
A Middleware Independent Grid Workflow Builder for Scientific Applications

David Johnson
School of Biological Sciences

Lyle Building
University of Reading

Whiteknights
Reading, RG6 6BX, UK
d.johnson@reading.ac.uk

Ken Meacham
IT Innovation Centre

2 Venture Road
Southampton

SO16 7NP
UK

kem@it-innovation.soton.ac.uk

Harald Kornmayer
NEC Laboratories Europe, IT Research Division

Rathausallee 10
53757 St. Augustin

Germany
harald.kornmayer@it.neclab.eu

Abstract

Grid workflow authoring tools are typically specific to
particular workflow engines built into Grid middleware, or
are application specific and are designed to interact with
specific software implementations. g-Eclipse is a middle-
ware independent Grid workbench that aims to provide a
unified abstraction of the Grid and includes a Grid work-
flow builder to allow users to author and deploy workflows
to the Grid. This paper describes the g-Eclipse Workflow
Builder and its implementations for two Grid middlewares,
gLite and GRIA, and a case study utilizing the Workflow
Builder in a Grid user’s scientific workflow deployment.

1. Introduction

Workflow composition is an important part of reusing
existing scientific analysis methods. Many of these scien-
tific methods require high-performance computing (HPC)
resources, and these are commonly provided by large clus-
ters and supercomputers, or through using distributed com-
modity hardware forming computational grids. Tools for
connecting to and manipulating such resources are usually
middleware specific with no universal standard for HPC or
Grid computing. Likewise, tools for workflow authoring
already exist, but they are not designed to cater for multi-
ple middlewares. In this paper we describe the Workflow
Builder plugin of the g-Eclipse [1, 2] workbench, a uni-

versal graphical user interface for accessing existing Grid
infrastructures, and its exemplary support for the author-
ing and submitting of workflows to two different middle-
wares, gLite and GRIA. We provide an overview of the dif-
ferent functionality that is available to a Grid User actor and
how the Workflow Builder integrates with the job and data
management tools in g-Eclipse. Finally we report on how
g-Eclipse was used to demonstrate scientific and industrial
applications with the Workflow Builder being a core com-
ponent of a Grid User’s activities.

2 Background

As the need for processing, analyzing and simulating
large sets of data grows, so does the need for larger com-
puting and data capacity. The field of Grid computing ad-
dresses this by providing methods for multiple collaborat-
ing entities to share distributed compute resources under an
umbrella of a virtual organization [3]. For example, one of
the aims of the EGEE project is to provide the worldwide
scientific research community with a universally accessi-
ble Grid infrastructure. This infrastructure is divided into a
number of virtual organizations segmenting groups of users,
resources and institutions that map onto logical adminis-
trative domains. Grid middleware is software that is used
as the ’glue’ that ’sticks’ together distributed computing
and storage resources, presenting a standardized interface
to the collective resource, where from a user-perspective,
the underlying disparity of resources is hidden. The EGEE



project developed the gLite middleware and included com-
ponents taken from a number of Grid projects [4] including
Datagrid (EDG), DataTag (EDT), DataGrid (EDG), INFN-
GRID, Globus and Condor. Although the gLite middleware
goes some distance to simplify the underlying organization
and management of Grid computing resources, interfacing
with gLite-based virtual organizations is typically carried
out through command-line sessions and interacting with the
different subsystem and services individually. Some effort
has been made to create graphical clients to access EGEE’s
Grid infrastructure, however these approaches targeted spe-
cific functionality such as job submission or data manage-
ment, or produced domain-specific user interfaces. There
was no single graphical client software that encapsulates
Grid user functionality available for interfacing with EGEE
Grids, and this is atypical of many other Grid and high-
performance computing (HPC) infrastructures.

The European Commission Sixth Framework funded g-
Eclipse project built an integrated workbench framework to
access and operate existing Grid infrastructures and is de-
scribed in detail by Gjermundrød et al [5]. Based on top
of the open-source Eclipse framework, the g-Eclipse work-
bench provides tools to customize Grid users’ applications,
to manage Grid resources, and to support the development
cycle of new Grid applications. The project aimed at pro-
viding generic Grid workbench tools that can be extended
for many different Grid middlewares, such as gLite, UNI-
CORE [6], and Globus [7], and it comes with exemplary
support for the gLite and GRIA [8, 9] middlewares. An
adapter to Amazon’s Web services, Simple Storage Service
(S3) and Elastic Compute Cloud (EC2) [10], was also devel-
oped which introduced Cloud Computing support to what
was initially a project intended for just the Grid.

An integral part of the g-Eclipse workbench is the Work-
flow Builder plugin that allows users to compose work-
flows made up of Grid job descriptions. These job descrip-
tions describe the semantics of a Grid job including exe-
cutable definitions and locations of input and output data.
The Workflow Builder enables users to take these descrip-
tions and stitch them together into a workflow. These work-
flows can then be executed or deployed using the standard
job submission mechanism provided by the g-Eclipse work-
bench (which is also used for executing single jobs) where
conversion to middleware specific workflow descriptions is
done on-the-fly.

3 The g-Eclipse Workflow Builder

The problem of expressing Grid workflows has been ad-
dressed by many different projects, however there has not
been any single adopted standard for expressing and per-
sisting workflows. While the g-Eclipse Workflow Builder
attempts to cater for different kinds of Grid middleware sys-

tems that support workflows, it must be noted that the model
is not intended to be a solution to enable interoperability be-
tween workflow systems. The approach taken is to provide
a workflow builder that fits into g-Eclipse’s own generalized
Grid model abstractions whilst being able to cater for other
middlewares.

The g-Eclipse Grid model abstracts a compute job to
be executed as a Job Description, and a job that has been
submitted to execute on the Grid as a Job. The workflow
model only links into the Job Description abstractions, as
the Workflow Builder plugin does not yet link into the job
monitoring functionality that is present in the workbench.
Job Descriptions provide a standard structure in which to
define the parameters of a Grid Job and typically includes
the location of an executable, locations of input data and
locations on the Grid to write output data to. In g-Eclipse,
Job Descriptions are expressed in an Open Grid Forum’s
standard, the Job Submission Definition Language (JSDL)
[11], and Job Descriptions are saved in the workbench file
system as JSDL files. When creating a new Job Descrip-
tion, a wizard provides a step-by-step interface for users to
populate the most important fields in a new JSDL file and
g-Eclipse includes a multipage JSDL editor (see figure 1) in
which users can edit a variety of parameters defined by the
standard.

Figure 1. The g-Eclipse workbench with the
JSDL Editor displayed in the main view.

Workflows can be thought of as process-oriented sys-
tems, where an overall process is broken down into sub-
processes [12]. These sub-processes can then be organized
in such a way as to optimize their execution, for example
executing processes that are not dependent on each other
in parallel to reduce total execution time. A workflow de-
scribes semantic relationships between sub-processes. In
Grid workflow systems these relationships are almost al-
ways data flow dependencies, where the input of a given
sub-process depends on one or more outputs of another.



To maintain consistency with the rest of the Grid model,
workflows are modeled in g-Eclipse as a set of Job Descrip-
tions (as JSDLs) and the data dependencies between them.
This allows users to reuse existing single Job Descriptions
to build more complex processes.

The Workflow Builder presents users with a graphical
diagramming canvas on which to build their workflow. A
palette allows users to pick and drop four kinds of element
on to elements of the diagram. The following list of ele-
ments are illustrated in figure 2:

• Workflow Job - A container for Job Descriptions illus-
trated as a rectangle on the diagram canvas. By default,
adding a Workflow Job to a diagram logically adds an
empty description. As such, a context menu action or
double-clicking on an empty Workflow Job loads up
the JSDL wizard so that the user can define a new Job
Description and associate it with the Workflow Job.

• Input Port - A representation of a single location of
data intended as input for a Workflow Job and illus-
trated as a small square with a downward facing white
arrowhead placed on a Workflow Job. Any number of
Input Ports can be added to Workflow Jobs. Double-
clicking on a Input Port allows a user to provide a URI
location of some associated data.

• Output Port - Similar to an Input Port, however rep-
resents output data locations but is decorated with an
upward facing white arrowhead. Adding and remov-
ing ports updates the associated Workflow Job’s JSDL
file’s corresponding data-staging properties.

• Link - Representation of the actual flow between Work-
flow Jobs illustrated as an arrow between Input Ports
and Output Ports. Links can only flow out of an Output
Port and in to an Input Port.

Figure 2. Three jobs with ports and connected
by links.

Although a workflow can be built from scratch using the
palette, a degree of automation has been implemented into

the g-Eclipse Workflow Builder. Users can take their ex-
isting JSDLs that they may have authored using the JSDL
Editor, or imported from elsewhere, and can quickly use
them to build a new workflow. JSDL files that are present
within a g-Eclipse Grid project explorer can be drag-and-
dropped directly onto a workflow diagram canvas. When
a JSDL file is dropped on the canvas, a new Workflow Job
is created, and corresponding Input Ports and Output Ports
created according to the job description. A context menu ac-
tion has also been implemented to attempt to automate the
creation of links between ports. When the ”auto-connect”
action is executed, the Workflow Builder attempts to de-
termine the semantic links between Input Ports and Output
Ports by searching for what URI locations match each other.
For example, where an Output Port’s URI matches an Input
Port’s, a link is automatically added.

A Grid workflow in g-Eclipse is saved as a combination
of files. When JSDLs are added to a workflow diagram, a
copy of the original JSDL is created and uniquely associated
with the diagram. This was done to ensure that JSDLs could
not be modified and moved outside of the context of the
workflow once they have been associated with a Workflow
Job. The actual description of the graphical diagram and its
semantics is saved in a file in XML Metadata Interchange
(XMI) format [13], which is an XML-based serialization of
the graphical model defined by the Eclipse Graphical Mod-
eling Framework (GMF) 1. When inspecting a workflow di-
agram project, a single diagram is seen as a file-system di-
rectory containing the XMI description and the associated
JSDL files.

4 Supported Middlewares

Workflows are handled by different middlewares in dif-
ferent ways, and the two exemplary middleware implemen-
tations for g-Eclipse highlight this. In g-Eclipse, a user can
use the context menu on a workflow in the Grid Project ex-
plorer to execute middleware-specific functionality that is
provided by the corresponding middleware plugins where
appropriate. One must remember that g-Eclipse does not
provide any form of workflow orchestration or enactment
but acts only as an authoring tool and delegates workflow
descriptions to the Grid middleware to handle. At the time
of writing, the g-Eclipse Workflow Builder provides im-
plementations for two major Grid middlewares, gLite and
GRIA.

1Eclipse GMF was used as an aid to develop the graphical model that
the Workflow Builder is based on. More details on GMF can be found at
http://www.eclipse.org/gmf



4.1 gLite

The gLite middleware provides a user-centric workflow
engine that allows any Grid user to try and submit a work-
flow to the Grid. Bascially, gLite handles workflow jobs
in the same way as it does single jobs. gLite does not ac-
cept JSDL files, so the g-Eclipse job submission mechanism
translates the JSDL descriptions on-the-fly into JDL (Job
Description Language, developed for gLite specifically),
where the process is transparent to the user. JDL supports its
own description of workflows in a special case of JDL file.
Regular JDL files describe a single anonymous job. Work-
flow JDL files contain multiple jobs which are labelled, and
an extra attribute that describes the dependencies as a set
of label tuples is included. In gLite the dependencies must
describe a direct acyclic graph (i.e. the dependency graph
must have no cyclic dependencies), and such workflow jobs
are referred to as DAGs.

For gLite workflows, it must be noted that the intended
use-cases for workflows make several assumptions. Firstly,
each defined job in a workflow must be valid in that an
executable application is available, and the input and out-
put data locations are valid and reachable. Second, the re-
quired resources are available to the user. Finally, the indi-
vidual jobs have been configured to deal with long delays
on the Grid. In our experience, we found that when testing
workflows against the EGEE infrastructure using gLite, re-
sources are not always immediately available. As a result,
the sub-jobs within a workflow can easily timeout or reach
their maximum retry count before the workflow completes.
Although this is a difficulty we experienced in our develop-
ment tests, once the workflows are submitted to gLite from
g-Eclipse, the responsibility for its execution lies with the
middleware.

4.2 GRIA

The GRIA middleware differs from gLite in that it only
allows users to execute applications that have already been
installed on a GRIA Job Service, by a service operator. This
means that typical Grid users are restricted to specific pa-
rameters afforded by those applications, and g-Eclipse han-
dles this by auto-populating a JSDL when a user selects a
particular application returned by the GRIA Job Service in
the JSDL Wizard. The workflow functionality in GRIA is
also not treated in the same manner as in gLite. GRIA work-
flows are not generally intended to be user-centric, but for
Grid operators to use to provide encapsulated complex ser-
vices for users.

However, GRIA provides application service packages
to support either workflows published on a GRIA Job Ser-
vice (and consumed by end users as GRIA applications) or
an additional package to add support for the user submit-

ting a workflow to be published automatically by the GRIA
service. The GRIA Workflow Application [9] provides a
command-line tool which takes a workflow description ex-
pressed in XML Simple Conceptual Unified Flow Language
(XScufl) [14], and a few other parameters, and creates a new
application on the GRIA Job Service that exposes the work-
flow to users as a single encapsulated process. The GRIA
Workflow Deployer Application can also be installed on a
GRIA Job Service (as a GRIA application); this wraps the
command-line workflow deployment tool, taking in an XS-
cufl workflow as input, as provided by the end user. The re-
sult is a newly deployed GRIA application that implements
the workflow.

g-Eclipse authored workflows can be translated into XS-
cufl descriptions using a context menu action. After trans-
lation, the GRIA Workflow Deployer Application can be
accessed by a user via the standard g-Eclipse job submis-
sion mechanism (by creating a new JSDL to use the GRIA
Workflow Deployer Application) to upload and install the
new workflow to the Job Service site, whereby a new appli-
cation becomes available to the user that encapsulates the
new workflow’s functionality. The user can then execute the
workflow by selecting the new application using the JSDL
Wizard and submitting the JSDL to the GRIA Job Service.

5 Case Study: A Pharmaceutical Application

To illustrate the use of the g-Eclipse Workflow Builder
a number of exemplary case studies were developed that
demonstrate several aspects of the g-Eclipse workbench, in-
cluding the Workflow Builder’s functionality. At a generic
level the case studies followed a number of steps includ-
ing: Creating a Grid project; Creating GRIA job descrip-
tions as JSDLs; Constructing a workflow from the JSDL
files; Translating the workflow into XScufl; Deploying the
XScufl to the GRIA Job Service using the GRIA Workflow
Deployer Application; Creating a Job Description (JSDL)
for the newly deployed workflow application; Executing the
new workflow JSDL; Visualizing the final output using the
g-Eclipse visualization facilities.

One of the case studies carried out was a pharmaceutical
application that implements several steps in the drug dis-
covery process of analysing organic molecules. The Grid
services used in this case study were derived from the SIM-
DAT project [21] that aimed to introduce Grid technology
to various industry sectors, including the pharmaceutical in-
dustry. The workflow that was to be realized included three
main sub-processes that were deployed on a GRIA site as
individual applications:

• BLAST sequence analysis - The BLAST (Basic Lo-
cal Alignment Search Tool) , described by Altschul in
[15], is an application used to perform alignment anal-



ysis on biological sequences to discover similar struc-
tures in existing sequences databases.

• ANTIGENIC - This application analyzes a protein se-
quence to find potential antigenic regions.

• SRS3D [16] - As a final step, an application is used
to transform the output of the sequence analyses into
a data format that can be visualized by the g-Eclipse
visualization plugins.

Figure 3. The pharmaceutical workflow being
authored in the g-Eclipse Workflow Builder.

Each application step can take outputs directly from pre-
vious steps in the workflow, and it was possible to con-
struct a workflow using the g-Eclipse Workflow Builder
from these applications, as shown in figure 3. The workflow
was simply the sequence of applications linked together in
serial, each taking the output from the previous step. Figure
4 shows the output visualized in g-Eclipse from the con-
structed workflow.

Once the workflow had been constructed and deployed,
users could then simply provide an intial input sequence,
and as an output receive the analyzed and transformed data
ready for visualization without any intervention in the in-
termediary steps as was before. Simplifying repetitive sets
of processes such as the BLAST-ANTIGENIC-SRS3D case
into a single application that hides the underlying workflow
can greatly reduce the effort required in not just pharma-
ceutical analyses, but with any other scientific analysis pro-
cesses that require repetitive and complex sub-activities.

6 Related work

There are two major scientific workflow design tools that
are more mature and established than the g-Eclipse Work-
flow Builder. However it should be noted that g-Eclipse
aims to be a generic Grid workbench, where the Workflow
Builder is just one component of the workbench.

Taverna is a workflow composition and enactment tool
which is a product of the myGrid UK e-Science project [17].

Figure 4. The output of the workflow dis-
played in the g-Eclipse Visualization Plugin.

Taverna aimed to enable bioinformatics analyses by allow-
ing users to build workflows to access Web services that ex-
pose information repositories and compute resources. The
Scufl workflow language (a precursor to XScufl) was de-
veloped by the project as there was no suitable standard
for composing scientific workflows at the time. Like g-
Eclipse, Taverna provides a graphical workbench for au-
thoring workflows, however it also includes a workflow en-
actor called Freefluo. The g-Eclipse Workflow Builder does
not provide any facility for workflow enactment and re-
lies on the middleware implementations to deal with work-
flow execution. GRIA supports deployment of Taverna au-
thored XScufl workflows via a GRIA plugin to the Taverna
workbench. Taverna has been widely adopted by the UK
eScience community and the details of this are discussed at
length by Oinn et al in [18].

Kepler is a scientific workflow creation and execution
tool that builds on the Ptolemy II concurrent component
computation system [19]. Kepler allows users to build com-
plex data-centric workflows in contrast to Taverna that is
based on a singular-dataflow paradigm of workflows. As
Kepler is builds on the Ptolemy system, it adopts Ptolemy’s
Modeling Markup Language (MoML) to persist workflows.
Again, like g-Eclipse, Kepler provides a graphical work-
flow authoring tool, and like Taverna, also supports work-
flow execution. Kepler supports both a Web service and
Grid resource workflow composition and has been adopted
by a range of scientific fields such as biology, astrophysics
and chemistry. The system is described in Altintas et al in
[20].

7 Conclusions

In this paper we described the Workflow Builder tool that
is part of the g-Eclipse Grid workbench. Authoring and de-
ploying workflows is an essential part of developing scien-
tific analyses techniques that require access to large data and



computing resources, and the g-Eclipse Workflow Builder
goes some way to enabling users to author workflows and
deploy them to different middlewares. Currently two Grid
middlewares are supported by g-Eclipse, and the workbench
framework is extensible enough to introduce support for
other systems in the future. g-Eclipse is available as open
source and can be downloaded from http://www.geclipse.eu
or http://www.eclipse.org/geclipse

Acknowledgments

This work was supported in part by the EU under project
(#FP6-2005-IST-034327), and the Eclipse Foundation. The
authors would also like to thank the participating institu-
tions of the g-Eclipse consortium and its project members.

References

[1] H. Kornmayer et al, ”g-Eclipse Project,” in Proc. 2nd
Austrian Grid Symp., Innsbruck, Austria, 2006.

[2] ”g-Eclipse - Access the power of the Grid,” 2009. [On-
line]. Available: http://www.geclipse.eu [Accessed: Oct.
14, 2009].

[3] I. Foster et al, ”The Anatomy of the Grid: Enabling
Scalable Virtual Organizations,” in Int. J. High Perfor-
mance Computing Applicat., vol. 15, no. 3, pp. 200-222,
Aug. 2001.

[4] Sciabá et al, Ed. (2009, Apr. 28), gLite
3.1 User Guide (v1.2) [Online]. Available:
http://glite.web.cern.ch/glite/documentation/ [Accessed:
Oct. 14, 2009].

[5] H. Gjermundrød et al, ”g-Eclipse - An Integrated
Framework to Access and Maintain Grid Resources,”
in Proc. 9th IEEE/ACM Int. Conf. Grid Computing,
Tsukuba, Japan, 2008, pp. 57-64.

[6] D. Erwin, Ed. (2003) UNICORE
Plus Final Report [Online]. Available:
http://www.unicore.eu/documentation/files/erwin-
2003-UPF.pdf [Accessed: Oct. 14, 2009].

[7] I. Foster, ”Globus Toolkit Version 4: Software for
Service-Oriented Systems,” in J. Comput. Sci. and Tech-
nology, vol. 21, no. 4, pp. 513-520, Jul. 2006.

[8] M. Surridge et al, ”Experiences with GRIA - Indus-
trial Applications on a Web Services Grid,” in Proc. 1st
Int. Conf. e-Science, Melbourne, Australia, 2005, pp. 98-
105.

[9] ”GRIA - Service Oriented Collaborations for In-
dustry and Commerce,” 2009. [Online]. Available:
http://www.gria.org [Accessed: Oct. 14, 2009].

[10] ”Amazon Web Services,” 2009. [Online]. Available:
http://aws.amazon.com [Accessed: Oct. 14, 2009].

[11] A. Savva, Ed. (2005, Nov. 7) Job Sub-
mission Description Language (JSDL) Spec-
ification, Version 1.0 [Online]. Available:
http://www.ogf.org/documents/GFD.56.pdf [Accessed:
Oct. 14, 2009].

[12] R. Allen, ”Workflow: An Introduction,” in Workflow
Handbook 2001, L. Fischer, Ed. Lighthouse Point, FL:
Future Strategies, 2000, pp. 15-38.

[13] Object Management Group (2003, May), XML
Metadata Interchange (XMI) Specification [Online].
Available: http://www.omg.org/docs/formal/03-05-
02.pdf [Accessed: Oct. 14, 2009].

[14] T. Oinn (2004, Apr. 7), XScufl Lan-
guage Reference [Online]. Available:
http://www.ebi.ac.uk/ tmo/mygrid/XScuflSpecification.html
[Accessed: Oct. 14, 2009].

[15] S. Altschul, ”Basic Local Alignment Search Tool,” in
J. Molecular Biology, vol. 215, no. 3. pp. 403-410, Oct.
1990.

[16] S.I. O’Donoghue et al, ”The SRS 3D module: inte-
grating structures, sequences and features,” in Bioinfor-
matics, vol. 20, no. 15, pp. 2476-2478, Apr. 2004.

[17] ”The Taverna project website,” 2009. [Online]. Avail-
able: http://taverna.sourceforge.net [Accessed: Oct. 14,
2009].

[18] T. Oinn et al, ”Taverna: a tool for the composition and
enactment of bioinformatics workflows,” in Bioinformat-
ics, vol. 20, no. 17, pp. 3045-3054, Jun. 2004.

[19] ”The Kepler Project,” (2009) [Online]. Available:
https://kepler-project.org [Accessed: Oct. 14, 2009].

[20] I. Altintas et al, ”Kepler: An Extensible System for
Design and Execution of Scientific Workflows,” in Proc.
16th Conf. Scientific and Statistical Database Manage.,
Santorini, Greece, 2004, pp. 423-424.

[21] ”SIMDAT Grids for Industrial Product Development,”
2009. [Online]. Available: http://www.simdat.eu [Ac-
cessed: Oct. 14, 2009].


