transgene present 

AedesF Forward CTGCAGTAGTGATGAAGATGAACCA Ae. albopictus IAP1 96 bp with AedesR 

AedesR Reverse GGGCGAAAATGCCGTATTGTACTCA Ae. albopictus IAP1  

AedesPro  Probe 
(Forward)  AGACACCAGTCGGACTTGCAAAATCTG Ae. albopictus IAP1  

K10F155   Forward CTCTGCTGACTTCAAAACGAGAAGAG K10 3’UTR 109 bp with K10R266 

K10R266   Reverse ATTGGGTTTCACCGCGCTTAGTTACA K10 3’UTR  

K10Bea2   Probe 
(Forward) 

GACCACCGACGGCTCATTAGGGCTCGTG
TGGTC 

K10 3’UTR  

328F Forward CCAGCAGATACTATTGCG Wolbachia wAlbA 379 bp with 691R 

183F Forward AAGGAACCGAAGTTCATG Wolbachia wAlbB 501 bp with 691R 

691R Reverse AAAAATTAAACGCTACTCCA wAlbA and wAlbB  

SVNP2F2 Forward TGCGGTTTGTGGCGTATTCTCAGT Ae. albopictus synaptic 
vesicle protein gene 

497 bp with SVNP2R2 

SVNP2R2 Reverse CCTCCACGGGTTCGATTGTTTTG Ae. albopictus synaptic 
vesicle protein gene 
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b/ Comparative real-time PCR 

Due to the transgene being inserted in a repeated region, it was impossible to assess the 

genotype of individuals by simple PCR. Comparative real-time PCR was therefore used for this 

purpose, with a transgene-specific primer/probe set targeting the fs(1)K10 3’UTR and an 

endogenous primer/probe set specific to the Ae. albopictus housekeeping gene IAP1 (Inhibitor 

of Apoptosis 1) which acted as normaliser (Table 4-1). Relative quantities of fs(1)K10 3’UTR 

versus IAP1 were used to distinguish OX3688 hemizygous and homozygous genotypes, as 

previously described (Yi et al., 2008).  

Genomic DNA was extracted from single headless adults using the NucleoSpin Tissue kit 

(Macherey-Nagel) with a final elution volume of 80 µl. Head were removed to avoid PCR 

inhibition by eye pigments (Eckhart et al., 2000). A primer mastermix was prepared with 0.8 µl 

of K10F155 and K10R266 primers (10µM), 0.6 µl of AedesF and AedesR primers (10 µM), 0.6 µl 

of K10Bea2 and AedesPro probes (10µM), and 6 µl of pure water per reaction. An equal volume 

of TaqMan® Gene Expression Master Mix (Applied Biosystems, Warrington, UK) was then added 

to the primer mastermix. Each reaction was set up with 19 µl of final mix and 1 µl of purified 

gDNA.  

Quantitative PCR reactions were performed on a Mx3005P thermal cycler (Stratagene, La Jolla, 

CA, USA) with an initial denaturation step of 10 minutes at 95°C followed by 43 cycles of the 

following steps: 11 seconds at 94°C, 15 seconds at 60°C, 30 seconds at 54°C, 30 seconds at 60°C. 

Data were analysed using the MxPro-QPCR software (Stratagene). 

 

c/ Phenotype analysis 

For phenotypic analysis, eggs were hatched on day 1.  On day 2, “on tet” and “off tet” trays (11 

x 19 cm bottom surface) were set up with 300 larvae in 300 ml of pure water (1 larva/ml), 

respectively with or without a supplement of chlortetracycline hydrochloride (Sigma-Aldrich, 

Gillingham, UK). Chlortetracycline hydrochloride concentration was 30 µg/ml unless stated 
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otherwise. Water on trays was changed on days 6 and 11. Larvae were fed finely ground fish 

food (TetraMin®, Tetra GmbH, Melle, Germany) as follows: 12 mg/tray on days 2, 3 and 17; 24 

mg/tray on days 4, 9, 11 and 12; 48 mg/tray on day 5; 96 mg/tray on days 6, 7 and 8. Sexes 

were separated as pupae, and the number of flying males and females was recorded 24 hours 

after emergence. 

Wings were digitalised using a Discovery™ VMS-004 USB microscope (Veho, Eastleigh, UK) and 

measured from the distal end of vein 3 to the distal end of the allula (Figure 4-1) using ImageJ 

1.42q software (http://rsbweb.nih.gov/ij/). 

 

 

 

 

 

 

 

Please note that for practical reasons, “chlortetracycline hydrochloride” is referred to as 

“tetracycline” or “tet“ in this thesis. 

 

d/ Mating competition 

Wild-type Ae. albopictus and OX3688A homozygous specimens were reared without 

tetracycline at a density of 600 larvae per litre of water. In a first experimental setting, wild-

type and OX3688A larvae were reared together in a 1:1 ratio and separated by fluorescence 

phenotype as pupae. In a second experimental design, wild-type and OX3688A larvae were 

Figure 4-1. Wing length measurement using the ImageJ software.  

Wings were measured from the distal end of vein 3 to the distal end of the allula 

(yellow line). 
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reared in separate trays and did not require fluorescence screening. Specimens of each 

genotype were sexed as pupae to ensure virginity and placed into small cages for emergence 

and maturation until the start of the mating competition. Following the emergence of adults, 

fifty sexually-mature males (2-4 days-old) of each genotype were placed in large mating cages 

(75 cm x 75 cm x 115 cm; BugDorm-2400F, MegaView, Taichung, Taiwan) together with fifty 

wild-type females (1-3 days-old). Adults were recovered after 48 hours. Males’ wings were 

measured to compare the size of wild-type and homozygous specimens; females were blood-

fed and transferred into individual tubes four days later for egg laying. Eggs were hatched four 

days after oviposition, and larvae were screened for fluorescence to determine the paternal 

genotype. 

 

e/ Males’ longevity 

Wild-type and OX3688A homozygous G8 were reared off tetracycline at 0.6 larvae/ml and one-

day old adults were distributed in small cages (15 x 15 x 15 cm). For each genotype, five cages 

were set up with 10 males each. A 10% sucrose solution was available ad-libitum throughout 

the experiment. Dead males were recorded daily. 

 

f/ Wolbachia PCRs 

DNA from 11 pools of 10 OX3688A G10 female adults (heads removed) was extracted using the 

GeneJET Genomic DNA Purification kit (Fermentas). DNA from a wild-type female was used as 

positive control. Infection status was determined using primers specific for either wAlbA (328F 

and 691R, Table 4-1) or wAlbB (183F and 691R, Table 4-1) as previously described (Zhou et al., 

1998). DNA quality of all the extractions was checked using primers specific of the synaptic 

vesicle nuclear protein gene, as previously described (SVNP2F2 and SVNP2R2, Table 4-1; 

(Kittayapong et al., 2002)). 
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g/ Statistical analysis 

Data were analysed using PASW Statistics software (version 18.0; SPSS Inc., Chicago, IL, USA). 

Assumptions of normality were tested with Kolmogorov-Smirnov tests. When variables met the 

normality assumption, treatments were compared using one-way ANOVAs or t-tests, as 

indicated in the results section. When required, post hoc tests were used for pairwise 

comparisons: Tukey’s HSD post hoc test were used when homoscedasticity was observed 

between groups; Dunnett’s T3 post hoc test was used for unequal variances. Arcsine square 

root transformation was applied to the pupation percentage and female flying percentage 

under different tetracycline concentrations to achieve normality. For the wing length sets of 

data that did not achieve normality by transformation, non-parametric alternatives to ANOVA 

and t-tests were used: Kruskal-Wallis and Mann-Whitney U-test, respectively. Mann-Whitney 

U-tests with Bonferroni correction were also used for pairwise comparison after a significant 

result with Kruskal-Wallis. Development rates were analysed by Cox-regression; Kaplan-Meier 

survival curves were used to plot males’ longevity, and compared using the log-rank test. 

 

3. Results 

a/ Making the OX3688A strain homozygous 

5’ and 3’ flanking sequences were found as described in the methods section and primers 

designed in each sequence for genotyping (Table 4-2). PCR genotyping involves two types of 

primer pairs: a) one pair to detect the presence of the transgene, amplifying from one of the 

flanking sequences into the transgene; and b) one pair to detect the absence of transgene, 

amplifying from 5’ into 3’ flanking sequence (Figure 4-2). Hemizygous individuals possess one 

chromosome with the transgene and one without, and are expected to produce a positive band 

with both the a) and b) primer pairs. Homozygous individuals carry an insertion on both 

homologous chromosomes and are therefore expected to produce a positive amplification with 

primer pair a) only. 
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5’ flanking sequence  3’ flanking sequence 

GCTTTGCAAGCCATGTGGGAAATCACACTGTTGAAAA

TGCTTTGACATCCATGTGCACAACAGAACATGTGCTC

GATGAACAAATTGAGATTTGAATTA 

TTAA 

AAGAAATCCACGTACTCCGGTGGAGACTCGAACTCACGACTC

CCAATTTGCTAGACGGGCGCTTTCTATTCCTTCAAGCTACGGA

GTCACTCGACTCGTAATCGGTCGGCCGAGGACCGACCCGTC

GAGAGCCCGACTGCACACTAATTGTCATACCAATAAGTGATT

GGGATGCAGTGCCCGAAACTCTTGATAATTAAAAATAATTTCC

TCTCCCGCTTTGACACACAAGTGCACAACAGTGTACAGTG 

Table 4-2. Flanking sequence from the OX3688A integration site. Primers’ binding sequences underlined. 

 

 

 

 

 

 

 

 

 

However, two problems may be encountered with such PCRs: Firstly, if the transgene has 

inserted into a highly polymorphic region of the genome, polymorphisms in the flanking 

sequences may prevent primer’s annealing and PCR amplification. Secondly, if the transgene 

has inserted in a repeated region of the genome, the b) primers will anneal to that alternative 

template and produce a misleading band from homozygous genomes which will therefore not 

be identified as such. 

Numbers of fluorescent and wild-type pupae of a hemizygous x hemizygous cross suggested no 

homozygous lethality, with an observed number of fluorescent pupae not significantly different 

from 75% (551 fluorescent pupae out of 758, Χ²=2.155, p=0.1421). Fifty fluorescent progeny 

from this cross were used to test our genotyping primers (primers 3688-5-2A and PB2 to detect 

Figure 4-2. Genotyping using PCR.  

Wild-type, hemizygous and homozygous individuals would be identified by positive amplification with 

primer pair a+b only, a+b and a+c, or a+c only, respectively. Insertion of the large sized transgene 

prevents successful amplification with primer pair a+b after insertion. 
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the insert; primers 3688-5-2A and 3688-gtyp-R1 to detect the absence of insert). According to 

the Mendelian laws of inheritance, this meant that a third of the fluorescent individuals - about 

16 - were expected to be homozygous. However, positive amplification was observed with the 

b) primer pair from every single individual, suggesting that the OX3688A line carries the 

transgene in a repeated region. Later real-time PCR on the same individuals diagnosed 10 

homozygous individuals in this pool. 

Single male crosses were set up with fluorescent individuals (initially with one female per male, 

then three females per male). After allowing mating for two days, males were removed and 

genotyped by real-time PCR as described in the methods section. The females which had mated 

homozygous males were pooled together for blood-feeding, and then split again into individual 

egg laying tubes. Females were then genotyped by real-time PCR.  

Progeny from hemizygous females mated with homozygous males were screened for 

fluorescence. No wild-type progeny was observed, confirming that the males were correctly 

genotyped. 

Families from homozygous parents were amplified separately for two generations and screened 

to confirm 100% fluorescence. Furthermore, all the G1 individuals from those families were 

genotyped by real-time PCR in case any incorrect genotyping had occurred in the G0 selection 

process.  

In total, 979 G0 males and 198 G0 females were genotyped, but only 8 families produced 

enough G3 individuals in order to participate in the creation of the final homozygous line, which 

was started with 6 females and 5 males from each of those 8 families.  

As a final control, two males from each of those eight families were individually crossed to wild-

type females. All progeny were fluorescent, confirming that the fathers were indeed 

homozygous.  
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b/ Effect of tetracycline on development and flying phenotype 

The following experiment had two aims: 1/ to determine the minimum tetracycline 

concentration that would achieve the optimum phenotype, to avoid using unnecessarily high 

amounts of antibiotic; 2/ to determine the level of tetracycline contamination that would allow 

this line to establish in the wild, by finding the lowest tetracycline concentration able to repress 

the flightless phenotype and produce flying females.  

The initial assumption was that 30 µg/ml was already a relatively high concentration, which is 

why it was used as the highest value in a set of decreasing concentrations  (30, 10, 3, 1 and 0.5 

µg/ml) tested experimentally. Only one tray of 300 larvae was set up for each concentration, 

aiming at narrowing down the concentrations meriting further investigations.  

 

The maximum percentage of flying females was obtained at 30 µg/ml of tetracycline (Figure 

4-3) but was only 28.28%, which was unlikely to be enough for the successful mass-rearing of 

this line. To test whether the percent of flying females could be increased by using higher 

tetracycline concentrations, the following experiment was set-up:  Six trays of control wild-type 

larvae were set up without antibiotic and 5 trays of OX3688 homozygous G6 were set up with 

three different tetracycline concentration: 30, 60 and 100 µg/ml. All trays contained 300 larvae 

at a density of 1 larva/ml. The effects of these different tetracycline treatments on several 

fitness parameters were recorded, and analysed as mentioned in the Methods section. Males 

and females were observed separately to account for the female-specificity as the OX3688 

construct.  

Homozygous males and females OX3688A did not develop significantly slower or faster than 

their wild-type counterparts when reared at 30 and 60 µg/ml, but took significantly longer than 

the wild-type to reach pupation when reared at 100 µg/ml (Table 4-3).  
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Figure 4-3. Flying phenotype of OX3688A homozygous G2 males and females from pupae, when reared at different 

concentrations of chlortetracycline hydrochloride.  

Error bars represent the standard error of single percentages obtained from single experimental trays. Note that at generation 

G2 only 28.28% of the homozygous OX3688A females were able to fly when reared on 30 µg/ml of chlortetracycline. 

 

 

 Treatment Days to pupation Statistical Groups 

Males WT off tet  9.55 ± 0.085                    A 

 30 µg/ml  9.56 ± 0.079                    A 

 60 µg/ml 10.18 ± 0.180                    A     B 

 100 µg/ml 10.93 ± 0.256                            B 

Females WT off tet 10.80 ± 0.087                    A 

 30 µg/ml 10.59 ± 0.092                    A 

 60 µg/ml 11.04 ± 0.228                    A     B 

 100 µg/ml 11.76 ± 0.202                            B 
Table 4-3. Mean pupation time in days (± standard error), for homozygous males and females OX3688A (generation G6) when 

reared at different concentrations of tetracycline, compared to wild-type reared off tetracycline.  

Groups denoted by the same letter are not significantly different from each other (One-way ANOVA followed by Dunnett T3 

post hoc test).  
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Pupation percentage (proportion of larvae reaching pupation) were not significantly different 

between OX3688A reared at 30, 60 and 100 µg/ml and wild-type reared off tetracycline (Figure 

4-4; One-way ANOVA p=0.896 on transformed data). The increase in tetracycline concentration 

significantly decreased the males’ eclosion percentage (Figure 4-4; ANOVA p<0.0001, followed 

by Tukey HSD post hoc test), but the males’ flying percentage was not reduced in any of the 

treatments compared to the wild-type males (Figure 4-4; One-way ANOVA p=0.152). Females’ 

eclosion percentage of OX3688A was significantly lower than wild-type when reared at 30 and 

100 µg/ml but not when reared at 60 µg/ml (Figure 4-4; One-way ANOVA p=0.003, followed by 

Tukey HSD post hoc test). OX3688A females’ flying percentage was lower than the wild-type 

only at 30 µg/ml (Figure 4-4; One-way ANOVA p=0.001 on transformed data, followed by Tukey 

HSD post hoc test), indicating that higher concentrations are more efficient at suppressing the 

RIDL phenotype. Note that in Figure 4-4 the flying percentage represents the number of flying 

individuals out of the number of eclosed adults rather than out of the number of pupae placed 

in the cage. 
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Figure 4-4. Effect of different tetracycline concentrations on the survival and flying ability of OX3688A homozygous G6.  

Note that here the flying percentage represents the number of flying individuals out of the number of eclosed adults rather 

than out of the number of pupae placed in the cage. Groups denoted by the same letter are not significantly different from 

each other. Error bars: standard error of the mean. 

 

 

 

The fitness of the G6 generation of homozygous was significantly higher than that of the G2 

generation, especially for females. For better comparison, Figure 4-5 shows the percentage of 

pupae giving flying adults, for G2 reared at 30 µg/ml and G6 reared at 30, 60 and 100 µg/ml. 

Besides, Figure 4-5 illustrates more clearly than Figure 4-4 the negative effect of high 

tetracycline concentration in males (One-way ANOVA p<0.0005, followed by Tukey HSD post 

hoc test) being balanced in females at 60 µg/ml by the repression of the RIDL system (One-way 

ANOVA p=0.001, followed by Tukey HSD post hoc test). When reared at 30 µg/ml of 

tetracycline, the percentage of flying females from pupae raised from 28.28 ± 4% in the G2 

generation of homozygous to 68.87 ± 3% in the G6 generation.  

 

0%

20%

40%

60%

80%

100%

% pupation % males 
eclosion

% females 
eclosion

% males flying % females flying

Effect of tetracycline concentrations on OX3688A

WT off tet

30 µg/ml

60 µg/ml

100 µg/ml

a a   a   a a a                   a        a                a   a   a   a          a       a   a
b   b b   b   b b

c   c



96 
 

 
Figure 4-5. Percentage of pupae producing flying adults, for the wild-type strain reared off tetracycline, homozygous 

OX3688A strain G2 generation reared at 30µg/ml of tetracycline, and homozygous OX3688A strain G6 generation reared at 

30, 60 and 100 µg/ml of tetracycline. 

Groups denoted by the same letter (Latin for males, Greek for females) are not significantly different from each other (One-way 

ANOVA followed by Tukey HSD post hoc tests). Error bars: standard error of the mean. G2 male and female data are presented 

for reference but result from single repeats and therefore were not included in the statistical analysis. Error bars represent the 

standard error of the mean. 

 

The only difference in the way the two experiments (on G2 and G6 individuals) were carried out 

was that in the G2 pupae were left off tetracycline while the G6 pupae were kept in the same 

tetracycline concentration as the larvae (30, 60 or 100 µg/ml). The next experiment was 

therefore set up in order to test whether the increase in flying ability of the females observed 

between the G2 and G6 females reared at 30 µg/ml was due to the presence of tetracycline in 

the G6 pupae water. We also tested the effect of adding the tetracycline at day 6 instead of day 

2, with the intent of reducing the amount of tetracycline required to rear the strain. Day 6 was 

chosen for being approximately the time when the antidote theoretically would start to be 

needed; the Actin-4 promoter - and consequent expression of tTAV2 - is induced in female 

pupae (Muñoz et al., 2004) so tetracycline should be absorbed before that stage. We also 

tested the addition of tetracycline (30 or 100 µg/ml) at pupa stage only, after larvae were 
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reared off tetracycline. Males’ flying phenotype was excluded from this experiment as previous 

experiments showed it was not dramatically affected by this range of tetracycline 

concentrations. Furthermore, in a control programme released males would have been reared 

without tetracycline, which limits our interest for males’ fitness in these experimental 

conditions. 

Seven trays of 300 larvae in 300 ml were set up for each treatment, and pupae split into the 

two treatments (30 or 100 µg tetracycline/ml water) after sexing. 

 
 
 Treatment Mean days to pupation Statistical Groups 

Males Off tet 9.5816 ± 0.04205                A 

 30 µg/ml on day 2 9.4660 ± 0.05543                A 

 30 µg/ml on day 6 9.4824 ± 0.04264                A 

Females Off tet 10.6757 ± 0.07862                         B 

 30 µg/ml on day 2 10.3133 ± 0.05387                A 

 30 µg/ml on day 6 10.6224 ± 0.08032                         B 
Table 4-4. Mean pupation time in days (± standard error), for homozygous males and females OX3688A reared off 

tetracycline, with 30 µg/ml tetracycline added at day 2 (day 1=hatching), and with 30 µg/ml tetracycline added at day 6.  

Groups denoted by the same letter are not significantly different from each other.  

 

 

Different timings of tetracycline addition did not significantly affect males’ development (One-

way ANOVA p=0.200) but females’ development time was significantly increased by rearing off 

tetracycline and late addition of tetracycline (One-way ANOVA p=0.005, followed by Tukey HSD 

post hoc test; Table 4-4). 

The results presented in Figure 4-6 showed the addition of tetracycline at pupal stage did not 

influence females’ flying ability (One-way ANOVA p=0.312). We therefore concluded that the 

increased flying ability of homozygous females observed at 30 µg/ml of tetracycline between 

the G2 and G6 generations was due to the selection of flying females at each generation. 
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Selection did not occur while the line was maintained as hemizygous, since wild-type females 

were regularly added in order to limit inbreeding and to boost egg production. Late addition of 

tetracycline to the rearing water (day 6 rather than day 2) significantly decreased the pupation 

percentage (One-way ANOVA p=0.009, followed by Tukey HSD post hoc test) but had no 

significant effect on the percentage of flying females from pupae (One-way ANOVA p=0.312; 

Figure 4-6).  

 

 

Figure 4-6. Effect of late (day 6 post-hatching) versus early (day 2 post-hatching) addition of tetracycline to the rearing water, 

and maintaining pupae off tetracycline versus on 30 µg/ml of tetracycline.  

The addition of tetracycline (30 and 100 µg/ml) only at pupa stage was not sufficient to suppress the flying phenotype and did 

not produce any flying females. Groups denoted by the same letter are not significantly different from each other. Error bars 

represent the standard error of the mean. 

 

A last experiment was performed in order to assess the repressibility of the flightless 

phenotype by low tetracycline concentrations. Five trays of 300 larvae in 300 ml were set up for 

each tetracycline concentration (0, 0.3, 1 and 30 µg/ml), using OX3688A homozygous G7 

generation. Rearing without tetracycline did not produce any flying females. At 0.3 and 1 µg/ml, 
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respectively 1.66 ± 0.58% and 12.17 ± 1.55% of the eclosed females were able to fly, compared 

to 90.79 ± 1.74% at 30 µg/ml (Figure 4-7).  

 

 
Figure 4-7. Phenotype of OX3688A homozygous G7 females reared at 0, 0.3, 1 and 30 µg/ml tetracycline.  

Tetracycline concentration of the rearing water did not significantly affect the pupation and eclosion percentages (ANOVA 

p=0.346 and p=0.514, respectively). Error bars represent the standard error of the mean. 

 

 

c/ Fecundity of homozygous females 

The aim of this experiment was to identify any crippling effect of high concentration of 

chlortetracycline on the fecundity of OX3688A homozygous females that would counterbalance 

the potential benefit of an increased percentage of flying females.  

Females homozygous OX3688 G6 reared in media containing tetracycline at 30, 60 and 100 

µg/ml were used for this experiment, as well as wild-type females reared off tetracycline 

(females from Figure 4-4). For each treatment, five cages (15x15x15cm) were set up with 30 

females. Twenty homozygous males reared at the same concentration were added into each 

cage.  
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Dead females were dissected and their wing length measured. The size of OX3688A females 

reared at 30 and 60 µg/ml was not significantly different from that of wild-type females reared 

off tetracycline; transgenic females reared at 100 µg/ml however were significantly smaller 

(Kruskal-Wallis p<0.001, followed by Mann-Whitney U-tests with Bonferroni correction; Table 

4-5).  

 

 

Cages were blood-fed and eggs collected twice a week for the first 3 weeks, which corresponds 

to the time that cages would be kept in a mass rearing environment. Experiments looking at 

individual egg laying where females of similar sizes have taken similar size bloodmeals would 

provide more specific information on fecundity, but be less indicative of egg production in a 

mass-rearing context. The egg production of OX3688A females was significantly lower than that 

of wild-type females when reared at 100 µg/ml, but not at 30 or 60 µg/ml (One-way ANOVA 

p=0.005, followed by Dunnett T3 post hoc test; Figure 4-8).  

Hatch rates were compared based on 14 egg papers for the different treatments.  Hatching was 

induced in a vacuum chamber for one hour before counting the number of larvae. Hatch rates 

from the different treatments were not significantly different (One-way ANOVA p=0.692; Figure 

4-9). All hatch rates were very low, indicating either a low fitness of the wild-type background 

strain or an inadequate storing or hatching of the eggs.  

Treatment N Wing length (mm) Groups 

WT off 41 2.5428 ± 0.01534 A 

30 µg/ml 51 2.5349 ± 0.01292 A 

60 µg/ml 40 2.5325 ± 0.01810 A 

100 µg/ml 65 2.4101 ± 0.01687            B 

Table 4-5. Mean wing length in mm (± standard error) of homozygous females OX3688A G6 reared at 30, 60 and 100 µg/ml of 

tetracycline, compared to wild-type females reared off tetracycline.  

Groups denoted by the same letter are not significantly different from each other. 
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Figure 4-8. Egg production from cages of OX3688A homozygous females reared at 30, 60 and 100 µg/ml of tetracycline 

compared to cages of wild-type females reared off tetracycline.  

Cages were set up with 30 females and 20 males. Groups denoted by the same letter are not significantly different from each 

other. Error bars represent the standard error of the mean. 

 
 

 
Figure 4-9. Hatch rate of homozygous OX3688A eggs from females reared at 30, 60 and 100 µg/ml of tetracycline compared 

to wild-type females reared off tetracycline.  

Average from 14 egg papers. There is no significant difference between groups (one-way ANOVA, p=0.692). Error bars 

represent the standard error of the mean. 
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d/ Mating competitiveness of homozygous males 

Males’ mating competitiveness is a key parameter for the success of a control programme. This 

experiment was designed to identify any loss of competitiveness due to the RIDL construct as 

the homozygous males were set to compete with wild-type males of the same genetic 

background.  

 

Males reared together:  

In an attempt to exclude any confounding effects caused by rearing experimental specimens in 

separate trays, wild-type and OX3688A G6 homozygous larvae were mixed and reared in the 

same trays throughout their larval development. Larvae were reared at relatively low density 

(300 wild-type plus 300 homozygous larvae in 1 litre of water) and fed an excess of food 

(enough for 700 larvae) in order to limit larval competition. Upon pupation, OX3688A and wild-

type specimens were identified and segregated from each other by fluorescence screening, and 

sexes were separated by morphological differences observed under microscope. 

Seven repeats were carried out with this experimental design; results are presented in Table 

4-6. Despite a p value of 0.052 from the repeated G-test, wild-type males inseminated more 

females than the OX3688A males in all but one repeats, indicating an overall better 

performance of the wild-type strain. 

As adults body size is an indication of fitness, it was critical that competing wild-type and 

OX3688A males were the same size in order to compare exclusively the effect of genotypes. We 

used wing length as a body size indicator. Wings of the males used in the mating competition 

experiments were not measured as many were damaged and unusable, which could have 

skewed the comparison. Extra trays were therefore set up and reared in the same conditions in 

order to produce males for wing length measurements. Results showed that rearing wild-type 

and OX3688A together resulted in significantly delayed pupation of OX3688A males and 

females compared to their wild-type counterparts (W=23.965 for males and W=28.769 for 
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females; df=1; p<0.001; Figure 4-10). Although development time was not a critical parameter 

of this experiment, this rearing setting also resulted into significantly smaller OX3688A males 

compared to wild-type males (t=3.820; p<0.001, Table 4-7). To address this limitation, an 

experiment was set-up rearing wild-type and OX3688A in separate trays and keeping the same 

larval density and food regime. In those conditions, OX3688A males and females developed at 

similar rates than WT specimens (W=1.920 for males’ development; df=1; p>0.05; W=3.453 for 

females’ development; df=1; p>0.1; Figure 4-10); most importantly, the size of wild-type and 

OX3688A males was not significantly different (U=1053.000; p=0.700, Table 4-7). A second set 

of experiments was consequently set up. 

 

Rep 
Egg 

batches 
Unhatched WT father RIDL father Both G value P value 

1 26 0 15 10 1 0.931292 0.334527 

2 24 2 13 9 0 0.731334 0.392451 

3 31 2 18 9 2 2.650905 0.103491 

4 30 0 10 17 0 1.835713 0.175454 

5 24 0 11 10 0 0.047637 0.827227 

6 30 4 16 7 3 2.839761 0.091958 

7 35 0 20 14 1 1.004682 0.316181 

Heterogeneity values    6.251704 0.395593 

Pooled values 103 76 7 3.78962 0.051571 

C.I. (95%) 
Low limit 53.70% 38.85%    

High limit 68.52% 48.29%    

Table 4-6. Mating competition between males reared together.  

50 homozygous G6 OX3688A males competed against 50 wild-type males for mating 50 wild-type females during 48 hours in a 

75x75x115cm cage. Data was analysed using a replicated G-test without Yates correction. No heterogeneity was found between 

replicates (p=0.4), indicating that the pooled G value can be used for this set of experiments. 
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Figure 4-10. Average cumulative pupation over time of males and females from the wild-type and homozygous OX3688A G6 

strains reared together in the same tray or separately in different trays, at 0.6 larvae/ml.   

Error bars represent the standard error of the mean. 

 
 
 

Rearing Strain N Mean ± SEM (mm) Significance 

Together WT males 78 2.142 ± 0.0085 
p<0.001 (t=3.820) 

OX3688A males 72 2.098 ± 0.00763 

Separate WT males 48 2.086 ± 0.0112 
p=0.700 (U=1053.000) 

OX3688A males 46 2.081 ± 0.0100 

Table 4-7. Mean ± SEM wing length (mm) of wild-type and homozygous OX3688A G6 males reared off tetracycline together or 

in separate trays, at 0.6 larvae/ml.  

When reared together, the wild-type males develop into bigger adults than the homozygous transgenics. In comparison, when 

reared in separate trays, male adult size wasn’t significantly different between strains. Note that the “together” and “separate” 

experiments were not performed at the same time and therefore should not be directly compared. 

 

 

Males reared separately:  

As rearing both types of males together appeared to produce significantly bigger wild-type 

males than RIDL males, but rearing each type separately didn’t (Table 4-7), a second set of 

experiments was set up using wild-type and OX3688A reared separately at 0.6 larvae/ml (600 

larvae in 1 litre of water) with enough food for 700 larvae. OX3688A G8, G9 and G10 generations 

were used for these experiments. Development times were not significantly different between 

wild-type and OX3688A (Figure 4-11; W=0.554; p>0.1 for males G8 versus wild-type males; 
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W=0.446; p>0.1 for females G8 versus wild-type females; W=2.367; p>0.1 for males G10 versus 

wild-type males; W=0.521; p>0.1 for females G10 versus wild-type females), confirming previous 

observations.  

 
 
 

 
Figure 4-11. Average cumulative pupation over time of males and females from the wild-type and homozygous OX3688A G8 

or G10 reared at 0.6 larvae/ml.  

 Error bars represent the standard error of the mean. 

 

Mating competition results are presented in Table 4-8, showing a highly significantly lower 

mating success of the homozygous OX3688A males compared to their wild-type counterparts: 

wild-type males inseminated an average of 69.13 ± 2.77% of the females, against 36.21 ± 3.19% 

inseminated by OX3688A males (including multiple matings in both categories). Replicated G-

tests of goodness-of-fit were performed on the outcome of the mating competition repeats, 

showing significantly less success of the OX3688A compared to wild-type males in 6 out of 12 

repeats. For each generation used, the heterogeneity value was not significant between 

replicates, indicating that the pooled G values can be used. A highly significant difference was 

found between the performances of wild-type and RIDL males of the G9 and G10 generations 

(p=2x10-7 and p=8x10-8, respectively). RIDL males of the G8 generation showed no significant 

difference compared to the wild-type (p=0.1386) although they inseminated less females in all 

but one repeats. 
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Exp Rep Egg 
batches 

Unhatched WT father RIDL father Both G value P value 

G8 1 38 1 22 12 3 2.5267 0.1119 

 2 36 3 18 11 4 1.3323 0.2484 

 3 41 1 19 17 4 0.0909 0.763 

 4 41 1 18 18 4 0 1 

Heterogeneity values    1.757 0.6243 

Pooled values 77 58 15 2.193 0.1386 

G9 5 41 0 25 15 1 2.404 0.121 

 6 45 2 28 15 0 3.992 0.0457 

 7 36 0 26 9 1 8.112 0.0044 

 8 40 0 31 5 4 16.413 5E-05 

Heterogeneity values    3.941 0.2679 

Pooled values 110 44 6 26.98 2E-07 

G10 9 40 3 29 7 1 13.566 0.0002 

 10 36 2 23 9 2 5.591 0.0181 

 11 41 1 30 10 0 10.465 0.0012 

 12 38 1 23 14 0 2.211 0.137 

Heterogeneity values    2.918 0.4044 

Pooled values 105 40 3 28.915 8E-08 

C.I. (95%) for 
successful matings 

Low limit 63.71% 29.95%    

High limit 74.55% 42.47%    

Table 4-8. Mating competition between males reared separately.  

The three sets of repeats used generation G8, G9 and G10 of the homozygous OX3688A line, respectively. 50 homozygous 

OX3688A males competed against 50 wild-type males for mating 50 wild-type females during 48 hours in a 75x75x115 cm cage. 

Data was analysed using a replicated G-test without Yates correction, counting multiple matings as success for both wild-type 

and OX3688A males.  
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Wings of competing males were measured for each set of experiments; no significant size 

difference between wild-type and OX3688A males was noticed (Table 4-9).  

The number of hatched offspring produced by females mated with either wild-type or OX3688A 

males was compared for each set of repeats (Table 4-10); in repeats 1 to 4, OX3688A males (G8) 

gave significantly more larvae than wild-type males, a difference that was not observed in 

repeats 5-12 (G9 and G10).  

 
 
 

Experiment Strain N Mean ± SEM (mm) Significance 

G8 (rep 1-4) 
WT males 72 2.13 ± 0.007 

p=0.583 (t=-0.550) 
OX3688A males 88 2.14 ± 0.007 

G9 (rep 5-8) 
WT males 88 2.05 ± 0.008 

p=0.309 (t=-1.020) 
OX3688A males 107 2.06 ± 0.006 

G10 (rep 9-12) 
WT males 19 2.14 ± 0.017 

p=0.083 (t=1.790) 
OX3688A males 16 2.10 ± 0.013 

Table 4-9. Mean ± SEM wing length (mm) of wild-type and homozygous OX3688A males used for the mating competition 

experiments.  

 

 
 
 

Experiment Strain N Mean ± SEM (mm) Significance 

G8 (rep 1-4) 
WT males 77 22.27 ± 1.835 

p=0.018 (U=1700.5) 
OX3688A males 58 30.53 ± 2.799 

G9 (rep 5-8) 
WT males 110 46.43 ± 2.362 

p=0.949 (t=-0.064) 
OX3688A males 44 46.73 ± 4.544 

G10 (rep 9-12) 
WT males 105 43.92 ± 2.001 

p=0.980 (t=0.025) 
OX3688A males 40 43.83 ± 3.449 

Table 4-10. Mean ± SEM larvae produced by females mated with wild-type or OX3688A males. 
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e/ Longevity of homozygous males 

 No significant difference between the lifetime of wild-type and OX3688A males was observed 

(Figure 4-12; Kaplan Meier Log Rank p=0.331).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

f/ Wolbachia status 

As mentioned in the introduction, Ae. albopictus is super-infected with two strains of 

Wolbachia, wAlbA and wAlbB. The tetracycline antibiotic used to suppress the flightless 

phenotype of OX3688A is also used to eliminate Wolbachia from insect hosts (Dobson and 

Rattanadechakul, 2001). We therefore investigated the infection status of the homozygous line 

after several generations.  

PCR analysis on OX3688A homozygous G10 individuals (110 females in pools of 10) indicated 

that the line was cured of both wAlbA and wAlbB. PCR on 24 wild-type individuals (12 males 

and 12 females) showed that they were all super-infected (results not shown). 

Figure 4-12. Survival of homozygous OX3688A (G8) and wild-type males reared off tetracycline. 

No significant difference observed (Kaplan-Meier Log Rank p=0.331). 
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Figure 4-13. OX3688A G10 is cured of wAlbA and wAlbB.  

PCR was performed on 11 pools of 10 OX3688A G10 females (1-11) and a wild-type control (WT) for the presence of wAlbA (A: 

primers 328F and 691R) and wAlbB (B: primers 183F and 691R), showing positive amplification of wild-type genomic DNA only. 

All genomic DNA extractions gave positive amplification with endogenous primers, indicating good DNA quality (C: primers 

SVNP2F2 and SVNP2R2).  

 
 

4. Discussion 

High penetrance was observed for the OX3688A phenotype, with no females able to fly in the 

absence of tetracycline at the G7 generation (Figure 4-7). 1.66% females were able to fly when 

the strain was reared at 0.3 µg/ml (Figure 4-7). In the environment, Ae. albopictus breeds in 

clean water containers, filled either by rainfall or humans, which are highly unlikely to contain 

tetracycline. Even if they did come into contact with tetracycline-polluted water, the 

concentration would likely be lower than 0.3 µg/ml (the highest published record of 

tetracycline contamination in the environment that I was able to find in the literature 

mentioned a maximum of 0.065 µg/ml of tetracycline, in a municipal sewage in China (Liu et al., 

2009)). Based on these observations, OX3688A should be unable to breed in the environment, 

and therefore should be safe to use in a control programme. However, considering the 

substantial improvement of the females’ flying ability between generations G2 and G6 of the 

homozygous line (Figure 4-5), it seems essential to regularly verify that OX3688A females 
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remain sensitive to the RIDL system, i.e. flightless off tetracycline. It would also probably be 

safer to maintain the strain at a concentration of tetracycline higher than the 30 µg/ml 

standard used at Oxitec for RIDL mosquito strains, for instance 60 µg/ml, in order to limit the 

selection pressure for least sensitive females. No such selection was occurring in the 

hemizygous state as transgenic males were usually crossed to wild-type females.  

Safety considerations aside, increasing the tetracycline concentration from 30 to 60 µg/ml 

offered greater repression of the RIDL construct in the OX3688A strain, as shown by the 

improved eclosion and flying ability of females (Figure 4-5). Increasing further the tetracycline 

concentration to 100 µg/ml did, however, have a negative impact on the females’ eclosion 

(Figure 4-5), which is most probably due to tetracycline toxicity at high concentration, as 

observed more clearly in males (Figure 4-4 and Figure 4-5). The released generation from a 

female-specific RIDL strain such as OX3688A would be reared off tetracycline in order to 

separate out the females; the negative impact of tetracycline on males’ fitness would only 

occur in laboratory and mass rearing conditions where it should not have a significant effect on 

productivity.  

The size and fecundity of OX3688A females reared at 60 µg/ml of tetracycline was similar to 

OX3688A females reared at 30 µg/ml and wild-type females reared off tetracycline (Table 4-5, 

Figure 4-8 and Figure 4-9). OX3688A females reared at 100 µg/ml were significantly less fecund 

(Table 4-5, Figure 4-8), probably a direct consequence of the significantly smaller females. Both 

of these observations confirm the harmful effect of tetracycline at this concentration, and 

corroborate the direct relationship between body size and fecundity previously reported 

(Armbruster and Hutchinson, 2002).  

Considering these results it is clear that, of the three tetracycline concentrations tested, 60 

µg/ml would be optimal for the OX3688A strain.  
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The constant requirement for tetracycline of the RIDL strains was expected to have an impact 

on Wolbachia densities. Results presented here show that the OX3688A strain was cured of 

Wolbachia at the G10 generation (Figure 4-13). The loss of Wolbachia was shown not to affect 

males’ fitness (Calvitti et al., 2009), but to reduce females’ fecundity and egg hatch rate 

(Dobson et al., 2004), an effect that did not appear in the results presented here (Figure 4-8 and 

Figure 4-9). The poor egg hatch rates however may prevent efficient mass-production of the 

OX3688A strain, possibly a consequence of an inbred genetic background rather than an effect 

of the transgene. Cytoplasmic incompatibility between the OX3688A strain and wild-type 

populations offers added protection in case of a loss of penetrance of the flightless phenotype, 

as any OX3688A females mated with wild-type males would produce non-viable progeny. 

 

Results from rearing off tetracycline suggest that the female-specific RIDL phenotype from the 

OX3688A strain is induced after the density-dependent phase, with no significant difference in 

the pupation time and similar male sizes between OX3688A and wild-type (Figure 4-10, Figure 

4-11, Table 4-7 and Table 4-9). However, when homozygous OX3688A and wild-type larvae 

were reared together in a 1:1 ratio for the first set of mating competition experiments, 

OX3688A homozygous larvae developed significantly slower and homozygous males came out 

significantly smaller than their wild-type counterparts (Figure 4-10 and Table 4-7). These results 

indicate a significantly lower larval competitiveness of the homozygous OX3688A compared to 

wild-type larvae, even in a relatively non-competitive environment (0.6 larvae/ml with a small 

excess of food). However, the competitiveness of homozygous RIDL larvae is only relevant if the 

control strategy involves the release of homozygous eggs rather than homozygous adult males 

or pupae. In the case of an adult/pupae release strategy, only hemizygous RIDL larvae would be 

involved in resource competition with their wild-type siblings. It would be interesting to study 

the outcome of such competition, ideally using insects from the wild or recently colonized to 

cross and compete with the OX3688A strain. 
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OX3688A homozygous G8 males did not perform significantly worse than their wild-type 

counterparts in the mating competition experiment, despite inseminating fewer females in all 

but one repeat (Table 4-8). They had similar sizes and development time as their competitors 

(Figure 4-11, Table 4-9), and did not have a significantly shorter lifetime (Figure 4-12). Males 

from generations G9 and G10 of the OX3688A homozygous strain (used in the second and third 

set of mating competition tests) also had similar sizes than their wild-type competitors (Table 

4-9), but performed significantly worse in almost every repeat (see individual p values in Table 

4-8). The development time of G10 homozygous was also not significantly different from that of 

the wild-type strain. It would be interesting to compare later generations of the OX3688A 

homozygous strain to wild-type in the future to see whether the strain is getting worse over 

time. All repeats combined, and including multiple matings as both OX3688A and wild-type 

success, 36.21 ± 3.19% of the females which produced hatching offspring were inseminated by 

OX3688A males, against 69.13 ± 2.77% inseminated by wild-type males. This corresponds to a 

Relative Sterility Index (RSI) around 0.36 for the OX3688A strain. A strain equally competitive to 

wild-type would have a RSI of 0.5; the threshold RSI for medfly (Ceratitis captiata) SIT trials is 

0.2 against recently colonised individuals from the target population in field cages 

(FAO/IAEA/USDA, 2003). Here, the OX3688A males are were competing against a relatively well 

adapted laboratory strain in a laboratory environment, and would likely perform worse in more 

challenging conditions. Although lower male competitiveness can be compensated by releasing 

larger numbers, this may be an important issue with the OX3688A strain considering the low 

hatch rate (Figure 4-9) and consequently low predicted mass rearing yield.   

 

The evident background issue arising from those results could possibly be overcome by 

introgressing the strain into a better wild-type background and made homozygous once again. 

However, such an approach would take at least five generations of introgressing in order to 

change >95% of the genetic background (1-0.55=0.96875), plus the highly time-consuming 

homozygous-selection process using comparative PCR. It would also not guaranty that the new 

strain would be better, as we can not predict the phenotype of OX3688A into a different 
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genomic background. At the moment, there is no reason to think that any OX4358 strain 

(Chapter 3) would have a better fitness than OX3688A, although if PCR genotyping was possible 

on one of those insertions it would greatly facilitate the homozygous-making process and 

subsequent quality control of the strain. There is no doubt that new Ae. albopictus injections 

should take place in a different, better wild-type background strain.  

 

Overall, results from Chapter 3 and 4 suggest that the Actin4-tTAV2 constructs are too toxic and 

not adequately repressed by tetracycline in Ae. albopictus, and the high selection pressure, 

which allowed the OX3688A homozygous strain to develop a fitness comparable to the wild-

type strain, is not a desirable phenomenon. A less toxic construct would allow creating more 

candidate strains to compare and choose from. With the aim of tailoring RIDL constructs for 

successful application in this species, the next chapter of this thesis is looking at alternatives to 

tTAV2. 
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Chapter 5  

Decreasing the toxicity of the  

female-specific RIDL system  

for Aedes albopictus 
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1. Introduction 

The results presented in chapters 3 and 4, and in particular the low percentage of hemizygous 

Aedes albopictus RIDL females able to fly when reared on tetracycline, show that sub-optimal 

phenotypes and fitness levels were achieved by the Actin4-tTAV2/tetO-VP16 transgenes 

(OX4358 and OX3688) in Ae. albopictus. This is likely due to excessive basal toxicity of such 

transgenes in this species. 

Excessive toxicity in females reared on tetracycline can be due to an incomplete repression of 

the system by tetracycline, or an excessive basal expression of either tTAV2 or VP16. The lower 

mating competitiveness observed in OX3688A males (chapter 4) may be due solely to the 

insertion site, but could also be due to some leaking of the Actin4 promoter or basal expression 

of VP16  in males. Several elements of the Actin4-tTAV2/tetO-VP16 transgene can be suspected 

of causing excessive toxicity: the Actin4 promoter; the tTAV2 transactivator; and the tetO-VP16 

effector. Work by Fu et al. indicated that the Actin4-tTAV2 cassette is able to cause female 

flightlessness by itself (Fu et al., 2010), and therefore a sensible target for further 

investigations. Reducing the negative impact of the construct on males’ fitness could in theory 

be achieved by preventing the Actin4 promoter from leaking in males, although in practice our 

understanding of the structure-function relationship of insect promoters in general is too poor 

to allow a rational-design approach to this potential problem. Lowering the basal toxicity of the 

tTAV2 transactivator seems a more feasible approach, and should help improve the fitness of 

females reared on tetracycline. The transactivator needs however to retain high affinity for the 

tetO sequence in order to achieve 100% of flightless females off tetracycline.  

The sequence of the original tetracycline-controlled transactivator, tTA (Gossen and Bujard, 

1992), has been optimised for codon usage in insects in order to enhance its expression; both 

the sequences of the tetracycline repressor (tetR) and VP16 transcription activator have been 

optimised, resulting in “tTAV2” used in OX3688 and OX4358 constructs. tTAF3 is yet another 

variation of the tTA transactivator, which consists of the optimised tetR used in tTAV2, fused 

with 3 minimal activation domains derived from VP16 (Baron et al., 1997). Baron et al. 
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suggested that tTAF3 might have lower toxicity than tTA. The aim of the experiments described 

in this chapter was to compare tTAV2 with tTA and tTAF3, in terms of toxicity, effectiveness and 

repressibility by tetracycline. 

The site-specific integration system, described in chapter 2, is an ideal tool for an accurate 

comparison of transgenes without confounding position effects. Lines OX3860B and OX3860C 

(Chapter 2) each carry an attP docking site in obviously different genomic surrounding, revealed 

by the different expression patterns of the 3xP3-ECFP marker (blue eyes and blue anal papillae 

in OX3860B, blue eyes only in OX3860C). However, the flightless phenotype produced by 

Actin4-tTAV2 transgenes is hard to quantify. Driving the transactivator with a promoter specific 

to more essential tissues was anticipated to induce death rather than flight impairment and 

therefore a better tool for estimating the variations in toxicity of the different transactivators.  

Literature investigation led to the Ae. aegypti hexamerin-1 gene (AaHex1). Hexamerins are 

storage proteins accumulated during larval stages; they are synthesised in the fat bodies, 

secreted in the hemolymph and stored in the fat bodies shortly before pupation as nutrient 

reserves (Telfer and Kunkel, 1991). Work by Korochkina et al. showed high expression levels of 

AaHex1 restricted to the 4th larval stage (Korochkina et al., 1997a). The AaHex1 protein has a 

tighter peak of expression than the AaHex2 protein, with hemolymph levels declining from 5 

hours after larval/pupal ecdysis (Korochkina et al., 1997b). The AaHex-1γ subunit is, in addition, 

more highly expressed in females. The AaHex-1γ promoter was chosen to drive tTAV2, tTA and 

tTAF3, hoping that it would induce different degrees of late-acting lethality after site-specific 

integration into OX3860B and OX3860C. 
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2. Material and Methods 

a/ Plasmid construction 

OX4427, OX4429 and OX4436 constructs: The AaHex-1γ promoter was amplified from Ae. 

aegypti genomic DNA with primers AeHex1-bbs-f and AeHex1-bbs-r (see Table 5-1 for primer 

sequences), purified on agarose gel and MinElute column (Qiagen, Hilden, Germany) and 

digested with BbsI (FastDigest enzyme from Fermentas, Vilnius, Lithuania). tTAF3, tTA and 

tTAV2 were amplified respectively from construct OX396 with primers tTAF3-Bbs-f and tTAF3-

pac-r, construct OX3335 with primers tTA-bsmb-f and tTA-pac-r, or construct OX3737 with 

primers tTAV2-bbs-f and tTAV2-pac-r (unpublished constructs, Oxitec Ltd); PCR products were 

purified on agarose gel and MinElute columns, then digested with PacI and respectively BbsI, 

BsmBI or BbsII (FastDigest enzymes from Fermentas). Construct OX3515, containing a 3xP3-

DsRed2 (red eyes) marker and an attB site for site-specific integration into attP, was used as 

backbone for the three final constructs: it was digested with EagI and PacI (FastDigest enzymes 

from Fermentas) and purified on MinElute column (Qiagen) to discard the short 25 bp product 

while keeping the 4421 bp fragment. OX4427, OX4429 and OX4436 were completed by ligating 

the digested PCR products (AaHex-1γ promoter and respectively tTAF3, tTA or tTAV2) into the 

digested backbone using Rapid Ligase from Fermentas. 

OX4499 construct (attB-hr5ie1-DsRed2-tetO-Michelob_x) was obtained by replacing the 3xP3-

DsRed2 marker from the OX3582 construct (Fu et al., 2010) with the hr5-ie1-DsRed2 cassette 

from the OX3978 construct (attB-hr5ie1-DsRed2-tetO-AmCyan; Oxitec Ltd, unpublished). 

Michelob_x is a pro-apoptotic, “killer” gene (Zhou et al., 2005). Both donor constructs were 

digested with BamHI and PacI (FastDigest enzymes from Fermentas); the 4616 bp restriction 

fragment from OX3582 and the 2347 bp restriction fragment from OX3978 were gel-purified 

using Minelute column (Qiagen) and ligated using Rapid Ligase (Fermentas). 
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Table 5-1. Primer sequences, and expected product sizes. 

Name Direction Sequence 5’-3’ Specificity Amplicon size 

AeHex1-bbs-f Forward ACGCGAAGACTAGGCCGTCAGCCAGTTTGCCG
TCATG 

Ae. aegypti Hex1γ  
promoter 

1457 bp 

AeHex1-bbs-r Reverse TCGCGAAGACATCCATTGACGGTAGTTCTCGC
TGGAAG 

Ae. aegypti Hex1γ  
promoter 

 

tTAF3-Bbs-f Forward AGCGGAAGACTAATGGGCAGCCGCCTGGATAA
G 

tTAF3 771 bp 

tTAF3-pac-r Reverse TCGCTTAATTAATACCAGCATGTCGAGATCAAA
GTCG 

tTAF3  

tTA-bsmb-f Forward AGCGCGTCTCACTACCCCACCGTACTCGTCAA
TTCC 

tTA 1031 bp 

tTA-pac-r Reverse ACGCTTAATTAACCCACCGTACTCGTCAATTCC tTA  

tTAV2-bbs-f Forward AGCCGAAGACACATGGGCAGCCGCCTGGATAA
GTC 

tTAV2 1041 bp 

tTAV2-pac-r Reverse AGGCTTAATTAATTAGCCGCCGTACTCATCGAT
G 

tTAV2  

Diag-AeHex1pro Forward GCGCCCCATACCTAGAAAGTG Ae. aegypti Hex1γ  
promoter 

820 bp with Diag2-
VP16new 

Diag5-dsred Reverse ACCATCGTGGAGCAGTACGAG DsRed2 with Diag-AaHex1pro: 
1189 bp for OX4427 and 
1450 bp for OX4429 

3’cent-3  Reverse AAACCTCCCACACCTCCC SV40 3’UTR sequencing primer 

Diag2-VP16new Reverse CGATGGTGCTGCCGTAGTTG tTAV2 820 bp with Diag- 

3860B-5’flank1 Forward TGAGAACAAGATGGCGATTCTAGGAGT OX3860B 5’ flanking 
sequence 

426 bp with PB2 

3860C-5’flank1 Forward CACAATGGAACCATGAAAACTTAAACCAG OX3860C 5’ flanking 
sequence 

363 bp with PB2 

PB2 Reverse CAGTGACACTTACCGCATTGACAAG piggyBac 5’-end  

AmCyTaqF Forward GGCGACGACATGAAGATGACCTAC AmCyan 122 bp 

AmCyTaqR Reverse GTCACCTTGAAGGTGGAGGTCTGG AmCyan  

AmCyTaqprobe Probe GCGTGAACGGCCACTACTTCACCGTGA AmCyan  

18StaqF Forward ACGCGAGAGGTGAAATTCTTG D. melanogaster rRNA 69 bp 

18StaqR Reverse GAAAACATCTTTGGCAAATGCTT D. melanogaster rRNA  

18StaqProbe Probe 6-FAM-CCGTCGTAAGACTAAC-MGB D. melanogaster rRNA  
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b/ Strain background, rearing and transformation 

The Ae. albopictus OX3860B and OX3860C carry the an attP docking site in two different 

genomic locations, as described in Chapter 2. The Ae. aegypti wild-type strain originate from 

Malaysia and was colonised by the Institute of Medical Research (Kuala Lumpur) in 1977. The 

insectary was kept at 27°C (± 1°C) and 70% (± 10%) relative humidity. Larvae were fed on 

crushed dry fish food (TetraMin® flake food from Tetra GmbH, Germany) and adults on 10% 

glucose with 14 U/ml penicillin and 14 µg/ml streptomycin. Females were fed on horse blood 

using a Hemotek Insect Feeding System (Discovery Workshops, Accrington, UK) set at 37°C.  

Embryos from Ae. albopictus OX3860B and OX3860C strains were injected for site-specific 

integration with OX4427, OX4429 or OX4436 (350 ng/µl) and phiC31 mRNA (600 ng/µl) (Nimmo 

et al., 2006) in injection buffer. Similar concentrations of OX3978 and OX4499 were injected 

into line OX3860B only. The piggyBac and phiC31 mRNAs were transcribed and purified using 

the mMESSAGE mMACHINE® T7 and MEGAclearTM kit (Ambion, Austin, TX). Construct and 

helper plasmids were purified using the EndoFree Plasmid Maxi kit (Qiagen). Injected G0 adults 

were crossed in pools to wild-type counterparts. G1 larvae were screened for fluorescence using 

a Leica (Wetzlar, Germany) MZ95 microscope with the appropriate filter sets from Chroma 

Technology (Rockingham, VT, USA) (filters: ECFP: exciter D436/20x; emitter D480/40m; DsRed2: 

exciter HQ545/30x; emitter HQ620/60m). OX4427, 4429 and 4436 lines were started with 3 G1 

positive adult males, which were subsequently analysed by PCR to confirm their genotype.  

Pictures were taken with Canon PowerShot S5IS with a MM99 adaptor (Martin microscopes, 

Easley, SC, USA) to fit into the eyepiece. 

 

c/ Characterisation of transformation events 

Transgenic G1 individuals used to start all the lines were characterised by PCR to ensure that 

insertions were as expected. tTAF3 (from OX4427) and tTA (from OX4429) were amplified using   

primers Diag-AeHex1pro and Diag5-dsred, and the resulting fragments were sequenced with 
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primer 3’cent-3. tTAV2 (from OX4436) was amplified using primers Diag-AeHex1pro and Diag2-

VP16new, and the resulting fragments were sequenced with primer Diag-AeHex1pro. Site-

specific integration into the correct attP site was checked using primers PB2 and respectively 

3860B-5’flank1 or 3860C-5’flank1 for insertions into line OX3860B or OX3860C. 

 

d/ Test crosses 

Eggs were collected from crosses of hemizygous G3 males from lines OX4427[B], OX4429[B], 

OX4436[B], OX4427[C], OX4429[C] and OX4436[C] (carrying the red eyes marker 3xP3-DsRed2) 

with hemizygous G3 females from lines OX3978 or OX4499 (carrying the red body marker 

hr5ie1-DsRed2). The progeny from those crosses, according to Mendel’s laws of inheritance, 

was expected to be a mixture of parental and non-parental phenotypes: red eyes, red body, 

wild-type, and “red eyes with red body” individuals, in equal proportions.  

Eggs were hatched on day 1. On day 2, “on tet” and “off tet” trays (11 x 19 cm bottom surface) 

were set up with 300 larvae in 300 ml of pure water (1 larva/ml), respectively with or without a 

supplement of 30 µg/ml chlortetracycline hydrochloride (Sigma-Aldrich, Gillingham, UK). Larvae 

were fed finely grinded TetraMin® as follows: 12 mg/tray on days 2, 3 and 17; 24 mg/tray on 

days 4, 9, 11 and 12; 48 mg/tray on day 5; 96 mg/tray on days 6, 7 and 8. Pupae of different 

genotypes were separated by fluorescence phenotype. Sexes were also separated as pupae. 

Each category was transferred into recognised cages and emergence into adults was recorded. 

For rearing in wells, 12 well plates (Nunc A/S, Roskilde, Denmark) were used, with or without a 

supplement of 30 µg/ml chlortetracycline hydrochloride (Sigma-Aldrich). Larvae were fed a 

solution of ground TetraMin® dispensed using a repetitive pipette. 
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e/ Comparative RT-PCR 

Comparative RT-PCR was performed on RNA samples of 3 pooled female pupae with an 

AmCyan-specific primer/probe set (AmCyTaqF, AmCyTaqR and AmCyTaqprobe, Table 5-1) and 

an endogenous primer/probe set specific to the 18S ribosomal RNA (18StaqF, 18StaqR, 

18StaqProbe, Table 5-1) which acted as normaliser.  

RNA was extracted using Tri Reagent (Ambion, Austin, TX, USA) according to the manufacturer’s 

instructions, and pellets were resuspended in 60 µl Tris 10mM. RNA samples were quantified 

on a Pharmacia Biotech (Little Chalfont, UK) GeneQuant II RNA/DNA calculator, and 0.5 µg were 

treated with DNase I (Roche, Burgess Hill, UK) in a final volume of 11.5 µl. cDNA was 

synthesised using the RevertAid™ First Strand cDNA Synthesis Kit from Fermentas (random 

hexamer primers), according to the manufacturer’s instructions. A mastermix was prepared 

with 2.5 µl of each primer (10 µM), 0.625 µl of each probe (10µM), and 0.25 µl of pure water 

and 12.5 µl of TaqMan® Gene Expression Master Mix (Applied Biosystems, Warrington, UK) per 

reaction. Each reaction was set up with 24 µl of mastermix and 1 µl of cDNA. Each sample was 

analysed in triplicate. 

Comparative RT-PCR reactions were performed on a Mx3005P thermal cycler (Stratagene, La 

Jolla, CA, USA) with the following programme: step 1 - 2 minutes at 50°C; step 2 – 10 minutes at 

95°C; step 3 - 15 seconds at 95°C; step 4 - 1 minute at 60°C; cycle steps 3 and 4 fourty times. 

Data were analysed using the MxPro-QPCR software (Stratagene). 
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3. Results 
 

 

 

The transactivation capacity of tTAV2, tTA and tTAF3 were compared as described in Figure 5-1. 

Each transactivator was placed under the control of the Hex1γ promoter, expected to induce 

expression in late developmental stages. Corresponding constructs, OX4427 (Hex1γ-tTAF3), 

OX4429 (Hex1γ-tTA), and OX4436 (Hex1γ-tTAV2), all carried the 3xP3-DsRed2 (red eyes) 

transformation marker and an attB site. In order to negate position effects, these constructs 

were inserted site-specifically into the attP docking sites from lines OX3860B and OX3860C 

described in Chapter 2. Six transgenic lines were generated: OX4427[B], OX4429[B], OX4436[B] 

(insertions into OX3860B line), OX4427[C], OX4429[C] and OX4436[C] (insertions into OX3860C 

line).  

Figure 5-1. Experimental design for direct comparison of the tTAV2, tTA and tTAF3 transactivators.  

The transactivators tTAV2 (optimised tetR + optimised VP16), tTA (original tetR + VP16) and tTAF3 (optimised tetR + truncated 

VP16) were placed under the control of the Aedes aegypti Hexamerin-1γ promoter (AaHex1γPro). The corresponding 

constructs, respectively OX4436, OX4429 and OX4427, were inserted site-specifically into lines OX3860B and OX3860C using 

the attP/attB system. Resulting transgenic lines were crossed individually to the OX3978 and OX4499 effector lines. Efficacy 

and repressibility of each transactivator was assessed by comparing levels of AmCyan expression in crossed progeny and their 

survival off and on tetracycline. 
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Each transactivator line was crossed to tetO-AmCyan (OX3978) and tetO-Michelob_x (OX4499) 

effector lines, both carrying a hr5ie1-DsRed2 (red body) marker. Progeny was reared off and on 

tetracycline (as described in the methods section) to observe both the efficacy and 

repressibility of each transactivator. Pupae carrying both a transactivator and an effector 

construct were identified as expressing DsRed2 both in the eyes and the body.  

 

a/ Crosses to tetO-AmCyan (OX3978) 

Progeny from transactivator lines crossed with tetO-AmCyan and carrying both constructs (i.e. 

with red eyes and red body) were screened under a cyan filter to observe induction of the 

AmCyan reporter gene. In the absence of tetracycline, AmCyan expression was observed in L3, 

L4 and pupa stages from crosses to OX4427[B] OX4427[C], OX4436[B] and OX4436[C], with 

OX4436[B] being brightest and OX4427[C] dimmest (Figure 5-2). This indicates that tTAF3 is 

functional and weaker than tTAV2, and that the attP insertion locus of line OX3860B is more 

transcriptionally active than that of line OX3860C. When reared on tetracycline, AmCyan 

expression was significantly reduced but still noticeable. In the absence of tetracycline, none of 

the progeny from crosses to OX4429[C], and only some of the progeny from crosses to 

OX4429[B] showed visible levels of AmCyan expression, precluding tTA as an alternative to 

tTAV2. 
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Figure 5-2. Pupae of the tetO-AmCyan reporter line (OX3978, marker hr5ie1DsRed2), alone or crossed to Hex1γ-tTAF3 

(OX4427[B] and [C], marker 3xP3-DsRed2), Hex1γ-tTA (OX4429[B] and [C], marker 3xP3-DsRed2), and Hex1γ-tTAV2 

(OX4436[B] and [C], marker 3xP3-DsRed2).  

A: reared On tetracycline; B: reared Off tetracycline; 1: white light; 2: red filter; 3: blue filter. 
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A pool of three female pupae from each type of cross, carrying both the transactivator and the 

tetO-AmCyan constructs, were harvested from two separate hatching events. Both sets were 

analysed by comparative RT-PCR in order to compare AmCyan expression levels, using the 

OX3978 sample (tetO-AmCyan without transactivator) as calibrator. Despite differences in 

expression levels between the two sets of samples, possibly due to pupae being harvested at 

different ages, results from both sets confirmed previous observations that tTAF3 is a weaker 

transativator than tTAV2 (Figure 5-3). 

 
Figure 5-3. Comparative RT-PCR on AmCyan expression from the tetO-AmCyan reporter line (OX3978) crossed to Hex1γ-

tTAF3 (OX4427[B] and [C]), Hex1γ-tTA (OX4429[B] and [C]), and Hex1γ-tTAV2 (OX4436[B] and [C]), when reared On and Off 

tetracycline.  

Uncrossed OX3978 sample was used as the calibrator. Error bars are the standard error of the average fold increase (based on 

the standard deviation of the ΔΔCT values). Each sample contained 3 female pupae. 
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b/ Crosses to tetO-Michelob_x (OX4499) 

Progeny from transactivator lines crossed with tetO-Michelob_x were screened as pupae and 

numbers from each phenotype were recorded, as well as the numbers of adults eclosed (Figure 

5-4). In accordance with previous results from the tetO-AmCyan crosses, insertions into 

OX3860C showed weaker phenotypes than into OX3860B, and the transactivator ability of tTA 

appeared insufficient. In the absence of tetracycline, only 6 individuals carrying both OX4427[B] 

(tTAF3) and OX4499 survived to pupa stage, compared to 60 pupae carrying OX4499 only; none 

of the individuals carrying OX4436[B] (tTAV2) and OX4499 survived to pupa stage in the 

absence of tetracycline, compared to 45 pupae carrying OX4499 only. In the presence of 

tetracycline, 49 individuals carrying OX4427[B] and OX4499 survived to pupa stage, compared 

to 56 pupae carrying OX4499 only;  20 individuals carrying OX4436[B] and OX4499 survived to 

pupa stage, compared to 56 pupae carrying OX4499 only.  

In order to determine the time of death of individuals carrying both constructs and not 

surviving to pupa stage, some progeny from the OX4427[B], OX4429[B] and OX4436[B] crosses 

to OX4499 were screened as L1 and individuals with both red eyes and red body, i.e. carrying 

both the transactivator and tetO-Michelob_x constructs, were reared in individual wells. As a 

control, some individuals carrying only a transactivator constructs or OX4499 were also reared 

in wells. The stage of death was recorded and results are presented in Figure 5-5. The OX4499 

construct induces significant toxicity by itself, with only 46% survival to adulthood. The 

transactivator constructs alone appeared largely innocuous, with around 90% survival to adult. 

In the presence of tetracycline, the survival of OX4429[B] crossed to OX4499 was quite similar 

to OX4499 alone, but the survival to adult was not much lower in the absence of tetracycline 

despite an overall earlier time of death. In the absence of tetracycline, all of the individuals 

carrying both OX4499 and OX4436[B] died before reaching L3 stage, whereas 8 out of 52 

individuals carrying OX4499 and OX4427[B] survived to pupa stage, with 4 reaching adulthood. 

Tetracycline seemed to generally delay the time of death, with 28 out of 53 individuals carrying 

OX4499 and OX4436[B] surviving to L4 stage (4 reaching adulthood), and 19 out of 36 

individuals carrying OX4499 and OX4427[B] surviving to L4 stage (10 reaching adulthood).  
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Figure 5-4. Progeny from crosses between OX4499 (tetO-Michelob_x) and OX4427 (Hex1γ-tTAF3), OX4429 (Hex1γ-tTA) and 

OX4436 (Hex1γ-tTAV2) constructs inserted site-specifically into OX3860B (“[B]”) or OX3860C (“[C]”) attP docking lines. 
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Figure 5-5. Proportion of progeny from transactivator lines OX4427[B] (tTAF3), OX4429[B] (tTA) and OX4436[B] (tTAV2) 

crossed to the tetO-Michelob_x effector line (OX4499) reaching L3, L4, pupa (P) and adult (A) stages, compared to OX4499 

alone.  

Individuals were screened at L1 stage and reared individually in 5 ml wells. n=204 for OX4499 alone; n=60, 59 and 59 for 

OX4427[B], OX4429[B] and OX4436[B] not crossed, respectively; n=36, 45 and 53 for OX4427[B], OX4429[B] and OX4436[B] x 

OX4499 ON TET, respectively; n=52, 47 and 60 for OX4427[B], OX4429[B] and OX4436[B] x OX4499 OFF TET, respectively. 

 
 
 

4. Discussion 

Even though the levels of expression in the OX3860C docking site were too low to induce a 

lethal phenotype when crossed to tetO-Michelob_x, the tTAF3 and tTAV2 transactivators did 

allow the production of visible levels of AmCyan. The tTA transactivator, on the other hand, 

didn’t, and also showed low and inconsistent activity in the OX3860B docking site compared to 

tTAF3 and tTAV2. Those results suggest that the optimisation of the tetR sequence is critical in 

Ae. albopictus, an unexpected result considering that tetR originates from E. coli and retains its 

function in mammalian cell lines (Gossen and Bujard, 1992) and Drosophila (Thomas et al., 

2000). However, the need for optimisation of the tetracycline-repressible system arose before 

this work was initiated and indeed the RIDL constructs used in C. capitata and Ae. aegypti 

contained not tTA but tTAV, which holds the optimised tetR sequence found in tTAF3 and 

tTAV2 (Fu et al., 2007; Gong et al., 2005; Phuc et al., 2007).  

The tTAF3 transactivator appeared effective yet weaker than tTAV2 in both the OX3860B and 

OX3860C docking sites, as indicated by the levels of expression of AmCyan and the survival of 

the tetO-Michelob_x crosses. The better repression by tetracycline is a particularly attractive 
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feature as it would permit the creation of healthier RIDL lines of Ae. albopictus. On the other 

hand, tTAF3 failed to produce a fully penetrant phenotype when crossed to the OX4499 

effector line, with some individuals able to reach adulthood. Phenoype penetrance off 

tetracycline is a key safety requirement for RIDL lines and tTAF3 may possibly be too weak an 

alternative to tTAV2. It would be interesting to see how tTAV compares to tTAV2 and tTAF3 in 

the same conditions and this will certainly be done in the near future.   

The phenotypes observed here relate only to the OX3860B docking site and the Hexamerin-1γ 

promoter; levels of tTAF3 expression in a different locus or under the control of a different 

promoter may lead to a fully penetrant phenotype. Under the very strong Actin-4 promoter, for 

example, tTAF3 may perhaps be a good choice of transactivator. Having a range of 

transactivators to choose from would allow the development of more finely tailored 

phenotypes in Ae. albopictus. 
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Chapter 6  

Summary and Conclusions 
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In view of the significant re-emergence of dengue fever in large parts of the world and 

traditional control methods failing to suppress the disease (see Chapter 1), it has been 

necessary to develop new strategies aimed at vector control. In response to this need, Ae. 

aegypti have been genetically engineered for use in SIT-like control programmes. This novel 

technology, called “Release of Insects carrying a Dominant Lethal gene” or RIDL®, proposes to 

replace the need for irradiation by engineering tetracycline-repressible sterility in insects using 

a dominant lethal system (Alphey, 2002; Alphey and Andreasen, 2002; Alphey et al., 2010; 

Alphey et al., 2008; Thomas et al., 2000) controlled by the Tet-Off system (Gossen et al., 1994; 

Gossen and Bujard, 1992). Two RIDL strategies have been applied to Ae. aegypti: the late-acting 

bi-sex lethal phenotype (Phuc et al., 2007), and the female-specific flightless phenotype (Fu et 

al., 2010). 

The secondary vector of dengue, Ae. albopictus, is expanding its geographic range and recently 

caused important chikungunya outbreaks in the Indian Ocean islands (see Chapter 1). This 

species is therefore perceived as an important public health threat and current control methods 

have proved inadequate for controlling it. This thesis focuses on the development of transgenic 

strains of Ae. albopictus for vector control using the RIDL technology.  

The first step was to ensure the feasibility of the gene transfer technology in this species. 

Successful transformation of Ae. albopictus was achieved using the piggyBac transposable 

element (Chapter 2). Rearing Ae. albopictus in the laboratory, however, proved more 

demanding than doing so with Ae. aegypti, especially post-injection rearing which involves 

blood-feeding small pools of females on artificial membranes.  

The site-specific integration technique allows the comparison of transgenes in the same 

genomic locus, avoiding variations in expression caused by position effects. This system was 

shown to function in Ae. albopictus (Chapter 2) using the PhiC31 integrase, which catalyses 

recombination between attP and attB sequences (Thorpe et al., 2000). It was also exploited to 

compare expression of different transgenes, with a view to tailoring the RIDL components to 

Ae. albopictus (Chapter 5). 
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The potential control tool investigated in this thesis is the tetracycline-repressible female-

specific flightless phenotype, as recently developed in Ae. aegypti using the promoter and sex-

specific splicing sequences from the Ae. aegypti actin-4 gene (Fu et al. 2010). The desired 

phenotype was engineered in Ae. albopictus, using the regulatory regions from both the Ae. 

aegypti and Ae. albopictus actin-4 genes (Chapter 3). One strain, OX3688A, has been made 

homozygous for the transgene insertion to assess its suitability for a RIDL control programme 

(Chapter 4). Although the high phenotype penetrance observed in OX3688A suggest that it 

would be safe to release, there may be some limiting features, some of which may not be 

specific to this particular strain: 

1/ The low hatch rate observed for OX3688A, which seems to reflect a weakness of the genetic 

background rather than a direct consequence of transgenesis, implies that this strain has low 

productivity in rearing and would be expensive to mass-produce for a potential release 

programme. This may be a significant issue, considering that any deficit in males’ mating 

competitiveness would have to be compensated for by releasing larger numbers. We have 

recently started working with a new, potentially fitter, wild-type strain to use as background for 

future transgenic lines. 

2/ The unavailability of standard PCR genotyping means that controls for maintaining a 

transgene-homozygous colony are not straightforward. Unfortunately, this seems an 

unavoidable downside of transposon-mediated germline transformation. Insertions into coding 

regions can cause prohibitive fitness losses, making insertions into non-coding genomic regions 

more desirable. However, these areas can tend to be repetitive or polymorphic, and therefore 

often not amenable for PCR genotyping. For this reason, it could be helpful to have a set of 

well-characterised docking lines (i.e. carrying an attP site at a known genomic location) with 

flanking sequences known to be suitable for PCR genotyping, where RIDL constructs could be 

inserted in a site-specific fashion. However, this approach would require subsequent removal of 

the antibiotic resistance gene and bacterial origin of replication from the inserted construct. 
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3/ Once the strain was made transgene insertion-homozygous, backcrossing appears to have 

caused strong selection for healthier females, i.e. the females with a weaker phenotype (i.e. 

less detrimental) in the presence of tetracycline. Although this process improved the rearing 

efficiency of the strain, with more females able to contribute to the next generation, it seems 

essential to ensure that the females remain 100% flightless off tetracycline. If this strain was to 

be released in the field, regular and stringent phenotypic controls should be implemented every 

couple of generations to ensure that the number of flying females is maintained at an 

acceptably low level. In order to limit this selection process, the tetracycline rearing 

concentration of the OX3688A strain has been increased from 30 to 60 µg/ml. According to the 

results presented in Chapter 4, this concentration offers better repression of the flightless 

phenotype without significantly slowing down development. It might be advisable for all RIDL 

strains to be reared at a tetracycline concentration that reduces such selection pressure, at 

least in the filter colony (i.e. a closely controlled ‘mother colony’ that feeds into mass-rearing 

(Dyck et al., 2005; Fisher and Caceres, 2000)). With the female-specific RIDL approach, the 

release generation would be reared off tetracycline in order to create flightless females; the 

released males would therefore not be affected by any possible detrimental effect of such 

tetracycline concentrations.  

On the other hand, the loss of Wolbachia observed in the transgene insertion-homozygous 

strain due to continuous tetracycline rearing (Chapter 4) confers an extra level of safety: if 

some transgenic females were able to fly in the absence of tetracycline, their mating with wild 

males would not yield progeny as a result of Cytoplasmic Incompatibility. They would, however, 

still be able to bite and transmit disease, and be compatible with co-released RIDL males. 

 

The RIDL construct based on the Actin-4 gene (either from Ae. aegypti or Ae. albopictus) and 

the tTAV2 transactivator generally seemed too toxic in Ae. albopictus, with sub-optimal 

repression by tetracycline (Chapter 3). Reducing the efficiency of the transactivator was one 

possible way to decrease this toxicity, and the tTA and tTAF3 transactivators were compared to 

tTAV2 in a site-specific approach (Chapter 5). In order to facilitate the comparison, the 

transactivators were driven by the promoter from the AaHex-1γ gene (Gordadze et al., 1999), 
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active in the fat bodies and therefore expected to induce more obvious phenotypes than the 

indirect flight muscle-specific Actin-4 promoter (Muñoz et al., 2004). The tTA transactivator 

appeared largely ineffective in Ae. albopictus. The tTAF3 transactivator was effective yet 

significantly weaker than tTAV2; possibly too weak to be used as an alternative to tTAV2 in a 

RIDL context, which demands near-complete phenotype penetrance in the absence of 

tetracycline. It will nevertheless be tested in an Actin-4 context in the near future, but another 

tTAV2 alternative, tTAV, will also be investigated as a possible intermediate between tTAV2 and 

tTAF3. This experiment demonstrates the usefulness of the phiC31-mediated site-specific 

integration technique.  

 

Even though the female-specific approach has several advantages (discussed in Chapters 1 and 

4), it may also be associated with regulatory hurdles and poor public acceptance, as the 

released males would not be effectively sterile (their male offspring would survive in the wild). 

A late-acting bi-sex lethal phenotype has indeed been engineered in Ae. aegypti using the RIDL 

technology (Phuc et al., 2007), but the late-acting phenotype of the OX513A strain is mainly 

attributable to the genomic surroundings of this particular insertion site. The OX513 construct 

used to produce this strain is not specifically designed to confer late-acting lethality, and no 

similar lines have been produced in Ae. aegypti despite extensive injections of OX513 and 

similar constructs. The creation of Ae. albopictus strains with a phenotype similar to OX513 

would therefore require identification of a late-acting bi-sex promoter. The AaHex-1γ promoter 

mentioned above was reported as conferring late-acting and bi-sex expression in Ae. aegypti, 

and may therefore be a good candidate to create OX513-like strains. Even though this promoter 

did not show a specifically late activity in the experiments presented in this thesis (Chapter 5), it 

seems worth investigating the expression pattern under different position effects. Alternatively, 

an Ae. albopictus homologue to AaHex-1γ may offer a solution to this problem. The 

combination of a late-acting promoter expressing in essential tissues, such as AaHex-1γ, with 

the sex-specific splicing elements of Actin-4, may also provide a lethal alternative to the female-

specific flightless phenotype.  
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The successful application of the RIDL technology in Ae. aegypti suggested that its transfer into 

Ae. albopictus would be fairly straightforward. Nevertheless, some unforeseen challenges arose 

from substantial rearing hurdles and apparent genomic differences.  

Despite their demanding blood-feeding habits slowing the creation and maintenance of new 

transgenic lines, recently colonised genetic backgrounds might be preferred for RIDL 

transformations in order to limit genetic differences with the future target population which 

might impair males’ behaviour and mating competitiveness. The use of live animals as blood 

sources rather than artificial membranes would likely improve egg production, but is associated 

with undesirable and impractical aspects. Conceivably, a more lab-adapted background may 

provide high enough production levels to counterbalance the associated males’ deficiencies. 

It may be possible to overcome the sub-optimal performance of female-specific RIDL constructs 

in Ae. albopictus by tuning the RIDL components for this species, a process greatly facilitated by 

the availability of the site-specific integration system.  

The recent open-field releases of the Ae. aegypti OX513A strain in Grand Cayman confirmed the 

potential of RIDL for mosquito control, and several Ae. aegypti control programmes may soon 

occur across the world. In places where Ae. aegypti and Ae. albopictus co-habit, pressure on Ae. 

aegypti populations might allow Ae. albopictus to thrive. The development of an effective Ae. 

albopictus RIDL strain is therefore urgent in order to prevent further spread of this highly 

opportunistic species. 

 

Future such work with Ae. albopictus should include the comparison of the tTAV transactivator 

with tTAV2 and tTAF3 in a site-specific context, followed by the development of repressible 

female-specific flightless strains using a weaker transactivator under the control of the Actin-4 

regulatory regions. Candidate strains for release programmes should be selected not only 

according to their phenotype, but also to the genomic sequences surrounding the transgene 

insertion. A reliable and straight-forward PCR genotyping protocol would greatly facilitate the 

selection of homozygous individuals, allowing the generatin of homozygous strains from a 

greater number of founder individuals. PCR genotyping also ensures a reliable quality control 
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for the filter colony in mass-rearing. The potential of the AaHex-1γ promoter, or its Ae. 

albopictus homologue, to drive bisex late-acting lethality should be further investigated as an 

alternative to the female-specific RIDL approach. Furthermore, the combination of the late-

acting AaHex-1γ promoter with the sex-specific splicing properties of Actin-4 would potentially 

drive late-acting female-specific lethality rather than flightlessness. The effectiveness of 

candidate RIDL strains relies on their mass-rearing productivity and male field performance, 

which should be tested promptly. But safety should remain the central concern: RIDL strains 

should be maintained on high, non-selective tetracycline concentrations (to prevent selection 

against the desired phenotype) and regular off-tetracycline phenotype checks should be 

conducted.  
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Appendix 1.  

Full flanking sequences of integration sites of OX3860 into Aedes albopictus. 

Genomic sequences flanking the piggyBac insertions of OX3860 lines derived from inverse PCR. 

The canonical TTAA insertion site is double-underlined. Annealing sites for the primers used to 

investigate second phase integration into lines OX3860A, B and C are underlined. 

 

Strain 5´ flanking sequence – TTAA insertion site – 3´ flanking sequence 

OX3860A TTAATCAACTCAACGTACATATGTACAGAGGGATACATCATTAGTGAAATTACGAAAGAATCCACAGCTCAGG

TGAGATTTGAACTCACGACCCTTTTACGCTAGACAAGTGCTTTTCCAACTAAGCTACCGAGCTAATTAATGACA

AATGACATGGCATTTTGGTTGGTACAAGCTAATTCAAATCTCACCGATC 

OX3860B GGCCGCCAGATCTTCCGGATGGCTCGAGTTTTTCAGCAAGATTCTTGACCTTGCCACAGAGGACTATTAGAGG

TAAGAATAAACATTGTTGGTCAACTTCAAAGTCCACGAGGCGTAGCCGAGTCTCTGCACTGAACATTGTCAGA

TCTCAAAGAGGTCCGACGCGTATGTGCCGCAATATATATGACCCACTTTTATGCTTCAAACTATTTTTTACTGAT

GAGATAATTTCGGAAATTGTAAAATGGACAAATGCTGAGATATCATTGAAACGTCGGGAATCTATGACAGGTG

CTACATTTCGTGACACGAATGAAGATGAAATCTATGCTTTCTTTGGTATTCTGGTAATGACAGCAGTGAGAAAA

GATAACCACATGTCCACAGATGACCTCTTTGATCGACACTCCTTTGTGACTTGGGTGCGGCTTGGGTTGGGCTG

AGAACAAGATGGCGATTCTAGGAGTTCTTTTAGAGGTTTCTTCAAGAATTACTCCAGAGATTCTCTCAGGAATA

CACCAAATATTTCTTCTGGAATCCATCAAGGGGATTCTTAAGGAATTCTTTCTGAAATTCCATCAAGATTTCATT

CTCCAAAAAACCTCTAATGGAAGCTTCAGAAATTCTAACAAGCTATCCAGGGCTTTAGCAATTTCTCTCCTTTGG

CAGACACCTGCATACGGTGCGCACAAGCTTAGAGGTACTTTAATCCAAGCAGACAACCGAAATGATAGGTAAC

ATTGTCAACGAAAGATAGATGATAACGAACACGAGCTGACACAAACTTCAACGAACGTTTAGTTTAACTCGAA

ATTAATTAAGTTAAAGATAAAGAAAGTTTTAACGCTAATTCTTTTTTGAATATCAGGTATATCATATTATAAGGA

ATACGCCTTGAAGCTAGATGCGAAATTGGCC 

OX3860C TCGATATTTGTATGGAAAAATCGCCGATTATTATTTAGGTATTGCCATACCTGATGTCATTATTCACGCGTTATG

CACAGAATACACACCAGTTATTATTTTAGATATTTTACCTCTTATGCAGGGCTACTTAATACCTCATTCAGGTTG

TAGGTATTCGGTTTTCCATACCTGAGTTAGTTATTCTTCAGCTATTTTCTCCTGCTCGGGTGAGGATATCCAAAA

TGCATTAAGGACAAGCTTGTTGGTATCCAAAGATGGGCGCCACAATGGAACCATGAAAACTTAAACCAGCGCA

CCGCACCTTCTTATGACAAATGAGCAAGAACAAACTAAGAATTACACTATTGCCTGTTGTTTACATTTTAAGATT

TGTGCATTTGAACGGTGTATTGTTGAACTGGGATTCAAAGAGAGTTGACCTTAGTTTCCGAATTTCTATTGAGC

CTGACGTGACTAGATAACCCTTAAGGAATGAGTAACTCTTGGTAGGATC 

OX3860D TCGATTTTATTCTCTGTCGCATTCGCTCCGAAGATAATTTATTTCAAGGCACACTTAGGTGCCAGCCAGAGTGG

ACGCGTCACGCGGCGCGGCGCGGCGCAATGCGGCATTTGACAGGTCGCGCGGCGACGCGCGGCAGAACTCC

GTTCATTGGAATACAGGGAAAACAATCATAGCATGCCAGAGTGCGCGCGGAACGATGCGAAGCGGAATGCGT

TTTGCCGCGCGGCGCGCGCCAGAACAGTGCATGCACTGTTTTTGATGCGAAATTCGTGCGTTTCTTGTTTGTTT

ACCTCGGTGATTCTCAAAGTTGTAATTGAAATGGCAGAGGAAAAAAAAGAAATTGAGCAGCTAATCGGGTCC
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GTATTTTTACGGAAAGAGTTGTGGGATCAAACTTCTCGGGGATACCGAAACAGAGTGTTGGTGGACAATTGTT

GGAAGGAGCTTGCCGAAGAATTCAAAGTATCTGGTGAGCATCTCATTTTACTAACACAAAATTAGTATTAACG

TCATTCGTTTTGCAGAAGATTTTTTGAAGAAAAAGTGGAAGAGCCTGCGGGACAAATATGGAAAGATTTTGAG

GAATCTTCCCGTATCAAGGTCCGATGAATATCGTACTCTCTGAATTCACCCAAAAAATATCTTCGAACGCCTTCA

GACATGAAATATTCATCATCTGAATCCATTTCGGCAACTTTAATGTTCAAATACGATGAAACAATTGGTTTGCTT

TTGTTTTGAACCCGCACACTTTTGCTTCGCATCAAATAGGCCTTTTCAGTTGACAGGTCCGTGTATAGAGATAA

GTGACATTTCAACACACGAACACTAGCGCGAATTTTTCCTCACACAAAAATGCACGCCAATTCAATGGCTACTC

AGATTGCATATGCAAATATTACCCAATCGA 

OX3860F TCGACAGACTTGTCTGAACTTCGCAGGTACGCCATCTGGAACTTCCATGTAGATTGTTTCGTTTAAACGTCCGT

GAAATAGTATCGCCGATGTACACCGACTGGCAAAACGGTCCTGATCGTAGCCAGCCGAGCTACCTGGGCGTA

GGTCTTGTCCTTGCTTTTGGATGTATCCTTTCGCCACAAGCCGAGTTTTGTAGCGAACCGGTCTGCCGTTTTCAT

CTTCCTTTATCCAATACACCCATTTGGATTTGAGAGGTTTCACCCTAAGACAGGTAGCCAGCTGCCAGACGTCG

TTTTTCTTCAGCGACATTGACCGATAGAGCTGCCGTTGGACTCCGGTTTCATAGGTAGGTACATACCATGGTAT

ACAAGTCAACGCAGCACCACATCCTTTTCGGTAGCCGAGAATCCAGAAGCATTGCACGAACCTTTTCGATGAG

CGTACAATTAAACCTCTCTGCCAATCCATTCTGTTGTGGAGAATACGCAACCGTCGCTTTAATCTGGAATTCTTG

CGCTTTGTACCAGTTTTTCTGATTGTTCGAGCCATACTAAGTACATTGATCCACCGTAAGTTTTGAAATATTCTT

ACCGAATGCTGCTGTCGCCATCGGTTCATATTCACGAAACCGTTCAAAAACTTGAGACTTCTTTTTCATCAAGTA

TATTACCGAGAAATGGCTATAATCATCAATAAACGAAATGAAATAGCGGGAGCCATCCCACGATAGAGGATC

GATTGGCC 
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Appendix 2. 

Clustal alignment of Ae. aegypti (Aeg) and Ae. albopictus (Alb) Actin-4 cDNA 

sequences.  

 
Positions of introns are marked with a vertical line, translation start and stop are underlined, 

the male specific exon is shown in italics. 

 

 

 
AlbAct4cDNA      -ACAATCGGATTTCGACGTTCGCTCTGGTGCAGTTCGATACGGTCTAGTGATTAGTCAAG 59 
AegAct4cDNA      CACAATCGGATTTTGACGCTCGCTCTGGTACAGTTCGATACGGTCTAGTGA--AACCGAG 58 
                  ************ **** ********** *********************  *  * ** 
 
AlbAct4cDNA      GACCCAACGGCTCAAGTTTTTTCCCTCTTTGATCCAG|GTCGGTGCGTTGTGGTCGGCGGT 119 
AegAct4cDNA      GAT--AACGACGAAGGTTTTTCCCCA--TTGATCCAG|GTCGGTGT-TTGTGATTGGTGGA 113 
                 **   **** *  * ****** ***   ****************  ***** * ** **  
 
AlbAct4cDNA      GATAAGTGGAAAAGTTGTGAAAAGT-CTACC--ATCCGT-GGAAATGTGCCGTCCTGCTG 175 
AegAct4cDNA      AA------AAGAGCTCGAGAAAAGTTCCATCGAAGCCGTTGGAAATGTGCCGTCTTCCTG 167 
                  *       * *  * * ******* * * *  * **** ************** * *** 
 
AlbAct4cDNA      TGACGTCCTGTGGAGTCCGTCCGTTGTCTTCGTCTGGTTATGATGTGAAATGTGCTGTCC 235 
AegAct4cDNA      TGATGTCGTGTGGATCCGGTTCCTTGTCCACGTCTGGTGATCGTGTAAAATGTGCTGTCT 227 
                 *** *** ******  * ** * *****  ******** **  *** ************  
 
AlbAct4cDNA      TGTGGCGTCTTGAATATGGTAGATCCTGTGAATATGACCCGACG-AACGTTGATCCCTTG 294 
AegAct4cDNA      TGTGGCGTCATATGTGTTCCAGATCCAGTGATTACGATCCGATGTGATGTTGATCCCTTG 287 
                 ********* *   * *   ****** **** ** ** **** *  * ************ 
 
AlbAct4cDNA      TGAACGTCTTGTGTTGTTCCATGTGTGTTGTTC-----------TCAG|GACCCAACGGAC 343 
AegAct4cDNA      TGAACGTCTTATCCTGTTCCGTGTGCACCATGCATAATGTCGTATTAC|GACCTAACGGAC 347 
                 ********** *  ****** ****     * *           * * **** ******* 
 
AlbAct4cDNA      CTGGAAGCGGCGCCAAAATGTGTGACGACATGCAGATCTTGATGCTGGAGCACTAGTCAT 403 
AegAct4cDNA      CTTGAAGCGGCGCCAAAATGTGTGACGA-----------TGATGCTGGAGCACTAGTCAT 396 
                 ** *************************           ********************* 
 
AlbAct4cDNA      CGACAATGGATCCGGTATGTGCAAAGCCGGTTTCGCTGGTGATGACGCCCCACGTGCCGT 463 
AegAct4cDNA      TGACAACGGATCCGGCATGTGTAAGGCCGGTTTCGCTGGTGATGATGCCCCACGTGCCGT 456 
                  ***** ******** ***** ** ******************** ************** 
 
AlbAct4cDNA      GCTTCCCGTCCATTGTCGGCCGCCCACGTCACCAGGGTGTGATGGTCGGTATGGGTCAGA 523 
AegAct4cDNA      -CTTCCCGTCCATTGTCGGCCGCCCTCGCCACCAGGGTGTGATGGTCGGTATGGGTCAAA 515 
                  ************************ ** ***************************** * 
 
AlbAct4cDNA      AGGATGCCTACGTTGGTGACGAAGCCCAATCCAAACGTGGTATYCTCACCCTGAAGTACC 583 
AegAct4cDNA      AAGATGCCTACGTCGGTGATGAAGCCCAATCGAAGCGAGGTATCCTCACCCTGAAATATC 575 
                 * *********** ***** *********** ** ** ***** *********** ** * 
 
AlbAct4cDNA      CGATAGAGCACGGTATCATCACCAATTGGGATGAYATGGAGAAGATYTGGCATCAYACCT 643 
AegAct4cDNA      CCATAGAGCACGGTATCATCACCAACTGGGATGATATGGAGAAGATTTGGCATCACACCT 635 
                 * *********************** ******** *********** ******** **** 
 
AlbAct4cDNA      TCTACAATGAGTTGCGAGTGGCTCCTGAAGAACATCCWGTCCTGCTGACCGAAGCTCCAC 703 
AegAct4cDNA      TCTACAACGAGTTGCGAGTAGCTCCTGAAGAACATCCAGTATTGCTGACTGAGGCTCCCT 695 
                 ******* *********** ***************** **  ******* ** *****   
 
AlbAct4cDNA      TGAATCCCAAGTCCAACCGTGAGAAGATGACTCAGATCATGTTTGAGACGTTCGCTTCGC 763 
AegAct4cDNA      TGAATCCAAAGTCCAATCGCGAGAAGATGACTCAGATCATGTTTGAAACATTCGCTTCGC 755 
                 ******* ******** ** ************************** ** ********** 
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AlbAct4cDNA      CAGCTGTGTATGTTGCCATCCAGGCTGTCCTGTCCCTGTACGCCTCCGGTCGTACCACTG 823 
AegAct4cDNA      CAGCTGTGTATGTTGCCATCCAAGCTGTTCTGTCCCTGTACGCCTCCGGTCGTACTACTG 815 
                 ********************** ***** ************************** **** 
 
AlbAct4cDNA      GCATTGTGTTGGATTCTGGAGATGGTGTCTCCCACACCGTCCCAATCTACGAAGGTTATG 883 
AegAct4cDNA      GTATTGTTCTGGATTCCGGAGATGGTGTCTCCCATACCGTCCCAATCTACGAAGGTTATG 875 
                 * *****  ******* ***************** ************************* 
 
AlbAct4cDNA      CCCTGCCACATGCCATACTCCGTATGGACTTGGCTGGTCGCGATCTGACCGACTACCTGA 943 
AegAct4cDNA      CTCTGCCACATGCCATCCTCCGTATGGATTTGGCTGGTCGTGATCTGACCGATTACCTGA 935 
                 * ************** *********** *********** *********** ******* 
 
AlbAct4cDNA      TGAAGATCCTGACTGAACGCGGTTACTCGTTCACCACCACCGCTGAACGTGAAATCGTTC 1003 
AegAct4cDNA      TGAAGATCTTGACCGAACGTGGATACTCTTTCACCACCACCGCTGAACGTGAAATCGTTC 995 
                 ******** **** ***** ** ***** ******************************* 
 
AlbAct4cDNA      GTGACATCAAGGAAAAGCTGTGCTACGTCGCCCTGGACTTCGAGCAGGAAATGCAGGCTG 1063 
AegAct4cDNA      GTGACATCAAGGAGAAGCTGTGCTACGTCGCTCTGGACTTCGAGCAGGAAATGCAAGCCG 1055 
                 ************* ***************** *********************** ** * 
 
AlbAct4cDNA      CCGCCGCTACCTCGTCGTCCGAGAAGTCCTATGAACTTCCCGACGGTCAGGTCATCACCA 1123 
AegAct4cDNA      CTGCCGCTACGTCTTCATCCGAGAAGTCTTATGAACTTCCCGATGGCCAAGTCATCACAA 1115 
                 * ******** ** ** *********** ************** ** ** ******** * 
 
AlbAct4cDNA      TCGGTAACGAACGTTTCCGTGCCCCAGAAGCCCTCTTCCAGCCATCCTTCTTGGGTATGG 1183 
AegAct4cDNA      TCGGCAACGAACGTTTCCGTGCTCCAGAAGCCCTTTTCCAGCCATCCTTCCTGGGAATGG 1175 
                 **** ***************** *********** *************** **** **** 
 
AlbAct4cDNA      AATCCACTGGCATTCACGAGACCGTCTACAATTCCATTATGCGTTGCGATGTCGACATCC 1243 
AegAct4cDNA      AATCAACTGGCATTCATGAAACGGTCTACAACTCGATCATGCGTTGCGATGTCGACATCC 1235 
                 **** *********** ** ** ******** ** ** ********************** 
 
AlbAct4cDNA      GTAAGGATCTGTACGCTAACAGCGTCTTGTCCGGTGGTACCACCATGTATCCAG|GTATTG 1303 
AegAct4cDNA      GCAAGGATCTCTATGCTAACAGCGTCTTGTCTGGTGGTACCACCATGTACCCAG|GTATTG 1295 
                 * ******** ** ***************** ***************** ********** 
 
AlbAct4cDNA      CCGATCGTATGCAGAAGGAAATCACTTCCCTGGCTCCATCCACCATCAAGATCAAGATCA 1363 
AegAct4cDNA      CTGATCGTATGCAGAAGGAAATCACTTCCCTGGCTCCATCCACCATCAAGATCAAGATCA 1355 
                 * ********************************************************** 
 
AlbAct4cDNA      TTGCACCACCAGAACGTAAATACTCCGTCTGGATCGGTGGATCCATCTTGGCTTCCCTGT 1423 
AegAct4cDNA      TTGCCCCACCGGAACGTAAATACTCCGTCTGGATCGGTGGATCCATCCTGGCCTCGCTGT 1415 
                 **** ***** ************************************ **** ** **** 
 
AlbAct4cDNA      CCACCTTCCAGGCCATGTGGATCTCCAAGCAGGAATACGACGAAGGCGGCCCAGGAATCG 1483 
AegAct4cDNA      CTACCTTCCAAGCTATGTGGATCTCCAAGCAGGAATACGACGAAGGTGGCCCAGGAATTG 1475 
                 * ******** ** ******************************** *********** * 
 
AlbAct4cDNA      TCCACCGCAAGTGCTTCTAAGCTGAACCACCCTTTGTACTGATTACCATAAGCGACATTG 1543 
AegAct4cDNA      TCCACCGCAAGTGCTTCTAAGCCGATC--CCGATTGTACTGATTACCATAAGCGACATTG 1533 
                 ********************** ** *  **  *************************** 
 
AlbAct4cDNA      CCAGTGAAAGCGACAACAGCAGCATCAAAGTACATTTGTCATTCTGATTCGGCTAGTACC 1603 
AegAct4cDNA      CCAGTGAAAGCGACAACAGCAGCATCAAAGTACATTTGTCATACTGATTCGGCTACTACC 1593 
                 ****************************************** ************ **** 
 
AlbAct4cDNA      ACCATCCGGAATCAGCTTGCATCGAACATCAATTCACGTTATTCAATGTATCTGTCATCC 1663 
AegAct4cDNA      ACCATCCGGAATCAGCTTGCATCGAACATCAAATCACGTTATTCAATGTATCTGTCATCC 1653 
                 ******************************** *************************** 
 
AlbAct4cDNA      AGCTCAGACAACACGTGGTGCATTCTCGGCCTACGAAGACCTACTACACCCGCGGAGAAA 1723 
AegAct4cDNA      AGCTCAGACAAGTCG--GAGCTTTTCCAGTC-GCGAAAATCTGCGACTCCAGCGGA--AA 1708 
                 ***********  **  * ** **  * * *  **** * ** * ** ** *****  ** 
 
AlbAct4cDNA      GCACTGCACCCCAGAGAGGACTCGTATGATAGCCAGGGAGGAGAACATCAACTTACCTTG 1783 
AegAct4cDNA      GCACCGAACCACAGAGAGGACTCGTATGAAAGCCAGGGAAGAAACCATCA-TTCACCTTG 1767 
                 **** * *** ****************** ********* ** * *****  * ****** 
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AlbAct4cDNA      TGGCAAATCTTCATTAAAAAAACGGACATCTTCA-TGACTAAGAGCCCATGTGCTTAGCT 1842 
AegAct4cDNA      CAGCAAATAGGAA--AAAAAAACGGACATCTTCAACAAACAAAAGCCCATGCGCT-AACT 1824 
                   ******    *  *******************   *  ** ******** *** * ** 
 
AlbAct4cDNA      TGGTTTAGGAGTTTAGTGTGACACCATGACCCCGCTGATGATCTTATCTTAGCAC--CAC 1900 
AegAct4cDNA      TGGTTTAGGAGTTTAGTGTGACACCATGACCCCGCTGATGATCTTTACTTAGCACACCAT 1884 
                 *********************************************  ********  **  
 
AlbAct4cDNA      AACCACCTTTATGCGTTCGTTCATCCAAAA-CAAGAGGACATCACTGCAGCCGCGAGAAG 1959 
AegAct4cDNA      AACCACCTTTATGCGTTCGTTCATCCAAAAACTACAGGATATCACTGCAGCCGCGAGAAG 1944 
                 ****************************** * * **** ******************** 
 
AlbAct4cDNA      AACTCGCGAACCATCCTGTTTTCTTTTTTATAATATTCTTACTTTTAGTTTCAAATTATT 2019 
AegAct4cDNA      AACTCGTGAACCATCCTGTTTTCTTTTTTATTATATTCTTACTTTTAACTTCAAATTATT 2004 
                 ****** ************************ ***************  *********** 
 
AlbAct4cDNA      TTCAGTAATAAAAAACGTCTCAAAACATTAAAAAAAAAAAAAACCTATAGTGAGTCGTAT 2079 
AegAct4cDNA      TTCAGTAATAAAA--CGTCTCAAAATAAT------------------------------- 2031 
                 *************  ********** * *                                
 
AlbAct4cDNA      TAATTCGGATCCGCG 2094 
AegAct4cDNA      --------------- 
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